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preface
Even as a young boy, I was stubborn. When people would suggest simple ways of doing
things, I would ignore advice, choosing to always do things the hard way. Decades
later, not much changed as I shifted through increasingly challenging careers, eventu-
ally landing in the realm of data science (DS) and machine learning (ML) engineer-
ing, and now ML software development. As a data scientist in industry, I always felt the
need to build overly complex solutions, working in isolation to solve a given problem
in the way that I felt was best. 

 I had some successes but many failures, and generally left a trail of unmaintainable
code in my wake as I moved from job to job. It’s not something that I’m particularly
proud of. I’ve been contacted by former colleagues, years after leaving a position, to
have them tell me that my code is still running every day. When I’ve asked each one of
them why, I’ve gotten the same demoralizing answer that has made me regret my
implementations: “No one can figure it out to make changes to it, and it’s too import-
ant to turn off.”

 I’ve been a bad data scientist. I’ve been an even worse ML engineer. It took me
years to learn why that is. That stubbornness and resistance to solving problems in the
simplest way created a lot of headaches for others, both in the sheer number of can-
celled projects while I was at companies and in the unmaintainable technical debt
that I left in my wake.

 It wasn’t until my most recent job, working as a resident solutions architect at Data-
bricks (essentially a vendor field consultant), that I started to learn where I had gone
wrong and to change how I approached solving problems. Likely because I was now
xi



PREFACExii
working as an advisor to help others who were struggling with data science problems,
I was able to see my own shortcomings through the abstract reflection of what they
were struggling through. Over the past few years, I’ve helped quite a few teams avoid
many pitfalls that I’ve experienced (and created through my own stubbornness and
hubris). I figured that writing down some of this advice that I give people regularly
could benefit a broader audience, beyond my individual conversations with isolated
teams in the context of my job.

 After all, applying machine learning to a real-world use case is hard enough when
following along with examples and books on the concepts of applied ML. When you
introduce the staggering complexity of end-to-end project work (which is the focus of
this book), it comes as little surprise that many companies fail to realize the potential
of ML in their businesses. It’s just hard. It’s easier if you have a guide, though. 

 This book doesn’t aim to be a guide to applied ML. We’re not going to be covering
algorithms or theories on why one model is better than another for a particular use
case, nor will we delve into all the details to solve individual problems. Rather, this
book is a guide to avoid the pitfalls that I’ve seen so many teams fall into (and ones
that I’ve had to claw my way out of as a practitioner). It is a generalized approach to
using DS techniques to solve problems in a way that you, your customers (the internal
ones at your company), and your peers will not regret. It’s a guide to help you avoid
making some of the really stupid mistakes that I’ve made. 

 In the words of two of my relatively recently acquired favorite proverbs:

Ask the experienced rather than the learned. 

                                                                                                   —Arab proverb

It is best to learn wisdom by the experience of others. 

                                                                                                   —Latin proverb
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about this book
Machine Learning Engineering in Action is an extension of the recommendations, hard-
earned wisdom, and general tips that I’ve been sharing with clients for the past few
years. This isn’t a book on theory, nor is it going to make you build the best models for
a given problem. Those books have already been, and continue to be, written by great
authors. This is a book focused on the “other stuff.” 

Who should read this book
This book is intended to reach a rather large audience in the ML community. It is nei-
ther too in the weeds to be exclusive to ML engineers, nor too high-level to be exclu-
sively written for the benefit of a layperson. My intention in writing it in the way that I
did is to make it approachable for anyone who is involved in the process of using ML
to solve business problems. 

 I’ve been pleasantly surprised by some of the early-stage feedback during develop-
ment of this book. One of the first questions that I ask people who have reached out
is, “What do you do?” I’ve received a far wider range of job titles and industries than I
ever would have imagined—venture capitalists with PhDs in economics, ML engineers
with 20 years of industry experience at some of the most prestigious tech companies,
product managers at Silicon Valley startups, and undergrad university students in
their freshman year. This lets me know that the book offers a bit of something for
everyone to learn in terms of using ML engineering to build something successful.
xv



ABOUT THIS BOOKxvi
How this book is organized: A road map
This book has three main parts that address milestones in any ML project. From the
initial scoping stages of “What are we trying to solve?” to the final stage of “How are we
keeping this solution relevant for years to come?,” the book moves through each of
these major epochs in the same logical order that you would consider these topics
while working through a project:

 Part 1 (chapters 1–8) is focused primarily on the management of ML projects
from the perspective of a team lead, manager, or project lead. It lays out a blue-
print for scoping, experimentation, prototyping, and inclusive feedback to help
you avoid falling into solution-building traps. 

 Part 2 (chapters 9–13) covers the development process of ML projects. With
examples (both good and bad) of ML solution development, this section car-
ries you through proven methods of building, tuning, logging, and evaluating
an ML solution to ensure that you’re building the simplest and most maintain-
able code possible. 

 Part 3 (chapters 14–16) focuses on “the after”: specifically, considerations
related to streamlining production release, retraining, monitoring, and attribu-
tion for a project. With examples focused on A/B testing, feature stores, and a
passive retraining system, you’ll be shown how to implement systems and archi-
tectures that can ensure that you’re building the minimally complex solution to
solve a business problem with ML.

About the code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Code annotations accompany many of the listings, highlighting important
concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/machine-learning-engineering-in-action.
The complete code for the examples in the book is available for download from the
Manning website at www.manning.com/books/machine-learning-engineering-in-action,
and from GitHub at https://github.com/BenWilson2/ML-Engineering.

liveBook discussion forum
Purchase of Machine Learning Engineering in Action includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive

http://www.manning.com/books/machine-learning-engineering-in-action
https://github.com/BenWilson2/ML-Engineering
https://livebook.manning.com/book/machine-learning-engineering-in-action


ABOUT THIS BOOK xvii
help from the author and other users. To access the forum, go to https://livebook
.manning.com/book/machine-learning-engineering-in-action/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/machine-learning-engineering-in-action/discussion
https://livebook.manning.com/book/machine-learning-engineering-in-action/discussion
https://livebook.manning.com/book/machine-learning-engineering-in-action/discussion
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Part 1

An introduction
to machine learning

engineering

I’m sure you’ve seen, like most people in the data science field, the statistics
on project failures. Based on my experience, the numbers thrown around for a
project getting into production (namely, by vendors promising that their tooling
stack will improve your chances if you just pay them!) are ridiculously grim.
However, some element of truth exists in the hyperbolic numbers that are refer-
enced in the rates of project failure. 

 Using machine learning (ML) to solve real-world problems is complex. The
sheer volume of tooling, algorithms, and activities involved in building a useful
model are daunting for many organizations. In my time working as a data scien-
tist and subsequently helping many dozens of companies build useful ML proj-
ects, I’ve never seen the tooling or the algorithms be the reason a project fails to
provide value to a company. 

 The vast majority of the time, a project that fails to make its way to produc-
tion for sustained utility has issues that are rooted in the very early phases.
Before even a single line of code is written, before a serving architecture is
selected and built out, and long before a decision on scalable training is made, a
project is doomed to either cancellation or unused obscurity if planning, scop-
ing, and experimentation are not done properly. 



2 PART 1 An introduction to machine learning engineering
 From these early stages of project definition, subject-matter expertise review, and
reasonable levels of research and testing validation, a coherent project plan and road
map can be built that carries the idea of solving a problem to the phase in which an
effective solution can be built. In part 1 of this book, we’ll go through blueprints
showing how to evaluate, plan, and validate a plan for determining the most likely low-
risk solution for a problem by using (or not using!) ML. 



What is a machine
learning engineer?
Machine learning (ML) is exciting. It’s fun, challenging, creative, and intellectually
stimulating. It also makes money for companies, autonomously tackles overwhelm-
ingly large tasks, and removes the burdensome task of monotonous work from peo-
ple who would rather be doing something else. 

 ML is also ludicrously complex. From thousands of algorithms, hundreds of
open source packages, and a profession of practitioners required to have a diverse
skill set ranging from data engineering (DE) to advanced statistical analysis and
visualization, the work required of a professional practitioner of ML is truly intimi-
dating. Adding to that complexity is the need to be able to work cross-functionally
with a wide array of specialists, subject-matter experts (SMEs), and business unit
groups—communicating and collaborating on both the nature of the problem
being solved and the output of the ML-backed solution.

This chapter covers
 The scope of knowledge and skills for machine 

learning engineers

 The six fundamental aspects of applied machine 
learning project work

 The functional purpose of machine learning 
engineers
3



4 CHAPTER 1 What is a machine learning engineer?
 ML engineering applies a system around this staggering level of complexity. It uses
a set of standards, tools, processes, and methodology that aims to minimize the
chances of abandoned, misguided, or irrelevant work being done in an effort to solve
a business problem or need. It, in essence, is the road map to creating ML-based sys-
tems that can be not only deployed to production, but also maintained and updated
for years in the future, allowing businesses to reap the rewards in efficiency, profitabil-
ity, and accuracy that ML in general has proven to provide (when done correctly).

 This book is, at its essence, that very road map. It’s a guide to help you navigate
the path of developing production-capable ML solutions. Figure 1.1 shows the major
elements of ML project work covered throughout this book. We’ll move through
these proven sets of processes (mostly a “lessons learned” from things I’ve screwed
up in my career) to give a framework for solving business problems through the appli-
cation of ML.

Focused on alignment
between the business unit
and the DS team regarding
the project, not the
implementation details

Scoping

and research

Experimentation

What can we test, who
can test it, and what
details about this
problem will help
guide the way testing
is conducted?

Which (if any) of the
approaches tested has the
best chance of solving the
problem, and how long is it
going to take to build?

Model health checks,
problem solution validation
(project objectives and key
results), and retraining
paradigm implementation

Validated performance
(ML metrics), QA
evaluation (business
metrics), and
cost-effective serving
infrastructure

Writing maintainable,
testable, and extensible
code that supports metric
tracking, parameter
logging, and artifact
registration

Development

Deployment

Evaluation

When to deliver

Problem definition

Planning

SME interviews

Staffing

Research

Cost/efficacy test

MVP scoping

Feasibility checks

Retraining

Attribution

Drift detection

Testing

Infrastructure

Performance

Platform selection

Code design

MLOps tooling

Figure 1.1 The ML engineering road map for project work



5Why ML engineering?
This path for project work is not meant to focus solely on the tasks that should be
done at each phase. Rather, it is the methodology within each stage (the “why are we
doing this” element) that enables successful project work. 

 The end goal of ML work is, after all, about solving a problem. The most effective
way to solve those business problems that we’re all tasked with as data science (DS)
practitioners is to follow a process designed around preventing rework, confusion,
and complexity. By embracing the concepts of ML engineering and following the
road of effective project work, the end goal of getting a useful modeling solution can
be shorter, far cheaper, and have a much higher probability of succeeding than if you
just wing it and hope for the best.

1.1 Why ML engineering?
To put it most simply, ML is hard. It’s even harder to do correctly in the sense of
serving relevant predictions, at scale, with reliable frequency. With so many special-
ties existing in the field—such as natural language processing (NLP), forecasting,
deep learning, and traditional linear and tree-based modeling—an enormous focus
on active research, and so many algorithms that have been built to solve specific
problems, it’s remarkably challenging to learn even slightly more than an insignifi-
cant fraction of all there is to learn about the field. Understanding the theoretical
and practical aspects of applied ML is challenging and time-consuming. 

 However, none of that knowledge helps in building interfaces between the model
solution and the outside world. Nor does it help inform development patterns that
ensure maintainable and extensible solutions.

 Data scientists are also expected to be familiar with additional realms of compe-
tency. From mid-level DE skills (you have to get your data for your data science from
somewhere, right?), software development skills, project management skills, visualiza-
tion skills, and presentation skills, the list grows ever longer, and the volumes of expe-
rience that need to be gained become rather daunting. It’s not much of a surprise,
considering all of this, that “just figuring it out” in reference to all the required skills
to create production-grade ML solutions is untenable. 

 The aim of ML engineering is not to iterate through the lists of skills just men-
tioned and require that a data scientist (DS) master each of them. Instead, ML engi-
neering collects certain aspects of those skills, carefully crafted to be relevant to data
scientists, all with the goal of increasing the chances of getting an ML project into produc-
tion and making sure that it’s not a solution that needs constant maintenance and
intervention to keep running.

  ML engineers, after all, don’t need to be able to create applications and software
frameworks for generic algorithmic use cases. They’re also not likely to be writing
their own large-scale streaming ingestion extract, transform, and load (ETL) pipe-
lines. They similarly don’t need to be able to create detailed and animated frontend
visualizations in JavaScript. 
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 ML engineers need to know just enough software development skills to be able to write
modular code and implement unit tests. The don’t need to know about the intricacies
of non-blocking asynchronous messaging brokering. They need just enough data engineer-
ing skills to build (and schedule the ETL for) feature datasets for their models, but not
to construct a petabyte-scale streaming ingestion framework. They need just enough visu-
alization skills to create plots and charts that communicate clearly what their research
and models are doing, but not to develop dynamic web apps that have complex user-
experience (UX) components. They also need just enough project management experience to
know how to properly define, scope, and control a project to solve a problem, but need
not go through a Project Management Professional (PMP) certification.

 A giant elephant remains in the room when it comes to ML. Specifically, why—with
so many companies going all in on ML, hiring massive teams of highly compensated
data scientists, and devoting enormous amounts of financial and temporal resources
to projects—do so many endeavors end up failing? Figure 1.2 depicts rough estimates
of what I’ve come to see as the six primary reasons projects fail (and the rates of these
failures in any given industry, from my experience, are truly surprising).

Throughout this first part of the book, we’ll discuss how to identify the reasons so many
projects fail, are abandoned, or take far longer than they should to reach production.
We’ll also discuss the solutions to each of these common failures and cover the pro-
cesses that can significantly lower the chances of these factors derailing your projects.

 Generally, these failures happen because the DS team is either inexperienced with
solving a problem of the scale required (a technological or process-driven failure) or
hasn’t fully understood the desired outcome from the business (a communication-
driven failure). I’ve never seen this happen because of malicious intent. Rather, most
ML projects are incredibly challenging, complex, and composed of algorithmic software
tooling that is hard to explain to a layperson—hence the breakdowns in communica-
tion with business units that most projects endure. 

Planning: 30%

Scoping: 25%
Technology: 15%

Fragility: 15%

Cost: 10%

Hubris: 5%

Planning Scoping Technology Fragility Cost Hubris

Figure 1.2 My estimation 
of why ML projects fail, 
from the hundreds I’ve 
worked on and advised 
others on
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 Adding to the complexity of ML projects are two other critical elements that are
not shared by (most) traditional software development projects: a frequent lack of
detail in project expectations and the relative industry immaturity in tooling. Both
aspects are no different from the state of software engineering in the early 1990s. Busi-
nesses then were unsure of how to best leverage new aspects of technological capability,
tooling was woefully underdeveloped, and many projects failed to meet the expectations
of those who were commissioning engineering teams to build them. ML work is (from
my biased view of working with only so many companies) at the same place now in the
second decade of the 21st century that software engineering was 30 years ago. 

 This book isn’t a doom-riddled treatise on the challenges of ML; rather, it’s meant
to show how these elements can be a risk for projects. The intent is to teach the pro-
cesses and tools that help minimize this failure risk. Figure 1.3 shows an overview of

ML project start

Solution doesn’t solve the
problem

Planning problems

Solution is too complex or
expensive

Can’t explain how it works

Solution takes too long to
develop

Scoping problems

Problem complexity
underestimated

Insufficient time for skills
acquisition

Unstable, fragile, or
nonperformant code

Development issues

Late-stage implementation
change

High cost vs. value of
solution

Evaluation issues

Can’t explain solution value

Too many approaches
tested for too long

Experimentation issues

Unreproducible results

Overengineered
complexity

Scalability (money or time)
problems

Deployment issues

Failure to meet
service-level agreement

Inadequate code tests

Drift causing instability

Successful
long-running ML

solution

Figure 1.3 ML project detours that lead to project failure 
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the detours that can arise in the execution of a project; each brings a different ele-
ment of risk to a project’s successful execution.

 The framework used in ML engineering is exactly dedicated to address each of
these primary failure modes. Eliminating these chances of failure is at the heart of this
methodology. It is done by providing the processes to make better decisions, ease
communication with internal customers, eliminate rework during the experimenta-
tion and development phases, create code bases that can be easily maintained, and
bring a best-practices approach to any project that is heavily influenced by DS work.
Just as software engineers decades ago refined their processes from large-scale water-
fall implementations to a more flexible and productive Agile process, ML engineering
seeks to define a new set of practices and tools that will optimize the wholly unique
realm of software development for data scientists.

1.2 The core tenets of ML engineering
Now that you have a general idea of what ML engineering is, we can focus in a bit on
the key elements that make up those incredibly broad categories from figure 1.2. Each
of these topics is the focus of entire chapter-length in-depth discussions later in this
book, but for now we’re going to look at them in a holistic sense by way of potentially
painfully familiar scenarios to elucidate why they’re so important.

1.2.1 Planning

Nothing is more demoralizing than building an ML solution that solves the wrong problem.

By far the largest cause of project failures, failing to plan out a project thoroughly, is
one of the most demoralizing ways for a project to be cancelled. Imagine for a
moment that you’re the first-hired DS for a company. On your first week, an executive
from marketing approaches you, explaining (in their terms) a serious business issue
that they are having. They need to figure out an efficient means of communicating to
customers through email to let them know of upcoming sales that they might be inter-
ested in. With very little additional detail provided to you, the executive merely says, “I
want to see the click and open rates go up on our emails.”

 If this is the only information supplied, and repeated queries to members of the mar-
keting team simply state the same end goal of increasing the clicking and opening rate,
the number of avenues to pursue seems limitless. Left to your own devices, do you

 Focus on content recommendation and craft custom emails for each user?
 Provide predictions with an NLP-backed system that will craft relevant subject

lines for each user?
 Attempt to predict a list of products most relevant to the customer base to put

on sale each day?

With so many options of varying complexity and approaches, and little guidance, creat-
ing a solution that is aligned with the expectations of the executive is highly unlikely.
Instead, if a proper planning discussion delved into the correct amount of detail,
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avoiding the complexity of the ML side of things, the true expectation might be
revealed. You’d then know that the only expectation is a prediction for when each user
would most likely be open to reading email. The executive simply wants to know when
someone is most likely to not be at work, commuting, or sleeping so that the company
can send batches of emails throughout the day to different cohorts of customers.

 The sad reality is that many ML projects start off in this way. Frequently, little com-
munication occurs with regards to project initiation, and the general expectation is
that the DS team will just figure it out. However, without the proper guidance on what
needs to be built, how it needs to function, and what the end goal of the predictions
is, the project is almost certainly doomed to failure. 

 After all, what would have happened if an entire content recommendation system
were built for that use case, with months of development and effort wasted, when a
simple analytics query based on IP address geolocation was what was really needed?
The project would not only be cancelled, but many questions would likely come from
on high as to why this system was built and why its development costed so much. 

 Let’s look at the simplified planning discussion illustrated in figure 1.4. Even at the
initial phase of discussion, we can see how just a few careful questions and clear answers

“What is the
project?”

“How is it done
now, if at all?”

“How do you
need to use the

predictions?”

“What business
need is this
solving?”

“What would make
you consider this

a success?”

“We need to increase the opening
rates of our marketing emails to drive

more people to the site.”

“We send emails every day at 8 a.m.
and 3 p.m. local time for us.”

“We want to identify the best
time to send our emails for

each user based on their local
time zone and when they’ve
opened emails in the past.”

“It will hopefully drive more users to
the site and increase sales.”

“If the opening rates and logins from
the email link go up, we would

consider it a success.”

OK. Maybe they want more-
relevant emails? Better subject
lines? Maybe custom
recommendations?
Seems like they’re more
concerned about the time of
sending than the content of the
email. Perhaps a regression
problem?

Ah. It’s an optimization problem to
figure out when to send an email.
They’re not concerned with
content recommendations.
This seems like a stretch. There
are probably going to be too
many latent factors influencing
this. Ask more questions.
Here’s the business metric
that a solution will be
measured against. Increase
open rates.

Getting clarification on
expectations and priorities
can help to build trust.

This is critical to project
success. Get the SMEs on
board early.

“As soon as possible, ideally with
results by next quarter so we can

know what to focus on next.”

“I will make sure that our three subject-
matter experts are available to assist

with the project.”

“Who from your
team can I work

with?”

Data scientist

Marketing executive

(business sponsor)

“When would you
be ready to test

this?”

Figure 1.4 A simplified planning discussion diagram 
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can provide the one thing every data scientist should be looking for in this situation
(especially as the first DS at a company working on the first problem): a quick win.

 As you can see from the DS’s internal monologue shown at the right, the prob-
lem at hand is not at all in the list of original assumptions that were made. There is
no talk of email content, relevancy to the subject line, or the items in the email. It’s
a simple analytical query to figure out which time zone customers are in and to ana-
lyze historic opening in local times for each customer. By taking a few minutes to
plan and understand the use case fully, weeks (if not months) of wasted effort, time,
and money were saved. 

 By focusing on what will be built and why it needs to be built, both the DS team and the
business are able to guide the discussion more fruitfully. Eschewing a conversation
focused on how it will be built keeps the DS members of the group focused on the prob-
lem. Ignoring when it will be built by helps the business keep its focus aligned on the
needs of the project.

 Avoiding discussing implementation details at this stage of the project is not
merely critical for the team to focus on the problem. Keeping the esoteric details of
algorithms and solution design out of discussions with the larger team keeps the busi-
ness unit members engaged. After all, they really don’t care how many eggs go into
the mix, what color the eggs are, or even what species laid the eggs; they just want to
eat the cake when it’s done. We will cover the processes of planning, having project
expectation discussions with internal business customers, and general communica-
tions about ML work with a nontechnical audience at length and in much greater
depth throughout the remainder of part 1.

1.2.2 Scoping and research

If you switch your approach halfway through development, you’ll face a hard conversation
with the business to explain that the project’s delays are due to you not doing your
homework.

After all, there are only two questions that your internal customers (the business unit)
have about the project: 

 Is this going to solve my problem?
 How long is this going to take?

Let’s take a look at another potentially familiar scenario to discuss polar opposite ways
that this stage of ML project development can go awry. Say we have two DS teams at a
company, each being pitted against the other to develop a solution to an escalating
incidence of fraud being conducted with the company’s billing system. Team A’s
research and scoping process is illustrated in figure 1.5.

 Team A comprises mostly junior data scientists, all of whom entered the workforce
without an extensive period in academia. Their actions, upon getting the details of
the project and the expectations of them, is to immediately go to blog posts. They
search the internet for “detecting payment fraud” and “fraud algorithms,” finding
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hundreds of results from consultancy companies, a few extremely high-level blog posts
from similar junior data scientists who have likely never put a model into production,
and some rudimentary open source data examples. 

 Team B, in contrast, is filled with a group of PhD academic researchers. Their
research and scoping is shown in figure 1.6.

 With Team B’s studious approach to research and vetting of ideas, the first actions
are to dig into published papers on the topic of fraud modeling. Spending several
days reading through journals and papers, these team members are now armed with a
large collection of theory encompassing some of the most cutting-edge research being
done on detecting fraudulent activity.

 If we were to ask either team to estimate the level of effort required to produce a
solution, we would get wildly divergent answers. Team A would likely estimate about
two weeks to build its XGBoost binary classification model, while team B would tell a
vastly different tale. Those team members would estimate several months for imple-
menting, training, and evaluating the novel deep learning structure that they found in
a highly regarded whitepaper whose proven accuracy for the research was significantly
better than any Perforce-implemented algorithm for this use case.

 The problem here with scoping and research is that these two polar opposites
would both have their projects fail for two completely different reasons. Team A
would fail because the solution to the problem is significantly more complex than the exam-
ple shown in the blog post (the class imbalance issue alone is too challenging of a topic to

Underestimating ML project
complexity and delivery
expectations is dangerous. You
can always under-promise and
over-deliver, but the inverse
never works.

Inadequate research, a rushed
implementation, and a failure
to understand both the
algorithm and the nuances
of the problem results
in failure.

Inadequate research. Should
have read more in depth on the
topic to see all of the hidden
gotchas in this approach.

Business response

Search the internet for ideas
and examples of how to solve

the problem (one day)

Find blog post on fraud detection
using XGBoost (same day)

“Should take about
two weeks to build!”

Both the false-positive and false-
negative rates are atrocious.

This model .is useless

The only problem here is the
length of research. A day of
searching is insufficient.

Figure 1.5 Research and scoping of a fraud-detection problem for a junior team of well-intentioned but 
inexperienced data scientists
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effectively document in the short space of a blog). Team B, even though its solution
would likely be extremely accurate, would never be allocated resources to build the risky solu-
tion as an initial fraud-detection service at the company.

 Project scoping for ML is incredibly challenging. Even for the most seasoned of
ML veterans, conjecturing how long a project will take, which approach is going to be
most successful, and the amount of resources required is a futile and frustrating exer-
cise. The risk associated with making erroneous claims is fairly high, but structuring
proper scoping and solution research can help minimize the chances of being wildly
off on estimation. 

 Most companies have a mix of the types of people in this hyperbolic scenario.
Some are academics whose sole goal is to further the advancement of knowledge and
research into algorithms, paving the way for future discoveries from within the indus-
try. Others are “applications of ML” engineers who just want to use ML as a tool to
solve a business problem. It’s important to embrace and balance both aspects of these
philosophies toward ML work, strike a compromise during the research and scoping
phase of a project, and know that the middle ground here is the best path to trod
upon to ensure that a project actually makes it to production.

Highly recommended tactic with
a thorough research phase

Business response

Search IEEE, arXiv, and trade
journals for prior research on the

topic (two weeks)

Discover highly cited paper on
using neural networks with a

genetic algorithm for advanced
fraud detection

“Well, there’s no package out
there that offers this algorithm,

so we’re going to have to
implement the paper from

scratch.”

“We simply do not have four
months and the required budget

for large multi-GPU virtual
machines to make this work.”

Might not be the wisest
decision to focus on
cutting-edge research for
a business problem

With the right team, the solution
likely would be fantastic. But the
cost of novel implementation in
the long run far outweighs the
potential accuracy gains.

Extremely risky, as it involves
building and owning not only an
ML solution, but an algorithm as
well

Figure 1.6 Research and scoping for an academia-focused group of researchers for the fraud-detection 
problem
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1.2.3 Experimentation

Testing approaches is a Goldilocks activity; if you don’t test enough options, you’re
probably not finding the best solution, while testing too many things wastes precious time.
Find the middle ground.

In the experimentation phase, the largest causes of project failure are either the
experimentation taking too long (testing too many things or spending too long fine-
tuning an approach) or an underdeveloped prototype that is so abysmally bad that
the business decides to move on to something else. 

 Let’s use a similar example from section 1.2.2 to illustrate how these two approaches
might play out at a company that is looking to build an image classifier for detect-
ing products on retail store shelves. The experimentation paths that the two groups
take (showing the extreme opposites of experimentation) are shown in figures 1.7
and 1.8.

Team A embodies the example of wholly inadequate research and experimentation in
the early phases of a project. A project that glosses over these critical stages of solution
development runs the risk, as shown in figure 1.7, of having a result that is so woefully

Shortcuts during experimentation
and a rushed approach simply
hid the issues that are seen
during full development.

Find blog that shows how to use
a pretrained convolutional
neural network to classify

dogs and cats

Take two classes of products, unlock the
last 25% of the network for relearning,

execute training

Demo the results. Classification of the
two classes is pretty good.

Model is trained on full data set. Results
indicate that the learned attributes are
product color and pattern, rendering

the model useless.

Rework from scratch or abandon

Inadequate testing on
cherry-picked samples from
the training data hides the
flaws in this implementation.

Either result causes the
business to lose confidence
in the team.

Development phase

Woefully inadequate research
leading to a single approach to
be tested

Testing on a cherry-picked
subset of the data obscures
the complexity of this
implementation.

Figure 1.7 A rushed experimentation phase by a team of inexperienced data scientists



14 CHAPTER 1 What is a machine learning engineer?
underdeveloped that it becomes irrelevant to the business. Projects like these erode
the business’s faith in the DS team, waste money, and needlessly expend precious
resources of several groups. 

 These inexperienced DS team members, performing only the most cursory of
research, adapt a basic demo from a blog post. While their basic testing shows prom-
ise, they fail to thoroughly research the implementation details required for employ-
ing the model on their data. By retraining the pretrained model on only a few
hundred images of two of the many thousands of products from their corpus of
images, their misleading results hide the problem with their approach. 

 This is the exact opposite situation to that of the other team. Team B’s approach to
this problem is shown in figure 1.8.

Team B’s approach to solving this problem is to spend weeks searching through
cutting-edge papers, reading journals, and understanding the theory involved in vari-
ous convolutional neural network (CNN) and generative adversarial network (GAN)

That’s going to take
a long time to test:
three different model
architectures of
CNNs a GAN?and

Spend two weeks researching
options and vetting them

Analysis paralysis. All three have been worked on for so
long that their merits are indistinguishable in their results,

and opinions on which is best are driving decisions.

Blew through a year’s worth
of computational budget.

Project cancelled due to cost.

This is far more
common than you
might think. I’ve
seen this happen
many dozens
of times.

Development phase

Good approach for a topic
as complex as this

Overdeveloped
experiments basically
become MVPs. At this
point, it’s hard to let
go of all the work that
has already been done.

Test 6–20
convolution and

pooling layer
CNNs

Transfer learning
of three most

probable pretrained
large networks

Semi-supervised
discriminator GAN

Results get better
as the network

depth increases,
but process is

slower and
expensive

Retraining on
entire corpus of

images is
time-consuming
for each feature

iteration

Smaller training
sizes, but the
architecture is
complex and

fragile

The most promising
approach, but with
the other two being
worked on, the time
to test and cost
associated is very
high

Figure 1.8 A case of too much testing in the experimentation phase of a project
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approaches. They settle on three broad potential solutions, each consisting of several
tests that need to run and be evaluated against the entire collection of their training
image dataset. 

 It isn’t the depth of research that fails them in this case, as it does for the other
group. Team B’s research is appropriate for this use case. The team members have
an issue with their minimum viable product (MVP) because they are trying too
many things in too much depth. Varying the structure and depth of a custom-built
CNN requires dozens (if not hundreds) of iterations to get right for the use case
that they’re trying to solve. This work should be scoped into the development stage
of the project, not during evaluation, after a single approach is selected based on
early results.

 While not the leading cause of project failure, an incorrectly implemented experi-
mentation phase can stall or cancel an otherwise great project. Neither of these two
extreme examples is appropriate, and the best course of action is a moderate approach
between the two. 

1.2.4 Development

No one thinks that code quality matters until it’s 4 a.m. on a Saturday, you’re 18 hours
into debugging a failure, and you still haven’t fixed the bug.

Having a poor development practice for ML projects can manifest itself in a multitude
of ways that can completely kill a project. Though usually not as directly visible as
some of the other leading causes, having a fragile and poorly designed code base and
poor development practices can make a project harder to work on, easier to break in
production, and far harder to improve as time goes on.

 For instance, let’s look at a rather simple and frequent modification situation that
comes up during the development of a modeling solution: changes to the feature
engineering. In figure 1.9, we see two data scientists attempting to make a set of
changes in a monolithic code base. In this development paradigm, all the logic for the
entire job is written in a single notebook through scripted variable declarations and
functions.

 Julie, in the monolithic code base, will likely have a lot of searching and scrolling
to do, finding each individual location where the feature vector is defined and adding
her new fields to collections. Her encoding work will need to be correct and carried
throughout the script in the correct places as well. It’s a daunting amount of work for
any sufficiently complex ML code base (as the number of code lines for feature engi-
neering and modeling combined can reach to the thousands if developed in a script-
ing paradigm) and is prone to frustrating errors in the form of omissions, typos, and
other transcription mistakes. 

 Joe, meanwhile, has far fewer edits to do. But he is still subject to the act of search-
ing through the long code base and relying on editing the hardcoded values correctly. 

 The real problem with the monolithic approach comes when they try to incorpo-
rate each of their changes into a single copy of the script. As they have mutual
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Julie needs to add
three new fields to the

vector and create
encoders for each.

Joe needs to adjust
the scalers for the

continuous values in
the vector.

Someone needs to flip a coin
to figure out who is going to
incorporate the changes from
the other to fix the script.

Lines to modify

Lines to modify

Merge conflict issues

A thoroughly broken
mess of a code base

Merge both change sets

Figure 1.9 Editing a monolithic code base (a script) for ML project work



17The core tenets of ML engineering
dependencies on each other’s work, both will have to update their code and select
one of their copies to serve as a master for the project, copying in the changes from
the other’s work. This long and arduous process wastes precious development time
and likely will require a great deal of debugging to get correct.

 Figure 1.10 shows a different approach to maintaining an ML project’s code base.
This time, a modularized code architecture separates the tight coupling that is pres-
ent within the large script from figure 1.9.

This modularized code base is written in an integrated development environment
(IDE). While the changes being made by the two DSs are identical in their nature to
those being made in figure 1.9 (Julie is adding a few fields to the feature vector and
updating encodings for these new fields, while Joe is updating the scaler used on the

Julie needs to add three
new fields to the vector

and create new
encoders.

Vector creation module

Encoder module

Feature
engineering

package

Scaling module

Field configuration
module

Testing package

Vector creation module

Encoder module

Scaling module

Field configuration
module

Check out feature branch

Joe needs to change
the scalers.

Check out feature branch

Merge to master

Unit tests passing Unit tests passing

Julie’s branch Joe’s branch

Modular code allows for minimal
changes for new features or
changes to existing ones.

Decoupled

Work on next feature

Update and run unit tests.

Update and run unit tests.

Edit in feature branch

Make edits in feature branch

Run integration tests.

Figure 1.10 Updating a modular ML code base to prevent rework and merge conflicts
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feature vector), the amount of effort and time spent getting these changes working in
concert with one another is dramatically different.

 With a fully modularized code base registered in Git, each of them can check out a
feature branch from the master, make small edits to the modules that are part of their
features, write new tests (if needed), run their tests, and submit a pull request. Once
their work is complete—because of the configuration-based code and the capability of
the methods in each module class to act upon the data for their project through lever-
aging the job configuration—each feature branch will not impact the other and
should just work as designed. Julie and Joe can cut a release branch of both of their
changes in a single build, run a full integration test, and safely merge to the master,
confident that their work is correct. They can, in effect, work efficiently together on
the same code base, greatly minimizing the chance of errors and reducing the amount
of time spent debugging code.

1.2.5 Deployment

Not planning a project around a deployment strategy is like having a dinner party
without knowing how many guests are showing up. You’ll either be wasting money or
ruining experiences.

Perhaps the most confusing and complex part of ML project work for newer teams is
in how to build a cost-effective deployment strategy. If it’s underpowered, the predic-
tion quality doesn’t matter (since the infrastructure can’t properly serve the predic-
tions). If it’s overpowered, you’re effectively burning money on unused infrastructure
and complexity.

 As an example, let’s look at an inventory optimization problem for a fast-food
company. The DS team has been fairly successful in serving predictions for inven-
tory management at region-level groupings for years, running large batch predic-
tions for the per-day demands of expected customer counts at a weekly level, and
submitting forecasts as bulk extracts each week. Up until this point, the DS team has
been accustomed to an ML architecture that effectively looks like that shown in fig-
ure 1.11.

 This relatively standard architecture for serving up scheduled batch predictions
focuses on exposing results to internal analytics personnel who provide guidance on
quantities of materials to order. This prediction-serving architecture isn’t particularly
complex and is a paradigm that the DS team members are familiar with. With the
scheduled synchronous nature of the design, as well as the large amounts of time
between subsequent retraining and inference, the general sophistication of their tech-
nology stack doesn’t have to be particularly high (which is a good thing; see the fol-
lowing sidebar).

 As the company realizes the benefits of predictive modeling over time with these
batch approaches, its faith in the DS team increases. When a new business opportu-
nity arises that requires near-real-time inventory forecasting at a per-store level, com-
pany executives ask the DS team to provide a solution for this use case. 
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The ML team members understand that their standard prediction-serving architec-
ture won’t work for this project. They need to build a REST application program-
ming interface (API) to the forecasted data to support the request volume and
prediction updating frequency. To adapt to the granular level of a per-store inven-
tory prediction (and the volatility involved in that), the team knows that they need
to regenerate predictions frequently throughout the day. Armed with these require-
ments, they enlist the help of some software engineers at the company and build out
the solution. 

A brief note on simplistic architecture
In the world of ML, always strive for the simplest design possible when building an
architecture. If the project requires a periodicity of inference of one week, use a batch
process (not real-time streaming). If the data volumes are in the megabytes, use a
database and a simple virtual machine (not a 25-node Apache Spark cluster). If the
runtime of training is measured in minutes, stick to CPUs (not GPUs). 

Using complex architecture, platforms, and technology simply for the sake of using
them will create a condition that you will inevitably regret, as it introduces unneces-
sary complexity to an already complex solution. With each new complexity introduced,
the chances rise that something is going to break (usually in a spectacularly complex
manner). Keeping the technology, the stack, and the architecture as simple as is
needed to solve the imminent business needs of the project is always a recom-
mended best practice in order to deliver a consistent, reliable, and effective solution
to a business.

Prediction
reports by

region
(database)

Daily ingestion of consumption
and customer count DatabaseBatch ETL

Regional model retraining

Monthly model retraining job

Predictions
(scheduled inference job

on cloud VMs)

Weekly

inference job

BI analytics queries

Save regional

predictions to

location where

data is accessible

for downstream

consumption

Model storage
(Cloud object

store)

Retrieve current

regional model for

each region

Store new

versions of

each model.

Figure 1.11 A basic batch-prediction-serving architecture
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 It isn’t until after the first week of going live that the business realizes that the
implementation’s cloud computing costs are more than an order of magnitude higher
than the cost savings seen from the more-efficient inventory management system. The
new architecture, coupled with autoregressive integrated moving average (ARIMA)
models needed to solve the problem, is shown in figure 1.12.

It doesn’t take long for the project to get cancelled and a complete redesign of the
architecture for this implementation to be commissioned to keep the costs down. This
is a story that plays out time and again at companies implementing ML to solve new
and interesting problems (and to be fair, one that I’ve personally caused three times
in my career). 

 Without focusing on the deployment and serving at the start of a project, the risk
of building a solution that is under-engineered—doesn’t meet service-level agree-
ment (SLA) or traffic-volume needs—or is overengineered—exceeds technical spec-
ifications at an unacceptably high cost—is high. Figure 1.13 shows some (not all, by
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API endpoint

What the DS team is
focusing on

Figure 1.12 The far more complex pseudo-real-time serving architecture required to meet the business 
needs for the project
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any stretch of the imagination) elements to think about with regards to serving
prediction results and the costs associated with the extremes of the ranges of those
paradigms.

 It may not seem particularly exciting or important to think about cost when faced
with a novel problem to solve in a clever way with an algorithm. While the DS team
might not be thinking of total cost of ownership for a particular project, rest assured
that executives are. By evaluating these considerations early enough in the process of
building a project, analyses can be conducted to determine whether the project is
worth it. 

 It’s better to cancel a project in the first week of planning than to shut off a pro-
duction service after spending months building it, after all. The only way to know
whether a relatively expensive architecture is worth the cost of running it, however, is
by measuring and evaluating its impact to the business.

1.2.6 Evaluation 

If you can’t justify the benefits of your project being in production, don’t expect it to
remain there for very long.

The worst reason for getting an ML project cancelled or abandoned is budget. Typi-
cally, if the project has gotten into production to begin with, the up-front costs associ-
ated with developing the solution were accepted and understood by the leadership at
the company. Having a project cancelled after it’s already in production because of a

Prediction / inference SLA

Offline training,
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(batch)

Active retraining,
online serving,
SLA < 50 ms

$$$$$$

$$$$$$
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edge

Millions of
predictions per

day

Figure 1.13 Deployment cost considerations
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lack of visibility of its impact to the company is a different matter entirely. If you can’t
prove the worth of the solution, you face the real possibility of someone telling you to
turn it off to save money someday.

 Imagine a company that has spent the past six months working tirelessly on a
new initiative to increase sales through the use of predictive modeling. The DS team
members have followed best practices throughout the project’s development—making
sure that they’re building exactly what the business is asking for and focusing devel-
opment efforts on maintainable and extensible code—and have pushed the solution
to production. 

 The model has been performing wonderfully over the past three months. Each
time the team has done post hoc analysis of the predictions to the state of reality after-
ward, the predictions turn out to be eerily close. Figure 1.14 then rears its ugly head
with a simple question from one of the company executives who is concerned about
the cost of running this ML solution.

 The one thing that the team forgot about in creating a great ML project is think-
ing of how to tie their predictions to some aspect of the business that can justify its
existence. The model that they’ve been working on and that is currently running in
production was designed to increase revenue, but when scrutinized for the cost of
using it, the team realized that they hadn’t thought of an attribution analytics method-
ology to prove the worth of the solution. 

 Can they simply add up the sales and attribute it all to the model? No, that
wouldn’t be even remotely correct. Could they look at the comparison of sales ver-
sus last year? That wouldn’t be correct either, as far too many latent factors are
impacting sales. 

 The only thing that they can do to give attribution to their model is to perform
A/B testing and use sound statistical models to arrive at a revenue lift calculation
(with estimation errors) to show how much additional sales are due to their model.
However, the ship has already sailed, as the solution has already been deployed for all
customers. The team lost its chance at justifying the continued existence of the
model. While the project might not be shut off immediately, it certainly will be on the
chopping block if the company needs to reduce its budgetary spending. 

 It’s always a good idea to think ahead and plan for this case. Whether it’s hap-
pened to you yet or not, I can assure you that at some point it most certainly will (it
took me two very hard lessons to learn this little nugget of wisdom). It is far easier to
defend your work if you have the ammunition at the ready in the form of validated
and statistically significant tests showing the justification for the model’s continued
existence. Chapter 11 covers approaches to building A/B testing systems, statistical
tests for attribution, and associated evaluation algorithms.
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Figure 1.14 A nearly flawless ML project getting cancelled because of a lack of A/B testing and 
statistically valid attribution measurement
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1.3 The goals of ML engineering
In the most elemental sense, the primary goal of any DS is to solve a difficult prob-
lem through the use of statistics, algorithms, and predictive modeling that is either
too onerous, monotonous, error-prone, or complex for a human to do. It’s not to
build the fanciest model, to create the most impressive research paper about their
approach to a solution, or to search out the most exciting new tech to force into
their project work.

 We’re all here in this profession to solve problems. Among a vast quantity of tools,
algorithms, frameworks, and core responsibilities that a DS has at their disposal to
solve those problems, it’s easy to become overwhelmed and focus on the technical
aspects of the job. Without a process guide to wrangle the complexity of ML project
work, it’s incredibly easy to lose sight of the real goal of solving problems. 

 By focusing on the core aspects of project work highlighted in section 1.2 and cov-
ered in greater detail throughout this book, you can get to the true desired state of
ML work: seeing your models run in production and having them solve a real business
problem. 

Before delving into the finer details of each of these methodologies and approaches
for ML engineering work, see the outline detailed in figure 1.15. This is effectively a
process flow plan for production ML work that I’ve seen prove successful for any proj-
ect with any team.

 Throughout this book, we’ll cover these elements, focusing not only on discussions
and implementations of each, but also on why they’re so important. This path—focusing
on the people, processes, and tools to support successful ML projects—is paved over
the corpses of many failed projects I’ve seen in my career. However, by following the
practices that this book outlines, you will likely see fewer of these failures, allowing you
to build more projects that not only make their way to production, but get used and
stay in production.

You can do this
An entire industry out there is designed to convince you that you can’t—that you need
to hire them to do all of this complex work for you. They make a great deal of money
doing this.

But trust me, you can learn these core concepts and can build a team that follows a
methodology for approaching ML work that can dramatically increase the success
rate of a project. The work may be complex and rather confusing at first, but following
the guidelines and using the right tooling to help manage the complexity can help any
team develop sophisticated ML solutions that won’t require massive budgets or con-
sume all the free time that a DS team has to keep the lights on for poorly imple-
mented solutions. You’ve got this.
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Summary
 ML engineers need to know aspects of data science, traditional software engi-

neering, and project management to ensure that applied ML projects are devel-
oped efficiently, focus on solving a real problem, and are maintainable.

 Focusing on best practices throughout the six primary project phases of applied
ML work—planning, scoping and research, experimentation, development,
deployment, and evaluation—will greatly help a project minimize risk of
abandonment.

 Shedding concerns about technical implementation details, tooling, and nov-
elty of approaches will help focus project work on what really matters: solving
problems.
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Figure 1.15 The ML engineering methodology component map 



Your data science could
use some engineering
In the preceding chapter, we covered the components of ML engineering from
the perspective of project work. Explaining what this approach to DS work entails
from a project-level perspective tells only part of the story. Taking a view from a
higher level, ML engineering can be thought of as a recipe involving a trinity of
core concepts:

 Technology (tools, frameworks, algorithms)
 People (collaborative work, communication)
 Process (software development standards, experimentation rigor, Agile

methodology)

This chapter covers
 Elucidating the differences between a data 

scientist and an ML engineer

 Focusing on simplicity in all project work to 
reduce risk

 Applying Agile fundamentals to ML project work

 Illustrating the differences and similarities 
between DevOps and MLOps
26
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The simple truth of this profession is that project work that focuses on each of these
elements are generally successful, while those that omit one or many of them tend to
fail. This is the very reason for the hyperbolic and oft-quoted failure rates of ML proj-
ects in industry (which I find to be rather self-serving and panic-fueled when coming
from vendor marketing materials). 

 This chapter covers, at a high level, this trio of components for successful projects.
Employing the appropriate balance of each, focused on creating maintainable solu-
tions that are co-developed with internal customers in a collaborative and inclusive
fashion, will greatly increase the chances of building ML solutions that endure. After
all, the primary focus of all DS work is to solve problems. Conforming work patterns to a
proven methodology that is focused on maintainability and efficiency translates directly
to solving more problems with much less effort.

2.1 Augmenting a complex profession with processes 
to increase project success
In one of the earliest definitions of the term data science, as covered in Data Science,
Classification, and Related Methods (Springer, 1996), compiled by C. Hayashi et al., the
three main focuses are as follows:

 Design for data—Specifically, the planning surrounding how information is to be
collected and in what structure it will need to be acquired to solve a particular
problem

 Collection of data—The act of acquiring the data
 Analysis on data—Divining insights from the data through the use of statistical

methodologies to solve a problem

A great deal of modern data science is focused mostly on the last of these three items
(although in many cases, a DS team is forced to develop its own ETL), as the first two
are generally handled by a modern data engineering team. Within this broad term,
analysis on data, a large focus of the modern DS resides: applying statistical techniques,
data manipulation activities, and statistical algorithms (models) to garner insights
from and to make predictions upon data. 

 The top portion of figure 2.1 illustrates (in an intentionally brief and high-level
manner) the modern data scientist’s focus from a technical perspective. These are
the elements of the profession that most people focus on when speaking about what
we do: from data access to building complex predictive models utilizing a dizzying
array of algorithmic approaches and advanced statistics. It isn’t a particularly accurate
assessment of what a data scientist actually does when doing project work, but rather
focuses on some of the tasks and tools that are employed in solving problems. Think-
ing of data science in this manner is nearly as unhelpful as classifying the job of a soft-
ware developer by listing languages, algorithms, frameworks, computational efficiency,
and other technological considerations of their profession.
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ML
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Figure 2.1 The merging of software engineering skills and DS into the ML engineer role
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We can see in figure 2.1 how the technological focus of DS from the top portion
(which many practitioners focus on exclusively) is but one aspect of the broader sys-
tem shown in the bottom portion. It is in this region, ML engineering, that the com-
plementary tools, processes, and paradigms provide a framework of guidance,
foundationally supported by the core aspects of DS technology, to work in a more con-
structive way. 

 ML engineering, as a concept, is a paradigm that helps practitioners focus on the
only aspect of project work that truly matters: providing solutions to problems that
actually work. Where to start, though?

2.2 A foundation of simplicity
When it comes down to truly explaining what data scientists do, nothing can be more
succinct than, “They solve problems through the creative application of mathematics
to data.” As broad as that is, it reflects the wide array of solutions that can be devel-
oped from recorded information (data). 

 Nothing is prescribed regarding expectations of what a DS does regarding algo-
rithms, approaches, or technology while in the pursuit of solving a business problem.
Quite the contrary, as a matter of fact. We are problem solvers, utilizing a wide array of
techniques and approaches. 

 Unfortunately for newcomers to the field, many data scientists believe that they
are providing value to a company only when they are using the latest and “greatest”
tech that comes along. Instead of focusing on the latest buzz surrounding a new
approach catalogued in a seminal whitepaper or advertised heavily in a blog post, a
seasoned DS realizes that the only thing that really matters is the act of solving prob-
lems, regardless of methodology. As exciting as new technology and approaches are,
the effectiveness of a DS team is measured in the quality, stability, and cost of a solu-
tion it provides.

 As figure 2.2 shows, one of the most important parts of ML work is navigating
the path of complexity when facing any problem. By approaching each new ask
from a business with this mindset as the veritable cornerstone of ML principles
(focusing on the simplest solution possible that solves the business’s problem), the
solution itself can be focused on, rather than a particular approach or fancy new
algorithm.

 Having a focus built around this principle—of pursuing the simplest possible
implementation to solve a problem—is the foundation upon which all other aspects
of ML engineering are built. It is by far the single most important aspect of ML engi-
neering, as it will inform all other aspects of project work, scoping, and implementa-
tion details. Striving to exit the path as early as possible can be the single biggest
driving factor in determining whether a project will fail.
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Figure 2.2 Guide for building the simplest solution to an ML problem
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2.3 Co-opting principles of Agile software engineering
Development operations (DevOps) brought guidelines and a demonstrable paradigm
of successful engineering work to software development. With the advent of the Agile
Manifesto, seasoned industry professionals recognized the failings of the way software
had been developed. Some of my fellow colleagues and I took a stab at adapting these
guiding principles to the field of data science, shown in figure 2.3.

“But it’s not data science work if the solution doesn’t use AI”
I never entered this career path with expectations of using technology, a specific algo-
rithm, framework, or methodology. I’ve met plenty of people who have, and many I’ve
known throughout their career journeys have ended up being amazed at how little
they’ve ended up using a particular oft-mentioned framework or library for their work.
Most of them have been especially surprised at how much time they’ve spent writing
SQL, performing statistical analyses of their data, and cleaning messy data to solve
a problem. 

I suppose that I never had that seemingly demoralizing experience that many of my
peers have had regarding their infrequent application of cutting-edge approaches in
the “real world” because I started in analytics before moving into ML much later. I
learned early in my time transitioning to this field that the simplest solutions to prob-
lems were always the best approach. 

The unsophisticated reason for this is quite simple: I had to maintain the solution.
Whether monthly, daily, or in real time, my solution and code were things that I would
need to debug, improve, troubleshoot inconsistencies in, and frankly, just keep run-
ning. The more sophisticated a given solution, the longer it took to diagnose failures,
the harder it was to troubleshoot, and the more frustrating it was to change its inter-
nal logic for added features. 

The point of pursuing simplicity in solutions (the simplest design and approach that
still solves the problem, that is) translates directly to less time spent maintaining
solutions to problems that you’ve solved. That frees you up to solve more problems,
bring more value to your company, and generally give you exposure to more problems. 

I’ve seen the passion that people have for using exciting algorithms play out poorly
many times. One of the more notable ones was a GAN for image-resolution upscaling
that took a team of 12 data scientists 10 months to get to a state that was produc-
tion ready and scalable. When talking with their C-level staff, they said that they were
hiring the consultants on staff to build a churn model, a fraud model, and a revenue-
forecasting model. They felt that they had to hire outside consultants to do the
important critical modeling work because their internal team was too busy working on
an R&D project. Within the 12 weeks of working with that company, they entire DS
team was let go, and the image project was abandoned. 

Sometimes working on the basic things that bring incredible value to a company can
help you keep your job (which isn’t to say that forecasting, churn, and fraud modeling
are simple, even if they don’t seem particularly interesting).
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With this slight modification to the principles of Agile development, we have a base of
rules for applying DS to business problems. We’ll cover all of these topics, including
why they are important, and give examples of how to apply them to solve problems
throughout this book. While some are a significant departure from the principles of
Agile, the applicability to ML project work has provided repeatable patterns of success
for us and many others.

The Agile Manifesto is credited to the original team of 7 developers who met in Snowbird, Utah1

in 200 to draft these principles, recorded in “ .”1 Manifesto for Agile Software Development

ML projects should focus on solving a problem in
the simplest way possible.

“Customer satisfaction by early and continuous delivery
of valuable software”

Agile for ML

“Welcome changing requirements, even in late
development.”

Customer satisfaction through inclusive and
frequent feedback

Building modifiable code bases to support frequent
feature-engineering changes

“Deliver working software frequently (weeks rather than
months).”

The Agile Manifesto principles

Get feedback early and often by scheduling
demonstrations throughout development.

“Close, daily cooperation between business people and
developers”

Frequent collaboration with SMEs

“Projects are built around motivated individuals, who
should be trusted.”

Assume nothing about your data. Always validate
and analyze.

The team solicits feedback from customers and adapts
approaches to solve the problem.

“Regularly, the team reflects on how to become
more effective and adjusts accordingly.”

The best ML solutions come from teams that focus on
solving a problem above all else.

“Best architectures, requirements, and designs emerge
from self-organizing teams.”

Reusable and standardized code across projects to
minimize bugs and maximize productivity

“Continuous attention to technical excellence
and good design”

“Simplicity—the art of maximizing the amount of work
not done—is essential.”

“Continuous attention to technical excellence and
good design”

Iterative and sustainable development with periodic
demonstrations of functionality

“Sustainable development, able to maintain
a constant pace”

ML projects should focus on maintainability
over complexity.

“Working software is the primary measure of progress.”

ML projects are built around quantitative and qualitative
evaluations as a measure of effectiveness.

“Face-to-face conversation is the best form
of communication (co-location).”

Figure 2.3 Agile Manifesto elements adapted to ML project work
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 However, two critical points of Agile development can, when applied to ML proj-
ect work, dramatically improve the way that a DS team approaches its work: commu-
nication and cooperation, and embracing and expecting change. We’ll take a look
at these next.

2.3.1 Communication and cooperation

As discussed many times throughout this book (particularly in the next two chapters),
the core tenets of successful ML solution development are focused on people. This
may seem incredibly counterintuitive for a profession that is so steeped in mathemat-
ics, science, algorithms, and clever coding. 

 The reality is that quality implementations of a solution to a problem are never cre-
ated in a vacuum. The most successful projects that I’ve either worked on or have seen
others implement are those that focus more on the people and the communications
regarding the project and its state rather than on the tools and formal processes (or
documentation) surrounding the development of the solution.

 In traditional Agile development, this rings very true, but for ML work, the interac-
tions between the people coding the solution and those for whom the solution is
being built are even more critical. This is due to the complexity of what is involved in
building the solution. Since the vast majority of ML work is rather foreign to the gen-
eral layperson, requiring years of dedicated study and continual learning to master, we
need to engage in a much greater effort to have meaningful and useful discussions. 

 The single biggest driving factor in making a successful project that has the least
amount of rework is collaborative involvement between the ML team and the business
unit. The second biggest factor to ensure success is communication within the ML team. 

 Approaching project work with a lone-wolf mentality (as has been the focus for
most people throughout their academic careers) is counterproductive to solving a dif-
ficult problem. Figure 2.4 illustrates this risky behavior (which I’ve done early in my
career and seen done dozens of times by others).

Gather requirements

Build complete
solution

Demo solution to
customer

Meets needs?
Create

production
code

Apologize

This can happen only so many
times before the business loses
faith in the team.

I have never seen this happen
on the �rst try. Ever.

Communication and
collaboration

Yes

No

Figure 2.4 The hard-learned lesson of working on a full ML solution in isolation. It rarely ends well.
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The reasons for this development style can be many, but the end result is typically the
same: either a lot of rework, or a lot of frustration on the part of the business unit.
Even if the DS team has no other members (a “team” of a single person), it can be
helpful to ask for peer reviews and demonstrate the solution to other software devel-
opers, an architect, or SMEs from the business unit department that the solution is
being built for. 

 The absolute last thing that you want to do (trust me, I’ve done it, and it’s ugly) is
to gather requirements and head off to a keyboard to solve a problem without ever
talking to anyone. The chances of meeting all of the project requirements, getting the
edge cases right, and building what the customer is expecting are so infinitesimally
small that, should it work out well, perhaps you should look into buying some lottery
tickets with all of the excess luck that you have to spare.

 A more comprehensive and Agile-aligned development process for ML bears a
close resemblance to Agile for general software development. The only main differ-
ence is the extra levels of internal demonstrations that won’t necessarily be required
for software development (a peer review feature branch typically suffices there). For
ML work, it’s important to show the performance as a function of how it affects the
data being passed into your code, demonstrate functionality, and show visualizations
of the output. Figure 2.5 shows a preferable Agile-based approach to ML work, focused
heavily on collaboration and communication, both internally and externally.

The greater level of interaction among team members will nearly always contribute to
more ideas, perspectives, and challenges to assumed facts, leading to a higher-quality
solution. If you choose to leave either your customers (the business unit requesting

Gather requirements

Research options

Discuss options with
team members

Build feature Demo solution to
team members

Meets needs?

Demo solution to
customer

Communication and
collaboration

Analyze failures

No

Yes

Work on next
feature

Discuss options with
customer

In this paradigm, more often than
not, after comprehensive review
internally by peers, this modeling
approach usually works.

Figure 2.5 ML Agile feature creation process, focusing on requirement gathering and feedback
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your help) or your peers out of the discussions (even around minute details in devel-
opment choices), the chances that you're building something that they weren't
expecting, or desiring, go up.

2.3.2 Embracing and expecting change

It is of utmost importance, not only in experimentation and project direction, but also
in project development, to be prepared and expect inevitable changes to occur. In
nearly every ML project I've worked on, the goals defined at the beginning of the proj-
ect never turned out to be exactly what was built by the end. This applies to everything
from specific technologies, development languages, and algorithms, to assumptions or
expectations about the data—and, sometimes, even to the use of ML to solve the prob-
lem in the first place (a simple aggregation dashboard to help people solve a problem
more efficiently, for example). 

 If you plan for the inevitable change, you can help focus on the most important
goal in all DS work: solving problems. This expectation can also help remove focus
from the insignificant elements (which fancy algorithm, cool new technology, or
amazingly powerful framework to develop a solution in).

 Without expecting or allowing for change to happen, decisions about a project’s
implementation may be made that make it incredibly challenging (or impossible) to
modify without a full rewrite of all work done up to that point. By thinking about how
the direction of the project could change, the work is forced more into a modular for-
mat of loosely coupled pieces of functionality, reducing the impact of a directional
pivot on other parts of the already completed work. 

 Agile embraces this concept of loosely coupled design and a strong focus on build-
ing new functionality in iterative sprints so that even in the face of dynamic and chang-
ing requirements, the code still functions. By applying this paradigm to ML work,
abrupt and even late-coming changes can be relatively simplified—within reason, of
course. (Moving from a tree-based algorithm to a deep learning algorithm can’t happen
in a two-week sprint.) While simplified, this doesn’t guarantee simplicity, though. The fact
simply stands that anticipating change and building a project architecture that supports
rapid iteration and modification will make the development process much easier.

2.4 The foundation of ML engineering
Now that you’ve seen the bedrock of DS work in the form of adapting Agile principles
to ML, let’s take a brief look at the entire ecosystem. This system of project work has
proven to be successful through my many encounters in industry with building resil-
ient and useful solutions to solve problems.

 As mentioned in the introduction to this chapter, the idea of ML operations
(MLOps) as a paradigm is rooted in the application of similar principles that DevOps
has to software development. Figure 2.6 shows the core functionality of DevOps.

 Comparing these core principles, as we did in section 2.3 to Agile, figure 2.7 shows
the data science version of DevOps: MLOps. Through the merging and integration of
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each of these elements, the most catastrophic events in DS work can be completely
avoided: the elimination of failed, cancelled, or non-adopted solutions.

 Throughout this book, we’ll cover not only why each of these elements is import-
ant, but also show useful examples and active implementations that you can follow
along with to further cement these practices in your own work. The goal of all of this,
after all, is to make you successful. The best way to do that is to help you make your
business successful by giving a guideline of how to address project work that will get
used, provide value, and be as easy as possible to maintain for you and your fellow DS
team members.

Summary
 ML engineering brings the core functional capabilities of a data scientist, a data

engineer, and a software engineer into a hybrid role that supports the creation
of ML solutions focused on solving a problem through the rigors of profes-
sional software development.

 Developing the simplest possible solution helps reduce development, computa-
tional, and operational costs for any given project.

 Borrowing and adapting Agile fundamentals to ML project work helps shorten
the development life cycle, forces development architectures that are easier to
modify, and enforces testability of complex applications to reduce maintenance
burdens.

 Just as DevOps augments software engineering work, MLOps augments ML
engineering work. While many of the core concepts are the same for these par-
adigms, additional aspects of managing model artifacts and performing contin-
uous testing of new versions introduce nuanced complexities.



Before you model:
Planning and

scoping a project
The two biggest killers in the world of ML projects have nothing to do with what
most data scientists ever imagine. These killers aren’t related to algorithms, data, or
technical acumen. They have absolutely nothing to do with which platform you’re
using, nor with the processing engine that will be optimizing a model. The biggest
reasons for projects failing to meet the needs of a business are in the steps leading
up to any of those technical aspects: the planning and scoping phases of a project.

 Throughout most of the education and training that we receive leading up to
working as a DS at a company, emphasis is placed rather heavily on independently
solving complex problems. Isolating oneself and focusing on showing demonstra-
ble skill in the understanding of the theory and application of algorithms trains us
to have the expectation that the work we will do in industry is a solo affair. Given a
problem, we figure out how to solve it.

 The reality of life in a DS capacity couldn’t be further than the academic
approach of proving one’s knowledge and skill in solving problems alone. This

This chapter covers
 Defining effective planning strategies for ML 

project work

 Using efficient methods to evaluate potential 
solutions to an ML problem
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profession is, in actuality, far more than just algorithms and amassing knowledge of
how to use them. It’s a highly collaborative and peer-driven field; the most successful
projects are built by integrated teams of people working together, communicating
throughout the process. Sometimes this isolation is imposed by company culture
(intentionally walling off the team from the rest of the organization under the mis-
guided intention of “protecting” the team from random requests for projects), and
other times it is self-imposed.

 This chapter covers why this paradigm shift that has ML teams focusing less on the
how (algorithms, technology, and independent work) and more on the what (commu-
nication about and collaboration in what is being built) can make for a successful
project. This shift helps reduce experimentation time, focus the team on building a
solution that will work for the company, and plan out phased project work that incor-
porates SME knowledge from cross-functional teams to help dramatically increase the
chances of a successful project.

 The start of this inclusive journey, of bringing together as many people as possible
to create a functional solution that works to solve a problem, is in the scoping phase.
Let’s juxtapose an ML team’s workflow that has inadequate or absent scoping and
planning (figure 3.1) with a workflow that includes proper scoping and planning (fig-
ure 3.2).

Through absolutely no fault of their own (unless we want to blame the team for not
being forceful with the business unit to get more information, which we won’t), these
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Figure 3.1 A lack of planning, improper scoping, and a lack of process around experimentation
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ML team members do their best to build several solutions to solve the vague require-
ments thrown their way. If they’re lucky, they’ll end up with four MVPs and several
months of effort wasted on three that will never make it to production (a lot of
wasted work). If they’re terribly unlucky, they’ll have wasted months of effort on
nothing that solves the problem that the business unit wants solved. Either way, no
good outcome results.

 With the adequate scoping and planning shown in figure 3.2, the time spent build-
ing a solution is reduced considerably. The biggest reason for this change is that the team
has fewer total approaches to validate (and all are time-boxed to two weeks), mostly
because “early and often” feedback is received by the internal customer. Another rea-
son is that at each phase of new feature development, a quick meeting and demonstra-
tion of the added functionality is shown for acceptance testing by the SMEs.

To add to the substantial efficiency improvement, the other large benefit to this
methodology of inclusiveness with the internal customer is a significantly increased
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Figure 3.2 A thoroughly scoped, planned, and collaborative ML MVP project road map
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probability of the end solution meeting the business’s expectations. Gone is the
extreme risk shown in figure 3.1: delivering demonstrations of multiple solutions after
months of work, only to find that the entire project needs to be restarted from scratch.

Throughout this chapter (and the next), we’ll go through approaches to help with
these discussions, a rubric that I’ve used to guide these phases, and some lessons that
I’ve learned after messing up this phase so many times.

Isn’t planning, scoping, brainstorming, and organizing meetings a project
manager thing?
Some ML practitioners may balk at including planning, communication, brainstorm-
ing, and other project-management-focused elements in a discussion on ML projects.
In response, I can only muster another piece of anecdotal evidence: in the most suc-
cessful projects that I’ve been involved in, the ML team lead has worked closely with
not only any other involved team leads and the project manager, but also represen-
tatives of the department requesting the solution. 

Because the leads are involved with the project management aspects of the solution,
the team(s) typically endure far less work-related churn and rework. Team members
can focus on development with a holistic approach to get the best possible solution
shipped to production.

Comparatively, teams that operate in silos typically struggle to make a project work.
That struggle may be due to a failure to keep discussions in abstract terms, thereby
isolating others from contributing ideas to the solution (for example, the ML team
focusing discussions around implementation details or getting too far into the weeds
about algorithms during meetings). Additionally, an attitude of “we’re not PMs . . . our
job is to build models” may play a role. The end result of working in a cross-functional
team without proper and effective communication patterns invariably leads to scope
creep, confusion, and a general social antagonism among the warring factions of sub-
teams within a project.

By approaching these early phases with an open mind (and a very open set of ears
and eyes to the opinions and thoughts of others, regardless of their technical acu-
men) and a generous embrace of all of the myriad viewpoints in a cross-functional
team, you may find that a far simpler solution to the problem at hand can arise. As I
will state ad nauseam (for it bears repetition as a general words-to-live-by mantra for
ML practitioners), the simplest approach is the best approach. Most of the time, I’ve
found, these revelations happen in the early planning and scoping phases. 

But what if all of our tests are garbage?
I received some pretty consistent feedback on figure 3.2. Nearly everyone who has
ever worked on a real-world ML project asked this exact question: “OK, Ben, limiting
the scope of testing is definitely a good idea. But what if none of it works? What
then?”
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3.1 Planning: You want me to predict what?!
Before we get into how successful planning phases for ML projects are undertaken, let’s
go through a simulation of a typical project’s genesis at a company that doesn’t have an
established or proven process for initiating ML work. Let’s imagine that we work at an
e-commerce company that is just getting a taste for wanting to modernize its website. 

 After seeing competitors tout massive sales gains by adding personalization services
to their websites for years, the C-level staff is demanding that the company needs to go
all in on recommendations. No one in the C-suite is entirely sure of the technical
details about how these services are built, but they all know that the first group to talk
to is the ML nerds. The business (in this case, the sales department leadership, mar-
keting, and product teams) calls a meeting, inviting the entire ML team, with little
added color to the invitation apart from the title, “Personalized Recommendations
Project Kickoff.” 

 Management and the various departments that you’ve worked with have been
happy with the small-scale ML projects that your team has built (fraud detection, cus-
tomer valuation estimation, sales forecasting, and churn probability risk models).
Each of the previous projects, while complex in various ways from an ML perspective,
were largely insular—handled within the ML team, which came up with a solution
that could be consumed by the various business units. None of these projects required
subjective quality estimations or excessive business rules to influence the results. The
mathematical purity of these solutions simply was not open to argument or interpreta-
tion; either they were right, or they were wrong.

(continued)

I responded to everyone in the same way: “What else could you be working on?”

This may seem like the most obtuse answer possible, but it opens up the larger meta-
question around the project. If all of the research into the most promising testing
approaches runs into unsuccessful results, the problem that you’re trying to solve is
probably going to be rather expensive in terms of development effort and time. If the
project is sufficiently important, the business is adamant about incurring the delays
associated with additional testing, and the team has sufficient bandwidth to support
this additional work, then go for it. Start a new round of testing. Figure it out. Ask for
help if need be.

If the project doesn’t meet those requirements, however, it is of paramount impor-
tance to explain to the business that a monumental amount of risk is being taken on
by continuing the work. This stage of evaluation is critical for no greater reason than
to make this adjudication: “Can we actually build this?” or “Do we even know if we
can build this?”

If the answer isn’t a resounding “yes” with quantitative evidence to support that asser-
tion, it’s time for a whole lot of honesty with the business unit, further proof-of-concept
work, and a risk-focused discussion held collaboratively with the project owner about
any unknown elements surrounding the project.
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 Victims of your own success, the team is approached by the business with a new con-
cept: modernizing the website and mobile applications. The executives have heard about
the massive sales gains and customer loyalty that comes along with personalized recom-
mendations, and they want your team to build a system for incorporation to the website
and the apps. They want each and every user to see a unique list of products greet them
when they log in. They want these products to be relevant and interesting to the user, and,
at the end of the day, they want to increase the chances that the user will buy these items.

 After a brief meeting during which examples from other websites are shown, they
ask how long it will be before the system will be ready. You estimate about two months,
based on the few papers that you’ve read in the past about these systems, and set off to
work. The team creates a tentative development plan during the next scrum meeting,
and everyone sets off to try to solve the problem.

 You and the rest of the ML team assume that management is looking for the behav-
ior shown in so many other websites, in which products are recommended on a main
screen. That, after all, is personalization in its most pure sense: a unique collection of
products that an algorithm has predicted will have relevance to an individual user.
This approach seems pretty straightforward, you all agree, and the team begins
quickly planning how to build a dataset that shows a ranked list of product keys for
each of the website’s and mobile app’s users, based solely on the browsing and pur-
chase history of each member.

Hold up a minute. Isn’t planning a project at odds with Agile?
Well, yes, and no. To quote Scott Ambler (one of the most prolific writers on founda-
tional processes for Agile), “A project plan is important, but it must not be too rigid
to accommodate changes in technology or the environment, stakeholders’ priorities,
and people’s understanding of the problem and its solution” (http://www.ambysoft
.com/essays/agileManifesto.html).

I’ve seen the misinterpretation of this sentiment come up rather frequently in my
career. Ambler and the original creators of the Agile Manifesto were pointing out that
a project should not be dictated by a preplanned and immutable script of elements
that need to be constructed. The intention is not, and never was, to not plan at all.
It is simply to be flexible in the plans that are created, to enable them to be changed
when the needs arise. 

If a simpler way to implement something arises, a better way that reduces complexity
while still achieving the same end result, then a project plan should change. In the
world of ML, this is a frequent occurrence. 

Perhaps, at the start of the project (before a thorough research phase is completed),
the cross-functional team determines that the only possible solution is a highly com-
plex and complicated modeling approach. After conducting experiments, however,
the team finds that a simple linear equation could be developed to solve the problem
with acceptable accuracy at a fraction of the development time and cost. Although
the initial plan was to use, say, deep learning to solve the problem, the team can,
should, and must shift directions to the much simpler approach. The plan changed,

http://www.ambysoft.com/essays/agileManifesto.html
http://www.ambysoft.com/essays/agileManifesto.html
http://www.ambysoft.com/essays/agileManifesto.html
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For the next several sprints, you all studiously work in isolation. You test dozens of imple-
mentations that you’ve seen in blog posts, consume hundreds of papers’ worth of the-
ory on different algorithms and approaches to solving an implicit recommendation
problem, and finally build out an MVP solution using alternating least squares (ALS)
that achieves a root mean squared error (RMSE) of 0.2334, along with a rough imple-
mentation of ordered scoring for relevance based on prior behavior. 

 Brimming with confidence that you have something amazing to show the business
team sponsor, you head to the meeting armed with the testing notebook, graphs show-
ing the overall metrics, and sample inference data that you believe will truly impress
the team. You start by showing the overall scaled score rating for affinity, displaying
the data as an RMSE plot, as shown in figure 3.3.

(continued)

certainly, but without a plan in the first place, the research and experimentation phase
would be like a ship lost in the night—unguided, directionless, and chaotically moving
about in the dark.

Planning is good in ML. It’s just critical to not set those plans in stone.
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Figure 3.3 A fairly standard loss chart of RMSE for the affinity scores to their predicted values
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The response to showing the chart is lukewarm at best. A bevy of questions arise,
focused on what the data means, what the line that intersects the dots means, and how
the data was generated. Instead of a focused discussion about the solution and the
next phase you’d like to be working on (increasing the accuracy), the meeting begins
to devolve into a mix of confusion and boredom. In an effort to better explain the
data, you show a quick table of rank effectiveness using non-discounted cumulative
gain (NDCG) metrics to illustrate the predictive power of a single user chosen at ran-
dom, as shown in figure 3.4.

The first chart created a mild sense of perplexity, but the table brings complete and
total confusion. No one understands what is being shown or can see the relevance to
the project. The only thing on everyone’s mind is, “Is this really what weeks of effort
can bring? What has the data science team been doing all this time?”

 During the DS team’s explanation of the two visualizations, one of the marketing
analysts begins looking up the product recommendation listing for one of the team
members’ accounts in the sample dataset provided for the meeting. Figure 3.5 illus-
trates the results along with the marketing analyst’s thoughts while bringing up the
product catalog data for each recommendation in the list.

 The biggest lesson that the DS team learns from this meeting is not, in fact, the
necessity of validating the results of its model in a way that would simulate the way an
end user of the predictions would react. Although an important consideration, and
one that is discussed in the following sidebar, it is trumped quite significantly by the
realization that the reason that the model was received so poorly is that the team didn’t
properly plan for the nuances of this project. 
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Figure 3.5 Using visual simulation for SME qualitative acceptance testing
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The DS team simply hadn’t understood the business problem from the perspective of
the other team members in the room who knew where all of the proverbial “bodies
were buried” in the data and who have cumulative decades of knowledge around the
nature of the data and the product. The onus of this failure doesn’t rest solely on the
project manager, the DS team lead, or any single team member. Rather, this is a collec-
tive failure of every member of the broader team in not thoroughly defining the scope
and details of the project. How could they have done things differently?

 The analyst who looked up their own predictions for their account uncovered a
great many problems that were obvious to them. They saw the duplicated item data
due to the retiring of older product IDs and likewise instantly knew that the shoe divi-
sion used a separate product ID for each color of a style of shoe, both core problems
that caused a poor demo. All of the issues found, causing a high risk of project cancel-
lation, were due to improper planning of the project.

3.1.1 Basic planning for a project

The planning of any ML project typically starts at a high level. A business unit, execu-
tive, or even a member of the DS team comes up with an idea of using the DS team’s
expertise to solve a challenging problem. While typically little more than a concept at
this early stage, this is a critical juncture in a project’s life cycle.

 In the scenario we’ve been discussing, the high-level idea is personalization. To an
experienced DS, this could mean any number of things. To an SME of the business
unit, it could mean many of the same concepts that the DS team could think of, but it
may not. From this early point of an idea to before even basic research begins, the first

Don’t blindly trust your metrics
When doing particularly large-scale ML, relying heavily on error metrics and validation
scores for models is incredibly tempting. Not only are they the only truly realistic
means of measuring objective quality for predictions on large datasets (which many
of us deal with frequently these days), but they’re often the only real, valid quantita-
tive means of adjudicating the predictive quality of a particular implementation. 

However, it is important to not rely on these model-scoring metrics alone. Do use
them (the appropriate ones for the work at hand, that is), but supplement them with
additional means of getting subjective measurements of the prediction’s efficacy. As
shown in figure 3.5, a simple visualization of the predictions for an individual user
uncovered far more objective and subjective quality assessments than any predictive
ordering scoring algorithm or estimation of loss could ever do. 

Keep in mind that this additional end-use simulation sample evaluation shouldn’t be
done by the DS team members, unless they are adjudicating the prediction quality for
data for which they themselves are considered SMEs. For the use case that we’re
discussing, it would behoove the DS team to partner with a few of the marketing ana-
lysts to do a bit of informal quality assurance (QA) validation before showing results
to the larger team.
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thing everyone involved in this project should be doing is having a meeting. The subject
of this meeting should focus on one fundamental element: Why are we building this?

 It may sound like a hostile or confrontational question to ask. It may take some
people aback when hearing it. However, it’s one of the most effective and important
questions, as it opens a discussion into the true motivations for why people want the
project to be built. Is it to increase sales? Is it to make our external customers happier?
Or is it to keep people browsing on the site for longer durations?

 Each of these nuanced answers can help inform the goal of this meeting: defining
the expectations of the output of any ML work. The answer also satisfies the measurement
metric criteria for the model’s performance, as well as attribution scoring of the per-
formance in production (the very score that will be used to measure A/B testing
much later).

 In our example scenario, the team fails to ask this important why question. Figure 3.6
shows the divergence in expectations from the business side and the ML side because
neither group is speaking about the essential aspect of the project and is instead occu-
pied in mental silos of their own creating. The ML team is focusing entirely on how to
solve the problem, while the business team has expectations of what would be delivered,
wrongfully assuming that the ML team will “just understand it.”

 Figure 3.6 sums up the planning process for the MVP. With extremely vague
requirements, a complete lack of thorough communication about expectations for

Test LSTM recommender
system based on product
attribute one-hot encoding

Expectations
for ML team

ML team

“OK, should be about
eight weeks.”

Test implementation
of deep + wide
recommender system
from deep learning
paper

Explore hybrid matrix
factorization + deep
learning implementation
to increase relevancy

Sorting based on
previous interactions
with products

Contract obligations to
vendors to preferentially
display products

De-duplication
of results

Expectations
from

business
leadership

Business leadership

“We want
personalization.”

Initial planning meeting discussion

MVP discussion

Overlap of what will
actually get built for
the prototype

Figure 3.6 Project expectation gap driven by ineffective planning discussions
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the prototype’s minimum functionality, and a failure to reign in the complexity of
experimentation, the demonstration is considered an absolute failure. Preventing
outcomes like this can be achieved only in these early meetings when the project’s
ideas are being discussed. Widening the overlap between these regions of expectation
gap is the responsibility of the DS team lead and project manager. At the conclusion
of planning meetings, an ideal state is alignment of everyone’s expectations (without
anyone focusing on implementation details or specific out-of-scope functionality to
potentially be added in the future).

 Continuing with this scenario, let’s look at the MVP demonstration feedback dis-
cussion to see the sorts of questions that could have been discussed during that early
planning and scoping meeting. Figure 3.7 shows the questions and the underlying
root causes of the present misunderstandings.

Assumption
of business
knowledge

“The products aren’t sorted by the
agreements that we have with

suppliers and vendors. We have to
abide by those contracts.”

“We have contracts with
suppliers?”

“The product IDs are different, the
SKUs are different, and the

descriptions are different. We need
to reconcile this problem.”

“Oh. We didn’t even think of that.
We can put that in the road map.”

“We found that we can get better
scoring results with a hybrid matrix

factorization and deep learning
approach, but it will add ten weeks

to the schedule.”

“We spent two weeks on the deep
and wide AI approach, but the

consistency of product feature data
is so poor that we cannot pursue

this solution.”

“Why do we have duplicate
products being shown? These are
all the same thing, but in different

colors!”

“Why do my recommendations
show a product that I bought last

week?”

“We have no idea what you just
said. Was that English?”

“OK, but what are we seeing here?
Can we build personalization or

not?”

Business leadership ML team

Assumption
of data
quality

Assumption
of
functionality

Curse of
knowledge

Analysis
paralysis

Figure 3.7 The results of the MVP presentation demo. Questions and their subsequent discussions 
could have happened during the planning phase to prevent all five core issues that are shown.
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Although this example is intentionally hyperbolic, I’ve found elements of this confu-
sion present in many ML projects (those outside of primarily ML-focused companies),
and this is to be expected. The problems that ML is frequently intended to solve are
complex, full of details that are specific and unique to each business (and business
unit within a company), and fraught with disinformation surrounding the minute
nuances of these details. 

 It’s important to realize that these struggles are going to be an inevitable part of
any project. The best way to minimize their impact is to have a thorough series of dis-
cussions that aim to capture as many details about the problem, the data, and the
expectations of the outcome as possible.

ASSUMPTION OF BUSINESS KNOWLEDGE 
Assumption of business knowledge is a challenging issue, particularly for a company
that’s new to utilizing ML, or for a business unit at a company that has never worked
with its ML team before. In our example, the business leadership’s assumption was
that the ML team knew aspects of the business that the leadership considered widely
held knowledge. Because no clear and direct set of requirements was set out, this
assumption wasn’t identified as a clear requirement. With no SME from the business
unit involved in guiding the ML team during data exploration, there simply was no
way for them to know this information during the process of building the MVP either.

 An assumption of business knowledge is often a dangerous path to tread for most
companies. At many companies, the ML practitioners are insulated from the inner
workings of a business. With their focus mostly in the realm of providing advanced ana-
lytics, predictive modeling, and automation tooling, scant time can be devoted to under-
standing the nuances of how and why a business is run. While some obvious aspects of
the business are known by all (for example, “we sell product x on our website”), it is not
reasonable to expect that the modelers should know that a business process exists in
which some suppliers of goods would be promoted on the site over others.

 A good solution for arriving at these nuanced details is to have an SME from the
group that is requesting a solution be built for them (in this case, the product market-
ing group) explain how they decide the ordering of products on each page of the
website and app. Going through this exercise would allow for everyone in the room to
understand the specific rules that may be applied to govern the output of a model.

ASSUMPTION OF DATA QUALITY

The onus of duplicate product listings in the demo output is not entirely on either
team. While the ML team members certainly could have planned for this to be an
issue, they weren’t aware of it precisely in the scope of its impact. Even had they
known, they likely would have wisely mentioned that correcting for this issue would
not be a part of the demo phase (because of the volume of work required and the
request that the prototype not be delayed for too long). 

 The principal issue here is in not planning for it. By not discussing the expecta-
tions, the business leaders’ confidence in the capabilities of the ML team erodes.
The objective measure of the prototype’s success will largely be ignored as the business
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members focus solely on the fact that for a few users’ sample data, the first 300 recom-
mendations show nothing but 4 products in 80 available shades and patterns. 

 For our use case, the ML team believed that the data they were using was, as told to
them by the DE team, quite clean. Reality, for most companies, is a bit more dire than
what most would think when it comes to data quality. Figure 3.8 summarizes two
industry studies, conducted by IBM and Deloitte, indicating that thousands of compa-
nies are struggling with ML implementations, specifically noting problems with data
cleanliness. Checking data quality before working on models is pretty important.

It’s not important to have “perfect” data. Even the companies in figure 3.8 that are
successful in deploying many ML models to production still struggle with data quality
issues regularly (75% as reported). These problems with data are just a byproduct of

Survey of 4,514
companies

14.6% of companies
with deployed ML
in stable production

68% reporting moderate
to severe issues with
building solutions

Sources:
1. 2020 Deloitte Insights survey on State of AI in the Enterprise
2. 2020 IBM Survey Results for AI Adoption and Challenges “From Roadblock to Scale: The Global Sprint Towards AI”

32%
Reporting high expertise in
developing ML solutions with
their data

85.4% still in
prototype phase

Challenges to getting a solution into production

Other reasons

68% struggling with
data quality and ML
implementation
issues in getting
prototypes to work in
production

75% struggling with
data quality and
implementation issues
for production projects

Industry reports on the impact of data quality and cleanliness on AI (ML) adoption

Figure 3.8 The impact of data quality issues on companies engaging in ML project work. Data quality 
issues are common, and as such, should always be vetted during the early stages of project work.
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the frequently incredibly complex systems that are generating the data, years (if not
decades) of technical debt, and the expense associated with designing “perfect” sys-
tems that do not allow an engineer to generate problematic data. The proper way to
handle these known problems is to anticipate them, validate the data that will be
involved in any project before modeling begins, and ask questions about the nature of
the data to the SMEs who are most familiar with it.

 For our recommendation engine, the ML team members failed to not only ask
questions about the nature of the data that they were modeling (namely, “Do all prod-
ucts get registered in our systems in the same way?”), but also validate the data through
analysis. Pulling quick statistical reports may have uncovered this issue quite clearly,
particularly if the unique product count of shoes was orders of magnitude higher than
any other category. “Why do we sell so many shoes?,” posed during a planning meet-
ing, could have instantly uncovered the need to resolve this issue, but also resulted in
a deeper inspection and validation of all product categories to ensure that the data
going into the models was correct.

ASSUMPTION OF FUNCTIONALITY

In this instance, the business leaders are concerned that the recommendations show a
product that was purchased the week before. Regardless of the type of product (con-
sumable or not), the planning failure here is in expressing how off-putting this would
be to the end user to see this happen. 

 The ML team’s response of ensuring that this key element needs to be a part of the
final product is a valid response. At this stage of the process, while it is upsetting to see
results like this from the perspective of the business unit, it’s nearly inevitable. The
path forward in this aspect of the discussion should be to scope the feature addition
work, make a decision on whether to include it in a future iteration, and move on to
the next topic.

 To this day, I have not worked on an ML project where this has not come up
during a demo. Valid ideas for improvements always come from these meetings—
that’s one of the primary reasons to have them, after all: to make the solution better!
The worst things to do are either dismiss them outright or blindly accept the imple-
mentation burden. The best thing to do is to present the cost (time, money, and
human capital) for the addition of the improvement and let the internal customer
decide if it’s worth it.

CURSE OF KNOWLEDGE

The ML team, in this discussion point, instantly went “full nerd.” Chapter 4 covers the
curse of knowledge at length, but for now, realize that, when communicating, the
inner details of things that have been tested will always fall on deaf ears. Assuming that
everyone in a room understands the finer details of a solution as anything but a ran-
dom collection of pseudo-scientific buzzword babble is doing a disservice to yourself
as an ML practitioner (you won’t get your point across) and to the audience (they will
feel ignorant and stupid, frustrated that you assume that they would know such a spe-
cific topic). 
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 The better way to discuss your numerous attempts at solutions that didn’t pan out:
simply speak in as abstract terms as possible: “We tried a few approaches, one of which
might make the recommendations much better, but it will add a few months to our
timeline. What would you like to do?” 

 Handling complex topics in a layperson context will always work much better than
delving into deep technical detail. If your audience is interested in a more technical
discussion, gradually ease into deeper technical aspects until the question is answered.
It’s never a good idea to buffalo your way through an explanation by speaking in
terms that you can’t reasonably expect them to understand.

ANALYSIS PARALYSIS

Without proper planning, the ML team will likely just experiment on a lot of approaches,
likely the most state-of-the-art ones that they can find in the pursuit of providing the
best possible recommendations. Without focusing on the important aspects of the solu-
tion during the planning phase, this chaotic approach of working solely on the model
purity can lead to a solution that misses the point of the entire project. 

 After all, sometimes the most accurate model isn’t the best solution. Most of the
time, a good solution is one that incorporates the needs of the project, and that gener-
ally means keeping the solution as simple as possible to meet those needs. Approaching
project work with that in mind will help alleviate the indecisions and complexity that
can arise from trying to choose the best model.

3.1.2 That first meeting

As we discussed earlier, our example ML team approached planning in a problematic
way. How did the team get to that state of failing to communicate what the project
should focus on, though?

 While everyone on the ML team was quietly thinking about algorithms, implemen-
tation details, and where to get the data to feed into the model, they were too con-
sumed to ask the questions that should have been posited. No one was asking details
about the way the implementation should work, the types of restrictions needing to be
in place on the recommendations, or whether products should be displayed in a cer-
tain way within a sorted ranked collection. They were all focused on the how instead of
the why and what.

Focusing on the “how” during cross-functional meetings
While it may be tempting to discuss potential solutions during the planning and scop-
ing phases of a project, I urge you to resist. It’s not that the discussion is dangerous
to have in front of your internal customers. Far from it. It’s just that they don’t care
(nor should they). For some ML practitioners (I’m speaking to you, younger me), the
idea that people wouldn’t want to immediately discuss all of the cool algorithms and
fancy feature engineering that will be involved in the how of the project solution is just
unthinkable. Surely, everyone must find these topics as exciting as we do, right? 
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Conversely, the internal marketing team members bringing the project to the ML
team did not clearly discuss their expectations. With no malicious intent, their igno-
rance of the methodology of developing this solution, coupled with their intense
knowledge of the customer and the way they want the solution to behave, created a
perfect recipe for a perfect implementation disaster.

 How could this have been handled differently? How could that first meeting have
been orchestrated to ensure that the greatest number of hidden expectations that
the business unit team members hold (as we discussed in section 3.1.1) can be
openly discussed in the most productive way? It can be as easy as starting with a sin-
gle question: “What do you do now to decide which products to display in which
places?” In figure 3.9, let’s look at what posing that question may have revealed and
how it could have informed the critical feature requirements that should have been
scoped for the MVP.

 As you can see, not every idea is a fantastic one. Some are beyond the scope of bud-
get (time, money, or both). Others are simply beyond the limits of our technical capa-
bilities (the “things that look nice” request). The important thing to focus on, though,
is that two key critical features were identified, and a potential additive future feature
that can be put in the backlog for the project. 

 Although this figure’s dialogue may appear to be quite caricatural, this is a nearly
verbatim transcription of an actual meeting I was part of. Although I was stifling
laughter a few times at some of the requests, I found the meeting to be invaluable.
Spending a few hours discussing all of the possibilities that SMEs see was able to give
me and my team a perspective that we hadn’t considered, in addition to revealing key
requirements about the project that we never would have guessed or assumed without
hearing them from the team. 

 The one thing to make sure to avoid in these discussions is speaking about the ML
solution. Keep notes so that you and fellow DS team members can discuss later. It’s
critical that you don’t drag the discussion away from the primary point of the meeting
(gaining insight into how the business solves the problem currently). 

 One of the easiest ways to approach this subject is, as shown in the following side-
bar, by asking how the SMEs currently solve the problem. Unless the project is an

(continued)

Wrong. If you don’t believe me, I challenge you to discuss your next project with your
spouse, significant other, children, friends, non-DS colleagues, hairstylist (or barber),
mailperson, or dog. I can assure you that the only one interested would be your dog. 

And that’s only if you’re eating something while telling them. Especially if it’s a
cheeseburger. Dogs love cheeseburgers. Especially my dog.

The time to discuss the how is internally, later, within the DS team. Have brainstorm-
ing sessions. Debate with one another (civilly). But for your sake, and the sake of your
business unit members, I recommend not doing it while they are in the room.
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entirely greenfield moon-shot project, someone is probably solving it in some way or
another. You should talk to them. This methodology is precisely what informed the
line of questioning and discussion in figure 3.9.

Explain how you do it so I can help automate this for you
Although not every piece of ML is a direct replacement for boring, error-prone, or
repetitive work done by humans, I’ve found that the overwhelmingly vast majority of
it is. Most of these solutions are either being done to replace this manual work, or,
at the very least, do a more comprehensive job at what people have been attempting
to do without the aid of algorithms. 

. . . for the sake of our sanity.
Far too subjective and full
of latent variable influence.

Let’s pretend

this doesn’t exist …
“Like, you know, if we
would totally wear it.

And be killin’ it.”

Far too complex

“Well, we look at styles
that people are posting
on social media, read

about trends, and
observe what people
say about designers,

new looks.”

“They might not be
willing to sell their

products at our store
anymore. It’s pretty

important.”

Build dataset to apply
weightings to personalized
lists of items per supplier

agreements.

Product interaction trends

for global defaults. Could
increase relevancy as a

weighting factor.

Inventory checks and
de-duplication of products

feature

Critical feature

Future feature ?

Critical features

In scope for MVP?

“Well, not exactly.
We look at the trend

week over week.”

The one question that can save
you weeks or months of
frustration

ML team

“Can you show us how you feature
products on the site today?”

“Well, we first look
at what we have in

inventory . . .”

“Do you have any
rules that you follow
with that? Can you

show us how you do
that investigation?”

“So things that sold
well last week get

preference?”

“What happens if
you don’t promote

products that
you have an

agreement for?”

“How do you make
the hotness

determination?
What

dictates trends?”

“. . .”

“Then we look at
what's sold really

well in the last

week . . .”

“Then we check if
there are any

agreements for
featuring products
with suppliers for

this week . . .”

“We also check to
see if we can find

things that we think

look nice . . .”

“Then, we look at
what’s trending in
the fashion world
recently. If we see
something is hot,

then we bump that
up higher, if we have

enough in stock.”

Product group Product groupML team

This, while interesting,
would take a very long time
to build with marginal gains

on so much effort.

“Well, first, we have to
see if any of these

products are the same
as things we’ve sold

before, since there are a
lot of duplicates in

here . . .”

Figure 3.9 An example scoping and planning meeting that focuses on the problem to define features
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We’ll discuss the process of planning and examples of setting periodic ideation meet-
ings later in this chapter in much more depth.

3.1.3 Plan for demos—lots of demos

Yet another cardinal sin that the ML team members violated in presenting their per-
sonalization solution to the business was attempting to show the MVP only once. Per-
haps their sprint cadence was such that they couldn’t generate a build of the model’s
predictions at times that were convenient, or they didn’t want to slow their progress
toward having a true MVP to show to the business. Whatever the reason, the team
members actually wasted time and effort while trying to save time and effort. They
were clearly in the top portion of figure 3.10.

 In the top scenario (frequent demonstrations of each critical feature), some
amount of rework is likely associated with each feature after the demonstrations. Not
only is this to be expected, but the amount of time required to adjust features when
approached in this Agile methodology is reduced, since fewer tightly coupled depen-
dencies exist when compared with the rework needed for the bottom develop-in-a-
vacuum approach. 

 Even though Agile practices were used within the ML team, to the marketing team,
the MVP presentation was the first demo that they had seen in two months of work. At
no point in those two months did a meeting take place to show the current state of
experimentation, nor was any plan communicated about the cadence of seeing results
from the modeling efforts.

 Without frequent demos as features are built out, the team at large is simply operat-
ing in the dark with respect to the ML aspect of the project. The ML team, meanwhile,

(continued)

For this recommendation engine we’ve been discussing, the business had been
attempting to work on personalization; it was just personalization by way of attempt-
ing to appeal to as many people (or themselves) as much as they could when select-
ing products for prominent feature and display. This applies to ML projects as far
ranging as from supply-chain optimization to sales forecasts. At the root of most
projects that will come your way is likely someone at the company who is making
their best effort to accomplish the same thing (albeit without the benefit of an algo-
rithm that can sift through billions of data points and draw an optimized solution
from relationships that are far too complex for our minds to recognize in an accept-
able amount of time).

I’ve always found it best to find those people and ask them, “Teach me how you do
it now, please.” It’s truly staggering how a few hours of listening to someone who has
been working through this problem can eliminate wasted work and rework later. Their
wealth of knowledge about the task that you’re going to be modeling and the overall
requirements for the solution will help to not only get a more accurate project-scoping
assessment, but also to ensure that you’re building the right thing.
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is missing out on valuable time-saving feedback from SME members who would be
able to halt feature development and help refine the solution. 

 For most projects involving ML of sufficient complexity, far too many details and
nuances exist to confidently approach building out dozens of features without having
them reviewed. Even if the ML team is showing metrics for the quality of the predic-
tions, aggregate ranking statistics that “conclusively prove” the power and quality of
what they’re building, the only people in the room who care about that are the ML
team. To effectively produce a complex project, the SME group—the marketing
group—needs to provide feedback based on data it can consume. Presenting arbitrary
or complex metrics to that team is bordering on intentional obtuse obfuscation,
which will only hinder the project and stifle the critical ideas required to make the
project successful.

 By planning for demos ahead of time, at particular cadences, the ML-internal
Agile development process can adapt to the needs of the business experts to create a
more relevant and successful project. The ML team members can embrace a true
Agile approach: testing and demonstrating features as they are built, adapting their
future work, and adjusting elements in a highly efficient manner. They can help
ensure that the project will actually see the light of day.

Experimentation with feature feedback
(Highly recommended Agile approach)

Experimentation without demonstration
(Strongly not recommended waterfall approach)

Project kickoff date

Might want
to do a

demo here

Data generation
9/18–9/30

9/17
9/20 9/27 10/4 10/11 10/18 10/25 11/1 11/8 11/15 11/22

11/30
11/29

9/17
9/27 10/4 10/119/20 10/18 10/25 11/1 11/8 11/15 11/22 11/29 12/6 12/13 12/20

12/25

Model testing
9/30–10/11

Feature 1
10/12–10/20

Feature 2
10/21–10/31

Feature 3
11/1–11/9

Feature 4
11/10–11/29

Data generation
9/18–9/30

Model testing
9/30–10/11

Feature 1
10/11–10/22

Feature 2
10/22–11/1

Feature 3
11/1–11/12

Feature 4
11/12–11/28

Rework
11/30–12/24

Demo and
evaluation of

feature 1

Demo and
evaluation of

feature 2

Demo and
evaluation of

feature 3

Full MVP
demo of all

critical
features

Reworked
MVP demo

Demo, but
every feature is

broken

An additional month of
work that pushes the
project out further

11/29: Original MVP delivery date

Figure 3.10 Timeline comparison of feedback-focused demo-heavy project work and internal-only focused 
development. While the demonstrations take time and effort, the rework that they save is invaluable.
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3.1.4 Experimentation by solution building: Wasting time 
for pride’s sake

Looking back at the unfortunate scenario of the ML team members building a proto-
type recommendation engine for the website personalization project, their process of
experimentation was troubling, but not only for the business. Without a solid plan
in place for what they would be trying and how much time and effort they would be
spending on the different solutions they agreed on pursuing, a great deal of time (and
code) was unnecessarily thrown away.

 Coming out of their initial meeting, they went off on their own as a team, begin-
ning their siloed ideation meeting by brainstorming about which algorithms might
best be suited for generating recommendations in an implicit manner. About 300 or
so web searches later, they came up with a basic plan of doing a head-to-head compar-
ison of three main approaches: an ALS model, a singular value decomposition (SVD)
model, and a deep learning recommendation model. Having an understanding of the
features required to meet the minimum requirements for the project, three separate
groups began building what they could in a good-natured competition. 

 The biggest flaw in approaching experimentation in this way is in the sheer scope
and size of the waste involved in doing bake-offs like this. Approaching a complex
problem by way of a hackathon-like methodology might seem fun to some, not to
mention being far easier to manage from a process perspective by the team lead

But I don’t know frontend development. How can I build a demo?
There’s a phrase I’ve used before. 

If you do happen to know how to build interactive lightweight apps that can host your
ML-backed demos, that’s awesome. Use those skills. Just don’t spend too much of
your time building that portion. Keep it as simple as possible and focus your energy
and time on the ML problem at hand.

For the other 99% of us ML practitioners out there, you don’t need to mock up a web-
site, app, or microservice to show content. If you can make slides (notice I’m not ask-
ing if you want to—we all know that all of us hate making slides), then you illustrate
how your project will work by displaying a simulation of what something will look like
to the end user. Copy and paste images. Make a basic wireframe diagram. Anything
that can approximate what the end result will look like to a user of your generated
data will be sufficient.

If you clearly communicate that the final design of the UX team and frontend devel-
opers or application designers will be completely different from your presentation and
that you’re just here to show the data, then something as simple as a slide deck or
PDF of a layperson-friendly layout will work just fine. I can promise you that converting
arrays of primary keys or matplotlib area-under-ROC curves into something that tells
the story of how the model performs in a digestible way will always go over better in
meetings involving nontechnical audiences.
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(you’re all on your own—whoever wins, we go with that!), but it’s an incredibly irre-
sponsible way to develop software. 

 This flawed concept, solution building during experimentation, is juxtaposed with
the far more efficient (but, some would argue, less fun) approach of prototype exper-
imentation in figure 3.11. With periodic demos, either internally to the ML team or to
the broader external cross-functional team, the project’s experimentation phase can

Solution building while experimenting
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9/30–10/11

9/30–10/17

Model testing

9/30–10/14

9/18–9/30

9/18–9/30

Data
generation
9/18–9/30
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Data
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Data
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Model
Testing

Data
Generation

Figure 3.11 Comparison of multiple-MVP development (top) and experimentation culling 
development (bottom). By culling options early, more work (at a higher quality and in less time) 
can get done by the team. 



60 CHAPTER 3 Before you model: Planning and scoping a project
be optimized to have more hands (and minds) focused on getting the project as suc-
cessful as it can be as fast as possible.

 As shown in the top section of figure 3.11, approaching the problem of a model
bake-off without planning for prototype culling runs two primary risks. First, in the top
portion, Team A had difficulty incorporating the first primary feature that the busi-
ness dictated was critical. 

 Since no evaluation was done after the initial formulation of getting the model to
work, a great deal of time was spent trying to get the feature built out to support the
requirements. After that was accomplished, when moving on to the second most criti-
cal feature, the team members realized that they couldn’t implement the feature in
enough time for the demo meeting, effectively guaranteeing that all of the work put
into the SVD model would be thrown away. 

 Teams using the other two approaches, both short-staffed on the implementation
of their prototypes, were unable to complete the third critical feature. As a result,
none of the three approaches would satisfy the critical project requirements. This
delay to the project, due to its multidiscipline nature, affects other engineering teams.
What the team should have done instead was follow the path of the bottom Prototype
Experimentation section. 

 In this approach, the teams met with the business units early, communicating
ahead of time that the critical features wouldn’t be in at this time. They chose instead
to make a decision on the raw output of each model type that was under testing. After
deciding to focus on a single option, the entire ML team’s resources and time could
be focused on implementing the minimum required features (with an added check-in
demo between the presentation of the core solution to ensure that they were on the
right track) and get to the prototype evaluation sooner.

 Focusing on early and frequent demos, even though features weren’t fully built out
yet, helped both maximize staff resources and get valuable feedback from the SMEs.
In the end, all ML projects are resource-constrained. By narrowly focusing on the few-
est and most potentially successful options as early as possible, even a lean set of
resources can create successful complex ML solutions.

3.2 Experimental scoping: Setting expectations 
and boundaries
We’ve now been through planning of the recommendation engine. We have the
details of what is important to the business, we understand what the user expects when
interacting with our recommendations, and we have a solid plan for the milestones
for our presentations at certain dates throughout the project. Now it’s time for the fun
part for most of us ML nerds. It’s time to plan our research. 

 With an effectively limitless source of information at our fingertips on the topic,
and only so much time to do it, we really should be setting guidelines on what we’re
going to be testing and how we’re going to go about it. This is where scoping of exper-
imentation comes into play.
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 The team should, by this time, having had the appropriate discovery sessions with
the SME team members, know the critical features that need to get built: 

 We need a way to de-duplicate our product inventory.
 We need to incorporate product-based rules to weight implicit preferences per

user.
 We need to group recommendations based on product category, brand, and

specific page types in order to fulfill different structured elements on the site
and app.

 We need an algorithm that will generate user-to-item affinities that won’t cost a
fortune to run.

After listing out the absolutely critical aspects for the MVP, the team can begin plan-
ning the work estimated to be involved in solving each of these four critical tasks.
Through setting these expectations and providing boundaries on each of them (for
both time and level of implementation complexity), the ML team can provide the one
thing that the business is seeking: an expected delivery date and a judgment call on what is
or isn’t feasible.

 This may seem a bit oxymoronic to some. “Isn’t experimentation where we figure
out how to scope the project from an ML perspective?” is likely the very thought that
is coursing through your head right now. We’ll discuss throughout this section why, if
left without boundaries, the research and experimentation on solving this recommen-
dation engine problem could easily fill the entire project-scoping timeline. If we plan
and scope our experimentation, we’ll be able to focus on finding, perhaps not the
best solution, but hopefully a good enough solution to ensure that we’ll eventually get
a product built out of our work.

 Once the initial planning phase is complete (which certainly will not happen from
just a single meeting), and a rough idea of what the project entails is both formulated
and documented, there should be no talk about scoping or estimating how long the
actual solution implementation will take, at least not initially. Scoping is incredibly
important and is one of the primary means of setting expectations for a project team
as a whole, but even more critical for the ML team. However, in the world of ML
(which is very different from other types of software development because of the com-
plexity of most solutions), two distinct scopings need to happen. 

 For people who are accustomed to interactions with other development teams, the
idea of experimental scoping is completely foreign, and as such, any estimations for
the initial phase scoping will be misinterpreted. With this in mind, however, it’s cer-
tainly not wise to not have an internal target scoping for experimentation.

3.2.1 What is experimental scoping?

Before you can begin to estimate how long a project is going to take, you need to
research not only how others have solved similar problems but also potential solutions
from a theoretical point of view. With the scenario that we’ve been discussing, the initial
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project planning and overall scoping (the requirements gathering), a number of
potential approaches were decided on. When the project then moves into the phase
of research and experimentation, it is absolutely critical to set an expectation with the
larger team of how long the DS team will spend on vetting each of those ideas. 

 Setting expectations benefits the DS team. Although it may seem counterproduc-
tive to set an arbitrary deadline on something that is wholly unknowable (which is the
best solution), having a target due date can help focus the generally disorganized pro-
cess of testing. Elements that under other circumstances might seem interesting to
explore are ignored and marked as “”will investigate during MVP development” with
the looming deadline approaching. This approach simply helps focus the work. 

 The expectations similarly help the business and the cross-functional team mem-
bers involved in the project. They will gain not only a decision on project direction
that has a higher chance of success in the end, but also a guarantee of progress in the
near-term future. Remember that communication is absolutely essential to successful ML
project work, and setting delivery goals even for experimentation will aid in continuing
to involve everyone in the process. It will only make the end result better.

 For relatively simple and straightforward ML use cases (forecasting, outlier detec-
tion, clustering, and conversion prediction, for example), the amount of time dedi-
cated to testing approaches should be relatively short. One to two weeks is typically
sufficient for exploring potential solutions for standard ML; remember, this isn’t the
time to build an MVP, but rather to get a general idea of the efficacy of different algo-
rithms and methodologies. 

 For a far more complex use case, such as this scenario, a longer investigation
period can be warranted. Two weeks alone may be needed to devote simply to the
research phase, with an additional two weeks of “hacking” (roughshod scripting of
testing APIs, libraries, and building crude visualizations). 

 The sole purpose of these phases is to decide on a path, but to make that decision
in the shortest amount of time practicable. The challenge is to balance the time
required to make the best adjudication possible for the problem against the timetable
of delivery of the MVP. 

 No standard rubric exists for figuring out how long this period should be, as it is
dependent on the problem, the industry, the data, the experience of the team, and
the relative complexity of each option being considered. Over time, a team will gain
the wisdom that will make for more accurate experimental (“hacking”) estimates. The
most important point to remember is that this stage, and the communication to the
business unit of how long it will take, should never be overlooked.

3.2.2 Experimental scoping for the ML team: Research

In the heart of all ML practitioners is the desire to experiment, explore, and learn
new things. With the depth and breadth of all that exists in the ML space, we could
spend a lifetime learning only a fraction of what has been done, is currently being
researched, and will be worked on as novel solutions to complex problems. This



63Experimental scoping: Setting expectations and boundaries
innate desire shared among all of us means that it is of the utmost importance to set
boundaries around how long and how far we will go when researching a solution to a
new problem.

 In the first stages following the planning meetings and general project scoping, it’s
now time to start doing some actual work. This initial stage, experimentation, can vary
quite significantly among projects and implementations, but the common theme for
the ML team is that it must be time-boxed. This can feel remarkably frustrating for many
of us. Instead of focusing on researching a novel solution to something from the
ground up, or utilizing a new technique that’s been recently developed, sometimes we
are forced into a “just get it built” situation. A great way to meet that requirement of
time-bound urgency is to set limits on how much time the ML team has to research
possibilities for solutions.

 For the recommendation engine project that we’ve been discussing in this chapter,
a research path for the ML team might look something like figure 3.12.

Individual research DS team group evaluation of options

Classic, proven implementations

Search blogs and
company forums for

recommendation
engine

implementations

Perhaps not
applicable?

Singular value
decomposition (SVD)

NMF alternating least
squares (ALS-WR)

Adversarial networks

Auto-encoding
collaborative filtering

State of the art

Non-negative matrix
factorization (NMF)

Worth testing

Too complex or costly
to train

Deep reinforcement
learning

Hybrid deep learning

Search original
research from

universities and
recently published

papers

May include asking
peers, reviewing
technical books, etc.

(Example collection—thorough
research in reality would be a
much longer list)

The adjudication and culling
process (dependent on team,
company, and deadlines)

Selection of top three options

to run experimentation on

Figure 3.12 Research planning phase diagram for an ML team determining potential solutions to 
pursue testing. Defining structured plans such as this can dramatically reduce the time spent 
iterating on ideas.
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In this simplified diagram, effective research constrains the options available to the
team. After a few cursory internet searches, blog readings, and whitepaper consulta-
tions, the team can identify (typically in a day or so) the “broad strokes” for existing
solutions in industry and academia. 

 Once the common approaches are identified (and individually curated by the team
members), a full list of possibilities can be researched in more depth. Once this level of
applicability and complexity is arrived at, the team can meet and discuss its findings

 As figure 3.12 shows, the approaches that are candidates for testing are culled
during the process of presenting findings. By the end of this adjudication phase, the
team should have a solid plan of two or three options that warrant testing through
prototype development.

 Note the mix of approaches that the group selects. Within the selections is suffi-
cient heterogeneity that will help aid the MVP-based decision later (if all three
options are slight variations on deep learning approaches, for instance, it will be hard
to decide which to go with in some circumstances). 

 The other key action is whittling down the large list of options to help prevent the
chances of either over-choice (a condition in which making a decision is almost para-
lyzing to someone because of the overabundance of options) or the Tyranny of Small
Decisions (in which an accumulation of many small, seemingly insignificant choices
made in succession can lead to an unfavorable outcome). It is always best, in the inter-
ests of both moving a project along and in creating a viable product at the end of the
project, to limit the scope of experimentation.

 The final decision in figure 3.12, based on the team’s research, is to focus on three
separate solutions (one with a complex dependency): ALS, SVD, and a deep learning
(DL) solution. Once these paths have been agreed upon, the team can set out to
attempt to build prototypes. Just as with the research phase, the experimentation
phase is time-boxed to permit only so much work to be done, ensuring that a measur-
able result can be produced at the conclusion of the experimentation.

3.2.3 Experimental scoping for the ML team: Experimentation

With a plan in place, the ML team lead is free to assign resources to the prototype
solutions. At the outset, it is important to be clear about the expectations from experi-
mentation. The goal is to produce a simulation of the end product that allows for an
unbiased comparison of the solutions being considered. There is no need for the
models to be tuned, nor for the code to be written in such a way that it could ever be
considered for use in the final project’s code base. The name of the game here is a
balance between two primary goals: speed and comparability. 

 A great many things need to be considered when deciding which approach to take,
and these are discussed at length in several later chapters. But for the moment, the
critical estimation at this stage is about the performance of the solutions as well as
the difficulty of developing the full solution. Estimates for total final code complexity
can be created at the conclusion of this phase, thereby informing the larger team of
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the estimated development time required to produce the project’s code base. In addi-
tion to the time commitment associated with code complexity, this can also help
inform the total cost of ownership for the solution: the daily run cost to retrain the
models, generate inferences of affinity, host the data, and serve the data.

 Before setting out to plan the work that will be done through the generally
accepted best methodology (Agile) by writing stories and tasks, it can be helpful to
create a testing plan for the experimentation. This plan, devoid of technical imple-
mentation details and the verbose nature of story tickets that will be accomplished
throughout the testing phases, can be used to not only inform the sprint planning but
also track the status of the bake-off that the ML team will be doing. This can be shared
and utilized as a communication tool to the larger team, helping to show the tasks
completed and the results, and can accompany a demo of the two (or more!) compet-
ing implementations being pursued for options. 

 Figure 3.13 shows a staged testing plan for the experimentation phase of the rec-
ommendation engine.

These testing paths clearly show the results of the research phase. Team 1’s matrix fac-
torization approach shows a common data source that needs to be manually gener-
ated (not through an ETL job for this phase of testing). Based on the team members’
research and understanding of the computational complexity of these algorithms
(and the sheer size of the data), they’ve chosen Apache Spark to test out solutions.
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Figure 3.13 An experimentation tracking flow chart for two of the prototyping phases for the recommendation 
engine project



66 CHAPTER 3 Before you model: Planning and scoping a project
From this phase, both teams had to split their efforts to research the APIs for the two
models, coming to two very different conclusions. For the ALS implementation, the
high-level DataFrame API implementation from SparkML makes the code architec-
ture far simpler than the lower-level RDD-based implementation for SVD. The team
can define these complexities during this testing, bringing to light for the larger team
that the SVD implementation will be significantly more complex to implement, main-
tain, tune, and extend. 

 All of these steps for team 1 help define the development scope later. Should the
larger team as a whole decide that SVD is the better solution for their use case, they
should weigh the complexity of implementation against the proficiency of the team. If
the team isn’t familiar with writing a Scala implementation that utilizes Breeze, can
the project and the team budget time for team members to learn this technology? If
the experimentation results are of significantly greater quality than the others being
tested (or are a dependency for another, better solution), the larger team needs to be
aware of the additional time that will be required to deliver the project.

 Team 2’s implementation is significantly more complex and requires as input the
SVD model’s inference. To evaluate the results of two approaches such as this, it’s
important to assess the complexity.

ASSESSING COMPLEXITY RISK

If the results for team 2 are significantly better than those of the SVD on its own, the
team should be scrutinizing a complex solution of this nature. The primary reason for
scrutiny is the level of increased complexity in the solution. Not only will it be more
costly to develop (in terms of time and money), but the maintenance of this architec-
ture will be much harder.

 The gain in performance from added complexity should always be of such a signif-
icant level that the increased cost to the team is negligible in the face of such improve-
ment. If an appreciable gain isn’t clearly obvious to everyone (including the business),
an internal discussion should take place about resume-driven development (RDD)
and the motive for taking on such increased work. Everyone just needs to be aware of
what they’re getting into and what they’ll potentially be maintaining for a few years
should they choose to pursue this additional complexity.

TRACKING EXPERIMENTATION PHASES

An additional helpful visualization to provide to the larger team when discussing
experimental phases is a rough estimate of what the broad strokes of the solution will
be from an ML perspective. A complex architectural diagram isn’t necessary, as it will
change so many times during the early stages of development that creating anything
of substantial detail is simply a waste of time at this point of the project. 

 However, a high-level diagram, such as the one shown in figure 3.14 that references
our personalization recommendation engine, can help explain to the broader team
what needs to be built to satisfy the solution. Visual “work architecture” guides like this
(in an actual project it would have a great deal more detail) can also help the ML team
keep track of current and upcoming work (as a complement to a scrum board).
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These annotations can help communicate with the broader team at large. Instead of
sitting in a status meeting that could include a dozen or more people, working dia-
grams like this one can be used by the ML team to communicate efficiently with every-
one. Various explanations can be added to answer questions about what the team is
working on and why at any given time, as well as to provide context to go along with
chronologically focused delivery status reports (which, for a project as complex as
this, can become difficult to read for those not working on the project). 
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teams to use (reducing
latent variables in the
selection of an
approach).
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Figure 3.14 A high-level experimental phase architecture for the scenario project 
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UNDERSTANDING THE IMPORTANCE OF SCOPING A RESEARCH (EXPERIMENT) PHASE

If the ML team members working on the personalization project had all the time in
the world (and an infinite budget), they might have the luxury of finding an optimal
solution for their problem. They could sift through hundreds of whitepapers, read
through treatises on the benefits of one approach over another, and even spend time
finding a novel approach to solve the specific use case that their business sees as an
ideal solution. Not held back by meeting a release date or keeping their technical
costs down, they could easily spend months, if not years, just researching the best pos-
sible way to introduce personalization to their website and apps. 

 Instead of just testing two or three approaches that have been proven to work for
others in similar industries and use cases, they could work on building prototypes for
dozens of approaches and, through careful comparison and adjudication, select the
absolutely best approach to create the optimal engine that would provide the finest
recommendations to their users. They may even come up with a novel approach that
could revolutionize the problem space. If the team were allowed to be free to test
whatever they wanted for this personalized recommendation engine, the ideas white-
board might look something like figure 3.15.
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Figure 3.15 Coming up with potential ways to solve the problem 
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After a brainstorming session that generated these ideas (which bears striking resem-
blance to many ideation sessions I’ve had with large and ambitious DS teams), the
next step that the team should take collectively is to start making estimations of these
implementations. Attaching comments to each alternative can help formulate a plan
of the two or three most likely to succeed within a reasonable time of experimenta-
tion. The commentary in figure 3.16 can assist the team with deciding what to test out
to meet the needs of actually shipping a product to production.

After the team goes through the exercise of assigning risk to the different approaches,
as shown in figure 3.16, the most likely and least risky options can be decided on that
fit within the scope of time allocated for testing. The primary focus of evaluating and
triaging the various ideas is to ensure that plausible implementations are attempted.
To meet the goals of the project (accuracy, utility, cost, performance, and business
problem-solving success criteria), pursuing experiments that can achieve all of those
goals is of the utmost importance.

SOME ADVICE The goal of experimentation is to find the most promising and
simplest approach that solves the problem, not to use the most technologically
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Figure 3.16 Evaluating and rating options discussed during a brainstorming session. This is an effective way 
to generate the two or three approaches to test against one another during experimentation.
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sophisticated solution. Focusing on solving the problem and not on which tools
you’re going to use to solve it will always increase the chances of success. 

Take a look at figure 3.17. This is a slightly modified transposed time-based represen-
tation of the experimentation plan for two of the teams working on the experimenta-
tion phase. The most critical part to notice is at the top: the time scale.

This critical factor—time—is the one element that makes establishing controls on
experimentation so important. Experimentation takes time. Building a proof of con-
cept (PoC) is a grueling effort of learning new APIs, researching new ways of writing
code to support the application of a model, and wrangling all the components
together to ensure that at least one run succeeds. This can take a staggering amount
of effort (depending on the problem). 

 Were the teams striving to build the best possible solution to do a bake-off, this
time scale would stretch for many months longer than figure 3.17 shows. It’s simply
not in the company’s interest to spend so many resources on trying to achieve perfec-
tion through two solutions that will never see the light of day. However, by limiting the
total expenditure of time and accepting that the comparison of implementation strat-
egies will be significantly less than perfect, the team can make an informed decision
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Figure 3.17 Chronological representation for two of the teams working on the experimentation phase of the 
project
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that weighs the quality of prediction against the total cost of ownership for the direc-
tion being chosen.

We time-block each of these elements for a final reason as well: to move quickly into
making a decision for the project. This concept may well be significantly insulting
to most data scientists. After all, how could someone adequately gauge the success
of an implementation if the models aren’t fully tuned? How could someone legiti-
mately claim the predictive power of the solution if all of its components aren’t
completed?

 I get it. Truly, I do. I’ve been there, making those same arguments. In hindsight,
after having ignored the sage advice that software developers gave me during those

Total cost of ownership
While an analysis of the cost to maintain a project of this nature is nigh impossible
to estimate accurately at the experimentation stage, it is an important aspect to con-
sider and make an educated guess at.

During the experimentation, elements inevitably will be missing from the overall data
architecture of the business. Services will likely need to be created for capturing data.
Serving layers will need to be built. If the organization has never dealt with modeling
around matrix factorization, it will need to potentially use a platform that it has never
used before. 

What if data can’t actually be acquired to satisfy the needs of the project, though?
This is the time to identify show-stopping issues. Identify them, ask if solutions are
going to be provided to support the needs of the implementation, and, if not, alert
the team that without investment to create the needed data, the project should be
halted. 

Provided that there aren’t issues as severe as that, here are some questions to think
about during this phase when gaps and critical issues are discovered:

 What additional ETL do we need to build?
 How often do we need to retrain models and generate inferences?
 What platform are we going to use to run these models?
 For the platform and infrastructure that we need, are we going to use a man-

aged service or are we going to try to run it ourselves?
 Do we have expertise in running and maintaining services for ML of this

nature?
 What is the cost of the serving layer plans that we have?
 What is the cost of storage, and where will the inference data live to support

this project?

You don’t have to answer each of these before development begins (other than the
platform-related questions), but they should always be kept in mind as elements to
revisit throughout the development process. If you don’t have sufficient budget to run
one of these engines, perhaps a different project should be chosen. 
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early days of my career about why running tests on multiple fronts for long periods of
time is a bad thing, I realize what they were trying to communicate to me.

If you had just made a decision earlier, all that work that you spent on the other things
would have been put into the final chosen implementation. 

—A lot of good engineers

Even though I knew what they were telling me was true, it still was a bit demoralizing
to hear, realizing that I wasted so much time and energy.

Time blocking is also critical if the project is entirely new. Moon-shot projects may not
be common in companies with an established ML presence, but when they do arise,
it’s important to limit the amount of time spent in the early phases. They’re risky, have
a higher probability of going nowhere, and can end up being remarkably expensive to
build and maintain. It’s always best to fail fast and early for these projects.

 The first time anyone approaches a new problem that is foreign to their experi-
ence, a lot of homework is usually required. Research phases can involve a lot of read-
ing, talking to peers, searching through research papers, and testing code in Getting
Started guides. This problem compounds itself many times over if the only available
tooling to solve the problem is on a specific platform, uses a language that no one on

An anecdote on morale
The time blocking isn’t intended to force unrealistic expectations on the team, but
rather to prevent the team from wasting time and energy on shelfware. Restricting
time spent on potential solutions also helps with team morale with respect to such
never-to-be-realized implementations—after all, you can really build only one solution
for a project. 

Setting restrictions on the amount of time people can work on a solution is valu-
able because throwing away their work becomes far less painful if they’ve been
working on it for only a week. If they’ve been working on it for months, though, it’s
going to feel rather demoralizing when they’re informed that their solution is not
going to be used.

One of the most toxic things that can happen when testing implementations is for
tribes to form within a team. Each team has spent so much time researching its solu-
tion and has been blinded by factors that might make it less than desirable for using
as a path to solve the problem. If the experiments are allowed to go from the PoC
phase to materialize as a true MVP (and, to be honest, if given enough time, most
ML teams will build an MVP instead of a PoC), when it comes to deciding on which
implementation to use, tensions will arise. Tempers will flare, lunches will disappear
from fridges, arguments will break out during standups, and the general morale of
the team will suffer. Save your team, save yourself, and make sure that people don’t
get attached to a PoC.
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the team has used before, or involves system designs that are new to the team (for
example, distributed computing). 

 With the increased burden of research and testing that such a situation brings, it’s
even more of a priority to set time limits on research and experimentation. If the team
members realize that they need to get up to speed on a new technology to solve the
business problem, this is fine. However, the project’s experimentation phase should
be adapted to support this. The key point to remember, should this happen, is to com-
municate this to the business leaders so that they understand the increase in scope
before the project work commences. It is a risk (although we’re all pretty smart and
can learn new things quickly) that they should be made aware of in an open and hon-
est fashion.

 The only exception to this time-blocking rule occurs if a simple and familiar solu-
tion can be utilized and shows promising results during experimentation. If the prob-
lem can be solved in a familiar and easy manner but new technology could (maybe)
make the project better, then taking many months of learning from failures while the
team gets up to speed on a new language or framework is, in my opinion, unethical.
It’s best to carve out time in the schedules of a DS team for independent or group-
based continuing education and personal project work to these ends. During the exe-
cution of a project for a business is not the time to learn new tech, unless there is no
other option.

HOW MUCH WORK IS THIS GOING TO BE, ANYWAY?
At the conclusion of the experimental phase, the broad strokes of the ML aspect of
the project should be understood. It is important to emphasize that they should be
understood, but not implemented yet. 

 The team should have a general view of the features that need to be developed to
meet the project’s specifications, as well as any additional ETL work that needs to be
defined and developed. The team members should reach a solid consensus about the
data going into and coming out of the models, how it will be enhanced, and the tools
that will be used to facilitate those needs.

 At this juncture, risk factors can begin to be identified. Two of the largest questions
are as follows:

 How long will this take to build?
 How much will this cost to run?

These questions should be part of the review phase between experimentation and
development. Having a rough estimate can inform the discussion with the broader
team about why one solution should be pursued over another. But should the ML
team be deciding alone which implementation to use? Inherent bias will be present in
any of the team’s assumptions, so to assuage these factors, it can be useful to create a
weighted matrix report that the larger team (and the project leader) can use to
choose an implementation. 
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Figure 3.18 shows an example of one such weighted matrix report (simplified for
brevity) to allow for active participation by the greater team. The per-element ratings
are locked by the expert reviewer who is doing the unbiased assessment of the relative
attributes of different solutions, but the weights are left free to modify actively in a
meeting. Tools like this matrix help the team make a data-driven choice after consid-
ering the various trade-offs of each implementation.

 If this matrix were to be populated by ML team members who had never built a sys-
tem this complex, they might employ heavy weightings to Prediction Quality and little
else. A more seasoned team of ML engineers would likely overemphasize Maintain-
ability and Implementation Complexity (no one who has ever endured them likes
never-ending epics and pager alerts at 2 a.m. on a Friday). The director of data sci-
ence might only care about Cost to Run, while the project lead may only be interested
in Prediction Quality. 

 The important point to keep in mind is that this is a balancing act. With more peo-
ple who have a vested interest in the project coming together to debate and explain
their perspectives, a more informed decision can be arrived at that can help ensure a
successful and long-running solution.

 At the end of the day, as the cliché goes, there is no free lunch. Compromises will
need to be made, and they should be agreed upon by the greater team, the team
leader, and the engineers who will be implementing these solutions as a whole.

Owner bias in ML
We all love what we build, particularly if it’s clever. However, one of the most toxic
things that can happen to a project after an experimentation phase is latching onto
something that’s clever and unique simply because you built it.

If someone else on the team has something that is of a similar prediction quality but
far more boring or standard, that should be embraced as the better option. Remem-
ber that everyone else on the team is going to have to maintain this solution, contrib-
ute to it, improve it over time, and perhaps one day upgrade it to work in a new
ecosystem. The clever custom solution can be a horrible burden on a team if it’s too
complicated to maintain.

This is why I’ve always found it useful to enlist the assistance of a peer to draft a
comparative analysis. It’s important to find someone familiar with gauging the cost
and benefit of different approaches—someone who has enough experience to have
lived through the difficult times of maintaining fragile approaches. I typically find
someone who hasn’t been involved in the project up to this point in order to ensure
that they have no bias about a decision. Their objective opinion, without bias, can
help ensure that the data contained in the report is accurate so that the larger team
can evaluate options honestly.

When my clever solution has been thrown out because of its complexity, I’ve quickly
moved on. I’ve always been fine with a “cool” solution being discarded, regardless
of how much I may have, at the time, wanted to build it. The team, the company, and
the project are far more important than my pride, after all.
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Summary
 Spending time at the beginning of projects focused solely on how best to solve a

given problem leads to great success. Gathering the critical requirements, eval-
uating approaches without introducing technical complexity or implementa-
tion details, and ensuring that communication with the business is clear helps
avoid the many pitfalls that would necessitate rework later.

 Using principles of research and experimentation from Agile methodologies,
ML projects can dramatically reduce the time to evaluate approaches and deter-
mine feasibility of the project much faster. 

Per item scoring is
set to a scale from
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cost of ownership, ability to maintain the solution, and comparative development time of the three tested 
implementations for the recommendation engine 



Before you model:
Communication and

logistics of projects
In my many years of working as a data scientist, I’ve found that one of the biggest
challenges that DS teams face in getting their ideas and implementations to be
used by a company is rooted in a failure to communicate effectively. This isn’t to say
that we, as a profession, are bad at communicating. 

 It’s more that in order to be effective when dealing with our internal customers
at a company (a business unit or cross-functional team), a different form of communi-
cation needs to be used than the one that we use within our teams. Here are some
of the biggest issues that I’ve seen DS teams struggle with (and that I have had per-
sonally) when discussing projects with our customers:

This chapter covers
 Structuring planning meetings for ML project work

 Soliciting feedback from a cross-functional team 
to ensure project health

 Conducting research, experimentation, and 
prototyping to minimize risk

 Including business rules logic early in a project

 Using communication strategies to engage 
nontechnical team members
76
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 Knowing which questions to ask at what time
 Keeping communication tactically targeted on essential details, ignoring insig-

nificant errata that has no bearing on the project work
 Discussing project details, solutions, and results in layperson’s terms
 Focusing discussions on the problem instead of the machinations of the solution

Since this field is so highly specialized, no common layperson’s rubric exists that dis-
tills our job in the same way as for other software engineering fields. Therefore, an
extra level of effort is required. In a sense, we need to learn a way of translating what it
is that we do into a different language in order to have meaningful conversations with
the business.

 We also need to work hard at quality communication practices in general as ML
practitioners. Dealing with complex topics that are inevitably going to be frustratingly
confusing for the business requires a certain element of empathetic communication.

Figure 4.1 shows a generic conversation path that I’ve always found to work well, one
that we will apply throughout this chapter.

Having difficult conversations with angry or frustrated people
I have a lot of difficult conversations with people in my current line of work. Some-
times people are frustrated that a solution isn’t making progress. Other times, peo-
ple are angry that a solution isn’t interpretable. In rare instances, people are dead
set against using an ML solution because of their perception that it’s going to replace
their job.

After each one of these difficult conversations, someone inevitably approaches me
afterward and asks for tips on how to do what I just did during the meeting. In years
past, I was confused about this question. It made little sense to me. All I did, after all,
was listen to the complaints, have an open discussion that focused on their concerns,
and come to a mutual understanding about what is important to address in order to
move forward. These days, however, I think I know why people ask this question.

As an expert in a highly esoteric field, DS practitioners can easily lose sight of what
a layperson knows or doesn’t know. This is gradually changing in industry as AI is
becoming increasingly part of today’s zeitgeist. It doesn’t necessarily mean that
every person you’re talking to will understand what your solutions can and cannot do,
though. 

The answer that I give to people who ask me how I manage to defuse difficult discus-
sions is simple: just listen. Talk less. Don’t talk at the business unit. Listen to their
concerns and communicate clearly in terms that they understand. Above all else, be
honest. Don’t promise magical solutions or delivery dates that are beyond your ability
to execute. They will appreciate being listened to and having an honest discussion.
Having an empathetic mindset of truly listening to their grievances can help de-escalate
hostile discussions far better than any other method I’m aware of.
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By using a clear, to-the-point communication style that focuses on outcomes, those
project outcomes can be more closely aligned with business expectations of the work.
A pointed discussion with this as the primary goal helps define what to build, how to
build it, when to have it done by, and what the success criteria is. It’s effectively the entire rec-
ipe outlined for every further stage of the project up to and including flipping the
switch to On in production.

Notice the lack of discussion on . The conversationhow the solution will be built
is on and how important it is to the business.what should be built

Key questions

Motivation for questions and

outcome

When

would this solution

become irrelevant?

• Can determine if project is worth

pursuing

• If solution will be superseded by

something else, can refocus efforts on

expanded better solution

Why

do you want this

built?

What

do you expect a

solution to do?

How

does your team do

this now?

What

would you consider

to be a perfect

solution for this?

How

much would you pay

for another company

to do this for you?

• Defines urgency

• Defines importance

• Estimates probability of ofadoption

solution

• Formalizes basic functionality

• Identifies high-level of projectscope

• Focuses on , not on howoutput

to build a solution

• Helps define success criteria

• Identifies to work withSMEs

• Can expose to buildcritical features

• Defines accuracy expectations

• Gives the target forattribution metric

the project

• Allows for discussion on realistic and

attainable solution expectations

• Defines importance

• Estimates accuracy and required

sophistication for solution

• Starts discussion on delivery

time tables

Figure 4.1 Critical questions to have with a business unit during a first planning 
meeting, followed by the critically important answers that will inform what, how, 
and when to build the solution
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4.1 Communication: Defining the problem
As covered in chapter 3, we’re going to continue discussing the product recommenda-
tion system that our DS team was tasked with building. We’ve seen a juxtaposition of
ineffective and effective ways of planning a project and setting scoping for an MVP,
but we haven’t seen how the team got to the point of creating an effective project plan
with a reasonable project scope. 

 The first example meeting, as we discussed in section 3.1, revolved around the end
goal in highly abstract terms. The business wanted personalization of its website. The
DS team’s first error during that conversation was in not continuing the line of ques-
tioning. The single most important question was never asked: “Why do you want to
build a personalization service?”

 Most people, particularly technical people (likely the vast majority of the people
who will be in a room discussing this initial project proposal and brainstorming ses-
sion), prefer to focus on the how of a project. How am I going to build this? How is the
system going to integrate to this data? How frequently do I need to run my code to
solve the need?

 For our recommendation engine project, if anyone had posed this question, it
would have opened the door to an open and frank conversation about what needs to
be built, what the expected functionality should be, how important the project is to
the business, and when the business wants to start testing a solution. Once those key
answers are received, all of the details surrounding logistics can be conducted. 

 The important thing to keep in mind with these kickoff meetings is that they’re
effective when both sides—customer and supplier of the solution—are getting what
they need. The DS team is getting its research, scoping, and planning details. The
business is getting a review schedule for the work to be conducted. The business gets
the inclusiveness that’s paramount to the project success, which will be exercised at
the various presentations and ideation sessions scheduled throughout the project
(more on these presentation boundaries is covered in section 4.1.2). Without a
directed and productive conversation, as modeled in figure 4.1, the respective people
in the meeting would likely be engaged in the thought patterns shown in figure 4.2.

 By focusing the meeting on a common purpose, the areas of individual responsi-
bility and expectation of each persona in figure 4.2 can be collaboratively directed
toward defining the project and helping to ensure its success.

 The other primary benefit to collectively discussing the project’s key principles is
to help define the simplest possible solution that solves the problem. By having buy-in from
the business unit, feedback from SMEs, and input from fellow software engineers, the
end solution can be crafted to meet the exact needs. It can also be adapted to new
functionality at each subsequent phase without causing frustration for the larger team.
After all, everyone discussed the project together from the start.

A GREAT RULE OF THUMB FOR ML DEVELOPMENT Always build the simplest solu-
tion possible to solve a problem. Remember, you have to maintain this thing
and improve it to meet changing needs as time goes on.
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4.1.1 Understanding the problem

In our scenario, the unguided nature of the planning meeting(s) resulted in the DS
team members not having a clear direction on what to build. Without any real defini-
tion from the business of the desired end state, they focused their effort solely on
building the best collection of recommendations for each user that they could prove
with scoring algorithms. What they had done was effectively missed the plot.

 At its core, the problem is a fundamental breakdown in communication. Without
asking what the business wanted from their work, they missed the details that meant
the most to the business unit (and to the external “real” customers). You’ll always want
to avoid situations like this. These breakdowns in communication and planning can
play out in multiple ways, ranging from slow, simmering passive-aggressive hostility to
outright shouting matches (usually one-sided) if the realization is made toward the
end of a project. 

“The activity data is in the data
lake, but the purchase data is
in our data warehouse . . . .”

Business unit leader

Project manager

DS team lead or
manager

Data scientists

Frontend
developers

Data engineers

When do we want
this to be done?

Focused discussion that will help
inform the answers that each
team or person has in the most
efficient manner

Unguided planning meeting Collaborative planning meeting

“How is this going to increase
sales and customer

retention?”

“I hope our customers see
the value in this and our
retention rates go up!”

“How many epics will this
take over how many

sprints?”

“Do I have the cloud
compute budget to test

all of this?”

“I bet we could solve this
with and , or maybe .”x y z

“What data structure is the
DS team going to give us?
How should we display it?”

Business sponsor
(executive)

Why we’re building

this

What do we want

it to do?

How could this go
wrong?

Figure 4.2 Comparison of unguided and guided planning meetings
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WHAT DO YOU WANT IT TO DO?
The what for this recommendation is far more important to everyone on the team
than the how. By focusing on the functionality of the project’s goal (the “What will it
do?” question), the product team can be involved in the discussion. The frontend
developers can contribute as well. The entire team can look at a complex topic and
plan for the seemingly limitless number of edge cases and nuances of the business
that need to be thought of for building not just the final project, but the MVP as well. 

 The easiest way for the team that’s building this personalization solution to work
through these complex topics is by using simulation and flow-path models. These can
help identify the entire team’s expectations for the project in order to then inform the
DS team about the details needed to limit the options for building the solution.

 The best way for the team working on this project to go through this conversation
is to borrow liberally from the best practices of frontend software developers. Before a

What we have here is a failure to communicate
In the many dozens of ML projects that I’ve been a part of as a developer, data sci-
entist, architect, or consultant, the one consistent, common theme among all proj-
ects that never make it to production has been a lack of communication. This isn’t a
reference to a communication failure in the engineering team (although I have cer-
tainly witnessed that more than enough for my liking in my career thus far). 

The worst sort of breakdown is the one that happens between the DS team and the
business unit requesting the solution. Whether it’s a long, slow, drawn-out entropy of
communication or a flat-out refusal to speak in a common form of dialogue that all
parties can understand, the result is always the same when the customers (internal)
aren’t being listened to by the developers. 

The most destructive time for a lack of communication to become apparent to every-
one involved in the project is around the final release to production. End users con-
suming the predictions come to the conclusion that not only does something seem
a bit off about the results coming from the predictive model, but that it’s just funda-
mentally broken. 

Breakdowns in communication aren’t restricted only to production release, though.
They typically happen slowly during the development of the solution or when going
through user acceptance testing. Assumptions on all sides are made; ideas are either
unspoken or ignored, and commentary is dismissed as either being irrelevant or sim-
ply a waste of time during full team meetings.

Few things are as infinitely frustrating as a project failure that is due to communica-
tion breakdown among a team, but it can be avoided completely. These failures,
resulting in enormous wastes of time and resources, can be attributed to the very
early stages of the project—before a single line of code is written—when the scoping
and definition of the problem happens. These failures are entirely preventable with a
conscious and determined plan of ensuring that open and inclusive dialogue is main-
tained at every phase of the project, starting at the first ideation and brainstorming
session.
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single feature branch is cut, before a single Jira ticket is assigned to a developer, front-
end dev teams utilize wireframes that simulate the final end state. 

 For our recommendation engine, figure 4.3 shows what a high-level flow path
might look like initially for a user journey on the website with personalization features
applied. Mapping even simplistic architectural user-focused journeys like this can
help the entire team think about how all of these moving parts will work. This pro-
cess also open up the discussion to the nontechnical team members in a way that is far

What do you mean, you don’t care about my struggles?
Yes, my fellow ML brethren, I can admit it: the how is complex, involves the vast
majority of the work for the project, and is incredibly challenging. However, the how
is what we get paid to figure out. For some of us, it’s the very thing that brought us
to this profession. The “how to solve problems” question occupies a lot of the nerd-
focused talk that many of us engage in while speaking with one another. It’s fun stuff,
it’s complex, and it’s fascinating to learn.

But the rest of the team doesn’t care about which modeling approaches are going to
be used; trust me, even if they feign interest, they’re asking questions about it only so
they can make it seem like they care—they don’t really care. Keep these details out of
group discussions if you want to have meaningful, collaborative, and inclusive meet-
ings. It’s only when the discussion is kept in this welcoming tone of teamwork that
you’ll get the insights, creative ideas, and identification of seemingly innocuous details
that need to be handled in order to make the project as successful as it can be.

User Llogin

Web server app

User ID query

Static content

Page layout

Random e-commerce site.com

Welcome back, Ben! Here’s

some things we think you’ll like!

P7, D1, P37, D2, P2, D3, P931, D4

Merging of personalized items with the
global priority items for the user

Just in case we don’t have
predictions for the user

Precalculated recommendations

NoSQL DB + REST API

Personalized

item lists (P)

Global

prioritized

items (D)

Merge
Cold start/

fallback items

(C)

Figure 4.3 A simplified, basic overview of the personalization recommendation engine 
to aid in planning requirements and features of a personalization project. This is the core, 
minimal functionality to start an ideation session from.
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less confusing than looking at code snippets, key-value collections, and accuracy met-
rics plotted in highly confusing representations that they are unfamiliar with.

NOTE Even if you’re not going to be generating a prediction that is interfac-
ing with a user-facing feature on a website (or any ML that has to integrate
with external services), it is incredibly useful to block out the end-state flow of
the project’s aims while in the planning stage. This doesn’t expressly mean to
build out a full architectural diagram for sharing with the business unit, but a
line diagram of the way the pieces of the project interact and the way the final
output will be utilized can be a great communication tool.

Diagrams such as this one are helpful for conducting a planning discussion with a
broader team. Save your architecture diagrams, modeling discussions, and debates on
the appropriateness of scoring metrics for a recommendation system to internal dis-
cussions within the DS team. Breaking out a potential solution from the perspective of
a user not only enables the entire team to discuss the important aspects, but also
opens the discussion to the nontechnical team members who will have insights into
points to consider that will directly impact both the experimentation and the produc-
tion development of the actual code. 

 Because the diagram is so incredibly simple and facilitates seeing the bare-bones func-
tionality of the system, while hiding the complexity contained inside the Precalculated
Recommendations section in particular, the discussion can begin with every person in
the room being engaged and able to contribute to the ideas that will define the project’s
initial state. As an example, figure 4.4 shows what might come from an initial meeting
with the broader team, discussing what could be built in a thorough ideation session.

 Figure 4.4, when compared with figure 4.3, shows the evolution of the project’s
ideation. It is important to consider that many of the ideas presented would likely
have not been considered by the DS team had the product teams and SMEs not been part
of the discussion. Keeping the implementation details out of the discussion allows for
everyone to continue to focus on the biggest question: “Why are we talking about
building this, and how should it function for the end user?” 

What is a user-experience journey?
Borrowed liberally from the field of product management in the business-to-customer
(B2C) industry, a user-experience journey (or journey map) is a simulation of a prod-
uct, exploring how a new feature or system will be consumed by a particular user. It’s
a form of a map, of sorts, beginning with the user interacting with your system initially
(logging in, in the example in figure 4.4), and then following them through the user-
facing interactions that they will have with elements of the system.

I’ve found that these are useful for not only e-commerce and application-based imple-
mentations that ingest ML to serve a feature, but can also be quite helpful in design-
ing even internal-facing systems. At the end of the day, you want your predictions to
be used by someone or something. Many times, drawing a map of the way that person,
system, or downstream process will interact with the data that you’re producing can
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(continued)

aid in designing the ML solution to best meet the needs of the customer. The map-
ping process can help find areas to inform the design of not only the serving layer,
but also elements that may need to be considered as critical features during the
development of the solution.

P2 D1 D2P3P1
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Main landing page
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query
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User clicks item P1

Main landing page

D1 P3 P4D2P2
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Precalculated recommendations

Based on
what you like

(P items)

Global
defaults
(D items)

Items

(P1, P2, D1,

P3, D2, . . .)

Grouped product recommendations

Based on
what you like
(GP items)

Global
defaults

(GD items)

Grouped
items (GP1,
GP2, GP3,
GD1, GD2,

GD3, . . .)

Nice to have

Remove all
similar items from
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similar things

based on what
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Save for Later
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GD1 GD2 GD3

Product type page
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Remove P1, shift recommendations
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recommendations,
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Updated
recommendations

P1 filtered

Return to main page

Figure 4.4 Additions made to the core minimal functionality as a result of an inclusive ideation session within 
a cross-functional team
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In figure 4.4, notice the four items marked Nice to have. This is an important and chal-
lenging aspect of initial planning meetings. Everyone involved wants to brainstorm
and work toward making the best possible solution to the problem. The DS team
should welcome all of these ideas but add a caveat to the discussion that a cost is associ-
ated with each addition.

  A sincere focus should be made on the essential aspects of the project (the MVP).
Pursuit of an MVP ensures that only the most critical aspects will be built first. The
other requirement is that they function correctly before including any additional
features. Ancillary items should be annotated as such; ideas should be recorded, ref-
erenceable, modified, and referred to throughout the experimentation and devel-
opment phases of the project. What once may have seemed insurmountably difficult
could prove to be trivial later as the code base takes shape, and it could be worthwhile
to include these features even in the MVP. 

 The only bad ideas are those that get ignored. Don’t ignore ideas, but also don’t allow
every idea to make it into the core experimentation plan. If the idea seems far-fetched
and incredibly complex, simply revisit it later, after the project is taking shape and the
feasibility of implementation can be considered when the total project complexity is
known to a deeper level.

While walking through this user-experience workflow, it could be discovered that
team members have conflicting assumptions about how one of these engines work.
The marketing team assumes that if a user clicks something, but doesn’t add it to their

Keeping the engineering out of ideation meetings
I’ve been a part of many planning meetings in my career. They typically fall into one
of three categories. The examples in figures 4.2 and 4.3 represent the planning
events that I’ve seen and had the most success using. 

The ones that are least useful (where follow-up meetings, off-line discussions, and
resulting chaos ensues) are those that focus either entirely on the ML aspect of the
project or on the engineering considerations of making the system work. 

If the model is the main point of concern, many of the people in the group will be com-
pletely alienated (they won’t have the knowledge or frame of reference to contribute
to a discussion of algorithms) or annoyed to the point that they disengage from the
conversation. At this point, it’s just a group of data scientists arguing about whether
they should be using ALS or deep learning to generate the raw recommendation
scores and how to fold in historical information to the prediction results. Discussing
these things in front of a marketing team is pointless.

If the engineering aspects are the focus, instead of creating a diagram of a user-
experience flow path, the diagram will be an architectural one that will be alienating
an entirely different group of people. Both an engineering and a modeling discussion
are important to have, but they can be conducted without the broader team and can
be iteratively developed later—after experimentation is completed.
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cart, we can infer dislike of the product. Those team members don’t want to see that
product in recommendations again for the user.

 How does this change the implementation details for the MVP? The architecture is
going to have to change. 

 It’s a whole lot easier to find this out now and be able to assign scoped complexity
for this feature while in the planning phase than before a model is built; otherwise,
the change has to be monkey-patched to an existing code base and architecture. The
defined functional architecture also may, as shown in figure 4.4, start adding to the
overall view of the engine: what it’s going to be built to support and what will not be
supported. Functional architecture design will allow the DS team, the frontend team,
and the DE team to begin to focus on what they respectively will need to research and
experiment with in order to prove or disprove the prototypes that will be built.
Remember, all of this discussion happens before a single line of code is written.

 Asking the simple question “How should this work?” and avoiding focusing on the
standard algorithmic implementations is a habit that can help ensure success in ML
projects more so than any technology, platform, or algorithm. This question is argu-
ably the most important one to ask to ensure that everyone involved in the project is
on the same page. I recommend asking this question along with the necessary line of
questioning to eke out the core functionality that needs to be investigated and experi-
mented on. If there is confusion or a lack of concrete theories regarding the core
needs, it’s much better to sit in hours of meetings to plan things out and iron out all of
the business details as much as possible in the early stages, rather than waste months
of your time and effort in building something that doesn’t meet the project sponsor’s
vision. 

WHAT DOES THE IDEAL END-STATE LOOK LIKE? 
The ideal implementation is hard to define at first (particularly before any experi-
mentation is done), but it’s incredibly useful to the experimentation team to hear all
aspects of an ideal state. During these open-ended stream-of-consciousness discus-
sions, a tendency of most ML practitioners is to instantly decide what is and isn’t possi-
ble based on the ideas of people who don’t understand what ML is. My advice is to
simply listen. Instead of shutting down a thread of conversation immediately as being
out of scope or impossible, let the conversation happen. 

 You may find an alternative path during this creative ideation session that you oth-
erwise would have missed. You might just find a simpler, less unique, and far more
maintainable ML solution than what you may have come up with on your own. The
most successful projects that I’ve worked on over the years have come from having
these sorts of creative discussions with a broad team of SMEs (and, when I’ve been
lucky, the actual end users) to allow me to shift my thinking into creative ways of get-
ting as close as possible to their vision.

 Discussing an ideal end state isn’t just for the benefit of a more amazing ML
solution, though. Engaging the person asking for the project to be built allows their
perspective, ideas, and creativity to influence the project in positive ways. The discussion
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also helps build trust and a feeling of ownership in the development of the project
that can help bring a team together.

 Learning to listen closely to the needs of your ML project’s customer is one of the
most important skills of an ML engineer—far more than mastering any algorithm,
language, or platform. It will help guide what you’re going to try, what you’re going to
research, and how to think differently about problems to come up with the best solu-
tion that you possibly can.

 In the scenario shown in figure 4.4, the initial planning meeting results in a
rough sketch of the ideal state. This likely will not be the final engine (based on my
experience, that most certainly is never the case). But this diagram will inform how
to convert those functional blocks into systems. It will help inform the direction of
experimentation, as well as the areas of the project that you and the team will need
to research thoroughly to minimize or prevent unexpected scope creep, as shown in
figure 4.5.

Figure 4.5 should be familiar to any reader who has ever worked at a startup. The excite-
ment and ideas that flow from driven and creative people who want to do something
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Figure 4.5 The dreaded scope creep of an ML project. Be clear at the outset of planning that this will not be 
tolerated, and you shouldn’t have to worry about it. 



88 CHAPTER 4 Before you model: Communication and logistics of projects
amazing is infectious and can, with a bit of tempering, create a truly revolutionary
company that does a great job at its core mission. However, without that tempering
and focus applied, particularly to an ML project, the sheer size and complexity of a
solution can quite rapidly spiral out of control. 

NOTE I’ve never, not even once, in my career allowed a project to get to the
level of ridiculousness shown in figure 4.5 (although a few have come close).
However, on nearly every project that I’ve worked on, comments, ideas, and
questions like this have been posed. My advice: thank the person for their
idea, gently explain in nontechnical terms that it’s not possible at this time,
and move on to finish the project.

Scope creep: An almost guaranteed assassination of a project
Improper planning (or planning without involving the team that the project is being built
for) is a perfect recipe for one of the most frustrating ways of having a project die a
slow, whimpering death. Also known as ML death by a thousand requests, this concept
materializes at later stages of development, particularly when a demo is shown to a
team that is uninformed about the details that went into building the project. If the cus-
tomer (the internal business unit) was not party to the planning discussions, they inev-
itably will have questions, and many of them, about what the demo does. 

In nearly every case that I’ve seen (or caused in my earlier days of trying to “hero my
way through” a project without asking for input), the result of the demo session is
going to be dozens of requests for additional features and requirements to be added.
This is expected (even in a properly designed and planned project), but if the imple-
mentation is unable to easily include critical features that relate to immutable busi-
ness operation “laws,” a potential full reimplementation of the project could be
required. That leaves decision makers with the difficult choice of whether to delay the
project because of the decision that the DS team (or individual) made, or to scrap the
project entirely to prevent the chances of a repeat of the initial failure.

Few things are more devastating to hear in the world of ML than intensely negative
feedback immediately after something goes live in production. Getting a flood of
email from executive-level staff indicating that the solution you just shipped is recom-
mending cat toys to a dog owner is laughable, but one that is recommending adult-
themed products to children is about as bad as it can get. The only thing worse is
realizing, right before the project is shipped, during user-acceptance testing (UAT),
that an insurmountable list of changes needs to be made to satisfy the urgent
requirements of the business and that it would take less time to start the project over
from scratch than to make the changes to the existing solution. 

Identifying scope creep is important, but its magnitude can be minimized, and in
some cases eliminated. The appropriate level of discussion needs to be reached,
and critical aspects of a project included in sometimes excruciating recursive and
painful detail well before a single character is typed in an experimentation notebook
or IDE.
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WHO IS YOUR CHAMPION FOR THIS PROJECT THAT I CAN WORK WITH ON BUILDING THESE EXPERIMENTS?
The most valuable member of any team I’ve worked with has been the SME—the per-
son assigned to work with me or my team in order to check our work, answer every
silly question that we had, and provide creative ideation that helped the project grow
in ways that none of us had envisioned. While usually not a technical person, the SME
has a deep connection and expansive knowledge of the problem. Taking a little bit of
extra time to translate between the world of engineering and ML to layperson’s terms
has always been worth it, primarily because it creates an inclusive environment that
enables the SME to be invested in the success of the project since they see that their
opinions and ideas are being considered and implemented.

 I can’t stress enough that the last person you want to fill this role is the actual executive-
level project owner. While it may seem logical at first to assume that being able to ask
the manager, director, or VP of a group for approval of ideation and experimenta-
tion will be easier, I can assure you that this will only stagnate a project. These peo-
ple are incredibly busy dealing with dozens of other important, time-consuming
tasks that they have delegated to others. Expecting this person—who may or may
not be an expert in the domain that the project is addressing—to provide extensive
and in-depth discussions on minute details (all ML solutions are all about the small
details, after all) will likely put the project at risk. In that first kick-off meeting, make
sure to have a resource from the team who is an SME and has the time, availability,
and authority to deal with this project and the critical decisions that will need to be
made throughout.

WHEN SHOULD WE MEET TO SHARE PROGRESS?
Because of the complex nature of most ML projects (particularly ones that require so
many interfaces to parts of a business as a recommendation engine), meetings are
critical. However, not all meetings are created equally. 

 While it is incredibly tempting for people to want to have cadence meetings on a
certain weekly prescribed basis, project meetings should coincide with milestones
associate with the project. These project-based milestone meetings should

 Not be a substitute for daily standup meetings
 Not overlap with team-focused meetings of individual departments
 Always be conducted with the full team present
 Always have the project lead present to make final decisions on contentious topics
 Be focused on presenting the solution as it stands at that point and nothing else

Well-intentioned but toxic external ideation
It’s incredibly tempting for discussions to happen outside these structured presenta-
tion and data-focused meetings. Perhaps people on your team who are not involved
in the project are curious and would like to provide feedback and additional brain
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At the early meetings, it is imperative for the DS team to communicate to the group
the need for these event-based meetings. You want to let everyone know that changes
that might seem insignificant to other teams could have rework risks associated with
them that could translate to weeks or months of extra work by the DS team. Similarly,
DS changes could have dramatic impacts on the other teams. 

 To illustrate the interconnectedness of the project and how hitting different deliv-
eries can impact a project, let’s take a look at figure 4.6. This chart shows what this
solution would look like in a relatively large company (let’s say over 1,000 employees)
with the roles and responsibilities divided among various groups. In a smaller com-
pany (a startup, for instance), many of these responsibilities would fall either on the
frontend or DS team rather than separate DE teams. 

 Figure 4.6 shows how dependencies from the ML experimentation, for instance,
affect the future work of both the DE and frontend development teams. Adding exces-
sive delays or required rework results in not only the DS team reworking its code, but
also potentially weeks of work being thrown away by an entire engineering organiza-
tion. This is why planning, frequent demonstrations of the state of the project, and
open discussions with the relevant teams are so critical.

 
 

(continued)

storming sessions. Similarly, it could be convenient to discuss a solution to some-
thing that you’re stuck on with a small group from the larger team. 

I cannot stress strongly enough how much disruption can, and likely will, arise from
these outside-of-the-team discussions. Any decisions made in a large-scale project
(even in the experimentation phase) by the team members should be considered sac-
rosanct. Involving outside voices and people who are “trying to help” erodes the inclu-
sive communication environment that has been built collectively.

Outside ideation also typically introduces an uncontrollable chaos to the project that
is difficult for everyone involved in the implementation to manage. If the DS team
decides in a vacuum, for instance, to change the delivery method of the predictions
(reusing a REST endpoint with additional payload data, for instance), it would affect
the entire project. Even though it may save the DS team a week’s worth of work by
not having to create another REST endpoint, it would be disastrous for any work that
the frontend engineers are working on. This could potentially cause weeks of rework
for the frontend team. 

Introducing changes without notifying and discussing them in the larger group risks
wasting a great deal of time and resources, which in turn erodes the confidence that
the team and the business at large has in the process. It’s a fantastically effective
way of having the project become shelfware or introducing silo behavior among micro-
cosm groups of business units. 



91Communication: Defining the problem
9 2/20 9/27 10/4 10/11 10/18 10/25 11/1 11/8 11/15 11/22 11/29 1/6 12/13 12/20 12/27

1/19/17

M dVP ata engineering—

materialized datasets

MVP—web & app

implementation

Recommendation results

ETL + hosting

Recommendation results

data collection—interaction

rates and attribution

ETL of interaction metrics

for analytics

Marketing release and

messaging

Requirement gathering

Research recommendation

algorithms

Experimentation—prototype

building and solution culling

Demo—show us what it looks

like right now and let’s discuss

M sVP olution

development—ML

UX design/layout

prototype

REST API development

Frontend results fetching

and caching—architecture

and implementation

Frontend optimization of

recommendations serving

A/B testing—traffic allocation

and measurement

User-acceptance testing—

QA / volunteers

Full teamLegend: ML team Marketing
Product
group

Data
engineering

Frontend
dev

Figure 4.6 Cross-functional team project timeline chart. Notice the frequency and membership 
requirements for each demo and discussion (most are for the full team).



92 CHAPTER 4 Before you model: Communication and logistics of projects
Figure 4.7 illustrates a high-level Gantt chart of the milestones associated with a gen-
eral e-commerce ML project, focusing solely on the main concepts. Using charts like
this as a common focused communication tool can greatly improve the productivity of
all the teams and reduce a bit of the chaos in a multidisciplinary team, particularly
across the walls of department barriers.

 As the milestone arrows along the top of figure 4.7 show, at critical stages, the entire
team should be meeting together to ensure that all team members understand the
implications of what has been developed and discovered so that they may collectively
adjust their own project work. Most teams that I’ve worked with hold these meetings
on the same day as their sprint planning, for what that’s worth. 

 These breakpoints allow for demos to be shown, basic functionality to be explored,
and risks identified. This common communication point has two main purposes:

 Minimizing the amount of time wasted on rework
 Making sure that the project is on track to do what it set out to do

While spending the time and energy to create Gantt charts for each and every project
is not absolutely necessary, creating at least something to track progress and milestones

But when is it going to be done?
Honesty is always the best policy. I’ve seen a lot of DS teams think that it’s wise to
under-promise and over-deliver during project planning. This isn’t a wise move.

Many times, this policy of giving wiggle room to a project is employed to protect
against unforeseen complexities that arise during project development. But factoring
those into estimated delivery dates doesn’t do the team any favors. It’s dishonest
and can erode trust that the business has in the team. The better approach is to just
be honest with everyone. Let them know that ML projects have a lot of unknown fac-
tors baked into them.

The only thing this practice will result in is frustrated and angry internal business unit
customers. They won’t like continually getting results weeks earlier than promised
and will quickly catch on to your antics. Trust is important. 

The other side of this factual omission coin relates to setting unrealistic expectations
in deliveries. By not telling the business that things can go sideways during many of
the phases of project work and setting an aggressive delivery date for iterative
design, everyone will expect something useful to be delivered on that date. Failing to
explain that these are general targets that may need slight adjustment means that
the only way to accommodate unforeseen complications is by forcing the DS team to
work long and grueling hours to hit those goals. 

Only one result is guaranteed: team burnout. If the team is completely demotivated
and exhausted from striving to meet unreasonable demands, the solution will never
be very good. Details will be missed, bugs will proliferate in code, and the best mem-
bers on the team will be updating their resumes to find a better job once the solution
is in production.
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against is advisable. Colorful charts and interdisciplinary tracking of systems develop-
ment certainly doesn’t make sense for solo outings led by a single ML engineer han-
dling the entire project. But even when you may be the only person putting fingers to
keyboard, figuring out where major boundaries exist within the project’s development
and scheduling a bit of a show-and-tell can be extremely helpful. 

 Do you have a demonstration test set from a tuned model that you want to make
sure solves the problem? Set a boundary at that point, generate the data, present it in
a consumable form, and show it to the team that asked for your help in solving the
problem. Getting feedback—the right feedback—in a timely manner can save you and
your customer a great deal of frustration.
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4.1.2 Setting critical discussion boundaries

The next question that begs to be asked is, “Where do I set these boundaries for my
project?” Each project is completely unique with respect to the amount of work
required to solve the problem, the number of people involved in the solution, and the
technological risks surrounding the implementation. 

 But a few general guidelines are helpful for setting the minimum required meet-
ings. Within the confines of the recommendation engine that we’re planning on
building, we need to set some form of a schedule indicating when we will all be meet-
ing, what we will be talking about, what to expect from those meetings, and most
important, how the active participation from everyone involved in the project will
help minimize risk in the timely delivery of the solution.

 Let’s imagine for a moment that this is the first large-scale project involving ML
that the company has ever dealt with. It’s the first time that so many developers, engi-
neers, product managers, and SMEs have worked in concert, and none of them have
an idea of how often to meet and discuss the project. You realize that meetings do
have to happen, since you identified this in the planning phase. You just don’t know
when to have them.

 Within each team, people have a solid understanding of the cadence with which
they can deliver solutions—assuming they’re using some form of Agile, they’re likely
all having scrum meetings and daily stand-ups. But no one is really sure what the
stages of development look like in other teams. 

 The simplistic answer is, naturally, a frustrating one for all involved: “Let’s meet
every Wednesday at 1 p.m.” Putting a “regularly scheduled program” meeting in place,
with a full team of dozens of people, will generally result in the team not having
enough to talk about, demo, or review. Without a pointed agenda, the importance
and validity of the meeting can become questioned, resulting in people failing to
show up when something critical needs review. 

 The best policy that I’ve found is to set deliverable date meetings with tangible
results to review, a strong agenda, and an expectation of contribution from everyone
who attends. That way, everyone will realize the importance of the meeting, everyone’s
voice and opinions will be heard, and precious time resources will be respected as
much as is practicable.

A note on pointless meetings for DS teams
Everyone wants to talk to the DS team when something interesting is being worked
on. That may be because of the general excitement about the project’s progress or
because the business leaders are simply scared that you’re going to go full prison
riot on a project, with an inmates-running-the-asylum style of development (hopefully,
that isn’t the case). 

These are understandable reasons to want to meet and discuss the project’s status.
(Well, hopefully if your company is worried that you’re going to go full cowboy/girl, you
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The more logical, useful, and efficient use of everyone’s time is to meet to review the
solution-in-progress only when something new needs review. But when are those decision
points? How do we define these boundaries in order to balance the need to discuss
elements of the project with the exhaustion that comes with reviewing minor changes
with too-frequent work-disrupting meetings?

 It depends on the project, the team, and the company. The point I’m making is
that it’s different for every situation. The conversation about these expectations of
meeting frequency, the meeting agenda, and the people who are to be involved simply
needs to happen to help control the chaos that could otherwise arise and derail prog-
ress toward solving the problem.

POST-RESEARCH PHASE DISCUSSION (UPDATE MEETING)
For the sake of example within our scenario, let’s assume that the DS team identifies
that two models must be built to satisfy the requirements from the planning phase
user-journey simulation. Based on the team members’ research, they decide that they
want to pit both collaborative filtering and frequent-pattern-growth (FP-growth) market-
basket analysis algorithms against deep learning implementations to see which pro-
vides a higher accuracy and lower cost of ownership for retraining.

 The DS lead assigns two groups of data scientists and ML engineers to work on
these competing implementations. Both groups generate simulations of the model
results on the exact same synthetic customer dataset, providing mock product images
to a wireframe of the pages displaying these recommendations for the actual website.

 This meeting should not focus on any of the implementation details. Instead, it
should focus solely on the results of the research phase: the whittling down of nigh-
infinite options that have been read about, studied, and played with. The team has
found a lot of great ideas and an even larger group of potential solutions that won’t
work based on the data available, and has reduced the list of great ideas to a bake-off
of two implementations that they’ll pit against each other. Don’t bring up all of the

can assuage their fears in time with some successfully delivered projects.) However,
holding many meetings that serve little purpose other than to state a progress report
that hasn’t changed since the last meeting is detrimental to the team. 

I emphatically suggest that this concept be communicated at the start of the project:
to meet the agreed-upon delivery goals for each presentation and demo, the team
needs to be left largely alone to do its work. Questions, thoughts, helpful conversa-
tions being held face-to-face are welcome (and are part of the cornerstone of Agile).
But status meetings, progress reports, and repetitive bean counting serve no pur-
pose and should be summarily eliminated from the team’s burden.

This can be a difficult conversation to have, particularly if the company is wary of ML
because of its novelty at the company. But the issue should be brought up so you
can communicate clearly why it hurts, rather than helps, meeting deadlines for deliv-
erable results.
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options that you’ve explored. Don’t mention something that has amazing results but
will likely take two years to build. Instead, distill the discussion to the core details
required to get the next phase going: experimentation.

  Show these two options to the SMEs, solely within the confines of presenting what
can be done with each algorithmic solution, what is impossible with one or both, and
when the SMEs can expect to see a prototype in order to decide which they like better.
If no discernable difference exists in the quality of the predictions, the decision of
which to go with should be based on the drawbacks of the approaches, leaving the
technical complexity or implementation details out of the discussion. 

 Keep the discussion in these dense meetings focused on relatable language and
references that your audience will comprehend and associate with. You can do the
translating in your head and leave it there. The technical details should be discussed
only internally by the DS team, the architect, and engineering management. 

 In many cases that I’ve been involved with, the experimental testing phase may test
out a dozen ideas but present only the two most acceptable to a business unit for
review. If the implementation would be overly onerous, costly, or complex, it’s best to
present options that will guarantee the greatest chance of project success —even if they’re
not as fancy or exciting as other solutions. Remember: the DS team has to maintain
the solution, and something that sounds really cool during experimentation can turn
into a nightmare to maintain.

POST-EXPERIMENTATION PHASE (SME/UAT REVIEW)
Following the experimentation phase, the subteams within the DS group build two
prototypes for the recommendation engine. In the previous milestone meeting, the
options for both were discussed, with their weaknesses and strengths presented in a
way that the audience could understand. Now it’s time to lay the prediction cards out
on the table and show off what a prototype of the solution looks like. 

 Before, during reviews of the potential solutions, some pretty rough predictions
were shown. Duplicate products with different product IDs were right next to one
another, endless lists of one product type were generated for some users (there’s no
way that anyone likes belts that much), and the list of critical issues with the demo
were listed out for consideration. In those first early pre-prototypes, the business logic
and feature requirements weren’t built out yet, since those elements directly depended
on the models’ platform and technology selection. 

 The goal of the presentation that completes the experimentation phase should be to
show a mock-up of the core features. Perhaps elements need to be ordered based on rel-
evancy. Special considerations may require recommending items based on price point,
recent non-session-based historical browsing, and the theory that certain customers
have implicit loyalty to certain brands. Each of these agreed-upon features should be
shown to the entire team. The full implementation, however, should not be done by this
point, but merely simulated to show what the eventual designed system would look like.

 The results of this meeting should be similar to those from the initial planning
meeting: additional features that weren’t recognized as important can be added to the
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development planning, and if any of the original features are found to be unneces-
sary, they should be removed from the plan. Revisiting the original plan, an updated
user experience might look something like figure 4.8.

With the experimentation phase out of the way, the DS team can explain that the
nice-to-have elements from earlier phases are not only doable but can be inte-
grated without a great deal of extra work. Figure 4.8 shows the integration of those
ideas (market-basket analysis, dynamic filtering, and aggregated filtering), but also
maintains one idea as a “nice to have.” If it is found that, during development, the
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integration of this feature would be attainable, it is left as part of this living plan-
ning document.

 The most important part of this stage’s meeting is that everyone on the team
(from the frontend developers who will be handling the passing of event data to the
server to conduct the filtering, to the product team) is aware of the elements and
moving pieces involved. The meeting ensures that the team understands which ele-
ments need to be scoped, as well as the general epics and stories that need to be created
for sprint planning. Arriving at a collaborative estimation of the implementation is
critical.

DEVELOPMENT SPRINT REVIEWS (PROGRESS REPORTS FOR A NONTECHNICAL AUDIENCE)
Conducting recurring meetings of a non-engineering-focused bent are useful for
more than just passing information from the development teams to the business. They
can serve as a bellwether of the state of the project and help indicate when integration
of disparate systems can begin. These meetings should still be a high-level project-
focused discussion, though. 

 The temptation for many cross-functional teams that work on projects like this is to
turn these update meetings into either an über-retrospective or a super sprint-planning
meeting. While such discussions can be useful (particularly for integration purposes
among various engineering departments), those topics should be reserved for the
engineering team’s meetings. 

 A full-team progress report meeting should make the effort to generate a current-
state demonstration of progress up to that point. Simulations of the solution should
be shown to ensure that the business team and SMEs can provide relevant feedback
on details that might have been overlooked by the engineers working on the project.
These periodic meetings (either every sprint or every other sprint) can help prevent
the aforementioned dreaded scope creep and the 11th-hour finding that a critical
component that wasn’t noticed as necessary is missing, causing massive delays in the
project’s delivery.

MVP REVIEW (FULL DEMO WITH UAT)
Code complete can mean different things to different organizations. In general, it is
widely accepted to be a state in which

 Code is tested (and passes unit/integration tests).
 The system functions as a whole in an evaluation environment using production-

scale data (models have been trained on production data).
 All agreed-upon features that have been planned are complete and perform as

designed.

This doesn’t mean that the subjective quality of the solution is met, though. This stage
simply means the system will pass recommendations to the right elements on the page
for this recommendation engine example. The MVP review and the associated UAT
that goes into preparing for this meeting is the stage at which subjective measures of
quality are done. 
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 What does this mean for our recommendation engine? It means that the SMEs log
in to the UAT environment and navigate the site. They look at the recommendations
based on their preferences and make judgments on what they see. It also means that
high-value accounts are simulated, ensuring that the recommendations that the SMEs
are looking at through the lens of these customers are congruous to what they know
about those types of users.

 For many ML implementations, metrics are a wonderful tool (and most certainly
should be heavily utilized and recorded for all modeling). But the best gauge of deter-
mining whether the solution is qualitatively solving the problem is to use the breadth
of knowledge of internal users and experts who can use the system before it’s deployed
to end users. 

 At meetings evaluating the responses to UAT feedback of a solution developed
over a period of months, I’ve seen arguments break out between the business and
the DS team about how one particular model’s validation metrics are higher, but the
qualitative review quality is much lower than the inverse situation. This is exactly
why this particular meeting is so critical. It may uncover glaring issues that were
missed in not only the planning phases, but in the experimental and development
phases as well. Having final sanity checks on the results of the solution can only
make the end result better. 

 There is a critical bit of information to remember about this meeting and review
period dealing with estimates of quality: nearly every project carries with it a large
dose of creator bias. When creating something, particularly an exciting system that has
a sufficient challenge to it, the creators can overlook and miss important flaws because
of familiarity with and adoration of it.

A parent can never see how ugly or stupid their children are. It’s human nature to
unconditionally love what you’ve created. 

—Every rational parent, ever.

If, at the end of one of these review meetings, the only responses are overwhelmingly
positive praise of the solution, the team should have concerns. One of the side effects
of creating a cohesive cross-functional team of people who all share in a collective feel-
ing of project ownership is that emotional bias for the project may cloud judgment of
its efficacy. 

 If you ever attend a summarization meeting about the quality of a solution and
hear nary an issue, it would behoove you and the project team to pull in others at the
company who have no stake in the project. Their unbiased and objective look at the
solution could pay dividends in the form of actionable improvements or modifications
that the team, looking through its bias of nigh-familial adoration of the project, would
have completely missed.
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PREPRODUCTION REVIEW (FINAL DEMO WITH UAT)
The final preproduction review meeting is right before “go time.” Final modifications
are complete, feedback from the UAT development-complete tests have been addressed,
and the system has run without blowing up for several days. 

 The release is planned for the following Monday (pro tip: never release on a Fri-
day), and a final look at the system is called for. System load testing has been done,
responsiveness measured through simulation of 10 times the user volume at peak traf-
fic, logging is working, and the model retraining on synthetic user actions has shown
that the models adapt to the simulated data. Everything from an engineering point
has passed all tests. 

So why are we meeting again? 

—Everyone who is exhausted by countless meetings

This final meeting before release should review a comparison to original plans, the
features rejected for being out of scope, and any additions. This can help inform
expectations of the analytics data that should be queried upon release. The systems
required to collect the data for interactions for the recommendations have been built,
and an A/B testing dataset has been created that can allow for analysts to check the
performance of the project.

 This final meeting should focus on where that dataset will be located, how engi-
neers can query it, and which charts and reports will be available (and how to access
them) for the nontechnical members of the team. The first few hours, days, and weeks
of this new engine powering portions of the business is going to receive a great deal of
scrutiny. To save the sanity of the analysts and the DS team, a bit of preparation work
to ensure that people can have self-service access to the project’s metrics and statistics
will ensure that critical data-based decisions can be made by everyone in the company,
even those not involved in creating the solution.

A note on patience
Releasing an ML project as significantly business-impacting as a recommendation
engine for an e-commerce company is scary for the business. Business leaders are
going to want to know what today’s numbers are yesterday. Heck, they probably want
to know what tomorrow’s sales figures are going to be yesterday as well. With this
level of anticipation and fear, it is important to communicate the virtue of patience in
the analysis of the results. It’s important to remind people to breathe. 

Many latent factors can affect the perceived success or failure of a project, some of
them potentially within the control of the design team, and others completely out of
that control and wholly unknown. Because of this abundance of latent factors, any
judgment about the design’s efficacy needs to be withheld until a sufficient quantity
of data is collected about the solution’s performance in order to make a statistically
valid adjudication.

Waiting, particularly for a team that has spent so much time and effort in seeing a
project shift into production use, is challenging. People will want to check the status
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4.2 Don’t waste our time: Meeting with 
cross-functional teams 
Chapter 3, in discussing the planning and experimentation phases of a project, noted
that one of the most important aspects to keep in mind (aside from the ML work
itself) is the communication during those phases. The feedback and evaluation received
can be an invaluable tool to ensure that the MVP gets delivered on time and is as cor-
rect as can be so that the full development effort can proceed.

 Let’s take another look at our Gantt chart from figure 4.7 for keeping track of the high-
level progress of each team’s work throughout the phases. For the purposes of communi-
cation, however, we’re concerned with only the top portion, shown in figure 4.9.

constantly, tracking the results of interactions in broad aggregations and trends with
the speed and ferocity of laboratory mice pressing a lever for cheese to be dispensed.

It is in the best interests of the DS team to provide a crash course in statistical anal-
ysis for the decision makers in charge of this project. For a project such as a recom-
mendation engine, explaining topics such as analysis of variance (ANOVA); degrees
of freedom in complex systems; recency, frequency, monetary (RFM) cohort analysis;
and confidence intervals at a relatively high level (focusing mostly on how confident
an analysis will be at short time-intervals—well, specifically, how confident it will not
be) will help those people make informed decisions. Depending on the number of
users, the number of platforms you’re serving, and the frequency at which customers
arrive at your site, it may take several days or weeks to collect enough data to make
an informed decision about the project’s impact on the company.

In the meantime, work studiously to assuage worries and tamp down expectations
that seeing a substantial rise in sales may or may not be directly attributable to the
project. Only with careful and conscientious analysis of the data will anyone know
what lift in engagement and revenue the new features may have.

Could you let
us know if
we’re on the
right track,
please?

Experimental
update meeting

9/23

9/17
9/22

Experimentation
9/17–10/7

Development
10/7–11/17

Testing
11/17–11/30

9/29 10/6 10/13 10/20 10/27 11/3 11/10 11/17 11/24
11/30

SME review
10/7

Progress report
10/20

Progress report
11/3

MVP review
11/17

Go/No-go review
11/30

Here are the
bare-bones
results of our
experiments.

We built the
first critical
feature. Does
it do what you
want it to do?

We fixed the
issues with the
first feature. Let’s
look at that and
feature 2.

We have the critical
features complete
for the MVP. Can
everyone validate
that this meets your
expectations?

Does it
really
work?

Figure 4.9 A translation of the critical meeting boundaries during the project
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Depending on the type of project being built, countless more meetings may be spread
throughout the phases (as well as follow-up meetings for months after release to
review metrics, statistics, and estimations of the resiliency of the solution). Even if the
development phase takes nine months, for instance, the biweekly progress report
meetings are just repetitive discussions on the progress of accomplishments during
the previous sprint. We’re going to break down these phases in detail next.

4.2.1 Experimental update meeting: Do we know what 
we’re doing here?

The experimental update meeting is the one that the DS team dreads more than any
other, and the meeting that everyone else is incredibly excited for. The meeting inter-
rupts the DS team in the midst of half-baked prototype implementations and unfin-
ished research. The state of elements in flux is at nearly peak entropy. 

 This meeting is perhaps the second most important meeting in a project, though.
This is the second-to-last time for the team members to have the ability to graciously
raise a white flag in surrender if they’ve discovered that the project is untenable, will
end up taking more time and money than the team has allocated, or is of such com-
plexity that technologies will not be invented within the next 50 years to meet the
requirements set forth. This is a time for honesty and reflection. It’s a time to set one’s
ego aside and admit defeat, should the situation call for it.

 The overriding question dominating this discussion should be, “Can we actually
figure this out?” Any other discussions or ideations about the project are completely
irrelevant at this point. It is up to the DS team to report on the status of its discoveries
(without getting into the weeds of model-specific details or additional algorithms that
they will be employing for testing, for example). The most critical discussion points
for this meeting should be the following:

 How is the progress toward the prototype coming along?
– Have you figured out any of the things that you’re testing yet?
– Which one looks like it’s the most promising so far?
– Are you going to stop pursuing anything that you had planned to test?
– Are we on track to have a prototype by the scheduled due date?

 What risks have you uncovered so far?
– Are there challenges with the data that the DE team needs to be made

aware of?
– Are we going to need a new technology, platform, or tooling that the team

isn’t familiar with?
– As of right now, do you feel as though this is a solvable problem for us?

Aside from these direct questions, there really isn’t much else to discuss that will do
anything other than waste the time of the DS team at this point. These questions are
all designed to evaluate whether this project is tenable from a personnel, technology,
platform, and cost perspective.
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Provided that the answers are all positive in this meeting, work should commence in
earnest. (Hopefully, no further interruptions to the work of the DS team members
occur so that they can meet the next deadline and present at the next meeting.)

4.2.2 SME review/prototype review: Can we solve this?

By far the most important of the early meetings, the SME review is one you really don’t
want to skip. This is the point at which a resource commit occurs. It’s the final deci-
sion on whether this project is going to happen or will be put into the backlog while a
simpler problem is solved. 

 During this review session, the same questions should be asked as in the preceding
meeting with the SME group. The only modification is that they should be tailored to
answering whether the capability, budget, and desire exist for developing the full solu-
tion, now that the full scope of the work is more fully known.

 The main focus of this discussion is typically on the mocked-up prototype. For our
recommendation engine, the prototype may look like a synthetic wireframe of the

Raising a white flag: When admitting defeat is acceptable
Few serious DS people ever like to admit defeat. For a junior person, fresh out of a
PhD program in which research and experimentation can last months or even years,
the concept of admitting that the problem is unsolvable will not ever enter their mind.
That’s a good thing, too, for these are the people who invent new algorithms! (Note:
they get approval from their companies to do this and don’t just choose to solve a
problem in a novel way for the sake of it.)

When developing an ML solution for a company, however, the question of whether
“this is a solvable problem for us” is not whether it is actually possible to solve the
problem, but whether we can create a solution in a short enough time so as not to
waste too much money and resources. Eagerness to arrive at a solution can cloud
the estimation of capabilities for even the most skilled ML practitioner. 

With enough experience in struggling through maintaining fragile or unstable solu-
tions, a degree of temperance is gained. Desire for solving “all the things” can be
suppressed with the knowledge that the solution might not be right for this particular
project, the company, or the teams involved in maintaining it. Not every project, team,
or company needs to tackle the most demanding and complex problems. Everyone
has limits, after all. I can assure you that even if that white flag of defeat is raised,
more than enough DS projects will remain to be worked on by the team and company
for the next few centuries.

The earlier this is realized, the better. As mentioned earlier, creators’ reluctance to
abandon their creations only grows as time and energy expenditure toward that cre-
ation increases. If you can call a halt to a project early enough (and hopefully recog-
nize the signs that this is not worth pursuing), you will be able to move onto
something more worthwhile, instead of wading blindly through solutions that will end
up creating little more than frustration, regret, and a complete loss of faith in the
team—and in the worst case, ML in general at your company.
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website with a superimposed block of product image and labels associated with the
product being displayed. It is always helpful, for the purposes of these demonstra-
tions, to use real data. If you’re showing a demonstration of recommendations to a
group of SME members, show their data. Show the recommendations for their account
(with their permission, of course!) and gauge their responses. Record each positive—
but more important, each negative—impression that they give. 

At the end of the demonstration, the entire team should have the ability to gauge
whether the project is worth pursuing. You’re looking for consensus that the recom-
mended approach is something that everyone in the group (regardless of whether
they know how it works) is comfortable with as an appropriate direction that the project is
about to take. 

 Unanimity is not absolutely critical. But the team will be more cohesive if every-
one’s concerns are addressed and an unbiased and rational discussion is had to
assuage their fears.

What if it’s terrible?
Depending on the project, the models involved, and the general approach to the ML
task, the subjective rating of a prototype being “terrible” can be either trivial to fix
(properly tune the model, augment the feature set, and so forth) or can be a complete
impossibility (the data doesn’t exist to augment the additional feature requests, the
data isn’t granular enough to solve the request, or improving the prediction to the
group’s satisfaction would require a healthy dose of magic since the technology to
solve that problem doesn’t exist yet). 

It’s critical to quickly distill the reasons that any identified issues are happening. If
the reasons are obvious and widely known as elements that can be modified by the
DS team, simply answer as such. “Don’t worry, we’ll be able to adjust the predictions
so that you don’t see multiple pairs of sandals right next to one another” is perfectly
fine. But if the problem is of an intensely complex nature, “I really don’t want to see
bohemian maxi dresses next to grunge shoes” (hopefully, you will be able to quickly
search what those terms mean during the meeting), the response should be either
thoughtfully articulated to the person, or recorded for a period of additional research,
capped in time and effort to such research. 

At the next available opportunity, the response may be along the lines of either,
“We looked into that, and since we don’t have data that declares what style these
shoes are, we would have to build a CNN model, train it to recognize styles, and
create the hundreds of thousands of labels needed to identify these styles across
our product catalog. That would likely take several years to build.” or “We looked
into that, and because we have the labels for every product, we can easily group
recommendations by style type to give you more flexibility around what sort of prod-
uct mixing you would like.”

Make sure that you know what is and is not possible before the prototype review ses-
sion. If you encounter a request that you’re not sure of, use the eight golden words
of ML: “I don’t know, but I’ll go find out.”
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4.2.3 Development progress review(s): Is this thing going to work?

The development progress reviews are opportunities to “right the ship” during develop-
ment. The teams should be focusing on milestones, such as these that show off the
current state of the features being developed. Using the same wireframe approach
used in the experimentation review phase is useful, as well as using the same proto-
type data so that a direct comparison between earlier stages can be seen by the entire
team. Having a common frame of reference for the SMEs is helpful in order for them
to gauge the subjective quality of the solution in terms that they fully understand. 

 The first few of these meetings should be reviews of the actual development. While
the details should never go into the realm of specific aspects of software development,
model tuning, or technical details of implementation, the overall progress of feature
development should be discussed in abstract terms.

 If, at a previous meeting, the quality of the predictions was determined to be lack-
ing in one way or another, an update and a demonstration of the fix should be shown
to ensure that the problems were solved to the satisfaction of the SME group. It is not
simply sufficient to claim that “the feature is complete and has been checked into
master.” Prove it instead. Show them the fix with the same data that they had to origi-
nally identify the problem.

 As the project moves further and further along, these meetings should become
shorter and more focused on integration aspects. By the time the final meeting comes
along for a recommendation project, the SME group should be looking at an actual
demo of the website in a QA environment. The recommendations should be updating
as planned through navigation, and validation of functionality on different platforms
should be checked. As the complexity grows in these later stages, it can be helpful to
push out builds of the QA version of the project to the SME team members so that
they can evaluate the solution on their own time, bringing their feedback to the team
at a regularly scheduled cadence meeting. 

Unforeseen changes: Welcome to the world of ML
To say that most ML projects are complex is a sad understatement. Some implemen-
tations, such as a recommendation engine, can be among the most complex code
bases that a company has. Setting aside the modeling, which can be relatively com-
plex, the interrelated rules, conditions, and usages of the predictions can be complex
enough to almost guarantee that things will be missed or overlooked even in the most
thorough planning phases.

The sometimes fitful, but frequently fungible, nature of ML projects means that things
will change. This is OK. Applying Agile to ML should allow for change to be as small
of a disruption to the work (and the code) as possible. 

Perhaps the data doesn’t exist or is too costly to create to solve a particular problem
in the framework of what has been built up to that point. With a few changes in
approach, the solution can be realized, but it will be at the expense of an increase in
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4.2.4 MVP review: Did you build what we asked for?

By the time you’re having the MVP review, everyone should be both elated and quite
burned out on the project. It’s the final phase; the internal engineering reviews have
been done, the system is functioning correctly, the integration tests are all passing,
latencies have been tested at large burst-traffic scale, and everyone involved in devel-
opment is ready for a vacation.

 The number of times I’ve seen teams and companies release a solution to produc-
tion right at this stage is astounding. Each time that it’s happened, they’ve all regret-
ted it. After an MVP is built and agreed upon, the next several sprints should focus on
code hardening (creating production-ready code that is testable, monitored, logged,
and carefully reviewed—we’ll get to all of these topics in parts 2 and 3 of this book). 

 Successful releases involve a stage after the engineering QA phase is complete in
which the solution undergoes UAT. This stage is designed to measure the subjective
quality of the solution, rather than the objective measures that can be calculated (sta-
tistical measures of the prediction quality) or the bias-laden subjective measure of the
quality done by the SMEs on the team who are, by this point, emotionally invested in
the project.

 UAT phases are wonderful. It’s at this point when the solution finally sees the light
of day in the form of feedback from a curated group of people who were external to
the project. This fresh, unbiased set of eyes can see the proposed solution for what it
is, not for the toil and emotion that went into building it.

 While all of the other work in the project is effectively measured via the Boolean
scale of works/doesn’t work, the ML aspect is a sliding scale of quality dependent on
the interpretations of the end consumer of the predictions. For something as subjec-
tive as the relevancy of recommendations to an end user, this scale can be remarkably

(continued)

complexity or cost for another aspect of the solution. This is, both fortunately and
unfortunately (depending on what needs to be changed), a part of ML. 

The important point to realize, while understanding that things change, is that when
a blocker arises, it should be communicated clearly to everyone who needs to know
about the change. Is it something affecting the API contract for the serving layer? Talk
to the frontend team; don’t call a full team-wide meeting to discuss technical details.
Is it something that affects the ability to filter out gender-specific recommendations?
That’s a big deal (according to the SMEs), and talking through solutions could benefit
having every bright mind in the group together to solve the problem and explore alter-
natives. 

When problems arise (and they will), just ensure that you’re not doing a “ninja-solve.”
Don’t silently hack a solution that seems like it will work and not mention it to anyone.
The chances that you create unforeseen issues later is incredibly high, and the
impacts to the solution should be reviewed by the larger team. 
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broad. To gather relevant data to create adjustments, one effective technique is a
survey (particularly for a project as subjective as recommendations). Providing feed-
back based on a controlled test with a number ranking of effective quality can allow
for standardization in the analysis of the responses, giving a broad estimation of any
additional elements that need to be added to the engine or settings that need to be
modified.

 The critical aspect of this evaluation and metric collection is to ensure that the
members evaluating the solution are not in any way vested in creating it, nor are
they aware of the inner workings of the engine. Having foreknowledge of the func-
tionality of any aspect of the engine may taint the results, and certainly if any of proj-
ect team members were to be included in the evaluation, the review data would be
instantly suspect.

 When evaluating UAT results, it is important to use appropriate statistical method-
ologies to normalize the data. Scores, particularly those on a large numeric scale,
need to be normalized within the range of scores that each user provides to account
for review bias that most people have (some tending to either score maximum or min-
imum, others gravitating around the mean value, and others being overly positive in
their review scores). Once normalized, the importance of each question and how it
impacts the overall predictive quality of the model can be assessed and ranked, and a
determination of feasibility to implement be conducted. Provided that there is enough
time, the changes are warranted, and the implementation is of a low-enough risk to
not require an additional full round of UAT, these changes may be implemented in
order to create the best possible solution upon release.

 Should you ever find yourself having made it through a UAT review session with-
out a single issue being found, either you’re the luckiest team ever, or the evaluators
are completely checked out. This is quite common in smaller companies, where nearly
everyone is fully aware and supportive of the project (with an unhealthy dose of con-
firmation bias). It can be helpful to bring in outsiders in this case to validate the solu-
tion (provided that the project is not something, for instance, akin to a fraud
detection model or anything else of extreme sensitivity). 

 Many companies that are successful in building solutions for external-facing cus-
tomers typically engage in alpha or beta testing periods of new features for this exact
purpose: to elicit high-quality feedback from customers who are invested in their
products and platforms. Why not use your most passionate end users (either internal
or external) to give feedback? After all, they’re the ones who are going to be using
what you’re building.

4.2.5 Preproduction review: We really hope we didn’t screw this up

The end is nigh for the project. The final features have been added from UAT feed-
back, the development has been finished, the code hardened, QA checks have all
passed, and the solution has been running for over a week without a single issue in a
stress-testing environment. Metrics are set up for collecting performance, and analytics
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reporting datasets have been created, ready to be populated for measuring the success
of the project. The last thing to do is to ship it to production. 

 It’s best to meet one final time, but not for self-congratulations (definitely do
that later, though, as a full cross-functional team). This final preproduction review
meeting should be structured as a project-based retrospective and analysis of fea-
tures. Everyone at this meeting, regardless of area of expertise and level of contribu-
tion to the final product, should be asking the same thing: “Did we build what we set
out to build?” 

 To answer this question, the original plans should be compared to the final
designed solution. Each feature that was in the original design should be gone
through and validated that it functions in real time from within the QA (testing) envi-
ronment. Do the items get filtered out when switching between pages? If multiple
items are added to the cart in succession, do all of those related products get filtered
or just the last one? What if items are removed from the cart—do the products stay
removed from the recommendations? What happens if a user navigates the site and
adds a thousand products to the cart and then removes all of them?

 Hopefully, all of these scenarios have been tested long before this point, but it’s an
important exercise to engage in with the entire team to ensure that the functionality is
conclusively confirmed to be implemented correctly. After this point, there’s no going
back; once it’s released to production, it’s in the hands of the customer, for better or
for worse. We’ll get into how to handle issues in production in later chapters, but for
now, think of the damage to the reputation of the project if something that is funda-
mentally broken is released. It’s this last preproduction meeting where concerns and
last-minute fixes can be planned before the irrevocable production release.

4.3 Setting limits on your experimentation 
We’ve gone through the exhausting slog of preparing everything that we can up until
this point for the recommendation engine project. Meetings have been attended, con-
cerns and risks have been voiced, plans for design have been conducted and based on
the research phase, and we have a clear set of models to try out. It’s finally time to play
some jazz, get creative, and see if we can make something that’s not total garbage.

 Before we get too excited, though, it’s important to realize that, as with all other
aspects of ML project work, we should be doing things in moderation and with a
thoughtful purpose behind what we’re doing. This applies more so to the experimen-
tation phase than any other aspect of the project—primarily because this is one of the
few completely siloed-off phases. 

 What might we do with this personalized recommendation engine if we had all the
time and resources in the world? Would we research the latest whitepaper and try to
implement a completely novel solution? (You may, depending on your industry and
company.) Would we think about building a broad ensemble of recommendation
models to cover all of our ideas? (Let’s do a collaborative filtering model for each of
our customer cohorts based on their customer lifetime value scores for propensity and
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their general product-group affinity, and then merge that with an FP-growth market-
basket model to populate sparse predictions for certain users.) Perhaps we would
build a graph-embedding to a deep learning model that would find relationships in
product and user behavior to potentially create the most sophisticated and accurate
predictions achievable. 

 All of these are neat ideas and could be worthwhile if the entire purpose of our
company was to recommend items to humans. However, these are all very expensive to
develop in the currency that most companies are most strapped for: time.

 We need to understand that time is a finite resource, as is the patience of the busi-
ness unit requesting the solution. As we discussed in section 3.2.2, the scoping of the
experimentation is tied directly to the resources available: the number of data scien-
tists on the team, the number of options we are going to attempt to compare, and,
most critically, the time that we have to complete this. The final limitations that we
need to control for, knowing that there are limited constraints on time and develop-
ers, is that only so much can be built within an MVP phase. 

 It’s tempting to want to fully build out a solution that you have in your head and
see it work exactly as you’ve designed it. This works great for internal tools that are
helping your own productivity or projects that are internal to the DS team. But pretty
much every other thing that an ML engineer or data scientist is going to work on in
their careers has a customer aspect, be it an internal or external one. This means that
you will have someone else depending on your work to solve a problem. They will
have a nuanced understanding of the needs of the solution that might not align with
your assumptions. 

 Not only is it, as mentioned earlier, incredibly important to include them in the
process of aligning the project to the goals, but it’s potentially dangerous to fully build
out a tightly coupled and complex solution without getting their input on the validity
of what you’re building to the issue of solving the problem. The way of solving this
issue of involving the SMEs in the process is to set boundaries around prototypes that
you’ll be testing.

4.3.1 Set a time limit

Perhaps one of the easiest ways to stall or cancel a project is by spending too much
time and effort on the initial prototype. This can happen for any number of reasons,
but most of them, I’ve found, are due to poor communication within a team, incor-
rect assumptions by non-DS team members about how the ML process works (refine-
ment through testing with healthy doses of trial, error, and reworking mixed in), or an
inexperienced DS team assuming that they need to have a “perfect” solution before
anyone sees their prototypes. 

 The best way to prevent this confusion and complete wasting of time is to set limits
on the time allotted for experimentation surrounding vetting of ideas to try. By its
very nature, this limitation will eliminate the volume of code written at this stage. It
should be clear to all members of the project team that the vast majority of ideas



110 CHAPTER 4 Before you model: Communication and logistics of projects
expressed during the planning stages are not going to be implemented for the vetting
phase; rather, in order to make the crucial decision about which implementation to
go with, the bare minimum amount of the project should be tested. 

 Figure 4.10 shows the most minimalistic amount of implementation required to
achieve the goals of the experimentation phase. Any additional work, at this time,
does not serve the need at the moment: to decide on an algorithm that will work well
at scale and at cost, and that meets objective and subjective quality standards.

In comparison, figure 4.11 shows a simplified view of some potential core features
based on the initial plan from the planning meeting.

 By comparing figure 4.10 and figure 4.11, it should be easy to imagine the increasing
scope of work involved in the transition from the first plan to the second. Entirely new
models need to be built, a great deal of dynamic run-specific aggregations and filtering
need to be done, custom weighting must be incorporated, and potentially dozens of
additional datasets need to be generated. None of these elements solves the core prob-
lem at the boundary of experimentation: which model should we go with for developing?

 Limiting the time to make this decision will prevent (or at least minimize) the nat-
ural tendency of most ML practitioners to want to build a solution, regardless of plans
that have been laid out. Sometimes forcing less work to get done is a good thing for
the cause of reducing churn and making sure the right elements are being worked on.
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Figure 4.10 Mapping the high-level experimentation phase for the teams testing ideas
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A note on experimental code quality
Experimental code should be a little “janky.” It should be scripted, commented out,
ugly, and nigh-untestable. It should be a script, filled with charts, graphs, print state-
ments, and all manner of bad coding practices. 

It’s an experiment, after all. If you’re following a tight timeline to get an experimental
decision-of-action to be made, you likely won’t have time to be creating classes,
methods, interfaces, enumerators, factory builder patterns, couriering configura-
tions, and so forth. You’re going to be using high-level APIs, declarative scripting, and
a static dataset. 

Don’t worry about the state of the code at the end of experimentation. It should serve
as a reference for development efforts in which proper coding is done (and under no
circumstances should experimental code be expanded upon for the final solution),
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Figure 4.11 A pseudo architectural plan for the expanded features involved in the development phase, 
realized by conducting effective experimentation and getting feedback from the larger team
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4.3.2 Can you put this into production? Would you want to maintain it?

While the primary purpose of an experimentation phase, to the larger team, is to
make a decision on the predictive capabilities of a model’s implementation, one of
the chief purposes internally, among the DS team, is to determine whether the solu-
tion is tenable for the team. The DS team lead, architect, or senior DS person on the
team should be taking a close look at what is going to be involved in this project, ask-
ing difficult questions, and producing honest answers. Some of the most important
questions are as follows:

 How long is this solution going to take to build?
 How complex is this code base going to be?
 How expensive is this going to be to train based on the schedule it needs to be

retrained at?
 Does my team have the skill required to maintain this solution? Does everyone

know this algorithm/language/platform?
 How quickly will we be able to modify this solution should something dramati-

cally change with the data that it’s training or inferring on?
 Has anyone else reported success with using this methodology/platform/lan-

guage/API? Are we reinventing the wheel or are we building a square wheel?
 How much additional work will the team have to do to make this solution work

while meeting all of the other feature goals?
 Is this going to be extensible? When the inevitable version 2.0 of this is

requested, will we be able to enhance this solution easily?
 Is this testable?
 Is this auditable?

Innumerable times in my career, I’ve been either the one building these prototypes or
the one asking these questions while reviewing someone else’s prototype. Although an
ML practitioner’s first reaction to seeing results is frequently, “Let’s go with the one
that has the best results,” many times the “best” one ends up being either nigh-
impossible to fully implement or a nightmare to maintain. 

 It is of paramount importance to weigh these future-thinking questions about
maintainability and extensibility, whether regarding the algorithm in use, the API that
calls the algorithm, or the very platform that it’s running on. Taking the time to prop-
erly evaluate the production-specific concerns of an implementation, instead of simply

(continued)

wherein the team is building maintainable software, using standard software devel-
opment practices. 

But for this stage, and only this stage, it’s usually OK to write some pretty horrible-
looking scripts. We all do it sometimes.
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the predictive power of the model’s prototype, can mean the difference between a
successful solution and vaporware.

4.3.3 TDD vs. RDD vs. PDD vs. CDD for ML projects

We seem to have an infinite array of methodologies to choose from when developing
software. From waterfall to the Agile revolution (and all of its myriad flavors), each
has benefits and drawbacks. 

 We won’t discuss the finer points of which development approach might be best
for particular projects or teams. Absolutely fantastic books have been published that
explore these topics in depth, and I highly recommend reading them to improve the
development processes for ML projects. Becoming Agile in an Imperfect World by Greg
Smith and Ahmed Sidky (Manning, 2009) and Test Driven: TDD and Acceptance TDD for
Java Developers by Lasse Koskela (Manning, 2007) are notable resources. Worth discuss-
ing here, however, are four general approaches to ML development (one being a suc-
cessful methodology, the others being cautionary tales).

TEST-DRIVEN DEVELOPMENT OR FEATURE-DRIVEN DEVELOPMENT 
Pure test-driven development (TDD) is incredibly challenging to achieve for ML projects
(and certainly unable to achieve the same test coverage in the end that traditional
software development can), mostly due to the nondeterministic nature of models
themselves. A pure feature-driven development (FDD) approach can cause significant
rework during a project. 

 But most successful approaches to ML projects embrace aspects of both of these
development styles. Keeping work incremental, adaptable to change, and focused on
modular code that is not only testable but focused entirely on required features to
meet the project guidelines is a proven approach that helps deliver the project on
time while also creating a maintainable and extensible solution. 

 These Agile approaches will need to be borrowed from and adapted in order to
create an effective development strategy that works not only for the development
team, but also for an organization’s general software development practices. In addi-
tion, specific design needs can dictate slightly different approaches to implementing a
particular project.

Why would I want to use different development philosophies? 
When discussing ML as a broad topic, we run the risk of oversimplifying an incredibly
complex and dynamic discipline. Since ML is used for such a wide breadth of use
cases (as well as having such a broad set of skills, tools, platforms, and languages),
the magnitude of difference in complexity among various projects is truly astounding.

For a project as simple as “we would like to predict customer churn,” a TDD-heavy
approach can be a successful way of developing a solution. A model and inference pipe-
line for implementations of churn-prediction models is typically rather simple (the vast
majority of the complexity is in the data engineering portion). Therefore, modularizing
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PRAYER-DRIVEN DEVELOPMENT

At one point, all ML projects resulted from prayer-driven development (PDD). In many
organizations that are new to ML development, projects still do. Before the days of
well-documented high-level APIs to make modeling work easier, everything was a
painful exercise in hoping that what was being scratched and cobbled together would
work at least well enough that the model wouldn’t detonate in production. That
hoping (and praying) for things to “just work, please” isn’t what I’m referring to
here, though. 

 What I’m facetiously alluding to is rather the act of frantically scanning for clues
for solving a particular problem by following bad advice from either internet forums
or someone who likely has no more actual experience than the searcher. The searcher
may find a blog covering a technology or application of ML that seems somewhat rele-
vant to the problem at hand, only to find out, months later, that the magical solution
that they were hoping for is nothing more than fluff. 

 Prayer-driven ML development is the process of handing over problems that one
doesn’t know how to solve into the figurative hands of some all-knowing person who
has solved it before, all in the goal of eliminating the odious tasks of proper research
and evaluation of technical approaches. Taking such an easy road rarely ends well.
With broken code bases, wasted effort (“I did what they did—why doesn’t this work?”)
and, in the most extreme cases, project abandonment, this is a problem and a devel-
opment antipattern that is growing in magnitude and severity.

 The most common effects that I see happen from this approach of ML “copy cul-
ture” are that people who embrace this mentality want to either use a single tool for

(continued)

code and building the code base in such a way that each component of the data
acquisition phase can be independently tested can be beneficial to an efficient imple-
mentation cycle and an easier-to-maintain final product.

On the other hand, a project that is as complex as, say, an ensemble recommender
engine may use real-time prediction serving, have hundreds of logic-based reordering
features, employ the predictions from several models, and have a large multidisci-
pline team working on it. This type of project could greatly benefit from using the test-
ability components of TDD, but throughout the project, use the principles of FDD to
ensure that only the most critical components are developed as needed to help
reduce feature sprawl.

Each project is unique. The team lead or architect in charge of the implementation
from a development perspective should set the expectations of work velocity with
respect to testing and general code architecture that is adapted to the project’s
needs. With the proper balance in place of best practices from these proven stan-
dards of development, a project can hit its required feature-complete state at its
lowest-risk-to-failure point so that the solution is stable and maintainable while in
production.
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every problem (Yes, XGBoost is a solid algorithm. No, it’s not applicable to every
supervised learning task) or try only the latest and greatest fad (“I think we should use
TensorFlow and Keras to predict customer churn”). 

If all you know is XGBoost, everything looks like a gradient boosting problem.

When limiting yourself in this manner—not doing research, not learning or testing
alternate approaches, and restricting experimentation or development to a narrow set
of tools—the solution will reflect those limitations and self-imposed boundaries. In
many cases, latching onto a single tool or a new fad and forcing it onto every problem
creates suboptimal solutions or, more disastrously, forces you to write far more lines of
unnecessarily complex code in order to fit a square peg into a round hole. 

 A good way of detecting whether the team (or yourself) is on the path of PDD is to
see what is planned for a project’s prototyping phase. How many models are being
tested? How many frameworks are being vetted? If the answer to either of these is
“one,” and no one on the team has solved that particular problem several times
before, you’re doing PDD. And you should stop.

CHAOS-DRIVEN DEVELOPMENT 
Also known as cowboy development (or hacking), chaos-driven development (CDD) is the
process of skipping experimentation and prototyping phases altogether. It may
seem easier at first, since not much refactoring is happening early on. However,
using such an approach of building ML on an as-needed basis during project work is
fraught with peril. 

 As modification requests and new feature demands arise through the process of
developing a solution, the sheer volume of rework, sometimes from scratch, slows the
project to a crawl. By the end (if it makes it that far), the fragile state of the DS team’s
sanity will entirely prevent any future improvements or changes to the code because
of the spaghetti nature of the implementation.

 If there is one thing that I hope you take away from this book, it’s to avoid this
development style. I’ve not only been guilty of it in my early years of ML project work,
but have also seen it become one of the biggest reasons for project abandonment in
companies that I’ve worked with. If you can’t read your code, fix your code, or even
explain how it works, it’s probably not going to work well.

RESUME-DRIVEN DEVELOPMENT 
By far the most detrimental development practice—designing an overengineered,
show-off implementation to a problem—is one of the primary leading causes of proj-
ects being abandoned after they are in production. These resume-driven development
(RDD) implementations are generally focused on a few key characteristics:

 A novel algorithm is involved. 
– Unless it’s warranted by the unique nature of the problem
– Unless multiple experienced ML experts agree that no alternative solution is

available
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 A new (unproven in the ML community) framework for executing the project’s job
is involved (with features that serve no purpose in solving the problem).
– There’s not really an excuse for this nowadays.

 A blog post, or series of blog posts, about the solution are being written during
development (after the project is done is fine, though!).
– This should raise a healthy suspicion among the team.
– There will be time to self-congratulate after the project is released to produc-

tion, has been verified to be stable for a month, and impact metrics have
been validated.

 An overwhelming amount of the code is devoted to the ML algorithm as
opposed to feature engineering or validation.
– For the vast majority of ML solutions, the ratio of feature engineering code

to model code should always be > 4x. 
 An abnormal level of discussion in status meetings is about the model, rather

than the problem to be solved.
– We’re here to solve a business problem, aren’t we?

This isn’t to say that novel algorithm development or incredibly in-depth and complex
solutions aren’t called for. They most certainly can be. But they should be pursued
only if all other options have been exhausted. 

 For the example that we’ve been reviewing throughout this chapter, if someone were
to go from a position of having nothing in place at all to proposing a unique solution
that has never been built before, objections should be raised. This development practice
and the motivations behind it are not only toxic to the team that will have to support the
solution but will poison the well of the project and almost guarantee that it will take lon-
ger, be more expensive, and do nothing apart from pad the developer’s resume. 

4.4 Planning for business rules chaos
As part of our recommendation engine that we’ve been building throughout this
chapter (or, at least, speaking of the process of building), a great many features crept
up that were implemented and that augmented the results of the model. Some of
these were to solve particular use cases for the end result (collection aggregations to
serve the different parts of the site and app for visualization purposes, for instance),
while others were designed for contractual obligations to vendors. 

 The most critical ones protect users from offense or filter inappropriate content.
I like to refer to all of these additional nuances to ML as business rules chaos. These spe-
cific restrictions and controls are incredibly important but also frequently the most
challenging aspects of a project to implement correctly. 

 Failing to plan for them accordingly (or failing to implement them entirely) is an
almost guarantee that your project will be shelved before it hits its expected release
date. If these restrictions are not caught before release, they could damage the brand
of your company.
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4.4.1 Embracing chaos by planning for it

Let’s pretend for a moment that the DS team working on the MVP for the recommen-
dation engine doesn’t realize that the company sells sensitive products. This is under-
standable, since most e-commerce companies sell a lot of products, and the DS team
members are not product specialists. They may be users of the site, but certainly aren’t
all likely to be intimately familiar with everything that’s sold. Since they aren’t aware
that items could be offensive as part of recommendations, they fail to identify these
items and filter them out of their result sets. 

 There’s nothing wrong with missing this detail. In my experience, details like this
always come up in complex ML solutions. The only way to plan for them is to expect
things like this to come up, and to architect the code base in such a way that it has pro-
verbial “levers and knobs”—functions or methods that can be applied or modified
through passed-in configurations. Then, implementing a new restriction doesn’t require
a full code rewrite or weeks of adjustments to the code base to implement. 

 When in the process of developing a solution, a lot of ML practitioners tend to
think mostly about the quality of the model’s predictive power above all other things.
Countless hours of experimentation, tuning, validating, and reworking of the solution
is done in the pursuit of attaining a mathematically optimal solution that will solve the
problem best in terms of validation metrics. Because of this, it can be more than slightly
irritating to find out that, after having spent so much time and energy in building an
ideal system, additional constraints need to be placed onto the model’s predictions.

 These constraints exist in almost all systems (either initially or eventually if the
solution is in production for long enough) that have predictive ML at their core.
There may be legal reasons to filter or adjust the results in a financial system. There
could, perhaps, be content restrictions on a recommendation system based on pre-
venting a customer from taking offense to a prediction (trust me, you don’t want to
explain to anyone why a minor was recommended an adult-oriented product).
Whether for financial, legal, ethical, or just plain old common-sense reasons, inevita-
bly something is going to have to change with the raw predictions from most ML
implementations.

 It’s definitely a best practice to understand potential restrictions before you start
spending too much time in development of a solution. Knowing restrictions ahead of
time can influence the overall architecture of the solution and the feature engineer-
ing, and allow for controlling the method in which an ML model learns the vector.
It can save the team countless hours of adjustment and eliminate costly-to-run and
difficult-to-read code bases filled with never-ending chains of if/elif/else state-
ments to handle post hoc corrections to the output of the model.

 For our recommendation engine project, a lot of rules likely need to be added to a
raw predictive output from an ALS model. As an exercise, let’s revisit the earlier devel-
opment phase work component diagram. Figure 4.12 shows the elements of the
planned solution specifically intended to enforce constraints on the output of the rec-
ommendations. Some are absolutely required—contract requirement elements, as
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well as filters intended to cull products that are inappropriate for certain users. Oth-
ers are ideas that the project team suspects are going to be heavily influential in get-
ting the user to engage with the recommendation.

 This diagram shows the locations, but more important, the type of business restriction
to the model. In the planning phases, after experimentation and before full develop-
ment begins, it is worthwhile to identify and classify each of these features. 

 The absolutely required aspects, shown in figure 4.12 as Business Rules, must be
planned within the scope of the work and built as an integral part of the modeling pro-
cess. Whether they’re constructed in such a way as to be tune-able aspects of the
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Figure 4.12 Identifying business contextual requirements for the recommendation engine project—a risk-
detection diagram, in other words
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solution (through weights, conditional logic, or Boolean switches) is up to the needs
of the team, but they should be considered essential features, not optional or testable
features. 

 The remaining aspects of rules, marked in figure 4.12 as Business Assumptions,
can be handled in various ways. They could be prioritized as testable features (config-
urations will be built that allow for A/B testing different ideas for fine-tuning the solu-
tion). Alternatively, they could be seen as future work that is not part of the initial
MVP release of the engine, simply implemented as placeholders within the engine
that can be easily modified at a later time. 

4.4.2 Human-in-the-loop design

Whichever approach works best for the team (and particularly for the ML develop-
ers working on the engine), the important fact to keep in mind is that these sorts of
restrictions to the model output should be identified early and allowances be made
for them to be mutable for the purposes of changing their behavior, if warranted.
The last thing that you want to build for these requirements, though, is hardcoded
values in the source code that would require a modification to the source code in
order to test. 

 It’s best to approach these items in a way that you can empower the SMEs to mod-
ify the performance, to rapidly change the behavior of the system without having to
take it down for a lengthy release period. You also want to ensure that controls are
established that restrict the ability to modify these without going through appropriate
validation procedures.

4.4.3 What’s your backup plan?

What happens when there’s a new customer? What happens with recommendations
for a customer that has returned after having not visited your site in more than a year?
What about for a customer who has viewed only one product and is returning to the
site the next day? 

 Planning for sparse data isn’t a concern just for recommendation engines, but it
certainly impacts their performance more so than other applications of ML. 

 All ML projects should be built with an expectation of data-quality issues arising,
necessitating the creation of fallback plans when data is malformed or missing. This
safety mode can be as complex as using registration information or IP geolocation
tracking to pull aggregated popular products from the region that the person is log-
ging in from (hopefully, they’re not using a virtual private network, or VPN), or can
be as simple as generic popularity rankings from all users. Whichever methodology is
chosen, it’s important to have a safe set of generic data to fall back to if personaliza-
tion datasets are not available for the user. 

 This general concept applies to many use cases, not just recommendation engines.
If you’re running predictions but don’t have enough data to fully populate the feature
vector, this could be a similar issue to having a recommendation engine cold-start
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problem. There are multiple ways to handle this issue, but at the stage of planning, it’s
important to realize that this is going to be a problem and that a form of fallback
should be in place in order to produce some level of information to a service expect-
ing data to be returned.

4.5 Talking about results
Explaining how ML algorithms work to a layperson is challenging. Analogies, thought-
experiment-based examples, and comprehensible diagrams to accompany them are
difficult at the best of times (when someone is asking for the sake of genuine curios-
ity). When the questions are posed by members of a cross-functional team who are try-
ing to get a project released, it can be even more challenging and mentally taxing,
since they have expectations regarding what they want the black box to do. When
those same team members are finding fault with the prediction results or quality and
are aggravated at the subjectively poor results, this adventure into describing the func-
tionality and capabilities of the chosen algorithms can be remarkably stressful. 

 In any project’s development, whether at the early stages of planning, during
prototype demonstrations, or even at the conclusion of the development phase
while the solution is undergoing UAT assessment, questions will invariably come up.
The following questions are specific to our example recommendation engine, but
I can assure you that alternative forms of these questions can be applied to any
ML project, from a fraud-prediction model to a threat-detection video-classification
model:

 “Why does it think that I would like that? I would never pick something like that
for myself!”

 “Why is it recommending umbrellas? That customer lives in the desert. What is
it thinking?!”

 “Why does it think that this customer would like t-shirts? They only buy haute
couture.”

The flippant answer to all of these questions is simple: “It doesn’t think. The algo-
rithm only ‘knows’ what we ‘taught’ it.” (Pro tip: if you’re going to use this line, don’t;
for the sake of further tenure in your position, place emphasis on those quoted ele-
ments when delivering this line. On second thought, don’t talk to colleagues like this,
even if you’re annoyed at having to explain this concept for the 491st time during the
project.) The acceptable answer, conveyed in a patient and understanding tone, is one
of simple honesty: “We don’t have the data to answer that question.” It’s best to
exhaust all possibilities of feature-engineering creativity before claiming that, but if
you have, it’s really the only answer that is worth giving.

 What has been successful for me is to explain this issue and its root cause through
articulating the concept of cause and effect, but in a way that relates to the ML aspect
of the problem. Figure 4.13 shows a helpful visualization for explaining what ML can,
but also, more important, what it cannot do.
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As figure 4.13 shows, the data that the person in the review meeting is asking for is
simply beyond the capability to acquire. Perhaps the data that would inform someone’s
subjective preference for a pair of socks is of such a personal nature that there is sim-
ply no way to infer or collect this information. Perhaps, in order to have the model
draw the conclusion that is being asked for, the data to be collected would be so com-
plex, expensive to store, or challenging to collect that it’s simply not within the budget
of the company to do so. 

 When an SME at the meeting asks, “Why didn’t this group of people add these
items to their cart if the model predicted that these were so relevant for them?,” there
is absolutely no way you can answer that. Instead of dismissing this line of questioning,
which will invariably lead to irritation and frustration from the asker, simply posit a
few questions of your own while explaining the view of reality that the model can
“see.” Perhaps the user was shopping for someone else. Perhaps they’re looking for
something new that they were inspired by from an event that we can’t see in the form
of data. Perhaps they simply just weren’t in the mood.

 There is a staggering infiniteness to the latent factors that can influence the behav-
ior of events in the “real world.” Even if you were to collect all of the knowable infor-
mation and metrics about the observable universe, you would still not be able to
predict, reliably, what is going to happen, where it’s going to happen, and why it will
or will not happen as such. It’s understandable for that SME to want to know why the
model behaved a certain way and the expected outcome (the user giving us money for
our goods) didn’t happen; as humans, we strive for explainable order. 
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Figure 4.13 Realms of data for ML—we can’t have it all
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Relax. We, like our models, can’t be perfect.

The world’s a pretty chaotic place. We can only hope to guess right at what’s going to
happen more than we guess wrong.

Explaining limitations in this way (that we can’t predict something that we don’t have
information to train on) can help, particularly at the outset of the project, to dispel
assumed unrealistic capabilities of ML to laypeople. Having these discussions within
the context of the project and including how the data involved relates to the business
can be a great tool in eliminating disappointment and frustration later as the project
moves forward through milestones of demos and reviews. 

 Explaining expectations clearly, in plain-speak, particularly to the project leader,
can be the difference between an acceptable risk that can be worked around in cre-
ative ways and a complete halt to the project and abandonment due to the solution
not doing what the business leader had in mind. As so many wise people have said
throughout the history of business, “It’s always best to under-promise and over-
deliver.”

Summary
 Focusing cross-functional team communication on objective, nontechnical,

solution-based, and jargon-free speech will aid in creating a collaborative and
inclusive environment that ensures an ML project meets its goals. 

 Establishing specific milestones for project functionality demonstrations to a
broad team of SMEs and internal customers will dramatically reduce rework
and unexpected functionality shortcomings in ML projects.

Explain it to me like I’m a five-year-old, please
At times it can feel as though, when speaking about models, data, machine learning,
algorithms, and so forth, you are living through the Allegory of the Cave. Although it
may feel like you’re the one who’s been in the sun and are trying to convince everyone
what daylight is like, nothing could be further from the truth. 

The goal in communication that we’ve been discussing in the last two chapters is sim-
ple: to be understood. Resist the urge to think of yourself or your team as the mem-
bers of the cave dwellers who have “stepped into the light” and are merely returning
to the cave to show the miraculous imagery of full color and the “real world.” You may
know more about ML than the uninitiated, but taking the stance of being “the enlight-
ened” and adopting a superior tone when explaining concepts to other team mem-
bers will only breed derision and anger, just as with the returning group that
attempted to drag the others to the light. 

You will always have more success explaining concepts in familiar terms to your audi-
ence and approaching complex topics through allegory and examples rather than
defaulting to exclusionary dialogue that will not be fully understood by others on the
team who are not familiar with the inner workings of your profession. 
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 Approaching the complexities of research, experimentation, and prototyping
work with the same rigor that is applied to Agile development can reduce the
time to arrive at a viable option for development.

 Understanding, defining, and incorporating business rules and expectations
early in a project will help ensure that ML implementations are adapted and
designed around these requirements, rather than shoehorning them in after a
solution is already built.

 Avoiding discussion about implementation details, esoteric ML-related topics,
and explanations about how the internals of an algorithm work will help deliver
a clear and focused discussion of the performance of a solution, allowing for
creative discourse from all team members.



Experimentation in
action: Planning and

researching an ML project
We spent the preceding two chapters focusing on the processes surrounding plan-
ning, scoping of work, and communication among a team working on an ML proj-
ect. This chapter and the next two focus on the next most critical aspects of ML
work as it pertains to data scientists: research, experimentation, prototyping, and
MVP development.

 Once a project’s requirements have been thoroughly captured from planning
meetings (as much as can be realistically achieved) and the goal of the modeling
solution has been defined, the next phase of creating an ML solution is to begin
experimentation and research. These processes, conducted without an appropriate
level of structure, can easily result in a cancelled project. 

 Projects may be cancelled because of a seemingly endless experimentation phase,
wherein no clear direction for finalizing an approach to a solution is decided on.
Stalled projects may also be the result of poor predictive capabilities. Whether due to
indecision or an inability to meet accuracy expectations, the prevention of stalled

This chapter covers
 The details of a project’s research phase

 The process and methodology of conducting 
solution experimentation for a project
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and cancelled projects that have data and algorithm issues starts in the experimenta-
tion phase.

 No concrete rule set exists for estimating exactly how long an experimentation
phase should last, because a myriad of complexities may arise from each unique proj-
ect. However, the methodologies in this chapter guarantee a reduction in the amount
of time to reach a favorable MVP state and a marked reduction in the amount of
duplicate effort that a team would face were they to approach experimentation with-
out such methods.

 This chapter covers the first phase of ML experimentation, as shown in figure 5.1.
We will go through a proven method for setting up an effective experimentation envi-
ronment, evaluating a dataset through the creation of reusable visualization func-
tions, and conducting research and modeling approach validations in a controlled
and efficient manner to help get to the MVP phase earlier with less rework.

We’ll see how to organize and plan appropriate research, set expectations and rules
within the planning phase, properly analyze the scenario that we’ll be solving in this
chapter to inform our model selection and experimentation, and finally, conduct our
experiments and build useful utilities for the project at hand. All of these stages and
processes are designed to maximize the opportunity to have an easier development
period and to minimize not only the risk of creating technical debt from the start of
the project, but also the risk of project abandonment.

 We spent the previous chapters working through the pre-experimentation phases
of a recommendation engine for an e-commerce company. We’re going to use a much
simpler example in these next few chapters in the interests of brevity. While this time-
series modeling project is much simpler than many ML implementations, the aspects
that we’re covering are generally universally applicable to all ML work; when they are
not, I provide additional comments in sidebar discussions. As with all things in soft-
ware development, a quality project starts with planning.

Planning

• Research possible

solutions

• Set up testing

environment

• Choose a stack

• Set prototype

phase goals

• Set delivery date

• Choose team

• Interview SMEs

• Data visualizations

• Feature statistical

evaluation

• Correlation and

collinearity

validations

• Encoding analysis

• Feature generation

based on SME

interviews

• Algorithm bake-off

• API research

• Internal “hackathon-

style” proof of

concepts

• Prototype

comparison

(accuracy, cost,

complexity)

• SME review and

feedbck

Analysis (EDA) Prototyping Evaluation

Figure 5.1 The ML experimentation process
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5.1 Planning experiments
Let’s pretend for this chapter that we work for a company that is in the business of
supplying peanuts (specifically, those individual-serving wrapped peanuts that are
handed out on most major airlines throughout the world, coupled with a square nap-
kin, a ridged plastic cup engineered to tip beverages into laps when a seatmate adjusts
to a more comfortable position, and a twice-pasteurized can of carbonated beverage).
The business unit in charge of logistics for the peanuts has requested a project to be
developed that can forecast demand of these sad in-flight snacks because of the
increased pressure that they are getting from airlines about the excessive quantities of
bulk-shipped dry-roasted legumes that they continually have to throw away when their
expiration dates strike. 

 The meetings have been conducted, the requirements have been gathered, and
the ML team has internally discussed the project. The general consensus is that we’re
looking at a simple demand forecast time-series prediction problem. But where do we
start, now that we know the problem that we’re trying to solve? We also have two weeks
to come up with a rough MVP to show that we have a proven approach to solving this
problem. Best get to it.

 What we’re going to be getting to is illustrated in figure 5.2: the planning phase of
ML experimentation. In this phase, a lot of things will be read, most will hopefully be
retained in our heads, and many browser bookmarks will be created.

5.1.1 Perform basic research and planning

The first thing that the team members are going to do, once they get back to their
desks after the planning meeting, is look at the data available. Since we’re a peanut
manufacturer, and not in any partnership with major airlines, we’re not going to get
ticket sales forecasting data. We certainly don’t have time to build web scrapers to

Planning
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• Solution

references

• Papers

• Books

• Prior art/

experience

• Consultants

• Basic data
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• Development

environment

• Data access

• Algorithm
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• Software stack

• Execution

platform

• Serving

paradigm

• API docs

• Algorithm

functionality/

nuances

• Review internal

docs from SME

groups

• Expectations for

prototype

evaluation

• Evaluation

criteria

• Staffing and teams

• Timelines and

deadlines

Environment Documentation Ground rules

Analysis (EDA) Prototyping Evaluation

Figure 5.2 The ML experimentation planning phase road map 
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attempt to see flight capacity for each airport (nor would anyone want to do this who
has ever attempted to build a scraper before). What we do have available, though, is
historic passenger capacity that the airport transit authorities provide freely. 

 We know from figure 5.2 that one of the first actions that we should be doing to
understand the nature of the data is to visualize it and run a few statistical analyses we
have available. Most people would simply load the data into their local computer’s
environment and begin working in a notebook.

 This is a recipe for disaster, though. A default Python environment that is running
on the main operating system of your primary computer is anything but pristine. To
minimize the amount of time wasted on struggling with a development environment
(and help prepare for a smooth transition to the development phase later), we need
to create a clean environment for our testing. For guidance on getting started with
Docker and Anaconda to create a development environment for the code listings in
this chapter and all subsequent chapters, see appendix B at the end of this book.

 Now that we have an isolated environment (with persistence of the notebook stor-
age location on the container mapped to a local filesystem location), we can get the
sample data into this location and create a new notebook for experimentation.

A QUICK VISUALIZATION OF THE DATASET

The first thing that should be done before choosing an ML approach to solving the
problem is the most trivial (but frequently overlooked) aspect of data science: getting
to know your data. For the airport forecasting, let’s take a look at the data available to
us. Listing 5.1 demonstrates a scripted approach to quickly visualize one of the time
series (JFK domestic passengers) that needs to be forecasted.

NOTE To follow along exactly with this example, you can acquire this dataset
by cloning a repo maintained by the Alan Turing Institute. Navigate to the
local notebook directory that was synced in the steps outlined in appendix B
and run through the command-line statement git clone https:/ /github.com/
alan-turing-institute/TCPD.git.

import pandas as pd
import numpy as np
import matplotlib.pylab as plt

ts_file = '/opt/notebooks/TCPD/datasets/jfk_passengers/air-passenger-
traffic-per-month-port-authority-of-ny-nj-beginning-1977.csv'

raw_data = pd.read_csv(ts_file)
raw_data = raw_data.copy(deep=False)     
raw_data['Month'] = pd.to_datetime(raw_data['Month'], format='%b').dt.month 
raw_data.loc[:, 'Day'] = 1    
raw_data['date'] = pd.to_datetime(raw_data[['Year', 'Month', 'Day']])   

Listing 5.1 Visualizing the data

Makes a shallow copy of the DataFrame so 
we can use mutable modifications to it

Converts the Month column to a
datetime object so we can assemble

the date from it. (Currently, it’s a
string three-letter abbreviation

of the month.)

Adds a constant literal column so 
we can assemble a date column

Assembles the date column for our
row-based index for each airport
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jfk_data = raw_data[raw_data['Airport Code'] == 'JFK']     
jfk_asc = jfk_data.sort_values('date', ascending=True)   
jfk_asc.set_index('date', inplace=True)   
plt.plot(jfk_asc['Domestic Passengers'])
plt.show()

After executing listing 5.1 in the notebook read-eval-print loop (REPL), we’ll get a
simple visualization of the time-series trend, showing the monthly passengers who
have made domestic flights inside the United States from 1977 to 2015. The matplot-
lib window is shown in figure 5.3.

Seeing this raw data displayed, we can start thinking through our plans for the experi-
mentation phase. First, we come up with questions that should be answered to inform
not only the research that we’ll need to do in order to understand our options for fore-
casting, but also the platform decisions (which are covered in depth in section 5.2).
Here are our data observations and questions:

 Latent factors are influencing the trend. The data doesn’t look stationary.
 The data seems to have a strong seasonality component.
 We have thousands of airports to model. We need to think about scaling the

approach that we choose.
 What models are good for this use case? 

Filters the 
DataFrame so 
we’re looking at 
only a single 
airport (in this 
case, JFK)Sorts the DataFrame by date so the

time series is ordered correctly for
plotting (and future activities)

Sets the index of the filtered 
DataFrame to the date column

Figure 5.3 Basic default visualization of the raw data
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 We have two weeks to come up with a direction for approaching this. Can we
get this done?

Both the questions for this phase of data visualization and the answers can help create
a more effective experimentation phase for the project. Jumping directly to creating
the model and testing random ideas too early can create a great deal of wasted work
that sets the delivery for an MVP back in terms of meeting the deadlines. It will always
be an effective use of time to understand the nature of your dataset and uncover any
hidden issues prior to researching potential solutions, as this phase can help reduce
the amount of testing and additional research by culling options early.

RESEARCH PHASE

Now that we know some of the concerns with the data—it’s highly seasonal, with trends
influenced by latent factors that are wholly unknown to us—we can start researching.
Let’s pretend for a moment that no one on the team has ever done time-series fore-
casting. Where, without the benefit of expert knowledge on the team, should research
begin? 

 Internet searches are a great place to start, but most search results show blog
posts of people offering forecasting solutions that involve a great deal of hand-waving
and glossing over of the complexities involved in building out a full solution. White-
papers can be informative but generally don’t focus on the applications of the algo-
rithms that they’re covering. Lastly, script examples from Getting Started guides for
different APIs are wonderful for seeing the mechanics of the API signature but are
intentionally simplistic to serve as nothing more than a basic starting point, as the
name indicates.

 So, what should we be looking at to figure out how to predict future months of pas-
senger demand at airports? The short answer is books. Quite a few great ones exist on
time-series forecasting. In-depth blogs can help as well, but they should be used exclu-
sively as an initial approach to the problem at hand, rather than as a repository from
which to directly copy code.

NOTE The seminal work Time Series Analysis by G. E. P. Box and G. M. Jenkins
(Holden-Day, 1970) is widely considered the foundation of all modern time-
series forecasting models. The Box-Jenkins methodologies are the basis for
nearly all forecasting implementations today.

After a bit of research into time-series forecasting, we find a few options that seem
commonly used enough to warrant some effort in implementing a rough scripted
approach. The short list that we decide to try out is as follows:

 Linear regression (OLS, ridge, lasso, elastic net, and ensemble)
 ARIMA (autoregressive integrated moving average)
 Exponential smoothing (Holt-Winters)
 VAR (vector autoregression)
 SARIMA (seasonal autoregressive integrated moving average)
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With that list of things to test out, the next step is to figure out which packages have
these algorithms and read through their API documentation. A good rule to live by in
the ML world is to establish a healthy library and a team budget to continuously expand
that library. Having a collection of in-depth guides in the form of technical books can
help a great deal with new challenges that the team will face and ensure that the
nuanced complexity of applications of ML can be done with the right information.

5.1.2 Forget the blogs—read the API docs

Project failure is almost guaranteed when a team—typically, a rather junior team—
believes so thoroughly in the veracity of a blog post that it bases an entire project
around the methodology (and sometimes the exact code) of that blog. While almost
always well-intentioned, authors of short blog posts on ML topics are not able, because
of the format of the medium, to cover in the depth necessary all the information
required to be garnered for a real-world production ML solution.

 Let’s look at what a blog post might have for our time-series problem. If we were to
search for “time series forecasting example,” we’d likely find more than a few results.
Forecasting, after all, has been around for quite some time. What we’ll likely find,
though, are code snippets that are highly scripted, using the API defaults, and omit
many of the finer details needed to make the exercise repeatable. 

 If you choose to follow along with the example (provided that it has convinced you
of the approach), you’ll likely end up spending a few hours looking up API docu-
mentation and getting frustrated with something that the author made look simple,
only to find out that they left out all the complex details in an effort to hit that
magic 10-minute read that people of low attention spans are so hungry for. The fol-
lowing listing is an example snippet from a fictional blog on elastic net regression
(scikit-learn example) for demonstration purposes.

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.linear_model import ElasticNet
from sklearn import metrics
boston_data = datasets.load_boston()          
boston_df = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston_df['House_Price'] = boston_data.target
x = boston_df.drop('House_Price', axis=1)
y = boston_df['House_Price']
train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=0.3, 

random_state=42)                               
lm_elastic = ElasticNet()          
lm_elastic.fit(train_x, train_y)              
predict_lm_elastic = lm_elastic.predict(test_x)
print("My score is:")

Listing 5.2 A blog example for elastic net from scikit-learn

Uses the built-in datasets—
a solid move for a 
reproducible demo

ndom
ample

split
Sure hope the defaults are OK . . . 

I guess we don’t need a 
reference to the fit model?
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np.round(metrics.mean_squared_error(test_y, predict_lm_elastic)   
>> My score is:
>> 25.0

What are the issues in using this code? Setting aside the atrocious formatting and wall
of text, let’s enumerate the problems with using an example like this as a foundation
for performing a time-series regression:

 It’s a demo. A fairly poor one at that. But it’s meant to be as simple as possible,
showing the broad strokes of the APIs. 

 The train-test split uses random sampling. This will not bode well for predicting
a time series. (Keep in mind that the blog is intended to show elastic net regres-
sion, not a time-series problem.)

 The model uses default hyperparameters. This is, for the purposes of a blog,
entirely understandable for the sake of brevity, but doesn’t help out the reader
much in knowing what they might need to change in order to make it applica-
ble to their use case.

 It is method chaining and printing to stdout in such a way that the objects are
not usable for further processing

Don’t get me wrong here. Blogs are good. They help teach new concepts and provide
inspiration for alternate solutions for problems that you may be working on. The pri-
mary reason I always tell people to not rely on them too much is that they’re meant to
be digestible, concise, and simple. To achieve those three goals, along with the over-
arching mission of maximum brevity, the finer details absolutely have to be omitted. 

A note about blogs
I don’t want to make it seem like I’m knocking them. They’re great. They provide a
wonderful introduction to concepts and potential solutions that are absolutely invalu-
able. If you’re a blog writer, please, keep up the amazing work. It really does help out.
If you’re a blog reader, just, you know, proceed with caution. 

Some truly great blog posts surrounding ML are on the internet. Unfortunately, these
are drowned out by blogs filled with overly simplistic proofs-of-concept, broken code,
or unintentionally horrific programming practices. If you’re using blogs as a primary
point of basic research when starting a project, just keep in mind that basing your
prototype directly off example code from a blog might be OK, but you will have to com-
pletely rewrite the solution when building an MVP. 

My best advice, if using blogs as a primary reference tool, is to vet the ideas by quo-
rum. Do you see multiple people writing about similar (but not identical) solutions
using a particular approach? Then it’s probably a safe bet to test the approach on
your data. 

Do you see a particular solution that has the exact same code examples in multiple
blogs? It’s likely this is a copy-paste job to get advertising revenue or some other
nefarious ruse. The more blogs you look at, the more that you’ll be able to sniff bad

A single metric? Surely, we can
do better than that. . . .
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W
to co
train
Instead of blindly trusting a blog post by basing the project around something that
seems like it will work, you need to check and vet additional sources of information.
These include academic papers, API tutorials, published books on the subject, and,
most critically, an effective testing and validation phase of the team’s approach. Hav-
ing a project cancelled because the copied (or copied in essence) work from a blog-
ger’s informative post about something new that they’ve learned recently is not only
detrimental to the business’s opinion of the DS team, but also potentially dangerous.

NO, SERIOUSLY, READ THE API DOCS

Once we have the list of modeling approaches that we want to test, we should head
over to the API documentation for the module that we’re using. If we do that for elas-
tic net, as an example, we’ll find that the hyperparameters for this model have a few
options that are pretty important to test and tune, as reflected in the following listing.

elasticnet_regressor = ElasticNet(
  alpha=0.8,    
  l1_ratio=0.6,      
  fit_intercept=False,   
  normalize=False,       
  precompute=True,   
  max_iter=5000,    
  copy_X=True,      
  tol=1e-6,          
  warm_start=False,  
  positive=True,      

(continued)

code and poor implementation, and determine whether the author knows what
they’re talking about and can be trusted. 

Just remember: the one thing that you never want to do is base your implementation
directly off code copied from a blog post. Blogs are written for brevity and usually
focused on covering only a narrow topic. This short-form writing does not lend itself
to realistic examples of production code, and as such, should always be seen for
what it actually is: a means of communicating a single topic in the shortest span of
text and time possible. 

Listing 5.3 The full API signature for elastic net on scikit-learn

The penalty applied 
to the l1 and l2 
regularization

The elastic net mixing
parameter (how much

of ridge vs. lasso)

Whether to fit the intercept 
(pretty important to know 
based on whether data 
centering is happening)

Used only when fit_intercept is False. 
Performs normalization by subtracting 
the mean and dividing by l2-norm.

Either Boolean or an array of the feature shape 
as a gram matrix to speed up the calculations

The maximum number of iterations 
allowed for convergence

hether
py the
ing set

Optimization tolerance for whether to continue 
to attempt to converge on each iteration

Whether to reuse 
the solution of the 
previous iteration 
for initialization of 
the model fit

Whether the coefficients in the linear 
equation will be forced to be positive
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  random_state=42     
  selection=’random’   
)

For many ML algorithms, the options (hyperparameters) specified as defaults are
occasionally good for some common data structures being passed into them. But it’s
always best to verify what those options are and what they are used for, and identifying
ones that should be tuned is an essential part of building an effective model. Many
times, these options are specified simply as placeholders, with the API developer fully
intending for the end user to override those values. 

TIP Like anything else in the world of DS, don’t assume anything. Assump-
tion results in problems coming to haunt you later in your project work.

Based on the list of models that the team has agreed to test out, everyone on the team
should head off to familiarize themselves with the options available for the signatures
of each model’s API. This is important to handle early so that when the results of each
quick-and-dirty experiment are run, the maintainability and complexity of the model
can be weighed in concert with the accuracy metrics that are typically the sole point of
judgment. 

No, really, you should read the docs
I’ve always been a bit surprised when I see someone using a particular API, some-
times for a production use case, without having ever read the documentation sur-
rounding that API (including myself, in hindsight). I’ve been surprised in the sense
that most people would be surprised to see a cabin crew member step into the cock-
pit of an airplane and start flying the aircraft. Can they keep it aloft? Sure (well, hope-
fully). Do they know how the aircraft works and the dynamics of flight? Probably not.
Let’s hope that the skies stay clear and blue. 

This isn’t to say that you should be reading every single developer API doc for each
module you’re ever going to use. That’s untenable and a bit ridiculous. However, in
the world of ML, where the number of available algorithms is seemingly endless (not
to mention the inner workings of the code powering those algorithms are exceedingly
complex and lengthy), it’s quite important to read the API docs from at least the main
interface level. 

This means becoming familiar with the classes that you’re using, their signatures,
and the methods that you’re using within those classes. There’s no need to reverse
engineer the package. However, at the very least, you should become familiar with
the doc string descriptions of the class, know which attributes to pass in or override,
and understand the basic functionality of the methods that you’re going to be calling
and interfacing with.

The implementation of most of these algorithms has nuances (particularly the
higher-level meta-algorithms whose entire behavior is determined by configuration).

Seed value if the selection 
type is “random”

Selection type for coefficient selection (cyclic is 
default and loops over the feature vector, while 
random utilizes random coefficient selection 
for a different feature each iteration)
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A critical function of API docs is in informing a user of the options available for con-
trolling the behavior of the software (and in turn, for ML use cases, the algorithms’
learning patterns). Without understanding how to control the model’s learning behav-
ior, we run the risk of building models that are unable to generalize well because of
overfit, or are so fragile that even a slight change in the baseline variability of the fea-
ture inputs will make the solution absolutely useless to a business. 

 When a model becomes useless, performing worse than a manual human-centric
solution, it’s usually abandoned by the business (even if it is still running in produc-
tion by the ML team). Understanding how to tune and control the behavior of the
model properly in the early stages of experimentation is critical, even though the act
of fine-tuning it is not necessary during this phase.

QUICK TESTING AND ROUGH ESTIMATES

Perhaps the only time in ML project work that extensive evaluation of appropriate
hyperparameter tuning can be ignored is at this point. During the rapid evaluation
period, we’re not particularly interested in seeing how well we can optimize a
model’s fit to our data. Rather, we’re interested in measuring the general sensitivity
of a group of disparate algorithms, trying to gauge how stable a particular approach
will be later when we’re fine-tuning our models and maintaining them through drift
situations.

 The previous section covered why it’s important to know how to tune each model
by reading through the API docs (and perhaps the source code as well). But for the
rapid testing phase, it simply isn’t tenable to tune all of these (see the following side-
bar on overbuilding). While going through the process of whittling down those nine
possible implementations to something more manageable for MVP implementation
and full testing, it can be helpful to just use most of the defaults and see what the
results look like. It is also a useful practice, however, to either explicitly mark the
instantiation blocks with the provided default conditions or to just leave a TODO in the
code to make sure, when ready to move toward full tuning of a model for the MVP
phase, that the API documentation is checked and the optional settings that are part
of the API are validated and tested.

(continued)

Understanding which knobs need to be turned, how to turn them, and the implica-
tions of spinning those knobs can help reduce risk during testing. It will save you a
lot of time and frustration, particularly once you move on to the full development of
the solution, knowing which default values are placeholders and which are generally
good values to leave as is.

We’ll discuss these concepts in greater detail later this book, but for now, you have
an understanding of why all the settings are specified for the APIs throughout this
MVP simulation in this chapter.
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We’ll go through testing examples for our forecasting problem in the next chapter.
For now, just know that for the initial round of exploratory work and evaluating solu-
tions, the predictions don’t have to be perfect. Your time will be much better spent
focusing your energy on culling the list of possibilities so that you have one or two can-
didate solutions, rather than spending an inordinate amount of time fine-tuning nine
(or more) approaches.

5.1.3 Draw straws for an internal hackathon

Setting boundaries around testing is incredibly critical, particularly as a team grows in
number and project complexity grows as the team matures in experience. In pursuit
of efficiency (and the aforementioned critical time aspect of picking a direction for
building an MVP), it can be absolutely detrimental to the success of a project if testing
isn’t assigned to individuals or pair-programming teams. 

 If everyone is left to just figure out the best solution, duplicated work and excessive
effort will undoubtedly be placed on particular solutions. By focusing on a single
approach, with consistent status updates on its progress, the team can minimize the
chance of missing the delivery date for the MVP.

 Now that we’ve come up with a list of potential solutions for our forecasting model,
how do we go about testing them? Whether the team includes a single person or a
dozen data scientists, the approach should be the same: 

 Block off a set amount of time to do the testing. Giving an end-time deadline to
this phase will impart a sense of urgency so that a decision can be made quickly
on the efficacy of the solution.

 Set some rules, just as you would for a hackathon:
– Everyone must use the same dataset.
– Everyone must use the same evaluation metrics.
– Each evaluation needs to forecast over the same time period.

A note on overbuilding a rapid prototype test
The focus in the early smoke test experimentation for candidate solutions should be
on speed and not accuracy. Keep in mind that you work for a company, results are
expected, and there are likely other projects to work on. 

I mentioned in previous chapters some of the dangers of overdeveloping a prototype
(it makes it harder to decide what to choose for an MVP). Looking at the bigger pic-
ture, though, the more detrimental effect of unnecessary work is on the business.
Every day that the team is working on proving out different solutions is a day that’s
not available to work on the next project. 

Efficiency, objective selection based on common criteria, and moving to developing
an MVP should always be the primary focus of prototyping. Nothing else. There will
be time during the MVP phase to build out better accuracy, clever feature engineering,
and creative approaches to the problem. 
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– Visualizations of the forecast, along with metrics, need to be provided.
– The experimentation code needs to be re-runnable from scratch.

 Make sure that the language chosen is supportable by the team and that the
platform it’s running on is available for the team to use if the business decides
to move forward with the solution.

If we set up the experimentation in this way, for this problem, we would likely have the
following rules based on this dataset:

 One week of testing—starting on Thursday after the scrum meeting, the pre-
sentations are due on the following Thursday morning for review by the entire
team.

 The data to be modeled is for JFK domestic passengers.
 The eval metrics will be as follows: 

– Mean absolute error (MAE) 
– Mean absolute percentage error (MAPE) 
– Mean squared error (MSE)
– Root mean square error (RMSE)
– R-squared

 The forecast period for evaluation will be the last five years of the dataset.
 Experimentation will be done in Jupyter notebooks running Python 3, utilizing

the standard Anaconda build in a Docker container.

With the rules established, the team (if count(team) > 1 else you) can set about figur-
ing out solutions. Before we get into looking at how that would be done in an efficient
way, we have just one more thing to cover: standards.

5.1.4 Level the playing field

For our experimentation to be meaningful with these nine separate approaches, we
need to ensure that we’re playing fairly. This means that we’re not only comparing
using the same dataset, but also evaluating the test data against the predictions with
the exact same error metrics. The core issue that we need to prevent is indecision and
chaos among the team when measuring the effectiveness of a solution (which wastes
time that, as we’ve mentioned before, we simply don’t have if we want to move to the
MVP phase of the project).

 Since we’re looking at a time-series problem, we’re going to evaluate a regression
problem. We know that, to do a true comparison, we need to control the data splits
(which we will explore throughout the code examples in section 5.2), but we also
need to agree on an evaluation metric that each model is going to record to do the
comparison of goodness of fit of the prediction. Since we’re eventually going to need
to build thousands of these models, and the raw prediction values are of wildly differ-
ent orders of magnitude (just slightly more people fly through JFK and ATL than do
through, say, Boise), the team members have agreed to use MAPE as the comparison
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metric. In a wise decision, though, they have also agreed to capture as many regres-
sion metrics as are applicable to a time-series regression problem, should they choose
to switch to a different metric during tuning later for the per model optimizations.

 For this reason, we’ll agree to collect metrics on MAPE, MAE, MSE, RMSE,
explained variance, and R-squared. This way, we’ll have the flexibility to discuss the
benefits of the different metrics as they relate to the data and to the project.

The only notable exception to collecting all the metrics exists if the metric evaluation
is so expensive (computationally) that the benefit that it provides outweighs the cost
of calculating it. For instance, in chapter 4’s recommendation engine, a calculation
for NDCG involves a window function over a large corpus of data (the implicit scoring
data), which can take hours to execute on a relatively large Apache Spark cluster. Cal-
culating these scores in a relational database management system (RDBMS) involves
expensive Cartesian joins, which can take even longer. If the metric is not critical and
takes periods of time to execute that don’t justify its collection, then it’s best not to
waste time with it.

5.2 Performing experimental prep work
After the planning and research phase is completed by a team focused on building an
ML solution to a business problem, the next phase, preparation for experimental test-
ing, is one of the most oft-omitted activities in the DS community (speaking from per-
sonal experience here). Even with a solid plan of who is going to test what, an agreed-
upon series of metrics, an evaluation of the dataset, and an agreed-upon methodology
of how far into experimentation each team will be going, this preparatory phase, if

The metric wars and how to solve them
A lot of opinions exist on the best metrics to use for different ML solutions. Innumer-
able hours have been wasted in ridiculous arguments over whether to use MSE or
RMSE, whether an F1 score is appropriate versus area under ROC, and whether a
normalization of MAE should be applied, turning it into MAPE. 

There’s definitely a great argument to be made for selecting the appropriate metric
for each use case. However, calculating errors is usually pretty cheap and fast. It
doesn’t hurt to calculate all of the applicable ones and record them all. Obviously,
don’t record categorical metrics for a regression problem (that would be incredibly ill-
advised) or vice versa, but slapping down MAE, MSE, and R-squared calculations for
a model to ensure that the benefits of each method can be utilized for determination
can prove helpful.

It is likewise similarly invaluable to record them all in case, while building out a solu-
tion and tuning it, the team decides to utilize a different metric. Having each metric
there from the beginning can give a historical reference for each run that was
attempted without having to go back to rerun old experiments just to collect addi-
tional metrics (which is both costly and time-consuming).
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ignored, will create more inefficiencies that can lead to a project being delayed. This
preparatory phase is focused on doing a deep analysis of the datasets, creating com-
mon tools that the entire team can use in order to increase the speed at which they
can evaluate their experimental attempts.

 At this point, we’ve decided on some models to try, set the ground rules for the
experimentation phase, and selected our language (Python, mostly because of the stats-
models library) and our platform (Jupyter Notebook running on Docker containers so
we don’t waste our time with library compatibility issues and can rapidly prototype tests
and see visualizations directly). Before we start firing off a bunch of modeling tests, it’s
important to understand the data as it relates to the problem at hand. 

 For this forecasting project, that means going through a thorough analysis of sta-
tionarity tests, a decomposition of the trend, identification of severe outliers, and
building basic visualization tooling that will aid in the rapid phases of model testing
that the subteams will be doing. As shown in figure 5.4, we’ll cover each of these key
stages of preparation work to ensure that each of our hacking teams will have an effi-
cient development process and won’t be focused on creating nine different copies of
the same way of plotting and scoring their results.

This analysis pathing is highly dependent on the type of ML project being under-
taken. For this time-series forecasting, these are a good set of items to accomplish
prior to building prototype solutions to evaluate. Each step is fairly applicable to any
supervised ML problem. For an NLP project, however, you would have slightly differ-
ent actions to perform in this stage. 

 The point of showing these processes and the order in which they need to be done
is to illustrate that a plan needs to be developed before working on model prototyping.

Planning
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• Correlation
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features
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trends of data

over time
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Figure 5.4 The analysis phase, focusing on evaluating the data to inform the prototyping work
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Without one, the evaluation phase will be guaranteed to be long, arduous, chaotic,
and likely inconclusive.

5.2.1 Performing data analysis

In the course of researching possible solutions, a lot of people seem to find trend visu-
alizations pretty helpful. Not only does this activity prepare for baseline visualizations
of the data to the broader business unit team that will be the consumers of the project
solution, but it can help minimize unforeseen issues with the data that might be
uncovered much later in the project; these issues could require a complete rework of
the solution (and potentially a cancellation of the project if the rework is too expen-
sive from a time and resources perspective). To marginalize the risk associated with
finding out too late about a serious flaw in the data, we’re going to build a few analyt-
ics visualizations. 

 Based on the initial raw data visualization built in listing 5.1 (and shown in figure 5.3),
we notice a great deal of noise in the dataset. Having a great deal of noise in a trend
can certainly help visualize the general trend line, so let’s start by applying a smooth-
ing function to the raw data trend for the domestic passengers at JFK. The script
that we’re going to be executing is in the following listing, utilizing basic matplotlib
visualizations.

rolling_average = jfk_asc['Domestic Passengers'].rolling(12, 
center=False).mean()  

rolling_std = jfk_asc['Domestic Passengers'].rolling(12, center=False).std()
plt.plot(jfk_asc['Domestic Passengers'], color='darkblue', label='Monthly 

Passenger Count')  
plt.plot(rolling_average, color='red', label='Rolling Average')   
plt.plot(rolling_average + (2 * rolling_std), color='green', linestyle='-.', 

label='Rolling 2 sigma')   
plt.plot(rolling_average - (2 * rolling_std), color='green', linestyle='-.')
plt.legend(loc='best')
plt.title('JFK Passengers by Month')  
plt.show(block=False)       

NOTE The code shown here and throughout section 5.2 is for rapid experi-
mentation only. Section 5.22 covers more effective ways to write MVP code.

Running this code in our Jupyter notebook will generate the plot shown in figure 5.5.
Note how the general trend of the data looks when smoothed and realize that a definite

Listing 5.4 Moving average trend with two-sigma error

Generates a rolling average series based 
on a year’s period of smoothing

Generates the standa
deviation series on the sam

rolling time period as t
smoothed rolling avera

Initializes the plot with the raw data 
(domestic passengers) and creates a 
label for the legend box

Applies the rolling average 
series to the plot

Applies the rolling
stddev series at two-
sigma to the plot by

adding and subtracting
the values from the

rolling average series

Puts a title to the 
plot so exported 
images from this 
are instantly 
identifiable

Displays 
the plot in 
stdout
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step function occurs around 2002. Also note that the stddev varies widely during
different time periods. After 2008, the variance becomes much broader than it had
been historically.

 The trend is OK, and somewhat useful for understanding the potential problems
that might arise from building training and validation datasets that don’t reflect the
trend change. (Specifically, we can see what might happen if we train up to the year
2000 and expect that a model will accurately predict from 2000 to 2015.) 

 During the research and planning phase, however, we found a great many men-
tions of stationarity in time series and how certain model types can really struggle with
predicting a nonstationary trend. We should take a look at what that is all about. 

 For this, we’re going to use an augmented Dickey-Fuller stationarity test, provided
in the statsmodels module. This test will inform us of whether we need to provide sta-
tionarity adjustments to the time series for particular models that are incapable of
handling nonstationary data. If the test comes back with a value indicating that the
time series is stationary, essentially all models can use the raw data with no transforma-
tions applied to it. However, if the data is nonstationary, extra work will be required.
The script to run this test for the JFK domestic passengers series is shown next.

from statsmodel.tsa.stattools import adfuller
dickey_fuller_test = adfuller(jfk_asc['Domestic Passengers'], autolag='AIC')

Listing 5.5 Stationarity test for a time series

Figure 5.5 Baseline smoothing and sigma fits from listing 5.4

Instantiates the adfuller (augmented Dickey-Fuller test) and sets the autolag to 
automatically minimize the information criterion for lag count determination
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test_items = dickey_fuller_test[:4]  
report_items = test_items + (("not " if test_items[1] > 0.05 else "") + 

"stationary",)  
df_report = pd.Series(report_items, index=['Test Statistic', 'p-value', 

'# Lags', '# Observations', 'Stationarity Test'])   
for k, v in dickey_fuller_test[4].items():   
    df_report['Critical Value(%s)' % k] = v
print(df_report)

Upon running this code, we get the result in figure 5.6, printed to stdout.

OK, so that’s cool. But what does all of that mean? 
 The test statistic (always negative) is a measure of the adjacency a time series has to

containing a unit root. (If multiple unit roots—for example, a number of differencing
functions—must be applied to the time series to make it essentially flat, then the less
stationary it is.) In non-math terms, if the test statistic is less than the critical values,
the series will be determined as stationary. In this case, our test statistic value is much
higher than the critical values, thus giving us a null-accepting p-value where we can
quite confidently state, “This is not stationary” (H0 of the adfuller test is that the
time series is nonstationary). 

NOTE If you’re curious about the theory and math behind the test, I highly
encourage you to search for the original research papers: “Efficient Tests for
an Autoregressive Unit Root” by Graham Elliot et al. (1996) as well as the
foundational unit root theory espoused in the journal publication “Distribu-
tion of the Estimators for Autoregressive Time Series with a Unit Root” by D.
A. Dickey and W. A. Fuller (1979).

Other interesting data is also in there—specifically, the number of lags discovered. We
can look at this value in an additional way, which can help us figure out settings that
we should be using when we get to the modeling phase with ARIMA-based models.
The number 13 seems a bit odd, considering that we’re looking at monthly data here.
If we were to blindly just use that value as a seasonality (period) component in our

rabs
first
ents
 test
ults

Creates a Boolean yes/no stationarity test. 
(In practice, it’s best to compare the test 
statistic to the critical values to make a 
true determination of stationarity.)

Generates an 
indexed series of 
the information

Extracts the critical 
values from the test 
statistics

Figure 5.6 Results of the augmented 
Dickey-Fuller test for stationarity. This 
is what we will see by running the code 
in listing 5.5.



142 CHAPTER 5 Experimentation in action: Planning and researching an ML project

3

models, we would probably get some pretty terrible results. We can validate this,
though, by looking at some trend decompositions in figure 5.7.

 We’re going to see if we can effectively decompose the trend, seasonality, and
residuals in the signal with the built-in functionality in statsmodels, helping to inform
some of the settings that we will need to use in the modeling experiments. Thankfully,
the authors of the package have built out not only the decomposition methods, but
also a nice visualization that we can easily plot out, as shown in the following listing.
Let’s see what happens if we use the lag count from the adfuller report for the sea-
sonality period.

from statsmodels.tsa.seasonal import seasonal_decompose
decomposed_trends = seasonal_decompose(jfk_asc['Domestic Passengers'], period=13)
trend_plot = decomposed_trends.plot()         
plt.savefig("decomposed13.svg", format='svg')   

Figure 5.7 shows what that chart looks like when the code from listing 5.6 is executed.

Not exactly the most compelling data, is it? The residuals (the bottom pane) seem to
have a signal in there. A residual should be the unexplained noise that is left over
after the general trend and the seasonality are extracted from the data. But here, it

Listing 5.6 Trend decomposition for seasonality

Performs the seasonal decomposition
with the adfuller lag value of 1

Gets a reference to the plot for 
storing. (It will automatically 
display inline as well.)Saves the plot for later reference

Figure 5.7 The trend decomposition plot consisting of (from top to bottom): the raw data, the extracted trend, 
the seasonality component, and the residuals. This doesn’t seem to be right. 
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seems as though quite a bit of actual repeatable signal is still in there. Let’s try a differ-
ent run of this, but specifying the period as 12, as shown in figure 5.8.

The evaluation in figure 5.8 with the period value of 12 looks significantly better than
the earlier test of 13. Our trend is nice and smooth, our seasonality looks well
matched to the periodicity of the repeated pattern in the data, and the residuals are
(mostly) random. We’ll remember this value when we do testing in chapter 6.

 The importance of doing this prep work ahead of time is to inform our testing. It is
to guide the testing in such a way that we can rapidly iterate on experiments from a
position of knowledge about the data, thereby getting to answers about approaches
and their applicability to this problem faster. 

 Keep in mind that we’re going to be evaluating nine approaches to forecasting
during the testing phase. The faster we can determine which of those nine are the two
most promising candidates, the faster we can ignore the other seven and, collectively
as a team, make progress toward our deadline for an MVP for the business.

HOW CLEAN IS OUR DATA?
Data cleanliness issues are one of the prime reasons for an MVP extending much lon-
ger than was promised to a business. Identifying bad data points is crucial not only for
the purposes of modeling training effectiveness, but also to help tell a story to the
business about why certain outputs of the model might be less than accurate at times.
Building a series of visualizations that can communicate the complexities of latent fac-
tors, data-quality issues, and other unforeseen elements that can affect the solution
can serve as a powerful tool during discussions with the project’s business unit.

Figure 5.8 The trend decomposition plots with the period set to 12 instead of 13. That’s a bit better.
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 One of the most important points that we’ll have to explain about the forecasting
from this project is that it will not, and cannot, be an infallible system. Many unknowns
remain in our dataset—elements of influence to the trend that are either too complex
to track, too expensive to model, or nearly impossible to predict—that need to feed
into the algorithm. For the case of univariate time-series models, nothing is going into
the model other than the trending data itself. In the case of more complex implemen-
tations, such as windowed approaches and deep learning models like long short-term
memory (LSTM) recurrent neural networks (RNNs), even though we can create vec-
tors that contain much more information, we don’t always have the capability or the
time to collate all of the features that could influence the trend.

 To aid in having this conversation, we can take a look at a simple method of identi-
fying outlier values that are dramatically different from what we would otherwise
expect from a seasonally influenced trend. A relatively easy way to do this with series
data is to use a differencing function on the sorted data. This can be accomplished as
shown in the following listing.

from datetime import datetime
jfk_asc['Log Domestic Passengers'] = np.log(jfk_asc['Domestic Passengers'])  
jfk_asc['DiffLog Domestic Passengers month'] = jfk_asc['Log Domestic 

Passengers'].diff(1)  
jfk_asc['DiffLog Domestic Passengers year'] = jfk_asc['Log Domestic 

Passengers'].diff(12)  
fig, axes = plt.subplots(3, 1, figsize=(16,12))          
boundary1 = datetime.strptime('2001-07-01', '%Y-%m-%d')      
boundary2 = datetime.strptime('2001-11-01', '%Y-%m-%d')
axes[0].plot(jfk_asc['Domestic Passengers'], '-', label='Domestic Passengers') 
axes[0].set(title='JFK Domestic Passengers')
axes[0].axvline(boundary1, 0, 2.5e6, color='r', linestyle='--', label='Sept 11th 

2001')     
axes[0].axvline(boundary2, 0, 2.5e6, color='r', linestyle='--')
axes[0].legend(loc='upper left')
axes[1].plot(jfk_asc['DiffLog Domestic Passengers month'], label='Monthly diff 

of Domestic Passengers')           
axes[1].hlines(0, jfk_asc.index[0], jfk_asc.index[-1], 'g')
axes[1].set(title='JFK Domestic Passenger Log Diff = 1')

Listing 5.7 Time-series differencing functions and visualizations

Gets the logarithm of the raw data to reduce the
magnitude of difference for subsequent steps

Gets a per-unit differencing of each position’s value 
compared to the lag specified. Here, we’re looking 
at the immediately preceding value.

Gets the differencing of 
the 12th preceding value 
(difference from last year, 
since our data is monthly)

Generates the plot structure so we can create a
single image of these three separate plots

Creates x-axis reference points that illustrate abnormality
periods in the series data (to aid in explanations to business unit

members who will ask questions about why predictions failed)

Always plot the raw data if generating 
graphics to share to the rest of the 
business. It will save you from 
having to craft horrifically 
complex slides later. Plots the static boundaries we want to

highlight about why unforeseen latent
factors affected the trend

Displaying the highlighted aberrations in
data in multiple ways can help communicate

the impact of latent factors more clearly.
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axes[1].axvline(boundary1, 0, 2.5e6, color='r', linestyle='--', 
label='Sept 11th 2001')

axes[1].axvline(boundary2, 0, 2.5e6, color='r', linestyle='--')

axes[1].legend(loc='lower left')
axes[2].plot(jfk_asc['DiffLog Domestic Passengers year'], label='Yearly diff of 

Domestic Passengers')
axes[2].hlines(0, jfk_asc.index[0], jfk_asc.index[-1], 'g')
axes[2].set(title='JFK Domestic Passenger Log Diff = 12')
axes[2].axvline(boundary1, 0, 2.5e6, color='r', linestyle='--', label='Sept 11th 

2001')
axes[2].axvline(boundary2, 0, 2.5e6, color='r', linestyle='--')
axes[2].legend(loc='lower left')
plt.savefig("logdiff.svg", format='svg')  

When we execute this, we get the plot shown in figure 5.9 (as well as an SVG image
saved to our shared notebook directory).

Regardless of platform, visualization 
technology, or process, it’s a good 
habit to save all of our generated 
plots for later reference.

The trend
looks abnormal
here, but with
the general
noise, it’s hard
to see its
magnitude.

It certainly
stands out
more here!

A massive
surge occurs
after the drop
in passengers.
This trend
increase is
also abnormal
and has a
latent factor
influencing it.

And with the year-over-year
differencing, it becomes even
more apparent.

Setting up trend
plots during
experimentation
can help explain
aspects of the
prediction
capabilities to a
broader business
audience.
These graphs
don’t have to be
especially pretty,
but they should
be crafted and
built in such a
way that they can
be easily fetched,
generated, and
recorded
throughout the
experimentation,
development,
and production
monitoring
phases.

Figure 5.9 Outlier analysis demonstration from listing 5.7
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We now have some insight into what the data looks like. We’ve created demonstration
plots and basic trend decompositions, and collected data about what these trends look
like. The code has been a bit rough and reads like a script. If we don’t take a little time
to make this code reusable through the use of utility functions, we will likely find that
each time someone wants to generate such visualizations, they will be employing Chef
Boyardee levels of copy-pasta throughout their code base.

5.2.2 Moving from script to reusable code

Returning to the theme of timeliness, the urgency of making decisions about direc-
tions for the project can be lessened if we focus on employing reusable code. It not
only makes for a cleaner code base (and fewer versions of the exact same thing being
created by multiple people), but also helps standardize elements of the project in
preparation for the MVP (and development) phases. Reducing confusion, speeding
time to decision making, and creating less chaos in notebooks and scripts are all in an
effort to maximize the chances of the business having enough faith in the project to
continue development efforts on it.

 We’ve been doing an awful lot of scripting here with the trend analysis and the
visualizations of our JFK domestic passenger data. That’s perfectly fine for doing a
quick check on things and certainly understandable for the early stages of experi-
mentation (we all do it, and anyone who says otherwise is a liar). However, when the
team breaks off to work on modeling activities, it will be incredibly wasteful for
everyone to be building their own visualizations, their own implementations of simi-
lar tests, and code that can be relatively easily rolled into standard functions. The
last thing we (should) want is to have a disparate collection of notebooks that have
multiple copies of the exact same code, just slightly modified, spread everywhere.
While using the magical copy and paste commands might seem expedient, it ends
up wreaking havoc on both productivity and sanity. The better thing to do is to cre-
ate functions.

 I’m certainly not recommending, at this stage, to build a package-level project for
these utility functions. That work will come later, in the actual development phase of
the project, during the long and arduous road to production release. 

 For now, let’s take these useful and repeatable code snippets for manipulating the
raw data, visualizing the trends, and extracting information from them into a stan-
dardized collection of basic functions. This work will save us dozens of hours, particu-
larly when different implementations are going to be tested against other airports’
data. The absolutely last thing that we want to do is copy and paste a block of script in
order to present a visualization and analysis, which will leave everyone wondering
which methodology is the best, cause massive amounts of duplicated work, and gener-
ate code sprawl that will be untenable to maintain.

 Let’s take a look at the dataset ingestion script from listing 5.1 and see what a func-
tion to acquire the data and format it correctly might look like. To make the ingestion
function useful, we need to get a list of the airports included with this file, be able to
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apply filtering to get a single airport, and specify the time-series periodicity associated
with the data. The following listing shows each of these functions.

AIRPORT_FIELD = 'Airport Code'   

def apply_index_freq(data, freq):   
    return data.asfreq(freq)

def pull_raw_airport_data(file_location):    
    raw = pd.read_csv(file_location)
    raw = raw.copy(deep=False)                 
    raw['Month'] = pd.to_datetime(raw['Month'], format='%b').dt.month  
    raw.loc[:, 'Day'] = 1                             
    raw['date'] = pd.to_datetime(raw[['Year', 'Month', 'Day']])   
    raw.set_index('date', inplace=True)            
    raw.index = pd.DatetimeIndex(raw.index.values, 

freq=raw.index.inferred_freq)        
    asc = raw.sort_index()
    return asc

def get_airport_data(airport, file_location):       
    all_data = pull_raw_airport_data(file_location)
    filtered = all_data[all_data[AIRPORT_FIELD] == airport]
    return filtered

def filter_airport_data(all_data, airport):
    filtered_data = all_data[all_data[AIRPORT_FIELD] == airport]
    return filtered_data

def get_all_airports(file_location):                 
    all_data = pull_raw_airport_data(file_location)
    unique_airports = all_data[AIRPORT_FIELD].unique()
    return sorted(unique_airports)

With these functions established, they can be used by each subteam that will be testing
out solutions to the forecasting project throughout the experimental phase. With a lit-
tle bit more work, these can all be modularized into a class later, during the develop-
ment phase, to create a standardized and testable implementation for the production-
grade final project (covered in chapters 9, 10, and 14). The usage of these can be as
simple as the next listing.

Listing 5.8 Data ingestion and formatting functions

Defines a static variable for the column that contains the 
key for the airports (to minimize string replacements 
within code, should this need to be changed)

Function for setting the time-
series frequency for the index 
of the DataFrame

Primary data acquisition 
and formatting function

Sets a copy of the ingested data 
so it can be safely mutated

acts the
th from
e string

 value in
 original

data

Creates a day field (first day of the month) so 
the encoding to a date object can happen

Generates the date field in appropriate 
NumPy datetime format (required for 
time-series modeling)

Sets the index of the DataFrame 
to the date column (useful for 
plotting and modeling)

Sets the properties of the index 
to the inferred frequency

Ensures that the DataFrame has been sorted
by the date index to prevent issues with

series extraction of data later

Utility function for returning a
list of all airports contained

within the data
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DATA_PATH = '/opt/notebooks/TCPD/datasets/jfk_passengers/air-passenger-
traffic-per-month-port-authority-of-ny-nj-beginning-1977.csv'

jfk = get_airport_data('JFK', DATA_PATH)     
jfk = apply_index_freq(jfk, 'MS')   

Let’s look at one additional modification that we can do, focused on the outlier visual-
ization script created in listing 5.7 and demonstrated in figure 5.9. We’ll see how this
script could be adapted to a one-line use that greatly simplifies the generation of these
plots without having to make it fully generic (which would take a great deal of time
and effort). Even though the function representation of this visualization logic is a bit
more complex, and requires a few more lines of code, the end result will be worth it in
no small part because we can generate plots with a single line of code.

from datetime import datetime
from dateutil.relativedelta import relativedelta

def generate_outlier_plots(data_series, series_name, series_column, 
event_date, event_name, image_name):  

    log_name = 'Log {}'.format(series_column)   
    month_log_name = 'DiffLog {} month'.format(series_column)
    year_log_name = 'DiffLog {} year'.format(series_column)
    event_marker = datetime.strptime(event_date, '%Y-%m-%d').replace(day=1) 
    two_month_delta = relativedelta(months=2)    
    event_boundary_low = event_marker - two_month_delta
    event_boundary_high = event_marker + two_month_delta
    max_scaling = np.round(data_series[series_column].values.max() * 1.1, 0) 
    data = data_series.copy(deep=True)        

Listing 5.9 Ingesting data by using a reusable function

Listing 5.10 Reusable function for visualizing outlier data

Uses the function 
get_airport_data() to 
acquire the data as a date-
indexed pandas DataFrame

Applies the correct time periodicity to the
date index on the DataFrame (MS is for

“month start frequency”)

Functions generally don’t have quite this many arguments. 
The * tuple packing operator and the ** dictionary packing 
operator allow for passing multiple arguments. For this 
example, I name them explicitly to minimize confusion. Uses string interpolation

to build static references
to dynamically created
fields in the DataFrame

Converts the passed-in date to something that will match 
up with the datetime index of the DataFrame. For this 
example, it’s OK to convert passed-in values. In general 
practice (particularly for libraries), the correct action is to 
raise an exception for invalid passed-in configurations (a 
validation that the value exists in the index could be one 
method to employ) so that the end user of the function 
doesn’t get an unexpected result. 

Creates a date differencing so we 
can get a uniform scaling based on 
the frequency of the time-series 
index of the DataFrame

Creates a maximum bound on the
vertical lines being drawn that is

based on the range of the data

Makes a deep copy (object replication in 
different memory address) for the series of 
mutations we will be doing to the data. 
This is a useful operation, particularly for 
ML, wherein we may want to change this so 
subsequent calls to this function won’t be 
mutating the source data, allowing us to 
loop or map/lambda over a collection that 
calls this data.
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    data[log_name] = np.log(data[series_column])    
    data[month_log_name] = data[log_name].diff(1)
    data[year_log_name] = data[log_name].diff(12)
    fig, axes = plt.subplots(3, 1, figsize=(16, 12))             
    axes[0].plot(data[series_column], '-', label=series_column)     
    axes[0].set(title='{} {}'.format(series_name, series_column))
    axes[0].axvline(event_boundary_low, 0, max_scaling, color='r', 

linestyle='--', label=event_name)
    axes[0].axvline(event_boundary_high, 0, max_scaling, color='r', 

linestyle='--')
    axes[0].legend(loc='best')
    axes[1].plot(data[month_log_name], label='Monthly diff of 

{}'.format(series_column))
    axes[1].hlines(0, data.index[0], data.index[-1], 'g')
    axes[1].set(title='{} Monthly diff of {}'.format(series_name, 

series_column))
    axes[1].axvline(event_boundary_low, 0, max_scaling, color='r', 

linestyle='--', label=event_name)
    axes[1].axvline(event_boundary_high, 0, max_scaling, color='r', 

linestyle='--')
    axes[1].legend(loc='best')
    axes[2].plot(data[year_log_name], label='Year diff of 

{}'.format(series_column))
    axes[2].hlines(0, data.index[0], data.index[-1], 'g')
    axes[2].set(title='{} Yearly diff of {}'.format(series_name, 

series_column))
    axes[2].axvline(event_boundary_low, 0, max_scaling, color='r', 

linestyle='--', label=event_name)
    axes[2].axvline(event_boundary_high, 0, max_scaling, color='r', 

linestyle='--')
    axes[2].legend(loc='best')
    plt.savefig(image_name, format='svg')
    return fig

Interpolation is your friend
In the realm of ML, a lot of what we do involves passing around string references. It
can get a bit tedious. The only thing that I’ve found to be more tedious than dealing
with strings in configurations is manually overwriting those strings for different uses
in code. 

Interpolation is a remarkably powerful tool that, once you learn how to use it cor-
rectly, can save you no end of frustration and typo-induced failures. As great as it
is, however, there are ways that people use it correctly, and then there are the
“lazy” implementations. 

Performs the same log and diff 
functions performed earlier in the 
scripted version, except these are 
parameterized by the interpolated 
names so that no hardcoding is 
required

These values could also be arguments to this function (the figsize
value) in case you want the user to have flexibility in the size of

the plots. For this example, we’re leaving them hardcoded.

All the code from here to the bottom is
identical to our previous scripted version,

with the exception that we’re using dynamic
variables from the passed-in arguments to
construct everything in a flexible manner.
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Executing the code from listing 5.10 and building a visualization (which can also be
stored for later reference) is as simple as the following code.

irrelevant_outlier = generate_outlier_plots(jfk, 'JFK', 'International 
Passengers', '2003-10-24', 'Concorde Retired', 'irrelevant_outlier.svg')

If we execute this, we get the visualization shown in figure 5.10. Notice that we don’t
have to specify date windows, formatting, or any other boilerplate since it is all dynam-
ically generated based on the function’s configuration arguments. We can even plot
the international passenger counts with this function instead of hardcoding all the val-
ues into the script, as we did in listing 5.7 (and the subsequent visualization).

 To demonstrate the benefits of taking a little bit of extra time and building a
function out of even experimental validation code, let’s see what we can do with the
data generation from a completely different airport, LaGuardia (LGA). If we
scripted out our original outlier plotting and wanted to generate the same plot for
LGA, we’d have to copy the JFK script, go through the painstaking process of over-
writing each reference to JFK, change the plotting and analysis field from Interna-
tional Passengers to Domestic Passengers, and hope that we get all of the
references replaced to prevent the wrong time series or values from being plotted.
(Since the Python REPL has the concept of object constancy, all references are held

(continued)

How do you do string building in a lazy fashion? By using the concatenation operator. 

Let’s say we want to build one of those strings from listing 5.10, the title for axes[1].
In a lazy implementation of concatenation, we might do something like this:

axes[1].set(title=series_name + ' Monthly diff of ' + series_column)

While technically correct (it will assemble the string correctly), it’s ugly, hard to read,
and incredibly error-prone. What if you forgot to put the leading and trailing spaces
into the middle statically defined string? What if someone comes in later and needs
to change that string? What if the title needs to be added onto to provide a dozen
different strings? At a certain point, the code will start to look amateurish and impos-
sible to read.

Using the '{}'.format() syntax (bonus points for declaring variables and type for-
matting in there as well) will save you from annoying bugs and make your code look
cleaner, which should be the end goal for maintainability’s sake. If you don’t like the
format syntax, you can always use f-strings, which are an optimized and much more
shorthand means of interpolating values into strings. Throughout this book, I stick to
the older format to make the code more approachable to people who are familiar with
that, but in practice I use f-strings.

Listing 5.11 Usage of the outlier visualization function
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in memory until the kernel REPL is stopped.) The code with the function imple-
mentation of the plotting is shown next.

laguardia = get_airport_data('LGA', DATA_PATH)   
laguardia = apply_index_freq(laguardia, 'MS')   
useful_outlier = generate_outlier_plots(laguardia, 'LGA', 'Domestic 

Passengers', '2001-09-11', 'Domestic Passenger Impact of 9/11', 
'lga_sep_11_outlier.svg')   

With these three brief lines, we can get a new visualization that is stored to disk,
labeled appropriately for the indicated outlier period that we discovered, without the
need to reimplement all the code originally used to build the dataset and the visualiza-
tions. Figure 5.11 shows the resulting visualization.

Listing 5.12 Experimental phase function use for outlier analysis

Sorry,
airline fans.
It seems
like no one
really cared
for $ 0,0001

flights.

Figure 5.10 Using a function to generate this plot provides adaptability, and its reusable nature allows for 
rapid validation of data anomalies, saving time. 

Pulls the data for LaGuardia. (This is for demonstration purposes 
only. In a properly developed solution, we would load the data only 
once and apply a filter directly on the in-memory DataFrame.)

Sets the index frequency of 
“beginning of month” in 
the same way that we did 
for JFK data

Generates the visualizations and saves them to disk. The
arguments for this function make generating these plots

trivial, but more important, repeatable.
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NOTE The functions shown here are for illustrative purposes only. Later
chapters cover proper ways of building functions and methods for ML so that
fewer actions are taken in a single function or method. For now, the point is
simply to illustrate the benefit of reusable code even in the early stages of a
project.

When functions should be created
In the course of experimentation, in addition to the immediate focus of solving a prob-
lem, we should consider which elements of the code need to be modularized for
reuse. Not every aspect of a solution needs to be production-ready, particularly in the
early stages, but it is helpful to start thinking about which aspects of the project will
need to be referenced or executed many times over. 

Stepping aside from rapid prototyping to build functions can sometimes feel like a
temporary derailment of what you’re trying to get done. It’s important to realize that,
by taking an hour or so to create a generic reference to a repeatable task, you could
be saving yourself dozens of hours later. 

These hours are mostly saved by the simple fact that when you’re working to convert
your scripted solution into a properly developed ML code base, you won’t have to review

Wow, that
trend looks
quite different
from JFK’s!

The magnitude
of impact for
9/ seems11

much more
severe, though.

Sure was nice
that we didn’t
have to write
all of that
boilerplate
code to
generate this
visualization,
right?

Figure 5.11 Plot result from listing 5.12



153Performing experimental prep work
WHY ARE WE TALKING ABOUT THE BENEFITS OF FUNCTIONS? SURELY EVERYONE KNOWS WHEN TO USE

THEM, RIGHT? 
The reality of experimentation in predictive modeling is that most ML practitioners
end up spending the vast majority of their efforts working on feature engineering,
data validation, and modeling. The process of constant code rewrites and testing
inures us all to the fact that the project experimentation code that we’re building can
rapidly devolve into a half-implemented, commented-out, and generally unreadable
sprawl of chaos. 

 Sometimes it feels as if, in the process of wanting to test something new, it’s easier
to copy a block of code from a notebook cell far above just to simply get something to
work quickly. This ends up causing a complete disjointed mess of mangled code that is
going to require a monumental undertaking to fashion into something eligible for
further development. 

 Most of the time, when I’ve seen (or done, in the past) such greenfield experimen-
tation, all the original testing code is simply abandoned when an approach is decided
upon. It doesn’t have to be that way, though. If a little care is taken during this phase,
the subsequent development phases can be much more efficient. 

 If you’re working on a team, these problems only compound themselves. Imagine
if this project were being undertaken by six subteams of data scientists. By the time the
testing phase of ideas was complete, dozens of implementations would exist of the
data ingestion alone, paired with at least a dozen ways of plotting the data and run-
ning statistical analysis on the time-series data. Standardization and using functions
can help reduce this redundant code.

so many implementations. Instead of dozens of visualizations and scoring functions
littered throughout the code, you will be left with a group of single-purpose functions
that will need to be looked at and evaluated as only a single unit. 

Some elements that I typically look to create functions for as early as possible in the
ML space are as follows:

 Data ingestion and data cleansing
 Scoring and error calculations
 General data visualizations
 Validation and prediction visualizations
 Model performance reports (for example, ROC curves and confusion matrices)

Many other instances are eligible for “function treatment” early in the process of
building an ML solution. The important point to keep in mind when building even the
earliest phases of a project is to either set aside the time to create reusable code
immediately, or to at least flag the code for implementation in such a way that makes
it easy to identify for action as soon as is practicable. 



154 CHAPTER 5 Experimentation in action: Planning and researching an ML project
5.2.3 One last note on building reusable code for experimentation

Before we move on to the modeling phase of this project’s experimentation, let’s look
at another function. This function will help us get a useful snapshot of a particular
time series (one of the passenger series of data) from one of the airports in the list of
comparison locations for each of the models. 

 Earlier we took a look at plotting outliers (section 5.2.2) and getting trend
decomposition plots (section 5.2.1). Two additional plots, if we had them, would be
invaluable in helping inform us of the initial settings we should use for some of the
model types that we’ll be testing. Those two plots are of autocorrelation and partial
autocorrelation.

 Autocorrelation is an algorithm that will run a Pearson’s test between the time series
and lagged values of the same series (previous steps of the same data series), giving
results in a range of –1 to +1, indicating the relative correlation between these lags. A
value of +1 is a maximum positive correlation, indicating a perfect synchronicity
between the values at that specified lag position throughout the data series (if there is
a repeatable pattern every 10 values along the time series, this will show up as a maxi-
mum positive correlation of +1). The graph plotted from an autocorrelation test will
show each lag value that has been calculated, and a blue cone stretching out from 0 in
a logarithmic curve, denoting a confidence interval (defaulted at 95%). The points
that extend outside this blue cone are considered statistically significant. The autocor-
relation test includes direct dependence information in the lag measurement as well
as indirect effects. 

 Because of this impact of the nature of the autocorrelation test, it can be slightly
misleading when looked at on its own. Along with the autocorrelation test, a useful
additional plot, the partial autocorrelation test, is also used when analyzing time-series
data. This additional test evaluates each lag position in a similar way that autocorrela-
tion does, but it goes one step further by removing the effects that previous lag values
introduced to the independent lag being measured. By removing these effects, the
direct lag relationship at that particular value can be measured.

WHY IS THIS IMPORTANT?
We can use the values uncovered in these charts as starting points for our modeling
(the models that are designed for autoregression, that is). We’ll get more into that in
chapter 6.

 For now, we should make sure that before anyone starts off on modeling, we have a
standardized way of generating these charts in one shot so that all the teams can rap-
idly generate these visualizations to help guide their tuning. Let’s create a simple
function to plot most of what we need to analyze the series that we’ll be forecasting. 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
def stationarity_tests(time_df, series_col, time_series_name, period, 
image_name, lags=12, cf_alpha=0.05, style='seaborn', plot_size=(16, 32)):

Listing 5.13 Standardized time series visualization and analysis for model preparation
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h
re
a

    log_col_name = 'Log {}'.format(series_col) 
    diff_log_col_name = 'LogDiff {}'.format(series_col) 
    time_df[log_col_name] = np.log(time_df[series_col])
    time_df[diff_log_col_name] = time_df[log_col_name].diff()  
    decomposed_trend = seasonal_decompose(time_df[series_col], period=period)
    df_index_start = time_df.index.values[0]
    df_index_end = time_df.index.values[len(time_df)-1]   
    with plt.style.context(style=style):    
        fig, axes = plt.subplots(7, 1, figsize=plot_size)
        plt.subplots_adjust(hspace=0.3)                            
        axes[0].plot(time_df[series_col], '-', label='Raw data for 
          {}'.format(time_series_name))  
        axes[0].legend(loc='upper left')
        axes[0].set_title('Raw data trend for {}'.format(time_series_name)) 
        axes[0].set_ylabel(series_col)
        axes[0].set_xlabel(time_df.index.name)
        axes[1].plot(time_df[diff_log_col_name], 'g-', label='Log Diff for  
          {}'.format(time_series_name))
        axes[1].hlines(0.0, df_index_start, df_index_end, 'r', label='Series 
          center')
        axes[1].legend(loc='lower left')
        axes[1].set_title('Diff Log Trend for outliers in 
          {}'.format(time_series_name))
        axes[1].set_ylabel(series_col)
        axes[1].set_xlabel(time_df.index.name) 
        fig = plot_acf(time_df[series_col], lags=lags, ax=axes[2])   
        fig = plot_pacf(time_df[series_col], lags=lags, ax=axes[3])  
        axes[2].set_xlabel('lags')
        axes[2].set_ylabel('correlation')
        axes[3].set_xlabel('lags')
        axes[3].set_ylabel('correlation')
        axes[4].plot(decomposed_trend.trend, 'r-', label='Trend data for 
          {}'.format(time_series_name))  
        axes[4].legend(loc='upper left')
        axes[4].set_title('Trend component of decomposition for 
          {}'.format(time_series_name))
        axes[4].set_ylabel(series_col)
        axes[4].set_xlabel(time_df.index.name)
        axes[5].plot(decomposed_trend.seasonal, 'r-', label='Seasonal data for
          {}'.format(time_series_name))  
        axes[5].legend(loc='center left', bbox_to_anchor=(0,1))
        axes[5].set_title('Seasonal component of decomposition for 
          {}'.format(time_series_name))
        axes[5].set_ylabel(series_col)
        axes[5].set_xlabel(time_df.index.name)

Calculates the log
differencing data

for the outlier plotDecomposes the series to get the trend component, 
seasonality component, and the residuals as NumPy series

Extracts the start and end values of the 
index to allow for plotting horizontal lines

Wrapper around matplotlib.pyplot.plot to 
allow for setting graph styling and a more 
efficient rendering of plot cells

Slight adjustment for rendering
the plots to ensure that the titles

and axis labels don’t overlap

Plot of the
raw data to
ave a visual
ference for
ll the other

plots

Outlier data
plot (log diff) Autocorrelation plot to

provide insight for tuning
(along with the partial

autocorrelation) for
autoregressive models

Partial autocorrelation plot to
provide insight for tuning

autoregressive models

Plot of the
extracted

trend from
the series

Plot of the
seasonality
signal from

the series
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        axes[6].plot(decomposed_trend.resid, 'r.', label='Residuals data for 
          {}'.format(time_series_name))  
        axes[6].hlines(0.0, df_index_start, df_index_end, 'black', 
          label='Series Center')
        axes[6].legend(loc='center left', bbox_to_anchor=(0,1))
        axes[6].set_title('Residuals component of decomposition for 
          {}'.format(time_series_name))
        axes[6].set_ylabel(series_col)
        axes[6].set_xlabel(time_df.index.name)
        plt.savefig(image_name, format='svg')     
        plt.tight_layout()
    return fig                      

Now let’s see what that code produces. Figure 5.12 is the result of executing the fol-
lowing code.

ewr = get_airport_data('EWR', DATA_PATH)  
ewr = apply_index_freq(ewr, 'MS')         
ewr_plots = stationarity_tests(ewr, 'Domestic Passengers', 'Newark Airport', 

12, 'newark_domestic_plots.svg', 48, 0.05)  

Now we’re finally ready to start model evaluations. We have some standard visualiza-
tions that are wrapped up nicely in reusable functions, we know which airports are
going to be adjudicated for the test, and the tooling that we’ve developed will ensure
that each experimental test will be using the same set of visualizations and data pro-
cessing steps. We’ve eliminated much of the boilerplate code that might have been
developed, and reduced the time to get started on the core problem that we’re trying
to solve: forecasting.

  We’ll be building additional standard visualizations for the modeling phase when
we start that in the next chapter. For now, we can guarantee one thing: the teams
won’t be reinventing the wheel or using copy and paste too much.

 
 
 
 
 
 

Listing 5.14 Trend visualization for Newark domestic passengers

Plot of the
residuals
from the

series

Saves the figure for 
later reference and 
for presentationsReturns the composed 

figure in case additional 
processing is desired

From the original source 
dataset, acquires the data for 
EWR (Newark International 
Airport)

Applies the frequency 
on the date index of 
the DataFrame

Generates the snapshot charts for the
time series specified (domestic

passengers) for Newark
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Our raw data
for Newark
domestic
passengers

Here’s that
autocorrelation
plot. Looks like
significance
extends to 26
lags.

And the partial
autocorrelation
plot. Having large
cyclic significant
values indicates
a higher-order
moving average
term in this
series.

The trend
component

The extracted
seasonality
component

Residuals of the
series (data that
is not captured in
the trend or the
seasonality)—
latent influences.

Figure 5.12 The full trend visualization suite for model preparation, applied to Newark 
International Airport domestic passenger travel data
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Summary
 Thorough research of potential approaches to solve a problem involves time-

constrained evaluation through dataset statistical analysis, model API review,
API documentation perusal, rapid prototyping, and objective comparison. 

 Gaining a deep understanding of candidate feature data through appropriate
statistical evaluation and visualization will help uncover issues early. Starting
with a clean and well-defined state of familiarity with the training data for a
project will eliminate costly rework later in the project’s development cycle. 



Experimentation
in action: Testing and

evaluating a project
The preceding chapter covered all the preparatory actions that should be taken to
minimize the risks associated with an experimentation phase of a project. These
range from conducting research that informs the options available for solving the
problem to building useful functions that the team members can leverage during
the prototyping phase. We will continue the previous scenario throughout this
chapter, a time-series modeling project for airport passenger demand forecasting,
while focusing on methodologies to be applied to experimental testing that will
serve to reduce the chances of project failure.

 We will spend time covering testing methodologies simply because this stage of
project development is absolutely crucial for two primary reasons. First, at one
extreme, if not enough approaches are tested (evaluated critically and objectively),
the chosen approach may be insufficient to solve the actual problem. At the other
extreme, testing too many options to too great a depth can result in an experimen-
tal prototyping phase that risks taking too long in the eyes of the business. 

This chapter covers
 Evaluating potential approaches for an ML project

 Objectively selecting an approach for a project’s 
implementation
159
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 By following a methodology that aims to rapidly test ideas, using uniform scoring
methods to achieve comparability between approaches, and focusing on evaluation of
the performance of the approaches rather than the absolute accuracy of the predic-
tions, the chances of project abandonment can be reduced.

 Figure 6.1 compares the two extremes of prototyping within an ML project. The
middle ground, the moderate approach, has shown the highest success rates with the
teams that I’ve either led or worked with.

 As this diagram shows, the extreme approaches on either side frequently result
in polar opposite problems. On the left side, there exists an extremely high proba-
bility for project cancellation due to a lack of faith on the part of the business the
business in the DS team’s ability to deliver a solution. Barring a case of extreme
good luck, the solution that the team haphazardly selected and barely tested is likely
not going to be even remotely optimal. Their implementation of their solution is
equally likely to be poor, expensive, and fragile.

 On the other side of the diagram, however, there exists a different problem
entirely. The academic-influenced thoroughness on display here is admirable and
would work well for a team conducting original research. For a DS team working in
industry, though, the sheer volume of time required to thoroughly evaluate all possi-
ble solutions to a problem will delay the project far longer than most companies
have patience for. Customized feature engineering for each approach, full evalua-
tion of available models in popular frameworks, and, potentially, the implementation
of novel algorithms are all sunk costs. While they are more scientifically rigorous as a
series of actions to take, the time spent building each of these approaches in order
to properly vet which is most effective means that other projects aren’t being worked
on. As the old adage goes, time is money, and spending time building out fully
fledged approaches to solve a problem is expensive from both a time and a money
perspective.

 For the purposes of exploring an effective approach in an applications-focused
manner, we will continue with the preceding chapter’s scenario of time-series model-
ing. In this chapter, we’ll move through the middle ground of figure 6.1 to arrive at
the candidate approach that is most likely to result in a successful MVP.
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Figure 6.1 The sliding scale of approaches to ML solution prototyping work 
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6.1 Testing ideas
At the conclusion of chapter 5, we were left at a stage where we were ready to evaluate
the different univariate modeling approaches for forecasting passengers at airports.
The team is now ready to split into groups; each will focus on implementations of the
various researched options that have been discovered, putting forth their best efforts
not only to produce as accurate a solution as they can, but also to understand the
nuances of tuning each model. 

 Before everyone goes off to hack through the implementations, a few more stan-
dard tooling functions need to be developed to ensure that everyone is evaluating the
same metrics, producing the same reports, and generating the appropriate visualiza-
tions that can easily show the benefits and drawbacks of the disparate approaches.
Once these are completed, the teams can then get into the task of evaluating and
researching each of their assigned modeling tasks, all using the same core functional-
ity and scoring. Figure 6.2 gives an overview of typical utilities, functionality, and stan-
dards that should be adhered to during the model prototyping phase of a project.

 As mentioned in section 5.2, this path of actions is generally focused on supervised
learning project work. A prototyping phase for, say, a CNN would look quite a bit dif-
ferent (with far more front-loaded work in building human-readable evaluations of
the model performance, particularly if we’re talking about a classifier). But in gen-
eral, these pre-work actions and approaches to prototyping different solutions will
save weeks of frustrating rework and confusion if adhered to.

Resist the temptation to achieve perfection at this stage
As data scientists, our natural inclination in all of our work is to build solutions that
are as optimal and mathematically correct as possible. This is an important drive to
have, but it should be the goal for the project as a whole. During early testing phases,
having a drive for perfection can actually be a detriment to the success of a project. 

While the project’s business sponsors share the same desire to have the best pos-
sible solutions, their visibility into this solution is focused only on the eventual
approach that you decide upon. They are also focused on the time required to
develop this solution (as well as its cost). They have no visibility into what you’re
doing to figure out the best solution, and don’t really care how many things you’ve
tested on the way to discovering an optimal solution. 

It is best, at this stage of prototyping and testing approaches, to eschew your innate
desire to fully explore all options to solve a problem and instead focus on efficient
means of finding the most probable approach. By adjusting focus in this way and
shifting your paradigm to thinking of the time to deliver as the second-most important
factor in the project, you will ensure a higher chance of the solution being allowed to
progress further along the path to production.
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6.1.1 Setting guidelines in code

In chapter 5, we looked at and developed a set of visualization tools and basic data
ingestion and formatting functions that each team can use. We built these for two pri-
mary purposes:

 Standardization—So that each team is generating identical plots, figures, and
metrics to allow for a coherent comparison between the different approaches

 Communication—So that we can generate referenceable visualizations to demon-
strate to the business how our modeling efforts are solving the problem

It is critically important to meet these two needs starting at this phase of project work.
Without standardization, we run the risk of making poor decisions on which approach
to go with for the MVP (and the subsequent fully developed solution). In addition, we
risk wasting time by multiple teams that, instead of testing their approaches, are build-
ing implementations that are effectively identical to a visualization that in essence
does the same thing. Without the communication aspect, we would be left with either
confusing metric score values to report, or, in the worst case, raw code to show to the
business. Either approach would be a recipe for disaster in a demonstration meeting. 

Always be prepared with non-confusing plots
One of the earliest lessons that I learned as a fledgling data scientist (back before
we were called that) was that not every person in a company has an appetite for sta-
tistics. There is no better way to learn this than by spouting off the veracity of a solu-
tion that you’ve spent months working on by claiming some obscure (to them, not to
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tracking
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Figure 6.2 The prototyping phase work elements and their functions 
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Before the teams break out and start developing their assigned solutions too intensely
in their respective silos, we could stand to have one final analysis done by the larger
team to help inform how well their predictions are performing in a visual sense. Keep
in mind that, as we discussed in chapter 4, at the conclusion of this phase of experi-
mentation the team will need to present its findings in a way that can be easily
digested by a non-ML and nontechnical audience. 

 One of the most effective ways of achieving this communication is through simple
visualizations. Focusing on showing the results of the approach’s output with clear
and simple annotations can not only benefit the early phases of testing but also can be
used to report on performance of the solution later, when it is in production. Avoid-
ing confusing reports and tables of metrics with no visual cue to explain what they
mean will ensure clear and concise communication with the business.

BASELINE COMPARISON VISUALIZATION

To have a basic reference for more-complex models, it can be beneficial to see what
the simplest implementation produces; then we can see if whatever we come up with
can do better than that. This baseline, for the purposes of time-series modeling, can
take the form of a simple moving average and an exponentially smoothed average.
Neither of these two approaches would be applicable for the forecasting needs of the
project, but their output results can be used to see, within the holdout period for vali-
dation, if our more sophisticated approaches will be an improvement.

 To create a visualization that the teams can use to see these relationships for sim-
pler algorithms, we first have to define an exponential smoothing function, as shown

(continued)

us) accuracy score, confidence interval, or other mathematical metric to an executive
who is providing funding for a project. 

As a species, we yearn for order and patterns in the world. Negentropy (a term coined
by Leon Brillouin) is a natural evolutionary tendency that is effectively programmed
into us. Because of this, visual representations of data, particularly when crafted to
simplify a highly complex system, are always going to be more effective as a commu-
nications tool. 

I can’t recommend strongly enough that for any particular solution that a data scien-
tist is working on, a great deal of thought and energy should be spent thinking of, and
building, the most effective and easy-to-comprehend visualization that conveys the
respective predictive power of the algorithms in use (or developed from scratch) to
solve the targeted business problem. This isn’t to say that everyone in the business
units is going to be ignorant of the metrics used; rather, the point is that a visual rep-
resentation is always going to be more powerful in conveying information about an
ML solution than any other means. 

To quote the original conveyer of the idea, Henrik Ibsen, “A thousand words leave not
the same deep impression as does a single deed.” In other words, conveniently
adapted by Fred R. Barnard, “a picture is worth a thousand words.”
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in the next listing. Keep in mind that this is all designed both to standardize the work
of each team and to build an effective communication tool for conveying the success
of the project to the business.

def exp_smoothing(raw_series, alpha=0.05):  
    output = [raw_series[0]]              
    for i in range(1, len(raw_series)):     
        output.append(raw_series[i] * alpha + (1-alpha) * output[i-1])
    return output

A complementary function is needed for additional analytics purposes to generate a
metric and error estimation for these simple modeling fits for the time series. The fol-
lowing listing provides a method for calculating the mean absolute error for the fit, as
well as for calculating the uncertainty intervals (yhat values).

from sklearn.metrics import mean_absolute_error
def calculate_mae(raw_series, smoothed_series, window, scale):
    res = {}        
    mae_value = mean_absolute_error(raw_series[window:], 
      smoothed_series[window:])  
    res['mae'] = mae_value
    deviation = np.std(raw_series[window:] - smoothed_series[window:])  
    res['stddev'] = deviation
    yhat = mae_value + scale * deviation        
    res['yhat_low'] = smoothed_series – yhat    
    res['yhat_high'] = smoothed_series + yhat
    return res

NOTE Throughout these code listings, import statements are shown where
needed above functions. This is for demonstration purposes only. All import
statements should always be at the top of the code, whether writing in a note-
book, a script, or in an IDE as modules.

Now that we’ve defined the two functions in listings 6.1 and 6.2, we can call them
in another function to generate not only a visualization, but a series of both the
moving average and the exponentially smoothed data. The code to generate this

Listing 6.1 Exponential smoothing function to generate a comparison forecast

Listing 6.2 Mean absolute error and uncertainty 

alpha is the smoothing parameter, providing dampening 
to the previous values in the series. (Values close to 1.0 
have strong dampening effects, while conversely, values 
near 0.0 are not dampened as much.)

Adds the starting value from the 
series to initiate the correct index 
positions for the traversal

Iterates through the series, applying 
the exponential smoothing formula to 
each value and preceding value

Instantiates a dictionary to place 
the calculated values in for the 
purposes of currying

Uses the standard sklearn mean_absolute_error 
function to get the MAE between the raw data 
and the smoothed series

Calculates the
standard deviation

of the series
differences to
calculate the
uncertainty

threshold (yhat)

Calculates the standard 
baseline yhat value for the 
differenced series

Generates a low and high yhat 
series centered around the 
smoothed series data



166 CHAPTER 6 Experimentation in action: Testing and evaluating a project

g 
reference data and an easily referenceable visualization for each airport and passen-
ger type follows.

def smoothed_time_plots(time_series, time_series_name, image_name, 
smoothing_window, exp_alpha=0.05, yhat_scale=1.96, style='seaborn', 
plot_size=(16, 24)):

    reference_collection = {}    
    ts = pd.Series(time_series)
    with plt.style.context(style=style):
        fig, axes = plt.subplots(3, 1, figsize=plot_size)  
        plt.subplots_adjust(hspace=0.3)
        moving_avg = ts.rolling(window=smoothing_window).mean()  
        exp_smoothed = exp_smoothing(ts, exp_alpha)   
        res = calculate_mae(time_series, moving_avg, smoothing_window, 
          yhat_scale)   
        res_exp = calculate_mae(time_series, exp_smoothed, smoothing_window, 
          yhat_scale)   
        exp_data = pd.Series(exp_smoothed, index=time_series.index)  
        exp_yhat_low_data = pd.Series(res_exp['yhat_low'], 
          index=time_series.index)
        exp_yhat_high_data = pd.Series(res_exp['yhat_high'], 
          index=time_series.index)
        axes[0].plot(ts, '-', label='Trend for {}'.format(time_series_name))
        axes[0].legend(loc='upper left')
        axes[0].set_title('Raw Data trend for {}'.format(time_series_name))
        axes[1].plot(ts, '-', label='Trend for {}'.format(time_series_name))
        axes[1].plot(moving_avg, 'g-', label='Moving Average with window: 
          {}'.format(smoothing_window))
        axes[1].plot(res['yhat_high'], 'r--', label='yhat bounds')
        axes[1].plot(res['yhat_low'], 'r--')
        axes[1].set_title('Moving Average Trend for window: {} with MAE of: 
          {:.1f}'.format(smoothing_window, res['mae']))  
        axes[1].legend(loc='upper left')
        axes[2].plot(ts, '-', label='Trend for {}'.format(time_series_name))
        axes[2].legend(loc='upper left')
        axes[2].plot(exp_data, 'g-', label='Exponential Smoothing with alpha: 
          {}'.format(exp_alpha))
        axes[2].plot(exp_yhat_high_data, 'r--', label='yhat bounds')
        axes[2].plot(exp_yhat_low_data, 'r--')
        axes[2].set_title('Exponential Smoothing Trend for alpha: {} with MAE 
          of: {:.1f}'.format(exp_alpha, res_exp['mae']))
        axes[2].legend(loc='upper left')
        plt.savefig(image_name, format='svg')
        plt.tight_layout()
        reference_collection['plots'] = fig
        reference_collection['moving_average'] = moving_avg
        reference_collection['exp_smooth'] = exp_smoothed
        return reference_collection

Listing 6.3 Generating smoothing plots

Currying dictionary for 
data return values

Simple time-
series movin
average 
calculation

Calls the
function

defined in
listing 6.1

Calls the
function

defined in
listing 6.2 for

the simple
moving
average

series

Calls the
function

defined in
listing 6.2

for the
exponentially

smoothed
trend

Applies the pandas
index date series to

the non-indexed
exponentially

smoothed series
(and the yhat series

values as well)

Uses string interpolation with numeric 
formatting so the visualizations are 
more legible
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We call this function in the next listing. With this data and the visualization prebuilt,
the teams can have an easy-to-use and standard guide to reference throughout their
modeling experimentation.

ewr_data = get_airport_data('EWR', DATA_PATH)
ewr_reference = smoothed_time_plots(ewr_data['International Passengers'], 

'Newark International', 'newark_dom_smooth_plot.svg', 12, exp_alpha=0.25)

When it’s executed, this code will give the subteams a quick reference visualization
(and the series data to compare with from the moving average and exponentially
weighted moving average smoothing algorithm), shown in figure 6.3.

 The goal in wrapping this boilerplate visualization code into a function (as shown
in listing 6.3 and used in listing 6.4) at this stage is twofold:

 Portability—Each team can be given this function as a referenceable bit of code
that can be used as a dependency to its work, ensuring that everyone is generat-
ing the exact same visualizations.

 Preparing for production—This code, as a function, can be easily ported into a
visualization class as a method that can be used for not only this project, but
also other forecasting projects in the future.

The focus on spending a marginal amount of time at creating reusable code may not
seem worthwhile at this point, particularly with the focus that we’ve been giving to
timeliness of delivery for the solution prototype. But rest assured, as projects grow in
scope and the complexity extends far beyond a simple forecasting problem, the rela-
tively small effort made at this point to prepare for modularized code now will save a
great deal of time later.

STANDARD METRICS

The last thing the team needs to implement before moving to the model experi-
mentation is the standardized measurement of the forecasting predictions to hold-
out validation data. This effort is to eliminate any chance of debate regarding the
effectiveness of each implementation. We’re effectively streamlining the adjudica-
tion of each implementation’s merits by way of standardization, which will not only
save time in meetings, but also provide a strong scientific methodology to the com-
parison of each. 

 If were we to leave each team to determine its own optimal evaluation metrics,
comparing them to one another would be nigh impossible, leading to rework of tests
and further project delays. If we were to accumulate enough of these avoidable delays,
we could dramatically increase the possibility of project abandonment.

 
 
 

Listing 6.4 Calling the reference smoothing function for series data and visualizations
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Uncluttered
visualization for
the raw data

Configuration
settings for the
fit and scoring
metric

Simple moving
average trend
with boundsyhat

on the fit

Exponential
smoothing fit
with yhat

boundaries

Raw data trend for Newark International

Moving average trend for window: 12 with MAE of: 59297.0

Exponential smoothing trend for alpha: 0.5 with MAE of: 30463.2

Figure 6.3 Reference trends visualization based on the usage of the smoothed_time_plots() function, as 
shown in listing 6.4 
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In section 5.1.3, we covered the agreed-upon metrics that the team will be using to
score models: R-squared, MSE, RMSE, MAE, MAPE, and explained variance. To save a
great deal of time for each subteam that will be focused on implementing the model-
ing tests, we should build a few functions that will make scoring and standardized
reporting of the results much easier.

 First, we need to actually implement MAPE, as it is not readily available as a scoring
metric in Python libraries (at the time of this writing). This metric is of critical impor-
tance to assessing the overall quality of predictions across so many different time
series, as it is a scaled and standardized value that can be used to compare against dif-
ferent forecasts without having to account for the magnitude of the series values. 

 It shouldn’t, however, be used as the only measurement metric, as we discussed
earlier in planning for our experimentation. Having multiple metrics recorded for
each experiment being conducted is going to pay dividends if we need to evaluate pre-
vious experiments based on a different metric. The following listing shows a basic
MAPE implementation.

 
 
 

Arguing over metrics sounds silly, right?
Yes. Yes, it most certainly does. 

Have I seen it done? Yes, I have. 

Have I done it? Shamefully, yes, and I wish I had those hours of my life back to use
more fruitfully.

Have I endured it as a recipient? I most certainly have.

Have I seen it be the cause of a project being cancelled? No, that’s ridiculous. 

What needs to be mentioned is that time is finite. When building a solution to solve
a business problem, only so many delays can be allowed to occur before the busi-
ness unit will either continue doing what it’s been doing up until the DS team was
involved, or will flat-out call for a cancellation of the project and basically refuse to
ever work with the team again. 

Avoidable and superfluous delays surrounding sustained arguments about which
metric to use to evaluate a model are flat-out silly, particularly when we consider that
it’s such a trivial investment of time to calculate all the metrics for a model evaluation
and have their referenceable scores preserved for post hoc evaluation at any time in
the future. Just collect all that are relevant to the problem you’re trying to solve (with
the notable exception mentioned earlier—if the metric is of such computational com-
plexity to prove noticeably expensive to acquire, make sure it’s worthwhile to capture
before writing the code for it). Adapting the code to support such flexibility is in align-
ment with Agile principles, permitting a rapid pivot without requiring a large refactor-
ing to change the functionality.
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e 
def mape(y_true, y_pred):
    return np.mean(np.abs((y_true - y_pred) / y_true)) * 100

Now that we have that defined, we can create a simple series scoring function that will
calculate all the agreed-upon metrics without having to litter all of the experimenta-
tion code bases with manual implementations of each calculation. This function will
also allow us to embed these calculations into our visualizations without having to con-
stantly redefine standard metric calculations throughout the code. The standard met-
ric function that we’ll be using is shown next.

from sklearn.metrics import explained_variance_score, mean_absolute_error, 
mean_squared_error, r2_score  

def calculate_errors(y_true, y_pred):          
    error_scores = {}                          
    mse = mean_squared_error(y_true, y_pred)   
    error_scores['mae'] = mean_absolute_error(y_true, y_pred)
    error_scores['mape'] = mape(y_true, y_pred)  
    error_scores['mse'] = mse
    error_scores['rmse'] = sqrt(mse)
    error_scores['explained_var'] = explained_variance_score(y_true, y_pred)
    error_scores['r2'] = r2_score(y_true, y_pred)
    return error_scores

Conspicuously absent from this function is a print statement. This is by design for two
distinctly different reasons. 

 First, we want to use the dictionary-encapsulated score metrics for the visualiza-
tion we’re going to build for the teams to use; therefore, we don’t want to have the
values simply printed to stdout. Second, it’s a bad practice to have stdout reporting
in functions and methods, as this will create more work for you later when develop-
ing a solution. 

 Digging through code prior to a release to production to scrub out print state-
ments (or convert them to logging statements) is tedious, error-prone, and if missed,
can have performance impacts on production solutions (particularly in lazily evalu-
ated languages). In addition, in production, no one will ever read stdout, leaving the print
statements as nothing more than needlessly executed code.

 

Listing 6.5 Simple MAPE implementation

Listing 6.6 Standard error calculations for scoring forecast data

Imports and utilizes as many standard scoring 
implementations as possible that are available. 
There’s no reason to reinvent the wheel.

Passes in the actual series and the 
predicted series for the forecasting 
validation time period

Instantiates a dictionary construct for storing the scores 
for use elsewhere (notice the absence of print statements)

Local variable declaration (since the mse value 
will be stored and used for the rmse metric)

Calculation and usage of the map
calculation defined in listing 6.5
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For the final pre-modeling work, we need to build a quick visualization and metric-
reporting function that will give each team a standard and highly reusable means of
evaluating the prediction performance for each model. The following listing shows a
simple example, which we will be utilizing during the model experimentation phase
in section 6.1.2.

def plot_predictions(y_true, y_pred, time_series_name, value_name, 
image_name, style='seaborn', plot_size=(16, 12)):  

    validation_output = {} 
    error_values = calculate_errors(y_true, y_pred)   
    validation_output['errors'] = error_values        
    text_str = '\n'.join((
        'mae = {:.3f}'.format(error_values['mae']),
        'mape = {:.3f}'.format(error_values['mape']),

Print statements and why they’re terrible for ML
Honestly, print statements are bad for all software. The only notable exception is
for temporary debugging of code. If you want to check the state of something complex
during runtime, they can be a great help. Aside from that specific use case, they
should be avoided at all costs. 

The problem is that I see them everywhere: printed row counts, printed scoring met-
rics, printed lengths of arrays and lists, printed hyperparameters being tested,
printed sources and sinks for I/O operations, and printed configurations for argu-
ments supplied to methods. They’re all equally useless (and most are actively detri-
mental to your team’s infrastructure budget).

Blog posts, hello worlds, and basic Getting Started guides for APIs use them liberally
to showcase an immediate and gratifying result for those getting into a new language,
topic, or API, but once you’ve become marginally familiar with the syntax and usage,
these should always be removed from code. The reason is simple: you’re never going
to look at those print statements ever again outside of experimentation and devel-
opment. Littering them around in code will leave confusing and hard-to find refer-
ences within stdout, indicating where the code is going to be running in production,
which generally means that once a run is over, the information is lost forever. 

The better approach for information associated with an ML run is to persist the data
to a location that can be easily queried or visually referenced. That way, the informa-
tion that you painstakingly collect for the purpose of the print statement can be
stored for later reference, plotting, or for system control for automated processes. 

Do yourself a favor and, if you really need to print things during experimentation,
make sure that print statements are present only in experimental script code. The
better alternative is to log the results in code, or, as we will cover in the next chapter,
a service like MLflow.

Listing 6.7 Prediction forecast plotting with error metrics

Sets the inputs to be indexed series values 
instead of a DataFrame input with field names 
to keep the function more generic

Calls the function created in listing 6.6 
to calculate all of the agreed-upon error 
metrics for the project

Adds the error metrics to 
the output dictionary for 
use outside of simply 
producing a visualization
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        'mse = {:.3f}'.format(error_values['mse']),
        'rmse = {:.3f}'.format(error_values['rmse']),
        'explained var = {:.3f}'.format(error_values['explained_var']),
        'r squared = {:.3f}'.format(error_values['r2']),
    ))   
    with plt.style.context(style=style):
        fig, axes = plt.subplots(1, 1, figsize=plot_size)
        axes.plot(y_true, 'b-', label='Test data for 
          {}'.format(time_series_name))
        axes.plot(y_pred, 'r-', label='Forecast data for 
          {}'.format(time_series_name))      
        axes.legend(loc='upper left')
        axes.set_title('Raw and Predicted data trend for 
          {}'.format(time_series_name))
        axes.set_ylabel(value_name)
        axes.set_xlabel(y_true.index.name)
        props = dict(boxstyle='round', facecolor='oldlace', alpha=0.5)   
        axes.text(0.05, 0.9, text_str, transform=axes.transAxes, fontsize=12, 
          verticalalignment='top', bbox=props)    
        validation_output['plot'] = fig
        plt.savefig(image_name, format='svg')
        plt.tight_layout()
    return validation_output

Now, after creating these basic functions to accelerate our experimentation work, we
can finally begin the process of testing various forecasting algorithms for our time-
series work. 

6.1.2 Running quick forecasting tests

The rapid testing phase is by far the most critical aspect of prototyping to get right. As
mentioned in this chapter’s introduction, it is imperative to strive for the middle
ground—between not testing enough of the various approaches to determine the tun-
ing sensitivity of each algorithm, and spending inordinate amounts of time building a
full MVP solution for each approach. Since time is the most important aspect of this phase,
we need to be efficient while making an informed decision about which approach
shows the most promise in solving the problem in a robust manner.

 Freshly armed with useful and standardized utility functions, each team can work
on its respective approaches, rapidly testing to find the most promising model. The
team has agreed that the airports under consideration for modeling tests are JFK,
EWR, and LGA (each team needs to test its model and tuning paradigms on the same
datasets so a fair evaluation of each approach can occur). 

 Let’s take a look at what the teams will be doing with the different model approaches
during rapid testing, what decisions will be made about the approaches, and how the
teams can quickly pivot if they find that the approach is going nowhere. The explor-
atory phase is going to not only uncover nuances of each algorithm but also illumi-
nate aspects of the project that might not have been realized during the preparatory
phase (covered in chapter 5). It’s important to remember that this is to be expected
and that during this rapid testing phase, the teams should be in frequent communication

Generates the 
string that will 
be applied to 
a bounding 
box element 
superimposed 
on the graph

Plots the overlays of the 
actual and forecasted 
prediction data onto 
the same graph with 
different colors

Creates a text box
that shows all error

scores along with the
plotted data

Writes the text 
contents into the 
text bounding box
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with one another when they discover these problems (see the following sidebar for
tips on effectively managing these discoveries).

WAIT A MINUTE . . . HOW ARE WE GOING TO CREATE A VALIDATION DATASET?
One group drew the proverbial short straw in the model-testing phase with a forecast-
ing approach to research and test that isn’t particularly well understood by the team.
Someone on the team found mention of using a VAR to model multiple time series
together (multivariate endogenous series modeling), and thus, this group sets out to
research what this algorithm is all about and how to use it.

 The first thing that they do is run a search for “vector autoregression,” which
results in a massive wall of formulaic theory analysis and mathematical proofs cen-
tered primarily around macro-econometrics research and natural sciences utilizations
of the model. That’s interesting, but not particularly useful if they want to test out the
applications of this model to the data quickly. They next find the statsmodels API doc-
umentation for the model. 

 The team members quickly realize that they haven’t thought about standardizing
one common function yet: the split methodology. For most supervised ML problems,
they’ve always used pandas split methodologies through DataFrame slicing or utilizing

A call for a referee during hackathons
Some of my most exciting DS work has occurred in the rapid prototyping phase of a
project. It’s exciting to see the creativity that’s generated and the intensity of groups
of brilliant minds working together to build a solution to a business problem previ-
ously thought to be unsolvable.

With all of the chaos of the day (or days, depending on the complexity of the problem)
of a hackathon, it is important to have a moderator for the event. Whether it be the
team lead, manager, lead data scientist, or the most senior individual technical con-
tributor to the group, the important thing is to set one person aside from the work to
serve as a communicator among the groups. 

This person’s role is to discuss what is being worked on, provide advice, and transfer
knowledge that has been gained among the groups. This person shouldn’t be actively
working on any of the solutions because of the importance of the arbiter role. They
should be spending time moving from group to group, asking brief but pointed ques-
tions, and helping provide advice on alternate strategies in case a team gets stuck. 

We’ll see throughout this exercise of rapid prototyping in this section that findings
that come up in one team can apply to other teams. Having a neutral technical party
available to disperse this information is key. 

Whether the prototyping phase is gamified or not, the important point to remember
is that the entire team is, after all, working for the same company. Everyone will even-
tually be focused on the approach that wins out through the MVP, development, and
production phases of the solution. There’s really nothing to be gained by having an
aggressive and highly competitive competition. 
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the high-level random split APIs, which use a random seed to select rows for training
and test datasets. However, for forecasting, they realize that they haven’t had to do
datetime splitting in quite some time and need a deterministic and chronological split
method to get accurate forecast validation holdout data. Since the dataset has an
index set from the ingestion function’s formatting of the DataFrame, they could prob-
ably craft a relatively simple splitting function based on the index position. What they
come up with is in the following listing.

from dateutil.parser import parse
def split_correctness(data, train, test):   
    assert data.size == train.size + test.size, \   
    "Train count {} and test count {} did not match to source count 

{}".format(train.size, test.size, data.size)

def generate_splits(data, date):              
    parsed_date = parse(date, fuzzy=True)    
    nearest_date = data[:parsed_date].iloc(0)[-1].name   
    train = data[:nearest_date]     
    test = data[nearest_date:][1:]        
    split_correctness(data, train, test)  
    return train, test

This team’s members, being the wonderful stewards of teamwork and comradery
that they know themselves to be, immediately send this function snippet to the
other teams so that they can have an easy single-line methodology for splitting their
data. They even put in a creative fuzzy matching parser in case people want to use
different date formats.

 Just to be sure that they’ve written it correctly, they’re going to do some testing of
their implementation. They want to make sure that they’re actually getting exceptions
raised if the data doesn’t match up correctly. Let’s see what they test in figure 6.4.

Listing 6.8 Time split for train and test datasets (with validation check)

A validation assertion function designed to 
ensure that the splits being conducted 
through the custom function are not dropping 
any rows of data between train and test

Assertions like this are a prelude to “hardened
code” and unit testing. We cover this more in later
chapters, but for this simple example, realize that

we are building a custom splitting function to
ensure that it functions as the user expects.

The function for generating the 
train and test splits for building 
the model and validating it

Might as well allow for creative 
inputs here, right? “June 3rd 
2005” should resolve just like 
“2005-06-03.” If we’re using 
Python, we might as well leverage 
this sort of flexibility. I mean, who 
needs type safety, anyway?

A search function for 
finding the nearest date
(Remember, we have 
monthly data here; what
happens if someone puts
in 2008-04-17? What 
happens if they put in 
2008-04-01? We need to
have the behavior be the
same regardless of which
valid data is passed in.)

Generates the training data up 
to the nearest found date

Generates the test data from 
the next index position after 
where the train left off

Validates that our train
and test splits didn’t

duplicate or drop rows
from the original

source DataFrame.
(We didn’t have to do

that in the fuzzy
parsing portion

because an invalid date
from the parser will

throw an exception.)
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RAPID TESTING OF THE VAR MODEL APPROACH

Now that we have a way to split data into train and test, let’s check back in with the
team that was set up with testing out a VAR model. Without getting into excruciating
detail about what this model can do, the goal of a VAR model is for simultaneous
modeling of multiple time series in a single pass. 

NOTE If you are interested in learning more about these advanced approaches,
there is no better resource than New Introduction to Multiple Time Series Analysis
(Springer, 2006) by Helmut Lütkepohl, the creator of this algorithm.

The team looks at the example on the API docs page and starts to implement a simple
test, shown next.

from statsmodels.tsa.vector_ar.var_model import VAR  
jfk = get_airport_data('JFK', DATA_PATH)

Listing 6.9 A rough first pass at a VAR model

Sort of an
interesting
way of defining
a date, but it
works

We were
expecting this
to fail, and it
did.

Check it out!
It’s our custom
message that
we put in the
assertion!

I mean, obviously
this won’t parse.
(That would be
kind of scary if
it did.)
But it shows the
parser’s exception,
which is why we
don’t have to roll
our own.

OK, that’s kind
of funny:
Shakespearean
parsing. But, hey,
to thine own self
be true.

Figure 6.4 This function validation for custom logic ensures that listing 6.8 functions the way we expect.

There’s our vector autoregressor that 
we’ve been talking about!
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jfk = apply_index_freq(jfk, 'MS')
train, test = generate_splits(jfk, '2006-07-08')     
var_model = VAR(train[['Domestic Passengers', 'International Passengers']]) 
var_model.select_order(12)  
var_fit = var_model.fit()      
lag_order = var_fit.k_ar    
var_pred = var_fit.forecast(test[['Domestic Passengers', 'International 

Passengers']].values[-lag_order:], test.index.size)   
var_pred_dom = pd.Series(np.asarray(list(zip(*var_pred))[0], 

dtype=np.float32), index=test.index)      
var_pred_intl = pd.Series(np.asarray(list(zip(*var_pred))[1], 

dtype=np.float32), index=test.index)              
var_prediction_score = plot_predictions(test['Domestic Passengers'], 
                                        var_pred_dom, 
                                        "VAR model Domestic Passengers JFK", 
                                        "Domestic Passengers", 
                                        "var_jfk_dom.svg")  

The resulting forecast plot in the preceding code, comparing the predicted to actual
data within the holdout validation period, is shown in figure 6.5.

PRO TIP If I had a penny for every time I’ve either created a hot mess like
that shown in figure 6.5 in a prediction (or in algorithm development code),
I wouldn’t be employed right now. I’d be relaxing somewhere with my gor-
geous wife and a half dozen dogs, sipping on a well-chilled cocktail and listen-
ing to the sweet sounds of the ocean lapping at a crystalline shore. Don’t get
discouraged when you generate garbage. We all do it. It’s how we learn.

OK, so that was bad. Not as bad as it could have been (it didn’t predict that there would
be more passengers than the number of humans that had ever lived, for instance), but
it’s pretty much a garbage prediction. Let’s pretend that the team’s constitutional forti-
tude and wisdom are high enough that they are up for digging through the API docu-
mentation and Wikipedia articles to figure out what went wrong. 

Uses our super-sweet split function that
can read all sorts of nonsense that

people want to type in as dates

Configures the VAR model with a vector of 
time-series data. We can model both at the 
same time! Cool? I guess?

The VAR class has an optimizer based on minimizing 
the Akaike information criterion (AIC). This function 
attempts to set a limit on the ordering selection to 
optimize for goodness of fit. We learned this by 
reading the API documentation for this module. 
Optimizing for AIC will allow for the algorithm to test a 
bunch of autoregressive lag orders and select the one 
that performs the best (at least it’s supposed to).

Let’s call fit() on the model and see 
what equation it comes up with.

The documentation said to do this. It’s 
supposed to get the AIC-optimized lag 
order from the fit model.

Generates the predictions. This was a bit tricky to 
figure out because the documentation was super 
vague and apparently few people use this model. 
We noodled around and figured it out, though. 
Here, we’re starting the forecast on the test dataset 
for both series, extracting the pure series from 
them, and forecasting out the same number of 
data points as are in the test dataset.

This hurts my head, and I wrote it. Since we get a
vector of forecasts (a tuple of domestic passenger

predictions and international passenger
predictions), we need to extract the values from
this array of tuples, put them into a list, convert

them to a NumPy array, and then generate a
pandas series with the correct index from the test

data so we can plot this. Whew.

We don’t even use this for plotting (reasons
forthcoming), but this obnoxious copy-pasta is

to be expected from experimental code.

Let’s finally use that
prediction plot code

created in listing 6.7 to see
how well our model did!
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The most important aspect to remember here is that poor results are an expected part of
the rapid testing phase. Sometimes you get lucky and things just work, but the vast major-
ity of the time, things aren’t going to work out well on the first try. The absolute worst
thing to do, after seeing results similar to figure 6.5, would be to classify the approach
as untenable and move on to something else. With some tuning and adjustments to
the approach, this model could be the best solution. If it’s abandoned after a first
attempt of just using default configurations on a raw series of data, the team would
never know that it could be a viable solution. 

 Bearing that extreme in mind, however, the other extreme is just as damaging to
the project’s success. If the team members were to spend days (or weeks) reworking
the approach hundreds of times to get the absolute best result from the model, they
would no longer be working on a prototype; rather, they would be building out an
MVP and sinking a great deal of resources into this single approach. The goal at this
stage is getting a quick answer in a few hours as to whether this one out of many
approaches is worth risking the success of the project.

Let’s get ready to screw some things up
Throughout this chapter, we’ve been looking at building up experiments from a state
of terrible results to something that is pretty OK. This is to be expected in ML. For
any problem that is approached with the tools of ML, many possible avenues could

Those are
pretty bad.

Hahahaha wut.

Let’s read the
DeveloperAPI docs,
shall we? There must
be something we’re
missing here. . . .

Raw and predicted data trend for VAR model Domestic Passengers JFK

Figure 6.5 Probably should have read the API documentation
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During this next round of testing, the team discovers that the fit() method actually
takes parameters. The example that they saw and used as a baseline for the first attempt
didn’t have this defined, so they were unaware of these arguments until they read the
API documentation. They discovered that they can set the lag periodicity to help the
model understand how far back to look when building its autoregressive equations,
which, according to the documentation, should help with building the autoregressive
model’s linear equations.

 Looking back to what they remembered (and recorded, saved, and stored) from
the time-series analysis tasks that they did before starting on modeling, they knew that
the trend decomposition had a period of 12 months (that was the point at which the
residuals of the trend line became noise and not some cyclic relationship that didn’t
fit with the seasonality period). They gave it another go, shown in the next listing.

var_model = VAR(train[['Domestic Passengers', 'International Passengers']])
var_model.select_order(12)
var_fit = var_model.fit(12)  
lag_order = var_fit.k_ar
var_pred = var_fit.forecast(test[['Domestic Passengers', 'International 

Passengers']].values[-lag_order:], test.index.size)
var_pred_dom = pd.Series(np.asarray(list(zip(*var_pred))[0], dtype=np.float32), 

index=test.index)
var_pred_intl = pd.Series(np.asarray(list(zip(*var_pred))[1], dtype=np.float32), 

index=test.index) 

(continued)

solve it. Some are easier to implement than others. For those others, hidden levels
of complexity may not instantly be apparent when reading through API docs, blogs,
and even books. It is inevitable that, for most of us who are naturally fallible humans,
the perfect solution is not going to be found initially. In fact, the first dozen or so
attempts at solving a problem are probably going to be embarrassingly bad.

My general guide to ML development is that for every successful model that I’ve
brought to a production state, I’ve thrown away over a hundred attempts (and gener-
ally a similar factor of the lines of code of the final solution is thrown away in the pro-
cess of building it).

It’s critical as a professional ML engineer to realize that, in the early stages of exper-
imentation, you’ll have some truly (perhaps amusing) failures. Some can be pretty
frustrating, but most give an incredible sense of satisfaction when you finally figure
out the issue and have a less-than-horrible prediction result. Simply embrace the fail-
ures, learn from them, and get a solid feel for how much API documentation you need
to read before writing even your first attempt, to strike the balance between hacking
through a problem blindly and spending weeks learning the API to the same level of
detail as the original authors.

Listing 6.10 Let’s give VAR another shot after we read the docs

There’s the key. Let’s try to set that correctly and see if 
we get something that’s not so embarrassingly bad.

To be thorough, let’s take a look at the other
time series as well (international passengers).
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var_prediction_score = plot_predictions(test['Domestic Passengers'], 
                                        var_pred_dom, 
                                        "VAR model Domestic Passengers JFK", 
                                        "Domestic Passengers", 
                                        "var_jfk_dom_lag12.svg")
var_prediction_score_intl = plot_predictions(test['International Passengers'], 
                                        var_pred_intl, 
                                        "VAR model International Passengers JFK", 
                                        "International Passengers", 
                                        "var_jfk_intl_lag12.svg")  

After running this slightly adjusted test, the team looks at the results, shown in fig-
ure 6.6. They look better than before, certainly, but they’re still just a bit off. Upon a
final review and a bit more research, they find that the VAR model is designed to
handle stationary time-series data only.

 At this point, this team is done with its evaluations. The team members have
learned quite a few things about this API:

 The acquisition of a forecast from this API is complex.
 Running multiple time series through this model seems to have a complemen-

tary effect to the vector passed in. This could prove problematic for divergent
series at the same airport.

 With a vector being required of a similar shape, will this handle airports that
began offering international flights only after they were a domestic hub?

 The loss of resolution in seasonality components means that fine detail in the
predicted trend will be lost if the forecast runs too far in the future.

 The algorithm seems sensitive to the fit() method’s maxlags parameter. This
will require extensive testing and monitoring if used in production.

 The VAR model is not designed to handle nonstationary data. From the earlier
tests, we know that these time series are not stationary, based on the Dickey-
Fuller tests from section 5.2.1 when running code listing 6.10.

Now that this team has finished testing and has a solid understanding of the limita-
tions of this model family (namely, the stationarity issue), it’s time to look into a few
other teams’ progress (don’t worry, we won’t be going through all nine models). Per-
haps they’re having more luck.

 On second thought, let’s just give it one last shot. The team has a day to draw con-
clusions on this model, and a few more hours are still left before the internal deadline
for each team, after all.

 Let’s figure out that stationarity issue quickly and see if we can make the predic-
tions just a little bit better. To convert the time series to a stationary series, we need to
normalize the data by applying a natural log to it. Then, to remove the nonstationary
trend associated with the series, we can use a differencing function to get the rate of
change as the series moves along the timescale. Listing 6.11 is the full code for con-
verting to a differenced scale, running the model fit, and uncompacting the time
series to the appropriate scale.

Let’s plot the international passengers
as well to see how well this model

predicts both.
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While significantly
better than the last
attempt, there
seems to be an
overemphasis on
following the moving
average trend. This
could be a problem if
we select this model.

The same general
effect seems to be
pronounced in the
international
passengers trend as
well. The moving
average component
seems to dominate
the prediction.

An additional concern
is that the seasonality
aspect is gradually lost
as the forecast goes
forward. This could be
a problem.

Raw and predicted data trend for VAR model Domestic Passengers JFK

Raw and predicted data trend for VAR model International Passengers JFK

Figure 6.6 Just because this result of executing listing 6.10 is an order of magnitude better than before doesn’t 
mean that it’s good. 
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l 
y 
f 
jfk_stat = get_airport_data('JFK', DATA_PATH)
jfk_stat = apply_index_freq(jfk, 'MS')
jfk_stat['Domestic Diff'] = np.log(jfk_stat['Domestic Passengers']).diff()  
jfk_stat['International Diff'] = np.log(jfk_stat['International 

Passengers']).diff()  
jfk_stat = jfk_stat.dropna()
train, test = generate_splits(jfk_stat, '2006-07-08')
var_model = VAR(train[['Domestic Diff', 'International Diff']])  
var_model.select_order(6)
var_fit = var_model.fit(12)
lag_order = var_fit.k_ar
var_pred = var_fit.forecast(test[['Domestic Diff', 'International 

Diff']].values[-lag_order:], test.index.size)
var_pred_dom = pd.Series(np.asarray(list(zip(*var_pred))[0], dtype=np.float32), 

index=test.index)
var_pred_intl = pd.Series(np.asarray(list(zip(*var_pred))[1], dtype=np.float32), 

index=test.index)
var_pred_dom_expanded = np.exp(var_pred_dom.cumsum()) * test['Domestic 

Passengers'][0]  
var_pred_intl_expanded = np.exp(var_pred_intl.cumsum()) * test['International 

Passengers'][0]
var_prediction_score = plot_predictions(test['Domestic Passengers'], 
                                        var_pred_dom_expanded, 
                                        "VAR model Domestic Passengers JFK Diff", 
                                        "Domestic Diff", 
                                        "var_jfk_dom_lag12_diff.svg")  
var_prediction_score_intl = plot_predictions(test['International Passengers'], 
                                        var_pred_intl_expanded, 
                                        "VAR model International Passengers JFK
                                         Diff", 
                                        "International Diff", 
                                        "var_jfk_intl_lag12_diff.svg")

Listing 6.11 Stationarity-adjusted predictions with a VAR model

What’s with all of this copying and pasting?
In all of the examples in this section, we’ve been seeing the same lines of code
pasted over and over above each of our iterations of model improvement. Including
all of this in these snippets is not merely to demonstrate a fully built-out code block
that can execute. Rather, it’s a simulation of what many experimental notebooks (or,
if writing Python scripts, the copies of such scripts) will end up looking like as imple-
mentations are tested, individual ideas are iterated upon, and eventually a functional
script of code will produce results that are measurable 

Takes a differencing function of the log
of the series to create a stationary time
series (remember, this is just as we did

for the outlier analysis)

We also have to do the same thing to the other vector 
position series data for international passengers.

Trains the mode
on the stationar
representation o
the data

Converts the stationary data back to the actual scale 
of the data by using the inverse function of a diff(), a 
cumulative sum. Then converts the log scale of the 
data back to linear space by using an exponential. This 
series is set as a diff, though, so we have to multiply 
the values by the starting position value (which is the 
actual value at the start of the test dataset series) in 
order to have the correct scaling. 

Compares the test series
with the expanded

prediction series
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Figure 6.7 shows the final state that this team finds itself in, after having iterated on
the model implementation, gone back to read the documentation fully, and done a
bit of research about how the model works (at an “applications of ML level” at least).
This visualization results from running the code in listing 6.11.

 The first part of the experimentation phase is done. The team has a model that
shows promise and, more important, understands the application of the model and
can tune it properly. The visualizations have been recorded for them to show the
results, and clean example code is written in a notebook that can be referenced for
later use. 

 The people working on this particular model implementation, provided that they
have finished their prototyping before the other groups, can be spread to other teams
to impart some of the wisdom that they have gained from their work. This sharing of
information will also help speed the progress of all the experiments so that a decision
can be made on what approach to implement for the actual project work.

 
 
 
 
 
 

(continued)

This is normal. This is expected in experimentation.

A generally good guideline is to ensure that your experimentation and evaluation code
is relatively well organized, easy to read and follow, and documented with enough
comments that can explain anything particularly complex. Whichever solution is
selected, keeping the code clean enough will facilitate the next phase in develop-
ment. Clean up as you go, delete dead code, and keep a salient structure. 

What you certainly don’t want to do is have out-of-order cells, broken variable depen-
dency chains, and large amounts of commented-out nonfunctional code in a state of
pure distilled chaos littered about a notebook. Trying to piece together a chaotic
experiment is an exercise in frustration and futility, raising the difficulty of an already
complex process (formulating encapsulation design and architecture of production-
grade code) to levels that, in many cases, make it easier to just rewrite everything
from scratch rather than try to salvage what has already been developed.

Having fully functional and cell-level encapsulation isn’t necessarily a bad thing while
in this phase of a project. Provided that the code is cleanly written and correctly for-
matted, this encapsulation can be easier than sifting through dozens (or hundreds!)
of cells to figure out how to get an experiment to run as it did during the rapid proto-
typing phase. It also makes conversion to a class-based or functional programming-
based implementation quite a bit easier.
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The seasonality
component here, now
that we’ve made the
series stationary, is
properly modeled.

The general trend is
quite linear with
the dip in domestic
passenger traffic
during the recession,
which is to be
expected (we’re not
modeling these latent
variables and are
looking at only the
trends themselves).

The peaks are
definitely shifted here.

As in the preceding
chart, the forecasting
trend also has
variable periods and
amplitudes on the
forecast.

Raw and predicted data trend for VAR model Domestic Passengers JFK

Raw and predicted data trend for VAR model International Passengers JFK

Figure 6.7 Result of executing listing 6.11
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RAPID TESTING FOR ARIMA
Let’s pretend for a moment that the ARIMA team members don’t get any tips from
the VAR team when getting started, aside from the train and test split methodology
for the series data to perform scoring of their predictions against holdout data.
They’re beginning the model research and testing phases, using the same function
tools that the other teams are using for data preprocessing and formatting of the date
index, but aside from that, they’re in greenfield territory. 

 The team realizes that one of its first big obstacles is in the required settings for
the ARIMA model, specifically the p (autoregressive parameters), d (differences),
and q (moving average) variables that need to be assigned during model instantia-
tion. Reading through the documentation, the team members realize that the pre-
experimentation work that everyone contributed to already provides a means of find-
ing a place to start for these values. By using the stationarity test visualization function
built in chapter 5’s listing 5.14, we can get the significance values for the autoregres-
sive (AR) parameters. 

 To get the appropriate autocorrelation and partial autocorrelation measurements,
we’re going to have to perform the same difference function on the logarithm of the
time series as the VAR team did in its final model for testing (the VAR team members
were being especially nice and shared their findings) so that we can remove as much
of the noise as we can. Figure 6.8 shows the resulting trend plots.

Wow, that was unpleasant . . . 
It’s important to note how difficult it is for a particular approach to get an acceptable
result. Whether it requires an abnormally large amount of feature engineering for a
model to produce something other than garbage, or has extreme sensitivity to hyper-
parameters, or even uses a confusing and poorly designed API, the difficulties pre-
sented during this phase need to be noted by the team. 

As we will review in section 6.2, the challenges faced in implementing the various
solutions will have a strong bearing on the complexity of developing a production-
capable solution. In addition, these challenges will directly influence the team’s abil-
ity to maintain the solution when it is in production.

It’s good to think about the following topics while going through this phase and to
take notes during the process so that they can be referenced when evaluating the
complexity later:

 Sensitivity to parameter changes.
 Quantity of hyperparameters. (This will affect the optimization of models.)
 Fluency of the API. (Is it standard? Can it be placed into a pipeline?)
 Amount of feature-engineering work that had to be done to get an acceptable

result.
 Adaptability to changes in training and test data volumes. (Did the predictions

fall apart when the split boundary was changed?)
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Much like the VAR team before them, the ARIMA team members spend a few itera-
tions trying different parameters to get results that aren’t tragically poor. We won’t
cover all those iterations (this isn’t a book on time-series modeling, after all). Instead,
let’s look at the final result that they came up with.

from statsmodels.tsa.arima.model import ARIMA
jfk_arima = get_airport_data('JFK', DATA_PATH)
jfk_arima = apply_index_freq(jfk_arima, 'MS')
train, test = generate_splits(jfk_arima, '2006-07-08')
arima_model = ARIMA(train['Domestic Passengers'], order=(48,1,1), 

enforce_stationarity=False, trend='c')  
arima_model_intl = ARIMA(train['International Passengers'], order=(48,1,1), 

enforce_stationarity=False, trend='c')
arima_fit = arima_model.fit()
arima_fit_intl = arima_model_intl.fit()
arima_predicted = arima_fit.predict(test.index[0], test.index[-1])
arima_predicted_intl = arima_fit_intl.predict(test.index[0], test.index[-1])
arima_score_dom = plot_predictions(test['Domestic Passengers'],
                                   arima_predicted,
                                   “ARIMA model Domestic Passengers JFK",
                                   "Domestic Passengers",
                                   "arima_jfk_dom_2.svg"
                                   )
arima_score_intl = plot_predictions(test['Domestic Passengers'],
                                    arima_predicted_intl,
                                    "ARIMA model International Passengers JFK",
                                    "International Passengers",
                                    "arima_jfk_intl_2.svg"
                                    )

Listing 6.12 Final state of the ARIMA experimentation

Looking at these charts
and seeing the position
of initial significance
(points outside the
shaded blue region)
can help select
tuning parameters for
ARIMA-based models.

Autocorrelation and partial autocorrelation plots for the log-diff
JFK domestic passenger time series

Significance at 6, 2,1

18, etc.

First significance at 6

Autocorrelation

Partial autocorrelation

Figure 6.8 Executing the stationarity tests for the lag-diff of the JFK domestic passenger series 

The ordering parameters of (p,d,q). 
The p (period) value was derived 
from the autocorrelation and 
partial autocorrelation analyses 
as a factor of the significant 
values calculated.
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Of particular note is the absence of the stationarity-forcing log and diff actions being
taken on the series. While these stationarity adjustments were tested, the results were
significantly worse than the forecasting that was done on the raw data. (We won’t be
looking at the code, as it is nearly identical to the approaches in listing 6.11.)

 Figure 6.9 shows the validation plots and scores for a few of their tests; the log diff
attempt is on the left (obviously inferior), and the unmodified series being used for
training is on the right. While the right grouping of charts is by no means ideal for the
project solution as is, it certainly gives the broader team an idea of the nuances and
capabilities of an ARIMA model for forecasting purposes.

These results from their testing show promise in both approaches (raw data and
stationarity-enforced manipulations), illustrating that an opportunity exists for better
tuning to make this algorithm’s implementation better. Armed with this knowledge
and the results, this team can be ready to present its findings to the larger team in an
adjudication without spending more precious time on attempting to improve the
results at this stage.

RAPID TESTING OF THE HOLT-WINTERS EXPONENTIAL SMOOTHING ALGORITHM

We’re going to be much briefer with this one (sorry, fans of time-series modeling). For
this model evaluation, the team members wanted to wrap their implementation of the
Holt-Winters exponential smoothing model in a function so that they didn’t have to
keep copying the same code throughout their notebook cells. 

MAPE value
of 2.273.1

Fairly serious
issues exist
with matching
the forecast
magnitude
spikes with
the actual
data.

MAPE value
of 5.938.1

The trend in
the forecast is
entirely missed.
The seasonality
component is
OK, but not
ideal in the
forecast.

MAPE of 20.227.
The shape of the
forecast trend is
pretty solid, but the
intercept is off by a
significant amount.
This is definitely
tuneable.

MAPE of 6.446.
Forecast matches
the test series
much more
closely.

Raw and predicted data trend for ARIMA model Domestic Passengers JFKRaw and predicted data trend for ARIMA model Domestic Passengers JFK

Raw and predicted data trend for ARIMA model International Passengers JFKRaw and predicted data trend for ARIMA model International Passengers JFK

Figure 6.9 Comparison of enforcing stationarity (left) and using the raw data (right) for ARIMA modeling



187Testing ideas

f 
 The reasons that this approach is the preferred way to write even experimental
code will become more obvious in the next chapter. For now, let’s just say that this
team has a few more senior DS members. The next listing shows what they eventually
came up with.

from statsmodels.tsa.holtwinters import ExponentialSmoothing
def exp_smoothing(train, test, trend, seasonal, periods, dampening, smooth_slope, 

damping_slope):
    output = {}
    exp_smoothing_model = ExponentialSmoothing(train,
                                               trend=trend,
                                               seasonal=seasonal,
                                               seasonal_periods=periods,
                                               damped=dampening
                                              )
    exp_fit = exp_smoothing_model.fit(smoothing_level=0.9,
                                      smoothing_seasonal=0.2,
                                      smoothing_slope=smooth_slope,
                                      damping_slope=damping_slope,
                                      use_brute=True,
                                      use_boxcox=False,
                                      use_basinhopping=True,
                                      remove_bias=True
                                     )      
    forecast = exp_fit.predict(train.index[-1], test.index[-1])   
    output['model'] = exp_fit
    output['forecast'] = forecast[1:]    
    return output
jfk = get_airport_data('JFK', DATA_PATH)
jfk = apply_index_freq(jfk, 'MS')
train, test = generate_splits(jfk, '2006-07-08')
prediction = exp_smoothing(train['Domestic Passengers'], test['Domestic 

Passengers'], 'add', 'add', 48, True, 0.9, 0.5)
prediction_intl = exp_smoothing(train['International Passengers'], 

test['International Passengers'], 'add', 'add', 60, True, 0.1, 1.0)  
exp_smooth_pred = plot_predictions(test['Domestic Passengers'], 
                                   prediction['forecast'],
                                   "ExponentialSmoothing Domestic Passengers JFK",
                                   "Domestic Passengers",
                                   "exp_smooth_dom.svg"
                                  )
exp_smooth_pred_intl = plot_predictions(test['International Passengers'], 
                                   prediction_intl['forecast'],
                                   "ExponentialSmoothing International Passengers 
                                    JFK",
                                   "International Passengers",
                                   "exp_smooth_intl.svg"
                                  )

In the process of developing this, this subteam discovers that the API for Holt-Winters
exponential smoothing changed fairly dramatically between versions 0.11 and 0.12

Listing 6.13 Holt-Winters exponential smoothing function and usage

In development, if this model is
chosen, all of these settings (as well

as the others available to this fit
method) will be parameterized and

subject to auto-optimization
with a tool like Hyperopt.

Slightly different 
from the other 
models tested, 
this model 
requires at least 
the last element o
the training data 
to be present for 
the range of 
predictions.

Removes the forecast 
made on the last element 
of the training data series

Uses a longer periodicity for the 
autoregressive element (seasonal_periods) 
because of the nature of the time series of 
that group. In development, if this model is 
chosen, these values will be automatically 
tuned through a grid search or more elegant 
auto-optimization algorithm.
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(0.12.0 was the most recent documentation on the API doc website, and as such,
shows up by default). As a result, team members spend quite a bit of time trying to fig-
ure out why the settings that they try to apply are constantly failing with exceptions
that are the result of renamed or modified parameters. 

 Eventually, they realize that they need to check the version of statsmodels that was
installed to get the correct documentation. (For further reading on versioning in
Python, see the following sidebar.) Figure 6.10 shows the results of this group’s work,
reflecting the most promising metrics yet from any of the groups.

How to quickly figure out the version of a module without a huge fuss
The package manager that we’re using for these examples, Anaconda, has quite a
few modules available. In addition to the base Python itself, hundreds of incredibly
useful tools have been included for ML work. Each has been meticulously collated
such that the respective dependencies are all aligned to work together. 

Because of this, some of the modules may not be as recent as the “stable release”
that the API documentation might have (particularly for projects that are under active
development and do frequent releases). As a result, the docs may not reflect the ver-
sion of the module that you are interacting with.

This isn’t just a Python problem either. Any large open source ecosystem will have
this issue. You’ll encounter this in Java, Scala, R, TensorFlow, Keras, and more. In
Python, however, we can relatively easily get the version information from within the
Python REPL (or a notebook cell).

For the purposes of our examples, let’s check the versioning information for stats-
models. To acquire it, you simply have to figure out the method name (usually a
pseudo-private method) and call it. You can find what these method names might be
called (typically, a variant of __VERSION__, __version, _version, or the like) by
importing the base package, performing a dir(<package name>), and seeing the
naming of it.

For statsmodels, the method name is _version. To print the version information, we
simply type the following in a cell, and it will print to stdout:

import statsmodels
statsmodels._version.get_versions()

At the time of this writing, the latest stable version of statsmodels is 0.12.0, with some
significant changes to the APIs that we’ve been using. Luckily, each release of an open
source software package typically retains older versions of its documentation on its
web page. Just be sure that the correct version is selected when you’re looking at the
docs to make sure that you’re not wasting time implementing something incompatible
with the installed version of the package that you’re running against.

The version that we’re using in this build of Anaconda, though, is 0.11.1. We need
to make sure that we’re looking at that version of the API docs to see the options
with each class that we’re importing for modeling.
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MAPE of 6.485.
Best result yet
for the Domestic
Passengers at JFK.
The seasonality,
periodicity, and
general magnitude
trend shifts are much
more in line with the
test data.

MAPE of 7.8 is by11

far the best result
that’s been seen of
any of the tests for
the international
passenger data. This
is likely going to be a
strong contender to
consider for the
project.

Raw and predicted data trend for ExponentialSmoothing International Passengers JFK

Raw and predicted data trend for ExponentialSmoothing Domestic Passengers JFK

Figure 6.10 Results of the Holt-Winters exponential smoothing tests from listing 6.13. We have a clear 
contender!
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After completing their day-long mini hackathon, the teams collate their results into
simple and easy-to-digest reports on the efficacy of the algorithms’ abilities to forecast
this data. Then the teams meet for a bit of a show-and-tell. 

 Applying the preparation steps defined throughout section 6.1, we can efficiently,
reliably, and objectively compare different approaches. The standardization means
that the team will have a true baseline comparison to adjudicate each approach, while
the time-boxed nature of the evaluations ensures that no team spends too much time
building out an MVP solution (wasting both time and computing resources) without
knowing whether the approach that they’re building is actually the best one.

 We’ve reduced the chances of picking a poor implementation to solve the business
need and have done so quickly. Even though the business unit that is asking for an
answer to their problem is blind to these internal processes, the company will have a
better product by the end because of this methodical approach, as well as one that
meets the project’s deadline. 

6.2 Whittling down the possibilities
How does the team as a whole decide which direction to go in? Recall that in chap-
ters 3 and 4, we discussed that after experimentation evaluation is complete, it’s time
to involve the business stakeholders. We’ll need to get their input, subjective as it may
be, to ensure that they’re going to feel comfortable with the approach and included
in the direction choice, and that their expertise of deep subject area knowledge is
weighed heavily in the decision.

 To ensure a thorough adjudication of the tested potential implementations for the
project, the broader team needs to look at each approach that has been tested and
make a judgment that is based on the following:

 Maximizing the predictive power of the approach
 Minimizing the complexity of the solution as much as is practicable to still solve

the problem
 Evaluating and estimating the difficulty in developing the solution for purposes

of realistic scoping for delivery dates
 Estimating the total cost of ownership for (re)training and inference
 Evaluating the extensibility of the solution

By focusing on each of these aspects during the evaluation phase, the team can dra-
matically reduce risk in the project, collectively deciding on an MVP approach that
will reduce the vast majority of reasons ML projects fail, end up abandoned, or get
cancelled. Figure 6.11 shows each of these criteria and how they fit into the overall
prototyping phase of ML project work.

 Now that you have a solid idea of what a team should be looking at when evaluating
an approach, let’s look at how this team will arrive at a decision on which approach to
implement.
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6.2.1 Evaluating prototypes properly

It’s at this point that most ML teams can let themselves be led astray, specifically in the
sense of presenting only the accuracy that a particular solution brings. We’ve dis-
cussed previously in section 6.1.1 (and listing 6.7) the importance of creating compel-
ling visualizations to illustrate in an easy-to-consume format for both the ML teams
and the business unit, but that’s only part of the story for deciding on one ML
approach versus another. The predictive power of an algorithm is certainly incredibly
important, but it is merely one among many other important considerations to weigh.
As an example, let’s continue with these three implementations (and the others that
we didn’t show for brevity’s sake) and collect data about them so that the full picture
of building out any of these solutions can be explored. 

 The team meets, shows code to one another, reviews the different test runs with
the various parameters that were tested, and assembles an agreed-upon comparison of
relative difficulty. For some models (such as the VAR model, elastic net regressor, lasso
regressor, and RNN), the ML team decides to not even include these results in the
analysis because of the overwhelmingly poor results generated in forecasting. Showing
abject failures to the business serves no useful purpose and simply makes an already
intellectually taxing discussion longer and more onerous. If a full disclosure about the
amount of work involved to arrive at candidates is in order, simply state, “We tried 15
other things, but they’re really not suited for this data” and move on.

 After deliberating over the objective merits of each approach, the internal DS
team arrives at an evaluation matrix similar to figure 6.12. While relatively generic,
the evaluation elements in this matrix can be applied to most project implementa-
tions. In the past, I’ve used selection criteria that are far more detailed and custom-
ized to the type of problem the project is aiming to solve, but a generic one is a good
place to start.

Planning

Evaluation

• Adjudicate each

possible

solution on its

ability to solve

problem

• Evaluate metric

performance of

each solution

• Collect solution

feedback from

SMEs

• Estimate

development

complexity

• Review total

cost of

ownership for

each solution

(training,

inference,

development

time)

• Objective

comparison of

traits (benefits,

detractors, and

risks) for each

solution

• Group blind

voting on

solutions they

didn't work on

• Cross-functional

team decision

on direction for

MVP

• Veto power in

hands of DS

team lead

based on

resourcing,

complexity, and

cost

Estimation Analysis Decision

Analysis (EDA) Prototyping Evaluation

Figure 6.11 Elements of the evaluation phase to guide the path for building the MVP
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As you can see, it’s incredibly important to holistically evaluate an approach on ele-
ments other than its predictive power. After all, the chosen solution will need to be
developed for production, monitored, modified, and maintained for (hopefully) a
long time. Failing to take the maintainability factors into account can land a team with
an incredibly powerful solution that is nearly impossible to keep running.

Estimated
accuracy

Holt-Winters
exponential
smoothing

ARIMA

SARIMAX

Linear
regression

(ridge)

RNN-
TensorFlow

LSTM-
TensorFlow

High, positive High, negative Average Low, positive Low, negative

LEGEND

Sensitivity to
parameter

tunning

Implementation
difficulty

Airport demand forecasting project

Model evaluation matrix

Estimated
cost to train

Estimated
inference

costs

The clear winner

Second easiest
to get working,
but sensitive to
tuning

Complex tuning
parameters for
the seasonality
component and
the exogenous
regressor vector

Best MAPE found
was 4% worse
than exponential
smoothing.
Hard to catch
seasonality
correctly.

Difficult
to forecast far
in advance
accurately

The model that 99% of inexperienced ML teams
will gravitate toward (and experienced teams
will use only for more complex use cases)

Team
familiarity

Figure 6.12 The decision matrix from the results of the experimentation prototyping phase 
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 It’s worthwhile, at the stage after prototyping is done, to think deeply about what
it’s going to be like to build this solution, as well as what total life-cycle ownership will
be like. Is anyone going to want to improve upon it? Will they be able to? Is this some-
thing that will be relatively straightforward to troubleshoot should the predictions
start to become poor? Can we explain why the model made the decisions that it did?
Can we afford to run it?

 If you’re unsure of any of these aspects of the proposed group of solutions, it’s best
to either discuss these topics among the team until consensus is arrived at, or, at the
very least, don’t propose it as a potential solution to the business. The absolutely last
thing that you want from the conclusion of a project is to realize that you’ve built an
abomination that you wish would just silently fade away into nothingness, never to
return and rear its ugly head, pervading your waking and sleepless nights like a haunt-
ing fever dream. Choose wisely at this point, because once you commit, it’s going to be
expensive to pivot to another approach.

6.2.2 Making a call on the direction to go in

Now that the data about the relative strengths and weaknesses of each approach has
been assembled and the modeling approach has been decided upon, the real fun
begins. Since everyone came to the conclusion that Holt-Winters exponential smooth-
ing seems like the safest option for building these forecasts, we can start talking about
architecture and code.

 Before any code is written, though, the team needs to have another planning ses-
sion. This is the time for the hard questions. The most important thing to keep in mind
about these is that they should be answered before committing to a development direction.

QUESTION 1: HOW OFTEN DOES THIS NEED TO RUN?
“How often does this need to run?” is quite possibly the most important question, con-
sidering the type of model that everyone selected. Since this is an autoregressive
model, if the model is not retrained at a high frequency (probably each inference
run), the predictions will not adapt to new factual data coming in. The model looks at
only a univariate series to make its forecasts, so having training that’s as up-to-date as
possible can ensure that the forecasts adapt to the changing trend accurately.

TIP Don’t ever ask the business or any frontend developer, “So, how often
do you need the predictions?” They will usually spout off some ridiculously
short time period. Instead, ask, “At what point will the predictions become
irrelevant?” and work back from there. The difference between a 4-hour SLA
and a 10-millisecond SLA is several hundred thousand dollars of infrastruc-
ture and about six months of work.

The business is going to need to provide a minimum and maximum service-level
agreement (SLA) for the “freshness” of these predictions. Give rough estimates of
how long it will take to develop a solution that supports these SLA requirements, as
well as how expensive the solution will be to run in production.
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QUESTION 2: WHERE IS THE DATA FOR THIS RIGHT NOW?
Since the data is provided by an external data feed, we need to be conscientious about
how to create a stable and reliable ETL ingestion for both the training data and the
imputation (prediction) data. The freshness of this data needs to meet the require-
ments of question 1’s answer (the SLA being requested). 

 We need to bring in the DE team members to ensure that they are prioritizing the
acquisition of this feed long before we’re thinking of going into production for this
project. If they are unable to commit to an acceptable date, we will have to write this
ETL and populate the source tables with this data ourselves, increasing our project
scope, cost, and risk.

QUESTION 3: WHERE ARE THE FORECASTS GOING TO BE STORED?
Are the users going to be issuing business intelligence (BI) style queries to the predic-
tions, fueling analytics visualizations in an ad hoc manner? Then we can probably
write the data to an RDBMS source that we have in-house.

 Is this going to be queried frequently by hundreds (or thousands) of users? Is the
data going to be made available as a service for a web frontend? If so, we’re going to
have to think about storing the predictions as sorted arrays in a NoSQL engine or per-
haps an in-memory store such as Redis. We’ll need to build a REST API in front of this
data if we’re going to be serving to a frontend service, which will increase the scope of
work for this project by a few sprints.

QUESTION 4: HOW ARE WE SETTING UP OUR CODE BASE?
Is this going to be a new project code base, or are we going to let this code live with
other ML projects in a common repo? Are we pursuing a full object-oriented (OO)
approach with the modular design, or will we be attempting to do functional pro-
gramming (FP)? 

 What is our deployment strategy for future improvements? Are we going to use a
continuous integration/continuous deployment (CI/CD) system, GitFlow releases, or
standard Git? Where are our metrics associated with each run going to live? Where are
we going to log our parameters, auto-tuned hyperparameters, and visualizations for
reference?

 It’s not absolutely critical to have answers to all of those questions regarding develop-
ment immediately at this point, but the team lead and architect should be carefully
considering all of these aspects of the project development very soon and should be
making a well-considered set of decisions regarding these elements (we’ll cover this in
the next chapter at length).

QUESTION 5: WHERE IS THIS GOING TO RUN FOR TRAINING?
We probably really shouldn’t run this on our laptops. Seriously. Don’t do it.

 With the number of models involved in this project, we’ll be exploring options for
this in the next chapter and discussing the pros and cons of each.
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QUESTION 6: WHERE IS THE INFERENCE GOING TO RUN?
We really definitely shouldn’t be running this on our laptops. Cloud service provider infra-
structure, on-premises data centers, or ephemeral serverless containers running on
either the cloud or on-prem are really the only option here.

QUESTION 7: HOW ARE WE GOING TO GET THE PREDICTIONS TO THE END USERS?
As stated in the answer to question 3, getting the predictions to the end users is by far
the most overlooked and yet most critical part of any ML project that strives to be
actually useful. Do you need to serve the predictions on a web page? Now would be a
good time to have a conversation with some frontend and/or full-stack developers. 

 Does it need to be part of a BI report? The DE and BI engineering teams should be
consulted now.

 Does it need to be stored for ad hoc SQL queries by analysts? If that’s the case,
you’ve got this. That’s trivial.

QUESTION 8: HOW MUCH OF OUR EXISTING CODE CAN BE USED FOR THIS PROJECT?
If you have utility packages already developed that can make your life easier, review
them. Do they have existing tech debt that you can fix and make better while working
on this project? If yes, then now’s the time to fix it. If you have existing code and
believe it has no tech debt, you should be more honest with yourself.

 If you don’t have an existing utility framework built up or are just getting started
with ML engineering practices for the first time, worry not! We’ll cover what this sort
of tooling looks like in many of the subsequent chapters.

QUESTION 9: WHAT IS OUR DEVELOPMENT CADENCE, AND HOW ARE WE GOING TO WORK ON FEATURES?
Are you dealing with a project manager? Take some time now to explain just how
much code you’re going to be throwing away during this development process. Let
the project manager know that entire stories and epics are going to be dead code,
erased from the face of the earth, never to be seen again. Explain to them the chaos of
ML project work so that they can get through those first four stages of grief and learn
to accept it before the project starts. You don’t need to give them a hug or anything,
but break the news to them gently, for it will shatter their understanding of the nature
of reality.

 ML feature work is a unique beast. It is entirely true that huge swaths of code will
be developed, only to be completely refactored (or thrown away!) when a particular
approach is found to be untenable. This is a stark contrast to “pure” software develop-
ment, in which a particular functionality is rationally defined and can be fairly accu-
rately scoped. Unless part of your project is the design and development of an entirely
new algorithm (it probably shouldn’t be, for your information, no matter how much
one of your team members is trying to convince you that it needs to be), there is no
guarantee of a particular functionality coming out of your code base. 

 Therefore, the pure Agile approach is usually not an effective way of developing
code for ML simply because of the nature of changes that might need to be made
(swapping out a model, for instance, could incur a large, wholesale refactoring that
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could consume two entire sprints). To help with the different nature of Agile as
applied to ML development, it’s critical to organize your stories, your scrums, and
your commits accordingly.

6.2.3 So . . . what’s next?

What’s next is actually building the MVP. It’s working on the demonstratable solution
that has fine-tuned accuracy for the model, logged testing results, and a presentation
to the business showing that the problem can be solved. What’s next is what puts the
engineering in ML engineering. 

 We’ll delve heavily into these topics in the next chapter, continuing with this
peanut-inventory-optimization problem, watching it go from a hardcoded prototype
with marginal tuning to the beginnings of a code base filled with functions, the sup-
port for automatically tuned models, and full logging for each model’s tuning evalua-
tions into MLflow. We’ll also be moving from the world of single-threaded sequential
Python into the world of concurrent modeling capabilities in the distributed system of
Apache Spark.

Summary
 A time-boxed and holistic approach to testing APIs for potential solutions to a

problem will help ensure that an implementation direction for a project is
reached quickly, evaluated thoroughly, and meets the needs of the problem in
the shortest possible time. Predictive power is not the only criteria that matters.

 Reviewing all aspects of candidate methods for solving a problem encourages
evaluating more than predictive power. From maintainability, to implementa-
tion complexity, to cost, many factors should be considered when selecting a
solution to pursue to solve a problem.



Experimentation
in action: Moving

from prototype to MVP
In the preceding chapter, we explored the scenario of testing and evaluating poten-
tial solutions to a business problem focused on forecasting passengers at airports.
We ended up arriving at a decision on the model to use for the implementation
(Holt-Winters exponential smoothing) but performed only a modicum of model
tuning during the rapid prototyping phases.

 Moving from experimental prototyping to MVP development is challenging. It
requires a complete cognitive shift that is at odds with the work done up to this
point. We’re no longer thinking of how to solve a problem and get a good result.
Instead, we’re thinking of how to build a solution that is good enough to solve the
problem in a way that is robust enough so that it’s not breaking constantly. We need
to shift focus to monitoring, automated tuning, scalability, and cost. We’re moving
from scientific-focused work to the realm of engineering.

 

This chapter covers
 Techniques for hyperparameter tuning and the 

benefits of automated approaches

 Execution options for improving the performance 
of hyperparameter optimization
197
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 The first priority when moving from prototype to MVP is ensuring that a solution is
tuned correctly. See the following sidebar for additional details on why it’s so critical
to tune models and how these seemingly optional settings in modeling APIs are actu-
ally important to test.

Hyperparameters are important—very important
One of the most frustrating things to see in ML code bases is an untuned model (a
model that will be generated by using the placeholder defaults provided by the API).
With all of the advanced feature engineering, ETL, visualization work, and coding
effort that is involved in building the rest of the solution, seeing a bare model using
defaults is like buying a high-performance sports car and filling it with regular gas. 

Will it run? Sure. Will it perform well? Nope. Not only will it underperform, but the
chances of it breaking are high once you take it out into the “real world” (in reference
to a model, using it on heretofore unseen data to make predictions).

Some algorithms automatically handle their methodologies in arriving at an optimized
solution, thus requiring no hyperparameters to be overridden. However, the vast
majority have anywhere from a single to dozens of parameters that influence not only
the core functionality of the algorithm’s optimizer (for example, the family parameter
in generalized linear regression will directly influence the predictive performance of
such a model more dramatically than any other hyperparameter), but the way the opti-
mizer executes its search to find the minimum objective function. Some of these
hyperparameters apply only to specific applications of an algorithm—the hyperparam-
eters are applicable only if the variance within the feature vector is extreme or if a
particular distribution is associated with the target variable. But for most of them, the
influence of their set values over the manner in which the algorithm will “learn” an
optimal fit to the data is exceptionally important.

The following graphs are simplified examples of two such critical hyperparameters for
linear regression models. It is impossible to guess where these values should be set,
as each feature vector collection and problem will generally have dramatically differ-
ent optimal hyperparameter settings from others. 

Note that these examples are for demonstration purposes only. The effects on mod-
els for different values set for hyperparameters is not only highly dependent on the
algorithm type being used, but also on the nature of the data contained in the fea-
ture vector and the attributes of the target variable. This is why every model needs
to be tuned.

As you can see, the seemingly optional settings associated with each ML algorithm
actually do matter a great deal in the way the training process executes. Without
changing any of these values and optimizing them, there is little chance of having a
successful ML-based solution to a problem.
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7.1 Tuning: Automating the annoying stuff
Throughout the last two chapters, we’ve been focusing on a peanut forecasting prob-
lem. At the end of chapter 6, we had a somewhat passable prototype, validated on a
single airport. The process used to adjust and tune the predictive performance of the
model was manual and not particularly scientific, and left a large margin between
what is possible for the model’s predictive ability and what we had manually tuned. 

 In this scenario, the difference between OK and very good predictions could be a
large margin of product that we want to stage at airports. Being off in our forecasts,
after all, could translate to many millions of dollars. Spending time manually tuning
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regularization (penalty)
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function as of maximum iterations (poor and
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learning rate parameter too high
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scores on training data and poor
performance on validation and inference data.

Overly generalized fit. Training and
validation loss estimation are likely similar,
but not likely very accurate.

Hyperparameter impacts to overfitting and underfitting
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by just trying a bunch of hyperparameters simply won’t scale for predictive accuracy or
for timeliness of delivery.

 If we want to come up with a better approach than tribal-knowledge guessing for
tuning the model, we need to look at our options. Figure 7.1 shows various approaches
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Figure 7.1 Comparison of hyperparameter tuning approaches
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that DS teams use to tune models, progressing in order from simple (less powerful
and maintainable) to complex (custom framework).

 The top section, manual tuning, is typically how prototypes are built. Manually testing
values of hyperparameters, when doing rapid testing, is an understandable approach.
The goal of the prototype, as mentioned in chapter 6, is getting an approximation of the
tunability of a solution. At the stage of moving toward a production-capable solution,
however, more maintainable and powerful solutions need to be considered.

7.1.1 Tuning options

We know that we need to tune the model. In chapter 6, we saw clearly what happens if
we don’t do that: generating a forecast so laughably poor that pulling numbers from a
hat would be more accurate. However, multiple options could be pursued to arrive at
the most optimal set of hyperparameters. 

MANUAL TUNING (EDUCATED GUESSING)
We will see later, when applying Hyperopt to our forecasting problem, just how diffi-
cult it will be to arrive at the optimal hyperparameters for each model that needs to
be built for this project. Not only are the optimized values unintuitive to guess at,
but each forecasting model’s optimal hyperparameter set is different from that of
other models. 

 Getting even remotely close to optimal parameters with a manual testing method-
ology is unlikely. The process is inefficient, frustrating, and an incredible waste of time
to attempt, as shown in figure 7.2.

TIP Don’t try manual tuning unless you’re working with an algorithm that
has a very small number of hyperparameters (one or two, preferably Boolean
or categorical).

I . . .

I . . .

• Saw in a blog . . .

• Got these values from

the API docs . . .

• Used these the last time

I used algorithm . . .x

. . . and let’s see how

well they work.

Any good?

. . . wish I hadn't wasted all

this time on this.

Tweak some of them

in-line within code
Hope that it’s good

enough and that the

model never drifts

Any good?

Yes

No

Inner monologue

Figure 7.2 The acute pain of manual hyperparameter tuning
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The primary issue with this method is in tracking what has been tested. Even if a sys-
tem was in place to record and ensure that the same values haven’t been tried before,
the sheer amount of work required to maintain that catalog is overwhelming, prone
to errors, and pointless in the extreme. 

 Project work, after the rapid prototyping phase, should always abandon this
approach to tuning as soon as is practicable. You have so many better things to do with
your time, believe me.

GRID SEARCH

A cornerstone of ML techniques, the brute-force-search approach of grid-based test-
ing of hyperparameters has been around for quite some time. To perform a grid
search, the DS will select a set collection of values to test for each hyperparameter.
The grid search API will then assemble collections of hyperparameters to test by creat-
ing permutations of each value from each group that has been specified. Figure 7.3
illustrates how this works, as well as why it might not be something that you would
entertain for models with a lot of hyperparameters.

 As you can see, with high hyperparameter counts, the sheer number of permuta-
tions that need to be tested can quickly become overwhelming. The trade-off, clearly,
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Figure 7.3 Brute-force grid search approach to tuning
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is between the time required to run all of the permutations and the search capability
of the optimization. If you want to explore more of the hyperparameter response
surface, you’re going to have to run more iterations. There’s really no free lunch
here.

RANDOM SEARCH

With all of the grid search’s limitations that hamper its ability to arrive at an optimized
set of hyperparameters, using it can be prohibitively expensive in terms of both time
and money. Were we interested in thoroughly testing all continuously distributed hyper-
parameters in a forecasting model, the amount of time to get an answer, when run-
ning on a single CPU, would be measured in weeks rather than minutes.

 An alternative to grid search, to attempt to simultaneously test the influencing
effects of different hyperparameters at the same time (rather than relying on explicit
permutations to determine the optimal values), is using random sampling of each of
the hyperparameter groups. Figure 7.4 illustrates random search; compare it to fig-
ure 7.3 to see the differences in the approaches.

As you can see, the selection of candidates to test is random and is controlled not
through the mechanism of permutations of all possible values, but rather through a
maximum number of iterations to test. This is a bit of a double-edged sword: although
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the execution time is dramatically reduced, the search through the hyperparameter
space is limited. 

MODEL-BASED OPTIMIZATION: TREE-STRUCTURED PARZEN ESTIMATORS (HYPEROPT)
We face a complex search for hyperparameters in our time-series forecasting model—
11 total hyperparameters, 3 continuously distributed and 1 ordinal—confounding the
ability to effectively search the space. The preceding approaches are either too time-
consuming (manual, grid search), expensive (grid search), or difficult to achieve ade-
quate fit characteristics for validation against holdout data (all of them).

 The same team that brought the paper arguing that random search is a superior
methodology to grid search also arrived at a process for selecting an optimized hyper-
parameter response surface: using Bayesian techniques in a model-based optimization
relying on either Gaussian processes or tree of Parzen estimators (TPEs). The results of

Nerdy arguments about parameter searching
Numerous arguments can be made for why random search is superior to grid-based
search, many of them quite valid. However, the vast majority of examples presented
in online references, examples, and blog posts are still using grid search as a means
to perform model tuning. 

There’s a clear reason for this: it’s fast. No package developer blogger wants to cre-
ate an example that is incredibly complex or time-consuming for their readers to run.
This doesn’t make it a good practice to follow, though. 

Seeing so many grid searches employed in examples has generated the mistaken
impression in many practitioners that it is far more effective at finding good parame-
ters, more so than other approaches. We may also have general entropic aversion,
collectively as humans (we abhor randomness, so a random search must be bad,
right?). I’m not entirely sure.

I can’t emphasize enough, however, how limiting grid search is (and expensive, if you
want to be thorough). I’m not alone in this either; see “Random Search for Hyper-
Parameter Optimization” by James Bergstra and Yoshua Bengio (2012) at www.jmlr
.org/papers/volume13/bergstra12a/bergstra12a.pdf. I generally agree with their
conclusion that grid search is essentially flawed as an approach; since some hyper-
parameters are far more influential in the overall quality of a particular trained model,
those with greater effect get the same amount of coverage as those with negligible
influence, limiting the effective search because of computation time and the cost of
more expansive testing. Random search is, in my opinion, a better approach than grid
search, but it still isn’t the most effective or efficient approach. 

Bergstra and Bengio agree: “Our analysis of the hyperparameter response surface
suggests that random experiments are more efficient because not all hyperparame-
ters are equally important to tune. Grid search experiments allocate too many trials
to the exploration of dimensions that do not matter and suffer from poor coverage in
dimensions that are important.” In the next section, we talk about how they did some-
thing about it by creating a novel algorithm that is truly brilliant.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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their research are provided in the open source software package Hyperopt. Figure 7.5
shows at a high level how Hyperopt works.

This system is nearly guaranteed to outperform even the most experienced DS work-
ing through any of the earlier mentioned classical tuning approaches. Not only is it
remarkably capable of exploring complex hyperparameter spaces, but it can do so in
far fewer iterations than other methodologies. For further reading on this topic, I rec-
ommend perusing the original 2011 whitepaper, “Algorithms for Hyper-Parameter
Optimization” by James Bergstra et al. (http://mng.bz/W76w) and reading the API
documentation for the package for further evidence of its effectiveness (http://hyperopt
.github.io/hyperopt/).

MORE ADVANCED (AND COMPLEX) TECHNIQUES

Anything more advanced than Hyperopt’s TPE and similar automated tuning packages
typically means doing one of two things: paying a company that offers an automated-ML
(autoML) solution or building your own. In the realm of building a custom tuner
solution, you might look into a mixture of genetic algorithms with Bayesian prior
search optimization to create search candidates within the n-dimensional hyperpa-
rameter space that have the highest likelihood of giving a good result, leveraging the
selective optimization that genetic algorithms are known for. 

 Speaking from the perspective of someone who has built one of these autoML
solutions (https://github.com/databrickslabs/automl-toolkit), I cannot recommend
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Figure 7.5 A high-level diagram of how Hyperopt’s tree-structured Parzen estimator algorithm works

https://shortener.manning.com/W76w
http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/
http://hyperopt.github.io/hyperopt/
https://github.com/databrickslabs/automl-toolkit
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going down this path unless you’re building out a custom framework for hundreds (or
more) different projects and have a distinct need for a high-performance and lower-
cost optimization tool specifically customized to solve the sorts of problems that your
company is facing. 

 AutoML is definitely not a palatable option for most experienced DS teams, how-
ever. The very nature of these solutions, being largely autonomous apart from a con-
figuration-driven interface, forces you to relinquish control and visibility into the
decision logic contained within the software. You lose the ability to discover the rea-
soning behind why some features are culled and others are created, why a particular
model was selected, and what internal validations may have been performed on your
feature vector to achieve the purported best results. 

 Setting aside that these solutions are black boxes, it’s important to recognize the
target audience for these applications. These full-featured pipeline-generation tool-
kits are not designed or intended for use by seasoned ML developers in the first place.
They’re built for the unfortunately named citizen data scientist—the SMEs who know
their business needs intimately but don’t have the experience or knowledge to hand-
craft an ML solution by themselves. 

 Building a framework to automate some of the more (arguably) boring and rudi-
mentary modeling needs that your company faces may seem exciting. It certainly can
be. These frameworks aren’t exactly simple to build, though. If you’re going down the
path of building something custom, like an autoML framework, make sure that you
have the bandwidth to do so, that the business understands and approves of this mas-
sive project, and that you can justify your return on a substantial investment of time
and resources. During the middle of a project is not the time to tack on months of
cool work. 

7.1.2 Hyperopt primer

Going back to our project work with forecasting, we can confidently assert that the
best approach for tuning the models for each airport is going to be through using
Hyperopt and its TPE approach.

NOTE Hyperopt is a package that is external to the build of Anaconda we’ve
been using. To use it, you must perform a pip or conda install of the package
in your environment.

Before we get into the code that we’ll be using, let’s look at how this API works from a
simplified implementation perspective. To begin, the first aspect of Hyperopt is in the
definition of an objective function (listing 7.1 shows a simplified implementation of a
function for finding a minimization). This objective function is, typically, a model that
is fit on training data, validated on testing data, scored, and returns the error metric
associated with the predicted data as compared to the validation data.
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import numpy as np
def objective_function(x):    
  func = np.poly1d([1, -3, -88, 112, -5])   
  return func(x) * 0.01                

After we have declared an objective function, the next phase in using Hyperopt is to
define a space to search over. For this example, we’re interested in only a single value to
optimize for, in order to solve the minimization of the polynomial function in listing 7.1.
In the next listing, we define the search space for this one x variable for the function,
instantiating the Trials object (for recording the history of the optimization), and run-
ning the optimization with the minimization function from the Hyperopt API.

optimization_space = hp.uniform('x', -12, 12)    
trials = Trials()                                
trial_estimator = fmin(fn=objective_function,     
                       space=optimization_space,  
                       algo=tpe.suggest,          
                       trials=trials,             
                       max_evals=1000             
)

Listing 7.1 Hyperopt fundamentals: The objective function

Why Hyperopt?
I’m using Hyperopt for this discussion simply because it’s widely used. Other tools
perform similar and arguably more advanced versions of what this package is designed
to do (optimize hyperparameters). Optuna (https://optuna.org) is a rather notable
continuation of the work of the original research that went into building Hyperopt. I
highly encourage you to check it out.

The point of this book isn’t about technology. It’s about the processes that surround
the use of technology. At some point in the not so distant future, a better tech will
come out. A more optimal way of finding optimized parameters will come along. Fur-
therance of the field is something that is constant, inevitable, and rapid. I’m not inter-
ested in discussing how one technology is better than another. Plenty of other books
do that. I’m interested in discussing why it’s important to use something to solve this
problem. Feel free to the choose the something that feels right for you.

Listing 7.2 Hyperopt optimization for a simple polynomial

Defines the objective 
function to minimize

A one-dimensional fourth-
order polynomial equation

that we want to solve for
Loss estimation for 
the minimization 
optimization

Defines the search space—in this case, a uniform sampling
between –12 and 12 for the seed and bounded Gaussian random

selection for the TPE algorithm after the initial seed priors return

Instantiates the Trials 
object to record the 
optimization history

The objective function as 
defined in listing 7.1, passed 
in to the fmin optimization 
function of Hyperopt

The space to 
search, defined 
above (–12 to 
12, uniformly)

The optimization 
algorithm to use—
in this case, tree-
structured Parzen 
estimator

Passes the Trials object into the optimization
function to record the history of the run

The number of optimization runs to
conduct. Since hpopt is iterations-bound,

we can control the runtime of the
optimization in this manner.

https://optuna.org/
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Once we execute this code, we will receive a progress bar (in Jupyter-based note-
books) that will return the best loss that has been discovered throughout the history
of the run as it optimizes. At the conclusion of the run, we will get as a return value
from trial_estimator the optimal setting for x to minimize the value returned from
the polynomial defined in the function objective_function. The following listing
shows how this process works for this simple example.

rng = np.arange(-11.0, 12.0, 0.01)   
values = [objective_function(x) for x in rng]  
with plt.style.context(style='seaborn'):
  fig, ax = plt.subplots(1, 1, figsize=(5.5, 4))
  ax.plot(rng, values)                        
  ax.set_title('Objective function')
  ax.scatter(x=trial_estimator[‘x’], y=trials.average_best_error(), 

marker='o', s=100)      
  bbox_text = 'Hyperopt calculated minimum value\nx: 

{}'.format(trial_estimator['x'])
  arrow = dict(facecolor='darkblue', shrink=0.01, 

connectionstyle='angle3,angleA=90,angleB=45')
  bbox_conf = dict(boxstyle='round,pad=0.5', fc='ivory', ec='grey', lw=0.8)
  conf = dict(xycoords='data', textcoords='axes fraction', arrowprops=arrow, 

bbox=bbox_conf, ha='left', va='center', fontsize=12)
  ax.annotate(bbox_text, xy=(trial_estimator['x'], 

trials.average_best_error()), xytest=(0.3, 0.8), **conf)   
  fig.tight_layout()
  plt.savefig('objective_func.svg', format='svg')

Running this script results in the plot in figure 7.6.
 Linear models frequently have “dips” and “valleys” between parameters and their

loss metrics. We use the terms local minima and local maxima to describe them. If the
parameter search space isn’t explored sufficiently, a model’s tuning could reside in a
local, instead of the global, minima or maxima.

7.1.3 Using Hyperopt to tune a complex forecasting problem

Now that you understand the concepts behind this automated model-tuning package,
we can apply it to our complex forecasting modeling problem. As we discussed earlier
in this chapter, tuning this model is going to be complex if we don’t have some assis-
tance. Not only are there 11 hyperparameters to explore, but the success that we had
in chapter 6 at manually tuning was not particularly impressive. 

 We need something to help us. Let’s let Thomas Bayes lend a hand (or, rather,
Pierre-Simon Laplace). Listing 7.4 shows our optimization function for the Holt-Winters
exponential smoothing (HWES) model for passengers at airports.

 

Listing 7.3 Hyperopt performance in minimizing a simple polynomial function

Generates a range of x values for plotting 
the function defined in listing 7.1 Retrieves the corresponding y 

values for each of the x values 
from the rng collection

Plots the function across 
the x space of rng

Plots the optimized 
minima that Hyperopt 
finds based on our 
search space

Adds an annotation to
the graph to indicate
the minimized value
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def hwes_minimization_function(selected_hp_values, train, test, loss_metric):
    model = ExponentialSmoothing(train,  
                   trend=selected_hp_values['model']['trend'],
                   seasonal=selected_hp_values['model']['seasonal'],
                   seasonal_periods=selected_hp_values['model'][

                'seasonal_periods'],
                   damped=selected_hp_values['model']['damped']
                   )
    model_fit = \  
    model.fit(smoothing_level=selected_hp_values['fit']['smoothing_level'],
                smoothing_seasonal=selected_hp_values['fit'][

             'smoothing_seasonal'],
                damping_slope=selected_hp_values['fit']['damping_slope'],
                use_brute=selected_hp_values['fit']['use_brute'],
                use_boxcox=selected_hp_values['fit']['use_boxcox'],

Listing 7.4 Minimization function for Holt-Winters exponential smoothing

Our fourth-order polynomial: y = x4 – 3x3 – 88x2 + 112x – 5

Local minima
Global minima

Limiting the
search on this
side as well

We have to limit our search space here
(for the sake of plotting for efficiencyand
of search) since this equation goes to
very big numbers of y rather quickly.

Figure 7.6 Using Hyperopt to solve for the minimal value of a simple polynomial

selected_hp_values is a multilevel dictionary. Since w
have two separate sections of hyperparameters to appl

and some of the parameter names are similar, we separate
them between “model” and “fit” to reduce confusion

Instantiates the ExponentialSmoothing class 
as an object, configured with the values that 
Hyperopt will be selecting for each model 
iteration to test

The fit method has its own 
set of hyperparameters that 
Hyperopt will be selecting for 
the pool of models it will 
generate and test.
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A u
num
in t
                use_basinhopping=selected_hp_values['fit'][
             'use_basinhopping'],

                remove_bias=selected_hp_values['fit']['remove_bias']
                )
    forecast = model_fit.predict(train.index[-1], test.index[-1])    
    param_count = extract_param_count_hwes(selected_hp_values)    
    adjusted_forecast = forecast[1:]                                
    errors = calculate_errors(test, adjusted_forecast, param_count) 
    return {'loss': errors[loss_metric], 'status': STATUS_OK}    

As you may recall from chapter 6, when creating the prototype for this algorithm, we
hardcoded several of these values (smoothing_level, smoothing_seasonal, use_brute,
use_boxcox, use_basin_hopping, and remove_bias) to make the prototyping tuning
a bit easier. In listing 7.4, we’re setting all of these values as tunable hyperparameters for
Hyperopt. Even with such a large search space, the algorithm will allow us to explore
the influence of all of them over the predictive capabilities of the holdout space. If
we were using something permutations-based (or, worse, human-short-term-memory-
based) such as a grid search, we likely wouldn’t want to include all of these for the sole
reason of factorially increasing runtime.

 Now that we have our model-scoring implementation done, we can move on to the
next critical phase of efficiently tuning these models,: defining the search space for
the hyperparameters.

hpopt_space = {
    'model': {    
          'trend': hp.choice('trend', ['add', 'mul']),   
          'seasonal': hp.choice('seasonal', ['add', 'mul']),
          'seasonal_periods': hp.quniform('seasonal_periods', 12, 120, 12),
          'damped': hp.choice('damped', [True, False])
    },
    'fit': {
          'smoothing_level': hp.uniform('smoothing_level', 0.01, 0.99),  
          'smoothing_seasonal': hp.uniform('smoothing_seasonal', 0.01, 0.99),

Listing 7.5 Hyperopt exploration space configuration

Generates the forecast for this run of the model to
perform validation and scoring against. We are

forecasting from the point of the end of the training
set to the last value of the test set’s index.

tility function to get the 
ber of parameters (viewable 

he book’s GitHub repository)

Removes the first entry of the 
forecast since it overlaps with the 
training set’s last index entry

Calculates all of the error 
metrics—Akaike information 
criterion (AIC) and Bayesian 
information criterion (BIC), 
newly added metrics, requires 
the hyperparameter count

The only return from the minimization function for
Hyperopt is a dictionary containing the metric under

test for optimization and a status report message from
within the Hyperopt API. The Trials() object will persist
all of the data about the runs and a tuned best model.

For readability’s sake, we’re splitting the configuration 
between the class-level hyperparameters (model) and 
the method-level hyperparameters (fit) since some of 
the names for the two are similar.

hp.choice is 
used for 
Boolean and 
multivariate 
selection 
(choose one 
element from a 
list of possible 
values).

hp.quniform chooses a ran-
dom value uniformly in a

quantized space (in this exam-
ple, we’re choosing a multiple

of 12, between 12 and 120).

hp.uniform selects randomly through the
continuous space (here, between 0.01 and 0.99).
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          'damping_slope': hp.uniform('damping_slope', 0.01, 0.99),
          'use_brute': hp.choice('use_brute', [True, False]),
          'use_boxcox': hp.choice('use_boxcox', [True, False]),
          'use_basinhopping': hp.choice('use_basinhopping', [True, False]),
          'remove_bias': hp.choice('remove_bias', [True, False])
    }
}

The settings in this code are the total sum of hyperparameters available for the
ExponentialSmoothing() class and the fit() method as of statsmodels version 0.11.1.
Some of these hyperparameters may not influence the predictive power of our model.
If we had been evaluating this through grid search, we would likely have omitted them
from our evaluation. With Hyperopt, because of the manner in which its algorithm
provides greater weight to influential parameters, leaving them in for evaluation
doesn’t dramatically increase the total runtime.

 The next step for automating away the daunting task of tuning this temporal
model is to build a function to execute the optimization, collect the data from the
tuning run, and generate plots that we can use to further optimize the search space as
defined in listing 7.5 on subsequent fine-tuning runs. Listing 7.6 shows our final exe-
cution function. 

NOTE Please refer to the companion repository to this book at https://github
.com/BenWilson2/ML-Engineering to see the full code for all of the func-
tions called in listing 7.6. A more thorough discussion is included there in a
downloadable and executable notebook.

def run_tuning(train, test, **params):      
    param_count = extract_param_count_hwes(params['tuning_space'])  
    output = {}
    trial_run = Trials()                            
    tuning = fmin(partial(params['minimization_function'],  
                          train=train, 
                          test=test,
                          loss_metric=params['loss_metric']
                         ), 

Listing 7.6 Hyperopt tuning execution

Because of the volume of configurations used to execute the tuning 
run and collect all the visualizations and data from the optimization, 
we’ll use named dictionary-based argument passing (**kwargs).

To calculate AIC and BIC, we need the
total number of hyperparameters

being optimized. Instead of forcing
the user of this function to count

them, we can extract them from the
passed-in Hyperopt configuration

element tuning_space.

The Trials() object records each of the, well, trials of 
different hyperparameter experiments and allows 
us to see how the optimization converged.

fmin() is the main method for initiating a Hyperopt 
run. We’re using a partial function as a wrapper 
around the per-model static attributes so that the 
sole differences between each Hyperopt iteration is 
in the variable hyperparameters, keeping the other 
attributes the same. 

https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
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                  params['tuning_space'],          
                  algo=params['hpopt_algo'],       
                  max_evals=params['iterations'],  
                  trials=trial_run
                 )
    best_run = space_eval(params['tuning_space'], tuning)         
    generated_model = params['forecast_algo'](train, test, best_run)  
    extracted_trials = extract_hyperopt_trials(trial_run, 

params['tuning_space'], params['loss_metric'])     
    output['best_hp_params'] = best_run
    output['best_model'] = generated_model['model']
    output['hyperopt_trials_data'] = extracted_trials
    output['hyperopt_trials_visualization'] = \ 

generate_hyperopt_report(extracted_trials, params['loss_metric'], 
params['hyperopt_title'], params['hyperopt_image_name'])   

    output['forecast_data'] = generated_model['forecast']
    output['series_prediction'] = build_future_forecast(
                                                generated_model['model'],
                                                params['airport_name'],
                                                params['future_forecast_

                                                  periods'],
                                                params['train_split_cutoff_

                                                  months'],
                                                params['target_name']
                                                       )    
    output['plot_data'] = plot_predictions(test, 
                                           generated_model['forecast'], 
                                           param_count,
                                           params['name'], 
                                           params['target_name'], 
                                           params['image_name'])   
    return output

NOTE To read more about how partial functions and Hyperopt work, see the
Python documentation at https://docs.python.org/3/library/functools.html
#functools.partial and the Hyperopt doc and source code at http://Hyperopt
.github.io/Hyperopt/.

NOTE Listing 7.6’s custom plot code is available in the companion repository
for this book; see the Chapter7 notebook at https://github.com/BenWilson2/
ML-Engineering.

The tuning space 
defined in listing 7.5

The optimization algorithm for Hyperopt 
(random, TPE, or adaptive TPE), which can 
be automated or manually controlled

The number of models to test 
and search through to find 
an optimal configuration

Extracts the best
model from the

Trials() object

Rebuilds the best 
model to record 
and store

Pulls the tuning 
information out of the 
Trials() object for plotting

Plots the trial 
history)

Builds the future forecast for as many points
as specified in the future_forecast_periods

configuration value

Plots the forecast over the
holdout validation period to

show test vs. forecast
(updated version from

chapter 6 visualization)

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
http://Hyperopt.github.io/Hyperopt/
http://Hyperopt.github.io/Hyperopt/
http://Hyperopt.github.io/Hyperopt/
https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
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Executing the call to plot_predictions() from listing 7.6 is shown in figure 7.7. Calling
generate_hyperopt_report() from listing 7.6 results in the plot shown in figure 7.8.

By using Hyperopt to arrive at the best predictions on our holdout data, we’ve opti-
mized the hyperparameters to a degree that we can be confident of having a good
projection of the future state (provided that no unexpected and unknowable latent
factors affect it). Thus, we’ve addressed several key challenging elements in the opti-
mization phase of ML work by using automated tuning:

 Accuracy—The forecast is as optimal as it can be (for each model, provided that
we select a reasonable search space and run through enough iterations).

 Timeliness in training—With this level of automation, we get well-tuned models
in minutes instead of days (or weeks).

damping_slope = 0.4247
remove_bias = False
smoothing_level = 0.173
smoothing_seasonal = 0.5604
use_basinhopping = True
use_boxcox = True

seasonal = ‘add‘
seasonal_periods = 24
trend = ‘add‘
use_brute = False
damped = False

Discovered best parameters

It is nigh impossible to get
results this good without
using automated
hyperparameter tuning.

Not too shabby!

Raw and predicted data trend for Passengers HPOPT JFKTotal

Figure 7.7 Prediction backtesting on the most recent data from the total time series (x-axis zoomed 
for legibility)
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 Maintainability—Automating tuning keeps us from having to manually retrain
models as the baseline shifts over time.

 Timeliness in development—Since our code is pseudo-modular (using modular-
ized functions within a notebook), the code is reusable, extensible, and capable
of being utilized through a control loop to build all the models for each airport
with ease.

NOTE The extracted code samples that we’ve just gone through with
Hyperopt are part of a much larger end-to-end example hosted within the
book’s repository in the Notebooks section for chapter 7. In this example,
you can see the automated tuning and optimization for all airports within
this dataset and all utility functions that are built to support this effective
tuning of models.

JFK_Hyperopt training report

Figure 7.8 Sampled results of hyperparameters for the Hyperopt trials run
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7.2 Choosing the right tech for the platform and the team
The forecasting scenario we’ve been walking through, when executed in a virtual
machine (VM) container and running automated tuning optimization and forecast-
ing for a single airport, worked quite well. We got fairly good results for each airport.
By using Hyperopt, we also managed to eliminate the unmaintainable burden of man-
ually tuning each model. While impressive, it doesn’t change the fact that we’re not
looking to forecast passengers at just a single airport. We need to create forecasts for
thousands of airports. 

 Figure 7.9 shows what we’ve built, in terms of wall-clock time, in our efforts thus
far. The synchronous nature of each airport’s models (in a for loop) and Hyperopt’s
Bayesian optimizer (also a serial loop) means that we’re waiting for models to be built
one by one, each next step waiting on the previous to be completed, as we discussed in
section 7.1.2.

EWR airport

model training

JFK airport

model training

LGA airport

model training

SWF airport

model training

Hyperparameter

test 1

Hyperparameter

test 2

Hyperparameter

test n

For an acceptable level of
forecast accuracy, training iterations
will likely be in the range of 250–500
for these datasets.

Why did it take so long?
Well, we built ,600 models.1

Best model

forecast for

SWF

Total runtime

on single-core VM

for 400 iterations:

3 hours, 34 minutes

Hyperparameter

test 1

Hyperparameter

test 2

Hyperparameter

test n

Best model

forecast for

LGA

Hyperparameter

test 1

Hyperparameter

test 2

Hyperparameter

test n

Best model

forecast

for JFK

Hyperparameter

test 1

Hyperparameter

test 2

Hyperparameter

test n

Best model

forecast for

EWR

Figure 7.9 Serial tuning in single-threaded execution 
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This problem of ML at scale, as shown in this diagram, is a stumbling block for many
teams, mostly because of complexity, time, and cost (and is one the primary reasons
why projects of this scale are frequently cancelled). Solutions exist for these scalability
issues for ML project work; each involves stepping away from the realm of serial exe-
cution and moving into the world of distributed, asynchronous, or a mixture of both
of these paradigms of computing. 

 The standard structured code approach for most Python ML tasks is to execute in
a serial fashion. Whether it be a list comprehension, a lambda, or a for (while) loop,
ML is steeped in sequential execution. This approach can be a benefit, as it reduces
memory pressure for many algorithms that have a high memory requirement, particu-
larly those that use recursion, which are many. But this approach can also be a handi-
cap, as it takes much longer to execute, since each subsequent task is waiting for the
previous to complete. 

 We will discuss concurrency in ML briefly in section 7.4 and in more depth in later
chapters (both safe and unsafe ways of doing it). For now, with the issue of scalabil-
ity with respect to wall-clock time for our project, we need to look into a distributed
approach to this problem in order to explore our search spaces faster for each airport.
It is at this point that we stray from the world of our single-threaded VM approach and
move into the distributed computing world of Apache Spark. 

7.2.1 Why Spark?

Why use Spark? In a word: speed. 
 For the problem that we’re dealing with here, forecasting each month the passen-

ger expectations at each major airport in the United States, we’re not bound by SLAs
that are measured in minutes or hours, but we still need to think about the amount of
time it takes to run our forecasting. There are multiple reasons for this, chiefly

 Time—If we’re building this job as a monolithic modeling event, any failures in
an extremely long-running job will require a restart (imagine the job failing
after it was 99% complete, running for 11 days straight).

 Stability—We want to be very careful about object references within our job and
ensure that we don’t create a memory leak that could cause the job to fail.

 Risk—Keeping machines dedicated to extremely long-running jobs (even in
cloud providers) risks platform issues that could bring down the job.

 Cost—Regardless of where your virtual machines are running, someone is pay-
ing the bill for them.

When we focus on tackling these high-risk factors, distributed computing offers a
compelling alternative to serial looped execution, not only because of cost, but mostly
because of the speed of execution. Were any issues to arise in the job, unforeseen
issues with the data, or problems with the underlying hardware that the VMs are run-
ning on, these dramatically reduced execution times for our forecasting job will give
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us flexibility to get the job up and running again with predicted values returning
much faster.

But how is Spark going to help us with this problem? We can employ two relatively
straightforward paradigms, shown in figure 7.10. We could use more than just these
two, but we’re going to start with the straightforward and less complex ones for now;
the more advanced approaches are mentioned in section 7.4.

 The first approach is to leverage the workers within the cluster to execute parallel
evaluation of the hyperparameters. In this paradigm, our time-series dataset will need
to be collected (materialized in full) from the workers to the driver. Limitations exist
(serialization size of the data is currently limited to 2 GB at the time of this writing),
and for many ML use cases on Spark, this approach shouldn’t be used. For time-series
problems such as this one, this approach will work just fine. 

 In the second approach, we leave the data on the workers. We utilize pandas_udf
to distribute concurrent training of each airport on each worker by using our stand-
alone Hyperopt Trials() object, just as we did in chapter 6 when running on a single-
core VM. 

 Now that we’ve defined the two paradigms for speeding up hyperparameter tuning
from a high-level architectural perspective, let’s look at the process execution (and
trade-offs of each) in the next two subsections.

 
 

A brief note on Spark
Spark is a large topic, a monumentally large ecosystem, and an actively contributed-to
open source distributed computing platform based on the Java Virtual Machine (JVM).
Because this isn’t a book about Spark per se, I won’t go too deep into the inner work-
ings of it. 

Several notable books have been written on the subject, and I recommend reading
them if you are inclined to learn more about the technology: Learning Spark by Jules
Damji et al. (O’Reilly, 2020), Spark: The Definitive Guide by Bill Chambers and Matei
Zaharia (O’Reilly, 2018), and Spark in Action by Jean-Georges Perrin (Manning,
2020). 

Suffice it to say, in this book, we will explore how to effectively utilize Spark to perform
ML tasks. Many examples from this point forward are focused on leveraging the
power of the platform to perform large-scale ML (both training and inference). 

For the current section, the information covered is relatively high level with respect to
how Spark works for these examples; instead, we focus entirely on how we can use
it to solve our problems.
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7.2.2 Handling tuning from the driver with SparkTrials

While figure 7.10 shows the physical layout of the operations occurring within a Spark
cluster for handling distributed tuning with SparkTrials(), figure 7.11 shows the
execution in more detail. Each airport that needs to be modeled is iterated over on
the driver, its optimization handled through a distributed implementation wherein
each candidate hyperparameter collection is submitted to a different worker.

 This approach works remarkably well with a minimal amount of modification to
achieve a similar level of hyperparameter space searching as compared to the single-
core approach, needing only a small increase to the number of iterations as the level
of parallelism is increased.

NOTE Increasing the number of iterations as a factor of the parallelism level
is not advisable. In practice, I generally increase the iterations by a simple

4. Return each iteration

to the driver, building

the next set of

hyperparameters to test.

Worker 1 Worker 2 Workern

Worker 1 Worker 2 Workern

Driver

Driver

2. Workers start single-machine

Hyperopt runs in serial on each

worker.

3. Each worker finds the best

model for each grouping key

(airport) and returns a forecast

dataset to a Spark DataFrame.

2. Convert Spark DataFrame to pandas

with collect using ..toPandas()

1. Data read in

by workers

Data on driver
Hyperopt tuning on workers using SparkTrials()

Data on workers
Hyperopt tuning on workers using andTrials() pandas_udf

3. Send Hyperopt runs to workers.

1. Driver tells workers to shuffle data and put each airport’s data on a single worker

Figure 7.10 Scaling hyperparameter tuning using pandas_udf on Spark 
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adjustment of the number of single-core iterations + (parallelism factor / 0.2).
This is to give a larger pool of prior values to pull from. With parallel runs
executing asynchronously, each boundary epoch that is initiated will not have
the benefit of in-flight results that a synchronous execution would.

This is so critical to do because of the nature of the optimizer in Hyperopt. Being a
Bayesian estimator, the power of its ability to arrive at an optimized set of parameters
to test lies directly in its access to prior data. If too many runs are executing concur-
rently, the lack of data on their results translates to a higher rate of searching through
parameters that have a lower probability to work well. Without the prior results, the
optimization becomes much more of a random search, defeating the purpose of using
the Bayesian optimizer. 

Barrier stage

Hyperparameter

test 1

Hyperparameter

test 2

Hyperparameter

test 3

Hyperparameter

test 4
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test 5
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test 6

SparkTrials()
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airport model

training

Barrier stage

Final results

Figure 7.11 Logical architecture of utilizing Spark workers to distribute Hyperopt test iterations for 
hyperparameter optimization 
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 This trade-off is negligible, though, particularly when compared to the rather
impressive performance achievable by utilizing n workers to distribute each iteration
to. To port our functions over to Spark, only a few changes need to happen for this
first paradigm.

NOTE To follow along fully with a referenceable and executable example of
distributed hyperparameter optimization with Apache Spark, please see the
companion Spark notebook in the book’s repository entitled Chapter8_1,
which we will be using throughout the next chapter as well.

The first thing that we’ll need to do is to import the module SparkTrials from
Hyperopt. SparkTrials is a tracking object that allows for the cluster’s driver to main-
tain a history of all the experiments that have been attempted with different hyperpa-
rameter configurations executed on the remote workers (as opposed to the standard
Trials object that tracks the history of runs conducted on the same VM).

 Once we have the import completed, we can read in our data by using a native
Spark reader (in this instance, our data has been stored in a Delta table and registered
to the Apache Hive Metastore, making it available through the standard database and
table name identifiers). Once we have the data loaded onto the workers, we can then
collect the series data to the driver, as shown in the following listing.

delta_table_nm = 'airport'     
delta_database_nm = 'ben_demo'      
delta_full_nm = "{}.{}".format(delta_database_nm, delta_table_nm)  
local_data = spark.table(delta_full_nm).toPandas()     

WARNING Be careful about collecting data in Spark. With the vast majority of
large-scale ML (with a training dataset that could be in the tens or hundreds
of gigabytes), a .toPandas() call, or any collect action at all, in Spark will fail.
If you have a large collection of data that can be iterated through, simply fil-
ter the Spark DataFrame and use an iterator (loop) to collect chunks of the
data with a .toPandas() method call to control the amount of data being
processed on the driver at a time.

After running the preceding code, we are left with our data residing on the driver,
ready for utilizing the distributed nature of the Spark cluster to conduct a far more
scalable tuning of the models than what we were dealing with in our Docker container
VM from section 7.1. The following listing shows the modifications to listing 7.6 that
allow us to run in this manner.

Listing 7.7 Using Spark to collect data to the driver as a pandas DataFrame

Defines the name of the Delta table that 
we’ve written the airport data to Defines the name of the Hive 

database that the Delta table 
is registered to

Interpolates the database name 
and the table name into standard 
API signature for data retrieval 

Reads in the data with the workers from Delta (there is no
ability to directly read in data to the driver from Delta), and

then collects the data to the driver node as a pandas DataFrame
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t 
n, 
def run_tuning(train, test, **params):
    param_count = extract_param_count_hwes(params['tuning_space'])
    output = {}
    trial_run = SparkTrials(parallelism=params['parallelism'], 

timeout=params['timeout'])  
    with mlflow.start_run(run_name='PARENT_RUN_{}'.format(params[

'airport_name']), nested=True):  
      mlflow.set_tag('airport', params['airport_name'])  
      tuning = fmin(partial(params['minimization_function'], 
                            train=train, 
                            test=test,
                            loss_metric=params['loss_metric']
                           ), 
                    params['tuning_space'], 
                    algo=params['hpopt_algo'], 
                    max_evals=params['iterations'], 
                    trials=trial_run,
                    show_progressbar=False
                   )    
      best_run = space_eval(params['tuning_space'], tuning)
      generated_model = params['forecast_algo'](train, test, best_run)
      extracted_trials = extract_hyperopt_trials(trial_run, 
        params['tuning_space'], params['loss_metric'])
      output['best_hp_params'] = best_run
      output['best_model'] = generated_model['model']
      output['hyperopt_trials_data'] = extracted_trials
      output['hyperopt_trials_visualization'] = 
        generate_Hyperopt_report(extracted_trials, 
                               params['loss_metric'], 
                               params['hyperopt_title'], 
                               params['hyperopt_image_name'])
      output['forecast_data'] = generated_model['forecast']
      output['series_prediction'] = build_future_forecast(
                                          generated_model['model'],
                                          params['airport_name'],
                                          params['future_forecast_periods'],
                                          params['train_split_cutoff_months'],
                                          params['target_name'])
      output['plot_data'] = plot_predictions(test, 
                                             generated_model['forecast'], 
                                             param_count,
                                             params['name'], 
                                             params['target_name'], 
                                             params['image_name'])
      mlflow.log_artifact(params['image_name'])  
      mlflow.log_artifact(params['hyperopt_image_name'])  
    return output

Little modification needed to happen to the code to get it to work within the distributed
framework of Spark. As a bonus (which we will discuss in more depth in section 7.3), we

Listing 7.8 Modifying the tuning execution function for running Hyperopt on Spark

Configures Hyperopt to use SparkTrials() instead of Trials(), setting the 
number of concurrent experiments to run on the workers in the cluster and 
the global time-out level (since we’re using Futures to submit the tests)

Configures MLflow to 
log the results of each 
hyperparameter test 
within a parent run for 
each airport 

Logs the airport 
name to MLflow 
to make it easier 
to search 
through the 
results of the 
tracking service

The minimization function
remains largely unchanged

with the exception of
adding in MLflow logging of
both the hyperparameters

and the calculated loss
metrics that are being

tested for the iteration
within the child run.

Logs the generated 
prediction plots for 
the best model to the 
parent MLflow run

Logs the Hyperop
report for the ru
written to the 
parent MLflow 
run ID
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can also log information with ease to MLflow, solving one of our key needs for creat-
ing a maintainable project: provenance of tests for reference and comparison. 

 Based on the side-by-side comparison of this methodology to that of the run con-
ducted in our single-core VM, this approach meets the goals of timeliness that we were
searching for. We’ve reduced the optimization phase of this forecasting effort from
just over 3.5 hours to, on a relatively small four-node cluster, just under 30 minutes
(using a higher Hyperopt iteration count of 600 and a parallelization parameter of 8
to attempt to achieve similar loss metric performance). 

 In the next section, we will look at an approach that solves our scalability problem
in a completely different way by parallelizing the per airport models instead of paral-
lelizing the tuning. 

7.2.3 Handling tuning from the workers with a pandas_udf

With the previous section’s approach, we were able to dramatically reduce the execu-
tion time by leveraging Spark to distribute individual hyperparameter-tuning stages.
However, we were still using a sequential loop for each airport. As the number of air-
ports grows, the relationship between total job execution time and airport count is
still going to increase linearly, no matter how many parallel operations we do within
the Hyperopt tuning framework. Of course, this approach’s effectiveness has a limit,
as raising Hyperopt’s concurrency level will essentially negate the benefits of running
the TPE and turn our optimization into a random search. 

 Instead, we can parallelize the actual model phases themselves, effectively turning
this runtime problem into a horizontally scaling problem (reducing the execution
time of all airports’ modeling by adding more worker nodes to the cluster), rather
than a vertically scaling problem (iterator-bound, which can improve runtime only by
using faster hardware). Figure 7.12 illustrates this alternative architecture of tackling
our many-model problem through the use of pandas_udf on Spark.
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Figure 7.12 Using Spark to control a fleet of contained VMs to work on each forecast asynchronously
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hy
f

Here, we’re using Spark DataFrames—a distributed dataset based on resiliently dis-
tributed dataset (rdd) relations residing on different VMs—to control the grouping-by
of our primary modeling key (in this case, our Airport_Code field). We then pass this
aggregated state to a pandas_udf that will leverage Apache Arrow to serialize the
aggregated data to workers as a pandas DataFrame. This creates a multitude of con-
current Python VMs that are all operating on their own airport’s data as if they were a
single VM. 

 A trade-off exists here, though. To make this approach work, we need to change
some things with our code. Listing 7.9 shows the first of these changes: a movement of
the MLflow logging logic to within our minimization function, the addition of logging
arguments to our function arguments, and the generation of the forecast plots for
each iteration from within the minimization function so that we can see them after
the modeling phase is completed.

def hwes_minimization_function_udf(selected_hp_values, train, test, 
loss_metric,  airport, experiment_name, param_count, name, target_name, 
image_name, trial):   

    model_results = exp_smoothing_raw_udf(train, test, selected_hp_values)
    errors = calculate_errors(test, model_results['forecast'], 
      extract_param_count_hwes(selected_hp_values))
    with mlflow.start_run(run_name='{}_{}_{}_{}'.format(airport,   
        experiment_name,str(uuid.uuid4())[:8], len(trial.results))):
      mlflow.set_tag('airport', airport)                    
      mlflow.set_tag('parent_run', experiment_name)    
      mlflow.log_param('id', mlflow.active_run().info.run_id)  
      mlflow.log_params(selected_hp_values)                   
      mlflow.log_metrics(errors)                   
      img = plot_predictions(test, 
                       model_results['forecast'], 
                       param_count,
                       name, 
                       target_name, 
                       image_name)
      mlflow.log_artifact(image_name)   
    return {'loss': errors[loss_metric], 'status': STATUS_OK}

Since we’re going to be executing a pseudo-local Hyperopt run from directly within
the Spark workers, we need to create our training and evaluation logic directly within
a new function that will consume the grouped data passed via Apache Arrow to the
workers for processing as a pandas DataFrame. The next listing shows the creation of
this user-defined function (udf).

 

Listing 7.9 Modifying the minimization function to support a distributed model approach

Adds arguments to 
support MLflow logging 

Initializes each iteration to its own MLflow
run with a unique name to prevent collisions

Adds 
searchable tags
for the MLflow 
UI search 
functionality

Searchable
tags for the
collection of

all models
that have

been built for
a particular
execution of

the job

Records the 
iteration number 
of Hyperopt

Records the
perparameters
or a particular

iteration

Logs the loss
metrics for the

iteration

Saves the image (in PNG format) generated 
from the plot_predictions function that builds 
the test vs. forecast data
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output_schema = StructType([
  StructField('date', DateType()),
  StructField('Total_Passengers_pred', IntegerType()),
  StructField('Airport', StringType()),
  StructField('is_future', BooleanType())
])        

@pandas_udf(output_schema, PandasUDFType.GROUPED_MAP)    
def forecast_airports(airport_df):
  
  airport = airport_df['Airport_Code'][0]    
  hpopt_space = {
    'model': {
          'trend': hp.choice('trend', ['add', 'mul']),
          'seasonal': hp.choice('seasonal', ['add', 'mul']),
          'seasonal_periods': hp.quniform('seasonal_periods', 12, 120, 12),
          'damped': hp.choice('damped', [True, False])
    },
    'fit': {
          'smoothing_level': hp.uniform('smoothing_level', 0.01, 0.99),
          'smoothing_seasonal': hp.uniform('smoothing_seasonal', 0.01, 0.99),
          'damping_slope': hp.uniform('damping_slope', 0.01, 0.99),
          'use_brute': hp.choice('use_brute', [True, False]),
          'use_boxcox': hp.choice('use_boxcox', [True, False]),
          'use_basinhopping': hp.choice('use_basinhopping', [True, False]),
          'remove_bias': hp.choice('remove_bias', [True, False])
    }
  }     

  run_config = {'minimization_function': hwes_minimization_function_udf,
                  'tuning_space': hpopt_space,
                  'forecast_algo': exp_smoothing_raw,
                  'loss_metric': 'bic',
                  'hpopt_algo': tpe.suggest,
                  'iterations': 200,
                  'experiment_name': RUN_NAME,
                  'name': '{} {}'.format('Total Passengers HPOPT', airport),
                  'target_name': 'Total_Passengers',
                  'image_name': '{}_{}.png'.format('total_passengers_

               validation', airport),
                  'airport_name': airport,
                  'future_forecast_periods': 36,
                  'train_split_cutoff_months': 12,
                  'hyperopt_title': '{}_hyperopt Training 
                    Report'.format(airport),
                  'hyperopt_image_name': '{}_{}.png'.format(
                    'total_passengers_hpopt', airport),
                  'verbose': True
            }                    

Listing 7.10 Creating the distributed model pandas_udf to build models concurrently

Since Spark is a strong-typed language, we need to provide expectations to the udf of 
what structure and data types pandas will be returning to the Spark DataFrame. This is 
accomplished by using a StructType object defining the field names and their types. Defines the type of the 

pandas_udf (here we 
are using a grouped 
map type that takes in 
a pandas DataFrame 
and returns a pandas 
DataFrame) through 
the decorator applied 
above the function

We need to extract the airport name 
from the data itself since we can’t pass 
additional values into this function.

We need to define 
our search space 
from within the 
udf since we can’t 
pass it into the 
function.

Sets the run 
configuration for the 
search (within the udf, 
since we need to name 
the runs in MLflow by 
the airport name, 
which is defined only 
after the data is 
passed to a worker 
from within the udf)
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  airport_data = airport_df.copy(deep=True)
  airport_data['date'] = pd.to_datetime(airport_data['date'])
  airport_data.set_index('date', inplace=True)
  airport_data.index = pd.DatetimeIndex(airport_data.index.values, 

freq=airport_data.index.inferred_freq)
  asc = airport_data.sort_index()
  asc = apply_index_freq(asc, 'MS')    
 
  train, test = generate_splits_by_months(asc, 

run_config['train_split_cutoff_months'])
  
  tuning = run_udf_tuning(train['Total_Passengers'], 

test['Total_Passengers'], **run_config)  
  
  return tuning  

With the creation of this pandas_udf, we can call the distributed modeling (using
Hyperopt in its single-node Trials() mode).

def validate_data_counts_udf(data, split_count):   
    return (list(data.groupBy(col('Airport_Code')).count()
          .withColumn('check', when(((lit(12) / 0.2) < (col('count') * 0.8)), 
            True)
          .otherwise(False))
          .filter(col('check')).select('Airport_Code').toPandas()[

             'Airport_Code']))

RUN_NAME = 'AIRPORT_FORECAST_DEC_2020'   
raw_data = spark.table(delta_full_nm)     
filtered_data = 

raw_data.where(col('Airport_Code').isin(validate_data_counts_udf(raw_
data, 12))).repartition('Airport_Code')  

grouped_apply = 
filtered_data.groupBy('Airport_Code').apply(forecast_airports)   

display(grouped_apply)                           

Listing 7.11 Executing a fully distributed model-based asynchronous run of forecasting

The airport data manipulation of 
the pandas DataFrame is placed 
here since the index conditions 
and frequencies for the series 
data are not defined within the 
Spark DataFrame.

The only modification to the 
“run tuning” function is to 
remove the MLflow logging 
created for the driver-based 
distributed Hyperopt 
optimization and to return only 
the forecasted data instead of 
the dictionary containing the 
run metrics and data.

Returns the forecast pandas
DataFrame (required so that this data can be

“reassembled” into a collated Spark DataFrame
when all the airports finish their asynchronous

distributed tuning and forecast runs)

A modification of the airport filtering used in the single-node code, utilizing 
PySpark filtering to determine whether enough data is in a particular 
airport’s series to build and validate a forecasting model

Defines a unique name for the particular execution 
of a forecasting run (this sets the name of the 
MLflow experiment for the tracking API)

Reads the data from Delta (raw 
historical passenger data for airports) 
into the workers on the cluster

Filters out insufficient data wherein a particular 
airport does not have enough data for modeling

Groups the Spark
DataFrame and sends

the aggregated data
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for execution

through the udf

Forces the execution 
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When we run this code, we can see a relatively flat relationship between the number of
airport models being generated and the number of workers available for processing
our optimization and forecasting runs. While the reality of modeling over 7,000 air-
ports in the shortest amount of time (a Spark cluster with thousands of worker nodes)
is more than a little ridiculous (the cost alone would be astronomical), we have a
queue-able solution using this paradigm that can horizontally scale in a magnitude
that any other solution cannot. 

 Even though we wouldn’t be able to get an effective O(1) execution time because
of cost and resources (that would require one worker for each model), we can start a
cluster with 40 nodes that would, in effect, run 40 airport modeling, optimizing, and
forecasting executions concurrently. This would dramatically reduce the total runtime
to 23 hours for all 7,000 airports, as opposed to either running them in a VM through
a sequential loop-within-a-loop (> 5,000 hours), or collecting the data to the driver of
a Spark cluster and running distributed tuning (> 800 hours). 

 When finding options for tackling large-scale projects of this nature, the scalability
of the execution architecture is just as critical as any of the ML components. Regard-
less of how much effort, time, and diligence went into crafting the ML aspect of the
solution, if solving the problem takes thousands (or hundreds) of hours, the chances
that the project will succeed are slim. In the next chapter, section 8.2, we will discuss
alternative approaches that can reduce the already dramatically improved 23 hours of
runtime down to something even more manageable. 

7.2.4 Using new paradigms for teams: Platforms and technologies

Starting on a new platform, utilizing a new technology, and perhaps learning a new
programming language (or paradigm within a language you already know) is a daunt-
ing task for many teams. In the preceding scenarios, it was a relatively large leap to
move from a Jupyter notebook running on a single machine to a distributed execu-
tion engine like Spark. 

 The world of ML provides a great many options—not only in algorithms, but also
in programming languages (R, Python, Java, Scala, .NET, proprietary languages) and
places to develop code (notebooks for prototyping, scripting tools for MVPs, and IDEs
for production solution development). Most of all, a great many places are available
to run the code that you’ve written. As we saw earlier, it wasn’t the language that
caused the runtime of the project to drop so dramatically, but rather the platform that
we chose to use. 

 When exploring options for project work, it is absolutely critical to do your home-
work. It is critical to test different algorithm approaches to solve a particular problem,
and it is arguably more critical to find a place to run the solutions that fits within the
needs of that project.

 To maximize the chances of a solution being adopted by the business, the right
platform should be chosen to minimize execution cost, maximize the stability of the
solution, and shorten the development cycle to meet delivery deadlines. The import-
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ant point to keep in mind about where to run ML code is that it is like any other
aspect of this profession: time spent learning the framework used to run your models
and analyses will be well spent, enhancing your productivity and efficiency for future
work. Without knowing how to actually use a particular platform or execution para-
digm, as mentioned in section 7.2.3, this project could have been looking at hundreds
of hours of runtime for each forecasting event initiated. 

Summary
 Relying on manual and prescriptive approaches for model tuning is time-

consuming, expensive, and unlikely to produce quality results. Utilizing model-
driven parameter optimization is preferred.

 Selecting an appropriate platform and implementation methodology for time-
consuming CPU-bound tasks can dramatically increase the efficiency and lower
the cost of development for an ML project. For processes like hyperparameter
tuning, maximizing parallel and distributed system approaches can reduce the
development timeline significantly.

A bit of advice on learning new things 
Early in my DS career, I was a bit intimidated and reluctant to learn languages other
than Python. I mistakenly thought that my language of choice could “do all the things”
and that I had no need for any other language, because the algorithms I used were
all there (as far as I was aware at the time) and I was familiar with the nuances of
manipulating data in pandas and NumPy. I was sorely mistaken when I had to build
my first extremely large-scale ML solution involving a prediction-delivery SLA that was
simply too short to allow for looped inference processing of terabytes of data. 

Over the years following my exposure to Hadoop, I’ve become proficient in Java and
Scala, used both to build custom algorithms and frameworks for ML use cases, and
expanded my knowledge of concurrent asynchronous programming to allow me to
leverage as much computational power in solutions as is available to me. My advice?
Make learning new technologies part of a regular habit. 

DS and ML work is not about a single language, a single platform, or anything that
is set in stone. It is a mutable profession of discovery, focused on solving problems
in whatever is the best manner to solve them in. Learning new ways to solve prob-
lems will only benefit you and whatever company you work for, and may one day
help you contribute back to the community with the knowledge that you’ve gained
along your journey.



Experimentation in action:
Finalizing an MVP with MLflow

and runtime optimization
In the preceding chapter, we arrived at a solution to one of the most time-consuming
and monotonous tasks that we face as ML practitioners: fine-tuning models. By hav-
ing techniques to solve the tedious act of tuning, we can greatly reduce the risk of
producing ML-backed solutions that are inaccurate to the point of being worthless.
In the process of applying those techniques, however, we quietly welcomed an
enormous elephant into the room of our project: tracking. 

 Throughout the last several chapters, we have been required to retrain our
time-series models each time that we do inference. For the vast majority of other
supervised learning tasks, this won’t be the case. Those other applications of model-
ing, both supervised and unsupervised, will have periodic retraining events, between
which each model will be called for inference (prediction) many times. 

 Regardless of whether we’ll have to retrain daily, weekly, or monthly (you really
shouldn’t be letting a model go stale for longer than that), we will have versions of
not only the final production model that will generate scoring metrics, but also the

This chapter covers
 Approaches, tools, and methods to version-

control ML code, models, and experiment results

 Scalable solutions for model training and 
inference 
228
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optimization history of automated tuning. Add to this volume of modeling informa-
tion a wealth of statistical validation tests, metadata, artifacts, and run-specific data
that is valuable for historical reference, and you have yourself a veritable mountain of
critical data that needs to be recorded.

 In this chapter, we’ll go through logging our tuning run data to MLflow’s track-
ing server, enabling us to have historical references to everything that we deem
important to store about our project’s solution. Having this data available is valu-
able not merely for tuning and experimentation; it’s also critical for monitoring
the long-term health of your solution. Having referenceable metrics and parameter
search history over time helps inform ways to potentially make the solution better,
and also gives insight into when the performance degrades to the point that you
need to rebuild the solution.

NOTE A companion Spark notebook provides examples of the points dis-
cussed in this chapter. See the accompanying GitHub repository for further
details, if interested.

8.1 Logging: Code, metrics, and results
Chapters 2 and 3 covered the critical importance of communication about modeling activ-
ities, both to the business and among a team of fellow data scientists. Being able to not
only show our project solutions, but also have a provenance history for reference, is just as
important to the project’s success, if not more so, than the algorithms used to solve it. 

 For the forecasting project that we’ve been covering through the last few chapters,
the ML aspect of the solution isn’t particularly complex, but the magnitude of the
problem is. With thousands of airports to model (which, in turn, means thousands of
models to tune and keep track of), handling communication and having a reference
for historical data for each execution of the project code is a daunting task. 

 What happens when, after running our forecasting project in production, a mem-
ber of the business unit team wants an explanation as to why a particular forecast was
so far off from the eventual reality of the data that is collected? This is a common
question from many companies that rely on ML predictions to inform the business
about actions that should be taken in running the business. The very last thing that
you would want to have to deal with if a black swan event occurs and the business is
asking questions about why the modeled forecast solution didn’t foresee it, is having
to try to regenerate what the model might have forecasted at a certain point in time in
order to fully explain how unpredictable events cannot be modeled. 

NOTE A black swan event is an unforeseeable and many times catastrophic
event that changes the nature of acquired data. While rare, they can have
disastrous effects on models, businesses, and entire industries. Some recent
black swan events include the September 11th terrorist attacks, the financial
collapse of 2008, and the Covid-19 pandemic. Due to the far-reaching and
entirely unpredictable nature of these events, the impact to models can be
absolutely devastating. The term “black swan” was coined and popularized in
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reference to data and business in the book The Black Swan: The Impact of the
Highly Improbable by Nassim Nicholas Taleb (Random House, 2007).

To solve these intractable issues that ML practitioners have had to deal with histori-
cally, MLflow was created. The aspect of MLflow that we’re going to look at in this sec-
tion is the Tracking API, giving us a place to record all of our tuning iterations, our
metrics from each model’s tuning runs, and pre-generated visualizations that can be
easily retrieved and referenced from a unified graphical user interface (GUI).

8.1.1 MLflow tracking

Let’s look at what is going on with the two Spark-based implementations from chapter 7
(section 7.2) as they pertain to MLflow logging. In the code examples shown in that chap-
ter, the initialization of the context for MLflow was instantiated in two distinct places. 

 In the first approach, using SparkTrials as the state-management object (running
on the driver), the MLflow context was placed as a wrapper around the entire tuning
run within the function run_tuning(). This is the preferred method of orchestrating
the tracking of runs when using SparkTrials so that a parent run’s individual children
runs can be associated easily for querying from within the tracking server’s GUI as well
as from REST API requests to the tracking server that involve filter predicates. 

 Figure 8.1 shows a graphical representation of this code when interacting with
MLflow’s tracking server. The code records not only the metadata of the parent

Figure 8.1 MLflow tracking server logging using distributed hyperparameter optimization
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encapsulating run, but the per iteration logging that occurs from the workers as each
hyperparameter evaluation happens.

 When looking at the actual code manifestation within the MLflow tracking server’s
GUI, we can see the results of this parent-child relationship, shown in figure 8.2.

Conversely, the approach used for the pandas_udf implementation is slightly differ-
ent. In chapter 7’s listing 7.10, each individual iteration that Hyperopt executes
requires the creation of a new experiment. Since there is no child-parent relationship to
group the data together, the application of custom naming and tagging is required to
allow for searchability within the GUI and—more important for production-capable
code—the REST API. The overview of the logging mechanics for this alternative (and

Figure 8.2 Example of the MLflow tracking UI
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more scalable implementation for this use case of thousands of models) is shown in
figure 8.3.

Regardless of which methodology is chosen, the important aspect of all of this discus-
sion is that we’ve solved a large problem that frequently causes projects to fail. (Each
methodology has its own merits for different approaches; for a single-model project,
SparkTrails is by far the better option, while for the scenario of forecasting that we’ve
shown here, with thousands of models, the pandas_udf approach is far superior.) We’ve
solved the historical tracking and organization woes that have hamstrung ML project
work for a long time. Having the ability to readily access the results of not only our test-
ing, but also the state of a model currently running in production as of the point of its
training and scoring, is simply an essential aspect of creating successful ML projects. 

8.1.2 Please stop printing and log your information

Now that we’ve seen a tool that we can use to keep track of our experiments, tuning
runs, and pre-production training for each prediction job that is run, let’s take a
moment to discuss another best-practice aspect of using a tracking service when build-
ing ML-backed projects: logging.

 The number of times that I’ve seen print statements in production ML code is
truly astonishing. Most of the time, it’s due to forgotten (or intentionally left-in for
future debugging) lines of debugging script to let the developer know that code is
being executed (and whether it’s safe to go get a coffee while it runs). At no point out-
side of coffee breaks during solution development will these print statements ever be
seen by human eyes again. The top of figure 8.4 shows the irrelevance of these print
statements within a code base.

Figure 8.3 MLflow logging logical execution for the pandas_udf distributed model approach. 
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 Figure 8.4 compares methodologies that are frequent patterns in ML project code,
particularly in the top two areas. While the top portion (printing to stdout in note-
books that get executed on some periodicity) is definitely not recommended, it is,
unfortunately, the most frequent habit seen in industry. For more sophisticated teams
that are writing packaged code for their ML projects (or using languages that can be
compiled, like Java, Scala, or a C-based language), the historical recourse has been to
log information about the run to a logging daemon. While this does maintain a histor-
ical reference for the data record, it also involves a great deal of either ETL or, more
commonly, ELT in order to extract information in the event that something goes
wrong. The final block in figure 8.4 demonstrates how utilizing MLflow solves these
accessibility concerns, as well as the historical provenance needs for any ML solution.

 To be explicit, I’m not saying to never use print or log statements. They have a
remarkable utility when debugging particularly complex code bases, and are incredi-
bly useful while developing solutions. This utility begins to fade as you transition to
production development. The print statements are no longer looked at, and the

Figure 8.4 Comparison of information storage paradigms for ML experimentation
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desire to parse logs to retrieve status information becomes far less palatable when
you’re busy with other projects. 

 If critical information needs to be recorded for a project’s code execution, it should
be logged and recorded for future reference at all times. Before tools like MLflow solved
this problem, many DS teams would record this critical information for production
purposes to a table in an RDBMS. Larger-scale groups with dozens of solutions in
production may have utilized a NoSQL solution to handle scalability. The truly mas-
ochistic would write ELT jobs to parse system logs to retrieve their critical data about
their models. MLflow simplifies all of these situations by creating a cogent unified
framework for metric, attribute, and artifact logging to eliminate the time-consuming
work of ML logging. 

 As we saw in the earlier examples running on Spark, we were recording addi-
tional information to these runs outside of the typical information that would be
associated with a tuning execution. We logged the per airport metrics and parame-
ters for historical searchability, as well as charts of our forecasts. If we had addi-
tional data to record, we could simply add a tag through the API in the form of
mlflow.set_tag(<key>, <value>) for run information logging, or, for more com-
plex information (visualizations, data, models, or highly structured data), we can
log that information as an artifact with the API mlflow.log_artifact(<location
and name of data on local filesystem>). 

 Keeping a history of all information surrounding a particular model tuning and
training event in a single place, external to the system used to execute the run, can
save countless hours of frustrating work when trying to re-create the exact conditions
that the model may have seen when it was trained and you are asked to explain what
happened to a particular build. Being able to quickly answer questions about the
business’s faith in your model’s performance can dramatically reduce the chances of
project abandonment, as well as save a great deal of time in improving an under-
performing model.

8.1.3 Version control, branch strategies, and working with others

One of the biggest aspects of development work that can affect a timely and organized
delivery of a project to the MVP phase is in the way a team (or an individual) interacts
with a repository. In our example scenario, with a relatively sizeable ML team working
on individual components of the forecasting model, the ability for everyone to con-
tribute to pieces of the code base in a structured and controlled manner is absolutely
critical for eliminating frustrating rework, broken code, and large-scale refactoring.
While we haven’t been delving into what the production version of this code would
look like (it wouldn’t be developed in a notebook, that’s for certain), the general
design would look something like the module layout in figure 8.5.

 As the project progresses, different team members of the project will be contribut-
ing to different modules within the code base at any given time. Some, within the
sprint, may be tackling tasks and stories surrounding the visualizations. Others on that
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sprint may be working on the core modeling classes, while the common utility func-
tions will be added to and refined by nearly everyone on the team.

 Without the use of not only a strong version-control system but also a foundational
process surrounding the committing of code to that repository, the chances of the code
base being significantly degraded or broken is high. While most aspects of ML develop-
ment are significantly different from traditional software engineering development, the
one aspect that is completely identical between the two fields is in version-control and
branched development practices.

 To prevent issues arising from incompatible changes being merged to a master
branch, each story or task that is taken from a sprint for a DS to work on should have
its own branch cut from the current build of the master branch of the repo. It is
within this branch that the new features should be built, updates to common function-
ality made, and the addition of new unit tests to assure the team that the modifications
are not going to break anything should all be done. When it comes time to close out
the story (or task), the DS who developed the code for that story will need to ensure that
the entire project’s code passes both unit tests (especially for modules and functionality

Figure 8.5 An initial repository structure for the forecasting project

|-- common
|    |-- data_utilities.py
|    |-- model_utilities.py
|    |-- validation.py
|    |-- visualization_utilities.py
|-- docs
|    |-- DeveloperDocs.md
|    |-- ModelingDocs.md
|    |-- ProjectDocs.md
|    |-- ChangeLog.md
|-- data
|    |-- conversion
|    |    |-- spark_to_pandas.py
|    |    |-- pandas_to_spark.py
|    |-- feature
|    |    |-- cleansing.py
|    |-- indexing
|    |    |-- series_indexing.py
|-- model
|    |-- exp_smoothing.py
|-- scoring
|    |-- loss_metrics.py
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|    |-- __init__.py
|    |-- forecast.py
|-- tuning
|    |-- serial_hyperopt.py
|    |-- spark_hyperopt.py
|-- visualizations
|    |-- forecast.py
|    |-- hyperopt_report.py
|    |-- metrics_visuals.py
|-- README.md
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the time series, argument validation assertions, etc.
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Modules for data manipulation for the project specific
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elements in the common module)
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single-node and distributed in Spark)
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All of the visualization creation for the project

General intro README for the project

Main execution module for initiating a forecasting
job (entry point)

Detailed documentation on the code, the model, and
the project for everyone’s reference
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that they did not modify) and a full-run integration test before submitting their peer
review request to merge their code into the master. 

 Figure 8.6 shows the standard approach for ML project work when dealing with a
repository, regardless of the repository technology or service used. Each has its own
nuances, functionality, and commands, which we won’t get into here; what’s import-
ant is the way the repository is used, rather than how to use a particular one.

 By following a paradigm for code merging like this one, a great deal of frustration
and wasted time can be completely avoided. It will simply leave more time for the DS

Figure 8.6 Repository management process during feature development for an ML team 
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team members to solve the actual problem of the project, rather than solving merge-
hell problems and fixing broken code resulting from a bad merge. Effective testing of
code-merge candidates brings a higher level of project velocity that can dramatically
reduce the chances of project abandonment by creating a more reliable, stable, and
bug-free code base for a project.

8.2 Scalability and concurrency
Throughout this project that we’ve been working on, the weightiest and most com-
plex aspect of the solution has been in scalability. When we talk about scalability here,
we’re actually referring to cost. The longer that VMs are running and executing our
project code, the more the silent ticker of our bill is going up. Anything that we can
do to maximize resource utilization of that hardware as a function of time is going to
keep that bill in a manageable state, reducing the concern that the business will have
about the total cost of the solution. 

  Throughout the second half of chapter 7, we evaluated two strategies for scaling
our problem to support modeling many airports. The first, parallelizing the hyper-
parameter evaluation over a cluster, scaled down the per-model training time signifi-
cantly as compared to the serial approach. The second, parallelizing the actual per-
model training across a cluster, scaled the solution in a slightly different way (which is
more in favor of the many models/reasonable training iterations approach), reducing
our cost footprint for the solution in a much larger manner.

 As mentioned in chapter 7, these are but two ways of scaling this problem, both
involving parallel implementations that distribute portions of the modeling process
across multiple machines. However, we can add a layer of additional processing to
speed these operations up even more. Figure 8.7 shows an overview of our options for
increasing the throughput for ML tasks to reduce the wall-clock time involved in
building a solution.

 Moving down the scale in figure 8.7 brings a trade-off between simplicity and per-
formance. For problems that require a scale that distributed computing can offer, it is
important to understand the level of complexity that will be introduced into the code
base. The challenges with these implementations are no longer relegated to the DS
part of the solution and instead require increasingly sophisticated engineering skills
in order to build.

 Gaining the knowledge and ability to build large-scale ML projects that leverage sys-
tems capable of handling distributed computation (for example, Spark, Kubernetes, or
Dask) will help ensure that you are capable of implementing solutions requiring scale.
In my own experience, my time has been well spent learning how to leverage concur-
rency and the use of distributed systems to accelerate the performance and reduce the
cost of projects by monopolizing available hardware resources as much as I can.

 For the purposes of brevity, we won’t go into examples of implementing the last
two sections of figure 8.7 within this chapter. However, we will touch on examples of
concurrent operations later in this book.
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Figure 8.7 Comparison of execution paradigms 
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8.2.1 What is concurrency?

In figure 8.7, you can see the term concurrency listed in the bottom two solutions. For
most data scientists who don’t come from a software engineering background, this
term may easily be misconstrued as parallelism. It is, after all, effectively doing a bunch
of things at the same time. 

 Concurrency, by definition, is the act of executing many tasks at the same time. It
doesn’t imply ordering or sequential processing of tasks simultaneously. It merely
requires that a system and the code instructions being sent to it be capable of running
more than one task at the same time. 

 Parallelism, on the other hand, works by dividing tasks into subtasks that can be
executed in parallel, simultaneously, on discrete threads and cores of a CPU or GPU.
Spark, for instance, executes tasks in parallel on a distributed system of discrete cores
in executors. 

 These two concepts can be combined in a system that can support them, one of
multiple machines, each of which has multiple cores available to it. This system archi-
tecture is shown in the final bottom section of figure 8.7. Figure 8.8 illustrates the dif-
ferences between parallel execution, concurrent execution, and the hybrid parallel-
concurrent system.

 Leveraging these execution strategies for the appropriate type of problem being
solved can dramatically improve the cost of a project. While it may seem tempting to
utilize the most complex approach for every problem (parallel concurrent processing
in a distributed system), it simply isn’t worth it. If the problem that you’re trying to
solve can be implemented on a single machine, it’s always best to reduce the infra-
structure complexity by going with that approach. It’s advisable to move down the
path of greater infrastructure complexity only when you need to. This is particularly
true when the data, the algorithm, or the scale of tasks is so large that a simpler
approach is not possible.

8.2.2 What you can (and can’t) run asynchronously

For a final note on improving runtime performance, it is important to mention that
not every problem in ML can be solved through the use of parallel execution or on a
distributed system. Many algorithms require maintaining state to function correctly,
and as such, cannot be split into subtasks to execute on a pool of cores.

 The scenario that we’ve gone through in the past few chapters with univariate time
series could certainly benefit from parallelizing. We can parallelize both the Hyperopt
tuning and the model training. The isolation that we can achieve within the data itself
(each airport’s data is self-contained and has no dependency on any other’s) and the
tuning actions means that we can dramatically reduce the total runtime of our job by
appropriately leveraging both distributed processing and asynchronous concurrency. 

 When selecting opportunities for improving performance of a modeling solution,
you should be thinking about the dependencies within the tasks being executed. If
there is an opportunity to isolate tasks from one another, such as separating model
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Figure 8.8 Comparison of execution strategies
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evaluation, training, or inference based on filters that can be applied to a dataset, it
could be worthwhile to leverage a framework that can handle this processing for you. 

 However, many tasks in ML cannot be distributed (or, at least, cannot be distributed
easily). Models that require access to the entirety of a feature training set are poor candi-
dates for distributed training. Other models may have the capability to be distributed
but simply have not been because of either demand or the technological complexity
involved in building a distributed solution. The best bet, when wondering whether an
algorithm or approach can leverage concurrency or parallelism through distributed
processing, is to read the library documentation for popular frameworks. If an algo-
rithm hasn’t been implemented on a distributed processing framework, there’s likely a
good reason. Either simpler approaches are available that fulfill the same requirements
of the model you’re looking into (highly likely), or the development and runtime costs
for building a distributed solution for the algorithm are astronomically high.

Summary
 Utilizing an experimentation tracking service such as MLflow throughout a

solution’s life cycle can dramatically increase auditability and historical moni-
toring for projects. Additionally, utilizing version control and logging will
enhance production code bases with the ability to reduce troubleshooting time
and allow for diagnostic reporting of the project’s health when in production. 

 Learning to use and implement solutions in a scalable infrastructure is incredi-
bly important for many large-scale ML projects. While not appropriate for all
implementations, understanding distributed systems, concurrency, and the
frameworks that enable these paradigms is crucial for an ML engineer.





Part 2

Preparing for production:
Creating maintainable ML

Now that you’ve worked through part 1 of this book, you have a feel for a
pattern of validating project ideas that borrows heavily from the approaches set
in modern software development. Once an idea has been properly vetted and a
(rough) prototype built, the next step in building a maintainable solution is to
focus on building it properly. 

 In the introduction to part 1, I mentioned that a lot of ML projects fail
because of lackluster planning and scoping. Following closely on the heels of
those reasons is the failure mode of shutting off a project that’s in production
because it’s either an unsalvageable broken mess or because the business doesn’t
realize the value of it and is unwilling to keep paying for it to run. These are solv-
able problems, provided that a specific methodology of project development is
applied to avoid these pitfalls. 

 In part 2, we’ll go through some of the lessons I’ve learned through my own
project work, those I’ve seen in others’ work (for better or worse), and standards
of applied ML code development that will help you build the following:

■ Code that runs well
■ Code that is testable and able to be debugged
■ A solution that can be modified easily
■ A solution that can be evaluated for performance (based on whether it solves

the problem well and continues to solve the problem it set out to solve)
■ A solution that you don’t regret building
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With these guidelines in place, you’ll be in a much better place to ship your solution
to production, comforted in the knowledge that you’ll be supporting a software
deployment that you and your team can maintain.



Modularity for ML:
Writing testable
and legible code
Precious few emotions are more soul-crushing than those forced upon you when
you’re handed a complex code base that someone else wrote. Reading through a
mountain of unintelligible code after being told that you are responsible for fixing,
updating, and supporting it is demoralizing. The only worse situation when inherit-
ing a fundamentally broken code base to maintain occurs when your name is the
one on the commit history. 

 
 
 
 

This chapter covers
 Demonstrating why monolithic script-coding 

patterns make ML projects more complex

 Understanding the complexity of troubleshooting 
non-abstracted code

 Applying basic abstraction to ML projects

 Implementing testable designs in ML code bases
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 This isn’t to say that the code doesn’t work. It may run perfectly fine. The fact that
code runs isn’t the issue. It’s that a human can’t easily figure out how (or, more disas-
trously, why) it works. I believe this problem was most eloquently described by Martin
Fowler in 2008:

Any fool can write code that a computer can understand. Good programmers write code
that humans can understand.

A large portion of ML code is not aligned with good software engineering practices.
With our focus on algorithms, vectors, indexers, models, loss functions, optimiza-
tion solvers, hyperparameters, and performance metrics, we, as a profession of prac-
titioners, generally don’t spend much time adhering to strict coding standards. At
least, most of us don’t. 

 I can proudly claim that I was one such person for many years, writing some truly
broken code (it worked when I released it, most of the time). Focused solely on eking
the slightest of accuracy improvements or getting clever with feature-engineering
tasks, I would end up creating a veritable Frankenstein’s monster of unmaintainable
code. To be fair to that misunderstood reanimated creature, some of my early projects
were far more horrifying. (I wouldn’t have blamed my peers if they chased me with
torches and pitchforks.)

 This chapter and the next are devoted to the lessons in coding standards that
I’ve learned over the years. It is by no means an exhaustive treatise on the topic of
software engineering; there are books for that. Rather, these are the most important
aspects that I’ve learned in order to create simpler and easier-to-maintain code
bases for ML project work. We will cover these best practices in five key areas, as
shown in figure 9.1.

 The sections in this chapter, reflected in figure 9.1, demonstrate examples of the
horrible things that I’ve done, the terrifying elements that I’ve seen in others’ code,
and, most important, ways to address them. Our goal in this chapter is to avoid the
Frankenstein’s monster of convoluted and overly complex code. 
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Complicated vs. complex code
This phrase complicated vs. complex may seem like a poor interpretation of grammar—
the two terms seem to mean the same thing, after all. But, applied to code, each is
markedly different. A complex code base is an empirical assessment of the branching
paths that a particular piece of encapsulated code (think: function or method) can
traverse. The for loops, conditional statements, matching switch statements, and
passed-in argument-functionality state changes are all elements that add to the com-
plexity of code. With many “things” that a bit of contained code can do, the number

Figure 9.1 Comparing extremes of coding practices for ML project work
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To make things easier, we’re going to look at a single relatively simple example through-
out this chapter, something that we should all be rather familiar with: a distribution esti-
mation for univariate data. We’ll stick with this example because it is simple and
approachable. We’ll look at the same effective solution through the lens of different
programming problems, discussing how important it is to focus on maintainability and
utility above all other considerations.

9.1 Understanding monolithic scripts and why they are bad
Inheritance, in the world of computing, can mean a few different things. The topic first
comes to mind when thinking of crafting extensible code through abstraction (code
reuse in object-oriented design to reduce copied functionality and decrease complex-
ity). While this type of inheritance is undeniably good, a different type of inheritance

(continued)

of results that could come out of that code is very high. Code bases that are complex
typically require a great deal of testing to ensure that they function correctly under all
conditions possible. This complexity also makes the code base more difficult to
understand than those that have fewer branching paths of functionality.

A complicated code base, however, is one that is written in such a way that makes it
difficult to ascertain how the code functions. This highly subjective assessment of
“how hard it is to read and figure out” is a measurement that depends heavily on the
person reading the code. Be that as it may, a general consensus can be agreed upon
by most experienced developers on what constitutes a complicated code base as
compared to an uncomplicated one.

A highly complicated code base may have gotten to that state after repeated patching
of the code (retrofitting code to fix deferred technical debt). This code may be
chained, use poor naming conventions, include repeated use of conditional logic in
a difficult-to-read manner, or just liberally use uncommon shorthand notation (I’m
looking at you, Scala wildcard, _).

A code base can be a mixture of these elements:

 Complex and not complicated—A challenging but acceptable state for ML
code bases.

 Not complex and not complicated—Also acceptable, but typically not seen
outside of analytics use cases in DS work.

 Not complex and complicated—We’ll see an example in section 9.1.1.
 Complex and complicated—The bane of our existence as ML practitioners

when inheriting a code base. 

The goal in developing ML projects is to focus first on keeping the measure of com-
plicated for the code base as low as possible, while also focusing on reducing the
complexity as much as is practicable. The lower the measure of both of these con-
cepts, the greater the chances that the project you’re working on will not only get to
production but stay as a maintainable and extensible solution to a business need.
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can range from good to nightmarish. This is the inheritance we get when assuming
responsibility for someone else’s code base.

 Let’s imagine that you start at a new company. After indoctrination is done, you’re
given a token to access the DS repository (repo). This moment of traversing the repo for
the first time is either exciting or terrifying, depending on the number of times you’ve
done this before. What are you going to find? What have your predecessors at this com-
pany built? How easy is the code going to be to debug, modify, and support? Is it filled
with technical debt? Is it consistent in style? Does it adhere to language standards?

 At first glance, you feel a sinking in your stomach as you look through the direc-
tory structure. There are dozens of directories, each with a project name. Within each
of these directories is a single file. You know you are in for a world of frustration in fig-
uring out how any of these monolithic and messy scripts work. Any on-call support
you’ll be tasked with providing for these is going to be incredibly challenging. Each
issue that comes up, after all, will involve reverse engineering these confusing and
complicated scripts for even the most trivial of errors that occur.

9.1.1 How monoliths come into being

If we were to dig into the commit history of our new team’s repository, we’d likely find
a seamless transition from prototype to experimentation. The first commit would
likely be the result of a bare-bones experiment, filled with TODO comments and place-
holder functionality. As we move through the commit history, the script begins to take
shape, piece by piece, finally arriving at the production version of the code that you
see in the master branch.

 The problem here is not that scripting was used. The vast majority of professional
ML engineers, myself included, do our prototyping and experimentation in note-
books (scripts). The dynamic nature of notebooks and the ability to rapidly try out
new ideas makes them an ideal platform for this stage of work. Upon accepting a pro-
totype as a path to develop, however, all of that prototype code is thrown out in favor
of creating modularized code during MVP development. 

 The evolution of a script from a prototype is understandable. ML development is
notorious for having countless changes, needing rapid feedback of results, and pivot-
ing dramatically in approaches during the MVP phase. Even during early phases, how-
ever, the code can be structured such that it is much easier to decouple functionality,
abstract away complexity, and create a more testable (and debug-friendly) code base.

 The way a monolithic production code base comes into being is by shipping a pro-
totype to production. This is never advisable.

9.1.2 Walls of text

If there was one thing that I learned relatively early in my career as a data scientist, it
was that I truly hate debugging. It wasn’t the act of tracking down a bug in my code
that frustrated me; rather, it was the process that I had to go through to figure out
what went wrong in what I was telling the computer to do. 
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 Like many DS practitioners at the start of their career, when I began working on solv-
ing problems with software, I would write a lot of declarative code. I wrote my solutions
much in the way that I logically thought about the problem (“I pull my data, then I do
some statistical tests, then I make a decision, then I manipulate the data, then I put it in a
vector, then into a model . . . ”). This materialized as a long list of actions that flowed
directly, one into another. What this programming model meant in the final product was
a massive wall of code with no separation or isolation of actions, let alone encapsulation.

 Finding the needle in the haystack for any errors in code written in that manner is
an exercise in pure, unadulterated torture. The architecture of the code was not con-
ducive to allowing me to figure out which of the hundreds of steps contained therein
was causing an issue.

 Troubleshooting walls of text (WoT, pronounced What?!) is an exercise in patience
that bears few parallels in depth and requisite effort. If you’re the original author of
such a display of code, it’s an annoying endeavor (you have no one to hate other than
yourself for creating the monstrosity), depressing activity (see prior comment), and
time-consuming slog that can be so easily avoided—provided you know how, what,
and where to isolate elements within your ML code. 

 If written by someone else, and you’re the unfortunate heir to the code base, I
extend to you my condolences and a hearty “Welcome to the club.” Perhaps a wor-
thy expenditure of your time after fixing the code base would be to mentor the
author, provide them with an ample reading list, and help them to never produce
such rage-inducing code again.

 To have a frame of reference for our discussion, let’s take a look at what one of
these WoTs could look like. While the examples in this section are rather simplistic,
the intention is to imagine what a complete end-to-end ML project would look like in
this format, without having to read through hundreds of lines. (I imagine that you
wouldn’t like to flip through dozens of pages of code in a printed book.) 

A quick note about the code in listing 9.1
The last thing that I’d like to infer by putting this example in this book is that I’ve
never created code like this. I can assure you that I’ve written far more horrifying code
early in my career. I’ve written scripts, functions, and entire classes filled with meth-
ods that are so horrifically bad and impossible or confusing to read that upon revis-
iting my “work” less than two weeks after having written it, I couldn’t follow along with
what I had created.

It’s a terrifying feeling when this happens, since for all intents and purposes, the orig-
inal author of code should be the singular person on the planet who can figure out
how it works. When that fails, whether through complexity or just the sheer mountain
of code that needs to be modified to make an improvement to the code base, I’ve
frequently started over from scratch. 

My intention in showing these examples is to illuminate things that I learned the hard
way, why they made my life very difficult at the time (missing deadlines, angering others
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Listing 9.1 presents a relatively simple block of script that is intended to be used to
determine the nearest standard distribution type to a passed-in series of continuous
data. The code contains some normalcy checks at the top, comparisons to the stan-
dard distributions, followed by the generation of a plot.

NOTE The code examples in this chapter are provided in the accompanying
repository for this book. However, I do not recommend that you run them.
They take a very long time to execute.

import warnings as warn
import pandas as pd
import numpy as np
import scipy.stats as stat
from scipy.stats import shapiro, normaltest, anderson
import matplotlib.pyplot as plt
from statsmodels.graphics.gofplots import qqplot

data = pd.read_csv('/sf-airbnb-clean.csv')
series = data['price']
shapiro, pval = shapiro(series)                                        
print('Shapiro score: ' + str(shapiro) + ' with pvalue: ' + str(pval)) 
dagastino, pval = normaltest(series)                                   
print("D'Agostino score: " + str(dagastino) + " with pvalue: " + str(pval))
anderson_stat, crit, sig = anderson(series)
print("Anderson statistic: " + str(anderson_stat))
anderson_rep = list(zip(list(crit), list(sig)))
for i in anderson_rep:
    print('Significance: ' + str(i[0]) + ' Crit level: ' + str(i[1]))
bins = int(np.ceil(series.index.values.max()))                         
y, x = np.histogram(series, 200, density=True)
x = (x + np.roll(x, -1))[:-1] / 2.                   
bl = np.inf                                       
bf = stat.norm
bp = (0., 1.)
with warn.catch_warnings():
    warn.filterwarnings('ignore')
    fam = stat._continuous_distns._distn_names

when I realized I needed to completely rewrite hundreds upon hundreds of lines of
code), and how you can learn my hard-earned lessons in a much simpler way. Bask in
the glory, dear reader, of my previous ineptitude and ignorance, and please don’t
repeat my mistakes. I promise that you’ll end up thanking me—and your future self will
thank your present self as well.

Listing 9.1 A wall-of-text script

pval? That’s not a standard naming convention. It 
should be p_value_shapiro or something similar.

String concatenation is difficult
to read, can create issues in

execution, and requires more
things to type. Don’t do it.

Mutating the variable pval makes the original
one from shapiro inaccessible for future usage.

This is a bad habit to adopt and makes more
complex code bases nigh impossible to follow.

With such a general 
variable name, we have to 
search through the code to 
find out what this is for.

Mutating x here makes 
sense, but again, we have no 
indication of what this is for.

bl? What is that?! Abbreviations 
don’t help the reader understand 
what is going on.
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    for d in fam:
        h = getattr(stat, d)                        
        f = h.fit(series)
        pdf = h.pdf(x, loc=f[-2], scale=f[-1], *f[:-2])
        loss = np.sum(np.power(y - pdf, 2.))
        if bl > loss > 0:
            bl = loss
            bf = h
            bp = f
start = bf.ppf(0.001, *bp[:-2], loc=bp[-2], scale=bp[-1])
end = bf.ppf(0.999, *bp[:-2], loc=bp[-2], scale=bp[-1])
xd = np.linspace(start, end, bins)
yd = bf.pdf(xd, loc=bp[-2], scale=bp[-1], *bp[:-2])
hdist = pd.Series(yd, xd)
with warn.catch_warnings():
    warn.filterwarnings('ignore')
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=(16,12))
        ax = series.plot(kind='hist', bins=100, normed=True, alpha=0.5, 

label='Airbnb SF Price', legend=True)                 
        ymax = ax.get_ylim()
        xmax = ax.get_xlim()
        hdist.plot(lw=3, label='best dist ' + bf.__class__.__name__, 

legend=True, ax=ax)
        ax.legend(loc='best')
        ax.set_xlim(xmax)
        ax.set_ylim(ymax)
qqplot(series, line='s')

My most sincere apologies for what you just had to look at. Not only is this code con-
fusing, dense, and amateurish, but it’s written in such a way that its style is approach-
ing intentional obfuscation of functionality. 

 The variable names are horrific. Single-letter values? Extreme shorthand nota-
tion in variable names? Why? It doesn’t make the program run faster. It just makes it
harder to understand. Tunable values are hardcoded, requiring modification of the
script for each test, which can be exceedingly prone to errors and typos. No stop-
ping points are set in the execution that would make it easy to figure out why some-
thing isn’t working as intended.

9.1.3 Considerations for monolithic scripts

Aside from being hard to read, listing 9.1’s biggest flaw is that it’s monolithic.
Although it is a script, the principles of WoT development can apply to both func-
tions and methods within classes. This example comes from a notebook, which
increasingly is the declarative vehicle used to execute ML code, but the concept
applies in a general sense. 

 Having too much logic within the bounds of an execution encapsulation creates
problems (since this is a script run in a notebook, the entire code is one encapsulated
block). I invite you to think about these issues through the following questions:

All of these single-letter 
variable names are 
impossible to figure out 
without reverse 
engineering the code. It 
may make for concise 
code, but it’s really hard 
to follow. With a lack of 
comments, this shorthand 
becomes difficult to read.

All of these hardcoded variables
(the bins in particular) mean that if this

needs to be adjusted, the source code
needs to be edited. All of this should

be abstracted in a function.
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 What would it look like if you had to insert new functionality in this block of code? 
 Would it be easy to test if your changes are correct? 
 What if the code threw an exception? 
 How would you go about figuring out what went wrong with the code from an

exception being thrown?
 What if the structure of the data changed? How would you go about updating

the code to reflect those changes? 

Before we get into answering some of these questions, let’s look at what this code actu-
ally does. Because of the confusing variable names, dense coding structure, and tight
coupling of references, we would have to run it to figure out what it’s doing. The next
listing shows the first aspect of listing 9.1.

Shapiro score: 0.33195996284484863 with pvalue: 0.0   
D'Agostino score: 14345.798651770001 with pvalue: 0.0 
Anderson statistic: 1022.1779688188954
Significance: 0.576 Crit level: 15.0                  
Significance: 0.656 Crit level: 10.0
Significance: 0.787 Crit level: 5.0
Significance: 0.917 Crit level: 2.5
Significance: 1.091 Crit level: 1.0

This code is doing normalcy tests for a univariate series (a column within a Data-
Frame here). These are definitely worthwhile tests to conduct on a target variable
for a regression problem. The image shown in figure 9.2 is the result of the first of the
plots that are generated by the remainder of the script (apart from the very last line).

NOTE Chapter 8 covered the power of logging information to MLflow and
other such utilities, and how bad of an idea it is to print important informa-
tion to stdout. However, this example is the exception. MLflow stands as a
comprehensive utility tool that aids in model-based experimentation, devel-
opment, and production monitoring. For our example, in which we are per-
forming a one-off validation check, utilizing a tool like MLflow is simply not
appropriate. If the information that we need to see is relevant for only a
short period of time (while deciding a particular development approach,
for instance), maintaining an indefinite persistence of this information is
confusing and pointless. 

Figure 9.3 shows the last plot that is generated from listing 9.1.
 

Listing 9.2 Stdout results from listing 9.1 print statements

That is, perhaps, a few 
too many significant 
digits to be useful.

These pvalue elements are potentially confusing. 
Without some sort of explanation of what they 
signify, a user has to look up these tests in the API 
documentation to understand what they are.

With no explanation about these 
significances and critical levels, this data 
is meaningless to anyone unfamiliar with 
the Anderson-Darling test.
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Figure 9.2  The first plot that is generated from listing 9.1 

Histogram of the price data from
the dataset

The Burr type XII distribution
(also known as the generalized
log-logistic distribution) makes
sense here, as it was originally
developed to model non-negative
distributions for Irving Burr’s
focus of study (statistical
process control). It is similar
to the log-normal distribution.

Best fit against standard
distributions within scipy.stats

Figure 9.3 The tacked-on-at-the-end plot generation from listing 9.1 

With no information provided on
the plot itself, we have little
indication of what is being
tested here.

The utility of this plot is
questionable for anyone not
familiar with what this
representation is showing.

To determine this plot iswhat
showing, a user of the script
would have to know that the
default test is against the
standard normal distribution
(the red line).

Theoretical quantiles
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This quantile-quantile plot is a similarly useful exploratory aid in determining the nor-
malcy (or goodness of fit to different distributions) by plotting the quantile values from
a series against those of another series. In this example, the quantiles of the price series
from the dataset are plotted against those of the standard normal distribution. 

 With no callout in the code or indication of what this plot is, however, the end user
of this script can be left a bit confused about what is going on. It’s rarely ever a good
practice to place evaluations into code in this manner; they are easily overlooked, and
users may be perplexed about why they are included in that location in the code.

 Let’s pretend for a moment that we aren’t restricted to the medium of print here.
Let’s say that instead of a simple statistical analysis of a single target variable example,
we are looking at a full project written as a monolithic script, as was shown in listing 9.1.
Something on the order of, say, 1,500 lines. What would happen if the code broke?
Can we clearly see and understand everything that’s happening in the code in such a
format? Where would we begin to troubleshoot the issue? 

9.2 Debugging walls of text
If we fast-forward a bit in our theoretical new job, after having seen the state of the
code base, we’d eventually be in the position of maintaining it. Perhaps we were
tasked with integrating a new feature into one of the preexisting scripts. After reverse
engineering the code, and commenting it for our own understanding, we progress to
putting in the new functionality. The only way, at this point, to test our code is to run
the entire script. 

 We’re inevitably going to have to work through some bugs in the process of chang-
ing the script to accommodate the new features. If we’re dealing with a script or note-
book environment with a long list of actions being taken in succession, how can we

Isn’t encapsulation of actions just moving around complexity, though?
Well, yes, and no. 

It’s undebatable that if we wrap common functionality of code from within the script
into functions or methods, the refactoring doesn’t do much for the code complexity
(the same logic will be processed in the same order as the CPU sees it, after all).
The refactoring will, however, dramatically reduce the complicated nature of the
code. It will allow us, the human developers, to see smaller chunks of the code,
allow us to debug functionality, test that the isolated (encapsulated) groupings of
code function as we intend them to, and dramatically increase our ability to modify
the code in the future. 

Converting a script into functional (FP) or object-oriented (OO) code may seem like it’s
adding complexity: the code will have more lines, will have more elements to keep
track of, and may be harder for those unfamiliar with FP or OO concepts to read
the code initially. But once those team members become more fluent with the
design practices of these paradigms, it will be far easier to maintain a structured
and isolation-of-functionality design than a giant WoT code base.
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troubleshoot what went wrong with the code? Figure 9.4 shows the troubleshooting
process that would have to happen to correct an issue in the WoT in listing 9.1. 

This process, as frustrating as it is to go through, is complicated enough without hav-
ing poor variable names and confusing shorthand notation as in listing 9.1. The more
difficult the code is to read and follow, the deeper the cognitive load required, both to
select binary boundary points for isolation while testing the code and to figure out
which variable states will need to be reported out to stdout. 

 This halving process of evaluating and testing portions of the code means that we’re
having to actually change the source code to do our testing. Whether we’re adding print
statements, debugging comments, or commenting out code, a lot of work is involved in
testing faults with this paradigm. Mistakes will likely be made, and there is no guarantee
that you won’t add in a new issue through manipulating the code in this way.

A note on monolithic code
Listing 9.1 may seem as though it’s a hyperbolic example of poor development prac-
tices. You might read through it, scoffing, and think that no one would ever write an
entire ML solution to a problem in such a way. Before I entered consulting, I probably
would have thought the same thing. 

The truth, based on seeing how hundreds of companies’ ML teams develop solutions,
is that writing code in monolithic blocks is remarkably common. Typically, this arises

Figure 9.4 The time-consuming and patience-testing process of binary troubleshooting complicates 
(not necessarily complex) monolithic code bases. 

This is error prone and incredibly-
time-consuming.

Exception is thrown

Split script in half

(either comment out

second half or step

through first half to

interactive

environment)

The number of cyclic

trips in this loop is

dependent on the

complexity and size of

the code.

Insert print
statements to report

on variable states

after suspected issue

locations

If the run finishes without a
different issue arising after
changes have been made, that is.

Make changes,

remove print
statements (or

comment them out),

and run entire script

Issue found?

Yes

No

(. . . and there was much

lamenting . . .)

Most of the time that I’ve seen
this done, the code is left in a
truly horrible state, with scores
of commented-out debugging
statements riddled throughout,
making the next troubleshooting
even that much harder.
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Surely, there must be a better way to organize code (complex or not) to reduce the
levels of complication. Listing 9.3 shows an alternative in the form of an OO version of
the script from listing 9.1.

9.3 Designing modular ML code
After going through such a painful exercise of finding, fixing, and validating our
change to this massive script, we’ve hit our breaking point. We communicate to the
team that the code’s technical debt is too high, and we need to pay it down before any
other work continues. Accepting this, the team agrees to breaking up the script by
functionality, abstracting the complexity into smaller pieces that can be understood
and tested in isolation.

 Before we look at the code, let’s analyze the script to see its main groupings of
functionality. This functionality-based analysis can help inform what methods to cre-
ate in order to achieve functionality isolation (aiding our ability to troubleshoot, test,
and insert new features in the future). Figure 9.5 illustrates the core functionality con-
tained within the script and how we can extract, encapsulate, and create single-purpose
code groupings to define what belongs in our methods.

 This structural and functional analysis of the code helps us rationalize the ele-
ments of common functionality. From this inspection, elements are identified, iso-
lated, and encapsulated to aid in both legibility (to help us, the humans) and

from an isolated DS department that has no outside contact with other members of
the engineering teams within the company and no one on the team who has worked
with software developers before. These teams are effectively shipping their prototype
PoC solutions (which, from an algorithm implementation perspective, do solve the
problem) to production. 

In actuality, I’ve seen code bases (which are, for lack of a better term, “running” in
production with frequent errors and failures) that are far more difficult to read than
what was shown in listing 9.1. The large majority of these companies that have ML
code that looks like this end up doing one of two things:

 Hire an expensive consulting firm to refactor the code and make it production
ready. Your mileage may vary here with respect to the maintainability of their
solution, the technical sophistication of the consultants, and the total cost to
hire a quality team to do this.

 Keep the code limping along until resourcing limitations (do you really want
your team constantly fixing the same project code to keep it running?) and
the cost of constantly fixing it outweighs the benefits that the solution brings,
thereupon abandoning the project completely.

The intention of calling out these practices is to illuminate the issues with develop-
ing code like this and to help those who are not aware of why writing code like this
is a bad idea.
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maintainability (troubleshooting and extensibility) of the code. Notice the private
(internal functionality that the end user doesn’t need to use to get value from the
module) and public (the user-facing methods that will generate specific actions from
the code based on what they need) methods. Hiding internal functionality from users
of this module will help reduce the cognitive load placed on the user, while minimiz-
ing the code complexity as much as possible.

 Now that we have a plan for refactoring the code from the nigh-unintelligible
script into something easier to follow and maintain, let’s look at the final product of
the refactoring and modularization in the next listing.

Figure 9.5 Code architecture refactoring for listing 9.1 

This has no commonality in
functionality with the distribution
fits, so it should be separate.

• Shapiro-Wilk
• D'Agostino-Pearson
• Anderson-Darling

• Test against

distributions

defined in

scipy.stats

Standard distribution

comparisons

Generate a
quantile-quantile
plot against the
standard normal

distribution

Create histogram
representations of data

Calculate goodness of
fit of histogram of
passed-in data to

standard distributions

Generate a probability

distribution ( )pdf

Plot the fit of the most
likely closest standard
distribution to our data

Plot all distributions
against our data

We need to calculate this twice,
so we create a method for this.

Generate starting
and ending positions
of a histogram based

on the best fit

Private methods

Public methods

Statistical tests

Breaking out the individual steps
of logic that occur allows us to
isolate functionality so that if
something doesn’t seem right,
we can test just that one
component. We can also write
unit tests for these individual
pieces to test them without the
trail of dependent tightly coupled
logic that would otherwise be
present in a script.

This has no commonality in
functionality with the
distribution fits, so it should
be separate.
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import warnings as warn
import pandas as pd
import numpy as np
import scipy
import scipy.stats as stat
from scipy.stats import shapiro, normaltest, anderson
import matplotlib.pyplot as plt
from statsmodels.graphics.gofplots import qqplot

class DistributionAnalysis(object):                       

    def __init__(self, series, histogram_bins, **kwargs): 
        self.series = series
        self.histogram_bins = histogram_bins
        self.series_name = kwargs.get('series_name', 'data')
        self.plot_bins = kwargs.get('plot_bins', 200)
        self.best_plot_size = kwargs.get('best_plot_size', (20, 16))
        self.all_plot_size = kwargs.get('all_plot_size', (24, 30))
        self.MIN_BOUNDARY = 0.001                         
        self.MAX_BOUNDARY = 0.999
        self.ALPHA = kwargs.get('alpha', 0.05)

    def _get_series_bins(self):                           
        return int(np.ceil(self.series.index.values.max()))

    @staticmethod                                         
    def _get_distributions():
        scipy_ver = scipy.__version__                     
        if (int(scipy_ver[2]) >= 5) and (int(scipy_ver[4:]) > 3):
            names, gen_names = stat.get_distribution_names(stat.pairs, 

stat.rv_continuous)
        else:
            names = stat._continuous_distns._distn_names
        return names

    @staticmethod                                         
    def _extract_params(params):
        return {'arguments': params[:-2], 'location': params[-2], 'scale': 
          params[-1]} 

Listing 9.3 An object-oriented version of the scripted code from listing 9.1

Encapsulates the entire module as a class since all of the 
functionality within is focused on distribution analysis

Passes in a **kwargs argument so defined defaults within 
the class initialization method can be overridden with a 
key-value combination (the script had these all hardcoded)

These values
are left as
static but
could be
wrapped

into kwargs
overrides if

needed.

Private utility method to 
keep the callee locations 
cleaner and easier to read

A static method is effectively
an encapsulated function; no

references to the initialized
arguments are passed into

the class, nor are there
dependencies on any other

methods. Most code bases have
quite a few of these, and it’s
considered a better practice

than defining global functions
to prevent issues with mutable

state in a global context.

Version checks switch statement since the SciPy
API changed (a frequent occurrence in Python

open source libraries as these libraries are
improved over time). Newer versions of SciPy have
protected the access to the distribution listing and

have created an access method to retrieve them.

Method for extracting the parameters 
from a distribution fit, putting them into 
a dictionary structure (this is known as 
currying, an eponymous reference to 
Haskell Curry, which condenses complex 
return types into a single reference to 
make code much cleaner).

Recall that this exact reference logic 
was copied multiple times throughout 
listing 9.1. Providing a single reference 
to extract this information reduces the 
chances of typo-induced bugs in code, 
which are frustrating to troubleshoot.
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    @staticmethod
    def _generate_boundaries(distribution, parameters, x): 
        args = parameters['arguments']
        loc = parameters['location']
        scale = parameters['scale']
        return distribution.ppf(x, *args, loc=loc, scale=scale) if args else 

distribution.ppf(x, loc=loc, scale=scale)                  

    @staticmethod
    def _build_pdf(x, distribution, parameters):           
        if parameters['arguments']:
            pdf = distribution.pdf(x, loc=parameters['location'], 
              scale=parameters['scale'], *parameters['arguments'])
        else:
            pdf = distribution.pdf(x, loc=parameters['location'], 
              scale=parameters['scale'])
        return pdf

    def plot_normalcy(self):
        qqplot(self.series, line='s')                 

    def check_normalcy(self):                         
        def significance_test(value, threshold):      
            return "Data set {} normally distributed from".format('is' if value 
              > threshold else 'is not')
        shapiro_stat, shapiro_p_value = shapiro(self.series)
        dagostino_stat, dagostino_p_value = normaltest(self.series)
        anderson_stat, anderson_crit_vals, anderson_significance_levels = 
          anderson(self.series)
        anderson_report = list(zip(list(anderson_crit_vals), 
          list(anderson_significance_levels)))
        shapiro_statement = """Shapiro-Wilk stat: {:.4f}
        Shapiro-Wilk test p-Value: {:.4f}
        {} Shapiro-Wilk Test""".format(
            shapiro_stat, shapiro_p_value, significance_test(shapiro_p_value, 
              self.ALPHA))
        dagostino_statement = """\nD'Agostino stat: {:.4f}
        D'Agostino test p-Value: {:.4f}
        {}  D'Agostino Test""".format(
            dagostino_stat, dagostino_p_value, 

significance_test(dagostino_p_value, self.ALPHA))

Private method to generate the starting and
ending points of the generated standard

histograms through the percent point
function (the inverse of the cumulative
distribution function) for a distribution

Switch logic to handle some 
distributions requiring only two 
arguments (location and scale), while 
others require additional arguments

Private method for building the probability density 
function (pdf) based on the fit parameters found. The 
switch conditional is due to the varying number of 
arguments among the distribution families.

A public method for generating the 
Q-Q plot comparing the series against 
the standard normal distribution. For 
future work, this could be expanded or 
refactored to allow plotting against any 
distribution within scipy.stats.

The stdout print functions for reporting on 
normalcy tests to the three primary families. 
The interpolation here is a bit different than in 
the script, and the human-readable nature of the 
decision of normalcy based on a passed-in alpha 
significance level makes the final report more 
interpretable and less prone to error in making 
assumptions about the series.

A method-private method.
Since this functionality is

solely intended to make the
code easier to read and less
dense, and has no external

uses, making it private
within this method is a

preferred methodology.
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        anderson_statement = '\nAnderson statistic: {:.4f}'.format(anderson_stat)
        for i in anderson_report:
            anderson_statement = anderson_statement + """
            For signifance level {} of Anderson-Darling test: {} the evaluation. 
              Critical value: {}""".format(
                i[1], significance_test(i[0], anderson_stat), i[0])
        return "{}{}{}".format(shapiro_statement, dagostino_statement, 
          anderson_statement)

    def _calculate_fit_loss(self, x, y, dist):     
        with warn.catch_warnings():
            warn.filterwarnings('ignore')
            estimated_distribution = dist.fit(x)
            params = self._extract_params(estimated_distribution)
            pdf = self._build_pdf(x, dist, params)
        return np.sum(np.power(y - pdf, 2.0)), estimated_distribution

    def _generate_probability_distribution(self, distribution, parameters, bins):
        starting_point = self._generate_boundaries(distribution, parameters, 
          self.MIN_BOUNDARY)
        ending_point = self._generate_boundaries(distribution, parameters, 
          self.MAX_BOUNDARY)
        x = np.linspace(starting_point, ending_point, bins)
        y = self._build_pdf(x, distribution, parameters)
        return pd.Series(y, x)

    def find_distribution_fit(self):                
        y_hist, x_hist_raw = np.histogram(self.series, self.histogram_bins, 
          density=True)
        x_hist = (x_hist_raw + np.roll(x_hist_raw, -1))[:-1] / 2.
        full_distribution_results = {}              
        best_loss = np.inf
        best_fit = stat.norm
        best_params = (0., 1.)
        for dist in self._get_distributions():
            histogram = getattr(stat, dist)
            results, parameters = self._calculate_fit_loss(x_hist, y_hist, 
              histogram)
            full_distribution_results[dist] = {'hist': histogram,
                                               'loss': results,
                                               'params': {
                                                   'arguments': parameters[:-2],
                                                   'location': parameters[-2],
                                                   'scale': parameters[-1]
                                               }}

Private method to score the fit of the histogram 
of the data series under test to the standard 
histograms in scipy.stats, using SSE

Private method for generating th
pdf and converting it to a series o

data points to compare agains
the raw passed-in data serie

Primary raw method for finding the closest 
(and all other) standard distributions to 
the series passed in. From an end-user 
perspective, exposing the raw data from 
the results of a module is sometimes 
worthwhile (often marked as a developer 
API) so that the user can use such data to 
perform additional actions.

Currying again so we don’t have to return a complex
n-valued tuple as a return statement. Dictionaries in
Python (and case classes in Scala) are preferable to

positional-encoded return statements to make debugging
and end-user experiences much more seamless, even if it

means more typing for the developer of the module.



262 CHAPTER 9 Modularity for ML: Writing testable and legible code
            if best_loss > results > 0:
                best_loss = results
                best_fit = histogram
                best_params = parameters
        return {'best_distribution': best_fit,
                'best_loss': best_loss,
                'best_params': {
                    'arguments': best_params[:-2],
                    'location': best_params[-2],
                    'scale': best_params[-1]
                },
                'all_results': full_distribution_results
                }

    def plot_best_fit(self):                          
        fits = self.find_distribution_fit()
        best_fit_distribution = fits['best_distribution']
        best_fit_parameters = fits['best_params']
        distribution_series = 

self._generate_probability_distribution(best_fit_distribution,        
best_fit_parameters,                                                         
self._get_series_bins())

        with plt.style.context(style='seaborn'):
            fig = plt.figure(figsize=self.best_plot_size)
            ax = self.series.plot(kind='hist', bins=self.plot_bins, normed=True,
                                  alpha=0.5, label=self.series_name, 
                                  legend=True)
            distribution_series.plot(lw=3,

➥ label=best_fit_distribution.__class__.__name__, legend=True, ax=ax)
            ax.legend(loc='best')
        return fig

    def plot_all_fits(self):                       

        fits = self.find_distribution_fit()
        series_bins = self._get_series_bins()

        with warn.catch_warnings():
            warn.filterwarnings('ignore')
            with plt.style.context(style='seaborn'):
                fig = plt.figure(figsize=self.all_plot_size)
                ax = self.series.plot(kind='hist', 
                                      bins=self.plot_bins, 
                                      normed=True, 
                                      alpha=0.5,
                                      label=self.series_name, 
                                      legend=True)
                y_max = ax.get_ylim()
                x_max = ax.get_xlim()
                for dist in fits['all_results']:
                    hist = fits['all_results'][dist]
                    distribution_data = self._generate_probability_distribution(
                      hist['hist'], hist['params'], series_bins)
                    distribution_data.plot(lw=2, label=dist, alpha=0.6, ax=ax)
                ax.legend(loc='best')

Public method for 
plotting the best fit 
found to the series 
data passed in for 
evaluation to the class

Additional method to plot all the 
distributions against the passed-in 
series data as an aid to visualize 
similarities between standard 
distributions
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                ax.set_ylim(y_max)
                ax.set_xlim(x_max)
        return fig

This code is functionally identical to that of the script. It produces the same results
in the same amount of runtime and will just-in-time (JIT) compile to the exact same
byte code as the script in listing 9.1 (minus the additional method for plotting all
standard reference distributions against the series data). The primary difference in
this code is in its utility.

 While there are significantly more lines of code here than in the script, we now have
isolation in the processing of the core logic of the code. We can walk through the code,
method by method, to trace any issues that might arise, aiding any troubleshooting that
may need to be done by a very large degree. We also now have the ability to unit test the
code. With data mock-ups of predictable and readily understandable data, we can verify
each of these methods against known functionality as a sort of litmus test. 

 The benefit of writing code in this manner means that we can, after a single up-front
investment in slightly more complex development actions, potentially save ourselves
countless frustrating hours of troubleshooting faults in the code. This frees us up to
do what we should be doing: solving business problems.

NOTE If this solution were for a real code base, the statistical calculations
would be put into their own class in a statistics module, while the visualization
code would be put in another module. All of the methods shown in listing 9.3
are collapsed into a single class to make them easier to read in this book.

Machine-readable vs. human-readable code
An important point to bring up about code design and structure is that it’s primarily
for the benefit of humans and not the machine executing the code. While it may
seem as though it is more efficient for execution to chain operations together in
dense and complicated blocks, the truth is that, to the computer, provided that the
executable logic is the same, the manner in which code is written (with respect to
functional versus object-oriented versus scripted) is purely for the benefit of the
people maintaining the code.

A high-quality code base should read like written text. It should be clear, concise,
and easy enough to follow by looking at variable, function, method, class, and mod-
ule names and the standard manipulation actions within the language. Someone
proficient in that programming language should be able to understand the function-
ality of the code as easily as if they were reading a written-text description of the
code base. 

Shorthand notations, confusing acronyms, and overly dense control flows do no one
any favors in helping to indicate how code works. After all, to the computer executing
the byte code that is compiled from your high-level language code, a variable named
h means the same as standard_distribution_histogram when referring to the
same object in memory. The same can’t be said about a human evaluating the code.
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An entire design philosophy exists for writing code, which is applicable to ML project
work. Known as test driven development (TDD), it can help structure code solutions in an
efficient manner. In the next section, we’ll go through the principles of TDD as it
applies to ML development.

9.4 Using test-driven development for ML
As part of the follow-up to the refactoring work that we did for a problematic script
with our new team, we should probably discuss how to work through MVP develop-
ment in a different way. Many philosophies and patterns of software development
have been developed over the years, and one that I’ve used and seen work remarkably
well for ML project work is TDD.

 TDD, as a principle, is great for general software development. At its core, TDD
approaches development efforts by focusing on writing tests first, followed by creating
a functional and elegant code base to support the passing of those tests. It approaches
the creation of minimal functionality from the viewpoint of, “I need to perform oper-
ation x that I expect to generate result y, so I will create a test that asserts y and then
build the code for x that makes the y test pass.” For most software engineering done
today, TDD is considered one of the foundational approaches to developing software
in an Agile paradigm. 

 While pure TDD is incredibly challenging as a development strategy for ML use
cases (particularly if trying to test results from non- or semi-non-deterministic algo-
rithms), the basic principles, when applied to ML project work, can dramatically
improve the functionality, readability, and stability of your code. Your assertions may
change from the way a traditional software developer would write theirs, but the
intentions and foundation remain the same. It’s all about having intentional and
predictable behavior that can be confirmed as functioning correctly during your
development process.

 When looking at the refactoring that happened between code listings 9.1 and 9.3,
the decisions on where to split out functionality were informed more by the question,
“How can I test this block of code?” than by, “What looks nice?” Figure 9.6 covers the
thought process that I went through in creating listing 9.3. 

 Each of the boxes to the right of the leftmost column in figure 9.6 represents dis-
tinct logical operations that have been separated out for the purposes of testing.
Breaking up the components in this way enables us to have fewer places that we have
to search through. We also reduce the code complexity by isolating individual func-
tionality, making a complicated series of actions little more than a path of complex
actions, each stage capable of being checked and validated for proper functionality
independent of one another.

NOTE While writing these examples, I actually wrote listing 9.3 first, and
then later adapted listing 9.1 from that code. Writing from the perspective
of generating unit-testable code from the start helps keep your solutions
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easier to read, modify, and, of course, test (or, in this case, convert into a
hard-to-read script). When getting started in writing abstract code, the pro-
cess of creating abstraction may seem foreign. As with anything else in this
profession, you will naturally gravitate toward more efficient methods over
time. Don’t be discouraged if you feel that you are going from script to
abstraction in refactoring. Before you know it, you’ll be leaving the world
of scripting behind.

To further explain how the thought process in figure 9.6 translates from structural
design into creating testable code in succinct and isolable groupings of functional-
ity, let’s take a look at the private method _generate_boundaries() as an example.
The following listing shows what a simple unit test for this private method would
look like. 

 
 

Figure 9.6 The design process for listing 9.3, focusing on testability and isolable code 
structure

“I need to present
standard normalcy

tests for a series with
a printed report to

stdout.”

“I need to plot the
best standard

distribution fit to a
histogram of the

series data.”

To do that, I need to . . .

“I need to create a
comparison of a

series to the standard
distribution types in

scipy.stats.”

“I need to debug the
fit visually, so I should

build a utility to plot
all distributions

against the series
histogram.”

Create a method for
that.

Main interface methods

“I need to get a
starting and ending

point for distributions
to plot them.”

Public, but debugging
methods

Private (internal) methods
to reduce redundant and

messy code

“I need to calculate
the error between a
standard distribution

and the series
representation.”

“I need to pass data
from one method to

another without
having to mess with

tuples.”

“I need to generate
probability

distribution functions
of a histogram of the

series data and
standard

distributions.”
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def test_generate_boundaries():                             
    expected_low_norm = -2.3263478740408408                 
    expected_high_norm = 2.3263478740408408
    boundary_arguments = {'location': 0, 'scale': 1, 'arguments': ()}
    test_object = DistributionAnalysis(np.arange(0,100), 10)            
    normal_distribution_low = test_object._generate_boundaries(stat.norm, 
                                            boundary_arguments, 
                                            0.01)            
    normal_distribution_high = test_object._generate_boundaries(stat.norm, 
                                            boundary_arguments, 
                                            0.99)
    assert normal_distribution_low == expected_low_norm, \
      'Normal Dist low boundary: {} does not match expected: {}' \
      .format(normal_distribution_low, expected_low_norm)      
    assert normal_distribution_high == expected_high_norm, \
      'Normal Dist high boundary: {} does not match expected: {}' \
      .format(normal_distribution_high, expected_high_norm)

if __name__ == '__main__':                                   
    test_generate_boundaries()
    print('tests passed')

In this approach, we’re testing several conditions to ensure that our method works as
we expect. It’s important to note from this example that, if this block of code were not
isolated from the remainder of the actions going on in this module, it would be
incredibly challenging (or impossible) to test. If this portion of the code was causing a
problem (if one arose) or another tightly coupled action that preceded or followed
this code, we wouldn’t have any way of determining the culprit without modifying the
code. However, by separating out this functionality, we can test at this boundary and
determine whether it is behaving correctly, thereby reducing the number of things we
need to evaluate if the module does not do what it is intended to do.

NOTE Many Python unit-test frameworks exist, each with its own interface
and behavior (pytest, for instance, relies heavily on fixture annotations).
JVM-based languages generally rely on standards set by xUnit, which look
dramatically different from those in Python. The point here is not to use
one particular style, but rather to write code that is testable and stick to a
particular standard of testing.

Listing 9.4 An example unit test for the _generate_boundaries() method

A unit test definition 
function for testing the 
_generate_boundaries() 
method

Static test values that we’re expecting as 
a result to ensure proper functionality

Object instantiation of our 
class DistributionAnalysis()

Calls the protected method
_generate_boundaries with the

lower boundary value of 0.01

Asserts that the return from the 
_generate_boundaries method 
equals our expected value

Allows for all tests for the module to be run 
(in practice, multiple unit test functions will 
be called here). If all tests pass (assertions 
don’t throw assertion exceptions), this script 
will exit, printing that tests passed.
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To demonstrate what this paradigm will do for us in practice, let’s see what happens
when we switch the second assertion statement from equality to non-equality. When
we run this test suite, we get the following output as an AssertionError, detailing
exactly what (and where) things went wrong with our code.

=================================== FAILURES ===================================
___________________________ test_generate_boundaries ___________________________

    def test_generate_boundaries():
        expected_low_norm = -2.3263478740408408
        expected_high_norm = 2.3263478740408408
        boundary_arguments = {'location': 0, 'scale': 1, 'arguments': ()}
        test_object = DistributionAnalysis(np.arange(0, 100), 10)
        normal_distribution_low = test_object._generate_boundaries(stat.norm,
                                                                   boundary_arguments,
                                                                   0.01)
        normal_distribution_high = test_object._generate_boundaries(stat.norm,
                                                                    boundary_arguments,
                                                                    0.99)
        assert normal_distribution_low == expected_low_norm, \
            'Normal Dist low boundary: {} does not match expected: {}' \
                .format(normal_distribution_low, expected_low_norm)
>       assert normal_distribution_high != expected_high_norm, \         
            'Normal Dist high boundary: {} does not match expected: {}' \
                .format(normal_distribution_high, expected_high_norm)
E       AssertionError: Normal Dist high boundary: 2.3263478740408408 does not match 

expected: 2.3263478740408408        
E       assert 2.3263478740408408 != 2.3263478740408408          

ch09/UnitTestExample.py:20: AssertionError
=========================== 1 failed in 0.99 seconds ===========================
Process finished with exit code 0

Designing, writing, and running effective unit tests is absolutely critical for produc-
tion stability, particularly when thinking of future code refactoring or extending the
functionality of this utility module, since additional work may change the way that
this method or others that feed data into this module function. We do, however,
want to know before we merge code into the master (or main) branch that the
changes being made will not introduce issues to the rest of the methods in this mod-
ule (as well as giving us direct insight into where a problem may lie since the func-
tionality is isolated from other code in the module). By having this security blanket
of knowing that things work as originally intended, we can confidently maintain
complex (and hopefully not complicated) code bases.

 

Listing 9.5 An intentional unit-test failure

The caret at 
the edge of th
report shows 
line in our uni
test that failed

The return of the top-level exception (the AssertionError) 
and the message that we put within the test to ensure 
we can track down what went wrong

The actual evaluation that 
the assertion attempted 
to perform
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NOTE For more information on TDD, I highly encourage you to check out
Kent Beck’s book, Test-Driven Development by Example (Addison-Wesley Profes-
sional, 2002).

Summary
 Monolithic scripts are not only difficult to read but also force inefficient and

error-prone debugging techniques.
 Large, eagerly evaluated scripts are incredibly challenging in terms of modify-

ing behavior and introducing new features. Troubleshooting failures in these
becomes an exercise in frustration.

 Defining logical separation of tasks by using abstraction within an ML code base
greatly aids legibility for other team members who will need to maintain and
improve a solution over time.

 Designing project code architecture to support discrete testable interfaces to
functionality greatly helps in debugging, feature enhancement work, and con-
tinued maintenance updates to long-lived ML projects.



Standards of
coding and creating

maintainable ML code
In the preceding chapter, we covered the broad strokes of a code foundation.
Focusing on breaking up complex structure by utilizing refactoring and basic
software-engineering best practices was important to pave the way for further dis-
cussion of the more detailed aspects of software development for ML. Without
laying the foundation of basic best-practices, the code architecture and design ele-
ments that follow simply don’t matter.

This chapter covers
 Identifying ML code smells and how to correct 

them

 Reducing code complexity in ML projects

 Currying for cleaner and more understandable 
code

 Applying proper exception handling in ML 
code bases

 Understanding side effects and how they 
can create bugs

 Simplifying nested logic to improve 
comprehension
269



270 CHAPTER 10 Standards of coding and creating maintainable ML code
 Early in anyone’s career in software development (ML or otherwise), the ability to
identify potential issues with an implementation is effectively nonexistent. This is under-
standable, as the wisdom of knowing what works and what doesn’t comes directly from
experience. Everyone who works in developing software eventually learns that just
because you can do something doesn’t mean that you should do it in code. These les-
sons are typically gained by messing things up a great deal. 

 Projects that have too many of the aforementioned mistakes run the risk of being
abandoned. After all, if no one can troubleshoot the code, let alone read it, the
chance that the technical-debt-riddled solution will be permitted to run for very long
in production is slim.

 The goal of this chapter is to identify the most common issues that I see in ML
code bases that directly affect the stability of the solution (and the general mental well-
being of those required to maintain it). 

10.1 ML code smells
Sometimes you look at a code base and just know something is not right. The mistakes
you see in formatting, collection handling, lack of appropriate recursion, or quantity
of dead code can give you a sense of the overall health of a code base. If they’re bad
enough, even the most junior members of a team can identify them.

 More insidious problems might be much harder for a junior DS to identify but can
be clear to more senior members of the team. These “smells” within the code (a term
famously coined by Martin Fowler) are indicative of potentially crippling problems
that may arise elsewhere, directly impacting production stability or making the code
nigh-impossible to debug if a problem happens.

 Table 10.1 lists some of the more common code smells that I see in ML code bases.
While the ones listed are not catastrophic, per se, they typically are the first sign that I
have that “all is not well in Denmark.” Finding one of these code smells generally
means that one of the more insidious issues that will likely affect production stability is
contained somewhere in the code base. Learning to recognize these issues, setting
plans to address the technical debt of them, and working to learn techniques to avoid
these in ML projects can significantly reduce the refactoring and repair work that the
ML team will have to do in the future.

Table 10.1 Common “nontoxic” code smells in ML code bases

Code smell Example Why it stinks

Wildcard imports from scipy import * It brings in all of the top-level functions in 
a package. It may create namespace colli-
sions among other imported libraries or 
within the project’s code base. 

Multiple imports import numpy as np Confusing, mixed bag of usage throughout 
code.
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from numpy import add Makes the code harder to read.

Too many 
parameters

def my_method(df, name,
source, fitting, metric,
score, value, rename,
outliers, train, valid)

Hard to read, hard to maintain, and confus-
ing. Indicative of deeper issues in abstrac-
tion and encapsulation throughout the 
code base.

Copied boiler-
plate

Having feature-engineering code for 
training, test, and inference defined 
in three separate places

Aka shotgun surgery— changes need to be 
identically matched in all places, increasing 
the chances of making a mistake and having 
inconsistencies.

Default km = Kmeans() The defaults are generally not ideal.

Hyperparameters km.fit(train) Seeing untuned models outside of rapid pro-
totyping is dangerous.

Variable reuse pred = lr.predict(test)
pred.to_parquet('/<loc>')
pred = rf.predict(test)
pred.to_parquet('/<loc2>')

Violates the single-responsibility principle. 
Makes the code hard to follow and debug. 
Can create stateful bugs that are hard to fix. 
Adding new functionality can create spa-
ghetti code.

Use of literals profit = 0.72 * revenue Literals are “magic numbers” that, when lit-
tered throughout code, can make updating 
them a nightmare. These should always be 
defined as named constants.

In-line comments 
explaining how 
the code works

<some abhorrently complex 
chained code>

If you need to write comments to explain 
how code works, you are doing it wrong. Any-
time the code becomes so complicated that 
you need a reminder of how it works, you 
should assume that no one else will be able 
to figure out what you wrote. Refactor it to 
reduce complexity.

SQL without 
common table 
expressions 
(CTEs)

<chained joins with no 
encapsulated interim table 
definitions>

CTEs help readability of SQL. Having hun-
dreds (or thousands) of lines of SQL that 
have a single dependency chain means that 
any modification (adding or dropping a col-
umn) can take hours and is nearly impossi-
ble to debug.

SQL walls <no upper casing to 
functions, no indentation 
or line-wrap SQL>

All three of these are impossible to read. 

Constant 
recasting

age = int(age)
height = float(height)
seniority = int(
retirement) \
– int(age)

Typing doesn’t change. Cast it once. This is 
indicative of naïve programming (“It threw an 
exception once for not being an int, so I will 
make sure all integers are cast as int.”) It’s 
pointless.

Table 10.1 Common “nontoxic” code smells in ML code bases (continued)

Code smell Example Why it stinks
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This chapter is focused on the five most frequent “deadly” errors. These are the crip-
pling problems that create fundamentally broken ML code bases. Seeing these sorts of
issues would likely mean a pager duty call at least once per week.

 If a project contains a small number of the issues described in this chapter, it’s not
guaranteed to fail. The project may be onerous and confusing to continue develop-
ing, or incredibly unpleasant to maintain, but that doesn’t mean it won’t run and
serve its intended purpose. 

 However, if the code base is riddled with multiple instances of each type of prob-
lem, the chances that you’re going to sleep well through your on-call week are pretty
grim. Figure 10.1 shows the relationship between the severity of these issues and their
potential effect on the outcome of the final project.

We’ll take a look at these five main bad practices throughout the rest of this chapter.
We’ll focus on how to fix them and discuss why they can be so detrimental to ML proj-
ect work.

Poor syntax

Poor naming

conventions

Bad code design

Spaghetti code or

big ball of mud

Not likely to cause

project failure

Annoying? Yes.
Hard to follow? Of course.
If it runs, some companies
are OK with this technical
debt. (Most never pay down
that debt, though.)

No one wants to have to find
the Rosetta stone to translate
what someone was trying to
do in the code.

If the code is so unstable
that it fails regularly enough
to affect the business unit
asking for the solution, the
project will likely get
cancelled.

When it’s just annoying but can still be somewhat understood

When it’s bad to the point that no one can figure out how to fix it

When it’s causing constant production issues

Likely will be

abandoned in the

future, as

enhancement and

extending is nearly

impossible.

Highly likely to cause

project abandonment

or instant regret

when in production,

constant job failures

Currying bad

practices (tuple

unpacking)

Relying on try/catch

(Improper exception

handling)

Overuse or improper

use of global

mutable objects

Excessively nested

logic

Figure 10.1 The five most common issues in ML code and their relationships to project outcomes
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10.2 Naming, structure, and code architecture
Someone who is on on-call support experiences few more exhausting and panic-
inducing scenarios than realizing that the job that just broke and requires investiga-
tion is “that one” This code is so overly confusing, complicated, and monkey-patched
that when it breaks, the original author is usually called in to fix it. What makes it even
worse is knowing that person left the company—two months ago. And now you have
to fix their code.

 Digging into it, all you see are obscure acronyms as variable names, massive walls of
code within functions, classes with dozens of unrelated methods thrown in haphaz-
ardly, unhelpful inline comments, and thousands of lines of commented-out code. It’s
basically the worst of both worlds: both a bowl of spaghetti code (control flow in the
code organized as well as noodles in a bowl of spaghetti) and a ball of mud (effectively
a morass of individual bowls of spaghetti with duplicated code, global references,
dead code, and no seeming architectural design for maintainability).

 A lot of ML code tends to look like this, unfortunately, and it can be remarkably frus-
trating to diagnose and refactor. Let’s take a look at a few bad habits regarding naming,
structure, and architecture, as well as better alternatives to those bad practices.

10.2.1 Naming conventions and structure

Naming variables can be a bit of a tricky exercise. Some schools of thought subscribe
to the “less is more” philosophy, where the most succinct (shortest) code is best. Oth-
ers, including myself, when writing non-ML code, tend to stick to more verbose nam-
ing conventions. As mentioned in chapter 9, the computer doesn’t care at all how you
name things (provided that you’re not, as shown in listing 10.1, using a reserved key-
word for a structure as a variable name). 

 Let’s look at a dense representation of some naming issues. From lazy abbrevia-
tions (shorthand placeholder variable names) to unintelligible cipher-like names and
a reserved function name, this listing has more than a few problems.

import functools
import operator
import math
gta = tuple([1,2,3,4])   
abc = list(range(100))       
REF_IND_24G_88A = list(zip(abc, list(range(0, 500, 5))))    
tuple = [math.pow(x[0] - x[1],2) for x in REF_IND_24G_88A]   
rtrn = math.sqrt(functools.reduce(operator.add, tuple) / len(tuple))  

Listing 10.1 Bad naming conventions

Defines a tuple using the built-in language function tuple() 
that takes an iterable (here, a list). The variable definition 
sheds no light on what this is used for, though.

Generates a list of 
numbers. The variable 
name “abc” is just 
laziness. 

Creates a merged list of each of
the other lists. Defining the list in

this statement is hard to read and
increases code complexity. The
variable name is acronym soup

and provides zero insight to any-
one reading the code.

Calculates the squared error of the two lists 
of numbers. The variable name is dangerous 
because it’s a reserved function name that 
will now get overwritten for this context.

Calculates the root mean squared error
(RMSE), but the variable defined is just

a shortened name for a reserved
language feature (“return”)



274 CHAPTER 10 Standards of coding and creating maintainable ML code

The
of th
rtrn                    
> 229.20732972573106     
gta                             
> (1, 2, 3, 4)                                
another_tuple = tuple([2,3,4]                 
> TypeErrorTraceback (most recent call last)
<ipython-input-9-e840d888412f> in <module>
----> 1 another_tuple = tuple([2,3,4])
TypeError: 'list' object is not callable     

This is clearly meant to be an exaggerated example of multiple bad practices con-
densed into a single block. You have little chance of seeing something like this “in the
wild,” but each and every one of these issues has been in code bases that I’ve seen. 

 Of all of the issues presented here, the reserved name usage is perhaps the most
insidious. Not only is it incredibly hard to detect in a large code base, but it can
wreak havoc on future feature development. I can’t stress strongly enough how
important it is to avoid using nonspecific variable names, particularly in a language like
Python, because you can override core functionality with seemingly innocuous
shortcut naming.

 While this isn’t a problem in compiled languages directly (the compiler will not
allow reassignment of a protected method to something that you define, after all), it
can be introduced by unintentionally overriding methods that have dependencies.
While JVM languages will detect and not permit mixing in of improperly overridden
traits from a superclass, having poorly named methods during development can lead
to wasting countless hours tracking down why a build fails.

10.2.2 Trying to be too clever

There is no award, nor will there ever be, for developing software with the fewest key-
strokes. Trying to be clever by seeing how compact and concise code can be written
does nothing for the runtime efficiency of the code in an interpreted language. The
only thing it achieves is raising the ire of others who have to read the code. 

NOTE Code styling and comprehensible structure benefits humans. The
computer doesn’t care how fancy your chained operations are, but other
humans will. And they will hate you for this form of cleverness.

Listing 10.2 exemplifies an attempt at creating the most dense and efficient code
achievable. While it is technically correct and will result in the calculation of a root
mean squared error, it’s nearly impossible to read.

 Writing code like this does nothing for performance. The author may feel smarter by
writing what they see as efficient code, but nothing could be further from the truth.

Reports the value to stdout (for 
demonstration purposes only) RMSE

e two
series

Now calls the previously 
defined tuple gta to see 
what it generated when it 
was executed

The expected result of 
defining a tuple in the 
gta declaration

Now tries to generate 
another tuple

Whoops! Why doesn’t it work? Well, we overrode the
language function tuple with a list definition. Since nearly

everything in Python is mutable, weakly typed, and
object-based, we can even override the very nature

of the language itself if we’re not careful.
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The code makes it hard for others to figure out what is going on, will be incredibly
challenging to modify, and limits the ability to debug.

rmse = math.sqrt(functools.reduce(operator.add, [math.pow(x[0] - x[1], 2) for 
x in list(zip(list(range(100)), list(range(0,500,5))))]) / 100)    

This style of efficient one-line coding requires paying far too much attention to each
element in order to piece together all of the actions occurring. Thankfully, a simple
set of logic is being performed in this example. I have seen one-liners span dozens of
lines in an IDE before, and it does no one any favors by writing code like this.

 The following is a cleaner and more straightforward way to write this block of func-
tionality. While still not ideal, it achieves a higher degree of legibility.

first_series_small = list(range(100))
larger_series_by_five = list(range(0, 500, 5))   
merged_series_by_index = list(zip(first_series_small, larger_series_by_five))
merged_squared_errors = [math.pow(x[0] - x[1],2) for x in 

merged_series_by_index]
merged_rmse = math.sqrt(functools.reduce(operator.add, merged_squared_errors) 

/ len(merged_squared_errors))     

However, the proper way to write this code is shown in listing 10.4. Not only are the
variable names clear, but we’re not reimplementing functionality that already exists
within standard packages. To keep code as simple and legible as possible, don’t try to
reinvent the wheel.

import numpy as np
from sklearn.metrics import mean_squared_error  

def calculate_rmse_for_generated_sequences(**kwargs):
    first_sequence = np.arange(kwargs['seq_1_start'], kwargs['seq_1_stop'],  
        kwargs['seq_1_step'], float)

Listing 10.2 Complex one-liner

Listing 10.3 Properly named and structured version

Listing 10.4 How it should be written

Borderline intentionally obfuscated functionality. Writing code like this does no
one, including yourself, any favors. It’s dense, hard to read, and requires a lot of

mental effort to figure out what it’s doing (even if it is named correctly).

Much clearer variable names 
that explain, in plain text, the 
values that the variable is 
pointing to

By describing what is happening within the variable name,
the code can be scanned much more easily. Instead of a

confusing name that bears no meaning to the state of the
operations at this point, stating what is being done

makes reading the code much easier.

Naming the final action properly as a specific
calculated value based on the defined logic makes

this entire block much easier to figure out.

The RMSE equation is graciously provided and 
maintained for you by the scikit-learn contribution 
team. They certainly know what they’re doing, and 
you should trust that their modules work correctly.

Hardcoding values within functions or
methods is an antipattern (except for in the

mean_squared_error function, we’re forcing a
particular functionality with the flag setting to False),

so here we’re allowing the generator to calculate
different values of generated sequences

by passed-in configuration.
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    second_sequence = np.arange(kwargs['seq_2_start'], kwargs['seq_2_stop'], 
        kwargs['seq_2_step'], float)
    return mean_squared_error(first_sequence, second_sequence, squared=False)   

calculate_rmse_for_generated_sequences(**{'seq_1_start': 0, 'seq_1_stop': 100,
                                          'seq_1_step': 1, 'seq_2_start': 0,
                                          'seq_2_stop': 500, 'seq_2_step': 5})
> 229.20732972573106

10.2.3 Code architecture

Code architecture is a contentious subject. While many people tout that they have an
ideal approach, the only valid answer to what makes a good layout of logic within a
code base is the one that the team can maintain. I’ve lost count of the number of times
that I’ve worked on or seen someone’s ideal repository structure that is so ridiculously
overengineered that the team ends up struggling to merge code to it before the proj-
ect is done.

 The inevitable result of defining a well-intentioned but overly complex repository
structure for a project is a breakdown in proper abstraction. As the process of develop-
ment moves along in an ML project, and additional features are created to solve the
needs of the solution, new functionality ends up getting shoehorned in places that it
would not have otherwise been placed. By the time the development cycle is com-
plete, the code base is impossible to navigate, as shown in figure 10.2.

 In this example, a series of three major feature updates need to be added to the
code. Each contributor attempts to figure out where their feature branch code needs
to be placed, based on the existing wireframe built at the start of the project. The first
improvement that adds more features to the vector isn’t confusing. The repository
structure has clearly defined modules dedicated to this.

 The second change, modifications to the model family, involves replacing the
model that had been used earlier. As long as the original model’s core code, which
was in existence before the change, gets completely removed from the code base, and
the dead code is removed and not just commented out, this form of refactoring is per-
fectly fine. However, as part of this model change, new functionality is required in the
form of a validation check. Where should this go? 

 The contributor ends up slapping this new functionality into the feature-validation
statistics class. This now creates a tight coupling of functionality between feature-
related statistics and the new target-related statistics. 

 While it’s true that both operations are doing statistical validation of data, the algo-
rithms, validations, and operations being performed have nothing to do with one
another. Furthermore, in order to fit this functionality into the existing class, the signa-
ture needs to be changed to adapt to both use cases. This is a clear case of code spaghetti:
completely unrelated code and modifications used to “monkey-patch” functionality
together end up leaving the code more fragile, more confusing, and harder to modify
in the future. Tests on this class will similarly become far more difficult to write as the

Sets the mean square error function’s (MSE) squared
argument flag to False, and you have RMSE
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new functionality has to be considered. It’s simply more work than it’s worth. What the
contributor should have done with this new functionality is create a new module with a
class (or classes) that support the target’s statistical validation needs. 

 The final change required, adding Hyperopt for auto-tuning of the model, forces
the team members to perform a highly complex refactoring. They updated the
model-training module to support this, which is reasonable. However, the search
space configuration should have been externalized to a different module. Loading

Original code architecture

Load data

Core feature

engineering

Feature validation

statistics

Vector creation

Model + metrics

logging

Inference Inference module

Modeling module

Feature

augmentation

module

Data ingestion and

enhancement

module

“We need to add these
eight additional fields to
the vector.”

Model scoring

Model tuning

Model training

Train/test/validation

splits

Scaling/encoding

“We discovered that
a generalized linear
model is better.”

“We need to add
auto-tuning and store
the search space
somewhere.”

It isn’t the new features being added that
are a problem. It is that new functionality
is being put into existing modules and,
as such, many couplings between the
classes need to be updated.

Over time, this patching can create
incredibly complex dependencies among
modules to the point that the code is an
unreliable and complicated mess.

Or here?

Search space

here?

Hyperopt

Scaling

Target

validation

Figure 10.2 A well-thought-out repository design and code architecture can slowly become a 
tangled and confusing mess.
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down the metrics, parameters, and monitoring module with unrelated functionality
will only create a sloppy code base. It will make the peer review (PR) process more
complicated, make future feature work more challenging, and force more-complex
unit tests to be written to ensure proper code coverage.

 To be crystal clear here, I’m not advocating rigid adherence to a particular code
architecture, nor sticking with whatever design the repository was in at the conclusion
of the MVP phase of a project. Code should always organically grow; the process of
refactoring, improving, adding features, removing features, and maintaining a code
base should be embraced by all who work in software development. 

 However, there are ways to add features that make a code base maintainable, and
there are ways that make it a broken, complicated, and confusing mess. If you’re
changing existing functionality or adding a new feature that is isolated to the encapsu-
lation defined by a current class or module, you should be writing your feature within
that module. However, if the change is extremely large (an entirely new functionality
that can be abstracted away into its own module) or involves communication with
many other classes and modules spread throughout your code base, do yourself and
your team a favor and just create a new module.

10.3 Tuple unpacking and maintainable alternatives
Let’s suppose for a moment that we’re working on a relatively complex ML code base
that’s in production. We’ve created our feature branch and are ready to implement
the improvement. The ticket we’re working on, adding a statistical test to a core mod-
ule, requires adding another return value to a scoring method. 

 Looking at the method that exists, we see that the return is a tuple of values, cur-
rently three of them. After adding in the additional logic and updating the return
tuple with the additional variable, we move to the portion of the code that needs the
new return value. After updating the return structure where our feature branch is tar-
geting consumption of this method, we run a test on our feature branch. 

 Everything breaks. The other places in the code base that didn’t specifically need
the new variable, even though they don’t use it, still need to capture the added return
value. Thankfully, there’s a solution to this issue of currying return values by position
reference: tuple unpacking.

10.3.1 Tuple unpacking example

Let’s take a look at a simple data generator in listing 10.5. In this code, we’re using the
logistic map function to generate a series of data, visualizing it, and returning both
the plot object and the series (so we can do some statistical analysis on it based on the
configured values). 

import matplotlib.pyplot as plt
import numpy as np

Listing 10.5 Logistic map data generator with tuple return
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def logistic_map(x, recurrence):     
    return x * recurrence * (1 - x)

def log_map(n, x, r, collection=None):    
    if collection is None:
        collection = []
    calculated_value = logistic_map(x, r)
    collection.append(calculated_value)
    if n > 0:
        log_map(n-1, calculated_value, r, collection)
    return np.array(collection[:n])

def generate_log_map_and_plot(iterations, recurrence, start):  
    map_series = log_map(iterations, start, recurrence)
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=(16,8))
        ax = fig.add_subplot(111)
        ax.plot(range(iterations), map_series)
        ax.set_xlabel('iterations')
        ax.set_ylabel('logistic map values')
        ax.set_title('Logistic Map with recurrence of: 

{}'.format(recurrence))
    return (map_series, fig)   

log_map_values_chaos, log_map_plot_chaos = generate_log_map_and_plot(1000, 
3.869954, 0.5)     

NOTE For the results of these examples, see the Jupyter notebook for this
chapter in the companion repository for this book at https://github.com/
BenWilson2/ML-Engineering.

With the two return values specified with the generate_log_map_and_plot() func-
tion, it’s not an overly complex burden from a usage and maintainability perspective
to keep the correct references when using it. However, when the size and complexity
of the return values grow, using the function becomes increasingly difficult. 

 As an example of a complex return type from a function, see listing 10.6. This sim-
ple statistical analysis of a univariate series generates a complex output. While the
intention of making it easier to use is there with the utilization of grouped tuples, it’s
still too complex. 

def analyze_series(series):     
    minimum = np.min(series)
    mean = np.average(series)
    maximum = np.max(series)

Listing 10.6 Statistical analysis function with a nightmarish tuple unpacking

The logistic map function for use 
in recursing over prior values

The tail-recursive function for 
generating the series by applying 
the logistic map equation over 
each previous value

Function for generating
the series and a plot to

show what the particular
recurrence value does

to the series

The tuple return type. This is not a particularly egregious
demonstration of complexity in passing a result out of a
function, but it still requires knowledge of the function

signature to use. It also requires positional reference for
each place this function will be called (creating a tightly

coupled structure between this function’s return type
and each place that it is used in code).

Calls the function with 
tuple unpacking of the 
return values, assigning 
them to variables directly

Function for 
collecting statistics 
on a series of data

https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
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    q1 = np.quantile(series, 0.25)
    median = np.quantile(series, 0.5)
    q3 = np.quantile(series, 0.75)
    p5, p95 = np.percentile(series, [5, 95])
    std_dev = np.std(series)
    variance = np.var(series)
    return ((minimum, mean, maximum), (std_dev, variance), (p5, q1, median, 

q3, p95))                                                             

get_all_of_it = analyze_series(log_map_values_chaos)  
mean_of_chaos_series = get_all_of_it[0][1]    
mean_of_chaos_series
> 0.5935408729262835

((minimum, mean, maximum), (std_dev, variance), (p5, q1, median, q3, p95)) = 
analyze_series(log_map_values_chaos)   

Writing code in this way is problematic for reasons other than simply having to look at
source code to use it, though. What happens when this function needs to change?
What if, instead of needing to evaluate the 95th percentile of the series, we also need
to calculate the 99th percentile? Where do we put that within the structure? 

 If we update the return signature, we then have to update every single place that
this function is used. It’s simply not a usable form of currying data from the function
for use elsewhere. It also increases the complicated levels of the code in a way that
makes the entire code base more fragile, harder to maintain, and frustrating to trou-
bleshoot and test. 

10.3.2 A solid alternative to tuple unpacking

Listing 10.7 shows a solution to this problem, using a structure and approach that is
similar to that used for another dominant ML language: Scala (through the use of
case classes). In this listing, we’re using named tuples to handle the return type struc-
ture, allowing us to use named references to get to the underlying data within the
structure. 

 This approach enables future-proofing since any modification of the return struc-
ture will not require defining consumption patterns at place of use. It’s also far easier
to implement. Using these structures is like using dictionaries (using similar underly-
ing structures), but they have a more syntax-sugar feel than dictionaries because of
the positional named entity notation.

 

 

The complex grouped nested tuple
return type that will force positional
(or complex defined returns) on the

caller side of this function

Uses an object to 
hold the entire 
return structure in 
a single variable

Uses positional notation and nesting to return a 
particular element from the return structure. This 
is extremely fragile and difficult to use. Most of 
the time, when approach is utilized, if this 
function changes, these values are overlooked 
when refactoring, leading to confusing 
exceptions or incorrect calculations.

The alternative access pattern for
expanding the tuples. This is just ugly
code and difficult to maintain. When
the underlying function changes, this
tightly coupled signature will throw a
ValueError Exception with unpacking

counts being off from expected.
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from collections import namedtuple    

def generate_log_map_and_plot_named(iterations, recurrence, start):
    map_series = log_map(iterations, start, recurrence)
    MapData = namedtuple('MapData', 'series plot')  
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=(16,8))
        ax = fig.add_subplot(111)
        ax.plot(range(iterations), map_series)
        ax.set_xlabel('iterations')
        ax.set_ylabel('logistic map values')
        ax.set_title('Logistic Map with recurrence of: 

{}'.format(recurrence))
    return MapData(map_series, fig)            

other_chaos_series = generate_log_map_and_plot_named(1000, 3.7223976, 0.5)  
other_chaos_series.series    

> array([0.9305994 , 0.24040791, 0.67975427, 0.81032278, 0.57213166,
       0.91123186, 0.30109864, 0.78333483, 0.63177043, 0.86596575, …])

Now that we have a simple example of the refactoring of the series generation and
plotting from listing 10.5, let’s take a look at how a named tuple approach with defined
structure can aid us with the far more complicated return type from listing 10.6, as
shown in the next listing.

def analyze_series_legible(series):
    BasicStats = namedtuple('BasicStats', 'minimum mean maximum')  
    Variation = namedtuple('Variation', 'std_dev variance')
    Quantiles = namedtuple('Quantiles', 'p5 q1 median q3 p95')
    Analysis = namedtuple('Analysis', ['basic_stats', 'variation', 'quantiles']) 
    minimum = np.min(series)
    mean = np.average(series)
    maximum = np.max(series)
    q1 = np.quantile(series, 0.25)
    median = np.quantile(series, 0.5)
    q3 = np.quantile(series, 0.75)
    p5, p95 = np.percentile(series, [5, 95])
    std_dev = np.std(series)

Listing 10.7 Refactoring the series and plot generator with named tuples

Listing 10.8 Refactoring the statistical attribute function with named tuples

Imports the standard collections library 
to have access to named tuples

Defines the named tuple 
we’ll be using for named 
access to the data within 
our tuple return type

Creates a new instance of our named tuple MapData 
and places the objects to be returned from the 
function within the named tuple defined structure

The return signature is now a
single element (keeping the
code looking much cleaner

when using the function), but
it no longer requires

positional notation to
access the elements.

The individual values contained within the return variable 
are accessed through the named elements that we defined 
as part of the named tuple collection definition.

Defines
named
tuples

for each
omponent

of the
analysis

Named tuples can be nested
to aggregate similar data

return types together
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    variance = np.var(series)
    return Analysis(BasicStats(minimum, mean, maximum), 
                    Variation(std_dev, variance), 
                    Quantiles(p5, q1, median, q3, p95))

bi_cycle = generate_log_map_and_plot_named(100, 3.564407, 0.5)   
legible_return_bi_cycle = analyze_series_legible(bi_cycle.series)   
legible_return_bi_cycle.variation.std_dev     
> 0.21570993929353727

By using named structures, you create less work for yourself and others when refactor-
ing code, because you don’t have to change all calling instances of a function or a
method. In addition, the code is far easier to read. Increasing legibility of the code
may not reduce the complexity of what your code is doing, but it is guaranteed to
make your code far less complicated.

 A great many ML APIs leverage tuple unpacking. Typically, the tuple is restricted to
no more than three elements to reduce end-user confusion. Keeping track of three
elements doesn’t seem very complex (for the most part). But using positional refer-
ences to return elements from a function or a method becomes a nuisance, since the
code has to reflect these positional returns each place that the code is called.

 Tuple unpacking ends up increasing the level of confusion in people reading and
maintaining the code and raises the overall level of complexity of the code base. By
moving to encapsulated return types (named tuples in Python, case classes in Scala),
we can minimize the number of lines of code that need to be changed in a feature
branch and reduce the confusion in interpreting the code.

10.4 Blind to issues: Eating exceptions and 
other bad practices
Let’s continue our scenario of walking into a code base that we’re unfamiliar with by
focusing on running a full test of our first feature branch. As part of this branch, we
have to use a data loader module that was written for interfacing with the object-storage
data lake. Because of the poor documentation and difficult-to-read code of this module,
we mistakenly pass the wrong authentication token. Stderr and stdout, upon executing
our branch, merely have a single line printed out: Oops. Couldn't read data.

 Not only is this incredibly annoying (cute error messages are not useful), but it
doesn’t provide any guidance as to why the data couldn’t be read. Was the data not pres-
ent? Did we pass in an invalid path? Do we have access to this data? Is something in the
new feature branch’s usage of the method within the data loader class malformed? 

 We simply won’t know without loading and parsing the logs on the system. We will
have to trace, modify our code, insert debug statements, and spend hours digging into
our code and the utility module code to figure out what’s going on. We’ve become an
unwitting victim of exception eating : a misguided intention to “just make it work” by the
inappropriate use of a try/catch block.

Generates 
series data

Calls the function and
passes in the name-

referenced series data
from the generator

function return

Extracts a nested named 
tuple variable’s data
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10.4.1 Try/catch with the precision of a shotgun

One of the more dangerous bad habits to get into when developing ML code is in
exception handling. This area of software development is typically foreign to the way
most DS practitioners write code when trying to solve a problem. 

 Generally, when an error happens while writing code, the issue is fixed for the
problem at hand, and then work continues on solving the problem. However, in the
realm of production code, many things can go wrong in a code base. Perhaps the data
being passed in is malformed, the scale of the data changes to such a degree that cal-
culations are no longer valid, or one of the other millions of things that can go wrong
might go wrong. 

 I’ve seen many people slap a try/catch around where a seemingly innocuous fault
occurs. Not fully understanding how to implement handling of a specific exception,
however, could lead to using a blind catch, which can create a situation that makes the
code base incredibly challenging to debug. 

NOTE For step-by-step examples of how exception handling, when done
incorrectly, can cause problems, see the companion repository to this book
and follow along with the Jupyter notebook CH09_1.ipynb.

Listing 10.9 illustrates this concept. In this simple example, we’re taking an integer
and dividing it by a list of integers. What we want out of this function is a new collec-
tion that represents the quotient of the base number divided by each member of the
passed-in collection. The results below the function show the inevitable result of exe-
cuting the code: a ZeroDivisionError.

import random
numbers = list(range(0, 100))   
random.shuffle(numbers)          
def divide_list(base, collection):     
    output = []
    for i in collection:   
        output.append(base / i)     
    return output
blown_up = divide_list(100, numbers)             
> ZeroDivisionErrorTraceback (most recent call last)  
<ipython-input-140-3ed60281fb4b> in <module>
----> 1 blown_up = divide_list(100, numbers)
<ipython-input-75-a0ad45358f8f> in divide_list(base, collection)
      2     output = []
      3     for i in collection:
----> 4         output.append(base / i)    
      5     return output
ZeroDivisionError: division by zero   

Listing 10.9 A simple collection division function that will throw an exception

Generates a list of 
numbers between 
0 and 99, inclusive

Shuffles in place to
provide random ordering

of the generated list
of integers

The function definition—the 
signature of base is the number 
for dividing the collection 
variable’s contents

Loops
through

each
element

in the
llection

Appends the quotient of the 
base number and the iterator 
value of the list collection entity 
at position held in i

Calls the function

The stdout resu
of the exception
being thrown. 
The stack trace 
is shown below 
this header.Identified line of the 

code causing the issue

The ZeroDivisionError Exception 
class name and message associated 
with the exception
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The blind catch (aka eating all of the exceptions) solution that many DSs I’ve seen use
to address this problem might look something like the following listing. To be clear,
this should never be done.

def divide_list_unsafe(base, collection):
    output = []
    for i in collection:
        try:                    
            output.append(base / i)
        except:            
            pass      
    return output

When we execute this code against our list, we will get a return of a list filled with 99
numbers, minus the 0 value that threw an exception and was ignored because of the
pass keyword. While this might seem like it solves the problem and lets the execution
continue, this is a truly terrible solution. The following listing illustrates why.

broken = divide_list_unsafe('oops', numbers)   
len(broken)    
> 0      

When we pass something that is not a number into this function, we get no errors. Not
a single exception is thrown to warn us that the return value is an empty list. What we
can try to do is catch the exact exception instead so that situations like this won’t hap-
pen, making us effectively blind to issues. 

Listing 10.10 Unsafe exception-handling example

Listing 10.11 Example of why blind exception handling is bad

Issues with catching all exceptions
While the example in listing 10.11 is obvious, rather simple, and somewhat pointless
in its functionality, real-world instances of this sort of pattern rear themselves in truly
ugly ways.

Suppose that you have a series of blind try/catch statements written around the vast
majority of the code within an ML project. From reading in the source data, performing
feature-engineering tasks, model tuning, validation, and logging, each major step is
wrapped in a try, except, and then pass statement. What would happen if there was

The try block attempts to perform 
the encapsulated action, but if an 
exception is thrown (raised), it will 
move to the except blocks.

The except block(s) that contain handling code for specific 
exceptions. This implementation (blind catch) is dangerous, 
inadequate, and will cause stability and troubleshooting 
problems (this is effectively writing a bug directly into code).The dangerous “pass” (do nothing) 

command can be useful for stateless 
transaction systems (think web apps) 
but should never be used in ML code.

Passes in a string to be divided 
by. This obviously will not work 
(it will throw a TypeError).

Since we’re catching all exceptions and just moving on 
(the pass keyword), no exceptions are thrown to warn 
us that something didn’t work properly.

The list is empty. That will likely 
break things downstream.
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10.4.2 Exception handling with laser precision

The next listing shows the proper way to catch an exception by type.

def divide_list_safer(base, collection):
    output = []
    for i in collection:
        try:
            output.append(base / i)
        except ZeroDivisionError as e:   
            print("Couldn't divide {} by {} due to {}".format(base, i, e))  
    return output

safer = divide_list_safer(100, numbers) 
> Couldn’t divide 100 by 0 due to division by zero   
len(safer) 
> 99      

This introduces a new problem, though. We have the warning message that was gener-
ated, but it’s printed to stdout. This doesn’t help us in a production system where we

an issue with the data that failed in an encoding step? What about an expired authen-
tication token to read the source data? What if the data was moved, and the location
that you’re reading from is now empty? What if the model failed to converge?

The point I’m trying to make is that those scenarios, to the person investigating why
the job didn’t produce any output, all look identical. The only indication that some-
thing went wrong is that the job didn’t do what it was supposed to do. Since all of the
exceptions have been eaten, there is absolutely no indication of where to even begin
looking to find the culprit. 

It’s for this reason that blind catching of exceptions is so inherently dangerous. At
some point in the future of any long-running project code base, problems will arise.
The job will fail for one reason or another. If you’re handicapping your ability to figure
out the issue, you’re going to have to step through the code manually or perform
some sort of binary search to track down what’s going on. Figuring out problems in
this way wastes effort and time. 

Even though it may seem like more work to write proper exception handling, it’s the
right thing to do. When the code eventually blows up—and it will, trust me, because
given enough time, all code bases do—you’ll be grateful to have spent an extra 30
minutes writing proper handling code when it gets you to the source of the issue in
minutes rather than days. 

Listing 10.12 Catching and handling a single exception safely

Catches the exact exception that we want (ZeroDivisionError) 
and gets a reference to the exception object (e) A less-than-ideal handling of the

exception (we’re still effectively
ignoring it by printing it to stdout

whenever it occurs, but at least we’re
doing something with it). A proper
handling would be to log the error

to a logging service or to MLflow.

Calling the function 
results in no thrown 
interruptible exceptions, 
but it does let us know 
what happened.

It dropped one of the elements (the zero 
integer), but processed the remaining 99 
elements of the input list.
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will need, in order to troubleshoot issues, a historical record of the conditions under
which this problem happened. 

 We will instead need to have a centralized place to see the details of the what, the
where, and the when for the times that these issues happen. We also need to ensure
that, at a minimum, we have a parse-able standard format for our logs that can reduce
the time spent searching through log files to track down an issue. 

10.4.3 Handling errors the right way

The following listing shows the final implementation of this exception-handling sce-
nario, replete with a custom exception, logging, and control handling for the zero-
division error.

from importlib import reload
from datetime import datetime
import logging
import inspect

reload(logging)
log_file_name = 'ch9_01logs_{}.log'.format(datetime.now().date().strftime(

'%Y-%m-%d'))
logging.basicConfig(filename=log_file_name, level=logging.INFO)  

class CalculationError(ValueError):          
    def __init__(self, message, pre, post, *args):
        self.message = message
        self.pre = pre
        self.post = post
        super(CalculationError, self).__init__(message, pre, post, *args)

def divide_values_better(base, collection):
    function_nm = inspect.currentframe().f_code.co_name     
    output = []
    for i in collection:
        try:
            output.append(base / i)
        except ZeroDivisionError as e:   
            logging.error(
                "{} -{}- Couldn't divide {} by {} due to {} in {}".format(
                    datetime.now(), type(e), base, i, e, function_nm)
            )
            output.append(0.0)
        except TypeError as e:      
            logging.error(
                "{} -{}- Couldn't process the base value '{}' ({}) in {}".format(

Listing 10.13 Final implementation with proper exception handling and logging

These three lines are required
only for Jupyter Notebook

functionality. In an .egg file, you
would simply instantiate a new

logging instance (Jupyter,
however, starts one for you

when you initialize a session).

Creates a custom exception class with the ability to inherit properties 
from the standard ValueError exception, as well as providing *args to 
allow another developer to extend or customize this exception class

Retrieves the current 
function name for 
logging purposes 
(prevents having to 
hand-type the name 
in multiple places)

Catches the
ivide-by-zero
ception, logs
it, and then
provides a

placeholder
value

Catches the TypeError for mathematically invalid 
operations based on the data passed in
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                datetime.now(), type(e), base, e, function_nm)
            )     
            raise e              
    input_len = len(collection)                      
    output_len = len(output)
    if input_len != output_len:
        msg = "The return size of the collection does not match passed in 

collection size."
        e = CalculationError(msg, input_len, output_len)  
        logging.error("{} {} Input: {} Output: {} in {}".format(
            datetime.now(), e.message, e.pre, e.post, function_nm
        ))                   
        raise e              
    return output

placeholder = divide_values_better(100, numbers)
len(placeholder)
> 100                 

At this point, when we run the function with either a valid collection (containing zero
or not), we will get a log report of each instance that is replaced. When we call the
function with invalid values, we will get an exception logged and also thrown (desir-
able behavior). Finally, when the lists don’t match because of a future modification to
this function (such as catching a new exception and not replacing a value or modify-
ing the behavior of the logic), the person making those changes will be alerted in
clear terms that their changes have introduced a bug.

 The next listing shows the log results of running this on the original configuration
for variable submission, testing an invalid string parameter being supplied as the base
argument, and simulating the lengths not matching.

def read_log(log_name):    
    try:
        with open(log_name) as log:
            print(log.read())
    except FileNotFoundError as e:    
        print("The log file is empty.")

read_log(log_file_name)
>
ERROR:root:2020-12-28 21:01:21.067276 -<class 'ZeroDivisionError'>- Couldn't 

divide 100 by 0 due to division by zero in divide_values_better  

Listing 10.14 Logging results of caught and handled exceptions

Logs the TypeError exception before 
doing anything else (so we have 
visibility that it occurred) 

After logging the exception, we want to raise it 
manually so the function will alert a developer who is 
interfacing with it that they really should be passing a 
numeric type to this function for the base variable.

Gets the length of the input list 
“collection” and the post-for-loop 
length of the output list

If the list sizes 
don’t match, 
creates an object 
of our custom 
exception class

Logs our custom exception’s details

Raises the custom exception

Since we’re replacing the failed 
zero-division error with 0.0 in 
the output list, our list lengths 
match (100).

Very simple 
function to 
read in the 
log file

We’re even handling the expected exception for 
the open() function so that if the log file hasn’t 
been generated (because no issues occur with 
the usage of the function), we won’t have a 
nasty exception thrown that isn’t clear to the 
end user of the function. Instead, a simple 
explanation prints out that lets us know that 
the log hasn’t been created yet.

The exception that we’re expecting to get from passing
in a collection list of integers containing the number 0
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ERROR:root:2020-12-28 21:01:21.069412 The return size of the collection does 
not match passed in collection size. Input: 100 Output: 99 in 
divide_values_better  

ERROR:root:2020-12-28 21:01:24.672938 -<class 'TypeError'>- Couldn't process 
the base value 'oops' (unsupported operand type(s) for /: 'str' and 
'int') in divide_values_better   

Logging even innocuous errors that may not seem important during development can
be an invaluable tool for addressing issues in production. Whether you want to fix the
root cause of nuisance issues or check on the health of a code base, without having
logs and the appropriate data being written to them, you could be completely
unaware of potential problems in your solution’s code. When in doubt, log it out.

10.5 Use of global mutable objects
Continuing our exploration of our new team’s existing code base, we’re tackling
another new feature to be added. This one adds completely new functionality. In the
process of developing it, we realize that a large portion of the necessary logic for our
branch already exists and we simply need to reuse a few methods and a function. What
we fail to see is that the function uses a declaration of a globally scoped variable.
When running our tests for our branch in isolation (through unit tests), everything
works exactly as intended. However, the integration test of the entire code base pro-
duces a nonsensical result. 

 After hours of searching through the code, walking through debugging traces, we
find that the state of the function that we were using actually changed from its first
usage, and the global variable that the function was using actually changed, rendering
our second use of it completely incorrect. We were burned by mutation.

10.5.1 How mutability can burn you

Recognizing how dangerous mutability is can be a bit tricky. Overuse of mutating val-
ues, shifting state, and overwriting of data can take many forms, but the end result is
typically the same: an incredibly complicated series of bugs. These bugs can manifest
themselves in different ways: Heisenbugs seemingly disappear when you’re trying to inves-
tigate them, and Mandelbugs are so complex and nondeterministic that they seem to be
as complex as a fractal. Refactoring code bases that are riddled with mutation is nontriv-
ial, and many times it’s simply easier to start over from scratch to fix the design flaws.

 Issues with mutation and side effects typically don’t rear their heads until long
after the initial MVP of a project. Later, in the development process or after a produc-
tion release, flawed code bases relying on mutability and side effects start to break
apart at the seams. Figure 10.3 shows an example of the nuances between different
languages and their execution environments and why mutability concerns might not
be as apparent, depending on which languages you’re familiar with.

The result of removing the “replace with 0.0” 
functionality in the catch block for handling 
the zero-division error

The logged result of passing in an invalid value 
as the base argument to the function (which 
would also throw an exception at runtime, but 
after having logged the exception into the log)
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For simplicity’s sake, let’s say that we’re trying to keep track of some fields to include
in separate vectors used in an ensemble modeling problem. The following listing
shows a simple function that contains a default value within the function signature’s
parameters which, when used a single time, will provide the expected functionality.

def features_to_add_to_vector(features, feature_collection=[]):   
    [feature_collection.append(x) for x in features]           
    return feature_collection       

The following is the output from a single use of this function. No real surprises here.

trial_1 = features_to_add_to_vector(['a', 'b', 'c'])  
trial_1
> ['a', 'b', 'c']    

Listing 10.15 An example utility function for maintaining a list of elements

Listing 10.16 Usage of the simple listing function

Python

• Object-based (weakly typed)
• Mutable by default
• Memory optimization in system assumes

operations are mutable unless directed
otherwise

• Dynamic memory allocation (greedy) to
allow for mutation of collections

Java/Scala

• Strongly typed languages based on
primitives and collections

• Immutable by default
• Memory optimization by way of garbage

collection of collections, objects, primitives
when no longer needed

Function to update a list

Must handle default mutability
and force creation of new object
with check if already exists, else

create new

Extra care must be taken when working with
collections and object-based languages to
prevent hidden bugs in code.

Function to update a list

Not going to happen. Lists
are immutable.

Must use a Buffer type (ArrayBuffer,
ListBuffer, mutable Seq, etc.)

Extra work must be taken to allow for
mutability. Mutable elements in code
bases generally represent a code smell
unless that functionality is explicitly
needed (why they are being used is
generally commented in code).

Figure 10.3 Comparing mutability in Python and JVM-based languages

Simple function for adding a list to a new list of elements 
(not a realistic example for vector creation, but it’s meant 
to be simple for purposes of explanation)

Iterates through the supplied
list of elements and adds

to a new collection

Returns the 
new collection

Adds three string 
elements into a new 
collection by passing 
it to our function

As expected, we have a list 
containing those elements 
that we passed in.
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However, what happens when we call it a second time for an additional operation?
The next listing shows this additional usage, including what the values are, but also
what happens to the original variable declaration.

trial_2 = features_to_add_to_vector(['d', 'e', 'f'])   
trial_2
> ['a', 'b', 'c', 'd', 'e', 'f']   
trial_1
> ['a', 'b', 'c', 'd', 'e', 'f']              

Now that’s a bit unexpected, right? What if we were intending to build one model with
fields a, b, and c, and then build another model with fields d, e, and f? Both of these
models would have input vectors of all six columns. Utilizing mutation to override
variables in this manner wouldn’t break the project’s code. Both models would exe-
cute without throwing exceptions. However, unless we validated everything very care-
fully, we would overlook that we just built two identically configured models.

 Bugs like this are crippling to productivity. The time spent debugging to figure out
why something doesn’t work as intended can be large indeed; that’s time that should
be spent on building something new, instead of figuring out why our code doesn’t
work the way we intend.

 All of this happens because Python functions are objects themselves. They main-
tain state, and as such, the language does not include the concept that the variables
and operations that happen within them are isolable. Care must be taken, particularly
when adding to code bases, that the original implementations are crafted in such a
way so as not to introduce unexpected behavior (avoiding unintentional mutation, in
this example). 

 The first and foremost goal when adding new functionality to a code base is to
make sure that the code runs (exceptions aren’t thrown). Correctness issues can arise
if the changes are not validated, creating hard-to-diagnose bugs due to the inadver-
tent use of shortcuts such as unsafe mutation. How should we have written this code?

10.5.2 Encapsulation to prevent mutable side effects

By knowing that the Python functions maintain state (and everything is mutable in
this language), we could have anticipated this behavior. Instead of applying a default
argument to maintain isolation and break the object-mutation state, we should have
initialized this function with a state that could be checked against. 

 By performing this simple state validation, we are letting the interpreter know that
in order to satisfy the logic, a new object needs to be created to store the new list of
values. The proper implementation for checking on instance state in Python for col-
lection mutation is shown in the following listing.

Listing 10.17 Object state mutation by repeated calls to our function

Calls the function 
again with a new list of 
elements. We should 
expect the return to 
be ['d', 'e', 'f'], right?

Uh, oh. The return still 
has values from when it 
was called previously. 
That’s weird.And it updates the variable list from the 

first call that we made. This seems broken.
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def features_to_add_to_vector_updated(features, feature_collection=None):   
    collection = feature_collection if feature_collection else list()  
    [collection.append(x) for x in features]
    return collection
trial_1a = features_to_add_to_vector_updated(['a', 'b', 'c'])
trial_1a
> ['a', 'b', 'c']   
trial_2a = features_to_add_to_vector_updated(['d', 'e', 'f'])
trial_2a
> ['d', 'e', 'f']   
trial_1a
> ['a', 'b', 'c']  

Seemingly small issues like this can create endless headaches for the person (or team)
implementing a project. Typically, these sorts of problems are developed early on,
showing no issues while the modules are being built out. Even simple unit tests that
validate this functionality in isolation will appear to be functioning correctly. 

 It is typically toward the midpoint of an MVP that issues involving mutability begin
to rear their ugly heads. As greater complexity is built out, functions and classes
may be utilized multiple times (which is a desired pattern in development), and if
not implemented properly, what was seeming to work just fine before now results in
difficult-to-troubleshoot bugs. 

PRO TIP It’s best to become familiar with the way your development language
handles objects, primitives, and collections. Knowing these core nuances of the
language will give you the tools necessary to guide your development in a way
that won’t create more work and frustration for you throughout the process.

Listing 10.18 A fixed implementation for the utility function

A note on encapsulation
Throughout this book, you’ll see multiple references to me beating a dead horse
about using functions in favor of declarative code. You’ll also notice references to
favoring classes and methods to functions. This is all due to the overwhelming ben-
efits that come with using encapsulation (and abstraction, but that’s another story
discussed elsewhere in the text).

Encapsulating code has two primary benefits:

 Restricting end-user access to internal protected functionality, state, or data
 Enforcing execution of logic on a bundle of the data being passed in and the

logic contained within the method

Changes the signature to default the second
argument to None instead of an empty list

If nothing has been passed in to the feature_collection 
argument, creates a new empty list (this triggers 
Python to generate a new object in this case)

As expected, we 
get a new list with 
the elements that 
we passed in.

Now we get a new list with the repeated 
call. This is the expected behavior.

The original variable has not been 
changed with the reuse of the function.
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10.6 Excessively nested logic
Of all of the frequently coded parts of ML code bases, none bring more dread to
those who must read and debug them than a large conditional logic tree. Most start
relatively simply early in their utilization: a few if statements, a handful of elif, fol-
lowed by a small number of catchall else statements. By the time the code has been in
production for a few months, these monoliths of headache-inducing logic can span
hundreds (if not thousands) of lines. These business logic rules generally evolve into a
multilevel mess of complicated, confusing, and nearly impossible-to-maintain logic.

 As an example, let’s look at a frequent use case in the ML world: ensembles. Let’s
say that we have two models, and each is generating a probability per customer. Let’s
start with generating that dataset to represent the outputs of these two models.

import random
def generate_scores(number, seed=42):   
    def get_random():                  
        return random.uniform(0.0, 1.0)    
    random.seed(seed)

(continued)

While the first reason is largely inconsequential to the vast majority of data scientists
(unless you’re writing an open source project or utility libraries, or contributing to
public-facing APIs), the second attribute of encapsulation can save ML practitioners
no end of headaches. Through this bundling of data (the arguments of data being
passed into a method) and the localized execution of logic upon that data, you can
isolate behavior from other processes: 

 A variable declared in a method is referenced only within that method. 
 The only external-facing access that a method has to the outside world is in

its return value. 
 The operations that are performed cannot be influenced by the state of any-

thing other than the arguments passed into it. 

These attributes of encapsulation mean that you can ensure correctness of your code
at any given time; for example, if you have a method whose sole purpose is to apply
a sales tax offset to an item’s price, you can pass in the item cost and the tax rate,
and ensure that no matter what the underlying state of the system is external to that
method, it’s always just going to do one thing: apply a sales tax offset to the value
passed in and return the adjusted value. These attributes also can help make your
code more testable. 

Encapsulation has many other benefits (particularly for ML work) that we will cover in
part 3 of this book. For now, remember that mutability issues and the headaches that
state management can bring can be completely removed by the proper application of
encapsulation of data and logic through the use of functions and methods.

Listing 10.19 Generating our synthetic probability data for the ensemble reconciliation

Encapsulating 
function for 
generating 
our data

An encapsulated inner function that 
will have reference to the seed state 
of the random() function

Generates a random number based on the 
seed state supplied to random, using the 
uniform distribution between 0.0 and 1.0



293Excessively nested logic
    return [(get_random(), get_random()) for x in range(number)]  
generated_probabilities = generate_scores(100)
> [(0.6394267984578837, 0.025010755222666936),  
   (0.27502931836911926, 0.22321073814882275),
   (0.7364712141640124, 0.6766994874229113)…

Now that we have some data generated, let’s pretend that the business wants five levels
of classification based on these different probabilities, combining their bucketed val-
ues into a single representative score. 

 Since Python doesn’t (currently, as of Python 3.9) have switch (case) statements
available to it, the approach to create this evaluated consolidated score might look
something like the following.

def master_score(prob1, prob2):      
    if prob1 < 0.2:
        if prob2 < 0.2:
            return (0, (prob1, prob2))   
        elif prob2 < 0.4:
            return (1, (prob1, prob2))
        elif prob2 < 0.6:
            return (2, (prob1, prob2))
        elif prob2 < 0.8:
            return (3, (prob1, prob2))
        else:
            return (4, (prob1, prob2))
    elif prob1 < 0.4:
        if prob2 < 0.2:
            return (1, (prob1, prob2))
        elif prob2 < 0.4:
            return (2, (prob1, prob2))
        elif prob2 < 0.6:
            return (3, (prob1, prob2))
        elif prob2 < 0.8:
            return (4, (prob1, prob2))
        else:
            return (5, (prob1, prob2))
    elif prob1 < 0.6:
        if prob2 < 0.2:
            return (2, (prob1, prob2))
        elif prob2 < 0.4:
            return (3, (prob1, prob2))
        elif prob2 < 0.6:
            return (4, (prob1, prob2))
        elif prob2 < 0.8:
            return (5, (prob1, prob2))
        else:
            return (6, (prob1, prob2))
    elif prob1 < 0.8:
        if prob2 < 0.2:
            return (3, (prob1, prob2))

Listing 10.20 Consolidation logic by way of if, elif, and else statements

Generates a tuple with our two
simulated probabilities and
iterates over number times

to create a list of tuples
The 
synthetic 
data

Function for processing the 
pair combination of two 
probabilities and resolving 
them through nested 
conditional logic

The nested logic structure 
(if first probability is less 
than 0.2, check conditions 
of second probability)
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        elif prob2 < 0.4:
            return (4, (prob1, prob2))
        elif prob2 < 0.6:
            return (5, (prob1, prob2))
        elif prob2 < 0.8:
            return (6, (prob1, prob2))
        else:
            return (7, (prob1, prob2))
    else:
        if prob2 < 0.2:
            return (4, (prob1, prob2))
        elif prob2 < 0.4:
            return (5, (prob1, prob2))
        elif prob2 < 0.6:
            return (6, (prob1, prob2))
        elif prob2 < 0.8:
            return (7, (prob1, prob2))
        else:
            return (8, (prob1, prob2))

def apply_scores(probabilities):     
    final_scores = []
    for i in probabilities:
        final_scores.append(master_score(i[0], i[1]))   
    return final_scores
scored_data = apply_scores(generated_probabilities)    
scored_data
> [(3, (0.6394267984578837, 0.025010755222666936)),    
   (2, (0.27502931836911926, 0.22321073814882275)),
   (6, (0.7364712141640124, 0.6766994874229113))…

This hierarchical logic chain is written out as a series of if, elif, and else statements.
It’s both difficult to read and would be a nightmare to maintain with additional real-
world conditional logic embedded. 

 What would the experience be like if this needed to be modified? The person
working on that ticket would have to meticulously read through this wall of condi-
tional logic and make sure that each place is updated correctly. For this example, it’s
not overly onerous because of its simplicity, but in code bases that I’ve seen, the logic
for business rules is rarely so simple and straightforward. Instead, nested conditional
statements with and and or are typically within the conditional checks, further making
this approach incredibly complicated.

 If this approach were given to a traditional software developer, they would likely
approach this problem in a completely different way: utilizing configuration struc-
tures to isolate the business logic from the processing of the consolidation of the
scores. The next listing shows such a pattern.

threshold_dict = {  
    '<0.2': 'low',
    '<0.4': 'low_med',

Listing 10.21 A dictionary-based configuration approach to handling business logic

The caller function for 
evaluating the collection 
of paired tuples of 
probability values 

Calls the evaluation 
function for resolving 
the probabilities to a 
single score

Calls the function 
on the score data

First three elements of the 
resolved scores based on 
the conditional logic

A lookup dictionary for removing the mapping logic from the 
processing logic (in an actual code base, these dictionaries would 
be in a different module from the processing logic that follows)
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First t
elemen

the 
    '<0.6': 'med',
    '<0.8': 'med_high',
    '<1.0': 'high'
}
match_dict = {       
    ('low', 'low'): 0,
    ('low', 'low_med'): 1,
    ('low', 'med'): 2,
    ('low', 'med_high'): 3,
    ('low', 'high'): 4,
    ('low_med', 'low'): 1,
    ('low_med', 'low_med'): 2,
    ('low_med', 'med'): 3,
    ('low_med', 'med_high'): 4,
    ('low_med', 'high'): 5,
    ('med', 'low'): 2,
    ('med', 'low_med'): 3,
    ('med', 'med'): 4,
    ('med', 'med_high'): 5,
    ('med', 'high'): 6,
    ('med_high', 'low'): 3,
    ('med_high', 'low_med'): 4,
    ('med_high', 'med'): 5,
    ('med_high', 'med_high'): 6,
    ('med_high', 'high'): 7,
    ('high', 'low'): 4,
    ('high', 'low_med'): 5,
    ('high', 'med'): 6,
    ('high', 'med_high'): 7,
    ('high', 'high'): 8
}
def adjudicate_individual(value):     
    if value < 0.2: return threshold_dict['<0.2']
    elif value < 0.4: return threshold_dict['<0.4']
    elif value < 0.6: return threshold_dict['<0.6']
    elif value < 0.8: return threshold_dict['<0.8']
    else: return threshold_dict['<1.0']
def adjudicate_pair(pair):                        
    return match_dict[(adjudicate_individual(pair[0]), 

adjudicate_individual(pair[1]))]
def evaluate_raw_scores(scores):                     
    return [(adjudicate_pair(x), x) for x in scores]
dev_way = evaluate_raw_scores(generated_probabilities)   
dev_way
> [(3, (0.6394267984578837, 0.025010755222666936)),   
   (2, (0.27502931836911926, 0.22321073814882275)),
   (6, (0.7364712141640124, 0.6766994874229113))…

While this approach is far easier to read than that of the earlier implementation from
listing 10.20, it’s still far from ideal. Let’s suppose that, during the development of the
project’s solution, a decision was made to increase the number of models generating
probability scores from two to eight. 

A resolver dictionary for converting 
the paired probability bucketed 
thresholds to a single score

Function for processing a 
single probability and mapping 
its value to a threshold bucket

Function for looking up and 
evaluating the tuple of paired 
probabilities against the 
matching dictionary

Function for 
iterating through 
each tuple in the 
total score set and 
applying the 
resolution logic

Calls the main function 
for resolving the 
probabilities to scores

hree
ts of
data
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 How would this affect either of these two structures? The next listing illustrates
how many lines of code we would have to write for eight models to resolve to a single
score for both of these implementation patterns.

import math
def how_many_terrible_lines(levels):  
    return ((5**levels) * 2) + math.factorial(levels)
how_many_terrible_lines(8)
> 821570                   

Clearly, this isn’t an option. Even if we were to attempt to use this method (the “dev
way” with configuration dictionaries to handle the mappings), if we tried eight proba-
bilities to merge into a single score, we’d have 32,768 conditions to create within the
tuple-8 key for the dictionary. That’s just a truly ridiculous number of lines of configu-
ration to write.

Listing 10.22 A function to calculate just how many lines of code we’d have to write

A note on sticking with a poor design pattern 
While the example of the if/elif/else pattern may seem a bit ridiculous to some
readers, I’ve found it to be the most common approach in ML code bases that I’ve
seen in the wild. The dictionary approach may also seem a bit ridiculous when think-
ing of how many permutations for a configuration control structure might be created
when we’re talking about eight different elements.

This example isn’t intended to be hyperbolic. I’ve seen similar configuration files, with
dictionaries that are well in excess of 10,000 keys to handle logic like this. Most of
these are not hand-typed (that would be ridiculous), but rather are a result of
machine-generated code and some copying and pasting into an IDE. 

The problem isn’t that there are tens of thousands of keys; Python hash tables can
easily handle without too much hassle a unique key identifier count of 226 before per-
formance becomes a bottleneck in the lookup function (67,108,864 entries). Python
can handle it. Your keyboard and your peers can’t.

The real problem exposed with approaching business logic or feature-engineering
work in this way is that it’s even attempted in the first place. Approaching problems
like this with theif/elif/else pattern or the dictionary pattern is akin to the old
adage, “When all you have is a hammer, everything looks like a nail.” There are better
ways of solving problems like this that break a complex logical pattern into smaller,
more manageable pieces. 

If you ever find yourself having to copy and paste large chunks of logic over and over
again, it’s best to walk away from the keyboard, think about how to solve it more effi-
ciently, and then return to test out some theories that can help not only save your
code base from becoming an unmanageable mess, but also make it easier to modify
and troubleshoot in the future.

A fun little function to calculate how 
many lines of code we’d have to write 
for the if, elif, else pattern

A very scary number! This is 
just not realistic to attempt.
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Listing 10.23 shows a much better approach to this problem. In this block of code,
we’re going to adapt the data generator to support an arbitrary number of probabili-
ties as part of the model return tuple, and then convert the lookup function from a
dictionary to a direct mathematical representation of the scores. From this point, the
code reduces the complexity to a much more manageable state, allowing easier reso-
lution of the business rules by scaling, mapping to a new resolved score, and creating
a code base that can be easily modified in the future.

def generate_scores_updated(number, elements, seed=42):   
    def get_random():
        return random.uniform(0.0, 1.0)
    random.seed(seed)
    return [tuple(get_random() for y in range(elements)) for x in range(number)]
larger_probabilities = generate_scores_updated(100, 8)    
larger_probabilities
> [(0.6394267984578837, 0.025010755222666936, 0.27502931836911926,    

0.22321073814882275, 0.7364712141640124, 0.6766994874229113,  
0.8921795677048454, 0.08693883262941615), …

def updated_adjudication(value):    
    if value < 0.2: return 0
    elif value < 0.4: return 1
    elif value < 0.6: return 2
    elif value < 0.8: return 3
    else: return 4
def score_larger(scores):                    
    return sum(updated_adjudication(x) for x in scores)
def evaluate_larger_scores(probs):                          
    return [(score_larger(x), x) for x in probs]
simpler_solution = evaluate_larger_scores(larger_probabilities)
simpler_solution
> [(15, (0.6394267984578837, 0.025010755222666936, 0.27502931836911926,    

0.22321073814882275, 0.7364712141640124, 0.6766994874229113,   
0.8921795677048454, 0.08693883262941615)),

 (10, (0.4219218196852704, 0.029797219438070344, 0.21863797480360336,…

We’ve solved the scalability and complexity problem in a small number of code lines.
We’ve reduced the complexity (getting rid of dictionaries, mappings, and chained
logic) and made the code much simpler. The pursuit of simplicity when writing code
should always be the goal of any developer, particularly one who has to deal with the
breadth of DS work.

Listing 10.23 A better solution that effortlessly scales

Function to generate 
an arbitrary number of 
elements within each tup

Generates a tuple-8 collection of 
probabilities to resolve to a single score

le of
first
le-8
ated Adapts the score-resolving function to 

mathematical bucketing. To return the space of 
this value to the range of the original 2-tuple 
ensemble design would be as trivial as creating 
a ceiling or floor function on the sum of the 
values, divided by half of the tuple length.

Function that sums the 
resolved scores of the buckets 
for each element within the 
probability tuple The main function that

iterates over the collection
of all the tuple probabilities

Sample of a portion of the first two
elements of the score resolver



298 CHAPTER 10 Standards of coding and creating maintainable ML code
Learning more, and the most frequent question I get asked
By far, the most frequent question I get asked by junior DS people is, “How can I get
better at learning all this software development stuff?” It’s a valid question. However,
it’s typically a rather misguided one. 

Software development for ML is very, very different from pure software development.
It’s a laser-focused microcosm of all the elements that a developer will need to know,
focused more on creating maintainable and stable code that performs the functions
required of DS work. Certainly, common ground with pure software development fun-
damentals exists. Knowing the basics of good software design, abstraction, encap-
sulation, comprehension, inheritance, and polymorphism are critical to being
successful as an ML engineer and as a developer. However, the similarities begin to
diverge after these fundamentals. 

What I try to tell junior data scientists when they ask this question is that they don’t
need to become a seasoned DS as well as a seasoned developer. That’s simply
untenable (akin to mastering two separate professions simultaneously) for the vast
majority of people. 

The constructive answer that I give them is rather open-ended, though. It’s all about
how much they want to know beyond the fundamentals and the specific skills needed
to become a well-rounded ML engineer.

Software development skills aren’t something that you just learn. You won’t gain
them from reading this book, or any other. You’re also not going to learn them by
taking an expensive class or scanning through repositories on the internet. These
skills are learned by deliberately taking time to focus on new ways of solving prob-
lems with code while referring to how others who are more skilled than you have
solved them in the past. They’re learned by failing, rewriting, learning from your mis-
takes, testing, and working to creating code that breaks less frequently than the code
you wrote last week. It is a journey—one that, in my opinion, is worthwhile.

The issues covered in this chapter are merely things that I see a lot of data scientists
do in their code that cause their code to be complicated and hard to troubleshoot.
These topics are most certainly not an exhaustive list, but rather a group of examples
to help you to think about why certain code that you write might be challenging for you
or others to troubleshoot, maintain, or even explain. 

There’s a reason that they call programming interfaces languages. As with any lan-
guage that you learn, basic syntax rules, grammar, and structural components need
to be understood and adhered to in order to make your thoughts and intentions
understood by others. Some of the nuances of programming languages share those
of spoken and written languages as well. There are well-crafted examples of perfect
syntax, and there are also shorthand “slang” compositions that are unintelligible to
all but a small inner circle of those in the know. 

It’s never a good idea to write code like you’re texting a friend with an inside joke,
just as it’s not advisable to speak in that manner when at a job interview. Without
the knowledge and standards of a language, though, even well-intentioned develop-
ers who are ignorant of such standards will produce code that is as unintelligible as
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Summary
 Being able to identify common problematic implementation patterns (code

smells) can help create a more legible, easier-to-debug, and extensible ML
code base.

 Simplifying implementations in order to enhance legibility and reduce the cog-
nitive burden of understanding how a code base functions is time well spent.

 Currying data with standard structures dramatically reduces the amount of
refactoring needed to extend a code base, as well as reducing the complexity of
troubleshooting failures.

 Safe applications of try/catch (exception handling) will create a more production-
stable code base. Ensuring that only specific exceptions are caught will aid in
investigating issues in production.

 Side effects and improper use of global variables can create potential determin-
istic problems in a code base. Knowing when to use them effectively and never
to use them outside of those few required times can enhance code resiliency. 

 Even if the logical process to execute intended behavior could lend itself to
nested and complex recursive behavior, trying to refactor this logic into some-
thing more understandable should be a priority in ML code bases.

a first-week student non-native speaker of a language, or, more damaging, as unre-
fined and amateurish as someone who delivers a speech in internet shorthand
memetic idioms.

Once moving past the point of learning those foundational concepts (and the first lan-
guage is the hardest to learn, for what it’s worth), a vast gulf separates basic com-
petency and artful mastery. 

I like to think of mastery of a language as a corollary to comparing different authors
writing poetry and prose. At the beginning, after learning the basics, your code may
be at, perhaps, a children’s book level. There are sentences, to be sure, and a plot,
but a Pulitzer Prize is likely not in the cards. However, with time, practice, and fixing
a lot of mistakes, eventually you’ll get to the point where you’re writing ML solutions
that have all of the refinement and nuance of a David Foster Wallace novel.

The process of getting better with coding takes time. A lot of it. It is fraught with so
many errors and frustrations that it may seem as though you’ll never get very good
at it. However, like anything else that you’ve learned to be good at, you’ll eventually
find that at some point, things become easier. The basic implementations that you
struggled with in the past will become so commonplace and easy to do “perfectly”
that you may not realize the gains that you’ve made. It all comes down to learning
and practicing.



Model measurement
and why it’s so important
In part 1, we focused on aligning ML project work to business problems. This is,
after all, the most critical aspect for making the solution viable. While those earlier
chapters focused on communication before, during, and immediately up to a pro-
duction release, this chapter focuses on the project communication after release.
We’ll cover how to present, discuss, and accurately report on the long-term health
of ML projects—specifically, in language and methodologies that the business will
understand.

 Discussions about model performance are complex. While the business is focus-
ing on measurable attributes of business performance, the ML team is focused on
measurements of model efficacy as it relates to strength of correlation to a target
variable. Even though a language barrier is implicitly defined in these differing
goals, a solution is available. By focusing communications to the business around its
metrics, you can answer the question the business leaders really want answered:
“How is this solution helping the company?” Ensuring that analytics are performed

This chapter covers
 Methodologies for determining the impact 

of a model

 A/B testing approaches for attribution data 
collection
300
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on those business metrics that the internal customer really cares about, a DS team can
avoid the situation that figure 11.1 illustrates. 

This ML team has project myopia. By focusing on their own requirements in order to
get a solid solution into production, the ML team members are ill-prepared to answer
their customer’s inevitable questions. Showing correlation metrics, after all, will mean
absolutely nothing to the customer. Nor should it.

 The solution to this problem is available. It involves a bit of work outside the core
solution development code, but it is well worth it to keep the business involved and
informed about the status of the project. It all starts with measuring those business
attributes.

Problem definition

SME interviews &
collaboration

Research

Prototyping

Experimentation

Model selection

ETL & feature
engineering

Tuning &
optimization

Development &
testing

Project
focus

If the only thing people
are thinking about is
this . . .

Ship the product

to production!

. . .  they won’t be
ready for all of this.

Questions
that
will
need
to be
answered
eventually

“How much money is this making
our business?”

“What is the long-term performance
and stability of this?”

“How does this affect other parts of
our business?”

Attribution
measurement
answers all of
these.

Figure 11.1 ML project myopia
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11.1 Measuring model attribution
We’re moving on to ice cream. Specifically, we’re a group of DSs working at an ice
cream company. A few months ago, the sales and marketing teams approached us, ask-
ing for a model that will help identify when to send coupons to customers to increase
the chance of them seeing those coupons in their inboxes. The marketing group’s
standard behavior is to send out a bulk mailing every Monday morning at 8 a.m. Our
project aims to generate a day-and-hour combination to send the emails out on an
individualized (personalized) basis. 

 The top of figure 11.2 shows the components and examples of our prior state. The
bottom of the figure shows what the model output fashions as part of an image com-
ponent generator, personalized to each of our members.

 We’ve built this MVP and have shown some promising results based on our shadow
runs. Through tracking our pixel data (a 1 × 1 pixel embedded in our emailed cou-
pon codes that show the open and click rates for our marketing ads), we’re finding
shockingly accurate results from our model based on our monitoring of actual open
and usage rates of our coupons.

 While this news is exciting, the business isn’t convinced by our delta error in min-
utes from prediction to actual opening time of the emails. What they really want to
know is this: “Does this increase sales?” To begin to answer that question, we should
analyze that metric, shown in figure 11.3. 

 How can we determine whether a causal relationship exists between sending tar-
geted coupons to customers at times that they are most likely to see the coupons, and
the customers’ use of those coupons? It all begins with determining what to measure,
who to measure it on, and what tools to utilize to determine if the model has a causal
influence.

11.1.1 Measuring prediction performance

The first step that we need to think about in measuring our model’s performance is
the same as we would engage in for any design of experiments (DOE) exercise. We
start by talking to the experts who engage in the email marketing campaigns (our
internal customers for this project) well before the production release date of our
solution. This team, after all, has a fundamentally deep understanding of both our
customers and their interactions with our product line.

 During these discussions, we’ll want to focus on the marketing team’s knowledge
of our customer. That deep understanding of the customer base will aid us in deter-
mining which data that we collect about them can be used to limit the latent effects in
order to minimize variance in our results. Table 11.1 shows the conjectures that the
SME groups and the DS team have, along with the results of the analysis.
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Hey, there!

We heard you like ice cream.
Current state of our company’s marketing
efforts

These emails are sent out to registered
customers every Monday at 8 a.m. PST.

Each week, we send out 50,000 of them
to a rotating list of our customers.

We think that personalized

emails will work out better.

Customized times for each customer to send emails

Hope you like it.

Expires 3 days from now. Act fast!

15% off Ice Cream Co. Ice Cream

Here’s a coupon you can use to buy some of our

ice cream so you can eat it.

Personalized content with an image of their favorite flavor

Discount amount personalized

based on probability to use

Regression

Analytics

Markov chain Monte Carlo

ML project

• Optimal send time

• Affinity analytics

• Discount price target model

Send: 4:45 p.m. on Thursday Send: 7:15 p.m. on Saturday

Good Afternoon, Willy!

You know what’s the best thing for a truly

hard-working dog?

That’s a silly question. .Of course you do

Let your humans know that we’ve got your favorite

Black Forest Cherries in stock!

15% off Black Cherry Ice Cream
You’re such a good boy, and you’ve earned this.

Jules, we have a new flavor that
we think you’ll love!

For the next 4 days, stop by and pick up . . .

Cherry Chocolate Chip Cookie
Ice Cream at a 40% discount

The current methodology...

The ML project...

Figure 11.2 For our ice cream project, we have a baseline and a new experiment to test. How can 
we measure its success?
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Table 11.1 Hypothesized differentiators vs. actual prior evidence in our data

Hypothesis Significant? Stratification candidate?

Customers in hotter climates buy more ice cream. No No

Customers who live in rural areas buy more. Yes Maybe*

Customers over the age of 30 buy more. No Maybe*

Customers who open emails buy more. Yes Yes

Customers who have a long history with us buy more. Yes Maybe**

Customers with children buy more. Yes No***

* Possibility of introducing massive skew in our analysis. Potentially high-risk stratification value.
** Could be combined with purchase amount and recency of purchases.
*** Insufficient data and potentially hard to keep track of.

The big question:

How can we measure the impact of sending

personalized coupons on this trend?

Not much demand for our
product in the colder months of
the year here in North America

Much higher demand during
“peak sweat” periods

Figure 11.3 Sales: the real target metric for our model
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The analytical process of evaluating different customer base groupings on our histori-
cal data will help isolate behavior patterns to minimize within-group variance. Fig-
ure 11.4 illustrates what we’re going to be doing with the optimal stratification
methodology that we found in our analytical tests.

User pool All of you see the
“vanilla experience.” User A User B

User H

User G

Test

User C User D

User E

User F

Control

User A

User H

User E

User F

Test

User C User D

User B

User G

Balanced group membership will lessen the
baseline impact of different latent behavior,
confounding the result of the experiment.

User F

User A

User C

User D

User E

User B

User G

User H

Decision

engine

Decision

engine

Random sampling

These people see our new idea.

Cohort membership based on
prior DOE analysis

User F

User C

User DUser A

User E

User B

User G

User H

This group buys 0 times more1

ice cream than the other group.

Group sampling using design

of experiments, analyzing

prior observations to randomly

select members to eliminate

latent residual effects on the

measurement of the model

efficacy

Random sampling within

groups identified by prior

analysis

Control

Figure 11.4 Minimizing latent factor effects by stratified grouping in order to reduce within-group variance
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We know that we need to minimize the latent variable effects that are causing behavior
imbalance. We can’t get the data that conclusively identifies the behaviors that we’re
seeing (multimodality), but we certainly can improve our attribution if we control for
it. But how can we do that? How do we group our users most effectively?

 Based on our discussions with the SME group, we set about analyzing approaches
that can reduce the inherent variability within our population. By listening to the mar-
keting team, we find that its tried-and-true methodology for evaluating customer
cohorts is the most optimal solution. By combining the recency of purchases, the
number of historical purchases, and the total amount of spending sent our way by cus-
tomers, we can define a standard metric to classify our cohorts (see the following side-
bar regarding RFM for the power of this segmentation technique).

Using our RFM calculation to generate customer cohorts is shown in figure 11.5.
 This RFM example isn’t exclusive to humans (or dogs, for that matter). In the per-

centile analysis of our customer base, we run the gamut from the most valuable (555,
having very recent purchases, frequent historical purchases, and high spending over
their lifetime) to the least valuable (111, the inversion of the preceding). This gives us
the ability to generally estimate the massive number of latent factors that influence
customer behavior. This, in turn, gives us the ability to stratify when doing analyses to

RFM: A great way to group humans if you’re selling things to them
RFM, an acronym for recency, frequency, and monetary value, is a direct marketing
term coined by Jan Roelf Bult and Tom Wansbeek. In their article “Optimal Selection
for Direct Mail,” they postulated RFM as a significantly powerful means of assigning
value to customers. The pair estimated that 80% of a company’s revenue actually
comes from 20% of its customers. 

While prescient in the extreme, the success of this methodology has been proven
time and again in many industries (not relegated to only business-to-consumer com-
panies, either). The principal concept is to define five quantile-based buckets of cus-
tomers on each of these three observational variables. Customers with a high value
in monetary value, for instance, would be the top 20% of spenders, receiving a value
of 5 for M. Customers with a low value in frequency (the number of total purchases
over the lifetime of the account), typically consisting of one-time purchasers, would
have an F value of 1. 

When combined, RFM values create a matrix of 125 elements ranging from the lowest-
value customer (111) to the highest-value (555) customer. Applying business-specific
and industry-specific meta-groupings atop these raw 125 matrix entry values allows
for a company (and a DS team) to have points of latent-variable-lessening stratifica-
tion points for the purposes of hypothesis testing. 

I once was a bit incredulous at this technique of grouping human behavior in such a
simplistic way—until I analyzed it for a third time at a third company. I’m now a pretty
firm believer in this seemingly simplistic but wondrously powerful technique.
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RFM group 1

RFM group 2

RFM group 3

RFM group 4

RFM group 5

RFM group 1

RFM group 2

RFM group 3

RFM group 4

RFM group 5

RFM group 1

RFM group 2

RFM group 3

RFM group 4

RFM group 5

Figure 11.5 Histogram visualizations of the components of RFM for our customer base
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ensure that we’re exposing tests to relatively uniform groups of people who behave
similarly. It allows us to reduce variance through controlling our experiments.

THOUGHT EXERCISE If we did population sampling and 90% of the 555 mem-
bers were selected into the control, while only 10% were in testing, what
would the results of a causation validation be for our model? We would likely
conclude that our model isn’t very good, which would be misleading. Con-
versely, what dangers does the opposite situation pose?

While the 125 combinations of RFM that occur from these three attributes are inter-
esting, they’re not particularly helpful for analyzing our model’s performance as it
relates to the business metrics of concern. With a collaborative effort from the market-
ing SMEs, we’re able to collapse these 125 groups into three primary meta-groups for
our analysis: the high-value, medium-value, and low-value groups.

 This results in a general separation of our customer base, shown in figure 11.6.
The charts show a clear separation of each component’s contribution to our baseline
revenue, the statistical significance in these differences, and a winning formula for us
to use when engaging in hypothesis testing.

NOTE For further information about how these plots are generated (and the
code), the statistical packages within Python that are employed to get these
significance values, and the data generators involved, please see the compan-
ion code base to this book on GitHub at https://github.com/BenWilson2/
ML-Engineering.

WHY CAN’T I JUST USE MY SCORING METRICS TO TELL HOW WELL THE MODEL IS DOING?
Let’s temporarily set aside the fact that the business is likely not familiar with the con-
cept of prediction error metrics that we use for estimating the goodness of fit of our
models. The primary reason that we can’t just use the scoring metrics to indicate how
well the model is doing is that we aren’t evaluating the same things when we’re mea-
suring business influence. Regardless of how well our models perform against holdout
validation data, the metric performance is simply not guaranteed to have an effect on
the targeted goal of any project. 

 It may seem as though we have completely solved a problem based on looking at
metric performance against holdout data. However, claiming victory for an entire
project solution based on these metrics is a bit preemptive and highly misleading. The
problem with using correlation scores to estimate the quality of our models is that col-
lected features don’t encompass all of the factors that influence an outcome. 

 We are, in the process of generating a feature vector, looking to optimize the cor-
relation of our observations to the response variable. We can never really be certain
that the predictions will do anything at all to influence what we’re trying to influence
because of this fact. 

 For our scenario, the only way to determine influential effect of the predictions is
to use hypothesis testing, measuring the revenue impact between those who see the

https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
https://github.com/BenWilson2/ML-Engineering
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Comparison of sales

Anova analysis of tests

Figure 11.6 Analyzing homogeneity among the three meta-groups that we defined 
as part of our RFM calculations collectively with the marketing SME group
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model’s output and those who do not. The difference in revenue between these sam-
ple populations can give us confidence that our model has a probabilistic effect when
applied to the entire population.

 Before we get into a larger discussion of why this is (correlation versus causation),
let’s look at some differences in common supervised learning problems: ML metric
scores compared to what a business metric for that same project would look like.
Table 11.2 gives a few examples.

This focus aligns the DS team’s perspective on what matters to the business, rather
than solely on applicable loss metrics. While loss metrics are incredibly important for
training, the possibility exists that an optimized loss metric (particularly in the case of
an optimization to a spurious correlation within the dataset) does not equate to favor-
able conditions in the target business metric. Utilizing both the loss metrics and the
business metrics throughout the lifetime of an ML-powered project will greatly reduce
the risk of not meeting business expectations.

 The most important point to remember in presenting evidentiary results to the
business at large is to never conflate the ideas of correlation and causation. Allowing
people to infer causality from your results is a slippery slope to traverse. This becomes
only more dangerous if the metrics being monitored are company-wide critical attri-
butes such as revenue. 

 An A/B test can provide an evidence-based determination of a model’s impact
based on observed differences in behavior, but that’s as far as you can go with making
a declaration. It’s never a certainty. The best thing to do is to never allude to the
correlation-based features of the model or the grouping characteristics utilized in a
stratified analysis as being the actual cause of a driving force. We simply just don’t have
the whole picture to make such claims.

Table 11.2 Examples of project metrics vs. business metrics

Project ML metric Business metric

Fraud detection Area under PR, area under ROC, F1 Fraud loss dollars, number of fraud 
investigations

Churn prediction Area under PR, area under ROC, F1 Recency of purchases, login events for 
high-churn risk

Sales forecasting AIC, BIC, RMSE, etc. Revenue

Sentiment analysis BLEURT, BERTScore Number of users of tool, engagement rate

Ice cream coupons MAE, MSE, RMSE Revenue, coupon usage

A note on ML metrics
I would be remiss if I didn’t clarify that I don’t have any problem with ML metrics.
They’re incredibly useful, absolutely critical for the proper construction of models,
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and provide a wealth of information regarding the empirical quality of the correlation-
focused predictions we’re able to do. If anything, I generally find myself collecting too
many of them throughout the process of building a solution. (I’m a “just in case” sort
of mathematical hoarder.)

That being said, ML metrics are utterly useless to a business unit. They’re irrelevant
to internal and external customers.

They don’t guarantee that you’re going to be solving the problem that you’re trying to
solve. They are, by virtue of their design and purpose, nothing more than an informa-
tive tool to gauge the relative quality of how well you can match a target, provided the
limited amount of data that you collect about reality.

What I’m arguing in this chapter (and, generally, in many parts of the book) is that
our focus should always be on the end state. We, as ML practitioners, should be
focused on what it is that we’re building—not in the sense of which algorithms we’re
using, which statistical models we’re employing, or in how elegant and clever our fea-
ture-engineering work is. The model and all of its supporting infrastructure and data
feeds is employed to solve a problem. 

Any project that is tackled by a DS team has intrinsic measurable qualities. If the proj-
ect didn't, the chances that it will go beyond the experimentation phase is rather lim-
ited. The underlying problem being solved in any project has its own metrics that are
generally defined by the team requesting that the DS team solve the problem.

Are we trying to increase sales? Then measure revenue, units sold, customer reten-
tion, repeat purchases, and length of sessions.

Are we trying to increase viewing of our content? Then measure percentage watched,
time on platform, repeat visits, and consumption of recommendations.

Are we trying to detect fraud? Then measure successful identification rates, loss
reduction, and customer satisfaction rates.

Are we predicting equipment failure? Then measure post hoc equipment-inspection
health checks, catastrophic repair-cost levels, and equipment replacement spending.

The project’s directive includes a certain aspect of the business that has been mea-
sured and that is being closely scrutinized to warrant devoting the DS team’s efforts
at fixing. The expectation from the business is that the application of ML will make
things better. 

If you’re not measuring whether you’re making things better, but instead using as jus-
tification of the predictive power of your implementation some esoteric statistical
measure of correlation quality, you’re doing yourself and your team a disservice. 

Keep the project’s terms in the metrics that the business is familiar with—the very
reason the business leaders picked up that phone and gave you a ring about poten-
tially being a hero for them. This focus will increase their faith in your team’s abilities,
keep the team honest about the project’s impact on the business, and help everyone
clearly recognize when things are no longer going as well as they once were (and, as
you will see in the next section, this is an inevitability).
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11.1.2 Clarifying correlation vs. causation

An important part of presenting model results to a business unit is to be clear about
the differences between correlation and causation. If there is even a slight chance of
business leaders inferring a causal relationship from anything that you are showing
them, it’s best to have this chat.

 Correlation is simply the relationship or association that observed variables have to
one another. It does not imply any meaning apart from the existence of this relation-
ship. This concept is inherently counterintuitive to laypersons who are not involved in
analyzing data. Making reductionist conclusions that “seem to make sense” about the
data relationships in an analysis is effectively how our brains are wired.

 For example, we could collect sales data for ice cream trucks and sales of mittens,
both aggregated by week of year and country. We could calculate a strong negative
correlation between the two (ice cream sales go up as mitten sales increase, and vice
versa). Most people would chuckle at a conclusion of causality: “Well, if we want to sell
more ice cream, we need to reduce our supply of mittens!” 

 What a layperson might instantly state from such a silly example is, “Well, people
buy mittens when it’s cold and ice cream when it’s hot.” This is an attempt at defining
causation. Based on this negative correlation in the observed data, we definitely can’t
make such an inference regarding causation. We have no way of knowing what actu-
ally influenced the effect of purchasing ice cream or mittens on an individual basis
(per observation). 

 If we were to introduce an additional confounding variable to this analysis (outside
temperature), we might find additional confirmation of our spurious conclusion.
However, this ignores the complexity of what drives decisions to purchase. As an
example, see figure 11.7.

 It’s clear that a relationship is present. As temperature increases, ice cream sales
increase as well. The relationship being exhibited is fairly strong. But can we infer any-
thing other than the fact that there is a relationship? 

 Let’s look at another plot. Figure 11.8 shows an additional observational data point
that we could put into a model to aid in predicting whether someone might want to
buy our ice cream.

 With the cloud cover plotted against sales, we’re getting an even stronger correlation
than with temperature. What does this tell us? It simply says that a strong relationship
(correlation) exists between these observed variables. We can’t infer anything other than
that. We most certainly can’t make a logical leap of saying that high-temperature, cloud-
less days will guarantee ice cream purchases. Temperature and cloud cover certainly
seem to have an influential effect on the purchase rate, but we can’t definitively say that
these are the causes of the choice to either purchase or not purchase our ice cream.

 In the world of ML models, we’re dealing with optimizing a cost function among
the relationships of observed variables to achieve the best reasonable estimate of (a)
prediction variable(s) based on the data that we have. This does not, under any cir-
cumstances, imply causation. 
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Correlation tells us that there is a strong relationship between these variables.

It doesn’t tell us that one the other, though.causes

Temperature

Increases Decreases

People buy our ice

cream.

People don’t buy

our ice cream.

Figure 11.7 Correlation doesn’t imply causal associations.
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What if we analyzed cloud coverage percentage by ice cream
sales and found an even stronger correlation?

Cloud coverage Temperature

Ice cream sales

???

??? ???

Which one is influencing the
purchase? Can we be sure?

No. No, we cannot.
Not without a causal analysis.
Our model, comprising these
observations, cannot tell us
which influenced the results we
see.

Figure 11.8 A confounding correlation, when we think of the relationship of temperature 
to sales. Which one is driving the sales? Is it the temperature or the cloud cover? Is it a 
mixed effect?
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 There’s a simple reason for this: we’re not omnipotent. We simply don’t capture all
of the reasons a decision is made. Since we’re not observing all of the reasons, our
model is certainly ignorant of them as well. If we were able to capture all of the influ-
ences, we would all be out of a job as data scientists anyway, as people would be able to
directly state expected outcomes with flawless precision and near-zero uncertainty.

 Let’s imagine that we’re trying to figure out whether someone is going to pur-
chase ice cream. Figure 11.9 shows a composite of influencing factors that may drive

Causal factors

for whether

today will be an

ice cream day
Perception of quality

of this ice cream
Special

flavors seem

tasty?

Type of dinner last night,

breakfast this morning, lunch

today
Tried to shave dog in

last week Y/N?

Behavior of children

today if have children

Current sales and

rebates of competitors

in local market

Number of children

under age 10

Successfully shaved

dog in last week Y/N?

Number of times said

the words “no” or

“stop that” in last

three hours

Hungry?

General mood
Feeling of

deserving a treat

Current dietary restrictions

Model features

Current political

stability in country

Asteroid impact in last

seven days Y/N?

Weather-forecast data

Data we collect about our

ice cream customers

• Age

• Favorite flavor

• Location

• Purchase history

• Transaction method

Figure 11.9 The sea of influences to events that is unknowable to a model. If we’re not observing 
all of those elements, we can’t ever imply causation; we simply don’t have all of the information.
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someone’s decision to purchase our product. In this vast sea of reasons, we are col-
lecting a limited amount of data about this person. For the other influences that
could be affecting the decision to buy, we simply can’t collect this information. The
model likely wouldn’t be very generalizable if we did collect all of that information.
We’d be crippled by the curse of dimensionality, and to make a useful model from
this many features would require many billions of rows of data to be even remotely
accurate.

 It’s always best to not attempt to assign a causal relationship to any ML model’s
results. Remember, we’re dealing with correlation and a best-effort attempt to draw a
conclusion from correlated values in order to build predictions. We’re not set up for
assigning meaning or motivation (causality) based on this myopic view of the myriad
of forces that actually cause something to happen or not happen. 

 Similarly, we can’t directly infer a causal relationship just because of a statistically
significant result to an A/B test. We can only reject an equivalency in results between
testing groups. However, what we are able to do with A/B tests is to validate through a
causal experiment whether our predictions are useful. 

 It’s important to understand these concepts as a data scientist. It’s even more
important, however, to reinforce them when speaking with your internal customers in
the business that you’re building projects for. Failing to communicate these principles
has created a staggering amount of confusion and frustration in groups that I’ve
worked with.

11.2 Leveraging A/B testing for attribution calculations
In the previous section, we established the importance of attribution measurement.
For our ice cream coupon model, we defined a methodology to split our customer
base into different cohort segments to minimize latent variable influence. We’ve
defined why it’s so critical to evaluate the success criteria of our implementation based
on business metrics associated with what we’re trying to improve (our revenue). 

A note on causal analysis (inference)
Certain techniques, such as DOE and causal modeling, can arrive at causal relation-
ships between features and a target. Unlike supervised learning, which focuses
solely on minimization of error terms, causal relationships that are discovered
through DOE modeling can be confidently determined. 

We can determine the magnitude and direction of effects on a target variable through
the careful construction of directed acyclic graph (DAG) relationships in DOE, some-
thing that traditional supervised learning is incapable of doing. For further reading on
the topics of causal modeling and DOE, I highly recommend reading Elements of
Causal Inference: Foundations and Learning Algorithms by Jonas Peters et al. (MIT
Press, 2017). 
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 Armed with this understanding, how do we go about calculating the impact? How
can we make an adjudication that is mathematically sound and provides an irrefutable
assessment of something as complex as a model’s impact on the business? 

11.2.1 A/B testing 101

Now that we have defined our cohorts by using a simple percentile-based RFM seg-
mentation (the three groups that we assigned to customers in section 11.1.1), we’re
ready to conduct random stratified sampling of our customers to determine which
coupon experience they will get. 

 The control group will be getting the pre-ML treatment of a generic coupon being
sent to their inbox on Mondays at 8 a.m. PST. The test group will be getting the tar-
geted content and delivery timing. 

NOTE Although simultaneously releasing multiple elements of a project that
are all significant departures from the control conditions may seem counter-
intuitive for hypothesis testing (and it is confounding to a causal relationship),
most companies are (wisely) willing to forego scientific accuracy of evalua-
tions in the interest of getting a solution out into the world as soon as possi-
ble. If you’re ever faced with this supposed violation of statistical standards,
my best advice is this: keep patiently quiet and realize that you can do varia-
tion tests later by changing aspects of the implementation in further A/B tests
to determine causal impacts to the different aspects of your solution. When
it’s time to release a solution, it’s often much more worthwhile to release the
best possible solution first and then analyze components later.

Within a short period after production release, people typically want to see plots illus-
trating the impact as soon as the data starts rolling in. Many line charts will be created,
aggregating business parameter results based on the control and test group. Before
letting everyone go hog wild with making fancy charts, a few critical aspects of the
hypothesis test need to be defined to make it a successful adjudication.

HOW MUCH DATA DO WE NEED TO COLLECT?
When designing hypothesis testing, a critical part of the process is to determine
appropriate sample sizes for the evaluation. The following listing shows a relatively
straightforward method of determining an appropriate sample size based on the
needs of the business. 

from statsmodels.stats.power import tt_ind_solve_power   
x_effects = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5]      

Listing 11.1 Minimum sample size determinator

Someone was gracious enough 
to wrap the power solver from 
SciPy in statsmodels with a 
high-level API.

Generates a list of “lift”
deltas between control and
test (percentage difference

between metrics)
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sample_sizes = [tt_ind_solve_power(x, None, 0.2, 0.8, 1, 'two-sided') for x 
in x_effects]  

sample_sizes_low_alpha = [tt_ind_solve_power(x, None, 0.01, 0.8, 1, 
'two-sided') for x in x_effects]   

Figure 11.10 shows the result of running this code (the visualization code can be seen
in the companion repository to this book). In both cases, we’re leaving the power
value at 0.8, which can and should be adapted if the risk of type II errors is detrimen-
tal to the business for this use case.

Solves for sample sizes 
for alpha 0.2 by setting 
effect_size to None

Solves for sample sizes for 
alpha of 0.01 (99% certainty 
in not having a type I error)

If we’re trying to detect
differences as small as %, we’re1

going to need a .lot of samples

A 50% increase in revenue takes only a handful
of data points? That’s cool. I guess that means
if we want to make this really simple, we just
have to make a really good solution, right?

Notice the logarithmic scale. For marginal improvements made by a
model, this should tell you something. If you’re not really affecting the
thing that you’re working to influence, this is an indication that it’s time
to go back to the drawing board and rethink your approach.

Figure 11.10 Sample size determination based on confidence requirements



319Leveraging A/B testing for attribution calculations
As the alpha value (the significance level of our measurements) decreases, the num-
ber of recorded samples to determine a difference between test and control
increases. Having the ability to communicate the amount of time required to collect
enough data in order to make a conclusive judgment is absolutely essential before a
model enters production. Without these expectations set, the business will simply be
wondering when, and more depressingly, if, it will ever see promising results from
the project.

 The preceding estimation is based entirely on statistical tests that require a normal
distribution and homogenous sample group sizes. We will discuss in the remaining
sections how to not only test parametric data, but also appropriate significance tests
for nonparametric data and unbalanced sample sizes.

WHAT NOT TO DO 
Figure 11.11 illustrates the way many companies evaluate attribution early in their
journeys of using ML project work to impact business. Without proper analytics
applied to the attribution measurement using sound statistical processes, a great deal
of frustration can be felt by the business. 

 The best way to combat this is to set established rules about how data will be evalu-
ated and how much time it’s going to take to adjudicate impacts, and to have a monitor-
ing system in place to test for statistical significance of the monitored parameters.

 With our RFM cohorts defined, our sample size estimates understood, and an auto-
mated monitoring job to retrieve our attribution data for measurement, we’re ready
to start on the evaluation of our project. We’re ready to see if all of the hard work was
worth it.

11.2.2 Evaluating continuous metrics

For our ice cream coupon optimizations, one of the primary measures that the busi-
ness is concerned with is revenue. In many cases when dealing with measures of mon-
etary value, the distributions associated with spending are generally highly non-normal.
Figure 11.12 shows an unbounded purchase plot of spending associated with variable
priced goods and infinite basket situations (such as in e-commerce).

 If you’re dealing with distributions that look like this plot, you won’t be using the
standard parametric tests. For our use case, however, we have a fixed-price set of items
(all of our ice cream is the same price), and the coupons that we’re issuing are for a
single item. We’ve done our homework with statistical analysis, though, validating that
we’re going to have data that is relatively normally distributed. 

 When conducting our experimental test of our solution, we’re going to define the
parametric tests as shown in listing 11.2. We’ll be applying these to a standard plot
that can show not only a specific cohort’s sales data over time, but the equivalency test
p-values for each of these tests. In actual practice, not all of these would be included as
a report (displaying and calculating both parametric and nonparametric tests here
are for demonstration purposes only). You should use only the one that is most appli-
cable to your data.



320 CHAPTER 11 Model measurement and why it’s so important
Release!

Release day +1

“So, how much

money did we

make?”

“Day one is

showing a

$20,765 increase

in test over

control!”

Release day +7
“Test sales are  . . . down

by 7%?! What is going

on here?”

Release day +14

“Every day is different, and the

numbers keep changing. How

can we be sure this is

accurate?!”

If this sentiment . . . . . . is not properly managed, the project
can be (and in my experience, most
certainly has been) turned into a
quagmire that gets turned off.A lack of statistical

significance testing
can lead to
confusion about the
validity of the
results.

We have
nowhere near
enough data to
make a
conclusion
about efficacy.

Non-stratified
analysis is
introducing latent
factors that
increase the
variability within
these
meta-groups.

First week sales

Control

Test

Figure 11.11 Ignoring hypothesis testing creates frustration.
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from statsmodels.stats import anova
from scipy.stats import f_oneway, mannwhitneyu, wilcoxon, ttest_ind
from collections import namedtuple
import matplotlib.pyplot as plt
DATE_FIELD = 'Date'
TARGET_FIELD = 'Sales'
def calculate_basic_stats_df(series):       
    StatsData = namedtuple('StatsData', 'name mean median stddev variance sum')
    return StatsData(series.name,
                     np.mean(series),
                     np.median(series),
                     np.std(series),
                     np.var(series),
                     np.sum(series)
                    )

def series_comparison_continuous_df(a, b):    
    BatteryData = namedtuple('BatteryData', 'left right anova mann_whitney_u 

wilcoxon ttest')

Listing 11.2 Line plot with statistical tests

This is a half-Cauchy distribution.

With distributions like this,

standard statistical tests such as

Z-tests and T-tests can give

wildly inaccurate results.

Parametric tests relying on data to be a part of a normal

distribution are not valid for unbounded revenue

measurements.

When in doubt, plot a density function against the data

you're going to test and check for normalcy!

Figure 11.12 A normalcy validation check on revenue by customers

Simple function to 
get critical stats 
about each series

Function that calls the SciPy and 
statsmodels modules for calculating 
parametric and nonparametric 
equivalency tests
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    TestData = namedtuple('TestData', 'statistic pvalue')
    anova_test = f_oneway(a, b)
    mann_whitney = mannwhitneyu(a, b)
    wilcoxon_rank = wilcoxon(a, b)
    t_test = ttest_ind(a, b, equal_var=False)
    return BatteryData(a.name, 
                       b.name, 
                       TestData(anova_test.statistic, anova_test.pvalue),
                       TestData(mann_whitney.statistic, mann_whitney.pvalue),
                       TestData(wilcoxon_rank.statistic, wilcoxon_rank.pvalue),
                       TestData(t_test.statistic, t_test.pvalue)
                      )

def plot_comparison_series_df(x, y1, y2, size=(10,10)):
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=size)
        ax = fig.add_subplot(111)
        ax.plot(x, y1, color='darkred', label=y1.name)
        ax.plot(x, y2, color='green', label=y2.name)
        ax.set_title("Comparison of Sales between tests {} and 

{}".format(y1.name, y2.name))
        ax.set_xlabel(DATE_FIELD)
        ax.set_ylabel(TARGET_FIELD)
        comparison = series_comparison_continuous_df(y1, y2)  
        y1_stats = calculate_basic_stats_df(y1)      
        y2_stats = calculate_basic_stats_df(y2)
        bbox_stats = "\n".join((
            "Series {}:".format(y1.name),
            "   Mean: {:.2f}".format(y1_stats.mean),
            "   Median: {:.2f}".format(y1_stats.median),
            "   Stddev: {:.2f}".format(y1_stats.stddev),
            "   Variance: {:.2f}".format(y1_stats.variance),
            "   Sum: {:.2f}".format(y1_stats.sum),
            "Series {}:".format(y2.name),
            "   Mean: {:.2f}".format(y2_stats.mean),
            "   Median: {:.2f}".format(y2_stats.median),
            "   Stddev: {:.2f}".format(y2_stats.stddev),
            "   Variance: {:.2f}".format(y2_stats.variance),
            "   Sum: {:.2f}".format(y2_stats.sum)
        ))
        bbox_text = "Anova pvalue: {}\nT-test pvalue: {}\nMannWhitneyU pvalue: 
          {}\nWilcoxon pvalue: {}".format(
          comparison.anova.pvalue,
          comparison.ttest.pvalue,
          comparison.mann_whitney_u.pvalue,
          comparison.wilcoxon.pvalue
          )
        bbox_props = dict(boxstyle='round', facecolor='ivory', alpha=0.8)
        ax.text(0.05, 0.95, bbox_text, transform=ax.transAxes, fontsize=12, 
          verticalalignment='top', bbox=bbox_props)
        ax.text(0.05, 0.8, bbox_stats, transform=ax.transAxes, fontsize=10, 
          verticalalignment='top', bbox=bbox_props)
        ax.legend(loc='lower right')
        plt.tight_layout()

Calls to 
the series 
comparison 
function for 
acquiring the 
significance 
test values 
for in-plot 
display

Calls to the basic 
stats calculations 
for each series
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Figure 11.13 shows the result of executing this code; the first 150 days of testing results
are depicted for the high-value customer cohort.

 The datasets being compared here are nonparametric. This is due to the trend
over time of sales causing our distributions to shift as a function of time. The only con-
dition that would allow us to use comparisons such as ANOVA, T-tests, and Z-tests
would be if our data had stationarity (a trend of 0).

 Showing a time-series display in this fashion is but one part of illustrating test
results. As we focused on in part 1, the ability to communicate clearly with the busi-
ness is incredibly important for any ML project. It’s even more important when the
topic of attribution and measurement comes into the conversation. Having the full
picture involves more than a single presentation of the data results, as we will cover
next.

Do I really have to do this?!
In short, no. 

ML project work has varying levels. Each level of business-impacting criticality has a
corresponding level of urgency with regards to implementing attribution (and drift)
measurements. Let’s take a look at a few examples:

 Internal tooling model for generating labeled data for other projects—Standard
ML metrics are fine.

 Internal-to-the-company predictive model designed to assist another depart-
ment with repetitive tasks—Attribution modeling not applicable, periodic ad
hoc drift detection could be worthwhile.

 Internal-to-the-company project that directly affects critical business operations
(helping to influence major business decisions)—Absolutely critical to have
drift detection, and attribution modeling is a good idea to build.

 External customer-facing model—Attribution measurement, drift detection,
and bias detection (evaluation of prejudicial predictions that have real-world
consequences of amplifying systemic societal issues based on the nature
and type of data collected) are absolutely required. 

The last element is what the majority of production ML is focused on: the critically
important projects that affect the profitability or efficiency of a company. Of particular
note in this list is the bias measurement, a topic of active research at the time this
writing. I don’t go into this topic in this book, but it is a critical aspect of what we do.
(Entire books are written on this topic, and I encourage all professional ML practi-
tioners to read at least one of them.)

Bias measurement becomes very important when our models are affecting people’s
lives: credit card applications, home loan approvals, police patrol recommendations,
urban funding, and human behavior risk detection are but a small sampling of some
of the applications of ML that are being discovered as having severe bias based on
prior behavior reflected in our datasets. Keeping an eye on the results is always going
to save you from difficult conversations down the line.
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The test results here, because of
the nonparametric distribution,
will need to utilize the
Mann-Whitney U significance
testing values.

Based on the results, we can, with ~ 97% certainty,
claim that test and control series are not equal.

This is clearly not normally
distributed. Only in a non-trend
(stationary)situation would we
have a comparison between
test and control that would be
normally distributed for a
fixed-price item.

Figure 11.13 Plotting test and control groups over time, showing the nonparametric nature of the data
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11.2.3 Using alternative displays and tests

To accompany any temporal-referenced hypothesis test, presenting a box plot of the
results to the business can be useful. While these charts are incredibly useful for distill-
ing information in an approachable way, the vast majority of laypersons are not famil-
iar with seeing these plots accompanied by the critically important statistical
summaries that help guide interpretability. 

 Without a reference of statistical significance, a judgment can be made too easily
on insufficient (or high-variance) data. The next listing shows an ANOVA plot for
parametric data and the required DataFrame manipulations to conduct the test.

from statsmodels.formula.api import ols
from statsmodels.stats import anova
def generate_melted_df(series_collection, dates, date_filtering=DATA_SIZE): 
    series_df = generate_df(series_collection, dates)
    melted = pd.melt(series_df.reset_index(), id_vars='Date', 
      value_vars=[x.name for x in series_collection])
    melted.columns = [DATE_FIELD, 'Test', 'Sales']
    return melted[melted[DATE_FIELD] > max(melted[DATE_FIELD]) - 
      timedelta(days=date_filtering)]
def run_anova(data, value_name, group_name):                
    ols_model = ols('{} ~ C({})'.format(value_name, group_name), 
      data=data).fit()
    return anova.anova_lm(ols_model, typ=2)
def plot_anova(melted_data, plot_name, figsize=(16, 16)):
    anova_report = run_anova(melted_data, 'Sales', 'Test')
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=figsize)
        ax0 = fig.add_subplot(111)
        ax0 = sns.boxplot(x='Test', y='Sales', data=melted_data, 
          color='lightsteelblue')
        ax0 = sns.stripplot(x='Test', y='Sales', data=melted_data, 
          color='steelblue', alpha=0.4, jitter=0.2)
        ax1 = fig.add_subplot(211)
        ax1.set_title("Anova Analysis of tests", y=1.25, fontsize=16)
        tbl = ax1.table(cellText=anova_report.values, 
                        colLabels=anova_report.columns, 
                        rowLabels=anova_report.index, 
                        loc='top', 
                        cellLoc='center', 
                        rowLoc='center',
                        bbox=[0.075,1.0,0.875,0.2]
                       )                            
        tbl.auto_set_column_width(col=list(range(len(anova_report.columns))))
        ax1.axis('tight')
        ax1.set_axis_off()
        plt.savefig("anova_{}.svg".format(plot_name), format='svg')

The result of executing this code on an alternative dataset (one that is stationary and
has no seasonal effects) is shown in figure 11.14. For details on the differences of this

Listing 11.3 Generation of ANOVA box plot report for parametric data

Normalizing (melting) the DataFrame to
support the ANOVA calculation in statsmodels

Creates the 
linear model 
needed for 
ANOVA

Superimposes the 
ANOVA result statistics 
to the chart for easy 
reference
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e- p-value? I’d say it’s pretty147
safe to reject the null hypothesis
of equivalency.

There is just a slight difference
between these groups.

This dataset is stationary and
normally distributed, and an
ANOVA test can be safely done
on it.

Figure 11.14 Stationary parametric test example
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Runs
pair

Tu
HSD
dataset’s generation as compared to the one we have been using, see the companion
repository to this book.

 With these parametric tests, we can get a far more accurate determination of the
magnitude of differences in our testing. This is mostly because of the foundation upon
which parametric student tests are built (requiring that the sample mean follows a nor-
mal distribution, and the standard error of the mean follows a chi-squared distribution
with n – 1 degrees of freedom). In our original problem, with several groups being tested
at the same time, it might have been a bit onerous to plot each of the ANOVA tests as
paired tests. With merely three groups being split between test and control, this might
not be too punishing to look through. But 25 groups under test are a different story. 

 Enter Tukey HSD tests (HSD stands for honestly significant difference). These are
another type of parametric test with the main difference from the student family of
tests being that pairwise comparisons between each of the groups can be conducted
all at once. The following listing shows an implementation of this test and the accom-
panying visualization report.

from statsmodels.stats.multicomp import pairwise_tukeyhsd
def convert_tukey_to_df(tukey):
    STRUCTURES = [(0, 'str'), (1, 'str'), (2, 'float'), 

(3, 'float'), (4, 'float'), (5, 'float'), (6, 'bool')]   
    fields = tukey.data[0]
    extracts = [extract_data(tukey.data[1:], x[0], x[1]) for x in STRUCTURES]  
    result_df = pd.concat(extracts, axis=1)
    result_df.columns = fields
    return result_df.sort_values(['p-adj', 'meandiff'], ascending=[True, False])

def run_tukey(value, group, alpha=0.05):    
    paired_test = pairwise_tukeyhsd(value, group, alpha)
    return convert_tukey_to_df(paired_test._results_table)

def plot_tukey(melted_data, name, alpha=0.05, figsize=(14,14)):
    tukey_data = run_tukey(melted_data[TARGET_FIELD], melted_data[TEST_FIELD], 
      alpha)
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=figsize)
        ax_plot = fig.add_subplot(111)
        ax_plot = sns.boxplot(x=TEST_FIELD, y=TARGET_FIELD, data=melted_data, 
          color='lightsteelblue')
        ax_plot = sns.stripplot(x=TEST_FIELD, y=TARGET_FIELD, 
                                data=melted_data, color='steelblue', 
                                alpha=0.4, jitter=0.2)
        ax_table = fig.add_subplot(211)
        ax_table.set_title("TukeyHSD Analysis of tests", y=1.5, fontsize=16)
        tbl = ax_table.table(cellText=tukey_data.values,
                             colLabels=tukey_data.columns,
                             rowLabels=tukey_data.index,
                             loc='top',

Listing 11.4 Tukey HSD hypothesis testing and plot

Defines the structure of the return 
type from pairwise_tukeyhsd

Extracts the data
from the payload

result from the
Tukey HSD test

Returns the
pairs, sorted by
significance and

mean delta

 the
wise
key

 test
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C
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                             cellLoc='center',
                             rowLoc='center',
                             bbox=[0.075, 1.0, 0.875, 0.5]
                            )     
        tbl.auto_set_column_width(col=list(range(len(tukey_data.columns))))
        ax_table.axis('tight')
        ax_table.set_axis_off()
        plt.tight_layout()
        plt.savefig('tukey_{}.svg'.format(name), format='svg')

Executing this code against our stationary full sample test group results in the plot
shown in figure 11.15. As you can see by looking at the medium-value and low-value

reates a display table on top of the box
ots that shows the relationships among
l of the paired groups under evaluation

Analysis of each pair

Whether the comparison group
can be declared non-equal

A pairwise comparison test gives a simple, comprehensible comparison in a single snapshot. It's highly useful, but

use an approach like this only if the base criteria for the test are met.

Figure 11.15 Tukey HSD pairwise comparison test, showing each group to every other group and 
whether the null hypothesis can be rejected for the paired comparisons of equivalency
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ns, 
d 
groups, visually discerning differences between seemingly similar data is incredibly
difficult. Setting aside that making visual or simple aggregation evaluations is incredi-
bly dangerous, having the statistical validation tests as part of any comparison chart
that you display to the business can help solidify the conclusions.

 This straightforward graph is easy enough for the business units to interpret. It
helps prevent anyone from making a judgment on the success (or failure) of the proj-
ect until sufficient data exists to endorse that conclusion, whatever it may be. In the
graph, we see that there is no appreciable difference between the test and control
group for our medium-value cohort. This can help identify which groups may need a
different approach (opening the door to the next iteration of the model and further
tests) and which should be handled carefully (the high-value group’s test condition
seems to be working splendidly; why change it now?).

11.2.4 Evaluating categorical metrics

We’ve been discussing revenue up to this point, but it’s not the whole story in our ice
cream consumption optimization project. While the executives are concerned about
the model’s influence on sales figures, the marketing team (our internal customer)
wants to know the uptake rate for coupon usage. 

 We can’t use the same approach that we used with continuous data for nominal
data, unfortunately. Gone are the ANOVA tests, the Tukey HSD comparisons, or any
other such technique. Instead, we need to delve into the world of categorical tests. We
need to start thinking in the realm of happen versus not happen in regard to events that
we’re measuring. 

 Listing 11.5 shows a simplistic mock-up of data measuring the ratios between our
test and control groups for an example 50,000 coupons issued during the first 50 days
of testing. To keep the visualizations simple, we’ll put all of our cohorts into a single
group (but in practice, you would have a different chart and set of statistical tests for
each cohort). 

from scipy.stats import fisher_exact, chi2_contingency
def categorical_significance(test_happen, test_not_happen, control_happen, 
      control_not_happen):
    CategoricalTest = namedtuple('CategoricalTest', 
                                 'fisher_stat fisher_p chisq_stat chisq_p
                                 chisq_df chisq_expected')
    t_happen = np.sum(test_happen)      
    t_not_happen = np.sum(test_not_happen)
    c_happen = np.sum(control_happen)
    c_not_happen = np.sum(control_not_happen)
    matrix = np.array([[t_happen, c_happen], [t_not_happen, c_not_happen]])
    fisher_stat, fisher_p = fisher_exact(matrix)      
    chisq_stat, chisq_p, chisq_df, chisq_expected = chi2_contingency(matrix)

Listing 11.5 Categorical significance testing

For each of the series data (event happe
event does not happen) for both test an
control, gets the sum of these events

Runs a Fisher’s exact test on the matrix 
of happen/not happen for each group

Runs a chi-square contingency
test on the matrix
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    return CategoricalTest(fisher_stat, fisher_p, chisq_stat, chisq_p, 
      chisq_df, chisq_expected)

def plot_coupon_usage(test_happen, test_not_happen, control_happen, 
  control_not_happen, name, figsize=(10,8)):
    cat_test = categorical_significance(test_series, test_unused, 
      control_series, control_unused)   
    with plt.style.context(style='seaborn'):
        fig = plt.figure(figsize=figsize)
        ax = fig.add_subplot(111)
        dates = np.arange(DATE_START, 
                            DATE_START + timedelta(days=COUPON_DATES), 
                            timedelta(days=1)).astype(date)
        bar1 = ax.bar(dates, test_series, color='#5499C7', label='Test 
          Coupons Used')
        bar2 = ax.bar(dates, test_unused, bottom=test_series, 
          color='#A9CCE3', label='Test Unused Coupons')  
        bar3 = ax.bar(dates, control_series, bottom=test_series+test_unused,
          color='#52BE80', label='Control Coupons Used')
        bar4 = ax.bar(dates, control_unused, 
          bottom=test_series+test_unused+control_series, 
          color='#A9DFBF', label='Control Unused Coupons')
        bbox_text = "Fisher's Exact pvalue: {}\nChisq Contingency pvalue: 
          {}\nChisq DF: {}".format(
          cat_test.fisher_p, cat_test.chisq_p, cat_test.chisq_df
          )    
        bbox_props = dict(boxstyle='round', facecolor='ivory', alpha=1.0)
        ax.set_title("Coupon Usage Comparison", fontsize=16)
        ax.text(0.05, 0.95, bbox_text, transform=ax.transAxes, fontsize=12, 
          verticalalignment='top', bbox=bbox_props)
        ax.set_xlabel('Date')
        ax.set_ylabel('Coupon Usage')
        legend = ax.legend(loc='best', shadow=True, frameon=True)
        legend.get_frame().set_facecolor('ivory')
        plt.tight_layout()
        plt.savefig('coupon_usage_{}.svg'.format(name), format='svg')

When we run this code (after having our sent and utilized ETL done for the coupons
setup), we’ll end up with a chart that looks like figure 11.16. 

 Figure 11.16 may not be applicable to all ML projects. The continuous value-based
measurements in the earlier sections of this chapter are far more common. However,
should you need to evaluate event-based data and provide a conclusive declaration
about whether the test conditions are different, having this methodology as a tool is
indispensable.

GENERAL APPLICATIONS OF ATTRIBUTION MEASUREMENT

We’ve discussed model attribution measurement for ice cream coupon issuance. Not
to be dismissive of any ice-cream companies out there (I promise you, my dog loves
you), but what about slightly more serious endeavors? 

 The key regarding the monitoring of business attributes is to select a measurement
metric that is useful. The utility of these metrics is, for lack of a better phrase, focused

Gets the statistical tests 
from the categorical 
significance function

Stacks the bar
charts atop

one another
for easily

viewable rates
of interaction

over time

Constructs the
statistical test
reporting box

for the plot
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entirely on the concept of “the devil is in the details.” The measurement of business
success has nuances that can range from useful to pointless. It is critical to select mea-
surable attributes that incorporate the nuances of the business. Having discussions
with the business unit SME group that is responsible for that aspect of the business is
incredibly helpful to ensure that your attribution analysis is relevant.

The devil is in the details
Business metrics are, to an outsider, seemingly wrought from common sense. If
we’re trying to measure revenue effects from a model, we just look at sales, right? If
we’re calculating engagement lift, we just look at login events. Optimization of flight
routes to international airports would look at airplane occupancy rates, correct?

The test group clearly has a
higher usage rate of the coupons
as time goes on.

This is reflected in the Fisher
exact test’s significance value.

Figure 11.16 Measuring categorical happen/not happen events in a hypothesis test analysis
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Having a series of metrics that are consistent with the way the company defines its suc-
cess in the realm that you’re interacting with will ensure that little to no confusion
occurs when presenting the impact of the model to the business. With this consis-
tency, faith in the solution is fostered, securing ML solutions as a key critical aspect to
the operations of the company, and helping to grow innovation and generate further
interesting projects for the DS team to solve.

(continued)

While defining these rules may seem trivial, I can assure you that it is not. For each
use case, the details surrounding how to calculate which metric and the details about
how those metrics are calculated have proven to be both complex and highly specific
to the ways in which the company decides to run its business. Therefore, it is incred-
ibly important to discuss any attribution metrics with your colleagues who otherwise
calculate these metrics for reporting purposes for the company.

If you’re building a solution that is attempting to target revenue for the company,
talk to the finance team. If you’re working on efficiency optimizations for logistics,
talk to the operations department. If the model is aiming to reduce defect density
on manufactured parts, you should be talking to the quality assurance and metrol-
ogy departments.

How can I figure out which business metrics to monitor?
The short answer: ask.

Often the DS team is the one coming up with a great idea for ML project work—though
the majority of the time, a business unit sponsor or executive approaches the team
to solve a problem. Still, I can count on one hand the number of novel problems that
I’ve been involved with. 

I’m not understating the work that was done, simply being honest in saying that the
problem existed before an ML solution was built. The difference is that it was being
handled by humans rather than algorithms and code. Revenue maximization? That’s
marketing. Fraud detection? That’s the fraud department. Pricing optimization? Demand
prediction? Humans that have been doing that for a long time before you were called
in to help out. 

These people know their craft. They’ll know more about the nuances of the data, the
realm of what they’re responsible for, and the nature of customers or processes far
better than you will. The best source for determining which aspects of the business
can be used to create a measurable metric for the performance of what you’re going
to be building is these people. 

Every time I begin work on a new project—aside from the first few solutions that I
built in a vacuum and that failed quite spectacularly—I get to know these people. I
invite them to discussions, to lunch, to meetings, and generally just listen to every-
thing they say. I ask them pointed questions about how their own jobs are measured
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Now that we’ve covered how we’re going to measure an ML experiment for attribu-
tion analysis, focusing on answering the critical questions that the business will want
to have answered about the project, it’s time to face the other elephant in the room.
We need to figure out how to detect drift, what to do about it, and when to take
action when the inevitable deterioration of our model happens. Having the statistics
established for measuring it with our attribution analysis, paired with our internal
DS-focused loss metrics, we’re prepared to face it head-on. It’s time to think about
model drift.

Summary
 Attribution analysis enables a DS team to communicate clearly about how its

solution solves the problem that it was intending to solve for the business.
Leveraging proper statistical methods and controlled testing can provide objec-
tive declarations of the status of the solution.

 By utilizing the correct statistical tests for evaluating A/B testing data, a state-
ment regarding the status of a solution’s performance can be made, providing a
data-driven declaration of the impact.

for success (if the department’s goals are the things that your model is measured
against, it will be easier for everyone to understand the effects, after all). I ask them
what queries they utilize to determine the success for their department. I ask what
the team’s objectives and key results (OKRs) are. 

Perhaps they’ll tell you that they’re measured not by the number of correct fraud
events that they detect, but more on the detection of novel fraud events that haven’t
been seen before. Maybe they’ll say that they’re focused on catching enough fraud
but never wanting to falsely flag fraud on a legitimate customer. These can influence
the construction of your model, but they can also be used as the very metrics to
gauge the health of your implementation.

By doing this alignment and involving the people who know about the topic so deeply,
you’ll be preparing the project for a greater level of success upon release, but more
important, for the ability to measure the production release model in the same way
that the company at large will be viewing it. This will help ensure that you’re aware of
degradation and issues (hopefully) before the company is aware of them, increasing
the levels of stability in the project.



Holding on to your gains
by watching for drift
In the preceding chapter, we established the foundations for measuring the effec-
tiveness of an ML solution. This solid base enables a DS team to communicate to
the business about the performance of a project in terms that are relevant to the
business. To continue making (hopefully) positive reports about the effectiveness
of a solution, a bit more work needs to be done.

 If proper attribution monitoring and reporting to the business are the bedrock
and foundation of a project, entropy is the buffeting storm seeking to continuously
tear down the project. We call this chaotic shift in performance drift, and it takes
many forms. Combatting against it requires continuous monitoring and a suspi-
cious distrust of everything going into and coming out of a model.

 Throughout this chapter, we will look at the types and causes of, and solutions
for, the major types of model drift. Fighting against drift will help ensure that the
gains that you’re making for your company continue to prove fruitful.

This chapter covers
 Identifying and monitoring for drift in production 

solutions

 Defining responses to detected drift
334
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12.1 Detecting drift
Let’s pretend that we’ve just shipped our ice cream recommender from chapter 11 to
production. We’ve used sound engineering practices throughout development, and
our internal SME testing has looked promising. Attribution measurement is set up,
A/B testing is defined, and we’re ready to start collecting the results. We release the
proverbial kraken upon the world.

 It isn’t until about six weeks into the model running swimmingly in production
that we are notified by the marketing group about some worrying trends in its analysis
of the customer base. In one area of the country, the issuance and rebate rates for cou-
pons have increased to such a degree that product shortages are occurring, while in a
different area the imbalance in product purchase types has become so egregious that
a massive overabundance of scrap product arises. It may be time to panic a little bit.

 We collectively scramble, digging into the feature data in an ad hoc manner, put-
ting all our other project work on hold as we fight this immediate fire of trying to
investigate whether the root cause of the issues is the model. After a few days of
exploratory analysis bearing little fruit with respect to a root cause, we’re left with an
ultimatum from the business: either fix the model or shut it off. The profit attribution
lift, although offsetting the cost of product scrap, isn’t a compelling enough story to
placate the business. 

 We cross our fingers, close our eyes, and hope for the best as we initiate a new
training run of the model. Based on the results of the holdout validation scoring met-
ric during the training, it seems like the problem has resolved itself. For now.

 What is going on here? Why did the model all of a sudden start behaving like this?
Why was the business affected so heavily by something so seemingly innocuous? Most
important, what should we have done differently before we released this model to
production?

 The simple answer is that entropy is all around us. Feature-measurement data,
along with the latent factors that influence causality, are constantly shifting. In many
cases, the actions we’re taking on the output of models causes shifts in that data.
Hidden feedback loops of influence can introduce new correlations that the model
wasn’t exposed to during training. What had once been a valuable relationship for
target optimization can either deteriorate or strengthen to a point that the predic-
tions coming out of a model are no longer solving the problem that the project was
intended to address.

 These impacts can, for some use cases, be rather severe and rapid (fraud detec-
tion, for instance, is highly susceptible to this because criminals are clever and will
adapt to creative pursuits to defeat your model’s ability to detect their activity), while
others are gradual and easy to miss if not monitored algorithmically. Being aware of
and controlling for these inevitable shifts is a part of ML project development. We
need to expect them, have systems in place to discover them, and know how to
recover from them.
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12.1.1 What influences drift?

Model drift can take six primary forms. Some are obvious to detect, while others
require a great deal of research and analysis to discover. Table 12.1 gives a brief over-
view of these mechanisms of model degradation.

These measurement methods are relatively common, captured in greatest detail
within concept drift detection. Each one of these measurement methods should be
employed for any model that is pushed to production. The reasons for constant mea-
surement are many, but chief among them are the following:

 Models will drift. There is no such thing as a static implementation.
 Gradual degradations are incredibly challenging to identify by attribution mea-

surement alone. Monitoring the performance in multiple ways can alert you to
issues that manifest themselves over a long period of time.

 Rapid degradations are challenging to respond to if historical measurement is
not in place. Repairing a model with no data to define what went wrong is
incredibly time-consuming.

Table 12.1 Prediction drift types and corrective actions

Drift type Measurement method Corrective actions

Feature drift Feature distribution validation Retrain model on new data

Prediction post hoc error calculation Revisit feature engineering

Label drift Post hoc analysis of predictions Retrain on new data, tune

Concept drift Attribution measurement Perform feature engineering work

Feature distribution validation Retrain model

Post hoc prediction analysis Revisit solution (new algorithm or approach)

Ad hoc analysis Evaluate solution relevance

Causality models (simulations)

Prediction drift Post hoc prediction analysis Analyze impact on business

Attribution measurement

Reality drift You’ll just know. Everything is on fire. Shift to human intervention

Reevaluate features 

Create hard-stop boundary in training data

Retrain model

Feedback drift Time spent improving model Evaluate efficacy of solution

Performance during retraining Determine if new solution is needed
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 Alerting can buy you precious time to fix an eminent problem before it
becomes a larger issue. This helps with the mission of the project and increases
the business’s faith in DS work.

To explore each of these mechanisms of drift, we’ll be sticking with our ice cream sce-
nario throughout this chapter for simplicity’s sake (and for fun). 

NOTE Some of the techniques described in section 12.2 for setting up moni-
toring for these effects, particularly for feature-based drift, can be difficult to
scale for models that use a kitchen-sink approach. (I’ve seen people try to
implement massive vectors, consisting of thousands of features, in the hopes
of improving accuracy.) This is definitely something to think about when
designing predictive solutions. Taking the easy way, by just throwing a ton of
data into a model and hoping for the best, can end up being a nightmare for
monitoring the health of such an implementation.

FEATURE DRIFT

Let’s imagine for a moment that our ice cream propensity-to-buy model uses weather-
forecast data in multiple regions. Let’s also pretend that we have no monitoring set up
on our model and are using a passive retraining of the model each month.

 When we were originally building the model, we did a thorough analysis of our fea-
tures. We determined correlation values (Pearson’s and chi-squared) and found an
astonishingly strong relationship between temperature and ice cream sales. For the
first several months, everything is going well, with emails going out at defined inter-
vals based on a propensity-to-open score of greater than 60%. 

 All of a sudden, midway through June, the attribution models start to fall off a cliff.
The open and utilization rates are abysmally low. From a revenue lift of 20%, the test
group is now showing a 300% loss. We continue to operate like this, with the market-
ing team trying different approaches to its campaigns. Even the product development
team starts trying new flavors under the mistaken impression that customers are get-
ting tired of the flavors that are on sale.

 It’s not until a few months go by, when the DS team is informed that the project
will likely get cancelled, that an in-depth investigation is undertaken. Upon investiga-
tion of the model’s predictions for the week starting in mid-June, we find a dramatic
step-function shift in the probabilities for propensity-to-use coupons. When we look
into the features, we find something a bit concerning, shown in figure 12.1. 

 Even though this is a comical example of feature drift, it’s similar to many that I’ve
seen in my career. I’ve rarely come across a DS who hasn’t had a data feed change
unexpectedly without being notified, and many of those that I’ve experienced or
heard about are as ridiculous as this example. 

 Many times, shifts like these will be of such a magnitude that prediction results
become so unusable that it’s known within a short period of time that something sub-
stantial has changed. In some rare cases, such as the one shown in figure 12.1, a shift
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can be nuanced and difficult to detect for a longer period of time if automated moni-
toring is not in place.

 For this use case, the prediction outputs would be making recommendations for
customers enduring a new modern ice age event. The probabilities coming out of
the model would likely be very low for most users. Since the post-prediction trigger
for sending out recommendations from the model is set at 60% propensity, the
much lower probabilities would result in the vast majority of customers in the evalu-
ation test no longer receiving emails. With feature monitoring in place that is mea-
suring the mean and standard deviation, simple heuristic control logic would have
caught this. 

 Another form of feature drift is feature ignorance. This sort of drift comes into play
when our inference data is arriving to a trained model that is beyond the bounds of
what the model was trained on. If, for instance, our model was trained on tempera-
tures between 60˚F and 95˚F (Southern California), and the imputation features drift
down to 20 because of the conversion to a Celsius scale, tree-based models will handle

Figure 12.1 Feature drift by way of numeric scaling changes

The model has been trained on
Fahrenheit data for temperature.
With the weights optimized to
this scale, the predictions are
likely going to be very far off.

Upstream ETL changes the scaling
of the recorded temperatures. (The
United States finally accepts the
metric system.)
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that just fine. They will bucket these new values within any decision criterion that cap-
tures temperatures in the lowest range (around 60). 

 Linear models, though? Not so much. The model’s artifact is, after all, an equation
in a linear model. The temperature value from the inference feature vector will be
multiplied with a coefficient and either added to or subtracted from the remainder of
the feature computations that were determined during training. With values far out-
side the range seen during that training estimation, the predictions could behave in
wildly unexpected ways.

LABEL DRIFT

Label drift is a pretty insidious issue to track down. Typically caused by a shift in the dis-
tribution of several critical (high-importance) features, a drift in the label can work at
cross-purposes to the desires of the business. 

 Let’s imagine that some aspect of our model for ice cream propensity starts to be
affected by a latent force that we don’t fully understand due to a lack of data collec-
tion. We can see in the correlation what seems to be driving it, as it is universally
reducing the variance of one of our feature values. However, we can’t conclusively tie
one of our collected data features to the effects that we’re seeing. The main effect that
we see is shown in figure 12.2.

 With this distribution shift, we could be looking at dramatic impacts to the busi-
ness. From an ML perspective, the model’s accuracy (loss) could, theoretically, be bet-
ter in the bottom scenario of figure 12.2 than it was during initial training. This can
make discovering events like this incredibly challenging; from a model training per-
spective, it could appear to be much better and ideal. However, from a business per-
spective, a drift event like this could prove disastrous. 

 What would happen if the marketing team had a threshold for sending the cus-
tomized email coupons out only if the probability for using one was above 90%?
Restrictions like this are usually in place because of costs (bulk sends are cheap, while
customized solutions are far more expensive for services). If the marketing team
based its threshold for sending on this level, having analyzed the results of the model’s
predictions during the first few weeks of running, it would have selected an optimal
cost-to-benefit ratio for these customized sends. With the label drift occurring over
time in the second chart, this would mean that basically all of the test group customers
would be entered into this program. This massive increase in cost could quickly make
the project less palatable for the marketing department. If it were egregious enough,
the team might just abandon its utilization of the project’s output entirely. 

 Paying close attention to the distribution of a model’s output over time can bring
visibility to potential problems and ensure a certain degree of consistency to the out-
put. When the results shift (and they will, let me assure you), be it in a seemingly posi-
tive or negative way, there could be follow-on effects from the results that the internal
consumers of the model might not be prepared for.

 It’s always best to monitor this. The impact to the greater scope of the business,
depending on the sort of problem that you’re solving, could be severe if you’re not
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Figure 12.2 Label drift is a shift in the prediction distribution.

At the time of training, based on
the distribution of features and
the state of the world at that
time, the holdout validation
predictions . . .

. . . as well as the first few weeks
of predictions in production
looked like this.

After eight weeks, the prediction’s
probability distribution begins to
look like this.

Even if our metrics aren’t
showing an appreciable increase
in loss, this can’t be good.
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continually monitoring the state of the predictions coming out of the solution. An
implementation of label drift monitoring should focus on the following:

 Collection and storage of predictions
 For classification problems

– Define a time window for aggregation of prediction class values and store the
counts of each.

– Track the ratio of label predictions over time and establish acceptable devia-
tion levels for the ratio values.

– Perform a comparison of equivalency, utilizing an algorithm such as Fisher’s
exact test with a very low alpha value (< 0.01), between recent values and the
validation (test) metrics calculated during model generation.

– (Optionally) Determine the probability mass function (pmf) of recent data
and compare to the pmf of the validation predictions generated by the model
during training. Comparison of pmf discrete distributions can be done with
an algorithm such as Fisher’s noncentral hypergeometric test. 

 For regression problems
– Analyze distribution of recent predictions (number of days back, number of

hours back, depending on the volume and volatility of predictions) by cap-
turing mean, median, stddev, and interquartile range (IQR) of the win-
dowed data.

– Set thresholds for monitoring the values of interest from the measured
aggregated statistics. When a deviation occurs, alert the team to investigate.

– (Optionally) Determine the closest distribution fit to the continuous predic-
tions and compare the similarity of this probability density function (pdf)
through the use of an algorithm such as the Kolmogorov-Smirnov test.

CONCEPT DRIFT

Concept drift is a challenging issue that can affect models. In simplest terms, it is an
introduction of a large latent (not collected) variable that has a strong influence on a
model’s predictions. These effects typically manifest themselves in a broad sense,
changing most, if not all, of the features used for imputation by a trained model. Con-
tinuing with our ice cream example, let’s look at figure 12.3. 

 These values that we measure and use for correlation-based training (weather data,
our own product data, and event data) have been used to build strong correlations to
propensities to buy ice cream during the week for individual customers. As we dis-
cussed in chapter 11, the latent variables that are beyond our ability to collect have a
stronger influence over a person’s decision to buy than the data that we collect. 

 When unknown influences positively or negatively influence a model’s output,
we may get a dramatic shift in either our predictions or in the attribution measure-
ments for the model, which is the case here. Tracking down the root cause can be
either quite obvious (a global pandemic) or insidious and complex (social media
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effects on brand image). We can go about monitoring this type of drift for our sce-
nario as follows:

 Implement metric logging for
– Primary model error (loss) metric(s)
– Model attribution criteria (the business metric that the project is working to

improve)
 Collect and generate aggregated statistics (over an applicable time window)

for predictions:
– Counts (number of predictions, predictions per grouped cohort, etc.)
– Mean, stddev, IQR for regressors
– Counts (number of predictions, number of labels predicted) and bucketed

probability thresholds for classifiers
 Evaluate trends of aggregated statistics on predictions and attribution measure-

ment over time. Unexplained drifts can be grounds for model retraining or a

Our features, our model, and our predictions

(simplified)
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How hot is it?

Weather forecast data

New flavors
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When events like these happen,
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Figure 12.3 Concept drift effects on model performance, business impact, and attribution 
measurement
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return to feature-engineering evaluation (additional features may be required
to capture the new latent factor effects).

Regardless of the causes, it is important to monitor both potential symptoms of this
issue: the model metrics associated with training for passive retraining, and the model
attribution data for active retraining. Monitoring these shifts in model efficacy can
help with early intervention, explainable analytics reports, and the ability to resolve
the issue in a way that will not cause a disruption to the project as a whole.

 The answer may not be readily apparent as with other types of drift (namely, fea-
ture and prediction drift). The critical aspect of production monitoring for this type
of unexplained drift is that it is captured in the first place. Being blind to this poten-
tial impact to a model’s performance can have staggering effects on a business if left
unchecked, depending on the use case. Creating these monitoring statistics through a
simple ETL is always time well spent.

PREDICTION DRIFT

Prediction drift is highly related to label drift but has a nuanced difference that makes
recovery from this type of drift follow an alternate set of actions. Like label drift, it
affects the predictions greatly, but instead of being related to an outside influence,
it’s directly related to a feature that is part of the model (although sometimes in a
confounding manner). 

 Let’s imagine that our wildly successful ice cream company had, at the time of
training our model solution, a rather paltry showing in the Pacific Northwest region
of the United States. With a lack of training data, the model wasn’t well suited to adapt
to the extreme minority of feature data associated with this region. Adding to this lack
of data issue, we were unaware of whether potential future customers in this region
would like our product, because of the same dearth of information for exploratory
data analysis (EDA).

 After the first few months of running the new campaign, raising awareness
through word of mouth, it turns out that not only do people (and dogs) in the
Pacific Northwest thoroughly enjoy our ice cream, but their behavior patterns turn
out to match quite well with some of our most highly active customers. As a result,
our model increases the frequency and rate at which coupons are issued to custom-
ers in this part of the country. Because of this increased demand, the model begins
to issue so many coupons to customers in this region that we create an entirely new
problem: a stock issue. 

 Figure 12.4 shows the effect on the business that our model has inadvertently
helped to create. While this isn’t a bad problem per se (it certainly drives up reve-
nue!), an unexpected driver to the foundation of the business’s operation can intro-
duce problems that will need to be solved.

 The situation shown in figure 12.4 is a positive one indeed. However, the model’s
impact in this case will not show up in modeling metrics. In reality, this would likely
show as a fairly equivalent loss score, even if we were to retrain the model on this new
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In this case, the model’s
performance might be doing just
fine, but the actual utilization
patterns of the results may be
wildly different.

A situation like this will manifest
only in attribution measurement
(a lot of coupon downloads, but a
plateau in purchases). We didn’t
stock enough cartons of ice
cream for this demand!

Figure 12.4 A highly beneficial impact to the business from a model’s output. This can create 
other problems and might need rapid adjustment (particularly if the opposite condition happens).
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data. The attribution measurement analysis is the only way to detect this and account
for the underlying shifts in the customer base moving forward.

 Prediction drift, in general terms, is handled through the process of feature moni-
toring. This set of tooling involves many of the following concepts:

 Distribution monitoring of priors for each feature compared to recent values,
lagged by an appropriate time factor:
– Calculate mean, median, standard deviation, IQR for the feature as it was at

training time.
– Compute recent feature statistical metrics that are being used for inference. 
– Calculate the distance or percentage error between these values.
– If the delta between these metrics is above a determined level, alert the team.

 Distribution equivalency measurement:
– Convert continuous features to a probability density function (pdf) for the

features as they were during training.
– Convert nominal (categorical) features to a probability mass function (pmf)

for the features as they were during training.
– Compute the similarity between these and the most recent (unseen-to-the-

model through training) inference data utilizing algorithms such as the Was-
serstein metric or Hellinger distance.

 Specifying statistical process control (SPC) rules for basic statistical metrics for
each feature:
– Sigma-based threshold levels whereby a smoothed value of each continuous

feature over time is measured (typically, through a moving average or win-
dow aggregation) and alerted on when selected rules are violated. Western
Electric rules are generally used for this.

– SPC rules based on scaled percentage membership of categorical or nominal
values within a feature (aggregated as a function of time).

Whichever methodology you choose to utilize (or if you’d like to choose to do all of
them), the most critical aspect of collecting information about the state of the fea-
tures during training is that it allows for monitoring and having advance notice of
feature degradation. 

 To aid in tracking these statistical metrics, many (including myself) rely heavily
on the tracking server of MLflow. Logging the values as part of a model-training
event can help ensure that the historical record of what that model utilized for train-
ing is preserved, as well as keeping you from having to do an expensive (computa-
tionally and temporally) historic calculation of these values each time a validation of
drift is executed.

REALITY DRIFT

I’m writing this sentence on January 20, 2022. It’s been a rough past year in the ice
cream business. It’s arguably been a rough year for humanity in general. What once
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had been our company’s primary means of selling our tasty treats (ice cream trucks
trolling about neighborhoods, community parks, sporting events, and dog parks)
hasn’t been working out so well for us. We’ve had to reevaluate our distribution strat-
egy and our marketing messaging and work through an incredibly tough economic
climate due to the impacts of Covid-19. 

 Reality drift is a special case of concept drift: while it is an outside (unmeasured and
unforeseen) influence, these foundational shifts can have a much more profound and
large-scale impact on the effectiveness of a model than general concept drift. Not only
pandemics cause reality drift, though. Horseshoe manufacturers, after all, would have
had similar issues with predicting demand accurately during the first few decades of
the 20th century. 

 Events such as these are foundationally transformative and disruptive, particularly
when they are black swan events. In the most severe cases, they can be so detrimental to
businesses that a malfunctioning model is the worst of their worries; the continued
existence of the company is far more pressing of a problem. 

 For more moderate disruptive reality drifts, the ML solutions that are running in
production are generally hit pretty heavily. With no ability to recognize which new fea-
tures can explain the underlying tectonic shifts in the business, adapting solutions to
handle large and immediate changes becomes a temporal problem. There simply isn’t
enough time or resources to repair the models (and sometimes, not even the ability to
collect the data needed). 

 When these sorts of foundational paradigm-shifting events happen, models
affected by the change in the state of the world should face one of two fates: 

 Abandonment due to poor performance and/or cost-savings initiatives
 Model rebuilding after extensive feature generating and engineering

What you absolutely should never do is quietly ignore the problem. The predictions
are likely to be irrelevant, retraining on original features blindly is not likely to solve
the problem, and leaving poor-performing models running is costly. At the bare mini-
mum, a comprehensive assessment of the nature and state of the features going into
models needs to be undertaken to ensure that the validity is still sound. Without
approaching these events in this thorough manner of validation and verification, the
chances that the model (and other models) is allowed to continue to produce unvet-
ted results for very long are slim.

FEEDBACK DRIFT AND THE LAW OF DIMINISHING RETURNS

A form of drift less spoken of is feedback drift. Imagine that we’re working on a model-
ing solution for estimating a defect density on a part manufactured in a factory. Our
model is a causal model, with our production recipes being built in such a way that it
reflects a directed acyclic graph that mirrors our production process. After running
through this Bayesian modeling approach to simulate the different effects of chang-
ing parameters to the end result (our yield), we find ourselves with a set of seemingly
optimal parameters to put into our machines.
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 At first, the model shows relationships that do not result in optimal outcomes. As we
explore the feature space further and retrain our model, the simulations more accurately
reflect the expected outcome when we initiate tests. Our yields stabilize to nearly 100%
over the first few months of running the model and utilizing the simulation’s outputs. 

 By controlling for the causal relationships present in the system that we’re model-
ing, we’ve effectively created a feedback loop in the model. The variances of allowable
parameters to adjust shrink, and were we to build a supervised machine learning
model for validation purposes on this data, it wouldn’t learn very much. There simply
isn’t a signal to learn from anymore (at least not one worth much). 

 This effect isn’t present in all situations, as causal models are more heavily affected
by this than correlation-based traditional ML models are. But in some situations, the
results of the predictions of a correlation-based model can contaminate our new fea-
tures coming in, thereby skewing the effects of those features that were collected with
the observed result that actually occurred. Churn models, fraud models, and recom-
mendation engines are all highly susceptible to these effects (we are directly manipu-
lating the behavior of our customers by acting on the predictions to promote positive
results and minimize negative results). 

 This is a risk in many supervised learning problems, and it can be detected by eval-
uating the prediction quality over time. As each retraining happens, the metrics asso-
ciated with the model should be recorded (MLflow is a great tool for this) and
measured periodically to see if degradation occurs on the inclusion of new feature
data to the model. If the model is simply incapable of returning to acceptable levels of
loss metrics based on the validation data being used for recent activity, you may be in
the realm of diminishing returns.

 The response to this occurrence is to either revisit feature-engineering work (add-
ing data that can assist in helping the model learn the new data paradigm) or revisit
the project. Revisiting the project can mean, sometimes, that it’s best to turn it off.
Some problems can be completely solved over time by utilizing ML to discover the
patterns present in behavior of systems (or people) and can be supplanted by modify-
ing the manner in which the business operates. 

12.2 Responding to drift
We’ve covered how to calculate model impacts by using appropriate statistical tests on
attribution metrics, and we’ve discussed the types of model-affecting entropy that make
our models less stable over time. If we were to see our ice cream coupon model deterio-
rate in any of the six ways defined in section 12.1, what process would we use to correct it?

12.2.1 What can we do about it?

It all starts with monitoring. For our ice cream coupon scenario, that involves building
ETL processes for not only our predictions (safely storing each batch of predictions
for analytics use cases), but also basic statistical measurement attributes to use for set-
ting triggered alerts about model health.
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 Let’s revisit the outside temperature measurements that are being fed as a fea-
ture into our model from chapter 11. Figure 12.5 shows a visual example of how, by
setting three separate checks on the temperature feature, we could detect issues in
the underlying data. 

This plot is intended to be a visual aid only. In practice, alerts would be configured
through calculations performed on the data, triggering if the boundary shift magnitude
crosses a predetermined threshold purely based on logic written in code. The three
regions identified in this plot, though, are examples of rules that should be embedded in
monitoring code that can alert the team to an issue in the input features to the model. 

 The first identified detection (step change alerting on the mean) is useful for
detecting large, unexpected deviations that may prove problematic for a model’s pre-
dictive capability. Rules like this are relatively trivial to implement, can have config-
ured thresholds, and are an effective early-warning system for the ML team to
intervene immediately when the new data arrives. 

Step change alerting

Large rolling
mean shift

Variation prior to change
vs.
variation post change

T

Figure 12.5 Setting threshold boundaries around a feature to alert on large-magnitude changes
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 The second detection type (step change in the values of data variance) generally
requires a bit more time to trigger. The variance of the same value (temperature) on
different scales (Celsius versus Fahrenheit) is intrinsically different. As such, the total
variance of the data will show a marked difference. However, to reduce the chances of
false-positive warnings on discrete periods of time, alarm conditions concerned with
variance monitoring generally require longer periods to trigger.

 The third indication type, although coinciding with the shift in the mean, is a dra-
matic increase in variation that has not been historically observed. When large peaks
occur in variation measurements (typically far larger than the changes that would be
monitored by the second case in this example), an investigation is warranted into the
state of the data being measured. 

 At the very least, to protect against both the slow entropic decay of model effective-
ness and the foundational disruptive events seen in figure 12.5, we need to be measur-
ing aspects of our models. Feature monitoring, training label drift measurement,
model validation metrics, and attribution metrics are all elements that make up an
effective strategy to identify drift. 

 Table 12.2 illustrates common types of modeling that I’ve seen and worked on in
different industries and a general estimate of how long stability held before a retrain-
ing event was required, for perspective.

Table 12.2 Model stability and robustness to drift

Application Attribution metric
Retraining periodicity 

(approximate)

Churn prediction Purchase event after action taken on 
customer with high probability

Monthly

Customer lifetime value (CLV) % of continued CLV group membership Weekly

Stability

Transportation Industry Revenue Monthly

Demand/pricing Purchase rate

Recommendation engine (personal-
ization)

Purchase rate or viewership rate Hourly or daily

Image content labeling % error in classification Two to six months

Fraud detection Loss event count Biweekly

Loss amounts

Undetected fraud event count

Equipment failure Maintenance costs (replacement) Semiannually or annually

Prediction (survivability) Count of unrequired maintenance 

Sales forecasting Backtesting accuracy in projection Daily or weekly
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As you can see, the projected retraining periodicity varies quite widely across applica-
tions. Table 12.2 doesn’t reflect what happens outside these plans. Even with a system
in place for active retraining to trigger a new model to be created upon a degradation
in model attribution performance, continued success is not guaranteed for that new
model. Drift effects could have influenced both the old and new models (and most of
the time, they do) to the point that just retraining on new data will not repair the
model’s performance to an acceptable level. 

 For a passive scheduled retraining paradigm, the problem can take longer to
realize if the attribution measurements are not closely monitored. With the period-
icity mentioned in table 12.2 (which is loosely approximated), the first scheduled
retraining after a drift event will generally uncover an issue that requires manual
intervention to solve. It could be revisiting feature-engineering stages for the proj-
ect, including new features that can help the model adapt to the new state of the
world in the existing features, or a complete overhaul of the approach used to build
the project in the first place.

 It is through monitoring the elements that impact a model, from feature metrics and
model metrics, all the way to attribution measurement, that we can identify an issue that
exists in the predictions. Once we identify it, though, what can we do about it?

12.2.2 Responding to drift

For our example of temperature drift shown previously in figure 12.5, the response to
repairing the drift condition is trivial. We can apply a feature conversion to the older
data to bring it in line with the new scaling of the temperature values. Identifying, iso-
lating, and repairing issues that are obvious and trivial to correct is, well, obvious. Just
fix it and move on. 

 Unfortunately, not every problem is so simple. What if we can’t readily identify what is
causing a degradation in the model? We have four primary means of responding to drift:

 Scheduled or triggered retraining, with validation of results against the prior
model, and new model against new validation data. Keep the best one.

 For obvious issues (for example, ETL errors, explosions in cardinality, or shifts
in variance of features), either repair or scale the features, retrain the model,
validate its performance on new holdout data, and continue running as before
on the new model.

 For prediction degradation issues that are not related to the obvious factors
mentioned in the preceding list item, revisit feature engineering, and conduct
exploratory data analysis and correlation analysis. Determine if any new fea-
tures need to be added or existing features need to be removed. Attempt to
retrain and release a new validated model to production.

 If the model shows a negative business impact that is statistically significant,
stop using the model immediately. Attempt to perform root cause analysis and
repair the issue (if possible). If the benefit of the model is no longer present,
shut it down permanently. 
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The latter three elements in this list are relatively self-explanatory. However, the first one
has a degree of nuance, principally in the mechanism used for retraining. There are two
primary means of initiating a retraining event: passive and active, illustrated in figure 12.6.

These two mechanisms for initiating a model retraining are remarkably different. In
passive retraining, we set up a scheduled job that will take either a sliding window of our
feature data to train a new model (this approach is useful for highly dynamic datasets
predicting values that change rapidly over periods of time) or all data from the begin-
ning of time, including new data that the previous production model has not seen. We
then take a holdout validation set from the most recent data and run a model evalua-
tion of the current prior model (our production model) and the new model against
the same new holdout validation data. The winner, based on our model metrics, is the
one selected for production. 

Passive retraining

Yes

Model put into
production
workflow

Predictions made

Scheduled job for
building new model on

sliding window, compare
against production

model on new
validation set

New model
better?

No

No

Yes

Periodically evaluate model
performance, improve
feature set if needed

Measure
attribution and
performance

post hoc

Predictions used or
acted upon

Passive solutions are far less
complex than active ones, but
must be monitored over time
if a new model has not been
selected (indicative of a large
concept drift).

Active retraining (Basic design)

Model (re)trained,
put into production

workflow
Predictions made

Predictions used or
acted upon

Measure
distribution of

predictions

Post hoc
analysis of
prediction

quality

Model within
tolerances?

Measured at a trigger interval.
Incorporates either SPC rules or
static thresholds for triggering a
retraining on new data.

Figure 12.6 Passive retraining (scheduled) and active retraining (triggered) to respond to model drift
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 For this passive retraining approach, we typically have alerting set up to notify us in
the event that a new model is not selected for replacement for too many iterations.
This is to warn us that a fundamental shift could occur in the recent data that may
indicate a need to rebuild the feature-engineering set (which would be an activity
removed from the passive retraining cycle). 

 For the active retraining implementation shown in the lower portion of figure 12.6,
a constantly monitored, automated solution is used that measures attributes associ-
ated with the model’s business impact and prediction quality (distribution, variance,
mean, etc.). If the attribution monitoring detects a degradation in performance, an
automated retraining event takes place. Like the passive implementation, a compari-
son of the new triggered model event against recent holdout data to the current run-
ning model against the same data is conducted. If the new model is better, it is
selected for promotion into production (typically automated through CI/CD). As
with the passive approach, repeated failures to succeed an earlier generation of model
iteration will trigger an alert for the DS team to investigate.

 Whether a passive or active implementation is chosen is entirely applicable to the
size of the ML team working on the project, the stability of the implementation, the
nature of the business use case, and the capabilities of the team. It doesn’t matter
which of these solutions is chosen for an ML project. The only important thing to
understand is that one of them needs to be chosen.

 Leaving a model to its own devices, assuming that it will go on predicting as well
as it did when first trained with no further action, is a recipe for disaster. Projects
that do not account for retraining, health checks, monitoring, and attribution mea-
surements are doomed to failure, due to irrelevance or actively poor results nega-
tively impacting a business.

Summary
 Monitoring for the primary types of drift—feature, label, concept, prediction,

reality, and feedback—are incredibly important to ensure a solution’s health. 
 Retraining through passive or active means is an effective way to counteract

drift. When these attempts fail, revisiting the implementation is critical to intro-
duce new features that deal with drifts in order to ensure that the solution con-
tinues to serve its purpose. 



ML development hubris
The preceding chapter focused on critical components used to measure a project’s
overall health from a purely prediction-focused and solution efficacy perspective.
ML projects that are built to support longevity through effective and detailed mon-
itoring of their inputs and outputs are certainly guaranteed to have a far higher
success rate than those that do not. However, this is only part of the story. 

 Another major factor in successful projects has to do with the human side of the
work. Specifically, we need to consider the humans involved in supporting, diagnosing

This chapter covers
 Applying refactoring to overengineered 

implementations to increase development 
velocity

 Identifying code to target for refactoring

 Establishing simplicity-driven development 
practices 

 Adopting new technologies via sustainable 
means

 Comparing build, buy, and prior art in 
implementations
353
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issues with, improving, and maintaining the project’s code base over the lifespan of
the solution. 

NOTE When a project is released to production, that is merely the beginning
of its life. The real challenge of ML is to keep something running well over a
long period of time. 

This human element comes in the following form: 

 How the code is crafted—Can other people read it and understand it?
 How the code performs—Is it deterministic? Does it have unintentional side effects?
 How complex the code is—Is it over- or under-engineered for the use case?
 How easy it is to improve—ML code is in a constant state of refactoring.

Throughout this chapter, we’ll look at signs to watch out for that define patterns mak-
ing an ML code base a nightmare to maintain. From fancy code flexing (show-off
developers) to empire-building framework creators, we’ll be able to identify these
issues, see alternatives, and understand why the most effective design pattern for ML
project code development is the same as for all of the other aspects of the project.

TIP Build something only as complex as it needs to be to solve the problem
at hand. People have to maintain this code, after all. 

Why “hubris,” though? That’s a bit insulting.
I chose the term hubris as a component of this chapter’s title after a long deliberation
held between two temporally distinct versions of myself. On the one side was my cur-
rent self, having felt the sting of crushing failure due to an overconfidence in my own
skills, a builder of hopelessly confusing ego-driven solutions in the pursuit of prideful
vanity, and a braggart-in-code who measured the success of a project in the clever-
ness of its implementation. The other side was a much younger version of myself,
just getting started in the field and feeling as inadequate and as much an imposter
as I could imagine a person to be. 

I debated whether to use the term arrogance instead of hubris, but felt that would be
disingenuous and inapplicable to what we’ll be talking about in this chapter (and what
I wish I could have a long, hard chat with my younger self about). Hubris is much more
applicable. By definition, it is the possession of excessive pride and self-confidence.
Note that it isn’t about having pride (we all should be proud when we solve a complex
problem in our profession), but rather the overabundance of it.

When we, as data scientists, exhibit hubristic tendencies, we tend to build overly com-
plex solutions to problems. Whether because of ego, vanity, or a simple desire to prove
to peers that our skills are sufficiently high (typically due to imposter syndrome or hav-
ing been burned by some hot garbage that we’ve written in the past), the end result is
the same: regret. We end up building unmaintainable, confusing, overly complex, and
unextendable solutions that have a high probability of derailing projects or frustrating
our peers, and fearing the day that we have to troubleshoot a failure in the code.
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This chapter covers many of the dangerous ways that I’ve learned the lesson of pursu-
ing simplicity in code, defining patterns of sustainable ML development that can,
hopefully, save you from some painful mistakes I’ve made over the years.

13.1 Elegant complexity vs. overengineering
Imagine for a moment that we’re starting a new project. It’s not too much of a depar-
ture from the last two chapters (spoiler alert: it has to do with dogs). We have some
data about the dogs. We know their breed, age, weight, favorite food, and whether
they’re generally of a favorable disposition. In addition, we have labeled data that
measured whether each dog was exhibiting signs of hunger when they walked into our
pet store franchise. 

 Armed with this data, we’d like to build a model that predicts, based on the regis-
tered data of our canine consumers, whether we should offer them a treat when they
pass through the checkout line. 

NOTE Yes, I’m fully aware of how silly this is. It makes my wife chuckle,
though, so the scenario is staying.

As we begin working on investigating the data, we realize that we have a truly enor-
mous amount of training data. Billions upon billions of rows of data. We’d like to uti-
lize it all in the training of the model, though, so our platform decision leaves a simple
choice for running this: Apache Spark. 

 Since we’ve been using Python so extensively throughout this book, let’s use this
chapter to delve into another language used extensively for large-scale (in terms of
training row count volume) ML projects: Scala. Since we’ll be using Spark’s ML
library, in order to effectively build a feature vector from our columnar data, we’ll
need to identify any noncontinuous data types and convert them to indexed integer
values. 

 Before we get into code examples that show the differences between the topic of
this section, let’s discuss the scales of ML coding practices. I like to think of develop-
ment style (with regards to code complexity) as a delicate balancing act, illustrated in
figure 13.1.

 On the right side of this scale, we have very lightweight code. It’s highly declara-
tive (almost script-like), monotonous (statements copied and pasted many times
over with slight changes to the arguments), and tightly coupled (changing one ele-
ment means scouring through the code and updating all of the string-based config-
uration references). 

 These lightweight code bases often can seem like they are written by groups of peo-
ple all working for different companies. In many cases, they are, as entire functions
and snippets of code are lifted in their entirety from popular developer Q&A forums.
An additional feature that many of them share is a reliance on heavily popular frame-
works and tooling that are well-documented (or, at least, are complex enough that a
sufficient density of questions and answers has been provided on the aforementioned
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developer forums to liberally borrow from), regardless of how well suited the use case
is. Here are some key identifiers of this behavior:

 Using a framework intended for large-scale ML when the training dataset is in
the thousands of rows and dozens of columns. (Instead of using SparkML, for
example, stick to pandas and use Spark for training in broadcast mode.)

 Building real-time serving atop large-scale serving architecture when the request
volume will never hit more than a few requests per minute. (Instead of using
Kubernetes with Seldon, build a simple Flask app in a Docker container.)

 Setting up a streaming ingestion service for large-scale microbatch predictions
when there are a few hundred predictions to be made per hour and the SLA
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Figure 13.1 Striking a balance between these two extremes of software development practices can 
lead to more effective and production-stable project work.



357Elegant complexity vs. overengineering
can be measured in minutes. (Instead of using Kafka, Spark Structured Stream-
ing, or Scala user-defined functions, use the Flask app.)

 Building a time-series forecasting model using an LSTM running on GPU hard-
ware with Horovod multi-GPU gang scheduling mode for a univariate time series
that can be predicted with single-digit RMSE values with a simple ARIMA model.
(Use an ARIMA model and choose the far cheaper CPU-based VMs instead). 

On the left side of the scale, however, is the polar opposite. The code is dense, suc-
cinct, highly abstract, and typically complex. The left side can work in some groups
and organizations, but by and large, it’s unnecessary, confusing, and limits the num-
ber of people who can contribute to the project by virtue of the experience required
in understanding advanced language features. Some ML engineers will, after having
dealt with a sufficiently large and complex project using the lightweight scripting style
of ML development, pursue the left side’s heavy code approach on subsequent proj-
ects. The struggles that they had maintaining the scripted style and all of the extensive
coupling that was present might lead to an explosion of abstracted operators that rap-
idly borders on building a generic framework. I can quite honestly say that I was that
very person, reflected in my journey at the bottom of figure 13.1.

 Sitting pleasantly in the middle of the figure is the balanced approach that has the
greatest probability for long-term success of a team’s development style. Let’s take a
look at examples of how our code might look when getting started with these two
competing polar opposites.

13.1.1 Lightweight scripted style (imperative)

Before we get into the code of the minimalistic declarative style of writing our proto-
type ML model, let’s take a brief look at what our data looks like. Table 13.1 shows a
sample of the first five rows of the dataset.

We can clearly see that the majority of our data will need to be encoded, including our
label (target) of hungry. 

 Let’s take a look at how we could handle these encodings by building a vector and
running a simple DecisionTreeClassifier by using the Pipeline API from SparkML.

Table 13.1 Sample of data from our hungry dog dataset

Age Weight Favorite food Breed Good boy or girl Hungry

2 3.05 Labneh Pug No True

7 20.44 Fajitas Dalmatian Sometimes False

5 11.3 Spaghetti German Shepherd No True

3 17.9 Hummus Estrela Yes False

8 55.6 Bolognese Husky Yes, when food is available True
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The code for these operations is in the following listing. (See the “Why Scala?” sidebar
for why I’m choosing to show these examples in Scala rather than Python.)

import org.apache.spark.ml.feature.{StringIndexer, 
 VectorAssembler, 
 IndexToString}
import org.apache.spark.ml.classification.DecisionTreeClassifier
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
import org.apache.spark.ml.Pipeline
val DATA_SOURCE = dataLarger            
val indexerFood = new StringIndexer()
  .setInputCol("favorite_food")
  .setOutputCol("favorite_food_si")
  .setHandleInvalid("keep")
  .fit(DATA_SOURCE)                  
val indexerBreed = new StringIndexer()
  .setInputCol("breed")
  .setOutputCol("breed_si")
  .setHandleInvalid("keep")
  .fit(DATA_SOURCE)             
val indexerGood = new StringIndexer()
  .setInputCol("good_boy_or_girl")
  .setOutputCol("good_boy_or_girl_si")
  .setHandleInvalid("keep")
  .fit(DATA_SOURCE)
val indexerHungry = new StringIndexer()
  .setInputCol("hungry")
  .setOutputCol("hungry_si")
  .setHandleInvalid("error")
  .fit(DATA_SOURCE)                
val Array(train, test) = DATA_SOURCE.randomSplit(
  Array(0.75, 0.25))                                
val indexerLabelConversion = new IndexToString()
  .setInputCol("prediction")
  .setOutputCol("predictionLabel")
  .setLabels(indexerHungry.labelsArray(0))
val assembler = new VectorAssembler()
  .setInputCols(Array("age", "weight", "favorite_food_si", 
    "breed_si", "good_boy_or_girl_si"))               
  .setOutputCol("features")
val decisionTreeModel = new DecisionTreeClassifier()
  .setLabelCol("hungry_si")
  .setFeaturesCol("features")
  .setImpurity("gini")
  .setMinInfoGain(1e-4)
  .setMaxDepth(6)
  .setMinInstancesPerNode(5)
  .setMinWeightFractionPerNode(0.05)   
val pipeline = new Pipeline()
  .setStages(Array(indexerFood, indexerBreed, indexerGood, 
    indexerHungry, assembler, decisionTreeModel, 

Listing 13.1 Imperative model prototype

dataLarger is a Spark DataFrame 
containing the full dataset from 
the sample in table 13.1.

Indexes the first String-typed 
column (breed) and creates a new 
0th ordered descending-sort based 
on occurrence frequency

Builds the indexer for the next 
categorical (String) column 
(good thing that there are 
only four of them, right?)

Builds the indexer 
for the target 
(label) column

Creates the 
train and 
test splits

Defines the fields 
(columns) that will 
be used for the 
feature vector

Builds a decision-tree classifier 
model (hyperparameters 
hardcoded for brevity)
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    indexerLabelConversion))                       
val model = pipeline.fit(train)                     
val predictions = model.transform(test)              
val lossMetric = new BinaryClassificationEvaluator()   
  .setLabelCol("hungry_si")
  .setRawPredictionCol("prediction")
  .setMetricName("areaUnderROC")
  .evaluate(predictions)

This code should look relatively familiar. It’s what we all see when we look at API doc-
umentation for a particular modeling framework. In this case, it’s Spark, but similar
examples exist for any particular framework. It’s of an imperative style, meaning that
we’re providing the execution steps directly in our code, preserving the manner in
which we would do this step by step. While it makes the code incredibly easy to read
(which is why examples in Getting Started guides use this format), it’s a nightmare to
modify and extend as we work through different tests during experimentation and
MVP development.

Why Scala?
Well, we’re working with Scala predominantly because of Spark. Python is a first-party
language, fully supported by Spark, but the backend of Spark (the low-level guts of
how the sausage gets made) is written in Scala. The Python API is merely a wrapper
(interface) to the Scala APIs, and as such, if anything lower level than the DataFrame
API is required to be interfaced with, we must do so in either Scala or Java.

The choice of whether to use Python in Spark or Scala in Spark usually comes down
to a short list of factors:

 Prior familiarity with Java (or Scala) versus Python
 The need to perform complex data manipulations not supported directly through

the DataFrame API’s functions module—through the use of user-defined func-
tions, resiliently distributed dataset (RDD) operations, or the development of
custom estimators and transformers

 The need to use custom distributed algorithms to solve a particular problem
(for example, at the time of writing this book, XGBoost is available as a only a
Scala/Java library)

“But why are you using Scala in this book?”

That’s an excellent question. It’s mostly because there is a largely silent group of ML
engineers in the industry who prefer it for their ML tasks, particularly when they’re
dealing with extremely massive datasets. (Not a lot of questions can be found regard-
ing use of Scala and Java on internet search results because of the higher barrier to
entry for using the code than for a more forgiving language such as Python.) I’m
including Scala in this chapter to showcase a slightly different approach to developing

Defines the order of operations to 
take and wrap in a pipeline (heavily 
modified during experimentation)

Fits the pipeline 
against the training 
data (performs all 
stages of the 
pipeline, returning 
the processing 
steps along with the 
model as a single 
object of staged 
operations)Predicts against the test

data for scoring purposes

Calculates the scoring
metric (in this case,
areaUnderROC) and

returns the metric value
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I never realized how much of a struggle writing code in this imperative style would be
when I first started working on ML projects. Much of my code looked like listing 13.1.
So why am I harping on this, if it’s something that I admit freely to having done for
dozens of projects early in my career as a data scientist?

 What happens if, during our experimentation and testing, we find that we have to
add more features to this model? What if we go through extensive EDA and find that
there are 47 additional features that we can include that might make the model per-
form better? What if they’re all categorical?

 Then our code, if built in the imperative design style shown in listing 13.1, will
become an unmanageable wall of text. We’ll be using the Find functionality in our
browser or IDE in order to know where to go in the code to update things. The Vector-
Assembler constructor alone will start to be a massive array of strings that will be hard
to maintain. 

 Writing complicated code bases in this fashion is error-prone, fragile, and head-
ache inducing. While the reasons stated previously are bad enough during the experi-
mentation and development phases of a project, think about what happens if the
source data changes (a column gets renamed in a source system). How many places in
the code base would we have to update? Could we get to them all in time while we’re
on call? Would we find them all and be able to recover the job before we have a service
disruption for the predictions?

 I’ve lived that life. My success rate for fixing things (adjusting the code base to sup-
port a fundamental change that happened upstream in the data) before the lack of
new predictions became obvious and a problem was, at that time, just under 40%. 

 So, what I applied myself to, after suffering these frustrations, was to dance
along that teetering plane of balance to the entire opposite side. I became my own
(and my teams’) worst enemy by embracing extreme abstraction and object-oriented

(continued)

ML code than what most people are familiar with in an effort to pique curiosity and
broaden your horizons. Although the language might seem foreign to you if you’re
accustomed to only Python, let me assure you that learning it can be a rewarding
endeavor and can help expand your technical repertoire as a professional ML engi-
neer (giving you another set of tools to solve problems that might otherwise be incred-
ibly arduous to solve in Python).

Numerous other, much more low-level and engineering-focused reasons exist for
using Scala over Python in Spark. These reasons are related to topics—concurrency,
thread management, and utilizing on-heap memory directly on the JVM—that are
reserved for algorithm developers in the ML space. For the end user of Spark, per-
forming ML-related work, Python is by far the widely accepted standard. However, that
being said, it’s always good to know an additional language for the 5% of use cases
where you have no other choice than to use Scala (plus, it’s an elegant and fun lan-
guage for writing code!).
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principles, and truly thought I was doing the right thing by producing incredibly
complex code.

13.1.2 An overengineered mess 

So, what did a younger Ben build? He built something like the following listing.

case class ModelReturn(
                      pipeline: PipelineModel,
                      metric: Double
                     )                    
class BuildDecisionTree(data: DataFrame,     
                      trainPercent: Double,
                      labelCol: String) {
  final val LABEL_COL = "label"               
  final val FEATURES_COL = "features"
  final val PREDICTION_COL = "prediction"
  final val SCORING_METRIC = "areaUnderROC"
  private def constructIndexers(): Array[StringIndexerModel] = {    
    data.schema
      .collect {
        case x if (x.dataType == StringType) & (x.name != labelCol) => x.name
      }
      .map { x =>
        new StringIndexer()
          .setInputCol(x)
          .setOutputCol(s"${x}_si")
          .setHandleInvalid("keep")
          .fit(data)
      }
      .toArray
  }
  private def indexLabel(): StringIndexerModel = {   
    data.schema.collect {
      case x if (x.name == labelCol) & (x.dataType == StringType) =>
        new StringIndexer()
          .setInputCol(x.name)
          .setOutputCol(LABEL_COL)
          .setHandleInvalid("error")
          .fit(data)
    }.head
  }
  private def labelInversion(        
    labelIndexer: StringIndexerModel
  ): IndexToString = {
    new IndexToString()
      .setInputCol(PREDICTION_COL)
      .setOutputCol(s"${LABEL_COL}_${PREDICTION_COL}")

Listing 13.2 Overly complex model prototype

Case class definition for currying 
data from the main method return 
signature (returns both the 
pipeline and the scoring metric)

Class containing the model generation code. At an early 
phase in a project (as this level of complexity would be), this 
is unnecessary to generate. Refactoring dependencies within the 
methods will be far more complex than imperative scripting.

Externalizes the constants from 
the methods utilizing them (final 
production code would have 
these in their own module)

Maps over the contents of the
DataFrame’s schema and

applies a StringIndexer to any
field that is of String type and is

not the label (target) field.

Method for generating a 
String indexer if the label 
(target) is of String type. 
Note that other values are 
not handled here, so a full 
generic implementation 
has not been built.

Label inverter that converts the label 
back into the original values. In this 
implementation, there are no checks 
for handling if the target value does not 
meet the criteria for indexing. In that 
case, this code will throw an exception.
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      .setLabels(labelIndexer.labelsArray(0))
  }
  private def buildVector(     
    featureIndexers: Array[StringIndexerModel]
  ): VectorAssembler = {
    val featureSchema = data.schema.names.filterNot(_.contains(labelCol))
    val updatedSchema = featureIndexers.map(_.getInputCol)
    val features = featureSchema.filterNot(
      updatedSchema.contains) ++ featureIndexers
      .map(_.getOutputCol)
    new VectorAssembler()
      .setInputCols(features)
      .setOutputCol(FEATURES_COL)
  }
  private def buildDecisionTree(): DecisionTreeClassifier = {   
    new DecisionTreeClassifier()
      .setLabelCol(LABEL_COL)
      .setFeaturesCol(FEATURES_COL)
      .setImpurity("entropy")
      .setMinInfoGain(1e-7)
      .setMaxDepth(6)
      .setMinInstancesPerNode(5)
  }
  private def scorePipeline(testData: DataFrame, 
pipeline: PipelineModel): Double = {
    new BinaryClassificationEvaluator()
      .setLabelCol(LABEL_COL)
      .setRawPredictionCol(PREDICTION_COL)
      .setMetricName(SCORING_METRIC)
      .evaluate(pipeline.transform(testData))
  }
  def buildPipeline(): ModelReturn = {          
    val featureIndexers = constructIndexers()
    val labelIndexer = indexLabel()
    val vectorAssembler = buildVector(featureIndexers)
    val Array(train, test) = data.randomSplit(
Array(trainPercent, 1.0-trainPercent))
    val pipeline = new Pipeline()
      .setStages(
        featureIndexers ++ 
        Array(
          labelIndexer,
          vectorAssembler,
          buildDecisionTree(),
          labelInversion(labelIndexer)
        )
      )
      .fit(train)
    ModelReturn(pipeline, scorePipeline(test, pipeline))
  }
}

Dynamic means of generating a feature vector by manipulating the column listing and 
types to include. This doesn’t include other types of data aside from numeric and string 
types, which would not include those other column types into the feature vector. 

The hyperparameters for this
decision-tree classifier are

hardcoded. While just a placeholder,
the refactoring that will be needed in

this coding style for tuning will be
extensive. Since this is a private

method, the main method signature
will either need these values passed

in as arguments, or the class
constructor will need these values

to be passed in at instantiation.
This is a poor design.

While this is a somewhat 
flexible design for building 
a pipeline based on the 
data passed in, it can be 
challenging for others to 
contribute to, involving 
paying close attention to 
the orders of operations 
that need to happen 
should additional stages 
be inserted into the 
pipeline constructor.
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object BuildDecisionTree {            
  def apply(data: DataFrame,
            trainPercent: Double,
            labelCol: String): BuildDecisionTree =
    new BuildDecisionTree(data, trainPercent, labelCol)
}

This code might not look too absurd at first. It does, after all, greatly minimize verbos-
ity when considering what would occur if we added additional features to the model’s
feature vector. In point of fact, if we were to add even 1,000 additional features to the
model, the code would stay the same. That might seem to be a distinct bonus to
approaching writing ML code in this manner. 

 What would happen if we needed different behavior for some fields than others
for the StringIndexer? Suppose that some fields could support having the invalid
keys (categorical values that were not present during training) appended to a catchall
index value, while others could not. In that case, we’d have to modify this code exten-
sively. We’d need to abstract the method constructIndexers() and apply a case and
match statement to generate indexers for different types of columns. We would then
likely need to modify the passed-in signature argument to the wrapper methods to
include a tuple (or a case class definition) of the field name and how to handle the
validation of key existence. 

 While this approach scales well, it’s a cumbersome act to undertake during experi-
mentation phases. Instead of focusing on validating the performance of different
experiments to run against a model type, we’re spending a great deal of time refactor-
ing our class, adding new methods, abstracting complexity away, and potentially all in
the pursuit of an idea that might not work out well at all.

 Approaching prototyping work in this manner (high abstraction and generaliza-
tion) is a recipe for disaster when considering productivity. In the early phases of a
project, it’s best to adopt a less complex style of coding that supports rapid iteration
and modification. Moving toward the style exhibited in listing 13.2 is much more
applicable to the final pre-release phases of a project (code hardening), specifically
when the components for producing the final project solution are known, defined,
and can be identified as necessary for the code base. As an example of how I approach
these phases of development work, see figure 13.2.

 Because of the highly variable nature of prototyping (everything is quite fluid and
elements need to change quickly), I typically stick to minimal imperative program-
ming techniques. As the development successively moves toward a production build
for the project, more and more of the complex logic is abstracted to maintainable and
reusable parts in separate modules. 

 Building an overengineered and overly complex code architecture early in the
process will, as shown in listing 13.2, create walled-in scenarios that make refactoring
for feature enhancements incredibly complex. Pursuing an overengineered develop-
ment approach early in a project will only waste time, frustrate the team, and eventu-
ally lead to a far more complex and difficult-to-maintain code base. 

Companion object to the 
class. This certainly should 
wait until the finalized API 
design is complete for the 
project.
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Don’t do as I did. Fancy-looking code, particularly early in development, can only
bring you problems. Choosing to pursue the simplest and most minimalistic imple-
mentation opens the door for extensibility when you need it, cohesive code struc-
ture for when you’re writing production code, and a far easier-to-troubleshoot code
base that isn’t filled with technical debt (and dozens of TODO statements that will
never get fixed).

13.2 Unintentional obfuscation: Could you read this 
if you didn’t write it?
A rather unique form of ML hubris materializes in the form of code development
practices. Sometimes malicious, many times driven by ego (and a desire to be revered),
but mostly due to inexperience and fear, this particular destructive activity takes shape
through the creation of unintelligibly complex code. 

Prototype phase

Imperative coding
wireframe of main

components
“Just get it working”

Imperative coding
wireframe of main

components

Development phase

Identify frequently called
portions (copied

code)

Wrap imperative
code into functions

Externalize constants,
parameterize static

and instance
variables

MVP/production development phase

Abstract complex
functions into
module-based

classes and methods

Co-locate similar
functionality within

modules

Optimize code for
runtime performance

(space and
computational

complexity)

If you’re doing these sorts of things . . . . . . when you’re at this phase . . .

you’ll be constantly refactoring the code base and wasting precious time.

Figure 13.2 Avoiding refactoring hell by phased ML development
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 For our scenario, let’s take a look at a common and somewhat simplistic task:
recasting data types to support feature-engineering tasks. In this journey of compar-
ative examples, we’ll take a dataset whose features (and the target field) need to
have their types modified to support the pipeline-enabled processing stages to build
a model. This problem, at its most simplistic implementation, is shown in the next
listing.

def simple(df: DataFrame): DataFrame = {   
  df.withColumn("age", col("age").cast("double"))    
    .withColumn("weight", col("weight").cast("double"))   
    .withColumn("hungry", col("hungry").cast("string"))   
}

From this relatively simple and imperative-style implementation of casting fields in a
DataFrame, we’ll look at examples of obfuscation and discuss the impacts that each
might have for something as seemingly simple as this use case.

NOTE In the next section, we’ll look at bad habits that some ML engineers
have when writing code. Listing 13.3, it must be mentioned, is not intended
to be disparaging in its approach and implementation. There is nothing wrong
with an imperative approach when building ML code bases (provided the code
base doesn’t have tight coupling requiring dozens of edits if one column
changes). It becomes a problem only when the complexity of the solution
makes modifying imperative code a burden. If the project is simple enough,
stick with simpler code. You’ll thank yourself for the simplicity when you need
to modify it and add new features.

13.2.1 The flavors of obfuscation

This section progresses through a sliding scale of complexity, with code examples that
become progressively less intelligible, more complex, and increasingly harder to
maintain. We’ll analyze bad habits of some developers to aid you in identifying these
coding patterns and to call them out for what they are—crippling to productivity and
absolutely requiring refactoring to be maintainable. 

 If you find yourself going down one of these rabbit holes, these examples can
serve as a reminder to not follow these patterns. But before we get to the examples,
let’s look at the personas that I’ve seen with respect to development habits, shown in
figure 13.3.

 These personas are not meant to identify a particular person, but rather to
describe traits that a DS may go through during their journey of becoming a better
developer. A nearly overwhelming number of people I’ve met (as well as myself)

Listing 13.3 Imperative casting

Encapsulates the modifications 
of the passed-in DataFrame by 
returning a DataFrame

Converts the age column to Double
from its original Integer type (for

demonstration purposes only)
Ensures that the 
weight column is 
of type Double

Casts the target column from Boolean to
String for the encoders to work
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started off writing code as the Hacker. We’d find ourselves stuck on a problem that
we’d never encountered before and instantly move to search online for a solution,
copy someone’s code, and if it worked, move on. (I’m not saying that looking on the
internet or in books for information is a bad thing; even the most experienced devel-
opers do this quite frequently.) 

 As coding experience becomes deeper, some may lean toward one of the other
three coding styles or, if they’re mentored properly, move directly to the center
region. Some people have something to prove—usually only to themselves, as most
people just want their peers to write the sort of code that comes from a Good Samari-
tan developer. Others may feel that the least number of lines of code is an effective
development strategy, though they’re sacrificing legibility, extensibility, and testability
in the process. Figure 13.4 shows the patterns that I’ve come across (and personally
experienced).

 This circuitous path leads to increasingly complex and unnecessarily complicated
implementations before landing on the pinnacle of wisdom-fueled experience. The
best we can hope for while making this journey is to have the ability to recognize and
learn the better path—specifically, that the simplest solution to a problem (that still
meets the requirements of the task) is always the best way to solve it.

The Hacker

• Overuse of mutable state, loops,

and flow-control logic

• Code is typically fragmented and

looks like it was developed by

different people.

• A lot of copy-pasta (copied and then

pasted) code from the internet

• Overly filled with positional

references to data structures

• Lazy coding style

• Incredibly complex code

• Generally works well enough but is

difficult to troubleshoot by others

(and sometimes the person who

wrote it!)

• Code is too clever.

• Uses esoteric language features or

develops custom solutions to

already-solved implementations

• Complex code for the sake of

complexity

• Ego-driven development (wants

everyone to regard them as an

expert)

• Typically the only one who can

understand the code since it is so

convoluted

• Uses sophisticated and concise

language features in place of

simplicity

• Generally writes the shortest code

possible (one-liners if possible)

• Brevity of code makes it difficult to

extend, test, and understand for

others.

The Mystic

The Good

Samaritan

Concise,

clean code written

so that others can

understand;

complex only if the

need requires it

Creators of

unmaintainable code

The Mad Scientist

The Show-off

Figure 13.3 The different personas in ML code development. Moving away from the central region 
has a high probability of creating a lot of problems for the team in the future.
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My personal history of growth as a developer
My own growth path throughout my career has touched on nearly every aspect of the
journey shown in figure 13.4. Mostly driven by hubris, but also due to learning how
to solve problems with code outside of a software engineering-focused company, it’s
been a case of learning things the hard way by screwing up constantly along the jour-
ney. I have been a Hacker (not the cool kind shown so famously in the 1995 movie
Hackers with a “too cool for school” Jonny Lee Miller, a brief Mystic, a Show-off for
too many years, a Mad Scientist on a few too many projects (much to the chagrin of
my future self who had to fix code that I could no longer understand), and finally, a
constant struggle to stay as a centrist Good Samaritan developer. 

I mention this to illustrate that this journey is precisely as I said: a constant and Sisy-
phean struggle to strive for simple design and coherent code. It is, perhaps, one of
the worthiest struggles to endure. The pursuit of writing cleaner and simpler code is

If we don’t have a patient
mentor, we all start here.

How am I supposed

to extract the scaled

values from the

vector?

Copy code from

internet . . .

Hacker

(Could be OO, an esoteric
language, or something new
that isn’t established as a
standard yet)

I just read a book on

functional

programming. All of

my code needs to be

lambda functions.

Mystic

Good Samaritan

Mentoring,

intervention, or

self-actualization to

create the simplest

code possible

Woo hoo! I just

landed a job as a

data scientist!

I can minimize the number

of methods by collapsing

these eight methods into

three partial functions and

mutate the state safely

within a mapping function.

This new project's code is

going to be so much better

than my last. I'm going to

really show everyone

everything that I've

learned.

Mad Scientist Show-off

Someone spent too much time studying how
frameworks are built, read too many books on
advanced software development, or is just lacking
in empathy for other humans.

A lot of imposter-syndrome folks end up here
(because they don’t realize that all of us
continually feel imposter syndrome).

Figure 13.4 The paths of becoming a better developer
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In the following sections, we’ll look at versions of listing 13.3, wherein we are trying to
recast some columns in a Spark DataFrame in order to prepare for feature-engineering
transformations. It’s a seemingly simple task, but by the end of this section, hopefully
you’ll be able to see just how “clever” someone can be by creating different types of
confusing (and potentially very broken) implementations.

THE HACKER

A Hacker mentality is, for the most part, simply born from inexperience and a feeling
of being completely overwhelmed with the concepts of software development (ML or
not). Many people in this mode of development feel nervous about asking for help in
building solutions or in understanding how other team members’ solutions are built.
Crippling feelings of inadequacy, known as imposter syndrome, may limit this person’s
growth potential if they are not provided effective mentoring and acceptance by the
larger team. 

 Many of their projects or contributions to projects may feel completely disjointed
and tonally dissonant. It may seem like different people were involved in crafting the
code within the pull request that they submitted. It’s likely true that there were: anon-
ymous contributors to Stack Overflow. 

 Figure 13.5 summarizes many of the thoughts I had when I started writing full proj-
ect code many years ago. I’ve asked other junior DS folks, after particularly rough
peer reviews of their code, what motivated them to copy code from Stack Overflow,
and their thought processes are paraphrased here as well.

 A Hacker’s code looks like a patchwork quilt. The lack of coherent structure,
inconsistent naming conventions, and varying degrees of code quality is likely to get
flagged repeatedly in a code or peer review submission. A test of the code (if any unit
tests are written) will likely show many points of fragility in the implementation.

 Listing 13.4 shows an example of what the Hacker type of developer might come
up with for a solution to the column-recasting problem. While not directly indicative
of a cobbled-together state, it’s definitely full of antipatterns.

 
 

(continued)

not only to the benefit of your team and company, but also perhaps the most gener-
ous gift you can give to your future self who has to troubleshoot or improve the code
base later. All of the clever tricks, concise one-liners, ego-placating flexing with complex
design patterns, and impossibly convoluted implementations that, in the moment of
writing them, seem like a good idea, are actually not.

I’ve had to learn this the hard way. Repeatedly. My only advice is to learn from my
examples and be able to recognize when you or others you work with are treading
toward any of these caustic development patterns. Light the beacon to bring people
back to simplicity, and your projects will be more successful.
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def hacker(df: DataFrame, 
  castChanges: List[(String, String)]): DataFrame = {   
  var mutated = df                                
  castChanges.foreach { x =>          
    mutated = mutated.withColumn(x._1, 
   mutated(x._1).cast(x._2))            
  }
  mutated                         
}
val hackerRecasting = hacker(dogData, List(("age", "double"), 
  ("weight", "double"), 
  ("hungry", "string")))       

Listing 13.4 Hacker’s attempt at casting columns

I don't know this

<language, API,

platform> as well as

I should.

I’m stuck and I can’t

get this to work.

Hacker

mentatlity

Welcome to the club.
Even the most
seasoned among us
have learned that
we’re mortal and that
not everything is easy.

I found a cool

implementation in a

blog that's sort of

what I'm trying to

do . . .

Blogs are good for
getting inspiration
and triggering further
research. Copying
implementations from
them is a bad idea.

Copy code in blog, waste

days trying to make it work,

eventually end up with a

bowl of spaghetti code

Copy dozens of code

snippets and fasten

them together with

bubblegum and wishes.

Looking for solutions
online and in texts is a
good thing, but you
should always use them
for inspiration and never
just copy them directly.

I'm just

going to search for

this exception

message and use

what I see first.

We all started somewhere.
Get some books, practice,
and let the team lead know
that you’re struggling.
Assembling terrible code
helps no one.

Figure 13.5 The Hacker thought pattern, creating chaotic and unstable code bases, is where we all 
start in ML.

The function argument castChanges 
is strange. What does the list of 
tuples represent?

Mutating objects is not considered a good practice in this
instance. The DataFrame is immutable by nature, but
declaring it as a var allows mutation to support this

hacky method chaining in the foreach iterator.

Iterates
over the

List of
tuples

that are
passed in

Positional notation for tuples is confusing, 
highly error prone, difficult to understand, 
and opens the door for frustration in API 
usage. (What happens if the data type and 
column names are switched?)

Returning the mutated DataFrame 
will still preserve encapsulation, 
but it’s a code sniff.

Example usage with the 
cumbersome definition of 
a List of tuples for the 
castChanges argument
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In this code, we can see that the logic displayed is similar to the inherently mutable
nature of Python. Instead of researching how to safely iterate over a collection to
apply chained methods to an object, this developer implements a strong antipattern
in Scala: mutating a shared state variable. In addition, because the function’s argu-
ment castChanges has no concept of what those String values should be (which one
should be the column name and which the data type is being cast to), the user of this
function would have to look at the source code to understand which one goes where.

 Recognizing these code smells in your peers’ work is critical. Whether those peo-
ple are brand-new to the team (or the profession), or have a great deal of experience
and are simply “phoning it in,” an effort should be made to help them. This is a per-
fect opportunity to work with a fellow member of the team, help them increase their
skills, and in the process, build a stronger team full of engineers who are all creating
more maintainable and production-stable code.

THE MYSTIC

As we progress in gaining skill and exposure to new concepts in ML software develop-
ment, the next logical journey is to learn FP techniques. Unlike traditional software
development, a great deal of DS coding work lends itself to functional composition.
We ingest data structures (typically represented as array collections), perform opera-
tions on them, and return the modified state of the data in an encapsulated fashion.
Many of our operations are based on applying algorithms to data, whether through
direct calculation of values or through a transformation of structure. To a large
degree, much of our code bases could be written in a stateless FP fashion.

 At its core, many tasks in ML are functional. There is definitely a strong case to
apply functional programming techniques to many of the operations that we do.
The Mystic developer persona is not someone who selectively chooses appropriate
places to use FP paradigms, however. Instead, they dedicate their time and effort to
making the entire code base functional. They pass around configuration monads to
functions in a semblance of weak state, sacrificing composition in favor of an almost
fanatical zeal for the adherence of FP standards. To illustrate, figure 13.6 shows my
thought processes when I discovered FP and all the wonders that it can bring to a
code base.

 When I first began learning FP concepts, trying my hardest to convert all of my
code into this standard, I found its conciseness liberating, efficient, and elegant. I
enjoyed the simplicity of stateless coding and the purity of pure encapsulation. Gone
were the side-effect problems of mutating state in my earlier hacky code, replaced
with slick and stylistic map, flatmap, reduce, scan, and fold. I absolutely loved the
idea of containerizing and defining generic types as a way to reduce the lines of code I
had to write, maintain, and debug. Everything just seemed so much more elegant.

 In the process of refactoring code in this way, I managed to enrage the other peo-
ple who were looking at each heavy-handed refactoring. They were right to call me
out for increasing the complexity of the code base, decoupling functions in ways that
didn’t need decoupling, and generally making the code harder to read. To get a good
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sense of what this implementation style would look like for our column casting, see
the following listing.

def mystic(df: DataFrame,
          castChanges: List[(String, DataType)]
  ): DataFrame = {         
  castChanges.foldLeft(df) {   
    case (data, (c, t)) => 
      data.withColumn(c, df(c).cast(t))     
  }
}
val mysticRecasting = mystic(dogData, 
  List(("age", DoubleType), 
  ("weight", DoubleType), 
  ("hungry", StringType)))    

Listing 13.5 A pure functional programming approach

That’s debatable. It can be cleaner, or it
can be ham-fisted in certain scenarios and
be far more convoluted and confusing to
solve certain problems than imperative or
object-oriented designs.

I mean, yeah, sure. But
doesn’t FP have monads?
Isn’t that a leaky abstraction
state? It’s best to use FP when
it makes sense, but if you need
to keep state, don’t pass the
entire stack around to
every function.

I promise that there
is no prize for writing
logic on a single line.
If someone is handing
out these prizes, please
ask them to stop. Dense
code is harder to read,
troubleshoot, and extend.

You’ll get no argument from me
here. It can be elegant. It is
based in mathematical functions.
But it’s not the be-all and end-all
paradigm for software
development.

Functional

programming is

elegant and

mathematical.

By employing

lambda operations

and keeping my

functions immutable

and single-use, my

code is cleaner.

Mystic

mentality

Why does everyone

keep asking me to use a

buffer here? I can’t have

side effects! There

must be no state!

If I can distill each

function to a single line,

the code base will be

more elegant.

Figure 13.6 Inside the mind of an FP purist (the Mystic)

The function signature’s castChanges argument is safer than the 
Hacker’s implementation. By requiring a DataType abstract class 
to be passed in, the chances of introducing unintentional bugs 
via this function are reduced.

Using a foldLeft (mapping over 
the castChanges collection and 
applying an accumulator to the 
passed-in DataFrame df) allows 
for the mutated state of the 
DataFrame to be far more 
efficient than in the Hacker 
approach.

Case matching to define the structure 
of the passed-in argument castChanges 
allows for elimination of the complicated 
(and annoying) positional reference that 
was in the Hacker implementation. This 
code is far cleaner.

Using the function doesn’t save much on typing versus the 
Hacker implementation, but you can see how having these 
defined types for the casting conversion type makes the 
use of this function better.
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As you can see, this implementation has a distinct functional nature. Technically
speaking, for this use case, this implementation is the best of all the examples in this
section. The DataFrame object is mutated in a safe accumulator-friendly way (the
mutation state of chaining operations on the DataFrame is encapsulated within fold-
Left), the argument signature utilizes base types as part of the casting (minimizing
errors at usage time), and the matching signature used prevents any confusing variable-
naming conventions. 

 The only way that I would make this a bit better would be to utilize a monad for the
castChanges argument. Defining a case class constructor that could hold the map-
pings of column name to casting type would further prevent misuse or any confusing
implementation details for others who wished to use this little utility function.

 The issue in listing 13.5 isn’t the code; rather, it is in the philosophical approach of
someone who writes code in this manner and enforces these patterns everywhere in
the code base. If you detect these sorts of development patterns everywhere in a code
base, replete with highly convoluted and confusing state currying that ships the entire
stack around to each function, you should have a chat with this person. Show them
the light. Let them know that this pursuit of “purity” is as much a fool’s errand as tilt-
ing at windmills. They’re not the only one who has to maintain this, after all.

A word on functional programming
I know it might seem like I’m hating on FP. I’m not. You’ll see in this chapter and in
any code base that I contribute to that I choose to do loads of FP things. It’s a won-
derful programming style for what it is designed to do. In some languages, such as
Python and Scala, it has performance benefits as well (using accumulators is far
more efficient than using mutation). 

However, what I am retroactively beating myself up for is the purist approach. In so
many areas of ML development, using FP techniques simply doesn’t make sense.
Attempting to shoehorn an FP design pattern into deterministic state-controlled hyper-
parameter tuning is a recipe for disaster, for instance. 

I do encourage all ML practitioners to learn FP concepts for places that make a
great deal of sense. Do you need to iterate over a collection and apply a function
to it? Don’t use a for loop; use a map function (list comprehension in Python). Do
you need to update the state of an object based on a large collection of tasks? Use
a map-reduce paradigm (folding in Scala, list comprehension, again, in Python).
These language features are incredibly helpful, are frequently far more performant
than alternative iterators (such as for loops and while loops), and make for much
cleaner code.

The only downside to using FP is if your team isn’t familiar with it. That can always
be addressed through training, though. Take a little bit of time to introduce the topic
to your team and you’ll find that iterations over collections will be easier to read, eas-
ier to write, and will run more cheaply. 
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THE SHOW-OFF

The Show-off persona can come in several forms. It can be an incredibly advanced
independent contributor who has a lengthy history of developing software with no ML
components. They may look at an ML project and try to build a custom implementa-
tion of an algorithm that otherwise exists in a popular open source library. They could
also be a person who has graduated from being a Hacker type of developer, and
armed with a deeper understanding of the implementation language and software
design patterns, chooses to show everyone on the team how good they are now. 

 Regardless of why this sort of person builds complexity into their implementations,
it will impact the team and the projects that the team must maintain in the same man-
ner. The person who built it will end up owning it if the code isn’t refactored. 

 There’s absolutely nothing wrong with complexity in code if the use case and the
problem being solved warrant that complexity. However, the Show-off type builds in
complexity simply for the sake of overengineering the solution to appear skilled to
others on the team. I imagine the mental state of people who fit the Show-off persona
to look like figure 13.7.

These habits and thinking patterns are significantly less than pleasant to endure when
you’re this person’s coworker. The ideas that they’re conveying aren’t bad (except for
the toxic one at the bottom right). Builder patterns, heavy abstraction, implicit typing,

Why go for the most complex
design pattern from the start?
It’s unnecessary complexity and
should be used only if there is
no alternative. .Start simple

Are you certain that your requirements
are applicable to the project? Does the
code work, and do the tests pass? If
you’re  so worried about sophisticated,
highly abstract code, then go build SaaS
software as a developer somewhere.

No.
Just . . . no.
Build a framework after
you have a dozen
common projects that
define code-reuse
patterns. Never start off
a project thinking like
this.

You keep using that
word, impress; I don’t
think it means what
you think it means.

I’m going to really

impress everyone with

what I’ve learned about

implicits and

reflection...

I’m going to implement a

builder pattern for the proof

of concept so that we start off

on the right foot for this

project.

Why does no one else

take this project’s code

quality seriously? What is

this, amateur hour?

We might need to turn

this code base into a

framework. I’m going to

create generic interfaces

for everything.

Show-off

mentality

Figure 13.7 The unhelpful habits and thoughts of the Show-off 
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reflection, and well-crafted interfaces are all good things. However, they’re tools to be
used when the need arises. 

 The problem with the way this person thinks and writes code is that they’ll start off
implementing a project from the initial commit on the first branch with skeleton
stubs for a grand project architecture that is completely unneeded. This is the sort of
ML engineer who is focused solely on the code sophistication of the project and has
little to no regard for the actual project’s purpose. In this blindness, they typically
strive toward writing very complex code that, to the rest of the team, seems intention-
ally obfuscated because of the overwhelming level of overengineering that they’ve
done for the problem at hand.

TIP If you want everyone to think you’re smart, sign up for Jeopardy and win
some rounds. If you’re flexing through your code, all you’re doing is putting
your team in jeopardy.

Let’s take a look at our casting scenario function, this time written in the Show-off
development style. 

val numTypes =
    List(IntegerType, FloatType, DoubleType, LongType, DecimalType, ShortType)
def showOff(df: DataFrame): DataFrame = {
    df.schema
      .map(
        s =>
          s.dataType match {    
            case x if numTypes.contains(x) => s.name -> "n"   
            case _                         => s.name -> "s"  
        }
      )
      .foldLeft(df) {
        case (df, x) =>                   
          df.withColumn(x._1, df(x._1).cast(x._2 match {
            case "n" => "double"
            case _   => "string"      
          }))
      }
  }
val showOffRecasting = showOff(dogData)    

This code works. It behaves exactly as the three preceding examples did. It’s just hard
to read. By trying to show off skills and “advanced” language features, some pretty
poor decisions were made. 

Listing 13.6 The Show-off’s casting implementation

Defining the matching numeric types is fine for th
particular implementation. What happens if intege

need to be handled differently? The refactoring require
to stick with this design pattern would be substantia

The matching approach isn’t bad on the data 
type of the passed-in DataFrame. That’s the only 
good thing to say about this block of code.

The mapping of the column name 
to the conversion type is odd. It’s 
consumed in the next statement.

Wildcard catch for all other conditions. 
What happens if the passed-in DataFrame 
contains a collection?

Lazy passing of the map collection (x) from 
the first stage. Now position notation is 
required to access those values.

Once again, the wildcard match. An 
ArrayType or ListType column would 
present serious issues here.

At least the instantiation 
of this function is pretty 
simple.
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 First off, the initial mapping over the schema fields is completely unnecessary. Cre-
ating the Map type column that consists of a pseudo-enumeration of single character
values to column name is not only useless, but also confusing. The collection gener-
ated from that first stage, which is then folded over in the accumulator action to the
DataFrame, is instantly consumed, forcing the creation of a “temporary” Map object
collection to apply the correct type casting. Finally, in the laziness of not wanting to
fully write out all of the conditional matches that may occur, there’s a wildcard match
case in the final section. What happens when someone needs to handle a different
data type? What are the steps for updating this to support binary types, integers, or
Boolean values? Extending this is not going to be particularly fun.

 Be wary of people who write code like this, particularly if they’re a senior person
on your team. A conversation about how important it is for everyone on the team to
be able to maintain the code and troubleshoot it is a good approach. It’s not likely
that they’re intentionally trying to make the code complex for others. With a request
for a simpler implementation, they’ll likely deliver and adjust their development strat-
egy with this in mind for the future. 

THE MAD SCIENTIST

The Mad Scientist developer is well-intentioned. They’re also someone who has pro-
gressed on the path of knowledge of software development to a point far exceeding
the fundamentals. With the amount of experience, number of projects, and sheer vol-
ume of code that they’ve written, they’ve begun to utilize advanced techniques within
the languages (they typically are highly fluent in more than one) to reduce the
amount of code that needs to be maintained. 

 These people typically think of how to tackle problems based on efficiency of
development rather than from a position of wanting to be recognized for the sophisti-
cation of their code. They’ve learned a great deal over the years and have had to main-
tain (and refactor) less-than-optimal code enough that they choose to compose their
implementations in ways that make it easier to troubleshoot and maintain. 

 These are noble goals when the rest of the team is of a similar level of technologi-
cal competency as they are. However, most teams comprise a myriad of humans of dif-
fering levels of development competency. Crafting complex but highly efficient code
can be a hindrance to the effectiveness of more junior people on the team. To illus-
trate these thought processes, figure 13.8 shows a bit of the Mad Scientist’s mind.

 Notice that the Mad Scientist’s points are not bad ones. They’re perfectly rele-
vant and considered to be general best practices. However, the problem with this
mentality arises when all the other humans working with the code aren’t aware of
these standards. 

 If code is written with these compositional rules in mind and just “thrown over the
wall” by issuing a PR on a branch without the rest of the team being aware of why
these standards are so important, the code design and implementation will be unintel-
ligible to them. Let’s look at our continuation of casting examples for how this Mad
Scientist developer would potentially write this code in listing 13.7.
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val numTypes = List(FloatType, DoubleType, LongType, DecimalType, ShortType)
def madScientist(df: DataFrame): DataFrame = {
  df.schema.foldLeft(df) {                   
    case (accum, s) =>                      
      accum.withColumn(s.name, accum(s.name).cast(s.dataType match {   
        case x: IntegerType => x 
        case x if numTypes.contains(x) => DoubleType
        case ArrayType(_,_) | MapType(_,_,_) => s.dataType
        case _                         => StringType
      }))                                 
  }
}

Now, there’s nothing wrong with this code. It’s concise, covers the use case needed
rather well, and is designed to not spontaneously detonate if complex types (arrays

Listing 13.7 A slightly more sophisticated casting implementation

This is wise. However, before
building code in this manner,
make sure the team knows how
to develop code in this manner.

Make sure that standards
are developed to handle
this, with documentation
and training for all team
members. Otherwise, this
approach is as transparent
as mud.

This is likely to be a significant
design departure for most DSs.

This is definitely a best practice.
However, teaching why this is so
important to the wider team is
absolutely critical. Just writing
code in a different way doesn’t
fix the underlying issue if others
are mutating global objects.

Having too many

arguments in a class

constructor is difficult to

maintain. We’re going to use

factory patterns for our

code.

Encapsulation is

critical. Mutating state

external to a method or

object is not permitted

in our code.

No hardcoded

values are permitted

anywhere in a class. Constants

will be defined in a single place,

and dynamic configurations

will be handled through

configuration classes.

Currying of complex

return values must be

handled in named tuples

(or case classes) to

simplify the code.

Mad Scientist
mentality

Figure 13.8 Without appropriate teaching and mentorship to the rest of the team, a more senior, highly 
advanced ML engineer may write code that’s highly obscure and complicated.

Similar to the preceding examples, except we’re 
iterating directly on the collection returned 
from the df.schema getter

Moves away from the confusing name 
reference df as in previous examples. Although 
it would be encapsulated here (and safe), 
naming it df is confusing to read.

Uses named entities from the return of
the schema (variable s) to prevent

unexpected bugs in the future

By wrapping the decision logic within the 
casting statement, there are fewer lines of 
code. Matching directly to types from the 
metadata of the schema is going to be 
more future-proof as well.
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and maps) are in a column in the dataset. The only caveat here is to ensure that
design patterns like this are maintainable by your team. If they’re OK with maintain-
ing and writing code in this manner, it’s a good solution. However, if the rest of the
team is used to imperative-style programming, this code design can be as cryptic as if it
were written in a different language.

 If the team is facing overwhelming mountains of imperative calls, it would be best
to introduce the team to coding styles exemplified in listing 13.7. Taking the time to
teach and mentor the rest of the team on more efficient development practices can
accelerate project work and reduce the amount of maintenance involved in support-
ing projects. However, it is absolutely critical for more senior people to educate other
team members as to why these standards are important. This does not mean throw-
ing out a link to a language specification (someone linking the PEP-8 standard of
Python to a PR is a pet peeve of mine), nor just firing off branches containing dense
and efficient code at the team. Rather, it means crafting well-documented code, pro-
viding examples in the internal team documentation store, conducting training ses-
sions, and sitting through pair programming with the less experienced members of
the team. 

 If you happen to be one of these Mad Scientist types, writing elegant and well-
constructed code that is misunderstood and opaque to the rest of your team mem-
bers, the first thing that you should be thinking about is teaching. It is far more
effective to help everyone understand why these paradigms of development are
good than to write scathing PR review notes and reject merge requests. After all, if
you’re writing good code and submitting it to a team that doesn’t have experience
in the paradigms that you’re utilizing, it’s just as obfuscated as the mess of the Show-
off code in listing 13.6.

A SAFER BET

Let’s look at a safer, more legible, and slightly more standard method of solving this
problem. Here’s what a more maintainable implementation would look like.

object SimpleReCasting {   
  private val STRING_CONVERSIONS = List(
BooleanType, CharType, ByteType)         
  private val NUMERIC_CONVERSIONS = List(
FloatType, DecimalType)                         
  def castInvalidTypes(df: DataFrame): DataFrame = {
    val schema: StructType = df.schema        
    schema.foldLeft(df) {
      case (outputDataFrame, columnReference) => {
        outputDataFrame.withColumn(columnReference.name, 
         outputDataFrame(columnReference.name)
          .cast(columnReference.dataType match {

Listing 13.8 A safer bet on invalid types casting

Uses an object for encapsulation 
and more efficient garbage 
collection by the JVM

Explicitly declares the 
data types that we want 
to convert to StringType

Explicitly declares the data 
types that we want to 
convert to DoubleType

Breaks out the schema 
reference purely to 
reduce the code 
complexity and make it 
more approachable to 
others reading it
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            case x if STRING_CONVERSIONS.contains(x) => 
              StringType                             
            case x if NUMERIC_CONVERSIONS.contains(x) => 
              DoubleType                                     
            case _ => columnReference.dataType    
          }))
}}}}

Notice the wrapping of the code in an object? This is to isolate references to those
Lists that are defined. We don’t want variables like that defined globally in a code
base, so encapsulating them in an object serves that purpose. 

 In addition, the encapsulation makes it far easier for the garbage collector to
remove references to objects that are no longer needed. SimpleRecasting, once used
and no longer referred to within the code, will be removed from the heap along with
all other encapsulated objects within it. The seemingly more verbose naming conven-
tion (which helps a new reader follow along with what is being acted upon within the
foldLeft operation), enables this code to be read more clearly than the briefer code
of listing 13.7. 

 A final note regarding this code is that the operations are entirely explicit. This is the
largest hallmark of the difference in this code as compared to all previous examples,
except for the original reference in listing 13.3 of the imperative casting. Here, as in that
earlier example, we’re changing only the typing of column types that we’re explicitly
commanding the system to change. We’re not defaulting behavior to “just cast every-
thing else as String” or anything else that would create fragile, unpredictable behavior. 

 This approach to thinking about coding will save you a lot of frustrating hours,
days, and months of your life troubleshooting seemingly innocuous code that blows
up in production. We’ll revisit some of the ways that defaulting unknown state to a
static value (or imputed values) can come back to bite us as ML engineers in the next
chapter. For now, just realize that being explicit about actions is definitely a good
design pattern for ML.

13.2.2 Troublesome coding habits recap

In the preceding section, we focused on several, shall we say, unfriendly ways to write
code. Each is bad in its own way and for a myriad of reasons, but the worst offending
reasons are in table 13.2.

 The most important aspect of writing code to keep in mind is that the code that
you create is not purely for the benefit of the system executing it. If that were the case,
the profession would likely never have moved away from low-level code frameworks
for writing instructions (second-generation languages such as assembly languages or,
for the truly masochistic, first-generation machine code). 

Converts the types that we 
declared to StringType if they’re 
in our configuration listing

Converts only the 
numeric types that 
match our listing to 
DoubleType

Don’t touch
anything else.

Just leave it be.
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Languages have advanced through higher-order generations not for the sake of com-
putational efficiency for the processor and memory of the computers; rather, it has
been for the sake of the humans writing, and more important, reading the code to fig-
ure out what it does. We write code, using high-level APIs when we can, and construct
our code in ways to make it easy to read and maintain, solely for the benefit of our
peers and future selves. 

 Avoid the habits listed in table 13.2 and move toward writing the code needed by
you, your team, and the sort of technical talent that you’re targeting to hire in the
future for roles in your group. Doing so will help make everyone productive and able
to contribute to building and maintaining solutions, and will prevent inefficient refac-
toring of horribly complex code bases to fix crushing technical debt wrought by
unthinking developers.

13.3 Premature generalization, premature optimization, 
and other bad ways to show how smart you are
Let’s suppose that we’re starting a new project with a team of relatively advanced
(from a software development perspective) ML engineers. At the start of the project,
the architect decides that the best way to control the state of the code is to design and
implement a framework for executing the modeling and inference tasks. The team is
incredibly excited! Finally, the team members think, some interesting work!

 In their collective giddiness, none of them realize that, aside from illegible code,
one of the worst forms of hubris is that of spending time where time does not need to
be spent. They’re about to build useless framework code bases that serve no real pur-
pose apart from being a justification for their own existence. 

13.3.1 Generalization and frameworks: Avoid them until you can’t

The first thing that the team does is work on a product requirements document (PRD)
that outlines what they want their unique framework to do. A general design, based on a
builder pattern, is drafted. The architect wants the team to do the following:

Table 13.2 Developer implementation sins

Sinful persona Why it’s so bad

Hacker Fragile code is fragmented and stitched together, and breaks frequently.

Mystic Complicated and dense code takes far too long to reverse engineer. Untestable 
nested code can silently introduce difficult-to-diagnose bugs.

Show-off Intentionally complex code is intended to make others feel unworthy. Impossible to 
troubleshoot, repair, or expand upon. Nightmare code.

Mad Scientist Too clever of an implementation for peers to understand (because of a failure to 
teach). Too rigid to allow for lightweight testing or extensibility.
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1 Ensure that custom default values are utilized throughout the project code (not
relying on API defaults)

2 Enforce overriding of certain elements of the modeling process with respect to
tuning hyperparameters

3 Wrap the open source APIs with naming conventions and structural elements
that are more in line with the code standards at the company

Before experimentation is done, a plan of features is developed, as shown in figure 13.9.

Rewritten and refactored over
a dozen times before
production release.
Unusable for other projects.

The interface is clunky and complex
for type passing. Large objectsMap

passed means time-consuming
configuration changes each time a
new test needs to be run.
Automated checks cause run-to-run
instability and need frequent
refactoring.

Additional pipeline stage
additions require extensive
refactoring. New logging
information requires complex
changes to the framework.

Tight coupling to specific
version of MLflow requires
frequent updates for
compatibility. Validation
checks refactored frequently
for new edge cases.

All of this makes sense if you have a dozen supervised
learning projects that all do something similar and
these common tasks are shared among them.
Designing and building this from the start of a project
is a horrible idea, though.

The plan The reality

Data ingestion module

• Specify path to training data

source

• Specify path to validation data

• Provide list of columns to exclude

• Specify target (label) column

• Type conversions for columns

• Automatic indexing/encoding

detection

• Cardinality validation

• Outlier filtering, NaN handling

• Automatic collinearity

detection

• retrievalInference API for pipeline
• Data source inference on

retrieved pipeline object

• predictionsValidation checks on

Feature engineering module

Modeling module

• Model selection and default

Hyperopt search spaces

• Default metrics assigned for

validation scoring

• Pipeline creation, logging, and

registration

Inference module

Figure 13.9 The hopes and dreams of an architect trying to build a cohesive wrapper around disparate 
frameworks to support all ML needs of the company. Spoiler alert: it doesn’t end well.



381Premature generalization, premature optimization, and other bad ways to show how smart you are
This plan for critical features is more than a little ambitious. Were this to proceed, the
Reality aspects shown at the right side of the figure would likely play out (they’ve
always happened whenever I’ve seen someone attempt to do this). Full of rework,
refactoring, and redesign, this project would be doomed. 

 Instead of focusing on solving the problem by using existing frameworks (such as
Spark, pandas, scikit-learn, NumPy, and R), the team would be supporting not only a
project solution, but a custom implementation of a framework wrapper—and all of the
pain that goes along with that. If you’re not staffed with dozens of software engineers to
support a framework, it’s best to think carefully about planning to construct one. 

 Adding to the immense workload of building and maintaining such a software
stack is the simple fact that you’d be attempting to support a wrapper that is more
generic than the framework that it is wrapping. Engaging in work like this never ends
well for two primary reasons:

 You now own a framework—This means updates, compatibility guarantees, and a
truly massive amount of testing to write (you are writing tests, right?). Function-
ality assurances are now in lockstep with the packages that you’re using to build
the framework.

 You now own a framework—Unless you’re planning on making it truly generic,
open sourcing it and having a community of committers involved in its growth,
and committing to maintaining it, it’s pointless work to engage in.

Pursuing generalized approaches truly makes sense only if a direct need for that
exists. Does a critical new functionality need to be developed to make another frame-
work for ML work more efficiently? Perhaps think about contributing to that open
source framework, then. Is there a need to stitch together disparate low-level APIs to
solve a common problem? This is likely a good case for the creation of a framework.

 The last thing that you should be thinking about when starting a project, unlike our
architect friend, is setting about building a custom framework to support that particu-
lar project. The premature generalization work involved (in time, distraction, and
frustration) will detract heavily from the project’s pending work, will delay and disrupt
productive work that should be focused on solving the problem, and will inevitably
need to be reworked many times over throughout the evolution of the project. It’s
simply not worth it.

Should I ever build a generic framework?
Of course! Well . . . maybe.

I’ll list some considerations to think about and then leave you to determine whether
building a framework is something you actually want to pursue (provided it’s engaged
in during designated time and not during a project delivery):

 How many people do you have on your team? If you can’t devote at least 16
human hours per week to maintaining the framework, adding features, and
troubleshooting it, you should reconsider whether it’s worthwhile to start.



382 CHAPTER 13 ML development hubris
13.3.2 Optimizing too early

Let’s suppose we work for a different company—one without that architect from the
previous section, preferably. This company, instead of an empire-building architect,
has an advisor to the DS team who comes from a backend engineering background.
Throughout this person’s career, they’ve focused on SLAs that can be measured in
milliseconds, algorithms that traverse collections in the most efficient way possible,

(continued)

 Are you planning on open sourcing it? How much of a community can you
build around it? What are the company’s legal rules around maintaining open
source software? How much time can you devote to supporting the software?

 Does it solve a novel problem, or are you building functionality that already
exists in another tool?

 Could you buy a tool or platform that does what you want your framework to
do? If that’s the case, I guarantee that buying that tool or using existing open
source solutions will be cheaper than devoting your time and energy to build-
ing your own.

 How many dependencies will this framework have? For each additional pack-
age that you’re bringing on, you’re adding a factorial of headaches to its long-
term maintenance. Software packages and dependencies change all the time
with many deprecations that are little more than future threats that your
framework is going to blow up in your face one day.

 What’s the additional value that this planned framework brings? If it isn’t
accelerating your current and future project work by at least twice the amount
of time you’re going to spend building and maintaining this framework, it’s a
waste of time and energy.

Is the framework just a wrapper around another open source framework? The number
of times I’ve seen people write a custom wrapper around pandas or Spark is truly
shocking. Everything works well up until the next major release that has fundamental
breaking changes (or the next minor critical feature addition that now requires imple-
menting a wrapper for your custom APIs), forcing you to effectively rewrite your frame-
work from scratch. 

Those are just a few of the questions that I ask people who tell me that they’re going
to build a generic framework for ML work. I’m not trying to be dismissive of their lofty
goals; it’s just that I’ve been there and know firsthand the pains of maintaining some-
thing of this nature. 

It makes perfect sense to build when you have hundreds of XGBoost models running
in production to provide predictive insight into your business. But the business, and
you, should understand the awfully large amount of work that you’re getting yourself
into. Pursue this path only when it would be foolish not to build a framework; a high-
level API for building, monitoring, and inferring from hundreds of XGBoost models
would be a good reason to build one.
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and vast amounts of time eking out every available CPU cycle. Their world is entirely
focused on the performance of discreet portions of code.

 On the first project, the advisor wants to contribute to the DS team’s work by help-
ing to build out a load tester. Since the team is yet again dealing with determining
whether dogs are hungry when entering the local pet supply store, the advisor guides
the team on implementing a solution. 

 Based on their experience and knowledge of Scala for backend systems, the team
members end up focusing on something that is highly optimized for minimizing the
memory pressure on the JVM. They want to eschew mutable buffer collections in favor
of explicit collection building (using only the minimum amount of memory needed)
with a fixed predetermined size of the collection. Because of prior experience, they
spend a few days building the code in order to generate the data needed to test the
throughput of the modeling solution for inference purposes.

 To start, the advisor works on defining the data structure that is going to be used
for testing. Listing 13.9 shows both the data structure and the defining static parame-
ters to generate the data with. 

NOTE The Scala formatting in listing 13.9 is condensed for printing purposes
and is not representative of proper Scala syntax design.

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.{DataFrame, SparkSession}
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import scala.util.Random
case class Dogs(age: Int, weight: Double, favorite_food: String,
                breed: String, good_boy_or_girl: String, hungry: Boolean)   
case object CoreData {  
  def dogBreeds: Seq[String] = Seq("Husky", "GermanShepherd", "Dalmation", 

"Pug", "Malamute", "Akita", "BelgianMalinois", "Chinook", "Estrela", 
"Doberman", "Mastiff")

  def foods: Seq[String] = Seq("Kibble", "Spaghetti", "Labneh", "Steak",
      "Hummus", "Fajitas", "BœufBourgignon", "Bolognese")
  def goodness: Seq[String] = Seq("yes", "no", "sometimes", 

"yesWhenFoodAvailable")
  def hungry: Seq[Boolean] = Seq(true, false)
  def ageSigma = 3
  def ageMean = 2
  def weightSigma = 12
  def weightMean = 60
}
trait DogUtility {    
  lazy val spark: SparkSession = SparkSession.builder().getOrCreate()    
  def getDoggoData[T: ClassTag](a: Seq[T], dogs: Int, seed: Long): Seq[T] = {

Listing 13.9 Configuration and common structures for data generator

Defines the dataset
schema (with typing)

for testing

Uses a case object to store 
static values for data generation 
(a pseudo-enumeration in Scala)

Uses a trait for multiple 
inheritance to test 
different implementations 
and to keep the code 
cleaner

We’ll use a Spark
session reference in the
objects later, so having
it available in the trait

makes sense.
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    val rnd = new Random(seed)
    Seq.fill(dogs)(a(rnd.nextInt(a.size)))
  }                                                                   
  def getDistributedIntData(sigma: Double, mean: Double, dogs: Int,
                            seed: Long): Seq[Int] = {
    val rnd = new Random(seed)
    (0 until dogs).map(
      _ => math.ceil(math.abs(rnd.nextGaussian() * sigma + mean)).toInt)
  }   
  def getDistributedDoubleData(sigma: Double, mean: Double, dogs: Int,
                               seed: Long): Seq[Double] = {
    val rnd = new Random(seed)
    (0 until dogs).map( _ => math.round(math.abs(rnd.nextGaussian() * sigma * 

100 + mean)).toDouble / 100)
  }     
}

Now that the helper code has been developed to control the behavior and nature of
the simulation data, the advisor tests the performance of the methods defined in the
trait DogUtility. The performance scales well to hundreds of millions of elements
after a few hours of tweaking and refactoring. 

 It should go without saying that this implementation is a bit of an overkill for the
problem at hand. Since this is at the start of the project, not only are the features
required for the end-result condition of the model not fully defined, but the statistical
distribution of the features hasn’t been analyzed yet. The advisor decides that it’s now
time to build the actual control execution code for generating the data as a Spark
DataFrame, as shown in the next listing.

object PrematureOptimization extends DogUtility {  
  import spark.implicits._                       
  case class DogInfo(columnName: String,
                     stringData: Option[Either[Seq[String], 
                       Seq[Boolean]]],     
                     sigmaData: Option[Double],   
                     meanData: Option[Double],
                     valueType: String)       

Listing 13.10 An overly complex and incorrectly optimized data generator

Uses a generic type to randomly
fill in values (Strings or Booleans)

into a fixed-size sequence

Generates a random Gaussian distribution 
of Integer values based on the passed-in 
mean and sigma values

Generates a random Gaussian 
distribution of Double values 
based on the mean and sigma

Uses the trait DogUtility defined 
earlier to have access to the methods 
and SparkContext defined there

Uses implicits from Spark to be able to cast a collection
of case class objects directly through serialization to a

DataFrame object (cuts down on a lot of nasty code)

This is a mess. The Either
type allows for a right-

justified selection between
two types and is challenging

to extend properly. A
generic type would have

been better here.

The Option type is here because 
these values are not needed for 
some of the configured method 
calls for the data generators 
(one doesn’t need to define a 
sigma for a collection of Strings 
to be randomly sampled from).

The value type allows for optimized
implementations of the generator

below (for number of lines, not for
ease of comprehension to the reader).
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  def dogDataConstruct: Seq[DogInfo] = {     
    Seq(DogInfo("age", None, Some(CoreData.ageSigma), 
          Some(CoreData.ageMean), "Int"),
        DogInfo("weight", None, Some(CoreData.weightSigma), 
                  Some(CoreData.weightMean), "Double"),
        DogInfo("food", Some(Left(CoreData.foods)), None, None, "String"),
        DogInfo("breed", Some(Left(CoreData.dogBreeds)), 
          None, None, "String"),
        DogInfo("good", Some(Left(CoreData.goodness)), 
          None, None, "String"),
        DogInfo("hungry", Some(Right(CoreData.hungry)), 
          None, None, "Boolean"))
  }
  def generateOptimizedData(rows: Int, 
seed: Long): DataFrame = {                
    val data = dogDataConstruct.map( x => x.columnName -> {
            x.valueType match {
              case "Int" => getDistributedIntData(x.sigmaData.get, 
                             x.meanData.get, rows, seed)
              case "Double" => getDistributedDoubleData(x.sigmaData.get, 
                                x.meanData.get, rows, seed)
              case "String" => getDoggoData(x.stringData.get.left.get, 
                                rows, seed)    
              case _        => getDoggoData(
x.stringData.get.right.get, 
  rows, 
  seed)
            }
        }         
).toMap                                       
    val collection = (0 until rows).toArray      
      .map(x => {
        Dogs(
          data("age")(x).asInstanceOf[Int],
          data("weight")(x).asInstanceOf[Double],
          data("food")(x).asInstanceOf[String],
          data("breed")(x).asInstanceOf[String],
          data("good")(x).asInstanceOf[String],
          data("hungry")(x).asInstanceOf[Boolean]
        )
      })
      .toSeq
    collection.toDF()   
  }
}

After doing some testing on this code, the team members come to realize fairly quickly
that the relationship between generated row size and runtime is far from linear. In
fact, it’s much worse than linear, being more akin to O(n × log(n)) in computational

Builds the control 
payload for defining how 
the data generators will 
be called (and in which 
order)

An overly fancy and optimized (for code length) 
implementation for calling the data generators 
based on the configuration specified in the method 
dogDataConstruct (this implementation is fragile)

OK, so this is horrible
for accessing a value.
Two .get operations?

You’ve got to be
kidding me.

The root cause of the performance issues noticed below. This 
defaults to a Seq type but should be an IndexedSeq type to allow 
for O(1) access to individual values, instead of the current O(n).

Wraps each collection of 
data in a Map object to make 
accessing the values by name 
easier than doing positional 
notation

Major problem #2 with 
this code—mapping over 
the index positions of each 
collection to build rows. 
This is O(kn) in complexity.

Converts to a 
Spark DataFrame
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complexity. Generating 5,000 rows takes about 0.6 seconds, while a heavy load test-
ing of 500,000 rows takes around 1 minute and 20 seconds. With the full load test of
50 million rows, the idea of waiting around for 2 hours and 54 minutes is a bit much.

 What went wrong? They spent all of their time optimizing individual parts of the
code so that, in isolation, each executed as quickly as possible. When the entire code
was executed, it was a dismal mess. The implementation is just too clever in all of the
wrong ways. 

 Why is it so slow, though? It’s the last part that is so crippling. Although the mem-
ory pressure is minimal for this implementation, the row count generation within the
defined variable collection has to perform a non-indexed position lookup for each
Sequence in the Map collection. At each iteration to build the Dogs() objects, the
Sequence needs to be traversed to that point in order to retrieve the value.

 Now, this example is a bit hyperbolic. After all, if this backend developer was really
adept at their optimizations, they likely would have utilized an indexed collection and
cast the data object from a Sequence to an IndexedSeq (which would be able to drive
directly to the position being requested and return the correct value in a fraction of
the time). This implementation, even with that change, is still sniffing about in the
wrong place.

 The performance is terrible, but that’s only part of the story. What happens to the
code in listing 13.10 if another data type needs to be added to be handled in the same
manner as the String data? Is the developer going to wrap another Either[] state-
ment around the first one? Is that then going to be wrapped in another Option[]
type? How much of an unholy mess is this code going to become if a Spark Vector
type needs to be generated? Because it was built in this manner, optimized excessively
to an early state of a pre-MVP version of the solution, this code is either going to need
to be modified heavily throughout the project to keep it synchronized with the DS
team’s feature-engineering work or will need to be rewritten completely from scratch
when it becomes cumbersome and unmaintainable. The likeliest path for this code is
that it is destined for the infinite well of trash that is an rm -rf command.

 The following listing shows a slightly different implementation that utilizes a far
simpler approach. This code is focused on reducing the runtime by an order of
magnitude. 

object ConfusingButOptimizedDogData extends DogUtility {  
  import spark.implicits._
  private def generateCollections(rows: Int, 
seed: Long): ArrayBuffer[Seq[Any]] = {
    var collections = new ArrayBuffer[Seq[Any]]()  
    collections += getDistributedIntData(CoreData.ageSigma,
 CoreData.ageMean, rows, seed)                      

Listing 13.11 A far more performant data generator

Identical to the 
implementation 
in listing 13.10

To eliminate one stage of the iteration over the
collection, we can just append each generated

sequence of values (the eventual row data) to a Buffer.

Adds the first 
column’s data 
(the integers 
generated 
randomly for 
age) to the 
Buffer
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    collections += getDistributedDoubleData(CoreData.weightSigma,
      CoreData.weightMean, rows, seed)
    Seq(CoreData.foods, CoreData.dogBreeds, CoreData.goodness,
      CoreData.hungry)
      .foreach(x => { collections += getDoggoData(
        x, rows, seed)})                             
    collections
  }
  def buildDogDF(rows: Int, seed: Long): DataFrame = {
    val data = generateCollections(rows, seed)   
    data.flatMap(_.zipWithIndex)               
        .groupBy(_._2).values.map( x =>    
          Dogs(
            x(0)._1.asInstanceOf[Int],
            x(1)._1.asInstanceOf[Double],
            x(2)._1.asInstanceOf[String],
            x(3)._1.asInstanceOf[String],
            x(4)._1.asInstanceOf[String],
            x(5)._1.asInstanceOf[Boolean])).toSeq.toDF()
      .withColumn("hungry", when(col("hungry"), 
        "true").otherwise("false"))      
      .withColumn("hungry", when(col("breed") === "Husky",
        "true").otherwise(col("hungry")))                  
      .withColumn("good_boy_or_girl",  when(col("breed") === "Husky",
        "yesWhenFoodAvailable").otherwise(
          col("good_boy_or_girl")))     
  }
}

How did the code perform, once refactored? Well, it scales linearly now. The 5,000
rows of data took less than a second; 50,000 rows took 1 second; and 5 million rows
returned in just under 1 minute and 35 seconds. The 50 million target that was tested
from the previous implementation, however, returns that row count in approximately
15 minutes. That’s quite a bit better than the more than 174 minutes from the earlier
implementation.

 While this scenario is focused on a load-testing data generator and is esoteric for
most DS practitioners, much can be said for other aspects of more ML-centric tasks.
What would happen if someone were to focus on optimizing for performance one of
the least important (computationally, that is) aspects of an ML pipeline? What if
someone focused all of their energy on a project into, as we were looking at in the first
section of this chapter, the performance of casting columns to specific types?

 Figure 13.10 shows a general breakdown of most ML workflows for a training cycle.
Note the Fermi-level estimations for each listed execution action for a generic ML

Iterates through a collection 
of all the String and Boolean 
columns’ data and passes their
configured allowable values to 
the generator one by one

Calls the private method 
defined above to get the 
ArrayBuffer of randomly 
sampled data for testing

Collapses the data to tuples that 
contain the row values together 
in the correct generated order

Iterates over each row collection and 
generates the Dogs case class structure 
directly through position notation

Might as well cast the Boolean 
field to a String type to save a 
processing step later

If you’ve ever known
a husky, you’ll know
that they’re always

hungry.

A husky will do 
anything for 
food. It will do 
nothing for an 
absence of food.
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Time spent ingesting data, casting data

types, and cleaning or filtering bad data

Time spent running feature-engineering

tasks, validating data, inferring missing

data, indexing data, and creating the

feature vector

Time spent performing hyperparameter

tuning or cross-validation, and metric-

scoring validation

Time spent logging model artifacts,

recording metrics and parameters, and

registering a model evaluation run

If the ingestion and transformations
are taking a large portion of the
processing time (unlike here),
then focus here.

Most of the time, the model
training dominates the runtime
and memory pressure. Look at
how the models are being built
and where the hyperparameter
search space is, and look to
optimize control code first.

If this is ever a bottleneck, check
the API documentation for your
logging system. You’re probably
doing something wrong.

5%

2%

90%

2%

Figure 13.10 A generic breakdown of wall-clock runtime for tasks within an ML pipeline
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project. Where would you spend your effort if you were trying to optimize this job?
Where should you look first for problems and address them?

 As you can see, the vast majority of processing time for ML project code is primar-
ily focused on data ingestion manipulations (loading data, joining data, calculating
aggregations on data, and converting ordinal and categorical data to numeric repre-
sentations) and hyperparameter tuning. If you notice that data ingestion is absolutely
dominating the runtime of your project (provided that the platform you are utilizing
can support massive parallel ingestion and the data storage format is optimal for rapid
reading, as in Delta, Parquet, Avro, or a streaming source like Kafka), then look to
either replatform your data to a more efficient storage paradigm or research more
effective means of manipulating your data. 

 An incredibly small amount of time is spent on logging, model registration, and
basic data manipulation tasks. Therefore, if these show a problem, the fix is likely
going to be done relatively easily by reading the API documentation for the module
that you’re utilizing and correcting the errors in your code. 

 Knowing this, any optimization efforts should be primarily focused on reducing
the total runtime and CPU pressure of these high temporal-bound stages of a job and
not wasted on creating complex and clever code for insignificant portions of the solu-
tion. The key takeaway is that the process of optimizing ML code should focus on a
few key critical aspects:

 Wait until the entire code base functions end to end before spending time optimizing code.
The sheer number and frequency of changes that happen during development
will likely make rework of optimized code a frustrating experience.

 Identify the longest-running portions of the code. Attempt to get clever to make these
more performant before tackling the portions that are already comparatively fast. 

 Don’t reinvent the wheel. If a language construct (or similar functionality in a com-
pletely different language, for that matter) will remarkably speed up or reduce
memory pressure of what you’re trying to do, just use it. Implementing your
own linked list abstract class or designing a new dictionary collection is the ulti-
mate act of hubris. Just use what is out there and move on to solving a more
worthwhile problem.

 Explore different algorithms if the runtime is truly terrible. Just because you really like
gradient boosted trees doesn’t mean that they’re the ideal solution to every
problem. Perhaps a linear model could get relatively close in performance at a
fraction of the runtime. Is 0.1% accuracy worth a 50-times increase in budget to
run the model?

Embodied within the collective DS-DNA of many teams that I see engage in prema-
ture optimization and generalization is the belief that the technical aspects of ML
project work supersede the problems that they are trying to solve. They love the tools,
the amazing new work being pushed out by large ML-focused organizations, and the
rapid advancements being made continually in the ecosystem of ML. These groups
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care far more about the platforms, the toolkits, the frameworks, the algorithms, and
the tech side of ML work than they do about making sure that their approach is going
to help their business in the most efficient and maintainable way possible.

13.4 Do you really want to be the canary? Alpha testing and 
the dangers of the open source coal mine
Let’s pretend for a moment that you are incredibly new to the field of DS. So new, in
fact, that it’s your first week on the job. In the office, you look around your desk.
Not a single DS on the team has been employed in the profession for more than a
month. The manager, an experienced software engineer, is busy with managing not
only the DS team, but also the business intelligence team and the data warehousing
group, and is busy interviewing additional candidates to fully round out the new
DS team. 

 As a first task, a low-hanging fruit modeling project is generated for the team to
tackle. Being told that no, you can’t use your laptops to do the work as you did in
school, the direction that the manager gives all of you is to select a framework for
developing models. 

 Within the first few days of research and investigations into platforms and solu-
tions, one of the team members catches wind of a new framework being discussed in
blogs. It seems to be forward-thinking, feature-rich, and easy to use. The general dis-
cussion around what is planned to be built for it over the coming months is incredibly
powerful. There is talk about supporting not only CPU tasks in a distributed massively
parallel processing (MPP) system written in C++ that has a slick-looking Python API as
an interface, but also GPU clusters and future plans to support a quantum computing
interface (quantum oracle optimization of superposition of all possible solutions to
least squares problems)!

 If you’ve ever read the source code for an ML framework (one that’s used by a
majority of professionals in solving actual problems, that is), contributed to one, or
built even a wrapper around the functionality exposed in one of the more popular
open source ones out there, you’ll realize how silly this “new and hot” framework is. If
that describes you, you’d be in the right-hand section of figure 13.11 (not bitter, but
rather, wise).

 Let’s agree that the team we’re on is entrenched within the middle column of fig-
ure 13.11. The team members’ naivete blinds them to the dangers that they’re about
to face in embracing this half-baked hubristic monstrosity that an overly ambitious
developer is attempting to build. We try it out, we volunteer to be the canary, and our
project pays with its life.

 The end result of working in this new and heavily under-construction framework is
inevitable: a complete and thorough failure. The failure of getting the project off the
ground isn’t because of the API they’re using, nor is it in how they are tuning their
solution. The real failure is in the hubris of the developer and the blog hype-o-sphere
that surrounds bombastic claims of new functionality and frameworks. 
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There is absolutely nothing wrong with trying things out. I frequently try out these
newly announced packages to see if they’re worthwhile. I do my testing on open
source datasets, run them in isolated environments that won’t contaminate my class
path with flaky dependencies, and run them through their paces. I evaluate their

The hype-o-sphere
What the innocent

and naive take away
What the experienced
(and possibly bitter)

take away

Blog spam

Hey Everyone!

Check out the new ML

framework that runs on remote

quantum computers at a fraction

of the cost of GPUs!

Clickbait blog spam nonsense

OMG!

We just used this new quantum

computing framework, and it

helped us cure 37 types of

cancer in one week!

Editorial review

While still missing a few critical

features, this new ML framework,

utilizing Apache Arrow as the

foundational data serialization

format and highly optimized

BLAS operators for algorithmic

efficiency in a novel distributed

system, shows some promise . . .

Serious blog review

While I like the features that are

present right now, I feel like the

backlog features need to be fully

developed in order to make this a

fully fledged solution for us. I’ll be

keeping an eye on the progress,

though!

Developer panic three months after

0.1 release

Want to help contribute to the

fastest-growing open source ML

framework community? We’re

looking for skilled C++

developers, CUDA folks, and

anyone with experience building

production ML solutions!

“Quantum computing! Wow! I bet

that is . Let me try theso fast

demo!”

“Well, I tried the demo. I didn’t

see anything about QC, but I like

the APIs in the demo. It just

feels more Pythonic than pandas

and NumPy.”

“Wow, a lot of people are talking

about this framework! We really

need to use this for our next

project!”

“It’s decided. We’re running with

this if <insert tech influencer

here> says that it’s good.”

“I don’t know C++, but I’ll contact

them and offer my suggestions

for features! I’ll also file a few

dozen issue tickets in GitHub to

help them out!”

“Excuse me, what did you say?”

“What is this nonsense?”

“BLAS operators? Who cares?

NumPy, Spark, and R all use

those standards for basic linear

algebra. That does not a good

framework make.”

“Half-baked. I’ll evaluate it

thoroughly at the 1.0 release,

and if does what it says it does, I’ll

think about porting a few code

bases over to it. Maybe.”

“Bit off a bit more than you could

chew, eh? Feeling a bit

overwhelmed? Maybe you

shouldn’t have flown so close to

the sun.”

Figure 13.11 The hype? It’s real. It also usually means that the object of that hype is really bad (or 
at least not what it claims to be).
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claimed functionality, check for the ease of enhancing their functionality with custom
implementations, and see how the system handles different modeling tasks. Is the
memory utilization stable? Is the CPU usage on par (or, hopefully, better!) than com-
parable systems in widespread use? I ask all of these questions and more through my
validations of their claims. 

 What I never do is attempt to build a project that a business depends on while
using one of these packages in their early stages. There are several reasons for this:

 The API’s are going to change—a lot. The entire interface will likely be completely
refactored by the time a stable 1.0 release happens. You’ll have to change your
code to accommodate.

 Things will be broken. Maybe a few things, but usually a lot of things at the begin-
ning of a project’s alpha release phase. If you build something important on
top of flaky code, you’ll be dealing with an unstable project code base. 

 There’s no guarantee that the project isn’t going to become shelfware. If a seriously
strong community doesn’t exist around the project with hundreds or thousands
of contributors and buy-in by a significant portion of the ML community, the
code base is likely going to become extinct and abandoned. You really don’t
want your project running on dead code.

 Even at the first announced release, tech debt is in there. Corners were cut, shortcuts
were traversed, and bugs will be present. It may work great for the demos and
be flawless for the prepackaged examples, but it likely won’t work well for
your highly specific custom logic that you need to implement to solve your
predictive modeling task for your business. At least not until much later in its
life cycle.

 Just because it’s new doesn’t mean it’s better. Before deciding on something as critical
as a framework or platform, you absolutely have to ignore the marketing hype
from companies, blog posters, and the noisy buzz of advertisements. Test things
out and perform a scientific study of your options. Select the solution that
makes the most sense from a productivity, maintainability, stability, and cost per-
spective. The shiny new toy could be all of those things, but in my experience,
it’s almost never the case (although sometimes these projects do grow into
exactly that eventually, so keep an eye on them).

Embracing another person’s hubris is one of the most destructive tasks that can
plague an ML team. By not doing proper testing and research of options about
how and where to run your code, you run the risk of getting duped into a system
that is fundamentally broken and will end up costing your team far more time and
money in just keeping the lights on rather than innovating into new project solu-
tions that you should be working on. Let your testing phase be your canary, not
your ML projects.
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13.5 Technology-driven development vs. solution-driven 
development
Let’s shift gears from the newbie-crew of DS members in section 13.4 and take a look
at working in a group filled with highly experienced ML engineers. Let’s suppose that
not a single person on the team has fewer than 20 years of software development
experience, and each has grown bored and tired with building different flavors of
deep learning models, gradient boosted trees, linear models, and univariate forecasts. 

 They all yearn to build something to automate away the tedium of the hundreds of
predictive models that they are working on. What they want more than anything is a
challenge. 

 When faced with their next major project, an association-rules-based implementa-
tion (were they to use a tried-and-true approach), they decide to get clever. They feel
as though they could write a more performant version of the FP-growth algorithm on
Apache Spark and set to work deriving an equation for an improved version of an
FP-tree that can be mined dynamically in such a way as to eliminate one of the core
scans of the tree for item collection retrieval. 

 While well-intentioned, they end up spending three full months working on their
algorithm, testing it, and proving that it retains nearly identical results to the refer-
ence FP-growth implementation but at a fraction of the time to build and scan the
tree. They’ve created a novel algorithm implementation and set to work on using it to
solve the business use case that they agreed to develop.

 They crack some beers, slap some backs, and get to work on writing their blog post
and whitepaper, and prepare for some conference speaking engagements. Oh boy,
everyone is going to know just how clever they are now!

 They release the solution into production. Everything is working well, and the
algorithm is, in their minds, paying for itself every day in cost savings of remarkably
improved runtimes. That is, of course, until a major revision for the underlying frame-
work is released. In this new runtime, significant changes are made to the way these
trees are constructed in the open source framework, as well as a fundamental level of
optimization in how antecedents are building the consequents. 

 The team is demoralized at the prospect of adjusting the model to fit in with the
underlying changes in the developer-level APIs that they used to build their solution.
Figure 13.12 illustrates their plight and what they should have done instead.

 As you can see, the key decision that derailed the project was in not using preexist-
ing standards that have been proven many times before. Not only did they have to
build a solution to support the business use case, but they had to build an entirely new
algorithm, integrate it to a framework’s low-level design paradigms, and fully own the
implementation to ensure that they can continue to support the business use case that
drove the creation of their unique algorithm.

 Because their algorithm leveraged so many of the internal structures of the frame-
work to speed up development processes, the team is now left with a new quandary.
Do they update their algorithm to work in the new framework version, hoping that it
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will continue to outperform the provided FP-growth algorithm? Or do they refactor
their entire solution to work with the standard algorithm?

 There’s no good answer here. Their custom framework is destined to either
become shelfware or incur a few quarters’ worth of conversion to make it work. 

 The principal problem with their attempt was building a custom implementation
that they weren’t prepared to support. They were building a solution not to solve the busi-
ness problem, but rather for notoriety. They wanted to be noticed and appreciated for
their skills. The team failed to realize that, while there is nothing really wrong with
building new algorithms and advancing the state of the profession, the motivation
behind building it should be centered on the necessity to solve a problem.

New project

from new business

unit

“Oh, another

FP-growth

implementation?

Didn’t we build one of

these last year?”

The quandry

Adapt existing

code?
Yes No

“A new paper was published last

month that explains a more

accurate way of solving this!”

“Oh, wow . . . this is . . . way more

complicated than we thought. We got

this, though!”

Three months later . . .

“Woo-hoo! 40% optimization in

runtime performance!!!”

“They just updated Spark?! We . . .

have to . . . refactor our model??”

Why did we do this?

A few sprints

of work . . .

“Cool. That team

seems really happy

with the 8.7% lift to

sales that they got.

What's next?”

“Well, we could just

change the feature

structure, add in some

new hierarchical

clustering . . .”

Figure 13.12 An ML technical debt choose-your-own-adventure path 
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 Had the team members approached the problem with a solution-driven mindset,
they never would have entertained the possibility of creating a custom solution. Per-
haps they would have contacted the maintainers of the existing popular open source
framework and volunteered to create a new version that could be supported by that
framework’s community. If there was a distinct need to reduce runtime to meet an
SLA and a novel algorithm needed to be built, that’s fine. If you encounter that need,
go build it. Just know that you need to maintain that code for as long as that business
use case need exists. 

 I find myself increasingly more and more allergic to this concept of TDD, as it just
adds more stress to an already stressful profession. By pursuing the easier (and, argu-
ably, more boring) solution to a problem, particularly if you already have an existing
solution to a nearly identical problem in place, you’re leaving the business in better
hands. You’ll have less maintenance work to do and more time to creatively use your
talents at solving more interesting future problems.

Summary
 Pursuing simple implementations that don’t overreach the immediate needs of

a project will save a great deal of refactoring later when the functionality needs
to change. Less is more.

 While everyone is at a different stage of growth in software development skills,
having a team focus on utilizing common design patterns that are easy to
understand and read will ensure that everyone on a team can contribute to and
maintain a code base.

 Building unnecessary functionality, complex interfaces, and clever unique
implementations within an ML code base only means that you’re having to sup-
port and maintain more code, providing no value to the organization. Keeping
a code base only as complex as it needs to be to solve a problem is always a wise
choice.

 Thoroughly investigating the capabilities, utility, and most important, the needs
of any new technology to determine whether it is useful for a project is essential
before deciding to integrate any such tooling into a project.

 Take care when working on a project for a business need to focus on imple-
menting only what is needed to solve the problem. Anything apart from what is
required for the project is vanity development and detracts from the maintain-
ability of a solution.





Part 3

Developing production
machine learning code

Once a project is ready to ship to production, a few final tasks remain
before the implementation is ready to be scheduled for deployment. While it’s
tempting to see a test-passing build of an implementation as a complete and
ready-for-the-real-world deployment, a few items need to be considered to
ensure that people on call aren’t getting paged every few hours. 

 From drift monitoring, to principles of code architecture (which will aid in
performing final peer reviews), prediction-quality assurance, logging, and serv-
ing infrastructure, these last items are the most oft overlooked. When ignored,
they are some of the most regrettable elements to forget for those who have
lived without their proper design and implementation.

 In this section, we’ll go over these more advanced topics that can help make
production deployment easier and help ensure that your models are explain-
able, able to be retrained, monitored, and (relatively) easy to update.





Writing production code
We spent the entirety of part 2 of this book on the more technician-focused aspects
of building ML software. In this chapter, we’ll begin the journey of looking at ML
project work from the eyes of an architect. 

 We’ll focus on the theory and philosophy of approaches to solving problems
with ML from the highly interconnected, intensely complex, and altogether holis-
tic view of how our profession functions. We’ll look at case studies of production
ML (all based, in one way or another, on things that I’ve messed up or have seen

This chapter covers
 Validating feature data before attempting to use 

it for a model

 Monitoring features in production

 Monitoring all aspects of a production model 
life cycle

 Approaching projects with the goal of solving 
them in the simplest manner possible

 Defining a standard code architecture for ML 
projects

 Avoiding cargo cult behavior in ML
399



400 CHAPTER 14 Writing production code
others mess up) to give an insight into elements of ML development that aren’t fre-
quently talked about. These are the lessons learned (usually the hard way) when we, as
a profession, are more focused on the algorithmic aspects of solving problems, rather
than where we should be focused:

 The data—How it’s generated, where it is, and what it fundamentally is
 The complexity—Of the solution and of the code
 The problem—How to solve it in the easiest way possible

As we discussed in previous chapters, the goal of DS work is not merely in utilizing
algorithms. It’s not in a framework, a toolkit, or a particular model infrastructure that
seems increasingly hot or popular. 

NOTE DS work should be solely focused on solving problems, using data, and
applying the scientific method to our approach to ensure that we’re solving
them in the best way based on the data that we have available.

With this focus in mind, we’re going to look at aspects of production development in
the real world, specifically some uniquely destructive aspects of building solutions that
might not seem obvious to the starry-eyed algorithm-focused practitioners who haven’t
been burned enough by poorly implemented solutions. Everyone who works in this pro-
fession long enough will learn these lessons, one way or another. The sooner you can
learn from someone else’s mistakes, the less of a chance that the learning will be as pain-
ful as it has been for some of us who have been doing this since before it was cool.

Where are all of the mentions of tools and frameworks?
As I’ve mentioned in many places throughout this book, successful ML is not about
a set of tools. It’s not about a particular platform either. 

What sets a successful project apart from those that fail to continue solving their rai-
son d’être isn’t some clever API or hyped-up grandstanding framework or packaged
solution. The four primary elements that make a project successful are simply these:
the quality of the data, the minimum level of complexity employed to solve the prob-
lem, the ability of the solution to be monitored (and easily fixed), and, above all else,
how well the solution solves the problem. Everything else, as a colleague of mine is
wont to say often, is just fluff. 

Throughout this chapter and the next, we’ll focus on these essential elements—
keeping data clean, monitoring the health of both data and models, and focusing on
simplicity in solution development.

While frameworks, tools, platforms, and other quality-of-life utilities make the produc-
tion process of ML solutions easier (and we’ll delve into these topics in the last few
chapters), those are not the be-all and end-all guarantors of success. They’re all there
if you need them (with the exception of platforms—you definitely need to select the
one that works best for your team and company) and can help solve a lot of specific
problems that some organizations will face, but they’re not universal. 
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14.1 Have you met your data?
What I mean by meeting isn’t the brief and polite nod of acknowledgment when pass-
ing your data on the way to refill your coffee. Nor is it the 30-second rushed socially
awkward introduction at a tradeshow meetup. Instead, the meeting that you should be
having with your data is more like an hours-long private conversation in a quiet, well-
furnished speakeasy over a bottle of Macallan Rare Cask, sharing insights and delving
into the nuances of what embodies the two of you as dram after silken dram caresses
your digestive tracts: really and truly getting to know it.

TIP Before writing a single line of code, even for experimentation, make
sure you have the data needed to answer the basic nature of the problem in
the simplest way possible (an if/else statement). If you don’t have it, see if you
can get it. If you can’t get it, move on to something you can solve.

As an example of the dangers of a mere passing casual rendezvous with data being used
for problem solving, let’s pretend that we both work at a content provider company.
Because of the nature of the business model at our little company, our content is listed
on the internet behind a timed paywall. For the first few articles that are read, no ads are
shown, content is free to view, and the interaction experience is bereft of interruptions.
After a set number of articles, an increasingly obnoxious series of pop-ups and disrup-
tions are presented to coerce a subscription registration from the reader.

 The prior state of the system was set by a basic heuristic controlled through the
counting of article pages that the end user had seen. Realizing that this would poten-
tially be off-putting for someone browsing during their first session on the platform,
this was then adjusted to look at session length and an estimate of how many lines of
each article had been read. As time went on, this seemingly simple rule set became so
unwieldy and complex that the web team asked our DS team to build something that
could predict on a per-user level the type and frequency of disruptions that would
maximize subscription rates.

 We spend a few months, mostly using the prior work that was built to support the
heuristics approach, having the data engineering team create mirrored ETL processes
of the data structures and manipulation logic that the frontend team has been using
to generate decision data. With the data available in the data lake, we proceed to build
a highly effective and accurate model that seems to perform exceptionally well on all
of our holdout tests.

The tenets of successful ML most certainly are universal. If you don’t get those fig-
ured out, it doesn’t matter how fancy of a toolkit that you use. It doesn’t matter if
you have state-of-the-art CI/CD, a feature store, autoML, feature-generation facto-
ries, GPU-accelerated deep learning, or any other hyped tech term in the ML space.
Those nifty tools won’t save your project if your data sucks, your code is unmain-
tainable, and you’re not making sure that your internal business customers are
happy with the solution.
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 It is upon release to production that we realize an issue, shown in figure 14.1. What
we, as the DS team building the solution, failed to do was to check the conditions of
the data that we were using for features.

Our model is trained from the data present in the lakehouse on object storage. What
we didn’t realize, when working on the extracted data during model development,
was the mechanism of that data extract. We assumed that the features that we were
using would be available directly within the data lake in near real-time. However, the
data engineering team, to keep costs low and minimize the impact to production sys-
tems, developed its ETL from Redis to be a periodic dump on a 15-minute triggered
window. From the data that we used for training, we saw consumption data from a ses-
sion, split up into 5-second chunks of activity that we could use to readily create roll-
ing aggregation statistics as a primary feature. It stands to reason that we could make
the assumption that data would be loaded via a 5-second trigger continuously.

 Once the solution entered production, it wasn’t just that the effect wasn’t personal-
ized based on activity. Rather, the massive problem was that everyone was getting hit
with the same prediction of “show all the ads and pop-ups” immediately upon seeing

Since the aggregation state is stale, the model
doesn’t work when put up for serving. The “lines
read” value is always matched to the paginated
line count of display per article.

The DS team just sees the
aggregated statistics present in
the final table.

Broken because of
a poor assumption
about the data

They are unaware of the time
lag aggregation calculated here.

15-minute
aggregation
trigger

Feature set
Trained models

Predictions of
when to show

pop-ups and how
aggressive the
warnings are to

subscribe

Database

Backend ETL process

Accumulated lines
read per session

per page
(streaming)

(Near real-time updates)

Session data
(in-memory data
structure store)

(Near real-time updates)

Cookie-based
user historical
tracking data

Figure 14.1 Failing to understand the data SLAs makes for a terrible model in this case.
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their first article. With a complete lack of relevant feature data, the model was ren-
dered completely ineffective. We made a massive mess of the website for a full day,
forced a complete re-architecting of the project, and ended up throwing away most of
the solution that was based unknowingly around data that couldn’t easily be made
available to the model. Whoops.

 Let’s take a look at three primary guiding principles that I think about when start-
ing DS projects and why they’re important. If these three principles aren’t adhered to,
in my experience, the ability of a project to stay in production is slim to none—regard-
less at how cleverly implemented it is, how successful it is at solving a problem, or how
much enthusiasm there is within the organization to use it.

14.1.1 Make sure you have the data

This example might seem a bit silly, but I’ve seen this situation play out dozens of times.
Having an inability to get at the right data for model serving is a common problem.

 I’ve seen teams work with a manually extracted dataset (a one-time extract), build
a truly remarkable solution with that data, and when ready to release the project to
production, realize at the 11th hour that the process for building that one-time
extract required entirely manual actions by a DE team. The necessary data to make
the solution effective was siloed off in a production infrastructure that the DS and DE
teams had no ability to access. Figure 14.2 shows a rather familiar sight that I’ve borne
witness to far too many times. 

 With no infrastructure present to bring the data into a usable form for predictions,
as shown in figure 14.2, an entire project needs to be created for the DE team to build
the ETL needed to materialize the data in a scheduled manner. Depending on the
complexity of the data sources, this could take a while. Building hardened production-
grade ETL jobs that pull from multiple production relational databases and in-memory
key-value stores is not a trivial reconciliation act, after all. Delays like this could lead
(and have led) to project abandonment, regardless of the predictive capabilities of
the DS portion of the solution.

 This problem of complex ETL job creation becomes even more challenging if the
predictions need to be conducted online. At that point, it’s not a question of the DE
team working to get ETL processes running; rather, disparate groups in the engi-
neering organization will have to accumulate the data into a single place in order to
generate the collection of attributes that can be fed into a REST API request to the
ML service. 

 This entire problem is solvable, though. During the time of EDA, the DS team
should be evaluating the nature of the data generation, asking pointed questions to
the data warehousing team:

 Can the data be condensed to the fewest possible tables to reduce costs?
 What is the team’s priority for fixing these sources if something breaks down?
 Can I access this data from both the training and serving layers?
 Will querying this data for serving meet the project SLA?
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Knowing the answers to each of these questions before beginning modeling work can
help inform whether to engage in the project work. If the data isn’t ready for con-
sumption, the answers can give the DE team time to prioritize and asynchronously
work on building these datasets while modeling is happening on a manually extracted
copy of the final dataset.

14.1.2 Check your data provenance

Adding on to the basic questions surrounding data availability is the incredibly
important question of provenance of the data. Specifically, by what mechanism does the
data get into the data warehouse or data lakehouse? Knowing where the data comes
from that’s potentially going to go into your project helps you understand how stable
it is, how clean it’s going to be, and how risky it will be to include it in the model. 

 To illustrate the importance of provenance, let’s suppose that we have three sepa-
rate tables that we’re sourcing the data from to solve a particular supervised learning
problem. All three tables exist within a data warehouse backed by cloud object stor-
age, and each is in parquet format. Each table, from the perspective of the end user of
the data contained therein, appear to be similar. A bit of overlap occurs in each, as

Wild training
data has
arrived!

Lots of

hard work

The amazing model!

Problems = solved!

“OK, we solved the heck out of this. Let’s predict on the production data!”

(Full disclosure: I
have never seen
an ML team get this
excited over a
solution.)

Dawning realization...

Uhmmm . . .
Hang on, where’s our

inference data?

What do you mean, we don’t
have any ETL set up?
Where did we get our training
data from?

Frantic searching

Frantic meeting with data engineering team

We did a manual extract.

And there was much weeping
and gnashing of teeth . . .

It’s going to take
three to buildmonths

the ETL?!

Figure 14.2 It’s best to make sure you have data before shipping a solution to production.
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some data appears to be duplicated information of the same underlying information,
but all the tables can be joined to one another based on foreign keys. 

 Figure 14.3 depicts the visible information when looking at the data in these three
tables.

By looking at the row counts and the field names, we can clearly see that we’re looking
at e-commerce data. Table A is our master members table, B our orders data, and C
our site traffic data. If this is the end of our investigation into where the data comes
from to populate these tables, we could be setting ourselves up for a bit of a rude
awakening when utilizing this data for modeling purposes.

 Before we start using this data to create a feature set, we need to know the inges-
tion mechanism. Without understanding when the data is loaded and at what fre-
quency each table is updated, any joins that we do to create an imputation vector
could have significant correctness issues. 

 Primarily because each of these datasets is produced and orchestrated by different
engineering teams, but also because of the nature of the systems generating the data,
there is a very low probability that there is agreement on recent data among them. For
instance, on the most recent site activity data, the subsequent purchase event data may be
delayed for more than an hour. Understanding these SLA considerations is absolutely
critical to ensuring that feature data generated from these ETL processes is accurate. Fig-
ure 14.4 shows an expanded view of these tables, with some additional data obtained by
questioning the DE team that owns the jobs that populate the data into the tables.

 Having these new details from the DE team, we can make some fairly critical deci-
sions about the data sources. We could then enter this information in our data catalog
solution. Examples of this might look like table 14.1.

TABLE A TABLE B TABLE C

• MemberID (PKEY)

• LocationID

• Age

• Income

• Homeowner

• Education

• OrdersLast12Months

• SpendLast12Months

• MembershipType

• OrderID (PKEY)

• MemberID (FKEY)

• OrderMonth(SKEY)

• ItemID

• PurchasePrice

• Quantity

• ShipmentType

• SKU

• Discount

• SessionID (PKEY)

• MemberID (FKEY)

• LocationID

• PageID

• ItemID

• ClickEvent

• AddToCartEvent

• SaveEvent

• Date (SKEY)

Row count

3,895,223

Row count

976,322,519

Row count

73,356,331,100,377

PKEY = Primary key

SKEY = Secondary (partition) key

FKEY = Foreign key

The data that we see in our
lakehouse tables

Figure 14.3 The three tables of data present in the lakehouse tables available for our project
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Table 14.1 Data catalog entries for our sample user-tracking data

Table name Update frequency Description/notes

Members table 10 minutes Overwrite of existing data with changes. Historical 
changes reflected only in raw tables. If state change 
is needed for modeling, use Members_Historic 
table. Owned by frontend web team.

Order table 1 hour + daily reconcile Orders data from live order and shipment source sys-
tems. To get latest state, must use Window function 
on version key value to get true natural key entries. 
Owned by backend marketplace engineering team.

Site Activity table Real time + daily reconcile Insertion order is not guaranteed to be correct. 
Data may be hours late when users are on a mobile 
device. Member use of VPN can cause bad location 
data. Changes to nested schema elements. Owned 
by DE team.

Members table Orders table Site Activity table

• MemberID (PKEY)

• LocationID

• Age

• Income

• Homeowner

• Education

• OrdersLast12Months

• SpendLast12Months

• MembershipType

• OrderID (PKEY)

• MemberID (FKEY)

• OrderMonth(SKEY)

• ItemID

• PurchasePrice

• Quantity

• ShipmentType

• SKU

• Discount

• SessionID (PKEY)

• MemberID (FKEY)

• LocationID

• PageID

• ItemID

• ClickEvent

• AddToCartEvent

• SaveEvent

• Date (SKEY)

Row count

3,895,223

Row count

976,322,519

Row count

73,356,331,100,377

SCD type 1

(Overwrite old data)

SCD type 2

(Append new versioned

rows)

Append only

No ordering guarantees

Synchronized from operational
database every 0 minutes1

Because this data is overwritten and the
history is dropped, we can’t look at the
historical order and activity with the
member attributes (they are out of
synchronization in a temporal sense)!

If we try to join orders to activity to
link events, very recent data has a
high probability of not matching!

Structured streaming ingest with
5-second trigger from Kafka
cluster. Daily reconciliation for
extremely late-arriving data and
malformed records.

Synchronized from operational
database every hour with daily
reconciliation jobs to cleanse
incorrect data and handle late
arriving data

Figure 14.4 The additional information gained from chatting with the DE team about where the data 
comes from, how it gets there, and critical details about what can and can’t be done with it
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Based on these notes collected in the feature store, the DS team can understand the
nuances of the data a great deal better. Thoroughly cataloguing the nature of source
data systems can prevent one of the worst possible issues that can plague an ML solu-
tion: insufficient data available for generating quality predictions.

 By taking extra time at the start of the production development phase to understand
just where, when, and how data arrives at the source system used for both training and
inference, a great many problems can be avoided. We can understand what data can
and cannot be used for particular use cases (in this example scenario, the join between
member attributes and either of the other tables for historical correlation purposes).
We can identify a project’s limitations based on the defined characteristics of end use; in
our example, we would clearly not be able to use the activity data for an extremely low-
SLA use case. If the project requires a freshness of data that’s shorter in update fre-
quency than that provided by the current ETL process, we can explore shortening that
ETL process ahead of time to prevent a catastrophic production release issue. 

 With adequate time to prepare, the DE team can be working in parallel to the ML
development work to provide the required data in the format needed to ensure that
the implementation is acting upon recent-enough data to support the project’s needs. 

 These issues of data provenance become compounded greatly when we start think-
ing of compliance issues. Here are some elements to think carefully about:

 Are there regulations surrounding the data that you want to use for modeling,
such as the European Union’s General Data Protection Regulation (GDPR),
personally identifiable information (PII), or Health Insurance Portability and
Accountability Act (HIPAA)? If so, please adhere to those requirements.

 Are there internal restrictions about visibility into the data that you’re using?
 Is there an inherent bias in your data that could ethically compromise the

model that you’re building? (If you’re interacting with data about humans, the
answer is likely a resounding yes, and you should think carefully about the prov-
enance of the data being collected.)

 How often do the source systems and processes feeding these tables go down
for maintenance or fail outright? Is the ETL generally stable?

 How often does the schema change on these tables? Are there rules and pro-
cesses for nested elements in the data structures (mostly applicable to web-
based datasets) that govern whether they can be changed?

 Is the data that is generated coming from an automated process (an applica-
tion) or from human input? 

 Are data validation checks running to ensure that only clean data is allowed to
be entered into these tables?

 Is the data consistent? Is the source durable? Is isolation involved in the writing
of data to the tables to eliminate the chances of correctness issues?

We have an exhausting litany of other things to check for with regards to data quality
when information comes from disparate systems. The important thing to keep in
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mind, above all others in regard to data, is to trust nothing and verify everything before
using any dataset. Ask questions and get the information about your data before wast-
ing time on building models that wouldn’t work for a use case based on the nature of
the data you’re using to train on. 

 Throwing unknown and potentially incorrect data into a model is a surefire way to
create total and completely unusable garbage for a solution. Trust me, I’ve learned
this lesson more times than I’d care to admit. 

14.1.3 Find a source of truth and align on it

I’ve yet to work at, with, or for a company that has immaculate data. While many orga-
nizations have nearly perfect data models, highly robust data engineering pipelines,
and effectively flawless ingestion architecture, the concept of perfection in the data
itself is a nigh-impossible goal to attain.

 Let’s imagine that we’re in a business-to-business company, providing HR services
to a wide breadth of industries. Our DE team is world-class and has employed from
the very early days of the company a data model that has handled business changes
over the years remarkably well. The information is laid out in a flexible relational star
schema and allows for rapid access for analytics within the data warehouse. 

 Three years ago, things began to change with the advent of moving to cloud comput-
ing and the paradigm shift that a cost-effective data lake (cheaper than an on-premises
solution) brought with it. Gone were the days when all new data source generation for
analytics had to go through the DE team. Any group in the company could create
data, upload it to the object store, register the source as a table, and utilize it for their
purposes. The democratization of data access promised by the cloud vendor was
surely to be a true revolution in the effectiveness and insights into our company!

 It didn’t quite work out that way, though. As the lake festered and became a swamp,
multiple copies of similar-seeming data began to be birthed. Figure 14.5 shows a sin-
gle hierarchal representation of industry types in multiple locations within the analyt-
ics layer of the data lake.

 If we’re about to work on our ML project by using these product hierarchies avail-
able in the data lake, which one do we choose from? With so much overlap and incon-
sistency, how do we figure out what is the most relevant?

 There is simply no way to test all of them—particularly, as is mentioned at the bot-
tom of figure 14.5, considering that multiple versions from the same group exist at
various commit periods. What should be done?

 The most successful approach that I’ve found is to align the teams on a process that
provides a single source of truth that meets each of their needs. This doesn’t imply
that everyone needs to conform to the same definition of which groups of companies
need to go in which aggregation bucket, though. Rather, it means the following:

 Maintaining a single copy of each department’s definitions that supports its
needs for interacting with the data (no _V2 or _V37 copies of the same data,
adding confusion).
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 Choosing the correct type of slowly changing dimension (SCD) updates to
accommodate the needs and uses of each team for this data. (Some teams may
need historical references, while others may need only the most recent values.)

 Standardizing. If it’s a duck, call it a duck. Calling things by unique and cute
names like aquatic_avian_waterfowl_fun_plumage doesn’t do anyone any favors.

 Periodic housekeeping. If the data isn’t getting used, archive it. Keeping the
lake healthy means that everyone can swim in it.

 Inventorying the data. Use entity-relationship (ER) diagrams in a knowledge
repository, build or buy a data catalog, or maintain detailed documentation
about each column in each table. 

While all of these tasks may seem like an awful lot of work—and they are—they’re the
foundation on which modern businesses run. Having intelligible data doesn’t just
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Source of truth for company, but not
specific enough for end-use cases

Data warehouse
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Software development
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IT consulting
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Analytics_IT_Industries

Software vendors cloud

Cloud service providers

Desktop software vendors

Network

Research—scientific
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Cloud
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Analytics_Entertainment_Industries

Hospitality
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Sports and leisure
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The companies in each of these
hierarchal collections . . .

. . . don’t match the ones grouped
here.

With eight major analytics groups
in the company with eight different
groupings of industry and companies,
which one do we use for ML?

This is a joke. In a real company,
there would be 37 different
versions of this with no versioning
name associated with it.

Figure 14.5 With self-service enabled on a data lake, having no unified source of truth can make everyone’s 
lives more difficult.
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benefit ML projects, but allows for the same (mostly) clean data to be shared among
the analytics groups and the DS group(s). It translates to everyone speaking the same
language when conversing about the state of the business and the innovative future
work that can leverage that data. 

 In the vein of data quality, one thing that you should never attempt to do as part
of an ML project is to correct the data yourself (even if it is tempting to do so). The
single-source-of-truth concept is far more important than you might believe.

14.1.4 Don’t embed data cleansing into your production code

This is going to be a sensitive subject. Particularly for your data engineering friends. 
 Let’s pretend that we’re working on a project intended to estimate whether a

customer should be automatically enrolled in a credit card offer that provides
a higher limit than their current card. We’ve explored the data available in the data
warehouse and have settled on the minimal number of features for building a proto-
type (keeping things simple to begin with) and the three tables required to source
the data.

 While doing data exploration and validation on the data, we encounter issues.
From duplicate data, to inconsistent product descriptions, to scaling factor issues
with the raw financial transaction historical data present, we have our work cut out
for ourselves.

 If we were to utilize the data-cleansing tools available in our ML platform to
address these issues, we’d have an entire module in the code base devoted simply to
data preprocessing tasks in order to fix the data. Running the data through the pre-
processing stages, followed by feature engineering, and finally model training and val-
idation, we’d have a process that works pretty well for generating a model.

 What happens at prediction time, though? With the source data in such a poor
state of quality, we have three options if we stick with this paradigm:

 Replicate the imputation, de-duplication, and regex code for a prediction job.
(A bad idea because of maintainability concerns.)

 Create an independent utility preprocessing module that can be called from
both the training and the inference jobs. (A better idea, but still not ideal.)

 Build the cleansing logic into a full pipeline object. (An even better idea, but
potentially wasteful and expensive.)

Let’s suppose that, in our rush to get the project out quickly, we completely forget to
do any of these things. Our logic for data cleansing is built fully within our training
code base, the model has been validated to work quite well, and we’re ready to ship it
to production. 

 While testing on an extremely small subset of the production data volume, we start
to realize through our monitoring of model performance that multiple customers are
getting contacted repeatedly, their credit limits being increased several times over.
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Other seemingly well-qualified customers are getting credit-limit increase requests for
cards and services that they don’t currently have. Basically, we’ve built a great model
that is predicting state on garbage data. Figure 14.6 illustrates the situation that has
been created with this project. 

Figure 14.6, although an extreme case of forgetfulness and chaos, exposes the options
that are listed as possible solutions when an ML team chooses to repair data-quality
issues. When moving in this direction of fixing the data yourself, you now are respon-
sible for that. Instead of building a solution with the data, you own a solution and the
data-repair tasks. 

 While this particular scenario is unavoidable in certain organizations (such as
small startups where a DS may be serving the role of DE as well as DS), the recom-
mended course of action remains the same: specifically, that the data-cleansing code
should never remain linked to a modeling solution. Figure 14.7 shows a better solu-
tion to data-quality issues.
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ML project code base
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to standard format
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Model for
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Hopefully good?

Feature data for
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?

Where does the data
come from?
Who maintains the data
fixes?
Does the ML team?
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source data gets fixed?

If the ML team is maintaining
the data-quality conversions,
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What happens if someone
analyzes the raw source
data and the values don’t
match up to what the model
sees?

Figure 14.6 Fixing data-quality issues within ML code can create a great deal of chaos.
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The far more sustainable and preferred way of keeping data-repair tasks functional in a
long-lasting manner is to fix the data at the source. This helps solve several problems:

 The data is cleaned for other use cases.
 Expensive de-duplication, correction of issues, interpolation, and complex joins

are removed from model training and inference code (reducing complexity).
 The data is reliable for usage between training and inference (no risk for mis-

matched logic between training and inference).
 Feature monitoring (drift detection) is greatly simplified.
 Analytics and attribution measurement are greatly simplified.

Keeping a clean state for data used for modeling is a cornerstone of stable and
production-grade ML solutions. While ML packages include a lot of tools for correct-
ing issues in data, the most reliable manner of enforcing data correctness is doing it at
the source: where the data is stored.

14.2 Monitoring your features
An often-overlooked part of production ML deployments is keeping a close watch on
the features that are going into models. As professional DSs, we spend a truly obscene
amount of time and effort analyzing each and every attribute associated with our fea-
tures. Many times, solutions get shipped to production and the only thing that is moni-
tored is the output of the model. This results in unexpected surprises when performance
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data found
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values in
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This is the only truly sustainable way
of creating maintainable ML systems.
The issues need to be fixed at the
source. Otherwise, everyone has
to implement their own fixes,
which are guaranteed to be
heterogeneous.

Figure 14.7 The better way forward for fixing data-quality issues: not embedding data repair tasks in 
ML code
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degrades, leaving us in a position of scrambling to diagnose what changed, why it may
have changed, and how to go about fixing the problem.

There’s a solution for this.

Let’s suppose that we’re working at our dog-food company from appendix A. We’ve
shipped a model to production, have monitoring set up on the predicted dog-food
demand, and the amount of product wastage is decreasing dramatically. We have a
thorough and automated attribution-analysis system in place that is keeping track of
the forecasting performance, showing a higher-than-anticipated performance result
for the project. 

 Many weeks later, our predictions stop making sense. They’re predicting far less
inventory to order for each of the distribution sites. Luckily, we have humans in the
loop to validate the order requests, so all is not lost. We watch, with growing concern
over a period of days, as the order predictions for each product type drop to
extremely low levels for all products.

 We panic, retrain the model, and see the results become so nonsensical based on
our understanding of prior demand for products that we turn off the prediction sys-
tem altogether. It’s not for another week of delving deeply into our feature data that
we find the culprit. Figure 14.8 shows one of the key features that our model was
using for predictions. 

 The graph at the top of figure 14.8 shows the sales figures for one of our regional
distribution centers, while the graph at the bottom shows the newly adjusted sales fig-
ures that the finance team asked the DE team to create for the new, “more accurate”
reporting paradigm for the company. During the period of overlap (the transition
period), both of these columns of sales data were populated, but at the end of the
transition period, data stopped feeding into the original column. 

 So, what happened with our model? Since the sales figures were such a critical part
of the model, and because we were using imputation methods based on a recency win-
dow applied to the last seven days of data, the imputed values for missing data began
to rapidly trend to zero. The model, having such a large weight applied to this feature,
not only received data that it hadn’t evaluated during training (zero sales, after all, is a
bad thing and hadn’t been present in our non-bankrupted company), but the impact
of this value being so low effectively drove the demand predictions for all products to
zero in a short period of time.

 Setting aside the debate about null-value handling in ML (fill with 0, impute over
the training set data’s values, smoothing imputation, and so forth), how could we have
caught this issue before it became a truly bad problem? Even if we had no prior warn-
ing of this change, how could we have had alerting established on the feature values
so that the first day of values dropping to zero would have let us know that this partic-
ular feature had a problem?

  The simplest solution is to collect basic statistics about each feature during train-
ing (alternatively, approximate statistics if you’re on a distributed system with a large
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The original data for the
feature that was used to
train the model

During the change point region,
the old feature was populated
with data and deprecated, and a
new column was utilized to store
the new adjusted values.

The new data is not only on a different scale
(adjusted lower) but also in a completely
different �eld of a table! If the DS team is
unaware of this and their code does as this
example (fills NaNs with 0), the model will
see only 0s.

Fill NaN values with 0.0

Figure 14.8 A change in the ETL of a key feature becomes a very sad week for the DS team. 
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training set). These statistics can be stored in a table that is versioned in accordance
with each training iteration using a basic SCD type 2 methodology: append new rows
for the features’ data and increment the version with each subsequent run. A daily job
can then be scheduled whose only purpose is to compare the values used for predic-
tion for the last n hours or days to those of the features as they existed during the last
training run. The following listing shows basic examples of this concept, run against
the data shown in our scenario (the top graph in figure 14.8). 

import numpy as np
prior_to_shift = np.append(ORIGINAL_DATA, 
BOUNDARY_DATA)     
prior_stats = {}                
prior_stats['prior_stddev'] = np.std(prior_to_shift)    
prior_stats['prior_mean'] = np.mean(prior_to_shift)
prior_stats['prior_median'] = np.median(prior_to_shift)
prior_stats['prior_min'] = np.min(prior_to_shift)
prior_stats['prior_max'] = np.max(prior_to_shift)
post_shift = np.append(BOUNDARY_DATA, 
np.full(ORIGINAL_DATA.size, 0))            
post_stats = {}                              
post_stats['post_stddev'] = np.std(post_shift)
post_stats['post_mean'] = np.mean(post_shift)
post_stats['post_median'] = np.median(post_shift)
post_stats['post_min'] = np.min(post_shift)
post_stats['post_max'] = np.max(post_shift)
bad_things = "Bad things are afoot in our sales data!"
if post_stats['post_mean'] <= prior_stats['prior_min']: 
    print(bad_things + 
      " Mean is lower than training min!")                
if post_stats['post_mean'] >= prior_stats['prior_max']: 
    print(bad_things + 
      " Mean is higher than training max!")      
if ~(prior_stats['prior_stddev'] * 0.5  
  <= post_stats['post_stddev'] <=  2. 
  * prior_stats['prior_stddev']): 
    print(bad_things + " stddev is way out of bounds!")   
>> prior_stats
{'prior_stddev': 70.23796409350146,
 'prior_mean': 209.71999999999994,
 'prior_median': 196.5,
 'prior_min': 121.9,
 'prior_max': 456.2}
>> post_stats
{'post_stddev': 71.95139902894329,
 'post_mean': 31.813333333333333,
 'post_median': 0.0,
 'post_min': 0.0,
 'post_max': 224.9}
>> Bad things are afoot in our sales data! Mean is lower than training min!

Listing 14.1 A simple feature-monitoring script

The prior-to-shift data from our scenario 
(the original column of sales data) A simple dictionary for safely 

storing our statistical values 
from the feature data

The as-trained feature 
statistics (standard 
deviation, mean, 
median, min, and max)

The post-shift data being 
used to compare against 
the trained statistics

A per validation run dictionary 
(health-check job script that 
measures these statistics on 
each feature)

Basic example checks for 
whether the mean of the 
feature now is below the 
minimum during training

Similar check for whether 
the mean is above the max 
of training values

A broad check 
on whether the 
variance of the 
feature has 
dramatically 
shifted
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This code is intentionally simplistic and is intended to merely raise awareness of the
need for monitoring relatively simple elements to calculate. The rules for a particular
feature-monitoring toolkit that you may eventually develop can become as complex
and feature rich as needed for your own use case or can stay relatively simple and built
as a low-weight utility framework for monitoring basic statistics about any features
used in your models.

 In a real-world scenario, not only would we be retrieving data from all of our fea-
tures, but we would be querying a table (or service that stores these statistics such as
MLflow’s tracking server). The alerting would clearly not be a simple print state-
ment, but rather a notification through a pager duty alert, email, or similar mecha-
nism to let the team know that a rather large problem and disruptive day is ahead.
The architecture surrounding all of those needs is highly specific to the infrastruc-
ture that you might be running in, so we’re keeping it simple here with print state-
ments and dictionaries. 

 Active-in-development open source packages are being crafted at the time of this
writing that are looking to solve this problem for the open source community. I highly
encourage you to conduct some research to determine which one works well for your
language, platform, and ecosystem. However, in the name of simplicity first, even
building a simple validation script based on the logic in listing 14.1 can get the job
done. The only thing that you don’t want to do is to completely ignore the features
after releasing a solution to production.

This might seem like a silly example, but . . .
I can imagine what you might be thinking: “This is ridiculous. Who would ever do
something like this? This example is just far too much of a caricature!”

Well, dear friend, I can assure you that this exact event has happened to me a total
of six times in my career. I finally learned my lesson after that sixth one (probably
because a serious, business-critical model was affected).

As I’ve discussed, I don’t always use a fancy implementation to check the health
of features. Sometimes it’s just a SQL-based script that’s doing basic calculations
over a period of time, joined to a stored table that contains the same basic metrics
about the feature set as of the last time that it was trained. I don’t spend a great
deal of time fine-tuning what the thresholds should be, nor do I build complex logic
utilizing statistical process-control rules or anything of that nature. Many times, it’s
as simple as described in the preceding example: What is the mean, the variance,
and the general shape of the data? Is it in the same ballpark as the original data?
Is the mean now above the previously recorded as-of-training maximum value? Is it
below the minimum value? Is the variance an order of magnitude lower, or is it
higher? 



417Monitoring everything else in the model life cycle
14.3 Monitoring everything else in the model life cycle
In chapter 12, we talked at length about monitoring drift in features. That’s incredibly
important, but for a production ML solution, it’s but one part of the full story around
proper ML monitoring.

 Let’s imagine that we’re working at a company that has an established ML foot-
print of projects in production: 14 major projects, all solving different use cases
throughout the business. With our team of 10 DSs and 4 ML engineers, we’re finding
it difficult to scale the team to support additional workloads. 

 For all of us, large portions of our day are relegated to just keeping the lights on.
On any given day, some model needs a bit of attention. Whether we’re busy with a
degradation in predictions that end users bring to our attention, or routine analytical
maintenance required to check the health of a particular solution ourselves, we have
precious little time to think about taking on another project. If we were to analyze our
time spent on maintenance tasks for our solutions, we might see something similar to
figure 14.9.

 This daily life is a sad one. It’s not that the models are bad, nor that the solutions
that incorporate them are bad. The fact is that models will drift and performance will
degrade. If we’re not actively monitoring our models with automated solutions, we’ll
end up exhausting our team’s resources in troubleshooting and repairing issues to
such a degree that the only options available to take on new project work are to either
hire more people (good luck with getting budget for that over a long period of time!)
or to have visibility into the following:

 What is changing
 How it is changing
 What likely suspects are for drift (in features, model retraining, and predictions)

By having visibility into all aspects of our model life cycle, we can reduce the trouble-
shooting burden dramatically (and, at the same time, remove the manual act of

With these overly broad checks in place, you can monitor massive feature changes
that could fundamentally break your model. That’s usually a good step toward, if
not identifying an imminent failure, at least identifying where to look when your more
tightly monitored predictions and attributions start falling apart.

The end goal of this monitoring is to save time and mitigate the damage of a funda-
mentally broken model that is running in production. The faster that the problem can
be diagnosed, fixed, and returned to a good state in production, the better off your
day (or week, month, and year) is going to be.
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monitoring altogether!). Figure 14.10 illustrates the portions of the model life cycle
that should have some form of monitoring in place to alleviate the terrible burdens
from figure 14.9.

 The observations in many of these stages may seem like a bit of overkill. Why, for
instance, should we be monitoring our feature-engineering data? Shouldn’t the pre-
dictions be good enough? 

Mostly explaining how we’re
going to fix our production
models and how long it’s going to
take to fix them

It would be if we weren’tgreat
constantly figuring out why things
break so often!

That’s sad.

That’s exceptionally sad.

Figure 14.9 Even though we have a lot of models in production, we spend most of our time figuring out 
why they drift, how to fix them, meeting about why we’re having to fix them, and doing repair work. This 
is “keeping the lights on” DS work.



419Monitoring everything else in the model life cycle
Let's take a look at why our bogged-down team should be monitoring features and any
modifications that they might be doing to them. Figure 14.11 compares the same fea-
ture's distribution as seen during training (left) and later during production infer-
ence (right).  

 The model saw the feature within the confines of the range of data shown. Later,
the feature drifts well outside the range that the model was exposed to during train-
ing. Depending on the model used, this could manifest itself in various ways, all equally
bad (provided that the feature was at least somewhat significant to the model). 

 What would the process look like for the team members experiencing this, pro-
vided that they weren’t monitoring for this shift in distribution? Let’s keep it simple
and say that their implementation was fairly pared down to begin with, having only
30 features. When the predictions start to suffer from incomprehensibly confusing
results, an analytics process will have to be conducted on both the current state of
the features and on the historical values as they existed during training. Many que-
ries would be executed, references made to training events, graphs plotted, statistics

Monitor generated or scaled
features (if applicable).Monitor source data

for feature drift.

Hopefully, this is
monitored by the
DE team!

Frequent monitoring
of business impact
of the solution with
statistical tests to
validate significance
of impact magnitude

Monitor model parameters
and objective optimization
results.

Store raw predictions,
analyze aggregation
statistics of predictions

Feature

engineering

Model training

Prediction

Testing and

attribution

monitoring

Feature

acquisition from

source system

ETL

Retraining

when model

deteriorates

What should we be keeping an eye on in the ML life cycle? .Everything

Figure 14.10 The parts of ML projects that need monitoring
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The danger of not monitoring features

The range of data that the
model was trained on

The model hasn’t seen this during training. The
latent effects that influenced this shift and their
correlation to the target variable (the label) are
wholly unknown.

If the model is a linear-based
implementation . . .

The weights assigned to this
feature will likely dramatically

impact predictions.

Since linear models are
unbounded, the predictions

could be .very poor

If the model is a DL-based
implementation . . .

The interactions between
layers (stages) of the neural

network could create
nonsense predictions.

Diagnosing the model
responses could take a long

time and be incredibly
frustrating.

If the model is a tree-based
implementation . . .

The decision boundaries will
bucket all of this data into a
likely previous minority leaf.

Tree-based algorithms are
bounded, so the predictions
will skew in an unanticipated

way.

After trainingDuring training

Figure 14.11 Significant feature drift and effects on different types of models 
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calculated, and a thoroughly time-consuming root cause analysis would need to be
performed.

 In the immortal words of Kimberly “Sweet Brown” Wilkins, “Ain’t nobody got time
for that.” These post hoc investigations are lengthy. They’re involved, monotonous,
and draining. With 14 production projects running, a team of 14 supporting the ML
needs of the company, and no monitoring of processes going on, this team is going to
be absolutely swamped with zero value-add work. In a best-case scenario, they’d likely
be looking at two to three investigations a week, each one taking at least one person’s
full workday to complete and another day to initiate a new training run and evaluate
the test results. 

 By setting up monitoring on every aspect of the pipeline, however, the team could
identify what shifted, by how much, and when the deviation began. This could save
whole person-days of effort, freeing up the team to automate away this monotonous
work of investigating why their model started to fall apart, giving them all time to work
on new projects.

 This monitoring system doesn’t stop at simply looking at the features coming into
the model. It also means looking at the following:

 Generated features—Interactions, scaling, and heuristics-based data manipulations
 The model(s)—Metrics for each training run
 The predictions—Distributions over time for either pmf or pdf, means and vari-

ance for regression, confusion matrices, and metrics for classification
 The attribution—Stability of business metrics that gauge the effectiveness of the

solution for the problem it is trying to solve
 Performance considerations—For batch, job runtime; for online, response SLAs
 Effectiveness of features over time—Periodic recursive feature elimination and sub-

sequent culling of unnecessary features

By focusing on monitoring each component throughout the life cycle of an ML-backed
solution, you can help scale your team by eliminating drudgery-type work. When people
aren’t just keeping the lights on, they can focus more on new and innovative solutions
that can prove greater business value over time. Another large part of responding to
monitored health checks is keeping a solution as simple as possible while still solving
the problem.

14.4 Keeping things as simple as possible
Simplicity is a unique form of elegance in ML applications. Scoffed at by many who
are new to the field, because they initially believe that complex solutions are fun to
build, the simplest solutions are the ones that endure. This is true for no greater rea-
son than that they’re easier to keep running than intensely complicated ones—mostly
because of cost, reliability, and ease of upgrading.

 Let’s imagine that we’re relatively new to a somewhat junior team. Each team
member is steeped in the latest technological advancements in the field of ML, highly
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capable at developing a solution using these cutting-edge tools and techniques. Let’s
pretend for an instant that these coworkers of ours believe that people using “old”
techniques like Bayesian approaches, linear algorithms, and heuristics in solving prob-
lems are mere Luddites who refuse to learn the technology of the future.

 One of the first projects that comes along to the team is from the operations
department. The senior vice president (SVP) of the retail group approaches the team
in a meeting and asks for a solution that the operations department simply can’t scale
very well. The SVP wants to know if the DS team can, with only images as fodder for a
solution, determine whether the people in the pictures are wearing a red shirt.

 The DS team immediately goes to what they’re experienced with in their toolboxes
of latest and greatest solutions. Figure 14.12 illustrates the events that unfold.

A new project

“We need a system that will tell us whether people in photographs are wearing a red shirt.”

Junior DS team

“We need to use either Mask R-CNN or YOLOv3.”

“We will need a fully gender-, age-, and ethnicity-

stratified training set of labeled images . . .”

“. . . with bounding box coordinates around the shirts.”

“We can successfully classify not only whether the

person is wearing a red shirt, but also whether they’re

wearing long sleeves or short sleeves! It’s 94% accurate!”

“We notice that all of the images were of peopledid

at a front-facing view at around the same height.”

“Wait a minute . . . you mean to tell us that all you

wanted to determine was if the bottom one-third

center point of each picture was red or not?”

“We . . . uhmm . . . have a solution that is 100%

accurate.”

The business unit

“We have no idea what they’re talking about, but it

sounds really advanced.”

“OK, we have the pictures . . . they’re grouped in red shirt

vs. not red shirt.”

“We have no idea what you're talking about.”

Months pass . . .

One week of work with Python’s Pillow library later . . .

“But . . . our employees’ shirts are all short sleeves. See?

All of the images are of people walking into the

breakroom, and they’re all wearing short sleeves.”

“. . . and?”

“Well, yes. The project was to figure out which locations

needed to be issued the new blue color of our corporate

retail uniforms and make sure that everyone had enough

shirts to wear.”

“Wow! That was fast! So, what was all that stuff that you

were working on before?”

Figure 14.12 The discouraging results when advanced approaches are attempted before simpler ones
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What happens in this scenario? The largest issue is in the complex approach that the
team members take without validating simpler approaches. They choose to focus on
technology over a solution. By focusing on a highly advanced solution to the problem
and not entertaining a far simpler approach (grab a swatch of pixels at one-third of
the way up in the center line of each image, determine the hue and saturation of
those pixels, and classify them as either red or not red), they waste months of time
and likely an awful lot of money in the process of solving the problem.

 This scenario plays out remarkably frequently in companies—particularly those
that are nascent to ML. These companies may feel a need to go fast with their projects
because the hype surrounding AI is of such a deafening roar of cacophony that they
think their businesses will be at risk if they don’t get AI working at whatever the cost.
In the end, our example team recognizes what the easiest solution could be and rap-
idly develops a solution that runs at massive scale with minimal cost.

 The idea of pursuing simplicity exists in two main facets of ML development:
defining the problem that you’re trying to solve and building the most minimally
complex solution to solve the problem.

14.4.1 Simplicity in problem definitions

In our preceding scenario, the problem definition was clear to the business and the
ML team both. “Predict red shirts for us, please” couldn’t get distilled to any more of a
basic task than that. A fundamental breakdown still occurred in the discussion that
was conducted, however. 

 The pursuit of simplicity in defining a problem centers around the elemental attri-
butes of two important questions to be given to the internal (business unit) customer:

 What do you want a solution to do? This defines the prediction type.
 What will you do with the solution? This defines the decision aspect.

If nothing else aside from these two questions was discussed in the early-phase meet-
ings with the business unit, the project would still be a success. Having the core need
of the business problem addressed can more directly lead to project success than any
other topic. The business simply wanted to identify whether employees were wearing
the old company-branded red shirts in order to know to send them the new branded
blue shirts. By fixating on the problem of red shirt versus blue shirt, a far simpler solu-
tion can be achieved.

  Throughout the discussion that follows, we’d get the information about the nature
of the photographs and their inherent homogeny. With these two fundamental aspects
defined, the team can focus on a smaller list of potential approaches, simplifying the
scope and work involved in order to solve the problem. Without these questions
defined and answered, however, the team is left to an overly broad and creative explo-
ration of possible solutions—which is risky.

 The team members heard image classification, instantly went to CNN implementa-
tions, and for months on end locked themselves into a highly complex architecture.
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Even though it eventually solved the problem fairly well, it did so in a way that would
have been incredibly wasteful. (GPUs and DL models being trained on them are sig-
nificantly more expensive than a pixel-hue-and-saturation bucketing algorithm that
could run on a smart toaster oven.)

 Keeping the problem definition for a particular prospective project to such simple
terms will not only help guide initial discussions with the business unit requesting a
solution, but also provide a path toward implementing the least possible complexity in
whatever gets built.

14.4.2 Simplicity in implementation

If we were to continue on the path of analyzing our scenario for red-shirt classifica-
tion, we could simply look at the end solution that the team came up with to illustrate
what they should have done first.

 I, and many others I’ve known in this profession over the years, have learned this
painful lesson many times over. By building something cool for the sake of the cool,
we often regret it terribly when we realize how difficult that cool implementation ends
up being to maintain. We suffer through fragile code and highly complex coupling of
processes that seemed like something really fun to build, but end up being a complete
and total nightmare to debug, adjust, or refactor when the code fully breaks. 

 Instead of belaboring an example, I’ll illustrate the way I think about problems
that I’m asked to help solve. Figure 14.13 shows my thought process.

 This flow chart isn’t much of a caricature at all. I nearly always think through a
problem at first as though I’m trying to solve it with basic aggregations, arithmetic,
and case/switch statements. If that doesn’t work, I move to Bayesian approaches, lin-
ear models, decision trees, and so forth. The last thing that I’m going to try to
implement out of the gate is an adversarial network that requires hundreds of hours
to train and, when it breaks, spend days (or weeks) troubleshooting mode collapse
and how to adjust my Wasserstein loss to compensate for vanishing gradients. Thank
you very much, but I’ll use those only when I’ve exhausted all other approaches to
solving a problem. 

 In its most pure form, figure 14.13 demonstrates a core component of my psyche:
I’m lazy. Really, truly, and profoundly lazy. I don’t want to develop custom libraries. I
don’t want to build insanely complex solutions (well, that’s partly true; I love building
them, I just don’t want to own them). 

 I simply want to solve problems in a way that the code just works. I want to solve
problems so effectively that people forget that my solution is running until someone
freaks out that a platform service disruption happens and we all collectively remember
what was actually running some critical part of the business. The only way that you get
to achieve that penultimate version of laziness is by building something in the simplest
way possible, having monitoring set up to alert you before anyone else notices that
things are not OK, and having a clean code base that makes your repairs take hours
instead of weeks.



425Keeping things as simple as possible
Do I understand what

the business really

wants?

Are you sure,

Ben?

Go back, ask more

questions.
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why it’s not possible
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reevaluate what is

possible.

Is this

something that

data can

solve?

Do I understand how

they’re planning on

using a data product I

produce?

Is this something that

can be solved in an

analytics query

(heuristics)?

Nothing is

simpler than this,

remember?

Write the job with heuristics,

and monitor the data and the

decisions. Check regularly to

make sure it still solves the

problem.

To avoid complex heuristics,

stick with an easy-to-maintain

model that I can explain and

visualize easily.

They’re very

explainable.

Can I get away with a

linear model or a

decision tree?

Is the correlation

state so poor that I

need to use tree

ensembles?

They’re

still somewhat

explainable.

Bring in tools like SHAP or

LIME for explainability, design

the code base with more

monitoring and more

abstraction to make

maintenance easier.

Make sure that the algorithm’s

package is still maintained

and is compatible with my

platform. Build intensive

monitoring into solution.

Stop.

Communicate

risks with

business.

Is there an esoteric

model that’s been

proven to solve this

sort of problem? Is

there a deep

learning architecture

that can solve this?

Is there evidence that

implementation of a

cutting-edge

research whitepaper

actually solves this

problem in the real

world?

Really

stop. Explain

extreme risks.

Implement algorithm if

business demands it. Realize

that I now own a custom

algorithm and have to

maintain it for as long as I’m

employed there for all future

platform upgrades.

Breathe sigh of relief and

tackle a project that is

much less risky.

It’s all fun and games until

someone divides by zero.

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

No

No

No

No

No

Figure 14.13 Author’s thought process when evaluating ML approaches to problems 
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The other benefit of selecting a simple design to solve a problem is that the process of
developing the solution (the nitty-gritty hands-on-keyboard part of the software engi-
neering aspect) becomes much easier. The design becomes easier to architect, develop,
and collaborate in. That all starts with building effective wireframes for code bases.

14.5 Wireframing ML projects
We all learn a truly painful lesson after our first real-world production ML project
(universal, at least, to peers I’ve interacted with in my career). This truly painful les-
son is experienced in a mild form during the development of a solution, but only after
months of supporting a solution is the teaching fully complete. This is the lesson of
code architecture and how a lack of it can generate a truly crippling level of technical
debt so that in order to make even small changes to a code base, significant parts of it
need to be refactored (or rewritten!). 

 Because of an aversion to having monolithic scripts weighing down maintenance
and enhancements to a solution, the freshly enlightened typically go down a path of,
during code development, working at separating major functionality of their code as
they go.

 Let’s see how this plays out as we look at a team of newly wise ML practitioners.
They’ve been supporting their first major (and arguably messy) code base for a few
months and have identified multiple ways that they organized their code that didn’t
work well for maintainability.

 They decide to, during various sprints, as new features need to be developed,
split their code apart so that functionality is separated. Figure 14.14 illustrates their
processes.

 It takes a short time for them to realize that although their approach is worthwhile, it
isn’t the easiest way to go about building a project. Why is this the case with ML code?

 There are tight dependencies in scripts, particularly the hack-a-thon “just make
it work” script.

 Experimental prototypes focus mostly on the algorithm, not on the data pro-
cessing. Most of the eventually developed code base is in the realm of data
processing.

 The code changes frequently during development (and after production release). 

What the team ends up realizing by their third sprint is that refactoring all of their
code into distinct modules as development progresses creates so much additional
work and confusing code that new features become difficult to implement. Approach-
ing code architecture in this way is simply not sustainable; managing code is hard
enough with only a single person contributing, but nigh impossible if multiple people
are working on a constantly refactored code base.

 A better solution exists, and it involves setting up a basic wireframe for a project.
While I balk at the term template when involving code, this is, in essence, essentially
that, albeit a loose and mutable one. 
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Rough prototype

• Similar to demo/example from API docs README

• Monolithic and bare-bones (mostly just the algorithm)

• Add in feature engineering stages

• Build full hyperparameter-tuning capabilities

• Add in logging and

monitoring of data

and metrics

• Build full

hyperparameter-

tuning capabilities

• Add post-prediction

decision logic

• Add additional

features and

support alternate

model type

Monolithic script

Sprint 1

Sprint 2

Sprint 3

Sprint 3

Code freeze.

Refactoring required before any new features.

Data acquisition and

feature engineering

Everything else

Data acquisition and

feature engineering

Modeling code Everything else

Data acquisition and

feature engineering

Modeling code

Model 2

Modeling code

Model 1

Everything else

Model configuration

interface for A/B

testing

Post-modeling logic

So . . .

much . . .

refactoring . . .

“Wait . . . we need to hold off on

new features. The code base is

just too chaotic.”

This is pretty sloppy.

Split code base

More splitting

OK, this is

getting ridiculous.

Figure 14.14 Without a general project code architecture, you’re in for a lot of refactoring.
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Most ML projects’ architecture, at its most basic level, can be grouped into core groups
of functionalities:

 Data acquisition
 Data validation
 Feature engineering, feature augmentation, and/or feature store interaction 
 Model training and hyperparameter optimization
 Model validation
 Logging and monitoring
 Model registration
 Inference (batch) or serving (online)
 Unit and integration testing
 Post-processing prediction consumption (decision engines, if applicable)

Not every project is guaranteed to have all these components, while others might have
additional requirements. (A deep learning CNN implementation might need a data
serialization layer for batch-file processing and image augmentation, while an NLP
project might need a module for ontological dictionary updating and interfaces, for
example). The point is that distinct separations of functionality make up the wholly
functioning part of the project. If they are all lumped haphazardly into modules
where the boundaries of responsibility in the code become blurred (or, in the worst
case, all in a single file), modifying and maintaining the code becomes a truly Hercu-
lean effort.

 Figure 14.15 shows an alternative architecture that can be used immediately after
the experimental prototype (the hack-a-thon-like rapid prototype is completed to
prove the applicability of a model to the company’s data). While the modules in this
architecture may not contain much of anything to begin with, they serve as placehold-
ers (stubs) based on what the team expects to need throughout the project. If new
modules are needed, they can be created. If a stub is never populated during the final
sprint before release, it can be removed.

 This general template architecture enforces an encapsulation of concerns. It not
only helps guide the sprint planning but also helps avoid merge conflicts in the code
base at the end of sprints. It keeps the code organized from the beginning of the
development period, makes searching for functionality easier, and helps make unit
testing and troubleshooting far simpler.

 While organizing stubs and creating abstraction may seem like excessive overkill
for even simple projects, I can promise you, from having spent entire months of my
productive working life doing nothing other than rewriting and refactoring funda-
mentally broken code architecture, it is anything but. It’s far easier to collapse abstrac-
tion and remove placeholder modules than it is to translate a code base into some
semblance of logical order from pure, distilled chaos. 
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As an example of what not to do, and just how bad an interconnected mess of a poorly
designed ML code architecture can be, see figure 14.16. (Yes, it was one of mine.) 

 This example represents one of my first projects (details of the use case removed
so I don’t have a certain company’s lawyers calling me) and allows me to convey the
magnitude of the lesson that I learned from this. It was, shall we say, substantial.

 

Project root

Ingestion

Feature

engineering

Model training

and tuning

Logging (metrics

and general logs)

Model

registration

Inference

(prediction)

Unit and

integration

testing

Decision logic

Each project may have many more additional requirements, and these
top-level code directories will likely have many subdirectories for
modules. Abstracting away common functionality enables isolated
execution and process barriers for development and execution.

Connect to data source, ingest data, declare schema
(typing), run validation checks, null handling, etc.
Hard requirement.

Pull code from feature store/manual feature
augmentation, interactions, bucketization, indexing, etc.
Hard requirement.

Even if this is a heuristics-based implementation, this is
where the logic should live.
Hard requirement.

Interface to the tracking layer of the monitoring tool or
database table that works for you.
Hard requirement.

Useful for A/B testing applications and for online model
serving.
Optional.

Applicable to batch serving needs. Provides retrieval of
current production model and generates predictions,
storing them to a location for utilization.
Optional.

It’s really not advisable to skip this. Seriously.
Hard requirement.

It’s really not advisable to skip this. Seriously.
Hard requirement.

Figure 14.15 A generic ML project code wireframe to keep code logically organized, easier to develop 
within, and easier to maintain



430 CHAPTER 14 Writing production code
Having almost no logical design for a large code base does more than impact the ini-
tial development. It certainly is a major reason why providing a wireframe is important
(particularly when an entire team is working on a project and needs to ensure that
code merges aren’t overwriting one another’s changes). The lack of a logical design
becomes acutely more painful when inevitable changes need to be made. Hunting
through a massive script is incredibly time-consuming and frustrating even if you use
clever naming conventions for variables and functions.

 I learned to never underestimate the time savings that comes from proper code
design. When framed properly, it enables the following:

 Stepping through modules for debugging or demonstration
 Writing isolated submodule unit tests and module-level unit tests to give peace

of mind that large swaths of code are functional
 Driving directly to a place in the code in seconds (rather than searching for

minutes or hours through a code base)
 Easily extracting common functionality from a code base and placing it in its

own package for reuse by another project

Massive script with

all the code and

the ML solution

overengineered far

beyond what the

project actually called

for

First 25% of code

base

Oh, I need to add

these new features to

counteract this drift . . .

Second 25% of code

base

Third 25% of code

base

Last 25% of code

base

The SVP of

operations wants to

change the output to

a Boolean event?

Oh, geez . . . what

broke ?! Whynow

did I get an out-of-

memory exception?

Add in

a few hundred

lines of code

I have chosen . . . poorly . . . in my

design.

As far as I can
remember, there
was no logic involved in
selecting these break
points other than sheer
line count.

Update

Update

here

And here

Change

?

Figure 14.16 One of my earlier works of art before I knew what code design was and how 
abstraction, encapsulation, and inheritance work. Don’t do this.
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 Significantly reducing the chances of having duplicated functionality in an ML
code base, as it encourages abstraction and encapsulation from the start of
development

Even for those who prefer to develop wholly within notebooks—which is OK, by the
way, particularly if you’re on a small team or a team of one—having such a separation
of activities can make your development and long-term care of your project code
orders of magnitude simpler than it otherwise would be. The alternative, after all, is
what I did early in my career, continuing from the experimental scripts, bolting on
functionality with reckless abandon until I was left with a Frankenstein’s monster that
I was as happy to look at as a villager with a pitchfork would be to see a real monster.

A note on frequent refactoring in ML code bases
Someone recently asked me, “How much should I refactor my code base when it
becomes too complex, messy, or unmaintainable?” It stopped me for a bit, thinking
of an appropriate answer. The framework developer in me wanted to call out, “Well,
refactor early and often!,” while the DS in me went through a series of painful flash-
backs to intensely frustrating code refactoring that I’ve had to do over the years.

I finally answered as any noncommittal developer would who’s written production ML
code, with gravity, “As much as you’re comfortable with in order to get your project
maintainable again.” It’s not very good advice, unfortunately. There’s a reason for
that, though.

Technical debt in traditional software engineering (either FP or OO), incurred by hastily
compromising standards in order to ship something out, can be paid down in a rela-
tively straightforward way: you can refactor the code. It’s likely already encapsulated
and abstracted to the point that it won’t be too challenging to refactor. Optimize the
code for performance to your heart’s content within the confines of your ability and
skill level. Rewrite the entire thing from scratch if you prefer (module by module). 

ML code is a bit different. Each of your decisions in how to write your code—from the
perspective of performance, algorithmic complexity, data quality, monitoring, and
validation—has far-reaching effects on not only the efficacy of the solution, but also
the interconnectedness of the parts of the code as a whole. As opposed to traditional
software engineering, all of these pieces of “Oh, we’ll fix it later” sorts of tech debt
that can be incurred have a much higher interest rate. 

It’s simply just not as easy to refactor our code. Some of it can be easily modified
(adding a feature, removing a feature, changing how weights are applied, and so
forth), but things like changing from a tree-based implementation to a generalized lin-
ear model, a machine vision approach to a CNN, or an ARIMA-based implementation
to an LSTM, are basically full rewrites of our projects. 

Changing the fundamental nature of the entire solution (for example, the API returns
may change on the output of the model for different packages, necessitating rewrites
to large swaths of the code) is incredibly risky and could delay a project by months.
A final deprecation and removal of functionality in open source code may mean a
complete reimplementation of a major portion of the code base and could mean a
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14.6 Avoiding cargo cult ML behavior
I’ve hammered quite heavily on avoiding hyped trends in ML throughout this book.
In this section, I’m going to hammer away heavily on what I see as the most damaging
form of the hype cycle: cargo cult behavior.

 Let’s imagine that we’re in a company that has a relatively new ML footprint. Some
key critical business problems have been solved, generally using proven and arguably
unsophisticated statistical methods. The solutions are running well in production,
they are monitored effectively, and the business is aware of the value of these solutions
because of the thorough attribution determinations and testing that have been con-
ducted. Then someone reads an article.

 It’s a blog post from a famous and successful tech company that walks through how
it has solved a previously unsolvable problem that affects our company as well. The
article’s author mentions the newly open sourced solution that their company devel-
oped to solve the problem, provides a detailed explanation of how the algorithm
works, and spends the vast majority of the post explaining the technical side of the
implementation.

 It’s a great article, and it serves its purpose well as a recruiting tool for attracting
top technical candidates to their company. What the reader at our company fails to
realize is that the reason for writing the article is to recruit, not to let a small company
pick up their open source tooling and magically solve this problem in a few weeks.

 The desire for this solution to be tackled is so high, though, that everyone is on
board with using this new software solution. A project plan is developed, experimenta-
tion is done, API documentation is thoroughly read and understood, and a basic pro-
totype is built.

 It seems as though things are progressing well in the early stages of the project, but
after a month or so, cracks in the plan begin to emerge. The team realizes the following:

 The algorithm is incredibly complex and difficult to tune well.
 The company that invented the algorithm probably has a lot of internal tools

that help make using it easier.
 The data formats required for many elements of the code are different from

how they store their data.

(continued)

shift to a different execution engine. The greater the complexity that exists within a
solution, the more ML technical debt that we accrue at a significantly higher interest
rate than a software developer might for a similar type of decision. 

This is one of the primary reasons that we can’t be fully agile when developing our
software. We need to do a bit of pre-planning and architecture research, and, in the
case of our code bases, to create a template of sorts that helps guide how each of
the complex portions of our code interact with one another.
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 The tool requires expensive cloud infrastructure to run and the establishment
of a great many new services that they are unfamiliar with.

 Not enough data has been collected to avoid some of the overfitting issues that
they’re seeing.

 Scalability concerns (with cost) restrict training times to days, slowing devel-
opment.

It doesn’t take too much additional time after these cracks appear for the team mem-
bers to decide to try a different approach that is far less sophisticated. They find that
their solution, although unable to match the purported accuracies shown by the cre-
ator of the tool, is still quite successful. The other chief benefit is that their solution is
far less complex, orders of magnitude cheaper to run, and requires infrastructure that
their platform for ML already supports.

 This result is possible only if the team is lucky enough to abandon the path that
they’ve started down early enough in the project timeline. I truly wish that I hadn’t
seen the alternative as many times as I have: teams spending months struggling to get
something to work, spending a massive amount of time and money, with nothing to
show for it in the end.

A cargo cult?
Cargo cult behavior originated in the post-WWII era on islands in the South Pacific. It
was a tendency of certain indigenous people who, upon interacting with wartime mil-
itary members who were using these isolated islands, received goods and services
(medical, dental, technological, etc.) that they had never encountered before. In the
years following the lack of return of these service members, groups on some islands
began imitating the behavior, clothing styles, and caricaturizing of technology in the
belief that if they mimicked the visitors, they would return one day. The islanders saw
the outsiders (and their abundance of supplies, goods, and technology) as something
beyond their understanding but beneficial to them. 

While this term is highly prejudicial and antiquated, it endures to the modern day
because of Richard Feynman’s use of the term when describing inadequate scientific
rigor displayed by some scientists during experimentation and validation of research.
The term cargo cult software engineering, as applied to utilizing design principles,
whole-cloth-lifted code samples from references, and the zealous adherence to stan-
dards that successful companies use without evaluating whether they are needed (or
even relevant for the use case), was popularized by author Steve McConnell. 

I use the term here in the vein of McConnell, as applied to the behavior of inexperienced
teams and junior DSs who choose to latch on to every piece of technology, algorithm,
framework, platform, and innovative advancement that comes out of big tech. Typically,
this cargo cult ML behavior manifests itself in the form of using highly complex systems
that were designed for highly complex problems with no regard to the applicability of
those tools and processes for their own problems. They see that Massive Tech Com-
pany A developed a new framework for adjusting weights on neural networks, and they
assume that, to be successful, they too must use this framework for all of their problem-
solving projects (I’m looking at you, LSTM, for basic sales forecasts!). 



434 CHAPTER 14 Writing production code
The thought processes that I’ve seen played out many times with this cargo cult behav-
ior are exemplified in figure 14.17.

 The team in this example erroneously believes that the new package is going to
give them the same levels of success shown by the massive tech company’s press
release. The team equates the miraculous performance of this company with every-
thing that comes out of the doors of that organization. 

 This isn’t to say that these large companies are not successful. They generally
employ some of the most profoundly innovative and clever software engineers in the
world, in fact. The problem is that they’re not releasing all the goods in order for oth-
ers to leverage everything that makes them successful. Companies that try to copy
these examples, expecting the same results, will almost always fail at replicating them.
This is due to several critical factors:

 They don’t have the same data.
 They don’t have the same infrastructure and tooling.
 They don’t have the same number of highly competent engineers available to

support these complex solutions.
 They’re likely not dealing with the exact same use case (different customers,

different ecosystem, or a different industry).
 They don’t have the same budget (in both time and money) to make it work.
 They don’t have the same R&D budget to spend months iterating on solving a

problem in a very advanced way.

I’m not in any way, shape, or form stating that new technologies shouldn’t be used. I
use them all the time—and most of the time, I enjoy doing so. My colleagues do as
well with, similar to my own experience, varying success. New technology is great,

(continued)

Teams who engage in this behavior fail to realize the very real reason these technol-
ogies were developed (to solve a specific set of problems at those companies) and
the reason the source code was shared (to attract top talent to their companies). It
was not shared so that everyone would latch onto a new paradigm and start using
these technologies for even the most trivial and mundane ML task.

Following the hype-train of new technologies and assuming that the newest thing that
comes out is a panacea to all problems is a recipe for disaster in terms of productiv-
ity, cost, and time. This approach frequently leaves less experienced groups at com-
panies struggling to even get the technology to work in the first place. 

What’s more, some of the more experienced DSs and ML engineers at the companies
that release these tools will readily admit that they don’t use those tools for anything
but what they were designed to solve (at least, the ones that I’ve known and have
discussed this topic with do; I can’t speak for everyone). They focus predominately
on the simplest approaches to problems and move to more advanced approaches
only when the need arises.
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particularly when it solves previously unsolvable problems. What I am cautioning
against, however, is placing blind faith in those technologies, assuming that they will
magically solve all of your woes, and that if you copy the way some massive and innova-
tive company does its ML, it will work out the same way for you. 

 The key to avoiding cargo cult behavior in ML can be distilled down to a few ele-
mental steps covered in earlier parts of this book. Figure 14.18 shows a visual guide
that has always worked well for me when evaluating new possible technologies.

 I try to do my due diligence when evaluating new things that are announced in the
field of ML. With the rapid pace of advancements and the seemingly never-ending
megaphone-blast of hype coming out of the space, there simply isn’t time to evaluate
everything. However, if something does look promising, comes from an established
and reputable source, and actually claims to solve a problem that I am struggling with
(or have in the past), then it’s a candidate for this rigorous evaluation. 

Press release and docs

from massive tech company

Version 0.1 of cool new toolkit

released to open source!

Blog post + press release

identifying the problem solved

and how the toolkit solved it

To get started, we recommend

using a very large multi-GPU

instance VM.

For best results, we recommend

having a training set of at least

10 billion events.

For parameter optimization, we

utilized our internal system that

we built for efficient concurrent

parameter search.

After the model is used to

generate the predictions, we

pass the results to our in-house

decision engine software.

Finally, the decision engine

makes determinations with our

internal system of reinforcement

learning, adapting to behavioral

changes in near real-time.

Well-intentioned but

naive DS team

“Whoa! That’s awesome! We

struggle with the same problem!”

pip install supercool==0.1.0

“OK, cool, our cloud provider has

those. Hopefully, it won’t be too

expensive!”

“Oh, geez, we don’t have that

much data! Getting that much

data would take us 30 years.”

“I’m sure it will be fine,

though . . .”

“We can just use grid search.

That's worked out well for us. in

the past.”

“Wait . . . what?”

“Oh . . . oh no.”

“Between the lines” of the story

Built by an experienced team

of 10 ML engineers and 20

software developers

They have access to tens of

thousands of GPU instances in

their private infrastructure,

managed by a horde of DevOps

and systems engineers.

Representing about seven days of

data for the company that built it

That system is highly

proprietary and will never

be open sourced.

The software is also proprietary

and will never be made public.

This is where the real utility

of this solution shines. Without this

final stage, the algorithm is useful

for only this very specific systems

architecture.

Figure 14.17 Blindly trusting the promises of a README and a blog post on a new package can 
waste a vast amount of time.
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New tech

announcement!

Does this

promise magic?

Does this

solve a problem

that I have?

OK, I’m skeptical,

but I’ll look at your

repository.

Can I

reproduce this

magic?

You, little code base,

have my attention!

Read the API docs,

explore the code

base.

Does this work

on my data?

Did I do

something

stupid?

Obvious fluff.

Disregard.

Mark this for

watching and make

note of how it could

be applicable to

future projects.

Like you? Like you?

I love you!

A thorough amount of research was involved here.
Testing, reading, evaluating, and deciding whether
I need to use this over an older and more
established approach.

. . . and do I need to use it right
now?

This is to usenot an excuse
something.

A of them do.lot The vast majority
of announced
projects fall
squarely here.

NoYes

Brew pot of coffee

Yes

Yes

No No

No

Yes

Yes No

Read with open mind

Figure 14.18 My process for evaluating newly announced ML technology
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 The sad state of affairs is that the vast majority of projects (even those espoused by
large and successful tech companies) either never end up gaining community traction
or aim to solve a problem that is far beyond the team’s capabilities (or the current
state of technology’s capabilities) to be worthy of spending much time on. This
becomes dangerous when teams don’t evaluate the tech in the scope of their needs.
Even if the technology is super cool and exciting, it doesn’t mean that it’s the right
thing for your company to be using. Remember, using new tech is a high-risk activity.

 Sticking to the simplest approach doesn’t mean using the “new hotness.” It means
using the new hotness if, and only if, it makes your solutions easier, more maintain-
able, and easier to keep running. Everything else is, either to you or to everyone else
in general, just fluff.

Summary
 Thoroughly vetting the provenance, characteristics, and properties of any data

being considered for use in a model should be conducted before attempting to
utilize it in a model. Time spent confirming its utility early on will save many
frustrating investigations later in a project.

 Any data that is going to be used for an ML solution needs to be monitored
fully with abnormalities handled in a predictable way. Unexpected behavior
based on changes to both training and inference data can easily render a solu-
tion useless.

 Monitoring feature data is essential, but it is only one part of the model life
cycle that should be watched. From ETL ingestion, to feature engineering,
model training, model retraining, prediction, and attribution, each stage has
metrics that should be collected, analyzed, and alerted upon if their behavior is
unexpected.

 Focusing on simplicity in design and implementation, an ML project will get to
production sooner, be easier to maintain, and likely cost far less, leaving any DS
team free to solve additional problems that bring value to a company.

 By using a standard architecture for ML project code bases, refactoring can be
kept to a minimum throughout development, team members can readily
understand where abstracted logic resides, and maintenance will be far easier
than if using custom designs for each project.

 Ensuring that any new technology that you take on as part of your repertoire is
applicable to your team, your projects, and your company will help make all ML
project work more sustainable and reliable. Evaluation, research, and skepti-
cism will all benefit you.



Quality and
acceptance testing
In the preceding chapter, we focused on broad and foundational technical topics
for successful ML project work. Following from those foundations, a critical infra-
structure of monitoring and validation needs to be built to ensure the continued
health and relevance of any project. This chapter focuses on these ancillary pro-
cesses and infrastructure tooling that enable not only more efficient development,
but easier maintenance of the project once it is in production.

 Between the completion of model development and the release of a project are
four main activities:

 Data availability and consistency verifications
 Cold-start (fallback or default) logic development

This chapter covers
 Establishing consistency for data sources 

used in ML

 Handling prediction failures gracefully with 
fallback logic

 Providing quality assurance for ML predictions

 Implementing explainable solutions
438
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 User-acceptance testing (subjective quality assurance)
 Solution interpretability (explainable AI, or XAI)

To show where these elements fit within a project’s development path, figure 15.1
illustrates the post-modeling phase work covered in this chapter.

These highlighted actions are generally seen as an afterthought or reactive implemen-
tation for many projects that I’ve had exposure to. While not applicable to every ML
solution, evaluating each of these components is highly recommended. 

 Having their actions or implementations complete before a release happens can
efficiently prevent a lot of confusion and frustration for your internal business unit
customer. Removing those obstacles directly translates to better working relationships
with the business and creates fewer headaches for you.

15.1 Data consistency
Data issues can be one of the most frustrating aspects of production stability for a
model. Whether due to flaky data collection, ETL changes between project develop-
ment and deployment, or a general poor implementation of ETL, they typically bring
a project’s production service to a grinding halt. 

 Ensuring data consistency (and regularly validating its quality) in every phase of
the model life cycle is incredibly important for both the relevance of the implementa-
tion’s output and the stability of the solution over time. Consistency across phases of

Pre-release activities for a more

robust ML-powered solution

Project high-level overview

Validation and testing that inference
features are available per SLA

Well-defined project

Thorough
experimentation and

research

Excellent
development

practices

Release!

TODO

Monitor/attribution

Failover logic is in place.

Thorough user-acceptance testing
and validation of solution’s efficacy

XAI
model explainability

Figure 15.1 Production-grade qualification and testing phase for an ML project
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modeling is achieved by eliminating training and inference skew, utilizing feature
stores, and openly sharing materialized feature data across an organization.

15.1.1 Training and inference skew

Let’s imagine that we’re working on a team that has been developing a solution by
using a batch extract of features for consistency throughout model development.
Throughout the development process, we were careful to utilize data that we knew
was available in the serving system’s online data store. Because of the success of the
project, the status quo was simply not left alone. The business wants more of what
we’re bringing to the table.

 After a few weeks of work, we find that the addition of features from a new dataset
that wasn’t included in the initial project development makes a large impact on the
model’s predictive capabilities. We integrate these new features, retrain the model,
and are left in the position shown in figure 15.2.

Data warehouse
source tables

Data warehouse
source tables

If we add
features here . . .

. . . that aren’t
available here . . . Online data Model artifact

. . . things will not go well. Either imputation will
render the improvements useless (no gain) or a
lack of imputation will cause exceptions to be
thrown in production.

One month later . . .

Initial release

Feature
engineering

Feature
engineering

Online data Model artifact

Additional data to
improve accuracy

Model training and
validation

Predictions

We could totally
make this solution

better!

Model training and
validation

Features are available
in both systems.

Figure 15.2 Inference skew due to a feature update
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With the online feature system not able to access the data that was later included in
the model revision, we have a training and inference skew problem. This problem
manifests itself in two primary ways, as mentioned in figure 15.2:

 Null values are imputed. 
– If filling with a mean or median value of the feature space, the variance and

potential information within the feature vector will be reduced, potentially
leading to model degradation during retraining. 

– If filling with a placeholder value, the results may be worse than the original
model.

 Null values are not handled. This may cause exceptions to be thrown, depend-
ing on the library used. This can fundamentally break the production deploy-
ment of the new model. The predictions will all be of the fallback heuristics
“last hope” service.

Scenarios of mismatch between training and inference are not relegated to the pres-
ence or absence of feature data. These issues can also happen if the processing logic
for creating the raw data is different between offline data in the data warehouse and
the online systems. Working through these issues, diagnosing them, and repairing
them can be incredibly costly and time-consuming. 

 As part of any production ML process, architectural validation and checks for con-
sistency in offline and online training systems should be conducted. These checks can
be manual (statistical validation through a scheduled job) or fully automated through
the use of a feature store to ensure consistency.

15.1.2 A brief intro to feature stores

From a project’s development perspective, one of the more time-consuming aspects of
crafting the ML code base is in feature creation. As data scientists, we spend a great
amount of creative effort in manipulating the data being used in models to ensure
that the correlations present are optimally leveraged to solve a problem. Historically,
this computational processing is embedded within a project’s code base, in an inline
execution chain that is acted upon during both training and prediction. 

 Having this tightly coupled association between the feature engineering code and
the model-training and prediction code can lead to a great deal of frustrating trouble-
shooting, as we saw earlier in our scenario. This tight coupling can also result in com-
plicated refactoring if data dependencies change, and duplicated effort if a calculated
feature ever needs to be implemented in another project. 

 With the implementation of a feature store, however, these data consistency issues
can be largely solved. With a single source of truth defined once, a registered feature
calculation can be developed once, updated as part of a scheduled job, and available to
be used by anyone in the organization (if they have sufficient access privileges, that is).

 Consistency is not the only goal of these engineered systems. Synchronized data feeds
to an online transaction processing (OLTP) storage layer (for real-time predictions)
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are another quality-of-life benefit that a feature store brings to minimizing the engineer-
ing burden of developing, maintaining, and synchronizing ETL needs for production
ML. The basic design of a feature store capable of supporting online predictions con-
sists of the following:

 An ACID-compliant storage layer:
– (A) Atomicity—Guaranteeing that transactions (writes, reads, updates) are

handled as unit operations that either succeed (are committed) or fail (are
rolled back) to ensure data consistency.

– (C) Consistency—Transactions to the data store must leave the data in a
valid state to prevent data corruption (from an invalid or illegal action to
the system).

– (I) Isolation—Transactions are concurrent and always leave the storage system
in a valid state as though operations were performed in sequence. 

– (D) Durability—Valid executions to the state of the system will remain per-
sistent at all times, even in the event of a hardware system failure or power
loss, and are written to a persistent storage layer (written to disk, as opposed
to volatile memory).

 A low-latency serving layer that is synchronized to the ACID storage layer (typi-
cally, volatile in-memory cache layers or in-memory database representations
such as Redis).

 A denormalized representation data model for both a persistent storage layer and
in-memory key-value store (primary-key access to retrieve relevant features).

 An immutable read-only access pattern for end users. The teams that own the
generated data are the only ones with write authority.

As mentioned, the benefits of a feature store are not restricted to consistency. Reus-
ability is one of the primary features of a feature store, as illustrated in figure 15.3.

 As you can see, implementing a feature store carries a multitude of benefits. Hav-
ing a standard corpus of features throughout a company means that every use case,
from reporting (BI) to analytics and DS research is operating on the same set of
source-of-truth data as everyone else. Using the feature store eliminates confusion,
increases efficiency (features don’t have to be redesigned by everyone for each use
case), and ensures that the costs for generating features are incurred only once.

15.1.3 Process over technology

The success of a feature store implementation is not in the specific technology used to
implement it. The benefit is in the actions it enables a company to take with its calcu-
lated and standardized feature data.

 Let’s briefly examine an ideal process for a company that needs to update the defi-
nition of its revenue metric. For such a broadly defined term, the concept of revenue
at a company can be interpreted in many ways, depending on the end-use case, the
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department concerned with the usage of that data, and the level of accounting stan-
dards applied to the definition for those use cases.

 A marketing group, for instance, may be interested in gross revenue for measuring
the success rate of advertising campaigns. The DE group may define multiple varia-
tions of revenue to handle the needs of different groups within the company. The DS
team may be looking at a windowed aggregation of any column in the data warehouse
that has the words “sales,” “revenue,” or “cost” in it to create feature data. The BI team
might have a more sophisticated set of definitions that appeal to a broader set of ana-
lytics use cases. 

 Changing a definition of the logic of such a key business metric can have far-
reaching impacts to an organization if everyone is responsible for their group’s per-
sonal definitions. The likelihood of each group changing its references in each of
the queries, code bases, reports, and models that it is responsible for is marginal.
Fragmenting the definition of such an important metric across departments is prob-
lematic enough on its own. Creating multiple versions of the defining characteristics
within each group is a recipe for complete chaos. With no established standard for
how key business metrics are defined, groups within a company are effectively no
longer speaking on even terms when evaluating the results and outputs from one
another. 

 Regardless of the technology stack used to store the data for consumption, having
a process built around change management for critical features can guarantee a fric-
tionless and resilient data migration. Figure 15.4 illustrates such a process. 

An important
feature

Data warehouse
(offline storage)

ML project
(batch serving)

ML project 2
(online serving)

Analytics use case

BI report

ML project 3
(online serving)

Online in-memory
storage layer

Keeping feature generation
synchronized between offline
and online storage prevents
training and inference skew.

Having a single definition of a
feature ensures consistency
across the organization and
simplifies project code.

Another important
feature

Figure 15.3 The basic concept of a feature store
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As you can see, the new standard for reporting company revenue comes from the
executive council. From this defining point, a successful feature store update process
can begin. With the stakeholders present from each group that deals with company-
wide utilization of this sort of data, a thorough evaluation of the proposed change can
commence. Each of the producers and consumers of this data collectively agree on a
course of action to ensure that the new standard becomes an actual standard at the
company. After the meeting, each group knows the actions that it needs to take in
order to make the migration to this new metric; the metric is defined, implemented,
and synchronized through ETL to a common feature store. 

 Change-point processes are critical for ensuring consistency across an organization
that relies on data to make informed decisions. By employing these processes, every-
one is speaking the same “data language.” Discussions around the veracity of analytics,

Write the code to
push the new

revenue metric to
the feature store

Update attribution
assessments and

models to utilize the
new feature

Update reporting for
the company to use

the new metric

Define the rules and
logic for calculating

the new metric

This entire group should
meet, agree upon, and
be familiar with the new
standard.

New revenue metric

Feature store
New revenue metric

Data engineering
team

Business intelligence
group

Finance analytics
group

(SMEs)

Data science team

Executive

decision

Give

logic

definition

Queries

Figure 15.4 Setting a data change-point process for updating a critical feature store entry
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reporting, and predictions can all be standardized on the same common definition of
a data term. It also dramatically improves the stability of dependent production (auto-
mated) jobs and reporting that rely on this data.

15.1.4 The dangers of a data silo

Data silos are deceptively dangerous. Isolating data in a walled-off, private location
that is accessible only to a certain select group of individuals stifles the productivity of
other teams, causes a large amount of duplicated effort throughout an organization,
and frequently (in my experience of seeing them, at least) leads to esoteric data defi-
nitions that, in their isolation, depart wildly from the general accepted view of a met-
ric for the rest of the company.

 It may seem like a really great thing when an ML team is granted a database of its
own or an entire cloud object store bucket to empower the team to be self-service.
The seemingly geologically scaled time spent for the DE or warehousing team to load
required datasets disappears. The team members are fully masters of their domain,
able to load, consume, and generate data with impunity. This can definitely be a good
thing, provided that clear and soundly defined processes govern the management of
this technology. 

 But clean or dirty, an internal-use-only data storage stack is a silo, the contents
squirreled away from the outside world. These silos can generate more problems than
they solve.

 To show how a data silo can be disadvantageous, let’s imagine that we work at a
company that builds dog parks. Our latest ML project is a bit of a moon shot, working
with counterfactual simulations (causal modeling) to determine which amenities
would be most valuable to our customers at different proposed construction sites. The
goal is to figure out how to maximize the perceived quality and value of the proposed
parks while minimizing our company’s investment costs. 

 To build such a solution, we have to get data on all of the registered dog parks in
the country. We also need demographic data associated with the localities of these dog
parks. Since the company’s data lake contains no data sources that have this informa-
tion, we have to source it ourselves. Naturally, we put all of this information in our
own environment, thinking it will be far faster than waiting for the DE team’s backlog
to clear enough to get around to working on it.

 After a few months, questions began to arise about some of the contracts that the
company had bid on in certain locales. The business operations team is curious about
why so many orders for custom paw-activated watering fountains are being ordered as
part of some of these construction inventories. As the analysts begin to dig into the
data available in the data lake, they can’t make sense of why the recommendations for
certain contracts consistently recommended these incredibly expensive components. 

 After spending months working through analyses, the decision is made to remove
this feature from contract bidding. No one can explain why it is there, and they decide
that it isn’t worth it to continue to offer it. They are keener on offering automatic
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dog-washing stations (car-wash style), dog-poop robots (cleaners of, not made of),
park-wide cooling fans, and automated ball-throwing apparatuses. As such, a large
order is placed for those items, and the fountain-sourcing contracts are terminated.

 A few months later, a competitor starts offering the exact same element on con-
tracts that we have been bidding on. The cities and towns begin to go for the competi-
tor’s bid. When finally pressed about why, sales teams start hearing the same answer:
the dogs just really love water fountains, particularly in areas that are far from people’s
homes and municipal dog-watering stations. What ends up happening here is shown
in figure 15.5.

With no visibility into these features that were collected and used for the amenities
counterfactual-based simulation model that the DS team built, the business is unable
to piece together the reasons for the model’s suggestions. The data was siloed with
no ill intentions, but it causes a massive problem for the business because critical data
is inaccessible. 

 We’re not farmers. We should never be using silos. At least not data ones. If farming’s
your hobby, don’t let me stop you. We should, on the other hand, work closely with
DE and warehousing teams to ensure that we’re able to write data to locations that
everyone can access—preferably, as we will discuss in chapter 17, to a feature store. 

DS team doing
exploratory research
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Municipal watering
locations by GPS

coordinates

DS delta
lakehouseMean

neighborhood
distance to park
along sidewalks

This will definitely make a better
model with creative feature
engineering being done.
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However, no one else can see
this data. It’s in the impenetrable
black-hole silo of the internal DS
team’s private lakehouse.

That looks useful.

Store it

Build a causal model

If we combine these . . .

Figure 15.5 Storing critical data in a silo
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15.2 Fallbacks and cold starts
Let’s imagine that we’ve just built an ML-powered solution for optimizing delivery
routes for a pizza company. Some time ago, the business approached us, asking for a
cheaper, faster, and more adaptable solution to optimizing the delivery routes of a sin-
gle driver. The prior method for figuring out which addresses a certain driver would
deliver the pizzas to was done by a pathing algorithm that generated optimal routes
based on ArcGIS. While capable and quite fully featured, the business wanted some-
thing that considered the temporal nature and history of actual delivery data to create
a more effective route. 

 The team worked on an LSTM-based approach that was trained on the last three
years of delivery data, creating an adversarial network with reinforcement learning
that rewarded optimal pathing based on timeliness of delivery. The project quickly
advanced from a science project to something that was proving its worth in a handful
of regions. It was far more adept at selecting delivery sequences than the brute-force
pathing that their previous production system was capable of. 

 After reviewing several weeks’ worth of routing data in the test markets, the busi-
ness felt comfortable with turning on the system for all delivery routes. Things looked
pretty good. Predictions were being served, drivers were spending less time stuck in
traffic, and pizza was delivered hot at a much higher rate than ever before.

 It took about a week before the complaints began pouring in. Customers in rural
areas were complaining of very long delivery times at a frighteningly high rate. After
looking at the complaints, the pattern began to emerge that every complaint was
always with the last stop on a delivery chain. It didn’t take long for the DS team to real-
ize what was happening. With most of the training data focused on urban centers, the
volume of drop-offs and the lower proximity between stops meant that an optimized
stop count was being targeted in general for the model. When this delivery count was
applied to a rural environment, the sheer distances involved meant that nearly all
final-stop delivery customers would be greeted with a room-temperature pizza. 

 Without a fallback control on the length of routes or the estimated total delivery
time, the model was optimizing routes for the minimal amount of time for the total
delivery run volume, regardless of how long that total estimated time would be. The
solution lacked a backup plan. It didn’t have a fallback to use existing geolocation ser-
vices (the ArcGIS solution for rural routes) if the model’s output violated a business
rule (don’t deliver cold pizza). 

 A critical part of any production ML solution is to always have a backup plan.
Regardless of the level of preparation, forethought, and planning, even the most com-
prehensive and hardened-against-failure solution will inevitably go wrong at some
point. Whether the solution that you’re building is offline (batch), near-real-time
(micro-batch streaming), online, or edge deployed, some condition in the near or far
future will result in the model just not behaving the way that you were hoping.

 Table 15.1 shows a brief list of ways for a solution’s model to malfunction and the
level of impact depending on the degree of gravity of the model’s use.
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While these examples are fairly ridiculous (mostly—some are based on real situa-
tions), they all share a common thread. Not a single one has a fallback plan. They
allow bad things to happen if the single point of failure in the system (a model’s pre-
diction) doesn’t work as intended. While purposefully obtuse, the point here is that
all model-powered solutions have some sort of failure mode that will happen if a
backup isn’t in place.

 Cold starts, on the other hand, are a unique form of model failure. Instead of a fully
nonfunctional scenario that typical fallback systems handle, models that suffer from a
cold-start issue are those that require historical data to function for which that data hasn’t
been generated yet. From recommendation systems for first-time users to price opti-
mization algorithms in new markets, model solutions that need to make a prediction
based on data that doesn’t exist need a specific type of fallback system to be in place.

15.2.1 Leaning heavily on prior art

We could use nearly any of the comical examples from table 15.1 to illustrate the first
rule in creating fallback plans. Instead, let’s use an actual example from my own per-
sonal history. 

 I once worked on a project that had to deal with a manufacturing recipe. The goal
of this recipe was to set a rotation speed on a ludicrously expensive piece of equip-
ment while a material was dripped onto it. The speed of this unit needed to be
adjusted periodically throughout the day as the temperature and humidity changed
the viscosity of the material being dripped onto the product. Keeping this piece of
equipment running optimally was my job; there were many dozens of these stations in
the machine and many types of chemicals. 

 As in so many times in my career, I got really tired of doing a repetitive task. I fig-
ured there had to be some way to automate the spin speed of these units so I wouldn’t
have to stand at the control station and adjust them every hour or so. Thinking myself
rather clever, I wired up a few sensors to a microcontroller, programmed the program-
mable logic controller to receive the inputs from my little controller, wrote a simple

Table 15.1 When models don’t play nicely

Condition Comical example Serious business example

Regression predictions outside 
of possible natural range 

Predict that customer will spend 
-$8,745 today.

Withdraw reactor control rods to 
maximum height. Now.

Classifier predicting only a 
single class

Everything is a dog. Even that 
cat is a dog.

Self-driving car classifying a stop 
sign on an interstate highway.

Missed SLA on app/web A blank void of empty IFrame 
elements.

Locking your accounts because 
of fraudulent activity.

No content filtering of chatbot Starts reciting song lyrics. Starts insulting the user.

No response from failure-
detection system

Monitoring panel converted to 
Christmas display.

Shut off all power plants. On the 
Eastern seaboard.
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program that would adjust the chuck speed according to the temperature and humid-
ity in the room, and activated the system.

 Everything went well, I thought, for the first few hours. I had programmed a sim-
ple regression formula into the microcontroller, checked my math, and even tested it
on an otherwise broken piece of equipment. It all seemed pretty solid.

 It wasn’t until around 3 a.m. that my pager (yes, it was that long ago) started going
off. By the time I made it to the factory 20 minutes later, I realized that I had caused
an overspeed condition in every single spin chuck system. They stopped. The rest of
the liquid dosing system did not. As the chilly breeze struck the back of my head, and
I looked out at the open bay doors letting in the 27˚F night air, I realized my error.

 I didn’t have a fallback condition. The regression line, taking in the ambient tem-
perature, tried to compensate for the untested range of data (the viscosity curve
wasn’t actually linear at that range), and took a chuck that normally rotated at around
2,800 RPM and tried to instruct it to spin at 15,000 RPM. 

 I spent the next four days and three nights cleaning up lacquer from the inside of
that machine. By the time I was finished, the lead engineer took me aside and handed
me a massive three-ring binder and told me to “read it before playing any more games.”
(I’m paraphrasing. I can’t put into print what he said to me.) The book was filled with
the materials science analysis of each chemical that the machine was using. It had the
exact viscosity curves that I could have used. It had information on maximum spin
speeds for deposition. 

 Someone had done a lot of work before I got there. Someone had figured out what
the safe and unsafe thresholds were for the material, as well as the chuck drive motor. 

 I learned an important lesson that day. That lesson is illustrated in figure 15.6.
 I was solidly in the top portion of figure 15.6. I rapidly learned, with no small

amount of antagonistic reinforcement from my fellow engineers, to strive to be in the
bottom portion of figure 15.6. I learned to think about what could go wrong in any
solution and how important it is to have guardrails and fallback conditions when
things did go wrong.

 Many times, when building an ML solution, a DS can wrongly assume that the
problem that they are tackling is one that has no prior art. There are certainly excep-
tions (the moon-shot projects), but the vast majority of solutions I’ve worked on in my
career have had someone at a company fulfilling the role that the project is meant to
automate. 

 That person had methods, practices, and standards by which they were doing that
task. They understood the data before you came along. They were, for all intents and
purposes, a living, breathing version of that three-ring binder that my boss threw at me
in anger. They knew how fast the chuck could spin and what would happen to the lac-
quer if a technician tried to sneak a cigarette break in the middle of winter.

 These individuals (or code) that represent prior art will know the conditions that
you need to consider when building a fallback system. They’ll know what the default
conditions should be if the model predicts garbage. They’ll know what the acceptable
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range of your regressor’s prediction can be. They’ll know how many cat photos should
be expected each day and how many dogs as well. They are your sage guides who can
help make a more robust solution. It’s worth asking them how they solved the prob-
lem and what their funniest story is of when things went wrong. It will only help to
make sure you don’t repeat it.

15.2.2 Cold-start woes

For certain types of ML projects, model prediction failures are not only frequent, but
also expected. For solutions that require a historical context of existing data to func-
tion properly, the absence of historical data prevents the model from making a predic-
tion. The data simply isn’t available to pass through the model. Known as the cold-start
problem, this is a critical aspect of solution design and architecture for any project deal-
ing with temporally associated data. 

 As an example, let’s imagine that we run a dog-grooming business. Our fleets of
mobile bathing stations scour the suburbs of North America, offering all manner of
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Models are no different from
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if things go awry. And they
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Figure 15.6 Figuring out the importance of safeguards and fallbacks in engineering work
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services to dogs at their homes. Appointments and service selection is handled through
an app interface. When booking a visit, the clients select from hundreds of options and
prepay for the services through the app no later than a day before the visit. 

 To increase our customers’ satisfaction (and increase our revenue), we employ a
service recommendation interface on the app. This model queries the customer’s his-
torical visits, finds products that might be relevant for them, and indicates additional
services that the dog might enjoy. For this recommender to function correctly, the his-
torical services history needs to be present during service selection. 

 This isn’t much of a stretch for anyone to conceptualize. A model without data to
process isn’t particularly useful. With no history available, the model clearly has no
data in which to infer additional services that could be recommended for bundling
into the appointment.

 What’s needed to serve something to the end user is a cold-start solution. An easy
implementation for this use case is to generate a collection of the most frequently
ordered services globally. If the model doesn’t have enough data to provide a predic-
tion, this popularity-based services aggregation can be served in its place. At that point,
the app IFrame element will at least have something in it (instead of showing an empty
collection) and the user experience won’t be broken by seeing an empty box. 

 More-sophisticated implementations can be made, upgrading a global popularity
ranking to one with more fine-grained cold-start pre-generated data. At a bare mini-
mum, the geographic region can be used as a grouped aggregation to calculate popu-
larity of services to create a pseudo-personalized failover condition. More-sophisticated
grouping assignments can be made if additional data is available for the end user, refer-
encing those aggregated data points across the user base for grouping conditions, ensur-
ing that more refined and granular recommendations are served. A cold-start-enabled
architecture is shown in figure 15.7.

 Building a heuristics-based solution, leveraging the deep knowledge of the use
case by collaborating with the SMEs, is a solid approach for solving the cold-start issue.
When a user who doesn’t have an order selection history of at least three appoint-
ments starts using the app, the model is bypassed entirely and a simple business rules
pseudo-prediction is made. These cold-start solution implementations can take the
following forms:

 Most popular items in user geographic location over the last month
 Most popular items bought today globally
 SME-curated collections of items
 High-inventory items

Regardless of the approach used, it’s important to have something in place. The
alternative, after all, is to return no data. This simply isn’t an option for customer-
facing applications that depend on some form of data to be produced from an API
in order to populate elements in the interface with content. The benefit to having a
cold-start alternative solution in place is that it can serve as a fallback solution as
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well. By a small adjustment of decision logic to check the veracity of the output com-
ing from the model’s prediction output, the cold-start values can be served in place
of the problematic data.

 It can be tempting to build something complex for this cold-start default value ser-
vice, but complexity should be avoided here. The goal is to build something that is
exceptionally fast (low SLA), simple to adjust and maintain, and relevant enough so as
not to bring attention to the end user that something was not designed correctly.

 Cold-start solutions don’t apply exclusively to recommendation systems. Anytime
a model is issuing predictions, particularly those with a low-SLA response require-
ment, some sort of value should be produced that is at least somewhat relevant to
the task at hand (relevant as defined and designed by the business unit and SMEs,
not by the DS team). 

 Failing to generate a value can, particularly for real-time use cases, break down-
stream systems that ingest that data. Failing to have a relevancy-dependent fallback
for many systems can cause them to throw exceptions, retry excessively, or resort to
system-protecting default values that a backend or frontend developer puts in place.
That’s a situation that neither the engineering department nor the end user wants
to see. 

Session activity
data

Serve data

Query for data

Model serving API

Model artifact

Historical purchase data

Model training

Heuristics logic/
precalculated
fallover data

User has
had at least three

appointments?

Online feature
store

Cold-start

fallback

Historical
training data

(feature store)

Promote to production

Prediction

Yes

No

Figure 15.7 Logical diagram of a cold start solution
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15.3 End user vs. internal use testing
Releasing a project to production once the end-to-end functionality is confirmed to
be working is incredibly tempting. After so much work, effort, and metrics-based
quantitative quality checks, it’s only natural to assume that the solution is ready to be
sent out into the world for use. Resisting this urge to sprint the last mile to release is
difficult, although it is absolutely critical.

 The primary reasons it’s so ill-advised to simply release a project based solely on
the internal evaluations of the DS team, as we covered in part 1, are as follows:

 The DS team members are biased. This is their baby. No one wants to admit to
having created an ugly baby.

 Quantitative metrics do not always guarantee qualitative traits.
 The most important influence over quality predictions may be data that is not

collected.

These reasons harken back to the concept of correlation not implying causality, as
well as creator bias. While the model’s validation and quantitative metrics may per-
form remarkably well, precious few projects will have all of the causal factors captured
within a feature vector. 

 What a thorough testing or QA process can help us do is assign a qualitative assess-
ment of our solution. We can accomplish this in multiple ways. 

 Let’s imagine that we work at a music streaming service. We have an initiative to
increase customer engagement by way of providing highly relevant song choices to fol-
low along after a queued listening session. 

 Instead of using a collaborative filtering approach that would find similar songs lis-
tened to by other users, we want to find songs that are similar based on how the
human ear would interpret a song. We use a Fourier transformation of the audio file
to get a frequency distribution and then map that distribution to a mel scale (a linear
cosine transformation of the log power spectrum of an audio signal that closely
approximates how the human ear perceives sound). With this transformation of the
data and a plot, we arrive at a visual representation of the characteristics of each song.
We then, in an offline manner, calculate similarities of all songs to all other songs
through the use of a tuned tri-branch Siamese Network. The feature vector that comes
out of this system, augmented by additional tagged features to each song, is used to
calculate both a Euclidean and a Cosine distance from one song to another. We save
these relationships among all songs in a NoSQL database that tracks the 1,000 most
similar songs to all others for our serving layer.

 For illustration, figure 15.8 is essentially what the team is feeding into the Siamese
network, mel visualizations of each song. These distance metrics have internal “knobs”
that the DS team can use to adjust the final output collections. This feature was discov-
ered early in testing when internal SME members expressed a desire to refine filters of
similar music within a genre to eras of music.
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The extracted
waveform of the
first 45 seconds
of the song

The mel
spectrogram
of the audio file,
representing an
approximation of
the way human
ears perceive
sounds

The tri-branch
Siamese CNN
network receives
these images
(without axes and
axis labels) for
training and
comparison.

The Siamese network will take these mel spectrographs into each CNN and generate a feature
vector of the representation of what it “learns” about each audio file. These vectors are then fed
into a distance measurement stage, which is used to update the weights during training. Once
trained, the encoder can represent a uniqueness vector that can be used for new music.

Harmonic and percussive waveforms for Sonata31Moderato

Harmonic and percussive waveforms for EineKleineNachtmusik

Figure 15.8 Music file transformation to a mel spectrogram for use in Siamese CNN network
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Now that we can see what is going on here (and the sort of information the CNN
would be creating from an encoded feature), we can delve into how to test this ser-
vice. Figure 15.9 shows an overview of the testing. 

Build solution,
optimize loss metrics,

and generate
predictions.

Identify 50 users
throughout the

company who have
different primary

genre preferences.

Generate playlist
through algorithm
and general most
popular songs in

genre.

Blind test to internal
employees.

Conduct A/B test
(release to
production)

OK for user
testing?

Yes

Yes

Thorough SME + dogfooding QA

Stratified sampling of
users within usage
cohorts for each

minor genre
of music

Generate playlist for
random users and
send the results to

genre SMEs for
evaluation.

Conduct internal
blind test with
employees.

Retrain model

Feedback
positive?

Readjust approach,
add features,

introduce
post-prediction

heuristics

Collect feedback
from SMEs in a
detailed format.

Evaluate comments
from SMEs to
determine if

additional features
need to be
considered.

Collect feedback
on both lists and
adjust per genre

recommendations.

Dogfooding QA

Biased internal DS team QA

DS team members
all log in as

their own profiles.

“This is awesome!”
Ship it!

Utilization for Alt
Rock +400%.

All other genres
down –50% to

–1000%.

No

No

Figure 15.9 Different qualitative testing strategies. The one at the top is pretty bad as a practice.
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Figure 15.9 compares three separate forms of preproduction QA work that can be
done to make qualitative assessments on our service. The next three subsections cover
each of these elements—internal biased testing, dogfooding (consuming the product
of our own efforts), and thorough SME review—to show the benefits of the holistic
SME evaluation approach over the others. 

 The end goal of performing QA on ML projects, after all, is to evaluate predictions
on real-world data that doesn’t rely on the highly myopic perspective of the solution’s
creators. The objective is to eliminate as much bias as possible from the qualitative
assessment of a solution’s utility.

15.3.1 Biased testing

Internal testing is easy—well, easier than the alternatives. It’s painless (if the model
works properly). It’s what we typically think of when we’re qualifying the results of a
project. The process typically involves the following:

 Generating predictions on new (unseen to the modeling process) data
 Analyzing the distribution and statistical properties of the new predictions
 Taking random samples of predictions and making qualitative judgments of them
 Running handcrafted sample data (or their own accounts, if applicable) through

the model

The first two elements in this list are valid for qualification of model effectiveness.
They are wholly void of bias and should be done. The latter two, on the other hand,
are dangerous. The final one is the more dangerous of them.

  In our music playlist generator system scenario, let’s say that the DS team mem-
bers are all fans of classical music. Throughout their qualitative verifications, they’ve
been checking to see the relative quality of the playlist generator for the field of music
that they are most familiar with: classical music. To perform these validations, they’ve
been generating listening history of their favorite pieces, adjusting the implementa-
tion to fine-tune the results, and iterating on the validation process. 

 When they are fully satisfied that the solution works well at identifying a nearly
uncanny level of sophistication for capturing thematic and tonally relevant similar
pieces of music, they ask a colleague what they think. The results for both the DS team
(Ben and Julie) as well as for their data warehouse engineer friend Connor are shown
in figure 15.10.

 What ends up happening is a bias-based optimization of the solution that caters to
the DS team’s own preferences and knowledge of a genre of music. While perfectly
tuned for the discerning tastes of a classical music fan, the solution is woefully poor
for someone who is a fan of modern alternative rock, such as Connor. His feedback
would have been dramatically different from the team’s own adjudication of their
solution’s quality. To fix the implementation, Ben and Julie would likely have to make
a lot of adjustments, pulling in additional features to further refine Connor’s tastes in
alt-rock music. What about all of the other hundreds of genres of music, though?
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While this example is particularly challenging (musical tastes are exceptionally varied
and highly specific to individuals), this exact problem of internal-team bias can exist
for any ML project. Any DS team will have only a limited view of the nuances in the
data. A detailed understanding of the complex latent relationships of the data and
how each relates to the business is generally not knowable by the DS team. This is why
it is so critical to involve in the QA process those in the company who know most
about the use case that the project is solving.

15.3.2 Dogfooding

A far more thorough approach than Ben and Julie’s first attempt would have been to
canvass people at the company. Instead of keeping the evaluation internal to the
team, where a limited exposure to genres hampers their ability to qualitatively mea-
sure the effectiveness of the project, they could ask for help. They could ask around
and see if people at the company might be interested in taking a look at how their
own accounts and usage would be impacted by the changes the DS team is introduc-
ing. Figure 15.11 illustrates how this could work for this scenario.

 Dogfooding, in the broadest sense, is consuming the results of your own product.
The term refers to opening up functionality that is being developed so that everyone
at a company can use it, find out how to break it, provide feedback on how it’s broken,
and collectively work toward building a better product. All of this happens across a
broad range of perspectives, drawing on the experience and knowledge of many
employees from all departments. 

These recommendations are pretty solid.
They’ve captured the spirit of the types
of songs that they both enjoy listening
to—even among disparate eras of music.

Op. 64 - Mendelssohn
The Planets - Holst
Concerto Op47 - Sibelius
Romeo and Juliet - Prokofiev

Réverie - Debussy
Ave Maria - Gounod
Etude 2 - Glass
Csårdås - Monti
Arabesque - Debussy

DS team

Julie’s playlist Ben’s playlist

Caprice 1 - Paganini
S. Tarantelle - Wieniawaski
Symphony 6 - Beethoven
Requiem Mass - Mozart
La Campanella - Paganini

La Mer - Debussy
Pavane - Fauré
Liebesleid - Kreisler
Salut D’Amour - Elgar
Rigoletto - Verdi

These recommendations are
partially relevant but wildly
different in musical era and feel.

Connor’s playlist

RecommendationsRecommendationsRecommendations

DWH engineer

Milord - Edith Piaf
Whip It - Devo
Fool - Fitz and the
Tantrums
Emergency - Icona
Pop

Hurry, Hurry - Air
Traffic Controller
Bang! - AJR
Bust your kneecaps -
Pomplamoose

Figure 15.10 Biased feedback in qualitative assessment of model efficacy
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However, as you can see in figure 15.11, the evaluation still contains bias. An internal
user who uses the company’s product is likely not a typical user. Depending on their
job function, they may be using their account to validate functionality in the product,
use it for demonstrations, or simply interact with the product more because of an
employee benefit associated with it. 

 In addition to the potentially spurious information contained within the listen his-
tory of employees, the other form of bias is that people like what they like. They also
don’t like what they don’t like. Subjective responses to something as emotionally
charged as music preferences add an incredible amount of bias due to the nature of
being a member of the human race. Knowing that these predictions are based on
their listening history and that it is their own company’s product, internal users evalu-
ating their own profiles will generally be more critical than a typical user if they find
something that they don’t like (which is a stark contrast to the builder bias that the DS
team would experience).

 While dogfooding is certainly preferable to evaluating a solution’s quality within
the confines of the DS team, it’s still not ideal, mostly because of these inherent biases
that exist.

There is still bias here since
the internal user is looking
at their own accounts. The
risk is that an employee
account may not be
representative of a typical
user account.

Have each internal user
listen to the recommended

songs for their account.

Collate feedback and
look for common

complaints.

Bill—likes Folk

Jason—likes Metal

Company
employees

available for QA

Juan—likes Blues

Mary—likes Motown

Make changes to
the solution.

Generate
predictions for
each internal

user based on
their account

history.

Generate new
predictions.

Continue iterating until

acceptable quality is

achieved.

Figure 15.11 Dogfooding a project by utilizing volunteers to give subjective feedback as a user
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15.3.3 SME evaluation

The most thorough QA testing you can conduct while still staying within the confines
of your own company leverages SMEs in the business. This is one of the most import-
ant reasons to keep SMEs within the business engaged in a project. They will not only
know who in the company has the deepest knowledge and experience with facets of
the project (in this case, genres of music), but they can help muster those resources
to assist.

 For the SME evaluation, we can stage this phase of QA beforehand, requesting
resources who are experts in each of the music genres for which we need an unbiased
opinion regarding the quality of generated song lists. By having experts designated,
we can feed them not only their own recommendations, but also those of randomly
sampled users. With their deep knowledge of the nuances of each genre, they can
evaluate the recommendations of others to determine if the playlists that are being
generated make tonal and thematic sense. Figure 15.12 illustrates this process.

With the far more thorough adjudication in place, the usefulness of the feedback is
significantly higher than any other methodology We can minimize bias while also

By evaluating additional actual
users, an unbiased view of a
broader spectrum of behavior
can be evaluated to determine
the quality of the ML solution.

• Listen to the last 100 tracks the
user heard.

• Listen to the prediction playlist.
• Provide subjective ratings on
the quality of predictions.

Collate feedback;
identify common

flaws in all genres.

John—Jazz SME

Noah—Alt Rock SME

Company
employees

available for QA

Sue—Country SME

Ahn—Pop SME

Make changes to
the solution.

• Produce SME’s
playlist.

• Select 50 users
with primary
affinity to genre.

Generate new
predictions.

Continue iterating until

acceptable quality is

achieved.

Figure 15.12 Unbiased SME evaluation of a project’s implementation
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incorporating the deep knowledge of experts into actionable changes that can be iter-
ated over. 

 While this scenario focuses on music recommendations, it can apply to nearly
any ML project. It’s best to keep in mind that before you start to tackle whichever
project you’re working on, some human (or many humans) had been solving that
problem in some way before you were called in to work on it. They’re going to
understand the details of the subject in far more depth than anyone on the DS team
will. You may as well try to make the best solution that you can by leveraging their
knowledge and wisdom.

15.4 Model interpretability
Let’s suppose that we’re working on a problem designed to control forest fires. The
organization that we work for can stage equipment, personnel, and services to loca-
tions within a large national park system in order to mitigate the chances of wildfires
growing out of control. To make logistics effectiveness as efficient as possible, we’ve
been tasked with building a solution that can identify risks of fire outbreaks by grid
coordinates. We have several years of data, sensor data from each location, and a his-
tory of fire-burn area for each grid position.

 After building the model and providing the predictions as a service to the logistics
team, questions arise about the model’s predictions. The logistics team members
notice that certain predictions don’t align with their tribal knowledge of having dealt
with fire seasons, voicing concerns about addressing predicted calamities with the fea-
ture data that they’re exposed to.

 They’ve begun to doubt the solution. They’re asking questions. They’re convinced
that something strange is going on and they’d like to know why their services and per-
sonnel are being told to cover a grid coordinate in a month that, as far as they can
remember, has never had a fire break out.

 How can we tackle this situation? How can we run simulations of our feature vector
for the prediction through our model and tell them conclusively why the model pre-
dicted what it did? Specifically, how can we implement explainable artificial intelli-
gence (XAI) on our model with the minimum amount of effort?

 When planning out a project, particularly for a business-critical use case, a fre-
quently overlooked aspect is to think about model explainability. Some industries and
companies are the exception to this rule, because of either legal requirements or cor-
porate policies, but for most groups that I’ve interacted with, interpretability is an
afterthought.

 I understand the reticence that most teams have in considering tacking on XAI
functionality to a project. During the course of EDA, model tuning, and QA valida-
tion, the DS team generally understands the behavior of the model quite well. Imple-
menting XAI may seem redundant. 

 By the time you need to explain how or why a model predicted what it did, you’re
generally in a panic situation that is already time-constrained. Through implementing
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XAI processes through straightforward open source packages, this panicked and cha-
otic scramble to explain functionality of a solution can be avoided.

15.4.1 Shapley additive explanations

One of the more well-known and thoroughly proven XAI implementations for Python
is the shap package, written and maintained by Scott Lundberg. This implementation
is fully documented in detail in the 2017 NeurIPS paper “A Unified Approach to
Interpreting Model Predictions” by Lundberg and Su-In Lee. 

 At the core of the algorithm is game theory. Essentially, when we’re thinking of fea-
tures that go into a training dataset, what is the effect on the model’s predictions for
each feature? As with players in a team sport, if a match is the model itself and the fea-
tures involved in training are the players, what is the effect on the match if one player
is substituted for another? How one player’s influence changes the outcome of the
game is the basic question that shap is attempting to answer. 

FOUNDATION

The principle behind shap involves estimating the contribution of each feature from
the training dataset upon the model. According to the original paper, calculating the
true contribution (the exact Shapley value) requires evaluating all permutations for
each row of the dataset for inclusion and exclusion of the source row’s feature, creat-
ing different coalitions of feature groupings.

 For instance, if we have three features (a, b, and c; original features denoted with i),
with replacement features from the dataset denoted as j (for example, aj) the coali-
tions to test for evaluating feature b are as follows:

(ai, bi, cj), (ai, bj, cj), (ai, bj, ci), (aj, bi, cj), (aj, bj, ci)

These coalitions of features are run through the model to retrieve a prediction. The
resulting prediction is then differenced from the original row’s prediction (and an
absolute value taken of the difference). This process is repeated for each feature,
resulting in a feature-value contribution score when a weighted average is applied to
each delta grouping per feature. 

 It should come as no surprise that this isn’t a very scalable solution. As the feature
count increases and the training dataset’s row count increases, the computational
complexity of this approach quickly becomes untenable. Thankfully, another solution
is far more scalable: the approximate Shapley estimation. 

APPROXIMATE SHAPLEY VALUE ESTIMATION

To scale the additive effects of features across a large feature set, a slightly different
approach is performed. The Python package shap utilizes this approximate implemen-
tation to get reasonable values across all rows and features without having to resort to
the brute-force approach in the original paper. Figure 15.13 illustrates the process of
this approximated approach.
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The primary differentiator here as compared to the exhaustive search approach is in
the limited number of tests conducted and the method of building coalitions. As
opposed to the original design, a single row’s feature vector is not used to generate a
baseline prediction. Instead, a random sampling of rows is conducted, and the feature
under test is swapped out with other values from the selected subset for that feature.
These new synthetic vectors are then passed to the model, generating a prediction.
For each of these synthetic predictions, an absolute difference is calculated, then aver-
aged, giving the reference vector’s feature contribution value across these coalitions.
The weighting factor that is applied to averaging these values depends on the number
of “modified” (replaced) features in the individual synthetic vector. For rows where
more of the features are swapped out, a higher weight of importance is placed on
these as compared to those with fewer mutations. 
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Figure 15.13 Approximate kernel Shapley values implementation in shap
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 The final stage shown in figure 15.13 is in the overall per-feature contribution
assessment. These feature-importance estimations are done by weighting each row’s
feature contribution margin and scaling the results to a percentage contribution for
the entire dataset. Both calculated data artifacts are available by using the Python shap
package (a per-row contribution estimation and an aggregated measurement across
the entire dataset) and can help in explaining not only a single row’s prediction but
also in providing a holistic view of the feature influence to a trained model. 

WHAT WE CAN DO WITH THESE VALUES

Simply calculating Shapley values doesn’t do much for a DS team. The utility of hav-
ing an XAI solution based on this package is in what questions these analyses enable
answering. Some of the questions that you’ll be able to answer after calculating these
values are as follows:

 “Why did the model predict this strange result?” (single-event explanation)
 “Will these additional features generate different performance?” (feature-

engineering validation)
 “How do ranges of our features affect the model predictions?” (general model

functionality explanation)

The shap package can be used not only as an aid to solution development and mainte-
nance, but also to help to provide data-based explanations to business unit members
and SMEs. By shifting a discussion on the functionality of a solution away from the
tools that the DS team generally uses (correlation analyses, dependence plots, analysis
of variance, and so forth), a more productive discussion can be had. This package,
and the approach therein, remove the burden from the ML team of having to explain
esoteric techniques and tools, focusing instead on discussing the functionality of a
solution in terms of the data that the company generates. 

15.4.2 Using shap

To illustrate how we can use this technique for our problem of predicting forest fires,
let’s assume that we have a model already built. 

NOTE To follow along and see the model construction, tuning with the Optuna
package (a more modern version of the previously mentioned Hyperopt from
part 2), and the full implementation of this example, please see the com-
panion GitHub repository for this book. The code is within the Chapter 15
directory.

With a preconstructed model available, let’s leverage the shap package to determine
the effects of features within our training data to assist in answering the questions that
the business is asking about why the model is behaving a particular way. The following
listing shows a series of classes that aids in generating the explanation plots (refer to
the repository for import statements and the remainder of the code, which is too
lengthy to print here).
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class ImageHandling:             
    def __init__(self, fig, name):
        self.fig = fig
        self.name = name
    def _resize_plot(self):
        self.fig = plt.gcf()               
        self.fig.set_size_inches(12, 12)
    def save_base(self):
        self.fig.savefig(f"{self.name}.png", 
                         format='png', bbox_inches='tight')
        self.fig.savefig(f"{self.name}.svg", 
                         format='svg', bbox_inches='tight')
    def save_plt(self):
        self._resize_plot()
        self.save_base()
    def save_js(self):
        shap.save_html(self.name, self.fig)     
        return self.fig
class ShapConstructor:                          
    def __init__(self, base_values, data, values, feature_names, shape):
        self.base_values = base_values 
        self.data = data 
        self.values = values 
        self.feature_names = feature_names 
        self.shape = shape     
class ShapObject:
    def __init__(self, model, data):
        self.model = model
        self.data = data
        self.exp = self.generate_explainer(self.model, self.data)
        shap.initjs()
    @classmethod
    def generate_explainer(self, model, data):         
        Explain = namedtuple('Explain', 'shap_values explainer max_row')
        explainer = shap.Explainer(model)
        explainer.expected_value = explainer.expected_value[0]
        shap_values = explainer(data)
        max_row = len(shap_values.values)
        return Explain(shap_values, explainer, max_row)
    def build(self, row=0):
        return ShapConstructor(
base_values = self.exp.shap_values[0][0].base_values,
            values = self.exp.shap_values[row].values,
            feature_names = self.data.columns,
            data = self.exp.shap_values[0].data,
            shape = self.exp.shap_values[0].shape)
    def validate_row(self, row):
        assert (row < self.exp.max_row, 
f"The row value: {row} is invalid. " 
f"Data has only {self.exp.max_row} rows.")
    def plot_waterfall(self, row=0):      
        plt.clf()
        self.validate_row(row)

Listing 15.1 shap interface

Image-handling class to handle 
resizing of the plots and storing 
of the different formats

Gets a reference 
to the current plot 
figure for resizing

Since this plot is generated
in JavaScript, we have to

save it as HTML.

Unification of the 
required attributes 
coming from the shap 
Explainer to enable 
handling of all the 
plots’ requirements

Method called during class
instantiation to generate the shap
values based on the model passed

in and the data provided for
evaluation of the model’s

functionality

Generates a single row’s 
waterfall plot to explain 
the impact of each feature 
to the row’s target value 
(composition analysis)
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        fig = shap.waterfall_plot(self.build(row), 
                                  show=False, max_display=15)
        ImageHandling(fig, f"summary_{row}").save_plt()
        return fig
    def plot_summary(self):                       
        fig = shap.plots.beeswarm(self.exp.shap_values, 
                                  show=False, max_display=15)
        ImageHandling(fig, "summary").save_plt()
    def plot_force_by_row(self, row=0):          
        plt.clf()
        self.validate_row(row)
        fig = shap.force_plot(self.exp.explainer.expected_value, 
                               self.exp.shap_values.values[row,:], 
                               self.data.iloc[row,:],
                               show=False,
                               matplotlib=True
                              )
        ImageHandling(fig, f"force_plot_{row}").save_base()
    def plot_full_force(self):                       
        fig = shap.plots.force(self.exp.explainer.expected_value, 
                               self.exp.shap_values.values, 
                               show=False
                              )
        final_fig = ImageHandling(fig, "full_force_plot.htm").save_js()
        return final_fig
    def plot_shap_importances(self):             
        fig = shap.plots.bar(self.exp.shap_values, 
                             show=False, max_display=15)
        ImageHandling(fig, "shap_importances").save_plt()
    def plot_scatter(self, feature):           
        fig = shap.plots.scatter(self.exp.shap_values[:, feature],  
                                 color=self.exp.shap_values, show=False)
        ImageHandling(fig, f"scatter_{feature}").save_plt()

With our class defined, we can begin to answer the questions from the business
about why the model has been predicting the values that it has. We can step away
from the realm of conjecture that would be the best-effort attempt at explanation
through the use of presenting correlation effects. Instead of wasting our time (and
the business’s) with extremely time-consuming and likely confusing presentations of
what our EDA showed at the outset of the project, we can focus on answering their
questions.

 As an added bonus, having this game-theory-based approach available to us during
development could help inform which features could be improved upon and which
could potentially be dropped. The information that can be gained from this algo-
rithm is invaluable throughout the model’s entire life cycle.

 Before we look at what these methods in listing 15.1 would be producing when
executed, let’s review what the business executives want to know. In order to be

Generates the full 
shap summary of 
each feature 
across the entire 
passed-in dataset

Generates a single row’s force plot 
to illustrate the cumulative effect of
each feature on its target value

Generates the entire dataset’s 
combined force plots into a 
single displayed visualization

Creates the debugging 
plot for the estimated 
shap importance of 
each feature

Generates a scatter plot of a single feature against its 
shap values, colored by the feature in the remaining 
positions of the vector with the highest covariance
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satisfied that the predictions coming from the model are logical, they want to know
the following:

 What are the conditions that should cause us to panic if we see them?
 Why doesn’t the amount of rain seem to affect the risk?

To answer these two questions, let’s take a look at two of the plots that can be gener-
ated from within the shap package. Based on these plots, we should be able to see
where the problematic predictions are coming from. 

SHAP SUMMARY PLOT

To answer the question about the rain—as well as to provide an opportunity to under-
stand which features are driving the predictions the most—the summary plot is the
most comprehensive and utilitarian for this purpose. Because it combines all of the
rows of the training data, it will do a per-row estimation of each feature’s impact when
run through the replacement strategy that the algorithm performs. This holistic view
of the entire training dataset can show the features’ overall magnitude of impact
within the scope of the problem. Figure 15.14 shows the summary plot.

High temperature
has a very strong
shap value impact.
This makes sense.
Higher temperatures
generally dry out
combustible fuels.

The model hasn’t
learned much of
anything from the
rain amount feature.
Its value showsshap
no impact to the
predictions.

Figure 15.14 The shap summary plot, showing each feature’s substitution and 
prediction delta for each row
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Armed with this plot, a great deal of discussion can be had with the business. Not only
can you jointly explore why the rain amount values clearly aren’t making a differ-
ence in the model’s output (the plot shows that the feature isn’t even considered in
the random forest model), but also how other aspects of the data are interpreted by
the model.

NOTE Make sure that you are very clear with the business on what shap is. It
doesn’t bear a relationship to reality; rather, it simply indicates how the
model interprets changes to a feature within a vector on its predictions. It is a
measure of the model and not on the reality of what you’re trying to model.

The summary plot can begin the discussions about why the model is performing the
way it is, what improvements might be made after identifying shortcomings identified
by SMEs, and how to talk with the business about the model in terms that everyone
can understand. Once the initial confusion is explained away regarding this tool, with
the business fully understanding that the values shown are simply an estimation of
how the model understands the features (and that they are not a reflection of the real-
ity of the problem space you are predicting within), the conversations can become
more fruitful. 

 It is, to be clear, absolutely essential to explain exactly what these values are before
showing a single one of the visualizations that the tool is capable of generating. We’re
not explaining the world; we’re explaining the model’s limited understanding of cor-
relation effects based on the data we actually collect. There is simply nothing more or
less to it.

 With the general discussion complete with the business and the issue of rainfall
tackled, we can move on to answering the next question.

WATERFALL PLOTS

We can answer the second question, arguably the most important for the business to
be worried about, with a series of visualizations. When the business leaders asked
when they should panic, what they really meant was that they wanted to know when
the model would predict an emergency. They want to know which attributes of the
features they should be looking at in order to warn their people on the ground that
something bad might happen.

 This is an admirable use of ML and something that I’ve seen many times in my
career. Once a company’s business units move past the trough of distrust and into the
realm of relying on predictions, the inevitable result is that the business wants to
understand which aspects of their problem can be monitored and controlled in order
to help minimize disaster or maximize beneficial results. 

 To enable this discovery, we can look at our prior data, select the worst-case sce-
nario (or scenarios) from history, and plot the impact of each feature’s contribution
to the predicted result. This contribution analysis for the most severe fire in history
for this dataset is shown in figure 15.15.
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While this plot is but a single data point, we can arrive at a more complete picture by
analyzing the top n historical rows of data for the target. The next listing illustrates
how simple this can be to generate with interfaces built around shap.

shap_obj = ShapObject(final_rf_model.model, final_rf_model.X)   
interesting_rows = fire_data.nlargest(5, 

'area').reset_index()['index'].values   
waterfalls = [shap_obj.plot_waterfall(x) for x in interesting_rows]   

Listing 15.2 Generating feature-contribution plots for the most extreme events in history

Prediction of the
most severe row of
data in history =
69,002 acres burned

A “perfect storm” of nearly every
feature contributing to a positive
effect. The magnitude of each
contribution is what is important
here, though.

The baseline
prediction = 2.8791

Figure 15.15 Waterfall plot of the most severe wildfire in history. The contribution margin of each feature 
can inform the business of what the model correlated to for high risk for fire.

Instantiates the shap package’s handler to generate the 
shap values by passing in a trained model and the training 
data used to train it

Extracts the five most severe area 
burn events in the training data to 
retrieve their row index values

Generates the waterfall plots (as
in figure 15.15) for each of the

five most severe events
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Armed with these top event plots and the contributions of each feature to these
events, the business can now identify patterns of behavior that they will want to
explain to their analysts and observers in the field. With this knowledge, people can
prepare and proactively take action long before a model’s prediction would ever make
it to them. 

 Using shap to help educate a team to take a beneficial series of actions based on a
model’s inference of data is one of the most powerful aspects of this tool. It can help
leverage the model in a way that is otherwise difficult to utilize. It helps to bring a
much more far-reaching benefit to a business (or society and the natural world in gen-
eral) from a model than a prediction on its own could ever do.

Many more plots and features are associated with this package, most of which are cov-
ered thoroughly in the companion notebook to this chapter within the repository. I
encourage you to read through it and consider employing this methodology in your
projects. 

Summary
 Consistency in feature and inference data can be accomplished by using a rules-

based validation feature store. Having a single source of truth can dramatically
reduce confusion in interpretation of results, as well as enforcing quality-
control checks on any data that is sent to a model.

 Establishing fallback conditions for prediction failures due to a lack of data or a
corrupted set of data for inference can ensure that consumers of the solution’s
output will not see errors or service interruptions. 

 Utilizing prediction-quality metrics is not enough to determine the efficacy of
a solution. Validation of the prediction results by SMEs, test users, and cross-
functional team members can provide subjective quality measurements to any
ML solution.

A personal note on XAI
Having explanations of how supervised (and unsupervised!) models arrive at their
conclusions based on input features has helped me to craft more comprehensive
solutions to problems. More than that, however, XAI enables me to conduct one
of the most important tasks that a DS will ever engage in: winning the trust of the
business. 

The building of trust and intrinsic faith in the ability of data to explain to and empower
a business allows an organization to move more fully toward an objective and truly
data-driven decision-making process. When evidence-based logic is used to guide a
business, efficiency, revenue, and general employee well-being is increased. That,
above all else, is reason to enable your business counterparts to take part in under-
standing the algorithms that you’re employing to help them along their journey.
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 Utilizing techniques such as shap can help to explain in a simple manner why a
model made a particular decision and what influence particular feature values
are having on the predictions from a model. These tools are critically important
for production health of a solution, particularly during periodic retraining.



Production infrastructure
Utilizing ML in a real-world use case to solve a complex problem is challenging.
The sheer number of skills needed to take a company’s data (frequently messy, par-
tially complete, and rife with quality issues), select an appropriate algorithm, tune a
pipeline, and validate that the prediction output of a model (or an ensemble of
models) solves the problem to the satisfaction of the business is daunting. The
complexity of an ML-backed project does not end with the creation of an accept-
ably performing model, though. The architectural considerations and implementa-
tion details can add significant challenges to a project if they aren’t made correctly.

 Every day there seems to be a new open sourced tech stack that promises an eas-
ier deployment strategy or a magical automated solution that meets the needs of
all. With this constant deluge of tools and platforms, making a decision on where to
go to meet the needs of a particular project can be intimidating.

This chapter covers
 Implementing passive retraining with the use 

of a model registry

 Utilizing a feature store for model training and 
inference

 Selecting an appropriate serving architecture 
for ML solutions
471
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 A cursory glance at the offerings available may seem to indicate that the most logi-
cal plan is to stick to a single paradigm for everything (for example, deploy every
model as a REST API service). Keeping every ML project aligned in a common archi-
tecture and implementation certainly simplifies the release deployment. However,
nothing could be further from the truth. Just as when selecting algorithms, there’s no
“one size fits all” for production infrastructure. 

 The goal of this chapter is to introduce common generic themes and solutions that
can be applied to model prediction architecture. After covering the basic tooling that
obfuscates the complexity and minutiae of production ML services, we will delve into
generic architectures that can be employed to meet the needs of different projects. 

 The goal in any serving architecture is to build the minimally featured, least complex,
and cheapest solution that still meets the needs of consuming the model’s output. With
consistency and efficiency in serving (SLA and prediction-volume considerations) as the
primary focus for production work, there are several key concepts and methodologies to
be aware of to make this last-mile aspect of ML project work as painless as possible.

16.1 Artifact management
Let’s imagine that we’re still working at the fire-risk department of the forest service
introduced in chapter 15. In our efforts to effectively dispatch personnel and equip-
ment to high-risk areas in the park system, we’ve arrived at a solution that works
remarkably well. Our features are locked in and are stable over time. We’ve evaluated
the performance of the predictions and are seeing genuine value from the model. 

 Throughout this process of getting the features into a good state, we’ve been iterat-
ing through the improvement cycle, shown in figure 16.1.

Improvement
implementation and

model retraining

Performance
measurement and

analysis
Prediction data

collection
A/B testing

ML continuous

improvement

life cycle

At cycle , this is easy.1

At cycle 37, which code, training what model, is running in production right now?

Manual validation
and deployment

Production
deployment

Feature development

SME feedback for
improvements

Figure 16.1 Improvements 
to a deployed model on the 
road to production steady-
state operation
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As this cycle shows, we’ve been iteratively releasing new versions of the model, testing
against a baseline deployment, collecting feedback, and working to improve the pre-
dictions. At some point, however, we’ll be going into model-sustaining mode. 

 We’ve worked as hard as we can to improve the features going into the model and
have found that the return on investment (ROI) of continuing to add new data ele-
ments to the project is simply not worth it. We’re now in the position of scheduled pas-
sive retraining of our model based on new data coming in over time. 

 When we’re at this steady-state point, the last thing that we want to do is to have
one of the DS team members spend an afternoon manually retraining a model, manu-
ally comparing its results to the current production-deployed model with ad hoc anal-
ysis, and deciding on whether the model should be updated. 

The measurement, adjudication, and decision on whether to replace the model with a
newly retrained one can be automated with a passive retraining system. Figure 16.2
shows this concept of a scheduled retraining event.

 With this automation of scheduled retraining in place, the primary concern with
this system is knowing what is running in production. For instance, what happens if a
problem is uncovered in production after a new version is released? What can we do
to recover from a concept drift that has dramatically affected a retraining event? How

Oh, come on. No one does this manually.
From my own history as a DS, I didn’t start using passive retraining for the first six years
of solving problems. It wasn’t due to a lack of need, nor a lack of tooling. It was pure and
simple ignorance. I had no idea how big of a problem drift could be (I learned that the
hard way several times over by having a solution devolve into irrelevance because of my
neglect). Nor did I understand or appreciate the importance of attribution calculations. 

Over years of repeatedly screwing up my solutions, I found techniques that others had
written about through researching solutions to my self-imposed woes of inadequately
engineered projects. I came to embrace the ideas that led me to DS work to begin
with: automating annoying and repetitive tasks. By removing the manual activity of
monitoring the health of my projects (via ad hoc drift tracking), I found that I had
solved two primary problems that were plaguing me.

First, I freed up my time. Doing ad hoc analyses on prediction results and feature sta-
bility takes a lot of time. In addition, it’s incredibly boring work. 

The second big problem was in accuracy. Manually evaluating model performance is
repetitive and error-prone. Missing details through a manual analysis can mean
deploying a model version that is worse than the currently deployed one, introducing
issues that are far more significant than a slightly poorer prediction performance. 

I’ve learned my lesson about automating retraining (typically opting for passive
retraining systems rather than the far more complex active ones if I can get away with
it). As with everything else I’ve learned in my career, I’ve learned it by screwing it up.
Hopefully, you can avoid the same fate.
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do we roll back the model to the previous version without having to rebuild it? We can
allay these concerns by using a model registry.

16.1.1 MLflow’s model registry

In this situation that we find ourselves in, with scheduled updates to a model happen-
ing autonomously, it is important for us to know the state of production deployment.
Not only do we need to know the current state, but if questions arise about perfor-
mance of a passive retraining system in the past, we need to have a means of investigat-
ing the historical provenance of the model. Figure 16.3 compares using and not using
a registry for tracking provenance in order to explain a historical issue.

With an automated cadence to retraining, after some amount of time,
a lot of versions of the model will be out in the wild.

Better than prod?
Comparison to current

production model

Holdout performance
validation

Scheduled retraining
(daily, weekly, etc.)

Production deployment

No

Yes

Figure 16.2 Logical diagram of a passive retraining system

Week 23
version 17

Week 24
version 17

Week 25
version 18

Week 26
version 19

Week 27
version 19

Week 28
version 20

Explain what went
wrong; develop

safeguards against the
issue in the future.

Run training data and
problematic vectors

through toshap
explain what

impacted the issue.

Compare to noticed
behavior of complaint

and attempt to
reproduce issue.

Using model
registry?

Yes

No

Find the old model or
retrain a new one

with the data
available for training

as of week 25.

Monday, week 29,
Business:

“We noticed
something weird

during week 25 . . . ”

Hope that the
problem can be

explained and that
the training data
didn't change.

Pull artifact for week
25, utilize forshap
model explainability

reports.

This is painful, time-consuming, and potentially incorrect.

This is easy and takes no more than an hour.

Figure 16.3 Passive retraining schedule with a historic issue found far in the future
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As you can see, the process for attempting to re-create a past run is fraught with peril;
we have a high risk of being unable to reproduce the issue that the business found in
historical predictions. With no registry to record the artifacts utilized in production,
manual work must be done to re-create the model’s original conditions. This can be
incredible challenging (if not impossible) in most companies because changes may
have occurred to the underlying data used to train the model, rendering it impossible
to re-create that state.

 The preferred approach, as shown in figure 16.3, is to utilize a model registry ser-
vice. MLflow, for instance, offers exactly this functionality within its APIs, allowing us
to log details of each retraining run to the tracking server, handle production promo-
tion if the scheduled retraining job performs better on holdout data, and archive the
older model for future reference. If we had used this framework, the process of testing
conditions of a model that had at one point run in production would be as simple as
recalling the artifact from the registry entry, loading it into a notebook environment,
and generating the explainable correlation reports with tools such as shap. 

Is a registry really that important?
Well, in two words, “It depends.” 

I remember with a distinct spine-chilling horror one of my first major, real-deal, no-kidding,
really serious ML implementations that I built. It wasn’t by any means my first pro-
duction release of a solution, but it was the first one that had serious attention being
paid to it. It helped to run a rather significant part of the business, and as such, was
closely scrutinized by a lot of people. Rightfully so, if I may add. 

My deployment (if it could be called that) involved a passive-like retraining system
that stored the last-known-good hyperparameters of the previous day’s tuning run,
using those values as a starting point to begin automated tuning. After optimizing to
all of the new feature-training data available, it chose the best-performing model, ran
a prediction on the new data, and overwrote a serving table with the predictions. 

It wasn’t until a full three months into the project’s production run that the first seri-
ous question came up regarding why the model was predicting in an unexpected way
with certain customers. The business leaders couldn’t figure out why it was doing
that, so they approached me and asked me to investigate. 

Having no record of the model (it wasn’t even saved anywhere) and realizing that the
training data was changing consistently over time as the features updated made it
completely impossible for me to explain the model’s historical performance. 

The business was less than pleased with this answer. Although the model didn’t get
shut off (it probably should have), it made me realize the importance of storing and
cataloguing models for the precise purpose of being able to explain why the solution
behaves the way it does, even if that explanation is months past the point at which
it was being used.
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16.1.2 Interfacing with the model registry

To get a feel for how this code would look to support an integration with the model
registry service of MLflow, let’s adapt our use case to support this passive retraining
functionality. To start, we need to create an adjudication system that checks the cur-
rent production model’s performance against the scheduled retraining results. After
building that comparison, we can interface with the registry service to replace the cur-
rent production model with the newer model (if it’s better), or stay with the current
production model based on its performance against the same holdout data that the
new model was tested against. 

 Let’s look at an example of how to interface with the MLflow model registry to sup-
port automated passive retraining that retains provenance of the model’s state over
time. Listing 16.1 establishes the first portion of what we need to build to have a his-
torical status table of each scheduled retraining event. 

NOTE To see all of the import statements and the full example that integrates
with these snippets, see the companion notebook to this chapter in the GitHub
repository for this book at https://github.com/BenWilson2/ML-Engineering.

@dataclass
class Registry:       
  model_name: str
  production_version: int
  updated: bool
  training_time: str
class RegistryStructure:    
  def __init__(self, data):
    self.data = data
  def generate_row(self):
    spark_df = spark.createDataFrame(pd.DataFrame(
      [vars(self.data)]))             
    return (spark_df.withColumn("training_time", 
F.to_timestamp(F.col("training_time")))
            .withColumn("production_version", 
F.col("production_version").cast("long")))
class RegistryLogging:
  def __init__(self, 
               database, 
               table, 
               delta_location, 
               model_name, 
               production_version, 
               updated):
    self.database = database
    self.table = table
    self.delta_location = delta_location
    self.entry_data = Registry(model_name, 
                               production_version, 
                               updated, 
                               self._get_time())    

Listing 16.1 Registry state row generation and logging

A data class to wrap 
the data we’re going 
to be logging

Class for converting the registration 
data to a Spark DataFrame to write a 
row to a delta table for provenance

Accesses the members of 
the data class in a shorthand 
fashion to cast to a pandas 
DataFrame and then a Spark 
DataFrame (leveraging 
implicit type inferences)

Builds the Spark 
DataFrame row at 
class initialization

https://github.com/BenWilson2/ML-Engineering
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  @classmethod
  def _get_time(self):
    return datetime.today().strftime('%Y-%m-%d %H:%M:%S')
  def _check_exists(self):                        
    return spark._jsparkSession.catalog().tableExists(
      self.database, self.table)
  def write_entry(self):                       
    log_row = RegistryStructure(self.entry_data).generate_row()
    log_row.write.format("delta").mode("append").save(self.delta_location)
    if not self._check_exists():
      spark.sql(f"""CREATE TABLE IF NOT EXISTS 
         {self.database}.{self.table} 
         USING DELTA LOCATION 
         '{self.delta_location}';""")

This code helps set the stage for the provenance of the model-training history. Since
we’re looking to automate the retraining on a schedule, it’s far easier to have a track-
ing table that refers to the history of changes in a centralized location. If we have mul-
tiple builds of this model, as well as other projects that are registered, we can have a
single snapshot view of the state of production passive retraining without needing to
do anything more than write a simple query. 

 Listing 16.2 illustrates what a query of this table would look like. With multiple mod-
els logged to a transaction history table like this, adding df.filter(F.col("model_
name" == "<project title>") allows for rapid access to the historical log for a single
model.

from pyspark.sql import functions as F
REGISTRY_TABLE = "mleng_demo.registry_status"
display(spark.table(REGISTRY_TABLE).orderBy(F.col("training_time"))    

Executing this code results in figure 16.4. In addition to this log, the model registry
within MLflow also has a GUI. Figure 16.5 shows a screen capture of the GUI that
matches to the registry table from listing 16.2.

 Now that we’ve set up the historical tracking functionality, we can write the
interface to MLflow’s registry server to support passive retraining. Listing 16.3
shows the implementation for leveraging the tracking server’s entries, the registry
service for querying current production metadata, and an automated state transi-
tion of the retrained model for supplanting the current production model if it per-
forms better.

 

Listing 16.2 Querying the registry state table

Method for determining 
if the delta table has 
been created yet

Writes the log data to Delta in append mode and 
creates the table reference in the Hive Metastore 
if it doesn’t already exist

Since we’ve registered the table in our row-input stage earlier, we can refer to it directly by
<database>.<table_name> reference. We can then order the commits chronologically.
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The production model
that is being retrained
through automated
scheduling

The production version of the
model that is being used for
production prediction as of the
retraining event. If the retrained
model performs better than
production, the version will be
incremented as in row 3.

Boolean indicator
for whether the
production version
was updated

The time when the
passive retraining
run was logged

Figure 16.4 Querying the registry state transaction table

The project’s name

Current production
model’s indication

Each version’s
registration history

Figure 16.5 The MLflow model registry GUI for our experiments



479Artifact management
class ModelRegistration:
  def __init__(self, experiment_name, experiment_title, model_name, metric,
               direction):
    self.experiment_name = experiment_name
    self.experiment_title = experiment_title
    self.model_name = model_name
    self.metric = metric
    self.direction = direction
    self.client = MlflowClient()
    self.experiment_id = 

mlflow.get_experiment_by_name(experiment_name).experiment_id
  def _get_best_run_info(self, key):                      
    run_data = mlflow.search_runs(
      self.experiment_id, 
      order_by=[f"metrics.{self.metric} {self.direction}"])
    return run_data.head(1)[key].values[0]
  def _get_registered_status(self):
    return self.client.get_registered_model(name=self.experiment_title)
  def _get_current_prod(self):                     
    return ([x.run_id for x in self._get_registered_status().latest_versions
     if x.current_stage == "Production"][0])
  def _get_prod_version(self):
    return int([x.version for x in 
     self._get_registered_status().latest_versions
             if x.current_stage == "Production"][0])
  def _get_metric(self, run_id):
    return mlflow.get_run(run_id).data.metrics.get(self.metric)
  def _find_best(self):                         
    try: 
      current_prod_id = self._get_current_prod()
      prod_metric = self._get_metric(current_prod_id)
    except mlflow.exceptions.RestException:
      current_prod_id = -1
      prod_metric = 1e7
    best_id = self._get_best_run_info('run_id')
    best_metric = self._get_metric(best_id)
    if self.direction == "ASC":
      if prod_metric < best_metric:
        return current_prod_id
      else:
        return best_id
    else:
      if prod_metric > best_metric:
        return current_prod_id
      else:
        return best_id
  def _generate_artifact_path(self, run_id):
    return f"runs:/{run_id}/{self.model_name}"
  def register_best(self, registration_message, logging_location, log_db,
                    log_table):                    
    best_id = self._find_best()

Listing 16.3 Passive retraining model registration logic

Extracts all the previous run data
for the history of the production
deployment and returns the run

ID that has the best performance
against the validation data

Query for the model
currently registered as
“production deployed’

in the registry

Method for determining if the 
current scheduled passive 
retraining run is performing 
better than production on its 
holdout data. It will return the 
run_id of the best logged run.

Utilizes the MLflow Model Registry
API to register the new model if it

is better, and de-registers the
current production model if it’s

being replaced
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    try:
      current_prod = self._get_current_prod()
      current_prod_version = self._get_prod_version()
    except mlflow.exceptions.RestException:
      current_prod = -1
      current_prod_version = -1
    updated = current_prod != best_id
    if updated:
      register_new = mlflow.register_model(self._generate_artifact_path(best_id),
                                   self.experiment_title)
      self.client.update_registered_model(name=register_new.name, 
                                          description="Forest Fire 
                                          Prediction for the National Park")
      self.client.update_model_version(name=register_new.name, 
                                       version=register_new.version, 
                                       description=registration_message)
      self.client.transition_model_version_stage(name=register_new.name, 
                                                 version=register_new.version,
                                                 stage="Production")
      if current_prod_version > 0:
        self.client.transition_model_version_stage(
          name=register_new.name, 
          version=current_prod_version,
         stage="Archived")
      RegistryLogging(log_db, 
            log_table, 
            logging_location, 
            self.experiment_title,  
            int(register_new.version), 
            updated).write_entry()
      return "upgraded prod"
    else:
      RegistryLogging(log_db, 
            log_table, 
            logging_location, 
            self.experiment_title, 
            int(current_prod_version), 
            updated).write_entry()
      return "no change"
  def get_model_as_udf(self):          
    prod_id = self._get_current_prod()
    artifact_uri = self._generate_artifact_path(prod_id)
    return mlflow.pyfunc.spark_udf(spark, model_uri=artifact_uri)

This code allows us to fully manage the passive retraining of this model implementa-
tion (see the companion GitHub repository for this book for the full code). By lever-
aging the MLflow Model Registry API, we can meet the needs of production-scheduled
predictions through having a one-line access to the model artifact. 

 This greatly simplifies the prediction batch–scheduled job, but also meets the
needs of the investigation we began discussing in this section. Having the ability to
retrieve the model with such ease, we can manually test the feature data against
that model, run simulations with the use of tools like shap, and rapidly answer

Acquires the current production 
model for batch inference on 
a Spark DataFrame using a 
Python UDF
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business questions without having to struggle with re-creating a potentially impossi-
ble state. 

 In the same vein of using a model registry to keep track of the model artifacts, the
features being used to train models and predict with the use of models can be cata-
logued for efficiency’s sake as well. This concept is realized through feature stores. 

That’s cool and all, but what about active retraining?
The primary difference between passive retraining and active retraining lies in the
mechanism of initiating retraining. 

Passive, scheduled by CRON, is a “best hope” strategy that attempts to find an
improved model fit by incorporating new training data in the effort to counteract drift.
Active, on the other hand, monitors the state of predictions and features to determine
algorithmically when it makes sense to trigger a retraining.

Because it is designed to respond to unpredictable performance degradation, an
active system can be beneficial if drift is happening at unpredictable rates—for
instance, a model has been performing well for weeks, falls apart in the span of a
few days, gets retrained, and performs well for only a few days before needing retrain-
ing. To create this responsive feedback loop to trigger a retraining event, prediction
quality needs to be monitored. A system needs to be built to generate a retraining
signal; this system ingests the predictions, merges the highly variable nature of
ground-truth results that arrive at a later point (in some cases, seconds, at other
times, weeks later), and effectively sets statistically significant thresholds on aggre-
gated result states over time. 

These systems are highly dependent on the nature of the problem being solved by
the ML, and as such, vary in their design and implementation so much that even a
generic example architecture is irrelevant for presentation here. 

For instance, if you’re trying to determine the success of a model’s ability to predict
the weather in the next hour in a certain location, you can get feedback within an
hour. You could build a system that merges the hour-lagged real weather against the
predictions, feeding the actual model accuracy into a windowed aggregation of accu-
racy rate over the last 48 hours. Should the aggregated rate of success in weather
forecasting drop below a defined threshold of 70%, a retraining of the model can be
initiated autonomously. This newly trained model can be compared against the cur-
rent production model by validating both models through a standard (new) holdout
validation dataset. The new model can then be used either immediately through a
blue/green deployment strategy or gradually by having traffic dynamically allocated to
it with a multi-bandit algorithm that routes traffic based on relative performance
improvement compared to the current production model.

Active retraining is complex, in a nutshell. I recommend that people investigate it only
after finding that passive retraining simply isn’t cutting it anymore, rather than just
because it seems like it’s important. There are far more moving parts, services, and
infrastructure to handle when autonomously handling retraining. The cloud services
bill that you get when using active retraining will reflect the increase in complexity as
well (it’s expensive).
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16.2 Feature stores
We briefly touched on using a feature store in the preceding chapter. While it is
important to understand the justification for and benefits of implementing a feature
store (namely, that of consistency, reusability, and testability), seeing an application of
a relatively nascent technology is more relevant than discussing the theory. Here,
we’re going to look at a scenario that I struggled through, involving the importance of
utilizing a feature store to enforce consistency throughout an organization leveraging
both ML and advanced analytics.

 Let’s imagine that we work at a company that has multiple DS teams. Within the
engineering group, the main DS team focuses on company-wide initiatives. This team
works mostly on large-scale projects involving critical services that can be employed by
any group within the company, as well as customer-facing services. Spread among
departments are a smattering of independent contributor DS employees who have
been hired by and report to their respective department heads. While collaboration
occurs, the main datasets used by the core DS team are not open for the independent
DS employees’ use.

 At the start of a new year, a department head hires a new DS straight out of a uni-
versity program. Well-intentioned, driven, and passionate, this new hire immediately
gets to work on the initiatives that this department head wants investigated. In the
process of analyzing the characteristics of the customers of the company, the new hire
come across a production table that contains probabilities for customers to make a
call-center complaint. Curious, the new DS begins analyzing the predictions against
the data that is in the data warehouse for their department. 

 Unable to reconcile any feature data to the predictions, the DS begins working on
a new model prototype to try to improve upon the complaint prediction solution.
After spending a few weeks, the DS presents their findings to their department head.
Given the go-ahead to work on this project, the DS proceeds to build a project in their
analytics department workspace. After several months, the DS presents their findings
at a company all-hands meeting. 

 Confused, the core DS team asks why this project is being worked on and for fur-
ther details on the implementation. In less than an hour, the core DS team is able to
explain why the independent DS’s solution worked so well: they leaked the label. Fig-
ure 16.6 illustrates the core DS team’s explanation: the data required to build any new
model or perform extensive analysis of the data collected from users is walled off by
the silo surrounding the core DS team’s engineering department.

 The data being used for training that was present in the department’s data ware-
house was being fed from the core DS team’s production solution. Each source fea-
ture used to train the core model was inaccessible to anyone apart from engineering
and production processes. 

 While this scenario is extreme, it did, in fact, happen. The core team could have
helped to avoid this by providing an accessible source for the generated feature data,
opening the access to allow other teams to utilize these highly curated data points for
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additional projects. By registering their data with appropriate labels and documenta-
tion, they could have saved this poor DS a lot of effort.

16.2.1 What a feature store is used for

Solving the data silo issue in our scenario is among the most compelling reasons to
use a feature store. When dealing with a distributed DS capability throughout an orga-
nization, the benefits of standardization and accessibility are seen through a reduc-
tion in redundant work, incongruous analyses, and general confusion surrounding
the veracity of solutions. 

 However, having a feature store enables an organization to do far more with its
data than just quality-control it. To illustrate these benefits, figure 16.7 shows a high-
level code architecture for model building and serving with and without a feature
store.
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User data
(raw)
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data cleanup

cohort assignment

Subset of data

Feature
generation

Call center data

Churn
prediction
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Engineering silo
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The rest of the organization

With none of the useful feature-
engineering data being written
to the data warehouse, anyone
outside of engineering’s core DS
team will be without the data
needed to perform analytics
or modeling in the domains
applicable to this data.

Lifetime
value model

ETL
data cleanup

Feature
generation

Figure 16.6 The engineering silo that keeps raw data and calculated features away from the rest of the 
organization
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The top portion of figure 16.7 shows the historical reality of ML development for proj-
ects. Tightly coupled feature-engineering code is developed inline to the model tun-
ing and training code to generate models that are more effective than they would be if
trained on the raw data. While this architecture makes sense from a development per-
spective of generating a good model, it creates an issue when developing the predic-
tion code base (as shown at the top right of figure 16.7). 

 Any operations that are done to the raw data now need to be ported over to this
serving code, presenting an opportunity for errors and inconsistencies in the model
vector. Alternatives to this approach can help eliminate the chances of data inconsis-
tency, however:

Traditional ML process for feature augmentation/engineering

Training code base

Need to match!

Serving code base

Pipelines embed
feature-engineering
logic with the model.

Data load

Feature
eng.

Artifact
load
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Load
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Feature-engineering
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Predict

Feature
store load

Raw data load
Register
feature
pipeline

Model train/
tune

Pipeline
load

Data load

Feature engineering

Model training &
tuning

Artifact storage

Scheduled feature store ETL

Modeling and serving with a feature store

Figure 16.7 Comparison of using a feature store versus not using one for ML development
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 Use a pipeline (most major ML frameworks have them).
 Abstract feature-engineering code into a package that training and serving can

both call.
 Write traditional ETL to generate features and store them.

Each of these approaches has its own downsides, though. Pipelines are great and
should be used, but they entangle useful feature-engineering logic with a particular
model’s implementation, isolating it from being utilized elsewhere. There’s simply no
easy way to reuse the features for other projects (not to mention it’s nearly impossible
for an analyst to decouple the feature-engineering stages from an ML pipeline with-
out help). 

 Abstracting feature-engineering code certainly helps with code reusability and solves
the consistency problem for the projects requiring the use of those features. But access
to these features outside the DS team is still walled off. The other downside is that it’s
another code base that needs to be maintained, tested, and frequently updated.

 Let’s look at an example of interacting with a feature store, using the Databricks
implementation to see the benefits in action.

NOTE Implementations of features of this nature that are built by a company
are subject to change. APIs, feature details, and associated functionality may
change, sometimes quite significantly, over time. This example of one such
implementation of a feature store is presented for demonstration purposes.

16.2.2 Using a feature store

The first step in utilizing a feature store is to define a DataFrame representation of the
processing involved in creating the features we’d like to use for modeling and analyt-
ics. The following listing shows a list of functions that are acting on a raw dataset to
generate new features.

from dataclasses import dataclass
from typing import List
from pyspark.sql.types import *
from pyspark.sql import functions as F
from pyspark.sql.functions import when
@dataclass
class SchemaTypes:
  string_cols: List[str]
  non_string_cols: List[str]
def get_col_types(df):
  schema = df.schema
  strings = [x.name for x in schema if x.dataType == StringType()]
  non_strings = [x for x in schema.names if x not in strings]
  return SchemaTypes(strings, non_strings)
def clean_messy_strings(df):                
  cols = get_col_types(df)

Listing 16.4 Feature-engineering logic

General cleanup to strip out leading 
whitespaces from the dataset’s string columns
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  return df.select(*cols.non_string_cols, *[F.regexp_replace(F.col(x), " ", 
    "").alias(x) for x in cols.string_cols])
def fill_missing(df):                
  cols = get_col_types(df)
  return df.select(
*cols.non_string_cols, *[when(F.col(x) == "?", 
"Unknown").otherwise(F.col(x)).alias(x) for x in cols.string_cols])
def convert_label(df, label, true_condition_string):   
  return df.withColumn(label, when(F.col(label) == 
true_condition_string,1).otherwise(0))
def generate_features(df, id_augment):            
  overtime = df.withColumn("overtime", 
when(F.col("hours_worked_per_week") > 40, 1).otherwise(0))
  net_pos = overtime.withColumn("gains", 
when(F.col("capital_gain") > F.col("capital_loss"), 1).otherwise(0))
  high_edu = net_pos.withColumn("highly_educated", 
when(F.col("education_years") >= 16, 2)
.when(F.col("education_years") > 12, 1).otherwise(0))
  gender = high_edu.withColumn("gender_key", 
when(F.col("gender") == "Female", 1).otherwise(0))
  keys = gender.withColumn("id", 
F.monotonically_increasing_id() + F.lit(id_augment))
  return keys
def data_augmentation(df, 
                      label, 
                      label_true_condition, 
                      id_augment=0):             
  clean_strings = clean_messy_strings(df)
  missing_filled = fill_missing(clean_strings)
  corrected_label = convert_label(missing_filled, 
                                  label, 
                                  label_true_condition)
  additional_features = generate_features(corrected_label, 
                                           id_augment)
  return additional_features

Once we execute this code, we’re left with a DataFrame and the requisite embedded
logic for creating those additional columns. With this, we can initialize the feature
store client and register the table, as shown in the next listing.

from databricks import feature_store    
fs = feature_store.FeatureStoreClient()     
FEATURE_TABLE = "ds_database.salary_features"   
FEATURE_KEYS = ["id"]         
FEATURE_PARTITION = "gender"    
fs.create_feature_table(
  name=FEATURE_TABLE,
  keys=["id"],
  features_df=data_augmentation(raw_data, 

Listing 16.5 Register the feature engineering to the feature store

Converts placeholder 
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                                "income", 
                                ">50K"),    
  partition_columns=FEATURE_PARTITION,
  description="Adult Salary Data. Raw Features."   
)

After executing the registration of the feature table, we can ensure that it is populated
with new data as it comes in through a lightweight scheduled ETL. The following list-
ing shows how simple this is.

new_data = spark.table(“prod_db.salary_raw”)     
processed_new_data = data_augmentation(new_data, 
                                        "income", 
                                        ">50K", 
                                        table_counts)   
fs = feature_store.FeatureStoreClient()
fs.write_table(            
  name=FEATURE_TABLE,
  df=processed_new_data,
  mode='merge'
)

Now that we’ve registered the table, the real key to its utility is in registering a model
using it as input. To start accessing the defined features within a feature table, we
need to define lookup accessors to each of the fields. The next listing shows how to
do this data acquisition on the fields that we want to utilize for our income predic-
tion model.

from databricks.feature_store import FeatureLookup    
def generate_lookup(table, feature, key):
  return FeatureLookup(
    table_name=table,
    feature_name=feature,
    lookup_key=key
  )
features = ["overtime", "gains", "highly_educated", "age",
            "education_years", "hours_worked_per_week", 
            "gender_key"]                            
lookups = [generate_lookup(FEATURE_TABLE, x, "id") 
            for x in features]    

Now that we’ve defined the lookup references, we can employ them in the training of
a simple model, as shown in listing 16.8. 

Listing 16.6 Feature store ETL update

Listing 16.7 Feature acquisition for modeling

Specifies the processing 
history for the DataFrame 
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The API to interface 
with the feature store 
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be using 

The lookup objects for 
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NOTE This is an abbreviated snippet of the full code. Please see the compan-
ion code in the book’s repository at https://github.com/BenWilson2/ML
-Engineering for the full-length example.

import mlflow
from catboost import CatBoostClassifier, metrics as cb_metrics
from sklearn.model_selection import train_test_split
EXPERIMENT_TITLE = "Adult_Catboost"
MODEL_TYPE = "adult_catboost_classifier"
EXPERIMENT_NAME = f"/Users/me/Book/{EXPERIMENT_TITLE}"
mlflow.set_experiment(EXPERIMENT_NAME)
with mlflow.start_run():
  TEST_SIZE = 0.15
  training_df = spark.table(FEATURE_TABLE).select("id", "income")
  training_data = fs.create_training_set(
    df=training_df,
    feature_lookups=lookups,
    label="income",
    exclude_columns=['id', 'final_weight', 'capital_gain', 'capital_loss']) 
  train_df = training_data.load_df().toPandas()   
  X = train_df.drop(['income'], axis=1)
  y = train_df.income
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE,
                                                      random_state=42,
                                                      stratify=y)
  model = CatBoostClassifier(iterations=10000, learning_rate=0.00001, 
    custom_loss=[cb_metrics.AUC()]).fit(X_train, y_train, 
      eval_set=(X_test, y_test), logging_level="Verbose")
  fs.log_model(model, MODEL_TYPE, flavor=mlflow.catboost,
    training_set=training_data, registered_model_name=MODEL_TYPE)    

With this code, we have a data source defined as a linkage to a feature store table, a
model utilizing those features for training, and a registration of the artifact depen-
dency chain to the feature store’s integration with MLflow. 

 The final aspect of a feature store’s attractiveness from a consistency and utility
perspective is in the serving of the model. Suppose we want to do a daily batch predic-
tion using this model. If we were to use something other than the feature store
approach, we’d have to either reproduce the feature-generation logic or call an exter-
nal package, processing on the raw data, to get our features. Instead, we must write
only a few lines of code to get an output of batch predictions.

from mlflow.tracking.client import MlflowClient
client = MlflowClient()
experiment_id = mlflow.get_experiment_by_name(EXPERIMENT_NAME).experiment_id

Listing 16.8 Register a model integrated with feature store

Listing 16.9 Run batch predictions with feature store registered model
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run_id = mlflow.search_runs(experiment_id, 
    order_by=["start_time DESC"]
   ).head(1)["run_id"].values[0]          
feature_store_predictions = fs.score_batch(
                            f"runs:/{run_id}/{MODEL_TYPE}", 
                            spark.table(FEATURE_TABLE))    

While batch predictions such as this one comprise a large percentage of historical ML
use cases, the API supports registering an external OLTP database or an in-memory
database as a sink. With a published copy of the feature store populated to a service that
can support low latency and elastic serving needs, all server-side (non-edge-deployed)
modeling needs can be met with ease.

16.2.3 Evaluating a feature store

The elements to consider when choosing a feature store (or building one yourself)
are as varied as the requirements within different companies for data storage para-
digms. In consideration of both current and potential future growth needs of such a
service, functionality for a given feature store should be evaluated carefully, while
keeping these important needs in mind:

 Synchronization of the feature store to external data serving platforms to sup-
port real-time serving (OLTP or in-memory database)

 Accessibility to other teams for analytics, modeling, and BI use cases
 Ease of ingestion to the feature store through batch and streaming sources
 Security considerations for adhering to legal restrictions surrounding data

(access controls)
 Ability to merge JIT data to feature store data (data generated by users) for

predictions
 Data lineage and dependency tracking to see which projects are creating and

consuming the data stored in the feature store

With effective research and evaluation, a feature store solution can greatly simplify the
production serving architecture, eliminate consistency bugs between training and
serving, and reduce the chances of others duplicating effort across an organization.
They’re incredibly useful frameworks, and I certainly see them being a part of all
future ML efforts within industry.

OK, feature stores are cool and all, but do I really need one?
“We got along just fine without one for years.” 

I’m usually a bit of a Luddite when it comes to new hype in technology. With a highly
skeptical eye, I tend to take a rather pessimistic view of anything new that comes
along, particularly if it claims to solve a lot of challenging problems or just sounds too

Gets the individual run ID that we’re 
interested in from the experiment 
(here, the latest run)

Applies the model to the defined feature
table without having to write ingestion

logic and perform a batch prediction
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16.3 Prediction serving architecture
Let’s pretend for a moment that our company is working toward getting its first model
into production. For the past four months, the DS team has been working studiously
at fine-tuning a price optimizer for hotel rooms. The end goal of this project is to gen-
erate a curated list of personalized deals that have more relevancy to individual users
than the generic collections in place now.

 For each user, the team’s plan is to generate predictions each day for probable
locations to visit (or locations the user has visited in the past), generating lists of deals
to be shown during region searches. The team realizes early on a need to adapt pre-
diction results to the browsing activity of the user’s current session. 

 To solve this dynamic need, the team generates overly large precalculated lists for
each member based on available deals in regions that were like those that they’ve trav-
eled to in the past. Fallback and cold-start logic for this project simply use the existing
global heuristics that were in place before the project. Figure 16.8 shows the planned
general architecture that the team has in mind for serving the predictions.

 Initially, after building this infrastructure, QA testing looks solid. The response
SLA from the NoSQL-backed REST API is performing well, the batch prediction and

(continued)

good to be true. Honestly, most announcements in the ML space do exactly that: they
gloss over the fine details of why the problem they’re purporting to solve was difficult
for others to solve in the past. It’s only when I start road-testing the “new, hot tech”
that the cracks begin to appear. 

I haven’t had this experience with feature stores. Quite the contrary. I most certainly
did take a skeptical view of them at first. But testing out the functionality and seeing
the benefits of having centralized tracking of features, reusability of the results of
complex feature-engineering logic, and the ability to decouple and monitor features
from external scheduled jobs has made me a believer. Being able to monitor the
health of features, not having to maintain separate logic of calculated features for
additional projects, and being able to create features that can be leveraged for BI use
cases is invaluable. 

These systems are useful during the development of projects as well. With a feature
store, you’re not modifying production tables that are created through ETL. With the
speed and dynamic nature of feature-engineering efforts, a lightweight ETL can be
performed on these feature tables that does not require the large-scale change man-
agement associated with changes to production data in a data lake or data ware-
house. With the data fully under the purview of the DS team (still held to production
code-quality standards, of course!), the larger-scale changes to the rest of the orga-
nization are mitigated as compared to changes to DE jobs.

Do you absolutely need a feature store? No, you don’t. But the benefits of having one
to utilize for development, production deployment, and data reuse are of such a large
magnitude that it simply doesn’t make sense not to use one.
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heuristics logic from the model’s output is optimized for cost, and the fallback logic
failover is working flawlessly. The team is ready to start testing the solution with an
A/B test. 

 Unfortunately, the test group’s booking rate is no different from the control
group’s rates. Upon analyzing the results, the team finds that fewer than 5% of ses-
sions utilized the predictions, forcing the remaining 95% of page displays to show the
fallback logic (which is the same data being shown to the control group). Whoops. To
fix this poor performance, the DS team decides to focus on two areas:

 Increasing the number of predictions per user per geographic region
 Increasing the number of regions being predicted per user to cover 

This solution dramatically affects their storage costs. What could they have done dif-
ferently? Figure 16.9 shows a significantly different architecture that could have solved
this problem without incurring such a massive cost in processing and storage.
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Figure 16.8 Initial serving architecture design
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While these changes are neither trivial nor, likely, welcome for either the DS team or
the site-engineering team, they provide a clear picture about why serving predictions
should never be an afterthought for a project. To effectively provide value, several
considerations for serving architecture development should be evaluated at the outset
of the project. The subsequent subsections cover these considerations and the sorts of
architecture required to meet the scenarios.

 

Adding session-level data to the
booking history allows the model
to ingest that data from a real-time
service.
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16.3.1 Determining serving needs

The team in our performance scenario initially failed to design a serving architecture
that fully supported the needs of the project. Performing this selection is not a trivial
endeavor to get right. However, with a thorough evaluation of a few critical character-
istics of a project, the appropriate serving paradigm can be employed to enable an
ideal delivery method for predictions.

 When evaluating the needs of a project, it’s important to consider the following
characteristics of the problem being solved to ensure that the serving design is neither
overengineered nor under-engineered.

 
 

This sounds like a developer problem, not a “me problem”
It may seem like it’s better to just have a software engineering group worry about how
to utilize a model artifact. They, after all (in most cases), are better at software devel-
opment than a DS group is, and have exposure to more infrastructure tools and
implementation techniques than are applicable to the realm of ML. 

In my experience, I’ve never had much success with “punting a model over the wall”
to another team. Depending on the use case, the data manipulation requirements
(those requiring specific packages or other algorithms that are highly esoteric to the
DS realm), post-prediction heuristics needs, and artifact update velocity can be chal-
lenging for a developer to integrate. Without a close, collaborative effort with a pro-
duction infrastructure development team, deploying a service that integrates with
existing systems can be an exercise in frustration and a massive generator of tech-
nical debt.

Most times, after discussing a project’s integration needs with development teams,
we’ve come upon clever methodologies to store predictions, perform manipulations
of data at massive scale, and collaborate on designs that serve the project’s SLA
needs at the lowest possible cost. Without input from the DS team on what it is that
the model is doing, the development team is ill-prepared to make optimized architec-
ture decisions. Similarly, without the advice and collaboration of the development
team, the DS team is likely to create a solution that doesn’t meet the SLA needs or
will be too costly to be justified running for very long. 

Collaboration is key when evaluating a serving architecture; many times, this collab-
oration helps inform the very structure and design of the ML solution’s output. It’s
best to involve the “engineering consumers” of your model solutions early in the proj-
ect design phase. The earlier that they’re involved in the project (data engineers for
batch bulk prediction solutions, software engineers for real-time serving solutions),
the more of a positive influence they can have on the decision being made about how
the solution is built.
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SLA
The original intention of the team earlier in our scenario was to ensure that their pre-
dictions would not interrupt the end user’s app experience. Their design encom-
passed a precalculated set of recommendations, held in an ultra-low-latency storage
system to eliminate the time burden that they assumed would be involved in running
a VM-based model service. 

 SLA considerations are one of the most important facets of an ML architecture
design for serving. In general, the solution that is built must consider the budget for
serving delays and ensure that for most of the time, this budget is not extended or vio-
lated. Regardless of how amazingly a model performs from a prediction accuracy or
efficacy standpoint, if it can’t be used or consumed in the amount of time allotted, it’s
worthless.

 The other consideration that needs to be balanced with that of the SLA require-
ments is the actual monetary budget. Materialized as a function of infrastructure com-
plexity, the general rule is that the faster a prediction can be served at a larger scale of
requests, the more expensive the solution is going to be to host and develop.

COST

Figure 16.10 shows a relationship between prediction freshness (how long after a pre-
diction is made it is intended to be utilized or acted upon) and the volume of predic-
tions that need to be made as a factor of cost and complexity.

 The top portion of figure 16.10 shows a traditional paradigm for batch serving.
For extremely large production inference volumes, a batch prediction job using
Apache Spark Structured Streaming in a trigger-once operation will likely be the
cheapest option. 

 The bottom portion of figure 16.10 involves immediate-use ML solutions. When
predictions are intended to be used in a real-time interface, the architecture begins to
change dramatically from the batch-inspired use cases. REST API interfaces, elastic
scalability of serving containers, and traffic distribution to those services become
required as prediction volumes increase. 

RECENCY

Recency, the delay between when feature data is generated and when a prediction can
be acted upon, is one of the most important aspects of designing a serving paradigm
for a project’s model. SLA considerations are by and large the defining characteristics
for choosing a specific serving layer architecture for ML projects. However, edge cases
related to recency of the data available for usage in prediction can modify the final
scalable and cost-effective design employed for a project. 

 Depending on a particular situation, the recency of the data and the end use-
case for the project can override the general SLA-based design criteria for serving.
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Figure 16.11 illustrates a set of examples of data recency and consumption layer pat-
terns to show how the architecture can change from the purely SLA-focused designs
in figure 16.10.
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These examples are by no means exhaustive. There are as many edge case consider-
ations for serving model predictions as there are nuanced approaches to solving prob-
lems with ML. The intention is to open the discussion around which serving solution
is appropriate by evaluating the nature of the incoming data, identifying the project’s
needs, and seeking the least complex solution possible that addresses the constraints
of a project. By considering all aspects of project serving needs (data recency, SLA
needs, prediction volumes, and prediction consumption paradigms), the appropriate
architecture can be utilized to meet the usage pattern needs while adhering to a
design that is only as complex and expensive as it needs to be.

When an ML project’s output is destined for consumption within the walls of a com-
pany, the architectural burdens are generally far lower than any other scenario. How-
ever, this doesn’t imply that shortcuts can be taken. Utilizing MLOps tools, following
robust data management processes, and writing maintainable code are just as critical
here as they are for any other serving paradigm. Internal use-case modeling efforts
can be classified into two general groups: bulk precomputation and lightweight ad
hoc microservice.

But why don’t we just build real-time serving for everything?
Simplifying ML deployments around a one-size-fits-all pattern may be tempting. For
some organizations, reducing ML engineering complexity in this manner might make
sense (for instance, serving everything in Kubernetes). It certainly seems like it would
be easier if every single project just needed to use some form of framework that sup-
ported a single deployment strategy. 

This does make sense if your company has only a single type of ML use case. If all
your company ever does is fraud prediction on behalf of small companies, it might
make sense to stick with Seldon and Kubernetes to deliver REST API endpoints for
all your models. If you’re focused on doing marketplace price optimizations based on
asynchronous but low-traffic-volume models, a Docker container with a simple Flask
server running inside it will do nicely. 

Most companies aren’t myopically focused on a single ML use case, though. For
many companies, internal use cases would benefit from a simplistic batch prediction
that’s written to a table in a database. Most groups have needs that can be solved
with far simpler (and cheaper!) infrastructures for some of their use cases that don’t
involve spinning up a VM cluster that can support hundreds of thousands of requests
per second. Using such advanced infrastructure for a use case that’s at most going
to be queried a few dozen times per day is wasteful (in development time, mainte-
nance, and money) and negligent. 

It’s critically important for the long-term success of an ML solution to choose an archi-
tecture that fits the needs of consumption patterns, data volume sizes, and delivery
time guarantees. This doesn’t mean to overengineer everything just in case, but
rather to select the appropriate solution that meets your project’s needs. Nothing
less, and most certainly, nothing more.
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SERVING FROM A DATABASE OR DATA WAREHOUSE

Predictions that are intended for within-workday usage usually utilize a batch predic-
tion paradigm. Models are applied to the new data that has arrived up until the start
of the workday, predictions are written to a table (typically in an overwrite mode), and
end users within the company can utilize the predictions in an ad hoc manner. 

 Regardless of the interface method (BI tool, SQL, internal GUI, etc.), the predic-
tions are scheduled to occur at a fixed time (hourly, daily, weekly, etc.), and the only
infrastructure burden that the DS team has is ensuring that the predictions are made
and make their way to the table. Figure 16.12 shows an example architecture support-
ing this implementation.

This architecture is as bare-bones a solution as ML can get. A trained model is
retrieved from a registry, data is queried from a source system (preferably from a fea-
ture store table), predictions are made, drift monitoring validation occurs, and finally
the prediction data is written to an accessible location. For internal use cases on bulk-
prediction data, not much more is required from an infrastructure perspective.

SERVING FROM A MICROSERVICE FRAMEWORK

For internal use cases that rely on more up-to-date predictions on an ad hoc basis or
those that allow for a user to specify aspects of the feature vector to receive on-demand
predictions (optimization simulations, for instance), precomputation isn’t an option.
This paradigm focuses instead on having a lightweight serving layer to host the model,
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Figure 16.12 Batch serving generic architecture
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providing a simple REST API interface to ingest data, generate predictions, and return
the predictions to the end user. 

 Most implementations with these requirements are done through BI tools and
internal GUIs. Figure 16.13 shows an example of such an architectural setup to sup-
port ad hoc predictions.

The simplicity of this style of deployment is appealing for many use cases of model
serving for an internal use-case application. Capable of supporting up to a few dozen
requests per second, a lightweight flask deployment of a model can be an attractive
alternative to brute-force bulk computing of possible end-use permutations of poten-
tial predictions. Although this is technically a real-time serving implementation, it is of
critical importance to realize that this is wildly inappropriate for low-latency, high-
volume prediction needs or anything that could be customer-facing.
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16.3.2 Bulk external delivery

The considerations for bulk external delivery aren’t substantially different from
internal use serving to a database or data warehouse. The only material differences
between these serving cases are in the realms of delivery time and monitoring of the
predictions. 

DELIVERY CONSISTENCY

Bulk delivery of results to an external party has the same relevancy requirements as
any other ML solution. Whether you’re building something for an internal team or
generating predictions that will be end-user-customer facing, the goal of creating use-
ful predictions doesn’t change. 

 The one thing that does change with providing bulk predictions to an outside
organization (generally applicable to business-to-business companies) when com-
pared to other serving paradigms is in the timeliness of the delivery. While it may be
obvious that a failure to deliver an extract of bulk predictions entirely is a bad thing,
an inconsistent delivery can be just as detrimental. There is a simple solution to this,
however, illustrated in the bottom portion of figure 16.14.

It’s OK, we know that team
It can be rather tempting for internal-use projects to cut corners. Perhaps recording
passive retraining histories seems like overkill for an internal project. It may be tempt-
ing to ship a code base to a scheduled job with a poor design that lacks appropriate
refactoring that would have been done for a customer-facing model. Spending extra
time optimizing the data storage design to support end-user query performance may
seem like a waste of time. 

After all, they’re fellow employees. They’ll understand if it doesn’t work perfectly,
right?

Nothing can be further from the truth. In my experience, the company’s collective per-
ception of a DS team is based on these internal use-case projects. The perceived
capability, capacity, and competency of the DS team is directly influenced by how well
these internal tools work for the users within departments in the company. It’s criti-
cally important to build these solutions with the same level of engineering rigor and
discipline as a solution that is used by customers. It’s your reputation on the line in
ways that you might not realize.

Perception of capability becomes important in internal projects for no larger reason
than that these internal groups will be engaging your team for future projects. If these
groups perceive the DS team as generating broken, unstable, and buggy solutions for
their team’s use, the chances that they will want to have your team work on some-
thing that is customer-facing is somewhere in the vicinity of zero. 

The first customers that you have, after all, are the internal teams within the company.
You’ll do well to make sure your primary customers—the business units—are confi-
dent in your ability to deliver stable and useful solutions.
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Figure 16.14 shows the comparison of gated and ungated serving to an external user
group. By controlling a final-stage egress from the stored predictions in a scheduled
batch prediction job, as well as coupling feature-generation logic to an ETL process
governed by a feature store, delivery consistency from a chronological perspective
can be guaranteed. While this may not seem an important consideration from the
DS perspective of the team generating the predictions, having a predictable data-
availability schedule can dramatically increase the perceived professionalism of the
serving company.
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QUALITY ASSURANCE

An occasionally overlooked aspect of serving bulk predictions externally (external to
the DS and analytics groups at a company) is ensuring that a thorough quality check is
performed on those predictions.

 An internal project may rely on a simple check for overt prediction failures (for
example, silent failures are ignored that result in null values, or a linear model pre-
dicts infinity). When sending data products externally, additional steps should be
done to minimize the chances of end users of predictions finding fault with them.
Since we, as humans, are so adept at finding abnormalities in patterns, a few scant
issues in a batch-delivered prediction dataset can easily draw the focus of a con-
sumer of the data, deteriorating their faith in the efficacy of the solution to the
point of disuse.

 In my experience, when delivering bulk predictions external to a team of data spe-
cialists, I’ve found it worthwhile to perform a few checks before releasing the data:

 Validate the predictions against the training data:
– Classification problems—Comparing aggregated class counts 
– Regression problems—Comparing prediction distribution 
– Unsupervised problems—Evaluating group membership counts

 Check for prediction outliers (applicable to regression problems).
 Build (if applicable) heuristics rules based on knowledge from SMEs to ensure

that predictions are not outside the realm of possibility for the topic.
 Validate incoming features (particularly encoded ones that may use a generic

catchall encoding if the encoding key is previously unseen) to ensure that the
data is fully compatible with the model as it was trained.

By running a few extra validation steps on the output of a batch prediction, a great
deal of confusion and potential lessening of trust in the final product can be avoided
in the eyes of end users.

16.3.3 Microbatch streaming

The applications of streaming prediction paradigms are rather limited. Unable to meet
the strict SLA requirements that would force a decision to utilize a REST API service,
as well as being complete overkill for small-scale batch prediction needs, streaming
prediction holds a unique space in ML serving infrastructure. This niche spot is firmly
centered in the needs of a project having a relatively high SLA (measured in the range
of whole seconds to weeks) and a large inference dataset size. 

 The attractiveness of streaming for high SLA needs lies in cost and complexity
reduction. Instead of building out a scalable infrastructure to support bulk predic-
tions sent to a REST API service (or similar microservice capable of doing paginated
bulk predictions of large data), a simple Apache Spark Structured Streaming job can
be configured to allow for draining row-based data from a streaming source (such as
Kafka or cloud object storage queue indices) and natively running predictions upon
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the stream with a serialized model artifact. This helps dramatically reduce complexity,
can support streaming-as-batch stateful computation, and can prevent costly infra-
structure from having to run when not needed for prediction.

 From the perspective of large data sizes, streaming can reduce the required infra-
structure size that would otherwise be needed for large dataset predictions in a tradi-
tional batch prediction paradigm. By streaming the data through a comparatively
smaller cluster of machines than would be required to hold the entire dataset in mem-
ory, the infrastructure burden is far less. 

 This directly translates into lower total cost of ownership for an ML solution with a
relatively high SLA. Figure 16.15 shows a simple structured streaming approach to
serve predictions at a lower complexity and cost than traditional batch or REST API
solutions.

While not able to solve the vast majority of ML serving needs, this architecture still has
its place as an attractive alternative to batch prediction for extremely large datasets
and to REST APIs when SLAs are not particularly stringent. Implementing this serving
methodology is worth it, if it fits this niche, simply for the reduction in cost.

16.3.4 Real-time server-side

The defining characteristic of real-time serving is that of a low SLA. This directly
informs the basic architectural design of serving predictions. Any system supporting
this paradigm requires a model artifact to be hosted as a service, coupled with an
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interface for accepting data passed into it, a computational engine to perform the
predictions, and a method of returning a prediction to the originating requestor. 

 The details of implementing a real-time serving architecture can be defined
through the classification of levels of traffic, split into three main groupings: low vol-
ume, low volume with burst capacity, and high volume. Each requires different infra-
structure design and tooling implementation to allow for a high availability and
minimally expensive solution.

LOW VOLUME

The general architecture for low volume (low-rate requests) is no different from a
REST microservice container architecture. Regardless of what REST server is used,
what container service is employed to run the application, or what VM management
suite is used, the only primary addition for externally facing endpoints is to ensure
that the REST service is running on managed hardware. This doesn’t necessarily
mean that a fully managed cloud service needs to be used, but the requirement for
even a low-volume production service is that the system needs to stay up. 

 This infrastructure running the container that you’re building should be monitored
from not only an ML perspective, but from a performance consideration as well. The
memory utilization of the container on the hosting VM, the CPU utilization, network
latency, and request failures and retries should all be monitored in real time with a
redundant backup available to fail over to if issues arise with fulfilling serving requests.

 The scalability and complexity of traffic routing doesn’t become an issue with low-
volume solutions (tens to thousands of requests per minute), provided that the SLA
requirements for the project are being met, so a simpler deployment and monitoring
architecture is called for with low-volume use cases.

BURST VOLUME AND HIGH VOLUME

When moving to scales that support burst traffic, integrating elasticity into the serving
layer is a critical addition to the architecture. Since an individual VM has only so many
threads to process predictions, a flood of requests that come in for prediction and
that exceed the execution capacity of a single VM can overwhelm that VM. Unrespon-
siveness, REST time-outs, and VM instability (potentially crashing) can render a
single-VM model deployment unusable. The solution for handling burst volume and
high-capacity serving is to incorporate process isolation and routing in the form of
elastic load balancing. 

 Load balancing is, as the name implies, a means of routing requests in a sharded
fleet of VMs (duplicated containers of a model serving application). With many con-
tainers running in parallel, request loads can be scaled horizontally to support truly
staggering volumes of requests. These services (each cloud has its own flavor that
essentially does the same thing) are transparent to both the ML team deploying a con-
tainer and to the end user. With a single endpoint for requests to come into and a sin-
gle container image to build and deploy, the load-balancing system will ensure that
distribution of load burdens happens autonomously to prevent service disruption and
instability.
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 A common design pattern, leveraging cloud-agnostic services, is shown in figure 16.16.
Utilizing a simple Python REST framework (Flask) that interfaces with the model arti-
fact from within a container allows for scalable predictions that can support high-volume
and burst traffic needs.

This relatively bare-bones architecture is a basic template for an elastically scaling real-
time REST-based service to provide predictions. Missing from this diagram are other
critical components that we’ve discussed in previous chapters (monitoring of features,
retraining triggers, A/B testing, and model versioning), but it has the core compo-
nents that differentiate a smaller-scale real-time system from that of a service that can
handle large traffic volume. 

 At its core, the load balancer shown in figure 16.16 is what makes the system scale
from a single VM’s limit of available cores (putting Gunicorn in front of Flask will
allow all cores of the VM to concurrently process requests) to horizontally scaling out
to handling hundreds of concurrent predictions (or more). This scalability comes
with a caveat, though. Adding this functionality translates to greater complexity and
cost for a serving solution. 

 Figure 16.17 shows a more thorough design of a large-scale REST API solution.
This architecture can support extremely high rates of prediction traffic and all the ser-
vices that need to be orchestrated to hit volume, SLA, and analytics use cases for a pro-
duction deployment.
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Figure 16.16 Cloud-native REST API model serving architecture
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A more thorough architecture for REST serving at scale
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These systems have a lot of components. It’s quite easy for the complexity to grow to
the point that dozens of disparate systems are glued together in an application stack
to fulfill the needs of the project’s use case. Therefore, it is of the utmost importance
to explain not only the complexity involved in supporting these systems, but the cost
as well, to the business unit interested in having a solution built that requires this
architecture. 

 Typically, because of this magnitude of complexity, this isn’t a setup that a DS team
maintains on its own. DevOps, core engineering, backend developers, and software
architects are involved with the design, deployment, and maintenance of services like
this. The cloud services bill is one thing to consider for the total cost of ownership, but
the other outstanding factor is the human capital investment required to keep a ser-
vice like this operational constantly. 

 If your SLA requirements and scale are this complicated, it would be wise to iden-
tify these needs as early in the project as possible, be honest about the investment, and
make sure that the business understands the magnitude of the undertaking. If they
agree that the investment is worth it, go ahead and build it. However, if the prospect
of designing and building one of these behemoths is daunting to business leaders, it’s
best not to force them into allowing it to be built at the very end of development when
so much time and effort has been put into the project.

16.3.5 Integrated models (edge deployment)

Edge deployment is the ultimate stage in low-latency serving for certain use cases. As it
deploys a model artifact and all dependent libraries as part of a container image, it
has scalability levels that outweigh any other approach. However, this deployment par-
adigm carries with it a large burden on the part of app developers: 

 Deployment of new models or retrained models needs to be scheduled with
app deployments and upgrades.

 Monitoring of predictions and generated features is dependent on internet
connectivity.

 Heuristics or last-mile corrections to predictions cannot be done server-side.
 Models and infrastructure within the serving container need deeper and more

complex integration testing to ensure proper functionality.
 Device capabilities can restrict model complexity, forcing simpler and more

lightweight modeling solutions.

For these reasons, edge deployment might not be very appealing for many use cases.
The velocity of changes to the models is incredibly low, drift impacts to models can
render edge-deployed models irrelevant far more quickly than a new build can be
pushed out, and the lack of monitoring available for some end users can provide such
intense disadvantages to this paradigm as to leave it inapplicable to most projects. For
those that don’t suffer from the detractors for edge deployment, a typical architecture
for this serving style is shown in figure 16.18.
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As you can see, an edge deployment is tightly coupled to the application code base.
Because of the large numbers of required packaged libraries involved in a runtime
that can support the predictions being made by the included model, containerizing
the artifact prevents the app development team from maintaining an environment
that is mirrored to that of the DS team. This can mitigate many of the issues that can
plague non-container-based model edge deployments (namely, environment depen-
dency management, language choice standardization, and library synchronization for
features in a shared code base). 

 The projects that can leverage edge deployment, particularly those focused on
tasks such as image classification, can dramatically reduce infrastructure costs. The
defining aspect of what can qualify for edge deployment is in the state of stationarity
in the features being utilized by the model. If the functional nature of the model’s
input data will not be changing particularly often (such as with imaging use cases),
edge deployment can greatly simplify infrastructure and keep total ownership costs of
an ML solution incredibly low.
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Summary
 Model registry services will help ensure effective state management of deployed

and archived models, enabling effective passive retraining and active retraining
solutions without requiring manual intervention.

 Feature stores segregate feature-generation logic from modeling code, allowing
for faster retraining processes, reuse of features across projects, and a far sim-
pler method of monitoring for feature drift.

 To choose an appropriate architecture for serving, we must weigh many charac-
teristics of the project: employing the right level of services and infrastructure
to support the required SLA, prediction volume, and recency of data to ensure
that a prediction service is cost-effective and stable.



appendix A
Big O(no) and

how to think about
runtime performance

Runtime complexity, for ML use cases, is no different than it is for any other piece
of software. The impact of inefficient and poorly optimized code affects processing
tasks in ML jobs the same as it does any other engineering project. The only mate-
rial difference that sets ML tasks apart from traditional software is in the algorithms
employed to solve problems. The computational and space complexity of these
algorithms is typically obscured by high-level APIs that encapsulate recursive itera-
tions, which can dramatically increase runtimes.

 The goal of this appendix is to focus on understanding both the runtime char-
acteristics of control code (all the code in your project that isn’t involved in training a
model) and the ML algorithm itself that is being trained. 

A.1 What is Big O, anyway?
Let’s suppose we’re working on a project that is set to release soon to production.
The results are spectacular, and the business unit for whom the project was built is
happy with the attribution results. However, not everyone is happy. The costs of
running the solution are incredibly high.

 As we step through the code, we discover that the vast majority of the execution
time is centered around our feature-engineering preprocessing stages. One partic-
ular portion of the code seems to take far longer than we originally expected.
Based on initial testing, shown in the following listing, we had imagined that this
function wouldn’t be much of a problem.
510
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import nltk
import pandas as pd
import numpy as np
client_names = ['Rover', 'ArtooDogTwo', 'Willy', 'Hodor', 
  'MrWiggleBottoms', ‘SallyMcBarksALot', 'HungryGames', 
  'MegaBite', 'HamletAndCheese', 'HoundJamesHound', 
  'Treatzilla', 'SlipperAssassin', 'Chewbarka', 
  'SirShedsALot', 'Spot', 'BillyGoat', 'Thunder', 
  'Doggo', 'TreatHunter']                                  
extracted_names = ['Slipr Assassin', 'Are two dog two', 
  'willy', 'willie', 'hodr', 'hodor', 'treat zilla', 
  'roover', 'megbyte', 'sport', 'spotty', 'billygaot', 
  'billy goat', 'thunder', 'thunda', 'sirshedlot', 
  'chew bark', 'hungry games', 'ham and cheese', 
  'mr wiggle bottom', 'sally barks a lot']               
def lower_strip(string): return string.lower().replace(" ", "")
def get_closest_match(registered_names, extracted_names):
    scores = {}
    for i in registered_names:    
        for j in extracted_names:      
            scores['{}_{}'.format(i, j)] = nltk.edit_distance(lower_strip(i), 
       lower_strip(j))                   
    parsed = {}
    for k, v in scores.items():                          
        k1, k2 = k.split('_')
        low_value = parsed.get(k2)
        if low_value is not None and (v < low_value[1]):
            parsed[k2] = (k1, v)
        elif low_value is None:
            parsed[k2] = (k1, v)
    return parsed
get_closest_match(client_names, extracted_names)     
>> {'Slipr Assassin': ('SlipperAssassin', 2), 
    'Are two dog two': ('ArtooDogTwo', 2),
    'willy': ('Willy', 0), 
    'willie': ('Willy', 2), 
    'hodr': ('Hodor', 1),
    'hodor': ('Hodor', 0), 
    'treat zilla': ('Treatzilla', 0), 
    'roover': ('Rover', 1),
    'megbyte': ('MegaBite', 2), 
    'sport': ('Spot', 1), 
    'spotty': ('Spot', 2),
    'billygaot': ('BillyGoat', 2), 
    'billy goat': ('BillyGoat', 0),
    'thunder': ('Thunder', 0), 
    'thunda': ('Thunder', 2), 
    'sirshedlot': ('SirShedsALot', 2),
    'chew bark': ('Chewbarka', 1), 
    'hungry games': ('HungryGames', 0),
    'ham and cheese': ('HamletAndCheese', 3), 
    'mr wiggle bottom': ('MrWiggleBottoms', 1),
    'sally barks a lot': ('SallyMcBarksALot', 2)}   

Listing A.1 Nested loop name-reconciliation example

The list of registered 
names of dogs in our 
database (small 
sample)

The parsed names from 
the free-text field ratings 
that we get from our 
customer’s humans

Looping 
through every 
one of our 
registered 
names

The O(n2) nested loop, going 
through each of the parsed names

Calculates the 
Levenshtein distance 
between the names after
removing spaces and 
forcing lowercase on 
both strings

Loops through the 
pairwise distance 
measurements to 
return the most likely 
match for each parsed 
name. This is O(n).Runs the 

algorithm 
against the 
two lists of 
registered 
names and 
parsed 
names

The results of 
closest match 
by Levenshtein 
distance
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On the small dataset used for validation and development, the execution time was in
milliseconds. However, when running against our full dataset of 5 million registered
dogs and 10 billion name reference extractions, we simply have too many dogs in our
data to run through this algorithm. (Yes, there can be such a thing as too many dogs,
believe it or not.). 

 The reason is that the computational complexity of this algorithm is O(n2). For
each registered name, we’re testing its distance to each of the name extracts, as shown
in figure A.1.

 The following listing shows an alternative approach to reducing the looped
searching. 

JOIN_KEY = 'joinkey'
CLIENT_NM = 'client_names'
EXTRACT_NM = 'extracted_names'
DISTANCE_NM = 'levenshtein'

def dataframe_reconciliation(registered_names, extracted_names, threshold=10):
    C_NAME_RAW = CLIENT_NM + '_raw'
    E_NAME_RAW = EXTRACT_NM + '_raw'
    registered_df = pd.DataFrame(registered_names, columns=[CLIENT_NM])  
    registered_df[JOIN_KEY] = 0     
    registered_df[C_NAME_RAW] = registered_df[CLIENT_NM].map(lambda x: 

lower_strip(x))                                     
    extracted_df = pd.DataFrame(extracted_names, columns=[EXTRACT_NM])
    extracted_df[JOIN_KEY] = 0                                      
    extracted_df[E_NAME_RAW] = extracted_df[EXTRACT_NM].map(lambda x: 

lower_strip(x))
    joined_df = registered_df.merge(extracted_df, on=JOIN_KEY, how='outer')  
    joined_df[DISTANCE_NM] = joined_df.loc[:, [C_NAME_RAW, E_NAME_RAW]].apply(
        lambda x: nltk.edit_distance(*x), axis=1)     
    joined_df = joined_df.drop(JOIN_KEY, axis=1)
    filtered = joined_df[joined_df[DISTANCE_NM] < threshold]      
    filtered = filtered.sort_values(DISTANCE_NM).groupby(EXTRACT_NM, 

as_index=False).first()                             
    return filtered.drop([C_NAME_RAW, E_NAME_RAW], axis=1)

Listing A.2 A slightly better approach (but still not perfect)

Creates a pandas
DataFrame from the

client names list

Generates a static join key to support 
our Cartesian join we’ll be doing

Cleans up the names so that our Levenshtein calculation can 
be as accurate as possible (function defined in listing A.1)

Generates the same static
join key in the right-side

table to effect the
Cartesian join

Performs the Cartesian join 
(which is O(n2) space complexity)

Calculates the Levenshtein 
distance by using the thoroughly 
useful NLTK package

Removes any potential non-
matches from the DataFrame

Returns the rows for each potential
match key that has the lowest

Levenshtein distance score
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NOTE if you’re curious about the NLTK package and all of the fantastic
things that it can do for natural language processing in Python, I highly

Extracted Name Rating

Willie

Champy

Buster

Rovre

ChewieBarka

CountBark

10

7

4

2

8

9

Champy

Buster

Rovre

ChewieBarka

CountBark

7

4

2

8

9

Canine Cuisine Co.
Delivering artisanal food for your pooch

“No dog should live on astrodog food pellets.”—Dog
A really good boyTM

Ratings feedback Registered user data

Since these reviews come from
smartphone user comments,
we have to extract names,
some of which are misspelled.

To resolve the misspellings
and reconcile the rating
data to the right dog...

Our master user dataset with
client names (the dogs) as the
source of truth for resolving
references

Extracted Name Rating

Willie

Champy

Buster

Rovre

ChewieBarka

CountBark

Client Name Human Age Favorite Food

Willy Julie 9 yes

CountBarkula James 3 chicken

Champ Maria 6 tacos

Buster Saul mom’s spaghetti

Rover 8 ice cream

Chewbarka Susan 4 carrots

We sequentially check
each name to every

registered name.

Then we loop through
and repeat the process

for each dog.

As either of these lists of
names grows, the runtime

increases dramatically.
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4

2

8

9

John

2

Client Name Human Age Favorite Food

Willy1

2

3

4

5

6

Julie 9 yes

CountBarkula James 3 chicken

Champ Maria 6 tacos

Buster Saul mom’s spaghetti

Rover 8 ice cream

Chewbarka Susan 4 carrots

John

2

Figure A.1 The computational complexity of our feature engineering
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encourage you to read Natural Language Processing with Python (O’Reilly, 2009)
by Steven Bird, Ewan Klein, and Edward Loper, the original authors of the
open source project.

Utilizing this DataFrame approach can remarkably speed up the runtime. Listing A.2
is not a perfect solution, since the space complexity will increase, but refactoring in
this manner can dramatically reduce the runtime of the project and reduce costs. Fig-
ure A.2 shows the results of calling the function defined in listing A.2.

DataFrame representation of the name-resolution algorithm
(No dogs were harmed in the generation of this data.)

The parsed names from the
free-text comments about
how much the doggos liked
their artisanal meals

Registered
customer names
in our database

Lowest scores found
(the best match),
returned by filtering
the DataFrame in place

Figure A.2 Reducing computational complexity at the expense of space 
complexity
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The important thing to remember about this example is that scalability is relative.
Here we are trading computational complexity for space complexity: we originally
were sequentially looping through two arrays, which takes a long time to do, but
has a very low memory footprint; then, working with the matrix-like structure of
pandas is orders of magnitude faster but requires a great deal of RAM. In actual
practice, with the data volumes involved here, the best solution is to process this
problem in a mix of looped processing (preferably in Spark DataFrames) while
leveraging Cartesian joins in chunks to find a good balance between computation
and space pressure.

The analysis of runtime issues is, from both a practical and theoretical stance, handled
through evaluating computational complexity and space complexity, referred to in
shorthand as Big O.

A.1.1 A gentle introduction to complexity

Computational complexity is, at its heart, a worst-case estimation of how long it will take
for a computer to work through an algorithm. Space complexity, on the other hand, is
the worst-case burden to a system’s memory that an algorithm can cause. 

 While computational complexity typically impacts the CPU, space complexity
involves the memory (RAM) you need to have in the system to process the algorithm
without incurring disk spills (pagination to a hard drive or solid-state drive). Figure A.3
shows how operating on a collection of data points can have different space and com-
putational complexity, depending on the algorithm that you’re using.

 The different actions being performed on collections of data affect the amount of
time and space complexity involved. As you move from top to bottom in figure A.3,
both space and computational complexity increase for different operations.

 

Refactoring for performance and cost
Most refactoring of code bases is done to enhance their testability and extensibility.
But in ML code bases, a frequent activity that prompts enhancements is runtime effi-
ciency. This generally is focused more on the training and retraining of models than
on prediction aspects of ML, but incredibly complex feature engineering is involved in
these jobs. Many times, the root cause of nonperformant code in ML projects is in
the feature-processing and control logic, rather than in the training of the model(s)
(except for the case of extensive hyperparameter tuning, which will likely dominate
the total runtime).

Primarily because of the long-running nature of these jobs, identifying and optimizing
runtime performance can have a dramatic impact on the total cost of ownership of
an ML solution. To effectively optimize, however, it’s critical to analyze the computa-
tional complexity (affecting total runtime) and space complexity (affecting the size or
number of machines required to run the code).



516 APPENDIX A Big O(no) and how to think about runtime performance
Many other complexities are considered standard for assessing complexities in algo-
rithms. Figure A.4 shows these standard assessments on a linear scale, while figure A.5
shows them on a logarithmic y-scale to illustrate just how much some of them should
be avoided.

 As figures A.4 and A.5 show, the relationship between collection size and algorithm
type can dramatically affect the runtime of your code. Understanding these relation-
ships (of both space and computational complexity) within the non-ML aspects of
your code, outside of model training and inference, is absolutely essential.

 Let’s imagine what the costs would be for implementing something as simple as a
collection traversal in project orchestration code. If we were trying to evaluate rela-
tionships between two arrays of numbers in a brute-force manner (looping through
each in a nested fashion), we’d be looking at O(n2) complexity. If we were to merge
the lists instead through an optimized join, we could reduce the complexity signifi-
cantly. Moving from complexities like O(n2) to something closer to O(n), as shown in
figures A.4 and A.5, when dealing with large collections, can translate to significant
cost and time savings.

A G E B A E EAS G

A

A

G E B A E E

E

AS G A collection of data

O(1)
Return first element

from array

O(1)
Return last element

from array

Concatenate all elements to single string

O( )n

computational
complexity
O(1) space
complexity

O(n2)
computational

complexity
O(n2) space
complexity

O( !)n

computational
complexity
O( !) spacen

complexity

Worst-case scenario
for an algorithm.
Also known as

brute-force search.
Avoid to prevent

having a bad day.

AG AE AB AA ... EG EEEA

A G E B A E EAS G

Iterate through collection and create all pairs

A G E B A E EAS G

Create all permutations of collection

AGEBASGEAE EAEGSABEGAAGEBASGAEE . . .AGEBASGEEA

AGEBASGEAE

Figure A.3 Comparison of computational and space complexities for operating on a collection of data
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Figure A.4 Linear y-axis scale of different computational complexities filtered to 150 iterations
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Figure A.5 Logarithmic y-axis scale of computational complexities. Pay close attention to the size of the y-axis 
toward the top of the graph. Exponential and factorial complexities can truly bring the pain.
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A.2 Complexity by example
Analyzing code for performance issues can be daunting. Many times, we’re so focused
on getting all of the details surrounding feature engineering, model tuning, metric
evaluation, and statistical evaluation ironed out that the concept of evaluating how
we’re iterating over collections doesn’t enter our minds.

 If we were to take a look at the control code that directs the execution of those ele-
ments of a project, thinking of their execution as a factor of complexity, we would be
able to estimate the relative runtime effects that will occur. Armed with this knowl-
edge, we could decouple inefficient operations (such as overly nested looping state-
ments that could be collapsed into a single indexed traversal) and help reduce the
burden on both the CPU and the memory of the system running our code.

 Now that you’ve seen the theory of Big O, let’s take a look at some code examples
using these algorithms. Being able to see how differences in the number of elements
in a collection can affect timing of operations is important in order to fully under-
stand these concepts.

 I’m going to present these topics in a somewhat less-than-traditional manner, using
dogs as an example, followed by showing code examples of the relationships. Why?
Because dogs are fun.

A.2.1 O(1): The “It doesn’t matter how big the data is” algorithm

Let’s imagine that we’re in a room. A very, very large room. In the center of the room
is a ring of food bowls. For dogs. And we’ve filled these bowls with some pasta Bolog-
nese. It’s been a torturous day of making it (for the dogs, smelling the entire time),
but we’ve ladled the food into five separate bowls and are ready with our notepads to
record data about the event. After all is said and done (bowls are cleaner than before
they were ladled with pasta), we have collections of ordered lists representing differ-
ent actions that our panel of dogs took.

 When we wish to answer questions about the facts that we observed, we’re oper-
ating on these lists, but retrieving a single indexed value associated with the order
in which these events occurred. Regardless of the size of these lists, the O(1)-type
questions are simply acquiring data based on positional reference, and thus, the
operations all take the same amount of time. Let’s take a look at this scenario in fig-
ure A.6.

 O(1) doesn’t care how big the data is, as figure A.6 shows. These algorithms simply
operate in ways that don’t traverse collections, but rather access positions of data
within collections. 

 To show this relationship in a computational sense, listing A.3 illustrates a compar-
ison of performing an O(1) task on two differently sized collections of data—with a
similar runtime performance.
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import numpy as np
sequential_array = np.arange(-100, 100, 1)     
%timeit -n 1000 -r 100 sequential_array[-1]    
>> 269 ns ± 52.1 ns per loop (mean ± std. dev. of 
100 runs, 10000 loops each)                     

Listing A.3 Demonstration of O(1) complexity

O(1) operations in dog context

Champ
(Great with kids and pasta)

Bowser
(Our pasta brings
him to the yard.)

Colossus
(An absolute of aunit

Newfoundland)

Chuckles
(Awww, isn't she cute.)

Our Bolognese that we spent the
last 14 hours making from scratch Willy

(A certified husky)

O(1) questions to be answered from collecting data about our experiment

Dog to reach pasta first

Dog to reach pasta last

Dog to finish pasta first

First dog to regret eating
entire bowl of pasta

Ordered list of
arrival time

Ordered list of
food completion

time

Willy
arrival_time[0]

Chuckles
arrival_time[-1]

Willy
food_done[0]

regrets[0]
IndexError: list index out of range

Silly question. All dogs have zero
regrets about eating delicious food.

Figure A.6 O(1) search by means of hungry dogs

Generates an array of integers 
between –100 and 100

Runs through 100,000 iterations of the
operation to allow for per-run variance

to be minimized to see the access speed

The absolute value of averag
speed per iteration is highly
dependent on the hardware
that the code is running on.
269 nanoseconds is pretty fa
for using a single core from 
8-core laptop CPU, though.
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massive_array = np.arange(-1e7, 1e7, 1) 
%timeit -n 10000 -r 100 massive_array[-1] 
>> 261 ns ± 49.7 ns per loop (mean ± std. dev. of 
100 runs, 10000 loops each)                      
def quadratic(x):                                 
    return (0.00733 * math.pow(x, 3) -0.001166 * 
math.pow(x, 2) + 0.32 * x - 1.7334)
%timeit -n 10000 -r 100 quadratic(sequential_array[-1])   
>> 5.31 µs ± 259 ns per loop (mean ± std. dev. of 100 runs, 10000 loops each)
%timeit -n 10000 -r 100 quadratic(massive_array[-1])    
>> 1.55 µs ± 63.3 ns per loop (mean ± std. dev. of 100 runs, 10000 loops each)

The first array (sequential_array) is a scant 200 elements in length, and its access
time for retrieving an element from its indexed c-based-struct type is very fast. As we
increase the size of the array (massive_array, containing 2 million elements), the
runtime doesn’t change for a positional retrieval. This is due to an optimized storage
paradigm of the array; we can directly look up the memory address location for the
element in constant O(1) time through the index registry. 

 The control code of ML projects has many examples of O(1) complexity:

 Getting the last entry in a sorted, ranked collection of aggregated data points—For exam-
ple, from a window function with events arranged by time of occurrence. How-
ever, the process of building the windowed aggregation is typically O(n log n)
because of the sort involved.

 A modulo function—This indicates the remainder after dividing one number by
another and is useful in pattern generation in collection traversals. (The tra-
versal will be O(n), though.)

 Equivalency test—Equal, greater than, less than, and so forth.

A.2.2 O(n): The linear relationship algorithm

What if we want to know the status of our canine test subjects at a particular point in
time? Let’s say that we really want to find out the rate at which they are wolfing down
their food. Suppose that we decide to collect data at 30 seconds into the feast to see
the state of the food bowls for each dog. 

 The data that we collect for each dog would involve a key-value pairing. In Python,
we would be collecting a dictionary containing the names of the dogs and the amount
of food remaining in their bowls:

thirty_second_check = {'champ': 0.35, 'colossus': 0.65, 
    'willy': 0.0, 'bowser': 0.75, 'chuckles': 0.9}

Generates an array that is 
just slightly larger than 
the first one

261 nanoseconds. Even with
100,000 times more data, the

execution time is the same. Quadratic equation to 
illustrate mathematical 
operations on a single 
value

Executes 5.31 
microseconds on a 
single value from 
the array

Executes 1.55 microseconds on a single value from the array 
(less time than the previous due to indexing operations in 
NumPy for accessing larger arrays)



522 APPENDIX A Big O(no) and how to think about runtime performance
This operation, walking around and estimating the amount of food left in the bowls,
recording it in this (key, value) pairing, would be O(n), as illustrated in figure A.7.

As you can see, in order to measure the amount remaining, we need to walk around to
each dog and check the state of their bowl. For the five dogs we’re showing, that may
take a few seconds. But what if we had 500 dogs? That would take a few minutes of

O(n) operations in dog context
“How are you doing, bud?”

% remaining of food At 30 seconds into the feast, how

much has each dog eaten of

their pasta?

Involves walking over to each

bowl and measuring the level

of food remaining in each bowl

This is O( ).traversal n

The larger the number of dogs,

the longer this is going to take,

but the relationship is linear to

the number of dogs.

Seriously, this is my dog.
You should see him
eat pasta.

Champ

Colossus

Willy

(He really a husky.)is

Bowser

Chuckles

Figure A.7 O(n) search through all of the dogs’ consumption rates
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walking around to measure. The O(n) indicates a linear relationship between the
algorithm (checking the amount of Bolognese eaten) and the size of the data (num-
ber of dogs) as a reflection of computational complexity.

 From a software perspective, the same relationship holds true. Listing A.4 shows an
iterative usage of the quadratic() method defined in listing A.3, operating over each
element in the two NumPy arrays defined in that listing. As the size of the array
increases, the runtime increases in a linear manner.

%timeit -n 10 -r 10 [quadratic(x) for x in sequential_array]
>> 1.37 ms ± 508 µs per loop (mean ± std. dev. of 10 runs, 10 loops each)   
%timeit -n 10 -r 10 [quadratic(x) for x in np.arange(-1000, 1000, 1)]
>> 10.3 ms ± 426 µs per loop (mean ± std. dev. of 10 runs, 10 loops each)   
%timeit -n 10 -r 10 [quadratic(x) for x in np.arange(-10000, 10000, 1)]
>> 104 ms ± 1.87 ms per loop (mean ± std. dev. of 10 runs, 10 loops each)  
%timeit -n 10 -r 10 [quadratic(x) for x in np.arange(-100000, 100000, 1)]
>> 1.04 s ± 3.77 ms per loop (mean ± std. dev. of 10 runs, 10 loops each)
%timeit -n 2 -r 3 [quadratic(x) for x in massive_array]
>> 30 s ± 168 ms per loop (mean ± std. dev. of 3 runs, 2 loops each)   

As can be seen in the results, the relationship between collection size and computa-
tional complexity is for the most part relatively uniform (see the following callout for
why it’s not perfectly uniform here). 

O(n) is a fact of life in our world of DS work. However, we should all pause and recon-
sider our implementations if we’re building software that employs our next relation-
ship in this list: O(n2). This is where things can get a little crazy.

Listing A.4 Demonstration of O(n) complexity

When computational complexity breaks patterns at massive scale
In listing A.4, the final collection doesn’t follow the same pattern as the preceding
ones. Behavior such as this (a breakdown in assumed expected performance when
dealing with massive data) is present in any system, particularly in distributed systems. 

When some algorithms start processing data that is of a sufficient size, reallocation
of memory may be a limiting factor in the performance of those algorithms. Similarly,
garbage-collection operations in ML-focused languages (Python, or anything running
in the JVM) can cause substantial disruptions to runtime performance because the
system has to free space in memory in order to continue the operation that you are
instructing it to perform.

Mapping over the small (–100, 100) array and 
applying a function to each value takes a bit 
longer than retrieving a single value.

Increases the size by a factor of 10
for the array, and the runtime

increases by a factor of 10

Increases again by a factor of 
10, and the runtime follows 
suit. This is O(n).

Increases by a factor of 10, and the runtime increases by a factor
of 30?! This is due to the size of the values being calculated and
the shift to an alternative form of multiplication in Cython (the
underlying compiled C* code that optimized calculations use).
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A.2.3 O(n2): A polynomial relationship to the size of the collection

Now that our dogs are fed, satiated, and thoroughly pleased with their meal, they could
use a bit of exercise. We take them all to a dog park and let them enter at the same time. 

 As in any social hour involving dogs, the first order of business is going to be for-
mal introductions by way of behind-sniffing. Figure A.8 shows the combinations of
greetings among our five dogs.

Greetings at the dog park

O(n2) operations in dog context
“Nice to smell you; the pleasure is all mine.”

Each dog is compelled
to greet every other dog
in the dog park. With 5
dogs, the combinations
of this result is 01

seperate butt-sniffs.

This combination example
is expressed by
nCr= !  / !  × ( – )!n r n r

For a true n2 problem, the
dogs would have to greet
themselves (which would be
comical, but unrealistic).
We’re checking pair wise
combinations, so = 2.r

If there were 500 dogs, we’d
be looking at 24,750 sniffs. At1

roughly 5 seconds each, with a
degree of concurrency happening,
we’d still be waiting hours for all
the dogs to say, in their own way,
“What’s up, dog?”. . .

Someone should let dogs know that there is a more efficient way of doing this.

Figure A.8 The dog park meet and greet. While not precisely O(n2), it bears a similar relationship.
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NOTE Combination calculations are, in the strictest sense, O(n choose k) in
complexity. For simplicity’s sake, let’s imagine brute-forcing the solution by
interacting all possible permutations and then filtering, which would be
O(n2) in complexity.

This combination-based traversal of paired relationships is not strictly O(n2); it is actu-
ally O(n choose k). But we can apply the concept and show the number of operations
as combinatorial operations. Likewise, we can show the relationship between runtime
duration and collection size by operating on permutations 

 Table A.1 shows the number of total butt-sniff interactions that will happen in this
dog park based on the number of dogs let in through the gate (combinations), as well
as the potential greetings. We’re assuming the dogs feel the need for a formal intro-
duction, wherein each acts as the initiator (a behavior that I have witnessed with my
dog on numerous occasions).

To illustrate what this relationship of friendly dog greetings looks like for both the
combinations and permutations, figure A.9 shows the incredible growth in complexity
as the number of dogs increases.

 For the vast majority of ML algorithms (the models that are built through a train-
ing process), this level of computational complexity is just the beginning. Most are far
more complex than O(n2). 

 Listing A.5 shows an implementation of n2 complexity. For each element of the
source array, we’re going to be generating an offset curve that rotates the element by
the iteration index value. The visualizations for each section following will show what
is going on in the code to make it clearer.

 
 
 
 

Table A.1 Dog greeting by number of dogs

Number of dogs present
Number of greetings 

(combinations)
Potential greetings 

(permutations)

2 1 2

5 10 20

10 90 45

100 4,950 9,900

500 124,750 249,500

1,000 499,500 999,000

2,000 1,999,000 3,998,000
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That is a of sniffing.lot
With 2,000 dogs, we’re
looking at 3,998,000 sniffs.

O(n2) computational complexity

Went to the dog park

today. Spent the whole

time sniffing butts. Today

was a good day.

Combinations and permutations of dog greetings

Combinations

Permutations

Figure A.9 The explosion of sniffing as the number of dogs increases in our dog park. Exponential 
relationships in complexity are just as bad in code as they are for dogs when talking about efficiency.
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import seaborn as sns
def quadratic_div(x, y):    
    return quadratic(x) / y
def n_squared_sim(size):       
    max_value = np.ceil(size / 2)
    min_value = max_value * -1
    x_values = np.arange(min_value, max_value + 1, 1)   
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")          
        curve_matrix = [[quadratic_div(x, y) for x in x_values] for 
                         y in x_values]  
    curve_df = pd.DataFrame(curve_matrix).T
    curve_df.insert(loc=0, column='X', value=x_values)
    curve_melt = curve_df.melt('X', var_name='iteration', value_name='Y')   
    fig = plt.figure(figsize=(10,10))
    ax = fig.add_subplot(111)
    sns.lineplot(x='X', y='Y', hue='iteration', data=curve_melt, ax=ax)   
    plt.ylim(-100,100)
    for i in [ax.title, ax.xaxis.label, ax.yaxis.label] + 

ax.get_xticklabels() + ax.get_yticklabels():
        i.set_fontsize(14)
    plt.tight_layout
    plt.savefig('n_squared_{}.svg'.format(size), format='svg')
    plt.close()
    return curve_melt

For the algorithm defined in listing A.5, if we were to call it with different values for an
effective collection size, we would get the timed results shown in the next listing.

%timeit -n 2 -r 2 ten_iterations = n_squared_sim(10)
>> 433 ms ± 50.5 ms per loop (mean ± std. dev. of 2 runs, 2 loops each)   
%timeit -n 2 -r 2 one_hundred_iterations = n_squared_sim(100)
>> 3.08 s ± 114 ms per loop (mean ± std. dev. of 2 runs, 2 loops each)   
%timeit -n 2 -r 2 one_thousand_iterations = n_squared_sim(1000)
>> 3min 56s ± 3.11 s per loop (mean ± std. dev. of 2 runs, 2 loops each)  

Listing A.5 An example of O(n2) complexity

Listing A.6 Results of evaluating an O(n2) complex algorithm

Function for modifying the 
quadratic solution to the array 
by a value from the array

Function for 
generating the 
collection of 
quadratic 
evaluation 
series values

Acquires the range 
around 0 for array 
generation (size + 1 
for symmetry)

Catches warnings 
related to dividing 
by zero (since we’re 
crossing that boundary 
of integers in the 
array)

The n2 traversal to generate the 
array of arrays by mapping over 
the collection twice

Transposes and melts the resultant
matrix of data to a normalized form

for plotting purposes

Plots each curve
with a different

color to illustrate
the complexity

differences in the
algorithm

With only 121 operations, 
this executes pretty 
quickly.

At 10 times the array size,
10,201 operations take

significantly longer.

At 1,002,001 operations, 
the exponential relationship 
becomes clear.
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The relationship to the input array size from listing A.5 and the results shown in list-
ing A.6 can be seen a bit more clearly in figure A.10. If we were to continue increasing
the size of the array generation parameter value to 100,000, we would be looking at
10,000,200,001 operations (while our first iteration of size 10 generates 121 opera-
tions). More important, though, is the memory pressure of generating so many arrays
of data. The size complexity will rapidly become the limiting factor here, resulting in
an out-of-memory (OOM) exception long before we get annoyed at how long it’s tak-
ing to calculate.

To illustrate what this code is doing, we can see the result of the first iteration (using
10 as the function argument) in figure A.11.

 
 
 

As our array size increases with
an O(n2) algorithm, the runtime
increases in an exponential
relationship.

The space complexity (amount of
RAM required to store the data)
increases in the same manner.

Array size

Figure A.10 Computational complexity of different collection sizes to the algorithm in listing A.5
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Figure A.12 shows the progression in complexity from an array size of 201 (top) to a
much more extreme size (2,001, at bottom) when run through this algorithm. 

 As you can see (keep in mind that these plots are generating a series that is plotted
for each index position of the input array), a seemingly innocuous collection size can
become very large, very quickly, when run through such an algorithm. It’s not too
much of a stretch to imagine how much this will affect the runtime performance of a
project if code is written with this level of complexity.

 
 

Each line is a series of points,11

generated from the initial size of
the array, then manipulated by
each element.

This double-traversal of the
collection makes for the ×n n
computational and space
complexity.

With only elements, this11

still represents 2 distinct1 1

operations to generate this
dataset that is being plotted.

Figure A.11 The data generated from our O(n2) algorithm operating on an array of size 11 (execution 
time: 433 ms, ~26 KB space required)
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y-axis scaled
for visibility

size argument = 200

With 20 data1

elements, the
operation
count for data
generated here is
40,40 .1

The number of data elements
in this collection of 2,001

points (and subsequently, the
number of operations) is
4,004,001.

With 2,00 elements1

in the array, 2,001

separate curves are
plotted here.
Each has 2,00 points1

within the collection.

size argument = 2000

Figure A.12 Comparison of array sizes 201 (time: 8.58 s, space: ~5.82 MB) and 2,001 (time: 
1,367 s, space: ~576.57 MB).
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A.3 Analyzing decision-tree complexity
Let’s imagine that we’re in the process of building a solution to a problem that, as a
core requirement, needs a highly interpretable model structure as its output. Because
of this requirement, we choose to use a decision-tree regressor to build a predictive
solution. 

 Since we’re a company that is dedicated to our customers (dogs) and their pets
(humans), we need a way to translate our model results into direct and actionable
results that can be quickly understood and applied. We’re not looking for a black-
box prediction; rather, we’re looking to understand the nature of the correlations in
our data and see how the predictions are influenced by the complex system of our
features.

 After feature engineering is complete and the prototype has been built, we’re in
the process of exploring our hyperparameter space in order to hone the auto-
mated tuning space for the MVP. After starting the run (with tens of thousands of
tuning experiments), we notice that the training of different hyperparameters
results in different completion times. In fact, depending on the tested hyperparam-
eters, each test’s runtime can be off by more than an order of magnitude from
another. Why?

 To explore this concept, let’s step through how a decision-tree regressor works (in
the sense of complexity) and evaluate how changing a few hyperparameter settings
can affect the runtime. Figure A.13 shows a rather high-level view of what is happen-
ing in the algorithm when it is fit upon training data.

Complexity smells in code
In the grand scheme of code smells, computational complexity is generally one of the
easier ones to spot. This complexity typically manifests itself in nested loops. Whether
it be a declarative-style for loop that has additional for loops within it, a while loop
with nested iteration or mapping within it, or a nested list comprehension, these
structures in code stand out as potentially dangerous. 

This isn’t to say that the logic within nested loops and complex while statements is
guaranteed to be worst-case scenarios of O(n2), O(2n), or O(n!), but these are places
to spend more time when evaluating code. They’re the smoke, so to speak, that
needs to be investigated to ensure that a potential fire is not about to erupt when
you run the code. 

Seeing these in a code base simply means that you should spend extra time looking
through the logic and running through scenarios. The best way to do that is to imagine
what would happen if the collection being iterated over doubles in size. What if it
increases by an order of magnitude? 

Will the code scale? Will it take so long to run that an SLA is missed? Will the system
that it’s running on OOM? Thinking of how to identify, refactor, and change the logic
of your code can help to prevent stability issues and cost considerations later.
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This diagram is likely familiar to you. The basic structure, functionality, and behavior
of the algorithm is covered in great detail in blog posts, other books, and as a founda-
tional concept in learning the basics of ML. What is of interest to our discussion is
what affects the computational and space complexity while training the model.

NOTE Figure A.13 is an example only. This model is incredibly overfit and
would likely do very poorly against a validation split. With a more realistic
data-split volume and a depth restriction, the predictions would be the aver-
age of split-branch membership.

Feature ectorsv Target

Hunger
factor

0.3

0.17

0.65

1.0

0.97

Age countBreed Weight Toy
Treats
per day

3 1 24 0.365 3 0

5 1 36 3.23 7 3

2 3 27 0.1 2 1

3 7 67 12.8 19 17

4 4 102 1.9 1 4

Depth 1 (root)
For each feature (k)

• Split data based on inferred
type (low cardinality splits on
each value, continuous uses

quantile splitting).
• Different libraries will use clever
methods to more optimally select

split candidates.

Calculate entropy (or differential
entropy) and determine the

information gain in the target
variable between the split groups.

Select highest information gain
split from all features and select
that feature and the split criterion

to be the root split condition.

Root

Breed < 3 Breed >= 3

Miles walked
<= 0.365

predict = 0.3

Miles walked
> 0.365

predict = 0.17

Weight < 67
predict = 0.65

Weight >= 67

Weight >= 102
predict = 0.97

Weight < 102
predict = 1.0

Miles
walked

• For all features, calculate
information gain from split
conditions of remaining rows in
this group.

• Select new split candidate.

Depth 2
From right branch (Breed >= 3)

• For all features, calculate
information gain from split
conditions of remaining rows in
this group.

• Select new split candidate.

Depth 2
From left branch (Breed < 3)

Figure A.13 A high-level explanation of a decision tree algorithm
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To start, we can see that the initial split at the root of the tree requires a determination
of which feature to choose to split on first. A scalability factor exists right out of the
gate with this algorithm. To determine where to split, we need to measure each fea-
ture, split it based on the criterion that the library’s implementation chooses, and cal-
culate the information gain between those splits.

 For the purposes of computational complexity, we will refer to the number of fea-
tures as k. Another component to the calculation of information gain involves the esti-
mation of entropy, based on the size of the dataset being trained upon. This is the n in
traditional non-ML complexity. To add to this complexity, we have to traverse each
level of the tree. Once a split is realized as the best path, we have to continue to iterate
on the features present in the subset of the data, repeatedly, until we hit the criteria
set in the hyperparameter that equates to the minimum number of elements to popu-
late a leaf (prediction) node. 

 Iterating through these nodes represents a computational complexity of O(n
log(n)), as the splits are restricted in size as we move closer to leaf nodes. However,
because we are forced to iterate through all features at each of the adjudication
nodes, our final computational complexity becomes more akin to O(k × n × log(n)).

 We can directly affect the real-world behavior of this worst-case runtime perfor-
mance by adjusting hyperparameters (remember that O() notation is the worst-case).
Of particular note is that some of the hyperparameters can be beneficial to computa-
tional complexity and model efficacy (minimum count to create a leaf, maximum
depth of tree), while others are negatively correlated (learning rate in other algo-
rithms that utilize stochastic gradient descent, or SGD, for instance).

 To illustrate the relationship between a hyperparameter and the runtime perfor-
mance of a model, let’s look at modifying the maximum depth of a tree in listing A.7.
For this example, we’re going to use a freely available open source dataset to illustrate
the effect of hyperparameter values that directly influence computational and space
complexity of a model. (My apologies for not collecting a dataset regarding dog char-
acteristics and general hunger levels. If anyone wants to create that dataset and
release it for common use, please let me know.) 

NOTE In listing A.7, in order to demonstrate an excessive depth, I break the
rules of tree-based models by one-hot-encoding categorical values. Encoding
categorical values in this manner risks a very high chance of preferentially
splitting only on the Boolean fields, making a dramatically underfit model if
the depth is not sufficient to utilize other fields. Validation of the feature set
should always be conducted thoroughly when encoding values to determine if
they will create a poor model (or a difficult-to-explain model). Look to buck-
eting, k-leveling, binary encoding, or enforced-order indexing to solve your
ordinal or nominal categorical woes.
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from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_squared_error
import requests
URL = 'https:/ /raw.githubusercontent.com/databrickslabs
/automl-toolkit/master/src/test/resources/fire_data.csv'
file_reader = pd.read_csv(URL)                       
encoded = pd.get_dummies(file_reader, 
columns=['month', 'day'])                             
target_encoded = encoded['burnArea'] 
features_encoded = encoded.drop('burnArea', axis=1)
x_encoded, X_encoded, y_encoded, Y_encoded = 

train_test_split(features_encoded, 
target_encoded, test_size=0.25)                   
shallow_encoded = DecisionTreeRegressor(max_depth=3, 
  min_samples_leaf=3, 
  max_features='auto', 
  random_state=42)
%timeit -n 500 -r 5 shallow_encoded.fit(x_encoded, y_encoded)
>> 3.22 ms ± 73.7 µs per loop (mean ± std. dev. of 5 
runs, 500 loops each)                                   
mid_encoded = DecisionTreeRegressor(max_depth=5, 
  min_samples_leaf=3, max_features='auto', 
  random_state=42)
%timeit -n 500 -r 5 mid_encoded.fit(x_encoded, y_encoded)
>> 3.79 ms ± 72.8 µs per loop (mean ± std. dev. of 5 
runs, 500 loops each)                                   
deep_encoded = DecisionTreeRegressor(max_depth=30, 
  min_samples_leaf=1, 
  max_features='auto', 
  random_state=42)
%timeit -n 500 -r 5 deep_encoded.fit(x_encoded, y_encoded)
>> 5.42 ms ± 143 µs per loop (mean ± std. dev. of 5 
runs, 500 loops each)   

As you can see in the timed results of manipulating the hyperparameters, a seemingly
insignificant relationship exists between the depth of the tree and the runtime. When
we think about this as a percentage change, though, we can start to understand how
this could be problematic.

 To illustrate the complexity of this tree-based approach, figure A.14 shows the
steps that are being taken at each candidate split as the tree is being produced.

 Not only do multiple tasks need to be accomplished in order to decide where to
split and what to split on, but this entire block of tasks shown on the right side of fig-
ure A.14 needs to be completed for each feature on the subset of data that fulfills the

Listing A.7 Demonstrating the effects of tree depth on runtime performance

Pulls in an 
open source 
dataset to test 
against

One-hot-encodes the month and day columns to ensure that 
we have sufficient features to achieve the necessary depth for 
this exercise. (See note preceding this listing.)

Gets the train 
and test split 
data

A shallow depth of 3 
(potentially underfit) 
reduces the runtime to 
a minimum baseline.

Moving from a depth of 
3 to 5 increases runtime
by 17% (some branches
will have terminated, 
limiting the additional 
time).

Moving to a depth of 30 (actual realized depth of 21 based 
on this dataset) and reducing the minimum leaf size to 1 
captures the worst possible runtime complexity.
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prior split conditions at each candidate node. With a tree depth of 30, 40, or 50, we
can imagine that this tree becomes quite large rather fast. The runtime will increase
comparatively as well. 

 What happens when the dataset is not, as in this toy example, 517 rows? What hap-
pens when we’re training on 500 million rows of data? Setting aside the model per-
formance implications (generalization capabilities) of running to too deep of a tree,
when we think about a 68% increase in runtime from a single hyperparameter, the

For each candidate split branch,
this chain of events needs to
happen for the subset of data
present in the parent node split.

Decide on
split

Split
each

feature.

Aggregate
target data
for splits.

Calculate
entropy

or
variance

Determine
information

gain for
each split

Root
(all data)

Split
compute

Feature 1 >= x Feature 1 < x

Split
compute

Split
compute

Feature 3 < x Feature 7 >= x Feature 7 < x

predict
A

predict
B

Feature 3 >= x

Split
compute

Split
compute

predict
C

predict
A

Feature 3 >= x Feature 3 < x

predict
B

predict
D

Feature 3 < xFeature 3 >= x

Figure A.14 The computational complexity of a decision tree
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differences in training time can be extremely significant (and costly) if we’re not care-
ful about how we’re controlling the hyperparameters of the model.

 Now that you’ve seen how computationally expensive hyperparameter tuning is, in
the next section we’ll look at the computational and space complexities of different
model families. 

A.4 General algorithmic complexity for ML
While we won’t be talking about the implementation details of any other ML algo-
rithm (as I’ve mentioned before, there are books devoted to that subject), we can look
at one further example. Let’s suppose we are dealing with an incredibly large data-
set. It has 10 million rows of training data, 1 million rows of test data, and a feature
set of 15 elements.

 With a dataset this big, we’re obviously going to be using distributed ML with the
SparkML packages. After doing some initial testing on the 15 features within the
vector, a decision is made to start improving the performance to try to get better
error-metric performance. Since we’re using a generalized linear model for the
project, we’re handling collinearity checks on all features and are scaling the fea-
tures appropriately.

 For this work, we split the team into two groups. Group 1 works on adding a single
validated feature at a time, checking the improvement or degradation of the predic-
tion performance against the test set at each iteration. While this is slow going, group
1 is able to cull or add potential candidates one at a time and have a relatively predict-
able runtime performance from run to run.

 The members of group 2, on the other hand, add 100 potential features that they
think will make the model better. They execute the training run and wait. They go to
lunch, have a delightful conversation, and return back to the office. Six hours later,
the Spark cluster is still running with all executors pegged at >90% CPU. It continues
to run overnight as well.

 The main problem here is the increase in computational complexity. While the n of the
model hasn’t changed at all (training data is still the exact same size), the reason for
the longer runtime is simply the increased feature size. For large datasets, this becomes
a bit of a problem because of the way that the optimizer functions.

 While traditional linear solvers (ordinary least squares, for instance) can rely on
solving a best fit through a closed-form solution involving matrix inversion, on large
datasets that need to be distributed, this isn’t an option. Other solvers have to be
employed for optimizing in a distributed system. Since we’re using a distributed sys-
tem, we’re looking at SGD. Being an iterative process, SGD will perform optimization
by taking steps along a local gradient of the tuning history.

 To get a simplified sense of how SGD works, see figure A.15. This 3D plot represents
a walk of the solver along a series of gradients in its attempt to find the global minima
error for a particular set of coefficients for the linear equation being generated.
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NOTE Stochastic gradient descent will proceed along fixed-distance adjust-
ments to attempt to arrive at the best fit to the test data (error minimization).
It will stop when either the descent flattens to a slope of 0 and subsequent
iterations within a threshold show no improvement or maximum iterations
is reached. 

Gradient descent, visualized simplistically

The starting optimization pointLocal minimas (these are bad
and lead to poor-performing
models)

Iterative “walking” along
negative slope direction
of the gradient

Arrival at global minima

Figure A.15 A visual representation (with artistic liberties) of the SGD process of searching for minimization 
during optimization
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Notice the iterative search that is occurring. This series of attempts to get the best fit
of the equation to the target variable involves making adjustments to each of the coef-
ficients for each element of the feature vector. Naturally, as the size of the vector
increases, the number of coefficient evaluations grows. This process needs to occur
for each iterative walk that is occurring. 

 However, a bit of a wrench is being thrown into this situation. SGD and iterative
methodologies of its ilk (such as genetic algorithms) don’t have a simple solution for
determining computational complexity. 

 The reason for this (which is also true for other comparable iterating solvers, like
limited memory Broyden-Fletcher-Goldfarb-Shanno, or L-BFGS) is that the nature of
the optimization minima in both a local and global sense is highly dependent on the
composition of the feature data (distributions and inferred structural types), the
nature of the target, and the complexity of the feature space (feature count). 

 These algorithms all have settings for maximum number of iterations to achieve a
best-effort optimization to a global minima state, but there is no guarantee that opti-
mization will happen before hitting that iterator maximum count. Conversely, one of
the challenges that can arise when determining how long training is going to take
revolves around the complexity of optimization. If SGD (or other iterative optimizers)
can arrive at a (hopefully, global) minima in a relatively short number of iterations,
training will terminate long before the maximum iteration count is reached.

 Because of these considerations, table A.2 is a rough estimate of theoretical worst-
case computational complexity in common traditional ML algorithms.

Table A.2 Estimation of computational complexity for different model families

Model family Training complexity Prediction complexity

Decision trees O(knlog(n)) O(k)

Random forest O(knlog(n)m O(km)

Gradient boosted trees O(knm) O(km)

Linear models (OLS) O(k2n) O(k)

Linear models (non-OLS) O(k2n + k3) O(k)

Support vector machines O(kn2 + n3) O(km)

K-nearest neighbors O(kmn)* O(kn)

K-means O(mni)** O(m)

Alternating least squares O(mni)** O(ni)

n = Number of rows in training set
k = Number of features in vector
m = Number of ensemble members
i = Number of iterations to converge
* m in this case is the restriction of number of neighbors to consider for definition of a boundary.
** m here refers to the number of k-centroids being considered.
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The most common aspect of all of these complexities involves separate factors: the
number of vectors used for training (row count in a DataFrame) and the number of
features in the vector. An increase in the count of either of these has a direct effect on
the runtime performance. Many ML algorithms have an exponential relationship
between computational time and the size of the input feature vector. Setting aside the
intricacies of different optimization methodologies, the solver of a given algorithm
can have its performance impacted adversely as a feature set size grows. While each
algorithm family has its own nuanced relationships to both feature size and training
sample sizes, understanding the impact that feature counts have in general is an
important concept to remember while in the early stages of a project's development. 

 As we saw in the previous section, the depth of a decision tree can influence the
runtime performance, since it is searching through more splits, and thus taking more
time to do so. Nearly all models have parameters that give flexibility to the applica-
tion’s practitioner that will directly influence the predictive power of a model (typi-
cally at the expense of runtime and memory pressure). 

 In general, it’s a good idea to become familiar with the computational and space
complexities of ML models. Knowing the impact to the business of selecting one type
of model over another (provided that they’re capable of solving the problem in a sim-
ilar manner) can make a difference of orders of magnitude in cost after everything is
in production. I’ve personally made the decision many times to use something that
was slightly worse in predictive capabilities because it could run in a fraction of the
time of an alternative that was many times more expensive to execute. 

 Remember, at the end of the day, we’re here to solve problems for the business.
Getting a 1% increase in prediction accuracy at the expense of 50 times the cost cre-
ates a new type of problem for the business while solving what you set out to do.



appendix B
Setting up a development

environment

There are many reasons to start with a fresh slate when working on a new project.
The following list shows a few of the more relevant ones with respect to ML project
work:

 Dependency management is easier with a clean environment.
 Isolation of temporary files, logs, and artifacts is simpler.
 Scripted environment creation makes porting to production easier.
 Installation of libraries is less complex with fewer dependency collisions.

While many options exist for creating isolable environments for development of new
projects, this appendix provides guidance on using Docker along with Conda’s pack-
age management suite of tools, just as the companion repository to this book does. 

B.1 The case for a clean experimentation environment
A major struggle that data scientists have once they’ve been building prototypes on
their local computers for long enough is that older projects simply can’t run any-
more in the updated environments that subsequent projects have necessitated. As
libraries evolve, the DSs upgrade library versions and add new packages with
updated dependencies on other packages; dependencies change within this truly
massive ecosystem comprising the large web of interconnected APIs

 This incredibly complex and frustrating concept of maintaining compatibil-
ity among libraries is known as dependency hell, a moniker that is well-earned. Fig-
ure B.1 shows a typical scenario that happens with dependency struggles.

 As you can see, the options for resolving library conflicts on a single local envi-
ronment are quite dire. On one hand, you could be forced to refactor code bases
540
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and train runtime environments, both actions being untenable as the number of proj-
ects grows at a company. Alternatively, the DS team members would have to waste
countless hours modifying their installed packages (reverting or upgrading) each
time that they wanted to work on a new project. It’s simply not a scalable solution.

 Regardless of the operating system that you’re running, if you have Python
already installed on your machine, you’re going to have some deep dependencies
among the packages that are also installed. Some of the experimentation and test-
ing will require library installations that could break either previously developed
projects or utility applications that are available to you on the command line. Not to
mention that each team member’s computer likely has slight different versions of
each of these critical packages, resulting in reproducibility issues if those team mem-
bers run one another’s code.

Current
version

installed: 0.9.2

Upgrade to
newest

version: 1.0.4

Requires new
versions of
four other
packages

All packages
installed

Work on code
solution

Finish
prototype

successfully

Project requires
use of a class
that was added
to the new
version of a
package

Two weeks later . . .

Need to modify earlier
project that was built
with dependencies on
earlier versions of three
of the packages that just
got updated

Code will not
run as API
signatures

have changed

Update
code?

Yes

No

14 days to
update, test,
and deploy

new code for
old project

Other projects
will need to be

updated or
refactored to
run in local

Revert
packages and

hope that
things work out

well

Swap package
installations for

each project
(minutes to hours

each time)

Most data scientists
don’t have this kind
of time.

No DS has this
kind of time.

Both of these
options are
not desirable
and simply
waste time.

Figure B.1 Dependency hell in a common Python development environment. Package management struggles 
can waste a great deal of time.
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B.2 Containers to deal with dependency hell
This frustrating and time-wasting endeavor of making everything work together at all
times has multiple solutions. One of the most popular is the prepackaged builds that
are graciously provided as open source distributions (under a New BSD License) to
the ML community by the company Anaconda. These tested and validated collections
of packages are guaranteed to work well with one another, saving you from the ardu-
ous task of ensuring that behavior for yourself. There are three primary ways of creat-
ing a new, pristine environment with an Anaconda build of Python: 

 Conda environment manager—Command-line tool that can create isolated Python
environments locally from images that will not interfere with system Python
installations

 Anaconda Navigator—GUI that allows for one-click setup of many popular devel-
opment tools using isolated Conda environments on a local machine

 Docker Container deployment of a Conda environment for use in a virtual machine
(VM)—Portable container definition that will create an isolated Python envi-
ronment with the Conda package build that can run either on a local VM or in
a cloud-based VM

Figure B.2 shows the first two approaches, which are applicable to ML experimenta-
tion in Python and use purely open source (free) solutions to isolate the runtime envi-
ronments. The top portion can be done via the command-line interface (CLI) or
through the Anaconda Navigator GUI.

 These approaches solve the problem of having version conflicts within different proj-
ect requirements, allowing for a massive savings in time and effort for the frustrating
work that would otherwise be required to manage all of the packages for ML. For fur-
ther explanation of what Docker is and why it is important, see the following sidebar.

What is Docker?
Docker is a containerization service. It is a platform that allows for operating system–
level virtualization (think: a computer inside a computer) that can be configured with
resources from the machine it’s running on and can have full process-level isolation
from other applications and operating system entities on the host machine. 

This allows you to package up your software, libraries needed to run your software,
and configuration files to run in different environments. You can even open up ports
to communicate as if the container were its own computer. 

Containerization for ML enables you to handle the dependency hell problem: each
project can have its own set of libraries guaranteed to just work with your code in a
repeatable and consistent manner. Containerization also gives you the ability to run
the container in any environment—an on-premises server, a cloud-based server, or
any virtual machine environment capable of running the container. This introduces
portability to ML project work that is increasingly becoming not only more prevalent
in the experimentation phases, but also absolutely critical for production-scale ML. 
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B.3 Creating a container-based pristine environment 
for experimentation
In this section, we’re going to define and initiate a basic isolated runtime environ-
ment by using Docker. I’m rather partial to Anaconda for experimentation that
doesn’t require a paid service, so we’re going to be using one of its preconfigured
Docker containers that has a bootstrapped environment for Python 3 and the vast

Conda virtual environments (local)
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Project requires a
specific version of

a library

Create new
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environment
with project

name

Specify conda
install of
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dependencies
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Develop
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has different library

requirements
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environment
for other
project

Make
updates

Test, commit
changes, and

deploy

These environments exist
only on each person’s
computer. To be shared,
an environment must be
re-created (configured in
a version-controlled text
file that can be used by
the whole team).

source activate my_other_project

(Dependencies
already managed,

no installation
required)

Containerized virtual environments (local and remote)

Open notebook editor, script, or IDE within container VM
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(See code listing B.1 for commands.)
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anything.

docker run my_project_container

(Starts VM from
configuration and

checkpointed
build state)

Figure B.2 Conda environment management vs. container service environment management. Both are 
good choices for streamlining experimentation, development, and production.
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majority of core ML libraries already installed (well, at least the ones we’ll need for
this book, at any rate).

 To ensure that we have the image on our system, we’re going to run via the com-
mand line docker pull continuumio/anaconda3. This command will fetch the pre-
built Docker container from Docker Hub, a repository of Docker images with both
free and restricted images. The container includes a Linux operating system, the lat-
est version of the Anaconda Python stack, and all of the configurations already com-
pleted for having a fully operable development environment for most DS work tasks
with nearly no additional action required by the user.

NOTE It’s always advisable, particularly through the experimentation phase,
to have an isolated environment where we can, as the kids say, “go absolutely
nuts” with various packages, versions of those packages, and configurations
that we might not want to have contaminating our computer’s general envi-
ronment. There is no more exquisite pain than realizing that your other proj-
ect that you’ve been working on is now throwing dozens of exceptions
because you updated to a newer version of NumPy.

To get a basic ML-enabled environment (a runnable VM image) built for us to per-
form the first phases of testing and research for a project, we can run the following
(after ensuring that we install Docker, of course).

docker run -i --name=airlineForecastExperiments   
-v Users/benwilson/Book/notebooks:/opt/notebooks    
-t -p 8888:8888     
continuumio/anaconda3                             
/bin/bash  -c "/opt/conda/bin/conda install jupyter 
-y --quiet && mkdir -p  /opt/notebooks && 
/opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks 
--ip='*' --port=8888 --no-browser --allow-root" 

Some slight modifications to this script—in particular, overriding the mount location
(the first portion after the -v option that precedes the colon)—and a paste into the
command line will have the container up and running. After the packages are col-
lected and the image is built, the command line will give you a hint (a local host refer-
ence of http:/ /127.0.0.7:8888/?token=...) that you can paste into your web
browser to bring up Jupyter so you can start writing code in a notebook.

Listing B.1 Docker run command to create a basic ML environment 

Feel free to name the container anything you’d like. If 
you omit this configuration, Docker will choose a fun 
name for you that makes it impossible to remember 
what is in the container.

Absolute path to local 
filesystem (you hopefully 
don’t have a root users 
directory of benwilson)—
change this.

This is the image that we pulled 
from Docker Hub with the “docker 
pull continuumio/anaconda3” 
command.

Bash commands to allow us to install Jupyter
and set it up to function with port forwarding

so we can open up a local browser window and
interface with the container’s environment
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NOTE If you have a development environment hosted in the cloud some-
where that makes it remarkably easy for someone else to create this pristine
environment for you, for a nominal fee, feel free to ignore this. This is for
all my sisters and brothers of the maths who are on the laptop struggle bus
with ML.
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“Hang on. Is this guy telling me that I need to be an expert
in all this stuff to create successful ML projects?!”

• Exploratory data

analysis

• Correlation

• Causative

investigations

• Visualizations

• Reports

• Attribution

• A/B testing

• Retraining triggers

• Superivised

• Unsupervised

• Deep learning

• Computer vision

• Sequences

• NLP

• . . . and many more

• Distributed

computing

• Scalable code

• Resilient systems

• Pipelines

• Managed services

• Elastic compute

• Information storage

• ETL

• ELT

• Schema definition

and mutation

• Data cleansing

• Feature stores

• Availability of data

• Ingestion latency

• Scheduling

• Scoping and

estimation

• Meetings

• Feedback

• QA orchestration

• Feature

prioritization

• MVP components

• Coding standards

• Abstraction

• Modularity

• Efficiency of

execution

• Unit and integration

testing

No. Good luck finding someone that your company can afford who knows all of this at an expert level.
Your team doesn’t need to have an expert in each of these subjects in order to create successful ML projects.

Each team member should be aware of these topics, though, and why they’re important.

(Spoiler alert: That’s why I wrote this book  for people to be generally aware of these topics.):

Project management

Software developmentData engineering

AlgorithmsAnalysis

Architecture
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