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Preface

Visualization is a vital tool for understanding and sharing insights around
data. The right visualization can help express a core idea or open a space to
examination; it can get the world talking about a dataset or sharing an
insight Figure P-1.

Figure P-1. Visualizations can take many forms, from views that support exploratory analysis (top
left), to those that provide quick overviews in a dashboard (bottom), to an infographic about popular

topics (top right).

Visualizations provide a direct and tangible representation of data. They
allow people to confirm hypotheses and gain insights. When incorporated
into the data analysis process early and often, visualizations can even
fundamentally alter the questions that someone is asking.



Creating effective visualizations is hard. Not because a dataset requires an
exotic and bespoke visual representation—for many problems, standard
statistical charts will suffice. And not because creating a visualization
requires coding expertise in an unfamiliar programming language—off-the-
shelf tools like Excel, Tableau, and R are ample enough to suffice.

Rather, creating effective visualizations is difficult because the problems
that are best addressed by visualization are often complex and ill-formed.
The task of figuring out what attributes of a dataset are important is often
conflated with figuring out what type of visualization to use. Picking a chart
type to represent specific attributes in a dataset is comparatively easy.
Deciding on which data attributes will help answer a question, however, is a
complex, poorly defined, and user-driven process that can require several
rounds of visualization and exploration to resolve. In this book, we focus on
the process of going from high-level questions to well-defined data analysis
tasks, and on how to incorporate visualizations along the way to clarify
understanding and gain insights.

https://products.office.com/en-us/excel
https://www.tableau.com/
https://www.r-project.org/


Who Is This Book For?
This book is for people who have access to data and, perhaps, a suite of
computational tools but who are less than sure how to turn that data into
visual insights. We find that many data science books assume that you can
figure out how to visualize the data once collected, and visualization books
assume that you already have a well-defined question, ready to be
visualized. If, like us, you would like to address these assumptions, then
this book is for you.

This book does not cover how to clean and manage data in detail or how to
write visualization code. There are already great books on these topics (and,
when relevant, we point to some of them). Rather, this book speaks to why
those processes are important. Similarly, this book does not address how to
choose a beautiful colormap or select a typeface. Instead, we lay out a
framework for how to think about data given the possibilities and
constraints of visual exploration. Our goal is to show how to effectively use
visualizations to make sense of data.

Who Are We?
The authors of this book have a combined three decades of experience in
making sense of data through designing and using visualizations. We have
worked with data from a broad range of fields: biology and urban
transportation, business intelligence and scientific visualization, debugging
code and building maps. We have worked with analysts from a variety of
organizations, from small, academic science labs to teams of data analysts
embedded in large companies. Some of the projects we have worked on
have resulted in sophisticated, bespoke visualization systems designed
collaboratively with domain specialists, and at other times we have pointed
people to off-the-shelf visualization tools after a few conversations. We
have taught university classes in visualization and have given lectures and
tutorials. All in all, we have visualized hundreds of datasets.



We have found that our knowledge about visualization techniques,
solutions, and systems shapes the way that we think and reason about data.
Visualization is fundamentally about presenting data in a way that elicits
human reasoning, makes room for individual interpretations, and supports
exploration. We help our collaborators make their questions and data reflect
these values. The process we lay out in this book describes our method for
doing this.

Overview of Chapters
Chapter 1 illustrates the process of making sense with visualizations
through a quick example, exposing the role that a visual representation can
play in data discovery.

Chapter 2 starts to get into details. It discusses a mechanism to help narrow
a question from a broad task into something that can be addressed with an
iterative visualization process. For example, the broad question “Who are
the best movie directors?” does not necessarily suggest a specific
visualization—but “Find movie directors who directed top-grossing movies
using an IMDB dataset” can lead more directly to an answer by way of a
visualization or two. This process creates an operationalized question, one
that consists of particular tasks that can be directly addressed with data.

This process of narrowing a question down to actionable tasks requires
input from multiple stakeholders. Chapter 3 lays out an iterative set of steps
for getting to the operationalization, which we call data counseling. These
steps include finding the right people to talk to, asking effective questions,
and rapidly exploring the data through increasingly sophisticated
prototypes.

The numerical nitty-gritty of the book follows. Chapter 4 discusses types
and relations of data, and defines terms like dimensions, measures,
categorical, and quantitative. Chapter 5 then organizes common
visualization types by the tasks they fulfill and the data they use. Then,
Chapter 6 explores powerful visualization techniques that use multiple
views and interaction to support analysis of large, complex datasets. These



three chapters are meant to provide an overview of some of the most
effective and commonly used ideas for supporting sensemaking with
visualizations, and are framed using the operationalization and data
counseling process to help guide decision-making about which
visualizations to choose.

With this understanding of getting to insight—from questions to data to
visualizations—the remainder of the book illustrates two examples of
carrying out these steps. The case study in Chapter 7 describes the creation
of a business intelligence dashboard in collaboration with a team of
developers and analysts at Microsoft. The one in Chapter 8 draws from
science, presenting an example with a team of scientists who work with
biological data. These case studies illustrate the flexibility of the process
laid out in this book, as well as the diverse types of outcomes that are
possible.

This book is accompanied by a companion website. From this site you can
download the code and interactive versions of the visualizations presented
in Chapters 5 and 6, as well as other code and supplementary material.
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Chapter 1. Getting to an
Effective Visualization

Choosing or designing a good visualization is rarely a straightforward
process. It is tempting to believe that there is one beautiful visualization that
will show all the critical aspects of a dataset. That the right visual
representation will reveal hidden insights. That a perfect, simple, and
elegant visualization—perhaps just a line chart or a well-chosen scatterplot
—will show precisely what the important variable was and how it varied in
precisely the way to illustrate a critical lesson.

This is often the impression that we, at least, are left with after reading data
science case studies. But in our experience, this does not match the reality
of visual data analysis. It takes hard work, and trial and error, to get to an
insightful visualization. We start by thinking about what we want to know,
and we refine fuzzy questions into actionable, concrete tasks. We clean,
reshape, and restructure the data into forms that we can put into a
visualization. We work around limitations in the data, and we try to
understand what the user wants to learn. We have to consider which visual
representations to use and what interaction mechanisms to support. Along
the way, we find other variables that tell us more about the dataset and that
help clarify our thinking. And no single visualization is ever quite able to
show all of the important aspects of our data at once—there just are not
enough visual encoding channels.

Designing effective visualizations presents a paradox. On the one hand,
visualizations are intended to help users learn about parts of their data that
they don’t know about. On the other hand, the more we know about the
users’ needs and the context of their data, the better we can design a
visualization to serve them. The process described in this book embraces
this paradox: it leverages the knowledge users have of their datasets, the
context the data lives in, and the ways it was collected—including its likely



flaws, challenges, and errors—in order to figure out the aspects of it that
matter.

Put another way, this book is about the path from “I have some data…” to
“We know this because of these clear, concise, and insightful
visualizations.” We believe that creating effective visualizations is itself a
process of exploration and discovery. A good visualization design requires a
deep understanding of the problem, data, and users.

Getting to Insight
We most often work with other people that have a dataset they are trying to
make sense of. The process of designing a visualization usually starts when
people walk into our office.

CLIENT: I have some data that I’d like to visualize. How should I draw
it?

The client seems to expect us to pull a visualization off the shelf, to sculpt
that perfect visualization. We almost always frustrate them by asking what
they hope to see.

Q: What is it about the data that you would like to visualize?

CLIENT: I want to see how profitable our stores are.

Q: What in your data indicates a store being profitable?

CLIENT: It means that the store has lots of sales of high-profit items.

Q: How does profit vary by store?

And so on.

By the end of this process, we often find that the clients do not have a
visualization problem, but an operationalization one. Their struggles to
choose a visualization stem from a lack of clarity about which attributes of
the data are most important and how those attributes relate to one another.
Once they can describe how the data attributes relate to the question they



are trying to answer, finding an appropriate visualization becomes much
easier.

We have learned over the years that designing effective visualizations to
make sense of data is not an art—it is a systematic and repeatable process.
We have systematized this process into what we believe are reproducible
and clear steps.

This process tracks our understanding of four components:

Data

What data is available, and what does it mean? What does the data look
like, and what are its important aspects? Where did it come from, and
why was it originally collected?

Tasks

What needs to happen with the data? What are the low-level questions
and tasks that will support high-level goals?

Stakeholders

Who is involved with the data, the problem, and the goals? What can
they say about the problem to help design an effective visualization?
Who will view the final visualization, and what sorts of things do we
expect them to learn from it? What domain knowledge do they bring to
the table? What answers would they find satisfying?

Visualization

How does the understanding of data, tasks, and stakeholders come
together? What representations of this data will fulfill the tasks for the
users?

Regardless of the visualization outcome, this process will almost certainly
lead to new discoveries and insights. These discoveries help to inform the
operationalization, but they will also likely steer the process down new and
unexpected paths. The guidance and framework in this book are meant to



help identify opportunities for discovering new knowledge and to make an
otherwise messy process a bit more structured.

Hotmap: Making Decisions with Data
As an example of how visualizations can help you to better understand a
problem, and help an organization make decisions, we can look back to
2006. Microsoft was rolling out its new mapping tool, Virtual Earth, a
zoomable world map. The team behind Virtual Earth had lots of questions
about how their users were using this new tool, so they collected usage data.

The usage data was based on traditional telemetry: it had great information
on what cities were most viewed, how many viewers were in “street” mode
versus “photograph” mode, and even information about viewers’ displays.
They instrumented search and navigation, and they collected counts for the
number of times that users looked at certain sentinel regions. And because
Virtual Earth was built on top of a set of progressively higher-resolution
image tiles, the team was also archiving server logs that tracked how often
individual tiles were downloaded.

Interviews with team members suggested that they did not have an intuitive
notion of how their tool was being used. In conversation, one team member
argued that people were likely to look at their own homes; another thought
that the overhead photography would mostly be used over mountains. The
goals were varied: they included seeing whether the user experience was
well balanced across user needs and deciding how and where to invest in
future rounds of photography.

We addressed these questions with a visualization tool called Hotmap.
Figure 1-1 shows a screen capture from the visualization tool, focusing on
the central United States. Hotmap uses a heatmap encoding of the tile
access values. This is a visualization technique that uses a colormap to
encode the access values at the geospatial locations of the tiles. Colored
spots on the map are places where more users have accessed image tiles.
The colormap is a logarithmic color scale, so bright spots have many more
accesses than dim ones.



Figure 1-1. Hotmap, looking at the central United States. The white box surrounds an anomaly in
South Dakota.

Some of the brightest areas correspond to major population centers—
Chicago and Minneapolis on the right, Denver and Salt Lake City in the
middle, and West Coast cities on the left. Near the center, though, is an
anomalous shape: a bright spot where no big city exists. There is a star
shape around the bright spot, and an arc of bright colors nearby. The spot is
in a sparsely populated bit of South Dakota—there was no obvious reason
to the team why users might zoom in there.

That point is, however, very close to the center of a map of the continental
US. In fact, the team learned that the center of the star corresponds to the
center of the default placement of the map in many browsers. The bright
spot with the star most likely corresponds to users sliding around after
inadvertently zooming in, trying to figure out where they’ve landed; the arc
seems to correspond to variations in monitor proportions.

As a result of this usability challenge, many mapping tools—including Bing
Maps (the successor product to Virtual Earth)—no longer offer a zoom
slider, which keeps users from accidentally zooming all the way in on a
single click.

A second screen capture, shown in Figure 1-2, reveals a bright spot off the
coast of Ghana. This spot exhibits the same star pattern created by users
scrolling around to try to figure out what part of the map they are viewing.



This spot is likely only bright because it is at 0 degrees latitude, 0 degrees
longitude, a point that GIS tools run into often. While computers might find
(0,0) appealing, it is unlikely that there is much there for the typical Virtual
Earth user to find interesting.

Figure 1-2. Hotmap, looking at the map origin (0,0).

This second bright spot inspired a hunt for bugs. The team rapidly learned
that Virtual Earth’s search facility would sometimes fail, and instead of
returning an error message, typos and erroneous searches would sometimes
redirect the user to (0,0). Interestingly, the bug had been on the backlog for
some time because the team had decided that it was not likely to surface
often. Seeing this image made it clear that some users really were being
confused by the error, so the team prioritized the bug.

1



Although the Virtual Earth team started out using the Hotmap visualization
expecting to find out about how users interacted with maps, they gleaned
much more than just a characterization of usage patterns. Like many—dare
we say most?—new visualizations, the most interesting insights were those
that the viewers were not anticipating to find.

Where Visualization Is Useful
Is visualization the silver bullet to help us make sense of data? Not always.
There are two questions to consider to help you decide if your data analysis
problem is a good candidate for a visualization solution.

First, could the analysis tasks be supported with an algorithm? A crisp task
such as “I want to know the total number of users who looked at Seattle”
suggests that an algorithm, statistical test, or even a table of numbers might
be the best way to answer the question. On the other hand, “How do users
explore the map?” is much fuzzier. Fuzzy tasks are great candidates for a
visualization solution because they require you to look at the data from
different angles and perspectives, and to be able to make decisions and
inferences based on your own knowledge and understanding.

The second question to consider is “Is all the necessary information
contained in the dataset?” If there is information about the problem that is
not in the dataset which requires an expert to interpret the data that is there,
then visualization is a great solution. Going back to our fuzzy question
about exploring a map, we can imagine that it is unlikely that there will be
an explicit attribute in the data that classifies a user’s exploration style.
Instead, answering this question requires someone to interpret other aspects
of the data to bring knowledge to bear about what aspects of the data imply
an exploration style. Again, visualization enables this sort of flexible and
user-centric analysis.

For all but the crispest questions about explicitly measured phenomena,
visualization is probably a good tool to throw at a problem. In our
experience, we have almost never come up against a problem that cannot
benefit from some amount of visualization.

2



Further Reading
The Hotmap project is discussed in:

Fisher, Danyel. "Hotmap: Looking at Geographic Attention.” IEEE
Transactions on Visualization and Computer Graphics 13 (2007):
1184–1191.

Fisher, Danyel. "The Impact of Hotmap.” The Infovis 2009
Discovery Exhibition. Redmond, WA: Microsoft, 2009.

 So many datasets have references to (0,0) that GIS practitioners refer to
that location as “null island.”

 See “Further Reading” for other stories of how Hotmap has been used.
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Chapter 2. From Questions to
Tasks

All visualization begins with a question about data. An analyst wants to
know something about a phenomenon in the world, or wants to share their
knowledge about it with someone else. She believes the phenomenon they
wish to examine is represented somehow in the data.

The challenge in this process is that the question the analyst wishes to
address can seem far from the data. The analyst might be working on a
broad goal: say, “Are high-salary employees more productive than less
well-paid ones?” This leads to a process of making the question
measurable. What does the analyst mean by high-salary, and productive?
What visualization or set of visualizations would demonstrate the
relationship between these variables?

The process of breaking down these questions into something that can
actually be computed from the data is iterative, exploratory, and sometimes
surprising. This chapter describes how to refine high-level questions into
specific, data-driven tasks. The outcome of that process is a set of concise
design requirements for a visualization tool that supports finding answers to
those questions.

The general concept of refining questions into tasks appears across all of
the sciences. In many fields, the process is called operationalization, and
refers to the process of reducing a complex set of factors to a single metric.
The field of visualization takes on that goal more broadly: rather than
attempting to identify a single metric, the analyst instead tries to look more
holistically across the data to get a usable, actionable answer. Arriving at
that answer might involve exploring multiple attributes, and using a number
of views that allow the ideas to come together. Thus, operationalization in
the context of visualization is the process of identifying tasks to be



performed over the dataset that are a reasonable approximation of the high-
level question of interest.

A visualization is not the inevitable outcome of operationalization.
Exploring the data might show that the goal is best achieved with a
statistical analysis or with machine learning. Similarly, the outcome of the
process might show that a cluster analysis across multiple attributes is more
useful than a plot. We find that more often than not, visualization is a vital
component of getting to a successful operationalization.

This chapter emphasizes the data aspects of this process. The next chapter
moves to the human side of the process: how to get the information
necessary to effectively operationalize the high-level questions. Later
chapters then look at how to translate the operationalized questions into
specific visualizations.

Example: Identifying Good Movie Directors
To guide the process through operationalization, this chapter examines an
exemplar question: “Who are the best movie directors?”

Nonspecific questions like this are how many data explorations start.
Answering a question like this requires a much more specific task that can
be precisely addressed with a dataset. Before we can be more specific, we
first need to take a step back: who needs to know the answer to this
question? The use case might be a film student trying to assert that his
dissertation is about one of the most influential directors, or a hiring
manager looking to hire a director for an upcoming project, or a journalist
putting together a splashy article that will feature a top list.

Each of these users needs suggests different interpretations for the notion of
best director. The film student is looking for a way to quantify and defend a
notion of influence, whereas the hiring manager might want to limit
themself to people working today who are less accomplished and thus more
affordable. For this example, though, the user will be a journalist who is



putting together an article about a new movie and wants to include a list of
the best directors.

The goal of operationalization is to refine and clarify the question until the
analyst can forge an explicit link between the data that they can find and the
questions they would like to answer. For this example, the dataset at hand
contains a list of movies rated by the film-aficionado community. Each
movie is associated with a director, a number of raters, and an average
rating score.

A NOTE ON THE DATA
The dataset used for this chapter is comprised of two of IMDB’s
downloadable lists, directors.list and ratings.list. There is a copy of the
Jupyter notebook that parses them into cleaner CSVs on the book’s
companion website. The script cleans the data to remove entries that the
database refers to as not being movies, such as video games and TV
shows. The analysis and visualizations in this chapter are carried out in
Python and recorded in a second Jupyter notebook available at the same
site.

With both data and a high-level question in hand, the visualization work can
begin. Data alone is not enough to dictate a set of design requirements for
constructing a visualization. What is missing here is a translation of the
high-level question “Who are the best movie directors?” into a set of
concrete tasks over the data.

The choice of dataset and operationalization is fundamentally a specific
perspective on a problem; they stand in for what the analyst wishes to
understand. In this example, there are other ways to frame the inquiry and
other types of data that could be collected. This is a large part of why
visualization is so important for answering questions like these: it allows an
analyst’s experience and knowledge to layer directly on top of the data that
is ultimately shown. The analyst’s skills and experience allow them to make
inferences about the more abstract questions they are really interested in.

http://jupyter.org/
https://resources.oreilly.com/examples/0636920041320
https://www.python.org/


Making a Question Concrete
The process of operationalization winds its way from a general goal or a
broad question to specific tasks, and then to visualizations that support
those specific tasks based on concrete data.

To achieve this, the analyst searches for proxies. Proxies are partial and
imperfect representations of the abstract thing that the analyst is really
interested in. For example, high movie ratings may be a reasonable proxy
for best in our movie example. Selecting and interpreting proxies requires
judgment and expertise to assess how well, and with what sorts of
limitations, they represent the abstract concept.

In operationalization, there are two important types of proxies:

A proxy task is a lower-level task that stands in for the original.
The result of a proxy task reflects on the answer to the original
question, but the proxy task itself is more closely related to the
data; it can be accomplished with quantitative tools, such as a
visualization or a statistical analysis.

A proxy value is an attribute in the data that stands in for a more
abstract concept. This can be an existing attribute, or it can be
derived from the data.

Operationalizing a question often results in more questions, which require
further articulation of proxies. One step in this process is to find places
where a question is underspecified or does not directly reference the data on
hand, in order to identify where proxies are necessary.

Collaboration with stakeholders crucially informs the process of
operationalizing questions. It helps to learn what data is available and how
the results will be used. Interviews help to identify the questions and goals
of the stakeholders with respect to the data and to further understand what
data is available or can be made available. Throughout the process, an
analyst translates questions and goals into a description of the problem that



is amenable to a data solution. Interview techniques and prototyping are
discussed in more detail in Chapter 3.

In this book we advocate an approach of systematic operationalization in
order to bolster explicit acknowledgment, validation, and support of the
range of possible proxy decisions for a question. This systematic approach
leaves open future possibilities and provides guidance for making
downstream decisions. The start to this process is getting to understand the
question and what is available in the data—and appreciating the gaps
between them.

This chapter both describes and illustrates the operationalization process. It
uses the movie director example to show how to refine a question into
detailed, specific tasks. It discusses the four components that we use to
describe an operationalized task.

A Concrete Movie Question
The example started with the high-level question “Who are the best
directors?” The dataset is a list of directors and a list of movies. The first
task is to operationalize best director. As a rough definition, a good director
has directed many good movies. But many good movies is also ill-defined,
and thus a proxy for good movie might in turn be based on its rating on
IMDB.

These decisions replaced one bit of ambiguity with three more. How many
of these best directors need to appear in the results? What counts as good
IMDB ratings, and what are many of them? For that matter, a quick glance
at the IMDB data reveals that there are short films, TV episodes, video
games, and so on—so what counts as a movie?

It is possible to choose the measures arbitrarily: “More than five movies
with IMDB ratings greater than 9.8,” or “average movie rating higher than
8.2,” or “no movies with a rating less than 5.” While it is not uncommon to
make these sorts of decisions based on rough knowledge of the data, or
even based on choosing nice, round numbers, looking at the actual data is
important. The top-rated items on IMDB might turn out to have very high



ratings but only one review. Great directors might direct a few stinkers, so
just looking at the average rating might turn out to be a poor choice. The
only way to learn what the data says is to start digging into it.

Choosing a proxy allows the analyst to sanity-check their decisions; it can
be valuable to do this iteratively at each step, checking both the quality of
the data and of the proxy.

A quick glance at the first five data items in the dataset reveals non-
mainstream movies (Table 2-1). The alphabetical first movie in the dataset
is called #1, with a total of 12 raters; the second is the similarly obscure #1
Serial Killer. Since the scenario targets a general audience, it should
probably focus on movies that most people are likely to know. A different
scenario could suggest very different proxies.



Table 2-1. A quick glance at the first data items in the movie dataset
(which is sorted alphabetically) reveals that there could be movies with
positive ratings that have very few raters, implying an obscure (but
decent) movie.

ID Raters Score Title Director

0 12 6.4 #1 (2005) Breen, James (V)

1 35 6.0 #1 Serial Killer (2013) Yung, Stanley (I)

2 5 5.8 #137 (2011) Elliott, Frances

3 11 7.4 #140Characters: A Documentary About Twitter (2… Beasley, Bryan (I)

4 23 6.7 #30 (2013) Wilde, Timothy

… … … … …

The decision to stick with mainstream movies suggests a need for a proxy
for popularity. One choice could be the number of ratings for each movie.
By plotting the distribution of the number of ratings by movies (Figure 2-1),
we see that the vast majority of movies in the dataset actually have very few
ratings.



Figure 2-1. Distribution of ratings. This histogram shows the count of number of ratings per film.
Almost all the films have few ratings, with a very long tail.

This first plot shows that the number of ratings is heavily skewed. One way
to make this distribution more interpretable is to plot it on a logarithmic
scale. In Figure 2-2, the data has been bucketed; a film with 1,000 ratings
now appears in the bucket for log (1000) = 3. Taking the log of the number
of ratings smooths the distribution, more effectively showing its shape.
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Figure 2-2. Distribution of the logarithm (base 10) of the number of ratings. The peak is under 2:
most films have under 100 ratings.

We can also compute some basic summarizing statistics about the number
of ratings: the median movie in the dataset has just 26 ratings while the 75th
percentile is at 132 ratings.  By looking up the number of ratings for a
sample of blockbusters, we note that movies that anyone can name offhand
have tens of thousands of ratings. These are useful observations; perhaps it
would be valuable to trim to a slimmer set of movies to ensure that most are
ones that a reasonable number of people have seen.

We want to choose a number, though, that’s fair to good movies, even if
they are not very popular—in this case, we pick, somewhat arbitrarily, the
most-rated 25% of movies. This amounts to around 70,000 films with more
than 132 ratings.

We next pivot and look at the distribution of ratings for the slimmed-down
set of movies, shown in Figure 2-3. This distribution shows a distinct curve
with a clear peak and noticeable drop-off: ratings above 7.5 seem different
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from lower ratings. (This distribution has a median score of 6.6, and a 75th
percentile of 7.4.)

Figure 2-3. Distribution of score. This histogram shows the count of ratings, by bucket. Almost all
ratings are extremely low, with a very gradual tail.

Stepping back from our dive into the data, we can observe that we have
proceeded some distance along the operationalization. We have defined a
good director and decided that it is based on their movies; we have focused
on movies and chosen a set that are popular enough to be part of the
analysis. But there are still unanswered questions: How will we rank
directors against each other? What makes for a “best” director?

A systematic approach to operationalization allows an analyst to see the full
range of decisions and helps in pulling together the set of proxies that can
inform a final answer. Ultimately, an interactive visualization tool can
enable exploration of multiple proxies to allow for a set of justified, and
validated, answers. For our running example, we will continue with the



operationalization after describing a framework for making decisions
explicit throughout the process.

Breaking Down a Task
Throughout the operationalization, we need to identify where in a question
or task there is a need for a more refined proxy. Doing so systematically can
make it easier to validate those decisions, as well as to produce a road map
of the process. This allows the analyst to effectively revisit decisions once a
better understanding of the problem is gained.

An analyst can refine a task by first breaking it down into four specific
components. Identifying these components and how they do or do not
directly reference the data becomes a template for choosing more specific
tasks. The components are:

Objects

Things or events that exist in the world: in our example, a director and a
movie are both objects. In other contexts, objects might be a user or a
sale of a single item. When a task is specific enough, each object will be
something that can be represented in or computed from, the data. Fairly
often, when the task is at its most specific, an object will correspond to
a single row in a database.

Measures

The outcome variables that will be measured for the objects. Quality of
a director, happiness of a user, and sales of a store are all measures. In
a sufficiently specific task, the measure is either an existing attribute in
the dataset or one that can be directly computed from the data. A
measure is sometimes aggregated across many items of data. In our
example, a number of movies are aggregated together to get a score for
a single director.

Groupings (or partitions)



Attributes or characteristics of the data that separate the data items into
groups. For example, groupings might include store region (western
versus eastern), start date of players, whether users have purchased an
upgrade, or sales by year. In a specific task, partitions are attributes of
the objects or can be calculated directly from those attributes. When the
visualization is created, partitions will often manifest as groupings,
separations across charts, or filters.

Actions

Words that articulate the specific thing being done with the data, such as
compare, identify, characterize, etc. Actions guide the process of
choosing appropriate visualizations.

The action is useful for identifying the other components. Take this task:
Compare the amount of money spent in-game by players who play more
hours versus those who play fewer hours. The action is compare. What is
compared? The players (the object). What is it about players that we want
to compare? The money spent (the measure). Finally, there is a specific
partition on the objects. They will be broken into two groups: those that
play many hours and those that play few hours.

The following components are the heart of an iterative process:

1. Refine the question into one or more tasks that, individually or
together, address the general question.

2. For each task:

a. Identify the components of the task.

b. Look for ambiguous components—namely, components
that are not directly addressable by the dataset.

c. For each ambiguous component, define a proxy by
creating a new question that addresses the component, and
return to step 1 with those questions.



d. If there are no ambiguous components then the task is
deemed actionable, and thus can be addressed with a
visualization or other computational technique.

Next, we’ll explicate some of the questions from the movie example to
illustrate how the components work in practice, beginning with Example 2-
1.



Example 2-1. Breaking down the task to find good directors

Task: Identify the top directors who have directed many good, popular
movies

Action: Identify

Object: Director

Measure: Number of good, popular movies

Grouping: Filter out non-movies

Identifying top directors implies that there’s a meaningful sort on the
directors so that the top can be found (Example 2-2). Thus, we can further
refine the action to specify an ordering. Also, our first look at the data
showed that many movies are unpopular, which implied a grouping to filter
out unpopular movies.

Example 2-2. Refined task for good directors

Task: Rank order of directors by those who have directed many good,
popular movies

Action: Rank order

Object: Director

Measure: Number of good movies

Grouping: Filter out non-movies and unpopular movies

Filtering out unpopular movies is a subtask (Example 2-3), which we
addressed with a histogram of the number of ratings for movies. The
visualization of the distribution allowed us to determine a good cut point for
popular versus unpopular—namely, popular movies were those in the top
25% of movies with the highest number of ratings.



Example 2-3. Subtask for filtering unpopular movies

Task: Filter out movies with significantly fewer ratings

Action: Filter

Object: Movie

Measure: Number of ratings

Grouping: Separate into most popular and least popular movies

This subtask can be brought back into Example 2-2 as a proxy for
unpopular movies.

However, we still have some work to do on Example 2-2: the measure
number of good movies is ill-defined with respect to the data. We need to
refine this component by developing a proxy for a good movie. Once we do
that, we can then examine what it means to have directed many of them.

These proxies require further elaboration. How many high-scoring movies
are required from directors? Do low-scoring movies count against them?
This process of identifying reasonable proxies is often iterative. For
example, in exploring and validating a proxy with the data, it might become
obvious that the effects of filtering by the number of ratings was a mistaken
approach.

At this point, we can recognize that we need a proxy measure for good
(Example 2-4). There are a variety of proxies that we can try here, with
various visualizations. The process continues onward.



Example 2-4. Subtask for good movies

Task: Quantify “a good movie”

Action: Quantify

Object: Movie

Measure: Goodness

Grouping: None

Breaking down a task into components helps in guiding refinement of a task
into one that can be addressed with the data. The most direct way to do so is
to consider the question “Are the object, measure, and grouping each
directly described in the data?” For each of these three components, is it
clear which aspects of the data are important or how to derive what we need
from the data? If not, repeat the process of formulating a subquestion in
order to derive a more specific answer.

Let’s take a look at a very different example—this time, from a gameplay
metrics scenario (Example 2-5).

Example 2-5. Exemplar task for analyzing a game

Task: Compare the amount of money spent in-game by players who
play more hours versus those who play fewer hours.

Action: Compare

Object: Players

Measure: Money spent

Grouping: Players who play many hours; players who play few hours

In Example 2-5, the partition divides between many and few hours. This
component needs to be refined further, which leads to a new question: “In



the game, how many is ‘many’ hours for a player?” The analyst might take
a series of steps. They might look at the distribution of hours played, or
they might choose to filter out players who have played zero hour or those
who haven’t made it past the tutorial, or they might look at other metrics
that are important to the game. These steps would help the analyst figure
out good proxies for many and few hours.

When Tasks Lead to New Questions
There are four broad categories of new lines of inquiry that can emerge
from refining a question. First, as in the movie example, the refinement
process often reveals that a new analysis is needed to answer these
questions.

Second, operationalizing can also lead in new directions. In the process of
exploring who the best directors are, the analyst might notice that some
directors stick to a single genre; they might decide that this analysis might
be interesting divided across multiple genres. They might also notice that
both IMDB and Rotten Tomatoes have scores on movies, and want to see
how these results vary based on Rotten Tomatoes scores instead of IMDB.

Third, the data itself can lead to new questions too. In exploratory data
analysis (EDA), for example, the data analyst discovers new questions
based on the data. The process of looking at the data to address some of
these questions generates incidental visualizations—odd patterns, outliers,
or surprising correlations that are worth looking into further.

Finally, doing some analysis often leads to doing a round of data cleaning.
While data cleaning is largely out of the scope of this book, odd outliers and
surprising trends are, as often as not, the result of dirty data.

Returning to the Example: Exploring
Different Definitions
There are several different possible definitions of best director.



Here is one: the best director has the most movies with more than 134
ratings. Table 2-2 shows the top scorers. The most prolific directors in our
dataset are Chuck Jones and Fritz Feleng (who directed classic Looney
Tunes animations), William Hanna (who directed Tom and Jerry and other
classic Hanna-Barbera cartoons), and George Méliès (an early inventor of
special effects and shorts).

Table 2-2. Top five directors by number of films over
threshold

Director Avg. raters Avg. score Count Total raters

Jones, Chuck (I) 719 7.4 148 106,397

Freleng, Fritz 402 7.2 141 56,730

Hanna, William (I) 591 7.5 119 70,315

Méliès, Georges 717 6.1 114 81,769

White, Jules (I) 235 7.1 102 23,969

Georges Méliès has 526 films on his IMDB page; only 114, however, made
it over the threshold of raters. The huge number of films is explained by the
fact that the films are shorts—more familiar on television now, but once
also shown in theaters. This should be an opportunity to do more data
cleaning to join in another table that will tell us whether a film is a short or
not, and filter those out. IMDB has a film duration data table; in a typical
analysis process, the next step would be to merge in this table, adding a new
proxy for what makes for a short film.

We might explore other definitions of best directors. For example, the best
directors might make the movies that people want to rate the most. Table 2-
3 is a list of the directors whose movies have, in total, the most ratings.



Table 2-3. Top five directors by total number of ratings
across all movies

Director Avg. raters Avg. score Count Total raters

Spielberg, Steven 245,717 7.2 36 8,845,795

Nolan, Christopher (I) 778,737 8.2 11 8,566,104

Tarantino, Quentin 526,689 7.8 13 6,846,955

Jackson, Peter (I) 371,219 7.6 16 5,939,505

Scorsese, Martin (I) 144,823 7.5 41 5,937,725

This list makes sense. These are very famous names who have directed very
familiar movies.

Different proxies yield different results. Ordering by the average score for
all movies by a single director might be one way to find the very best
directors. As seen in Table 2-4, the first on this list is a director who has
only one movie over the threshold: a Mongolian movie from 2016 with 624
raters and an average score of 9.7. This measure of popularity returns a very
different set of results than the previous measure: ten thousand times more
people rated Quentin Tarantino’s movies than Uranchimeg Urtnasan’s work.



Table 2-4. Top five directors by average score

Director Avg. raters Avg. score Count Total raters

Urtnasan, Uranchimeg 624 9.7 1 624

Miller, George (XXXVII) 394 9.6 2 787

Chowdhury, Amitabh Reza 14,628 96 1 14,628

Biebert, Aaron 12,040 9.6 1 1,204

Arsyn, Ken 619 9.5 6 3,712

But can the quality of a director be measured based on just one or two
movies? Each step of data exploration leads to another step of refining the
question. Is it more important to have many raters, a high average score, or
a high minimum score?

The choice of metrics leads to very different outcomes. A slight tweak
determines whether you find directors of animated cartoons, blockbuster
directors, or a very diverse set of international directors.

How Specific Does the Process Get?
This process of refinement leads to a scary scenario. In Disney’s Fantasia,
in the Sorcerer’s Apprentice sequence, Mickey Mouse attempts to stop an
enchanted broom by chopping it in half and instead produces two half-size
enchanted brooms. Will our analysis subtasks forever multiply?

The operationalization process is an iterative one and the end point is not
precisely defined. The answer to the question of how far to go is, simply, far
enough. The process is done when the task is directly actionable, using the
data at hand. The analyst knows how to describe the objects, measures, and
groupings in terms of the data—where to find it, how to compute, and how
to aggregate it. At this point, they know what the question will look like and
they know what they can do to get the answer.



An actionable task means that it is possible to act on its result. That action
might be to present a useful result to a decision maker or to proceed to a
next step in a different result. An answer is actionable when it no longer
needs further work to make sense of it.

Low-level objects are ready to be interpreted from the data. Sometimes they
can be read directly off the data table, but more often it is more indirect; the
analyst may need to carry out transformations on the data, whether
mathematical transformations or database joins. For instance, in the movie
example, the object is the director; the proxy for the director is the result of
aggregating multiple movies together. Partitions and measures at the lowest
level will resolve to concrete manipulations of the objects.

The process ends when all the tools needed to answer a question are in
place—whether as a number, a visualization, or even as an interaction
across multiple visualizations representing multiple proxies. The analyst
might decide that the right cutoff for many hours of gameplay is six hours
—a number—or the hours played by the top 10% of players—a formula—
or above the logical breakpoint, which might be represented by a
distribution. These results get propagated back into any other tasks that
depend on them.

Making Use of Results
This process of propagating results back into higher-level questions is
flexibile. Sometimes the low-level question does not have an exact answer
but instead resolves in its own visualization or interaction. That
visualization might help an analyst in making a decision, but it might also
imply parameters on the data. For example, the journalist might realize that
there are several possible cutoffs for defining what it means to be a good
movie. Rather than simply picking a specific threshold, an analyst might
instead propagate a mechanism for dynamically determining cutoffs into
higher-level tasks. Seeing a variable propagated like this can be a cue that
an interactive visualization—rather than a static image—might be helpful.



Visualization is also important for supporting the operationalization
process, even if the end result is not an interactive visualization. In the
movie example, visualization helped us to understand the nature and
distribution of the data. Visualization can be more prominent with more
complex analysis tasks. If the analyst wanted to compare ratings against
popularity, it would be difficult to display that on a list; if they wanted to
explore hypotheses about how the popularity of directors changes over
time, more visual representations would help them explore the data.

Conclusion: A Well-Operationalized Task
A well-operationalized task, relative to the underlying data, fulfills the
following criteria:

Can be computed based on the data

Makes specific reference to the attributes of the data

Has a traceable path from the high-level abstract questions to a set
of concrete, actionable tasks

A well-operationalized task is a first step toward creating a visualization.
Chapter 4 begins to describe the ways in which the objects, measures, and
partitions can be shaped into aspects of a visualization. Chapters 5 and 6
construct visualizations based on them.

Written out in detail, this process can seem tedious, but in practice, it is
abbreviated and simplified. There are two important uses for this
systematization. First, the process of explicitly looking at components can
help untangle knotty problems, decomposing places where the analyst has
made assumptions about the data. Explaining precisely why the number of
IMDB ratings is a proxy for popularity forces the analyst to explore
whether it is a good choice—and, perhaps, to revise that choice later.

The process also helps guide questions and interviews. Chapter 3 explains
how to carry out operationalization with domain experts. Recognizing the
need to make decisions about proxies helps guide these conversations.



Every dataset has subtleties; it can be far too easy to slip down rabbit holes
of complications. Being systematic about the operationalization can help
focus our conversations with experts, only introducing complications when
needed.

Further Reading
The process outlined here is similar—and in many ways parallel—to the
Goal, Question, Metric (GQM) process found in the software engineering
space. GQM refines from a general goal to a specific metric, usually
oriented around process improvement so that the consumer can have a
single number that helps them know whether they are succeeding in
improving that process.

Our process is more exploratory and often comes earlier in the cycle. A
GQM analysis might choose a goal like “improve user retention.” In
contrast, exploratory operationalization might start with a question like “Do
users come back to our site?” with the awareness that the problem is
multifaceted and complex, and might require a variety of different metrics
to describe. For more on GQM, see:

Basili, Victor, Gianluigi Caldiera, and Dieter Rombach. “The Goal
Question Metric Approach.” Encyclopedia of Software
Engineering. New York: Wiley, 1994.

The data visualization field has spent a great deal of effort trying to
understand the tasks that can be accomplished in a visualization. Amar and
Stasko, for example, explore a low-level analysis of tasks carried out on a
specific visualization. At the other end of the spectrum, Brehmer and
Munzner explore high-level tasks for visualization, starting with comparing
presentation and exploration:

Amar, Robert and John Stasko. “A Knowledge Task-Based
Framework for the Design and Evaluation of Information
Visualizations.” Proceedings of the IEEE Symposium on
Information Visualization (2004): 143–150.



Brehmer, Mathew and Tamara Munzner. “A Multi-Level Typology
of Abstract Visualization Tasks.” IEEE Transactions on
Visualization and Computer Graphics 19 (2013): 2376–2385.

 Median and percentile are ways of characterizing a distribution of
numbers. If one were to sort the numbers, the 75th percentile would be 75%
of the way down in the list. The median would be at the halfway point.
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Chapter 3. Data Counseling,
Exploration, and Prototyping

The previous chapter outlined a way to analyze a real-world question and
transform it into an actionable, operationalized task. This analysis involves
many steps that require decisions along the way: identifying specific tasks
that address the broad question; decomposing each task into specific
objects, measures, and groupings; and finally building visualizations that
validate and support these tasks. Carrying out this process effectively
requires sophisticated domain expertise, knowledge of the data and the
problem space, and a sense of what would be a good answer to the question.
This chapter discusses a variety of techniques that support gaining this
understanding through working with stakeholders and iterating on
visualization prototypes.

We call this collaborative process data counseling. We chose this name
because working with stakeholders is a back-and-forth process of
conducting interviews; of diving deeply into a user’s intents around data;
and of understanding the stories of where the data comes from, what
problems are associated with it, and what it can mean.  Data counseling is
interwoven with exploring data, developing visualization prototypes, and
collecting feedback on these preliminary results. This chapter describes
techniques for these steps as well.

A major visualization project can require multiple interviews and rounds of
prototypes in an intensively collaborative process. Recognizing the
ecosystem of stakeholders involved in a project can help uncover needs and
increase the impact of the data analysis results. A smaller project might
entail just one or two informal interviews and putting the data into a
graphing program like Tableau.

Sometimes an analyst needs to make sense of data without a team around
them. The strategies in this chapter still apply to prototyping and refining
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visualization solutions in such conditions. These techniques are applicable
at all scales.

Technique 1: Data Counseling
Data counseling is a technique that brings domain expertise into the
operationalization process to help inform decisions about good proxies as
well as to uncover insights using the resulting visualizations. This expertise
is uncovered through interviews with a variety of stakeholders in a project.
The goal of these interviews is to gain an understanding of the questions
and data, as well as to get feedback on proxies, explorations, and
visualization designs.

Arguably, the hardest part of data counseling is figuring out who the
stakeholders are and what questions to ask them. The rest of this section
describes some of the types of stakeholders that can be encountered during
this process and provides guidance for conducting interviews.

Identifying Stakeholders
When it comes to tackling a problem, who is invested in the results? Who
will use the results, and who will they present those results to? If the
visualization produces valuable insights who will act on those insights, and
what will they do with them? There is likely a whole ecosystem of people
that have been, are, or would like to be involved with the data and the
problem—the people who produce and store the data, the people who want
to consume it, and those who will make decisions based on it.

All the people who are invested in the problem in some way, shape, or form
are the stakeholders. Identifying these stakeholders is crucial for data
counseling. Different stakeholders can give different perspectives on the
data and the problem, and potentially provide unanticipated paths to insight.
The process of interviewing and examining the data itself may uncover new
stakeholders who can provide fresh perspectives.



There are a number of recurring types of stakeholders. This list is by no
means complete, but it can work as guidance for identifying some of the
important people in the ecosystem of a problem. A single person could
embody one, some, or all of these roles:

Analyst

A person who works directly with the data, searching and exploring to
make discoveries. These stakeholders are the people most likely to use
visualizations designed for the problem.

Data producer

A person who collects, creates, and curates the data. Data producers can
often shed light on the nuances and quirks of how the data was attained
and can be invaluable during the data cleaning process.

Gatekeeper

A person with the power to approve or block the project, including
authorizing people to spend time talking about the data and problem.
The gatekeeper’s perspective can be useful for understanding the high-
level goals and potential impact of the project. In some settings, a
gatekeeper may require a proposal to carry out an analysis.

Decision maker

A person who wants to use the insights gleaned from the data to execute
on a decision. Decision makers are often one step removed from
analysts, and act as the analysts’ customers. They often have a different
interpretation of goals and questions than those who are closer to the
data.

Connector

A person who may not be directly involved with the data or the question
but can identify other people to talk with. Connectors can help fit
together diverse perspectives on a problem and figure out what analysis



needs to happen. In our experience, good connectors are worth their
weight in gold.

Conducting Interviews
The operationalization process proceeds through information gleaned from
interviews; later rounds of interviews provide feedback on intermediate
results and final designs. The role of the interviewer is to ask questions that
will guide the stakeholders toward elucidating the information necessary for
working through an operationalization and designing visualizations.

Interviewing can be very challenging, but it can also one of the best parts of
the work—how many jobs allow you, even require you, to talk to experts
about the deepest, most interesting parts of their problems? Interviewing is
not easy, though, and requires practice and experience. The necessary skills
include how to keep a conversation moving along and on track, how to
elicit meaningful responses, how to revise questions based on responses,
and how to interpret both subtle cues and detailed responses. While this
section provides several strategies to help with these tasks, gaining
competency in these skills is a matter of practice.

In conducting an interview, there is a sweet spot with regard to the amount
of structure in the conversation. Unstructured interviews, on the one hand,
resemble casual conversations—the interviewer goes in with little
expectation of where the conversation will go and does little to guide it in
any one direction. This style of interview can uncover unknown needs and
goals, but it can take a significant amount of time to get to anything useful.
On the other hand, formally structured interviews are like giving a
stakeholder a verbal survey, where the interview is completely scripted and
strictly guided. While efficient, this type of interview leaves little room for
discovering new insights.

The most effective data counseling sessions aim for a spot in the middle:
semistructured interviews. The interviewer does some preparation in
developing initial questions. The rest of the interview is then open to



exploring ideas that come up during the conversation. Be prepared, but also
be open.

The initial set of questions for an interview should be open-ended and
address the problem, data, and context in order to help understand where
the interviewee sits: their perspective on the problem, how they see the
scope of the problem, and how they expect to interact with it.

Some useful interview questions might include:

What are the goals of the project? How do those goals fit with the
organizational needs?

Who would act on the insights and results of this analysis? What
decisions are they looking to make?

What questions can be answered with this data?

What do you already know from the data, and what else do you
expect to find?

What do you want to do with the data that is not currently
possible? If you could do that, what else would you want to do
next?

These general questions are meant to get a conversation going and to help
in establishing the start of the analysis process. They lead to more specific
questions that help clarify understanding of the problem and the data,
confront assumptions on the part of the stakeholder and the analyst, and
shape the description of the problem into something that a visualization can
solve.

Interviews often start in the wrong place
It is easy to begin this analysis in the wrong place. When people come to us
with visualization questions, they often start with very specific questions:
“How do I tie together two scatterplots with a gradient color pattern?”
These types of questions tend to be the result of people struggling to force
their data into the visualizations that they know best and finding that those



either don’t fully support the extent of the data they have or don’t really
support an insightful analysis.

The conversation searches out the more abstract question and often finds
that the question the person really wants to solve has a very different
visualization solution.

Librarians know this challenge well. When someone asks for, say, an issue
of a news magazine, librarians are trained to gently probe for the underlying
information need. What does the reader really want to know? Sometimes
the question might be better solved with an entirely different source: if the
reader who wants the latest Time magazine is hoping it will contain a map
of Somalia, an atlas would fulfill their need better.

What would it look like in the data?
The process of data counseling often entails chasing down particular
meanings of unclear words and identifying good proxies. The question
“What would this look like in the data?” can lead to illuminating results.
For example, if a journalist were trying to find “good movies” in the
database, in the interview we might ask questions like “What would the
data show for good movies?” and “What would bad movies look like?”
This can help interviewees nail down specifics.

Fairly often, the interviewee will not be sure what a “good movie” would
look like. The process of articulating a list of possibilities, as outlined in
Chapter 2, can be highly informative in itself.

Making questions specific
Low-level questions arise when trying to make general tasks more concrete
and actionable, such as defining what a specific dimension means or how
the objects that appear in a task actually look in the data. Finding these
poorly defined terms in the interview is a cue to ask more questions to
clarify those concepts more concretely. It can be useful to ask stakeholders
what these terms mean within their workflow or to show an aspect of the
data by pulling it up in a spreadsheet.



Certain action terms are also useful cues during these interviews: the verbs
a stakeholder uses when discussing data can help inform the visualization.
For example, interviewees might talk about comparing data items in
describing a task. This invites a follow-up question: “Would you like to
compare one item to another, or group many items together?” Similarly,
words such as select, identify, or group can translate directly into tasks that
can be supported with a visualization.

Other words, like shape, structure, and size, can help in deciding what kinds
of visual encodings to use or what characteristics of the data the stakeholder
is most interested in seeing. The visualization types described in Chapters 5
and 6 will help you recognize and know what to do with visualization
keywords like these during interviews.

Breaking out of dead ends
Interviews can reach a point that feels like a dead end: the stakeholder has
answered the planned question but the problem still seems inscrutable.
There are a couple of strategies that can be used here:

Try to rephrase the stakeholder’s response back to them. This
strategy allows the stakeholder to correct any misinterpretations
and it also can prompt the stakeholder to explain their ideas in a
more familiar terms.

Try to ask the same or similar questions in different ways. Often a
specific phrase or choice of words will click with the stakeholder
and cause them to respond in a way that makes more sense.

Try exploring a different conversational topic. It’s not unusual that
another topic will illuminate this one.

One of the most important things you can do in interviews is to keep the
stakeholders talking. The more they talk, the more likely it is that they will
share a response that clarifies a topic or opens up a new avenue of inquiry.

The interviewer’s toolbox



There are several tools that are a part of the interview toolkit. Commonly
used interviewing tools include pen and paper, voice recorder, camera, and
video recorder. We advocate for voice recording of interviews, in large part
because it is difficult to take detailed notes while also trying to think of
follow-up questions based on what is being said. We try to transcribe an
interview shortly after it is conducted to ensure the context is fresh in our
minds. We rarely transcribe an interview word for word, but instead
transcribe the most important or complex details. Transcribing is useful for
analyzing the interview results, as well as for making it easy to refer back to
the conversation later in the design process.

Conducting Contextual Interviews
In general, a first interview does not get into detailed analysis; it can be
useful to get a general overview of the problem, identify stakeholders, and
establish the stakeholders’ expertise. It is in follow-up interviews where
details begin to emerge.

There is often a big difference between talking to someone in a conference
room as opposed to sitting at their desk. In a conference room, people will
often tell a very general story; at their desks, they will more likely show
their processes in very specific ways. For follow-up interviews, the
contextual interview is a particularly useful tool. Contextual interviews take
place in the stakeholder’s work environment and consist of demonstrations
of the tools and data inspection methods that the stakeholder currently uses.
These types of interviews can bring to light aspects of a problem that might
not have come up in a strictly verbal interview. They help show how the
data works in practice: what happens with current capabilities and how
users handle and understand the data they see.

A contextual interview often starts by asking the stakeholder to either walk
through a specific analysis task they have already performed or conduct
some of their work for that day with the interviewer present. The
stakeholder talks through each step they are taking; the interviewer can
interrupt with clarifying questions or use these as launching points for
further explorations. The following starting questions can help the



interviewer understand what works, what does not work, and what does not
yet exist:

What is the work process you currently use? What tools are
involved?

What challenges do you have in analyzing the data?

Are there limitations within the system? If so, how do you work
around them?

Do you understand what the system is doing to the data and any
algorithms that are being applied, or is this a black box?

Technique 2: Exploring the Data
While talking with stakeholders can be very informative, there is no
substitute for reaching deep into the data. We like to start exploring the data
as early as possible, for a few reasons. First, it is useful to understand how it
is structured and what data is available. Second, each operationalization
needs to be checked against the data, and third, it helps to start addressing
fine-grained tasks.

In Chapter 2, for example, exploring the data helped us determine which
fields were available in trying to evaluate what would make for a good
director. It also helped us choose appropriate cutoffs in trying to define
terms like highly rated movie.

Working through the analysis, then, brings forward a variety of
visualization tools to explore the data. Tools like Excel and Tableau, or R
and Pandas, make it easy to rapidly generate visualizations that can
highlight distributions of data, its major dimensions, and the values within.
These tools also make it easy to check whether a dataset makes sense—for
example, to confirm that a hierarchy really is layered appropriately or to
ensure that there are only a small number of categories for a specific
dimension of the data.

http://pandas.pydata.org/


Sometimes it becomes clear that the problem is so specialized that it needs a
bespoke visualization tool created from scratch. This happens when the data
to be explored is not amenable to an off-the-shelf tool. Both Hotmap,
described in the Preface, and the case study in Chapter 8 are examples of
situations in which it was necessary to explore complex data with novel
visuals. These bespoke tools can be created using visualization-specific
languages like Vega, D3, or Processing.

These can be fast-and-loose data prototypes: the goal is to get ideas up and
going as quickly as possible, as opposed to carefully considering software
architecture for long-term use and reusability. Rapidly discarding bad
prototypes is as much a critical part of visualization as it is of other design
areas.

Making the decision to create a custom data exploration tool requires
weighing the development time against the significance of the analysis—if
it is possible to get 80% of the way to a good decision using Excel, then it
may not be worth spending three months to develop a custom solution.
Bespoke exploration visualization tools instead come into play later, when
an operationalization is well established and verified, and the focus is on
going back and answering the high-level question.

If the high-level goals of a project can often be met with off-the-shelf tools
then it is great to be considered a hero for quickly resolving the problem!
Custom tools, in contrast, can be great ways to better understand what is
lacking in the current ecosystem of visualizations. These insights are
invaluable when designing a custom visualization tool.

One challenge is knowing when, and how, to start digging into the data.
Oftentimes the stakeholders already have some way of analyzing or
visualizing the data that they find to be insufficient for their question. This
is usually good place to start. For example, are they looking at many static
visualizations? Add interactivity to support exploration. Are they using only
one kind of visualization? Take a different perspective on the data and
visualize it in a different way using another type of visualization. Use these
early data explorations for a deeper conversation about what works and

https://vega.github.io/vega/
https://d3js.org/
https://processing.org/


what doesn’t, and why. This process also provides a chance to better
understand the stakeholders’ perspectives on the data. Chapter 8 discusses a
case study where scientists had a pre-existing set of technologies; adding
interactivity and new representations helped reveal that there were entirely
new questions to ask, too.

Technique 3: Rapid Prototyping for Design
Even from fairly early stages in the process, prototypes of the final tool can
be a helpful model. The intention behind prototypes is to explore the
visualization design space, as opposed to the data space. A typical project
usually entails a series of prototypes; each is a tool to gather feedback from
stakeholders and help explore different ways to most effectively support the
higher-level questions that they have. The repeated feedback also helps
validate the operationalization along the way.

Rapid prototyping is a process of trying out many visualization ideas as
quickly as possible and getting feedback from stakeholders on their
efficacy. Throughout the data counseling process, multiple rounds of rapid
prototyping can help in understanding how the problem is formulated. In
early phases, sketches on a whiteboard can help to better understand what
types of visualizations to use and how stakeholders might interact with
them. Later on, higher-fidelity techniques can explore the space of possible
visualization designs. The design concept of “failing fast” informs this: by
exploring many different possible visual representations, it quickly becomes
clear which tasks are supported by which techniques.

The Range of Prototypes
The term prototypes refers to a broad range of techniques and tools, from
paper to programming. The fidelity of these prototypes, as well as the time
and energy required to create them, lives on a spectrum (Figure 3-1).



Figure 3-1. Prototypes range from low-fidelity sketches to high-fidelity working models.

One end of the spectrum is characterized by low-fidelity (or lo-fi)
prototypes. These include mock-ups quickly sketched on paper or a
whiteboard with impressions of what the data might look like, and fast,
digital mock-ups that may include some controls for explaining interaction
ideas, such as slide jumps in PowerPoint or Keynote. Figure 3-2 is an
example of a quick interface mock-up made during the design process. Lo-
fi digital mock-ups can also incorporate charts generated in a tool like Excel
or Tableau with fake or sampled data to explore possible visualization
representation ideas. These lo-fi prototypes are great for communicating the
gist of an idea in an interview, or for recording high-level ideas when
planning out how to explore the data. Lo-fi prototypes are, by nature, fast
and easy to produce.

Lo-fi sketches play a critical role in interviews. Creating these prototypes
can help us to understand what the implications of the data might be, and
clarify the usefulness of different proxies. If a diagram is confusing to
explain and design on a whiteboard, it may require too much detail to fit on
a screen.

Communicating ideas with lo-fi prototypes can rapidly help establish
whether the visualization designer is on the same page as the stakeholders.
Drawing pictures of possible interfaces can start new conversations about
the problem and its constraints. Figure 3-2 shows one instance: a
stakeholder was discussing relational data, and drawing this data on the
whiteboard allowed the stakeholder to see what it might feel like to
visualize the data as a network. The multiple colored lines allowed the
stakeholder to start thinking about how to view multiple modalities of the



data; the directed edges were actually built from a sample of the data.
Drawing this prototype helped the client realize that there was more
structure to the data then they had been communicating: every node in the
graph represented by a box actually occurred at a specific time, and it was
important in the analysis to expose the temporal dimension of the data.





Figure 3-2. A lo-fi prototype exploring the idea of a weighted, directed graph layout. This sketch was
hand-drawn on a whiteboard during an interview session, based on sample data, by manually

looking at the spreadsheet and drawing out the relationships.

Lo-fi slideware can help ensure that designs will make sense to users,
especially when incorporating interactive features into the design. The
slideware in Figure 3-3 shows one step in the feedback cycle, illustrating
the result of a specific interaction mechanism. This image was manually
assembled in a variety of different tools. The prototype sketch is meant to
help the user understand how the final interaction will work.

Figure 3-3. This slideware image of a design stage shows iteration from a previous version. The
images were created in a variety of different tools.

On the other end of the prototype spectrum are high-fidelity (or hi-fi)
custom visualizations which must be created from scratch. These hi-fi
prototypes are meant to largely contain the core functionality of an
envisioned visualization tool, including all necessary visualizations of the



data and interaction mechanisms. They will often, however, gloss over
many backend issues such as smooth integration with existing workflows or
fully fleshed out features for saving and loading. Just as for bespoke
visualizations created for our own data exploration, languages like D3 or
Processing can help in creating hi-fi prototypes rapidly.

Hi-fi prototypes are meant to be thrown away. In our experience, however,
hi-fi prototypes are often the tools that get deployed and adopted by some
users, particularly to those frantic to get into their data. Regardless, the
point is not to worry about the code other than to confirm that ideas can
work.



USING A DATA MANAGEMENT PIPELINE
Using a data analytics engine to handle data management can allow an
analyst to rapidly iterate through different ways of looking at the data.
Many off-the-shelf data visualization systems provide both a data
pipeline, which consists of database connectors and data cleaning and
shaping facilities, and a visualization system. Until recently, however,
doing this prototyping meant that analysts were constrained to the
visual mappings available in the system.

A few tools have begun to allow developers to incorporate their own
custom visuals: Google Sheets, Microsoft Excel, and Microsoft
PowerBI all have custom add-in mechanisms. PowerBI also provides
dashboard tools like cross-filtering between custom add-ins.

Eliciting Feedback
Identifying stakeholders during data counseling is useful not only to help
with the operationalization, but also to garner feedback on prototypes. With
rapid prototyping as a strategy, we go back to our stakeholders early and
often with our visualizations to ensure that the operationalization has
directed an effective visualization.

Eliciting useful feedback, however, goes beyond asking stakeholders if they
like what they see—approval is necessary, but not sufficient. Part of the
problem with seeking approval is that interviewees (sometimes
unconsciously) wish to give positive feedback to an interviewer; this can be
particularly problematic within a friendly team. A stakeholder might say
they like a visualization that is not informative but looks nice.

We like to focus instead on what the visualization can and cannot do. A
contextual interview where the stakeholder uses the visualization can be
particularly insightful for uncovering weaknesses in the design or problems
with the operationalization. Keeping questions focused on aspects of the

https://powerbi.microsoft.com/en-us/


data that are being shown forces the stakeholder to more directly confirm or
refute the efficacy of what they are seeing.

And, Repeat
It is very difficult to get a good (or even adequate) operationalization of a
problem the first time around. Getting this right often requires multiple
interviews with stakeholders, interspersed with some data exploration and
rapid prototyping.

For example, consider an operationalization that leads to a distribution of
values in a histogram. That distribution helps show that there are outliers at
one end of the range that had not been in the original problem description;
stakeholders may then realize the outliers are actually quite interesting,
which leads to a new task and a new representation.

The process is often a very iterative one. Talk with some stakeholders, try
some ideas with the data, share those ideas with the stakeholders. And,
repeat.

Conclusion
This chapter looked at several core techniques for supporting
operationalization: data counseling, data exploration, and rapid prototyping.
These techniques bring a variety of different perspectives on the problem
and the data in order to build, refine, and support an operationalization of a
problem. All of these techniques are useful on their own, but using them in
combination provides a powerful suite of tools.

Chapter 4 looks at the nature of the data itself. Understanding the types of
data, and the tasks that can be carried out with it, leads to Chapter 5 and a
look at the core visualizations for basic data types.

 This process is closely related to task analysis in interface design. The
distinction is that task analysis is typically oriented towards creating
1



interfaces; this process, instead, works with data, which warrants a unique
set of considerations on the part of the designer.



Chapter 4. Components of a
Visualization

The previous two chapters outlined the process of refining a question into
tasks. Chapter 2 broke each task down into components: actions, objects,
measures, and partitions. These terms help identify where and how to turn
fuzzy tasks into specific, actionable ones. Then, Chapter 3 discussed in
more detail how to solicit the use scenarios and user stories that motivate
the decisions made about proxies during operationalization.

The process in Chapter 2 concluded with a well-operationalized task and
promised that this can lead to a visualization. But it did not discuss how to
translate an operationalized task into a visualization. There is one step left
before we can start doing visualization: we must understand the data..

This chapter takes the first step to translating these descriptions into
visualizations. Understanding the characteristics of the data will make it
easier to select an appropriate visualization. Chapter 5 then describes
specific visualizations to match the data characteristics outlined here—more
specifically, its dimensions and measures, how it is grouped and aggregated.
In Chapter 6, we’ll look at how views can be combined to support rich,
dynamic analysis of complex tasks and data.



Dimensions and Measures
The attributes of the data serve particular roles in a task. A dimension is an
attribute that groups, separates, or filters data items. A measure is an
attribute that addresses the question of interest and that the analyst expects
to vary across the dimensions. Both the measures and the dimensions might
be attributes directly found in the dataset or derived attributes calculated
from the existing data.

In different fields, these terms get somewhat different names. In the
sciences, it’s more common to talk about independent variables (those that
the experimenter manipulates) and dependent variables (the outcomes of
the experiment). The intuition is the same for task operationalization,
although in many business intelligence scenarios, for example, the data
analyst cannot actually control who walks into the store or visits the
website.

The term metric is sometimes used to describe a measure that stands as a
proxy for a desired value.  One virtue of a visualization approach is the
ability to handle multiple metrics at once. Rather than trying to reduce
everything to a single number, the analyst can look at several different
measures. For example, it is reasonable to say “The fastest route is getting
faster, and that’s good, but the variance is really brutal.” Chapter 6 discusses
several techniques to visualize multiple metrics.

Example: International Towing & Ice Cream
This section discusses different data types with a motivating example. Sue
is a data analyst for International Towing & Ice Cream (ITIC), a fictional
company that provides a variety of important roadside services. ITIC’s
products and services are purchased on the road, so their location is
important—and, as in any ice cream delivery service, so is the temperature
(Table 4-1).
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Table 4-1. Sample metrics

Time Customer
Sales
location
(lat)

Sales
location
(lon)

Product
category Product Temperature Revenue

June
17,
10:30
am

0121 47.6062 -122.332 Roadside Towing 84 $100

June
17,
10:35
am

0232 33.26 -112.04 Roadside Flat 96 $50

June
17,
10:37
am

0304 37.52 -122.16 Delivery Ice
cream 103 $10

The operationalization and data counseling process helped Sue realize that
she wants to display sales grouped by product categories. Because product
purchases vary over time—on a daily cycle, a weekly rhythm, and by
season—she will want to look at sales, divided among categories, over time
and locations. For example, Sue might look at the total revenue by product;
in this case, the product is the dimension, while the revenue is a measure.

Dimensions
The dimensions of the data are the ways in which the data varies. Chapter 2
discussed partitions on the data; these partitions can be seen as dimensions.

In the ITIC example, there are a number of dimensions:

Temperature

Time

Product



Location

There are several different types of data here. When choosing good
visualizations to explore data, it is important to recognize the type, as
different charts are designed to optimize different data types. For example, a
visualization that works well for showing time of day may not be effective
for showing geospatial location.

The next section looks at the types of data used in visualizations; the
visualizations in Chapter 5 are indexed on these data types. A user may
have data that needs to be changed into a different representation. The
following section describes a selection of ways to transform between data
types.

Types of Data
Chapter 5 examines a variety of charts. The charts are indexed to the user
task and can be selected based on the types of dimensions and measures.

Data attributes can be divided into three principal types:

Continuous (interval and ratio) data

Consists of ordered, equally and meaningfully spaced values. Ratio data
has a meaningful zero point, and so can be added or subtracted: 10 feet
plus 20 feet adds to 30 feet. Interval values, on the other hand, lack a
meaningful zero point. As such, differences between interval values can
be computed, but two interval values cannot be added together: values
like dates, pH readings, and oven temperatures are interval data. In the
ITIC example, the temperature and time of day are both continuous
data. In many scenarios, ratio data is a likely measure: revenue and sales
amount are examples of ratio data.

Ordinal data

Consists of discrete values that are ordered, but that cannot be
meaningfully added or subtracted. Rankings are a good example of
ordinal data: if a runner comes in first in one race and ninth in another,



they did not come in a total of tenth, and it is not clear how to compare
them to the runner who came in fifth twice.

Categorical data

Consists of discrete values; every item falls into a single category.
Categorical data has no particular ordering—north does not logically
come before or after west. In visualization, knowing something about
the cardinality—the number of distinct values—of categorical data is
important. In using categorical data for an axis or a color scale, there
should be few enough categories that it makes sense to group the data
into them and for the list of categories to be readable and comparable.

In addition, there are three specialized forms of data that are worth
discussing on their own as they have specific mappings to visualization
chart types:

Temporal data

This is a form of interval data that has a time component. While a single
timestamp refers to a single time (e.g., “November 20, 2010, 8:01 am”),
it can be interpreted in a broad variety of ways.

Temporal data is often interpreted cyclically and hierarchically. Time
comes in cycles (e.g., “every day at 8:00 am,” or “weekdays from 8 to 9
am”). Time may be grouped into ranges (e.g., “November 2010”), and
can be placed against a number of calendars (e.g., fiscal years, calendar
years, workdays). Times can be subtracted to get a duration, which is
ratio data. Visualization toolkits often offer powerful tools for
organizing temporal data.

Geographical data

Refers to places; it is inherently two-dimensional (or three-dimensional,
in some cases). It may come in the form of positions, outlines of shapes,
or names of places. It can often be grouped into categorical data with
the help of an atlas to assign zip codes, city names, or other relevant
groupings.



Relational data

This is data that connects two other points: this might be from a
hierarchy or a network. For example, the fact that some number of
commuters go from one place to another is relational data; so is the fact
that one person reports to another. When data items are categorized,
they sometimes are represented as relational; the relation is between the
data item and its category.

Transforming Between Dimension Types
Different data types can be difficult to fit into particular visualization types.
Often, transforming between data types may help simplify the data into a
form that can be processed more easily. This section highlights a few of the
most common and useful transformations:

Categorical-to-ordinal and ordinal-to-categorical

Categorical data almost always has to be interpreted in some order or
another. Conversely, many visualizations are marked as taking
categorical data when the user has ordinal data. Each type may be
interpreted as the other, as needed, ensuring that the order in ordinal
data is always preserved.

Continuous to ordinal

Continuous data can be difficult to deal with as a dimension so it is
sometimes transformed into ordinal data. In the ITIC example, the
analyst might group a number of entries together into hot and cool
temperatures, or might separate mornings and afternoons. This process
makes analysis far more tractable—it is useful to make statements like
“We sold twice as much ice cream on hot days as we did on cool days.”
Unfortunately, this imposes a hard line on otherwise smooth data: if 80
degrees and above is considered hot, then a day when it’s one degree
cooler (–79 degrees) is now a qualitatively different sort of day than an
80-degree day. When a continuous measure is broken into ordered
groups, it is referred to as binning.



Ordinal to continuous

While ordinal values cannot be directly added, they can be assigned
point values. This is familiar from sporting events, like the Olympics,
where top scores tend to be very similar. As such, the rank is a more
useful measure then the actual value. To assign overall winners across
multiple rounds, though, each rank is transformed into points. The
points can then be added and ranked.

Reducing cardinality for categorical data

Categorical data refers to the data column within its context. A
company’s entire product catalog probably has too many items to be
analyzed with categorical techniques unless the analyst is looking
specifically at a particular subproduct. Rolling together smaller
categories into an other category, for example, can reduce cardinality;
so can finding implicit or explicit hierarchies in the data.

Drilldowns

The drilldown is a common interactive technique between several
hierarchical dimensions. Drilling down merely means moving the focus
of attention from a higher-level dimension to a single, lower-level
component: an analyst might drill down from a view that shows
multiple years to focus on the year 2012, and then look at the months
within it. Drilling from nation to region to state to city is common, or
from business units to teams, or feature areas in telemetry data to
features to specific events.

Rollups

The rollup is the logical opposite of the drilldown: grouping items that
share a hierarchical level and shifting the focus up a level.

Pivoting data

The pivot operation summarizes items that have been grouped together.
For example, in the ITIC example, communicating total revenue by



product category would require that the data be pivoted along that
column. (Roadside total revenue would then add to $150; total delivery
to $10.)

PIVOTING IN TOOLS
Pivoting can be initially confusing to many data analysts, despite its
tremendous power. Microsoft Excel does not pivot data by default:
given a table of numbers, Excel plots the first column on the x-axis and
the second on the y-axis. This can be difficult to work with if you have
raw data. Tools like Excel’s Pivot Tables, Tableau, and Microsoft
PowerBI all work instead on pivoted data. In R, the pivot operation is
supported with the plyr package; conveniently, Pandas calls the
operation “pivot.”

Dimensionality Reduction and Clustering
In the machine learning work that is increasingly important for dealing with
large datasets, some core techniques fall under the umbrellas of
dimensionality reduction and clustering. Although it is far outside the scope
of this book to discuss how these techniques work, it is worth briefly
considering what these techniques do to data for consideration in an
operationalization.

Dimensionality reduction is a way of reducing a large number of different
measures into a smaller set of metrics. The intent is that the reduced metrics
are a simpler description of the complex space that retains most of the
meaning. For example, a movie recommendation service might keep
hundreds of individual dimensions about a user, such as the set of movies
that she has reviewed and watched. These dimensions are both difficult to
interpret alone and far too sparse to be useful: most movies have been
watched by comparatively few users. Dimensionality reduction attempts to
reduce these to a smaller set of useful dimensions, such as “likes horror
movies,” which can be more directly analyzed and inspected. The outcome
dimensions are usually continuous; depending on the technique, they may



even produce ratio data, so that one movie is twice as much a horror film as
another.

Clustering techniques are similarly useful for reducing a large number of
items into a smaller set of groups. A clustering technique finds groups of
items that are logically near each other and gathers them together. For
example, the movie recommender service might cluster users into groups.
Analysts can then carry out analyses on individual groups.

Examining Actions
Chapter 2 discussed some of the core actions in tasks, but left the concept
rather broad. The action helps identify candidate visualizations and
encodings. Some single visualizations can address multiple actions: a bar
chart can allow a user to find a specific value, identify the largest or
smallest value, roughly guess an average, or compare two or more bars to
each other. On the other hand, some tasks are particularly well-supported by
one visualization or another; for example, a node-link diagram can be great
for tracing paths through a network.

Some of the actions that often come up describe:

Finding and reading individual values in the data

Characterizing the distribution of a dimension: minimum,
maximum, outliers, central tendency, sort order, etc.

Identifying the trend of a metric over time (or some other
dimension)

There are also more complex actions:

Comparing a value across a category (“dollars from store A versus
store B”)

Comparing a metric to another metric (“height versus weight of
subjects” or “salary distribution of men versus women”)



Contrasting a metric with many others (“Seattle versus other
cities”)

Clustering values (“divide consumers into market segments”)

Many of these actions look like statistical tasks (e.g., “I want to know if
men or women spend, on average, more money at our store”), Indeed, if an
analyst needs only one or two of these tasks—“I want to know if men or
women spend an average of more money at our store”—then a visualization
probably is not necessary.

Multiple tasks, however, are often linked: an analyst may want to be able to
explore the distribution to find reasonable cutoffs, or explore subdivisions
of the data across a range of different dimensions. For example, an analyst
may want to see how a distribution of product sales looks when the data is
partitioned by store, or product, or even by the display aisle, or an analyst
may want to switch from making comparisons of older women versus
younger women to older women versus older men. A visualization tool can
often support this more open-ended exploration better than statistical tests.

Action keywords can cue which visualization to use. Tasks like “Compare
one object to another across multiple dimensions” are a cue that the analyst
might want to compare multiple series. In contrast, “How is this item
different?” suggests that the analyst might want to pull out a single item to
compare to a background set of items. “Are any items different?” is a cue to
look for visualizations that help show outliers.

The next two chapters look at how to choose a visualization based on the
operationalization and the concepts described here.

 Though the distinction between a metric and a measure makes for
entertaining online debates, this book sees the two as effectively
synonymous.

1



Chapter 5. Single Views

It does not necessarily take a sophisticated visual representation to make a
compelling point or understand a complex dataset. Many of the most
discussed, most viral, and most interesting visualizations are based on basic
chart types. In this chapter, we’ll take a look at some of the familiar core
chart types. This is well-trodden territory—a sample of some different
approaches can be found in “Further Reading”, including attempts to
taxonomize the space in different ways.

This chapter takes a somewhat different approach to organizing core chart
types. It is organized around the things that the analyst knows, and wants to
know, about the data. This follows from the process of operationalizing the
data (Chapter 2), interviewing users (Chapter 3), and understanding the
data’s shape and the actions we can take with it (Chapter 4). The
operationalization has helped reveal something about how the data is
structured and what questions there are about it. This knowledge can be
used to select chart types based on specific data questions.

Depending on the analyst’s task and question, visualizations can emphasize
different results from the same dataset. For example, the United States
Consumer Financial Protection Bureau (CFPB) has released information
about consumer complaints and how they were resolved across a number of
different financial products. Among other columns, the data describes the
class of financial products to which a complaint applies and the type of
relief that the complaint received. The examples in the following figures
aggregate that data to just three dimensions: the product, the number of
claims that had some form of relief, and the number of claims that did not.



DATA SOURCES AND DEMOS
The data sources used in this chapter were collected from publicly
available repositories. The raw data is cited in “Datasets” and on the
book’s website. These examples are not meant to be used to draw broad
conclusions; in many cases, the data is simplified for illustrative
purposes.

Interactive Vega and VegaLite code to create most of the visualizations
in this chapter and in Chapter 6 can also be found on the book’s
website.

Different chart types support different types of questions. If the analyst
wants to see how two different groups compare relative to each other, a
scatterplot (Figure 5-1) might be an appropriate choice. If the numbers are
components of a larger value, they can be added together to get a stacked
bar chart (Figure 5-2). Conversely, to compare the numbers to each other,
the analyst might choose a clustered bar chart (Figures 5-3 and 5-4).

Figure 5-1. A scatterplot emphasizes the relationship between cases that received relief and those
that did not for five different products.

https://resources.oreilly.com/examples/0636920041320


Figure 5-2. A stacked bar chart emphasizes the total number of complaints.

Figure 5-3. A clustered bar chart emphasizes the contrast between the number of people who
requested relief and those who attained it.



Figure 5-4. A different clustering emphasizes the different sizes of the populations who didn’t receive
relief (and the similarity of those who did).

The list of visuals in this section can never be exhaustive, and new chart
types are being created all the time. This set, however, addresses many of
the major categories and the vast majority of charts found in the wild. The
list of charts is arranged by a set of common data questions according to
which they are most effective at supporting.

This chapter first gives a quick primer of perceptual concepts that underlie
the construction of these basic charts. After that, the charts are organized by
data question. An overview of that organization is shown in Table 5-1. The
language here is intentionally informal because it is meant to work as a
reference for helping to map an operationalization to visualization
solutions.

Table 5-1 uses the data types from “Types of Data”. C is for categorical, Q
for continuous (quantitative), and O for ordinal data. V represents any data
type that can be mapped to a drawing attribute, like color or line thickness.
If a drawing supports Q×Q, that means it supports a dataset with two
continuous columns.



Table 5-1. Questions and their corresponding visualizations in this
chapter

Section Chart and data
types Figure thumbnail(s)

“Question: How Is a
Measure Distributed?”

Histograms and
joint distributions

C, Q, Q×Q, Q×C,
C×C



Section Chart and data
types Figure thumbnail(s)

“Question: How Do
Groups Differ from
Each Other?”

Bar charts, pie
charts

C×Q, C×O,
C×C×O



Section Chart and data
types Figure thumbnail(s)

“Question: Do
Individual Items Fall
into Groups? Is There a
Relationship Between
Attributes of Items?”

Scatterplots and
heatmaps

Q×Q,
Q×Q×V(×V…)

“Question: How Does
an Attribute Vary
Continuously?”

Line charts

Q×O, Q×C×O



Section Chart and data
types Figure thumbnail(s)

“Question: How Are
Objects Related to Each
Other in a Network or
Hierarchy?”

Network
visualizations

Network (×V…) on
nodes and edges



Section Chart and data
types Figure thumbnail(s)

Tree visualizations

Network (×V…) on
nodes and edges;
Network×Q×V on
nodes



Section Chart and data
types Figure thumbnail(s)

“Question: Where Are
Objects Located?”

Map visualizations

Map×V;
Locations×V(×V…)

“Question: What Is in
This Text?”

Text visualizations,
including word
clouds

Overall Perceptual Concerns
The strengths and weaknesses of human perception drive much of the
design of visualizations. Basic perceptual concepts apply across all
visualization types. The term encoding channel refers to the ways that an
attribute is represented in the visualization. In a bar chart, for example, bar
length encodes a value, whereas the textual bar caption encodes the
category. Different channels have very different perceptual properties,



which can be described in terms of how quickly and accurately a reader can
interpret them as well as how much they stand out from each other.

There is a well-known hierarchy of accuracy: overall, readers are faster and
more accurate when comparing lengths or positions than area (see Figure 5-
5). Roughly, the hierarchy runs from length to arc angle, to area to color hue
and intensity (Figure 5-5). All else being equal, then, bar charts (which use
length) are likely to be preferable to treemaps, which use area. (To read
more on this topic, see the article by Cleveland and McGill cited under
“Relevant Articles”.)

Figure 5-5. Difficulty in comparison increases roughly from left to right: comparing length with a
shared baseline and with different baselines, comparing angles, comparing square areas or circular

areas, and comparing color. Each of these shows three values in the proportion 5:1:3.

Color is difficult to use effectively. A small number of well-chosen colors
can be highly distinguishable, particularly for categorical data, but it can be
difficult for users to distinguish between more than a handful of colors in a
visualization. Nonetheless, color is an invaluable tool in the visualization
toolbox because it is a channel that can carry a great deal of meaning and be
overlaid on other dimensions. A number of the visualizations described in
this chapter use a color scale, such as heatmaps and choropleths. There are a
variety of perceptual effects, such as simultaneous contrast and color
deficiencies, that make precise numerical judgments about a color scale
difficult, if not impossible. As such, it is vital to choose color palettes with
care.

There are other important conventions. Lines should connect things that go
together, and in most cases, it should be meaningful to look halfway along a
line. Objects in visualizations that are stacked atop each other are typically
read as to be summed together: their total area is the sum of the areas of
their components (Figure 5-2). This is as true in a stacked bar chart as it is
in a treemap. Conversely, when areas are discontinuous—two different bars
side by side—the analyst expects the viewer to compare them. Closer-



together things are easier to compare than further-apart things; thus, a
clustered bar chart suggests that the bars in each cluster should be
considered in relation to each other, and then the clusters themselves in
relation to one another (Figures 5-3 versus 5-4).

None of the data visualizations in this chapter use a three-dimensional
perspective. There is an entire research area dedicated to 3D data—physical
structures, bodies, weather systems—and many tools meant to visualize
things that truly have three spatial dimensions. In our experience and in the
experience of many others, using three dimensions tends to lead to
challenges in perception: points in space occlude each other; perspective
makes it hard to compare sizes; the extra dimension of depth tends to
obscure information. Thus, visualization design principles tend to reserve
3D visualization techniques to tasks that are meant to explore the 3D shape
of spatial data.

There are a number of excellent resources on the topic of perception for
visualization; see “Further Reading”.

Question: How Is a Measure Distributed?
In this section, we start with a single variable and look at ways to examine
how it is distributed. There are a group of subquestions around
distributions. Are there some values that recur? Are there outliers? This first
class of visualizations is meant to help us understand the distribution of one
or two data columns.

Histogram (Categorical)



Figure 5-6. Categorical histogram. One categorical variable. This chart shows the distribution of car
styles in the cars dataset.

Description

This is a Categorical × Ratio chart, which can be drawn as a bar chart.
Given a list of categorical data, each bar represents the frequency of
items in a particular category. Subquestions center around comparing
bars: What category has the most, or the fewest, items? Does some
category stand out from the others?

Histogram (Quantitative)



Figure 5-7. Quantitative Histogram. One quantitative variable. This chart shows the distribution of
car ratings for the city-mpg field.

Description

A quantitative histogram shows the distribution of a continuous or
ordinal variable. It can help identify whether the data is skewed in one
direction or another—that is, whether the data is top-heavy or bottom-
heavy, or whether there are gaps in the middle of the range or outliers at
the end. If there is a small enough number of discrete values, they can
be treated as categories. Otherwise, the data is binned into ranges and
each range gets its own bar. It is valid for a bin to have no items.



This chart is not really different from the categorical histogram.
Fundamentally, it follows the instructions in “Transforming Between
Dimension Types” to transform a continuous variable into an ordinal
one by binning, then aggregating on the count within the bins.

Limitations

The effectiveness of the histogram is based on the effectiveness of the
binning. Different choices of bins—varying where the bins start or the
bin size—can produce very different-looking results for the same data.

Smoothed Histogram

Figure 5-8. Smoothed histogram. One quantitative variable. This plot shows a kernel density estimate
of the city-mpg field of the cars dataset. Smoothed with a narrow bandwidth, the dataset shows sharp

peaks. Smoothed with a wider bandwidth, the dataset shows a gaussian-like distribution.

Description

A histogram can be smoothed into a continuous curve, known as a
probability distribution function. Applying a smoothing function
implicitly suggests that the underlying data is smooth, and that the data
points are a sample drawn from a broader set of possibilities. Like
binning functions, smoothing functions are extremely sensitive to
parameters and algorithms.

Limitations

The smoothed histogram entirely hides the underlying values, and the y-
axis can be difficult for users to interpret. Contrast Figures 5-7 and 5-8,



which are drawn with the same data.

Box Plot

Figure 5-9. Box plot. One continuous variable, conditioned on one or more categorical variables;
this chart shows the variation of the city-mpg field, this time across multiple car body styles.

Description

A box plot shows a less detailed summary of a single distribution. At
the cost of detail, users can more easily glance at how distributions
differ. The box plot family allows you to compare multiple distributions
against each other. It can identify such features as the average, standard
deviation, and outliers for multiple distributions. Figure 5-9 shows a
common use of box plots: to compare one measure across multiple
dimensions.

A box plot is computed by choosing series of aggregate values over the
distribution—usually the median and the quartiles—for the continuous
variable. Other implementations choose instead to render the mean and
standard deviations of a distribution.

Limitations



A box plot cannot show multiple peaks or other features of the
distribution; it also hides the underlying number of entries. Some box
plots can render outliers, although this does not scale to large numbers
of points. Other variants, such as the whisker, bean, and violin plots add
additional richness to the box plot (see “Further Reading”).

Density Plot for Two Dimensions

Figure 5-10. Categorical density plot. Two categorical variables. This chart shows the number of
cars, grouping body style by make.

Figure 5-11. Continuous density plot. Two continuous variables. This chart shows the joint
distribution of efficiency, as measured in MPG, against the weight of the car.



Description

The density plot shows how two variables change together. Darker spots
show places where lots of points occur; lighter spots show places where
there are fewer points. Density plots can be used to compare relative
distributions between two different variables, as well as to find outliers.
In the categorical version, it can be used to find how often different
pairs of variables go together.

As in a histogram, continuous variables are bucketed. Each cell contains
the number of items in which a pair of values co-occur. A density plot
may also plot a continuous versus a categorical variable.

Notes

The density plot is a first cousin to the more familiar scatterplot. Where
a scatterplot shows individual points, however, a density shows regions.
As a result, density plots are far more scalable than scatterplots. At a
large number of points, a scatterplot can become a black blob, whereas a
density plot can be tuned. Density plots come in many variants,
including ones that highlight individual outliers, ones that use smooth
curves to show density, and ones that choose non-square binning
algorithms (see “Further Reading”).

Question: How Do Groups Differ from Each
Other?
The second major group of questions are those that compare multiple
groups. Are boys taller than girls? Do people buy more chips or soda?
When data values are broken out by categories, the visualizations in this
section can show how the values of those categories compare.

Bar Chart



Figure 5-12. Bar chart. One categorical variable, one ordinal. Bar length shows the average
efficiency by body style using the same data as in Figure 5-9.



Figure 5-13. Paired (or multiple) series bar chart. One ordinal, two categorical variables. Efficiency
by body style is now divided into diesel versus gas cars.

Description

A bar or column chart is a common choice for comparing a single
measure per group. A clustered bar chart provides two categories: a
major one and a minor one. The task, then, can be more complex: users
might compare bars within a cluster or between clusters, or compare the
overall shapes of clusters to each other.

The bar chart is useful for comparing values across categories. Users are
very good at tasks like mentally sorting bars, identifying extremes, and
estimating the average and variance across bars.



Notes

Bars should be ordered in some reasonable order. If the categorical
value is based on ordinal data—such as years—then they should be in
that order. Otherwise, bars can be ordered from highest to lowest value.
In a multiple-view or clustered bar chart, the order should remain
consistent.

When a dataset is separated across a categorical variable, each category
is sometimes referred to as a series; in a multiline chart or a clustered
bar chart, each line or bar represents a series.

Limitations

A bar chart begins to be incomprehensible when there are too many
categories, except in the case where the bar chart is showing individual
values of bucketed, sequential data. If the task is to cluster pairs of bars
into groups based on their relative size, then a scatterplot (Figure 5-16)
might be a more appropriate tool.

Pie Chart

Figure 5-14. Pie (or doughnut) chart. One continuous, one categorical variable. The CFPB data
shows the ways that complaints have been closed.



Description

A pie (or doughnut) chart is a variant on a bar chart: it maps wedge
angle instead of height to a value. By filling a full 360 degrees around,
the pie connotes parts of a whole. Pies can be effective for showing
certain aspects of the data: this takes up more than half, for example. It
can be difficult, however, to accurately compare pie wedges to each
other unless they are very different in size.

Heatmap

Figure 5-15. Heatmap. Two categorical or continuous variables result in a color variable. The CFPB
data shows the number of complaints over time, by product. The data is broken out by month and

year.

Description

A heatmap is a two-dimensional analogue to a bar chart: it visualizes
the aggregation or value that sits in each bucket. Just as a bar chart is a
general mechanism that can be used to render a histogram, the density
plot shown in Figure 5-15 is rendered with a heatmap. Many tasks that
are carried out with a heatmap might also be fulfilled with a clustered
bar chart.

A heatmap allows the user to look across or down the dimensions,
looking for commonalities or differences. For example, in Figure 5-15,
the user can look across to see patterns in how products are similar or
vary, and up to see how company responses vary.

Notes

A heatmap is a first cousin of a density plot, except rather than using
merely the count of items, it shows a measure. The term heatmap gets



used in many contexts; this use is common, but not exclusive. The term
can also refer to density plots, for example, and occasionally to
treemaps.

Limitations

When a heatmap has many rows or columns, it becomes important to
order them to show patterns and trends. Furthermore, dense heatmaps
suffer from a host of perceptual problems associated with color, making
accurate judgments of individual values sometimes impossible.

Question: Do Individual Items Fall into
Groups? Is There a Relationship Between
Attributes of Items?
Scatterplots fulfill two sets of closely related tasks. By visualizing items by
their attributes, they can help us look at relationships between those
attributes or at groupings in the items themselves. Is there a relationship
between height and weight? Do mobile users differ from desktop users with
regard to session length or click-through rate?

Scatterplot



Figure 5-16. Scatterplot. Two continuous variables. Additional continuous, ordinal, or categorical
variables can be added for size, color, and shape. This shows the relation between curb weight and

MPG for five different styles of car.



Description

A scatterplot places data points on perpendicular axes. The two major
axes are used to lay out the points spatially; additional attributes can be
used for color, size, or shape.

Scatterplots encourage the user to look at groupings in space. They can
identify outliers or groups, such as the points that are in each cluster or
the points that are along a main trendline. If the points are colored with
an additional categorical variable, then they can address questions about
whether different categories behave differently from each other.

Notes

Too many simultaneous encodings will be overwhelming to the reader;
colors must be easily distinguishable, and of a small enough number
that the reader can interpret them.

Many users find scatterplots difficult to interpret with their two abstract
axes. In an infographic, some designers help guide users by highlighting
and annotating regions with comments like “People who had high math
scores but low written ones,” or individual points with comments like
“This drink costs $0.50 and has 150 calories.”

Limitations

When encoding a third dimension with color or shape, occlusion can get
in the way: a user cannot see that a red dot and a blue dot have been
drawn in the same place. Also, some tools will draw all of one set of
points before they draw any of the next; the reader can be misled by this
unintentional bias.



Question: How Does an Attribute Vary
Continuously?
Temporal data occurs in almost every context, so line charts are some of the
most common forms of charts. How is a stock, a heart rate, or Twitter
traffic doing compared to last month? Is the trend periodic, trending, or
noisy?

Line and Area Charts

Figure 5-17. Line chart. One ordinal, one continuous variable. This chart shows a count of consumer
complaints by year and month for the CFPB data.

Figure 5-18. Stacked area chart. One ordinal, one continuous, and one categorical variable. This
chart shows the count of consumer complaints, like Figure 5-17, but broken out by product.
Mortgages stabilized while credit reporting grew (this shows the same data as Figure 5-15).

Description



The line chart family draws a value for each point along a continuous
axis. The independent axis is often time, but it can be anything that
varies continuously, such as distance. For points that are not in the
dataset, the chart shows an interpolated value; a core assumption of a
line chart is that the points in between are meaningful and well defined.

A line chart shows change over a continuous variable. That might be a
trend (Profits went up!) or a repeating pattern (People read our web
page on weekends! This bike ride is hilly!). Use multiple lines sharing
one set of axes to see how multiple sets covary.

A stacked line chart lays multiple lines over each other with the top of
one acting as the baseline of the next.

Limitations

In any stacked chart, it can be difficult to see how much the upper layers
have changed. In Figure 5-18, for example, the spike in the bottom
green layer in January 2013 makes it appear that all categories spiked.

Question: How Are Objects Related to Each
Other in a Network or Hierarchy?
Networks and hierarchies help track the connections between items. Is this
person connected to that one? Does this online group have an internal
structure? How many people are in this reporting structure? Which product
line is selling best?

Node-Link View



Figure 5-19. Node-link view. A relational variable, in which pairs of data values are linked to each
other, plus additional metadata on the nodes and edges. This data from the Les Miserables dataset
shows coappearance in the novel between characters. The network has been truncated to 40 nodes

for legibility.



Figure 5-20. Circular network layout. A relational variable, in which pairs of data items are linked to
each other, plus additional metadata on the nodes and edges. This shows the same data as Figure 5-

19.

Description

A node-link view draws nodes representing data items, and lines
representing links between them. In a force-directed layout such as
Figure 5-19, nodes and lines are placed so that connected nodes are
nearer each other, while nodes that are not directly connected are further
apart; these views help users identify clusters of interconnected nodes.
A circular layout like Figure 5-20 maintains an ordering between nodes.



Node-link diagrams are good for understanding connection. A user may
be able to pick out well-connected nodes, as well as identify clusters of
nodes and isolates. In an ordered circular layout, it is easier to see
similar nodes have similar patterns of connection. When an additional
dimension is shown using color or shape, tracking homophily—whether
well-connected nodes are similar with respect to the additional
dimension—becomes possible

Limitations

Node-link views are effective for showing only small networks.
Researchers have found that the most successful node-link diagrams
showed small networks with no more than 10–50 nodes and 20–100
links. At this scale, node-link diagrams are good at showing the overall
structure of a sparse graph, although density has a strong impact on
readability—a highly connected graph can lead to what’s known as a
hairball. A very few, far larger networks visualized using node-link
views have been successful in presenting the general shape of the
network. (See “Further Reading”.)

Rendering node-link view layouts is a research field in its own right,
based on what types of tasks will be supported by the visualization.
Consider aggregating groups of nodes together to see relationships
between them, or providing a drilldown into regions.

Adjacency Matrix



Figure 5-21. Adjacency matrix. A relational variable, in which pairs of data items are linked to each
other, plus an additional metadata field mapped to color for the edges. This chart shows the same

data as Figures 5-19 and 5-20

Description

An adjacency matrix shows the connections between data items in a
heatmap, where the measure is whether a pair of items are connected.

The adjacency matrix shows connection between pairs directly; each
cell represents an edge. Identifying whether a pair of items is connected
is a straightforward task, but pathfinding is more difficult. In addition,
with an appropriate ordering, cliques and near-cliques become visible.



Notes

An adjacency matrix can be more difficult for novices to understand
than a node-link diagram. For smaller and sparser networks, a node-link
diagram is almost always better. Detecting patterns is very order-
dependent; much research has been done on ordering the cells in a
matrix in order to bring out patterns.

Adjacency matrices are not a particularly compact representation; the
fairly small matrix in Figure 5-21 still takes up a large amount of space.

Tree View

Figure 5-22. Tree view. One hierarchical set of dimensions, perhaps coded with one or two other
dimensions (both nodes and edges can be colored and sized). This is a hierarchy of the types of

complaints to the CFPB and the percentage of them that received relief. The second layer of the tree
corresponds to the values in Figures 5-1 through 5-4.



Description

A tree view uses a node-link diagram to draw a hierarchy. The color of
nodes and edges, as well as the thickness of edges, can be mapped to
additional dimensions of the dataset. As such, a tree view is good for
looking for individual items buried in a hierarchy that are unusual in
size or color.

Notes

When trees get large, it can be difficult to pick out individual nodes. In
interactive systems, it can be convenient to collapse subtrees together
into abstracted nodes, and to elide nodes toward the roof. This sort of
level of detail interaction allows users to more easily navigate the tree.

Treemap and Sunburst

Figure 5-23. Treemap. A hierarchical value, associated with a size and a color for each leaf node.
Non-leaf nodes do not get their own colors. This represents the same data as Figure 5-22 but adds a

second dimension for size: the number of complaints.



Figure 5-24. Sunburst plot. A hierarchical value, associated with a size and color for each node,
including both leaf and internal nodes. This chart shows the same data and mapping as Figure 5-23.

Description

Treemaps and sunburst plots look at relative sizes of things in a
hierarchy. For example, a hard drive has folders that each take up space,
subfolders take up fractions of their space, and so on. Similarly, a
company might organize its products in a hierarchy (categories of
products, divided into individual products, divided into editions). Each
node is associated with both a size and a color. As with the tree view,
color can be mapped to a value or category, but it is far easier to read
the total area than with a tree view.

A sunburst plot can make it harder to compare the size of areas,
especially between layers, but easier to compare the depth.



Limitations

It can be difficult to accurately compare relative area in these
visualizations, especially for oddly shaped pieces or between different
layers.

Question: Where Are Objects Located?
Maps are perhaps the most familiar visualizations: many children grow up
playing with map puzzles many years before they encounter their first bar
chart. As such, they make familiar reference points to place data. Which
state has the most millionaires? Where are the stores that have sold the
most snow shovels?



Geographical Map

Figure 5-25. Choropleth. Values correspond to regions, such as states or counties. This chart uses
census data to look at the percentage of the population with income over $200,000.

Figure 5-26. Dotplot map. A scatterplot, where the x- and y-axes are geographical (or a list of
geographical points); additional dimensions for size, color, or shape. Dots are located at the centroid

of each zip code; the first digit encodes color.

Description



Geographical visualizations are an entire field in themselves. The
choice of choropleth and dotplot here represents just two classic charts
from an extremely rich history. Choropleths fill in regions; dotplots
place data at points of interest.

Maps can be used for understanding how places vary or are similar, for
understanding regional differences, and more.

Notes

One great virtue of maps is that if the audience is reasonably familiar
with the area, there is no actual need to label what the space means.
Neither Figure 5-25 nor 5-26 has a legend or labels on the states, which
is a reasonable omission for people familiar with the geography of the
United States.

Limitations

In a choropleth, a great deal of emphasis is given to land area even
though size and population are unrelated—a high value in US states like
Alaska or Montana (which have a very large area but a low population)
might seem more significant than a high value in tiny Rhode Island
(which has approximately the same population as Montana, but 1/145 of
the land mass).

The spatial distribution of dots in a dotplot is the same, regardless of the
dimension being shown with color. For example, most dotplot maps of
the United States look somewhat the same: a lot of points on the East
Coast, fewer on the West Coast, and fewer still in the center. This is true
whether measuring number of millionaires, voters, or sinks sold.

Maps also have the disadvantage that they consume the most powerful
encoding channels in the visualization toolbox—position and size—on
an aspect that is held constant. This leaves less effective encoding
channels like color for showing the dimension of interest.

Question: What Is in This Text?



Visualizing textual data is a common user need. Unfortunately, there is no
definitive technique for resolving it. Most approaches fall into the same
patterns that are discussed throughout this chapter. They can be found by
operationalizing the question further: what is it that the analyst needs to
know from the text? Some popular approaches start with counting patterns
and frequencies of words or phrases and visualizing these patterns in line
charts, bar charts, networks, and so on. There are many subtleties with
regard to recognizing word roots and stemming, choosing what aspects to
visualize, and handling a set of words with a very high cardinality.

Word Cloud

Figure 5-27. Word cloud. This is a word cloud of the text of the Preface to this book. Color in this
chart is arbitrary.

Description

One popular choice for visualizing text is a word cloud. A word cloud
is, at heart, something like a bar chart: entities are sized to their counts.
It relaxes constraints on position and color, which then get assigned
with fairly arbitrary layout algorithms. A word cloud allows the reader
to understand the relative frequency of words, and roughly identifies the
top handful of words.



Limitations

Perceptually, a word cloud can be challenging: long words, and letters
with ascenders and descenders, can make size difficult to estimate. It
might be more effective—if less visually interesting—to simply print a
bar chart of word frequency.

Conclusion
This chapter has examined several major classes of visualizations. There are
a set of shared encoding channels: the placement of items (spatial), color,
size. There are also a number of perceptual rules used to help enhance the
degree to which visualizations bring out distinctions in questions.

This ties back to the process of operationalization by linking the question to
user needs. For example, imagine an analyst who wishes to create a
visualization showing that stores in region A are more likely to sell blue
jeans than stores in region B. The question that the data counseling process
suggests to ask is, “What would it look like to show this?”

The analyst might decide to group stores together by region and show the
sum of jeans sold, or the proportion of products. They might decide to plot
them on a map. In the former case, they lose granularity (data on individual
stores) at the gain of seeing overall trends. Plotting has the opposite effect:
it may be hard to see trends against bigger population patterns.

Further Reading
The basic chart types are one of the most well-studied and explored areas of
data visualization. This section highlights a (very) few core books:

Bertin, Jacques. Semiology of Graphics: Diagrams, Graphs, Maps, trans.
William J. Berg (Redlands, CA: ESRI Press, 2010).

Jacques Bertin’s seminal volume is a dense and challenging read
(and the English translation is imperfect). However, the work is a



treasure trove. Bertin lays out the principles of good information
design based on cartography, typography, color theory, and
perception. He then walks through, in great detail, the advantages
and disadvantages of different chart representations of datasets
with qualitative, quantitative, and spatial data types.

Few, Stephen. Information Dashboard Design: Displaying Data for At-a-
Glance Monitoring (Sebastopol, CA: O’Reilly, 2006).

Stephen Few takes an opinionated approach to creating
information dashboards. In this book, he lays out basic principles
of what makes for a good information dashboard. His notes apply
both to the individual charts discussed in this chapter and the
multiple views in Chapter 6.

Wilkinson, Leland. The Grammar of Graphics (Mew York: Springer, 1999).

This book expresses a particular sequence of creating visuals by
mapping from data through geometric primitives and placing them
on scales. These core insights make it easy to generalize many
visualization techniques and have influenced visualization systems
from Tableau, to the ggplot package in R, to Vega.

Meirelles, Isabel. Design for Information. (Beverly, MA: Rockport
Publishers, 2013).

Trained as a designer, Isabel Meirelles presents the history and best
practices for understanding, critiquing, and creating visualizations
from a design perspective.

Steele, Julie and Noah Illinski. Designing Data Visualizations (Sebastopol,
CA: O’Reilly, 2011).

This is a useful guide to core visualizations, with a stronger
emphasis on how to design and present visualizations.

Munzner, Tamara. Visualization Analysis and Design (Natick, MA: AK
Peters/CRC Press, 2014).



This textbook is an overview of the state of the art of the data
visualization field. It covers data abstraction, provides perceptual
guidelines, and discusses faceting into multiple views. Many topics
in this book were influenced by Munzner’s approach.

Relevant Articles
Cleveland, William S. and Robert McGill. “Graphical Perception: Theory,
Experimentation, and Application to the Development of Graphical
Methods.” Journal of the American Statistical Association 79 (1984): 531–
554.

This brief and readable journal article builds a hierarchy of core
perceptual tasks in visualization. Its insight is that comparing
length is the core perceptual task of a bar chart, whereas comparing
angle is core to a pie chart. Comparing these two perceptual tasks
can help evaluate the difficulty of understanding a visualization.

Wickham, Hadley and Lisa Stryjewski. "40 Years of Boxplots,” technical
report from had.co.nz (2012)

This paper provides an invaluable overview of different box plot
variants, including the bean and violin plots, as well as 2D
analogues.

Sarikaya, Alper and Michael Gleicher. “Scatterplots: Tasks, Data, and
Designs.” IEEE Transactions on Visualization and Computer Graphics 28
(2018).

This paper discusses several major variants of scatterplots and
density plots.

Ghoniem, Mohammed, Jean-Daniel Fekete, and Philippe Castagliola, “On
the Readability of Graphs Using Node-Link and Matrix-Based
Representations: a Controlled Experiment and Statistical Analysis.”
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This paper explores the readability challenges around large and
high-density node-link diagrams for low-level tasks like finding
nodes, edges, and paths between nodes.

Datasets
Copies of the data used in this chapter (in both pre-processed and raw
form), along with Vega and VegaLite code to create the visualizations in
this chapter and in Chapter 6, can be found on the book’s website. The
datasets used are:

CFPB

The CFPB Consumer Complaint Data about financial products and
services. The dataset is made available on Data.gov, with data as of
September 26, 2015.

Cars

The Automobile dataset is based on the 1985 Ward’s Automotive
Yearbook, courtesy of the UCI Machine Learning Repository.

Les Miserables

This dataset, showing character coappearance in Victor Hugo’s Les
Miserables, first appeared in Donald E. Knuth’s The Stanford
GraphBase: A Platform for Combinatorial Computing (Addison-
Wesley, 1993). It is available from the UCI Network Data Repository.

Zip code

The zip code dataset was composed from US Census Bureau data by
CivicSpace Labs, and is available for download from Tom Boutell’s
website.

Census

The census data, aggregated at the state level and examining total
household income, is available from American FactFinder (US Census).

https://resources.oreilly.com/examples/0636920041320
https://catalog.data.gov/dataset/consumer-complaint-database
https://archive.ics.uci.edu/ml/datasets/Automobile
http://archive.ics.uci.edu/ml/index.php
http://bit.ly/2AE1QyI
https://boutell.com/zipcodes/
http://bit.ly/2A0SZWI


Chapter 6. Multiple and
Coordinated Views

The previous chapter provided a gallery of single-chart visualizations. This
chapter brings those views together into interactive, connected visuals
called multiple linked views (MLVs). An MLV leverages multiple
visualizations by linking the information shown in each view to the others
through user interactions.

MLVs are vital to understanding large and complex data. They allow many
different attributes to be viewed at once by splitting them up across a set of
views and partitioning the data items to find interesting trends. They can be
designed to help guide a user toward the most interesting data items, to
show multiple perspectives on data, or to allow the user to dive more deeply
into a dataset. In an MLV system, a dataset is shown in multiple simple
visualizations, with the data items shown in the different charts
corresponding to each other. The charts in each visualization can be used to
highlight, control, or filter the data items shown in the others.

There are a number of well-defined MLV design patterns, each of which
supports a different set of analysis tasks. This chapter covers five of the
best-known patterns: small multiples, scatterplot matrices (SPLOMs),
overview+detail, multiform views and dashboards, and overlays. Small
multiples and SPLOMs are series of small visualizations that use the same
view but show different parts of the data. Overview+detail pairs two views,
one as an overview of the complete dataset and the other as a detailed view
of a subset of the data. Multiform views and dashboards use different types
of visualizations with each view optimized for a subset of attributes. Lastly,
overlays are multiple visualizations drawn on a common, shared axis.

This chapter discusses appropriate tasks and provides examples for each of
these. There are characteristic interactions that go with most of these design



pattern. The chapter describes the ways that users might interact with these
visualizations. Table 6-1 provides an overview.

Table 6-1. The design space of multiple linked views

MLV type Supported
task Data Interaction What is shared

Small multiples

Understand and
identify
differences
between subsets
or measures of
the data

Each view shows
a partitioned
subset, or a
different measure,
of the data

Usually static

Different data, same
attributes, same
view; or, same data,
different attributes,
same view

SPLOM

Understand
relationships and
correlation
between the
attributes

Each scatterplot
shows all of the
data items for
every pair of
attributes

Brushing and
linking
highlights the
same data items
in different
views

Same data, different
attributes, same
view

Multiform
views and
dashboards

Understand
relationships and
correlation
between the
attributes

Each view shows
all of the data
items, but
different attributes

Brushing and
linking
highlights the
same data items
in different
views

Same data, different
attributes, different
views

Overview+detail

Find interesting
data items and
understand those
in detail

Large datasets
where all data
items and
attributes cannot
easily be shown at
once

Selection in
overview;
navigation in
detail

Same data, different
attributes, different
views

Overlay

Compare two
datasets that
share a common
attribute

Different, but
joinable, datasets Usually static

Different data,
shared attribute,
shared axis

Small Multiples



The small multiples design pattern—sometimes also called a trellis chart—
focuses on showing subsets of a dataset, meaningfully partitioned. The
pattern allows an analyst to quickly look across these subsets and compare
them in order to find trends, patterns, and outliers.

This pattern is common in everyday interfaces. In online shopping sites, a
search query is presented as a grid. In this grid, the results are partitioned
based on specific products, and each individual view in the grid gives quick
information about what the product looks like, its price, and its rating.
Similarly, weather forecasts typically show forecasts for several days with
small multiples. Here, the forecast data is partitioned by day; each
individual view shows information about the day’s temperatures, cloud
cover, and precipitation. The layout supports quick skims down the views to
get a sense of how the weather will change over the course of the days.

The views in a small multiple must maintain consistency, so it is easy to
read down or across each individual view to directly compare the data
subsets across each attribute. Maintaining the same view of the data while
varying the data items is a hallmark of small multiples.

A small-multiples display shows the same visualization repeated across a
row, column, or grid of views. Small multiples come in two variants: they
can be split by dimension, or they can show differing measures. When a
visualization has been split by dimension, each individual view is a
visualization of the same attributes, but the views show different subsets of
the data, split along a partitioning attribute. The partitioning attribute is
typically an ordinal or categorical value—as in Figure 6-1—a binned
continuous value.

When a visualization shows multiple measures, each individual view shows
most of the same attributes for all the data. Each individual view varies one
dimension or measure from its neighbors. In Figure 6-9, the three views all
show the same dimensions, but vary on the measure: population, engineers,
and hurricanes per state.

Small multiples are particularly good for supporting comparison of subsets
of the data across several attributes of interest—words such as these in an



operationalized task point to a small multiples design pattern. For example,
the small multiples of choropleth maps in Figure 6-1 support comparison of
the percentage of the population in states in the US across different salary
ranges.

Figure 6-1. Small multiples of choropleths. In each choropleth, the percentages of the states’
populations for a specific salary range are shown—the small multiple views are partitioned over the

set of salary ranges.

In Figure 6-1, percentage and geographic location are shown in each view,
and the data is partitioned by salary range. Each individual view in the
small multiples display supports statements like “The state of Alaska has a
comparatively lower percentage of residents in the lowest salary range.”
The full display supports statements like “California and Virginia stand out
for their unusual distribution of salary at both the lowest and highest
ranges.”

One virtue of a small multiples view that is split by dimension is that all the
views share the same spatial placement and the same color scale. The
shared color scale is useful here because the multiple visualizations have
the same meaning. The reader learns to interpret that yellow means a high
percentage while purple is low, and can then effectively look across the
charts to compare a specific color, pattern, or spatial location.



Often it is not obvious from a task which attributes should partition versus
define the views, and trying different combinations can be useful. It is often
fruitful to explore different small multiples during the early EDA stages to
not only help in understanding the data, but also enable further refinement
of the operationalization.

CONDITIONING AND GENERATIVE GRAMMARS
The concept of conditioning on a variable cuts across many
visualization types. This is the statistical term for partitioning one
attribute by another. Any single-view visualization can be changed into
a small multiples view by conditioning on one or two dimensions; many
visualizations can be overlaid by choosing another color to represent
conditioning on a second dimension.

A bar chart is a small multiple of single bars, partitioned on an attribute.
A clustered bar chart is a hierarchy of small multiples within a small
multiples display. This sort of logic drives The Grammar of Graphics,
which reduces every point on a visualization to a mark drawn in a
particular way as described by the data; tools like ggplot and Vega
explore this philosophy further. See “Further Reading”.

Scatterplot Matrices
Scatterplot matrices (SPLOMs) are related to small multiples in that they
use the same visualization—a scatterplot—across a matrix layout. Instead
of showing subsets of data items across a few choice attributes, as in a small
multiples display, they instead show the complete dataset in a matrix of
scatterplots. More specifically, a SPLOM pairs each (usually) continuous
numeric attribute against every other attribute in a (diagonally symmetric)
matrix layout of scatterplots (Figure 6-2). As with other scatterplots, as
discussed in Chapter 5, items in the scatterplot may also be colored and
sized by additional attributes.



Figure 6-2. A SPLOM comparing attributes of cars in the scatterplots, with a color encoding
indicating whether the cars are all-, rear-, or front-wheel drive. This chart helps show, for example,
that rear- and front-wheel-drive cars can be separated by their curb weight in conjunction with city-

mpg or highway-mpg more than by their width and length.

A SPLOM is primarily useful for characterizing relations between attributes
in the earliest stages of EDA. Finding these relationships can help in
narrowing down which attributes may be of most interest for further study
during later EDA stages.

Overview+Detail
The overview+detail design pattern is essential for navigating and exploring
large datasets in order to find interesting data items. It applies to any dataset



that is too big—in terms of the number of data items, the number of
attributes, or both—to show all at once. This design pattern includes an
overview visualization that helps in finding interesting subsets of the data,
and a linked detail view that shows the low-level attribute values associated
with the selected subsets. Words in a task such as locate and find may
indicate an overview+detail design pattern.

This design pattern is common in email clients, which provide an overview
of the inbox showing the sender, subject, and date for all emails. Selection
of an email in this overview then triggers a detailed email view to show the
complete contents of the message. This is a flexible, user-driven process
that supports a number of tasks: reading new emails, finding emails sent last
night, or going back to a specific topic from yesterday, to name a few. The
overview pane gives just enough information to make the selection, which
is then shown in its entirety in the detail view. This detail view updates with
each new selection.

Overview+detail is also frequently used as a navigation aid to provide
context for movement around virtual spaces, such as maps, video games, or
images. For example, Figure 6-3 is a screenshot from a photo viewing
application. The overview is a small, contextual view that supports panning
and zooming; the detail view shows a zoomed, detailed portion of the
photo.



Figure 6-3. Some photo-viewing apps support overview+detail for panning and zooming an image.
Here, the overview in the bottom-right corner indicates which part of the image is being shown in the

larger detail view.

The overview+detail design pattern supports guided navigation to help find
interesting subsets of the data. This pattern looks across many data items,
using either one or several attributes as a measure of interestingness. The
overview may use an attribute that is shown in other views, or a new,
summarizing metric created from the underlying data. A selection in the
overview triggers an update in the detail view to show the underlying
details about the selected subset. This is typically a one-way interaction
where selection in the overview drives what is shown in the detail view, but
not vice versa.

What makes for interestingness? It is any attribute that helps figure out
what subsets are worth looking at in the dataset. If the analyst is looking for
places where data has extreme values, for example, it might be the count of
items in that area, the maximum value of an attribute, or the average. It



might be a synthetic value, such as an anomaly score. The case study in
Chapter 8 has an overview that uses a distance function to help guide users
to the most interesting bits of detail.

Figure 6-4 shows a dataset of genes located within a chromosome.  There
are thousands of genes, far too many to reasonably show in a single view.
Instead, the overview on the left shows regions of interest, each of which
contains a set of related genes, shown as colored bars along the
chromosome. These bars can be selected, triggering the detail view on the
right. This detail view shows the individual genes within the selected
region.

1





Figure 6-4. Overview+detail views in a tool for exploring genetic data. The overview on the left
shows regions of interest, color-coded based on a similarity function. Selecting a region of interest

triggers the detail view on the right to show the location of individual genes within the selected
region.

Overviews and details can nest for larger and more complex datasets.
Figure 6-4 is actually part of a larger system that has two levels of overview
to support looking across complete genomes—this system is shown in
Figure 6-5. This visualization tool, called MizBee, supports selection of
chromosomes of interest in the left view, regions of interest in the middle
view, and detailed analysis of genes in the right view. A video of this
system in action can be found on the book’s website.

Figure 6-5. This tool for visualizing comparative genomics data has two levels of overview. Selecting
a chromosome in the overview on the left triggers a more detailed overview of the selected

chromosome in the middle view. In this middle view, regions of interest are selected to then trigger
low-level details about individual genes in the detail view on the right.

Overview+detail supports open-ended exploration across the complete
dataset and is useful for helping a user build a mental model of what is

https://resources.oreilly.com/examples/0636920041320


interesting within a dataset and what more detailed relationships should be
explored. Choosing a good proxy for interestingness is essential to an
effective overview+detail—oftentimes, the overview is designed to support
a range of metrics that the user can switch between dynamically. It is often
later in the process that a good understanding of what is interesting
emerges. Furthermore, developing overview+detail tools typically requires
some significant programming, making them somewhat heavyweight for
early EDA. These tools are often developed later in the process, and often
serve as the final visualization design.

Multiform Views and Dashboards
A single view can usually only effectively show three or four attributes.
When trying to determine how multiple attributes are related to each other,
then, a multiform linked visualization can show the connections between
multiple attributes. A multiform visualization shows attributes across
multiple visualizations, each tailored to most effectively show a small
subset of the attributes. In this design pattern, no one view is best or
primary and any one view by itself is insufficient.

Each view shows all of the data items, but just a portion of the data
attributes. The views themselves are each designed to be most effective for
showing one or a few of the attributes, and many views can be shown at
once to support finding patterns, trends, and correlations across many
attributes. Instead of primarily supporting characterization of patterns in the
data items, like a small multiples visualization, a multiform visualization
supports characterization of patterns in the attributes.

This design pattern uses an interaction technique called brushing and
linking, where selecting data items in one view triggers highlighting of
those selected items in the other views, supporting fine-scale analysis of
relationships across the attributes.

For example, in Figure 6-6 the view on the left is showing 2D spatial
locations for each data item, with a metric encoded at each point, using
color. We know from Chapter 5 that color is relatively ineffective for



precisely comparing quantitative values; thus, the linked bar chart view on
the right shows the metric for each data point using spatial encoding
(height). The views are linked such that when the mouse hovers over a data
item in the left view, the corresponding bar is highlighted in the right view
—the interaction can be viewed in the video on the book’s website.

Figure 6-6. In this multiform visualization, both views are showing the same attribute across all the
data items. On the left, that attribute is encoded with color, along with the spatial location of each
data item. To overcome the perceptual challenges of making fine-scale comparisons of the attribute

values using color, the linked view on the right encodes the attribute using a bar chart. The two views
are linked together with brushing.

A multiform visualization such as this can give users access to a broad set
of attributes across the complete dataset, making it particularly useful in the
middle of the data counseling process.

Dashboards are a type of multiform visualization used to summarize and
monitor data. These are most useful when proxies have been well validated
and the task is well understood. This design pattern brings a number of
carefully selected attributes together for fast, and often continuous,
monitoring—dashboards are often linked to updating data streams. While
many allow interactivity for further investigation, they typically do not
depend on it. Dashboards are often used for presenting and monitoring data
and are typically designed for at-a-glance analysis rather than deep
exploration and analysis. An example of a business dashboard is shown in
Figure 6-7.

https://resources.oreilly.com/examples/0636920041320


Figure 6-7. This sample business intelligence dashboard represents a number of different measures
and dimensions of a dataset: single numbers summarize important features; scatterplots, bar charts,

line charts, and maps address specific tasks. The cells are linked together: choosing a specific
element in one panel acts as a filter or highlight against the others.

Overlays
A final MLV design pattern, overlays, uses a shared coordinate system to
orient views together—these views are similar in that they share a common
coordinate system, but could be different in the visualization type they use.
This variation makes it easy to find patterns and trends among a small
number of attributes along a common attribute, such as time or space. This
form often occurs with geospatial and temporal data; the weather map in
Figure 6-8 is an example. In this visualization, three different attributes are
layered in the same view: temperature using color, pressure using isolines
(contours), and wind speed and direction using wind-barb icons. All three
attributes are using the same coordinate system, namely geospatial location



over the continental United States. By visualizing these three attributes
together, it is easier to make inferences about relationships between them.

Figure 6-8. Overlays are often seen using a geospatial attribute as a common axis. In this weather
map, temperature, pressure, and wind speed are overlaid on a map of the United States.

Besides comparing attributes, overlays are also good for saving pixels and
presenting more information in a single display more compactly. On the
other hand, they can add more visual complexity. Making detailed
judgments about the weather attributes in Figure 6-8 requires a fair amount
of attention—too much detail in an overlay can overwhelm a user quickly.
Interaction can help with visual clutter, such as highlighting a specific layer
of the overlay when a label in the legend is rolled over. In general, overlays
are a great option when your analysis requires a small set of attributes to
compare and the shared coordinate system is familiar.

Axis Alignment and Scale Consistency



One important aspect of all of these forms of multiple visualizations is
finding and aligning shared axes. In general, if two different parts of a
visualization are meant to show the same scale, they should be aligned and
sized the same way. In a small multiple view of histograms, for example,
ensuring that the bins are consistent among the histograms makes it far
easier for the user to compare bins to each other. Similarly, when overlaying
several series with different ranges, it is worth considering whether the
percentage change is most important, which would allow for a common y-
axis.

The principles of alignment and consistency play into Figure 6-9, which
illustrates the value of maintaining consistent axes while showing
independent color scales. The three maps show very different data—the
population, percentage of the population that are engineers, and number of
hurricanes. The shared coordinate system and aligned axes help the reader
compare the maps; the different color palettes emphasize that the attributes,
scales, and meaning are very different between the three charts.



Figure 6-9. These three choropleths illustrate the value of aligning scales and maintaining
coordinate systems. The maps show the population of each state, the percentage of the population

that are engineers, and the number of hurricanes. (The very different map styles suggest that
engineers do not cause hurricanes.)

Interacting with Multiple Linked Views



Many of these MLV design patterns support the concept of linking views by
interacting with the data. The role of linked-view interactions is to select
data in one view that is then reflected in another view, using the data as a
selector. This is broadly referred to as brushing and linking.

The concept of brushing and linking brings together two subtly different
types of interaction intentions: cross-highlighting and cross-filtering. For
example, in a SPLOM it is common to select data items in one of the
scatterplots to see how they are reflected in others; this is known as cross-
highlighting. Cross-highlighting can be implemented when individual data
points correspond in multiple charts.

Cross-filtering means that the selection on one chart removes data items
from other charts. It might make sense, instead, to cross-filter on ranges or
values of attributes—for example, by dragging along an attribute to mean
“all data items with these values along this attribute.”

Interestingly, there’s little consensus on the exact specification of these two
different intentions. Selecting a region can mean filtering to only a set of
data items, or it can mean highlighting those points.

Figure 6-10 shows a cross-selection tool in action. The dataset (from World
Bank Development Data) shows a series of countries, listed by the
percentage of their population aged 15–64, and the percentage over 64. A
scatterplot on the right side plots these two numbers against each other. The
user has made a selection within the scatterplot; this highlights the
corresponding data in both the lists.



Figure 6-10. Cross-selection. The three views—two sorted bar charts and a scatterplot—are linked
together. The user has selected a region of the scatterplot (grey box, orange dots), and the selected

values correspondingly light up on the bar charts. This is based on the World Bank dataset.

MLVs and the Operationalization Process
The different types of MLVs tend to be useful at different stages in the
operationalization process.

The SPLOM tends to be used early. It is designed to help an analyst dig
around in an unfamiliar dataset, or to look at lots of different attributes and
see whether there are any interesting correlations between them. SPLOMs
are usually an exploratory tool, used when a user can’t yet decide which
dimensions will make good partitions or measures. It can help clarify the
nature of the data and identify which dimensions will be interesting to
visualize and explore.



Similarly, small multiples are a good way to rapidly scan how subsets of the
data items compare to each other across several attributes. They are often
useful at the early stages but continue to be useful later, when the final task
is to compare aspects of the data by a partition.

Interactive multiform views often occur in the middle parts of the
operationalization process. Brushing and linking between two views can
help identify the parts of the data where interesting phenomena occur. The
middle part of analysis is also where overview+detail visualizations are
helpful—when you know enough about the data to be able to identify an
interestingness measure and can use it to more richly explore the details of
individual data items. Overlays are great here too, when it is known which
few attributes are likely to be most important.

At the end of the operationalization, a dashboard is often the result of
relentless pruning of ideas for proxies. Having examined the attributes and
their interactions, the user now knows which proxies are useful for
answering questions, and which attributes are most important. It begins to
make sense to create multiple visualizations for different tasks. Each highly
curated visualization helps to answer a definite and specific question.

Conclusion
Multiple linked views are design patterns that provide important support for
making sense of complex and large datasets. Breaking up the data across
multiple views avoids overwhelming a user with extremely dense
visualizations, and also allows for optimization of each view based on the
characteristics of the underlying data and task.

These design patterns are often used in conjunction with each other.
Chapter 7 uses a variety of different visuals, with interactive linking
between an overview-and-detail and a series of overlays. Similarly,
Chapter 8 illustrates an example of an MLV system that combines an
overview+detail with small multiples, small multiples with overlays, and a
two-level overview flow.



Further Reading
Meyer, Miriah, Tamara Munzner, and Pfister Hanspeter. “MizBee: A
Multiscale Synteny Browser.” IEEE Transactions on Visualization and
Computer Graphics 15 (2009): 897–904. This paper describes the MizBee
system, which combines the overview+detail pattern with small multiples,
overlays, and multiform views in a single tool to address a series of tasks in
biology.



Datasets
In addition to the datasets in Chapter 5, this chapter also uses:

World Bank development data

Data from the World Bank about development indicators of countries,
compiled from officially recognized international sources’ World
Statistics eXplorer.

 This visualization tool is discussed in “MizBee: A Multiscale Synteny
Browser.” See “Further Reading”.
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Chapter 7. Case Study 1:
Visualizing Telemetry to
Improve Software

The previous chapters of this book explore the data counseling process:
how to move from an ambiguous question to a more precise one, and how
to refine a design through iteration into a final visualization. This
description, however, has missed some of the twists and turns in the data
counseling process. Data counseling goes through a series of iterations,
each of which casts new light on the questions, but encounters dead ends.
Ideas that seem insightful in a sketch turn out not to scale, or are not
interpretable when used with real data. At each of these steps, the goal itself
may change as new aspects come to light.

To see how this process can evolve in the real world, this chapter reviews a
case study from a team that Danyel worked with at Microsoft. To protect
sensitive information, this study obfuscates some images and details
slightly. In addition, this telling reduces some of the complexity.

Introduction
One of Danyel’s roles at Microsoft is to consult with teams from the rest of
the company about visualization. Jacqueline, who works on a data science
team, emailed him a question: “How would we show distributions so that
they pop for users?”

It can be hard to answer such a question without more context. What sort of
distributions? Are they based on data, or are they abstract functions? What
aspects of them should pop out? For example, Jacqueline might want to let
her users see whether a given distribution is close to an expected



distribution, or whether it has outliers. The designer does not yet have
enough information to figure out what sort of visualization to create.

In some cases, hearing this sort of low-level question can be a sign that a
team has reached a dead end. The goal in data counseling is to help them
work back out—to discover what their real need is and then operationalize a
visualization that helps with that.

Project Background
Danyel and Jacqueline discussed her question in a first data counseling
interview. The goal of the interview was to learn more about the real
question: who is going to look at these distributions and what do they want
to decide? In this case, Jacqueline’s team was not stuck. She had assembled
a data science team with a clear notion of the problem they wanted to solve.
Her team was building a tool, and they knew precisely what it was for and
who would use it. Their question was instead figuring out the right way to
present that information to users.

Their tool was a backend tool meant to support product teams getting ready
to ship software to end users. Those product teams are very concerned
about customer satisfaction and want to ensure that they ship software their
end users will find satisfying.

The product team’s high-level goal, then, is: “As we update software
versions, show whether new versions are more satisfying to users.”
Customer satisfaction can be measured through surveys and interviews, and
one of the most frequently cited drivers of satisfaction is the speed at which
the application runs. Users complain when applications take too long to
start up, and studies have shown that users stop using software that feels
laggy. As a result, software responsiveness is one proxy for the desired
outcome, which is customer satisfaction.

This proxy is used throughout the build and ship process. Software
developers and maintainers want to know whether their system is fast



enough for end users to enjoy using. Managers want to know which features
need more resources to get the product up to a quality bar.

To address these questions, product teams instrument applications to
produce telemetry, which monitors end-user actions during the beta process
and logs them to the product teams’ servers. The telemetry logs show how
long operations take, which can be used to figure out the responsiveness of
the application.

A product consists of dozens or hundreds of functions, each of which can
be instrumented. This team uses the speed of a function as a proxy for its
responsiveness.

In Chapter 2, we suggest refining the goal with the proxies. We could
rephrase it as “Show whether the responsiveness of the functions within the
software improved between versions."”

Responsiveness is not a single number. If a population of a hundred users
uses a piece of software that carries out a single function, their experiences
will vary; it will be faster for some than others. One user might be behind a
slow network, while another might be on a computer that is having a bad
day. Some users will be sitting at new computers connected to fast networks
but might ask to do something that takes a lot of server time. The
responsiveness of an operation is a distribution across these user
experiences. The teams wanted to be able to characterize and distinguish
these groups of users.

Jacqueline’s analysis team was building tools to analyze these telemetry
results. They had a pilot customer who was releasing beta versions of
Lync.  Lync is a business communications tool that lets users have one-on-
one chats and multiparty voice and video calls, as well as share screens,
presentations, and notes. It connects to a company directory of users,
allowing users to look each other up. The Lync development team, aware
that responsiveness would be important, had built in telemetry and logging
features. (Some of this case study has also been discussed in another paper;
see “Further Reading”.)
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The Lync team was measuring responsiveness for these individual features.
In addition, they measured the overall performance for scenarios. A
scenario is a sequence of logically connected features. For example, one
scenario might be named “start session,” and would consist of features like
“connect to server,” “authenticate user with server,” “check for missed
calls,” and “populate list of contacts.” In this scenario, the analysts might
want to be able to say things like “making a connection has improved since
the last build, but ending a call is still taking too long.”

In describing these proxies in terms of the operationalization, then, we
could refine the goal a little further: For each feature and scenario, across
different groups of users, is the speed in one build better than in previous
builds?

The Data
The raw data is the telemetry, which comes in the form of reports. Each
logged report starts with information that applies to a single user and a
single session:

Location: Redmond 

Software Version: 123.4 

Platform: 64 bit Windows 7 

Running in the Laboratory: No 

System Memory: 16 GB 

Network Speed: 10 MBpS 

...

The report then logs events when a user carries out a feature and what
scenario it goes with. Each of these is associated with a duration (see
Table 7-1).



Table 7-1. Sample of event log

Session ID Scenario Feature Duration (ms)

S1 Startup Connect to server 300

S1 Startup Log in 250

S1 Startup Download contacts 135

S1 Search for user Search entry box appears 20

…

Each row in the table represents a single record—the lowest level of the
data. The goal refers to various groupings: the distribution of performance
by different categories of user, different features and scenarios, and
different software versions. Jacqueline wanted to design a system that
would offer the Lync team the opportunity to aggregate across different
groupings. The analyst should be able to choose to look only at users
looking at low-memory systems, or those running Windows 7. Example 7-1
shows how we can break this goal down, following the process in
Chapter 2.

Example 7-1. Breaking down the Lync team’s task

Task: Compare the duration for carrying out a scenario across different
builds and features

Action: Compare

Object: The set of all event records that describe a single feature or
scenario

Measure: Duration

Grouping: Build, analyst-selected features



Determining How to Compare Builds
This revised goal is still ambiguous: we do not yet know how to carry out a
comparison between two different groups of durations. For two builds, there
is a distribution of values representing the speed. The system should have
an ability to help the user decide which distribution is better.

Historically, the Lync product team used a dashboard of data, presented as a
grid of colored lights; each row in the grid corresponded to one feature, and
each feature had a desired responsiveness. The grid showed the percentage
of users who got the desired performance, color-coded red, yellow, or green
(Figure 7-1). For example, if starting a call should be faster than half a
second, and 60% of users had a less responsive experience, then a red
dashboard light would warn that starting a call is problematic.

Figure 7-1. Sample performance dashboard (sketch). Build numbers are across the top; features
scroll down. Green lights indicate features and builds that have acceptable performance for a large

percentage of users; red lights indicate those with a smaller percentage (danger) and yellow a
middling percentage (caution).

The proxy metric used in this tool is the percentage of sessions that are
better than the threshold. This can be problematic. It is entirely possible to
make a change that makes some people’s experience a little better and
others’ much worse, but that turns the light from yellow to green. It is hard
to drill down into the lights: while a yellow light might show that 20% of
sessions see poor performance, is this the same set of users each time or is it
randomly distributed? Is it possible to identify which subpopulations are



failing? These thresholds strip out much of the richness of the raw data and
make it harder to interpret. The team was unsatisfied with the existing
proxy: they wanted to bring that richness back in and to help communicate
the data to their end users.

This is where Jacqueline brought Danyel in. The existing presentation of
the data was hiding its richness. We began to look at some responsiveness
data from the telemetry logs, picking out one feature and one build. A
histogram of that data can be seen in Figure 7-2. The thick vertical line
shows the acceptable performance threshold, at 5,000 ms. The team had
been exploring whether a Gaussian curve would approximate the data well,
and plotted the best fit with a red curve.

Figure 7-2. The gray bars are a histogram of connecting to a login server; the red curve is a best-fit
Gaussian curve. The vertical black line represents 5,000 ms, the desired threshold for this scenario.

A number of different insights are quickly visible in this histogram. The
first is that this feature always takes at least 4,000 ms. Above that threshold,
this histogram seems bimodal. A bimodal curve suggests that there are two
different populations here: one group who almost all have a good
experience, and a second population who have a poor one. These are the
sorts of things that it might be useful to show in the tool because they give a
strong cue where to look further.



Seeing the bimodal curve might encourage a user to start figuring out what
is different between these two populations, and break them down. Is there a
difference between the users who see a 4,000–5,000 ms response, and those
who see a 5,000–8,000 ms response? For example, it might be that the
longer time represents users who are logged in from a remote network or
mobile application. Separating these populations can lead to locating bugs
or fixing performance errors in the code.

This also leads to thinking more about the goal of making the software
better. Improving responsiveness could have a number of meanings—it
could involve shrinking the gap between the two populations or moving the
entire distribution leftward. For example, the fact that the minimum time is
four seconds suggests that there might be a hardcoded timeout somewhere
in the system. Is that true?

Seeing the richness embedded in the data, as in Figure 7-2, convinced all of
us that it is critical to let users see the full distribution.

Comparing Distributions to Understand
“Better”
With this two-peaked histogram, the team now wanted to allow users to
split apart the two peaks and explore different user populations. There are
two subtasks:

For each scenario and feature, characterize how the distribution of
speed has changed since previous builds. In what ways has it
improved?

Within a single build, for a given scenario and feature, characterize
the distribution of speed. If there are multiple peaks, identify the
factors upon which they vary.

These comparisons both suggest grouping the data. The per-session data
can help cluster users; they can be grouped by location, or by their system
configuration. Similarly, sessions can be divided by software version. As



such, a single distribution curve is not enough; we want to see multiple
distributions at once. This, then, is where it is important to compare
distributions.

Danyel decided to produce a few data sketches to help the team think about
what it would look like to compare distributions (see Figures 7-3 and 7-4).
As a starting point, he took performance information from two beta builds.
These are two fairly similar datasets, enough so that putting them next to
each other does not reveal obvious differences. The question was, were
there visualizations that would allow analysts to pick them apart?

Figure 7-3. A data sketch of a stacked bar chart comparing two distributions.



Figure 7-4. A data sketch of a clustered bar chart comparing two distributions.

Neither of these sketches was quite right. The paired bars are difficult to
interpret as seeing one distribution requires reading past the other data. The
stacked bars make it difficult to read the differences in the curve.

After bringing these sketches to the team, along with several other
comparisons, Danyel decided to take a look instead at a smoothed density
estimate curve. Smoothed curves highlight differences between the
distributions and also take care of the fact that some distributions may have
more data than others.

The team liked the smoothed histogram because they felt that the
comparison helped users see the data more directly. They decided to adopt
the smoothed histogram as one of the core visuals that would appear in their
final tool. As seen in Figure 7-5, several features in the final tool compare
smoothed histograms directly to each other.



Figure 7-5. A screenshot from a more finished part of the final tool. It provides smoothed curves
across different user groups, builds, or conditions.

The next step in the process was to work back upward. The team now had a
low-level instrument for comparing sets of distributions, which they would
use to compare user groups, builds, and other attributes. We now needed to
resolve a broader question: how would users know which distributions were
worth examining?

Multiple Scenarios
Jacqueline’s team wanted to ensure that the final tool would appeal to
release managers. Release managers ensure that all features of the product
are ready to ship at the same time, and are responsible for knowing which
components will be ready on time. Release mangers worry about trade-offs
between features: a server cache that speeds up “look up address” might
slow down “confirm user is online.” How could they provide release
managers with a holistic sense of the entire application?

As Jacqueline explained, release managers have two different tasks with
regard to this data:

Identify which scenarios have (or have not) improved since
previous builds and which scenarios have the best (and worst)
performance.



For any given scenario, identify which features are the most
problematic.

We used these two tasks to motivate the design for the final tool. It would
be based on a dashboard, which would provide an overview of scenarios
across multiple builds. Release managers could then zoom in on any
scenario to see the constituent features.

Sketching Dashboards
We began a process of searching out and sketching interface designs in
between meetings, and sharing and critiquing them during meetings. The
goal of the process was to see what interactions and visualizations emerged
from the designs and to understand what we wanted to let release managers
see.

For example, one team member brought in Figure 7-6 as a possible model.
We looked it over as a group. The team felt that the heatmap made for a
good overview. They liked the way that it shows that for a number of
features (down the left side), multiple versions can be compared (across).
While on the surface this is much like the lights grid (Figure 7-1), the
important part was the idea of being able to zoom in on the cells.

Figure 7-6. Heatmap. The team found this illustration a helpful way to think about the problem
despite the fact that it shows sales data.



A different team member noted that there were too many features and
scenarios to compare at once, and added a hierarchical component
(Figure 7-7). The top-level view shows scenarios but hides lower-level
features. This forces the designer to choose a color for each scenario, even
though a scenario is made up of multiple features. In the sketch, each
scenario is colored by its worst feature.

Figure 7-7. A sketch for the performance dashboard. This lo-fi sketch helped us think about the
hierarchy of data (categories, subcategories), the necessity for color-coding, and a possible way to

bubble performance histograms to the surface.

The team began to iterate on the sketches. Figure 7-8 was an attempt to
show a set of metrics: whether the scenario passes or fails is mapped to
color, success thresholds are drawn with a white bar, and the histogram
(blue) compares scenarios across multiple builds.

Figure 7-8 helped clarify what the group really needed. This sketch
dedicates a lot of horizontal space to past versions; while it is useful to see
how the current version compares to the last one or two, comparing it to
more remote history is not a key task. Also, the aggregate task on the right,
Scenario (All), is not quite right; there is no proxy that aggregates multiple
scenarios together.



Figure 7-8. A second sketch for the performance dashboard. Adding data sketches indicated the
importance of scales and showing thresholds.

The team used these as starting points as they looked at the hierarchical
interaction design for their tool.



Turning Back to the Data
Sketching is useful to clarify tasks, but it is very important to come back to
the data. The team had begun to converge on a plan—the system would
start with a high-level dashboard, which would lead to low-level purpose-
built visualizations to compare histograms. As they began to work on
incorporating the data into the dashboard, they noticed that in lots of cases,
there were far more failures than working cases. In beta versions of the
software, calls would sometimes not connect, servers would be disabled,
and networks would be disconnected.

Danyel drew a handful of sketches for how to handle failures in a
histogram. Failed tests could be marked as taking a lot of time or could be
removed from the chart. The team brought these designs back to their
prospective users to try to better understand their needs. They learned that
in the beta phase, failures were understood differently from responsiveness
problems and would only confuse the histogram.

Final UI for High-Level Goals
We combined these ideas to create a single visualization system. The top-
level view allowed users to pick a scenario. Once they had selected it, they
could see each of the features in Figure 7-9. Each gray box represents a
feature; each small dot represents a number of users trying that feature.



Figure 7-9. The final top-level overview is a scenario and feature selector. Each rectangle represents
a single scenario; the colored dots below cue success rates and amount of usage. The three circles on

each panel are buttons leading to detailed charts.

Each rectangle show a scenario or feature. The colored bar, dots, and stars
all give information about success of the scenario or feature. Each box also
contains three circular control buttons. One of the control buttons leads to
the histogram for the most recent version, across different user groups
(Figure 7-5). Another leads to a comparison tool that allows users to
compare populations across multiple builds (Figure 7-10).



Figure 7-10. Comparing three versions of the software in a detail view, split by two countries.

Figure 7-10 shows an analysis in the tool of performance in two different
countries—we’ll call them Green and Blue—for three different versions of
the software (the newest version is at the bottom). The service has a data
center hosted in Blue; as such, most Blue customers experience consistently
similar performance. Customers in Green, however, experience very
different performance: some users do well, but a great many do poorly. It
turns out that the support team receives many support calls from Green
customers related to poor and inconsistent performance and that these
graphs support their claims.



The middle build seems to show similar curves in Green and Blue—had the
team managed to fix the problems here? After studying the data in more
detail, they realized that build 0710 was offered only very briefly. As a
result, only people with very good network connections—in Green and in
Blue—had access to the data, and so only users in Green who had good
network connections got the data.

This accidental experiment suggested that the challenge with Green’s
performance was in handling poor network connections, and the
development team began to work on optimizing their system for bad
networks. It also made visible, however, that the visualization wasn’t
showing the number of users as clearly as it should. Seeing that the number
of users was way down would have clarified the issue.

Additional Visualizations
The team added additional visualizations to the tool based on other sorts of
comparisons. For example, some release managers wanted to see how the
software was evolving across many versions and a long development
process. The notched bar chart provides both a summary of the number of
users and the broad scale of the distribution. In Figure 7-11, for example,
there is much more data about build 4420 than about the more recent
versions, showing that performance is not obviously improving yet.

As the release teams looked at the tool, they pointed out that geography was
turning out to be a major factor for user performance. The team added a
visualization of performance by country to help guide searches (Figure 7-
12).



Figure 7-11. A visualization to compare multiple builds. Thickness of the bars is mapped to the
number of users of that version; color is mapped to other attributes of the build.



Figure 7-12. A visualization to compare performance by geography, for one build. Countries in green
see better performance for this feature and build; countries in red see worse.

The analytics system was internally deployed, and was wired up for four
different internal online services as a core telemetry tool. Those four teams
used it to guide and manage their release process. Core features from this
tool were incorporated into its successors, which are now part of the next
generation of internal telemetry management systems.

Conclusion
This design remained close to both the data and the customers throughout.
As we worked our way through the operationalization, making our
questions more and more specific, we were able to figure out what
visualizations would best address the questions. Sketching data often helped
clarify the questions and also helped to identify edge cases and
considerations we hadn’t thought about before.

This process used all the tools of the data counseling process: interviews
with users of the system to understand their interpretations of the data,



sketches of ideas for interfaces, and plots of the data itself. These sketches,
diagrams, and ideas enabled us to create a tool that allowed product teams
to understand their deployed programs.
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Chapter 8. Case Study 2:
Visualizing Biological Data

Chapter 7 described a fairly straightforward case of a business intelligence
challenge. This chapter chooses a somewhat more complex example from a
very different domain. The question in this scenario was a challenge to
operationalize: it required substantial scientific background. The complex
scientific data meant that both the meaning and use of the data required
more technical context and collaboration to operationalize.

This project was a collaboration with a team of biologists, led by Prof.
Angela DePace at the Harvard Medical School. Miriah and her colleagues
worked with this group for two years. During that time Miriah carried out a
series of data counseling interviews, getting to know the ways that the
biologists approached their data. In the process she developed a series of
visualization prototypes, and the scientists used the prototypes to
progressively refine their operationalization. These prototypes initially
helped Miriah to understand the problem, then later to help shape the
biologists’ analysis. The final version became a vital component of the
group’s analysis pipeline.

This chapter illustrates how the techniques presented in Chapter 6 allowed
the scientists to organize their data and to make sense of how a multitude of
attributes relate to each other. The result used various design patterns
(overview+detail, small multiples, interactive multiform views, and
overlays) to give the scientists a detailed, intensive understanding of their
data. In the course of building prototypes, the scientists realized that there
were more ways to analyze their data than they had expected. The
visualization tool allowed them not only to learn new things about their data
but to think about their analysis differently.

This chapter simplifies the process, and leaves out some of the data
counseling iterations in order to make the case study reasonable in length



and scope. A fuller description can be found in an academic paper about the
project (see “Further Reading”).

Background
The DePace Lab focuses on developmental biology, and is particularly
interested in understanding how genes influence the physical features of
animals. The scientists there are studying a set of fundamental toolkit genes
—genes that are shared across many species, from flies to cats to apes to
humans, and control the development of body parts in developing embryos.
What is remarkable about these genes is that they are nearly the same in
many species, and yet these species are physically very different. For
example, the genes that control the development of eyes are very similar
across a wide range of species even though a human’s eyes are different
from a cat’s eyes, or a fly’s.

A grand challenge in biology is understanding how these sets of similar
genes produce such different results. Biologists know that differences
between species are related to when and where these genes are turned on
and off in developing embryos. What they do not yet understand is how
these differences relate to physical traits or how these differences are
encoded in the genome. Shedding light on these questions is the focus of
the DePace Lab.

The scientists at the DePace Lab tackle these questions by studying fruit
flies. They measure which genes are turned on or off, or more specifically,
how much genes are on or off—called gene expression— in developing
fruit fly embryos. Their data consists of gene expression measurements for
about 50 genes, measured at 6 time points for every cell in an embryo. They
are collecting this data for multiple different species of flies. By comparing
the data across the different species, the lab hopes to link differences in
gene expression to differences in physical features.

Setting the Context



The project began when a mutual colleague connected Miriah and Angela
DePace. Angela was in the process of running experiments and collecting
data, and was looking for new ways to analyze and compare datasets. A
lunch meeting turned into a tour of the DePace Lab, followed by a series of
informal interviews with members of the lab that included walkthroughs of
their data analysis pipeline.

The group were already creating static visualizations in MATLAB to
examine their data. They were overwhelmed with those first plots: dozens
of variations of parameters looking at multiple types of data. There were too
many different plots to understand, and they hoped Miriah could help them
organize the way they thought about the data. Miriah rolled up her sleeves
and took a look.

The researchers were comparing datasets—the gene expression
measurements for different embryos—by trying to find cells in one embryo
that had significantly different gene expression from cells in another
embryo. They had developed an algorithm for finding these so-called
outlier cells.

To analyze where the resulting outliers turned up in a particular embryo, the
group visualized the data using a flattened, 2D representation of the
embryo. The representation was created by mapping each cell in the
football-shaped embryo to a 2D map where the head cells are on the left,
tails cells on the right, and the back down the middle with the belly split
along the top and bottom.

While the most natural representation of the data might seem to be a 3D
view, the group preferred these 2D views because it was easier to quickly
get a gist of the data than it was with a 3D representation that required
interaction to spin the embryo around to see all sides. Figure 8-1 shows the
cells represented as a 3D embryo at the top, and the flattened, 2D
representation is at the bottom.



Figure 8-1. The top image shows the locations of cells in an embryo in a 3D view. The cells are
colored here according an associated gene expression value. The bottom image shows the same
embryo as a flattened, 2D view: head at the left, tail on the right; the belly wraps on the top and
bottom edges. The images were generated using the PointCloudXplore visualization software.

In Figure 8-2, the locations of the outliers from one embryo are shown
using the 2D representation. The first thing to notice is that the outliers
appear to cluster in regions as opposed to being scattered randomly. This

http://bit.ly/2j2Rns8


was interesting to the biologists because cells that are spatially near each
other are likely to have similar gene expression—a clustering algorithm
found this to be true. The clusters are visually encoded using shape and
color: all the pink triangle outliers are similar to each other, the blue circles
are similar, and so on. The implication of this similarity is that whole
groups of cells in one embryo could be significantly different from cells in
another embryo.

Figure 8-2. A visualization of outlier cells in an embryo using the 2D representation. Each point—
either black or encoded with color+shape—is a single outlier cell. Each combination of color+shape
is a clustered group, so all the teal circles or the pink triangles are in one group. Image courtesy of

Angela DePace.



Zooming in a Level
Next, the biologists wanted to understand more specifically which genes
were different in the outlier cells. In this project, a cell is characterized by a
number of genes, which are measured at a number of different time points.

They created heatmap visualizations like the one shown in Figure 8-3 to
examine the gene expression data of the outliers. The heatmap encodes
gene expression values using color. Each column corresponds to a single
cell, and the rows are time points and genes. Grouped columns correspond
to the clusters of cells in the outlier cell plot in Figure 8-2, such as the pink
triangles and teal circles. This visualization allowed the biologists to
characterize the clusters of cells based on the patterns of gene expression.
For example, all cells in group bx—the third column, which corresponds to
the blue x’s—are expressed fairly strongly at every time point for the fkh
gene.



Figure 8-3. Small-multiples display of the outlier cells’ gene expression measurements partitioned by
the cluster groups. Clusters of cells are the columns; genes + time points are the rows. This view is
linked to Figure 8-2 through labels: the blue circles correspond to the column bo and the blue x’s to

the column bx. Image courtesy of Angela DePace.



Characterizing the gene expression of each cluster was just one part of the
solution; however, the biologists also needed to be able to characterize how
this gene expression is different from the corresponding cells in another
embryo. For each cell in the heatmap, they would create a corresponding
heatmap, visualizing the gene expression data for the most similar cells in
the other embryo. The result was hundreds of heatmaps. The group was
overwhelmed and had trouble making sense of the pile of data.

STARTING FROM EXISTING MATERIAL
It is common for groups to have created visualizations that address
some of the challenges they face. Understanding why these existing
artifacts were created and where their limitations are can be an
invaluable part of the data counseling process. In this case, the fact that
the team was hitting a wall in organizing the mass of visualizations they
had created was a good indication that a more nuanced, bespoke
solution was in order.

Improving the Existing Approach
We spent some time watching the scientists working with their
visualizations and trying to understand what made this process difficult. We
designed our first prototype to overcome the challenge of having to
compare hundreds of heatmaps.

We observed that the scientists would use the 2D outlier cell view to ground
their analysis of the heatmaps. For each cluster of cells in the 2D view, they
would examine the corresponding set of heatmaps. This would entail
flipping between the sheets of paper that represented the different heatmaps.
This task of orientation—“what point in visualization 2 corresponds to this
point in visualization 1?”—suggests an MLV design pattern that links two
views together via user interaction. We wanted to reduce the feeling of
being overwhelmed by the sheer volume of comparisons they were doing,
which suggested an overview+detail design pattern that allows a user to get



details on demand. The fact that the scientists would refer back to the 2D
view (Figure 8-2) suggested that this visualization would make a great
overview.

We built our first software prototype in Processing. This prototype, shown
in Figure 8-4, is an MLV system consisting of both a multiform component
and an overview+detail component. The left two views represent different
views of the overall data. The leftmost is a heatmap that shows the gene
expression values for all of the outlier cells, again partitioned based on the
clustered sets of outliers; the middle view shows the spatial position in 2D
of the outlier cells within the context of the complete set of embryo cells.
Selecting a cluster in the heatmap highlights the associated cells in the
spatial view. The middle view also serves as an overview of the data, where
individual cells can be selected, causing expression profile details about
those cells to be shown in the rightmost detail view. This detail view
additionally shows a heatmap of the corresponding cells against which the
selected cell was compared.

https://www.processing.org/


Figure 8-4. Screenshot of the first interactive software prototype we created. This tool used both the
multiform and overview+detail design patterns for linked views. A video of this prototype in action

can be found at the book’s website.

In short, the prototype used the group’s existing visualizations but replaced
the manual look-ups between multiple sheets of paper with interactivity in
software.

We deployed this prototype to the group. Three of the lab members
integrated it into their data analysis workflow, replacing their use of the
static plots with the new tool. After a week of use, we went back and
conducted several contextual interviews with the group to understand how
the interactivity impacted their analysis and understanding. The interviews
revealed that the tool allowed them study individual outlier cells in detail
and easily compare an outlier to the set of corresponding cells in order to
understand what differences in the gene expression patterns exist. These
capabilities led the group to come to the conclusion that the outlier
detection algorithm was too restrictive, resulting in a rethinking of their
computational approach.

http://bit.ly/2jMnZm5


Similarity, Not Outliers
We had to revisit the operationalization. Instead of using an outlier
detection algorithm to understand how the embryos differed, the group
decided on a looser approach that simply characterized how similar each
cell in one embryo was compared to corresponding cells in the other
embryo. The task then became finding cells with low similarity. We updated
the overview in the middle of the prototype to show a measure of similarity
(our interestingness measure) for every cell in the embryo—an example of
this view is shown in Figure 8-5. This similarity was computed from
comparisons with the set of corresponding cells in the comparison embryo.
This color-coding helped the group to locate the cells that were most
different and to view the details of those cells on demand.



Figure 8-5. An updated 2D view of all the cells in an embryo; each cell is now color-coded by how
similar it is to the most similar nearby cell in the other embryo. This visualization shows patterns of

similarity and dissimilarity across the embryo.

The refined prototype let the group quickly explore many more different
cells than the first version, and led them to make some interesting biological
observations. Their exploration also highlighted that the experimental
measurements from one of the species was plagued with low-level noise,
causing the biologists to go back and modify their experimental procedures
and recapture the data.



VISUALIZATION FOR DEBUGGING DATA
The situation described here is not unusual. Almost every experience
we have had with visualization has involved discovering challenges in
the data available and errors in the data collection and cleaning process,
and forcing us to reconsider the operationalization. This is a healthy
process—and a strong argument for getting to the data as soon as
possible.

Using this prototype, the group began asking new questions of their data:
what would a different similarity metric reveal? Could a different measure
other than gene expression similarity help find cells of interest? How would
their understanding change if they were to compare across multiple
embryos?

In short, the interactive visualization caused the biologists to brainstorm
about many new types of questions. The design of the tool, namely the
overview+detail components, guided the group’s framing of these questions
in terms of using a metric to guide the investigation into a set of cells of
interest.

A Final Version
We now knew that we would want to let the biologists play with different
ways to compute similarity. We wanted to increase the flexibility of the tool
and to allow the group to continue to expand the questions they wanted to
answer.

We also wanted to revisit the visualizations themselves and apply good
visualization design principles. One of the first changes we proposed to the
group was to move away from using color to encode the gene expression
measurements. Instead, we suggested using a specific temporal
visualization to express the six time points for each gene.



Thus, we moved away from a heatmap view for a single cell’s gene
expression measurements:

And instead, visualized it using line plots:

To compare gene expression across multiple cells, we created a small-
multiples visualization of the line plots, which we call a curvemap. In the
curvemap shown in Figure 8-6, we partitioned the data by gene along the
columns, and by cells along the rows. This small-multiples view allowed us
to stack up a set of line plots for user-selected cells that a user can quickly
scan down, for each gene, to look for detailed differences between the cells.



Figure 8-6. A curvemap of data, where the rows are cells and the columns are genes. The topmost
row is a user-selected cell of interest, with the rest of the rows showing data for comparison cells.
Scanning down the columns shows that the gt gene values are noticeably different over time in the

comparison cells, while the ftz gene looks much more similar.

This visualization was a big change. The group initially resisted the new
way of looking at the gene expression values; they were accustomed to the
color-based heatmap. Once we showed them mock-ups of the new



visualization using the group’s actual data, however, they agreed that the
new representation was easier to interpret.

It is important to sketch and prototype with actual data whenever possible
in order to get buy-in from stakeholders, as well as to ensure that the real
data does not break the design.

The new prototype again uses the overview+detail display from the original
prototype to allow users to navigate to the cells they are most interested in
studying in detail—only this time, the detail view is a curvemap (Figure 8-
7). In this new tool, the scientist would select a cell in the 2D cell view; the
system would then update the detailed view on the right to show that cell’s
gene expression along with the set of cells it corresponds to in the
comparison embryo. A video of the tool in action can be found at the book’s
website.

Figure 8-7. The final tool designed for the lab—MulteeSum—uses a variety of MLV patterns:
overview+detail, small multiples, overlays, and multiform views. The tool also supports flexible

upstream computations of metrics that compare cells. A video of the tool in action can be found on
the book’s website.

http://bit.ly/2BxP0kE
http://bit.ly/2BxP0kE


It turned out to be difficult to scan through a vertical column of many line
charts. In response to feedback from the biologists, we augmented the small
multiples display with overlay plots at the bottom of each column. These
overlays support direct comparison of the time curves and make it easy to
see differences. For example, the hb gene curve expresses very differently
in the test cell (shown in red) from its most similar neighbors (shown in
black). These overlays are important in the characterization of differences
in when and where genes are expressed, which get back to the lab’s high-
level task.

This system supports the biologists in experimenting with different
similarity metrics. The biologists can compute a variety of similarity
metrics offline and load them all into the visualization tool. The tool takes
in the multiple metrics and supports their investigation with another layer of
overview that lets the biologist select a specific metric—this overview, in
the upper left of the tool, is itself another small multiples display of
available similarity metrics.

We created this interactive prototype in Processing and deployed it, along
with a specification for a generic file format to support the upstream
similarity computations, to the group. We followed up with the lab several
weeks after deployment. The resulting tool supported a much broader set of
analysis goals than we had initially imagined at the start of the
collaboration, and is now one of the primary tools used by the DePace Lab
as they analyze their data and continue their biological analysis.

Conclusion
The success of this project can be traced to several strategies. First, we
needed to acquire a relatively deep understanding of the problem domain of
the lab before we could actually understand how to build better tools.
Interviews and observations got us part of the way there, but actually
digging into the data by building a prototype helped in solidifying our
understanding of the tasks the group were doing, and needed to do.



Second, we were able to get started by beginning with the existing
visualization approach and searching for places where it ran into challenges.
In this case, we took the existing views the group were creating and made
them interactive.

The process of visualization taught the biologists more about the work they
were carrying out than simply making sense of the data at hand. Only after
we had built a visualization centered on outliers did they realize that
outliers were an insufficiently general proxy to help them address their
questions. Seeing their data in a new way led to a reformulation of the
questions they were asking in the first place. It also identified significant
errors in the data that they went back and corrected through new
experimental procedures.

There is always a tension between the desire to maintain familiar visual
patterns and the possibility that rejecting them will illuminate new issues.
Our design maintained the 2D layout of cells, for example. On the other
hand, changing from a heatmap to a curvemap helped clarify the different
gene patterns and allowed the biologists to visually cluster genes together.

And finally, although not explicitly covered in this summary of the project,
we iterated with the lab with many lo-fi prototypes, from sketches to mock-
ups in Illustrator. The software prototypes were also developed with a
throwaway mentality that let us avoid getting bogged down in
implementation details and instead focus on getting our ideas into the hands
of our users quickly. We found that it was important to present new ideas to
the group with their own data, such as the shift from heatmaps to
curvemaps. This allowed the group to engage with ideas as they would in
their daily workflow, as well as allowing us to ensure that the real data
would not break our design ideas. Watching the videos of our first
interactive version and the final one, available at the book’s website, gives a
sense of how the technology changed over the course of the collaboration.

Further Reading
Figures 8-2 and 8-3 courtesy of Angela DePace.

http://bit.ly/2BxP0kE


The tool discussed in this chapter is described in an academic paper: see
Meyer, Miriah et al., “MulteeSum: A Tool for Comparative Spatial and
Temporal Gene Expression Data.” IEEE Transactions on Visualization and
Computer Graphics 16 (2010): 908–917.

The biologists’ research is described in Fowlkes, Charless et al., “A
Conserved Developmental Patterning Network Produces Quantitatively
Different Output in Multiple Species of Drosphila.” PLoS Genetics 7
(2011): e1002346.

http://www.cs.utah.edu/~miriah/multeesum/


Chapter 9. Conclusions

Data visualization is a powerful way to make sense of the world, to share
ideas with other people, and to help us understand what hidden meanings lie
in our data. The skill of visualization is in finding ways to figure out what
questions can be asked of the dataset, and what visual mappings will
support answering those questions.

Creating effective visualizations is a process that entails working closely
with a variety of stakeholders. It means gaining an understanding of where
the data comes from and how it works, from the people who own or create
it. It means learning what is being done with the data now, and what
decisions are going to be made with it, from the people who are making
those decisions. It means getting to know how users ultimately mean to
interpret the data.

Creating effective visualizations also requires mapping questions to data,
and data to visualizations. These mappings develop through many iterations
of sketches and data-driven prototypes that let analysts see, as quickly as
possible, what their data means and how they can interpret it. Sometimes
the result is an interactive system of complex multiple linked views, and
sometimes it requires just loading the data into an off-the-shelf tool.

Experiencing moments when meaning emerges from data can be incredibly
exciting. These moments—when clients furrow their brows and say, “That’s
odd, I need to know more about that”—are what drive our work.



We hope this book will drive your excitement, too.Danyel Fisher, Seattle, Washington
Miriah Meyer, Salt Lake City, Utah
December, 2017
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