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Preface

Going through the source code of a project involves exhaustive efforts and
no planned steps to going through the knowledge base. Understanding the
source code provides clear and descriptive knowledge of the workings of
the project helping better decision making in our day to day work. When |
started the journey back in 2014 to understand the source code of python,
there were very few materials available to help navigate the same
prompting an idea to create an unofficial guide.

The book begins with the basics of the language which are the base objects
and expands to understand the objects built on top of the these base objects
which are the base types (integer, float, string, etc.) to the iterable objects
which are the lists, tuples and dictionaries.

The interpreter forms the core of the python implementation. Through
opcodes, the implementation of each of them has been explained in detail.

The implementation of the GIL always intrigues developers on its
requirement and impact on day to day applications and if possible any route
to removing the same. Although the book covers the requirement and
impact of the GIL, the answer to the removal remains unsolved and is left to
the discovery of the curious readers.

Chapter 1: The PyObject and PyVarObjects form the core of the python
data structures and contain the pointers to the typeobject and the reference
count of the variable. The reference count is internally used to deallocate
the variable which has also been covered in this chapter. The PyVarObject
is the base object for iterable types such as lists, tuples, sets and dictionaries
and contain the length of the object along with the PyObject.

Chapter 2: This chapter covers the implementation of basic python types
which are the long, float and boolean objects. The Long object contains the
implementation as an array of digits and the operations are implemented as
normal high school operations which are quite interesting to understand.
The float object internally contains a C float data type, which is used to
perform the numerical operations.



Chapter 3: The chapter covers the structure and implementation of the
iterable types which are the lists and tuples. Lists are implemented as an
array of PyObjects while tuples, though similar in operation do not allow
manipulation post the creation and hence is a hashable python type. The
implementations of common list and tuple operations such as length, index,
subscripting are explained in this chapter.

Chapter 4: The chapter covers the structure and implementation of the
hashable types which are the sets and dictionaries. Sets and dictionaries are
structurally and functionally similar to each other and share similar
implementations which can intrigue us as developers. Sets perform O(1)
lookup which can be a gamechanger for programs frequently searching for
elements within a set of elements.

Chapter 5: The chapter covers the structure and implementation of the
functions and generators which structurally contain the code object which is
then used to create a stack frame to execute the function call. Similarly, the
generator object contains a reference to the last executed instruction, which
is used to return back to the point of execution.

Chapter 6: The chapter covers the implementation of memory management
in python which includes the creation and allocation of memory to objects
using pre-allocated memory chunks referred to as arenas. The chapter
further delves into the details on how memory is allocated by further
dividing the arenas into pools and deriving the memories from these
chunks. The chapter also covers on how the objects are reassigned back into
the pools.

Chapter 7: Interpreter and Opcodes form the fundamentals of the
executable parts of a python program. A python program is converted into
an executable opcode which is then executed within an interpreter loop
which executes each of these opcodes within the giant loop. The interpreter
also contains hacks to speed up the execution of these opcodes.

Chapter 8: The chapter can intrigue a lot of developers to understand the
functioning of the GIL and its impact on the programming language and
how the GIL can be used for achieving better performant systems. The
chapter covers the GIL by understanding the process of thread creation and
how it impacts the performance.



Chapter 9: Async functions form the core of the async programming which
aims at creating single threaded applications without external framework
support considering the adoption of async frameworks and performance
benefits provided. The chapter explains how each of these are a natural
extension of the standard generator object.

Chapter 10: This chapter contains the basics of the source code structure
and the implementations of the parser, syntax tree generator and assembler.
The chapter serves to introduce these concepts as delving into them will be
a completely new book.
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CHAPTER 1

Design of Generic Objects

he components of a generic Python object contain the memory layout,
T operations, and memory management. This chapter covers the
similarities and differences between Python types. The chapter begins with
the pyobject and explains how it encapsulates the type, reference count,
and bookkeeping pointers. The PyvarObject, which is a PyObject
encapsulation with the size of the data structure, is covered along with the
different functional attributes of the type such as numerical, sub stringing,
and so on.

Structure

In this chapter, we will cover the following topics:

e The PyObject
o Understanding PyObject HEAD EXTRA
o Reference counting

e The PyVarObject

e The PyTypeObject

o Generic type function prototypes

o Specific type function prototypes

o The Type object substructures
» The PyNumberMethods substructure
» The PySequenceMethods substructure
= The PyMappingMethods substructure

e The type object

o Name and sizes of types



o Allocator, deallocator, and initialization functions
o [terator functions
o Methods and attributes

Objective

After studying this chapter, you will be able to understand the basic
components, the object and the type, which compromise both the data types
and data structures. You will also learn about the Typeobject that contains
the operations implemented in the data types.

The PyObject

The pyobject contains the details of all Python objects and understanding
its structure is crucial before we delve into the implementation of reference
counting and Python types, which are key elements of this generic object:

Include/object.h Line no 104

typedef struct object {
_PyObject HEAD EXTRA
Py ssize t ob refcnt;
struct typeobject *ob type;
} PyObject;

The pyobject contains three elements, which are as follows:
e PyObject HEAD EXTRA: A macro that expands to track all objects in
the Python heap in debug mode.

e ob refcnt: An integer value that holds the reference count of the
object.

e typeobject: A pointer to the type of the object such as
integer/list/dictionary, which contains the operations that can be
performed on an instance of the type.

The upcoming chapters contain both the implementation and structure of
each of these elements.



Understanding_ PyObject HEAD EXTRA

The pyobject HEAD EXTRA adds a forward and reverse pointer to every
object used to construct a doubly linked list that tracks live objects in the
Python heap at runtime. This flag has to be enabled when building the
Python executable using the following command:

../configure CFLAGS='-DPy DEBUG -DPy TRACE REFS' --with-pydebug

The code block explaining the definition of the _Pyobject HEAD EXTRA
macro is as follows:

Include/object.h Line no 67

#ifdef Py TRACE REFS -> 1
/* Define pointers to support a doubly-linked list of all live
heap objects. */

#define PyObject HEAD EXTRA \
struct _object * ob next; -> 2 \
struct _object *_ob prev; -> 3

#define PyObject EXTRA INIT 0, O,

#else
#define PyObject HEAD EXTRA
#define PyObject EXTRA INIT
fendif

Code insights are as follows:

1. The Ppyobject HEAD EXTRA adds the pointers only when Python is
compiled with the py_TRAcE_REFs flag enabled.

2. The ob_next pointer points to the next created object in the linked
list.

3. The _ob prev pointer points to the previously created object in the
linked list.

The following code block explains the construction of the live object heap
as a doubly-linked list:

Objects/object.c (Line no 81)



static PyObject refchain = {&refchain, &refchain};
void Py AddToAllObjects (PyObject *op, int force) {

if (force || op-> ob prev == NULL) {
op-> ob next = refchain._ ob next;
op-> ob prev = &refchain;
refchain._ob next-> ob prev = op;

refchain. ob next = op;

}

The highlighted part explains the construction of the doubly-linked list with
reference to the current pointer to the end of the list that is pointed to by
refchain.

This reference chain can be accessed using the getobjects method of the
sys module. The sample Python code demonstrates how the objects can be
fetched using the method:

>>> import sys

>>> objs = sys.getobjects(l) # 1 returns the first object from
the linked 1list.

>>> more objs = sys.getobjects(20) # Increase the count to
return more objects.

>>> type objs = sys.getobjects (20, str) # A second argument

The following code block explains the implementation of the getobjects
function.

Objects/object.c line no 1929

PyObject * Py GetObjects (PyObject *self, PyObject *args)
{
int i, n;
PyObject *t = NULL;
PyObject *res, *op;
if (!PyArg ParseTuple(args, "i|O", é&n, &t))
return NULL;

op = refchain._ob_ next;



res = PyList New(0);

if (res == NULL)
return NULL;
for (1 = 0; (n==0 |] 1 < n) && op != &refchain; i++) {
while (op == self || op == args || op == res || op == |
(t !'= NULL && Py TYPE (op) != (PyTypeObject *) t)) {

op = op—-> ob next;
if (op == &refchain)
return res;
}
if (PyList Append(res, op) < 0) {
Py DECREF (res) ;
return NULL;
}
op = op->_ ob_next;
}
return res;

}

Reference counting

Python uses reference counting to track the usage of an object and for
removing it from the heap on completion of usage. Every object in Python
contains the ob_refent variable, which contains the current reference
count. The reference count is incremented every time the object is used
such as adding to a list and decrementing when the usage is completed.
Once the reference count reaches 0, the object is removed from the heap
using the custom deallocator of the type.

The following Python program demonstrates how the getrefcount method
in the sys module can return the current reference count of the object:

>>> import sys

>>> a = 1

>>> sys.getrefcount (a)
114

The following Python program demonstrates how the getrefcount method
in the sys module can track changes to the reference count:



>>> import sys
>>> a = 20000000
>>> sys.getrefcount (a)

>>> b = [a, a]
>>> sys.getrefcount (a)

>>> b.pop ()
>>> sys.getrefcount (a)

>>> b.pop ()

>>> sys.getrefcount (a)
2

>>> def f(a):

print (sys.getrefcount (a))

>>> a = 2000000

>>> sys.getrefcount (a)
2

>>> f (a)

4

The function returns 4 because the sys.refcount function also increments
the reference count by 1.

The following C Python code handles reference counting:

typedef struct object {
_PyObject HEAD EXTRA
Py ssize_t ob_refent;
struct typeobject *ob type;
} PyObject;

The ob_refent variable in the pyobject structure holds the reference count
of every pyobject, which is manipulated using two macros Py INCREF
and Py DECREF.

The code block explaining incrementing of reference counting is as follows:

static inline void Py INCREF (PyObject *op)
{



Py INC_REFTOTAL;
op->ob_refcnt++;
}

#define Py INCREF (op) Py INCREF ( PyObject CAST (op))
The macro py_INCREF increments the reference count of the variable by 1:

static inline void Py DECREF (const char *filename, int lineno,
PyObject *op)
{
(void) filename; /* may be unused, shut up -Wunused-parameter
*/
(void) lineno; /* may be unused, shut up -Wunused-parameter */
_ Py DEC_REFTOTAL;
if (--op->ob_refcnt != 0) {
#ifdef Py REF DEBUG
if (op->ob refcnt < 0) {
Py NegativeRefcount (filename, lineno, op);
}
#endif
}
else {
_Py Dealloc(op) ;
}
}

#define Py DECREF (op) Py DECREF( FILE , LINE ,
_PyObject CAST (op))

Code insights are as follows:

e Decrement the reference count when the requestor completes usage of
the object.

e Deallocate the object when the reference count becomes 0. The
deallocator depends on the type of the object, which will be covered in
the subsequent chapters on basic and iterable types.

The PyVarObject




The pyvarobject is the generic container object that holds the data for lists,
types, dictionaries, and sets:

Objects/object.h Line no 113

typedef struct {
PyObject ob base;
Py ssize t ob size; /* Number of items in variable part */

} PyVarObject;

The pyvarobject contains a Pyobject for data storage and the size of the
container.

The macro py_s1zE is used to fetch the current size of the container when
working with them.

The following code block explains the functioning of py_s1zE:

#define Py SIZE (ob) ( PyVarObject CAST (ob)->ob size)
Objects/object.h Line no 96

#define PyObject VAR HEAD PyVarObject ob base;
Include/tupleocbject.h Line no 9

typedef struct {
PyObject VAR HEAD
/* ob_item contains space for 'ob size' elements.
Items must normally not be NULL, except during construction
when
the tuple is not yet visible outside the function that builds
it. */
PyObject *ob item[1];
} PyTupleObject;

The pyvarObject is a part of the pyTupleObject and stores the type, size,
and ref count. We will study more about the type structure and data
storage of the PyTupleobject in the upcoming chapters.

The PyTypeObject

The type of an object encompasses the operations that can be performed on
an instance of its type. The possible operations on integers can be addition,



subtraction, multiplication, and division but fetching a substring is
invalid, but a valid operation on a string or a list. The pyTypeObject
contains the references to valid operations on the type and marks the others
as irrelevant.

The subchapters cover the skeletal structure of the type object before
understanding the operations in them.

Generic type function prototypes

Type object function prototypes are classified depending on the number of
arguments as unaryfunc, binaryfunc, and ternaryfunc based on the
argument count and on the basis of the operation of the function, such as
inquiry,lenfunc,andSO(HL

Include/object.h (Line no 140)
typedef PyObject * (*unaryfunc) (PyObject *);

e The unaryfunc prototype accepts one parameter and returns a pointer
to a PyObject:
An example is as follows:

unaryfunc nb negative;

Changing a number to negative accepts a Pyobject (integers/float)
and returns the negative number for the same.

e The binaryfunc prototype accepts two PyObject parameters and
returns a pointer to a PyObject:
typedef PyObject * (*binaryfunc) (PyObject *, PyObject *,);
An example is as follows:

binaryfunc nb_add;

The nb_add function is defined for all types that support the addition
operation such as integers, floating point numbers, strings, and
container types such as lists, dictionaries, sets, and so on.

e The ternaryfunc is a prototype for all type functions, which accept
three parameters for operations and returns a pointer to a Pyobject as
the return value:



typedef PyObject * (*ternaryfunc) (PyObject *, PyObject *,
PyObject *);

The example is as follows:
ternaryfunc nb power;

>>> pow (4, 4)
256

The pow () built in function raises an element to the power of another
number defined as the second parameter. The function also accepts an
optional third parameter, which is the modulo of the result.

The example is as follows:

>>> pow (4, 4, 5)

1

The code corresponds to the mathematical equation => 44 % 5 = 256
%35 ==1:

typedef int (*inquiry) (PyObject *);

The inquiry is the prototype for all functions that takes a pyobject
and returns an integer value in response. The lenfunc returns the
length of all iterable types:

typedef Py ssize t (*lenfunc) (PyObject *);
The example is as follows:
Objects/listobject.c Line no 2797
(lenfunc)list length, /* sg length */

>>> 1 = [1, 2, 3]
>>> len(l)
3

The 1ist_length computes the length of the input list and returns the
size as the return value.

The ssizeargfunc prototype accepts a Py ssize t argument along
with the Pyobject and returns a Pyobject in response:

typedef PyObject * (*ssizeargfunc) (PyObject *, Py ssize t);



The example is as follows:

Objects/listobject.c Line no 2798

(ssizeargfunc)list repeat, /* sg repeat */

>>> 1 = [1, 2, 3]
>>> 12 =1 * 3 # List repeat function
>>> 12

[ l 14 2 14 3 14 l 14 2 14 3 14 l 14 2 14 3 ]

The 1ist_repeat function takes a Python list and creates a new list
that has » repetitions of the original list.

The ssizeobjargprocfunc function prototype accepts a Py _ssize t
and two PyObjects and returns an integer:

typedef int (*ssizeobjargproc) (PyObject *, Py ssize t,
PyObject *);

The example is as follows:
Objects/listobject.c (2801)

(ssizeobjargproc)list ass item, /* sqg ass item */

The function 1ist_ass_item adds an element at the particular index in
a Python list.

The objobjargproc prototype takes three PyoObject arguments and
returns an integer value in response:

typedef int (*objobjargproc) (PyObject *, PyObject *,
PyObject *);
Object/dictobject.c Line no 2135

The example is as follows:
(objobjargproc)dict ass sub, /*mp ass subscript*/

The function dict_ass_sub inserts an element (1) into the dictionary
(2) at the index (3).

The objobjproc prototype takes two Pyobject parameters and returns
an integer:

typedef int (*objobjproc) (PyObject *, PyObject *);

The example is as follows:



Objects/listobject.c line no 2803

(objobjproc) list contains, /* sg contains */

The 1ist _contains function checks whether the second object exists
in the list and returns the index where it is present or -1 if the element
i1s not present. We will cover more about this in the chapter 3, _on
lterable Sequence Objects.

Specific type function prototypes

The previous section covered the generic prototypes, which constitute type
functions having specific input and output parameter signatures. This
section discusses the prototypes for specific purposes such as freeing an
object/traversing an iterable type:

Include/object.h Line no 152
typedef int (*visitproc) (PyObject *, wvoid *);

typedef int (*traverseproc) (PyObject *, visitproc, void *);

e The traverseproc prototype is used in all container types to iterate
over the elements in the object.

The example is as follows:

Objects/listobject.c line no 3053

(traverseproc) list traverse, /* tp traverse */
static int list traverse (PyListObject *o, visitproc visit,
void *arqg)

{

Py ssize t 1i;

for (i = Py SIZE(o); --1 >= 0;)

Py VISIT (o->ob_item[i]);
return 0;

}

The 1ist_traverse method traverses every item in the list and returns
the particular element to perform the operation passed at visitproc to
this method.

e The destructor function prototype frees the memory allocated to the
object after being used:



typedef void (*destructor) (PyObject *);

The following code block demonstrates how the destructor is called
when the reference count reaches o:

Include/cpython/object.h Line no 339
static inline void Py Dealloc inline (PyObject *op)
{

destructor dealloc = Py TYPE (op)->tp _dealloc;
#ifdef Py TRACE REFS

Py ForgetReference (op) ;
felse

_Py INC_TPFREES (op) ;
fendif

(*dealloc) (op) ;
}

#define Py Dealloc(op) Py Dealloc inline (op)

The getattrfunc/setattrfunc prototype is used to fetch/set an
attribute of the type using the getattr/setattr built-in functions:
typedef PyObject * (*getattrfunc) (PyObject *, char *);
typedef PyObject * (*getattrofunc) (PyObject *, PyObject *);
typedef int (*setattrfunc) (PyObject *, char *, PyObject *);
typedef int (*setattrofunc) (PyObject *, PyObject *,
PyObject *);

The functions being generic in nature are assigned during type
initialization to a generic getter and setter function.

The reprfunc converts the object to a human-readable string
representation:

typedef PyObject * (*reprfunc) (PyObject *);
The example is as follows:
static PyObject *list repr (PyListObject *v)

{

if (_PyUnicodeWriter WriteChar (&writer, '[') < 0)

goto error;



/* Do repr () on each element. Note that this may mutate
the list,
so must refetch the list size on each iteration. */
for (i = 0; i < Py _SIZE(v); ++i) {
if (i > 0) {
if (_PyUnicodeWriter WriteASCIIString(&writer, ", ", 2)
< 0)
goto error;

}

s = PyObject_ Repr (v->ob_item[i]);
if (s == NULL)

goto error;

if (_PyUnicodeWriter WriteStr(&writer, s) < 0) {
Py DECREF (s) ;
goto error;
}
Py DECREF (s) ;
}

writer.overallocate = 0;
if (_PyUnicodeWriter WriteChar (&writer, ']') < 0)
goto error;
}
>>> 1 = [1, 2, 3]

>>> 1
(1, 2, 3]

The highlighted lines in the repr function for a list print [, followed
by the representation of every object in the list and finally, thej
character to the stdout as seen in the preceding Python example:

typedef Py hash t (*hashfunc) (PyObject *);

The hashfunc converts the object to a unique hash. This unique hash
can be used as a key for a dictionary among several uses to convert an
object into a unique integer representation. Unmutable types like



strings, integers, tuples implement this function, whereas mutable
types like lists, dictionaries do not implement it.

Code block demonstration the definitions of the hashing function in
the list and tuple types:

Objects/tupleobject.c (Line no 843)
(hashfunc) tuplehash, /* tp hash */

Objects/listobject.c (Line no 3044)
PyObject HashNotImplemented, /* tp hash */

The richempfunc prototype compares two objects of the same type
and checks for equality:

typedef PyObject * (*richcmpfunc) (PyObject *, PyObject *,

int);

The example is as follows:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a ==

True

Objects/listobject.c Line no 3055

list richcompare, /* tp richcompare */

The 1ist richcompare method compares two lists for equality by
checking if every element is equal. The chapter on lists explains the
implementation of this function in detail.

Code block demonstrates the definition of the getiterfunc function
in the list and tuple types:

typedef PyObject *(*getiterfunc) (PyObject *);
Objects/listobject.c (Line no 3057)

list iter, /* tp iter */

Objects/listobject.c (Line no 3134)

static PyObject* list iter (PyObject *seq)
{



listiterobject *it;

if (!PyList Check(seq)) {
PyErr BadInternalCall();
return NULL;
}
it = PyObject GC New(listiterobject, &PyListIter Type);
if (it == NULL)
return NULL;
it->it index = 0;
Py INCREF (seq);
it->it seqg = (PyListObject *)seq;
_PyObject GC TRACK(it);
return (PyObject *)it;
}

e The 1ist_iter fetches the iterator for the list object. In the preceding
code snippet, we see that it returns a listiterobject that is initialized
to 0 corresponding to the first index of the array.

The following code block demonstrates the definition and
implementation of the iternextfunc function in the list and tuple

types:

typedef PyObject * (*iternextfunc) (PyObject *);
Objects/listobject.c (Line no 3134)
(iternextfunc)listiter next, /* tp iternext */
static PyObject* listiter next(listiterobject *it)
{

PyListObject *seqg;

PyObject *item;

assert (it != NULL);
seq = it->it seq;
if (seq == NULL)
return NULL; // -> 3
assert (PyList Check(seq));

if (it->it_index < PylList GET_SIZE(seq)) {
item = PyList GET_ ITEM(seq, it->it index);



++it->it index;
Py INCREF (item) ;
return item;
Yy /> 1
it->it_seq = NULL;
Py DECREF(seq); // -> 2
return NULL;
}

The preceding code block explains list iteration implemented by the
listitertype:

1. Iterate the list until the index in the iterator is equal to the size of
the list.

2. Assign the list pointed by the iterator to NurLL when the index

it_index == size of the 1list.

Terminate the iteration when the list pointed is NurL. The interpreter will
raise the SstopIterationException.

The type object substructures

Sections on PyNumberMethods and PySequenceMethods cover generic
function prototypes, which constitute the type of a Python object. This
section covers the substructures of the type object that provide particular
function sets such as numerical/iteration to the type.

The PyNumberMethods substructure

The pyNumberMethods structure encapsulates all numerical operations on a
type and is primarily implemented by numerical types. This structure also
encapsulates methods to handle inline operations such as +=, -=, *, and so
on:

Objects/cpython/object.h (Line no 95)

typedef struct {
/* Number implementations must check *both*
arguments for proper type and implement the necessary

conversions



in the slot functions themselves. */

binaryfunc nb add;
binaryfunc nb subtract;
binaryfunc nb multiply;
binaryfunc nb remainder;
binaryfunc nb_ divmod;
ternaryfunc nb power;
unaryfunc nb negative;
unaryfunc nb positive;
unaryfunc nb absolute;
inquiry nb bool;
unaryfunc nb invert;
binaryfunc nb 1lshift;
binaryfunc nb rshift;
binaryfunc nb_and;
binaryfunc nb_xor;

binaryfunc nb_ or;

} PyNumberMethods;

The following code block demonstrates the numerical operations on the
long object defined in the PyNumberMethods structure:

Objects/longobject.c (Line no 5678)

static PyNumberMethods long as number = ({

(binaryfunc) long add, /*nb add*/
(binaryfunc)long sub, /*nb_subtract*/
(binaryfunc) long mul, /*nb multiply*/
long mod, /*nb_ remainder*/
long divmod, /*nb_divmod*/
long pow, /*nb_power*/
(unaryfunc) long neg, /*nb_negative*/

long long, /*tp positivex/

}i



The LongType implements most of the numerical operations while the list
type marks the same as NuLL, indicating that numerical operations are not

valid on lists:

Objects/listobject.c (Line no 3030)
0, /* tp_as_number */

The PySequenceMethods substructure

typedef struct {
lenfunc sqg length;
binaryfunc sqg concat;
ssizeargfunc sg_repeat;
ssizeargfunc sq item;
void *was_ sqg slice;
ssizeobjargproc sg_ass item;
void *was sq ass slice;

objobjproc sg_contains;

binaryfunc sg inplace concat;
ssizeargfunc sq inplace repeat;
} PySequenceMethods;

The PysequenceMethods defines functions related to iterable types such as
length, concatenation, repetition, slicing, and so on.

The following code block demonstrates the definition of the
SequenceMethods in the list and tuple types:

Objects/listobject.c (Line no 2795)

static PySequenceMethods list as sequence = ({

(lenfunc)list length,
binaryfunc) list concat,
ssizeargfunc)list repeat,

ssizeargfunc)list item,

ssizeobjargproc)list ass item,

’

(
(
(
0,
(
0
(objobjproc) list contains,
(

binaryfunc)list inplace concat,

/*
/*
/*
/*
/*
/*
/*
/*
/*

sq length */

sq _concat */
sq_repeat */
sq_item */
sq_slice */
sq_ass item */
sq_ass_slice */
sq _contains */

sq inplace concat */



(ssizeargfunc)list inplace repeat, /* sq inplace repeat */

b

Code block demonstrates sequence methods attribute being assigned to
NULL for the long type:

Objects/longobject.c (line no 5727)

0, /* tp as sequence */

The PyMappingMethods substructure

typedef struct {
lenfunc mp length;
binaryfunc mp subscript;
objobjargproc mp ass subscript;

} PyMappingMethods;

The pyMappingMethods structure defines operations for length, subscript,
and list ass_subscript, the operations, which act on the list for mainly
the operators related to the index operator []:

static PyMappingMethods list as mapping = {
(lenfunc)list length,
(binaryfunc)list subscript,
(objobjargproc)list ass subscript

b

Although the pyMappingMethods are defined for a list it remains undefined
for a 1ong object:

Objects/longobject.c (Line no 5728)
0, /* tp as mapping */

Code block demonstrates sequence methods attribute being assigned to
NULL for the long type.

The type object

The previous sections covered the subtypes that compose type object. This
section covers the different parts of the type object. This chapter will be




split up into many sections for simplicity.

Name and sizes of type

Objects/cpython/object.h (Line no 177)

typedef struct typeobject ({
PyObject VAR HEAD
const char *tp name; /* For printing, in format "<module>.
<name>" */

Py ssize t tp basicsize, tp itemsize; /* For allocation */

}

The tp_name is a human-readable version of the type name as a string.
Code block demonstrating the name of the long object as int:
PyTypeObject PyLong Type = {

PyVarObject HEAD INIT (&PyType Type, 0)

"int", /* tp name */

>>> a = 20
>>> type (a)
<class 'int'>

The type object contains two sizes, the tp basicsize and the
tp_itemsize, which indicate the fixed and variable sizes of the variable
type. The sizes are used to request the appropriate memory from the

memory allocator.

Code block demonstrating the allocation of memory to an object using the

basic and item sizes:
Include/objectimpl.h (Line no 179)

#define PyObject VAR SIZE (typeobj, nitems) \
Py SIZE ROUND UP((typeobj)->tp basicsize + \
(nitems) * (typeobj)->tp itemsize, \
SIZEOF VOID_P)



We see that the requested memory is the base size of the object + (n * the
size of the item) of every object.

Allocator, deallocator, and initialization functions

destructor tp dealloc;
initproc tp init;

allocfunc tp alloc;

The deallocator function tp_dealloc is called when the reference count of
the variable becomes o.

Most standard Python types do not implement these functions and use the
generic memory allocation methods defined for all Python objects.

Iterator functions

The tp_iter function creates and returns an iterable object for a type,
whereas the tp_iternext function handles the navigation of the elements in
the iterator. For most iterable types, the tp_iter method is implemented in
the base type, whereas the tp iternext method is implemented by an
iterable type for the class. For example, the pyListType implements the
tp_iter method and returns an object of the type pyListIter Type, which
handles the navigation of elements:

/* Iterators */
getiterfunc tp iter;

iternextfunc tp iternext;

Code block illustrating the construction of an iterator for the tuple object:
Objects/tupleobject.c (Line no 856)

tuple iter, /* tp iter */

static PyObject * tuple iter (PyObject *seq)
{
tupleiterobject *it;

if (!PyTuple Check(seq)) {
PyErr BadInternalCall();



return NULL;

}

it = PyObject GC New (tupleiterobject, &PyTuplelter Type);

if (it ==

NULL)

return NULL;

it->it index

:O;

Py INCREF (seq);

it->it seq

_PyObject GC_TRACK (it);
return (PyObject *)it;

}

The tuple iter returns an object of the
implements the tupleiter next (implementation of tp_iternext) function

(PyTupleObject *)seq;

that handles the iteration on the tuple.

Methods and attributes

A type encapsulates the data and the operations that can be performed on it.
In this section, we will cover the structure of both data and operations that
can be added to a Python type. The type object contains the pyMethodDef
array that stores the possible operations on the type, and the PyMemberDef

array that encapsulates the data for the object:

struct PyMethodDef *tp methods;

struct PyMemberDef *tp members;

Code block illustrating the attributes of the pyMethodpef structure:

struct PyMethodDef ({

const char

*ml name;

function/method */

PyCFunction ml meth;

*/

int

ml flags;

/* The name of the built-in
/* The C function that implements it

/* Combination of METH xxx flags,

which mostly describe the args expected by the C func */

const char

}s

*ml doc;

/* The  doc attribute, or NULL */

type tupleiterobject that



The definition includes the name of the method, along with the
implementation stored in m1_meth, and the documentation that is printed
when requested:

typedef struct PyMemberDef {

const char *name;

int type;

Py ssize t offset;

int flags;

const char *doc;
} PyMemberDef;

Code insights are as follows:

const char *name;: a string that holds the name of the member to be
accessed.

int type;: an integer denoting the type of the member. The valid
types are defined in Include/structmember.h (/ine no 26).

Py ssize t offset;: an integer denoting the memory offset to fetch
the content of the member. The offset is calculated using the offsetof
function from the C standard library.

int flags;: the flags indicate the type of operations that can be
performed on this member, such as rReaboNLy and flags that describe
how it must be modified in the restricted mode.

const char *doc;: string that contains the documentation string for
the member.

The members are not part of the type but have individual values in every
instance of the type. For most types, the attributes of the object are exposed
as members to be accessed through code. Let us take an example of the
complex object and examine the members defined for the type. To
understand the members of the type, we will have to examine the attributes
of the complex object:

typedef struct {

double real;

double imag;

} Py complex;



The complex object contains two attributes, the real and the imaginary
part. Let us understand this through a Python sample:

>>> 1 = 8 + 47
>>> type (1)
<class 'complex'>
>>> 1

(8+47)

>>> l.real

8.0

>>> 1.imag

4.0

The complex object contains two members, real and imag, which are
floating-point representations of the real and imaginary parts of a complex
number in Python. Let us now check their definitions in code:

Objects/complexobject.c (Line no 746)

static PyMemberDef complex members[] = {
{"real"™, T DOUBLE, offsetof (PyComplexObject, cval.real),
READONLY,
"the real part of a complex number"},
{"imag", T DOUBLE, offsetof (PyComplexObject, cval.imag),
READONLY,
"the imaginary part of a complex number"},
{0},
i

Printing an instance of the type

As instances of a type are areas in memory, it is necessary to represent it in
a human-readable format. Every type contains a function that indicates how
it can be converted to a human-readable string format, which is useful to
print on the console/in logs.

reprfunc tp str;

An example is as follows:



In this example, we will cover the representation function of the complex
object using a simple Python example:

>>> a = 4 + 93
>>> a
(4+973)

When we printed the complex object, the format of the printed string was
realpart + imagpart (j). The following code shows how the object is printed
in this format:

Objects/complexobject.c (line no 353)

static PyObject* complex repr (PyComplexObject *v)
{

} else {
/* Format imaginary part with sign, real part without.
Include
parens in the result. */
pre = PyOS double to string(v->cval.real, format code,
precision, 0, NULL) ;
if (!pre) {
PyErr NoMemory () ;
goto done;
}

re = pre;

im = PyOS_double_ to_string(v->cval.imag, format code,
precision, Py DTSF SIGN, NULL);
if (!'im) |
PyErr NoMemory () ;
goto done;
}
lead
tail
}
result = PyUnicode FromFormat ("$s%s%sj%s", lead, re, im,
tail);

=
—

=
~



Conclusion

This chapter covers the pyobject that contains the reference count and the
type of the object, along with the pointers to the doubly linked list of the
live heap objects for inspection in debug mode.

The pyvarobject is the base object for container types that comprises the
PyObject along with the size of the container.

The reference count of the object is incremented using the Py IncRef
macro and decremented using the Py DecRef macro, and on reaching o0 the
object is deallocated from the heap.

Python types consist of prototype functions such as unaryfunc based on the
argument input count and types, along with covering the prototypes for
specific operations such as the destructor prototype.

We finally covered the components that form a Python type and how they
are linked to form the operations and data stored in the type instance.

The next chapter will cover the structure and operations of the integer,
string, Boolean, and floating-point types. We will begin with the memory
layout for the data types and cover in brief the implementation of a few
operations.



CHAPTER 2
Basic Python Types

n the previous chapter, we covered the structure of a Python type, which
Icontains the display name, size of memory for allocation, and the
operations that can be performed on the data type. Type objects also hold
methods for memory allocation and freeing of the object to be constructed
on user request and destructed when the object is no longer used.

Every user program stores data in variables and the most common types are
integers, Boolean, strings, and floating-point numbers. This chapter covers
the structure, memory management, and operations that can be performed
on each type.

Structure

In this chapter, we will cover the following topics:

e The Bool object

o

The Bool type
Creating a Boolean object

(¢]

o

Representation of Boolean objects

(¢]

Operations on Boolean objects

e The Long object

o

The type of the long object

o}

Creating a new long object

(¢]

Arithmetic operations

o

Bitwise operations
e The Float object
o The type object

o Creating a new float object



o Arithmetic operations

e The None object

Objectives

After completing this unit, you will be able to understand the structure and
operations of basic Python types, that is, Bool, Long, Float, and the None
object type.

The Bool object

Boolean objects contain the result of logical operation to be either True or
False. Programming languages capture this construct in many different
ways, although in compiled languages such as C/C++, any value greater
than (0 is considered true, whereas the value 0 is considered false.
Languages such as Python store the Boolean value as integers. The specific
storage scheme for Boolean values in Python is shown as follows.

The following code block demonstrates the structure of the Boolean object:
Objects/boolobject.c (Line no 177)

struct longobject Py FalseStruct = {
PyVarObject HEAD INIT (&PyBool Type, 0)
{oy // ->1

b

struct longobject Py TrueStruct = ({
PyVarObject HEAD INIT (&PyBool Type, 1)
{1y // -> 2

b

Include/boolobject.h (Line no 21)

#define Py False ((PyObject *) & Py FalseStruct) // -> 3
#define Py True ((PyObject *) & Py TrueStruct) // -> 4

Python/bltinmodule.h (Line no 2809)

SETBUILTIN ("False", Py False); // -> 5
SETBUILTIN ("True", Py True); // -> 6



Code insights are as follows:

1. The value False is stored as a long object with value o.

2. The value True is stored as a long object with value 1.

3. The macro Py False 1s created

_Py FalseStruct.

as

the address of the

4. The macro Py _True is created as the address of the Py Truestruct.

5. The macro py_False is saved as the built-in False for use in programs

without importing.

6. The value py True is saved as the built-in True for use in programs

without importing.

The Bool type

The type of the Boolean object describes the name, size, and all valid
operations that can be performed on it. Boolean objects contain a very small
operation set and do not implement any of the numerical/iteration

operations like other Python types.

The following code block demonstrates the structure of the Boolean type:

Objects/boolobject.c (Line no 134)

PyTypeObject PyBool Type = ({
PyVarObject HEAD INIT (&PyType Type,
"bool", // > 1
sizeof (struct _longobject), // -> 2

bool repr,
&bool as number,
4

&PyLong Type,

bool new,

}s

Code insights are as follows:

/*
/*

/*

tp_repr */ // -> 3
tp_as number */ // ->

tp base */ // -> 5

tp new */ // -> 6



. The type of the object is stored as the string bool. This is obtained

when we use the type built-in function on a Boolean object.

. The size of the Boolean object is defined by the size of the

LongObject, as we have seen in the previous section that a Boolean
object is stored internally as a long value.

. The function used for converting a Boolean object to a string

representation.

. The structure contains all the numerical operations possible on the

Boolean type.

. The base class for Boolean type is the PyLong Type, as we have seen

in the previous section.

. The constructor method for the Boolean object.

Creating a Boolean object

Each data structure has its own Boolean representation; for example, any
value greater than 0 is considered True, whereas 0 is considered False for
integer types while the length of the list/tuple determines its Boolean value.
The bool built-in function converts a Python object into its Boolean
representation.

The following code block demonstrates the implementation of the
construction of a Boolean object:

Objects/boolobject.c (line no 42)

static PyObject* bool new(PyTypeObject *type, PyObject *args,
PyObject *kwds)

{

}

PyObject *x = Py False;

long ok;

ok
if

= PyObject IsTrue(x); // -> 1
(ok < 0)

return NULL;
return PyBool FromLong(ok); // -> 2



Objects/object.c (line no 1448)

int PyObject IsTrue (PyObject *v)
{
Py ssize t res;
if (v == Py True) // -> 3
return 1;
if (v == Py False) // -> 4
return 0;
if (v == Py None) // -> 5
return 0;
else if (v->ob_type->tp as_number != NULL &&
v->ob type->tp as number->nb bool != NULL)
res = (*v->ob_type->tp as number->nb bool) (v); // -> 6
else if (v->ob_type->tp as mapping != NULL &é&
v->ob_ type->tp as mapping->mp length != NULL)
res = (*v->ob_type->tp as mapping->mp_ length) (v); // -> 7
else if (v->ob_type->tp as_sequence != NULL &&
v->o0b_type->tp_as_sequence->sq_length != NULL)
res = (*v->ob_type->tp as_ sequence->sq_length) (v); // -> 8
else
return 1;
/* 1f it is negative, it should be either -1 or -2 */
return (res > 0) ? 1 : Py SAFE DOWNCAST (res, Py ssize_t, int);
// -> 9
}
Objects/boolobject.c (line no 28)

PyObject *PyBool FromLong (long ok)

{
PyObject *result;

if (ok)

result = Py True; // -> 10
else

result = Py False; // -> 11
Py INCREF (result);

return result;



}

Code insights are as follows:

1.

11.

The function pyobject IsTrue is used to determine if the object
equates to True/ False. Each Python object type has its own way of
determining its Boolean nature. For integers values greater than o are
considered true, whereas value 0 is considered to be false. Empty
iterables, such as lists and tuples, are considered false, whereas those
with elements are considered true. The behavior is similar for mapped
objects such as sets and dictionaries.

. The Boolean value of the input object is the return value of the

function PyBool FromLong.

. If the value is already Py True return 1, indicating the value equating

to Py True.

. If the value 1s already py_False return 0, indicating the Boolean value

equating to Py False.

. If the value is Py None return 0, indicating the Boolean value equating

to Py False.

. If the value is a numerical type, check for the implementation of the

tp_as_number methods, and if an implemented check for the
implementation of the nb bool function prototype. If implemented,
return the value of the type as Boolean.

. If the value is a mappable type, check for the implementation of the

tp_as mapping methods, and if an implemented check for the
implementation of the mp length function prototype. If implemented,
return the value of the type as Boolean.

. If the value 1s an iterable type, check for the implementation of the

tp_as_sequence methods, and if an implemented check for the
implementation of the sq_length function prototype. If implemented,
return the value of the type as Boolean.

. Return the result of the function as the integer value o or 1.
10.

If the result of the call to the function pyobject IsTrue is 1, return the
value Py True.

If the result of the pyobject IsTrue is not 1, return Py False.



Representation of Boolean objects

Representation functions convert a Python data type into a string that can be
used for displaying/printing. For example, programs serialize data to strings
to be stored in an external store such as a file or a datastore. Representation
functions help convert the data type to a string to be used in such cases.

The following code block demonstrates the implementation of the
representation function:

Objects/boolobject.c (line no 12)
static PyObject* bool repr (PyObject *self)
{

PyObject *s;

if (self == Py True)
s = true_str ? true_str :
(true_str = PyUnicode InternFromString("True")); // -> 1
else
s = false str ? false str :
(false_str = PyUnicode InternFromString("False")); // -> 2
Py XINCREF (s);
return s;

}
Code insights are as follows:

1. If the value is equal to py_True, return the string True.

2. If the value 1s equal to py_False, return the string False.

Operations on Boolean objects

The number of operations that can be performed on Boolean objects being
few in number will be covered in a single subsection. Boolean objects
support only three kinds of logical operations, which are the logical AND,
OR, and XOR.

The following code block demonstrates the implementation of the logical
AND, OR, and XOR operator:

Objects/boolobject.c (line no 60)



static PyObject* bool and(PyObject *a, PyObject *b)
{

if (!PyBool Check(a) || !'PyBool Check (b))

return PyLong Type.tp as number->nb and(a, b); // -> 1
return PyBool FromLong((a == Py True) & (b == Py True)); // ->
2

}
Objects/boolobject.c (line no 68)

static PyObject* bool or (PyObject *a, PyObject *b)
{

if (!PyBool Check(a) || !PyBool Check(b))

return PyLong Type.tp as number->nb or(a, b); // -> 3
return PyBool FromLong((a == Py True) | (b == Py True)); // ->
4

}
Objects/boolobject.c (line no 76)

static PyObject* bool xor (PyObject *a, PyObject *b)
{

if (!PyBool Check(a) || !PyBool Check(b))

return PyLong Type.tp as number->nb xor(a, b); // -> 5
return PyBool FromLong((a == Py True) *~ (b == Py True)); // ->
6

}

Code insights are as follows:

1. The nb_and function prototype on numerical values performs the
logical and on the long values. The values, if not Boolean have to be
of type 1ong, and hence the operation is performed on the nb _and
method of the 1ong object.

2. The PyBool FromLong returns the Boolean value of the result of a ==
Py True & b == Py True When both the values are equal to py_True.

3. The nb_or function prototype on numerical values performs the
logical or on the long values. The values, if not Boolean have to be of



type long, and hence the operation is performed on the nb_or method
of the 1ong object.

. The PyBool FromLong returns the Boolean value of a == Py True |
b == Py True, that is, the result of either of the values being equal to
Py True.

. The nb _xor function prototype on numerical values performs the

logical XOR on the 1ong values.

. The PyBool FromLong returns the Boolean value of a == Py True *

b == Py True.

The Long object

Python supports storing positive and negative numerical values in the long
object data structure. The data structure supports all numerical operations
such as addition, multiplication, subtraction, division, and modulo. It also
supports bitwise operators such as AND, OR, and XOR. This section covers
the structure, the type, and a few operations to help understand the internal
workings. The rest of the operations are left to the curiosity of the readers.

The following code block demonstrates the structure of the 1ong object:

Include/longintrepr.h (line no 85)

struct longobject {
PyObject VAR HEAD // -> 1
digit ob_digit[l]; // -> 2

b

Storage of data in the long object for the number 17392. Each number in the
long object is stored in a digit representation in the form of the array

ob_digit!:
ob_digit[4] ob_digit[3] ob_digit[2] ob_digit[1] ob_digit[0]
1 7 3 9 2

Code insights are as follows:

1. The 10ong object is considered a type variable as the length of the 1ong

object is equal to the number of digits it holds.



2. The data storage is initialized as an array of digits of length 1.

The type of the L.ong object

The type object defines the name, size, and valid operations that can be
performed on the data type.

The following code block demonstrates the declaration of the type of the
long object:

Objects/longobject.c (line no 5715)

PyTypeObject PyLong Type = {
PyVarObject HEAD INIT (&PyType Type, 0) // -> 1

"int", /* tp_name */ // -> 2
offsetof (PyLongObject, ob_digit), /* tp_basicsize */ // ->
3

sizeof (digit), /* tp_itemsize */ // ->
4

long to decimal string, /* tp_ repr */ // -> 5
(hashfunc) long_hash, /* tp_hash */ // -> 6
long richcompare, /* tp_richcompare */ //
-> 7

long new, /* tp_new */ // -> 8
PyObject Del, /* tp_free */ // -> 9

i
Code insights are as follows:

1. Initializing the type of the 1ong object to be variable.
2. The name of the type is represented as the string int.

3. The basic size of the 1ong object equals the size of all storage, that is,
the size, reference count, pointer to the type object, and so on other
than the ob_digit array, which is the offset to the array.

4. The size of an item in the list is equal to the size of the digit.



5. Function to convert a long object to a string representation.

6. Function to hash the value to be stored as a dictionary key or a set or
for other hashing purposes.

7. Function to compare two long objects for equality.
8. Constructor function for creating a new long object.

9. Destructor function for deallocation of a 1ong object.

Creating a new long object

Allocating memory for a long object implies providing storage for all the
digits in the object.

The following code block demonstrates the implementation of memory
allocation for a 1ong object:

Objects/longobject.c (line no 261)

PyLongObject* PyLong New (Py ssize t size)
{
PyLongObject *result;

result = PyObject MALLOC (offsetof (PyLongObject, ob digit) +
size*sizeof (digit)); // > 1

return (PyLongObject*)PyObject INIT VAR (result, &PyLong Type,
size);

}

Code insight is as follows:

1. The memory required for the 1ong object is equal to the size of the
wrapper ~+ the size for all the digits in the long object.

Arithmetic operations

Integer objects are primarily used for arithmetic operations such as
addition, subtraction, and so on. These operations are used from the most
basic programs to complex data operations. This section covers the



addition and multiplication operations while the others are left to the
curiosity of the readers.

The following code block demonstrates the implementation of the addition
operation:

Objects/longobject.c (line no 3151)
static PyLongObject* x add(PyLongObject *a, PyLongObject *b)
{

Py ssize t size a = Py ABS(Py SIZE(a)), size b =

Py ABS(Py SIZE (b))

PyLongObject *z;

Py ssize t 1i;

digit carry = 0;

z = PyLong New(size_ a+l); // -> 1

if (z == NULL)
return NULL;

for (i = 0; i < size b; ++1i) {
carry += a->ob_digit[i] + b->ob_digit[i]; // -> 2
z->ob _digit[i] = carry & PylLong MASK; // -> 3
carry >>= PyLong SHIFT; // -> 4

}

for (; 1 < size a; ++1i) |
carry += a->ob_digit[i]; // -> 5
z->ob_digit[i] = carry & PyLong MASK; // -> 6
carry >>= PyLong SHIFT; // -> 7

}

z->o0b _digit[i] = carry; // -> 8

return long normalize(z);

}

Code insights are as follows:

1. Initializing a new long object to store the result of the operation.
2. Compute the sum of two digits at position i to the variable carry.

3. Save the number of the result into the digit at position i in the result.
For example, when adding 7 + 6, store 3 in z.



8.

The

. Compute the end digit of the carry by shifting it using the

PyLong SHIFT.

. Add the carry to the digit at position i in the long value a for numbers

when the length of a is greater than b. For other cases, the second loop
1s not entered.

. Resave the carry of the result into the digit at position i in the result

for only the long numbers where the value of a is greater than the
value of b.

. Compute the end digit of the carry by shifting it using the

PyLong SHIFT.
The last digit in the sum is equal to the carry of the entire operation.

following code block demonstrates the implementation of the

multiplication operation:

Objects/longobject.c (line no 3151)
/* Grade school multiplication, ignoring the signs.

* Returns the absolute value of the product, or NULL if error.
*/ /] -> 1
static PyLongObject* x mul (PyLongObject *a, PyLongObject *b)

{

PyLongObject *z;

z

= PylLong New(size_a + size b); // -> 2

memset (z->ob_digit, 0, Py SIZE(z) * sizeof(digit)); // -> 3

else { /* a 1s not the same as b -- gradeschool int mult
*/
for (i = 0; 1 < size a; ++1i) {

twodigits carry = 0; // -> 4
twodigits £ = a->ob_digit[i]; // -> 5
digit *pz = z->ob_digit + i;

digit *pb = b->ob_digit;

digit *pbend = b->ob _digit + size b;

while (pb < pbend) {



carry += *pz + *pb++ * £; // -> 6
*pz++ = (digit) (carry & PyLong MASK); // -> 7
carry >>= PyLong SHIFT; // > 8

return long normalize(z); // -> 9

}

Code insights are as follows:

1.

AN D B W N

One of the many hilarious comments in the Python source code tree
that basically explains the implementation to be similar to high school
mathematics.

. Create a new variable and assign memory for the variable result.

. Set the value in all bytes to the value zero.

. Initialize the carry to the value zero.

. Set the value of f'to the value at digit i.

. Multiply the digit at location i with the nonvarying digit in the

iteration, similar to high school mathematics.

. Compute the carry at the current stage and save it in the result pointed

to by variable z.

. Compute the carry by shifting it using PyLong SHIFT.
. Return the multiplied value of the two long values.

Bitwise operations

The

bitwise operations of AND and OR perform individual bitwise

operations on the digits in the long object. The implementation of the
bitwise operations is all implemented within a single function, and the logic
1s more or less the same.

The following code block demonstrates the implementation of the bitwise
operations:

Objects/longobject.c (line no 4837)
static PyObject* long and(PyObject *a, PyObject *b)

{

PyObject *c;
CHECK _BINOP (a, b):;



c = long bitwise ((PyLongObject*)a, '&', (PyLongObject*)b); //
-> 1
return c;

}

static PyObject* long xor (PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP (a, b):
c = long bitwise((PyLongObject*)a, '#~', (PyLongObject*)b); //
-> 2
return c;

}

static PyObject* long or (PyObject *a, PyObject *b)
{
PyObject *c;
CHECK_BINOP(a, b);
c = long bitwise ((PyLongObject*)a, '|', (PyLongObject*)b); //
-> 3
return c;

}

static PyObject* long bitwise (PyLongObject *a, char op, /*
's', '|', '"~'" */ PyLongObject *b)
{

int nega, negb, negz;

Py ssize t size a, size b, size z, 1i;

PyLongObject *z;

/* We allow an extra digit if z is negative, to make sure that
the final two's complement of z doesn't overflow. */
z = PylLong New(size z + negz); // -> 4

/* Compute digits for overlap of a and b. */
switch (op) {
case '&':

for (1 = 0; 1 < size b; ++1i)



z->0b _digit[i] = a->ob _digit[i] & b->ob digit[i]; // -> 5
break;
case '|':
for (1 = 0; 1 < size b; ++1)
z->ob_digit[i] = a->ob_digit[i] | b->ob_digit[i]; // -> 6
break;
case '"':
for (1 = 0; 1 < size b; ++1)
z->o0b _digit[i] = a->ob _digit[i] * b->ob digit[i]; // -> 7
break;
default:
Py UNREACHABLE () ;
}
/* Copy any remaining digits of a, inverting if necessary. */
if (op == "' && negb)
for (; 1 < size z; ++1i)
z->o0b_digit[i] = a->ob _digit[i] *~ PyLong MASK; // -> 8
else if (i < size z)
memcpy (&z->o0b_digit[i], &a->ob_digit[i], (size_z-
i) *sizeof (digit)); // -> 9

return (PyObject *)maybe small long(long normalize(z)); // ->
10
}

Code insights are as follows:
1. The long bitwise generic function is called with the operator & to
perform the logical AND operation.

2. The 1ong bitwise generic function is called with the operator | to
perform the logical OR operation.

3. The long bitwise generic function is called with the operator ~ to
perform the logical XOR operation.

4. Allocate a new long variable to store the result of the operation.

5. Perform a bitwise AND operation for the digits overlapping between
the two operands.



6. Perform a bitwise OR operation for the digits overlapping between the
two operands.

7. Perform a bitwise XOR operation for the digits overlapping between
the two operands.

8. For bitwise & and | operations, the result does not depend on the
nonoverlapping results and hence only for the 4 operation the digits in
the variable a is considered and masked with PyLong Mask.

9. For the other operations, copy the remaining digits from a to the
result.

10. Return the value of the bitwise operation.

The Float object

The filoat object stores the representation of real values used in both
application and scientific computations where the applications of Python
are very prevalent. This section demonstrates the structure, creation, and
implementation of some arithmetic operations, which are possible on the

type.
The following code block demonstrates the storage of the £10at object:

Include/floatobject.c (line no 15)

typedef struct {
PyObject HEAD
double ob_fval; // -> 1
} PyFloatObject;

Code insight is as follows:

1. The value for a £1oat object is stored as a C double type.

The type object

The type of the f1loat object contains the possible operations, construction
function, deletion function, which are possible on the object:

PyTypeObject PyFloat Type = {
PyVarObject HEAD INIT (&PyType Type, 0)
"float", // > 1



sizeof (PyFloatObject), // -> 2

(destructor) float dealloc, /*
3

(reprfunc) float repr, /*
(hashfunc) float hash, /*
float richcompare, /*
-> 6

float new, /*

}i

Code insights are as follows:

. The destructor function for the £1oat type.

. The function to hash a f1oat value.

. The function to compare two £loat values.

N N LD AW =

Creating a new float object

. The string representation of the type of object.

. The function for creating a new £loat object.

tp_dealloc */ // ->

tp_repr */ // -> 4
tp_hash */ // -> 5

tp_richcompare */ //

tp new */ // -> 17

. The size of the £1oat object is equal to the size of the structure.

. The representation function to convert a £1loat object to a string.

The creation of a new floating object includes allocating memory to the

double value in the PyFloatObject.

The following code block demonstrates the implementation of memory

allocation for the £1oat object:

Objects/floatobject.c (line no 1616)

static PyObject* float subtype new(PyTypeObject *type, PyObject

*x)
{
PyObject *tmp, *newobj;



assert (PyType IsSubtype (type, &PyFloat Type)):
tmp = float new_impl (&PyFloat Type, x); // -> 1

newobj = type->tp alloc(type, 0); // -> 2

((PyFloatObject *)newob]j)->ob_fval = ((PyFloatObject ¥*)tmp)-
>ob_fval; // -> 3

Py DECREF (tmp); // -> 4

return newob]j;

}

Code insights are as follows:

1. Create a temporary float object. The temporary float object has
been created to handle internal operations such as conversion from the
convertible types such as string/long.

2. Assign memory to the actual £1oat object.

3. Assign the value to the actual fioat object for programmatic usage
and decrement the reference to the temporary object.

// float new impl internally calls a number of functions
and finally calls

// PyNumber Float the internal calls are abstracted away
for simplicity.

Objects/abstract.c (line no 1450)

PyObject* PyNumber Float (PyObject *o)
{
PyNumberMethods *m;

m = o->0b type->tp as number;
if (m && m->nb float) {/* This should include subclasses
of float */

return PyFloat FromDouble(val); // -> 1
}
if (m && m->nb index) {

PyObject *res = PyNumber Index(o0);



if ('res) {
return NULL;

}
double val = PyLong AsDouble(res); // -> 2
Py DECREF (res) ;

return PyFloat FromDouble(val); // -> 3
}

return PyFloat FromString(o); // -> 4
}

Code insights are as follows:
1. For all classes and subclasses of the £1oat object, convert from float
to double using the PyFloat FrombDouble function.

2. For all classes of the long object, convert to double using the
PyLong AsDouble function and later convert to float using the
PyFloat_ FromDouble.

3. The function to convert a C double value to £loat.

4. If the type of the input value is a string, use the pyFloat FromString
function to convert a £loat into a string.

Arithmetic operations

The arithmetic operations on double type operate on the C double value
within each of the objects. The addition and subtraction operators are
explained as follows, whereas the other operations are left to the curiosity
of the readers:

Objects/floatobject.c (line no 543)

static PyObject* float add(PyObject *v, PyObject *w)
{
double a,b;

a=a+b; // >1



return PyFloat FromDouble(a); // -> 2
}
Objects/floatobject.c (line no 555)
static PyObject* float sub(PyObject *v, PyObject *w)
{
double a,b;

a=a-b>b; // >3

return PyFloat FromDouble(a); // -> 4
}

Code insights are as follows:
1. The return value for the sum of two numbers is equal to the added
value of the double values within each PyFloatObject.
2. Convert the double value into float and return the PyFloatObject.

3. The return value for the difference of two numbers is equal to the
subtracted value of the double values within each pyFloatobject.

4. Convert the double value into £loat and return the PyFloatObject.

Comparison operations

The function to compare two floating-point objects checks the internal
value stored as a double.

The following code block demonstrates the implementation of the
comparison operation:

static PyObject* float richcompare (PyObject *v, PyObject *w,
int op)
{

double i, 7J;

int r = 0;

Compare:
PyFPE START PROTECT ("richcompare", return NULL)
switch (op) {
case Py EQ:



r

=i==3;// ->1

break;

case Py NE:

r

=il'=3;// ->2

break;

case Py LE:

r

=i<=13;// ->3

break;

case Py GE:

r

=1i>3j; // >4

break;

case Py LT:

r

=i<3j; // ->5

break;

case Py GT:

r

=1i>3; // -> 6

break;

}

PyFPE END PROTECT (r)

return PyBool FromLong(r);

}

Code insights are as follows:

1.

When the comparison is equal to check for the equality of the double
values.

. When the comparison is not equal to check for the equality of the

double values.

. When the comparison is less than equal to check for the comparison of

the double values using <= operator.

. When the comparison is greater than equal to check for the

comparison of the double values using >= operator.

. When the comparison is lesser than check for the comparison of the

double values using < operator.

. When the comparison is lesser than check for the comparison of the

double values using > operator.



The None object

Every programming language has a representation for types that do not hold
any valid value. In C/C++, they are popularly known as null or the value of
a pointer that does not hold any reference to memory. Incorrectly, handling
these references is known to create many issues at runtime leading to
unpredictable program behavior. In Python, the type is referred to as None
and refers to all variables that do not contain a defined value.

The following code block demonstrates the structure of the None object:
Objects/object.c (line no 1682)

PyObject _Py NoneStruct = {// -> 1
_PyObject EXTRA INIT
1, // -> 2 & PyNone Type // -> 3
i

Code insights are as follows:
1. The Py Nonestruct is an instance of the generic Pyobject.

2. The reference count of the object is initialized to 1.

3. The type object contains the name, size, and valid operations that can
be performed on the instance of the object.

The none type

The type object encompasses the name, size, and operations that can be
performed on an instance of the type.

The following code block demonstrates the structure of the Null type
object:

Objects/object.c (line no 1682)

PyTypeObject PyNone Type = {
"NoneType", // -> 1

none_dealloc, /*tp_dealloc*/ /*never called*/ // -> 2

none_repr, /*tp_repr*/ // -> 3



&none_as_number, /*tp_as_number*/ // -> 4

none_new, /*tp new */ // -> 5
i

Code insights are as follows:

1. The name of the type is set as the string NoneType.

2. The deallocation function for the type. The function is not called as
the NoneType cannot be deallocated during the program lifecycle.

3. The function to convert the type to a string representation.

4. Numerical operations can be performed on the type. For NoneType
objects, the only numerical operation supported is the conversion to a
Boolean value.

5. Function to allocate a new instance of the type. For NoneType objects,
the object Py NoneStruct.

Creation of the none object

A Python program has one singleton instance of the None object. Any new
required references increment reference count and access the same object.
The following code block demonstrated shows the usage of the singleton
instance of the None object:

Objects/object.c (line no 1588)

static PyObject * none new (PyTypeObject *type, PyObject *args,
PyObject *kwargs)
{
if (PyTuple GET SIZE(args) || (kwargs &&
PyDict GET SIZE (kwargs))) {
PyErr SetString(PyExc TypeError, "NoneType takes no
arguments") ;
return NULL;
}
Py RETURN NONE; // -> 1
}

return Py INCREF (Py None), Py None // -> 2



Code insights are as follows:

1. Return a reference to the singleton Py None structure.

2. Increment the reference to the Py None structure and return the
reference.

Operations on the none object

The operations on the None object are very few in number and only support
the conversion to a Boolean value, the code of which is demonstrated as
follows.

The following code block demonstrates the implementation of the Boolean
representation of the None object:

Objects/object.c (line no 1598)

static int none bool (PyObject *v)
{
return 0; // -> 1

}
Code insight is as follows:

1. The Boolean representation of None type being false always the value
0 is returned.

Representation of the none object

The string representation of the None object returns the static string None:

Objects/object.c (line no 1571)

static PyObject* none repr (PyObject *op)
{
return PyUnicode FromString("None"); // -> 1

}

Code insights is as follows:

1. The string representation of None type returns the Unicode string None.



Conclusion

This chapter covered the internals of basic data types in Python, which are
the integer, floating-point numbers, and the Boolean value. The Boolean
type has only two possible values, which are True and False, each stored as
an object of the type 1ong. The type of the Boolean object denotes the size,
name, and the operations possible on the type.

The 1ong object stores the value internally as an array of digits. The
arithmetic and bitwise operations on the 1ong object were covered in depth.
The memory allocation to the long object includes the allocation of
memory to all digits.

The floating-point number internally stores the value as a C double variable
and performs operations using basic mathematical operators, unlike the
long type, which operates on the individual digits.

The None type is a single pyobject, the value of which is referenced at
multiple points in the program by incrementing the reference count. The
only numerical operation supported on the NoneType is the conversion to a
Boolean value.

The upcoming chapter will cover the internals of the structure and
operations on the Python iterable objects, which are the lists and tuples.



CHAPTER 3
Iterable Sequence Objects

n the previous chapter, we covered the working of the basic Python
Itypes, that is, integers, floating numbers, Boolean, and so on. Although
basic types take care of the atomic operations, containers are useful to store
multiple values of the same/different types.

Iterable objects such as arrays and dictionaries are the basic data structures
used from beginners to the most advanced programmers. Each data
structure is optimized for a particular set of use cases and outperforms the
others for the operation. For example, sets outperform lists for searching
elements in a collection. Dictionaries are highly optimized for searching
key-value pairs. This chapter covers the internals of lists and tuples by
describing the structure, type, and operations of these data structures.

Structure

In this chapter, we will cover the following topics:

e The list object

o The list type

e Creating a list

e Accessing an element in a list

e Assigning an element in a list

» Fetching the length of a list

e Removing an element from the list
e Freeing all the elements in the list
e Checking an element in a list

e List iteration

o Fetching the iterator

o [terating the elements in the list



e Tuples

o The tuple type

o Creation of the tuple object

o Hashing of the tuple object

o Unpacking the elements in a tuple object

Objective

After studying this unit, you will be able to understand the structure and
working of the operations on a Python list. You will also understand the
structure and working of the operations on a Python tuple.

The list object

Understanding the data storage within the list object explains the
heterogeneity of the data structure.

The following code block demonstrates the structure of the list object:
Include/listobject.h (Line no 23)

typedef struct {
PyObject VAR HEAD // -> 1
PyObject **ob_item; // -> 2

Py ssize t allocated; // -> 3
} PyListObject;

Code insights are as follows:
1. The 1ist object is a variable Python object that contains the
PyObject VAR HEAD.

2. Pointer to the list of items, each of them is a pyobject. Since each of
them is stored as a pointer to a Pyobject, they can be any valid Python
type explaining the heterogeneity of the data structure.

3. A number of allocated items in the list.

The list type




The type of the 1ist object describes the name, size, and all valid

operations that can be performed on it:
Objects/listobject.c (Line no 3030)

PyTypeObject PyList Type = ({
PyVarObject HEAD INIT (&PyType Type, 0)
"list", // > 1
sizeof (PyListObject), // -> 2

0,

(destructor)list dealloc, /*
(reprfunc)list repr, /*
0, /*
&list as sequence, /*
>5

&list _as mapping, /*
6

PyObject HashNotImplemented, /*
PyObject GenericGetAttr, /*
(traverseproc) list traverse, /*
(inquiry) list clear, /*
list richcompare, /*
> 11

0, /*
list iter, /*
0, /*
list methods, /*
PyObject GC_Del, /*

}s

Code insights are as follows:

tp_dealloc */ // -> 3

tp repr */ // -> 4
tp _as number */
tp_as_sequence */ // -

tp_as_mapping */ // ->
tp_hash */ // -> 7
tp_getattro */ // -> 8
tp_traverse */ // -> 9
tp_clear */ // -> 10
tp_richcompare */ // -
tp weaklistoffset */
tp_iter */ // -> 12

tp iternext */

tp_methods */ // -> 13

tp_free */ // -> 14

1. The type of the object is described as 1ist. This is obtained when we
use the type built-in function on a list object.

2. The size of the list object is defined by the size of the PyListObject.



10.
11.
12.
13.
14.

. The deallocator of the 1ist object.
. The function creates a string representation of the 1ist object when

output to stdout/to a file descriptor.

. The sequence methods on the list will be covered in the subsequent

sections.

. The mapping methods on the list will be covered in the subsequent

sections.

. PyObject HashNotImplemented indicates that the hashing is not

implemented by the object as it has variable data.

. PyObject GenericGetAttr indicates the usage of the generic function

for getting attributes from the tuple object. It is suggested to explore
the implementation of this function and is beyond the scope of this
book.

. The 1ist_traverse method is used to traverse all the elements in the

list.

The c1ear method is used to clear all the elements in the list.

Method to compare two lists for equality.

Method to fetch the iterator to traverse the elements of the list.

Fetch all the methods in the list object such as append, pop, and so on.
Method to clear the memory allocated to the 1ist object.

Creating a list

Creating a list involves allocating memory to all the object pointers held by
it. As seen in the preceding section on The List Object a list is an array of
pointers to Pyobjects, and each of which can be of a different type
enabling heterogeneity of the data structure. In compiled languages such as
C/Java, a list/array can only hold data of one type.

The following code sample demonstrates the generation of an opcode for a
program creating a list:

Opcode

1

0 LOAD CONST 0 (1)



2 LOAD_ CONST 1
4 LOAD_CONST 2
6 BUILD LIST 3 // >1
8 STORE_NAME 0
10 LOAD CONST 3
12 RETURN_VALUE

The code insight is as follows:

1. The creation of a list uses the opcode BurLp rIsT, which creates a
PyListObject object, allocates memory for it, and adds the data, that
is, 1, 2, 3, into it. The implementation is demonstrated as follows.

The following code block demonstrates the implementation of the
BUILD_ LIST opcode:

Python/ceval.c (Line no 2689)

case TARGET (BUILD LIST): {
PyObject *list = PyList New(oparg); // -> 1

while (--oparg >= 0) {
PyObject *item = POP(); // -> 2
PyList SET ITEM(list, oparg, item); // -> 3
}

}

The code insights are as follows:

1. Allocate memory to the list object using the pyList New constructor.

2. The argument to the opcode indicates the number of elements to be
added to the list during creation. These are added to the function stack
using the Loap consT opcode. The pop opcode pops it from the stack.

3. The pyList SET ITEM function adds the item into the list in the
reverse order, that is, element 3 is added at index 2, followed by 2 at
index 1, and so on. This is because the elements are present on the
stack in the reverse order when added using the Loap_consT opcode.



Accessing an element in a list

Accessing an element in a list involves returning a pointer to the object at
the requested index or throwing an exception when an invalid index has
been requested.

The code sample is as follows:

a=1[1, 2, 3]

print(all])
Opcode
2 10 LOAD NAME 1 (print)

12 LOAD NAME 0 (a)
14 LOAD_ CONST 0 (1)
16 BINARY SUBSCR // => 1
18 CALL FUNCTION 1
20 POP TOP

The code insight is as follows:

1. The compiler creates the BINARY suBscR opcode to indicate the
program logic accessing an element of a list using its index.

The following code block demonstrates the implementation of the
BINARY SUBSCR opcode:

Python/ceval.c (Line no 1581)

case TARGET (BINARY SUBSCR): {
PyObject *sub = POP(); // -> 1
PyObject *container = TOP(); // -> 2
PyObject *res = PyObject GetItem(container, sub); // -> 3

SET TOP(res); // -> 4

}
Objects/abstract.c (Line no 143)

PyObject * PyObject GetItem(PyObject *o, PyObject *key)



{
PyMappingMethods *m;

PySequenceMethods *ms;

ms = o->ob_type->tp as sequence; // -> 5
if (ms && ms->sqg item) {

if (PyIndex Check(key)) {

return PySequence GetItem(o, key value); // -> 6
}

}
Objects/abstract.c (Line no 1680)
PyObject * PySequence GetItem(PyObject *s, Py ssize t 1)
{
return m->sq _item(s, i); // -> 7
}
Objects/listobject.c (line no 461)

static PyObject* list item(PyListObject *a, Py ssize t 1)
{

if (!valid index (i, Py SIZE(a))) {
if (indexerr == NULL) {
indexerr = PyUnicode FromString (

"list index out of range"); // -> 8
if (indexerr == NULL)
return NULL;

return a->ob_item[i]; // -> 9



Code insights are as follows:
1. Fetch the index to be assigned from the list present at the top of the
stack.
. Fetch the list from which the element has to be assigned.
. Fetch the element from the list using the pyobject GetItem function.
. Set the obtained result on top of the stack.
. Fetch the sequence methods from the stack.
. Fetch the item using the stack.

N N D B~ W

. Call the sq_item function on the list type to which internally calls the
list_item function.

8. Raise the list index out of range exception if the index is greater than
the length of the list.

9. Fetch the item from the list from the ob_item array.

Assigning an element in a list

The previous section covered accessing an element in a list by using the
index. Another common operation performed on lists is assigning an
element to a particular index.

Code sample is as follows:

= [1, 2, 3]
[1] = 3
Opcode

2 10 LOAD CONST 2 (3)
12 LOAD NAME 0 (a)
14 LOAD CONST 0 (1)
16 STORE SUBSCR // ->1
18 LOAD CONST 3 (None)

20 RETURN VALUE

The code insight is as follows:



1. The sToreE_suBscr opcode is used to assign a particular value at a
particular index in the list.

The following code block demonstrates the implementation of the
STORE_SUBSCR opcode:

Python/ceval.c (Line no 1840)

case TARGET (STORE SUBSCR) : {
PyObject *sub = TOP(); // -> 1
PyObject *container = SECOND(); // -> 2
PyObject *v = THIRD(); // -> 3

/* container[sub] = v */
err = PyObject SetItem(container, sub, v); // -> 4
}

Objects/abstract.c (Line no 190)

int PyObject SetItem(PyObject *o, PyObject *key, PyObject
*value)

{

if (o->ob type->tp as sequence) {
if (PyIndex Check(key)) {

return PySequence SetItem(o, key value, value); // -> 5
}

return -1;

}

Objects/abstract.c (Line no 1734)

int PySequence SetlItem(PyObject *s, Py ssize t 1, PyObject *o)
{



return m->sq_ass_item(s, i, o); // -> 6

}

}

Objects/listobject.c (Line no 788)

static int list ass item(PyListObject *a, Py ssize t i,
PyObject *v)

{

Py SETREF (a->ob_item[i], v); // -> 7

return O;

}

Code insights are as follows:

l.

Fetch the index to be assigned from the list present at the top of the
stack.

2. Fetch the list from which the element has to be assigned.

. Fetch the value to be inserted at the location in the array.
. The pyobject setItem function is used to assign the element from the

container not just for lists but also generic container types.

. The PyObject SetItem function internally calls the

PySequence SetItem for sequence types such as lists.

. The implementation of this feature belongs to the sq ass _item

prototype, which has been covered in Chapter [ on Generic Python
Objects.

. The py SETREF macro sets the pyobject to the new value passed by

the user.

Fetching the length of a list

Many operations in a program depend on the length of the list. This section
covers the implementation of the length of a list.

Code sample is as follows:



len (a)
Opcode
2 10 LOAD NAME 1 (len) // > 1
12 LOAD NAME 0 (a)
14 CALL FUNCTION 1
16 POP TOP
18 LOAD CONST 3 (None)

Code insight is as follows:

1. The built-in function len is the most common way to fetch the length
of the list or any iterable types in general.

Python/clinic/bltinmodule.c (line no 564)

#define BUILTIN LEN METHODDEF \
{"len", (PyCFunction)builtin len, METH O,
builtin len doc_}, // ->1

Python/clinic/bltinmodule.c (line no 1546)

static PyObject * builtin len(PyObject *module, PyObject
*obj)

{

res = PyObject Size(obj); // -> 2

}
Objects/abstract.c (line no 46)

Py ssize t PyObject Size (PyObject *o)
{
PySequenceMethods *m;

m = o—->0b type->tp as sequence;
if (m && m->sg length) {
Py ssize t len = m->sq_length(o); // -> 3

return len;



}
Objects/listobject.c (line no 439)

static Py ssize t list length (PyListObject *a)

{
return Py SIZE(a); // -> 4

}
Include/object.h (line no 123)

#define Py SIZE (ob) (_PyVarObject CAST (ob)->ob_size)
// ->5

Code insights are as follows:
1. The built-in 1en method is declared in the bltinmodule.h file with the
documentation.
2. The function internally calls pyobject size.

3. pyObject size internally calls the sq_length implementation for the
container type.

4. The implementation of the sq_length internally calls the py sizE
macro standard to all variable Python types.

5. The macro returns the value for the ob_size attribute for the variable
type.

Removing an element from the list

This section covers removing an element from a list by index. This
operation is usually a complex one as it involves completely rearranging the
elements of the list after the removal.

Code sample is as follows:

a=[1, 2, 3]
del a[0]

Opcode
2 10 LOAD NAME 0 (a)



12 LOAD_CONST 3 (0)

14 DELETE_ SUBSCR // > 1
16 LOAD_CONST 4 (None)
18 RETURN VALUE

Code insight is as follows:

1. The bELETE_suBscR opcode is used to remove an element from the list
using the index.

The following code block demonstrates the implementation of the
DELETE_SUBSCR opcode:

Python/ceval.c (line no 1855)

case TARGET (DELETE SUBSCR) : {
PyObject *sub = TOP(); // -> 1
PyObject *container = SECOND(); // -> 2

/* del container[sub] */

err = PyObject DelItem(container, sub); // -> 3
}
Objects/abstract.c (line no 222)
int PyObject Delltem(PyObject *o, PyObject *key)

{

if (o->ob type->tp as sequence) {
if (PyIndex Check(key)) {

return PySequence Delltem(o, key value); // -> 4

}
Objects/abstract.c (line no 222)

int PySequence Delltem(PyObject *s, Py ssize t 1)
{



return m->sq_ass_item(s, i, (PyObject *)NULL); // -> 5

}

Objects/listobject.c (line no 789)

static int list ass item(PyListObject *a, Py ssize t i,
PyObject *v)

{

if

(v == NULL)

return list ass_slice(a, i, i+l, v); // -> 6

Code insights are as follows:

l.

Fetch the index to be removed from the list present at the top of the
stack.

. Fetch the list from which the element has to be removed.
. Call the generic pyobject DelItem function to remove an element

from a container.

. The PyoObject DelItem internally calls the PySequence DelIltem

function to remove the element from sequence types.

. The sq_ass_item function prototype handles splitting the list into the

respective parts by index.

. When the value to be removed is passed as NuLL, the list calls the

slice method with the nuLL value, which internally uses memmove to
create the split list. The function internally creates a new array and
uses the standard library function to reduce the time required to copy
the elements from the source array. Covering the implementation of
the slicing method is beyond the scope of this book.

Freeing all the elements in the list

Deleting a list includes decrementing the references to all elements in the
list and removing the allocated memory to the container.

The code sample is as follows:



del a

Opcode
2 10 DELETE NAME 0 (a) // -—> 1
12 LOAD CONST 3 (None)
14 RETURN VALUE
Code insight is as follows:

1. The pELETE NaME opcode is used to remove all the elements from the
list along with the allocated memory to the container.

The following code block demonstrating the implementation of the
DELETE NAME opcode:

Python/ceval.c (line no 2301)

case TARGET (DELETE NAME) : {
PyObject *name = GETITEM (names, oparqg); // -> 1
PyObject *ns = f£->f locals; // -> 2

err = PyObject DelItem(ns, name); // -> 3

}

Objects/abstract.c (line no 223)
int PyObject Delltem(PyObject *o, PyObject *key)

{

if (m && m->mp ass_ subscript)
return m->mp_ ass_subscript(o, key, (PyObject*)NULL); // -> 4

}
Objects/listobject.c (line no 360)
static void list dealloc (PyListObject *op)

{

if (op->ob_item != NULL) {



i

= Py SIZE (op);

while (--i >= 0) {

}

Py XDECREF (op->ob_item[i]); // -> 5

PyMem FREE (op->ob _item); // -> 6

}

Py TYPE (op)->tp free ((PyObject *)op); // -> 7
Py TRASHCAN END

}

PyObject GC Del, /* tp_free */ // ->

8

Code insights are as follows:

l.
2.

Get the name to be deleted in the current case it will be the string a.

Get the dictionary containing all local variables in the function frame
scope.

. Call the pyobject DelItem generic function, which deletes an

element from the dictionary using the name.

. As the local variables are indexed by name in a dictionary, it uses the

mp_ass_subscript function prototype for containers implementing the
mapping. Tracing the entire flow of this function call is complex, and
it internally calls the 1ist_dealloc function.

. Decrement the reference of every element in the list.
. Free the memory allocated to the items array in the list. The items

array holds all the pointers to the pyobjects in the list.

. Call the £ree method on the list, which functions as the destructor for

the container type.

. Free the memory allocated using Python’s internal memory allocator.

Checking an element in a list

Checking if an element exists in a list of objects is a common operation
used in many user applications. Most programs accept an array of input
values and check if the elements belong to an acceptable dataset.



The code sample is as follows:

a = [1, 2, 3]

1 in a
Opcode
2 10 LOAD CONST 0 (1)
12 LOAD NAME 0 (a)
14 COMPARE_OP 6 (in) // -> 1
16 POP_TOP
18 LOAD CONST 3 (None)

20 RETURN VALUE

Code insight is as follows:

1. The compare_op opcode is used to check if an element exists in a list
of objects.

The following code block demonstrates the implementation of the
COMPARE_OP opcode:

Python/ceval.c (line no 2974)

case TARGET (COMPARE OP) : {
PyObject *right = POP(); // -> 1
PyObject *left = TOP(); // -> 2
PyObject *res = cmp outcome(tstate, oparg, left, right); //
-> 3

}
Python/ceval.c (line no 5065)

static PyObject * cmp outcome (PyThreadState *tstate, int op,
PyObject *v, PyObject *w) {

int res = 0;

switch (op) {

case PyCmp IN: // -> 4

res = PySequence Contains(w, v); // -> 5



if (res < 0)
return NULL;

}
}

Objects/abstract.c (line no 2082)

int PySequence Contains (PyObject *seq, PyObject *ob)
{

if (sgm != NULL && sgm->sgq contains != NULL)
return (*sgm->sq_contains) (seq, ob); // -> 6

}
Objects/listobject.c (line no 446)

static int list contains (PyListObject *a, PyObject *el)
{

for (1 = 0, cmp = 0 ; cmp == 0 && 1 < Py SIZE(a); ++1) {
item = PyList GET ITEM(a, i); // -> 7
cmp = PyObject RichCompareBool (el, item, Py EQ); // -> 8

}

return cmp;

}
Code insights are as follows:

1. Fetch the element at the RHS of the operand.
2. Fetch the element at the LHS of the operand.

3. The cmp_outcome function compares to check if the element exists in
the list.

4. The pycmp IN operator denotes the operation being performed is
checking for the existence of the element.

5. The PySequence Contains function checks for the element in the
list/any sequence type such as tuple.



6. The function internally calls the sq_contains function prototype for
checking if the element exists in the list.

7. Fetch the item at the location during iterating through the elements in
the list.

8. Check if the element is equal to the element being checked and return
the result of the comparison.

List iteration

Iterating through the elements of the list involves traversing the elements
and returning the element at each location.

Code sample is as follows:

a=1[1, 2, 3]
for ele in a:

print (ele)

Opcode
3 10 LOAD NAME 0 (a)
12 GET ITER // > 1
>> 14 FOR _ITER 12 (to 28) // -> 2
16 STORE NAME 1 (ele)
4 18 LOAD NAME 2 (print)
20 LOAD NAME 1 (ele)
22 CALL FUNCTION 1
24 POP_TOP
26 JUMP_ABSOLUTE 14 // -> 3
>> 28 LOAD CONST 3 (None)

30 RETURN VALUE

Code insights are as follows:

1. The GET_ITER opcode is used to fetch the iterator object to traverse the
elements in the list.

2. The ror_ITER opcode fetches the next element to be visited in the
iterable object; otherwise, it throws a StopIteration exception once
the completion of the iteration of all elements.



3. Once the current iteration code is completed, jump back to opcode 14
for the next cycle of iteration.

Fetching the iterator

The following code demonstrates the implementation of the GET ITER
opcode:

Python/ceval.c (line no 3156)

case TARGET (GET ITER): {
PyObject *iterable = TOP(); // -> 1
PyObject *iter = PyObject GetIter (iterable); // -> 2

SET TOP(iter); // -> 3

}
Objects/abstract.c (line no 2569)
PyObject * PyObject GetIter (PyObject *o)

{

if (PySequence Check (o))
return PySeqIlter New(o); // -> 4
}
Objects/abstract.c (line no 2569)
PyObject* PySeglter New (PyObject *seq)
{

it = PyObject GC_New(segiterobject, &PySeqIlter Type); // -> 5

}
Objects/abstract.c (line no 2569)

typedef struct {
PyObject HEAD
Py ssize t it index; // -> 6



PyObject *it seq; /* Set to NULL when iterator is exhausted */
/1 =>1

} segiterobject;
Code insights are as follows:
. Fetch the list to be iterated from the top of the stack.

. Construct the iterator object for the list.

. Set the iterator to the top of the function stack.
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. Create and fetch the iterator for the sequence using the PyseqIter New
function.

. Create the iterator object for the list.
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. The current index is currently traversed by the iterator.
7. Pointer to the iterable object to be iterated.

Iterating the elements in the list

The following code block demonstrates the implementation of the FOR _ITER
opcode:

Python/ceval.c (line no 3198)

case TARGET (FOR ITER) : {

PyObject *next = (*iter->ob type->tp iternext) (iter); // ->
1

if (next != NULL) {
PUSH(next); // -> 2

}

if ( PyErr Occurred(tstate)) {
if (!'_PyErr ExceptionMatches(tstate, PyExc_ StopIteration))

{

goto error;

Y // -> 3



}

Objects/listobject.c (line no 3168)

static PyObject *

listiter next(listiterobject *it)

{

if

(it->it index < PyList GET SIZE(seq)) {// -> 4

item = PyList GET ITEM(seq, it->it index); // -> 5
++it->it_index; // -> 6

Py INCREF (item) ;

return item; // -> 7

}

it->it_seq = NULL; // -> 8
Py DECREF (seq); // -> 9
return NULL; // -> 10

}

Code insights are as follows:

1.

Fetch the next element using the tp_iternext method on the iterator
object.

2. Push the result into the function stack pointer.
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. When the result is not provided, the PyExc_StopIteration exception

1s thrown.

. Check if the current index being iterated is lesser than the size of the

iterable object.

. Fetch the item at the current index pointed by it index.
. Increment the iteration for the next element in the list.
. Return the item to the current index.

. At the end of iteration of all elements in the list, initiate the destruction

of the iterator object.

. Decrement the reference of the sequence if 0 deallocates the memory.
10.

Return nuLL when the iteration is completed.



The tuple object

The structure and definitions of the tuple object are very similar to a list.
The primary difference being that the elements in a tuple do not vary once
created:

Include/cpython/tupleobject.h (line no 15)

typedef struct {
PyObject VAR HEAD // -> 1
/* ob_item contains space for 'ob size' elements.
Items must normally not be NULL, except during construction
when
the tuple is not yet visible outside the function that builds
it. */
PyObject *ob_item[l]; // -> 2
} PyTupleObject;

Code insights are as follows:

1. The tuple object is an object of variable type.
2. The array of pyobjects in the tuple.

The tuple type

The tuple type consists of the list of all possible operations that can be
performed on elements in the tuple:

Objects/tupleobject.c (line no 829)

PyTypeObject PyTuple Type = {
PyVarObject HEAD INIT (&PyType Type, 0)
"tuple", // > 1
sizeof (PyTupleObject) - sizeof (PyObject *), // -> 2
sizeof (PyObject *),
(destructor) tupledealloc, /* tp_dealloc */ // -> 3

(reprfunc) tuplerepr, /* tp_repr */ // -> 4
0, /* tp_as number */



&tuple as_sequence, /* tp_as_sequence */ // -
> 5

&tuple as mapping, /* tp_as mapping */ // ->
6

(hashfunc) tuplehash, /* tp_hash */ // -> 17
PyObject GenericGetAttr, /* tp_getattro */ // -> 8
(traverseproc) tupletraverse, /* tp_traverse */ // -> 9
tuplerichcompare, /* tp_richcompare */ // -
> 10

tuple iter, /* tp_iter */ // -> 11

0, /* tp iternext */

tuple methods, /* tp_methods */ // -> 12
tuple new, /* tp_new */ // -> 13
PyObject GC Del, /* tp_free */ // -> 14

}

Code insights are as follows:

1. The type of the object is described as tuple.

2. The size of the tuple object is defined as the size of the PyTupleObject
- size of the PyObject.

3. The deallocator of the tuple object.

4. The representation of the tuple object as string to be printed to
stdout/to a file descriptor.

5. The sequence methods on the tuple will be covered in the subsequent
sections.

6. The mapping methods on the tuple will be covered in the subsequent
sections.

7. The nash method indicates that the hashing is implemented by the
object as it does not have variable data.



8. PyObject GenericGetAttr indicates the usage of the generic function
for getting attributes from the tuple object. It is suggested to explore
the implementation of this function and 1s beyond the scope of this
book.

9. The traverseproc is used to traverse all the elements in the tuple.

10. The richcompare method is used to compare two tuples for the
equality of elements.

11. Method to fetch the iterator to traverse the elements of the tuple.
12. Fetch all the methods for operations possible on the tuple object.
13. Constructor method for the tuple class.

14. Method to clear the memory allocated to the tuple object.

Creation of the tuple object

The previous section covered the creation of a list with three items. In
tuples, all the elements to be a part of the data structure must be declared
upfront, whereas in lists the elements can be modified post creation.

The code sample is as follows:

class a:
pass
t=(a(), a))

Opcode
1 0 LOAD BUILD CLASS
2 LOAD CONST 0 (<code object a at
0x103f0eb30, file "p.py", line 1>)
4 LOAD_CONST 1 ('a'")
6 MAKE FUNCTION 0
8 LOAD CONST 1 ('a")
10 CALL FUNCTION 2
12 STORE NAME 0
4 14 LOAD NAME 0 (a)
16 CALL FUNCTION 0
18 LOAD NAME 0 (a)
20 CALL FUNCTION 0



22 BUILD TUPLE 2 // > 1
24 STORE NAME 1 (%)
26 LOAD CONST 2 (None)

28 RETURN VALUE

Code insight is as follows:

1. The BuzLD TUPLE opcode is used to create a tuple for dynamic data. If
the data is static (such as 1, 2, 3), the compiler optimizes the creation
of the tuple to save time at execution. It is suggested to the readers to
explore the code flow for static tuples.

The following code block demonstrates the creation of the tuple:
Python/ceval.c (line no 2677)

case TARGET (BUILD TUPLE) : {
PyObject *tup = PyTuple New(oparg); // -> 1
if (tup == NULL)
goto error;
while (--oparg >= 0) {
PyObject *item = POP(); // -> 2
PyTuple SET ITEM(tup, oparg, item); // -> 3
}
PUSH (tup) ;
DISPATCH () ;
}

Objects/tupleobject.c (line no 79)

PyObject *
PyTuple New (Py ssize t size)
{

PyTupleObject *op;

/* Check for overflow */

if ((size t)size > ((size t)PY SSIZE T MAX -

sizeof (PyTupleObject) - sizeof (PyObject *)) / sizeof (PyObject
*)) A



return PyErr NoMemory () ;

}
op = PyObject GC_NewVar (PyTupleObject, &PyTuple Type, size);
// -> 4
if (op == NULL)
return NULL;

return (PyObject *) op;
}

Code insights are as follows:
1. The pyTuple New function allocates memory to the tuple data
structure.
2. Pop the item to be inserted into the tuple from the function stack.

3. Set the item at the index into the tuple.
4. Allocate memory from the Python memory allocator for the tuple.

Hashing of the tuple object

Since the data within the tuple object does not vary, it can be hashed as a
key for dictionaries. Lists do not implement the hashing function as the data
can vary.

The following code block demonstrates the implementation of the hashing
function for tuples:

Objects/tupleobiject.c (line no 367)

static Py hash t tuplehash (PyTupleObject *v)

{
Py ssize t 1, len = Py SIZE(Vv);
PyObject **item = v->ob item;

for (i = 0; i < len; i++) {

Py uhash t lane = PyObject Hash(item[i]); // -> 1

acc += lane * PyHASH XXPRIME 2;
acc = PyHASH XXROTATE (acc) ;



acc *= PyHASH XXPRIME 1; // -> 2
}
/* Add input length, mangled to keep the historical value of
hash(()). */
acc += len ~ (_PyHASH XXPRIME 5 "~ 3527539UL);
if (acc == (Py uhash t)-1) {
return 1546275796;
}
return acc;

}
Code insight is as follows:

1. Compute the hash of the object at the particular index.

2. The hash computed i1s aggregated for all tuple indexes. The
implementation of the hash function is beyond the scope of this book.
The documentation provided by the community at /ine no 367 can
help interested readers explore further. The point to be demonstrated
was the difference between lists and tuples in hashing.

Unpacking the elements in a tuple object

One of the frequent tricks used by developers to return multiple values
from a function is to return it as a tuple which is later unpacked as
separate values when accepted.

Code sample is as follows:

a, b = (1, 2)
1 0 LOAD CONST 0 ((1, 2))
2 UNPACK_SEQUENCE 2 // > 1
4 STORE_ NAME 0 (a) // —> 2
6 STORE NAME 1 (b)
8 LOAD CONST 1 (None)

10 RETURN VALUE

Code insights are as follows:

1. The unPaCK SEQUENCE opcode unpacks the data in the tuple and
adds them to the function stack.



2. Once the values are added to the function stack, they are popped
out using the sToRE_NaME opcode and stored in the variable.

The following code block demonstrates the implementation of the
UNPACK SEQUENCE opcode:

Python/ceval.c (line no 2320)

case TARGET (UNPACK SEQUENCE) : {

items = ((PyTupleObject *)seq)->ob item;
while (oparg--) {
item = items[oparg]l; // -> 1
Py INCREF (item) ;
PUSH (item); // -> 2
}
}

}

Code insights are as follows:

1. Fetch the element at a particular index in the tuple.

2. Push the item into the function stack. The sToRE NaME opcode pops
the element from the function stack and stores it in the variable.

Conclusion

This chapter covered the most commonly used data structures in Python
that are the list and tuple. The chapter began with the structure of the list,
covering the operations possible on the type. Next, the creation of lists,
along with operations such as accessing an element at a particular index,
deletion of elements was covered.

Deletion of lists includes deallocating each element and later deallocating
the memory for the container. List iteration includes two steps, that is,
fetching the iterator for iterating and followed by accessing every element.
Tuples, although very similar in structure, differ in the way the data
structure is hashed.



Unpacking a tuple involves pushing each element to the function stack and
later popping every element and storing it to a variable.

The upcoming chapter will discuss the internal workings of the Python
mappable types that are sets and dictionaries. Sets and dictionaries are
functionally similar and share almost similar structures and
implementations.

Reader exercises

1. Analyze the similarities in operations such as accessing an element by
index, iteration between list, and tuple. Although the chapter covers
them only for lists, readers are encouraged to research the same for
tuples.



CHAPTER 4

Set and Dictionary

n the previous chapter, we covered the workings of the Python iterable
types, that is, lists and tuples. This chapter covers the workings of the
hashable types, which are the set and dictionary.

The main purpose of hashable types in programming languages is to
provide a consistent search of items in the container types. Dictionaries are
key-value containers, where the key can be any hashable value such as a
string/integer. Sets are iterable types, which provide O(1) search for
elements and operations such as AND, OR, union, and intersection.

Structure

In this chapter, we will cover the following topics:

e Implementation of the set object
e Implementation of the dictionary object

Objective

Understanding the internals of hashable data structures enables the
programmers to make informed decisions on choosing them for the right
job. For example, sets are most optimal over lists for cases where there has
to be an element searched within a large number of elements, whereas lists
provide ordering of elements useful for many cases such as building stacks
and so on. This chapter covers how data structures such as dictionaries/sets
help programmers perform O(1) operation enabling faster insertion, search,
and removal.

The set object

The set data structure is very similar to the dictionary in structure and
operates almost similar to a dictionary. The difference lies in the part where




the key and value remain the same in the dictionary.

Structure of the set object

The set object is structurally similar to the dictionary and contains an array
that stores the entries in an array of set entries:

Include/setobject.h (line no 24)
#define PySet MINSIZE 8

typedef struct {
PyObject *key; // -> 1
Py hash t hash; // -> 2 /* Cached hash code of the
key */

} setentry;

typedef struct {
PyObject HEAD

Py ssize t £ill; // -> 3 /* Number active and dummy
entries*/

Py ssize t used; // -> 4 /* Number active entries
*/

/* The table contains mask + 1 slots, and that's a power of 2.
* We store the mask instead of the size because the mask is
more

* frequently needed.

*/

Py ssize t mask; // -> 5

/* The table points to a fixed-size smalltable for small
tables

* or to additional malloc'ed memory for bigger tables.

* The table pointer is never NULL which saves us from repeated

* runtime null-tests.

*/

setentry *table; // -> 6

Py hash t hash; /* Only used by frozenset objects
*/

Py ssize t finger; /* Search finger for pop() */



setentry smalltable[PySet MINSIZE]; // -> 7
PyObject *weakreflist; /* List of weak references */
} PySetObject;

Code insights are as follows:
1. The key of the object is also the value in the setentry.

2. The hash of the object in the table stores the set entries.

. The number of entries in the table being used in the set, including the
dummy entries.
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. The number of active entries in the table is actually being used.
. The mask 1s the size of the set with a power of 2.
. The table stores the entries of the set object.
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. The table 1s used for faster creation by allowing static allocation of
memory for smaller sets of sizes lesser than §.

Creation of the set object

Creating a set object depends on the size of the set being created. If the size
i1s greater than pyset MINSIZE, memory has to be allocated for the set
dynamically.

The code sample is as follows:
a = {ll 2/ 3}
Opcode

2 0 LOAD CONST 0 (1)
2 LOAD CONST 1
4 LOAD_CONST 2
6 BUILD SET 3// >1
8 STORE_NAME 0 (
10 LOAD CONST 3 (None)

The code insight is as follows:

1. The creation of a set uses the opcode BuiLp ST, which creates a
PySetObject object, allocates memory for it, and adds the data, that is,
1, 2, 3, into it. The implementation is demonstrated as follows.



The following code block demonstrates the implementation of the
BUILD_SET opcode:

Python/ceval.c (Line no 2689)

case TARGET (BUILD SET): {
PyObject *set = PySet New(NULL); // -> 1
int err = 0;
int 1i;
if (set == NULL)
goto error;
for (i = oparg; 1 > 0; i--) {
PyObject *item = PEEK(i); // -> 2
if (err == 0)
err = PySet Add(set, item); // -> 3
Py DECREF (item) ;
}
STACK_SHRINK (oparg); // -> 4

}
PyObject* PySet New (PyObject *iterable) ({

return make new_set(&PySet Type, iterable); // -> 5
}

static PyObject* make new set (PyTypeObject *type, PyObject
*iterable)

{
PySetObject *so;

so = (PySetObject *)type->tp alloc(type, 0); // -> 6
if (so == NULL)
return NULL;

so->fill 0;

so->used = 0; // -> 17

so->mask = PySet MINSIZE - 1; // -> 8
so->table = so->smalltable; // -> 9
so->hash = -1;



return (PyObject *)so;

}

Code insights are as follows:

1.
2.

Allocate memory to the set object using the pyset_New constructor.

The argument to the opcode indicates the number of elements to be
added to the list during creation. These are added to the function stack
using the Loap _coNsT opcode. The pop opcode pops it from the stack.

. The pyset_add function adds the item into the set in the reverse order,

that is, element 3 is added at index 2, followed by 2 at index 1, and so
on. This is because the elements are present on the stack in the reverse
order when added using the Loap_consT opcode. The function to add
elements to the set is covered in the upcoming section.

. The sTack sHRINK opcode removes the used elements from the set

into the set object.

. The make new_set function allocates memory and initializes the set

object.

. The tp_alloc function of the set object assigns memory to the set

object.

. The used flag is set to o indicating there are no elements in the set

object.

. The size of the set is initialized to a small set.
. The smalitable is assigned to the table.

Adding an element to a set object

Adding an element to a set object includes adding the element at the value
in the array relevant to the hash of the value inserted into the set. It is to be
noted that the elements of a set can only be hashable elements such as
integers, strings, tuples, and so on. Adding lists or dictionaries to a set can
result in an invalid value exception. A set always contains unique values,
and adding duplicate values does not change the set in any way. In the
previous section, we have covered the creation of a set and how the
PySet Add function is used to add an element to a set.

The following code block demonstrates adding values to a set:



Objects/setobject.c (line no 137)

static int set add entry(PySetObject *so, PyObject *key,
Py hash t hash)
{

restart:

mask = so->mask;
i = (size_t)hash & mask; // -> 1

entry = &so->table[i]; // -> 2

if (entry->key == NULL)
goto found unused; // -> 3

freeslot = NULL;
perturb = hash;

while (1) {// -> 4
if (entry->hash == hash) {// -> 5
PyObject *startkey = entry->key;

/* startkey cannot be a dummy because the dummy hash field

is -1 */
assert (startkey != dummy) ;
if (startkey == key)

goto found active; // -> 6
if (PyUnicode_CheckExact (startkey)
&& PyUnicode_CheckExact (key)
&& PyUnicode EQ(startkey, key))
goto found active; // -> 7
table = so->table;
Py INCREF (startkey);
cmp = PyObject RichCompareBool (startkey, key, Py EQ); // -

> 8
Py DECREF (startkey);
if (cmp > 0) /* likely */

goto found active; // -> 9



if (i + LINEAR _PROBES <= mask) {// -> 10
for (j = 0 ; j < LINEAR_PROBES ; j++) ({
entry++; // -> 11

if (entry->hash == 0 && entry->key == NULL)
goto found unused or dummy; // -> 12
if (entry->hash == hash) {
PyObject *startkey = entry->key;
assert (startkey != dummy) ;
if (startkey == key)

goto found active;

if (PyUnicode CheckExact (startkey)
&& PyUnicode CheckExact (key)
&& PyUnicode EQ(startkey, key))
goto found active; // -> 12

}
else if (entry->hash == -1)

freeslot = entry;

}

perturb >>= PERTURB SHIFT;
i=+(i1* 5+ 1 + perturb) & mask;

entry = &so->table[i];
if (entry->key == NULL) // -> 13
goto found unused or dummy; // -> 14

}

found unused or dummy:
if (freeslot == NULL)
goto found unused; // -> 15
so->used++;
freeslot->key = key; // -> 16
freeslot->hash = hash; // -> 17

return 0;



found unused:
so->fill++; // -> 18
so->used++; // -> 19
entry->key = key; // -> 20
entry->hash = hash; // -> 21
if ((size t)so->fill*5 < mask*3)

return 0;

return set table resize(so, so->used>50000 ? so->used*2 : so-
>used*4); // -> 22

}

Code insights are as follows:

l.

Search for the index at the position at the hash masked by the size of
the set.

2. Inspect the element at the hashed value.

11.
12.

. If the element at the hashed value is empty, try inserting the element at

the particular index.

. Continue the search of the element until either the element is found or

an empty slot can be found to insert the value to the set.

. If the hash being inserted is equal to the hash of the element being

inserted, check if the same element is at the current location.

. Check for equality of integer types, and if equal, detect the element to

be found.

. Check for equality of Unicode strings, and if equal, detect the element

to be found.

. Check hashable objects such as tuples for equality and detect the

element to be found if present.

. Same as above.
10.

If the element is not present at the same location, search for a slot
closer to the hashed index.

Increment the index to the next elements in the array.

Search for the element in the new index very similar to the preceding
comments.



13.

14.
15.
16.
17.

18.

19.

20.
21.
22.

If a free slot 1s found, break the loop to insert the element at the found
index.

Same as 13.
Same as 13.
Assign the key to be the element at the current index.

Assign the hash of the element at the index but do not increment the
size as we are assigning at an element where the value was
preassigned but removed.

Increase the elements filled in the set as we are inserting at a position
not previously assigned.

Increase the elements being used in the set as we are inserting at a
position not previously assigned.

Same as 16.
Same as 17.

Resize the elements if the number of elements is greater than the size
of the set.

Iterating a set

Iterating a set involves going through all the elements in the set mostly
without order as the elements are inserted into the array based on the hash
value.

Code sample is follows:

a =

{1, 2, 3}

for ele in a:

print (ele)

Opcode
5 10 LOAD NAME 0 (a)
12 GET ITER /o => 1
>> 14 FOR ITER 12 (o 28) // -> 2

16 STORE NAME 1 (ele)



Code insights are as follows:

1. Fetch the iterator of the set.
2. Loop through the iterator using the FOR ITER opcode.

The following code block demonstrates the structure and functions of the
set iterator:

Objects/setobject.c (line no 805)

typedef struct {
PyObject HEAD
PySetObject *si set; /* Set to NULL when iterator is exhausted
*/ /] ->1
Py ssize t si used; // -> 2
Py ssize t si pos; // -> 3
Py ssize t len; // -> 4
} setiterobject;

static PyObject* set iter (PySetObject *so)

{
setiterobject *si = PyObject_ GC_New (setiterobject,
&PySetIter Type); // -> 5

si->si set = so; // -> 6

si->si used = so->used; // -> 7
si->si pos = 0; // -> 8

si->len = so->used; // -> 9

}
Code insights are as follows:

1. The set object is being iterated.

2. The number of elements in the set.

3. The starting position to start the iteration in the set.
4. The length of the set is not used in the iteration.

5. Obtain the memory for the iteration.

6. The set to insert the element into.



7. Assign the number of elements in the set to be equal to the si_used
variable in the set object.

8. Assign the starting position to be equal to o.

9. The length of the set is equal to the number of used elements in the
set.

The following code block demonstrates the iteration of elements:
Objects/setobject.c (line no 867)

static PyObject *setiter iternext (setiterobject *si)

{

PySetObject *so = si->si _set; // -> 1

i =si->si pos; // - > 2

while (i <= mask && (entry[i] .key == NULL || entry[i] .key ==
dummy)) // -> 3

i++;
si->si pos = i+l; // -> 4

si->len—--;

key = entry[i] .key; // -> 5

}

Code insights are as follows:

1. The set object is being iterated.

2. The current element to start iteration from.

3. Skip the elements with either dummy or NULL entries in the array.
4. The next position to start iteration from in the next iteration loop.
5. The key is to be returned to the current position.

Finding an element in a set




A set is a hash-based data structure that performs better than a list when
searching for an element within it.

Code sample is as follows:
a= {1, 2, 3}

if 3 in a:

print ("Element found")

14 COMPARE_OP 6 (in) // -> 1
16 POP_JUMP IF FALSE 26

The code insight is as follows:
1. The comMpare_op is used to check if the element exists in the set.

The following code block explains the implementation of the comparison
operator:

Objects/setobject.c (line no 56)

static setentry* set lookkey(PySetObject *so, PyObject *key,
Py hash t hash)

{

}

The code block implementation is exactly similar to inserting an element
into a set except where the element is checked to be present in the set. It is
suggested to go through the implementation from the source code to
identify the similarity.



Union and intersection of sets

Sets have the unique capability to quickly identify the elements common to
both sets and either construct a union with elements in both sets and
eliminate the duplicates or intersection containing only the elements
common to both sets. This section covers the implementation of these
operations.

The following code block demonstrates the implementation of the union in
set objects:

Objects/setobject.c (line no 1177)

static PyObject* set union (PySetObject *so, PyObject *args)
{

result = (PySetObject *)set copy(so, NULL); // -> 1
if (result == NULL)
return NULL;

for (i=0 ; i<PyTuple GET SIZE (args) ; i++) {
other = PyTuple GET ITEM(args, 1i);
if ((PyObject *)so == other) // -> 2
continue;
if (set update_internal (result, other)) {// -> 3

}
}
return (PyObject *)result;

}

Code insights are as follows:
1. Copy the first set into the resulting set to ensure all elements of the
first set are present.
2. Check if the element already exists in the resulting set.
3. Update the element if not present.



The following code block demonstrates the implementation of intersection
in set objects:

Objects/setobject.c (line no 1225)

static PyObject* set intersection(PySetObject *so, PyObject
*other)

{

result = (PySetObject *)make new_set basetype (Py_ TYPE (so),
NULL); // > 1

if (PyAnySet Check(other)) {// -> 2

while (set next((PySetObject *)other, &pos, &entry)) {// -> 3
key = entry->key;
hash = entry->hash;
rv = set_contains_entry(so, key, hash); // -> 4
if (rv < 0) {
Py DECREF (result);
return NULL;
}
if (rv) {
if (set_add entry(result, key, hash)) {// -> 5
Py DECREF (result);
return NULL;

}
return (PyObject *)result;
}

it = PyObject GetlIter (other);

while ((key = PyIter Next(it)) !'= NULL) {// -> 6
hash = PyObject Hash(key); // -> 7



rv = set contains entry(so, key, hash); // -> 7

set _add entry(result, key, hash)) // -> 8

Code insights are as follows:

l.

Create an empty set with the intersection of values.

2. The intersection can be performed on iterable Python types. If the
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second object is a set, we use set operations for checking if an element
exists in the two sets.

. Fetch the element from set 1.

. Check if the element exists in set 2.

. Add the element which exists in both the sets into the resultant set.

. Fetch the next object if it is not a list.

. Fetch the hash of the element in the second object.

. Check if the element exists in the second set and insert if it exists in

both the iterable types.

Dictionaries

Dictionaries are key-value pairs that are saved based on the hash value of
the key into an array very similar to sets. The section displays the
similarities between a dictionary and a set-in structure and storage.
Dictionaries differ in the way that the value stored in a dictionary can be
any valid Python object while the key has to be a hashable type.

Structure of a dictionary

Although semantically similar to a set, the structure of a Python dictionary
exhibits differences from the structure of a set:

Objects/dict-common.h (line no 22)

struct dictkeysobject ({

Py

ssize t dk refcnt;



/* Size of the hash table (dk_indices). It must be a power of
2. */
Py ssize t dk size; // -> 1

dict lookup func dk lookup; // -> 2

/* Number of usable entries in dk entries. */
Py ssize t dk_usable; // -> 3

/* Number of used entries in dk entries. */
Py ssize t dk nentries; // -> 4

char dk _indices[]; /* char is required to avoid strict
aliasing. */ // -> 5

/* "PyDictKeyEntry dk entries[dk usable];" array follows:
see the DK ENTRIES() macro */
};

Objects/dictobject.h (line no 14)

typedef struct {
PyObject HEAD

/* Number of items in the dictionary */
Py ssize t ma used; // -> 6

PyDictKeysObject *ma keys; // -> 7

PyObject **ma values; // -> 8
} PyDictObject;

Code insights are as follows:
1. The size/storage capacity of the dictionary.

2. The 1ookup function is to search for keys in the table.

3. The number of usable entries in the hash table that are not a dummy.
4. The number of used entries in the hash table.



5. The key of the object.

6. The number of items stored in the dictionary.
7. Array to store the keys in the dictionary.

8. Array to store the values in the dictionary.

Creating and inserting to dictionaries

Creating a dictionary involves allocating memory to the hash table to store
the keys and values. The key must be any hashable value, whereas the value
can be any valid Python object:

a={1:1, 2: 2, 3: 3}
2 0 LOAD_ CONST 0 (1)

2 LOAD CONST 1 (2)

4 LOAD_CONST 2 (3)

6 LOAD CONST 3 ((1, 2, 3)) // —>1
8 BUILD CONST_KEY MAP 3// > 2

10 STORE NAME 0 (a)

12 LOAD CONST 4 (None)

14 RETURN VALUE

Code insight is as follows:
1. The BuILD coNsST KEY MAP is used to build the dictionary.
Python/ceval.c (line no 2867)
case TARGET (BUILD CONST KEY MAP): {

Py ssize t 1i;
PyObject *map;
PyObject *keys = TOP(); // -> 1

map = PyDict NewPresized((Py ssize t)oparg); // -> 2

for (i = oparg; 1 > 0; i--) {
int err;

PyObject *key = PyTuple GET ITEM(keys, oparg - i); //
-> 3



PyObject *value = PEEK(i + 1); // -> 4
err = PyDict SetItem(map, key, value); // -> 5

}
Code insights are as follows:

1. Fetch the keys to be inserted into the dictionary.

2. The creation of the new dictionary will be explained in the following
code.

3. Fetch the key from the tuple created.
4. Fetch the value from the function value stack.
5. Insert the value into the dictionary.

Objects/dictobject.c (line no 1314)

PyObject* PyDict NewPresized(Py ssize t minused)
{

const Py ssize t max presize = 128 * 1024;

Py ssize t newsize;

PyDictKeysObject *new keys;
assert (IS_POWER OF 2 (newsize)); // -> 1

new_keys = new_keys object(newsize); // -> 2
if (new keys == NULL)
return NULL;
return new _dict(new_keys, NULL); // -> 3
}
Objects/dictobject.c (Line no 530)

static PyDictKeysObject *new keys object(Py ssize t size)
{
PyDictKeysObject *dk;

Py ssize t es, usable;

assert (size >= PyDict MINSIZE);



assert (IS POWER OF 2 (size));

usable = USABLE FRACTION (size);

_Py INC_REFTOTAL;

dk->dk refcnt = 1;

dk->dk size = size; // -> 1

dk->dk usable = usable; // -> 2

dk->dk_lookup = lookdict unicode nodummy; // -> 3
dk->dk nentries = 0;

memset (&dk->dk indices[0], Oxff, es * size);
memset (DK_ENTRIES (dk), 0, sizeof (PyDictKeyEntry) *
usable); // > 4

return dk;

}

static PyObject* new dict (PyDictKeysObject *keys, PyObject
**yvalues)

{
PyDictObject *mp;
assert (keys != NULL) ;

mp = PyObject GC_New (PyDictObject, &PyDict Type); // -> 5

mp->ma_keys = keys; // -> 6
mp->ma_values = values; // -> 7

mp->ma_used = 0;

return (PyObject *)mp;
}

Code insights are as follows:

1. Initialize the size of the hash table to the size of the created hash table
in this case 3.

2. Assert the power of the dictionary to be a power of 2 for easier
memory management.

3. Initialize the 1ookup function to be equal to the function
lookdict unicode_nodummy to be initialized in the next section.
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. Initialize all the values to be equal to o.

. Create a new object of the type PyKeysoObject.

. Assign the keys object to the keys obtained.

. Assign the values object to the values provided to the program.

Objects/dictobject.c (line no 1522)

int PyDict SetItem(PyObject *op, PyObject *key, PyObject
*value)
{
PyDictObject *mp;
Py hash t hash;
if (!PyDict Check(op)) {
PyErr BadInternalCall();
return -1;

}

if (!PyUnicode CheckExact (key) ||

(hash = ((PyASCIIObject *) key)->hash) == -1)
{

hash = PyObject Hash(key); // -> 1

if (hash == -1)

return -1;

/* insertdict () handles any resizing that might be
necessary */

return insertdict(mp, key, hash, value); // -> 2

}

Objects/dictobject.c (line no 1027)

static int insertdict (PyDictObject *mp, PyObject *key,
Py hash t hash, PyObject *value)

{

PyObject *old value;

PyDictKeyEntry *ep;



if (mp->ma values != NULL && !PyUnicode CheckExact (key))
{
if (insertion resize (mp) < 0)
goto Fail;
}

Py ssize_ t ix = mp->ma_keys->dk_lookup (mp, key, hash,
&old value); // -> 3

if (ix == DKIX EMPTY) {// -> 4

Py ssize t hashpos = find empty slot (mp->ma keys, hash);
// ->5

dictkeys_ set_ index (mp->ma_keys, hashpos, mp->ma_ keys-
>dk_nentries); // -> 6

ep->me_key = key; // -> 7

ep->me_hash = hash; // -> 8

if (mp->ma values) {

assert (mp->ma values[mp->ma keys->dk nentries] ==

NULL) ;
mp->ma_values [mp->ma_keys->dk nentries] = value; // ->
10
}
else {
ep->me value = value;

}

mp->ma_used++;

mp->ma_keys->dk nentries++; // -> 9

}
Code insights are as follows:

1. Fetch the hash of the object to be inserted into the table.
2. Use the insertdict function to insert the value into the dictionary.
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10.

. lookup function to fetch the key of the value to be inserted into the

dictionary.

. Check if the slot is empty.

. Find an empty slot to insert the value to.

. Set the value at the hashpos to the value at the index.
. Set the key and value.

. Same as 7.

. From Python 3 onwards, the dictionaries are ordered by nature; hence

the number of entries is incremented after inserting to preserve
insertion order.

Add the value into the values array to preserve the insertion order.

Iterating dictionaries

Iterating dictionaries previous to Python 3 were not ordered by nature, and
hence the traversal order would be different from the insertion order. From
Python 3, the insertion order is maintained during traversal.

Code sample is as follows:

a:

{1: 1, 2: 2, 3: 3, 4: 4}

for i in a.items() :

print (i)
3 14 LOAD NAME 0 (a)
16 LOAD METHOD 1 (items)
18 CALL METHOD 0
20 GET_ ITER // -> 1
>> 22 FOR_ITER 12 (to 36) // -> 2
24 STORE NAME 2 (i)

Code insights are as follows:

l.

2.

Obtain the iterator for the dictionary explained in the following
section.

[terate through the dictionary.



Objects/dictiterobject.c (line no 3446)

typedef struct {
PyObject HEAD
PyDictObject *di dict; /* Set to NULL when iterator is
exhausted */ // -> 1
Py ssize t di used;
Py ssize t di pos; // -> 2
PyObject* di_result; /* reusable result tuple for
iteritems */ // -> 3
Py ssize t len;
} dictiterobject;
Objects/dictiterobject.c (line no 3456)

static PyObject* dictiter new (PyDictObject *dict,
PyTypeObject *itertype)
{

dictiterobject *di;

di = PyObject GC New(dictiterobject, itertype); // -> 4

if (di == NULL) {

return NULL;

}

Py INCREF (dict);

di->di_dict = dict; // -> 5

di->di used = dict->ma used; // -> 6

_PyObject GC TRACK(di) ;
return (PyObject *)di;
}

static PyObject* dictiter iternextkey(dictiterobject *di)
{

PyObject *key;

Py ssize t 1i;

PyDictKeysObject *k;

PyDictObject *d = di->di dict;

i = di->di pos; // -> 7



k = d->ma _keys; // -> 8

assert (i >= 0);

Py ssize t n = k->dk nentries;
PyDictKeyEntry *entry ptr = &DK _ENTRIES (k) [i]; // -> 9

while (i < n && entry ptr->me_value == NULL) {// -> 10
entry ptr++;
i++;

}

di->di pos = i+l; // -> 11
return key; // -> 12
}
Code insights are as follows:
1. The structure of the dictiterobject contains access to the dictionary
to iterate.

. The position to start the iteration from.
. The result tuple for iterating the items in the dictionary.
. Allocate memory to a new instance of the iterator type.
. The dictionary to iterate.
. The number of items to iterate.

. The position to fetch the current element from.
. The keys in the dictionary.
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. Fetch the entry at the current pointer.

—
S

. Iterate the dictionary until a non-NuLL element is found.

[
[

. Move the position to the next element to continue the iteration.

—
[\

. Return the key to fetch the item from.

Conclusion




This chapter covered the most commonly used hashable data structures in
Python, which are the set and dictionaries. Sets are data structures, which
are used primarily for the purpose of searching an element in a large
collection of items. The structure of the set object was covered and how it
contains a reference to a hash table to store the elements in the object. The
main use case of a set object is to search for an element in a list of elements.
Sets can also be subjected to union, intersection, and other operations.

A dictionary object can be used to store data as a key, value pairs for O(1)
insertion and search. Insertion, search, and iteration of elements work
similarly to set objects as they contain a similar implementation.

The upcoming chapter will discuss the structure of the function and
generator objects and how they are created at runtime. The function object
contains a link to the code object, that is, linked to the data provided to the
function to create a stack object and execute the function call. Generators
are functions whose execution can be stopped in-between, which is
implemented as the stack frame position is stored at the point of yielding
from the generator.



CHAPTER 5

Functions and Generators

n the previous chapter, we covered the structure and design of sets and

dictionaries, including hashing and the implementation of functions,
which handle insertion, indexing, and removal of elements from these data
structures.

This chapter covers functions that form the heart of reusable code in
programming languages and contain a definition and returns values based
on the accepted arguments. Functions must return the same value for a
particular set of arguments, and once declared, they can be called from any
stage of a program by passing arguments.

Structure

In this chapter, we will cover the following topics:

¢ C(Creation of the PyFunctionObject

o The LoaD CONST opcode
o The MAKE_FUNCTION opcode

e Function call

o Structure of a function frame

o The cALL FUNCTION opcode

e (Generators

o

Creating a generator

o

Creating an instance of a generator object

(¢]

Structure of the generator object

o

Execution of a generator

(¢]

Execution of the generator code



Objective

After studying this chapter, you will be able to visualize the structure of a
function object in memory. You will be able to understand the lifecycle of a
function call, the creation of a stack frame, and the execution of the
interpreter using the created stack frame. You will also learn the structure of
a generator object in memory and the internal workings of the yield
operation.

Refreshing your knowledge on Python generators if unfamiliar will
help to understand the functioning better.

Creation of the PyFunctionObject

The pyFunctionObject contains all the unchanging attributes of a function
like name, documentation, code object, globals, and so on. A Python
stack frame is created every time the function is called, whereas a
PyFunctionObject IS created once:

Create a file function.py

def sum(a, b):

return a + b

Opcode 7.1

$ python -m dis function.py
1 0 LOAD CONST 0 (<code object sum at
0x10d43e870, file "func.py", line 1>

)
2 LOAD CONST 1 ('sum')
4 MAKE FUNCTION 0
9 STORE_NAME 0 (sum)

The MakE FuNcTION opcode creates the reusable PyFunctionObject, the
structure of which is explained as follows:

Include/funcobject.h (Line no 21)
typedef struct {
PyObject HEAD



PyObject *func code;
attribute */ // -> 1
PyObject *func globals;
won't do) */ // -> 2
PyObject *func_defaults;
PyObject *func_ kwdefaults;
PyObject *func_closure;

*/ // ->5

PyObject *func_doc;
anything */ // -> 6
PyObject *func name;

string object */ // -> 7
PyObject *func dict;

or NULL */ -> 8

PyObject *func_weakreflist;

PyObject *func_annotations;
-> 10

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

A code object, the _ code
A dictionary (other mappings
NULL or a tuple */ // -> 3

NULL or a dict */ // -> 4
NULL or a tuple of cell objects

The _ doc__ attribute, can be
The _ name  attribute, a
The _ dict _ attribute, a dict

List of weak references */ -> 9

Annotations, a dict or NULL */

vectorcallfunc vectorcall; // -> 11

/* Invariant:

* func_closure contains the bindings for func code-

>co_freevars, so

* PyTuple Size (func closure)

PyCode GetNumFree (func code)

* (func_closure may be NULL 1if

PyCode GetNumFree (func code)

*/
} PyFunctionObject;

Code insights are as follows:

0) .

1. The func_code is a pointer to the code object of the function, which
contains the byte code to be executed by the interpreter.

2. The globals pointer contains the dictionary to the global variables,
which can be used by the function.

3. func_defaults pointer contains the pointer to a tuple of values, which
are the default values of arguments to the function.



. The func_kwdefaults pointer contains the pointer to a dictionary of

values, which are the keyword arguments to the function.

. A tuple of cell objects contains the values used by the enclosing

functions.

. The documentation of any of the function.
. The function name.

. All functions contain all the arguments passed as the dict _ of the

function.

. List of weak references to the function.
10.
11.

List of annotations of arguments and return values of the function.

The vectorcall function is used to create a stack of the executing
function and execute the function call.

The LOAD_CONST opcode

The

Python interpreter, being stack-based, uses the Loap coNsT opcode to

add a value to the head of the data stack pointer. The data loaded into the
stack are used by later opcodes, such as the addition of two numbers that
loads two numbers to the stack and calls the BINarY app opcode to use
these values. Opcodes will be covered in detail in Chapter 7 on Interpreter
and Opcodes.

The

following code block explains the implementation of the L.oaD consT

opcode and the BAsIC_PUSH macro:

Python/ceval.c (Line no 1346)

case TARGET (LOAD CONST) : {

}

PREDICTED (LOAD CONST) ;

PyObject *value = GETITEM (consts, oparg);
Py INCREF (value);

PUSH (value) ;

FAST DISPATCH() ;

Python/ceval.c (Line no 988)

#define PUSH (v) BASIC PUSH (V)



#define BASIC_PUSH(v) (*stack _pointer++ = (v))

The preceding code block demonstrates that the object is added to the head
of the stack_pointer. Opcode 7.1 pushes the code object and the name of
the function into the stack.

The MAKE_FUNCTION opcode

The opcode MAKE FUNCTION creates the PyFunctionObject using the
constructor function PyFunction NewWithQualName:

Python/ceval.c (Line no 3571)

case TARGET (MAKE FUNCTION) : {

codeobj = POP();
qualname = POP() ;

PyFunctionObject *func = (PyFunctionObject *)
PyFunction NewWithQualName (codeob]j, f->f globals,
qualname) ;

if (func == NULL) {
goto error;

}

PUSH ( (PyObject *) func);
DISPATCH () ;
}
Code insights are as follows:
The mMake rFuncTION opcode calls the PyFunction NewWithQualName that
takes three parameters:
1. The code object that contains the opcode to be executed for the
function.
2. The global variables.
3. The name of the function to be created.

Objects/funcobject.c (Line no 13)



PyObject* PyFunction NewWithQualName (PyObject *code,
PyObject *globals, PyObject *qualname)

{

PyFunctionObject *op;

op = PyObject GC_New (PyFunctionObject, &PyFunction Type) ;
// > 1
if (op == NULL)

return NULL;

op->func_ weakreflist = NULL;

Py INCREF (code) ;

op->func_code = code; // -> 2

Py INCREF (globals);

op->func_globals = globals; // -> 3

op->func_name = ((PyCodeObject *)code)->co name; // -> 4
Py INCREF (op->func name) ;

op->func_closure = NULL;
op->vectorcall = PyFunction Vectorcall; // -> 5

consts = ((PyCodeObject *)code)->co consts; // -> 6

/* _module : If module name is in globals, use it.
Otherwise, use None. */
module = PyDict GetItemWithError (globals,  name );

if (module) {
Py INCREF (module) ;
op->func_module = module; // -> 7
}

if (qualname)

op—->func_gqualname = qualname;
else
op—>func gqualname = op->func name;

Py INCREF (op->func qualname) ;



_PyObject GC TRACK (op) ;
return (PyObject *)op;
}

Code insights are as follows:

l.

The pyobject GC New (PyFunctionObject, &PyFunction Type) call
allocates memory to the Python function object on the heap.

. Assign the code object to the func code reference in the

PyFunctionObject.

. Assign the globals for usage to the globals reference in the

PyFunctionObject.

. Assign the name to the func_name reference. The name of the function

1s stored in the code object during the compilation phase.

. The vectorcall function creates the stack frame and calls the

interpreter to schedule the frame for execution. This process will be
covered in detail in the next section.

. Assign the co_consts to the reference in the PyFunctionObject.
. Assigns the func_module to the reference in the PyFunctionObject

and derives the same from the globals object.

Function call

The PyFunctionObject, once created, can be called multiple times, passing
different parameters. Each time the function is called, it creates a new
instance of a function frame and is added to the head of the frame stack for
the currently executing thread. Once the execution is completed, the frame
is deallocated, and the previous frame resumes execution.

Structure of a function frame

The following code block explains the structure of a Python frame:

Objects/frameobject.c (Line no 16)

typedef struct frame ({
PyObject VAR HEAD
struct _frame *f back; /* previous frame, or NULL */ -> 1



PyCodeObject *f code; /* code segment */ / -> 2

PyObject *f builtins; /* builtin symbol table
(PyDictObject) */

PyObject *f globals; /* global symbol table (PyDictObject)
*/ / ->3

/* Borrowed reference to a generator, or NULL */

PyObject *f gen;

int £ lasti; /* Last instruction if called */ / -

> 4

/* Call PyFrame GetLineNumber () instead of reading this field
directly. As of 2.3 f lineno is only valid when tracing is
active (i.e. when f trace is set). At other times we use
PyCode Addr2Line to calculate the line from the current
bytecode index. */

int £ lineno; /* Current line number */ -> 5
int f iblock; /* index in f blockstack */
char f executing; /* whether the frame is still

executing */
PyTryBlock f blockstack[CO MAXBLOCKS]; /* for try and loop
blocks */
PyObject *f localsplus[l]; /* localststack, dynamically sized
*/
} PyFrameObject;

Code insights are as follows:
The preceding code describes the following important items, covering the
rest 1s beyond the scope of this book:

1. Pointer to the previous frame in the Python stack frame. Post
execution of the current frame, the thread moves to execute the frame
pointed by £ back.

. Pointer to the code object of the executing Python function.
. Pointer to the global symbol table.
. Pointer to the last instruction executed in the code object.

N bk~ W DN

. Line number currently being executed.



CALL_FUNCTION opcode

Sample Python function that calls the function sum with arguments 10, 20:

Create a file function call.py
def sum(a, b):

return a + b

sum nos = sum(10, 20)
Opcode 7.2
$ python -m dis function call.py
3 0 LOAD CONST 0 (<code object sum at
0x101356870, file "func call.py", line 3>)
2 LOAD CONST 1 ('sum')
4 MAKE FUNCTION 0
6 STORE NAME 0 (sum)
6 8 LOAD NAME 0 (sum)
10 LOAD CONST 2 (10)
12 LOAD CONST 3 (20)
14 CALL FUNCTION 2
16 STORE NAME 1 (sum nos)
18 LOAD CONST 4 (None)

20 RETURN_ VALUE
Disassembly of <code object sum at 0x101356870, file
"func call.py", line 3>:
4 0 LOAD FAST 0 (a)
2 LOAD FAST 1 (b)
4 BINARY ADD

Calling a function invokes the caLn rFuNcTION opcode. Implementation of
the CALL_FUNCTION opcode:

Python/ceval.c (Line no 3496)

case TARGET (CALL FUNCTION) : {
PREDICTED (CALL FUNCTION) ;
PyObject **sp, *res;

sp = stack pointer;



res = call function(tstate, &sp, oparg, NULL);

stack pointer = sp;
PUSH (res) ;
if (res == NULL) {

goto error;
}
DISPATCH() ;

}

The tracing of the call function runs into several stages, but it internally
calls the _PyFunction Vectorcall function, which handles stack frame

creation and passing into the interpreter:

PyObject * PyFunction Vectorcall (PyObject *func,
PyObject* const* stack,
size t nargsf,

PyObject *kwnames)

PyCodeObject *co = (PyCodeObject *)PyFunction GET CODE (func);
PyObject *globals PyFunction GET GLOBALS (func);
PyObject *argdefs = PyFunction GET DEFAULTS (func);

kwdefs = PyFunction GET KW DEFAULTS (func) ;

closure = PyFunction GET CLOSURE (func) ;

name = ((PyFunctionObject *)func) -> func name;
qualname = ((PyFunctionObject *)func) -> func qualname;

return _PyEval EvalCodeWithName ( (PyObject*)co, globals,
(PyObject *)NULL, stack, nargs ..); // -> 1
}

Python/ceval.c (line no 4045)

PyObject* PyEval EvalCodeWithName (PyObject * co, PyObject
*globals, PyObject ..)

{
PyCodeObject* co = (PyCodeObject*) co;



PyFrameObject *f;

/* Create the frame */
f = PyFrame New NoTrack(tstate, co, globals, locals); // -> 2
if (£ == NULL) {

return NULL;

}
fastlocals = f£->f localsplus;
freevars = f->f localsplus + co->co nlocals;

retval = PyEval EvalFrameEx(£,0); // -> 3
fail: /* Jump here from prelude on failure */

else {
+t+tstate->recursion depth;
Py DECREF (f);
--tstate->recursion_ depth;

}

return retval;

}
Code insights are as follows:

1. Call the interpreter function to indicate the execution of the function
call.
2. Creation of the stack frame for execution of the function call.

3. Calls the main interpreter code interprets the opcode of the function
one after the other. The execution of the opcodes by the interpreter is
covered in the Chapter 7 on Interpreter and Opcodes.

Generators

Generators are special functions whose execution can be stopped in-
between using the yield keyword and can be re-invoked to continue
execution. The concept used in Python to implement generators is to halt




the function frame, which contains the current line number and opcode of
execution. When the next function 1s called to continue execution, this
saved state resumes operations from the point, it left off.

Creating a generator

Sample Python code to create a generator that yields values from o0 to 10:

def create gen():
for i in range (0, 10):
yield 1
2 0 LOAD CONST 0 (<code object
create gen at 0x10£70d870, file "create generator.py", line
2>)
LOAD CONST
MAKE FUNCTION

2 ('create gen')
4

6 STORE_ NAME

8

1

(create gen)

N O O

LOAD CONST (None)

0 RETURN_VALUE

Disassembly of <code object create gen at 0x10£70d870, file

"create generator.py", line 2>:

3 0 LOAD GLOBAL 0 (range)
2 LOAD CONST 1 (0)
4 LOAD CONST 2 (10)
6 CALL FUNCTION 2
8 GET ITER
>> 10 FOR _ITER 10 (to 22)
12 STORE FAST 0 (i)

The Make FuNcTION opcode uses the compiler flag to denote the type being
a generator. Although normal function calls invoke the interpreter when
called, the generator functions return an instance of the pyGenobject. More
about this is covered in the upcoming sections on generator instances and
invoking them.

The following code object indicates the compiler adding the co GENERATOR
flag:



Python/compile.c (line no 5810)

PySTEntryObject *ste = c->u->u ste;
int flags = 0;

if (ste->ste type == FunctionBlock) {

flags |= CO_NEWLOCALS | CO OPTIMIZED;

if (ste->ste nested)
flags |= CO_NESTED;

if (ste->ste_generator && !ste->ste_coroutine)
flags |= CO_GENERATOR;

if (!ste->ste generator && ste->ste coroutine)
flags [= CO_COROUTINE;

Covering how the compiler creates the Abstract Syntax Tree (AST) is
beyond the scope of this book. However, the flag in the code object is used
while creating the stack frame for the generator.

Creating an instance of a generator object

Generators, although similar to functions, require an instance to handle the
execution of the opcodes within them. Multiple instances of the generator
instances can be created with each at different execution stages.

def create gen():
for 1 in range (0, 10):

yield 1
gen_obj = create gen()
next (gen obj)

2 0 LOAD CONST 0 (<code object
create gen at 0x1096al870, file "gen call.py", line 2>)

2 LOAD CONST 1 ('create gen')
4 MAKE FUNCTION 0
6 STORE NAME 0 (create gen)

6 8 LOAD NAME 0 (create_gen)
10 CALL FUNCTION 0 // -> 1

12 STORE NAME 1 (gen_obj)



7 14 LOAD NAME 2 (next)

16 LOAD NAME 1 (gen_obj)
18 CALL FUNCTION 1 // -> 2
20 POP_TOP

22 LOAD CONST 2 (None)

24 RETURN VALUE

Disassembly of <code object create gen at 0x1096al870, file
"gen call.py", line 2>:

3 0 LOAD_ GLOBAL 0 (range)
2 LOAD CONST 1 (0) // -> 3
4 LOAD CONST 2 (10)
6 CALL FUNCTION 2
8 GET_ITER
>> 10 FOR_ITER 10 (to 22)
12 STORE_FAST 0 (i)
4 14 LOAD FAST 0 (i)
16 YIELD VALUE
18 POP_TOP
20 JUMP ABSOLUTE 10
>> 22 LOAD CONST 0 (None)

24 RETURN VALUE

This opcode is used in all the following explanations referred to as the
Gen Opcode Sample.

A generator object can be created by calling the function. The following
code explains the difference between a routine function call and a
generator:

Python/ceval.c (line no 4044)

PyObject *
_PyEval EvalCodeWithName (PyObject * co, PyObject *globals,
PyObject *locals,

PyObject *const *args, Py ssize t argcount,

Py ssize t kwcount, ...)



/* Create the frame */
f = PyFrame New NoTrack(tstate, co, globals, locals); // -> 1
if (£ == NULL) {
return NULL;
}

Python/ceval.c (line no 4272)

/* Handle generator/coroutine/asynchronous generator */
if (co->co_flags & (CO_GENERATOR | CO_COROUTINE |
CO_ASYNC_GENERATOR)) {// -> 2

PyObject *gen;

int is _coro = co->co_flags & CO _COROUTINE;

gen = PyGen NewWithQualName (f, name, qualname); // -> 3
}

_PyObject GC_TRACK (f);
return gen; // -> 4

}
retval = PyEval EvalFrameEx(f,0); // -> 4

fail: /* Jump here from prelude on failure */

Code insights are as follows:

1. Creation of a new stack frame is created for a regular function call.

2. The co_ceENERraTOR flag, as discussed in the previous section, was
added at compile time.

3. A new instance of a Python generator object is created with the newly
created stack frame.

4. The code for the frame is not executed by the interpreter as in the
previous section, but the newly created generator object has been
returned.

Structure of the generator object




The section covers the structure of the generator object and its attributes
and how an executing frame is stopped in between execution when yielded:

#define PyGenObject HEAD (prefix) \
PyObject HEAD \
/* Note: gi frame can be NULL if the generator is "finished"
*/ \
struct _frame *prefix## frame; \ // >1
/* True if generator is being executed. */ \
char prefix## running; \
/* The code object backing the generator */ \
PyObject *prefixi#i# code; \ // > 2
/* List of weak reference. */ \
PyObject *prefix## weakreflist; \
/* Name of the generator. */ \ /
PyObject *prefix## name; \
/* Qualified name of the generator. */ \
PyObject *prefix## qualname; \
_PyErr StackItem prefix## exc state;

typedef struct {
/* The gi_prefix is intended to remind of generator-iterator.
*/ /] =>4

_PyGenObject HEAD (gi)

} PyGenObject;

Code insight are as follows:

1. The stack frame contains the function code that will be executed from
the point it left off.

2. The code object will be executed, although it is primarily stored only
for reference.

3. The name of the generator will be the name of the assigned variable.

4. The expansion of the macro into the actual generator structure of the
PyGenObject. The macro is also used for AsyncGenObject and
AsyncIterGenObject, which internally use generators to create
coroutines that await until the completion of execution of the awaited
function. Asynchronous programming in Python is covered in Chapter
9 on Async Programming.




Execution of a generator

The created generator instance 1s inert until the next function is called on it
that starts executing the stack frame until yielding a value from the
function:

From Gen Opcode Sample
7 14 LOAD NAME 2 (next)
16 LOAD NAME 1 (gen obj)
18 CALL FUNCTION T /77 > 2

The logic to enter and yield from the generator frame is handled by the next
function; the declaration and implementation of which is contained in the
following code:

Python/bltinmodule.c (Line no 2739)

{"next", (PyCFunction) (void(*) (void))builtin next,
METH_FASTCALL, next_doc}

Python/bltinmodule.c (Line no 1373)

static PyObject* builtin next (PyObject *self, PyObject *const
*args, Py ssize t nargs)
{

PyObject *it, *res;

res = (*it->ob_type->tp iternext) (it); // -> 1

if (res != NULL) {
return res;

}

PyErr SetNone (PyExc_StopIteration); // -> 2
return NULL;

}

Code insights are as follows:



1. The function calls the tp_iternext function with the generator as the
argument. The implementation of the same will be discussed in the
next code section.

2. The stopIterationException is raised indicates the completion of
execution of the generator.

Objects/genobject.c (Line no 153)

static PyObject* gen send ex(PyGenObject *gen, PyObject
*arg, int exc, int closing)

{

f->f back = tstate->frame; // -> 1

gen->gi_ running = 1; // -> 2
gen->gi_exc_state.previous_item = tstate->exc_info; // ->
3

tstate->exc_info = &gen->gi_exc_state; // -> 4

result = PyEval EvalFrameEx(f, exc); // -> 5
tstate->exc_info = gen->gi_exc_state.previous_item; // ->
6

gen->gi_exc_state.previous_item = NULL;

gen->gi_ running = 0; // -> 7

/* Don't keep the reference to f back any longer than
necessary. It

* may keep a chain of frames alive or it could create a
reference

* cycle. */

assert (f->f back == tstate->frame);

Py CLEAR(f->f back);

return result;
}
Code insights are as follows:

1. Mark the current frame being executed on the thread as the frame
behind the generator before executing it.



. Mark the generator currently running before starting/continuing the

execution.

. Copy the current exception in the stack to the previous_item in the

generator exception stack.

. Copy the current exception stack of the generator frame to the

currently executing thread state.

. Start interpreting the generator stack frame until the function yields a

value or raises the StopIterationException.

. Replace back the thread state with the previous thread state

information before executing the generator.

. Set the generator flag to not run at the current state.

Execution of the generator code

As explained previously, the execution of the generator function is started
by the interpreter, and the function code is executed until the point of
raising the StopIterationException.

From
3

Gen Opcode Sample
0 LOAD GLOBAL 0 (range)
2 LOAD CONST 1 (0)
4 LOAD CONST 2 (10)
6 CALL FUNCTION 2
8 GET ITER
>> 10 FOR_ITER 10 (to 22)
12 STORE FAST 0 (i)
4 14 LOAD FAST 0 (i)
16 YIELD VALUE
18 POP_TOP
20 JUMP_ ABSOLUTE 10
>> 22 LOAD CONST 0 (None)

24 RETURN VALUE

The preceding opcode highlighted contains the following information:

l.

The sTore_FasT opcode assigns the value from the range function to
the variable i.



2. The roap_rasT opcode adds the value to the top of the stack pointer to
be used by the YIELD VALUE opcode.

The following code block explains the working of the yIELD VALUE opcode:
Python/ceval.c (Line no 2082)

case TARGET (YIELD VALUE): {
retval = POP(); // > 1

f->f stacktop = stack pointer;
goto exit yielding; // -> 2
}

Python/ceval.c (Line no 3793)

exit yielding:

/* pop frame */
exit eval frame:
if (PyDTrace FUNCTION RETURN ENABLED())
dtrace function return (f);
Py LeaveRecursiveCall();
f->f executing = 0; // -> 3
tstate->frame = £->f back; // -> 4
return _Py CheckFunctionResult (NULL, retval,
"PyEval EvalFrameEx"); // -> 5
}

The code insights are as follows:

1. Pop the value from the top of the stack that was loaded previously
using the Loap FAsT opcode and assign it to the variable retval that is
the value returned from the interpreter.

2. Go to completion of yield is similar to exiting a function.
3. Mark the frame as not being executed currently.

4. Assign the frame to be executed next as the frame behind the
generator in the function frame stack.

5. Return the value retval from the interpreter.



At this stage, the function is not executed completely, but the frame is held
in execution at a particular opcode. When the next function is called again
on the same generator instance, the interpreter uses this saved state to start
execution at exactly the same opcode until it either yields a value again or
raises the stopIterationException, which marks the generator instance as
completed.

Conclusion

This chapter has covered the internals of function creation and storage in
the PyFunctionObject, which contains the code, name of the function, and
other information, which is then added to a stack frame when calling the
function. The storage structure of the PyFunctionObject and the
PyFrameObject, Which executes the function call, was also executed.

The creation of the generator and how it differs from a normal function and
the flags added at compile time helps create the generator instance. The
structure of the PyGenObject, which contains a pointer to the stack frame,
that is, stopped when yielding and continues back using the saved state. The
implementation of the next function and how it resumes the execution of
the generator instance.

The next chapter covers the basics of memory management in Python as
arenas, which are pre-allocated pools of memory, and how pools are carved
from it on a per request basis. The structure of the pool table and how
objects get memory from these pools are created for a particular size of
memory is also covered.



CHAPTER 6

Memory Management

n the previous chapter, we covered functions and generators and the
similarities and differences between them. Function calls and
arrangement of function frames in the thread stack were also covered.

Understanding the memory management of a system can help developers
resourcefully choose data management to develop optimized programs. For
example, Python requests memory greater than 572 bytes from the
operating system, whereas anything lesser is handled using pre-allocated
chunks. This can helps choose data structures sizes efficiently to avoid the
higher time required to fetch memory chunks from the operating system. In
some cases, the degradation in program performance may be due to
frequent memory allocations from the operating system.

Structure

In this chapter, we will cover the following topics:

e Memory management overview

e Arenas

o Arena memory management
o Arena memory allocation

o Arena memory deallocation
e Memory pools

o Structure of a memory pool
e Memory allocation for objects

o Pool table
o Allocation lesser than SMALL REQUEST THRESHOLD



Objective

After studying this chapter, you will be able to understand the memory
management layout of Python using arenas, the lifecycle of arena objects,
the division of arenas into memory pools, and allocating user memory
based on the requested memory sizes from predefined chunk pools. You
will also learn about the memory allocation for sizes lesser than or greater
than the prescribed threshold.

Memory management overview

Memory leaks are common in programs where the developer does not free
memory after usage. Such programming errors might lead to severe
complications in machine critical programs such as healthcare operating
systems and satellites. Programming languages such as Python handle
memory allocation on behalf of the programmer and take the responsibility
of freeing it when not used. Python creates an internal memory map called
arenas to save frequent requests to the operating system for memory. This
section primarily covers the internal memory management layout on the
division of memory into arenas and its division into pools.

The primary unit of the Python memory chunk is called an arena. Arenas
are pre-allocated memory chunks the size of which can be configured.

Code block explaining the size of an arena is as follows:

Objects/obmalloc.c (Line no 908)
#define ARENA STZE (256 << 10) /* 256KB */

The code block indicates that the default size of an arena is 256 KB.
Further, each arena is divided into pools, each of 4 KB in size:

Objects/obmalloc.c (Line no 908)

#define POOL SIZE SYSTEM PAGE SIZE /* must
be 2"N */
#define POOL SIZE MASK SYSTEM PAGE SIZE MASK

Objects/obmalloc.c (Line no 883)

#define SYSTEM PAGE SIZE (4 * 1024)
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Figure 6.1: Python memory management as arenas divided into pools

The pools are further divided into classes based on the size of the
requested memory. The size from 1 to 8 bytes is categorized as class 1,
8-16 bytes as class 2, and so on until 504-512 bytes, which is class 64.
Any memory requested for more than 512 bytes is provided through
system calls.

Arenas

An arena i1s a wrapper to a pointer to a large memory location. Pools are
virtual memory segments within an arena and are carved out on
requirements for allocation:

Objects/obmalloc.c (Line no 951)

struct arena object ({

/* The address of the arena, as returned by malloc. Note that
0

* will never be returned by a successful malloc, and is used



* here to mark an arena_object that doesn't correspond to an
* allocated arena.

*/
uintptr t address; // -> 1

/* Pool-aligned pointer to the next pool to be carved off. */
block* pool address; // -> 2

/* The number of available pools in the arena: free pools +
never-

* allocated pools.

*/

uint nfreepools;
/* The total number of pools in the arena, whether or not

available. */
uint ntotalpools;

/* Singly-linked list of available pools. */
struct pool header* freepools; // -> 3

struct arena_object* nextarena;
struct arena_object* prevarena; // -> 4

}i
Code insights are as follows:

1. The allocated memory is assigned to the address pointer.
2. The current pool from which memory can be provided from the arena.

3. The pointer to all the free pools that have memory unassigned in the
arena.

4. The pointers to the doubly linked list of the unassigned arenas.

Arena memory management

The raw memory allocator of Python creates arenas of size 256 KB using
system calls like mmap on Unix and UNIX-based systems. Covering the
entire process of memory allocation and freeing for arenas though
interesting, is beyond the scope of this book. This section will focus only on




the basics of memory allocation and deallocation to arenas in UNIX/UNIX-
like systems while leaving the rest to the curiosity of the readers.

For more information on the allocation of arenas, the creation of the
usable and unused arena lists refers to the developer documentation
in the file objects/obmalloc.c.

Arena memory allocation

The following code block shows memory allocation for arenas:

Objects/obmalloc.c (line no 1285) -> 1

address = _PyObject Arena.alloc(_PyObject Arena.ctx,
ARENA SIZE) ;

Objects/obmalloc.c (line no 434) -> 2

static PyObjectArenaAllocator PyObject Arena = {NULL,

#elif defined (ARENAS USE MMAP)
_PyObject_ ArenaMmap, _PyObject ArenaMunmap
i
Objects/obmalloc.c (line no 146) -> 3
static void *
_PyObject ArenaMmap (void *ctx, size t size)
{
void *ptr;
ptr = mmap (NULL, size, PROT_READ|PROT WRITE,
MAP PRIVATE |MAP ANONYMOUS, -1, 0); // -> 3

return ptr;

}

Code insights are as follows:



1. Arenas requests memory using a special memory allocator called the
PyObject Arena.

2. On UNIX / UNIX-like systems, this is routed to the system call mmap
that requests for memory from the operating system. Other systems
rely on malloc and Microsoft Windows OS-based systems that use the
Virtualalloc system call.

3. Request for size bytes from the operating system, which is both
readable and writable from. The requested memory is private to this
assigned process, and the anonymous flag indicates that the data will
always remain in memory and not backed by any file as indicated by
the next argument -1, which is the file descriptor.

Arena memory deallocation

An arena is cleared from memory when all pools return to the free state.
This method is called during object deallocation on a pool in an arena
where all pools are free:

Objects/obmalloc.c (Line no 1802) -> 1

_PyObject Arena.free( PyObject Arena.ctx,
(void *)ao->address, ARENA SIZE);

Objects/obmalloc.c (line no 434) -> 2
static PyObjectArenaAllocator PyObject Arena = {NULL,
#elif defined (ARENAS_ USE_MMAP)
_PyObject ArenaMmap, _PyObject ArenaMunmap
};
Objects/obmalloc.c (line no 158) -> 3

static void PyObject ArenaMunmap (void *ctx, void *ptr, size t
size)

{

munmap (ptr, size);

}



Code insights are as follows:

1. Arenas free its memory using the special memory deallocator called
thePyObject_Arena.

2. On UNIX/UNIX-like systems, this is routed to the system call
munmap, Which frees up the memory directly from the operating
system. Other systems either use the free C standard library function,
whereas Microsoft Windows OS-based systems use the virtualFree
system call.

3. Return the used memory from the process to the operating system
using the munmap system call.

Memory pools

An arena (default 256 KB) is divided into pools of 4 KB memory. The
memory required for a Python object is carved from pools based on the size
requirements of the objects. The sizes between 1 byte to 8 bytes are referred
to as class 0, between 9 and 18 bytes are called class 1, and so on. As stated
previously, the maximum requested size of memory is 512 bytes, referred to
as class 64.

The following code block describes the division of arenas to pools:

Objects/obmalloc.c (Line no 919)
##define MAX POOLS IN ARENA (ARENA SIZE / POOL_SIZE) -> 1

Code insight is as follows:
1. The number of pools in an arena can be a maximum of 256 / 4 = 64

pools, each of 4 KB in size.

Structure of a memory pool

A memory pool is a virtual segment of memory with an arena. A pool is
assigned to a size class, and a pointer always points at the head of the pool
of free memory to assign the next block of memory to the request:

Objects/obmalloc.c (Line no 933)

struct pool header {

union {block * padding;



uint count;} ref; /* number of allocated blocks x/ -
> 1

block *freeblock; /* pool's free list

head */ => 2

struct pool header *nextpool; /* next pool of this size
class */ -> 3

struct pool header *prevpool; /* previous pool

mn */ =>4

uint arenaindex; /* index into arenas of base
adr */ -> 5

uint szidx; /* block size class

index */ -> 6

uint nextoffset; /* bytes to virgin block */
uint maxnextoffset; /* largest valid nextoffset */

}i

Code insights are as follows:

1.
2.

The number of allocated blocks in the pool.

A free block pointer points to an 8-bit address of an integer (small int).
Every time memory is requested for an object, the freeblock pointer
moves by the block class size, and the previous value of the
freeblock pointer is assigned to the requesting allocation. We will
cover this in the coming subsection on used pools and allocation.

. The nextpool pointer points to the pool of the same size class. Once

the memory allocation is completed on the pool, the allocation is
started in the nextpool of the size class, and the current pool is
unlinked for allocations.

4. The prevpool pointer points to the pool of the same size class.

6.

. The arenaindex indicates the arena number in which the current pool

resides.
The szidx indicates the block class size.

Division of arena into memory pools internally storing objects of different
sizes.

Memory allocation for objects




When an object requests for memory from the Python memory allocator for
any size, it is rounded off to the next higher power of 2. Example: When an
object requests /7 bytes, the allocator allocates /6. This is done to support
easier division of the pool memory and ensure byte alignments of all
objects.

Pool table

The pool table contains the link to all pools of a particular size class. Each
element in the pool table contains a pointer to a doubly-linked list to all
pools in the size class. Pools with free memory are added to the table for
allocation and removed once the pool is completely allocated:



Objectt || Object2 || Object 3 Object 4
Object5 || Object6 || Object7 Object 8
¥

prevpool
Object 1 Object 2
Object 3 Object 4
nextpool
L ]
Object 1
Object 2
Arena

Figure 6.2: Layout of Objects within pools of different sizes in the arena

The following code block depicts the structure of the poo1l table:

Objects/obmalloc.c (Line no 1102)



#define PTA (x) ((poolp) ((uint8 t *) & (usedpools[2*(x)]) -
2*sizeof (block *)))
#define PT (x) PTA (x), PTA (x)

static poolp usedpools[2 * ((NB SMALL SIZE CLASSES + 7) / 8) *
8] = {

PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
#if NB_SMALL SIZE CLASSES > 8

, PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(1l5)
#if NB_SMALL SIZE CLASSES > 16

, PT(lo), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22),

PT (23)
#if NB SMALL SIZE CLASSES > 24

, PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30),

PT (31)
#if NB_SMALL SIZE CLASSES > 32

, PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38),

PT (39)

#error "NB SMALL SIZE CLASSES should be less than 64"

I

Code insight is as follows:
Objects/obmalloc.c (line no 1002)
/* Python Documentation Starts */

Pool table -- headed, circular, doubly-linked lists of
partially used pools.

For an index i, usedpools[i+i] is the header for a list of

all partially used pools holding small blocks with "size class
idx" i. So usedpools[0] corresponds to blocks of size 8,
usedpools[2] to blocks of size 16, and so on: index 2*i <->
blocks of size (i+1)<<ALIGNMENT SHIFT.

Pools are carved off an arena's highwater mark (an

arena object's pool address member) as needed.



/* Python Documentation Ends */
A memory pool will be in one of the following states:

e Used: Pool contains space for allocation and has been allocated for
objects at least once.

e Full: All blocks in the pool are completely allocated, and the pool is
removed from the usedpool linked list as no space is available for
allocation.

 Empty: All blocks in the pool are free, and the space is added back to
the head of free pools in the usedpoo1l linked list.

Allocation lesser than SMALL _REQUEST THRESHOLD

Memory allocation to objects requesting memory from the python memory
allocator calls the function pymalloc alloc, which handles creating arenas
when unavailable, carving pools of memory from arenas when no free pools
are available, and allocation of memory blocks. Covering this function in
depth is beyond the scope of this book; however, the highlights are
explained as follows in brief:

Objects/obmalloc.c (Line no 1424)

static void* pymalloc_alloc(void *ctx, size t nbytes) // -> 1
{

if (nbytes > SMALL REQUEST THRESHOLD) { // -> 2
return NULL;
}

size = (uint) (nbytes - 1) >> ALIGNMENT SHIFT; // -> 3
usedpools[size + size]; // -> 4

pool
if (pool != pool->nextpool) {
++pool->ref.count;

bp = pool->freeblock; // -> 5
assert (bp != NULL);

if ((pool->freeblock = *(block **)bp) != NULL) {



goto success;

}

if (pool->nextoffset <= pool->maxnextoffset) {// -> 6

/* There is room for another block. */
pool->freeblock = (block*)pool + pool->nextoffset;
pool->nextoffset += INDEX2SIZE (size) ;

* (block **) (pool->freeblock) = NULL;

goto success;

}

/* Pool is full, unlink from used pools. */ // -> 7
next = pool->nextpool;
pool = pool->prevpool;
next->prevpool = pool;
pool->nextpool = next;

goto success;

if (usable arenas == NULL) ({

/* No arena has a free pool: allocate a new arena.
usable arenas = new arena(); // -> 8

init pool:
/* Frontlink to used pools. */
next = usedpools|[size + size]; /* == prev */
pool->nextpool = next;
pool->prevpool = next; // -> 10
next->nextpool = pool;
next->prevpool = pool;

pool->ref.count = 1;

/* Carve off a new pool. */

*/



pool = (poolp)usable arenas->pool address; // -> 9

assert ((block*)pool <= (block*)usable arenas->address +
ARENA SIZE - POOL_SIZE);

pool->arenaindex = (uint) (usable arenas - arenas);

goto init pool:

success:
assert (bp != NULL);
return (void *)bp; // -> 11

Code insights are as follows:

l.

10.

11.

The pymalloc alloc function takes two parameters, the pointer to
debugging context if in debug mode and the requested memory size.

. If the request size is greater than the threshold return NuLL indicating

the allocator to request memory using malloc.

. Align the size required to the next higher power of 2. Example: If the

request is for 5 bytes, the allocator returns § bytes.

. Fetch the pool corresponding to the requested memory size class.
. Obtain the block of memory from the pool. The freeblock pointer

holds the current block to be assigned in the pool.

. Forward the freeblock pointer to the next block in the pool, which

can be assigned to the next allocation for the size class.

. Unlink the pool from the pool table once full. The pointer is removed

from the doubly-linked list for the requested size class.

. When all the arenas are consumed by allocations, create a new arena,

and start assigning memory from it.

. Carve a new pool from an arena when none are found for the

requested size class.

Link the created pool into the pool table using the forward and reverse
pointers in the pool.

Return the allocated memory block for usage to the requesting object.



Conclusion

This chapter covered the details about Python memory management for
objects following a particular size threshold. The memory manager is
divided into arenas that are pre-allocated using the operating system calls.
Each arena is further split into pools for a particular size class, depending
on the request. We also studied the pool table and how it contains a linked
list of all pools for a size class. Finally, we covered memory allocation,
creation of arenas, and creation of memory pools from arenas.

The upcoming chapter covers the structure of the interpreter and the
different opcodes. We will also cover the implementation of a few key
opcodes and the design of the stack-based interpreter.

Reader exercises

1. Analyze the workings of the pymalloc free function to understand
how the memory chunks are returned back to the allocated pools.

2. Analyze the flow when the requested memory is greater than
SMALL THRESHOLD SIZE.



CHAPTER 7

Interpreter and Opcodes

n the previous chapter, we covered memory allocation and how Python
distributes its memory into arenas and sub-divides them into pools. The
pools are further divided into blocks of a particular size class.

The Python interpreter is stack-based and executes the opcodes generated
by the compiler with the arguments given by the user. Understanding
interpreter execution is key to understanding concepts, such as thread state,
the function stack frame, creation and management of types, iterables,
functions, classes, and so on. Threads acquire and relinquish the GIL in the
interpreter loop while executing instructions. Generated by the compiler,
opcodes define the basic possible functionalities in Python. This chapter
covers the definition of opcodes and the execution of the same by the
interpreter.

Structure

In this chapter, we will cover the following topics:

e Opcodes
o Python interpreter stack opcodes

= Interpreter stack

= Stack operation opcodes

= Numerical operation opcodes
= Matrix operation opcodes

= [terable opcodes

= Looping opcodes

= Branching opcodes

e Implementation of the interpreter



o Opcode prediction
o Opcode dispatching and the GIL
= Dispatch using computed go-tos
= Dispatch without computed go-tos

e Signal handling

o Initializing signal handlers
o Listening to signals
o Signals and the interpreter

Objectives

After reading this chapter, you will be able to understand the internal
workings of the interpreter and the execution optimizations using branching
dispatches.

Opcodes

Opcodes define the functional set of a programming language. Each
language defines its master set of opcodes and has a compiler to generate it.
Interpreted languages such as Python contain a virtual machine (also known
as interpreter) to execute the generated opcodes, whereas compiled
languages such as C++ generate the machine-specific opcodes to be
executed on the CPU. Covering the entire set of opcodes of Python is
beyond the scope of this book, but an overview of opcode types is described
in the following sections. Python 3.8 contains /2] opcodes, each
performing a specific function.

The following code block defines a few opcodes from the opcode set:
Include/opcode.h (Line no 10)
#define POP_TOP

#define ROT_TWO
#define ROT_ THREE

The preceding code block explains the following:



1. Each opcode has a name (pop_ToP) and a unique identifier (1) to
identify its execution by the interpreter.

Python interpreter stack opcodes

Understanding the structure and management of the Python interpreter stack
forms the basis for all opcodes that rely on it to manage data in transit.

Interpreter stack

The interpreter stack is a pointer to a stack of Pyobjects, which are
arranged one on top of the other. The stack being generic in nature, can
store objects of all types.

e The following code block shows the structure of the interpreter stack
frame:

Python/ceval.c (Line no 750)
_PyEval EvalFrameDefault (PyFrameObject *f, int throwflag)
{
#ifdef DXPAIRS
int lastopcode = 0;
fendif
PyObject **stack pointer; /* Next free slot in value
stack */

The highlighted code block shows the interpreter stack as a list of
PyObjects on which stack operations are performed.

e The following code block shows the operations on the interpreter stack
frame:

Python/ceval.c (Line no 950)
#define STACK LEVEL () ((int) (stack pointer - f-
>f valuestack))

e The stack level is used while unwinding the stack frames during
exception handling:

#define EMPTY () (STACK_LEVEL () == 0)



The macro checks the size of the stack and indicates if it is empty.
#define TOP() (stack pointer[-1])

The macro returns the value at the top of the stack. The macro is used
to read the value and retain the data on the top of the stack:

#define SECOND () (stack pointer[-2])
#define THIRD() (stack pointer[-3])
#fdefine FOURTH () (stack pointer[-4])

The macros return the value at the second, third, and fourth positions
from the top of the stack. The macro is used to read the value and also
retain the data at the respective positions:

#define PEEK (n) (stack pointer[-(n)])

The macros return the value at the n?* position from the top of the
stack. The macro is used to read the value and also retain the data at
the respective position:

#define SET TOP (V) (stack pointer[-1] = (v))

The macros set the value at the top of the stack. The macro is used
when the value must be replaced instead of placing it above the
current value at the top of the stack:

#define SET SECOND (v) (stack pointer[-2] = (v))
#define SET THIRD (V) (stack pointer[-3] = (v))
#define SET FOURTH (V) (stack pointer[-4] = (v))

The macros set the value at the second, third, and fourth positions of
the stack. The macro is used when the value must be replaced instead
of placing it above the mentioned position from the top of the stack:

#define SET VALUE (n, V) (stack pointer[-(n)] = (v))

The macros set the value at the n? position from the top of the stack.
The macro is used when the value must be replaced instead of placing
it above the mentioned position from the top of the stack:

#define BASIC STACKADJ (n) (stack pointer += n)
#define BASIC PUSH(v) (*stack pointer++ = (v))
#define BASIC POP () (*--stack pointer)



The macros set and remove the value at the top of the stack. The
macros form the core functioning of the stack frame.

Stack operation opcodes

User programs consume the function stack for operations such as tuple
creation, calling a function, creating a function, and so on. The Python
opcodes set has a few for operations function that has stack pointer
operations:

#define LOAD CONST 100

The roap consT opcode loads a particular constant value to the function
stack pointer. The loaded constant value is loaded to be processed by an
opcode that precedes the loading value.

The following code block demonstrates the implementation of the
LOAD_CONST opcode:

Python/ceval.c (Line no 1346)

case TARGET (LOAD CONST) : {
PREDICTED (LOAD CONST) ;
PyObject *value = GETITEM(consts, oparg); // -> 1
Py INCREF (value) ;
PUSH (value); // > 2
FAST DISPATCH() ;
}

Code insights are as follows:

1. Fetch the value from the constants dictionary created by the compiler.
2. Push the value onto the top of the stack, the implementation of which
has been covered in the previous section.
#define POP TOP 1
The porp_top opcode returns the constant value at the top of the function
stack pointer and subsequently removes it.

The following code block demonstrates the implementation of the pop_Top
opcode:



Python/ceval.c (Line no 1361)

case TARGET (POP _TOP) : {
PyObject *value = POP(); // -> 1
Py DECREF (value) ;
FAST DISPATCH () ;

}

Code insight is as follows:

1. Pop the value at the top of the function stack, the implementation of
which we have discussed in the previous section.

#define ROT_TWO 2
The roT_TWO Opcode swaps the places of the top two values in the function
stack pointer.
The following code block demonstrates the implementation of the roT Two
opcodes:

Python/ceval.c (Line no 1367)

case TARGET (ROT_TWO) : {
PyObject *top = TOP(); // -> 1
PyObject *second = SECOND(); // -> 2
SET TOP(second); // -> 3
SET_SECOND (top) ; // -> 4
FAST DISPATCH() ;
}

Code insights are as follows:

1. Fetch the value from the top of the stack.

2. Fetch the second value from the top of the stack.

3. Set the value at the second position to the top of the stack.

4. Set the value previously at the top of the stack to the second place
from the top of the stack.

The opcodes rRoT_THREE and ROT_FOUR are similar in operation to ROT TWO,
and hence the implementation is skipped in this section, whereas the readers
are highly encouraged to examine the implementation of the same:



#define DUP TOP 4

The pup_top opcode duplicates the value at the top of the stack pointer and
places a copy at the top of the stack pointer:

Python/ceval.c (Line no 1397)

case TARGET (DUP_TOP) : {
PyObject *top = TOP(); // -> 1
Py INCREF (top)
PUSH(top); // -> 2
FAST DISPATCH() ;
}

Code insights are as follows:

1. Fetch the current value at the top of the stack.
2. Duplicate it by pushing it at the top of the stack.

#define DUP TOP 4

The pup_top_Two opcode duplicates the top two values at the top of the
stack pointer and places a copy of both at the top of the stack pointer:

Python/ceval.c (Line no 1397)

case TARGET (DUP_TOP TWO) : {
PyObject *top = TOP(); // ->1
PyObject *second = SECOND(); // -> 2
Py INCREF (top) ;
Py INCREF (second) ;
STACK_GROW (2) ;
SET_TOP(top); // -> 3
SET_ SECOND (second) ; // -> 4
FAST DISPATCH() ;
}

Code insights are as follows:

1. Fetch the current value at the top of the stack as the variable top.
2. Fetch the second value at the top of the stack as the variable second.



3. Duplicate top by pushing it to the top of the stack.

4. Duplicate second by pushing it to the second value from the top of the
stack.

Numerical operation opcodes

Numerical operations are among the most common operations performed in
any program. This section covers arithmetic operations and also their in-
place implementations.

The following code block demonstrates the implementation of BINARY ADD
opcode:

#define BINARY ADD 23
Python/ceval.c (Line no 1543)

case TARGET (BINARY ADD): {
PyObject *right = POP() ;
PyObject *left = TOP(); // -> 1
PyObject *sum;

if (PyUnicode CheckExact (left) &&
PyUnicode CheckExact (right)) {

sum = unicode_concatenate(tstate, left, right, £,
next instr); //->2

}

else {
sum = PyNumber Add(left, right); // -> 3
Py DECREF (left);

}

Py DECREF (right);

SET TOP(sum); // -> 4

if (sum == NULL)
goto error;
DISPATCH(() ;

}

Code insights are as follows:



1. Fetch the arguments from the top of the stack.

2. If both the arguments to the opcode are strings, use the string
concatenation operation to compute the joint string.

3. Call the C function PyNumber add to compute the sum of the two
numerical opcodes. Note, this function also internally can handle the
concatenation of lists, sets, and all types that support the + operator.

4. Set the computed value at the top of the stack.

The following code block demonstrates the implementation of the
BINARY SUBTRACT opcode:

#define BINARY SUBTRACT 24
Python/ceval.c (Line no 1543)

case TARGET (BINARY SUBTRACT) : {
PyObject *right = POP() ;
PyObject *left TOP(); // -> 1
PyObject *diff = PyNumber Subtract(left, right); // -> 2
Py DECREF (right);
Py DECREF (left);
SET TOP(diff); // -> 3
if (diff == NULL)
goto error;
DISPATCH(() ;
}

Code insights are as follows:

1. Fetch the arguments from the top of the stack. These arguments would
have typically been added to the stack using the rLoap consT /
LOAD_NAME opcodes.

2. Call the C function PyNumber_ Subtract to compute the difference
between the two numerical arguments. Note, this function also
internally can handle the difference of sets and types that support the -
operator.

3. Load the difference to the top of the stack.



The implementation of the opcodes BINARY POWER, BINARY DIVIDE,
BINARY MODULE, BINARY FLOOR DIVIDE, BINARY DIVIDE is similar in
operation to the BINARY aDD, and hence is skipped in this section, whereas it
is encouraged to examine the implementation of the same.

The following code block demonstrates the implementation of INPLACE_ADD
opcode:

#define INPLACE ADD 55

case TARGET (INPLACE ADD): {
PyObject *right = POP() ;
PyObject *left = TOP(); // -> 1
PyObject *sum;
if (PyUnicode CheckExact (left) &&
PyUnicode CheckExact (right)) {
sum = unicode_concatenate(tstate, left, right, £,
next instr); // -> 2
}
else {
sum = PyNumber InPlaceAdd(left, right); // -> 3
Py DECREF (left);
}
Py DECREF (right);
SET_TOP(sum); // -> 4

if (sum == NULL)
goto error;
DISPATCH() ;

}
Code insights are as follows:

1. Fetch the arguments from the top of the stack. These arguments would
have typically been added to the stack using the
LOAD_CONST/LOAD_NAME opcodes. The argument left will be the same to
which the sum of the numbers will be assigned.

2. If both the arguments are of the string type, append the strings to a
concatenated string.



3. The C function PyNumber InPlaceAdd is to compute the sum of the
two numerical arguments. Note, this function also internally can
handle the in-place sum of lists, sets, and types that support the -
operator.

4. Load the sum to the top of the stack.

The following code block demonstrates the implementation of the
INPLACE SUBTRACT opcode:

#define INPLACE SUBTRACT 56

case TARGET (INPLACE SUBTRACT) : {

PyObject *right = POP() ;
PyObject *left TOP(); // -> 1
PyObject *diff PyNumber InPlaceSubtract(left, right); //
-> 2
Py DECREF (left);
Py DECREF (right);
SET_TOP(diff); // -> 3
if (diff == NULL)

goto error;
DISPATCH () ;}

Code insights are as follows:

1. Fetch the arguments from the top of the stack. These arguments would
have typically been added to the stack using the
LOAD_CONST/LOAD_NaME opcodes. The argument left will be the same to
which the difference of the numbers will be assigned.

2. The C function PyNumber InPlaceSubtract 1S to compute the
difference between the two numerical arguments. Note, this function
also internally can handle the in-place sum of sets and types that
support the - operator.

3. Load the difference to the top of the stack.

The implementation of the opcodes INPLACE_POWER, INPLACE_DIVIDE,
INPLACE MODULO, INPLACE FLOOR DIVIDE, INPLACE DIVIDE is similar in
operation to the INpPLACE_aDD, and hence is skipped in this section, whereas
it is encouraged to examine the implementation of the same.



Matrix operation opcodes

Python implements opcodes to perform matrix multiplication operations
that are rarely used by programmers. This section covers the
implementation of the opcodes.

The following code block demonstrates the implementation of the
BINARY MATRIX MULTIPLY opcode:

#define BINARY MATRIX MULTIPLY 16

case TARGET (BINARY MATRIX MULTIPLY) : {
PyObject *right = POP() ;
PyObject *left = TOP(); // -> 1
PyObject *res = PyNumber MatrixMultiply(left, right); // ->
2
Py DECREF (left);
Py DECREF (right) ;
SET_TOP(res); // -> 3

if (res == NULL)
goto error;
DISPATCH() ;

}

Code insights are as follows:

1. Fetch the matrices from the top of the stack. These matrices would
have typically been added to the stack using the
LOAD_CONST/LOAD_NaME opcodes. The matrix left will be the same to
which the difference of the numbers will be assigned.

2. The C function PyNumber MatrixMultiply is to compute the matrix
multiplied by the two numerical arguments.

3. Load the computed matrix at the top of the stack.

The implementation of the INPLACE MATRIX MULTIPLY being similar to the
BINARY MATRIX MULTIPLY is left to the interest of the reader.

Iterable opcodes

This section covers the creation, iteration, insertion of elements, and
accessing of elements in iterable types like 1ist, tuple, dictionary, and



sets. Python uses specific opcodes to facilitate the management of the
iterable types.

The following code block demonstrates the implementation of the
BUILD LIST opcode:

#define BUILD LIST 103

case TARGET (BUILD LIST): {
PyObject *1list = PyList New(oparg); // -> 1
if (list == NULL)
goto error;
while (--oparg >= 0) { // -> 2
PyObject *item = POP(); // -> 3
PyList SET ITEM(list, oparg, item); // -> 4
}
PUSH (list);
DISPATCH() ;
}

Code insights are as follows:

1. Build a new list using the constructor function PyList New of size
oparg.

2. Traverse the list in the reverse direction.

3. Pop the element at the top of the stack.

4. Add the element to the list from the tail end.

The following code block demonstrates the implementation of the
BUILD TUPLE opcode:

#define BUILD TUPLE 104

case TARGET (BUILD TUPLE) : {
PyObject *tup = PyTuple New(oparg); // -> 1
if (tup == NULL)
goto error;
while (--oparg >= 0) {// -> 2
PyObject *item = POP(); // -> 3
PyTuple SET ITEM(tup, oparg, item); // -> 4



}

Code insights are as follows:

1. Build a new tuple using the constructor function PyTuple New of size

oparg.
2. Traverse the tuple in the reverse direction.
3. Pop the element at the top of the stack.
4. Add the element into the tuple from the tail end.

The following code block demonstrates the implementation of the

BUILD MAP opcode:

case TARGET (BUILD MAP): {

Py ssize t 1i;

PyObject *map = _PyDict NewPresized((Py_ssize t)oparg); //
->1
if (map == NULL)

goto error;
for (i = oparg; i > 0; i--) {
int err;
PyObject *key = PEEK(2*i);
PyObject *value = PEEK(2*i - 1); // -> 2
err = PyDict SetItem(map, key, value); // -> 3

}

Code insight are as follows:

1.Build a new dictionary wusing the constructor
_PyDict NewPresized Of size oparg.

2. Fetch the key and value from the value stack.
3. Add the value to the dictionary at the key.

function



The following code block demonstrates the functioning of the
BINARY SUBSCR opcode, which handles the accessing of elements using the
index in lists, tuples, and sets while using the key that can be any hashable
value in dictionaries:

Python/ceval.c (Line no 1581)
#define BINARY SUBSCR 25

case TARGET (BINARY SUBSCR): {
PyObject *sub = POP(); // ->1
PyObject *container = TOP() ; // > 2
PyObject *res = PyObject GetItem(container, sub); // -> 3

DISPATCH() ;
}

Code insights are as follows:

1. Fetch the index of the container from the top of the stack.
2. Fetch the container from the function value stack.

3. Fetch the value at the specified index. The PyObject GetItem
function handles the fetching of the value from the list, tuple, set, and
dictionaries. The implementation of the type-specific handlers has
been covered in Chapters 3 on Iterable Sequence Objects and Chapter
4 on Sets and Dictionaries.

The following code block demonstrates the functioning of the LIsT APPEND
opcode, which handles the appending of elements while constructing lists
using comprehensions:

Python/ceval.c (line no 1653)

#define LIST APPEND 145

case TARGET (LIST APPEND) : {
PyObject *v = POP(); // -> 1
PyObject *list = PEEK(oparg); // -> 2
int err;

err = PyList Append(list, v); // -> 3



}

Code insights are as follows:
1. Fetch the value to be appended to the end of the list from the top of the
stack.
2. Fetch the container to which the element has to be appended.
3. Append the value to the list.
The following code block demonstrates the functioning of the SeET app

opcode, which handles the adding of elements, whereas constructing sets
using comprehensions:

Python/ceval.c (Line no 1665)
#define SET ADD 146

case TARGET (SET ADD) : {
PyObject *v = POP(); // -> 1
PyObject *set = PEEK (oparg); // -> 2
int err;
err = PySet Add(set, v); // -> 3

}

Code insights are as follows:

1. Fetch the value to be added to the set from the top of the stack.
2. Fetch the set to which the element has to be added to.
3. Add the value to the set.
The following code block demonstrates the functioning of the Map_app

opcode, which handles the adding of elements using key and value, whereas
constructing dictionaries using comprehensions:

Python/ceval.c (Line no 1665)

#define MAP_ADD 146
case TARGET(MAP_ADD): {
PyObject *value = TOP() ; // > 1
PyObject *key = SECOND(); // -> 2



PyObject *map;

int err;

STACK SHRINK(Z2) ;

map = PEEK (oparg) ; // -> 3 /* dict */
assert (PyDict CheckExact (map));

err = PyDict SetItem(map, key, value); /* mapl[key] = value
*/ /] -> 4

DISPATCH () ;
}

Code insights are as follows:

1. Fetch the value to be added to the map from the top of the stack.

2. Fetch the key to be added to the map, that is, the second element from
the top of the stack.

3. Fetch the map to which the element has to be added at the location
pointed by the key.

4. Add the value to the map.

Looping opcodes

The for loop 1s the most popular construct in Python handles the iteration
of built-in iterable types and custom types that implement the iter
and _ next__ functions.

Iteration involves two segments, which are as follows:

e Fetching of the iterator from the iterable object.

e Using the iterable object to access the elements in the iterable
object.

The following code block explains the functioning of the GET_1TER opcode,
which fetches the iterator from the iterable type:

Include/opcode.h (Line no 50)
#define GET_ITER 68

case TARGET (GET ITER): {



PyObject *iterable = TOP(); // -> 1

PyObject *iter = PyObject GetIter (iterable); // -> 2
}
Code insights are as follows:

1. Fetch the iterable object from the top of the stack.

2. The pyobject_GetIter function handles the fetching of the iterator of
an iterable Object.

The following code block explains the functioning of the FOrR_ITER opcode,
which iterates the values in the iterable type:

Include/opcode.h (Line no 50)
#define FOR_ITER 68

case TARGET (FOR ITER) : {
PREDICTED (FOR_ ITER) ;

/* before: [iter]; after: [iter, iter ()] *or* [] */
PyObject *iter = TOP(); // -> 1

PyObject *next = (*iter->ob_type->tp iternext) (iter); // ->
2

if (next != NULL) {

PUSH (next); // -> 3

}
if (_PyErr Occurred(tstate)) ({
if (! _PyErr ExceptionMatches (tstate, PyExc_StopIteration))

{// -> 3

goto error;

}

}

Code insights are as follows:

1. Fetch the iterator from the top of the stack.
2. Fetch the next value from the iterable type using the iterator.



3. Stop iteration when the iterator raises the PyExc StopIteration
exception.

Branching opcodes

Branching opcodes deal with operations related to switching control flows
for conditional operators, which are the if, elif, and else if. The idea is to
move the execution of the interpreter code to the associated byte number to
which the current execution flow is operating.

An example is as follows:

for 1 in range (0, 20):
if 1 == 4.
break

Opcode for the preceding program:

3 0 LOAD NAME 0 (range)
2 LOAD CONST 0 (0)
4 LOAD CONST 1 (20)
6 CALL FUNCTION 2
8 GET ITER
>> 10 FOR_ITER 16 (to 28) // > 1
12 STORE NAME 1 (1) // > 2
4 14 LOAD NAME 1 (1) // ->3
16 LOAD_ CONST 2 (4) // -> 4
18 COMPARE OP 2 (=) // > 5
20 POP_JUMP IF FALSE 10 // -> 6
5 22 POP_TOP /] > 1
24 JUMP_ ABSOLUTE 28 // -> 8
26 JUMP_ ABSOLUTE 10 // -> 9
>> 28 LOAD CONST 3 (None)

30 RETURN_ VALUE

This section briefly covers the functioning of the opcodes, whereas the
subsections will cover the implementation of each of the opcodes in detail:

1. The byte number of the FOrR_ITER opcode is 10.



. Store the value of the iteration into the variable i.
. Load the value of i into the function value stack.
. Load the constant value of 4 into the function value stack.

. Compare the value of i, if equal to 4.
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. If the value is not equal to 4, move to bytecode 10, which is the
opcode FOR_ITER.

7. 1f the value is 4, we jump to bytecode 28, which is the exit of the
program.

The following code block demonstrates the functioning of the coMpare op
opcode:

#define COMPARE OP 107
Python/ceval.c (line no 2974)

case TARGET (COMPARE OP) : {
PyObject *right = POP(); // -> 1
PyObject *left = TOP(); // -> 2
PyObject *res = cmp outcome(tstate, oparg, left, right); //
-> 3

SET TOP(res);

PREDICT (POP_JUMP IF FALSE) ;
PREDICT (POP_JUMP IF TRUE) ;
DISPATCH () ;

}

Python/ceval.c (line no 5066)

static PyObject* cmp outcome (PyThreadState *tstate, int op,
PyObject *v, PyObject *w)
{
int res = 0;
)

{

switch (op

default:
return PyObject RichCompare(v, w, op); // -> 4



}
v = res ? Py True : Py False; // -> 5
Py INCREF (v);
return v; // -> 6
}

Code insights are as follows:

1. Pop the value from the top of the stack.
2. Fetch the value at the current top of the stack.

3. Compare the values using the emp_outcome function, which takes an
operator in the current case is ==.

4. The PpyObject RichCompare function takes two Pyobjects and
compares their type and value.

5. Return the value as a pyBool object depending on the result of the
comparison.

6. The ecmp outcome function also checks for operators such as in, not
in, is, and is not. Covering the entire implementation of the function
1s beyond the scope of the book but is highly encouraged.

The following code block demonstrates the functioning of the
POP_JUMP IF FALSE opcode:

#define POP_JUMP IF FALSE 114
Python/ceval.c (line no 3041)

case TARGET (POP JUMP_ IF FALSE): ({
PREDICTED (POP_JUMP IF FALSE);
PyObject *cond = POP(); // -> 1
int err;
if (cond == Py True) {// -> 2
Py DECREF (cond) ;
FAST DISPATCH(); // -> 3
}
if (cond == Py False) {// -> 4
Py DECREF (cond) ;
JUMPTO (oparg); // -> 5
FAST DISPATCH(); // -> 6



DISPATCH() ;
}

Code insights are as follows:

1. Pop the value from the top of the stack, which is the result of the
previous comparison operation.

2. If the result value 1s True, we do not have to branch the control flow
of execution.
3. Dispatch the execution to the next opcode being executed.

4. If the result value i1s False, we have to branch the control flow of
execution by branching to the bytecode mentioned as an argument to
the opcode.

5. Branch to the bytecode mentioned as result is false. The
implementation of the JuMpTO macro is covered later in the chapter.
Dispatch to the next instruction mentioned in the bytecode.

The following code block demonstrates the functioning of the
JUMP_ABSOLUTE opcode:

case TARGET (JUMP ABSOLUTE) : {
PREDICTED (JUMP ABSOLUTE) ;
JUMPTO (oparg); // -> 1

DISPATCH () ;
}

Code insight is as follows:

1. Jump to the bytecode mentioned as the argument to the opcode.

Implementation of the interpreter

The Python interpreter is a large C function that contains the
implementation of all opcodes within a giant for loop. The interpreter
handles cooperative multithreading using the GIL and also implements
opcode dispatching to speed up the execution of the opcodes. This section




deals with only the relation between the interpreter and the GIL, although
the implementation of the GIL is handled in Chapter 8 on GIL and
multithreading in detail.

Opcode prediction

The interpreter executes the opcodes one after the other within a giant for
loop, and in many cases, the assembler can predetermine the next opcode
based on the current one. This technique can be used to speed up the
execution by using computed executing go-to to a predetermined code
location stored in a pre-computed branch table. This technique can result in
faster code execution on certain CPUs overusing the switch condition
within the interpreter.

Code sample explaining the use of opcode dispatching:

case TARGET (LIST APPEND) : ({
err = PyList Append(list, v); // -> 1

PREDICT (JUMP_ABSOLUTE) ; // -> 2
DISPATCH(); // -> 3
}

Code insights are as follows:

1. The example demonstrates the use of the prepicT and pDIsPATCH
opcode in the implementation of the LIsT aPPEND opcode.

2. The most frequent opcode posts the execution is the JUMP ABSOLUTE
used to return to the initial opcode of the list apprehension.

3. Dispatch the opcode by jumping to the code block pointed by the pre-
computed go-to table.

Python/ceval.c (Line no 929)

#1if defined(DYNAMIC_EXECUTION_PROFILE) |

USE COMPUTED GOTOS

#define PREDICT (op) if (0) goto PRED_##op
#else

#define PREDICT (op) \



do{\
_Py CODEUNIT word = *next instr; \ // -> 1

opcode = Py OPCODE (word); \ // -> 2
if (opcode == op){ \ /// -> 3
oparg = Py OPARG(word); \

next instr++; \
goto PRED #i#top; \ // -> 4

FA
} while (0)
tendif
#define PREDICTED (op) PRED ##op: // -> 5

Python/ceval.c (line no 3139)

case TARGET(JUMP_ABSOLUTE): {
PREDICTED (JUMP_ABSOLUTE) ; // > 6
JUMPTO (opargqg) ;

}
Code insights are as follows:
1. Fetch the next instruction to be executed using the next instr
pointer.
2. Fetch the opcode from the instruction.
3. Check if the next opcode to be executed is the same as predicted.

4. 1f yes, jump to the execution of the predicted opcode, else use the
switch case in the £for loop to execute the next opcode.

5. The macro prReDICTED creates the label to jump to using the goto
statement.

6. The PREDICTED (JuMP_ABSOLUTE) creates the label for the opcode
JUMP_ABSOLUTE aS PRED_JUMP_ABSOLUTE.

The prediction logic is not used in cases when Python is running in a multi-
threaded environment as the branch prediction becomes unreliable for the
CPU.



Opcode dispatching and the GIL

The Python interpreter handles the GIL and allows threads to execute
mutually using cooperative multithreading. Each thread on every opcode
cycle with computation drops the GIL and checks for any other thread that
accepts the request on the opcode cycle. If there is another request, it
switches the context to the other thread and begins executing it until it
enters another dispatching cycle where it has to relinquish it to any other
thread.

The interpreter uses two forms of dispatching, fast dispatching for opcodes
that do not involve computations such as stack operations, NOP, and so on.
In this case, the interpreter moves to execute the next opcode and does not
drop the GIL. The normal dispatch involves computation such as adding
numbers, creating a list, and so on, also handles cooperative multithreading.

The following code block demonstrates the usage and implementation of
FAST DISPATCH in opcodes that do not involve computation:

case TARGET (LOAD CONST) : {
PREDICTED (LOAD CONST) ;
PyObject *value = GETITEM (consts, oparg):;
Py INCREF (value);
PUSH (value) ;
FAST DISPATCH(); // Usage of fast dispatch in LOAD CONST.

Dispatch using computed go-tos

Some compilers support the creation of computed go-tos, which enable the
creation of dynamic jump tables, helping avoid the complex switch case to
execute the opcode. On such compilers that handle it, Python creates the
jump targets using the macro TARGET, the definition of which has been
explained as follows:

The following code block demonstrates the implementation of the
FAST DISPATCH opcode:

Python/ceval.c (line no 836)

#if USE COMPUTED GOTOS



/* Import the static jump table */
#include "opcode targets.h" // -> 1

#define TARGET (op) \
op: \
TARGET ##op // -> 2

#define FAST DISPATCH() \
{\
if (! Py TracingPossible(ceval) && !PyDTrace LINE ENABLED())
{\
f->f lasti = INSTR OFFSET(); \
NEXTOPARG () ; \
goto *opcode targets[opcode]; \ // -> 3
FoA
goto fast next opcode; \ // -> 4
}

Python/opcode targets.h (line no 1)

static void *opcode targets[256] = {
&& unknown opcode,
&&TARGET POP_TOP, // -> 5
&&TARGET ROT_TWO,
&&TARGET ROT THREE,
&&TARGET DUP_TOP,

}
Code insights are as follows:

1. When the usage of computed go-tos is enabled, the file
opcode_targets.h is included, which contains all the addresses of the
opcode targets to jump execution.

2. Taking the example of TARGET (LOAD CONST), it creates the goto label
TARGET LOAD CONST the address of which 1is stored in the
opcode_targets, which is in the file opcode_targets.h eXplained n
the following point 5.



3. Use the address in the jump table to go to the execution of the next
opcode.

4. If tracing is enabled, the interpreter begins the execution of the next
opcode, which begins at the label fast next opcode. When the
execution moves to fast next opcode, the interpreter skips the
handling of requests for the GIL. Hence opcodes that call
FAST DISPATCH do not relinquish the thread, whereas requests to
DISPATCH may relinquish if any other threads are waiting for the GIL.

5. The jump targets are defined in the file opcode targets.h, which
contains a giant array of the addresses of the opcodes. The index of the
target in the array is the numerical value of the opcode defined in the
file opcodes.h. For example, the value of the opcode uUNARY INVERT is
17, and the index in the array is also 17.

The following code block demonstrates the implementation of the pspaTch
opcode:

Python/ceval.c (line no 866)

#define DISPATCH () \
{\
if (! _Py atomic_load relaxed(eval breaker)) {\ // -> 1
FAST_DISPATCH(); \ // > 3

FoA
continue; \ // -> 2

}

Code insights are as follows:

1. Check if any pending threads are awaiting the GIL.

2. If yes, continue to the giant for loop, which handles relinquishing the
GIL to the other threads and later continues the execution of the other
thread. This will be covered in detail in the upcoming section.

3.If no other threads have been requested for the GIL, use
FAST_DISPATCH to execute the next instruction on the current thread.

Dispatch without computed go-tos




On compilers that do not support pre-computed go-tos, the implementation
of FAST DIsPATCH and DISPATCH macros is relatively simpler demonstrated
as follows:

Python/ceval.c (line no 875)

#define TARGET (op) op // -> 1
#define FAST DISPATCH() goto fast next opcode // -> 2
#define DISPATCH() continue // -> 3

Code insights are as follows:

1. The TarGET macro does not expand to goto label but expands directly
to the switch case.

2. The Fast pispaTcH macro directly skips the execution of the GIL
transfer and starts the execution of the next opcode.

3. The pispaTcH macro continues the loop execution and handles GIL
transfer if any threads await the execution.

Signal handling

The Python interpreter while executing the opcodes, might receive signals
from the operating system or the user that have to be handled by the process
on high priority temporarily pausing the execution of the opcodes. Python
handles all the received signals on the main thread, whereas they can be
received on any executing thread.

Initializing signal handlers

This section covers signal management in Python on Linux-based systems.
Covering for all systems is beyond the scope of this book but is
recommended for readers working on either Windows/Solaris systems.

The following code block demonstrates the initialization of signal handlers:
Modules/signalmodule.c (line no 104)

static volatile struct {

_Py atomic_int tripped; // -> 1
PyObject *func; // -> 2

} Handlers[NSIG]; // -> 3



Code insights are as follows:

1. The tripped flag for every signal indicates that the signal has been
received by the Python process.

2. The function to handle the signal.
3. The Handlers array of all the signals to be handled by the process.

The following code block demonstrates the assignment of the default
handlers for all signals during initialization of the Python process:

Modules/signalmodule.c (line no 458)

for (1 = 1; 1 < NSIG; 1i++) {
void (*t) (int);
t = PyOS getsig(i);
Py atomic store relaxed(&Handlers[i].tripped, 0); // -> 1
if (t == SIG DFL)
Handlers[i].func = DefaultHandler; // -> 2
else if (t == SIG IGN)
Handlers[i].func = IgnoreHandler; // -> 3
else
Handlers[i].func = Py None; /* None of our business */ // -
> 4
Py INCREF (Handlers[i].func);
}

Code insights are as follows:
1. Initialize the tripped flag for every signal to o, indicating that the
signal has not yet been received by the Python process.
2. Set the default handler for the signal s1G_DFL.
3. Set the handler IgnoreHandler for the signal s1c_1GN.

4. The Python process does not handle any other signals and hence sets
the value to None. In this case, the developer needs the program to
listen to any signals; the signal function from the signal module can
be invoked with the signal number.

Listening to signals




The Python process by default does not listen to any user/kernel level
signals and waits for the user to initialize the handling. This can be
achieved using the signal function in the signal module of Python.

The code sample is as follows:

def signal handler func():
print “Handling the signal”
import signal
signal.signal(signal.SIGALRM, signal handler func) # -> 1

Code insight is as follows:
1. Assign the handler function to the signal s1GaLrm.

The following code block demonstrates the implementation of the signal
function that assigns the Python function handling a particular signal:

static PyObject * signal signal impl (PyObject *module, int
signalnum, PyObject *handler) {
PyObject *old handler;

void (*func) (int);
func = signal_handler; // -> 1

if (PyOS_setsig(signalnum, func) == SIG ERR) {// -> 2
PyErr SetFromErrno (PyExc OSError);
return NULL;
}
old handler = Handlers[signalnum].func;
Py INCREF (handler);
Handlers[signalnum] . func = handler; // -> 3
if (old handler != NULL)
return old handler;
else
Py RETURN NONE;
}

Code insights are as follows:



1. Set the function to handle the signal calls to the operating system to be
the signal handler function.

2. The pyos_setsig function assigns the signal handler to the signal
on UNIX and UNIX-like systems calls the signal function.

3. Set the signal handler to be the passed Python function.

Signals and the interpreter

The previous section covered how programmers can add custom handlers
for signals. The Python interpreter continues to execute the instructions of
the user’s program until the asynchronous signal is received by it. As stated
in the previous section, Python handles all signals only on the main thread.
If the current thread receives the signal, it ignores it and continues
execution until the main thread takes over the GIL to execute the signals.

The interpreter continues to execute user instructions until it receives a
request to drop the GIL, handle asynchronous events, or there are pending
calls to be executed. In this case, it sets a flag called eval breaker to
indicate the interpreter to pause execution of the user’s program and handle
the signals on priority:

Python/ceval.c (line no 130)

#define COMPUTE EVAL BREAKER (ceval) \
Py atomic store relaxed(\

& (ceval) ->eval breaker, \
GIL REQUEST | \ // >1
_Py atomic_load relaxed(&(ceval)->signals pending) | \ // ->
1
_Py atomic_load relaxed(&(ceval)->pending.calls to do) | \ //
-> 1
(ceval) ->pending.async_exc) // -> 1

Code insight is as follows:

1. Set the eval breaker if there is a GIL drop request, pending signals,
or calls, or any asynchronous execution is pending.

The following code block demonstrates the interpreter handling the signals
when the eval breaker is set:



if ( Py atomic load relaxed(eval breaker)) {// -> 1

opcode = Py OPCODE (*next instr); // -> 2
if (opcode == SETUP FINALLY | |

opcode == SETUP WITH ||

opcode == BEFORE ASYNC WITH | |

opcode == YIELD FROM) {

goto fast next opcode; // -> 3
}

if ( Py atomic load relaxed(&ceval->signals pending)) {// -
> 4
if (handle signals(runtime) != 0) {// -> 5

goto error;

}

if ( Py atomic load relaxed(&ceval->pending.calls to do))
{// -> 6
if (make pending calls(runtime) != 0) {// -> 7

goto error;

}

if ( Py atomic load relaxed(&ceval->gil drop request)) {//
-> 8
/* Give another thread a chance */
if ( PyThreadState Swap (&runtime->gilstate, NULL) !=
tstate) {
Py FatalError("ceval: tstate mix-up");

}
drop gil(ceval, tstate); // -> 9

take gil (ceval, tstate); // -> 10

/* Check i1if we should make a quick exit. */

fast next opcode: // -> 11

Code insights are as follows:



1. Bypass the execution of the user’s opcodes only if the eval breaker
has been set.

2. Fetch the next opcode to check if there is an opcode that requires
urgent attention.

3. If yes, skip the execution of signals, pending calls, and GIL transfer,
and begin executing it.

. Check if there are any signals pending to be executed.

. If yes, execute them.

. Check if there are any async calls pending to be executed.
. If yes, execute the pending calls.

. Check for any threads requesting the GIL.
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. If yes, drop the GIL currently held by the current thread.
10. The GIL is taken by the next thread requesting execution.

11. Continue the execution of the new thread from the opcode it was
executing before the previous context switching.

Conclusion

This chapter begins with the definition of Python opcodes and how they are
generated by the assembler. All opcodes of Python are declared in the file
opcode.h with a numerical value assigned to each of them. Stack-based
opcodes perform data operations on the function value-stack, such as puss,
pop, and so on.

This chapter covers the implementation of most of the basic stack-based
opcodes and leaves the rest to the curiosity of the reader. Numerical
opcodes perform addition, subtraction, division, modulo, among other
operations on numbers. The same opcodes also support operations on types
such as lists, sets, and so on, which support numerical operations of + on its
type.

Looping opcodes handle iteration of iterable types such as lists, tuples, and
so on. or other types which support iteration. Iterable opcodes handle
creation and the operations on built-in iterable types such as lists, sets, and
dictionaries.



Branching opcodes handle branching and switch condition logic in
programs. The interpreter is defined as a function with a giant for loop
handling the implementation of each of the opcodes.

Opcode prediction can speed up the execution on single-threaded
environments where branch targets can be reliably computed. Dispatching
helps manage signal handling, pending calls, and switching thread contexts
using the GIL. Python signal handling allows program developers to
develop custom handlers for OS/user-generated signals to be handled by the
interpreter.

The next chapter covers the implementation of multithreading using
Pthreads on UNIX and UNIX-based systems and the implementation of
GIL to handle the execution of a single thread per Python process.



CHAPTER 8
GIL and Multithreading

n the previous chapter, we covered opcodes, their types, and the internals

of the interpreter. Opcodes are classified based on the operation, such as
stack-based, numeric, and so on. Interpreter, along with executing the
opcodes, handles functionalities such as signal handling and context
switching of threads.

Global interpreter lock (GIL) is one of the most debatable topics in
Python, which restricts the maximum number of threads to access the CPU
concurrently to be a maximum of 1. There have been discussions in the
Python community about its existence and relevance, and results to
eliminate it for performance reasons have not been positive, and hence the
GIL exists. The GIL was added to Python to disallow simultaneous access
to Python variables across threads resulting in erroneous reference count
values. The solution was to either add a global lock such as the GIL or add
a lock to each variable resulting in slower performance. Hence the GIL was
added to minimize the complexity. This chapter covers the creation and life
cycle of Python threads and how the GIL controls the execution of threads
on the CPU.

Structure

In this chapter, we will cover the following topics:
e The GIL

Structure of GIL
Creation and initialization of the GIL

o

(¢]

o

Taking the GIL to access the interpreter
Relinquishing the GIL
Deallocating the GIL

e Multithreading with the GIL

(¢]

o



Objective

After studying this unit, you will be able to understand the structure and
work of the GIL. You will also learn how threads acquire and relinquish the
GIL to enable cooperative multithreading in Python.

The GIL

The GIL is one of the most debatable topics in the Python development
community. Even though conceptually, it remains simple and is internally a
Boolean variable indicating if a thread holds the value or not. The access to
this variable is protected by a mutex, which is signaled by a conditional
variable (gil_cond).

Python implements cooperative multithreading, and hence the thread
holding the GIL must be able to relinquish the thread when requested by
another thread. A thread requesting to get access waits for the time as
mentioned using the default interval.

The following code block demonstrates the value of the default interval:
#define DEFAULT INTERVAL 5000

The default interval is set as 5 milliseconds before placing the request for
the GIL.

Structure of GIL

GIL initialization involves creating an instance of the structure
_gil_runtime_state the definition of which is explained is as follows. The
initialization happens at the time of creating the interpreter that begins to
execute the Python opcodes:

internal/pycore gil.h (line no 23)

struct gil runtime state ({
/* microseconds (the Python API uses seconds, though) */
unsigned long interval; // -> 1
/* Last PyThreadState holding/having held the GIL. This helps

us



know whether anyone else was scheduled after we dropped the
GIL. */
_Py atomic_address last holder; // -> 2
/* Whether the GIL is already taken (-1 if uninitialized).
This 1is
atomic because it can be read without any lock taken in
ceval.c. */
_Py atomic_int locked; // -> 3
/* Number of GIL switches since the beginning. */
unsigned long switch number; // -> 4
/* This condition variable allows one or several threads to
wait
until the GIL is released. In addition, the mutex also
protects
the above variables. */
PyCOND T cond; // -> 5
PyMUTEX T mutex; // -> 6

Code insights are as follows:

1. The mandatory interval that a thread waits before it has placed a
request to the GIL.

2. The thread ID of the last thread that held access to the GIL.

3. The GIL Boolean variable, a value greater than 0, indicates a thread
holding the lock, else there are no active threads.

4. Number of GIL switches since initialization.

5. The conditional variable that waits for the release of the mutex holds
access to set the request for the GIL.

6. The mutex holds access to place requests for the GIL.

Creating and initializing the GIL

The following code block demonstrates the memory allocation to the GIL:

static void create gil(struct gil runtime state *gil) {
MUTEX INIT(gil->mutex); // -> 1



COND_INIT(gil->cond); // -> 2

_Py atomic_store relaxed(&gil->last holder, 0); // -> 3
_Py atomic_store_explicit(&gil->locked, O,
_Py memory order release); // -> 4

}
Code insights are as follows:

1. Initialize the mutex gil->mutex using the macro MUTEX INIT.

2. Initialize the conditional variable gil->cond on which the thread
holding the mutex will wait for the GIL to be released.

3. Initialize the variable 1ast holder to 0, indicating that no thread has
accessed the interpreter using the GIL.

4. The GIL is initialized to the value o.
The following code block demonstrates the initialization of the GIL:
Python/ceval.c (line no 644)

void PyEval Initialize(struct _ceval runtime_state *state) //
->1
{

_gil initialize(&state->gil); // -> 2
}
Python/ceval gil.h (line no 93)

static void _gil initialize(struct _gil runtime state *gil) ({
Py atomic int uninitialized = {-1};
gil->locked = uninitialized; // -> 3
gil->interval = DEFAULT INTERVAL; // -> 4

}

Code insights are as follows:

1. Function initializing the interpreter state.



2. As mentioned previously, the GIL is initialized at the time of
interpreter initialization.

3. Initialize the gil to -1, indicating that no threads are actively holding
it at the beginning.
4. The switching interval is set to 5 milliseconds as default.

Taking the GIL to access the interpreter

The thread/s that run their code and compete for the CPU request access to
the GIL using the function take gil. The function uses the mutex gil-
>mutex to provide access to only one thread to take contention of the
interpreter.

The following code block demonstrates the interpretation of the take gil
function:

Python/ceval gil.h (line no 184)

static void take gil(struct ceval runtime state *ceval,
PyThreadState *tstate)

{

struct _gil runtime state *gil = &ceval->gil; // -> 1

MUTEX LOCK (gil->mutex); // -> 2

if (!_Py atomic_load relaxed(&gil->locked)) {
goto ready; // -> 3

}

while (_Py atomic_load relaxed(&gil->locked)) {// -> 10
int timed out = 0;
unsigned long saved switchnum;
saved switchnum = gil->switch number; //
unsigned long interval = (gil->interval >= 1 ? gil->interval
1); // > 4
COND_TIMED WAIT(gil->cond, gil->mutex, interval, timed out);
// ->5
/* If we timed out and no switch occurred in the meantime, it

is time



to ask the GIL-holding thread to drop it. */

if (timed out && // -> 6

{

}
}

gil->switch number == saved switchnum)

Py atomic_load relaxed(&gil->locked) && // -> 7

SET_GIL DROP REQUEST (ceval); // -> 8

_ready:

/* We now hold the GIL */
_Py atomic_store relaxed(&gil->locked, 1); // -> 9
_Py ANNOTATE RWLOCK_ACQUIRED (&gil->locked, /*is write=*/1);

}

Code insights are as follows:

1.

2.

The GIL i1s a part of the interpreter, fetch its address, and store it in the
variable gil for function scope.

Request for access to the mutex on the current thread to allow single
contention for access to the GIL.

. If the GIL is not currently accessed by any threads directly, provide

access to the requesting thread.

4. Fetch the interval to wait for the current thread to relinquish the GIL.

. Execute a conditional timed wait on the mutex for the thread holding

the GIL to free the mutex. This will be covered in-depth in the
upcoming section on relinquishing the GIL.

. On timeout, if the current thread has not relinquished control to the

GIL, place a request to the current thread to immediately stop
execution and provide access to the interpreter.

7. Same as 6.

. Place the request to the executing thread to relinquish control to

execute instructions.

. Take the GIL and begin executing the instructions on the current

thread.



Relinquishing the GIL

The thread currently holding access to the GIL must relinquish access for
other threads to begin executing the opcodes. In the previous chapter, we
have covered in-depth opcode dispatching and how the executing thread in
every interpreter cycle checks for threads waiting to access the CPU. This
section covers only the part of the holding thread relinquishing control and
releasing the mutex for the other threads to place requests to hold the GIL.

The following code block demonstrates the interpretation of the drop gil
function:

Python/ceval gil.h (line no 143)
static void drop gil(struct ceval runtime state *ceval,
PyThreadState *tstate)

{
struct gil runtime state *gil = &ceval->gil; // -> 1
if (! Py atomic load relaxed(&gil->locked)) {
Py FatalError("drop gil: GIL is not locked"); // -> 2
}

MUTEX LOCK(gil->mutex); // -> 3

_Py atomic_store relaxed(&gil->locked, 0); // -> 4
COND_SIGNAL(gil->cond); // -> 5

MUTEX UNLOCK (gil->mutex); // -> 6

}
Code insights are as follows:
1. The GIL is a part of the interpreter, fetch its address, and store it in the
variable gil for function scope.
2.1f a thread tries to drop a GIL without holding the lock, raise a

FatalError.
3. Lock the mutex to begin dropping the GIL.
4. Relinquish control of the GIL.

5. Signal the waiting threads to wake up from the conditional timeout.



6. Unlock the mutex to relinquish control to other threads to place
requests to the GIL.

Deallocating the GIL

Deallocating the GIL releases the mutex, conditional variable back to the
operating system, which are key resources that must be released for other
processes to take the OS primitives:

Python/ceval gil.h (line no 120)
static void destroy gil(struct gil runtime state *gil) {

COND_FINI(gil->cond); // -> 1
MUTEX FINI (gil->mutex); // -> 2

_Py atomic_store explicit(&gil->locked, -1, // -> 3
Py memory order release);

}
Code insights are as follows:
1. Release the conditional variable to the operating system.

2. Release the mutex to the operating system.
3. Reset the GIL value to -1, indicating the GIL is no longer used.

Multithreading with the GIL

This section covers the basics of how threads acquire and compete for the
GIL from the process of creation of threads to acquiring the GIL and
relinquishing for other threads to run on the interpreter.

The code sample is as follows:

import thread
def print name (name="Sundar”): // -> 1

print (“Hello: {}”.format (name))

thread.start new thread(print name, (“Sampath”)) // -> 2



1. The function print name accepts a single string parameter name as
the argument.

2. The start new thread function of the thread module spawns a new
thread and passes the string argument sampath as the name parameter.

The following code block demonstrates the declaration and definition of the
start new_thread method:

Modules/ threadmodule.c (line no 1447)

{"start new thread", (PyCFunction) thread PyThread start

new thread,
Modules/_threadmodule.c (line no 1025)

static PyObject * thread PyThread start new thread(PyObject
*self, PyObject *fargs)
{

PyObject *func, *args, *keyw = NULL;

struct bootstate *boot;

unsigned long ident;

boot = PyMem NEW(struct bootstate, 1); // -> 1

boot->interp = _PyInterpreterState Get(); // -> 2

boot->func = func; // -> 3

boot->args = args; // -> 4

boot->keyw = keyw; // -> 5

boot->tstate = PyThreadState Prealloc(boot->interp); // -> 6

PyEval InitThreads(); /* Start the interpreter's thread-
awareness */ // -> 7

ident = PyThread start new_thread(t_bootstrap, (void*) boot) ;
// -> 8

return PyLong FromUnsignedLong (ident) ;



The following code block demonstrates the declaration of the structure
bootstate:

Modules/_threadmodule.c (line no 1447)

struct bootstate {// -> 9

PyInterpreterState *interp;
PyObject *func;
PyObject *args;
PyObject *keyw;
PyThreadState *tstate;

i

The following code block demonstrates the function t_bootstrap, which
initializes the thread and requests for the GIL to begin execution of the
opcode of the thread:

Modules/ threadmodule.c (line no 991)

static void t bootstrap(void *boot raw)

{

struct bootstate *boot = (struct bootstate *) boot raw;
tstate = boot->tstate;

PyEval AcquireThread(tstate); // -> 10

tstate->interp->num threads++;

res = PyObject Call (boot->func, boot->args, boot->keyw); // ->
11

}
Code insights are as follows:
1. Initialize a new object of the type thread bootstrap, which is a wrapper
around the function opcode and the arguments of the executing thread.
2. Get the reference to the current executing interpreter state.

3. Reference the function opcode to the bootstrap wrapper.
4. Reference the arguments to the function of the bootstrap wrapper.



5. Reference the keyword arguments to the function of the bootstrap
wrapper.

6. Create a new reference to the current thread state to be executed. It
includes the information about the thread that including the reference
to the frame, exception information, and so on.

7. Initialize the GIL if not initialized at this stage.

8. Start the new thread. The creation of the thread depends on the
platform where Python is executing. On UNIX-based systems, Python
leverages pthreads, while on DOS systems, it uses the native
threading system.

9. Demonstration of the structure of the bootstrap object.

10. Acquire the GIL before executing the opcode of the function.
11. Execute the opcode of the function. Although executing the opcode,
relinquish the GIL to other threads in case they place a request for it.

This has been covered in-depth in Chapter 7 on Interpreter and
Opcodes.

Conclusion

The GIL has been one of the key concepts that fascinate Python developers
for a long time. The GIL is a Boolean flag indicating if a thread is actively
holding it. It is protected by a mutex, and the thread holding the GIL
releases it voluntarily when another thread places a request for the same.
This chapter covered the structure, creation, and initialization of the GIL.
The acquiring and releasing of the GIL were also discussed at length. The
example of GIL swapping at the time of thread creation using the
start_new_thread was also discussed.




CHAPTER 9
Async Python

any applications on the server side often end up waiting for

database, file, or socket operations to be completed before any
action can be taken on the data. This results in a lot of idle time for the
request thread when waiting for the response. This idle time on the thread
can be used to perform other tasks over idling. This popular paradigm shift
has led to the development of server-side frameworks such as Node.js in
JavaScript/Netty in Java and slowly in multiple programming languages
using framework support. Python decided to add support within the
programming language for async frameworks from version 3.4. Although
async frameworks are becoming very commonly used in server-side
applications these days, the paradigm has always been popular in client-side
applications and mobile development where the client has to wait for the
server to respond before any action can be taken/wait for the user to
perform any action both of which are async in nature.

Example

A waiter in the restaurant takes orders and places them into the kitchen for
the chef to start cooking. If the waiter has to wait until the chef returns the
cooked order, this will result in a lot of time wasted, which the waiter can
use to take other orders. In the former system, the waiter would need a lot
more waiters to process the orders, while in the latter, the restaurant needs
very few of them.

In the example stated, replacing waiters with threads and orders with
requests to the server understand that by not waiting for the database/file to
return the data, the thread can multiplex across multiple parallel user
requests. This chapter delves into understanding the asynec, await keywords
introduced in the language, and the asynclO framework used to develop
coroutines and concurrent async applications in Python.



Structure

In this chapter, we will cover the following topics:

e Coroutines
o Continuing the execution of the coroutine

e Async functions

Objective

After studying this unit, you will be able to understand the implementation
of coroutines internally using generators. You will also learn how async
functions are internally implemented, similar to coroutines.

Coroutines

Coroutines are functions the execution of which can be paused in between
and be continued on the basis of the input provided to the routine.
Coroutines can also be chained to move the input from one coroutine to
another, the input of one being passed to the other.

The example code demonstrating a simple coroutine:

def check equals(sum, numl):
print ("Checking if sum is equal to :{}".format (sum))
try :
while True:
num2 = (yield) // -> 1
if sum == numl + num?2:
print (“"The sum of numbers is equal to the provided sum”)
except GeneratorExit:

print ("Exit the coroutine")

coro_instance = check_equals (10, 5) // -> 2
coro_instance. next () // -> 3

coro_instance.send(4) // -> 4

coro_instance.close()
18 YIELD VALUE // -> 5



20 STORE_FAST 2 (num2) // -> 6

The code insights are as follows:

1. The yield statement is used to pause the execution of the code at the
point to wait for user input to be passed to the function at the point of
interruption.

2. Calling the function creates an instance of the coroutine.

3. The interpretation of the coroutine begins when the function __next
is called on the function only.

4. The function send 1s called on the instance of the coroutine with the
argument to pass the value to the interrupted function.

5. The value is fetched back to the function using the opcode
YIELD_VALUE the implementation of which is provided as follows.

6. The value obtained from the function is saved in the value num2.
The following code block explains the creation of an instance of coroutine:
Python/ceval.c (line no 4044)

PyObject* PyEval EvalCodeWithName (PyObject * co, PyObject
*globals, PyObject *locals,

PyObject *const *args, Py ssize t argcount,

PyObject *const *kwnames, PyObject *const *kwargs,

Py ssize t kwcount, int kwstep,

PyObject *const *defs, Py ssize t defcount,

PyObject *kwdefs, PyObject *closure,

PyObject *name, PyObject *qualname) {// -> 1

if (co->co flags & (CO GENERATOR | CO COROUTINE |
CO_ASYNC GENERATOR)) f{

PyObject *gen;

int is_coro = co->co_flags & CO_COROUTINE; // -> 2

if (is_coro) {
gen = PyCoro New(f, name, qualname); // -> 3
} else if (co->co flags & CO _ASYNC GENERATOR) ({



gen = PyAsyncGen New (f, name, gqualname);
} else {
gen = PyGen NewWithQualName (£, name, qualname);
}
_PyObject GC TRACK(f);
return gen;
}
Objects/genobject.c (line no 1152)
PyObject * PyCoro New (PyFrameObject *f, PyObject *name,
PyObject *qualname)
{
PyObject *coro = gen_new _with qualname (&PyCoro Type, £, name,
qualname); // -> 4

return coro;

}
Code insights are as follows:

1. The call function internally calls the function
_PyEval EvalCodeWithName to create an instance of the coroutine.
The tracing of this has been covered in the Chapter 5 on Functions
and Generators.

2. The compiler creates a flag called co_corouTINE during compilation
to indicate that the created function is a coroutine.

3. The function Pycoro_New is used to create an instance of coroutine.

4. The function internally creates a generator of type PyCoro Type to
indicate that the object is a coroutine.

The following code block explains the structure of a coroutine:

Objects/genobject.c (line no 1152)
typedef struct {
_PyGenObject HEAD(cr) // -> 1
PyObject *cr origin;
} PyCoroObject;

A coroutine Python is basically implemented as a generator object, which
contains a reference to the function being executed.



The following code block explains the implementation of the YIELD FrRoM
opcode:

case TARGET (YIELD FROM) : {
PyObject *v = POP();
PyObject *receiver = TOP();
int err;
if (PyGen CheckExact (receiver) ||
PyCoro CheckExact (receiver)) {
retval = PyGen Send((PyGenObject *)receiver, v); // ->1

goto exit yielding;
}

static PyObject* gen send ex(PyGenObject *gen, PyObject *arg,
int exc, int closing)
{

PyThreadState *tstate = PyThreadState GET();

PyFrameObject *f = gen->gi frame;

PyObject *result;

if (gen->gi_running) { // -> 2
const char *msg = "generator already executing";
if (PyCoro_ CheckExact(gen)) {// -> 3
msg = "coroutine already executing";
}
else if (PyAsyncGen CheckExact (gen)) {
msg = "async generator already executing";

}
PyErr SetString(PyExc ValueError, msg);
return NULL; Click here to enter text.

}
Code insights are as follows:

1. Mark the paused generator to be running again.



2. Continue the execution of the code at the point left over previously
very similar to other generators with the value provided to the send
function.

3. Mark the running generator to be returned to the paused state again.

Continuing the execution of the coroutine

In the previous section, we covered how we could exit from the execution
of a coroutine using the YIELD FRrRoM keyword. This section covers how the
send function is used to resume the execution using the value provided to
the send function:

Objects/genobject.c (line no 152)

static PyObject* gen send ex(PyGenObject *gen, PyObject *arg,
int exc, int closing)
{

PyThreadState *tstate = PyThreadState GET();

PyFrameObject *f = gen->gi frame;

PyObject *result;

/* Generators always return to their most recent caller, not
* necessarily their creator. */

Py XINCREF (tstate->frame);

assert (f->f back == NULL) ;

f->f back = tstate->frame;

gen->gi running = 1; // -> 1

gen->gli exc state.previous item = tstate->exc info;

tstate->exc_info = &gen->gi exc state;
result = PyEval EvalFrameEx(f, exc); // -> 2
tstate->exc_info = gen->gl exc state.previous item;

gen->gi exc state.previous item = NULL;
gen->gi_running = 0; // -> 3

}
Code insights are as follows:

1. Mark the paused generator to be running again.



2. Continue the execution of the code at the point left over previously,
very similar to other generators with the value provided to the send
function.

3. Mark the running generator to be returned to the paused state again.

Asynchronous functions

Asynchronous Python functions are similar in nature to coroutines, where
the interruption of the function can be paused in between and can be
returned back using a callback function to which the generator is passed as
an argument to continue the execution at the point where the async function
was paused. This section will cover the basics of the workings of the async
function.

Structure of the asynchronous generators:
typedef struct {

_PyGenObject HEAD(ag) // -> 1
PyObject *ag finalizer;

/* Flag is set to 1 when hooks set up by

sys.set asyncgen hooks
were called on the generator, to avoid calling them more
than once. */

int ag hooks inited;

/* Flag is set to 1 when aclose() is called for the first
time, or

when a StopAsynclteration exception is raised. */
int ag closed; // -> 2

int ag running async;

} PyAsyncGenObject;
Code insights are as follows:

1. An asynchronous function is internally a generator, the execution of
which 1s paused when the await statement is called. The same
generator is added as a callback to the called function to return back to
the same point post the completion of the awaited function.



2. The flag to indicate if the asynchronous function is successful/not.

Example of an asynchronous function to demonstrate the functionality of
yielding from an async function:

import asyncio

async def sleeper():

await asyncio.sleep(10)

Disassembly of <code object sleeper at 0x10b0027b0, file
"async.py", line 4>:

5 0 LOAD GLOBAL 0 (asyncio)
2 LOAD METHOD 1 (sleep)
4 LOAD CONST 1 (10)
6 CALL METHOD 1
8 GET_AWAITABLE // > 1
10 LOAD CONST 0 (None)
12 YIELD FROM // -> 2
14 POP_TOP
16 LOAD CONST 0 (None)

18 RETURN VALUE

Opcode insights are as follows:

1. Fetch the generator of the asynchronous function.

2. Yield from the executing function to stop the execution of opcodes at
the paused opcode.

Conclusion

This chapter covered the basics of coroutines and their implementation
using generators. Async/await in Python are also implemented using
generators, which are the fundamental building blocks of async
programming in Python.




CHAPTER 10

Source Code L.ayout and the Compiler
Stages

nderstanding the fundamentals of a programming language helps

build the basics upon which the peripherals can be explained.
Programming languages are composed of grammar that defines the
structure of the code and use compilers to translate the program into
opcodes.

In programming languages such as C/C++, the compiler directly converts
the program into machine-level opcode while compilers for languages such
as Python convert it into opcode understood by the virtual
machine/interpreter. This chapter covers the basics of Python grammar
along with the parser, compiler, assembler, and opcode.

Structure

In this chapter, we will cover the following topics:

e The folder structure of the Python source code

The main function

Python grammar

Stages of parsing and compilation

Operations on the parse tree

o Navigation and conversion of the parse tree
o Symbol table generation

Compilation of the AST to opcode

Objective




After reading this chapter, you will be able to understand the basics of
Python processes of conversion of source code to opcode until the process
of interpretation. You will also understand the code flow until the point of
interpretation.

The folder structure of the Python source code

Going through the source of Python can be simplified by understanding the
folder structure and reasoning of the structure. This section briefly covers
each folder and its importance in the source tree:

Doc: Contains the documentation of the source code tree. The entire
documentation is compiled as a list of .rst files, which can be
converted to html/pdf. The converted html is hosted at the following
site for access by the developer community. The folder also contains
the copyright and license rights of the source code:

Grammar: The folder contains the textual representation of the Python
grammar and tokens as a Backus Naur form. The folder contains two
files, file 1 named grammar, which defines the Python grammar, and
file 2 named Tokens, which defines the tokens of the Python
grammar.

Include: Contains the libraries common to the entire folder structure
that can be included in other parts of the source code. The libraries
include the interfaces and storage structures for data structures,
libraries, interpreter declarations, and exception management. These
interfaces are also exposed as a part of the Python C API, which can
be used in the development of wrappers for API’s developed in other
programming languages.

Lib: The folder contains the Python implementation of modules that
are part of the standard library. Some of the modules contain a C
implementation for improved performance implemented in the
Modules folder.

objects: Contains the implementation of the core functionalities of
Python, such as data structures, memory management, and the
management of weak references, to mention a few.


https://docs.python.org/3/

e Programs: Contains the implementation of the main function in
Python that acts as the entry point of execution.

e pPython: Contains the implementation of the core modules of Python
that are the interpreter, error management, initialization of the
compiler, optimization, and lifecycle management.

e Modules: Contains the C implementation of the modules part of the
standard Python library.

The main function

The main function begins to start the execution of the Python interpreter.
The main function accepts the arguments to start the execution of the code
from parsing, compiling, and interpreting the source code. It also loads the
standard Python modules, initiates the data types, and creates the base
thread to begin the interpretation of opcode:

Include/object.h Line no 104

/* Minimal main program -- everything is loaded from the

library */

#include "Python.h"
#include "pycore pylifecycle.h"

int main(int argc, char **argv)
{
return Py BytesMain(argc, argv); // -> 1

}
Code insight is as follows:

The main function is kept minimal, which makes a call to py BytesMain
function and performs the initialization of the interpreter.

The Python grammar

The textual representation of the grammar is present in the file
Grammar/Grammar. [t is written in yacc and is in the Backus Naur form,




and is converted into a non-definite finite automata (NFA), which is in the
file python/graminit.c:

Grammar/Grammar
# NOTE WELL: You should also follow all the steps listed at
# https://devguide.python.org/grammar/

# Start symbols for the grammar:
# single input is a single interactive statement;
# file input is a module or sequence of commands read

from an input file;

# eval input is the input for the eval() functions.
# func type input is a PEP 484 Python 2 function type
comment

# NB: compound stmt in single input is followed by extra
NEWLINE!

# NB: due to the way TYPE COMMENT is tokenized it will always
be followed by a NEWLINE

single input: NEWLINE | simple stmt | compound stmt NEWLINE
file input: (NEWLINE | stmt)* ENDMARKER

eval input: testlist NEWLINE* ENDMARKER

decorator: 'Q' dotted name ['(' [arglist] ')'] NEWLINE // -> 1
decorators: decorator+

decorated: decorators (classdef | funcdef | async funcdef)

async_funcdef: ASYNC funcdef // -> 2
funcdef: 'def' NAME parameters ['->' test] ':' [TYPE COMMENT]
func_body suite // -> 3

Code insights are as follows:

1. The grammar for decorator begins with @, followed by the name of
the function and the open parentheses (and the list of arguments and
the closing parentheses), followed by a new line.

2. The async function contains the keyword async followed by the
definition/grammar of the function.



3. The definition of the function includes the def keyword followed by
the name of the function and the input parameters.

The output of the Python grammar is the parse tree that contains the source
file compiled as a tree of parsed nodes.

Parse tree to abstract syntax tree

The parse tree is converted into the abstract syntax tree by the AST
generator, which is fed as input to the compiler. This section covers the
conversion from the parse tree into the abstract syntax tree (AST).

Operations on the parse tree

Before understanding the implementation of the conversion of the parse tree
to the AST, the implementation of few node traversal macros is explained
as follows:

CHILD(node *, int) - Returns the nth child of the node using

zero-offset indexing.

RCHILD (node *, int) - Returns the nth child of the node from
the right side. Index is negative number.

NCH (node *) - Number of children of the node.

STR (node *) - String representation of the node; e.g., will
return : for a COLON token

TYPE (node *) - The type of node as specified in
Include/graminit.

REQ (node *, TYPE) - Assert that the node is the type that is
expected

LINENO (node *) - retrieve the line number of the source code

that led to the creation of the parse rule;

Navigation and conversion of the parse tree

Navigating the parse tree involves using the operations on the parse tree
covered in the previous section and converting the same into the AST. The



function, PyAST FromNodeObject accepts the root of the parse tree and
converts the same into an AST, which is explained as follows:

Python/ast.c (line no 793)

mod_ty PyAST FromNodeObject (const node *n, PyCompilerFlags
*flags,
PyObject *filename, PyArena *arena)

{
mod ty res = NULL;

switch (TYPE (n)) {
case file input: // -> 1
stmts = Py asdl_seq new(num stmts(n), arena); // - > 2

if (!'stmts)

goto out;

for (i = 0; i < NCH(n) - 1; i++) {// -> 3
ch = CHILD(n, i); // -> 4
if (TYPE (ch) == NEWLINE)
continue;
REQ(ch, stmt); // -> 5
num = num_stmts(ch); // -> 6

if (num == 1) {
s = ast _for stmt(&c, ch) // -> 7;
if (!s)

goto out; // -> 8
asdl seq SET (stmts, k++, s);
}
else {
ch = CHILD(ch, 0);
REQ (ch, simple stmt);

for (J = 0; j < num; J++) {
s = ast_for stmt(&c, CHILD(ch, j * 2)); // -> 9
if (!s)

goto out;
asdl seq SET (stmts, k++, s);



out:

if (c.c normalize) {

}

Py DECREF (c.c normalize);

return res; // -> 10

}

Code insights are as follows:

l.

O 0 3 N D bk~ W

10.

The inputs to the AST generator can be of type file, which is code
input from a .py file, eval, or code input from the Python REPL
interpreter or a module. This section covers the £ile input, which
encompasses all the other types.

. Creating a new set of sequences to hold all the AST nodes for the

current parse node.

. Iterate through all the nodes in the current AST node.

. Fetch the child node of the current AST node.

. Check if the current node is mandatory/required.

. Fetch the number of statements in the current AST node.
. Fetch the AST representation of the current node.

. If the created node is invalid, it raises a parse error.

. When the number of statements in the node 1s greater than 1, fetch the

AST representation of all the nodes.
Return the created AST.

Symbol table generation

The

symbol table is a data structure maintained by the Python compiler to

store the meta information of compiled objects such as the variable,
function names, classes, or objects. It is useful at different stages of



program execution, such as compilation, execution, and optimization, to act
as a store-specific for information or data.

The structure of the symbol table is as follows:

struct symtable entry;

struct symtable {
PyObject *st filename; /* name of file being compiled, decoded
from the filesystem encoding */ // -> 1
struct _symtable entry *st cur; /* current symbol table entry
*/ /] -> 2

i
typedef struct symtable entry {
PyObject HEAD
PyObject *ste_id; /* int: key in ste_table->st blocks */ // -

> 3

PyObject *ste symbols; /* dict: variable names to flags */ //
-> 4

PyObject *ste name; /* string: name of current block */
PyObject *ste varnames; /* list of function parameters */ //
-> 5

int ste_lineno; /* first line of block */ // -> 6
struct symtable *ste table; // -> 7
} PySTEntryObject;

Code insights are as follows:

1. The filename of the file being compiled.

2. The current symbol table of the node being parsed example (class,
function, or block).

3. The identifier of the entry is in the symbol table dictionary.

4. The symbols of the variables in the defined blocks along with the
flags.

5. Function parameters if the symbol table corresponds to a function.
6. The 1ineno is in the code of to which the symbol table belongs.



7. The symbol table is associated with the entry.

Compilation to opcode

Compilation of the AST to opcodes is performed by the Python compilation
module, which is then fed into the interpreter for execution. This section
covers the conversion of the AST tree to opcodes. The compiler body
function accepts the AST tree as input and converts it into a set of opcodes:

Python/compile.c (line no 1746)

static int compiler body(struct compiler *c, asdl seg *stmts)

{
int 1 = 0;
stmt ty st;
PyObject *docstring;

for (; 1 < asdl seqg LEN(stmts); i++)
VISIT(c, stmt, (stmt_ty)asdl seq GET(stmts, i)); // -> 1
return 1;

}
Code insight is as follows:

1. Visit all the elements in the AST tree and convert them into opcode
one after the other.

This section will not cover the execution of the compiler in detail and 1s left
to the readers to explore the compilation process in detail.

Conclusion

The compilation process forms the crucial part of understanding the internal
workings of the Python programming language. Covering it in detail can
itself be an entire volume on Python.

This chapter provided a simple introduction to the stages of the Python
compilation process, which converted the program to a parse tree using the
provided grammar. The parse tree is converted into an abstract syntax tree
(AST) at the AST stage, which is used for both opcode generation and
symbol table creation.



The opcode created at the compilation stage is then passed into the
interpreter to begin execution.
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