

Learn Selenium

Build data-driven test frameworks for mobile and web
applications with Selenium Web Driver 3

Unmesh Gundecha
Carl Cocchiaro

BIRMINGHAM - MUMBAI

Learn Selenium
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2019

Production reference: 1120719

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-304-8

www.packtpub.com

http://www.packtpub.com

Contributors

About the authors
Unmesh Gundecha has an experience of over 16 years in Agile software development, test
automation, and DevOps methodologies. He is an Agile, open source, and DevOps
evangelist with extensive experience in a diverse set of tools and technologies. He has
extensive hands-on experience in building sustainable and repeatable test automation
solutions for web and mobile platforms, APIs, and CLI apps with continuous integration
and delivery pipelines, using best-of-breed open source and commercial tools. He is the
author of Selenium Testing Tools Cookbook and Learning Selenium Testing Tools with
Python, both by Packt Publishing.

Carl Cocchiaro has a bachelor's degree in business and over 30 years of experience in the
software engineering field, designing and building test frameworks for desktop, browser,
and mobile applications. He is an expert in the Selenium WebDriver/TestNG Java-based
technologies. He is a certified SilkTest engineer and has architected UI and RESTful API
automation frameworks for 25 major corporations. Carl is currently a software architect,
quality engineering at RSA/Dell technologies, Boston, MA, USA.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Table of Contents
Preface 1

Chapter 1: Introducing WebDriver and WebElements 8
Selenium Testing Tools 8

Selenium WebDriver 9
Selenium Server 10
Selenium IDE 10

Differences between Selenium 2 and Selenium 3 11
Handling the browser 11
 Having better APIs 11
Having developer support and advanced functionalities 11
Testing Mobile Apps with Appium 11

Setting up a project in Eclipse with Maven and TestNG using Java 12
WebElements 24
Locating WebElements using WebDriver 25

The findElement method 26
The findElements method 27
Inspecting Elements with Developer Tools 27

Inspecting pages and elements with Mozilla Firefox 29
Inspecting pages and elements in Google Chrome with Developer Tools 32

Using the By locating mechanism 34
The By.id() method 34
The By.name() method 35
The By.className() method 36
The By.linkText() method 37
The By.partialLinkText() method 38
The By.tagName() method 39
The By.xpath() method 40
The By.cssSelector() method 41

Interacting with WebElements 42
Getting element properties and attributes 43

The getAttribute() method 43
The getText() method 44
The getCssValue() method 45
The getLocation() method 45
The getSize() method 46
The getTagName() method 46

Performing actions on WebElements 47
The sendKeys() method 47
The clear() method 48
The submit() method 49

Checking the WebElement state 50

Table of Contents

[ii]

 The isDisplayed() method 50
The isEnabled() method 50
The isSelected() method 51

Summary 52
Questions 52
Further information 52

Chapter 2: Using Java 8 Features with Selenium 53
Introducing Java 8 Stream API 53

Stream.filter() 54
Stream.sort() 55
Stream.map() 55
Stream.collect() 56
Stream.min() and Stream.max() 56
Stream.count() 57

Using Stream API with Selenium WebDriver 58
Filtering and counting WebElements 58
Filtering element attributes 59
Using the Map function to get the text value from elements 60
Filtering and performing actions on WebElements 61

Summary 62
Questions 62
Further information 62

Chapter 3: Exploring the Features of WebDriver 63
Taking screenshots 63
Locating target windows and Frames 65

Switching among windows 65
Switching between frames 67
Handling alerts 68

Exploring Navigate 69
Waiting for WebElements to load 72

Implicit wait time 72
Explicit wait time 73

Handling cookies 74
Summary 77
Questions 78
Further information 78

Chapter 4: Exploring Advanced Interactions of WebDriver 79
Understanding the build and perform actions 79
Learning mouse based interactions 82

The moveByOffset action 83
The click at current location action 84
The click on a WebElement action 87
The click and hold at current location action 88

Table of Contents

[iii]

The click and hold a WebElement action 90
The release at current location action 91
The release on another WebElement action 91
The moveToElement action 92
The dragAndDropBy action 94
The dragAndDrop action 95
The double click at current location action 97
The double click on WebElement action 98
The context click on WebElement action 99
The context click at current location action 100

Learning keyboard-based interactions 101
The keyDown and keyUp actions 101
The sendKeys method 101

Summary 102
Questions 102
Further information 102

Chapter 5: Understanding WebDriver Events 103
Introducing the eventFiringWebDriver and eventListener classes 103
Creating an instance of EventListener 105

Implementing WebDriverEventListener 105
Extending AbstractWebDriverEventListener 107
Creating a WebDriver instance 108
Creating EventFiringWebDriver and EventListener instances 108
Registering EventListener with EventFiringWebDriver 109
Executing and verifying the events 109
Registering multiple EventListeners 111

Exploring different WebDriver event listeners 112
Listening for WebElement value changes 112
Listening for the clicked WebElement 112
Listening for a WebElement search event 113
Listening for browser back-navigation 113
Listening for browser forward-navigation 114
Listening for browser NavigateTo events 114
Listening for script execution 115
Listening for an exception 115
Unregistering EventListener with EventFiringWebDriver 115
Performing accessibility testing 116
Capturing page-performance metrics 117

Summary 119
Questions 119
Further information 119

Chapter 6: Exploring RemoteWebDriver 120
Introducing RemoteWebDriver 120

Understanding Selenium Standalone Server 122

Table of Contents

[iv]

Downloading Selenium Standalone Server 122
Running the server 122

Understanding the RemoteWebDriver client 124
Converting an existing test script to use the RemoteWebDriver server 124

Using RemoteWebDriver for Firefox 129
Using RemoteWebDriver for Internet Explorer 130

Understanding the JSON wire
protocol 131
Summary 134
Questions 134
Further information 135

Chapter 7: Setting up Selenium Grid 136
Exploring Selenium Grid 136
Understanding the hub 140
Understanding the node 142
Modifying the existing test script to use Selenium Grid 143

Requesting for non-registered capabilities 145
Queuing up the request if the node is busy 146
Dealing with two nodes with matching
capabilities 146

Configuring Selenium Grid 146
Specifying node-configuration parameters 146

Setting supported browsers by a node 147
Setting node timeouts 147
Setting the limit on browser instances 148
Reregistering the node automatically 148
Setting node health-check times 149
Unregistering an unavailable node 149
Setting the browser timeout 150

Hub-configuration parameters 150
Waiting for a match of the desired capability 150
Customized CapabilityMatcher 150
WaitTimeout for a new session 151

Different ways to specify the configuration 151
Using cloud-based grids for cross-browser testing 152
Summary 155
Questions 156
Further information 156

Chapter 8: Data-Driven Testing with TestNG 157
Overview of data-driven testing 157
Parameterizing Tests using suite parameters 158
Parameterizing Tests with a Data Provider 161

Reading data from a CSV file 163
Reading data from an Excel file 166

Table of Contents

[v]

Summary 168
Questions 168
Further information 168

Chapter 9: Building a Scalable Selenium Test Driver Class for Web and
Mobile Applications 169

Introduction 171
Data-driven testing 171
Selenium Page Object Model 171
DRY 172
What you will learn 172

The singleton driver class 173
Requirements 173
The class signature 174
Class variables 175
JavaDoc 176
Parameters 176
Class methods 177

Using preferences to support browsers and platforms 182
Browser preferences 182
Platforms 186

Using preferences to support mobile device simulators, emulators,
and real devices 186

iOS preferences 187
Android preferences 187

Multithreading support for parallel and distributed testing 188
Passing optional arguments and parameters to the driver 190

varargs 191
The parameter for setDriver 193
JVM argument – -Dswitch 193
Parameter processing methods 194

Selenium Grid Architecture support using the RemoteWebDriver
and AppiumDriver classes 197
Third-party grid architecture support including the Sauce Labs Test
Cloud 199
Using property files to select browsers, devices, versions,
platforms, languages, and many more 201
Summary 202

Chapter 10: Selenium Framework Utility Classes 203
Introduction 204
Global variables 204
Synchronization utility classes 205

Selenium synchronization classes 206
The ExpectedConditions class 206

Table of Contents

[vi]

WebDriverWait/FluentWait classes 207
Custom synchronization methods 208

The JavascriptExecutor class 210
The TestNG Listener class 213

Building the test listener class 214
Logging the results to the console or log file 215
Including the test runner in the test class or suite 217

File I/O class 218
Property files 218
Lookup table files 220
CSV files 220
Log files 221

The image capture class 223
The capture screen method 223
The capture image method 224
The compare image method 226

The reporter class 227
The JavaMail class 229
Summary 233

Chapter 11: Best Practices for Building Selenium Page Object Classes 234
Introduction 235

What you will learn 235
Best practices for naming conventions, comments, and folder
structures 236

Naming conventions 236
Comments 237
Folder names and structures 238

Designing and building the abstract base classes for the AUT 242
The abstract class 242
Abstract methods 243
Common locators 244
Common methods 245
Wrap up on base classes 247

Designing and building subclasses for feature-specific pages using
inheritance techniques 248
Encapsulation and using getter/setter methods to retrieve objects
from the page object classes 256
Exception handling and synchronization in page object class
methods 257

Implicit exception handling 258
TestNG difference viewer 259

Explicit exception handling 260
Try...catch exception handling 261
Synchronizing methods 263

Table of Contents

[vii]

Table classes 264
Summary 268

Chapter 12: Defining WebDriver and AppiumDriver Page Object
Elements 269

Introduction 270
Inspecting page elements on browser applications 270

Types of locators 270
Inheriting WebElements 271
Inspecting WebElements 272
Third-party plugins/tools 275

Inspection of page elements on mobile applications 276
Appium inspector 276
Inspecting mobile elements 277

Standards for using static locators 279
Rules for using standard locators 279

Simple locators 279
CSS locators 280
XPath query locators 281

Referencing static elements in methods 281
Retrieving static elements from other classes 282

Standards for using dynamic locators 283
Single attribute XPath versus CSS locators 284

WebElements 284
MobileElements 287

Multiple attribute XPath versus CSS locators 291
Using dynamic locators in methods 292

Summary 294

Chapter 13: Building a JSON Data Provider 295
Introduction 295

What you will learn 296
The TestNG Data Provider class 296

The @DataProvider annotation 297
The @Test annotation 298

Extracting JSON data into Java objects 298
Filtering test data 301

Filtering include and exclude patterns 302
JSON Data File formats 303
The JSONObject class 305
Summary 311

Chapter 14: Developing Data-Driven Test Classes 312
Introduction 312
Annotating test class methods using TestNG 314

TestNG annotations 314

Table of Contents

[viii]

@Test 315
TestNG setup/teardown methods 318

Setup methods 318
@BeforeSuite, @BeforeTest, @BeforeGroups, @BeforeClass, and
@BeforeMethod 319

Teardown methods 320
@AfterSuite, @AfterTest, @AfterGroups, @AfterClass, and @AfterMethod 320

Order of precedence 321
Naming conventions for test methods 322

Test classes and data files 322
Test methods 323
Test parameters 324
Test groups 324
Test setup/teardown methods 324

Using the TestNG DataProvider 326
Calling page object methods in test classes 328
Exception handling in test classes 332

Test methods 332
The setup/teardown methods 333
The ITestResult class 334
Test listener/reporter classes 335

Designing base setup classes 335
TestNG suite file structure 339

Suite section: <suite> 340
Groups section: <groups> 341
Listeners section: <listeners> 342
Test section: <test> 342

Suite parameters 344
@Parameters 344

Summary 346

Chapter 15: Encapsulating Data in Data-Driven Testing 347
Introduction 348
Casting JSON data to Java objects 348

JSON object 349
Sequential numbering of row IDs in the data file 350
Using Java object getter/setter methods 351
Passing data to page object methods 352

Building in positive, negative, boundary, and limit testing 352
Negative testing 352

Confirmation and exception property files 354
Property files 355
Lookup method in DataProvider 355
JSON data file data 356
Converting confirmation/error code on the fly 357

Table of Contents

[ix]

Property files and parsing test data on the fly 358
Environment property files 358
System properties 358
Initializing property file data 359

Global variables versus dynamic data 360
Processing JVM args 361
Retrieving JSON data outside of test methods 362
Supporting multibranded applications 363

Multilocators 363
Conditional code 364
Runtime flags 366

Multiple driver support 366
Dual WebDriver testing 366
Dual WebDriver and AppiumDriver testing 369

Parallel testing 370
Suite XML file 370
Parallel properties method 372
Common setup 373

Summary 374

Chapter 16: Designing a Selenium Grid 375
Introduction 376
Virtual grids 377

Grid structure 377
Single browser nodes 378
Multibrowser nodes 378
Single mobile device nodes 379
Multimobile/browser nodes 380

Selenium driver class – WebDriver versus RemoteWebDriver 380
The setDriver method for browser 380
The setDriver method for mobile 382
Overloaded setDriver method for browser 383

Switching from local to remote driver 384
Suite parameters 384
JVM argument 385
Default global variables 385
Processing runtime parameters 385

Selenium standalone server and client drivers 386
Local use of drivers 387
Remote use of drivers 388

Selenium standalone server and browser driver command-line
options 389

Selenium hub 389
Selenium hub JSON configuration file 390
Selenium nodes 391

Table of Contents

[x]

Selenium node JSON configuration file 393
Appium server and mobile simulator/emulator command-line
options 396

Appium nodes 396
Appium node JSON configuration file 397

Selenium Grid console 398
Directing traffic to Selenium nodes 401

Multiple nodes of the same platform and version 401
Directing traffic using desired capabilities 401
Maintenance of the Selenium Grid 402
Summary 403

Chapter 17: Third-Party Tools and Plugins 404
Introduction 404
IntelliJ IDEA Selenium plugin 405

Sample project files 405
Generating element locators 407
Wrap-up on Selenium Plugin 409

TestNG results in IntelliJ and Jenkins 409
IntelliJ TestNG results 409
Jenkins TestNG results 410

HTML Publisher Plugin 413
Installation 413

BrowserMob Proxy Plugin 414
Getting started 415

ExtentReports Reporter API class 416
ExtentHTMLReporter 417
Dashboard page 418
Categories page 419
Tests page 420
Code sample 422

Sauce Labs Test Cloud services 424
Sauce Labs Test Cloud features 425

Browser and mobile platforms 425
Driver code changes 425
Dashboard 427
SauceConnect tunnel 427
TestObject Real Device Cloud 427
Jenkins plugin 429

Advantages and disadvantages of using in-house versus third-party grids 429
Summary 431

Chapter 18: Working Selenium WebDriver Framework Samples 432
Introduction 432
Selenium driver and DataProvider classes 434

CreateDriver.java 434

Table of Contents

[xi]

JSONDataProvider class 439
Selenium utility classes 442

BrowserUtils.java 442
Global_VARS.java 444
TestNG_ConsoleRunner.java 445
selenium.properties 452

ExtentReports classes 453
ExtentTestNGIReporterListener.java 453
extent-config.xml 460

Browser page object base and subclasses 462
PassionTeaCoBasePO.java 462
PassionTeaCoWelcomePO.java 466

Browser test class and data files 470
PassionTeaCoTest.java 471
PassionTeaCo.json 477

Browser Suite XML and Maven Pom XML files 482
PassionTeaCo.xml 482
pom.xml file 484

Summary 488

Assessments 489

Other Books You May Enjoy 496

Index 498

Preface
The Selenium WebDriver 3.x is an open source API to test both browser and mobile
applications. With a solid foundation, you can easily perform end-to-end testing on web
and mobile browsers.

You’ll begin by being introduced to the Selenium page object design patterns in software
development. You’ll architect your own framework with a scalable driver class, Java utility
classes, and support for third-party tools and plugins. You'll design and build a Selenium
grid from scratch to enable the framework to scale and support different browsers, mobile
devices, and platforms. You’ll strategize and handle rich web UI using the advanced
WebDriver API and learn techniques to handle real-time challenges in WebDriver. You’ll
perform different types of testing, such as cross-browser testing, load testing, and mobile
testing. Finally, you will also be introduced to data-driven testing using TestNG to create
your own automation framework.

By the end of this Learning Path, you’ll be able to design your own automation testing
framework and perform data-driven testing with Selenium WebDriver.

This Learning Path includes content from the following Packt products:

Selenium WebDriver 3 Practical Guide - Second Edition by Unmesh Gundecha
Selenium Framework Design in Data-Driven Testing by Carl Cocchiaro

Who this book is for
This Learning Path is ideal for software quality assurance/testing professionals, software
project managers, or software developers interested in using Selenium for testing their
applications. Professionals responsible for designing and building enterprise-based testing
frameworks will also find this Learning Path useful. Prior programming experience in Java
and TestNG is necessary.

Preface

[2]

What this book covers
Chapter 1, Introducing WebDriver and WebElements, will start off with an overview of
Selenium and it's features. Then, we quickly jump into WebDriver by describing how it
perceives a web page. We will also look at what a WebDriver's WebElement is. Then, we
talk about locating WebElements on a web page and performing some basic actions on
them.

Chapter 2, Using Java 8 Features with Selenium, will talk about prominent Java 8 features
such as Streams API and Lambda expressions for processing the list of WebElements. The
Stream API and Lambda expression help in applying functional
programming style to create readable and fluent tests.

Chapter 3, Exploring the Features of WebDriver, will talk about some advanced features of
WebDriver, such as taking screenshots of web pages, executing JavaScript, handling
cookies, and handling Windows and Frames.

Chapter 4, Exploring Advanced Interactions of WebDriver, will dive deeply into more
advanced actions that WebDriver can perform on the WebElements of a web page, such as
the dragging and dropping of elements from one frame of a page to another and
right/context-clicking on WebElements. We're sure you will find this chapter interesting to
read.

Chapter 5, Understanding WebDriver Events, will deal with the event-handling aspect of
WebDriver. To state a few, events can be a value change on a WebElement, a browser
backnavigation invocation, script execution completion, and so on. We will use these events
to run accessibility and performance checks.

Chapter 6, Exploring RemoteWebDriver, will talk about using RemoteWebDriver and
Selenium Standalone Server for executing tests on remote machines from your
machine.You can use the RemoteWebDriver class to communicate with the Selenium
Standalone Server on a remote machine to run commands on the desired browser installed
on the remote machine. One of its popular use cases is browser compatibility testing.

Chapter 7, Setting up Selenium Grid, will talk about one important and interesting feature of
Selenium named Selenium Grid. Using this, you can execute automated tests on a
distributed computer network using Selenium Grid. We will configure a Hub and Nodes
for cross-browser testing. This also enables running tests in parallel and in a distributed
architecture.

Preface

[3]

Chapter 8, Data-Driven Testing with TestNG, will talk about using the data-driven testing
technique with TestNG. Using the data-driven testing approach, we can reuse a test with
multiple sets of test data to gain additional coverage.

Chapter 9, Building a Scalable Selenium Test Driver Class for Web and Mobile Applications,
shows users how to get started with designing and building the Selenium Framework
driver class. This class is the engine that drives the browser and mobile applications. With
Selenium WebDriver technology, users can test all the popular browsers and mobile
devices using the same driver class and programming language. The Selenium WebDriver
technology is platform independent and has various language bindings to support cross-
browser and device testing in a single code base.

Chapter 10, Selenium Framework Utility Classes, describes how to design Java utility classes
to support the framework components that are non-specific to any of the applications
under test. Users will learn how to build classes to perform file I/O operations, data
extraction, logging, synchronization, result processing, reporting, global variables, and
many more.

Chapter 11, Best Practices for Building Selenium Page Object Classes, introduces users to
designing and building application-specific classes following the Selenium Page Object
Model. Users will be guided through designing abstract base classes, deriving sub-classes,
and structuring classes to use common inheritance methods to ensure that page elements
and methods are stored in central locations. In following these design principles, users will
create an abstract separation layer between the page object and test classes in the
framework.

Chapter 12, Defining WebDriver and AppiumDriver Page Object Elements, presents users with
design techniques to ensure that elements are defined using best practices for locators,
minimum number of elements defined in page object classes, how to build locators on the
fly, and when to use static verses dynamic locators to test page object elements.

Chapter 13, Building a JSON Data Provider, explains how to design and build a TestNG
DataProvider class using the JSON protocol to store data. The concept of data-driven test
frameworks is introduced, and how to use a DataProvider to extract data on the fly to
ensure that standards for data encapsulation and DRY approaches are being followed is
covered.

Preface

[4]

Chapter 14, Developing Data-Driven Test Classes, explores how to design data-driven test
classes using the TestNG technologies. This includes TestNG features such as annotations,
parameters, attributes, use of DataProviders in test classes, data extraction, exception
handling, and setup/teardown techniques.

Chapter 15, Encapsulating Data in Data-Driven Testing, describes the use of encapsulation in
data-driven testing. This will include JSON data manipulation, use of property files,
processing JVM arguments, casting JSON data to Java objects, supporting multiple drivers,
and parallel testing.

Chapter 16, Designing a Selenium Grid, presents the Selenium Grid Architecture, including
designing a virtual grid in the Cloud, how to build the grid hub, browser nodes, and
Appium mobile nodes, using the grid console, how to cast tests to the RemoteWebDriver,
and supporting third-party grids.

Chapter 17, Third-Party Tools and Plugins, details methodologies in using third-party tools
and plugins in the Selenium Framework design. This will include the IntelliJ IDEA
Selenium plugin, TestNG for results processing, the HTML Publisher Plugin, BrowserMob,
ExtentReports, and Sauce Labs.

Chapter 18, Working Selenium WebDriver Framework Samples, provides users with a real
working sample framework including Selenium driver and utility classes, page object base
and subclasses, DataProvider class, data-driven test class, JSON data file, TestNG test
IListener class, and ExtentReports IReporter classes. Users will be able to install the files in
their own project, use the supplied Maven pom.xml file to pull down the required JAR files,
and run the sample data-driven tests against a real practice website across multiple browser
types.

To get the most out of this book
The reader is expected to have a basic idea of programming, preferably using Java because
we take the reader through several features of WebDriver using code examples. The
following software is required for the book:

Java JDK 1.81.
IntelliJ IDEA 2017.3+2.
Selenium WebDriver 3.7.1+ JAR3.
Selenium Stand-alone Server 3.7.1+ JAR4.
Appium Java Client 5.0.4+ JAR5.
Appium Server 1.7.1 JAR for iOS or Linux6.

Preface

[5]

TestNG 6.11 JAR7.
ExtentReports 3.1.0 JAR8.
Browsers: Google Chrome 62.0, Mozilla Firefox 57.0, Microsoft Internet Explorer9.
11.0
Drivers: chromedriver.exe 2.33, geckodriver.exe 0.19.1, IEDriverServer.exe 3.7.1+10.
Apple Xcode and iPhone Simulators for iOS11.
Google Android SDK and Samsung Galaxy emulators for Linux12.
VMware virtual machines13.

Installing Java
In this book, all the code examples that we show covering various features of WebDriver
will be in Java. To follow these examples and write your own code, you need the Java
Development Kit installed on your computer. The latest version of JDK can be downloaded
from the following link:

http://www.oracle. com/ technetwork/ java/ javase/ downloads/ jdk8- downloads- 2133151.
html

Installing Eclipse
This book is a practical guide that expects the user to write and execute WebDriver
examples. For this, it would be handy to install a Java IDE. The Eclipse IDE is a popular
choice in Java user community. The Eclipse IDE can be downloaded from https:/ /www.
eclipse.org/downloads/ .

Download the example code files
You can download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learn- Selenium. In case there's an update to the code, it will be updated
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "beforeMethod(), which is annotated with the @BeforeMethod TestNG
annotation."

A block of code is set as follows:

<input id="search" type="search" name="q" value="" class="input-text
required-entry" maxlength="128" placeholder="Search entire store here..."
autocomplete="off">

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

WebElement searchBox = driver.findElement(By.id("q"));

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"To run the tests, right-click in the code editor and select Run As | TestNG Test, as shown
in the following screenshot."

https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[7]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introducing WebDriver and

WebElements
In this chapter, we will look briefly into Selenium, its various components, such as Appium,
and proceed to the basic components of a web page, including the various types of
WebElements. We will learn different ways to locate WebElements on a web page and
execute various user actions on them. We will cover the following topics in this chapter:

Various components of Selenium Testing Tools
Setting up a project in Eclipse with Maven and TestNG
Locating WebElements on a Web Page
Actions that can be taken on the WebElements

Selenium is a set of widely popular tools used to automate browsers. It is largely used to
test applications, but its usages are not limited to testing. It can also be used to perform
screen scraping and automate repetitive tasks in a browser window. Selenium supports
automation on all the major browsers, including Google Chrome, Mozilla Firefox, Microsoft
Internet Explorer and Edge, Apple Safari, and Opera. Selenium 3.0 is now a part of W3C
standards and is supported by major browser vendors.

Selenium Testing Tools
Selenium 3.0 offers three important tools, Selenium WebDriver, Selenium Server, and
Selenium IDE. Each of these tools provides features to create, debug, and run tests on
supported browsers and operating systems. Let's explore each of them in detail.

Introducing WebDriver and WebElements Chapter 1

[9]

Selenium WebDriver
Selenium WebDriver is the successor of Selenium RC (Remote Control), which has been
officially deprecated. Selenium WebDriver accepts commands using the JSON-Wire
protocol (also called Client API) and sends them to a browser launched by the specific
driver class (such as ChromeDriver, FirefoxDriver, or IEDriver). This is implemented
through a browser-specific browser driver. It works with the following sequence:

The driver listens to the commands from Selenium 1.
It converts these commands into the browser's native API2.
The driver takes the result of native commands and sends the result back to3.
Selenium:

We can use Selenium WebDriver to do the following:

Create robust, browser-based regression automation
Scale and distribute scripts across many browsers and platforms
Create scripts in your favourite programming language

Introducing WebDriver and WebElements Chapter 1

[10]

Selenium WebDriver offers a collection of language-specific bindings (client libraries) to
drive a browser. WebDriver comes with a better set of APIs that meet the expectations of
most developers by being similar to object-oriented programming in its
implementation. WebDriver is being actively developed over a period of time, and you can
see many advanced interactions with the web as well as mobile applications.

The Selenium Client API is a language-specific Selenium library that provides a consistent
Selenium API in programming languages such as Java, C#, Python, Ruby, and JavaScript.
These languages bindings let tests to launch a WebDriver session and communicate with
the browser or Selenium Server.

Selenium Server
Selenium Server allows us to run tests on browser instances running on remote machines
and in parallel, thus spreading a load of testing across several machines. We can create a
Selenium Grid, where one server runs as the Hub, managing a pool of Nodes. We can
configure our tests to connect to the Hub, which then obtains a node that is free and
matches the browser we need to run the tests. The hub has a list of nodes that provide
access to browser instances, and lets tests use these instances similarly to a load balancer.
Selenium Grid enables us to execute tests in parallel on multiple machines by managing
different types of browsers, their versions, and operating system configurations centrally.

Selenium IDE
Selenium IDE is a Firefox add-on that allows users to record, edit, debug, and play back
tests captured in the Selenese format, which was introduced in the Selenium Core version. It
also provides us with the ability to convert these tests into the Selenium RC or Selenium
WebDriver format. We can use Selenium IDE to do the following:

Create quick and simple scripts using record and replay, or use them in
exploratory testing
Create scripts to aid in automation-aided exploratory testing
Create macros to perform repetitive tasks on Web pages

The Selenium IDE for Firefox stopped working after the Firefox 55 moved to the
WebExtension format from XPI format and it is currently no longer maintained.

Introducing WebDriver and WebElements Chapter 1

[11]

Differences between Selenium 2 and
Selenium 3
Before we dive further into Selenium 3, let's understand the differences between Selenium 2
and Selenium.

Handling the browser
As the Selenium WebDriver has been as the W3C Standard, Selenium 3 brings a number of
changes to the browser implementations. All of the major browser vendors now support
WebDriver specification and provide the necessary features along with the browser. For
example, Microsoft came with EdgeDriver, and Apple supports the SafariDriver
implementation. We will see some of these changes later in this book.

 Having better APIs
As W3C-standard WebDriver comes with a better set of APIs, which meet the expectations
of most developers by being similar to the implementation of object-oriented programming.

Having developer support and advanced
functionalities
WebDriver is being actively developed and is now supported by Browser vendors per W3C
specification; you can see many advanced interactions with the web as well as mobile
applications, such as File-Handling and Touch APIs.

Testing Mobile Apps with Appium
One of the major differences introduced in Selenium 3 was the introduction of the Appium
project. The mobile-testing features that were part of Selenium 2 are now moved into a
separate project named Appium.

Appium is an open source mobile-automation framework for testing native, hybrid, and
web mobile apps on iOS and Android platforms using the JSON-Wire protocol with
Selenium WebDriver. Appium replaces the iPhoneDriver and AndroidDriver APIs in
Selenium 2 that were used to test mobile web applications.

Introducing WebDriver and WebElements Chapter 1

[12]

Appium enables the use and extension of the existing Selenium WebDriver framework to
build mobile tests. As it uses Selenium WebDriver to drive the tests, we can use any
programming language to create tests for a Selenium client library.

Setting up a project in Eclipse with Maven
and TestNG using Java
Selenium WebDriver is a library that helps you automate browsers. However, much more
is needed when using it for testing and building a test framework or automating browsers
for non-testing purposes. You will need an Integrated Development Environment (IDE) or
a code editor to create a new Java project and add Selenium WebDriver and other
dependencies in order to build a testing framework.

In the Java development community, Eclipse is a widely-used IDE, as well as IntelliJ IDEA
and NetBeans. Eclipse provides a feature-rich environment for Selenium WebDriver test-
development.

Along with Eclipse, Apache Maven provides support for managing the life cycle of a test
project. Maven is used to define the project structure, dependencies, build, and test-
management.

We can use Eclipse and Maven to build our Selenium WebDriver test framework from a
single window. Another important benefit of using Maven is that we can get all the
Selenium library files and their dependencies by configuring the pom.xml file. Maven
automatically downloads the necessary files from the repository while building the project.

In this section, we will learn how to configure Eclipse and Maven for the Selenium
WebDriver test development. Most of the code in this book has been developed in Eclipse
and Maven.

You will need Eclipse and Maven to set up the test-development environment. Download
and set up Maven from http:/ /maven. apache. org/download. html. Follow the instructions
on the Maven download page (see the Installation Instructions section of the page).

Download and set up Eclipse IDE for Java Developers from https:/ / eclipse. org/
downloads/

Along with Eclipse and Maven, we will also use TestNG as a testing framework for our
project. The TestNG library will help us define test cases, test fixtures, and assertions. We
need to install the TestNG plugin for Eclipse via Eclipse Marketplace.

http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/
https://eclipse.org/downloads/

Introducing WebDriver and WebElements Chapter 1

[13]

Let's configure Eclipse with Maven to develop Selenium WebDriver tests using the
following steps:

Launch the Eclipse IDE.1.
Create a new project by selecting File | New | Other from the Eclipse Main2.
Menu.
On the New dialog, select Maven | Maven Project, as shown in the following3.
screenshot, and click Next:

Introducing WebDriver and WebElements Chapter 1

[14]

The New Maven Project dialog will be displayed. Select the Create a simple4.
project (skip archetype selection) checkbox and click on the Next button, as
shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[15]

On the New Maven Project dialog box, enter com.example in the Group Id:5.
textbox and chapter1 in the Artifact Id: textbox. You can also add a name and
description. Click on the Finish button, as shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[16]

Eclipse will create the chapter1 project with a structure (in Package Explorer)6.
similar to the one shown in the following screenshot:

Select pom.xml from Package Explorer. This will open the pom.xml file in the7.
editor area with the Overview tab open. Select the pom.xml tab next to the
Overview tab, as shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[17]

Add the Selenium WebDriver and TestNG dependencies highlighted in the 8.
following code snippet to pom.xml in the between project node:

<properties>
 <java.version>1.8</java.version>
 <selenium.version>3.13.0</selenium.version>
 <testng.version>6.13.1</testng.version>
 <maven.compiler.version>3.7.0</maven.compiler.version>
</properties>

<dependencies>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>${selenium.version}</version>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>${testng.version}</version>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>${maven.compiler.version}</version>
 <configuration>
 <source>${java.version}</source>
 <target>${java.version}</target>
 </configuration>
 </plugin>
 </plugins>
</build>

Introducing WebDriver and WebElements Chapter 1

[18]

Select src/test/java in Package Explorer and right-click on it to show the menu.9.
Select New | Other, as shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[19]

Select the TestNG | TestNG class from the Select a wizard dialog, as shown in10.
the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[20]

On the New TestNG class dialog box, enter /chapter1/src/test/java in the Source11.
folder: field. Enter com.example in the Package name: field. Enter
NavigationTest in the Class name: field. Select the @BeforeMethod and
@AfterMethod checkboxes and add
src/test/resources/suites/testng.xml in the XML suite file: field. Click
on the Finish button:

Introducing WebDriver and WebElements Chapter 1

[21]

This will create the NavigationTest.java class in the com.example package with12.
TestNG annotations such as @Test, @BeforeMethod, and @AfterMethod, and
the beforeMethod and afterMethod methods:

 Modify the NavigationTest class with following code:13.

package com.example;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.Assert;
import org.testng.annotations.*;

public class NavigationTest {

 WebDriver driver;

 @BeforeMethod
 public void beforeMethod() {

 // set path of Chromedriver executable
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");

 // initialize new WebDriver session
 driver = new ChromeDriver();

Introducing WebDriver and WebElements Chapter 1

[22]

 }

 @Test
 public void navigateToAUrl() {
 // navigate to the web site
 driver.get("http://demo-store.seleniumacademy.com/");
 // Validate page title
 Assert.assertEquals(driver.getTitle(), "Madison
Island");
 }
 @AfterMethod
 public void afterMethod() {

 // close and quit the browser
 driver.quit();
 }
}

In the preceding code, three methods are added as part of the NavigationTest class. We
also declared a WebDriver driver; instance variable, which we will use later in the test
to launch a browser and navigate to the site.

beforeMethod(), which is annotated with the @BeforeMethod TestNG annotation, will
execute before the test method. It will set the path of the chromedriver executable required
by Google Chrome. It will then instantiate the driver variable using the ChromeDriver()
class. This will launch a new Google Chrome window on the screen.

The next method, navigateToAUrl(), annotated with the @Test annotation is the test
method. We will call the get() method of the WebDriver interface passing the URL of the
application. This will navigate to the site in the browser. We will check the title of the page
by calling TestNG's Assert.assertEquals method and the getTitle() method of the
WebDriver interface.

Lastly, afterMethod() is annotated with the @AfterMethod TestNG annotation will close
the browser window.

We need to download and copy the chromedriver executable from https:/ /sites. google.
com/a/chromium.org/ chromedriver/ downloads. Download the appropriate version based
on the Google Chrome browser version installed on your computer as well as the operating
system. Copy the executable file in the /src/test/resources/ drivers folder.

https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads

Introducing WebDriver and WebElements Chapter 1

[23]

To run the tests, right-click in the code editor and select Run As | TestNG Test, as shown
in the following screenshot:

This will launch a new Google Chrome browser window and navigate to the site. The test
will validate the page title and the browser window will be closed at the end of the test. The
TestNG Plugin will display results in Eclipse:

Introducing WebDriver and WebElements Chapter 1

[24]

You can download the example code files for all the Packt books you have purchased from
your account at http://www.packtpub.com. If you have purchased this book elsewhere, you
can visit http://www.packtpub. com/support and register to have the files emailed directly
to you. The example code is also hosted at https:/ /github. com/PacktPublishing/
Selenium-WebDriver- 3- Practical- Guide- Second- Edition

WebElements
A web page is composed of many different types of HTML elements, such as links,
textboxes, dropdown buttons, a body, labels, and forms. These are called WebElements in
the context of WebDriver. Together, these elements on a web page will achieve the user
functionality. For example, let's look at the HTML code of the login page of a website:

<html>
<body>
 <form id="loginForm">
 <label>Enter Username: </label>
 <input type="text" name="Username"/>
 <label>Enter Password: </label>
 <input type="password" name="Password"/>
 <input type="submit"/>
 </form>
 Forgot Password ?
</body>
</html>

In the preceding HTML code, there are different types of WebElements, such as <html>,
<body>, <form>, <label>, <input>, and <a>, which together make a web page provide
the Login feature for the user. Let's analyze the following WebElement:

<label>Enter Username: </label>

http://www.packtpub.com
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition
https://github.com/PacktPublishing/Selenium-WebDriver-3-Practical-Guide-Second-Edition

Introducing WebDriver and WebElements Chapter 1

[25]

Here, <label> is the start tag of the WebElement label. Enter Username: is the text
present on the label element. Finally, </label> is the end tag, which indicates the end of
a WebElement.

Similarly, take another WebElement:

<input type="text" name="Username"/>

In the preceding code, type and name are the attributes of the WebElement input with
the text and Username values, respectively.

UI-automation using Selenium is mostly about locating these WebElements on a web page
and executing user actions on them. In the rest of the chapter, we will use various methods
to locate WebElements and execute relevant user actions on them.

Locating WebElements using WebDriver
Let's start this section by automating the Search feature from the Homepage of the demo
application, http:/ /demo- store. seleniumacademy. com/ , which involves navigating to the
homepage, typing the search text in the textbox, and executing the search. The code is as
follows:

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.testng.annotations.AfterMethod;
import org.testng.annotations.BeforeMethod;
import org.testng.annotations.Test;

import static org.assertj.core.api.AssertionsForClassTypes.assertThat;

public class SearchTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://demo-store.seleniumacademy.com/");
 }

http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/
http://demo-store.seleniumacademy.com/

Introducing WebDriver and WebElements Chapter 1

[26]

 @Test
 public void searchProduct() {
 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys("Phones");
 WebElement searchButton =
 driver.findElement(By.className("search-button"));
 searchButton.click();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

As you can see, there are three new things that are highlighted, as follows:

WebElement searchBox = driver.findElement(By.name("q"));

They are the findElement() method, the By.name() method, and the WebElement
interface. The findElement() and By() methods instruct WebDriver to locate a
WebElement on a web page, and once found, the findElement() method returns the
WebElement instance of that element. Actions, such as click and type, are performed on a
returned WebElement using the methods declared in the WebElement interface, which will
be discussed in detail in the next section.

The findElement method
In UI automation, locating an element is the first step before executing any user actions on
it. WebDriver's findElement() method is a convenient way to locate an element on the
web page. According to WebDriver's Javadoc (http:/ /selenium. googlecode. com/ git/
docs/api/java/index. html), the method declaration is as follows:

WebElement findElement(By by)

So, the input parameter for the findElement() method is the By instance. The By instance
is a WebElement-locating mechanism. There are eight different ways to locate a
WebElement on a web page. We will see each of these eight methods later in the chapter.

http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html
http://seleniumhq.github.io/selenium/docs/api/java/index.html

Introducing WebDriver and WebElements Chapter 1

[27]

The return type of the findElement() method is the WebElement instance that represents
the actual HTML element or component of the web page. The method returns the first
WebElement that the driver comes across that satisfies the locating-mechanism condition.
This WebElement instance will act as a handle to that component from then on.
Appropriate actions can be taken on that component by the test-script developer using this
returned WebElement instance.

If WebDriver doesn't find the element, it throws a runtime exception named
NoSuchElementException, which the invoking class or method should handle.

The findElements method
For finding multiple elements matching the same locator criteria on a web page, the
findElements() method can be used. It returns a list of WebElements found for a given
locating mechanism. The method declaration of the findElements() method is as follows:

java.util.List findElements(By by)

The input parameter is the same as the findElement() method, which is an instance of the
By class. The difference lies in the return type. Here, if no element is found, an empty list is
returned and if there are multiple WebElements present that satisfy the locating
mechanism, all of them are returned to the caller in a list.

Inspecting Elements with Developer Tools
Before we start exploring how to find elements on a page and what locator mechanism to
use, we need to look at the HTML code of the page to understand the Document Object
Model (DOM) tree, what properties or attributes are defined for the elements displayed on
the page, and how JavaScript or AJAX calls are made from the application. browsers use
the HTML code written for the page to render visual elements in the browser window. It
uses other resources, including JavaScript, CSS, and images, to decide on the look, feel, and
behavior of these elements.

Introducing WebDriver and WebElements Chapter 1

[28]

Here is an example of a login page of the demo application and the HTML code written to
render this page in a browser, as displayed in the following screenshot:

We need tools that can display the HTML code of the page in a structured and easy-to-
understand format. Almost all browsers now offer Developer tools to inspect the structure
of the page and associated resources.

Introducing WebDriver and WebElements Chapter 1

[29]

Inspecting pages and elements with Mozilla Firefox
The newer versions of Mozilla Firefox provide built-in ways to inspect the page and
elements. To inspect an element from the page, move the mouse over the desired element
and right-click to open the pop-up menu. Select the Inspect Element option, as shown in
the following screenshot:

This will display the Inspector tab with the HTML code in a tree format with the selected
element highlighted, as shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[30]

Using Inspector, we can also validate the XPath or CSS Selectors using the search box
shown in the Inspector section. Just enter the XPath or CSS Selector and Inspector will
highlight the elements that match the expression, as shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[31]

The Developer tools provide various other debugging features. It also generates XPath and
CSS selectors for elements. For this, select the desired element in the tree, right-click, and
select the Copy > XPath or Copy > CSS Path option from the pop-up menu, as shown in the
following screenshot:

This will paste the suggested XPath or CSS selector value to the clipboard to be used later
with the findElement() method.

Introducing WebDriver and WebElements Chapter 1

[32]

Inspecting pages and elements in Google Chrome with
Developer Tools
Similar to Mozilla Firefox, Google Chrome also provides a built-in feature to inspect pages
and elements. We can move the mouse over a desired element on the page, right-click to
open the pop-up menu, and then select the Inspect element option. This will open
Developer tools in the browser, which displays information similar to that of Firefox, as
shown in the following screenshot:

Introducing WebDriver and WebElements Chapter 1

[33]

Similar to Firefox, we can also test XPath and CSS Selectors in Google Chrome Developer
tools. Press Ctrl + F (on Mac, use Command + F) in the Elements tab. This will display a
search box. Just enter XPath or CSS Selector, and matching elements will be highlighted in
the tree, as shown in the following screenshot:

Chrome Developer Tools also provides a feature where you can get the XPath for an
element by right-clicking on the desired element in the tree and selecting the Copy XPath
option from the pop-up menu.

Similar to Mozilla Firefox and Google Chrome, you will find similar Developer tools in any
major browser, including Microsoft Internet Explorer and Edge.

Browser developer tools come in really handy during the test-script development. These
tools will help you to find the locator details for the elements with which you need to
interact as part of the test. These tools parse the code for a page and display the information
in a hierarchal tree.

Introducing WebDriver and WebElements Chapter 1

[34]

WebElements on a web page may not have all the attributes declared. It is up to the
developer of the test script to select the attribute that uniquely identifies the WebElement
on the web page for the automation.

Using the By locating mechanism
By is the locating mechanism passed to the findElement() method or the
findElements() method to fetch the respective WebElement(s) on a web page. There are
eight different locating mechanisms; that is, eight different ways to identify

an HTML element on a web page. They are located by ID, Name, ClassName, TagName,
LinkText, PartialLinkText, XPath, and CSS Selector.

The By.id() method
On a web page, each element is uniquely identified by an ID attribute, which is optionally
provided. An ID can be assigned manually by the developer of the web application or left
to be dynamically generated by the application. Dynamically-generated IDs can be changed
on every page refresh or over a period of time. Now, consider the HTML code of the Search
box:

<input id="search" type="search" name="q" value="" class="input-text
required-entry" maxlength="128" placeholder="Search entire store here..."
autocomplete="off">

In the preceding code, the id attribute value of the search box is search.

Let's see how to use the ID attribute as a locating mechanism to find the Search box:

@Test
public void byIdLocatorExample() {
 WebElement searchBox = driver.findElement(By.id("search"));
 searchBox.sendKeys("Bags");
 searchBox.submit();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Bags'");
}

In preceding code, we used the By.id() method and the search box's id attribute value to
find the element.

Introducing WebDriver and WebElements Chapter 1

[35]

Here, try to use the By.id identifier, and use the name value (that is, q) instead of
the id value (that is, search). Modify line three as follows:

WebElement searchBox = driver.findElement(By.id("q"));

The test script will fail to throw an exception, as follows:

Exception in thread "main" org.openqa.selenium.NoSuchElementException:
Unable to locate element: {"method":"id","selector":"q"}

WebDriver couldn't find an element by id whose value is q. Thus, it throws an exception
saying NoSuchElementException.

The By.name() method
As seen earlier, every element on a web page has many attributes. Name is one of them. For
instance, the HTML code for the Search box is:

<input id="search" type="search" name="q" value="" class="input-text
required-entry" maxlength="128" placeholder="Search entire store here..."
autocomplete="off">

Here, name is one of the many attributes of the search box, and its value is q. If we want to
identify this search box and set a value in it in your test script, the code will look as follows:

@Test
public void searchProduct() {
 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys("Phones");
 searchBox.submit();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
}

If you observe line four, the locating mechanism used here is By.name and the name is q.
So, where did we get this name from? As discussed in the previous section, it is the browser
developer tools that helped us get the name of the button. Launch Developer tools and use
the inspect elements widget to get the attributes of an element.

Introducing WebDriver and WebElements Chapter 1

[36]

The By.className() method
Before we discuss the className() method, we have to talk a little about style and CSS.
Every HTML element on a web page, generally, is styled by the web page developer or
designer. It is not mandatory that each element should be styled, but they generally are to
make the page appealing to the end user.

So, in order to apply styles to an element, they can be declared directly in the element tag,
or placed in a separate file called the CSS file and can be referenced in the element using the
class attribute. For instance, a style attribute for a button can be declared in a CSS file as
follows:

.buttonStyle{
 width: 50px;
 height: 50px;
 border-radius: 50%;
 margin: 0% 2%;
}

Now, this style can be applied to the button element in a web page as follows:

<button name="sampleBtnName" id="sampleBtnId" class="buttonStyle">I'm
Button</button>

So, buttonStyle is used as the value for the class attribute of the button element, and it
inherits all the styles declared in the CSS file. Now, let's try this on our Homepage. We will
try to make WebDriver identify the search button using its class name and click on it.

First, in order to get the class name of the search button, as we know, we will use
Developers tools to fetch it. After getting it, change the location mechanism to
By.className and specify the class attribute value in it. The code for that is as follows:

@Test
public void byClassNameLocatorExample() {
 WebElement searchBox = driver.findElement(By.id("search"));
 searchBox.sendKeys("Electronics");
 WebElement searchButton =
 driver.findElement(By.className("search-button"));
 searchButton.click();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Electronics'");
}

Introducing WebDriver and WebElements Chapter 1

[37]

In the preceding code, we have used the By.className locating mechanism by passing the
class attribute value to it.

Sometimes, an element might have multiple values given for the class attribute. For
example, the Search button has button and search-button values specified in the class
attribute in the following HTML snippet:

<button type="submit" title="Search" class="button search-
button">Search</button>

We have to use one of the values of the class attribute with the By.className method. In
this case, we can either use button or search-button, whichever uniquely identifies the
element.

The By.linkText() method
As the name suggests, the By.linkText locating mechanism can only be used to identify
the HTML links. Before we start discussing how WebDriver can be commanded to identify
a link element using link text, let's see what an HTML link element looks like. The HTML
link elements are represented on a web page using the <a> tag, an abbreviation for the
anchor tag. A typical anchor tag looks like this:

<a href="http://demo-store.seleniumacademy.com/customer/account/" title="My
Account">My Account

Here, href is the link to a different page where your web browser will take you when you
click on the link. So, the preceding HTML code when rendered by the browser looks like
this:

This MY ACCOUNT is the link text. So the By.linkText locating mechanism uses this
text on an anchor tag to identify the WebElement. The code would look like this:

@Test
public void byLinkTextLocatorExample() {
 WebElement myAccountLink =

Introducing WebDriver and WebElements Chapter 1

[38]

 driver.findElement(By.linkText("MY ACCOUNT"));
 myAccountLink.click();
 assertThat(driver.getTitle())
 .isEqualTo("Customer Login");
}

Here, the By.linkText locating mechanism is used to identify the MY ACCOUNT link.

The linkText and partialLinkText methods are case-sensitive.

The By.partialLinkText() method
The By.partialLinkText locating mechanism is an extension of the By.linkText
locator. If you are not sure of the entire link text or want to use only part of the link text,
you can use this locator to identify the link element. So, let's modify the previous example
to use only partial text on the link; in this case, we will use Privacy from the Privacy Policy
link in the site footer:

The code would look like this:

@Test
public void byPartialLinkTextLocatorExample() {
 WebElement orderAndReturns =
 driver.findElement(By.partialLinkText("PRIVACY"));
 orderAndReturns.click();
 assertThat(driver.getTitle())
 .isEqualTo("Privacy Policy");
}

Introducing WebDriver and WebElements Chapter 1

[39]

What happens if there are multiple links whose text has Privacy in it? That is a question for
the findElement() method rather than the locator. Remember when we discussed the
findElement() method earlier, it will return only the first WebElement that it comes
across. If you want all the WebElements that contain Privacy in its link text, use the
findElements() method, which will return a list of all those elements.

Use WebDriver's findElements() method if you think you need all the
WebElements that satisfy a locating-mechanism condition.

The By.tagName() method
Locating an element by tag name is slightly different from the locating mechanisms we saw
earlier. For example, on a Homepage, if you search for an element with the button tag
name, it will result in multiple WebElements because there are nine buttons present on the
Homepage. So, it is always advisable to use the findElements() method rather than the
findElement() method when trying to locate elements using tag names.

Let's see how the code looks when a search for the number of links present on a Homepage
is made:

@Test
public void byTagNameLocatorExample() {

 // get all links from the Home page
 List<WebElement> links = driver.findElements(By.tagName("a"));

 System.out.println("Found links:" + links.size());

 // print links which have text using Java 8 Streams API
 links.stream()
 .filter(elem -> elem.getText().length() > 0)
 .forEach(elem -> System.out.println(elem.getText()));
}

Introducing WebDriver and WebElements Chapter 1

[40]

In the preceding code, we have used the By.tagName locating mechanism and
the findElements() method, which return a list of all the links, that is, the a anchor tags
defined on the page. On line five, we printed the size of the list, and then printed text of
only links where the text has been provided. We use the Java 8 Stream API to filter the
element list and output the text value by calling the getText() method. This will generate
the following output:

Found links:88
 ACCOUNT
 CART
 WOMEN
 ...

The By.xpath() method
WebDriver uses XPath to identify a WebElement on the web page. Before we see how it
does that, let's quickly look at the syntax for XPath. XPath is a short name for the XML path,
the query language used for searching XML documents. The HTML for our web page is
also one form of the XML document. So, in order to identify an element on an HTML page,
we need to use a specific XPath syntax:

The root element is identified as //.
To identify all the div elements, the syntax will be //div.
To identify the link tags that are within the div element, the syntax will be
//div/a.
To identify all the elements with a tag, we use *. The syntax will be //div/*.
To identify all the div elements that are at three levels down from the root, we
can use //*/*/div.
To identify specific elements, we use attribute values of those elements, such as
//*/div/a[@id='attrValue'], which will return the anchor element. This
element is at the third level from the root within a div element and has an id
value of attrValue.

So, we need to pass the XPath expression to the By.xpath locating mechanism to make it
identify our target element.

Introducing WebDriver and WebElements Chapter 1

[41]

Now, let's see the code example and how WebDriver uses this XPath to identify the
element:

@Test
public void byXPathLocatorExample() {
 WebElement searchBox =
 driver.findElement(By.xpath("//*[@id='search']"));
 searchBox.sendKeys("Bags");
 searchBox.submit();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Bags'");
}

In the preceding code, we are using the By.xpath locating mechanism and passing the
XPath of the WebElement to it.

One disadvantage of using XPath is that it is costly in terms of time. For every element to be
identified, WebDriver actually scans through the entire page, which is very time
consuming, and too much usage of XPath in your test script will actually make it too slow
to execute.

The By.cssSelector() method
The By.cssSelector() method is similar to the By.xpath() method in its usage, but the
difference is that it is slightly faster than the By.xpath locating mechanism. The following
are the commonly used syntaxes to identify elements:

To identify an element using the div element with the #flrs ID, we use the
#flrs syntax
To identify the child anchor element, we use the #flrs > a syntax, which will
return the link element
To identify the anchor element with its attribute, we use the #flrs >
a[a[href="/intl/en/about.html"]] syntax

Let's try to modify the previous code, which uses the XPath locating mechanism to use the
cssSelector mechanism:

@Test
public void byCssSelectorLocatorExample() {
 WebElement searchBox =
 driver.findElement(By.cssSelector("#search"));
 searchBox.sendKeys("Bags");
 searchBox.submit();
 assertThat(driver.getTitle())

Introducing WebDriver and WebElements Chapter 1

[42]

 .isEqualTo("Search results for: 'Bags'");
}

The preceding code uses the By.cssSelector locating mechanism, which uses the css
selector ID of the Search box.

Let's look at a slightly complex example. We will try to identify the About Us on the
Homepage:

@Test
public void byCssSelectorLocatorComplexExample() {

 WebElement aboutUs =
 driver.findElement(By
 .cssSelector("a[href*='/about-magento-demo-store/']"));

 aboutUs.click();

 assertThat(driver.getTitle())
 .isEqualTo("About Us");
}

The preceding code uses the cssSelector() method to find the anchor element identified
by its href attribute.

Interacting with WebElements
In the previous section, we saw how to locate WebElements on a web page by using
different locator methods. Here, we will see all the different user actions that can be
performed on a WebElement. Different WebElements will have different actions that can be
taken on them. For example, in a textbox element, we can type in some text or clear the text
that is already typed in it. Similarly, for a button, we can click on it, get the dimensions of it,
and so on, but we cannot type into a button, and for a link, we cannot type into it. So,
though all the actions are listed in one WebElement interface, it is the test script developer's
responsibility to use the actions that are supported by the target element. In case we try to
execute the wrong action on a WebElement, we don't see any exception or error thrown and
we don't see any action get executed; WebDriver ignores such actions silently.

Now, let's get into each of the actions individually by looking at their Javadocs and a code
example.

Introducing WebDriver and WebElements Chapter 1

[43]

Getting element properties and attributes
In this section, we will learn the various methods to retrieve value and properties from the
WebElement interface.

The getAttribute() method
The getAttribute method can be executed on all the WebElements. Remember, we have
seen attributes of WebElement in the WebElements section. The HTML attributes are
modifiers of HTML elements. They are generally key-value pairs that appear in the start tag
of an element. For example:

 <label name="Username" id="uname">Enter Username: </label>

In the preceding code, name and id are the attributes or attribute keys and Username and
uname are the attribute values.

The API syntax of the getAttribute() method is as follows:

java.lang.String getAttribute(java.lang.String name)

In the preceding code, the input parameter is String, which is the name of the attribute.
The return type is again String, which is the value of the attribute.

Now let's see how we can get all the attributes of a WebElement using WebDriver. Here, we
will make use of the Search box from the example application. This is what the element
looks like:

<input id="search" type="search" name="q" value="" class="input-text
required-entry" maxlength="128" placeholder="Search entire store here..."
autocomplete="off">

We will list all the attributes of this WebElement using WebDriver. The code for that is as
follows:

@Test
public void elementGetAttributesExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 System.out.println("Name of the box is: "
 + searchBox.getAttribute("name"));
 System.out.println("Id of the box is: " +
searchBox.getAttribute("id"));
 System.out.println("Class of the box is: "
 + searchBox.getAttribute("class"));
 System.out.println("Placeholder of the box is: "

Introducing WebDriver and WebElements Chapter 1

[44]

 + searchBox.getAttribute("placeholder"));
}

In the preceding code, the last four lines of code use the getAttribute() method to fetch
the attribute values of the name, id, class, and placeholder attributes of the
WebElement search box. The output of the preceding code will be following:

 Name of the box is: q
 Id of the box is: search
 Class of the box is: input-text required-entry
 Placeholder of the box is: Search entire store here...

Going back to the By.tagName() method of the previous section, if the search by a locating
mechanism, By.tagName, results in more than one result, you can use the
getAttribute() method to further filter the results and get to your exact intended
element.

The getText() method
The getText method can be called from all the WebElements. It will return visible text if
the element contains any text on it, otherwise it will return nothing. The API syntax for
the getText() method is as follows:

java.lang.String getText()

There is no input parameter for the preceding method, but it returns the
visible innerText string of the WebElement if anything is available, otherwise it will
return an empty string.

The following is the code to get the text present on the Site notice element present on the
example application Homepage:

@Test
public void elementGetTextExample() {
 WebElement siteNotice = driver.findElement(By
 .className("global-site-notice"));
 System.out.println("Complete text is: "
 + siteNotice.getText());
}

The preceding code uses the getText() method to fetch the text present on the Site notice
element, which returns the following:

Complete text is: This is a demo store. Any orders placed through this
store will not be honored or fulfilled.

Introducing WebDriver and WebElements Chapter 1

[45]

The getCssValue() method
The getCssValue method can be called on all the WebElements. This method is used to
fetch a CSS property value from a WebElement. CSS properties can be font-
family, background-color, color, and so on. This is useful when you want to validate
the CSS styles that are applied to your WebElements through your test scripts. The API
syntax for the getCssValue() method is as follows:

java.lang.String getCssValue(java.lang.String propertyName)

In the preceding code, the input parameter is the String value of the CSS property name,
and the return type is the value assigned to that property name.

The following is the code example to retrieve font-family of the text from the Search
box:

@Test
public void elementGetCssValueExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 System.out.println("Font of the box is: "
 + searchBox.getCssValue("font-family"));
}

The preceding code uses the getCssValue() method to find font-family of the text
visible in the Search box. The output of the method is shown here:

Font of the box is: Raleway, "Helvetica Neue", Verdana, Arial, sans-serif

The getLocation() method
The getLocation method can be executed on all the WebElements. This is used to get the
relative position of an element where it is rendered on the web page. This position is
calculated relative to the top-left corner of the web page of which the (x, y) coordinates are
assumed to be (0, 0). This method will be of use if your test script tries to validate the layout
of your web page.

The API syntax of the getLocation() method is as follows:

Point getLocation()

The preceding method obviously doesn't take any input parameters, but the return type is
a Point class that contains the (x, y) coordinates of the element.

Introducing WebDriver and WebElements Chapter 1

[46]

The following is the code to retrieve the location of the Search box:

WebElement searchBox = driver.findElement(By.name("q"));
System.out.println("Location of the box is: "
 + searchBox.getLocation());

The output for the preceding code is the (x, y) location of the Search box, as shown in the
following screenshot:

Location of the box is: (873, 136)

The getSize() method
The getSize method can also be called on all the visible components of HTML. It will
return the width and height of the rendered WebElement. The API syntax of
the getSize() method is as follows:

Dimension getSize()

The preceding method doesn't take any input parameters, and the return type is a class
instance named Dimension. This class contains the width and height of the target
WebElement. The following is the code to get the width and height of the Search box:

WebElement searchBox = driver.findElement(By.name("q"));
System.out.println("Size of the box is: "
 + searchBox.getSize());

The output for the preceding code is the width and height of the Search box, as shown in
the following screenshot:

Size of the box is: (281, 40)

The getTagName() method
The getTagName method can be called from all the WebElements. This will return the
HTML tag name of the WebElement. For example, in the following HTML code, the button
is the tag name of the HTML element:

<button id="gbqfba" class="gbqfba" name="btnK" aria-label="Google Search">

In the preceding code, the button is the tag name of the HTML element.

Introducing WebDriver and WebElements Chapter 1

[47]

The API syntax for the getTagName() method is as follows:

java.lang.String getTagName()

The return type of the preceding method is String, and it returns the tag name of the
target element.

The following is the code that returns the tag name of the Search button:

@Test
public void elementGetTagNameExample() {
 WebElement searchButton = driver.findElement(By.className("search-
button"));
 System.out.println("Html tag of the button is: "
 + searchButton.getTagName());
}

The preceding code uses the getTagName() method to get the tag name of the Search
button element. The output of the code is as expected:

Html tag of the button is: button

Performing actions on WebElements
In the previous section, we saw how to retrieve values or properties of WebElements. In
this section, we will see how to perform actions on WebElements, which is the most crucial
part of automation. Let's explore the various methods available in the WebElement
interface.

The sendKeys() method
ThesendKeys action is applicable for textbox or textarea HTML elements. This is used
to type text into the textbox. This will simulate the user keyboard and types text into
WebElements exactly as a user would. The API syntax for the sendKeys() method is as
follows:

void sendKeys(java.lang.CharSequence...keysToSend)

Introducing WebDriver and WebElements Chapter 1

[48]

The input parameter for the preceding method is CharSequence of text that has to be
entered into the element. This method doesn't return anything. Now, let's see a code
example of how to type a search text into the Search box using the sendKeys() method:

@Test
public void elementSendKeysExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys("Phones");
 searchBox.submit();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
}

In the preceding code, the sendKeys() method is used to type the required text in the
textbox element of the web page. This is how we deal with normal keys, but if you want to
type in some special keys, such as Backspace, Enter, Tab, or Shift, we need to use a special
enum class of WebDriver, named Keys. Using the Keys enumeration, you can simulate
many special keys while typing into a WebElement.

Now let's see some code example, which uses the Shift key to type the text in uppercase in
the Search Box:

@Test
public void elementSendKeysCompositeExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys(Keys.chord(Keys.SHIFT,"phones"));
 searchBox.submit();
 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'PHONES'");
}

In the preceding code, the chord() method from the Keys enum is used to type the key,
while the text specified is being given as an input to be the textbox. Try this in your
environment to see all the text being typed in uppercase.

The clear() method
The clear action is similar to the sendKeys() method, which is applicable for the textbox
and textarea elements. This is used to erase the text entered in a WebElement using the
sendKeys() method. This can be achieved using the Keys.BACK_SPACE enum, but
WebDriver has given us an explicit method to clear the text easily. The API syntax for the
clear() method is as follows:

void clear()

Introducing WebDriver and WebElements Chapter 1

[49]

This method doesn't take any input and doesn't return any output. It is simply executed on
the target text-entry element.

Now, let's see how we can clear text that is entered in the Search box. The code example for
it is as follows:

@Test
public void elementClearExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys(Keys.chord(Keys.SHIFT,"phones"));
 searchBox.clear();
}

We have used the WebElement's clear() method to clear the text after typing phones into
the Search box.

The submit() method
The submit() action can be taken on a Form or on an element, which is inside a Form
element. This is used to submit a form of a web page to the server hosting the web
application. The API syntax for the submit() method is as follows:

void submit()

The preceding method doesn't take any input parameters and doesn't return anything. But
a NoSuchElementException is thrown when this method is executed on a WebElement
that is not present within the form.

Now, let's see a code example to submit the form on a Search page:

@Test
public void elementSubmitExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 searchBox.sendKeys(Keys.chord(Keys.SHIFT,"phones"));
 searchBox.submit();
}

In the preceding code, toward the end is where the Search form is submitted to the
application servers using the submit() method. Now, try to execute the submit() method
on an element, let's say the About link, which is not a part of any form. We should
see NoSuchElementException is thrown. So, when you use the submit() method on a
WebElement, make sure it is part of the Form element.

Introducing WebDriver and WebElements Chapter 1

[50]

Checking the WebElement state
In the previous sections, we saw how to retrieve values and perform actions on
WebElements. Now, we will see how to check the state of a WebElement. We will explore
methods to check whether the WebElement is displayed in the Browser window, whether it
is editable, and if the WebElement is Radio Button of Checkbox, we can determine whether
it's selected or unselected. Let's see how we can use the methods available in the
WebElement interface.

 The isDisplayed() method
The isDisplayed action verifies whether an element is displayed on the web page and can
be executed on all the WebElements. The API syntax for the isDisplayed() method is as
follows:

boolean isDisplayed()

The preceding method returns a Boolean value specifying whether the target element is
displayed on the web page. The following is the code to verify whether the Search box is
displayed, which obviously should return true in this case:

@Test
public void elementStateExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 System.out.println("Search box is displayed: "
 + searchBox.isDisplayed());
}

The preceding code uses the isDisplayed() method to determine whether the element is
displayed on a web page. The preceding code returns true for the Search box:

Search box is displayed: true

The isEnabled() method
The isEnabled action verifies whether an element is enabled on the web page and can be
executed on all the WebElements. The API syntax for the isEnabled() method is as
follows:

boolean isEnabled()

Introducing WebDriver and WebElements Chapter 1

[51]

The preceding method returns a Boolean value specifying whether the target element is
enabled on the web page. The following is the code to verify whether the Search box is
enabled, which obviously should return true in this case:

@Test
public void elementStateExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 System.out.println("Search box is enabled: "
 + searchBox.isEnabled());
}

The preceding code uses the isEnabled() method to determine whether the element is
enabled on a web page. The preceding code returns true for the Search box:

Search box is enabled: true

The isSelected() method
The isSelected method returns a boolean value if an element is selected on the web
page and can be executed only on a radio button, options in select, and checkbox
WebElements. When executed on other elements, it will return false. The API syntax for the
isSelected() method is as follows:

boolean isSelected()

The preceding method returns a Boolean value specifying whether the target element is
selected on the web page. The following is the code to verify whether the Search box is
selected on a search page:

@Test
public void elementStateExample() {
 WebElement searchBox = driver.findElement(By.name("q"));
 System.out.println("Search box is selected: "
 + searchBox.isSelected());
}

The preceding code uses the isSelected() method. It returns false for the Search box,
because this is not a radio button, options in select, or a checkbox. The preceding code
returns false for the Search box:

Search box is selected: false

Introducing WebDriver and WebElements Chapter 1

[52]

To select a Checkbox or Radio button, we need to call the WebElement.click() method,
which toggles the state of the element. We can use the isSelected() method to see
whether it's selected.

Summary
In this chapter, we covered a brief overview of the Selenium testing tools, and the
architecture of WebDriver, WebElements. We learned how to set up a test-development
environment using Eclipse, Maven, and TestNG. This will provide us with the foundation
to build a testing framework using Selenium. Then, we saw how to locate elements, and the
actions that can be taken on them. This is the most important aspect when automating Web
Applications. In this chapter, we used ChromeDriver to run our tests. In the next chapter,
we will learn and implement the Streams API of Java 8 since Selenium 3.0 includes a bunch
of features of Java 8.

Questions
True or false: Selenium is a browser automation library.1.
What are the different types of locator mechanisms provided by Selenium?2.
True or false: With the getAttribute() method, we can read CSS attributes as3.
well?
What actions can be performed on a WebElement?4.
How can we determine whether the checkbox is checked or unchecked?5.

Further information
You can check out the following links for more information on the topics covered in this
chapter:

Read the WebDriver Specification at https:/ /www. w3.org/ TR/ webdriver/

Read more about using TestNG and Maven in Chapter 1, Creating a Faster
Feedback Loop from Mastering Selenium WebDriver By Mark Collin, Packt
Publishing
Read more about element interaction in Chapter 2, Finding Elements and Chapter 3,
Working with Elements from Selenium Testing Tools Cookbook, 2nd Edition, by
Unmesh Gundecha, Packt Publishing

https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/

2
Using Java 8 Features with

Selenium
With Selenium 3.0 moving to Java 8, we can use some of the new features of Java 8, such as
Stream API and Lambda or Anonymous functions to create scripts in a functional
programming style. We do so by reducing the number of lines of code as well as reaping
the benefits of the newer features of the language. In this chapter, we will cover these
topics:

Introducing Java 8 Stream API
Using Stream API to collect and filter data
Using Stream API with Selenium WebDriver

Introducing Java 8 Stream API
The Stream API is a new addition to the Collections API in Java 8. The Stream API brings
new ways to process collections of objects. A stream represents a sequence of elements and
supports different kinds of operations (filter, sort, map, and collect) from a collection.
We can chain these operations together to form a pipeline to query the data, as shown in
this diagram:

Using Java 8 Features with Selenium Chapter 2

[54]

We can obtain a Stream from a collection using the .stream() method. For example, we
have a dropdown of languages supported by the sample web application displayed in the
header section. Let's capture this in an Array list, as follows:

List<String> languages = new ArrayList<String>();
languages.add("English");
languages.add("German");
languages.add("French");

If we have to print the list members, we will use a for loop in the following way:

for(String language : languages) {
 System.out.println(language);
}

Using the streams API we can obtain the stream by calling the .stream() method on
the languages array list and print the members in the following way:

languages.stream().forEach(System.out::println);

After obtaining the stream, we called the forEach() method, passing the action we
wanted to take on each element, that is, output the member value on the console, using
the System.out.println method.

Once we have obtained a Stream from a collection, we can use that stream to process the
elements or members of the collection.

Stream.filter()
We can filter a stream using the filter() method. Let's filter the stream obtained from
the languages list to filter items starting with E, as shown in the following code:

stream.filter(item -> item.startsWith("E"));

The filter() method takes a Predicate as a parameter. The predicate interface contains
a function called boolean test(T t) that takes a single parameter and returns a boolean.
In the preceding example, we passed the lambda expression item ->
item.startsWith("E") to the test() function.

Using Java 8 Features with Selenium Chapter 2

[55]

When the filter() method is called on a Stream, the filter passed as a parameter to the
filter() function is stored internally. The items are not filtered immediately.

The parameter passed to the filter() function determines what items in the stream
should be processed and what should be excluded. If the Predicate.test() function
returns true for an item, that means it should be processed. If false is returned, the item
is not processed. In the preceding example, the test() function will return true for all
items starting with the character E.

Stream.sort()
We can sort a stream by calling the sort() function. Let's use the sort() function on the
languages list, as shown in the following code:

languages.stream().sorted();

This will sort the elements in alphabetical order. We can provide a lambda expression to
sort the elements using custom comparison logic.

Stream.map()
Streams provide a map() method to map the elements of a stream into another form. We
can map the elements into a new object. Let's take the previous example and convert the
elements of languages list to uppercase, as shown here:

languages.stream().map(item -> item.toUpperCase());

This will map all elements that are strings in the language collection to their uppercase
equivalents. Again, this doesn't actually perform the mapping; it only configures the stream
for mapping. Once one of the stream processing methods is invoked, the mapping (and
filtering) will be performed.

Using Java 8 Features with Selenium Chapter 2

[56]

Stream.collect()
Streams provide the collect() method, among the other methods, for stream processing on
the Stream interface. When the collect() method is invoked, filtering and mapping will take
place, and the object resulting from those actions will be collected. Let's take the previous
example and obtain a new list of languages in uppercase, as shown in the following code:

List<String> upperCaseLanguages = languages.stream()
 .map(item -> item.toUpperCase())
 .collect(Collectors.toList());

System.out.println(upperCaseLanguages);

This example creates a stream, adds a map to convert the strings to uppercase, and collects
all objects in a new list. We can also use the filter or sort method and collect the resulting
list based on conditions applied in the filter method.

Stream.min() and Stream.max()
The Streams API provides min() and max() methods—stream processing for finding the
minimum or maximum value in the stream respectively.

Let's take an example in the context of the sample application we're testing. We will create a
simple Java class called Product that stores the name and price of products returned by the
search. We want to find the product that has the minimum price and the one that has the
maximum price. Our product class will have two members, as shown in the following code:

class Product {
 String name;
 Double price;

 public Product(String name, double price) {
 this.name = name;
 this.price = price;
 }

 public String getName() {
 return name;
 }

 public Double getPrice() {
 return price;
 }
}

Using Java 8 Features with Selenium Chapter 2

[57]

Let's create a list of products returned by the search result, as shown here:

List<Product> searchResult = new ArrayList<>();
searchResult.add(new Product("MADISON OVEREAR HEADPHONES", 125.00));
searchResult.add(new Product("MADISON EARBUDS", 35.00));
searchResult.add(new Product("MP3 PLAYER WITH AUDIO", 185.00));

We can call the .min() function by passing the comparison attribute, in this case, price,
using the .getPrice() method. The .min() function will use the price attribute and
return the element that has the lowest price, as shown in this code:

Product product = searchResult.stream()
 .min(Comparator.comparing(item -> item.getPrice()))
 .get();

System.out.println("The product with lowest price is " +
product.getName());

The get() method will return the object returned by the min() function. We will store this
in an instance of Product. The min() function finds MADISON EARBUDS as the lowest-
priced product, as shown in the following console output:

The product with lowest price is MADISON EARBUDS

As opposed to the min() function, the max() function will return the product with the
highest price, as shown in the following code:

product = searchResult.stream()
 .max(Comparator.comparing(item -> item.getPrice()))
 .get();
System.out.println("The product with highest price is " +
product.getName());

 The max() function finds MP3 PLAYER WITH AUDIO as the highest-priced product:

 The product with highest price is MP3 PLAYER WITH AUDIO

The min() and max() functions return an optional instance, which has a get() method to
obtain the object. The get() method will return null if the stream has no elements.

Both the functions take a comparator as a parameter. The Comparator.comparing()
method creates a comparator based on the lambda expression passed to it.

Using Java 8 Features with Selenium Chapter 2

[58]

Stream.count()
The streams API provides a count method that returns the number of elements in the
stream after filtering has been applied. Let's take the previous example to get a count of
Products from the MADISON brand:

long count = searchResult.stream()
 .filter(item -> item.getName().startsWith("MADISON"))
 .count();
System.out.println("The number of products from MADISON are: " + count);

The count() method returns a long, which is the count of elements matching with the
filter criteria. In this example, the following output will be displayed on the console:

The number of products from MADISON are: 2

Using Stream API with Selenium WebDriver
Now that we have introduced Streams API and its various functions, let's see how we can
use them in our tests.

Filtering and counting WebElements
Let's start with a simple test to determine the links displayed on the home page of the
sample application. We get all the links from the home page and print their count, followed
by the count of links that are visible on the page, as shown in the following code:

@Test
public void linksTest() {

 List<WebElement> links = driver.findElements(By.tagName("a"));
 System.out.println("Total Links : " + links.size());

 long count = links.stream().filter(item -> item.isDisplayed()).count();
 System.out.println("Total Link visible " + count);
}

Using Java 8 Features with Selenium Chapter 2

[59]

In the preceding code, we used the findElements() method along with By.tagName to
get all the links from the home page. However, for finding out the visible links out of them,
we used the filter() function with a predicate to test whether the links are displayed.
This is done by calling the isDisplayed() method of the WebElement interface. The
isDisplayed method will return true if the link is displayed; otherwise it will return
false. Finally, we called the count() method to get the count of links returned by
the filter() function. This will show the following output on the console:

Total Links : 88
Total Link visible 37

Filtering element attributes
In the example code, we will filter a list of images that have an empty alt attribute defined.
This is useful if you want to check the accessibility of images displayed on the page. As per
the accessibility guidelines, all images should have the alt attribute defined. This is done
by filtering images, by testing the getAttribute("alt") method; it returns an empty
string, as shown in the following code:

@Test
public void imgAltTest() {

 List<WebElement> images = driver.findElements(By.tagName("img"));

 System.out.println("Total Images : " + images.size());

 List<WebElement> imagesWithOutAlt = images.stream()
 .filter(item -> item.getAttribute("alt") == "")
 .collect(Collectors.toList());
 System.out.println("Total images without alt attribute " +
imagesWithOutAlt);
}

The filter() function will return the list of all image elements that have an empty alt
attribute defined.

Using Java 8 Features with Selenium Chapter 2

[60]

Using the Map function to get the text value from
elements
In this example, we will modify the search test we created in earlier chapters to test the
results containing the list of expected products, as shown in the following code:

@Test
public void searchProduct() {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");

 List<WebElement> searchItems = driver
 .findElements(By.cssSelector("h2.product-name a"));

 List<String> expectedProductNames =
 Arrays.asList("MADISON EARBUDS",
 "MADISON OVEREAR HEADPHONES",
 "MP3 PLAYER WITH AUDIO");

 List<String> productNames = searchItems.stream()
 .map(WebElement::getText)
 .collect(Collectors.toList());

 assertThat(productNames).
 isEqualTo(expectedProductNames);

}

In the preceding code, we created a list of all the matching products returned by the
findElements() method. We then retrieved the text of each element by calling the map()
function and mapped the return values to a list of strings. This is compared with the
expectedProductNames list.

Using Java 8 Features with Selenium Chapter 2

[61]

Filtering and performing actions on WebElements
Let's further modify the search test and find a product matching with a given name. We
will then click on the product to open the product details page, as shown in this code:

@Test
 public void searchAndViewProduct() {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");

 List<WebElement> searchItems = driver
 .findElements(By.cssSelector("h2.product-name a"));

 WebElement product = searchItems.stream()
 .filter(item -> item.getText().equalsIgnoreCase("MADISON
EARBUDS"))
 .findFirst()
 .get();

 product.click();

 assertThat(driver.getTitle())
 .isEqualTo("Madison Earbuds");
}

In the preceding code, we used the filter() function to find a specific product from the
list of WebElements. We retrieved the first matching product, using the findFirst()
function. This will return a WebElement representing the link element. We then clicked on
the element to open the product details page in the browser.

Thus, we can use Streams API in a number of ways to create functional, readable code with
just a few lines.

Using Java 8 Features with Selenium Chapter 2

[62]

Summary
In this short chapter, we learned how to use Selenium 8 Stream API and Lambda functions
to simplify the Selenium WebDriver code. This helps you to write code in a functional
programming style, which is more fluent and readable. Streams are useful for working with
the list of WebElements. We can collect and filter data with a stream easily.

In the next chapter, we will explore the features of WebDriver for taking screenshots,
handling Windows and Frames, synchronization, and managing cookies.

Questions
Which version of Java Streams API is introduced?1.
Explain the filter function of Streams API.2.
Which method of Streams API will return the number of matching elements3.
from the filter() function?
We can use the map() function to filter a list of WebElements by attribute4.
values: True or false?

Further information
You can check out the following links for more information about the topics covered in this
chapter:

Read more about Stream API at https:/ /www. oracle. com/
technetwork/ articles/ java/ ma14- java- se- 8-streams- 2177646.
html and https:/ /docs. oracle. com/ javase/ 8/ docs/ api/java/
util/ stream/ Stream. html

Read more about Lambda expressions at https:/ /docs. oracle.
com/ javase/ tutorial/ java/ javaOO/ lambdaexpressions. html

https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

3
Exploring the Features of

WebDriver
So far, we have looked at various basic and advanced interactions that a user can perform
on a web page using WebDriver. In this chapter, we will discuss the different capabilities
and features of WebDriver that enable test script developers to have better control over
WebDriver, and consequently of the web application that is being tested. The features that
we are going to cover in this chapter are as follows:

Taking screenshots
Locating target windows and iFrames
Exploring Navigate
Waiting for WebElements to load
Handling cookies

Let's get started without any further delay.

Taking screenshots
Taking a screenshot of a web page is a very useful capability of WebDriver. This is very
handy when your test case fails, and you want to see the state of the application when the
test case failed. The TakesScreenShot interface in the WebDriver library is implemented
by all of the different variants of WebDriver, such as Firefox Driver, Internet Explorer
Driver, Chrome Driver, and so on.

The TakesScreenShot capability is enabled in all of the browsers by default. Because this
is a read-only capability, a user cannot toggle it. Before we see a code example that uses this
capability, we should look at an important method of the TakesScreenShot
interface—getScreenshotAs().

Exploring the Features of WebDriver Chapter 3

[64]

The API syntax for getScreenshotAs() is as follows:

public X getScreenshotAs(OutputType target)

Here, OutputType is another interface of the WebDriver library. We can ask WebDriver to
output the screenshot in three different formats : BASE64, BYTES (raw data), and FILE. If
you choose the FILE format, it writes the data into a .png file, which will be deleted once
the JVM is killed. So, you should always copy that file into a safe location so that it can be
used for later reference.

The return type is a specific output that depends on the selected OutputType. For example,
selecting OutputType.BYTES will return a bytearray, and selecting OutputType.FILE
will return a file object.

Depending on the browser used, the output screenshot will be one of the following, in
order of preference:

The entire page
The current window
A visible portion of the current frame
The screenshot of the entire display containing the browser

For example, if you are using Firefox Driver, getScreenshotAs() takes a screenshot of the
entire page, but Chrome Driver returns only the visible portion of the current frame.

It's time to take a look at the following code example:

@BeforeMethod
public void setup() throws IOException {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://demo-store.seleniumacademy.com/");

 File scrFile = ((TakesScreenshot)
driver).getScreenshotAs(OutputType.FILE);
 FileUtils.copyFile(scrFile, new File("./target/screenshot.png"));

}

In the preceding code, we used the getScreenshotAs() method to take the screenshot of
the web page and save it to a file format. We can open the saved image from the target
folder and examine it.

Exploring the Features of WebDriver Chapter 3

[65]

Locating target windows and Frames
WebDriver enables the developers to switch between multiple child windows, browser
tabs, and frames used in the application. For example, when you click on an internet
banking link on a bank web application, it will open the internet banking application in a
separate window or Tab. At this point, you may want to switch back to the original
window to handle some events. Similarly, you may have to deal with a web application
that is divided into two frames on the web page. The frame on the left may contain
navigation items, and the frame on the right displays the appropriate web page, based on
what is selected in the frame on the left. Using WebDriver, you can develop test cases that
can easily handle such complex situations.

The WebDriver.TargetLocator interface is used to locate a given frame or window. In
this section, we will see how WebDriver handles switching between browser windows and
between two frames in the same window.

Switching among windows
First, we will see a code example for handling multiple windows. For this chapter, there is
an HTML file provided with this book named Window.html. It is a very basic web page
that links to Google's search page. When you click on the link, the Google's search page is
opened in a different window. Every time you open a web page using WebDriver in a
browser window, WebDriver assigns a window handle to that. WebDriver uses the
window handle to identify the window. At this point, in WebDriver, there are two window
handles registered. Now, on the screen, you can see that the Google's search page is in the
front and has the focus. At this point, if you want to switch to the first browser window,
you can use WebDriver's switchTo() method to do that.

The API syntax for TargetLocator is as follows:

WebDriver.TargetLocator switchTo()

This method returns the WebDriver.TargetLocator instance, where you can tell the
WebDriver whether to switch between browser windows or frames. Let's see how
WebDriver deals with this:

public class WindowHandlingTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() throws IOException {

Exploring the Features of WebDriver Chapter 3

[66]

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://guidebook.seleniumacademy.com/Window.html");
 }

 @Test
 public void handleWindow() {

 String firstWindow = driver.getWindowHandle();
 System.out.println("First Window Handle is: " + firstWindow);

 WebElement link = driver.findElement(By.linkText("Google Search"));
 link.click();

 String secondWindow = driver.getWindowHandle();
 System.out.println("Second Window Handle is: " + secondWindow);
 System.out.println("Number of Window Handles so for: "
 + driver.getWindowHandles().size());

 driver.switchTo().window(firstWindow);
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

Observe the following line in the preceding code:

String firstWindow = driver.getWindowHandle();

Here, the driver returns the assigned identifier for the window. Now, before we move on to
a different window, it is better to store this value so that if we want to switch back to this
window, we can use this handle or identifier. To retrieve all the window handles that are
registered with your driver so far, you can use the following method:

driver.getWindowHandles()

This will return the set of identifiers of all of the browser window handles opened in the
driver session so far. Now, in our example, after we open Google's search page, the
window corresponding to it is shown in front with the focus. If you want to go back to the
first window, you have to use the following code:

driver.switchTo().window(firstWindow);

This will bring the first window into focus.

Exploring the Features of WebDriver Chapter 3

[67]

Switching between frames
Let's now see how we can handle switching between the frames of a web page. In the
HTML files supplied with this book, you will see a file named Frames.html. If you open
that, you will see two HTML files loaded in two different frames. Let's see how we can
switch between them and type into the text boxes available in each frame:

public class FrameHandlingTest {
 WebDriver driver;

 @BeforeMethod
 public void setup() throws IOException {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://guidebook.seleniumacademy.com/Frames.html");
 }

 @Test
 public void switchBetweenFrames() {

 // First Frame
 driver.switchTo().frame(0);
 WebElement firstField = driver.findElement(By.name("1"));
 firstField.sendKeys("I'm Frame One");
 driver.switchTo().defaultContent();

 // Second Frame
 driver.switchTo().frame(1);
 WebElement secondField = driver.findElement(By.name("2"));
 secondField.sendKeys("I'm Frame Two");
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

In the preceding code, we have used switchTo().frame instead of switchTo().window
because we are moving across frames.

The API syntax for frame is as follows:

WebDriver frame(int index)

Exploring the Features of WebDriver Chapter 3

[68]

This method takes the index of the frame that you want to switch to. If your web page has
three frames, WebDriver indexes them as 0, 1, and 2, where the zero index is assigned to the
first frame encountered in the DOM. Similarly, you can switch between frames using their
names by using the previous overloaded method. The API syntax is as follows:

WebDriver frame(String frameNameOrframeID)

You can pass the name of the frame or its ID. Using this, you can switch to the frame if you
are not sure about the index of the target frame. The other overloaded method is as follows:

WebDriver frame(WebElement frameElement)

The input parameter is the WebElement of the frame. Let's consider our code example:
First, we have switched to our first frame and typed into the text field. Then, instead of
directly switching to the second frame, we have come to the main or default content and
then switched to the second frame. The code for that is as follows:

driver.switchTo().defaultContent();

This is very important. If you don't do this and try to switch to the second frame while you
are still in the first frame, your WebDriver will complain, saying that it couldn't find a
frame with index 1. This is because the WebDriver searches for the second frame in the
context of the first frame, which is obviously not available. So, you have to first come to the
top-level container and switch to the frame you are interested in.

After switching to the default content, you can now switch to the second frame using the
following code:

driver.switchTo().frame(1);

Thus, you can switch between the frames and execute the corresponding WebDriver
actions.

Handling alerts
Apart from switching between windows and frames, you may have to handle various
modal dialogs in a web application. For this, WebDriver provides an API to handle alert
dialogs. The API for that is as follows:

Alert alert()

Exploring the Features of WebDriver Chapter 3

[69]

The preceding method will switch to the currently active modal dialog on the web page.
This returns an Alert instance, where appropriate actions can be taken on that dialog. If
there is no dialog currently present, and you invoke this API, it throws back a
NoAlertPresentException.

The Alert interface contains a number of APIs to execute different actions. The following
list discusses them, one after the other:

void accept(): This is equivalent to the OK button action on the dialog. The
corresponding OK button actions are invoked when the accept() action is
taken on a dialog.
void dismiss(): This is equivalent to clicking on the CANCEL action button.
java.lang.String getText(): This will return the text that appears on the
dialog. This can be used if you want to evaluate the text on the modal dialog.
void sendKeys(java.lang.String keysToSend): This will allow the
developer to type in some text into the alert if the alert has some provision for it.

Exploring Navigate
As we know, WebDriver talks to individual browsers natively. This way it has better
control, not just over the web page, but over the browser itself. Navigate is one such feature
of WebDriver that allows the test script developer to work with the browser's back,
forward, and refresh controls. As users of a web application, quite often, we use the
browser's back and forward controls to navigate between the pages of a single application,
or, sometimes, multiple applications. As a test-script developer, you may want to develop
tests that observe the behavior of the application when browser navigation buttons are
clicked, especially the back button. For example, if you use your navigation button in a
banking application, the session should expire and the user should be logged out. So, using
the WebDriver's navigation feature, you can emulate those actions.

The method that is used for this purpose is navigate(). The following is its API syntax:

WebDriver.Navigation navigate()

Obviously, there is no input parameter for this method, but the return type is the
WebDriver.Navigation interface, which contains all of the browser navigation options
that help you navigate through your browser's history.

Exploring the Features of WebDriver Chapter 3

[70]

Now let's see a code example and then analyze the code:

@Test
public void searchProduct() {
 driver.navigate().to("http://demo-store.seleniumacademy.com/");

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");

 driver.navigate().back();
 driver.navigate().forward();
 driver.navigate().refresh();
}

The preceding code opens the demo application's Homepage, and, at first, searches for
Phone; then, after the search results are loaded. Now that we have a navigation history
created in the browser, it uses WebDriver navigation to go back in the browser history, and
then go forward and refresh the page.

Let's analyze the navigation methods used in the preceding code. The line of code that
initially loads the demo application's Homepage uses the to() method of the Navigation
class, as follows:

driver.navigate().to("http://demo-store.seleniumacademy.com/");

Here, the driver.navigate() method returns the WebDriver.Navigation interface on
which the to() method is used to navigate to a web URL.

The API syntax is as follows:

void to(java.lang.String url)

Exploring the Features of WebDriver Chapter 3

[71]

The input parameter for this method is the url string that has to be loaded in the browser.
This method will load the page in the browser by using the HTTP GET operation, and it will
block everything else until the page is completely loaded. This method is the same as the
driver.get(String url) method.

The WebDriver.Navigation interface also provides an overloaded method of this to()
method to make it easy to pass the URL. The API syntax for it is as follows:

void to(java.net.URL url)

Next, in the code example, we did a search for Phone. Then, we tried to use Navigation's
back() method to emulate our browser's back button, using the following line of code:

driver.navigate().back();

This will take the browser to the home page. The API syntax for this method is pretty
straightforward; it's as follows:

void back()

This method doesn't take any input and doesn't return anything as well, but it takes the
browser one level back in its history.

Then, the next method in the navigation is the forward() method, which is pretty much
similar to the back() method, but it takes the browser one level in the opposite direction.
In the preceding code example, the following is invoked:

 driver.navigate().forward();

The API syntax for the method is as follows:

void forward()

This method doesn't take any input, and doesn't return anything either, but it takes the
browser one level forward in its history.

The last line of code in the code example uses the refresh() method of WebDriver's
navigation:

driver.navigate().refresh();

This method will reload the current URL to emulate the browser's refresh (F5 key) action.
The API syntax is as follows:

void refresh()

Exploring the Features of WebDriver Chapter 3

[72]

As you can see, the syntax is very similar to the back() and forward() methods, and this
method will reload the current URL. Hence, these are the various methods WebDriver
provides developers to emulate some browser actions.

Waiting for WebElements to load
If you have a previous UI automation experience, I'm sure you would have come across a
situation where your test script couldn't find an element on the web page because the web
page was still loading. This could happen due to various reasons. One classic example is
when the application server or web server is serving the page too slowly due to resource
constraints; the other could be when you are accessing the page on a very slow network.
The reason could be that the element on the web page is not loaded by the time your test
script tries to find it. This is where you have to calculate and configure the average wait
time for your test scripts to wait for WebElements to load on the web page.

WebDriver provides test-script developers with a very handy feature to manage wait time.
Wait time is the time your driver will wait for the WebElement to load, before it gives up
and throws NoSuchElementException. Remember, in Chapter 1, Introducing WebDriver
and WebElements, we discussed the findElement(By by) method that throws a
 NoSuchElementException when it cannot find the target WebElement.

There are two ways by which you can make the WebDriver wait for WebElement. They are
Implicit Wait Time and Explicit Wait Time. Implicit timeouts are common to all the
WebElements and have a global timeout period associated with them, but the explicit
timeouts can be configured to individual WebElements. Let's discuss each of them here.

Implicit wait time
Implicit wait time is used when you want to configure the WebDriver's wait time as a
whole for the application under test. Imagine you have hosted a web application on a local
server and on a remote server. Obviously, the time to load for a web page hosted on a local
server would be less than the time for the same page hosted on a remote server, due to
network latency. Now, if you want to execute your test cases against each of them, you may
have to configure the wait time accordingly, such that your test case doesn't end up
spending more time waiting for the page, or spend nowhere near enough time, and
timeout. To handle these kinds of wait-time issues, WebDriver provides an option to set the
implicit wait time for all of the operations that the driver does using the manage() method.

Exploring the Features of WebDriver Chapter 3

[73]

Let's see a code example of implicit wait time:

driver = new ChromeDriver();
driver.navigate().to("http://demo-store.seleniumacademy.com/");
driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

Let's analyze the following highlighted line of code:

driver.manage().timeouts().implicitlyWait(10, TimeUnit.SECONDS);

Here, driver.manage().timeouts() returns the WebDriver.Timeouts interface, which
declares a method named implicitlyWait, which is where you specify the amount of
time the driver should wait when searching for a WebElement on a web page if it is not
immediately present. Periodically, the WebDriver will poll for the WebElement on the web
page, until the maximum wait time specified to the previous method is over. In the
preceding code, 10 seconds is the maximum wait time your driver will wait for any
WebElement to load on your browser. If it loads within this time period, WebDriver
proceeds with the rest of the code; otherwise, it will throw NoSuchElementException.

Use this method when you want to specify a maximum wait time, which is generally
common for most of the WebElements on your web application. The various factors that
influence the performance of your page are network bandwidth, server configuration, and
so on. Based on those conditions, as a developer of your WebDriver test cases, you have to
arrive at a value for the maximum implicit wait time, such that your test cases don't take
too long to execute, and, at the same time, don't timeout very frequently.

Explicit wait time
Implicit timeout is generic to all the WebElements of a web page. But, if you have one
specific WebElement in your application, where you want to wait for a very long time, this
approach may not work. Setting the implicit wait time to the value of this very long time
period will delay your entire test suite execution. So, you have to make an exception for
only a particular case, such as this WebElement. To handle such scenarios, WebDriver has
an explicit wait time for a WebElement.

So, let's see how you can wait for a particular WebElement using WebDriver, with the
following code:

WebElement searchBox = (new WebDriverWait(driver, 20))
 .until((ExpectedCondition<WebElement>) d ->
d.findElement(By.name("q")));

Exploring the Features of WebDriver Chapter 3

[74]

The highlighted code is where we have created a conditional wait for a particular
WebElement. The ExpectedCondition interface can be used to apply the conditional wait
to a WebElement. Here, WebDriver will wait for a maximum of 20 seconds for this
particular WebElement. The implicit timeout doesn't get applied for this WebElement. If the
WebElement doesn't load within the 20 seconds maximum wait time, as we know, the
driver throws a NoSuchElementException. Thus, you can override the implicit wait time
exclusively for the WebElements you think will take more time, by using this handy explicit
wait time.

Handling cookies
Let's say you are automating the demo application. There could be many scenarios you
want to automate, such as searching for products, adding products to the shopping cart,
checkout, returns, and so on. For all these actions, one common thing is to have to log into
the demo application in each of the test cases. So, logging into the application in every test
case of yours will increase the overall test execution time significantly. To reduce the
execution time of your test cases, you can actually skip signing in for every test case. This
can be done by signing in once and writing all the cookies of that domain into a file. From
the next login onward, you can actually load the cookies from the file and add them to the
driver.

To fetch all the cookies that are loaded for a web page, WebDriver provides the following
method:

driver.manage().getCookies()

This will return all the cookies that the web page stores in the current session. Each cookie
is associated with a name, value, domain, path, expiry, and the status of whether it is secure
or not. The server to validate a client cookie parses all of these values. Now, we will store
all of this information for each cookie in a file so that our individual test cases read from
this file and load that information into the driver. Hence, you can skip the login, because
once your driver session has this information in it, the application server treats your
browser session as authenticated and directly takes you to your requested URL. The
following is a quick code to store the cookie information:

public class StoreCookieInfo {
 WebDriver driver;

 @BeforeMethod
 public void setup() throws IOException {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");

Exploring the Features of WebDriver Chapter 3

[75]

 driver = new ChromeDriver();
driver.get("http://demo-
store.seleniumacademy.com/customer/account/login/");
 }

 @Test
 public void storeCookies() {
driver.findElement(By.id("email")).sendKeys("user@seleniumacademy.com");
 driver.findElement(By.id("pass")).sendKeys("tester");
 driver.findElement(By.id("send2")).submit();

 File dataFile = new File("./target/browser.data");
 try {
 dataFile.delete();
 dataFile.createNewFile();
 FileWriter fos = new FileWriter(dataFile);
 BufferedWriter bos = new BufferedWriter(fos);
 for (Cookie ck : driver.manage().getCookies()) {
 bos.write((ck.getName() + ";" + ck.getValue() + ";" + ck.
 getDomain()
 + ";" + ck.getPath() + ";" + ck.getExpiry() + ";" +
ck.
 isSecure()));
 bos.newLine();
 }
 bos.flush();
 bos.close();
 fos.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

From now on, for every test case or a set of test cases, load the cookie information from the
browser.data file, and add it to the driver using the following method:

driver.manage().addCookie(ck);

Exploring the Features of WebDriver Chapter 3

[76]

After you add this information to your browser session and go to the dashboard page, it
will automatically redirect you to the home page, without asking for a login, thus avoiding
a login every time, for every test case. The code that adds all of the previous cookies to the
driver is as follows:

public class LoadCookieInfo {
 WebDriver driver;

 @BeforeMethod
 public void setup() throws IOException {
 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://demo-store.seleniumacademy.com");
 }

 @Test
 public void loadCookies() {
 try {
 File dataFile = new File("./target/browser.data");
 FileReader fr = new FileReader(dataFile);
 BufferedReader br = new BufferedReader(fr);
 String line;
 while ((line = br.readLine()) != null) {
 StringTokenizer str = new StringTokenizer(line, ";");
 while (str.hasMoreTokens()) {
 String name = str.nextToken();
 String value = str.nextToken();
 String domain = str.nextToken();
 String path = str.nextToken();
 Date expiry = null;
 String dt;
 if (!(dt = str.nextToken()).equals("null")) {
 SimpleDateFormat formatter =
 new SimpleDateFormat("E MMM d HH:mm:ss z
yyyy");
 expiry = formatter.parse(dt);
 }

 boolean isSecure = new Boolean(str.nextToken()).
 booleanValue();
 Cookie ck = new Cookie(name, value, domain, path,
expiry, isSecure);
 driver.manage().addCookie(ck);
 }
 }

driver.get("http://demo-

Exploring the Features of WebDriver Chapter 3

[77]

store.seleniumacademy.com/customer/account/index/");
 assertThat(driver.findElement(By.cssSelector("div.page-
title")).getText())
 .isEqualTo("MY DASHBOARD");

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

Hence, we can be directly taken to the home page without logging in again and again. As
you can see, after creating the driver instance, we have the following line:

driver.get("http://demo-store.seleniumacademy.com");

Ideally, this line should be visible after we have set the cookies to the driver. But the reason
it is at the top is that the WebDriver doesn't allow you to set the cookies directly to this
session, because it treats those cookies as if they were from a different domain. Try
removing the previous line of code and execute it, and you will see the error. So, initially,
you will try to visit the home page to set the domain value of the driver to the application
server domain and load all the cookies. When you execute this code, initially, you will see
the home page of the application.

Hence, you can avoid entering the username and the password on the server, validating
them again and again for each test, and thereby save a lot of time, by using the WebDriver's
cookies feature.

Summary
In this chapter, we discussed various features of WebDriver, such as capturing screenshots
and handling Windows and Frames. We also discussed implicit and explicit wait conditions
for synchronization, and we used Navigation and the cookies API. Using these features will
help you test your target web application more effectively, by designing more innovative
test frameworks and test cases. In the next chapter, we will look at the Actions API to
perform user interaction using keyboard and mouse events.

Exploring the Features of WebDriver Chapter 3

[78]

Questions
Which are the different formats we can use to output a screenshot?1.
How can we switch to another browser tab with Selenium?2.
True or false: The defaultContent() method will switch to the previously3.
selected frame.
What navigation methods are available with Selenium?4.
How can we add a cookie using Selenium?5.
Explain the difference between an implicit wait and an explicit wait.6.

Further information
You can check the following links for more information about the topics covered in this
chapter:

You can find out more about how you can use a set of predefined expected
conditions while using an explicit wait at https:/ /seleniumhq. github. io/
selenium/ docs/ api/ java/ org/ openqa/ selenium/ support/ ui/
ExpectedConditions. html

You can read more about WebDriver's features in Chapter 4, Working with
Selenium API and Chapter 5 , Synchronizing Tests, in Selenium Testing Tools
Cookbook, 2nd Edition, by Unmesh Gundecha, Packt Publications.

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html

4
Exploring Advanced

Interactions of WebDriver
In the previous chapter, we discussed the WebDriver interface and its features, including
taking screenshots, working with Windows, frames, alerts, cookies, and synchronizing
tests. In this chapter, we will go through some advanced ways of performing actions on
WebElements. We will learn how to perform actions, using the actions API of Selenium
WebDriver, including the following:

Complex mouse actions, such as moving the mouse, double-clicking, and
dragging and dropping
Keyboard shortcuts

Understanding the build and perform
actions
We know how to perform some basic actions, such as clicking on a button and typing text
into a textbox; however, there are many scenarios where we have to perform multiple
actions at the same time, for example, keeping the Shift button pressed and typing text for
uppercase letters, and the dragging and dropping mouse actions.

Exploring Advanced Interactions of WebDriver Chapter 4

[80]

Let's see a simple scenario here. Open the http:/ /guidebook. seleniumacademy. com/
Selectable.html. A box of tiles numbered 1 to 12 will appear, as seen in this screenshot:

If you inspect the elements with browser developer tools, you will see an ordered list tag:

<ol id="selectable" class="ui-selectable">
 <li class="ui-state-default ui-selectee" name="one">1
 <li class="ui-state-default ui-selectee" name="two">2
 <li class="ui-state-default ui-selectee" name="three">3
 <li class="ui-state-default ui-selectee" name="four">4
 <li class="ui-state-default ui-selectee" name="five">5
 <li class="ui-state-default ui-selectee" name="six">6
 <li class="ui-state-default ui-selectee" name="seven">7
 <li class="ui-state-default ui-selectee" name="eight">8
 <li class="ui-state-default ui-selectee" name="nine">9
 <li class="ui-state-default ui-selectee" name="ten">10
 <li class="ui-state-default ui-selectee" name="eleven">11
 <li class="ui-state-default ui-selectee" name="twelve">12

If you click a number, its background color changes to orange. Try selecting the tiles 1, 3,
and 5. You do that by holding down Ctrl + tile 1 + tile 3 + tile 5. This involves performing
multiple actions, that is, holding Ctrl continuously and clicking on tiles 1, 3, and 5. How do
we perform these multiple actions using WebDriver? The following code demonstrates
how:

@Test
public void shouldPerformCompositeAction() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html
http://guidebook.seleniumacademy.com/Selectable.html

Exploring Advanced Interactions of WebDriver Chapter 4

[81]

 WebElement one = driver.findElement(By.name("one"));
 WebElement three = driver.findElement(By.name("three"));
 WebElement five = driver.findElement(By.name("five"));

 // Add all the actions into the Actions builder.
 Actions actions = new Actions(driver);
 actions.keyDown(Keys.CONTROL)
 .click(one)
 .click(three)
 .click(five)
 .keyUp(Keys.CONTROL);

 // Generate the composite action.
 Action compositeAction = actions.build();

 // Perform the composite action.
 compositeAction.perform();
}

Now, if you refer to the code, we are getting introduced to a new class named Actions.
This Actions class is the one that is used to emulate all the complex user events. Using
this, the developer of the test script could combine all the necessary user gestures into one
composite action. We have declared all the actions that are to be executed to achieve the
functionality of clicking on the numbers 1, 3, and 5. Once all the actions are grouped
together, we build that into a composite action. Action is an interface that has only the
perform() method, which executes the composite action. When we execute the test, tiles 1,
3, and 5 will be selected one by one. Finally, tile 5 will be selected, as shown in this
screenshot:

Exploring Advanced Interactions of WebDriver Chapter 4

[82]

So, to make WebDriver perform multiple actions at the same time, you need to follow a
three-step process of using the user-facing API of the actions class to group all the actions,
then build the composite action, and perform the action. This process can be made into a
two-step process, as the perform() method internally calls the build() method. So the
previous code will look as follows:

@Test
public void shouldPerformAction() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement one = driver.findElement(By.name("one"));
 WebElement three = driver.findElement(By.name("three"));
 WebElement five = driver.findElement(By.name("five"));

 // Add all the actions into the Actions builder.
 Actions actions = new Actions(driver);
 actions.keyDown(Keys.CONTROL)
 .click(one)
 .click(three)
 .click(five)
 .keyUp(Keys.CONTROL);

 // Perform the action
 actions.perform();
}

In the preceding code, we have directly invoked the perform() method on the Actions
instance, which internally calls the build() method to create a composite action before
executing it. In the subsequent sections of this chapter, we will take a closer look at the
Actions class. All the actions are basically divided into two categories: mouse-based
actions and keyboard-based actions. In the following sections, we will discuss all the
actions that are specific to the mouse and keyboard available in the Actions class.

Learning mouse based interactions
There are around eight different mouse actions that can be performed using the actions
class. We will see each of their syntax and a working example.

Exploring Advanced Interactions of WebDriver Chapter 4

[83]

The moveByOffset action
The moveByOffset() method is used to move the mouse from its current position to
another point on the web page. Developers can specify the x distance and the y distance the
mouse has to be moved. When the page is loaded, generally the initial position of the
mouse would be (0, 0), unless there is an explicit focus declared by the page.

The API syntax for the moveByOffset() method is as follows:

 public Actions moveByOffset(int xOffSet, int yOffSet)

In the preceding code, xOffSet is the input parameter providing the WebDriver the
amount of offset to be moved along the x axis. A positive value is used to move the cursor
to the right, and a negative value is used to move the cursor to the left.

yOffSet is the input parameter providing the WebDriver the amount of offset to be moved
along the y axis. A positive value is used to move the cursor down along the y axis, and a
negative value is used to move the cursor toward the top.

When the xOffSet and yOffSet values result in moving the cursor out of the document, a
MoveTargetOutOfBounds exception is raised.

Let's see a working example of it. The objective of the following code is to move the cursor
on to tile 3 on the web page:

@Test
public void shouldMoveByOffSet() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement three = driver.findElement(By.name("three"));
 System.out.println("X coordinate: " + three.getLocation().getX()
 + ", Y coordinate: " + three.getLocation().getY());
 Actions actions = new Actions(driver);
 actions.moveByOffset(three.getLocation().getX() + 1, three.
 getLocation().getY() + 1);
 actions.perform();
}

Exploring Advanced Interactions of WebDriver Chapter 4

[84]

The output will be as follows:

We have added +1 to the coordinates, because if you observe the element in Firebug, we
have a style border of 1 px. The border is a CSS-style attribute, which when applied to an
element will add a border of the specified color around the element, with the specified
amount of thickness. Though the previous code does move your mouse over tile 3, we don't
realize this, because we are not performing any action there. We will see this shortly, when
we use the moveByOffset() method in combination with the click() method.

The click at current location action
The click() method is used to simulate the left-click of your mouse at its current point of
location. This method doesn't really realize where or on which element it is clicking. It just
clicks wherever it is at that point in time. Hence, this method is used in combination with
some other action, rather than independently, to create a composite action.

The API syntax for the click() method is as follows:

public Actions click().

Exploring Advanced Interactions of WebDriver Chapter 4

[85]

The click() method doesn't really have any context about where it is performing its
action; hence, it doesn't take any input parameter. Let's see a code example of the click()
method:

@Test
public void shouldMoveByOffSetAndClick() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement seven = driver.findElement(By.name("seven"));
 System.out.println("X coordinate: " + seven.getLocation().getX() +
 ", Y coordinate: " + seven.getLocation().getY());
 Actions actions = new Actions(driver);
 actions.moveByOffset(seven.getLocation().getX() + 1, seven.
 getLocation().getY() + 1).click();
 actions.perform();
}

In the above example we have used a combination of the moveByOffset() and click()
methods to move the cursor from point (0, 0) to the point of tile 7. Because the initial
position of the mouse is (0, 0), the x, y offset provided for the moveByOffset() method is
nothing but the location of the tile 7 element. Now let's try to move the cursor from tile 1 to
tile 11, and from there to tile 5, and see how the code looks. Before we get into the code, let's
inspect the Selectable.html page using Firebug. The following is the style of each tile:

#selectable li {
 float: left;
 font-size: 4em;
 height: 80px;
 text-align: center;
 width: 100px;
}
.ui-state-default, .ui-widget-content .ui-state-default, .ui-widgetheader
.ui-state-default {
 background: url("images/ui-bg_glass_75_e6e6e6_1x400.png") repeat-x
 scroll 50% 50% #E6E6E6;
 border: 1px solid #D3D3D3;
 color: #555555;
 font-weight: normal;
}

Exploring Advanced Interactions of WebDriver Chapter 4

[86]

The three elements with which we are concerned for our offset movement in the preceding
style code are: height, width, and the border thickness. Here, the height value is 80px,
the width value is 100px, and the border value is 1px. Use these three factors to calculate
the offset to navigate from one tile to the other. Note that the border thickness between any
two tiles will result in 2 px, that is, 1 px from each tile. The following is the code that uses
the moveByOffset and click() methods to navigate from tile 1 to tile 11, and from there
to tile 5:

@Test
public void shouldMoveByOffSetAndClickMultiple() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement one = driver.findElement(By.name("one"));
 WebElement eleven = driver.findElement(By.name("eleven"));
 WebElement five = driver.findElement(By.name("five"));
 int border = 1;
 int tileWidth = 100;
 int tileHeight = 80;
 Actions actions = new Actions(driver);

 //Click on One
 actions.moveByOffset(one.getLocation().getX() + border,
one.getLocation().getY() + border).click();
 actions.build().perform();

 // Click on Eleven
 actions.moveByOffset(2 * tileWidth + 4 * border, 2 * tileHeight + 4 *
border).click();
 actions.build().perform();

 //Click on Five
 actions.moveByOffset(-2 * tileWidth - 4 * border, -tileHeight - 2 *
border).
 click();
 actions.build().perform();
}

Exploring Advanced Interactions of WebDriver Chapter 4

[87]

The click on a WebElement action
We have seen how to click a WebElement by calculating the offset to it. This process may
not be needed every time, especially when the WebElement has its own identifiers, such as
a name or an ID. We can use another overloaded version of the click() method to click
directly on the WebElement.

The API syntax for clicking on a WebElement is as follows:

public Actions click(WebElement onElement)

The input parameter for this method is an instance of the WebElement on which the click
action should be performed. This method, like all the other methods in the Actions class,
will return an Actions instance.

Now let's try to modify the previous code example to use the click(WebElement)
method, instead of using the moveByOffset() method, to move to the location of the
WebElement and click on it using the click() method:

@Test
public void shouldClickOnElement() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement one = driver.findElement(By.name("one"));
 WebElement eleven = driver.findElement(By.name("eleven"));
 WebElement five = driver.findElement(By.name("five"));
 Actions actions = new Actions(driver);

 //Click on One
 actions.click(one);
 actions.build().perform();

 // Click on Eleven
 actions.click(eleven);
 actions.build().perform();

 //Click on Five
 actions.click(five);
 actions.build().perform();
}

Exploring Advanced Interactions of WebDriver Chapter 4

[88]

Now the moveByOffset() method has been replaced by the click(WebElement)
method, and, all of a sudden, the complex coordinate geometry has been removed from the
code. If you're a tester, this is one more good reason to push your developers to provide
identifiers for the WebElements.

If you observe the previous examples for the moveByOffset and click methods, all the
operations of moving the mouse and clicking on tiles 1, 11, and 5 are built separately and
performed separately. This is not how we use our Actions class. You can actually build all
these actions together and then perform them. So, the preceding code will turn out to be as
follows:

 @Test
 public void shouldClickOnElement() {

 driver.get("http://guidebook.seleniumacademy.com/Selectable.html");

 WebElement one = driver.findElement(By.name("one"));
 WebElement eleven = driver.findElement(By.name("eleven"));
 WebElement five = driver.findElement(By.name("five"));
 Actions actions = new Actions(driver);

 actions.click(one)
 .click(eleven)
 .click(five)
 .build().perform();
 }

The click and hold at current location action
The clickAndHold() method is another method of the actions class that left-clicks on an
element and holds it without releasing the left button of the mouse. This method will be
useful when executing operations such as drag and drop. This method is one of the variants
of the clickAndHold() method that the actions class provides. We will discuss the other
variant in the next section.

Now open the Sortable.html file that came with the book. You can see that the tiles can
be moved from one position to the other. Now let's try to move tile 3 to the position of tile
2. The sequence of steps that are involved to do this are the following:

Move the cursor to the position of tile 3.1.
Click and hold tile 3.2.
Move the cursor in this position to tile 2's location.3.

Exploring Advanced Interactions of WebDriver Chapter 4

[89]

Now let's see how this can be accomplished, using the WebDriver's clickAndHold()
method:

@Test
public void shouldClickAndHold() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 Actions actions = new Actions(driver);

 //Move tile3 to the position of tile2
 actions.moveByOffset(200, 20)
 .clickAndHold()
 .moveByOffset(120, 0)
 .perform();
}

Let's analyze the following line of code:

actions.moveByOffset(200, 20)
 .clickAndHold()
 .moveByOffset(120, 0)
 .perform();

The tile movement will be similar to the following screenshot:

Exploring Advanced Interactions of WebDriver Chapter 4

[90]

First, we move the cursor to the location of tile 3. Then, we click and hold tile 3. Then, we
move the cursor by 120px horizontally to the position of tile 2. The last line performs all the
preceding actions. Now execute this in your eclipse and see what happens. If you observe
closely, tile 3 doesn't properly go into the position of tile 2. This is because we are yet to
release the left button. We just commanded the WebDriver to click and hold, but not to
release.

The click and hold a WebElement action
In the previous section, we have seen the clickAndHold() method, which will click and
hold a WebElement at the current position of the cursor. It doesn't care about which
element it is dealing with. So, if we want to deal with a particular WebElement on the web
page, we have to first move the cursor to the appropriate position and then perform the
clickAndHold() action. To avoid the hassle of moving the cursor geometrically,
WebDriver provides the developers with another variant or overloaded method of the
clickAndHold() method that takes the WebElement as input.

The API syntax is this:

public Actions clickAndHold(WebElement onElement)

The input parameter for this method is the WebElement that has to be clicked and held. The
return type, as in all the other methods of the Actions class, is the Actions instance. Now
let's refactor the example in the previous section to use this method, as follows:

@Test
public void shouldClickAndHoldElement() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 Actions actions = new Actions(driver);
 WebElement three = driver.findElement(By.name("three"));

 //Move tile3 to the position of tile2
 actions.clickAndHold(three)
 .moveByOffset(120, 0)
 .perform();
}

The only change is that we have removed the action of moving the cursor to the (200, 20)
position and provided the WebElement to the clickAndHold() method that will take care
of identifying the WebElement.

Exploring Advanced Interactions of WebDriver Chapter 4

[91]

The release at current location action
Now, in the previous example, we have seen how to click and hold an element. The
ultimate action that has to be taken on a held WebElement is to release it so that the element
can be dropped or released from the mouse. The release() method is the one that can
release the left mouse button on a WebElement.

The API syntax for the release() method is as follows: public Actions release().

The preceding method doesn't take any input parameter and returns the Actions class
instance.

Now, let's modify the previous code to include the release action in it:

@Test
public void shouldClickAndHoldAndRelease() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 WebElement three = driver.findElement(By.name("three"));
 Actions actions = new Actions(driver);

 //Move tile3 to the position of tile2
 actions.clickAndHold(three)
 .moveByOffset(120, 0)
 .release()
 .perform();
}

The preceding code will make sure that the mouse is released at the specified location.

The release on another WebElement action
This is an overloaded version of the release() method. Using this, you can actually
release the currently held WebElement in the middle of another WebElement. In this way,
we don't have to calculate the offset of the target WebElement from the held WebElement.

The API syntax is as follows:

public Actions release(WebElement onElement)

Exploring Advanced Interactions of WebDriver Chapter 4

[92]

The input parameter for the preceding method is obviously the target WebElement, where
the held WebElement should be dropped. The return type is the instance of the Actions
class.

Let's modify the preceding code example to use this method:

@Test
public void shouldClickAndHoldAndReleaseOnElement() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 WebElement three = driver.findElement(By.name("three"));
 WebElement two = driver.findElement(By.name("two"));
 Actions actions = new Actions(driver);

 //Move tile3 to the position of tile2
 actions.clickAndHold(three)
 .release(two)
 .perform();
}

Look at how simple the preceding code is. We have removed all the moveByOffset code
and added the release() method that takes the WebElement with the name two as the
input parameter.

Invoking the release() or release(WebElement) methods without calling the
clickAndHold() method will result in an undefined behavior.

The moveToElement action
The moveToElement() method is another method of WebDriver that helps us to move the
mouse cursor to a WebElement on the web page.

The API syntax for the moveToElement() method is as follows:

public Actions moveToElement(WebElement toElement)

Exploring Advanced Interactions of WebDriver Chapter 4

[93]

The input parameter for the preceding method is the target WebElement, where the mouse
should be moved. Now go back to the clickAndHold at current location action section of
this chapter and try to modify the code to use this method. The following is the code we
have written in The click-and-hold-at-current-location action section:

@Test
public void shouldClickAndHold() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 Actions actions = new Actions(driver);

 //Move tile3 to the position of tile2
 actions.moveByOffset(200, 20)
 .clickAndHold()
 .moveByOffset(120, 0)
 .perform();
}

In the preceding code, we will replace the moveByOffset(x, y) method with the
moveToElement(WebElement) method:

@Test
public void shouldClickAndHoldAndMove() {

 driver.get("http://guidebook.seleniumacademy.com/Sortable.html");

 WebElement three = driver.findElement(By.name("three"));
 Actions actions = new Actions(driver);

 //Move tile3 to the position of tile2
 actions.moveToElement(three)
 .clickAndHold()
 .moveByOffset(120, 0)
 .perform();
}

In the preceding code, we have moved to tile 3, clicked and held it, and then moved to the
location of tile 2, by specifying its offset. If you want, you can add the release() method
before the perform() method.

There might be a number of ways to achieve the same task. It is up to the user to choose the
appropriate ones that best suit the given circumstances.

Exploring Advanced Interactions of WebDriver Chapter 4

[94]

The dragAndDropBy action
There might be many instances where we may have to drag and drop components or
WebElements of a web page. We can accomplish that by using many of the actions seen
until now. But WebDriver has given us a convenient out-of-the-box method to use. Let's see
its API syntax.

The API syntax for the dragAndDropBy() method is as follows:

public Actions dragAndDropBy(WebElement source, int xOffset,int yOffset)

The WebElement input parameter is the target WebElement to be dragged, the xOffset
parameter is the horizontal offset to be moved, and the yOffset parameter is the vertical
offset to be moved.

Let's see a code example for it. Open the HTML file, DragMe.html, provided with this
book. It has a square box, as shown in the following screenshot:

Exploring Advanced Interactions of WebDriver Chapter 4

[95]

You can actually drag that rectangle to any location on the web page. Let's see how we can
do that, using WebDriver. The following is the code example for that:

@Test
public void shouldDrag() {

 driver.get("http://guidebook.seleniumacademy.com/DragMe.html");

 WebElement dragMe = driver.findElement(By.id("draggable"));
 Actions actions = new Actions(driver);
 actions.dragAndDropBy(dragMe, 300, 200).perform();
}

In the preceding code, dragMe is the WebElement that is identified by its id, and that is
dragged 300px horizontally and 200px vertically. The following screenshot shows how an
element is dragged from this position:

The dragAndDrop action
The dragAndDrop() method is similar to the dragAndDropBy() method. The only
difference being that, instead of moving the WebElement by an offset, we move it on to a
target element.

Exploring Advanced Interactions of WebDriver Chapter 4

[96]

The API syntax for the dragAndDrop() method is as follows:

public Actions dragAndDrop(WebElement source, WebElement target)

The input parameters for the preceding method are the WebElement source and the
WebElement target, while the return type is the Actions class.

Let's see a working code example for it. Open the DragAndDrop.html file, which is
provided with the book, with two square boxes, as shown in this screenshot:

Here, we can actually drag the Drag me to my target rectangle to the Drop here rectangle.
Try that. Let's see how that can be achieved, using WebDriver:

@Test
public void shouldDragAndDrop() {

 driver.get("http://guidebook.seleniumacademy.com/DragAndDrop.html");

 WebElement src = driver.findElement(By.id("draggable"));
 WebElement trgt = driver.findElement(By.id("droppable"));
 Actions actions = new Actions(driver);
 actions.dragAndDrop(src, trgt).perform();
}

Exploring Advanced Interactions of WebDriver Chapter 4

[97]

In the preceding code, the source and target WebElements are identified by their IDs, and
the dragAndDrop() method is used to drag one to the other. Here, out of the script with
first square box dropped on the second box shown in the following screenshot:

The double click at current location action
 Moving on to another action that can be performed using a mouse, doubleClick() is
another out- of-the-box method that WebDriver provides to emulate the double-clicking of
the mouse. This method, like the click() method, comes in two flavors. One is double-
clicking a WebElement, which we will discuss in next section; the second is clicking at the
current location of the cursor, which will be discussed here.

The API syntax is as follows:

public Actions doubleClick()

Obviously, the preceding method doesn't take any input parameters, as it just clicks on the
current cursor location and returns an actions class instance. Let's see how the previous
code can be converted to use this method:

@Test
public void shouldDoubleClick() {

 driver.get("http://guidebook.seleniumacademy.com/DoubleClick.html");

 WebElement dblClick= driver.findElement(By.name("dblClick"));
 Actions actions = new Actions(driver);
 actions.moveToElement(dblClick).doubleClick().perform();
}

Exploring Advanced Interactions of WebDriver Chapter 4

[98]

In the preceding code, we have used the moveToElement(WebElement) method to move
the mouse to the location of the button element and just double-clicked at the current
location. Here is the output after performing the double-click on the element on the sample
page:

The double click on WebElement action
Now that we have seen a method that double-clicks at the current location, we will discuss
another method that WebDriver provides to emulate the double-clicking of a WebElement.

The API syntax for the doubleClick() method is as follows:

public Actions doubleClick(WebElement onElement)

The input parameter for the preceding method is the target WebElement that has to be
double-clicked, and the return type is the Actions class.

Let's see a code example for this. Open the DoubleClick.html file and single-click on the
Click Me button. You shouldn't see anything happening. Now double-click on the button;
you should see an alert saying Double Clicked !!. Now we will try to do the same thing
using WebDriver. The following is the code to do that:

@Test
public void shouldDoubleClickElement() {
driver.get("http://guidebook.seleniumacademy.com/DoubleClick.html");

 WebElement dblClick = driver.findElement(By.name("dblClick"));
 Actions actions = new Actions(driver);
 actions.doubleClick(dblClick).perform();
}

After executing the preceding code, you should see an alert dialog saying that the button
has been double-clicked.

Exploring Advanced Interactions of WebDriver Chapter 4

[99]

The context click on WebElement action
The contextClick() method, also known as right-click, is quite common on many web
pages these days. It displays a menu similar to this screenshot:

This context menu can be accessed by a right-click of the mouse on the WebElement.
WebDriver provides the developer with an option of emulating that action, using the
contextClick() method. Like many other methods, this method has two variants as well.
One is clicking on the current location and the other overloaded method is clicking on the
WebElement. Let's discuss the context of clicking on WebElement here.

The API syntax for the contextClick() method is as follows:

public Actions contextClick(WebElement onElement)

The input parameter is obviously the WebElement that has to be right-clicked, and the
return type is the Actions instance. As we do normally, its time to see a code example. If
you open the ContextClick.html file, you can right-click on the text visible on the page,
and it will display the context menu. Now clicking any item pops up an alert dialog stating
which item has been clicked. Now let's see how to implement this in WebDriver, using the
following code:

@Test
public void shouldContextClick() {

 driver.get("http://guidebook.seleniumacademy.com/ContextClick.html");

 WebElement contextMenu = driver.findElement(By.id("div-context"));
 Actions actions = new Actions(driver);

Exploring Advanced Interactions of WebDriver Chapter 4

[100]

 actions.contextClick(contextMenu)
 .click(driver.findElement(By.name("Item 4")))
 .perform();
}

In the preceding code, first we have right-clicked using the contextClick() method on
the WebElement contextMenu, and then left-clicked on Item 4 from the context menu. This
should pop up an alert dialog saying Item 4 Clicked.

The context click at current location action
Now that we have seen context click on a WebElement, it's time to explore the
contextClick() method at the current mouse location. The API syntax for the
contextClick() method is as follows:

public Actions contextClick()

As expected, the preceding method doesn't expect any input parameter and returns the
Actions instance. Let's see the necessary modifications needed for the previous example to
use this method. The following is the code refactored to achieve this:

@Test
public void shouldContextClickAtCurrentLocation() {

 driver.get("http://guidebook.seleniumacademy.com/ContextClick.html");

 WebElement contextMenu = driver.findElement(By.id("div-context"));
 Actions actions = new Actions(driver);
 actions.moveToElement(contextMenu)
 .contextClick()
 .click(driver.findElement(By.name("Item 4")))
 .perform();
}

The preceding code first moves the cursor to the div-context WebElement and then
context-clicks it.

Exploring Advanced Interactions of WebDriver Chapter 4

[101]

Learning keyboard-based interactions
Until now, we have seen all the actions that can be taken using a mouse. Now it's time to
look at some of the actions that are specific to the keyboard in the Actions class. Basically,
there are three different actions that are available in the Actions class that are specific to
the keyboard. They are the keyUp, keyDown, and sendKeys actions, each having two
overloaded methods. One method is to execute the action directly on the WebElement, and
the other is to just execute the method irrespective of its context.

The keyDown and keyUp actions
The keyDown() method is used to simulate the action of pressing and holding a key. The
keys that we are referencing here are the Shift, Ctrl, and Alt keys. The keyUp() method is
used to release the key that is already pressed using the keyDown() method. The API
syntax for the keyDown() method is as follows:

public Actions keyDown(Keys theKey) throws IllegalArgumentException

An IllegalArgumentException is thrown when the passed key is not one of the Shift,
Ctrl, and Alt keys. The API syntax for the keyUp() method is as follows:

public Actions keyUp(Keys theKey)

The keyUp action performed on a key, on which a keyDown action is not already being
performed, will result in some unexpected results. So, we have to make sure we perform
the keyUp action after a keyDown action is performed.

The sendKeys method
This is used to type in alphanumeric and special character keys into WebElements such as
textbox, textarea, and so on. This is different than the
WebElement.sendKeys(CharSequence keysToSend) method, as this method expects
the WebElements to have the focus before being called. The API syntax for the sendkeys()
method is as follows:

public Actions sendKeys(CharSequence keysToSend)

We expect you to implement a couple of test scripts around these keyboard events using
the keyUp, keyDown, and sendKeys() methods.

Exploring Advanced Interactions of WebDriver Chapter 4

[102]

Summary
In this chapter, we have learned how to use the actions class to create a set of actions, and
build them into a composite action to execute it in one pass, using the perform() method.
In this way, we can aggregate a series of complex user actions into a single functionality,
which can be executed in one pass. In the next chapter, we will learn WebDriver events
and how we can listen and perform advanced actions, using WebDriver.

Questions
True or False – the drag and drop action requires the source element and the1.
target element.
List the keyboard methods that we can perform using the actions API.2.
Which method of the actions API will help in performing a double-click3.
operation?
Using the actions API, how we can perform a save option (that is to say, Ctrl + S)?4.
How can we open a context menu using the actions API?5.

Further information
You can check the following links for more information about the topics we covered in this
chapter:

Read more about Advanced User Interaction
at https://github.com/SeleniumHQ/selenium/wiki/Advanced-User-Interacti
ons

See Chapter 4 : Working with Selenium API in Selenium Testing Tools Cookbook,
second edition, by Unmesh Gundecha, and Chapter 6, Utilizing the Advanced User
Interactions API in Master Selenium WebDriver, by Mark Collin, for more examples
of the actions API

https://github.com/SeleniumHQ/selenium/wiki/Advanced-User-Interactions
https://github.com/SeleniumHQ/selenium/wiki/Advanced-User-Interactions

5
Understanding WebDriver

Events
Selenium WebDriver provides an API for tracking the various events that happen when test
scripts are executed using WebDriver. Many navigation events get fired before and after a
WebDriver internal event occurs (such as before and after navigating to a URL, and before
and after browser back-navigation) and these can be tracked and captured. To throw an
event, WebDriver gives you a class named EventFiringWebDriver, and to catch that
event, it provides the test-script developer with an interface named
WebDriverEventListener. The test-script developer should provide its own
implementations for the overridden methods from the interface. In this chapter, we will
look at the following topics:

How to listen to and handle various browser-navigation events by using
EventFiringWebDriver
How to listen to and handle web-element action events that get triggered during
the execution of test scripts
Adding additional features to WebDriver to capture performance or accessibility
testing

Introducing the eventFiringWebDriver and
eventListener classes
The EventFiringWebDriver class is a wrapper around the WebDriver that gives the
driver the capability to fire events. The EventListener class, on the other hand, waits to
listen to EventFiringWebDriver and handles all of the events that are dispatched. There
can be more than one listener waiting to hear from the EventFiringWebDriver class for
an event to fire. All of the event listeners should be registered with the
EventFiringWebDriver class to get notified.

Understanding WebDriver Events Chapter 5

[104]

The following flow diagram explains what has to be done to capture all of the events raised
by EventFiringWebDriver during the execution of test cases:

Understanding WebDriver Events Chapter 5

[105]

Creating an instance of EventListener
The EventListener class handles all of the events that are dispatched by the
EventFiringWebDriver class. There are two ways to create an EventListener class:

By implementing the WebDriverEventListener interface.
By extending the AbstractWebDriverEventListener class provided in the
WebDriver library.

It is up to you, as a test-script developer, to choose which way to go.

Implementing WebDriverEventListener
The WebDriverEventListener interface has all the event methods declared. The
EventFiringWebDriver class, as soon as it realizes an event has occurred, invokes the
registered method of WebDriverEventListener. Here, we have created an
IAmTheEventListener named class and have implemented WebDriverEventListener.
Now we need to provide implementation for all the methods declared in it. Currently, in
WebDriverEventListener, there are 15 methods. We will discuss each one of them
shortly. Make sure the IDE provides us with the dummy implementation of these methods.
The class that we have created with all 15 overridden methods is as follows (we have
provided implementations for a couple of methods as an example):

public class IAmTheEventListener implements WebDriverEventListener {
 @Override
 public void beforeAlertAccept(WebDriver webDriver) {
 }

 @Override
 public void afterAlertAccept(WebDriver webDriver) {

 }

 @Override
 public void afterAlertDismiss(WebDriver webDriver) {

 }

 @Override
 public void beforeAlertDismiss(WebDriver webDriver) {
 }

 @Override

Understanding WebDriver Events Chapter 5

[106]

 public void beforeNavigateTo(String url, WebDriver webDriver) {
 System.out.println("Before Navigate To " + url);
 }

 @Override
 public void afterNavigateTo(String s, WebDriver webDriver) {
 System.out.println("Before Navigate Back. Right now I'm at "
 + webDriver.getCurrentUrl());
 }

 @Override
 public void beforeNavigateBack(WebDriver webDriver) {
 }

 @Override
 public void afterNavigateBack(WebDriver webDriver) {
 }

 @Override
 public void beforeNavigateForward(WebDriver webDriver) {
 }

 @Override
 public void afterNavigateForward(WebDriver webDriver) {
 }

 @Override
 public void beforeNavigateRefresh(WebDriver webDriver) {
 }

 @Override
 public void afterNavigateRefresh(WebDriver webDriver) {
 }

 @Override
 public void beforeFindBy(By by, WebElement webElement, WebDriver
webDriver) {
 }

 @Override
 public void afterFindBy(By by, WebElement webElement, WebDriver
webDriver) {
 }

 @Override
 public void beforeClickOn(WebElement webElement, WebDriver webDriver) {
 }

Understanding WebDriver Events Chapter 5

[107]

 @Override
 public void afterClickOn(WebElement webElement, WebDriver webDriver) {
 }

 @Override
 public void beforeChangeValueOf(WebElement webElement, WebDriver
webDriver, CharSequence[] charSequences) {

 }

 @Override
 public void afterChangeValueOf(WebElement webElement, WebDriver
webDriver, CharSequence[] charSequences) {

 }

 @Override
 public void beforeScript(String s, WebDriver webDriver) {
 }

 @Override
 public void afterScript(String s, WebDriver webDriver) {
 }

 @Override
 public void onException(Throwable throwable, WebDriver webDriver) {
 }
}

Extending AbstractWebDriverEventListener
The second way to create a listener class is by extending the
AbstractWebDriverEventListene r class. AbstractWebDriverEventListener is an
abstract class that implements WebDriverEventListener. Though it doesn't really
provide any implementation for the methods in the WebDriverEventListener interface,
it creates a dummy implementation such that the listener class that you are creating doesn't
have to contain all the methods, only the ones that you, as a test-script developer, are
interested in. The following is a class we have created that extends
AbstractWebDriverEventListener and provides implementations for a couple of
methods in it. This way, we can override only the methods that we are interested in rather
than all of the methods in our class:

package com.example;

import org.openqa.selenium.WebDriver;

Understanding WebDriver Events Chapter 5

[108]

import
org.openqa.selenium.support.events.AbstractWebDriverEventListener;

public class IAmTheEventListener2 extends AbstractWebDriverEventListener {

 @Override
 public void beforeNavigateTo(String url, WebDriver driver) {
 System.out.println("Before Navigate To "+ url);
 }
 @Override
 public void beforeNavigateBack(WebDriver driver) {
 System.out.println("Before Navigate Back. Right now I'm at "
 + driver.getCurrentUrl());
 }
}

Creating a WebDriver instance
Now that we have created our listener class that listens for all of the events generated, it's
time to create our test script class and let it call IAmTheDriver.java. After the class is
created, we declare a ChromeDriver instance in it:

WebDriver driver = new ChromeDriver();

The ChromeDriver instance will be the underlying driver instance that drives all the driver
events. This is nothing new. The step explained in the next section is where we make this
driver an instance of EventFiringWebDriver.

Creating EventFiringWebDriver and
EventListener instances
Now that we have the basic driver instance, pass it as an argument while constructing the
EventFiringWebDriver instance. We will be using this instance of the driver to execute
all of the further user actions.

Understanding WebDriver Events Chapter 5

[109]

Now, using the following code, instantiate the EventListener,
IAmTheEventListener.java, or IAmTheEventListener2.java class that we created
previously. This will be the class to which all of the events are dispatched:

EventFiringWebDriver eventFiringDriver =
 new EventFiringWebDriver(driver);
IAmTheEventListener eventListener =
 new IAmTheEventListener();

Registering EventListener with
EventFiringWebDriver
For the event executions to be notified by EventListener, we have registered
EventListener to the EventFiringWebDriver class. Now the EventFiringWebDriver
class will know where to send the notifications. This is done by the following line of code:
eventFiringDriver.register(eventListener);

Executing and verifying the events
Now it's time for our test script to execute events, such as navigation events. Let's first
navigate to Google and then Facebook. We will use the browser back-navigation to go back
to Google. The full code of the test script is as follows:

public class IAmTheDriver {
 public static void main(String... args){

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");

 WebDriver driver = new ChromeDriver();

 try {
 EventFiringWebDriver eventFiringDriver = new
 EventFiringWebDriver(driver);
 IAmTheEventListener eventListener = new IAmTheEventListener();
 eventFiringDriver.register(eventListener);
 eventFiringDriver.get("http://www.google.com");
 eventFiringDriver.get("http://www.facebook.com");
 eventFiringDriver.navigate().back();
 } finally {
 driver.close();
 driver.quit();

Understanding WebDriver Events Chapter 5

[110]

 }
 }
}

In the preceding code, we modify our listener class to record navigateTo and
navigateBack before and after events inherited from the
AbstractWebDriverEventListener class. The modified methods are as follows:

@Override
public void beforeNavigateTo(String url, WebDriver driver) {
 System.out.println("Before Navigate To: " + url
 + " and Current url is: " + driver.getCurrentUrl());
}

@Override
public void afterNavigateTo(String url, WebDriver driver) {
 System.out.println("After Navigate To: " + url
 + " and Current url is: " + driver.getCurrentUrl());
}

@Override
public void beforeNavigateBack(WebDriver driver) {
 System.out.println("Before Navigate Back. Right now I'm at " +
driver.getCurrentUrl());
}

@Override
public void afterNavigateBack(WebDriver driver) {
 System.out.println("After Navigate Back. Right now I'm at " +
driver.getCurrentUrl());
}

Now if you execute your test script, the output will be as follows:

Before Navigate To: http://www.google.com and Current url is: data:,
 After Navigate To: http://www.google.com and Current url is:
https://www.google.com/?gws_rd=ssl
 Before Navigate To: http://www.facebook.com and Current url is:
https://www.google.com/?gws_rd=ssl
 After Navigate To: http://www.facebook.com and Current url is:
https://www.facebook.com/
 Before Navigate Back. Right now I'm at https://www.facebook.com/
 After Navigate Back. Right now I'm at https://www.google.com/?gws_rd=ssl

Understanding WebDriver Events Chapter 5

[111]

Registering multiple EventListeners
We can register more than one listener with EventFiringWebDriver. Once the event
occurs, all of the registered listeners are notified about it. Let's modify our test script to
register both our IAmTheListener.java and IAmTheListener2.java files:

public class RegisteringMultipleListeners {
 public static void main(String... args){

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");

 WebDriver driver = new ChromeDriver();

 try {
 EventFiringWebDriver eventFiringDriver = new
 EventFiringWebDriver(driver);
 IAmTheEventListener eventListener = new IAmTheEventListener();
 IAmTheEventListener2 eventListener2 = new
 IAmTheEventListener2();
 eventFiringDriver.register(eventListener);
 eventFiringDriver.register(eventListener2);
 eventFiringDriver.get("http://www.google.com");
 eventFiringDriver.get("http://www.facebook.com");
 eventFiringDriver.navigate().back();
 } finally {
 driver.close();
 driver.quit();
 }
 }
}

Modify the listeners slightly to differentiate the log statements. Now if you execute the
preceding code, you will see the following output:

Before Navigate To: http://www.google.com and Current url is: data:,
 Before Navigate To http://www.google.com
 After Navigate To: http://www.google.com and Current url is:
https://www.google.com/?gws_rd=ssl
 Before Navigate To: http://www.facebook.com and Current url is:
https://www.google.com/?gws_rd=ssl
 Before Navigate To http://www.facebook.com
 After Navigate To: http://www.facebook.com and Current url is:
https://www.facebook.com/
 Before Navigate Back. Right now I'm at https://www.facebook.com/
 Before Navigate Back. Right now I'm at https://www.facebook.com/
 After Navigate Back. Right now I'm at https://www.google.com/?gws_rd=ssl

Understanding WebDriver Events Chapter 5

[112]

Exploring different WebDriver event
listeners
We have seen some of the methods in our EventListeners that get invoked when their
corresponding events are executed, for example, before and after navigation methods are
invoked when the navigateTo event is triggered. Here, we'll see all the methods that
WebDriverEventListener provides us.

Listening for WebElement value changes
This event occurs when the value of a WebElement changes when the sendKeys() or
clear() methods are executed on them. There are two methods associated with this event:

public void beforeChangeValueOf(WebElement element, WebDriver driver)

The preceding method is invoked before the WebDriver attempts to change the value of the
WebElement. As a parameter, the WebElement itself is passed to the method so that you
can log the value of the element before the change:

public void afterChangeValueOf(WebElement element, WebDriver driver)

The preceding method is the second method associated with the value-change event that is
invoked after the driver changes the value of the WebElement. Again, the WebElement and
the WebDriver are sent as parameters to the method. If an exception occurs when changing
the value, this method is not invoked.

Listening for the clicked WebElement
This event occurs when a WebElement is clicked, that is, by executing
webElement.click(). There are two methods to listen for this event in the
WebDriverEventListener implementation:

public void beforeClickOn(WebElement element, WebDriver driver)

Understanding WebDriver Events Chapter 5

[113]

The preceding method is invoked when the WebDriver is about to click on a particular
WebElement. The WebElement that is going to be clicked on and the WebDriver that is
clicking on it are sent as parameters to this method so that the test-script developer can
interpret which driver performed the click action, and on which element the action was
performed:

public void afterClickOn(WebElement element, WebDriver driver)

The EventFiringWebDriver class notifies the preceding method after the click action is
taken on a WebElement. Similar to the beforeClickOn() method, this method is also sent
the WebElement and WebDriver instances. If an exception occurs during a click event, this
method is not called.

Listening for a WebElement search event
This event is triggered when the WebDriver searches for a WebElement on the web page
using findElement() or findElements(). There are, again, two methods associated with
this event:

public void beforeFindBy(By by, WebElement element, WebDriver driver)

The preceding method is invoked just before WebDriver begins searching for a particular
WebElement on the page. For parameters, it sends the locating mechanism, that is, the
WebElement that is searched for, and the WebDriver instance that is performing the search:

public void afterFindBy(By by, WebElement element, WebDriver driver)

Similarly, the EventFiringWebDriver class calls the preceding method after the search
for an element is over and the element is found. If there are any exceptions during the
search, this method is not called, and an exception is raised.

Listening for browser back-navigation
The browser back-navigation event, as we have already seen, gets invoked when we use the
driver.navigation().back() method. The browser goes back one level in its history.
Just like all the other events, this event is associated with two methods:

public void beforeNavigateBack(WebDriver driver)

Understanding WebDriver Events Chapter 5

[114]

The preceding method is invoked before the browser takes you back in its history. The
WebDriver that invoked this event is passed as a parameter to this method:

public void afterNavigateBack(WebDriver driver)

Just as in all the after <<event>> methods, the preceding method is invoked when the
navigate-back action is triggered. The preceding two methods will be invoked irrespective
of the navigation of the browser; that is, if the browser doesn't have any history and you
invoke this method, the browser doesn't take you to any of its history. But, even in that
scenario, as the event is triggered, those two methods are invoked.

Listening for browser forward-navigation
This event is very similar to the browser back-navigation, except that this is browser
forward-navigation, so it is using driver.navigate().forward(). The two methods
associated with this event are:

public void afterNavigateForward(WebDriver driver)

public void beforeNavigateForward(WebDriver driver)

Just as in browser back-navigation, these methods are invoked irrespective of whether or
not the browser takes you one level forward.

Listening for browser NavigateTo events
As we've seen earlier, this event occurs whenever the driver executes driver. get(url).
The related methods for this event are as follows:

public void beforeNavigateTo(java.lang.String url, WebDriver
driver)

public void afterNavigateTo(java.lang.String url, WebDriver
driver)

The URL that is used for the driver-navigation is passed as a parameter to the preceding
methods, along with the driver that triggered the event.

Understanding WebDriver Events Chapter 5

[115]

Listening for script execution
This event is triggered whenever the driver executes a JavaScript. The associated methods
for this event are as follows:

public void beforeScript(java.lang.String script, WebDriver
driver)

public void afterScript(java.lang.String script, WebDriver
driver)

The preceding methods get the JavaScript that was executed as a string, and the WebDriver
that executed it as a parameter. If an exception occurs during script execution, the
afterScript() method will not be invoked.

Listening for an exception
This event occurs when the WebDriver comes across an exception. For instance, if you try
to search for a WebElement using findElement(), and that element doesn't exist on the
page, the driver throws an exception (NoSuchElementException). At this point, this event
is triggered, and the following method gets notified:

public void onException(java.lang.Throwable throwable, WebDriver driver)

In all the after<<event>> methods, we have seen that they will not be invoked if the
driver comes across any exception. In that case, instead of those after<<event>>
methods, the onException() method is invoked and the throwable object and the
WebDriver object are sent to it as parameters.

Unregistering EventListener with
EventFiringWebDriver
Now, we have seen the different kinds of events that get triggered, and the
EventFiringWebDriver class that notifies all of the listeners registered to it. If, at any
point, you want one of your event listeners to stop listening from
EventFiringWebDriver, you can do that by unregistering from that driver. The following
API unregisters an event listener from a driver:

public EventFiringWebDriver unregister(WebDriverEventListener
eventListener)

Understanding WebDriver Events Chapter 5

[116]

The parameter of the method should be the event listener that wants to opt out of getting
event notifications.

Performing accessibility testing
We can perform basic accessibility checks by using tools such as Google's Accessibility
Developer Tools (https:/ /github. com/ GoogleChrome/ accessibility- developer- tools).
We can inject the Google Accessibility testing library in a web page and perform
the Accessibility Audit. This can be done automatically every time
afterNavigatTo() is called. In the following code example, we will inject the
axe_testing.js file provided by the Google Accessibility Developer Tools and perform
the audit, which will print a report on the console:

public class IAmTheEventListener2 extends AbstractWebDriverEventListener {

 @Override
 public void beforeNavigateTo(String url, WebDriver driver) {
 System.out.println("Before Navigate To "+ url);
 }

 @Override
 public void beforeNavigateBack(WebDriver driver) {
 System.out.println("Before Navigate Back. Right now I'm at "
 + driver.getCurrentUrl());
 }

 @Override
 public void afterNavigateTo(String to, WebDriver driver) {
 try {
 JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;
 URL url = new
URL("https://raw.githubusercontent.com/GoogleChrome/" +
 "accessibility-developer-
tools/stable/dist/js/axs_testing.js");
 String script = IOUtils.toString(url.openStream(),
StandardCharsets.UTF_8);
 jsExecutor.executeScript(script);
 String report = (String) jsExecutor.executeScript("var results
= axs.Audit.run();" +
 "return axs.Audit.createReport(results);");
 System.out.println("### Accessibility Report for " +
driver.getTitle() + "####");
 System.out.println(report);
 System.out.println("### END ####");

https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools

Understanding WebDriver Events Chapter 5

[117]

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The report is printed in the console, as shown here:

Accessibility Report for Google####
 *** Begin accessibility audit results ***
 An accessibility audit found
 Warnings:
 Warning: AX_FOCUS_01 (These elements are focusable but either invisible or
obscured by another element) failed on the following element:
 #hplogo > DIV > .fOwUFe > A
 See
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Ru
les#-ax_focus_01--these-elements-are-focusable-but-either-invisible-or-
obscured-by-another-element for more information.
Warning: AX_TEXT_02 (Images should have an alt attribute) failed on the
following element:
 #hplogo > DIV > .fOwUFe > A > .fJOQGe
 See
https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Ru
les#-ax_text_02--images-should-have-an-alt-attribute-unless-they-have-an-
aria-role-of-presentation for more information.
...
 *** End accessibility audit results ***
 ### END ####

This report contains a collection of audit rules that check for common accessibility
problems.

Capturing page-performance metrics
Measuring and optimizing the client-side performance is essential for a seamless user
experience, and this is critical for Web 2.0 applications using AJAX.

Capturing vital information, such as the time taken for page load, rendering of the
elements, and the JavaScript code execution, will help in identifying the areas where
performance is slow and optimizes the overall client-side performance.

Understanding WebDriver Events Chapter 5

[118]

Navigation Timing is a W3C-Standard JavaScript API to measure performance on the web.
The API provides a simple way to get accurate and detailed timing statistics natively for
page navigation and load events. It is available on Internet Explorer 9, Google Chrome,
Firefox, and WebKit-based browsers.

The API is accessed via the properties of the timing interface of the window.performance
object using JavaScript. We will capture the page-load time every time we navigate to a
page. This can be done by using JavaScriptExecutor to call winodw.performance in
the afterNavigateTo() method in IAmTheEventListener2.java, as shown in the
following code snippet:

@Override
public void afterNavigateTo(String to, WebDriver driver) {
 try {

 JavascriptExecutor jsExecutor = (JavascriptExecutor) driver;

 // Get the Load Event End
 long loadEventEnd = (Long) jsExecutor.executeScript("return
window.performance.timing.loadEventEnd;");
 // Get the Navigation Event Start
 long navigationStart = (Long) jsExecutor.executeScript("return
window.performance.timing.navigationStart;");
 // Difference between Load Event End and Navigation Event Start is
// Page Load Time
 System.out.println("Page Load Time is " + (loadEventEnd -
navigationStart)/1000 + " seconds.");

 } catch (MalformedURLException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

As discussed in the previous code, the window.performance object provides us with the
performance metric that is available within the Browser Window object. We need to use
JavaScript to retrieve this metric. Here, we are collecting the loadEventEnd time and
the navigationEventStart time, and calculating the difference between them, which will
give us the page-load time.

Understanding WebDriver Events Chapter 5

[119]

Summary
In this chapter, you have learned about EventFiringWebDriver and EventListeners,
and how they work together to make a developer's life easier by helping them to debug
what is going on at each step while the test cases get executed. You also learned how to use
WebDriver events to perform different types of testing on a page, such as accessibility and
client-side performance checks. In the next chapter, you will learn more about
RemoteWebDriver for running tests on remote machines in distributed and parallel mode
for Cross-Browser Testing.

Questions
You can listen to WebDriver events using WebDriverEventListener1.
interface— True or False?
How you can automatically clear an input field before calling the sendKeys2.
method using WebDriverEventListener?
Selenium supports accessibility testing— True or False?3.

Further information
You can check out the following links for more information about the topics covered in this
chapter:

Find out more about the Navigation Timing API at https:/ / www.w3. org/ TR/
navigation- timing/

Find more details on Google's Accessibility Developer Tools at https:/ /github.
com/GoogleChrome/ accessibility- developer- tools

https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://www.w3.org/TR/navigation-timing/
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools
https://github.com/GoogleChrome/accessibility-developer-tools

6
Exploring RemoteWebDriver

So far, we have created our test cases and tried to execute them on various browsers. All of
these tests were executed against the browsers that were installed on a local machine where
the test cases reside. This may not be possible at all times. There is a high possibility that
you may be working on Mac or Linux, but want to execute your tests on IE on a Windows
machine. In this chapter, we will learn about the following topics:

Executing test cases on a remote machine using RemoteWebDriver
A detailed explanation of the JSON wire protocol

Introducing RemoteWebDriver
RemoteWebDriver is an implementation class of the WebDriver interface that a test-script
developer can use to execute their test scripts via the Selenium Standalone server on a
remote machine. There are two parts to RemoteWebDriver: a server and a client. Before we
start working with them, let's rewind and see what we've been doing.

Exploring RemoteWebDriver Chapter 6

[121]

The following diagram explains what we've done so far:

The test script using WebDriver client libraries, Chrome Driver (or IE Driver or Gecko
Driver for Firefox), and Chrome browser (or IE browser or Firefox browser) is sitting on the
same machine. The browser is loading the web application, which may or may not be
hosted remotely; anyway, this is outside the scope of our discussion. We will discuss
different scenarios of test-script execution, as follows:

Exploring RemoteWebDriver Chapter 6

[122]

The test script is located on a local machine, while the browsers are installed on a remote
machine. In this scenario, RemoteWebDriver comes into the picture. As mentioned earlier,
there are two components associated with RemoteWebDriver: the server and the client.
Let's start with the Selenium Standalone server.

Understanding Selenium Standalone Server
Selenium Standalone Server is a component that listens on a port for various requests
from a RemoteWebDriver client. Once it receives the requests, it forwards them to any of
the following: Chrome Driver, IE Driver, or Gecko Driver for Firefox, whichever is
requested by the RemoteWebDriver client.

Downloading Selenium Standalone Server
Let's download Selenium Standalone Server and start running it. You can download it
from https://www. seleniumhq. org/ download/ , but, for our purposes, let's download a
specific version of it, as we are using WebDriver Version 3.12.0. This server JAR should be
downloaded to the remote machine on which the browsers are located. Also, make sure the
remote machine has Java Runtime installed on it.

Running the server
Open your command-line tool on the remote machine and navigate to the location where
you have downloaded the JAR file. Now, to start Selenium Standalone Server, execute the
following command:

java -jar selenium-server-standalone-3.12.0.jar

https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/

Exploring RemoteWebDriver Chapter 6

[123]

The following screenshot shows what you should see in your console:

Now the server has started and is listening on the <remote-machine-ip>:4444 address
for remote connections from the RemoteWebDriver client. The previously seen image (the
second image in the Introducing RemoteWebDriver section) will appear as follows:

Exploring RemoteWebDriver Chapter 6

[124]

On the remote machine, Selenium Standalone Server will interface between the test script
and the browsers, as shown in the preceding diagram. The test script will first establish a
connection with Selenium Standalone Server that will forward the commands to the
browser installed on the remote machine.

Understanding the RemoteWebDriver client
Now that we have our Selenium Standalone server up and running, it's time for us to create
the RemoteWebDriver client. Fortunately, we don't have to do much to create a
RemoteWebDriver client. It's nothing but the language-binding client libraries that serve as
a RemoteWebDriver client. RemoteWebDriver will translate the test-script requests or
commands to JSON payload and send them across to the RemoteWebDriver server using
the JSON wire protocol.

When you execute your tests locally, the WebDriver client libraries talk to the Chrome
Driver, IE Driver, or Gecko Driver directly. Now when you try to execute your tests
remotely, the WebDriver client libraries talk to Selenium Standalone Server and the
server talks to either the Chrome Driver, the IE Driver, or the Gecko Driver for Firefox
requested by the test script, using the DesiredCapabilities class. We will explore
the DesiredCapabilities class in the next section.

Converting an existing test script to use the
RemoteWebDriver server
Let's take a test script that we have executed locally; that is, where the test scripts and the
browser were on the same machine:

@BeforeClass
public void setup() {

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();

}

Exploring RemoteWebDriver Chapter 6

[125]

The preceding test script creates an instance of Chrome Driver and launches the Chrome
browser. Now, let's try to convert this test script to use Selenium Standalone Server
that we started earlier. Before we do that, let's see the constructor of RemoteWebDriver,
which is as follows:

RemoteWebDriver(java.net.URL remoteAddress, Capabilities
desiredCapabilities)

The input parameters for the constructor include the address (hostname or IP) of Selenium
Standalone Server running on the remote machine and the desired capabilities required
for running the test (for example name of the browser and/or operating system). We will
see these desired capabilities shortly.

Now, let's modify the test script to use RemoteWebDriver. Replace WebDriver driver =
new ChromeDriver(); with the following code:

@BeforeMethod
public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setBrowserName("chrome");

 driver = new RemoteWebDriver(new URL("http://10.172.10.1:4444/wd/hub"),
caps);
 driver.get("http://demo-store.seleniumacademy.com/");

}

We have created a RemoteWebDriver instance that tries to connect to
http://10.172.10.1:4444/wd/hub, where Selenium Standalone Server is running
and listening for requests. Having done that, we also need to specify which browser your
test case should get executed on. This can be done using the DesiredCapabilities
instance.

For this example, the IP used is 10.172.10.1. However, in your case, it will be different. You
need to obtain the IP of the machine where the Selenium Standalone Server is running and
replace the example IP used in this book.

Before running tests, we need to restart the Selenium Standalone Server by specifying the
path of ChromeDriver:

java -jar -Dwebdriver.chrome.driver=chromedriver selenium-server-
standalone-3.12.0.jar

Exploring RemoteWebDriver Chapter 6

[126]

Running the following test with RemoteWebDriver will launch the Chrome browser and
execute your test case on it. So the modified test case will look as follows:

public class SearchTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setBrowserName("chrome");

 driver = new RemoteWebDriver(new
URL("http://10.172.10.1:4444/wd/hub"), caps);
 driver.get("http://demo-store.seleniumacademy.com/");

 }

 @Test
 public void searchProduct() {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

Exploring RemoteWebDriver Chapter 6

[127]

Now execute this test script from your local machine to establish a connection between the
RemoteWebDriver client and Selenium Standalone Server. The Server will launch the
Chrome browser. The following is the output you will see in the console where the Server is
running:

It says that a new session with the desired capabilities is being created. Once the session is
established, a session ID will be printed to the console. At any point in time, you can view
all of the sessions that are established with Selenium Standalone Server by navigating
to the host or IP of the machine where the Selenium server is
running http://<hostnameOrIP>:4444/wd/hub.

The Selenium Standalone Server, by default, listens to port number 4444. We can change
the default port by passing the -port argument.

It will give the entire list of sessions that the server is currently handling. The screenshot of
this is as follows:

Exploring RemoteWebDriver Chapter 6

[128]

This is a very basic portal that lets the test-script developer see all of the sessions created by
the server and perform some basic operations on it, such as terminating a session, taking a
screenshot of a session, loading a script to a session, and seeing all of the desired
capabilities of a session. The following screenshot shows all of the default desired
capabilities of our current session.

You can see the popup by hovering over the Capabilities link, as shown in the following
screenshot:

Exploring RemoteWebDriver Chapter 6

[129]

Those are the default desired capabilities that are set implicitly by the server for this
session. Now we have successfully established a connection between our test script, which
is using a RemoteWebDriver client on one machine, and the Selenium Standalone Server
on another machine. The original diagram of running the test scripts remotely is as follows:

Using RemoteWebDriver for Firefox
Using the Firefox browser to execute our test scripts is similar to using the Chrome
browser, except for a couple of variations in how GeckoDriver is launched.

Let's see this by changing the test script that we used for the Chrome browser to the
following script, using "firefox":

@BeforeMethod
public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();

Exploring RemoteWebDriver Chapter 6

[130]

 caps.setBrowserName("firefox");
 caps.setCapability("marionette", true);

 driver = new RemoteWebDriver(new URL("http://10.172.10.1:4444/wd/hub"),
caps);
 driver.get("http://demo-store.seleniumacademy.com/");

}

Before you try to execute this code, restart Selenium Standalone Server to use
GeckoDriver:

java -jar -Dwebdriver.gecko.driver=geckodriver selenium-server-
standalone-3.12.0.jar

Try executing the preceding test script now, and you should see the Firefox browser getting
launched and executing your test commands. Selenium Standalone Server has
started GeckoDriver, created a connection to it, and started executing the test-script
commands.

Using RemoteWebDriver for Internet Explorer
For executing tests on the Internet Explorer driver, the steps are similar to what we did
with the Chrome and Firefox browsers.

Let's see this by changing the test script that we used for the Chrome or Firefox browser to
the following script, using "internet explorer":

@BeforeMethod
public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setBrowserName("internet explorer");

 driver = new RemoteWebDriver(new URL("http://127.0.0.1:4444/wd/hub"),
caps);
 driver.get("http://demo-store.seleniumacademy.com/");

}

Exploring RemoteWebDriver Chapter 6

[131]

Before you try to execute this code, restart Selenium Standalone Server to
use InternetExplorerDriver:

java -jar -Dwebdriver.ie.driver=InternetExplorerDriver.exe selenium-server-
standalone-3.12.0.jar

Try executing the preceding test script now, and you should see the Internet Explorer
browser getting launched and executing your test commands. Selenium Standalone
Server has started InternetExplorerDriver, created a connection with it, and started
executing the test-script commands.

Understanding the JSON wire
protocol
In many places, we have mentioned that WebDriver uses the JSON wire protocol to
communicate between client libraries and different driver (that is, Chrome Driver, IE
Driver, Gecko Driver, and so on) implementations. In this section, we will see exactly what
it is and which different JSON APIs a client library should implement to talk to the drivers.

JavaScript Object Notation (JSON) is used to represent objects with complex data
structures. It is used primarily to transfer data between a server and a client on the web. It
has become an industry standard for various REST web services, offering a strong
alternative to XML.

A sample JSON file, saved as a .json file, will look as follows:

{
 "firstname":"John",
 "lastname":"Doe",
 "address":{
 "streetnumber":"678",
 "street":"Victoria Street",
 "city":"Richmond",
 "state":"Victoria",
 "country":"Australia"
 } "phone":"+61470315430"
}

Exploring RemoteWebDriver Chapter 6

[132]

A client can send a person's details to a server in the preceding JSON format, which the
server can parse, and then create an instance of the person object for use in its execution.
Later, the response can be sent back by the server to the client in the JSON format, the data
of which the client can use to create an object of a class. This process of converting an
object's data into the JSON format and JSON-formatted data into an object is
called serialization and de-serialization, respectively, which is quite common in REST-
based web services.

WebDriver uses the same approach to communicate between client libraries (language
bindings) and drivers, such as Firefox Driver, IE Driver, and Chrome Driver. Similarly, the
RemoteWebDriver client and Selenium Standalone Server use the JSON wire protocol
to communicate among themselves. But all of these drivers use it under the hood, hiding all
the implementation details from us and making our lives simpler. The list of APIs for
various actions that we can take on a web page is as follows:

/status /session /sessions /session/:sessionId /session/:sessionId/timeouts
/session/:sessionId/timeouts/async_script
/session/:sessionId/timeouts/implicit_wait
/session/:sessionId/window_handle /session/:sessionId/window_handles
/session/:sessionId/url /session/:sessionId/forward
/session/:sessionId/back /session/:sessionId/refresh
/session/:sessionId/execute /session/:sessionId/execute_async
/session/:sessionId/screenshot /session/:sessionId/ime/available_engines
/session/:sessionId/ime/active_engine
. . .
. . . /session/:sessionId/touch/flick /session/:sessionId/touch/flick
/session/:sessionId/location /session/:sessionId/local_storage
/session/:sessionId/local_storage/key/:key
/session/:sessionId/local_storage/size /session/:sessionId/session_storage
/session/:sessionId/session_storage/key/:key
/session/:sessionId/session_storage/size /session/:sessionId/log
/session/:sessionId/log/types /session/:sessionId/application_cache/status

The complete documentation is available at https:/ /code. google. com/ p/selenium/ wiki/
JsonWireProtocol. The client libraries will translate your test-script commands into the
JSON format and send the requests to the appropriate WebDriver API. The WebDriver will
parse these requests and take necessary actions on the web page. Let's see that as an
example. Suppose your test script has this
code: driver.get("http://www.google.com");.

The client library will translate that into JSON by building a JSON payload (JSON
document) and post the request to the appropriate API. In this case, the API that handles
the driver. get(URL) method is /session/:sessionId/url.

https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol

Exploring RemoteWebDriver Chapter 6

[133]

The following code shows what happens in the client library layer behind the scenes before
the request is sent to the driver; the request is sent to the RemoteWebDriver server running
on 10.172.10.1:4444:

HttpClient httpClient = new DefaultHttpClient();
HttpPost postMethod = new
HttpPost("http://10.172.10.1:4444/wd/hub/session/"+sessionId+"/url");
JSONObject jo=new JSONObject();
jo.put("url","http://www.google.com");
StringEntity input = new StringEntity(jo.toString());
input.setContentEncoding("UTF-8");
input.setContentEncoding(new BasicHeader(HTTP.CONTENT_TYPE,
"application/json"));
postMethod.setEntity(input);
HttpResponse response = httpClient.execute(postMethod);

Selenium Standalone Server will forward that request to the driver; the driver will
execute the test-script commands that arrive in the preceding format on the web
application, under the test that is loaded in the browser.

The following diagram shows the dataflow at each stage:

Exploring RemoteWebDriver Chapter 6

[134]

The preceding diagram shows the following:

The first stage is communication between the test script and the client library.
The data or command that flows between them is a call to the get() method of
the driver: driver.get("http://www.google.com");.
The client library, as soon as it receives the preceding command, will convert it
into the JSON format and communicate with Selenium Standalone Server.
Next, Selenium Standalone Server forwards the JSON payload request to
the Chrome Driver.
The Chrome Driver will communicate with the Chrome browser natively, and
then the browser will send a request for the asked URL to load.

Summary
In this chapter, we learned about RemoteWebDriver and how to execute test scripts
remotely on a different machine using Selenium Standalone Server and the
RemoteWebDriver client. This enables Selenium WebDriver tests to be executed on remote
machines with different browser and OS combinations. We also looked at the JSON wire
protocol and how client libraries work behind the scenes to send and receive requests and
responses to and from the drivers.

In the next chapter, we will extend the usage of Selenium Standalone Server and
RemoteWebDriver to create a Selenium Grid for cross-browser and distributed testing.

Questions
With Selenium, we can execute tests on remote machine(s)— true or false1.
Which driver class is used to run tests on a remote machine?2.
Explain desired capabilities.3.
What protocol is used between the Selenium test and Selenium Standalone4.
Server?
What is the default port used by Selenium Standalone Server?5.

Exploring RemoteWebDriver Chapter 6

[135]

Further information
You can check out the following link for more information about the topics covered in this
chapter:

Selenium WebDriver W3C specification explains the WebDriver Protocol and all
the endpoints: https:/ /www. w3. org/ TR/webdriver/

https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/

7
Setting up Selenium Grid

Now that we know what RemoteWebDriver is and how it works, we are ready to learn
about Selenium Grid. In this chapter, we will cover the following topics:

Why we need Selenium Grid
What Selenium Grid is
How we can use Selenium Grid
Test cases using Selenium Grid
Configuring Selenium Grid

Exploring Selenium Grid
Let's try to understand why we need Selenium Grid by analyzing a scenario. You have a
web application that needs to be tested on the following browser-machine combinations:

Google Chrome on Windows 10
Google Chrome on macOS
Internet Explorer 11 on Windows 10
Firefox on Linux

We can simply alter the test script we created in the previous chapter and point to the
Selenium Standalone Server running on each of these combinations (that is, Windows 10,
macOS, or Linux), as shown in the following code.

Setting up Selenium Grid Chapter 7

[137]

Windows 10:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setBrowserName("chrome");
caps.setPlatform(Platform.WIN10);
WebDriver driver = new RemoteWebDriver(new
URL("http://<win_10_ip>:4444/wd/hub"), capabilities);

macOS:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setBrowserName("chrome");
caps.setPlatform(Platform.MAC);
WebDriver driver = new RemoteWebDriver(new
URL("http://<mac_os_ip>:4444/wd/hub"), capabilities);

Linux:

DesiredCapabilities caps = new DesiredCapabilities();
caps.setBrowserName("chrome");
caps.setPlatform(Platform.LINUX);
WebDriver driver = new RemoteWebDriver(new
URL("http://<linux_ip>:4444/wd/hub"), capabilities);

In the preceding code, your test scripts are tightly coupled to the machines that host the
target platform and the target browsers. If the Windows 10 host changes, you should
refactor your test script to handle that. This is not an ideal way to design your tests. The
focus of your test scripts should be on the functionality of your web application and not on
the infrastructure that is used to execute these test scripts. There should be a central point to
manage all the different environments. To solve this, we make use of Selenium Grid.

The Selenium Grid offers a cross-browser testing environment with several different
platforms (such as Windows, Mac, and Linux) to execute tests. The Selenium Grid is
managed from a central point, called the hub. The hub has the information of all the
different testing platforms, known as nodes (the machines that have the desired operating
systems and browser versions and connected to the hub). The hub assigns these nodes to
execute tests whenever the test scripts request them, based on the capabilities requested by
the test. The following diagram shows what a Selenium Grid looks like:

Setting up Selenium Grid Chapter 7

[138]

In the preceding diagram, there is one hub, four nodes of different platforms, and the
machine where the test scripts are located. The test script will communicate with the hub
and request a target platform to be executed. The hub assigns a node with the target
platform to the test script. The node executes the test script and sends the result back to the
hub, which in turn forwards the results to the test script. This is what Selenium Grid looks
like and how it works at a high level.

Now that we have seen how Selenium Grid works theoretically, let's see what works as
hubs and nodes in it. Fortunately, as we are dealing with Selenium Grid, we can use the
same Remote WebDriver server that we used in the previous chapter to work as Selenium
Grid as well. If you remember, we used seleniumserver-standalone-3.12.0.jar to
start as a Selenium Standalone Server. We can use the same JAR file to be started in the hub
mode on the hub machine, and a copy of the JAR file can be started in the node mode on
the node machine. Try executing the following command on your JAR file:

java –jar selenium-server-standalone-3.12.0.jar –help

Setting up Selenium Grid Chapter 7

[139]

The following output shows how to use the server in a grid environment:

You will see two options: to use it as a Standalone Server, which acts as a Remote
WebDriver, and to use it in a grid environment, which describes Selenium Grid. In this
chapter, we will use this JAR file as a Selenium Grid.

Setting up Selenium Grid Chapter 7

[140]

Understanding the hub
The hub is the central point of a Selenium Grid. It has a registry of all the available nodes
that are connected and part of a particular grid. The hub is a Selenium Standalone server
running in the hub mode, listening on port 4444 of a machine by default. The test scripts
will try to connect to the hub on this port, just as any Remote WebDriver. The hub will take
care of rerouting the test-script traffic to the appropriate test-platform node. Let's see how
we can start a hub node. Navigate to the location where you have your Selenium server
JAR file and execute the following command:

java -jar selenium-server-standalone-3.12.0.jar -role hub

Doing this will start your server in the hub mode. By default, the server starts listening on
port 4444; however, you can start your server on the port of your choice. Suppose you
want to start the server on port 1111; it can be done as follows:

java -jar selenium-server-standalone-3.12.0.jar -role hub –port 1111

The following screenshot shows the console output of the Grid Hub being started on port
1111:

All the test scripts should connect to the hub on this port. Now launch your browser and
connect to the machine that is hosting your hub on port 1111. Here, the machine that is
hosting my hub has the IP address 192.168.0.101.

Setting up Selenium Grid Chapter 7

[141]

What you should see on your browser is shown in the following screenshot:

It shows the version of the server that is being used as the Grid Hub. Now click the Console
link to navigate to the Grid Console:

As you can see, the page talks about many configuration parameters. We will discuss these
configuration parameters in the Configuring Selenium Grid section. So, you've now learned
how to start a grid on a port and listen for connections.

Setting up Selenium Grid Chapter 7

[142]

Understanding the node
As our hub is up and running, it's now time to start a node and connect it to the hub. In this
example, we will configure a macOS machine that has Chrome installed on it. So, if any test
script requests the hub for a macOS platform and Chrome browser, the hub will choose this
node. Let's see how we can start the node. The command to start the node and register with
the hub is as follows:

java –jar selenium-server-standalone-3.12.0.jar –role node –hub
http://192.168.0.101:1111/grid/register

This will start the Selenium server in the node mode and register this node with the
already-started hub:

If you go back to the Grid Console on the browser, you will see the following:

Setting up Selenium Grid Chapter 7

[143]

The preceding screenshot shows the http://192.168.0.101:16784 node URL, which, in this
case, is running on the Mac platform. By default, the number of browsers listed for every
node is 11: 5 for Firefox, five for Chrome, and one for IE. This can be overridden by
specifying the browser option, which we will see in the Configuring Selenium Grid section.

Similarly, start another node on Windows and register to the hub using the same command
used to start the node on macOS.

Modifying the existing test script to use
Selenium Grid
So far, we have seen test scripts that run on our local machines or on Selenium Standalone
servers. Executing test scripts on Selenium Grid is very similar to executing tests on Remote
WebDriver, except that you will also mention the platform details for Grid.

Let's look at a test script that uses the Remote WebDriver server:

public class SearchTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();

 caps.setBrowserName("chrome");
 caps.setPlatform(Platform.MAC);

 driver = new RemoteWebDriver(new
URL("http://192.168.0.101:1111/wd/hub"), caps);
 driver.get("http://demo-store.seleniumacademy.com/");

 }

 @Test
 public void searchProduct() {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =

Setting up Selenium Grid Chapter 7

[144]

 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

Now try executing the preceding test script and observe the log output of the hub and the
node. The output log of the hub is as follows:

The sequence of steps that happens at the hub end is as follows:

The hub gets a request to create a new session for platform=MAC,1.
browserName=chrome.
It verifies the available nodes that match the capabilities request.2.
If available, it creates a new session with the node host; if not, it rejects the3.
request from the test script, saying that the desired capabilities don't match any
of the registered nodes.
If a session is created with the node host in the preceding step, create a new test-4.
slot session and hand over the test script to the node. Similarly, the output you
should see in the console log of the hub is as follows:

Setting up Selenium Grid Chapter 7

[145]

The sequence of steps performed on the node is as follows:

The node host creates a new session with the requested desired capabilities. This1.
will launch the browser.
It executes the test script's steps on the launched browser.2.
It ends the session and forwards the result to the hub, which in turn sends it to3.
the test script.

Requesting for non-registered capabilities
The hub will reject the request from the test script when the test script asks for a capability
that is not registered with the hub. Let's modify the preceding test script to request the
Opera browser instead of Chrome. The test script should look as follows:

@BeforeMethod
public void setup() throws MalformedURLException {

 DesiredCapabilities caps = new DesiredCapabilities();

 caps.setBrowserName("opera");
 caps.setPlatform(Platform.MAC);

 driver = new RemoteWebDriver(new
URL("http://192.168.0.101:1111/wd/hub"), caps);
 driver.get("http://demo-store.seleniumacademy.com/");

}

The hub checks whether there is any node that matches the desired capabilities. If it doesn't
find one (as in this case), it will reject the request from the test script by throwing a
CapabilityNotPresentOnTheGridException exception, as shown in the following
screenshot:

Setting up Selenium Grid Chapter 7

[146]

Queuing up the request if the node is busy
By default, you can send five test-script requests to any node. Although it is possible to
change that configuration, let's see what happens when a node is already serving five
requests, and you fire up another request for that node via the hub. The hub will keep
polling the node until it gets a free test slot from the node. The test scripts are made to wait
during this time. The hub says there are no free slots for the sixth session to be established
with the same node. Meanwhile, on the node host, the node tries to create sessions for the
five requests and starts executing the test scripts.

Upon creating the sessions, five Chrome windows are launched and the test scripts are
executed on them. After serving the first five test-script requests, the hub will establish the
waiting sixth session with the node, and the sixth request will be served.

Dealing with two nodes with matching
capabilities
There are many configuration options that Selenium Grid provides to control the behavior
of a node and a hub while you execute your test scripts. We will discuss them here.

Configuring Selenium Grid
There are many configuration options that Selenium Grid provides to control the behavior
of a node and a hub while you execute your test scripts. We will discuss them here.

Specifying node-configuration parameters
In this section, we will go through the configuration parameters for a node.

Setting up Selenium Grid Chapter 7

[147]

Setting supported browsers by a node
As we saw earlier, when we register a node with a hub, by default, the node is shown as
supporting five instances of the Firefox browser, five instances of the Chrome browser, and
one instance of Internet Explorer, irrespective of whether the node actually supports them.
But to register your node with the browsers of your choice, Selenium Grid provides a
browser option, using which we can achieve this. Let's say we want our node to be
registered to support Firefox, Chrome, and Safari; we can do that using the following
command:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -browser browserName=firefox -browser
browserName=chrome -browser browserName=safari

The Grid Console looks like this:

Setting node timeouts
This parameter is set when registering a node with a hub. The value provided to these
parameters is the time in seconds that a hub can actually wait before it terminates a test
script execution on a node if the test script doesn't perform any kind of activity on the node.

The command to configure your node with a node timeout is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -nodeTimeout 300

Setting up Selenium Grid Chapter 7

[148]

Here, we have registered a node with a node timeout value of 300 seconds. So, the hub will
terminate the test script if it doesn't perform any activity on the node for more than 300
seconds.

Setting the limit on browser instances
We have seen that, by default, there are 11 instances of browsers getting registered to a
node. We have seen how to register our own browser. In this section, we will see how many
instances of those browsers we can allow in our node. For this to be controlled, Selenium
Grid comes out with a configuration parameter, called maxInstances, using which we can
specify how many instances of a particular browser we want our node to provide. The
command to do that is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -browser "browserName=firefox,max
Instances=3" -browser "browserName=chrome,maxInstances=3" -browser
"browserName=safari,maxInstances=1"

Here, we are registering a node that provides three instances of Firefox, three instances of
Chrome, and one instance of Safari.

Reregistering the node automatically
If the hub crashes or restarts after a node registers to it, all the information of the nodes that
are already registered is lost. Going back to each of the nodes and reregistering them
manually would prove to be tedious. The impact will be even worse if we haven't realized
that the hub has restarted, because all the test scripts would fail as a result. So, to handle
this kind of situation, Selenium Grid provides a configuration parameter to a node, through
which we can specify the node to reregister itself automatically to the hub after a specified
amount of time. If not specified, the default time of reregistration is five seconds. This way,
we really don't have to worry; even if the hub crashes or restarts, our node will try to
reregister every five seconds.

If you want to modify this time interval, the configuration parameter to deal with is
registerCycle. The command to specify is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -registerCycle 10000

Setting up Selenium Grid Chapter 7

[149]

The output you will see on the node log console during startup is as follows:

17:47:01.231 INFO - starting auto register thread. Will try to register
every 10000 ms.
 17:47:01.232 INFO - Registering the node to hub
:http://192.168.0.1:1111/grid/register

The node will try to register to the hub every 1,000 milliseconds.

Setting node health-check times
Using this configuration parameter, we can specify how frequently the hub can poll a node
for its availability. The parameter that is used to achieve this is nodePolling. By specifying
this to the hub at the node level, each node can specify its own frequency at which it can be
health-checked. The command to configure your node is as follows:

 java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -nodePolling 10

Now the hub will poll this node every 10 seconds, to check its availability.

Unregistering an unavailable node
Although the nodePolling configuration will make the hub poll the node often, the
unregisterIfStillDownAfter configuration will let the hub unregister the node if the
poll doesn't produce an expected result. Let's say a node is down, and the hub tries to poll
the node and is unable to connect to it. At this point, how long the hub is going to poll for
the availability of the node is determined by the unregisterIfStillDownAfter
parameter. Beyond this time, the hub will unregister the node.

The command to do that is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register -nodePolling 5 -
unregistIfStillDownAfter 20000

Here, the hub will poll the node every five seconds; if the node is down, the polling will
continue for 20 seconds, that is, the hub will poll four times and then unregister the node
from the grid.

Setting up Selenium Grid Chapter 7

[150]

Setting the browser timeout
This configuration is to let the node know how long it should wait before it ends a test
script session when the browser seems to hang. After this time, the node will abort the
browser session and start with the next waiting test script. The configuration parameter for
this is browserTimeout. The command to specify that is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role node -hub
http://192.168.0.1:1111/grid/register –browserTimeout 60

So, these are the some of the configuration parameters that you can specify at the node's
end to have better control over the Selenium Grid environment.

Hub-configuration parameters
This section talks about some of the configuration parameters on the hub side.

Waiting for a match of the desired capability
As we saw earlier, when the test script asks for a test platform with a desired capability, the
hub will reject the request if it doesn't find a suitable node with the desired capability.

Altering the value for the throwOnCapabilityNotPresent parameter can alter this
behavior. By default, it is set to true, which means the hub will reject the request if it
doesn't find a suitable node with that capability. But setting this parameter to false will
queue the request, and the hub will wait until a node with that capability is added to the
grid. The command that has to be invoked is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role hub -port 1111 -
throwOnCapabilityNotPresent false

Now the hub will not reject the request, but will place the request in a queue and wait until
the requested platform is available.

Customized CapabilityMatcher
By default, the hub will use the org.openqa.grid.internal.utils.
DefaultCapabilityMatcher class to match the requested node. If you do not like the
implementation logic of the DefaultCapabilityMatcher class, you can extend the class,
implement your own CapabilityMatcher class, and provide your own logic in it.

Setting up Selenium Grid Chapter 7

[151]

Once developed, you can ask the hub to use that class to match the capabilities with the
nodes, using a configuration parameter named capabilityMatcher. The command to
achieve this is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role hub -port 1111 -
capabilityMatcher com.yourcomp.CustomCapabilityMatcher

The hub will use the logic defined in your CustomCapabilityMatcher class to identify
the nodes to be assigned to the test-script requests.

WaitTimeout for a new session
When a capability-matched node is busy executing other test scripts, the latest test script
will wait for the node to be available. By default, there is no wait timeout; that is, the test
script will wait for the node to be available indefinitely. To alter that behavior and to let the
test script throw an exception if it doesn't get the node within a limited time, Selenium Grid
opens a configuration that enables the test script to do so. The configuration parameter
controlling that behavior is newSessionWaitTimeout. The command for that is as follows:

java -jar selenium-server-standalone-3.12.0.jar -role hub -port 1111 -
newSessionWaitTimeout 120000

Here, the test script will wait for two minutes before it throws an exception saying it
couldn't obtain a node to execute itself.

Different ways to specify the configuration
There are two ways to specify the configuration parameter to the Selenium Grid's hub and
node. The first one is what we have seen all this time; that is, specifying the configuration
parameters over the command line. The second way of doing it is by providing a JSON file
that contains all these configuration parameters.

A node configuration file (say, nodeConfig.json) — a typical JSON file having all the
configuration parameters — looks similar to the following:

{
 "class": "org.openqa.grid.common.RegistrationRequest",
 "capabilities": [
 {
 "seleniumProtocol": "WebDriver",
 "browserName": "internet explorer",
 "version": "10",
 "maxInstances": 1,

Setting up Selenium Grid Chapter 7

[152]

 "platform" : "WINDOWS"
 }
],
 "configuration": {
 "port": 5555,
 "register": true,
 "host": "192.168.1.102",
 "proxy": "org.openqa.grid.selenium.proxy.
 DefaultRemoteProxy",
 "maxSession": 2,
 "hubHost": "192.168.1.100",
 "role": "webdriver",
 "registerCycle": 5000,
 "hub": "http://192.168.1.101:111/grid/register",
 "hubPort": 1111,
 "remoteHost": "http://192.168.1.102:5555"
 }
}

Once these files are configured, they can be provided to the node and the hub, using the
following command:

java -jar selenium-server-standalone-3.12.0.jar -role node -nodeConfig
nodeconfig.json

This way, you can specify the configuration of your hub and node using JSON files.

Using cloud-based grids for cross-browser
testing
To set up a Selenium Grid for cross-browser testing, you need to set up physical or virtual
machines with different browsers and operating systems. This requires an investment in
the required hardware, software, and support to run the test lab. You also need to put in
effort to keep this infrastructure updated with the latest versions and patches. Not
everybody can afford these costs and the effort.

Instead of investing and setting up a cross-browser test lab, you can easily outsource a
virtual test lab to a third-party cloud provider for cross-browser testing. The Sauce Labs
and BrowserStack are leading cloud-based cross-browser testing cloud providers. Both of
these have support for over 400 different browser and operating system configurations,
including mobile and tablet devices, and support running Selenium WebDriver tests in
their cloud.

Setting up Selenium Grid Chapter 7

[153]

Here, we will set up and run a test in the Sauce Labs cloud. The steps are similar if you
want to run tests with BrowserStack.

Let's set up and run a test with Sauce Labs. You need a free Sauce Labs account, to begin
with. Register for a free account on Sauce Labs at https:/ /saucelabs. com/ , and get the
username and access key. Sauce Labs provides all the needed hardware and software
infrastructure to run your tests in the cloud. You can get the access key from the Sauce Labs
dashboard after you log in from the My Account page:

Let's create a new test to execute on the Sauce Labs cloud. We need to add the Sauce
username and access key to the test, and change the Grid address to the Sauce Labs Grid
address instead of the local Selenium Grid, as shown in the following code example:

public class BmiCalculatorTest {

 WebDriver driver;

 @BeforeMethod
 public void setUp() throws Exception {

 String SAUCE_USER = "upgundecha";
 String SAUCE_KEY = "5768f2a9-33be-4ebd-9a5f-3826d7c38ec9";

 DesiredCapabilities caps = new DesiredCapabilities();
 caps.setCapability("platform", "OS X 10.9");
 caps.setCapability("browserName", "Safari");
 caps.setCapability("name", "BMI Calculator Test");
 driver = new RemoteWebDriver(
 new
URL(MessageFormat.format("http://{0}:{1}@ondemand.saucelabs.com:80/wd/hub'"
,
 SAUCE_USER, SAUCE_KEY)), caps);
 driver.get("http://bit.ly/1zdNrFZ");

 }

 @Test
 public void testBmiCalc() {

https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/

Setting up Selenium Grid Chapter 7

[154]

 WebElement height = driver.findElement(By.name("heightCMS"));
 height.sendKeys("181");

 WebElement weight = driver.findElement(By.name("weightKg"));
 weight.sendKeys("80");

 WebElement calculateButton =
driver.findElement(By.id("Calculate"));
 calculateButton.click();

 WebElement bmi = driver.findElement(By.name("bmi"));
 assertEquals(bmi.getAttribute("value"), "24.4");

 WebElement bmi_category =
driver.findElement(By.name("bmi_category"));
 assertEquals(bmi_category.getAttribute("value"), "Normal");
 }

 @AfterMethod
 public void tearDown() throws Exception {
 driver.quit();
 }
}

When you execute the test, it will connect to Sauce Lab's hub and request the desired
operating system and browser configuration. The sauce Labs cloud-management software
automatically assigns a virtual machine for our test to run on a given configuration. We can
monitor this run on a dashboard, as shown in the following screenshot:

Setting up Selenium Grid Chapter 7

[155]

We can further drill down into the session and see exactly what happened during the run.
It provides details of the Selenium commands, screenshots, logs, and a video of the
execution on multiple tabs, as shown in the following screenshot:

Selenium details window

You can also test applications that are securely hosted on internal servers, by using the
Sauce Connect utility. sauce connect creates a secure tunnel between your machine and the
Sauce cloud.

Summary
In this chapter, we learned about Selenium Grid, how a hub and node will work, and, more
importantly, how to configure your Selenium Grid to have better control over the
environment and infrastructure. The Selenium Grid will enable cross-browser testing for
the application by covering combinations of operating systems and browsers. We also saw
how to use cloud services, such as Sauce Labs, to execute tests in a remote cloud
environment.

Setting up Selenium Grid Chapter 7

[156]

In the next chapter, we will learn about creating data-driven tests using TestNG and
Selenium WebDriver.

Questions
Which argument can be used to specify how many browser instances can be1.
supported by the node?
Explain how Selenium Grid can be used to support Cross Browser Testing.2.
What is the URL you need to specify with RemoteWebDriver to run tests on3.
Selenium Grid?
Selenium Grid Hub acts as a load balancer— true or false?4.

Further information
You can check out the following link for more information about the topics covered in this
chapter:

Read more about Selenium Grid at https:/ /www. seleniumhq. org/ docs/ 07_
selenium_ grid. jsp

https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp
https://www.seleniumhq.org/docs/07_selenium_grid.jsp

8
Data-Driven Testing with

TestNG
In this chapter, we will see how to create data-driven tests using TestNG and Selenium
WebDriver. We will look at the following topics:

What is data-driven testing?
Using TestNG suite parameters to parameterize tests.
Using TestNG data providers for data-driven testing.
Using the CSV and Excel file formats for storing and reading test data.

Overview of data-driven testing
By employing the data-driven testing approach, we can use a single test to verify different
sets of test cases or test data by driving the test with input and expected values from an
external data source instead of using the hardcoded values every time a test is run. This
becomes useful when we have similar tests that consist of the same steps but differ in the
input data and expected value or the application state. Here is an example of a set of login
test cases with different combinations:

Description Test data Expected output
Test valid username and
password

A pair of valid usernames and
passwords

The user should log into the application with
a success message

Test invalid username and
password

An invalid username and
password The user should be displayed the login error

Valid username and
invalid password

A valid username and an
invalid password The user should be displayed the login error

Data-Driven Testing with TestNG Chapter 8

[158]

We can create a single script that can handle the test data and the conditions from the
preceding table. By using the data-driven testing approach, we separate the test data from
the test logic by replacing the hardcoded test data with variables using the data from
external sources, such as CSV or a spreadsheet file. This also helps to create reusable tests
that can run with different sets of data, which can be kept outside of the test. Data-driven
testing also helps in increasing the test coverage, as we can handle multiple test conditions
while minimizing the amount of test code we need to write and maintain.

The benefits of data-driven testing are as follows:

We can get greater test coverage while minimizing the amount of test code we
need to write and maintain
It makes creating and running a lot of test conditions very easy
Test data can be designed and created before the application is ready for testing
Data tables can also be used in manual testing

Selenium WebDriver, being a pure browser-automation API, does not provide built-in
features to support data-driven testing. However, we can add support for data-driven
testing using testing frameworks such as JUnit or TestNG. In this book, we are using
TestNG as our testing framework and we will use parameterization features of TestNG to
create data-driven tests in the following sections.

Parameterizing Tests using suite parameters
In Chapter 1, Introducing WebDriver and WebElements, we created a search test that
performs a simple search on the application under test. This test searches for a given
product and validates the title. We used a hardcoded value, phones, for the search, as
shown in the following code snippet:

 @Test
 public void searchProduct() {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys("Phones");

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

Data-Driven Testing with TestNG Chapter 8

[159]

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: 'Phones'");
 }

Instead of using hardcoded values, we can parameterize these values and provide them to
the test method using the suite-parameter feature of TestNG. This will help to remove
using hardcoded values in the test method and move them into TestNG suite files. The
parameterized values can be used in multiple tests. When we need to change these values,
we don't have to go to each test and make a change,the instead we can simply change these
in suite file.

Now, let's look at steps for using the TestNG Parameters from the suite file. In Chapter 1,
Introducing WebDriver and WebElements, we created a testng.xml file, which is located in
the src/test/resources/suites folder. Let's modify the file and add the parameter
declaration, as highlighted in the following code snippet:

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

<suite name="Chapter 1" verbose="1">
 <listeners>
 <listener class-
name="com.vimalselvam.testng.listener.ExtentTestNgFormatter"/>
 </listeners>
 <test name="Search Test">
 <parameter name="searchWord" value="phones"/>
 <parameter name="items" value="3"/>
 <classes>
 <class name="com.example.SearchTest"/>
 </classes>
 </test>
</suite>

We can add parameters in the TestNG suite file using the <parameter> tag. We have to
provide the name and value attributes for the parameter. In this example, we create two
parameters: searchWord and items. These parameters store the search word and expected
count of items returned by the application for that search word.

Data-Driven Testing with TestNG Chapter 8

[160]

Now, let's modify the test to use parameters instead of hardcoded values. First, we need to
use the @Parameters annotation before the @Test annotation for the test method. In
the @Parameters annotation, we need to supply the exact names and order of the
parameters declared in the suite file. In this case, we will supply searchWord and items.
We also need to add arguments to the test method along with the required data type to
map the XML parameters. In this case, the String searchWord and int Items
arguments are added to the searchProduct() test method. Finally, we need to replace the
hardcoded values with the arguments in the test method, as shown in the following code
snippet:

@Parameters({"searchWord", "items"})
@Test
public void searchProduct(String searchWord, int items) {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 // use searchWord parameter value from XML suite file
 searchBox.sendKeys(searchWord);

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: '" + searchWord + "'");

 List<WebElement> searchItems = driver
 .findElements(By.xpath("//h2[@class='product-name']/a"));

 assertThat(searchItems.size())
 .isEqualTo(items);
}

We have to run the parameterized tests via the testng.xml file for TestNG to read the
parameters defined in the suite file and pass the values to the test method.

During execution, TestNG will use the parameters defined in the XML suite file and map
these in the same order to the Java parameters in test methods using the @Parameters
annotation. It will pass the parameter values from the suite file using the arguments added
in the test method. TestNG will throw an exception if the number of parameters between
XML and the @Parameters annotation does not match.

Data-Driven Testing with TestNG Chapter 8

[161]

In the next section, we will see a programmatic parameterization, which offers us the ability
to run tests with multiple rows of test data.

Parameterizing Tests with a Data Provider
While suite parameters are useful for simple parameterization, they are not sufficient for
creating data-driven tests with multiple test data values and reading data from external
files, such as property files, CSV, Excel, or databases. In this case, we can use a Data
Provider to supply the values need to test. A Data Provider is a method defined in the
test class that returns an array of array of objects. This method is annotated with
the @DataProvider annotation.

Let's modify the preceding test to use the Data Provider. Instead of using a single
searchWord, we will now use three combinations of searchWords and expected items
counts returned by the search. We will add a new method, named provider(), in the
SearchTest class, as shown in following code, before the @BeforeMethod annotation:

public class SearchTest {

 WebDriver driver;

 @DataProvider(name = "searchWords")
 public Object[][] provider() {
 return new Object[][]{
 {"phones", 3},
 {"music", 5},
 {"iphone 5s", 0}
 };
 }

 @BeforeMethod
 public void setup() {
 ...
 }
 ...
}

When a method is annotated with @DataProvider, it becomes a data-feeder method by
passing the test data to the test case. In addition to the @DataProvider annotation, we also
need to provide a name for the data provider. In this example, we have given the name
as searchWords.

Data-Driven Testing with TestNG Chapter 8

[162]

Next, we need to update the searchTest() test method to link to the data provider.
This is done with the following steps:

Provide the name of the data provider in the @Test annotation1.
Add two arguments String searchWord and int items to the2.
searchProduct method
Use method parameters to substitute hardcoded values:3.

public class SearchTest {

 WebDriver driver;

 @DataProvider(name = "searchWords")
 public Object[][] provider() {
 ...
 }

 @BeforeMethod
 public void setup() {

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");
 driver = new ChromeDriver();
 driver.get("http://demo-store.seleniumacademy.com/");

 }

 @Test(dataProvider = "searchWords")
 public void searchProduct(String searchWord, int items) {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys(searchWord);

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: '" + searchWord + "'");

 List<WebElement> searchItems = driver
 .findElements(By.xpath("//h2[@class='product-name']/a"));

 assertThat(searchItems.size())

Data-Driven Testing with TestNG Chapter 8

[163]

 .isEqualTo(items);
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

The provider() method will become the data-feeder method, which returns an array of
objects that are combinations of searchWords and expected items counts, and TestNG
will pass the array of data rows to the test method.

TestNG will execute the test four times with different test combinations. TestNG also
generates a well-formatted report at the end of the test execution. Here is an example of the
test results with TestNG using the defined values. The searchProduct test is executed
three times, as shown in the following screenshot:

Reading data from a CSV file
We saw a simple data-driven test TestNG. The test data was hardcoded in the test-script
code. This could become difficult to maintain. It is recommended that we store the test data
separately from the test scripts. Often, we use data from the production environment for
testing. This data can be exported in the CSV format. We can read these CSV files in data-
provider methods and pass the data to the test instead of hardcoded object arrays.

Data-Driven Testing with TestNG Chapter 8

[164]

In this example, we will use the OpenCSV library to read a CSV file. OpenCSV is a simple
Java library for reading CSV files in Java. You can find more details on OpenCSV at http:/
/opencsv.sourceforge. net/ .

Let's first create a CSV file, named data.csv, in the src/test/resources/data folder
and copy the following combinations of searchWords and items:

searchWord,items
phones,3
music,5
iphone 5s,0

Next, we need to add the OpenCSV dependency to the Maven pom.xml file. For this
example, we will use the latest version, 3.4, as shown in the following code snippet:

<dependency>
 <groupId>com.opencsv</groupId>
 <artifactId>opencsv</artifactId>
 <version>3.4</version>
</dependency>

Finally, we need to modify the provider() method in the test class to read the contents of
the CSV file and return them as an array of objects, as shown in the following code:

public class SearchTest {

 WebDriver driver;

 @DataProvider(name = "searchWords")
 public Iterator<Object[]> provider() throws Exception {
 CSVReader reader = new CSVReader(
 new FileReader("./src/test/resources/data/data.csv")
 , ',', '\'', 1);
 List<Object[]> myEntries = new ArrayList<Object[]>();
 String[] nextLine;
 while ((nextLine = reader.readNext()) != null) {
 myEntries.add(nextLine);
 }
 reader.close();
 return myEntries.iterator();
 }

 @BeforeMethod
 public void setup() {

 System.setProperty("webdriver.chrome.driver",
 "./src/test/resources/drivers/chromedriver");

http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/
http://opencsv.sourceforge.net/

Data-Driven Testing with TestNG Chapter 8

[165]

 driver = new ChromeDriver();
 driver.get("http://demo-store.seleniumacademy.com/");

 }

 @Test(dataProvider = "searchWords")
 public void searchProduct(String searchWord, String items) {

 // find search box and enter search string
 WebElement searchBox = driver.findElement(By.name("q"));

 searchBox.sendKeys(searchWord);

 WebElement searchButton =
 driver.findElement(By.className("search-button"));

 searchButton.click();

 assertThat(driver.getTitle())
 .isEqualTo("Search results for: '" + searchWord + "'");

 List<WebElement> searchItems = driver
 .findElements(By.xpath("//h2[@class='product-name']/a"));

 assertThat(searchItems.size())
 .isEqualTo(Integer.parseInt(items));
 }

 @AfterMethod
 public void tearDown() {
 driver.quit();
 }
}

In the provide method, the CSV file will be parsed using the CSVReader class of the
OpenCSV library. We need to provide the path of the CSV file, the delimiter character, and
the header row number (this will skip while fetching the data), as shown in the following
code snippet:

@DataProvider(name = "searchWords")
public Iterator<Object[]> provider() throws Exception {

 CSVReader reader = new CSVReader(
 new FileReader("./src/test/resources/data/data.csv")
 , ',', '\'', 1);

 List<Object[]> myEntries = new ArrayList<Object[]>();
 String[] nextLine;

Data-Driven Testing with TestNG Chapter 8

[166]

 while ((nextLine = reader.readNext()) != null) {
 myEntries.add(nextLine);
 }
 reader.close();
 return myEntries.iterator();
}

In the preceding code, we will read each line of the CSV file ,copy it to an array of the
object, and return it to the test method. The test method will be executed for each row in the
CSV file.

Reading data from an Excel file
To maintain test cases and test data, Microsoft Excel is a favourite tool for testers.
Compared to the CSV file format, Excel offers numerous features and a structured way to
store data. A tester can create and maintain tables of test data in an Excel spreadsheet
easily.

Let's create an Excel spreadsheet, named data.xlsx, in the src/test/resources/data
folder with the following contents:

In this section, we will use an Excel spreadsheet as your data source. We will use the
Apache POI API, developed by the Apache Foundation, to manipulate the Excel
spreadsheet.

Data-Driven Testing with TestNG Chapter 8

[167]

Let's modify the provider() method to use a helper class, called SpreadsheetData, to
read the Excel file's contents:

@DataProvider(name = "searchWords")
public Object[][] provider() throws Exception {
 SpreadsheetData spreadsheetData = new SpreadsheetData();
 return
spreadsheetData.getCellData("./src/test/resources/data/data.xlsx");
}

The SpreadsheetData class This is available in the source code bundle for this book. This
class supports both the old .xls and newer .xlsx formats:

public class SpreadsheetData {
 public String[][] getCellData(String path) throws
InvalidFormatException, IOException {
 FileInputStream stream = new FileInputStream(path);
 Workbook workbook = WorkbookFactory.create(stream);
 Sheet s = workbook.getSheetAt(0);
 int rowcount = s.getLastRowNum();
 int cellcount = s.getRow(0).getLastCellNum();
 String data[][] = new String[rowcount][cellcount];
 for (int rowCnt = 1; rowCnt <= rowcount; rowCnt++) {
 Row row = s.getRow(rowCnt);
 for (int colCnt = 0; colCnt < cellcount; colCnt++) {
 Cell cell = row.getCell(colCnt);
 try {
 if (cell.getCellType() == cell.CELL_TYPE_STRING) {
 data[rowCnt - 1][colCnt] =
cell.getStringCellValue();
 } else {
 data[rowCnt - 1][colCnt] =
String.valueOf(cell.getNumericCellValue());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 return data;
 }
}

Data-Driven Testing with TestNG Chapter 8

[168]

When the test is executed, the provider() method will create an instance of the
SpreadsheetData class. The SpreadsheetData class reads the contents of the Excel
spreadsheet row by row in a collection and returns this collection back to the provider()
method:

InputStream spreadsheet = new
FileInputStream("./src/test/resources/data/data.xlsx");
return new SpreadsheetData(spreadsheet).getData();

For each row in the test data collection returned by the provider() method, the test
runner will instantiate the test case class, passing the test data as parameters to the test-
class constructor, and then execute all the tests in the test class.

Summary
In this chapter, we learned about an important technique to create parameterized and data-
driven tests using TestNG features. This will help you to create highly-maintainable and
robust tests with minimum coding effort and increased test coverage. We also looked at
ways to read data from the CSV and Excel formats. In the next chapter, we will learn about
building a Selenium Test Driver Class for mobile web applications using JAVA.

Questions
Explain what Data-driven Testing is.1.
Selenium supports data-driven testing— True or False?2.
What are two methods in TestNG to create data-driven tests?3.
Explain the DataProvider method in TestNG.4.

Further information
You can check out the following links for more information about the topics covered in this
chapter:

Read more about TestNG data-driven features at https:/ /testng. org/ doc/
documentation- main. html#parameters

Read more about the Apache POI library at https:/ /poi. apache. org/

https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://testng.org/doc/documentation-main.html#parameters
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/
https://poi.apache.org/

9
Building a Scalable Selenium

Test Driver Class for Web and
Mobile Applications

In this chapter, we will cover designing and building the Java test driver class required to
create and use the Selenium WebDriver API and AppiumDriver API for automated
testing. The driver class is the central location for all aspects and preferences of the browser
and mobile devices, platforms and versions to run on, support for multithreading, support
for the Selenium Grid Architecture, and customization of the driver. This chapter will
cover the following topics:

Introduction
The singleton driver class
Using preferences to support browsers and platforms
Using preferences to support mobile device simulators, emulators, and real
devices
Multithreading support for use in parallel and distributed testing
Passing optional arguments and parameters to the driver

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[170]

Selenium Grid Architecture support using the RemoteWebDriver and
AppiumDriver classes
Third-party grid architecture support, including the Sauce Labs Test Cloud
Using property files to select browsers, devices, versions, platforms, languages,
and so on

Selenium headquarters website

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[171]

Introduction
In this chapter, users will be introduced to data-driven testing, the Selenium Page Object
Model, and Don't Repeat Yourself (DRY) approaches to testing, all of which work hand-in-
hand with each other, and are required for scalable frameworks. Let's briefly discuss each.

Data-driven testing
The premise of data-driven testing is that test methods and test data are separated to allow
the adding of new test permutations without changing the test methods, to reduce the
amount of code, reduce the amount of maintenance required for testing, and to store
common libraries in a central location—those being the page object classes. Data is
encapsulated in a central location such as a database, JSON, or CSV file, property file, or an
Excel spreadsheet, to name a few. Test methods then allow dynamic data to be passed into
them on the fly using parameters and data providers of choice. The test methods
themselves become "templates" for positive, negative, boundary, and/or limit testing,
extending coverage of the suite of tests with limited code additions.

TestNG data-driven testing tip:

http:/ / testng. org/ doc/ documentation- main. html

Selenium Page Object Model
The Selenium Page Object Model is based on the programming concepts that a page object
class should include all aspects of the page under test, such as the elements on the page, the
methods for interacting with those elements, variables, and properties associated with the
class. Following that concept, there is no data stored in the page object class. The test classes
themselves call methods on the page object instances they are testing, but have no
knowledge of the granular elements in the class. Finally, the actual test data is encapsulated
outside the test class in a central location. In other words, there is an abstract layer created
between the tests and the actual page object classes. This reduces the amount of code being
written and allows them to be reused in various testing scenarios, thus following the DRY
approaches to programming. From a maintenance point of view, changes to methods and
locators are made in limited, central places, reducing the amount of time required to
maintain ever-changing applications.

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[172]

Selenium HQ design tip:

http:/ / www. seleniumhq. org/ docs/ 06_test_ design_ considerations. jsp

DRY
DRY approaches to creating page object and test classes simply mean promoting the use of
common classes, locators, methods, and inheritance to eliminate and avoid repeating the
same actions over and over in multiple places. Instead, abstract base classes are created,
containing all common objects and methods, and used as libraries to be called using
parameters, which vary based on the data that is passed into them from the test classes. All
subclasses derived from these base classes inherit all the common code, objects, locators,
and methods, and enforce all of the abstract methods required by the base class. In essence,
this approach avoids common copy and paste actions that result in duplicate code in
multiple places.

As per Wikipedia (https:/ /en. wikipedia. org/ wiki/ Data- driven_ testing):

"Data-driven testing (DDT) is a term used in the testing of computer software to describe
testing done using a table of conditions directly, as test inputs and verifiable outputs as
well as the process where test environment settings and control are not hardcoded. In the
simplest form the tester supplies the inputs from a row in the table and expects the outputs
which occur in the same row. The table typically contains values which correspond to
boundary or partition input spaces. In the control methodology, test configuration is
"read" from a database."

What you will learn
Users will learn how to design and build the Java singleton class required to control the
Selenium driver of choice for the Application Under Test (AUT).

http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
http://www.seleniumhq.org/docs/06_test_design_considerations.jsp
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Data-driven_testing

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[173]

The singleton driver class
In this section, a Java singleton class will be used to create the driver class. This will force
the user to use the same object for all instances where the WebDriver is required. The
WebDriver events will never get out of sync during the run, and all WebDriver events will
get sent to the correct browser or mobile device instance. And since the instance of the class
is created on a single thread, referencing it won't interfere with other WebDriver instances
running on the same node simultaneously.

As per Wikipedia (https:/ /en. wikipedia. org/ wiki/ Singleton_ pattern):

"In software engineering, the singleton pattern is a software design pattern that restricts
the instantiation of a class to one object. This is useful when exactly one object is needed to
coordinate actions across the system. The concept is sometimes generalized to systems that
operate more efficiently when only one object exists, or that restrict the instantiation to a
certain number of objects. The term comes from the mathematical concept of a singleton."

Requirements
In order to start building the framework, users must import the required JAR files into their
project to use the Selenium WebDriver, AppiumDriver, and TestNG APIs. Additionally,
there will be various Java JAR files required, such as Apache, Spring, File I/O, and other
utilities as the framework develops:

import io.appium.java_client.AppiumDriver;
import io.appium.java_client.MobileElement;
import io.appium.java_client.android.AndroidDriver;
import io.appium.java_client.ios.IOSDriver;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.chrome.ChromeOptions;
import org.openqa.selenium.edge.EdgeDriver;
import org.openqa.selenium.edge.EdgeOptions;
import org.openqa.selenium.firefox.*;
import org.openqa.selenium.ie.InternetExplorerDriver;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.LocalFileDetector;
import org.openqa.selenium.remote.RemoteWebDriver;
import org.openqa.selenium.safari.SafariDriver;
import org.openqa.selenium.safari.SafariOptions;
import org.testng.*;

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[174]

A good source location for finding these JAR files is https:/ /
mvnrepository. com/ .

The class signature
The class should be named something obvious such as Driver.java,
CreateDriver.java, SeleniumDriver.java, and so on. Since this will be a Java
singleton class, it will contain a private constructor and a static getInstance method as
follows:

/**
 * Selenium Singleton Class
 *
 * @author CarlCocchiaro
 *
 */
@SuppressWarnings("varargs")
public class CreateDriver {

 // constructor
 private CreateDriver() {
 }

 /**
 * getInstance method to retrieve active driver instance
 *
 * @return CreateDriver
 */
 public static CreateDriver getInstance() {
 if (instance == null) {
 instance = new CreateDriver();
 }

 return instance;
 }
}

https://mvnrepository.com/
https://mvnrepository.com/
https://mvnrepository.com/
https://mvnrepository.com/
https://mvnrepository.com/
https://mvnrepository.com/
https://mvnrepository.com/

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[175]

Class variables
Initially, when building the class, there will be various private and public variables used
that should be declared at the top of the class. This organizes the variables into one place in
the file, but of course, this is a coding style guideline. Some of the common variables
required to start are as follows:

public class CreateDriver {
 // local variables
 private static CreateDriver instance = null;
 private String browserHandle = null;
 private static final int IMPLICIT_TIMEOUT = 0;

 private ThreadLocal<WebDriver> webDriver =
 new ThreadLocal<WebDriver>();

 private ThreadLocal<AppiumDriver<MobileElement>> mobileDriver =
 new ThreadLocal<AppiumDriver<MobileElement>>();

 private ThreadLocal<String> sessionId =
 new ThreadLocal<String>();

 private ThreadLocal<String> sessionBrowser =
 new ThreadLocal<String>();

 private ThreadLocal<String> sessionPlatform =
 new ThreadLocal<String>();

 private ThreadLocal<String> sessionVersion =
 new ThreadLocal<String>();

 private String getEnv = null;
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[176]

JavaDoc
Before introducing the common methods in this driver class, it is prudent to note that
requiring JavaDoc for all methods in the class will be helpful for users who are learning the
framework. The JavaDoc can be built automatically in Java using a build tool such as
Maven, Gradle, or Ant. An example of the JavaDoc format is as follows:

/**
 * This is the setDriver method used to create the Selenium WebDriver
 * or AppiumDriver instance!
 *
 * @param parameter 1
 * @param parameter 2
 * @param parameter 3
 * @param parameter 4
 *
 * @throws Exception
 */

Parameters
The driver class will be designed with various get and set methods. The main setDriver
method can take parameters to determine the browser or mobile type, platform to run on,
environment for testing, and a set of optional preferences to allow changing driver behavior
on the fly:

@SafeVarargs
public final void setDriver(String browser,
 String platform,
 String environment,
 Map<String, Object>... optPreferences)

Examples of some of the parameters of setDriver are as follows:

browser: Chrome, Firefox, Internet Explorer, Microsoft Edge, Opera, Safari
(iPhone/iPad, or Android for mobile)
platform: Linux, Windows, Mac, Sierra, Win10 (iPhone/iPad, or Android for
mobile)
environment: Local, remote, and Sauce Labs
optPrefs: Map of driver preferences (this will be covered later in detail)

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[177]

Class methods
All the methods in this class should pertain to the web or mobile driver. This includes
things such as setDriver, getDriver, getCurrentDriver,
getSessionID/Browser/Version/Platform, driverWait, driverRefresh, and
closeDriver. Each will be outlined in this section:

setDriver: The setDriver methods (standard and overloaded) will allow
users to create a new instance of the driver for testing browser or mobile devices.
The method will take parameters for browser, platform, environment, and
optional preferences. Based on these preferences, the WebDriver/AppiumDriver
of choice will be created. Here are some key points of the method, including a
code sample:

The driver preferences are set up using the DesiredCapabilities class
The method will be segregated according to the browser or mobile type,
platform, and environment
The method will be overloaded to allow switching back and forth between
multiple drivers running concurrently

The following code demonstrates the standard setDriver method:

/**
 * setDriver method
 *
 * @param browser
 * @param environment
 * @param platform
 * @param optPreferences
 * @throws Exception
 */
@SafeVarargs
public final void setDriver(String browser,
 String environment,
 String platform,
 Map<String, Object>...
optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;
 String localHub = "http://127.0.0.1:4723/wd/hub";
 String getPlatform = null;

 switch (browser) {
 case "firefox":
 caps = DesiredCapabilities.firefox();

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[178]

 webDriver.set(new FirefoxDriver(caps));

 break;
 case "chrome":
 caps = DesiredCapabilities.chrome();
 webDriver.set(new ChromeDriver(caps));

 break;
 case "internet explorer":
 caps = DesiredCapabilities.internetExplorer();
 webDriver.set(new
 InternetExplorerDriver(caps));

 break;
 case "safari":
 caps = DesiredCapabilities.safari();
 webDriver.set(new SafariDriver(caps));

 break;
 case "microsoftedge":
 caps = DesiredCapabilities.edge();
 webDriver.set(new EdgeDriver(caps));

 break;
 case "iphone":
 case "ipad":
 if (browser.equalsIgnoreCase("ipad")) {
 caps = DesiredCapabilities.ipad();
 }

 else {
 caps = DesiredCapabilities.iphone();
 }

 mobileDriver.set(new IOSDriver<MobileElement>(
 new URL(localHub), caps));

 break;
 case "android":
 caps = DesiredCapabilities.android();
 mobileDriver.set(new
 AndroidDriver<MobileElement>(
 new URL(localHub), caps));

 break;
 }
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[179]

Here is the overloaded setDriver method:

/**
 * overloaded setDriver method to switch driver to specific
WebDriver
 * if running concurrent drivers
 *
 * @param driver WebDriver instance to switch to
 */
public void setDriver(WebDriver driver) {
 webDriver.set(driver);

 sessionId.set(((RemoteWebDriver) webDriver.get())
 .getSessionId().toString());

 sessionBrowser.set(((RemoteWebDriver) webDriver.get())
 .getCapabilities().getBrowserName());

 sessionPlatform.set(((RemoteWebDriver) webDriver.get())
 .getCapabilities().getPlatform().toString());

 setBrowserHandle(getDriver().getWindowHandle());
}

/**
 * overloaded setDriver method to switch driver to specific
AppiumDriver
 * if running concurrent drivers
 *
 * @param driver AppiumDriver instance to switch to
 */
public void setDriver(AppiumDriver<MobileElement> driver) {
 mobileDriver.set(driver);

 sessionId.set(mobileDriver.get()
 .getSessionId().toString());

 sessionBrowser.set(mobileDriver.get()
 .getCapabilities().getBrowserName());

 sessionPlatform.set(mobileDriver.get()
 .getCapabilities().getPlatform().toString());
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[180]

getDriver and getCurrentDriver: The getDriver and getCurrentDriver
methods (standard and overloaded) will allow users to retrieve the current
driver, whether that be browser or mobile. The driver should be instantiated at
the beginning of the test, and will remain available throughout the test by using
these methods. Since many of the Selenium WebDriver methods require the
driver to be passed to it, these methods will allow users to retrieve the currently
active session:

/**
 * getDriver method will retrieve the active WebDriver
 *
 * @return WebDriver
 */
public WebDriver getDriver() {
 return webDriver.get();
}

/**
 * getDriver method will retrieve the active AppiumDriver
 *
 * @param mobile boolean parameter
 * @return AppiumDriver
 */
public AppiumDriver<MobileElement> getDriver(boolean mobile) {
 return mobileDriver.get();
}

/**
 * getCurrentDriver method will retrieve the active WebDriver
 * or AppiumDriver
 *
 * @return WebDriver
 */
public WebDriver getCurrentDriver() {
 if (getInstance().getSessionBrowser().contains("iphone")
||
 getInstance().getSessionBrowser().contains("ipad") ||
 getInstance().getSessionBrowser().contains("android")
) {

 return getInstance().getDriver(true);
 }

 else {
 return getInstance().getDriver();
 }
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[181]

driverWait and driverRefresh: The driverWait method will "pause" the
script for the designated amount of time in seconds, although this should not be
used to synchronize event handling. The driverRefresh method will reload the
currently active browser page:

/**
 * driverWait method pauses the driver in seconds
 *
 * @param seconds to pause
 */
public void driverWait(long seconds) {
 try {
 Thread.sleep(TimeUnit.SECONDS.toMillis(seconds));
 }

 catch (InterruptedException e) {
 // do something
 }
}

/**
 * driverRefresh method reloads the current browser page
 */
public void driverRefresh() {
 getCurrentDriver().navigate().refresh();
}

closeDriver: The closeDriver method will retrieve the current driver and
call the WebDriver's quit method on it, browser or mobile:

/**
 * closeDriver method quits the current active driver
 */
public void closeDriver() {
 try {
 getCurrentDriver().quit();
 }

 catch (Exception e) {
 // do something
 }
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[182]

Using preferences to support browsers and
platforms
The browser preferences and behavior can be set to specific defaults when the driver is
created, set on the fly using optional parameters, or set as system properties. Preferences
can be set for different languages, geolocations, focus, download folders, and so on. This
section will cover the basics of how to set default preferences and capabilities in the driver
method.

The Selenium HQ documentation on Desired Capabilities is located
at https:/ / github. com/ SeleniumHQ/ selenium/ wiki/
DesiredCapabilities.

Browser preferences
Firefox: Preferences for this browser are set using the FirefoxProfile class,
the FirefoxOptions class, and Desired Capabilities. The list of preferences and
options set in the profile are then passed to the driver as DesiredCapabilites.
The following example shows various profile preferences passed into the driver
as default settings using both profile preferences and Desired Capabilities:

switch (browser) {
 case "firefox":
 caps = DesiredCapabilities.firefox();

 FirefoxOptions ffOpts = new FirefoxOptions();
 FirefoxProfile ffProfile = new FirefoxProfile();
 ffProfile.setPreference("browser.autofocus",
 true);

 caps.setCapability(FirefoxDriver.PROFILE,
 ffProfile);
 caps.setCapability("marionette",
 true);

 webDriver.set(new FirefoxDriver(caps));

 // Selenium 3.7.x
 // webDriver.set(new FirefoxDriver(ffOpts.merge(caps)));
 }

https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities
https://github.com/SeleniumHQ/selenium/wiki/DesiredCapabilities

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[183]

 break;
}

Firefox preferences can be found by typing the following into the Firefox
location bar: about:config or at https:/ /github. com/ mozilla/
geckodriver/ .

accessibility.AOM.enabled; false
accessibility.accesskeycausesactivation; true
accessibility.blockautorefresh; false
...

Chrome: Preferences for this browser are set using the ChromeOptions class and
Desired Capabilities. The list of preferences and/or arguments are then passed to
the driver as DesiredCapabilites. The following example shows various
preferences and arguments passed into the driver as default settings using both
preferences and Desired Capabilities:

switch (browser) {
 case "chrome":
 caps = DesiredCapabilities.chrome();

 ChromeOptions chOptions = new ChromeOptions();
 Map<String, Object> chromePrefs =
 new HashMap<String, Object>();

 chromePrefs.put("credentials_enable_service",
 false);
 chOptions.setExperimentalOption("prefs",
 chromePrefs);
 chOptions.addArguments("--disable-plugins",
 "--disable-extensions",
 "--disable-popup-blocking");

 caps.setCapability(ChromeOptions.CAPABILITY,
 chOptions);
 caps.setCapability("applicationCacheEnabled",
 false);

 webDriver.set(new ChromeDriver(caps));

 // Selenium 3.7.x
 // webDriver.set(new ChromeDriver(chOptions.merge(caps)));

https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/
https://github.com/mozilla/geckodriver/

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[184]

 break;
 }

Chrome preferences can be found by typing the following into the
Chrome location bar: chrome://flags or https:/ /sites. google. com/ a/
chromium. org/ chromedriver/ capabilities.

Internet Explorer, Safari, and Microsoft Edge: Preferences for these browsers are
also set using the InternetExplorerOptions, SafariOptions, EdgeOptions
classes, and Desired Capabilities. Users can query for the available options and
capabilities for each of these browsers. The following code sample shows an
abbreviated case for each.

For Internet Explorer:

switch (browser) {
 case "internet explorer":
 caps = DesiredCapabilities.internetExplorer();

 InternetExplorerOptions ieOpts =
 new InternetExplorerOptions();
 ieOpts.requireWindowFocus();

 ieOpts.merge(caps);
 caps.setCapability("requireWindowFocus",
 true);

 webDriver.set(new InternetExplorerDriver(caps));

 // Selenium 3.7.x
 // webDriver.set(new InternetExplorerDriver(
 ieOpts.merge(caps)));

 break;
}

For Safari:

switch (browser) {
 case "safari":
 caps = DesiredCapabilities.safari();

 SafariOptions safariOpts = new SafariOptions();
 safariOpts.setUseCleanSession(true);

https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities
https://sites.google.com/a/chromium.org/chromedriver/capabilities

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[185]

 caps.setCapability(SafariOptions.CAPABILITY,
 safariOpts);
 caps.setCapability("autoAcceptAlerts",
 true);

 webDriver.set(new SafariDriver(caps));

 // Selenium 3.7.x
 // webDriver.set(new SafariDriver(safariOpts.merge(caps)));

 break;
}

For Microsoft Edge:

switch(browser) {
 case "microsoftedge":
 caps = DesiredCapabilities.edge();

 EdgeOptions edgeOpts = new EdgeOptions();
 edgeOpts.setPageLoadStrategy("normal");

 caps.setCapability(EdgeOptions.CAPABILITY,
 edgeOpts);
 caps.setCapability("requireWindowFocus",
 true);

 webDriver.set(new EdgeDriver(caps));

 // Selenium 3.7.x
 // webDriver.set(new EdgeDriver(edgeOpts.merge(caps)));

 break;
}

Internet Explorer options can be found at https:/ /seleniumhq.
github. io/ selenium/ docs/ api/ dotnet/ html/ T_ OpenQA_
Selenium_ IE_ InternetExplorerOptions. htm

Safari options can be found at https:/ /seleniumhq. github. io/
selenium/ docs/ api/ java/ org/ openqa/ selenium/ safari/
SafariOptions. html

Edge options can be found at https:/ / seleniumhq. github. io/
selenium/ docs/ api/ java/ org/ openqa/ selenium/ edge/
EdgeOptions. html

https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/dotnet/html/T_OpenQA_Selenium_IE_InternetExplorerOptions.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/safari/SafariOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/edge/EdgeOptions.html

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[186]

Platforms
There are some specific system properties that need to be set for each driver; specifically,
the path to the local driver in the GIT repository of the project. By storing the driver in the
project, users will not have to download or install the drivers for each browser when testing
locally from their IDE. The path also depends on the OS of the development platform. The
following examples are for Windows platforms:

Firefox:
System.setProperty("webdriver.gecko.driver","gecko_driver_windo
ws_path/geckodriver.exe");

Chrome:
System.setProperty("webdriver.chrome.driver","chrome_driver_win
dows_path/chromedriver.exe");

IE:
System.setProperty("webdriver.ie.driver","ie_driver_windows_pat
h/IEDriverServer.exe");

Edge:
System.setProperty("webdriver.edge.driver","edge_driver_windows
_path/MicrosoftWebDriver.exe");

Safari: The Safari driver is now built into the browser by Apple

Using preferences to support mobile device
simulators, emulators, and real devices
The mobile device preferences and behaviors can be set to specific defaults when the driver
is created, set on the fly using optional parameters, or set as system properties. Preferences
can be set for loading applications on the device, device options, timeouts, platform
versions, device versions, and so on. This is accomplished using the Desired Capabilities
class, as with browser testing. The following section provides examples of some of the
mobile simulator, emulator, and physical device preferences.

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[187]

iOS preferences
Preferences for iPhone/iPad mobile devices are set using the Desired Capabilities class.
Capabilities are set for the iPhone and iPad simulators, or physical devices. The following
example shows various capabilities for these iOS devices:

switch(browser) {
 case "iphone": case "ipad":
 if (browser.equalsIgnoreCase("ipad")) {
 caps = DesiredCapabilities.ipad();
 }

 else {
 caps = DesiredCapabilities.iphone();
 }

 caps.setCapability("appName",
 "https://myapp.com/myApp.zip");
 caps.setCapability("udid",
 "12345678"); // physical device
 caps.setCapability("device",
 "iPhone"); // or iPad

 mobileDriver.set(new IOSDriver<MobileElement>
 (new URL("http://127.0.0.1:4723/wd/hub"),
 caps));

 break;

The Desired Capabilities for iOS and Android can be found at http:/ /
appium. io/ slate/ en/ master/ ?java#the- default- capabilities- flag.

Android preferences
Android: Preferences for these mobile devices are set using the Desired Capabilities class.
Capabilities are set for Android Emulators, or physical devices. The following example
shows various capabilities for these Android devices:

switch(browser) {
 case "android":
 caps = DesiredCapabilities.android();

 caps.setCapability("appName",

http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag
http://appium.io/slate/en/master/?java#the-default-capabilities-flag

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[188]

 "https://myapp.com/myApp.apk");
 caps.setCapability("udid",
 "12345678"); // physical device
 caps.setCapability("device",
 "Android");

 mobileDriver.set(new AndroidDriver<MobileElement>
 (new URL("http://127.0.0.1:4723/wd/hub"),
 caps));

 break;

Multithreading support for parallel and
distributed testing
In order to leverage the TestNG parallel testing features, users must create a separate
thread for each driver instance to control event processing requests. This is done in Java
using the ThreadLocal<T> class. By declaring variables with this class, each thread has its
own initialized copy of the variable, and can return specifics of that session. The following
variables are declared in the singleton driver class, and have getter and setter methods to
retrieve the session ID, browser, platform, and version:

private ThreadLocal<WebDriver> webDriver = new ThreadLocal<WebDriver>();
private ThreadLocal<AppiumDriver<MobileElement>> mobileDriver = new
ThreadLocal<AppiumDriver<MobileElement>>();

private ThreadLocal<String> sessionId = new ThreadLocal<String>();
private ThreadLocal<String> sessionBrowser = new ThreadLocal<String>();
private ThreadLocal<String> sessionPlatform = new ThreadLocal<String>();
private ThreadLocal<String> sessionVersion = new ThreadLocal<String>();

Key points:

The set methods are called by the setDriver methods during instantiation of
the driver.
The get methods are stored in the singleton driver class and can be called after
the driver is created. Users can retrieve session parameters for each specific
instance of the driver that is running.

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[189]

To leverage the separate instances during parallel test runs, TestNG suite
parameters must also be used. For example:

<suite name="Parallel_Test_Suite" preserve-order="true"
parallel="classes" thread-count="10">

These are examples of the getter methods for the driver class:

/**
 * getSessionId method gets the browser or mobile id
 * of the active session
 *
 * @return String
 */
public String getSessionId() {
 return sessionId.get();
}

/**
 * getSessionBrowser method gets the browser or mobile type
 * of the active session
 *
 * @return String
 */
public String getSessionBrowser() {
 return sessionBrowser.get();
}

/**
 * getSessionVersion method gets the browser or mobile version
 * of the active session
 *
 * @return String
 */
public String getSessionVersion() {
 return sessionVersion.get();
}

/**
 * getSessionPlatform method gets the browser or mobile platform
 * of the active session
 *
 * @return String
 */
public String getSessionPlatform() {
 return sessionPlatform.get();
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[190]

How to set:

The session ID, browser, version, and platform can be set during driver creation
in the setDriver methods as follows:

getEnv = "local";
getPlatform = platform;

if (browser.equalsIgnoreCase("iphone") ||
 browser.equalsIgnoreCase("android")) {

 sessionId.set(((IOSDriver<MobileElement>)
 mobileDriver.get()).getSessionId().toString());

 sessionId.set(((AndroidDriver<MobileElement>)
 mobileDriver.get()).getSessionId().toString());

 sessionBrowser.set(browser);
sessionVersion.set(caps.getCapability("deviceName").toString());
 sessionPlatform.set(getPlatform);
}

else {
 sessionId.set(((RemoteWebDriver) webDriver.get())
 .getSessionId().toString());

 sessionBrowser.set(caps.getBrowserName());
 sessionVersion.set(caps.getVersion());
 sessionPlatform.set(getPlatform);
}

Passing optional arguments and parameters
to the driver
In many instances, users will want to change the default behavior of the browser before the
test starts, or on the fly when creating a new driver during the test run. We previously
covered setting default preferences and options in the setDriver method to keep the test
environment static. Now, we can alter the default preferences using the varargs parameter
in Java, as an optional parameter to the setDriver method. Here are the basics:

The varargs parameter to setDriver will be a Map<String, Object> type

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[191]

Map can be passed into the driver when creating a new browser instance, or by
setting a JVM argument of mapped preferences
JVM arguments used to pass in mapped preferences can be done in a TestNG
XML file as a parameter, an IDE Run Configuration using a JVM arg, or as a -
Dswitch to the command-line executable
Each browser type will need to process the map of Desired Capabilities,
preferences, and options

varargs
The following example shows how to use the varargs parameter in the setDriver
method, which is called optPreferences. This is the setDriver method so far, from
what we have built:

@SafeVarargs
public final void setDriver(String browser,
 String environment,
 String platform,
 Map<String, Object>... optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;
 String localHub = "http://127.0.0.1:4723/wd/hub";
 String getPlatform = null;

 switch (browser) {
 case "firefox":
 caps = DesiredCapabilities.firefox();
 FirefoxProfile ffProfile = new FirefoxProfile();

 ffProfile.setPreference("browser.autofocus",
 true);
 caps.setCapability(FirefoxDriver.PROFILE,
 ffProfile);
 caps.setCapability("marionette",
 true);
 System.setProperty("webdriver.gecko.driver",
 "gecko_driver_windows_path/geckodriver.exe");

 if (optPreferences.length > 0) {
 processFFProfile(ffProfile, optPreferences);
 }

 webDriver.set(new FirefoxDriver(caps));

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[192]

 break;
 case "chrome":
 caps = DesiredCapabilities.chrome();
 ChromeOptions chOptions = new ChromeOptions();

 Map<String, Object> chromePrefs =
 new HashMap<String, Object>();
 chromePrefs.put("credentials_enable_service",
 false);
 chOptions.setExperimentalOption("prefs",
 chromePrefs);
 chOptions.addArguments("--disable-plugins",
 "--disable-extensions",
 "--disable-popup-blocking");
 caps.setCapability(ChromeOptions.CAPABILITY,
 chOptions);
 caps.setCapability("applicationCacheEnabled",
 false);
 System.setProperty("webdriver.chrome.driver",
 "chrome_driver_windows_path/chromedriver.exe");

 if (optPreferences.length > 0) {
 processCHOptions(chOptions, optPreferences);
 }

 webDriver.set(new ChromeDriver(caps));
 break;
 case "internet explorer":
 caps = DesiredCapabilities.internetExplorer();

 InternetExplorerOptions ieOpts =
 new InternetExplorerOptions();

 ieOpts.requireWindowFocus();
 ieOpts.merge(caps);
 caps.setCapability("requireWindowFocus",
 true);
 System.setProperty("webdriver.ie.driver",
 "ie_driver_windows_path/IEDriverServer.exe");

 if (optPreferences.length > 0) {
 processDesiredCaps(caps, optPreferences);
 }

 webDriver.set(new InternetExplorerDriver(caps));
 break;
 }

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[193]

 // etc...
}

The Oracle Java doc for varargs is located at https:/ /docs. oracle. com/
javase/ 8/docs/ technotes/ guides/ language/ varargs. html.

The parameter for setDriver
The next example shows how to pass Map into the setDriver method using the varargs
parameter:

// first, create a map for the key:value pairs to pass into the driver
Map<String, Object> preferences = new HashMap<String, Object>;

// then put the key:value pairs into the map
preferences.put("applicationCacheEnabled",false);
preferences.put("network.cookie.cookieBehavior", 0);

// then, pass the map into the setDriver method
CreateDriver.getInstance().setDriver("firefox",
 "Windows 10",
 "local",
 preferences);

JVM argument – -Dswitch
Finally, the next example shows how to set the optional browser preferences as a JVM
argument using the TestNG parameter attribute in the suite XML file:

// pass in the key:value pairs as a runtime argument
-Dbrowserprefs=applicationCacheEnabled:false,
 network.cookie.cookieBehavior:0

// pass in the key:value pairs as a TestNG XML parameter
<test name="Selenium TestNG Test Suite">
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 10" />
 <parameter name="browserPrefs" value="intl.accept_languages:fr" />

 <classes>
 <class name="com.myproject.MyTest" />
 </classes>

https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/varargs.html

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[194]

</test>

// for convenience, create a setPreferences method
// to build the map to pass into the driver
public Map<String, Object> setPreferences() {
 Map<String, Object> prefsMap = new HashMap<String, Object>();
 List<String> allPrefs = Arrays.asList(
 System.getProperty("browserPrefs").split(",", -1));

 // extract the key/value pairs and pass to map...
 for (String getPref : allPrefs) {
 prefsMap.put(getPref.split(":")[0], getPref.split(":")[1]);
 }

 return prefsMap;
}

// set JVM arg, call this method on-the-fly, create new driver
if (System.getProperty("browserPrefs") != null) {
 CreateDriver.getInstance().setDriver("firefox",
 "Windows 10",
 "local",
 CreateDriver.getInstance().setBrowserPrefs()
);
}

Parameter processing methods
Once the optional preferences are passed into the setDriver method, the user then has to
process those options. For instance, there may be DesiredCapabilities,
 ChromeOptions, or FirefoxProfile preferences that need to be processed. First, for
each driver-type instance, there needs to be a check to see if the options have been passed
in, then if so, they have to be processed. Each type will be outlined as shown here:

/**
 * Process Desired Capabilities method to override default browser
 * or mobile driver behavior
 *
 * @param caps - the DesiredCapabilities object
 * @param options - the key: value pair map
 * @throws Exception
 */

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[195]

private void processDesiredCaps(DesiredCapabilities caps,
 Map<String,
 Object>[] options)
 throws Exception {

 for (int i = 0; i < options.length; i++) {
 Object[] keys = options[i].keySet().toArray();
 Object[] values = options[i].values().toArray();

 for (int j = 0; j < keys.length; j++) {
 if (values[j] instanceof Integer) {
 caps.setCapability(keys[j].toString(),
 (int) values[j]);
 }
 else if (values[j] instanceof Boolean) {
 caps.setCapability(keys[j].toString(),
 (boolean) values[j]);
 }
 else if (isStringInt(values[j].toString())) {
 caps.setCapability(keys[j].toString(),
 Integer.valueOf(values[j].toString()));
 }
 else if (Boolean.parseBoolean(values[j].toString())) {
 caps.setCapability(keys[j].toString(),
 Boolean.valueOf(values[j].toString()));
 }
 else {
 caps.setCapability(keys[j].toString(),
 values[j].toString());
 }
 }
 }
}
/**
 * Process Firefox Profile Preferences method to override default
 * browser driver behavior
 *
 * @param caps - the FirefoxProfile object
 * @param options - the key: value pair map
 * @throws Exception
 */

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[196]

private void processFFProfile(FirefoxProfile profile, Map<String, Object>[]
options) throws Exception {
 for (int i = 0; i < options.length; i++) {
 Object[] keys = options[i].keySet().toArray();
 Object[] values = options[i].values().toArray();

 // same as Desired Caps except the following difference
 for (int j = 0; j < keys.length; j++) {
 if (values[j] instanceof Integer) {
 profile.setPreference(keys[j].toString(),
 (int) values[j]);
 }

 // etc...
 }
 }
}

/**
 * Process Chrome Options method to override default browser
 * driver behavior
 *
 * @param caps - the ChromeOptions object
 * @param options - the key: value pair map
 * @throws Exception
 */
private void processCHOptions(ChromeOptions chOptions, Map<String,
Object>[] options) throws Exception {
 for (int i = 0; i < options.length; i++) {
 Object[] keys = options[i].keySet().toArray();
 Object[] values = options[i].values().toArray();

 // same as Desired Caps except the following difference

 for (int j = 0; j < keys.length; j++) {
 if (values[j] instanceof Integer) {
 values[j] = (int) values[j];
 chOptions.setExperimentalOption("prefs", options[i]);
 }

 // etc...
 }
 }
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[197]

Selenium Grid Architecture support using
the RemoteWebDriver and AppiumDriver
classes
When creating a WebDriver instance, users will pass specified preferences, options, and
capabilities to the driver running locally in their environment. As previously mentioned,
users can store the actual Chrome driver, Firefox driver, and other driver files in their repo,
so they won't have to be installed in each development environment. They can then point
the local driver instance to the repo location using a desired capability.

Now, when designing and using the Selenium Grid Architecture to run tests against, the
user will have to cast the browser or mobile capabilities to the RemoteWebDriver class, or
remote AppiumDriver server. This capability should be built into the driver class as well,
so the same class can support local, remote, and third-party test platforms. The Selenium
Grid Architecture will be discussed in great detail in a separate chapter, but the relevance
here is what needs to go into this driver class. Also, keep in mind that users must pass
parameters into their driver class to change the environment from local to remote, or
thirdParty to direct traffic to the grid nodes.

WebDriver: The URL of the remote grid hub, browser capabilities, driver-specific
casting, and any Selenium Grid Node capabilities that control directing traffic to
the specific Selenium standalone server node
AppiumDriver: The URL of the remote grid hub, mobile device capabilities, and
any Selenium Grid Node capabilities that control directing traffic to the specific
Appium server node

Here is the code for the preceding explanation:

// for each browser instance
if (environment.equalsIgnoreCase("remote")) {
 // set up the Selenium Grid capabilities...
 String remoteHubURL = "http://mygrid-
 hub.companyname.com:4444/wd/hub";

 caps.setCapability("browserName",
 browser);
 caps.setCapability("version",
 caps.getVersion());
 caps.setCapability("platform",
 platform);

 // unique user-specified name

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[198]

 caps.setCapability("applicationName",
 platform + "-" + browser);

 webDriver.set(new RemoteWebDriver(new URL(remoteHubURL),
caps));
 ((RemoteWebDriver) webDriver.get()).setFileDetector(
 new LocalFileDetector());
}

// for each mobile device instance
if (environment.equalsIgnoreCase("remote")) {
 // setup the Selenium Grid capabilities...
 String remoteHubURL = "http://mygrid-
 hub.companyname.com:4444/wd/hub";

 caps.setCapability("browserName",
 browser);
 caps.setCapability("platform",
 platform);

 // unique user-specified name
 caps.setCapability("applicationName",
 platform + "-" + browser);

 if (browser.contains("iphone")) {
 mobileDriver.set(new IOSDriver<MobileElement>
 (new URL(remoteHubURL),
 caps));
 }

 else {
 mobileDriver.set(new AndroidDriver<MobileElement>
 (new URL(remoteHubURL),
 caps));
 }
}

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[199]

Third-party grid architecture support
including the Sauce Labs Test Cloud
When adding support to the driver class for third-party grids such as Sauce Labs or
Perfecto Mobile, users must add conditions in the driver class that set specific preferences,
credentials, URLs, and so on, to direct traffic to that test platform. They are really just other
Selenium grids to run against in the cloud, which free up the tester from all the
maintenance requirements of an in-house grid. The condition to run on one of these third-
party platforms can be passed as a parameter to the test, specifically environment. For
instance, here is an example of a TestNG XML file using parameters to set up the driver:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My Test Suite" preserve-order="true" parallel="false" thread-
count="1" verbose="2">

<!-- suite parameters -->
 <!-- "local", "remote", "saucelabs" -->
 <parameter name="environment" value="saucelabs" />

 <test name="My Feature Test">
 <!-- test parameters -->
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 10" />

 or

 <parameter name="browser" value="iphone"/>
 <parameter name="platform" value="iphone"/>

 <classes>
 <class name="com.myproject.MyTest" />
 </classes>
 </test>
</suite>

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[200]

Each provider will require a different RemoteWebDriver URL, credentials to access their
test cloud, preferences, and various other features that would allow access to a DMZ inside
a corporate Firewall. Here are some examples of specific Sauce Labs Cloud platform
requirements:

Tunnel: If the web server, or any other servers, are behind a corporate Firewall
and not open to the internet, then a unique tunnel will have to be set up and
passed to the driver class as a Desired Capability.
Remote URL: Sauce Labs has its own RemoteWebDriver URL for accessing its
server
at http://SAUCE_USERNAME:SAUCE_ACCESS_KEY@ondemand.saucelabs.com
:80/wd/hub.
Preferences: Sauce Labs has a set of unique capabilities that allow the passing of
when creating the driver for the test. Examples include screen resolution,
browser versions (including latest and beta versions), mobile device types
(including physical and simulator/emulator devices), Selenium versions, driver
versions, session parameters, results processing, and so on.

The Sauce Labs Wiki documentation, which includes Desired Capabilities
and Platform Configurator, is located at https:/ /wiki. saucelabs. com/ .

// third party preferences for SauceLabs...

if (environment.equalsIgnoreCase("saucelabs")) {
 // setup the Selenium Grid capabilities...
 String remoteHubURL =
 "http://SAUCE_USERNAME:SAUCE_ACCESS_KEY
 @ondemand.saucelabs.com:80/wd/hub";

 caps.setCapability("screenResolution",
 "1920x1080");
 caps.setCapability("recordVideo",
 false);
 caps.setCapability("tunnelIdentifier",
 System.getProperty("TUNNEL_IDENTIFIER"));
 ...
}

https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/
https://wiki.saucelabs.com/

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[201]

Using property files to select browsers,
devices, versions, platforms, languages, and
many more
Rather than hardcoding default URLs, paths, revisions, mobile device settings, and so on
into the driver class itself, it makes more sense to encapsulate all those settings into a
properties file. This way, users do not have to traverse through code to change a setting,
driver version, or any paths required to support running the driver across platforms such
as Windows, iOS, and Linux. Also, different sets of properties can be stored in the file for
different environments such as local, remote, or third-party grids. Properties can be stored
and retrieved in Java using the Properties class. The following code examples show
property file formats, and the use of properties files in the Selenium driver class:

// Properties Class
public class CreateDriver {
 private Properties driverProps = new Properties();
 private static final String propertyFile = new File
 ("../myProject/com/path/selenium.properties").getAbsolutePath();

 @SafeVarargs
 public final void setDriver(String browser,
 String environment,
 String platform,
 Map<String, Object>... optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;

 // load properties from file...
 driverProps.load(new FileInputStream(propertyFile));

 switch (browser) {
 case "firefox":
 caps = DesiredCapabilities.firefox();

 // see previous example for caps...
 if (environment.equalsIgnoreCase("local")) {
 if (platform.toLowerCase().contains("windows")) {
 System.setProperty("webdriver.gecko.driver",
 driverProps.getProperty(
 "gecko.driver.windows.path"));
 }

Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications Chapter 9

[202]

 webDriver.set(new FirefoxDriver(caps));
 }

 break;
 }
}

Here is the selenium.properties file:

// selenium.properties file
Selenium 3 WebDriver/AppiumDriver Properties File

Revisions
selenium.revision=3.4.0
chrome.revision=2.30
safari.revision=2.48.0
gecko.revision=0.17.1

Firefox Settings
gecko.driver.windows.path=../path/geckodriver-v0.17.1-win64/geckodriver.exe
gecko.driver.linux.path=../path/geckodriver-v0.17.1-linux64/geckodriver
gecko.driver.mac.path=../path/geckodriver-v0.17.1-macos/geckodriver

Summary
The Selenium driver class is the "engine" that controls the browser or mobile device under
test. It determines which driver type to create, the look and feel of the driver, the default
preferences, multithreading capabilities, settings, and whether to run the test locally or on
the Selenium grid. It is a self-contained singleton class that creates one instance of the
driver that is used throughout the entire test run. All session parameters are retrievable
throughout the run, and they can be tracked to allow multiple drivers to run concurrently,
in a browser-to-mobile test, or in a parallel/distributed environment.

As we progress through the framework components, users will see how important this
class becomes to the integrity of the test. We will start by designing and building utility
classes to support the framework.

10
Selenium Framework Utility

Classes
This chapter will introduce users to designing and building the Java utility classes that are
required to support the Selenium framework. This includes classes for global variables,
synchronization, alternative JavaScript methods, results processing, and mail retrieval. The
following topics will be covered:

Introduction
Global variables
Synchronization utility class
The JavascriptExecutor class
The TestNG Listener class
File I/O class
Image capture class
The reporter class
The JavaMail class

Selenium Framework Utility Classes Chapter 10

[204]

Introduction
Java classes that are not Selenium page object classes, test classes, or data files, but support
testing browser or mobile applications, can be considered utility classes. Most utility classes
are static in nature, and use Java API methods that are not specific to any feature or test.
They can include methods that operate on the browser or mobile device itself, but are not
specific to the application running on them.

For example, the Selenium ExpectedConditions class has common methods to
synchronize tests against actions occurring on a page, but it doesn't matter what the pages
are, browser or mobile. Utilities can be built for file operations in reading, writing, or
deleting files during tests. Test listener classes can be built, leveraging the TestNG
TestListenerAdapter class, to log output to files and/or the console during test runs.

Other types of utilities that can be leveraged include image capture, JavaMail, third-party
test listener and reporters, and JavaScript Executor API methods. Each one will be outlined
in this chapter.

Users will learn how to build the utility classes required to support the framework that can
be leveraged for both browser and mobile testing.

Global variables
Global variables are generally static in nature, can be initialized at the start of a test, and
remain available throughout the entire test run. Variables for application defaults, timeouts,
property file locations, paths, and so on can be stored in this class. To be clear, test data is
not stored in this class. Test data will be encapsulated in a different file format, and will be
discussed in later chapters. Here is an example of some default global variables:

/**
 * Global Variable Class
 *
 * @author Author
 *
 */
public class Global_VARS {
 // target app defaults
 public static final String BROWSER = "firefox";
 public static final String PLATFORM = "Windows 10";
 public static final String ENVIRONMENT = "local";
 public static String DEF_BROWSER = null;
 public static String DEF_PLATFORM = null;
 public static String DEF_ENVIRONMENT = null;

Selenium Framework Utility Classes Chapter 10

[205]

 public static String PROPS_PATH = null;

 // driver class defaults
 public static String propFile = "../myPath/selenium.props";
 public static final String SE_PROPS =
 new File(propFile).getAbsolutePath();

 // test output path defaults
 public static final String TEST_OUTPUT_PATH = "testOutput/";
 public static final String LOGFILE_PATH = TEST_OUTPUT_PATH +
 "Logs/";
 public static final String REPORT_PATH = TEST_OUTPUT_PATH +
 "Reports/";
 public static final String BITMAP_PATH = TEST_OUTPUT_PATH +
 "Bitmaps/";

 // timeout defaults
 public static final int TIMEOUT_MINUTE = 60;
 public static final int TIMEOUT_SECOND = 1;
 public static final int TIMEOUT_ZERO = 0;
}

Synchronization utility classes
One of the most important classes in the Selenium framework is the library containing all
the test "synchronization" methods. In test automation, it is always necessary to "wait" for
something to happen on a page after sending an event. That would include such actions as
waiting for the page to render, waiting for an Ajax control to complete, waiting for a
different page to appear, waiting for an item in a table, and so on. If test scripts are not
synchronized, they will randomly fail when applications run faster or slower during
execution, throwing exceptions that specific elements are not found. Selenium has
introduced a set of classes that accommodate all of the types of synchronization that are
required in browser and mobile testing.

Selenium Framework Utility Classes Chapter 10

[206]

Selenium synchronization classes
Some of the highlights of the synchronization classes that will be covered include:

The ExpectedConditions class
The WebDriverWait/FluentWait classes
Custom synchronization class: wrapping ExpectedConditions and
WebDriverWait methods

The ExpectedConditions class
The Selenium WebDriver's ExpectedConditions class provides users with common
methods to check for specific conditions of elements on a page. Those conditions include
such things as:

Titles
URLs
Presence of elements
Visibility of elements
Text on elements
Frames to switch to
Invisibility of elements
Element-clickable states
Staleness of elements
Refreshing elements
Element selection states
Alerts
Number of windows
Finding elements
Attributes of elements
Number of elements
Nested elements
JavaScript values

Selenium Framework Utility Classes Chapter 10

[207]

The JavaDoc for the ExpectedConditions class is located at https:/ /
seleniumhq. github. io/ selenium/ docs/ api/ java/ org/ openqa/ selenium/
support/ ui/ ExpectedConditions. html.

Using the ExpectedConditions class's methods is simple. You would just call them as
follows:

ExpectedConditions.visibilityOf(WebElement element)

Alternatively, you can use:

ExpectedConditions.visibilityOfElementLocated(By by)

These two methods do the same thing, except one takes a static locator as a parameter, and
the second one takes a dynamically generated locator. But using these methods alone is not
enough. It is imperative to wait "up to" a designated time period before throwing an
exception that the element is not found. This can be done by passing the result of these
methods to the WebDriverWait class's methods.

WebDriverWait/FluentWait classes
The Selenium WebDriverWait class, which extends the FluentWait class, contains
timer methods that allow waiting for a specific condition until it is found. It includes such
methods as waiting until a condition is met, polling intervals, ignoring specific exceptions
while polling, and so on.

The JavaDoc for the WebDriverWait class is located at https:/
/seleniumhq. github. io/ selenium/ docs/ api/java/ org/
openqa/ selenium/ support/ ui/ WebDriverWait. html.

The JavaDoc for the FluentWait class is located at https:/ /
seleniumhq. github. io/ selenium/ docs/ api/ java/ org/ openqa/
selenium/ support/ ui/FluentWait. html.

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/ExpectedConditions.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/WebDriverWait.htm
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/support/ui/FluentWait.html

Selenium Framework Utility Classes Chapter 10

[208]

Custom synchronization methods
Combining the two sets of methods into a wrapper method will allow users to synchronize
the scripts on a variety of conditions that might exist on a web or mobile page. The
following are examples of wrapper methods that wait for elements to become visible or
invisible:

/**
 * waitFor method to wait up to a designated period before
 * throwing exception (static locator)
 *
 * @param element
 * @param timer
 * @throws Exception
 */
public static void waitFor(WebElement element,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();

 // wait for the static element to appear
 WebDriverWait exists = new WebDriverWait(driver,
 timer);
 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.visibilityOf(element)));
}

/**
 * overloaded waitFor method to wait up to a designated period before
 * throwing exception (dynamic locator)
 *
 * @param by
 * @param timer
 * @throws Exception
 */
public static void waitFor(By by,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();

 // wait for the dynamic element to appear
 WebDriverWait exists = new WebDriverWait(driver,
 timer);

 // examples: By.id(id),By.name(name),By.xpath(locator),
 // By.cssSelector(css)

Selenium Framework Utility Classes Chapter 10

[209]

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.visibilityOfElementLocated(by)));
}

/**
 * waitForGone method to wait up to a designated period before
 * throwing exception if element still exists
 *
 * @param by
 * @param timer
 * @throws Exception
 */
public static void waitForGone(By by,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();

 // wait for the dynamic element to disappear
 WebDriverWait exists = new WebDriverWait(driver,
 timer);

 // examples: By.id(id),By.name(name),By.xpath(locator),
 // By.cssSelector(css)
 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.invisibilityOfElementLocated(by)));
}

/**
 * waitForURL method to wait up to a designated period before
 * throwing exception if URL is not found
 *
 * @param by
 * @param timer
 * @throws Exception
 */
public static void waitForURL(String url,
 int seconds)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebDriverWait exists = new WebDriverWait(driver,
 seconds);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.urlContains(url)));
}

/**

Selenium Framework Utility Classes Chapter 10

[210]

 * waitFor method to wait up to a designated period before
 * throwing exception if Title is not found
 *
 * @param by
 * @param timer
 * @throws Exception
 */
public void waitFor(String title,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getCurrentDriver();
 WebDriverWait exists = new WebDriverWait(driver, timer);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.titleContains(title)));
}

Notice the .refreshed method is called on ExpectedConditions
classes. This is a new method that Selenium introduced to avoid
StaleElementReferenceException type failures.

To summarize, any of the ExpectedConditions class methods can be wrapped in
synchronization methods as in these examples to wait for element conditions like clickable,
text, titles, URLs, and so on. It is important to keep in mind that these methods will only
wait up to the designated time period at the most, but as soon as it finds the element, it
moves on. This is unlike the behavior of a hardcoded sleep, which will wait the entire
length of time passed into it.

The JavascriptExecutor class
The Selenium JavascriptExecutor class allows users to inject JavaScript commands
directly into the context of the active browser frame or window. The use of this method is
required in cases where the standard WebDriver class's methods fail to find or act upon an
element on the browser page. JavaScript commands can be executed synchronously or
asynchronously on the page. The class is an interface, and has been implemented for all the
current driver classes. When designing a class to utilize this interface, users can pass
commands directly to a WebElement by using the static locator, or one of the common
locator methods available to WebDriver. Some of the more common methods will be
outlined here:

Selenium Framework Utility Classes Chapter 10

[211]

The JavaDoc for the JavascriptExecutor class is located at https:/ /
seleniumhq. github. io/ selenium/ docs/ api/ java/ org/ openqa/ selenium/
JavascriptExecutor. html.

/**
 * Selenium JavaScript Executor Utility Class
 *
 */
public class JavaScriptUtils {

 // constructor
 public JavaScriptUtils() {
 }

}

/**
 * execute - generic method to execute a non-parameterized JS command
 *
 * @param command
 */
public static void execute(String command) {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript(command);
}

/**
 * execute - overloaded method to execute a JS command on WebElement
 *
 * @param command
 * @param element
 */
public static void execute(String command,
 WebElement element) {

 WebDriver driver = CreateDriver.getInstance().getDriver();

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript(command, element);
 }

/**
 * click - method to execute a JavaScript click event
 *

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/JavascriptExecutor.html

Selenium Framework Utility Classes Chapter 10

[212]

 * @param element
 */
public static void click(WebElement element) {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript("arguments[0].click();", element);
}

/**
 * click - overloaded method to execute a JavaScript click event using By
 *
 * @param by
 */
public static void click(By by) {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebElement element = driver.findElement(by);

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript("arguments[0].click();", element);
}

/**
 * sendKeys - method to execute a JavaScript value event
 *
 * @param keys
 * @param element
 */
public static void sendKeys(String keys,
 WebElement element) {

 WebDriver driver = CreateDriver.getInstance().getDriver();

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript("arguments[0].value='" + keys + "';", element);
}

Occasionally, test scripts need to be synchronized using a page event like the completion of
the page rendering, an Ajax control completing, and so on. That can also be accomplished
using the JavascriptExecutor class. The following methods wait for a page or Ajax
control to complete:

/**
 * isPageReady - method to verify that a page has completely rendered
 *
 * @param driver
 * @return boolean
 */

Selenium Framework Utility Classes Chapter 10

[213]

public static boolean isPageReady(WebDriver driver) {
 JavascriptExecutor js = (JavascriptExecutor)driver;
 return (Boolean)js.executeScript("return document.readyState")
 .equals("complete");
}

/**
 * isAjaxReady - method to verify that an ajax control has rendered
 *
 * @param driver
 * @return boolean
 */
public static boolean isAjaxReady(WebDriver driver) {
 JavascriptExecutor js = (JavascriptExecutor)driver;
 return (Boolean)js.executeScript("return jQuery.active == 0");
}

Other JavaScript command examples that can be passed to a method in this class include:

Set focus by ID: document.getElementById('" + id +"')[0].focus()
Scrolling: arguments[0].scrollIntoView(true or false);
Set style visibility by ID: document.getElementById('" + id +
"').style.visibility = 'visible';

Set style block by ID: document.getElementById('" + id +
"').style.display = 'block';

Set style block by ID: document.getElementByClassName('"+ class
+"').style.display = 'block';

The TestNG Listener class
In order to provide test results to the IDE console, or to a log file, users must build a test
listener class into their framework. There are many open source classes available for use, as
well as a TestNG class called TestListenerAdapter, which can be extended to provide
custom logging information in real time. In other words, users can get results while the
tests are running by logging them to the console, or by logging the data to a file.

Selenium Framework Utility Classes Chapter 10

[214]

The JavaDoc for the TestNG's TestListenerAdapter class is located at
https:/ /jitpack. io/ com/ github/ cbeust/ testng/ master- 6.12-
gf77788e- 171/ javadoc/ org/testng/ TestListenerAdapter. html.

How do you use it? How does it keep track of all the test results while the suite of tests are
running? How does it get automatically called in a Selenium Framework Test Suite run?
These questions will be answered in this section.

Building the test listener class
To simplify getting started, the new test listener class can extend TestNG's
TestListenerAdapter class, providing the collection of test results to the class, which can
then be customized, override default methods where necessary. Some of the methods that
can be customized include:

onStart(ITestContext testContext)

onFinish(ITestContext testContext)

onTestStart(ITestResult tr)

onTestSuccess(ITestResult tr)

onTestFailure(ITestResult tr)

onTestSkipped(ITestResult tr)

onConfigurationSuccess(ITestResult tr)

onConfigurationFailure(ITestResult tr)

onConfigurationSkip(ITestResult tr)

The other TestNG classes used by this listener class are the iTestContext and
iTestResult interfaces, which provide data on the number of tests, stats on passed, failed,
skipped, test method names, times, groups, suites, output directories, status, parameters,
classes, context, and so on. This data can then be logged in a formatted context to the
console, or to a log file:

/**
 * TestNG TestListener Class
 *
 */
public class TestNG_Listener extends TestListenerAdapter {
 ...

https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/TestListenerAdapter.html

Selenium Framework Utility Classes Chapter 10

[215]

The JavaDoc for the iTestContext class is located at https:/ /
jitpack. io/ com/ github/ cbeust/ testng/ master- 6.12-
gf77788e- 171/ javadoc/ org/testng/ ITestContext. html.

The JavaDoc for the iTestResult class is located at https:/ /
jitpack. io/ com/ github/ cbeust/ testng/ master- 6.12-
gf77788e- 171/ javadoc/ org/testng/ ITestResult. html.

Logging the results to the console or log file
Each method can override the superclass version of the method to customize what users
would want to see in the console or log file. You must remember to call the super
equivalent if you do override the methods to be able to get the collection of test results.
Here are a few examples of overridden methods in the new class:

/**
 *
 * onStart - method to log data before any tests start
 *
 * @param testContext
 */
@Override
public void onStart(ITestContext testContext) {
 try {
 log("\nSuite Start Date: " +
 new SimpleDateFormat("MM.dd.yyyy.HH.mm.ss")
 .format(new Date()) +
 ".log");
 }

 catch (Exception e) {
 e.printStackTrace();
 }

 super.onStart(testContext);
}

/**
 * onFinish - method to log data after all tests are complete
 *
 * @param testContext
 */
@Override
public void onFinish(ITestContext testContext) {

https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-gf77788e-171/javadoc/org/testng/ITestResult.html

Selenium Framework Utility Classes Chapter 10

[216]

 try {
 log("\nTotal Passed = " +
 getPassedTests().size() +
 ", Total Failed = " +
 getFailedTests().size() +
 ", Total Skipped = " +
 getSkippedTests().size() +
 "\n");
 }

 catch(Exception e) {
 e.printStackTrace();
 }

 super.onFinish(testContext);
}

// the following are several other methods that can be
// customized to log data to the console or logfile

/**
 * onTestSuccess - method to log the results if the test passes
 *
 * @param tr
 */
@Override
public void onTestSuccess(ITestResult tr) {
 try {
 log("***Result = PASSED\n");
 log(tr.getEndMillis(),
 "TEST -> " +
 tr.getInstanceName() +
 "." +
 tr.getName());
 log("\n");
 }

 catch(Exception e) {
 e.printStackTrace();
 }

 super.onTestSuccess(tr);
}

/**
 * log - method to log data to standard out or logfile
 *
 * @param dataLine

Selenium Framework Utility Classes Chapter 10

[217]

 */
public void log(long date, String dataLine) throws Exception {
 System.out.format("%s%n", String.valueOf(new Date(date)), dataLine);

 if (logFile != null) {
 writeLogFile(logFile, dataLine);
 }
}

public static String logFile = null;

/**
 * log - overloaded method to log data to standard out or logfile
 *
 * @param line
 */
public void log(String dataLine) throws Exception {
 System.out.format("%s%n", dataLine);

 if (logFile != null) {
 writeLogFile(logFile, dataLine);
 }
}

Including the test runner in the test class or suite
After building the test listener class, users can then include it at the test class level, or in the
TestNG Suite XML file, as follows:

/**
 * My Test Class
 *
 * @author Name
 *
 */
@Listeners(TestNG_Listener.class)
public class MyTest {
 ...
}

// TestNG Suite XML File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" verbose="2">
 <!-- test listeners -->

Selenium Framework Utility Classes Chapter 10

[218]

 <listeners>
 <listener class-name="myPath.TestNG_Listener" />
 </listeners>

</suite>

File I/O class
Another utility class that users will need to build is the file I/O class. This is a static Java
class that contains all the methods for reading, writing, and deleting files, copying files,
renaming files, accessing property files, finding files, setting file paths, extracting data,
looking up messages, and many more. Storing all these similar methods in one central
location for all CRUD operations (create, read, update, and delete) allows users to call
these static methods from any page object or test class. Some of the more common methods
will be outlined in this section.

Property files
Property files are common in testing, and are usually used for storing test environment
data. There are various formats for property files, but they usually store data strings in
key/value pairings. In order to read a property file in Java, there is a class called
Properties, which has various methods that load, list, set, or get properties. Here is an
example of a property file pairing, with a method to read it, for storing Selenium driver
properties:

selenium.properties file

driver revisions
selenium.revision=3.4.0
chrome.revision=2.30
safari.revision=2.48.0
gecko.revision=0.18.0
ie.revision=3.4.0

browser versions
firefox.browser.version=54.0
chrome.browser.version=59.0
ie.browser.version=11.0
safari.browser.version=10.0
edge.browser.version=15.15063
...

Selenium Framework Utility Classes Chapter 10

[219]

/**
 * File I/O Static Utility Class
 *
 * @author name
 *
 */
public class File_IO {
 /**
 * loadProps- method to load a Properties file
 *
 * @param file - The file to load
 * @return Properties - The properties to retrieve
 * @throws Exception
 */
 public static Properties loadProps(String file) throws Exception {
 Properties props = new Properties();
 props.load(new FileInputStream(file));

 return props;
 }
 ...

// use of file I/O method loadProps
public static final String SELENIUM_PROPS = new
File("../myPath/selenium.properties")
 .getAbsolutePath();

Properties seProps = File_IO.loadProps(SELENIUM_PROPS);

// get properties to use
String seleniumRev = seProps.getProperty("selenium.revision"));
String firefoxVer = seProps.getProperty("firefox.browser.version"));

The JavaDoc for the Properties class is located at https:/ /docs.
oracle. com/ javase/ 7/ docs/api/ java/ util/ Properties. html.

https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
https://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

Selenium Framework Utility Classes Chapter 10

[220]

Lookup table files
While property files can be used to store environment data, they can also be used to store
confirmation and error messages. Users can retrieve the error messages using a code that
development provides, in essence creating a lookup table. Here is a Java utility method for
reading and converting error messages on the fly for use in negative testing:

Exception Messages
001=Invalid Login, please try again
002=Login failed, user not found
003=Password is not valid
etc...

/**
 * lookupError - method to retrieve error messages using code
 *
 * @param propFilePath - the property file including path to read
 * @param code - the error code to use
 * @return String
 * @throws Exception
 */
public static String lookupError(String propFilePath,
 String code)
 throws Exception {

 Properties exceptionProps = new Properties();
 exceptionProps.load(new FileInputStream(propFilePath));

 // get error message using code as key
 return exceptionProps.getProperty(code);
}

CSV files
In many cases, data is stored in the CSV file format. CSV files have been used in automated
testing for storing test data, environment data, mappings, and so on. The format is simple,
and the data can be read using simple Java methods as outlined here:

/**
 * extractData_CSV - method to extract CSV file data for use in testing
 *
 * @param csvFile - the CSV file to read
 * @param rowID - The rowID to parse
 * @return List<String>
 * @throws Exception

Selenium Framework Utility Classes Chapter 10

[221]

 */
public static List<String> extractData_CSV(String csvFile,
 String rowID)
 throws Exception {

 List<String> rows = new ArrayList<String>();

 BufferedReader reader = new BufferedReader(new FileReader(csvFile));
 String line = "";

 while ((line = reader.readLine()) != null) {
 if (line.startsWith(rowID)) {
 rows.add(line);
 }
 }

 reader.close();
 return rows;
}

Log files
Log files are also used frequently in testing to verify entries in server logs, application logs,
and browser logs. Static utility methods can be built to extract log data as well. Here is a
simple example:

/**
 * extractData_LOG - method to extract Log file data for use in testing
 *
 * @param logFile - the logfile to read
 * @return List<String>
 * @throws Exception
 */
public static List<String> extractData_LOG(String logFile)
 throws IOException {
 List<String> rows = new ArrayList<String>();

 BufferedReader reader = new BufferedReader(new FileReader(logFile));
 String line = "";

 while ((line = reader.readLine()) != null) {
 rows.add(line);
 }

 reader.close();
 return rows;

Selenium Framework Utility Classes Chapter 10

[222]

}

/**
 * writeFile - method to stuff a row entry into a file
 *
 * @param file - the file to write to
 * @param rowData - the line to write into the file
 * @throws Exception
 */
public static void writeFile(String file,
 String rowData)
 throws Exception {

 Boolean bFound = false;

 BufferedReader reader = new BufferedReader(new FileReader(file));
 String getLine = "";

 // verify if row entry exists
 while ((getLine = reader.readLine()) != null) {
 if (getLine.contains(rowData)) {
 bFound = true;
 break;
 }
 }

 reader.close();

 if (bFound != true) {
 BufferedWriter writer =
 new BufferedWriter(new FileWriter(file, true));

 writer.append(rowData);
 writer.newLine();
 writer.close();
 }
}

Selenium Framework Utility Classes Chapter 10

[223]

The image capture class
Another important library to include in the framework is the image capture class. It is used
by the test listener, reporter, and test classes to take screenshots of the browser or mobile
screens when exceptions occur. There are various methods that can be built to capture the
image of the entire screen, an individual WebElement or MobileElement, or to compare the
images. Each method will be outlined here:

The image capture methods were developed by Unmesh Gundecha, and
published by Packt Publishing in the reference book Selenium Testing Tools
Cookbook - Second Edition. The book is available at https:/ /www. packtpub.
com/web- development/ selenium- testing- tools- cookbook- second-
edition.

/**
 * Image Capture and Compare Class
 *
 * @author Name
 *
 */
public class ImageCapture {
 // constructor
 public ImageCapture() throws Exception {
 }

...

The capture screen method
There are many ways to capture and name the image of the screen. Using the test method
name and a timestamp for the image name is a common practice. This aligns the captured
screens with the test methods that created them, putting a date on the filename, and so on:

/**
 * screenShot - method that takes iTestResult as parameter
 *
 * @param result - The result of test
 * @return String
 */
public static String screenShot(ITestResult result) throws Exception {
 DateFormat stamp = new SimpleDateFormat("MM.dd.yy.HH.mm.ss");
 Date date = new Date();

 ITestNGMethod method= result.getMethod();

https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition

Selenium Framework Utility Classes Chapter 10

[224]

 String testName = method.getMethodName();

 return captureScreen(testName + "_" + stamp.format(date) + ".png");
}

/**
 * captureScreen - method to capture the entire screen of the Browser
 * or Mobile App
 *
 * @param filename - The filename to save it to
 */
 public static String captureScreen(String filename) throws Exception {
 String bitmapPath = "myPath";
 WebDriver driver = CreateDriver.getInstance().getCurrentDriver();
 File screen = null;

 if (Global_VARS.DEF_ENVIRONMENT.equalsIgnoreCase("remote")) {
 // cast to Augmenter class for RemoteWebDriver
 screen = ((TakesScreenshot)new Augmenter().augment(driver))
 .getScreenshotAs(OutputType.FILE);
 }

 else {
 screen = ((TakesScreenshot)driver)
 .getScreenshotAs(OutputType.FILE);
 }

 FileUtils.copyFile(screen, new File(bitmapPath + filename));
 return filename;
}

The capture image method
Occasionally, users might want to capture just the WebElement or MobileElement on the
screen under test for later comparison. The following methods will capture just the specific
image of the web, or MobileElement:

/**
 * imageSnapshot - method to take snapshot of WebElement
 *
 * @param element - The Web or Mobile Element to capture
 * @return File
 * @throws Exception
 */
public static File imageSnapshot(WebElement element) throws Exception {
 WrapsDriver wrapsDriver = (WrapsDriver) element;

Selenium Framework Utility Classes Chapter 10

[225]

 File screen = null;

 // capture the WebElement snapshot
 screen = ((TakesScreenshot) wrapsDriver.getWrappedDriver())
 .getScreenshotAs(OutputType.FILE);

 // create Buffered Image instance from captured screenshot
 BufferedImage img = ImageIO.read(screen);

 // get the width/height of the WebElement for the rectangle
 int width = element.getSize().getWidth();
 int height = element.getSize().getHeight();
 Rectangle rect = new Rectangle(width,height);

 // get the location of WebElement in a point (x,y)
 Point p = element.getLocation();

 // create image for element using location and size
 BufferedImage dest =
 img.getSubimage(p.getX(), p.getY(), rect.width, rect.height);

 // BMP,bmp,jpg,JPG,jpeg,wbmp,png,PNG,JPEG,WBMP,GIF,gif
 ImageIO.write(dest,"png",screen);

 return screen;
}

/**
 * captureImage - method to capture individual WebElement image
 *
 * @param image - the image to capture
 * @throws Exception
 */
public static void captureImage(String image) throws Exception {
 WebDriver driver = CreateDriver.getInstance().getCurrentDriver();

 WebElement getImage = driver.findElement(
 By.cssSelector("img[src*='" + image + "']"));

 image = image.replace(".","_" + Global_VARS.DEF_BROWSER + ".");

 FileUtils.copyFile(imageSnapshot(getImage),
 new File(Global_VARS.BITMAP_PATH + image));
}

Selenium Framework Utility Classes Chapter 10

[226]

The compare image method
Finally, after capturing the screen or WebElement, users can do a pixel or size comparison
of the two images. It is difficult to keep the bitmaps in sync from browser-to-browser, or
mobile device-to-mobile device, but the method is here for argument's sake:

public enum RESULT { Matched, SizeMismatch, PixelMismatch }

/**
 * compareImage - method to compare 2 images
 *
 * @param expFile - the expected file to compare
 * @param actFile - the actual file to compare
 * @return RESULT
 * @throws Exception
 */
public static RESULT compareImage(String expFile,
 String actFile)
 throws Exception {

 RESULT compareResult = null;
 Image baseImage = Toolkit.getDefaultToolkit().getImage(expFile);
 Image actualImage = Toolkit.getDefaultToolkit().getImage(actFile);

 // get pixels of image
 PixelGrabber baseImageGrab =
 new PixelGrabber(baseImage,0,0,-1,-1,false);

 PixelGrabber actualImageGrab =
 new PixelGrabber(actualImage,0,0,-1,-1,false);

 int [] baseImageData = null;
 int [] actualImageData = null;

 // get pixels coordinates of base image
 if (baseImageGrab.grabPixels()) {
 int width = baseImageGrab.getWidth();
 int height = baseImageGrab.getHeight();
 baseImageData = new int[width * height];
 baseImageData = (int[])baseImageGrab.getPixels();
 }

 // get pixels coordinates of actual image
 if (actualImageGrab.grabPixels()) {
 int width = actualImageGrab.getWidth();
 int height = actualImageGrab.getHeight();
 actualImageData = new int[width * height];

Selenium Framework Utility Classes Chapter 10

[227]

 actualImageData = (int[])actualImageGrab.getPixels();
 }

 // test for size mismatch, then pixel mismatch
 if ((baseImageGrab.getHeight() != actualImageGrab.getHeight()) ||
 (baseImageGrab.getWidth() != actualImageGrab.getWidth())) {
 compareResult = RESULT.SizeMismatch;
 }

 else if (java.util.Arrays.equals(baseImageData,actualImageData)) {
 compareResult = RESULT.Matched;
 }

 else {
 compareResult = RESULT.PixelMismatch;
 }

 return compareResult;
}

The reporter class
There are many open source reporter APIs that can be used to provide reports of TestNG
Suite results. For instance, ExtentReports by AventStack has an API that allows users to
customize the results of a TestNG Suite run into an HTML report format. This reporting
API, like others, is based on the TestNG's IReporter class. To generate a custom report
using the IReporter interface, users create a new class that implements IReporter and
the generateReport method:

The JavaDoc for the IReporter class is located at http:/ /static.
javadoc. io/ org. testng/ testng/ 6. 9.5/org/ testng/ IReporter. html.

import org.testng.IReporter;

/**
 * TestNG_Reporter Class
 *
 * Note: This report relies on the TestNG Suite XML file structure
 *
 * @author name
 *
 */

http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html
http://static.javadoc.io/org.testng/testng/6.9.5/org/testng/IReporter.html

Selenium Framework Utility Classes Chapter 10

[228]

public class TestNG_Reporter implements IReporter {
 /**
 * generateReport - method that generates a TestNG results-based
 report
 *
 * @param xmlSuites - the list of all the XML files
 * @param suites - the list of all the suites
 * @param outputDir - the output directory to save the report
 */
 @Override
 public void generateReport(List<XmlSuite> xmlSuites,
 List<ISuite> suites,
 String outputDir) {

 for (ISuite suite : suites) {
 // the report is entirely customizable from here
 // users can pull in results from ISuiteResult and
 // ITestResult to output to a file, console
 // or use a third-party API for HTML reporting
 }
 }
}

// TestNG Suite XML File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

 <suite name="My_Test_Suite" preserve-order="true" verbose="2">

 <!-- test reporters -->
 <listeners>
 <listener class-name="myPath.TestNG_Reporter" />
 </listeners>

</suite>

Sample test reporter classes are located at https:/ /github. com/ cbeust/
testng/ tree/ master/ src/ main/ java/ org/ testng/ reporters.

https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters
https://github.com/cbeust/testng/tree/master/src/main/java/org/testng/reporters

Selenium Framework Utility Classes Chapter 10

[229]

The ExtentReports API has a Professional and Community Edition of the reporter API.
There is full documentation on how to build the HTML report class, customizing it to
include system info, test data, screenshots, stacktrace, log file data, TestNG results, and so
on. The report has a very elegant CSS look-and-feel to it, and is fairly straightforward to
build into the framework. It can then be included in a Test Suite XML file using the format
<listener class-name="myPath.ExtentReporterNG" />.

The ExtentReports documentation is located at http:/ /extentreports.
com/docs/ versions/ 3/ java/.

The JavaMail class
In many situations, it is convenient to retrieve, verify, and delete emails sent from an
application. There are several JavaMail APIs that allow users to perform these actions. This
section will cover using these APIs to get Google Mail Messages, get their content, get a
URL link, and delete all messages once found:

The JavaDoc for the JavaMail class is located at https:/ / docs. oracle.
com/javaee/ 7/ api/ javax/ mail/ package- summary. html.

/**
 * getGmailMessage - method to get the gmail message by username, password,
 * and email account
 *
 * @param username
 * @param password
 * @param subject
 * @param email
 * @return Message
 * @throws Exception
 */
public static Message getGmailMessage(String username,
 String password,
 String subject,
 String email)
 throws Exception {

 String toField = null, subjectField = null;
 int iterations = 1;

http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
http://extentreports.com/docs/versions/3/java/
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/mail/package-summary.html

Selenium Framework Utility Classes Chapter 10

[230]

 Message getMessage = null;
 Session session = null;
 Store store= null;
 Properties props = System.getProperties();

 // props to access google mail server
 props.setProperty("mail.store.protocol", "imaps");
 props.setProperty("mail.imap.ssl.enable", "true");
 props.setProperty("mail.imap.port", "993");

 session = Session.getInstance(props, null);
 store = session.getStore("imaps");
 store.connect("imap.gmail.com", username, password);

 Folder folder = store.getFolder("INBOX");
 folder.open(Folder.READ_WRITE);

 // for each loop iteration, get all the Inbox messages again...
 while (iterations <= waitLimit) {
 Message [] messages = null;
 messages = folder.getMessages();

 // query emails by to and subject fields
 for (Message message : messages) {
 toField = message.getHeader("To")[0];
 subjectField = message.getSubject();

 if (toField.equalsIgnoreCase(email) &&
 subjectField.equals(subject)) {
 getMessage = message;
 break;
 }
 }

 // wait a second and rerun loop if not found
 if (getMessage == null) {
 CreateDriver.getInstance().driverWait(
 Global_VARS.TIMEOUT_SECOND);
 iterations++;
 }

 else {
 break;
 }
 }

 // return message or throw exception if not found
 if (getMessage != null) {

Selenium Framework Utility Classes Chapter 10

[231]

 return getMessage;
 }

 else {
 throw new Exception("The Email Message was Not found!");
 }
}

/**
 * getMsgContent- method to verify the content of a gmail message
 *
 * @param username
 * @param password
 * @param subject
 * @param to
 * @return String
 * @throws Exception
 */
public static String getMsgContent(String username,
 String password,
 String subject,
 String to)
 throws Exception {

 Message message = getGmailMessage(username, password, subject, to);

 String line;
 StringBuffer buffer = new StringBuffer();
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 message.getInputStream()));

 while ((line = reader.readLine()) != null) {
 buffer.append(line);
 }

 return buffer.toString();
}

/**
 * getMsgLink - method to get the link in the gmail message
 *
 * @param username
 * @param password
 * @param subject
 * @param email
 * @return String
 * @throws Exception
 */

Selenium Framework Utility Classes Chapter 10

[232]

public static String getMsgLink(String username,
 String password,
 String subject,
 String to)
 throws Exception {

 String content = getMsgContent(username, password, subject, to);

 // get email url link
 Pattern pattern = Pattern.compile("href=\"(.*?)\"", Pattern.DOTALL);
 Matcher match = pattern.matcher(content);
 String regURL = null; // URL from email content

 while (match.find()) {
 regURL= match.group(1);
 }

 return regURL;
}

/**
 * deleteEmails - method to delete all emails using username and password
 *
 * @param username
 * @param password
 * @throws Exception
 */
public static void deleteEmails(String username,
 String password)
 throws Exception {

 // props to access google mail server
 Properties props = System.getProperties();
 props.setProperty("mail.store.protocol", "imaps");

 Session session = Session.getDefaultInstance(props, null);
 Store store = session.getStore("imaps");
 store.connect("imap.gmail.com", username, password);

 // get all emails in the inbox
 Folder folder = store.getFolder("INBOX");
 folder.open(Folder.READ_WRITE);

 Message[] messages = null;
 messages = folder.getMessages();

 for (int i = 0; i < messages.length; i++) {
 messages[i].setFlag(Flag.DELETED, true);

Selenium Framework Utility Classes Chapter 10

[233]

 }

 folder.close(true);
 }

Summary
It is important to keep static utilities separate from the Selenium page object and test
classes. This reduces duplicate code, allows users to maintain the framework utilities in a
central location, and provides all users who use the framework for testing with a set of
classes they can readily include in their tests.

The synchronization class is what makes the framework robust. If users do not synchronize
the scripts, they will become unreliable, failing on different browsers, mobile devices, and
platforms.

The test listeners, reporters, and image capture utilities provide a built-in mechanism for
the framework to report the test results of suite runs. Users only have to include these
classes in their test or suite file, and they automatically get TestNG results in the console,
log, and HTML report formats.

Now that the Selenium driver and utility classes are built, it is time to talk about the
Selenium page object classes. The next chapter will take a deep dive into that topic.

11
Best Practices for Building

Selenium Page Object Classes
This chapter will cover the basics of how to design and build the Selenium page object
classes for the Application Under Test (AUT). The following topics are covered:

Introduction
Best practices for naming conventions, comments, and folder structures
Designing and building the abstract base classes for the AUT
Designing and building the subclasses for the feature-specific pages using
inheritance techniques
Encapsulation and using getter/setter methods to retrieve objects from the page
object classes
Exception handling and synchronization in page object class methods
Table classes

Best Practices for Building Selenium Page Object Classes Chapter 11

[235]

Introduction
Having designed the driver and utility classes for the framework, it is time to talk about the
AUT, and how to build the page object classes. We will also introduce industry best
practices and standards for topics like naming conventions, folder names and structures,
comments, exception handling, JavaDoc, base and subclasses, and so on.

As we spoke about earlier, the framework will follow the Selenium Page Object Model. The
premise of this paradigm is that for each browser or mobile page of the application being
tested, there is an object class created that defines all the elements on that specific page. It
doesn't necessarily know about the other pages in the applications, except for the common
methods inherited from its base class. And it doesn't know anything about the test classes
that will test the page.

In essence, an abstract layer is built between the page object classes and the test classes.
What does that actually mean? Let's take an application page as an example.

If we want to build a page object class for the Google Mail Sign In page, how would we
design it, and how would we test it? We would first create a class called something like
GmailPO.java (PO for page object), which would store the page element locators that
define each control on the page, the methods that allow the user to log in, change
password, or test the credentials, and any getter/setter methods required to retrieve a
WebElement on the page.

Then, a test class would be created, called something like GmailTest.java (Test for test
class), which would contain setup/teardown methods, data provider calls, TestNG
annotations, and a test method that would instantiate the GmailPO.java class and call the
required methods to test it. The data would be retrieved from the DataProvider-based
JSON file, and passed into the class methods. So, in this example, the GmailPO.java class
knows nothing about the test class, or any data required to test the page, and the test class
knows nothing about the page element locators.

What you will learn
The user will learn how to design and build base and subclasses for the application under
test, following the Selenium Page Object Model. They will also learn industry best practices
and standards to use, and how to create an abstract layer between the page object and test
classes in the framework.

Best Practices for Building Selenium Page Object Classes Chapter 11

[236]

The Oracle Java tutorial is located at https:/ / docs. oracle. com/ javase/
tutorial/ java/ concepts/ index. html.

Best practices for naming conventions,
comments, and folder structures
This section will cover some of the industry standards and best practices for developing test
automation. Some of the common topics include naming conventions, comments, and
folder names and structures.

Naming conventions
When developing the framework, it is important to establish some naming convention
standards for each type of file created. In general, this is completely subjective. But it is
important to establish them upfront so users can use the same file naming conventions for
the same file types to avoid confusion later on, when there are many users building them.
Here are a few suggestions:

Utility classes: Utility classes don't use any prefix or suffix in their names, but do
follow Java standards such as having the first letter of each word capitalized, and
ending with .java extensions. (Acronyms used can be all caps). Examples
include CreateDriver.java, Global_VARS.java, BrowserUtils.java,
DataProvider_JSON.java, and so on.
Page object classes: It is useful to be able to differentiate the page object classes
from the utility classes. A good way to name them is FeaturePO.java, where
PO stands for page object and is capitalized, along with the first letter of each
word. End the name with a .java extension.
Test classes: It is useful to be able to differentiate the test classes from the PO and
utility classes. A good way to name them is FeatureTest.java, where Test
stands for test class, and the first letter of each word is capitalized. End the name
with a .java extension.

https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/index.html

Best Practices for Building Selenium Page Object Classes Chapter 11

[237]

Data files: Data files are obviously named with an extension for the type of file,
such as .json, .csv, .xls, and so on. But, in the case of this framework, the files
can be named the same as the corresponding test class, but without the word
Test. For example, LoginCredsTest.java would have the data file
LoginCreds.json.
Setup classes: Usually, there is a common setup class for setup and teardown for
all test classes, that can be named AUTSetup.java. So, as an example,
GmailSetup.java would be the setup class for all test classes derived from it,
and contains only TestNG annotated methods.
Test methods: Although we will explore test method naming conventions more
in Chapter 14, Developing Data-Driven Test Classes, most test methods in each test
class are named using sequential numbering, followed by a feature and action.
For example: tc001_gmailLoginCreds, tc002_gmailLoginPassword, and so
on.
Setup/teardown methods: The setup and teardown methods can be named
according to the setup or teardown action they perform. The following naming
conventions can be used in conjunction with the TestNG annotations:

@BeforeSuite: The suiteSetup method
@AfterSuite: The suiteTeardown method
@BeforeClass: The classSetup method
@AfterClass: The classTeardown method
@BeforeMethod: The methodSetup method
@AfterMethod: The methodTeardown method

Comments
Although obvious and somewhat subjective, it is good practice to comment on code when it
is not obvious why something is done, there is a complex routine, or there is a "kluge"
added to work around a problem. In Java, there are two types of comments used, as well as
a set of standards for JavaDoc. We will look at a couple of examples here:

There is an Oracle article on using comments in Java located at http:/ /
www.oracle. com/ technetwork/ java/ codeconventions- 141999. html#385.

http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385
http://www.oracle.com/technetwork/java/codeconventions-141999.html#385

Best Practices for Building Selenium Page Object Classes Chapter 11

[238]

Block comment:

/* single line block comment */
code goes here...

/*
 * multi-line block
 * comment
 */
code goes here...

End-of-line comment:

code goes here // end of line comment

JavaDoc comments:

/**
 * Description of the method
 *
 * @param arg1 to the method
 * @param arg2 to the method
 * return value returned from the method
*/

The Oracle documentation on using the JavaDoc tool is located at http:/ /
www.oracle. com/ technetwork/ java/ javase/ documentation/ index-
137868. html.

Folder names and structures
As the framework starts to evolve, there needs to be some organization around the folder
structure in the IDE, along with a naming convention. The IntelliJ IDE uses modules to
organize the repo, and under those modules, users can create the folder structures. It is
common to also separate the page object and utility classes from the test classes.

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Best Practices for Building Selenium Page Object Classes Chapter 11

[239]

So, as an example, under the top-level folder src, create main/java/com/yourCo/page
objects and test/java/com/yourCo/tests folders. From there, under each structure,
users can create feature-based folders.

Also, to retain a completely independent set of libraries for the Selenium driver and utility
classes, create a separate module called something like Selenium3 with the same folder
structures. This will allow users to use the same driver class and utilities for any additional
modules that are added to the repo/framework. It is common to automate testing for more
than one application, and this will allow the inclusion of the module in those additional
modules. Here are a few suggestions regarding folder naming conventions:

Name all the folders using lowercase names, so there won't be a mix-and-match
of different standards.
Name the page object class folders after the features they pertain to; for instance,
login for the LoginPO.java, email for the GmailPO.java, and so on.
Name the test class folders after the same features as the PO classes, but under
the test folder. Then there can be a one-to-one correlation between the PO and
test class folders.
Store the common base classes under a common folder under main.
Store the common setup classes under a common folder under test.
Store all the utility classes for the AUT under a utils folder under main.
Store all the suite files for the tests under a suites folder under test.

Best Practices for Building Selenium Page Object Classes Chapter 11

[240]

Here is an example of a folder structure for the Selenium3 module. Of course, there are no
test folders under this one:

IntelliJ third-party class folder structure

Best Practices for Building Selenium Page Object Classes Chapter 11

[241]

Here is an example of a folder structure for an AUT module showing the PO and test class
folders:

IntelliJ page object/test class folder structure

Best Practices for Building Selenium Page Object Classes Chapter 11

[242]

Designing and building the abstract base
classes for the AUT
When designing the Selenium page object classes, the first step is to create an abstract base
class that will store all the methods, locators, and properties that are common to all the
pages in the application under test. It will also store all the abstract methods that the base
class wants to enforce on each subclass derived from it. When a subclass is created that
extends this base class, it will inherit all these object components.

This class will also initialize all the page objects included in it, as well as in each subclass,
by calling the WebDriver page factory class in its constructor. In Java, abstract classes
cannot be instantiated, but they can be subclassed.

The abstract class
Here is an example of a simple abstract base class, explained in sections:

/**
 * Sample Base Class Page Object for Browser App
 *
 * @author Name
 *
 */
public abstract class BrowserBasePO <M extends WebElement> {
 public int elementWait = Global_VARS.TIMEOUT_ELEMENT;
 public String pageTitle = "";
 WebDriver driver = CreateDriver.getInstance().getDriver();

 // constructor
 public BrowserBasePO() throws Exception {
 PageFactory.initElements(driver, this);
 }
}

/**
 * Sample Base Class Page Object for Mobile App
 *
 * @author Name
 *
 */
public abstract class MobileBasePO <M extends MobileElement> {
 public int elementWait = Global_VARS.TIMEOUT_ELEMENT;
 public String pageTitle = "";
 AppiumDriver<MobileElement> driver =

Best Practices for Building Selenium Page Object Classes Chapter 11

[243]

 CreateDriver.getInstance().getDriver(true);

 // constructor
 public MobileBasePO () throws Exception {
 PageFactory.initElements(new AppiumFieldDecorator(driver), this);
 }
}

The WebDriver documentation on the page factory class is located
at https:/ / github. com/ SeleniumHQ/ selenium/ wiki/ PageFactory.

Notice that in the class signature, there is a generic user that passes in WebElement; this is
included now to allow future modification of the default behavior of the WebElement class.
Again, the PageFactory.initElements method is called in the constructor that will
automatically initialize all the subclass page objects when it is instantiated.

Abstract methods
Any methods that are not implemented by default are called abstract methods, and
including them in the base class forces all subclasses to implement them. There is a unique
syntax for declaring them. Subclasses can also include abstract methods to enforce
additional subclasses to implement them. The main reason to include abstract methods at
the base class level is to allow possibly different implementations by each subclass of the
same methods. Here is an example of some common abstract methods included in the base
class:

// abstract methods included in base class

public abstract void setElementWait(int elementWait);
public abstract int getElementWait();
public abstract void setPageTitle(String pageTitle);
public abstract String getPageTitle();

https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory
https://github.com/SeleniumHQ/selenium/wiki/PageFactory

Best Practices for Building Selenium Page Object Classes Chapter 11

[244]

Common locators
When we talk about defining all the elements on a page, there is a specific syntax that
Selenium PageFactory provides the user to define those elements. That syntax is @FindBy,
plus the locator, @CacheLookup, and an attribute name and scope for the element. There
are various "standards" for which locator to use: ID, tag, name, class, attribute, CSS, XPath,
and so on. For now, those standards will not be covered. The following example shows
how to define common elements in the base class that would apply to all the pages in an
application. Subclasses would inherit them when the class is instantiated:

// common WebElement locators included in base class

@FindBy(css = "img[src*='myLogo.png']")
@CacheLookup
protected M companyLogo;

@FindBy(partialLinkText = "All Rights Reserved")
@CacheLookup
protected M copyright;

// common MobileElement locators included in base class

@AndroidFindBy(className = "myLogo")
@iOSFindBy(className = "myLogo")
protected M companylogo;

@AndroidFindBy(id = "title")
@iOSFindBy(xpath = "//*[@name = 'title']")
protected M title;

Some things to note here: the @FindBy method can take any of the available locator formats
to define the element. @CacheLookup can be used for static elements that do not change
dynamically on the page. Using this annotation tells the WebDriver to store the locator
rather than actioning a lookup in the DOM each time that element is referenced. Its use can
make the scripts run faster by nature. It does not work with elements that change
dynamically on the page.

Best Practices for Building Selenium Page Object Classes Chapter 11

[245]

Common methods
At this point, the abstract base class has been built with the page factory initialization,
abstract methods, and common elements, and, finally, we need to add some common
methods. What methods should go in the base class?

Basically, any method that would apply to each of the subclass page objects goes into this
class. Examples would be: navigation bar methods; page methods to retrieve titles,
copyrights, logos, and headings; methods for logging out of the application; methods to
synchronize against spinner controls that appear on each page; methods that handle alert
and error message windows; custom methods for drop-down list selections; methods for
label and text verification; and so on.

Any method that can be made "generic" enough (by its locator) to operate on any page in
the web or mobile app would go in the base class. Now, if some of the methods only apply
to specific pages, or would require different behavior on different pages, then an interface
can be created and added to the subclass signature to implement those methods:

// base class common methods

/**
 * getTitle - method to return the title of the current page
 *
 * @throws Exception
 */
public String getTitle() throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 return driver.getTitle();
}

/**
 * getParagraph - method to return the paragraph using a pattern match
 *
 * @param pattern
 * @return String
 * @throws Exception
 */

Best Practices for Building Selenium Page Object Classes Chapter 11

[246]

public String getParagraph(String pattern) throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 // build a dynamic locator on the fly with text pattern in
 //paragraph
 String locator = "//p[contains(text(),'" + pattern + "') or
 contains(.,'" + pattern + "')]";

 return driver.findElement(By.xpath(locator)).getText();
}

/**
 * getCopyright - method to return the page copyright text
 *
 * @return String
 * @throws Exception
 */
public String getCopyright() throws Exception {
 return copyright.getText();
}

// common base class overloaded loadPage methods

/**
 * loadPage - method to load the page URL for the AUT
 *
 * @param pageURL
 * @param timeout
 * @throws Exception
 */
public void loadPage(String pageURL,
 int timeout)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 driver.navigate().to(pageURL);

 // wait for page download, sync. against login
 BrowserUtils.isPageReady(driver);
 BrowserUtils.waitFor(login, timeout);
}

/**
 * loadPage - overloaded method to load the page URL and sync
 * against WebElement
 *
 * @param pageURL
 * @param element

Best Practices for Building Selenium Page Object Classes Chapter 11

[247]

 * @throws Exception
 */
public void loadPage(String pageURL,
 M element)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 driver.navigate().to(pageURL);

 // wait for page download, sync. against element
 BrowserUtils.isPageReady(driver);
 BrowserUtils.waitFor(element, Global_VARS.TIMEOUT_MINUTE);
}

/**
 * loadPage - overloaded method to load the page URL and sync
 * against endpoint URL
 *
 * @param pageURL
 * @param landingUrl
 * @throws Exception
 */
public void loadPage(String pageURL,
 String endPointUrl)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 driver.navigate().to(pageURL);

 // wait for page download, sync. against endpoint URL
 BrowserUtils.isPageReady(driver);
 BrowserUtils.waitForURL(endPointUrl, Global_VARS.TIMEOUT_MINUTE);
}

Wrap up on base classes
So, now that we've designed and built a "skeleton" base class for the AUT, we need to build
some subclasses from it for each of the pages of the web or mobile application. The next
section will cover how to create subclasses in the Selenium Framework!

Best Practices for Building Selenium Page Object Classes Chapter 11

[248]

Designing and building subclasses for
feature-specific pages using inheritance
techniques
After building the abstract base class for the AUT in the framework, subclasses need to be
developed for each feature page. In following the Selenium Page Object Model, users
should build a separate page object class for each page in the browser or mobile app.

As the subclasses are built, whenever common components are found that pertain to most
pages, they can be added to the base class. Alternatively, if only on select pages, a separate
page object class can be developed for a partial page. The base class can then be extended
for those pages that need to inherit the components in it. A good example would be
the table component, which we will cover in this chapter. Here is how the base class can be
extended:

// extended base page object class
public class BrowserBaseExtPO<M extends WebElement> extends
BrowserBasePO<M> {

 // constructor
 public BrowserBaseExtPO() throws Exception {
 }

 @Override
 public void setElementWait(int elementWait) {

 }

 @Override
 public int getElementWait() {
 return 0;
 }

 @Override
 public void setPageTitle(String pageTitle) {

 }

 @Override
 public String getPageTitle() {
 return null;
 }

 // add table components and methods here

Best Practices for Building Selenium Page Object Classes Chapter 11

[249]

}

// subclass extending the extended base page object class
public class MyAppHomePO<M extends WebElement> extends BrowserBaseExtPO<M>
{

 // constructor
 public MyAppHomePO() throws Exception {
 }

 // implement table methods here

}

The following is a template of a page object subclass segregating the various sections of the
file:

/**
 * Selenium Page Object Template
 *
 * @author Name
 *
 */
public class TemplatePO<M extends WebElement> extends BrowserBasePO<M> {
 // local variables go here
 // TODO:

 // constructor
 public TemplatePO() throws Exception {
 super();
 }

 // abstract methods
 @Override
 public void setElementWait(int elementWait) {
 }

 @Override
 public int getElementWait() {
 return 0;
 }

 @Override
 public void setPageTitle(String pageTitle) {
 }

 @Override
 public String getPageTitle() {

Best Practices for Building Selenium Page Object Classes Chapter 11

[250]

 return null;
 }

 // page objects
 @FindBy(id = "")
 @CacheLookup
 protected M element1;

 // class methods

 /**
 * myMethod method
 *
 * @param arg1
 * @throws Exception
 */
 public void myMethod(String arg1) throws Exception {
 // TODO:
 }
}

To get started on the subclasses, let's take the login page as an example. The login page is
the first page of each app that appears after loading the browser URL or launching the
mobile app, so let's build that page object class.

Create a Java class called LoginPO.java, or MyAppLoginPO.java, derive it from the base
class, review which common elements and methods are inherited, and start adding in the
page definitions and methods.

Let's take a quick look at an example of a browser page object for the login page:

/**
 * Login Page Object
 *
 * @author Name
 *
 */
public class MyAppLoginPO<M extends WebElement> extends BrowserBasePO<M> {
 private int elementWait = 60;
 private String PAGE_TITLE = "Login Page Title";

 // constructor
 public MyAppLoginPO() throws Exception {
 setPageTitle(PAGE_TITLE);
 }

 @Override

Best Practices for Building Selenium Page Object Classes Chapter 11

[251]

 public void setElementWait(int elementWait) {
 }

 @Override
 public int getElementWait() {
 return 0;
 }

 @Override
 public void setPageTitle(String pageTitle) {
 }

 @Override
 public String getPageTitle() {
 return null;
 }
}

Let's take a quick look at an example of a mobile page object for the login page:

/**
 * Mobile Login Page Object
 *
 * @author Name
 *
 */
public class MyAppMobileLoginPO<M extends MobileElement> extends
MobileBasePO<M> {
 private int elementWait = 60;
 private String PAGE_TITLE = "Login Page Title";

 // constructor
 public MyAppMobileLoginPO() throws Exception {
 setPageTitle(PAGE_TITLE);
 }

 @Override
 public void setElementWait(int elementWait) {
 }

 @Override
 public int getElementWait() {
 return 0;
 }

 @Override
 public void setPageTitle(String pageTitle) {
 }

Best Practices for Building Selenium Page Object Classes Chapter 11

[252]

 @Override
 public String getPageTitle() {
 return null;
 }

}

In these subclass examples, notice the setter method called in the constructor; it sets the title
of the page, which can be used later on for synchronizing against when the page renders.
The method is abstract, and must be implemented in the subclass.

Also, since the base class has four abstract methods in it, they all have to be implemented in
each subclass. Here is a simple example of that (note that, for the remainder of this section,
JavaDoc will not be added to common methods, but it is a standard that should be
followed):

// login page methods

@Override
public void setElementWait(int elementWait) {
 this.elementWait = elementWait;
}

@Override
public int getElementWait() {
 return this.elementWait;
}

@Override
public void setPageTitle(String pageTitle) {
 this.pageTitle = pageTitle;
}

@Override
public String getPageTitle() {
 return this.pageTitle;
}

In these method examples, there is reference to this.elementWait and this.pageTitle;
notice these are declared in the base and subclass. If the user wants to change the default
values for them, they can do that with the setter methods. Otherwise, they have default
values that can be used and retrieved with the getter methods.

Best Practices for Building Selenium Page Object Classes Chapter 11

[253]

Now, in cases where not all subclasses will need to implement a set of common methods,
users can create an interface and add that to the signature of the class, and only the classes
that need them will have to implement them. For example:

/**
 * Interface to implement by classes requiring BrowserExtras methods
 *
 * @author Name
 */
public interface BrowserExtras {
 // methods to implement in subclasses
 public void setElementWait(int elementWait);
 public int getElementWait();
 public void setPageTitle(String pageTitle);
 public String getPageTitle();
}

// subclass signature
public class MyAppSubClassPO<M extends WebElement> extends BrowserBasePO<M>
implements BrowserExtras {

 // constructor
 public MyAppSubClassPO() throws Exception {
 }

 @Override
 public void setElementWait(int elementWait) {
 }

 @Override
 public int getElementWait() {
 return 0;
 }

 @Override
 public void setPageTitle(String pageTitle) {
 }

 @Override
 public String getPageTitle() {
 return null;
 }
}

Best Practices for Building Selenium Page Object Classes Chapter 11

[254]

Up to this point, we have only covered the file structure, and which methods are inherited
or enforced on a Selenium page object subclass. Let's now build a simple login page object
for a browser application. The class will include the base class it is extending, the abstract
methods enforced by the base class, the three controls required on the page, and the
method for logging in:

/**
 * MyApp Login Page Object
 *
 * @author Name
 *
 */
public class MyAppLoginPO<M extends WebElement> extends BrowserBasePO<M> {
 // local vars
 private String PAGE_TITLE = "Login Page Title";

 // constructor
 public MyAppLoginPO() throws Exception {
 setPageTitle(PAGE_TITLE);
 }

 // page objects
 @FindBy(id = "username")
 @CacheLookup
 protected M username;

 @FindBy(id = "password")
 @CacheLookup
 protected M password;

 @FindBy(id = "submit")
 @CacheLookup
 protected M submit;

 // abstract methods
 @Override
 public void setElementWait(int elementWait) {
 this.elementWait = elementWait;
 }

 @Override
 public int getElementWait() {
 return this.elementWait;
 }

 @Override
 public void setPageTitle(String pageTitle) {

Best Practices for Building Selenium Page Object Classes Chapter 11

[255]

 this.pageTitle = pageTitle;
 }

 @Override
 public String getPageTitle() {
 return this.pageTitle;
 }

 // common methods
 public void login(String username,
 String password)
 throws Exception {

 if (!this.username.getAttribute("value").equals("")) {
 this.username.clear();
 }

 this.username.sendKeys(username);

 if (!this.password.getAttribute("value").equals("")) {
 this.password.clear();
 }

 this.password.sendKeys(password);

 submit.click();
 }

}

This, in essence, is the first Selenium page object in the framework. Notice the login
method also calls one of the browser waitFor synchronization methods that was created in
the BasePO class to wait for the page title to appear, checks to see if either the username or
password field is populated, clears them if so before entering the credentials, then clicks the
submit button to log in to the application. This method does not have any error handling
in place if the login fails; we will cover that in the next sections.

Best Practices for Building Selenium Page Object Classes Chapter 11

[256]

Encapsulation and using getter/setter
methods to retrieve objects from the page
object classes
The first Selenium page object class was created containing two getter and two setter
methods. These methods, although not entirely object-oriented, are required to provide a
way for the Selenium test classes to access a component inside the page object instance. This
is a basic concept in Java called encapsulation. The data variables and objects in the class
are hidden by making them private or protected, and only accessible outside the class using
the getter methods, and so on.

As a general rule, we want to keep a separation between the page object and test classes. So,
what happens if the user needs to access a button on the page to cancel some action or
dialog from within the test class? They only have two choices: call the WebDriver class's
findBy method and pass in a dynamic locator to access the object, or create a method to get
the static WebElement on the page.

Of course, we do not want to start adding locators to the test classes - this would violate the
page object Model we are following to separate the page object and test classes. It also lends
to the idea that we would have the same locator in two places: the page object and test
class. If we do this over and over, the maintenance level increases dramatically. When the
locators change, then the change needs to be implemented in multiple places, and so on.

There is a Java tutorial on encapsulation and the use of getter/setter
methods located at https:/ /www. tutorialspoint. com/ java/ java_
encapsulation. htm.

So, the getter methods can return a variable, WebElement, MobileElement, or String. They
can be useful in test classes that need to access a page object element, or in another class
that is instantiating it. Finally, let's look at an example of a getter method that returns a
WebElement:

// cancel button in Page Object class

public class MyPageObject {
 ...

 @FindBy(id= "Cancel")
 @CacheLookup
 protected M cancel;

https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm
https://www.tutorialspoint.com/java/java_encapsulation.htm

Best Practices for Building Selenium Page Object Classes Chapter 11

[257]

 // getter method in Page Object class

 /**
 * getCancel method
 *
 * @return WebElement
 * @throws Exception
 */
 public M getCancel() throws Exception {
 return cancel;
 }
}

// getCancel method call on instance of class in Test Method

public void tc001_myTestcase() {
 ...
 MyPageObject pageObj = new MyPageObject();
 pageObj.getCancel();

 ...

Exception handling and synchronization in
page object class methods
One of the areas that is often misunderstood but very important in framework design is
exception handling. Users must program into their tests and methods how to handle
exceptions that might occur in tests, including those that are thrown by applications
themselves, and those that occur using the Selenium WebDriver API.

Let's talk about the different kinds of exceptions that users must account for, specifically:

Implicit exceptions: Implicit exceptions are internal exceptions raised by the API
method when a certain condition is not met, such as an illegal index of an array,
null pointer, file not found, or something unexpected occurring at runtime.
Explicit exceptions: Explicit exceptions are thrown by the user to transfer control
out of the current method, and to another event handler when certain conditions
are not met, such as an object is not found on the page, a test verification fails, or
something expected as a known state is not met. In other words, the user is
predicting that something will occur, and explicitly throws an exception if it does
not.

Best Practices for Building Selenium Page Object Classes Chapter 11

[258]

WebDriver exceptions: The Selenium WebDriver API has its own set of
exceptions that can implicitly occur when elements are not found, elements are
not visible, elements are not enabled or clickable, and so on. They are thrown by
the WebDriver API method, but users can catch those exceptions and explicitly
handle them in a predictable way.
Try...catch blocks: In Java, exception handling can be completely controlled
using a try...catch block of statements to transfer control to another method,
so that the exit out of the current routine doesn't transfer control to the call
handler up the chain, but rather, is handled in a predictable way before the
exception is thrown.

The JavaDoc covering exception handling is located at https:/ /docs.
oracle. com/ javase/ 8/ docs/api/ java/ lang/ Exception. html.

Let's examine the different ways of handling exceptions during automated testing.

Implicit exception handling
A simple example of Selenium WebDriver implicit exception handling can be described as
follows:

Define an element on a page1.
Create a method to retrieve the text from the element on the page2.
In the signature of the method, add throws Exception3.
Do not handle a specific exception like ElementNotFoundException:4.

// create a method to retrieve the text from an element on a page
@FindBy(id="submit")
protected M submit;

public String getText(WebElement element) throws Exception {
 return element.getText();
}

// use the method
LoginPO.getText(submit);

https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Exception.html

Best Practices for Building Selenium Page Object Classes Chapter 11

[259]

Now, when using an assertion method, TestNG will implicitly throw an exception if the
condition is not met:

Define an element on a page1.
Create a method to verify the text of the element on a page2.
Cast the expected and actual text to the TestNG's assertEquals method3.
TestNG will throw an AssertionError4.
TestNG engages the difference viewer to compare the result if it fails:5.

// create a method to verify the text from an element on a page
@FindBy(id="submit")
protected M submit;

public void verifyText(WebElement element,
 String expText)
 throws AssertionError {

 assertEquals(element.getText(),
 expText,
 "Verify Submit Button Text");
}

// use the method
LoginPO.verifyText(submit, "Sign Inx");

// throws AssertionError
java.lang.AssertionError: Verify Text Label expected [Sign Inx]
but found [Sign In]

Expected : Sign Inx
Actual : Sign In
<Click to see difference>

TestNG difference viewer
When using the TestNG's assertEquals methods, a difference viewer will be engaged if
the comparison fails. There will be a link in the stacktrace in the console to open it. Since it
is an overloaded method, it can take a number of data types, such as String, Integer,
Boolean, Arrays, Objects, and so on. The following screenshot displays the TestNG
difference viewer:

Best Practices for Building Selenium Page Object Classes Chapter 11

[260]

TestNG difference viewer

Explicit exception handling
In cases where the user can predict when an error might occur in the application, they can
check for that error and explicitly raise an exception if it is found. Take the login function of
a browser or mobile application as an example. If the user credentials are incorrect, the app
will throw an exception saying something like "username invalid, try again" or "password
incorrect, please re-enter".

The exception can be explicitly handled in a way that the actual error message can be
thrown in the exception. Here is an example of the login method we wrote earlier with
exception handling added to it:

@FindBy(id="myApp_exception")
protected M error;

/**
 * login - method to login to app with error handling
 *
 * @param username
 * @param password
 * @throws Exception
 */
public void login(String username,
 String password)

Best Practices for Building Selenium Page Object Classes Chapter 11

[261]

 throws Exception {

 if (!this.username.getAttribute("value").equals("")) {
 this.username.clear();
 }

 this.username.sendKeys(username);

 if (!this.password.getAttribute("value").equals("")) {
 this.password.clear();
 }

 this.password.sendKeys(password);

 submit.click();

 // exception handling
 if (BrowserUtils.elementExists(error, Global_VARS.TIMEOUT_SECOND)) {
 String getError = error.getText();
 throw new Exception("Login Failed with error = " + getError);
 }

}

Try...catch exception handling
Now, sometimes the user will want to trap an exception instead of throwing it, and perform
some other action such as retry, reload page, cleanup dialogs, and so on. In cases like that,
the user can use try...catch in Java to trap the exception. The action would be included
in the try clause, and the user can decide what to do in the catch condition.

Here is a simple example that uses the ExpectedConditions method to look for an
element on a page, and only return true or false if it is found. No exception will be
raised:

/**
 * elementExists - wrapper around the WebDriverWait method to
 * return true or false
 *
 * @param element
 * @param timer
 * @throws Exception
 */
public static boolean elementExists(WebElement element, int timer) {
 try {

Best Practices for Building Selenium Page Object Classes Chapter 11

[262]

 WebDriver driver = CreateDriver.getInstance().getCurrentDriver();
 WebDriverWait exists = new WebDriverWait(driver, timer);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.visibilityOf(element)));
 return true;
 }

 catch (StaleElementReferenceException |
 TimeoutException |
 NoSuchElementException e) {

 return false;
 }
}

In cases where the element is not found on the page, the Selenium WebDriver will return a
specific exception such as ElementNotFoundException. If the element is not visible on
the page, it will return ElementNotVisibleException, and so on. Users can catch those
specific exceptions in a try...catch...finally block, and do something specific for
each type (reload page, re-cache element, and so on):

try {

}

catch(ElementNotFoundException e) {
 // do something
}

catch(ElementNotVisibleException f) {
 // do something else
}

finally {
 // cleanup
}

The Java tutorial on try...catch is located at https:/ /docs. oracle.
com/javase/ tutorial/ essential/ exceptions/ try.html.

https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/try.html

Best Practices for Building Selenium Page Object Classes Chapter 11

[263]

Synchronizing methods
Earlier, the login method was introduced, and in that method, we will now call one of the
synchronization methods waitFor(title, timer) that we created in the utility classes.
This method will wait for the login page to appear with the title element as defined. So,
in essence, after the URL is loaded, the login method is called, and it synchronizes against
a predefined page title. If the waitFor method doesn't find it, it will throw an exception,
and the login will not be attempted.

It's important to predict and synchronize the page object methods so that they do not get
out of "sync" with the application and continue executing when a state has not been
reached during the test. This becomes a tedious process during the development of the
page object methods, but pays big dividends in the long run when making those methods
"robust". Also, users do not have to synchronize before accessing each element. Usually, you would
synchronize against the last control rendered on a page when navigating between them.

In the same login method, it's not enough to just check and wait for the login page title to
appear before logging in; users must also wait for the next page to render, that being the
home page of the application. So, finally, in the login method we just built, another
waitFor will be added:

public void login(String username,
 String password)
 throws Exception {

 BrowserUtils.waitFor(getPageTitle(),
 getElementWait());

 if (!this.username.getAttribute("value").equals("")) {
 this.username.clear();
 }

 this.username.sendKeys(username);

 if (!this.password.getAttribute("value").equals("")) {
 this.password.clear();
 }

 this.password.sendKeys(password);

 submit.click();

 // exception handling
 if (BrowserUtils.elementExists(error,
 Global_VARS.TIMEOUT_SECOND)) {

Best Practices for Building Selenium Page Object Classes Chapter 11

[264]

 String getError = error.getText();
 throw new Exception("Login Failed with error = " + getError);
 }

 // wait for the home page to appear
 BrowserUtils.waitFor(new MyAppHomePO<WebElement>().getPageTitle(),
 getElementWait());
}

Table classes
When building the page object classes, there will frequently be components on a page that
are common to multiple pages, but not all pages, and rather than including the similar
locators and methods in each class, users can build a common class for just that portion of
the page. HTML tables are a typical example of a common component that can be classed.

So, what users can do is create a generic class for the common table rows and columns,
extend the subclasses that have a table with this new class, and pass in the dynamic ID or
locator to the constructor when extending the subclass with that table class.

Let's take a look at how this is done:

Create a new page object class for the table component in the application, but do1.
not derive it from the base class in the framework
In the constructor of the new class, add a parameter of the type WebElement,2.
requiring users to pass in the static element defined in each subclass for that
specific table
Create generic methods to get the row count, column count, row data, and cell3.
data for the table
In each subclass that inherits these methods, implement them for each page,4.
varying the starting row number and/or column header rows if <th> is used
rather than <tr>
When the methods are called on each table, it will identify them using the5.
WebElement passed into the constructor:

/**
 * WebTable Page Object Class
 *
 * @author Name
 */
public class WebTablePO {
 private WebElement table;

Best Practices for Building Selenium Page Object Classes Chapter 11

[265]

 /** constructor
 *
 * @param table
 * @throws Exception
 */
 public WebTablePO(WebElement table) throws Exception {
 setTable(table);
 }

 /**
 * setTable - method to set the table on the page
 *
 * @param table
 * @throws Exception
 */
 public void setTable(WebElement table) throws Exception {
 this.table = table;
 }

 /**
 * getTable - method to get the table on the page
 *
 * @return WebElement
 * @throws Exception
 */
 public WebElement getTable() throws Exception {
 return this.table;
 }

Now, the structure of the class is simple so far, so let's add in some common "generic"
methods that can be inherited and extended by each subclass that extends the class:

// Note: JavaDoc will be eliminated in these examples for simplicity sake

public int getRowCount() {
 List<WebElement> tableRows = table.findElements(By.tagName("tr"));

 return tableRows.size();
}

public int getColumnCount() {
 List<WebElement> tableRows = table.findElements(By.tagName("tr"));
 WebElement headerRow = tableRows.get(1);
 List<WebElement> tableCols = headerRow.findElements(By.tagName("td"));

 return tableCols.size();

Best Practices for Building Selenium Page Object Classes Chapter 11

[266]

}

public int getColumnCount(int index) {
 List<WebElement> tableRows = table.findElements(By.tagName("tr"));
 WebElement headerRow = tableRows.get(index);
 List<WebElement> tableCols = headerRow.findElements(By.tagName("td"));

 return tableCols.size();
}

public String getRowData(int rowIndex) {
 List<WebElement> tableRows = table.findElements(By.tagName("tr"));
 WebElement currentRow = tableRows.get(rowIndex);

 return currentRow.getText();
}

public String getCellData(int rowIndex, int colIndex) {
 List<WebElement> tableRows = table.findElements(By.tagName("tr"));
 WebElement currentRow = tableRows.get(rowIndex);
 List<WebElement> tableCols = currentRow.findElements(By.tagName("td"));
 WebElement cell = tableCols.get(colIndex - 1);

 return cell.getText();
}

Finally, let's extend a subclass with the new WebTablePO class, and implement some of the
methods:

/**
 * Homepage Page Object Class
 *
 * @author Name
 */
public class MyHomepagePO<M extends WebElement> extends WebTablePO<M> {

 public MyHomepagePO(M table) throws Exception {
 super(table);
 }

 @FindBy(id = "my_table")
 protected M myTable;

 // table methods
 public int getTableRowCount() throws Exception {
 WebTablePO table = new WebTablePO(getTable());
 return table.getRowCount();
 }

Best Practices for Building Selenium Page Object Classes Chapter 11

[267]

 public int getTableColumnCount() throws Exception {
 WebTablePO table = new WebTablePO(getTable());
 return table.getColumnCount();
 }

 public int getTableColumnCount(int index) throws Exception {
 WebTablePO table = new WebTablePO(getTable());
 return table.getColumnCount(index);
 }

 public String getTableCellData(int row, int column) throws Exception {
 WebTablePO table = new WebTablePO(getTable());
 return table.getCellData(row, column);
 }

 public String getTableRowData(int row) throws Exception {
 WebTablePO table = new WebTablePO(getTable());
 return table.getRowData(row).replace("\n", " ");
 }

 public void verifyTableRowData(String expRowText) {
 String actRowText = "";
 int totalNumRows = getTableRowCount();

 // parse each row until row data found
 for (int i = 0; i < totalNumRows; i++) {
 if (this.getTableRowData(i).contains(expRowText)) {
 actRowText = this.getTableRowData(i);
 break;
 }
 }

 // verify the row data
 try {
 assertEquals(actRowText, expRowText, "Verify Row Data");
 }

 catch (AssertionError e) {
 String error = "Row data '" + expRowText + "' Not found!";
 throw new Exception(error);
 }
 }
}

Best Practices for Building Selenium Page Object Classes Chapter 11

[268]

Summary
This was a very important chapter and step in building the Selenium framework. If the
concept of the Selenium Page Object Model can be grasped and implemented as discussed
in this chapter, the user will create that separation layer between the Java classes that store
the page object definitions and the test classes that test them. This will greatly reduce the
amount of redundancy and maintenance always seen in test automation frameworks.

The next chapter will introduce the user to using inspectors to get the browser and mobile
locators, illustrate which locator types have precedence, and demonstrate how to create
dynamically instantiated locator methods to reduce the number of elements defined in each
page object class.

12
Defining WebDriver and

AppiumDriver Page Object
Elements

This chapter will cover the framework standards to use for defining elements on a browser
and mobile page. The chapter will include various browser and mobile inspectors and
plugins, best practices for using locators, and when to use static versus dynamic locators in
methods. The following topics are covered:

Introduction
Inspection of page elements on browser applications
Inspection of page elements on mobile applications
Standards for using static locators
Standards for using dynamic locators

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[270]

Introduction
Up to this point, we have discussed page object classes in relation to how they fit into the
framework and follow a certain model. However, there has to be a way to define the objects
on the page so we can test them. We will do this by inspecting the DOM or mobile elements
as they appear on a page.

Selenium uses a concept known as locators to define each element on a page. Locators are
stored in each base and subclass, and define the element using one of the required DOM
attributes, such as ID, class, name, tag, link text, CSS, XPath, and many more.

In this chapter, we will introduce the user to the use of inspectors for browsing page
elements for both browser and mobile apps, some of the third-party tools available to test
locators, the syntax to use when defining elements in the classes, and when to build a
dynamic locator on the fly versus using a static cached one in the page object.

The reader will learn how to inspect elements in the application, how to define the elements
in the page object classes, inspectors, and third-party tools, and how to access those
elements using static and dynamic locators.

Inspecting page elements on browser
applications
For browser applications, there are various tools that can be used for each browser type;
Chrome, Firefox, Edge, Safari, Opera, and so on. In this section, we will discuss the
Inspector tool that is built into each browser.

Types of locators
Each of these browsers has, at the very least, a developer's tool called Inspector, which
allows users to look at the HTML/JavaScript code in the DOM, to view elements as they
exist on the page. Depending on how the developers build the pages, there may be several
unique identifiers that can be used, or there may be none.

In general, and as common as it may seem, using a unique ID is always the best practice for
identifying an element. In cases where the UI is just getting built or being refactored,
developers can add the IDs to each element as a standard practice, which makes testing of
the web or mobile pages extremely easy. Of course, using a unique class, name, tag, or text
attribute is also sufficient.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[271]

However, in the real world, that is usually not the case, and the true CSS or XPath locators
will have to be used to make the element unique by using indexes, parents, children,
siblings, or a combination of any of those choices. In this manual, we will cover best
practices for defining locators in relation to inheritance from base and subclasses, but will
not cover each and every method and rule for building them. There are some great
beginners Selenium manuals that cover those topics.

Detailed locator techniques and rules for CSS and XPath are covered by
Unmesh Gundecha and published by Packt Publishing in the reference
book Selenium Testing Tools Cookbook - Second Edition. The book is
available at https:/ /www. packtpub. com/web- development/ selenium-
testing- tools- cookbook- second- edition.

Inheriting WebElements
As previously noted, the details of using the inspectors have been outlined in other sources,
but what will be covered here is the use of the Selenium Page Object Model to store
common element definitions in base classes, which can then be inherited by all subclasses
that are derived from them. This reduces the number of elements that need to be defined in
the framework itself.

Let's look at a few examples.

If we right click over the Yahoo home page, we will see the Inspect Element menu choice.
Once selected, an Inspector window will overlay the page, showing the DOM elements.
Users can select the arrow button and move freely over the elements on the page until they
find the ones they need to define.

So, let's say the Yahoo page logo is on every page on the Yahoo portal, and we want to test
that it exists on each page we build. It would make sense to define that element in the
Yahoo base page object class, and inherit it in each page object subclass that is derived from
it. For example:

// Yahoo home page logo image

<a id="uh-logo" href="https://www.yahoo.com/" class="D(ib) Bgr(nr) logo-
datauri W(190px) H(45px) Bgp($twoColLogoPos) Bgz(190px)
Bgp($twoColLogoPosSM)!--sm1024 Bgz(90px)!--sm1024 ua-ie7_Bgi($logoImageIe)
ua-ie7_Mstart(-185px) ua-ie8_Bgi($logoImageIe) ua-ie9_Bgi($logoImageIe)"
data-ylk="rspns:nav;t1:a1;t2:hd;sec:hd;itc:0;slk:logo;elm:img;elmt:logo;"
tabindex="1" data-rapid_p="20"><b class="Hidden">Yahoo

// Yahoo Base Class

https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition
https://www.packtpub.com/web-development/selenium-testing-tools-cookbook-second-edition

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[272]

public abstract class YahooBasePO <M extends WebElement> {

 // constructor
 public YahooBasePO() throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 PageFactory.initElements(driver, this);
 }

 @FindBy(id="uh-logo")
 @CacheLookup
 protected M yahooLogo;

 ...
}

// Yahoo News Subclass
public class YahooNewsPO <M extends WebElement> extends YahooBasePO<M> {

 public YahooNewsPO() throws Exception {
 super();
 }

 public void verifyYahooLogo(String expHref) throws Exception {
 String actHref = yahooLogo.getAttribute("href");
 assertEquals(actHref, expHref, "Verify Yahoo Logo HREF");
 }
}

As you can see, the yahooLogo element was not defined in the YahooNewsPO subclass, but
it was used in the verifyYahooLogo method in that class. The element is inherited as
defined in the base class, by the subclasses derived from it.

If any of the page object classes have slightly different locator definitions, the control can be
overridden by including it in the subclass using the same element name.

Inspecting WebElements
Let's take a look at one of the browser inspectors. The following is a screenshot of the
inspector for Chrome, using the Google Mail login page. As you can see, the email input
field is highlighted in the inspection window in the inspection frame at the bottom, in the
page itself, and there is a hover-over control with the CSS of the element:

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[273]

Google Chrome browser inspector

Users can use one of the available attributes, or a combination of them, if part of the
hierarchy is required to make it unique. With some of the third-party tools, users can test
out the CSS or XPath query they build using attributes in the DOM.

With the Chrome Inspector, this is done using Ctrl + F and typing in the
locator, which will get highlighted in yellow if it is correct!

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[274]

Here is another screenshot using the Firefox plugin for the Firebug/Firepath inspector tools.
Once the input field is selected, the HTML code is highlighted in the Inspector window.
There is a Firepath feature that allows users to build a CSS or XPath query on the fly within
this window and test it out. It will highlight the element on the page if it is built correctly:

Mozilla Firefox browser inspector

When defining static locators, users must use the @FindBy annotation in the page object
classes. @CacheLookup is optional, and often causes Selenium to throw
StaleElementExceptions if the page is refreshed or still rendering.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[275]

Here are the common WebElement locator methods:

@FindBy(id = "elementId")

@FindBy(className = "elementClassName")

@FindBy(name = "elementName")

@FindBy(tagName = "elementTagName")

@FindBy(linkText = "elementLinkText")

@FindBy(PartialLinkText = "elementPartialLinkText")

@FindBy(css = "elementCss")

@FindBy(xpath = "elementXpath")

Third-party plugins/tools
Each of the browser types has an Inspector tool to use when building the locators. There are
also various third-party plugins for each browser in the open-source world.

Let's look at one of the browser add-ons. Firefox has Firebug, Firepath, and Page Inspector.
These plugins provide additional capabilities to users for building and "testing" locators.
Page Inspector and Firebug allow users to edit, debug, and monitor CSS, HTML, and
JavaScript in web pages. Firepath allows users to edit, inspect, and generate XPath, CSS,
and jQuery expressions.

Here are some links to different browser development tools:

Firefox Developer Tools are located at https:/ / developer. mozilla. org/ en- US/
docs/Tools

Safari Developer Tools are located at https:/ /developer. apple. com/ safari/
tools/

Chrome Developer Tools are located at https:/ /developer. chrome. com/
devtools

Edge WebDriver Tools are located at https:/ /developer. microsoft. com/ en-us/
microsoft- edge/ tools/ webdriver/

Opera Developer Tools are located at http:/ /www. opera. com/ dragonfly/

We will discuss how to use the locators later on using partial text strings, multiple
attributes, CSS, and XPath queries. Let's look at the mobile inspectors for getting locators
for mobile pages.

https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.mozilla.org/en-US/docs/Tools
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.apple.com/safari/tools/
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.chrome.com/devtools
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[276]

Inspection of page elements on mobile
applications
For mobile applications, there are various tools that can be used for each mobile device,
such as the iOS simulator and Android emulator. In this section, we will discuss the
Inspector tool built into the Appium Client.

Appium inspector
When building page object classes for mobile applications, the Appium API is used to test
the elements on each page. Appium has its own Inspector tool that allows users to inspect
the application in an iOS simulator or Android emulator. Once the mobile application is
loaded in the simulator or emulator, the user would then run the Inspector tool, which will
embed it in a frame inside the tool. Users can then move to each element in the mobile
application, and click them to display the locators.

The classes and attributes for the mobile applications may be different from the browser
pages, but the page object classes should be built exactly the same using the Selenium Page
Object Model. Elements should be defined in each class and referenced by their static name
in methods in the class.

Again, locators should not be used in the test classes, but in the page object classes
themselves. The following are the syntax differences for defining locators in the mobile
classes using the FindBy notation:

@iOSFindBy(id = "elementId")

@AndroidFindBy(id = "elementId")

Here are the common MobileElement locator methods:

@FindBy(id = "elementId")

@FindBy(className = "elementClassName")

@FindBy(tagName = "elementTagName")

@FindBy(xpath = "elementXpath")

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[277]

Other attributes can be used to identify MobileElement types such as name, value, and so
on, but they must be used in an XPath query-type locator. For example:

@AndroidFindBy(id = "username")
@iOSFindBy(xpath = "//UIATextField[@value='Username']")
protected M username;

@AndroidFindBy(id = "password")
@iOSFindBy(xpath ="//UIATextField[@value='Password']")
protected M password;

@AndroidFindBy(id = "submit")
@iOSFindBy(xpath = "//UIAButton[@name = 'Submit']")
protected M submit;

Inspecting mobile elements
The following screenshot displays the Appium inspector, running the iOS simulator with
the sample Apple UICatalog application. It is a native iOS application, so it is not running
in a browser on the mobile device. On the bottom portion of the inspector, users can select
the Locator button and "test" the locators they are building by ID, class name, tag name, or
XPath:

Appium iOS mobile inspector

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[278]

The Appium inspector for Android is similar, except that it launches the Android emulator
in the tool window. The basic functionality of it is the same. Users can select each
component in the Inspector window, and view the attributes of the elements to build the
locators.

The following screenshot displays the Appium inspector running the Android emulator
with the sample contacts application. It is a native Android application, so it is not running
in a browser on the mobile device:

Appium Android Mobile inspector

Xcode has an Accessibility Inspector tool itself that can also be used to view the attributes of
elements in the mobile pages. Apple bundles the tool with Xcode, and it can be launched
from within the IDE. The Appium inspector, however, seems to work better in most cases.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[279]

Standards for using static locators
The standards to use for defining locators will vary from AUT to AUT. In a perfect world,
all browser and mobile pages would have a unique ID assigned to each element in the
application, and users would just create a static locator using those IDs. Unfortunately, it is
not a perfect world.

However, there are some common best practices that users can follow to ensure the
framework is as efficient as possible.

Let's take a look at each type of locator.

Rules for using standard locators
The locator types can be divided up into three distinct categories: simple, CSS, and XPath.
Let's discuss each type here.

Simple locators
Simple locators are those that have one attribute in the browser DOM or mobile page that
makes them unique from other elements, and does not include any hierarchy such as a
parent, child, sibling, or descendant. This includes id, name, className, tagName,
linkText, and partialLinkText.

So for example, when we looked at the Google Mail login page, we saw that the first text
field was defined as:

<input type="email" class="whsOnd zHQkBf" jsname="YPqjbf"
autocomplete="username" spellcheck="false" tabindex="0" aria-label="Email
or phone" name="identifier" id="identifierId" dir="ltr" data-initial-
dir="ltr" data-initial-value="" badinput="false">

Obviously, the id would be the first choice for defining the element in the page object class.
But, if there is another element on the page that has the same ID, then the user could use
the name or the className attribute. If those still did not yield a unique locator, the
tagName could ultimately be used for the input field. For example:

@FindBy(id = "identifierId")
protected M email;

or

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[280]

@FindBy(name = "identifier")
protected M email

or

@FindBy(className = "whsOnd")
protected M email

or

@FindBy(tagName = "input")
protected M email;

Notice that, when using the tagName, the input tag was used. If there were multiple input
fields on the page, an index would be required to make it unique. XPath allows you to
index fields sequentially within the DOM from top to bottom. They would be indexed as
follows: input[1], input[2], input[3], and so on. XPath uses one-based numbering.

Finally, if the user wanted to access a link on the page, there are two locator types called
linkText and partialLinkText that would allow them to define the locator by the entire
link, or just a portion of it:

// google home page

<a class="gb_P" data-pid="23"
href="https://mail.google.com/mail/?tab=wm">Gmail

@FindBy(linkText = "Gmail")
protected M gmail;

or

@FindBy(partialLinkText = "mail")
protected M gmail;

CSS locators
If all those locator types fail to yield a unique locator, then the user can use a CSS locator.
The inspector can derive the CSS locator for the user, and in this case, it would be:

@FindBy(css = "input#identifierId")
protected M email;

or

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[281]

@FindBy(css = "input[id='identifierId']")
protected M email;

XPath query locators
Finally, the XPath query is the most versatile type of locator, since it is bidirectional by
nature, but it is also the slowest locator type to use (CSS locators can only reference
elements in one direction, but are faster). Here is the simple XPath locator for this field:

@FindBy(xpath = "//input[@id='identifierId']")
protected M email;

There are whole sets of rules and techniques for building CSS and XPath locators; some of
these will be discussed in the next section.

The Wikipedia definition and ruleset for the XPath query
language is located at https://en.wikipedia.org/wiki/XPath
The Oracle documentation for the XPath query language is
located at https:/ /docs. oracle. com/cd/ E18442_ 01/ doc. 651/
e18053/ xpath. htm

There is an XPath tutorial located at https:/ /www. w3schools.
com/ xml/ xpath_ syntax. asp

There is a CSS set of rules located at https:/ /www. w3schools.
com/ cssref/ css_ selectors. asp

Referencing static elements in methods
When defining locators in the page object classes, a static name is always given to the
WebElement or MobileElement. This name should be referenced in the methods in the class
that act on the element. Methods can either directly call a Selenium API method on a static
element, or take a WebElement or MobileElement as a parameter.

Using the Gmail login page again as an example, the email and password fields would
look like this:

// use of static WebElement name in method
public void login(String email,
 String password)
 throws Exception {

 this.email.sendKeys(email); // static WebElement name

https://en.wikipedia.org/wiki/XPath
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://docs.oracle.com/cd/E18442_01/doc.651/e18053/xpath.htm
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/xml/xpath_syntax.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[282]

 this.password.sendKeys(password); // static WebElement name
 submit.click();
}

// use of static WebElement name passed in as method parameter
public void login(WebElement username,
 String email,
 String password)
 throws Exception {

 username.sendKeys(email); // static WebElement name passed as
 // parameter
 this.password.sendKeys(password); // static WebElement name
 submit.click();
}

Although the use of static names seems fairly straightforward and simple, it needs to be a
standard that is followed throughout the framework. Many developers stray from this
approach, using the dynamic WebElement FindBy API calls directly in the methods (which
require a locator), and thus, creating much more framework maintenance than usual.

Why is that so? That is because the WebElement is not defined in one place and referenced
many times. It is defined in many places, and referenced many times in various methods. If
that locator changes, which they do all the time, then it needs to be fixed in many places. It
makes sense to just define the WebElement locators upfront for all the static elements on
the page.

However, that does not apply to testing dynamic objects in a table or on a page. For
instance, take an application that creates user accounts. If a test requires 25 different user
type accounts to be created and verified in a list, table, or simply on the page somewhere, it
wouldn't make sense to define all those WebElements in a page object class. That is very
inefficient and really impractical.

Users need to use techniques to derive locators on the fly for these dynamic types of testing.
We will cover those techniques in the next couple of sections!

Retrieving static elements from other classes
Before we discuss using dynamic, XPath, and CSS locators, let's review again the standards
for retrieving WebElements from outside the page object classes.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[283]

In keeping within the Selenium Page Object Model, locators go in the page object classes,
but not in the utility classes, the test classes, or the data files. Users will often try to cut
corners and embed the WebElement class's FindBy methods within the test methods
themselves, rather than encapsulating the locators in the PO classes.

This is the wrong approach, and leads to maintenance nightmares when locators, text,
values, tags, and links change in the application. We only want to have to make a change in
one place when a locator changes.

Here is a summary of the best practices for using locators:

Page object classes store the locators that define the WebElements or
MobileElements
Getter methods can be created in page object classes to return the static name of
the WebElement from the calling instance of the class
Locators should not be stored in data files and passed in as a part of a dataset
(although a map file could be created)
The order of precedence using locators is always id, name, className, tagName,
linkText, partialLinkText first, then css next, followed finally by xpath
queries
Store all common element locators in base classes to allow all subclasses with the
same elements to inherit them, reducing the number of elements that need to be
defined
Keep the hierarchy of the locators to a minimum, just enough to make them
unique (one or two levels)

Standards for using dynamic locators
There will always be a set of standard objects on a page that remain static each time you
navigate to the page. Those are the elements you define up-front in the page object classes:
buttons, links, tables, text fields, drop-down lists, logos, and so on.

Now, say you have a page that you create dynamic elements on, such as accounts, servers,
settings, or let's just say "widgets". Each time your set of tests runs, it creates all different
types of widgets with various preferences, names, timestamps, and so on.

You certainly don't want to clutter up your page objects with a bunch of static elements that
the data must match each time you test. In this case, you can build the dynamic locators on
the fly using partial string matches of the widgets in the list, table, or page.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[284]

In this section, we will cover using single and multiple attribute locators, as well as
building methods using dynamic locators from text in elements.

Single attribute XPath versus CSS locators
When creating locators using CSS and XPath, the simplest form is the single attribute
locator. We build the locator using the tag and/or an attribute of an element. Let's look at
both WebElements and MobileElements. Keep in mind that CSS is only available for
WebElements.

WebElements
When defining locators for a WebElement using XPath or CSS, there are many variations of
a locator that can be used. Let's look at a couple of web pages and define a single attribute
XPath and CSS locator for it. The following web page is a sample web application at
www.practiceselenium.com, running in Firefox:

Mozilla Firefox DOM elements

http://www.practiceselenium.com

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[285]

The Inspector frame shows that for the Welcome link, we have href, data-title, data-
pageid, and data-url attributes to work with. Let's build the XPath and CSS locators
using these attributes:

@FindBy(xpath = "//a[@href='welcome.html']")
@FindBy(css = "a[href='welcome.html']")
protected M welcome;

or

@FindBy(xpath = "//a[@data-title='Welcome']")
@FindBy(css = "a[data-title='Welcome']")
protected M welcome;

or

@FindBy(xpath = "//a[contains(@data-pageid,'247216')]") // contains
@FindBy(css = "a[data-pageid*='247216']") // contains
@FindBy(css = "a[data-pageid$='247216']") // ends-with
protected M welcome;

or

@FindBy(xpath = "//a[@data-url='welcome.html']") // equals
@FindBy(css = "a[data-url^='welcome']") // starts-with
protected M welcome;

or

@FindBy(xpath = "//a[.='Welcome']") // equals
@FindBy(css = "a:contains('Welcome')") // contains; subject to CSS version
of browser
protected M welcome;

In these locators, attributes were used in both the XPath and CSS, some partial string
matches on the attribute itself, and an equals and contains parameter.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[286]

In the following screenshot, we use the Chrome Inspector. When we highlight a StaticText
field, it displays span in the Inspector frame and no attributes are available for the
paragraph:

Google Chrome DOM elements

The www.practiceselenium.com is a free practice website where you can
learn Selenium using tutorial classes or sample websites. It is provided
by Selenium Framework 2010-2017, Copyrights reserved, 172-21 Hillside
Avenue, Suite 207, Jamaica, NY, and is located at seleniumframework.com.

http://www.practiceselenium.com
http://www.seleniumframework.com/

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[287]

The following XPath locators use partial string matches to define the element:

@FindBy(xpath = "//span[contains(text(),'Green tea originated')]")

@FindBy(xpath = "//span[starts-with(text(),'Green tea')]")

@FindBy(xpath = "//span[ends-with(text(),'dietary supplements and cosmetic
items.')]")

@FindBy(xpath = "//span[.='Green tea is made...']") // equals; reqs entire
string

@FindBy(xpath = "//span[text()='Green tea is made...']") // equals; reqs
entire string

@FindBy(xpath = "(//span)[19]")

protected M greenTea;

@FindBy(css = "span:contains('Green tea is made from the leaves from
Camellia')") //native CSS

@FindBy(css = "span[innerText*='Green tea is made from']") // Non-Firefox

@FindBy(css = "span[textContent*='Green tea is made from')]") // Firefox

protected M greenTea;

So, even though this element had no ID, attributes, tags, className, and so on, we are able
to define the locator using a portion of the text contained in span. XPath is a little more
flexible in these situations.

MobileElements
As we discussed in the previous sections, the locators for MobileElements are limited to ID,
className, tagName, and XPath. That doesn't mean you cannot use other attributes in
XPath queries when defining the locators. Let's take a look at a few MobileElements and
define the XPath locators.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[288]

In the following screenshot of the ScratchTones native mobile iOS app, when we highlight
the My Scratchtones button in the Appium Inspector, it displays the attributes in the
Details frame:

Appium iOS mobile elements

We have the name, type, value, and label to use as attributes; also, notice that the user is
given a generic XPath locator to use. The problem with the generic locators is that they
include too much hierarchy in the locator. Let's build a couple of single attribute XPath
locators for this element:

@iOSFindBy(xpath = "//UIAButton[@name='My ScratchTones']")
protected M myScratchTones;

or

@iOSFindBy(xpath = "//UIAButton[@label='My ScratchTones']")
protected M myScratchTones;

or

@iOSFindBy(xpath = "//*[@value='1']")
protected M myScratchTones;

or

@iOSFindBy(xpath = "//UIATabBar[1]/UIAButton[1]")
protected M myScratchTones;

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[289]

In the first and second locators, the class was used along with the name and label
attributes. The class is not required if the locator is unique using just the attribute, so the
third example is sufficient when wildcarding it. The third example is less robust using the
value provided, and the most generic locator is the fourth example. When there are no
unique attributes to use, users must use the class and an index number if there are multiple
ones on the page (one-based numbering).

In the following screenshot, when we highlight the first StaticText field, it displays the
attributes in the Details frame:

Appium iOS mobile elements

When StaticText is the only real attribute, we have to build the locator. We can use a partial
string match in the XPath query:

@iOSFindBy(xpath = "//UIAStaticText[starts-with(@name,'1. Connect your
device')]")

@iOSFindBy(xpath = "//UIAStaticText[contains(@name,'Connect your
device')]")

@iOSFindBy(xpath = "//UIAStaticText[ends-with(@name,'menubar.')]")

@iOSFindBy(xpath = "//UIAStaticText[contains(text(),'Connect your
device')]")

@iOSFindBy(xpath = "//UIAStaticText[.='Connect your device to a computer,
launch iTunes,...']")

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[290]

In the third screenshot, when we highlight the first button in the recorder, it displays the
attributes in the Details frame. However, a lot of the buttons do not have any text
attributes associated with them, such as the Start button:

Appium iOS details frame

In this case, the user would most likely have to use class and index numbers for some of the
buttons, as follows:

@iOSFindBy(xpath = "//UIAButton[@name='Start']")
protected M start;

@iOSFindBy(xpath = "//UIAButton[@name='record active']")
protected M recordTrack1;

@iOSFindBy(xpath = "//UIAButton[@name='off unselected']")
protected M offTrack1;

@iOSFindBy(xpath = "//UIAButton[@name='play unselected']")
protected M playTrack1;

@iOSFindBy(xpath = "//UIASlider[1]")
protected M balanceTrack1;

@iOSFindBy(xpath = "//UISlider[3]")
protected M volumeTrack1;

etc...

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[291]

The ScratchTones iOS Mobile Music Recording Studio application is
provided by Graphixware, LLC:

Email: gw@graphixware.com
Website: https:/ / graphixware. com
ScratchTones: https:/ /itunes. apple. com/us/ app/ scratchtones/
id532631337? mt= 8

Multiple attribute XPath versus CSS locators
In a lot of situations, there is a need to include multiple attributes to make a locator unique,
or work with multiple elements; XPath and CSS both have provisions to allow this. Let's
take a look at some of those techniques:

Hierarchy: One mistake often made is including the entire hierarchy tree in a
locator. The main problem with this is that if you use four to five levels of
parenting, any time the style of the page changes, all the locators will be broken.
The best practice to follow when using XPath and CSS is to include the element
locator and, if necessary, one level of hierarchy only. This would include
ancestor, descendant, preceding, following, preceding-sibling,
and following-sibling.

Or conditions: When a common locator is different on some pages, users can "or"
the locator to find the element by one method or the other. For example:

// Xpath
@FindBy(xpath = "//img[@src='myLogo.png' or @src='myLogo.svg']")

// css
@FindBy(css = "div[id*='progressBar'], a[id*='progressBar'],
i[id*='progressBar']")

And conditions: When a common locator needs multiple methods to make it
unique, users can "and" the locator to find the element by both methods. For
example:

// Xpath
@FindBy(xpath = "//div[contains(@class,'header') and
contains(text(),'label')]")

// css
@FindBy(css = "input[id*='email'][name='username']")

https://graphixware.com/
https://graphixware.com/
https://graphixware.com/
https://graphixware.com/
https://graphixware.com/
https://graphixware.com/
https://graphixware.com/
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8
https://itunes.apple.com/us/app/scratchtones/id532631337?mt=8

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[292]

Parent, child, sibling, relatives: When there are many elements with the same
ID, classes, or attributes, such as when there are duplicate buttons on the page,
users can use one of the hierarchy methods to define the locators. Here are a
couple of XPath code examples:

// ancestor
@FindBy(xpath = "//input[@id='myID']/ancestor::div/span")

// descendant
@FindBy(xpath = "//*[@id='myModal']/descendant::h2")

// following
@FindBy(xpath = "//div[starts-
with(text(),'title')]/following::i[@class='icon-close']")

// following-sibling
@FindBy(xpath = "//div[.='label']/following-
sibling::div[@class='myGraphic']")

// preceding
@FindBy(xpath =
"//a[contains(text(),'myID')]/preceding::input[@class='myCheckbox']
")

// preceding-sibling
@FindBy(xpath = "//div[.='label']/preceding-
sibling::div[@class='myGraphic']")

Using dynamic locators in methods
Getting back to dynamic elements created during tests, how are they handled? We
wouldn't want to define them upfront, and cannot possibly define them upfront, due to the
nature of the dynamic names, text, or IDs associated with them.

So, let's build a method that takes a string parameter that defines some element in a page,
which will get stuffed into an XPath locator on the fly. For this example, let's use a
page's label elements.

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[293]

To test all the //label elements in a web page—and in some cases, there can be
dozens—we would want to store the labels in a data file and pass them into a test method
one at a time, verifying that they exist on the page. To do this, we have to build the locator
on the fly, as follows:

public void verifyLabel(String pattern,
 String label)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 String locator = "//label[contains(text(),'" + pattern + "')]";

 assertEquals(driver.findElement(By.xpath(locator)).getText(),
 label);
}

That seems too easy to be true. In this example, we kept the locator in the page object class,
kept a separation between that class and the test class calling the method, and created a
dynamic locator to use instead of referencing a static locator from the page object class.

Let's look at one a little more complicated. In this next example, it wasn't enough to just
reference a pattern to match label, but another control following the node as well:

public void verifyLabel(String pattern,
 String label)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 String locator = "//label[contains(text(),'" + pattern +
 "')]/following::div[@class='help-text']";

 assertEquals(driver.findElement(By.xpath(locator)).getText(),
 label);
}

Those are some cases where the element is predictable. How about situations where you
have no text to pass into the element locator? A good example might be a case where the
application throws up multiple cascading error dialog boxes when an exception occurs;
how would you handle that? Here is a simple method to build a locator on the fly for an
unpredictable element, that being a set of dialogs, and it uses an index as part of the locator:

public void cleanup() {
 String locator = "(//i[@class='icon-close'])[";
 WebDriver driver = CreateDriver.getInstance().getDriver();

 for (int i = 10; i > 0; i--) {

Defining WebDriver and AppiumDriver Page Object Elements Chapter 12

[294]

 try {
 WebElement element =
 driver.findElement(By.xpath(locator + i + "])"));

 if (BrowserUtils.elementExists(element, 0)) {
 element.click();
 waitForGone(By.xpath(locator + i + "]"), 1);
 }
 }

 catch(Exception e) {
 // do nothing, just trap it...
 }
 }
}

Summary
So, at this point the framework consists of the Selenium driver class, the framework utility
classes, and the page object classes that contain the locators and methods used to access the
elements in the application.

The next layer that needs to be built is the data-driven testing portion of the framework.
This is where we will leverage the TestNG framework technologies to create setup and
teardown methods, and look at methods that can be iterated, groups of tests, suite files,
parallel testing, and encapsulated data files.

First, let's build a data provider class, so as to have that in place, allowing us to pass in data
when we start building the data-driven tests. The next chapter will cover building a JSON
DataProvider for the framework.

13
Building a JSON Data Provider

This chapter introduces users to the concept of encapsulating data for use in data-driven
testing. It will teach users how to design and build a TestNG Data Provider class in the
native JavaScript Object Notation (JSON) format. The following topics will be covered:

Introduction
TestNG Data Provider class
Extracting JSON data into Java objects
Filtering test data
JSON Data File formats
The JSONObject class

Introduction
Before introducing the concept of data-driven testing, the framework will need a
mechanism to extract data that is encapsulated in a format that can be easily passed into
test methods. There are various ways to store data in automated testing; CSV files, JSON
files, SQL databases, MS-Excel files, property files, and many more.

Since the technologies covered in this framework are Java and TestNG, this chapter will
cover how to design and build a Data Provider class using Java and the JSON protocol. This
is a common standard in Java development and testing, and TestNG has a feature to
include any Data Provider method with TestNG-based test class methods.

Building a JSON Data Provider Chapter 13

[296]

As per Wikipedia (https:/ /en. wikipedia. org/ wiki/ JSON):

"In computing, JavaScript Object Notation or JSON, is an open-standard file format that
uses human-readable text to transmit data objects consisting of attribute-value pairs and
array data types (or any other serializable value). It is a very common data format used for
asynchronous browser/server communication, including as a replacement for XML in
some AJAX-style systems."

What you will learn
Users will learn how to design and build a Data Provider class using the TestNG Data
Provider features to extract test data encapsulated in JSON format, for use in data-driven
testing.

The TestNG Data Provider class
TestNG has a Data Provider feature that allows users to extract test data in any format. It
returns an array of objects, which can be cast to a POJO (Plain Old Java Object; that is, no
set of rules to follow) such as a JSONObject type. When creating the class with the method
for extracting the data, users tag the method using the @DataProvider annotation.

The DataProvider method could be stored in the same class as the Test, but it makes more
sense to create a generic static method in a separate class so all test classes can use the same
DataProvider and format. Having a consistent format to encapsulate data will make it
easier for users to maintain and enhance the framework and tests.

Finally, when storing the method in a separate class, the DataProvider method name and
class must be passed to the @Test annotation as an attribute. We will explore a few
examples in this section.

The TestNG DataProvider JavaDoc is located at http:/ / testng. org/ doc/
documentation- main. html#parameters- dataproviders.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders
http://testng.org/doc/documentation-main.html#parameters-dataproviders

Building a JSON Data Provider Chapter 13

[297]

The @DataProvider annotation
TestNG has an annotation called @DataProvider that tags a method in a class as a
DataProvider, which can then be called on the test methods. It can take an attribute name to
be used when declaring it in the test method. The following example shows the annotation
in use:

// Simple Data Seeded Data Provider Method

@DataProvider(name = "myData_JSON")
public static Object[][] fetchData() throws Exception {
 JSONObject object = new JSONObject();

 object.put("name", "Kiss");
 object.put("year", "1973");
 object.put("song", "Rock and Roll All Nite");

 return new Object[][] {{object}};
}

/**
 * TestNG DataProvider Class for extracting JSON data
 *
 * @author Name
 *
 */
public class JSONDataProvider {
 public static String dataFile = "";
 public static String testCaseName = "NA";

 /**
 * fetchData - generic DataProvider method that extracts data
 * by JSON key:value pairs
 *
 * @param method
 * @return Object[][]
 * @throws Exception
 */
 @DataProvider(name = "myData_JSON")
 public static Object[][] fetchData(Method method) throws
 Exception {
 System.out.println(method.getName());
 ...

Building a JSON Data Provider Chapter 13

[298]

Notice the Method parameter passed to the fetchData method. This tells TestNG to get
the current test method name and pass it into the method, which is useful for filtering data.

The @Test annotation
TestNG uses attributes and an annotation called @Test to tag the test methods,
differentiating which ones are setup/teardown methods, test methods, or private methods
in the class. In this example, the test method has a dataProvider and class defined as
attributes to the test method:

/**
 * tc001_appFeatureAction - test method to demonstrate @Test DP Annotation
 *
 * @param data
 * @throws Exception
 */
@Test(dataProvider="myData_JSON",dataProviderClass=JSONDataProvider.class)
public void tc001_appFeatureAction (JSONObject data) throws Exception {

Extracting JSON data into Java objects
Now that the basic syntax has been covered, we will start building the JSON DataProvider
method. First, we need a file I/O method to read the JSON data from a file. The parameter
to the method will be the filename, including the path and string type. The method will be
static and return JSONObject. Here is the code sample:

/**
 * extractData_JSON - method to extract JSON data from a file
 *
 * @param file (including path)
 * @return JSONObject
 * @throws Exception
 */
public static JSONObject extractData_JSON(String file) throws Exception {
 FileReader reader = new FileReader(file);
 JSONParser jsonParser = new JSONParser();

 return (JSONObject) jsonParser.parse(reader);
}

Building a JSON Data Provider Chapter 13

[299]

In cases where users might want to extract only specific sets of JSON data, as when filtering
for specific test cases, they could create a wrapper method around the extractData_JSON
method that would allow a parameter to be used as a filter. This method would also be
static and return a JSONArray. Here is the code sample:

/**
 * fetchData - method to get only the data that matches the filter

 * @param file (including path)
 * @param filter
 * @return JSONArray
 * @throws Exception
 */
public static JSONArray fetchData(String file,
 String filter)
 throws Exception {

 JSONArray testData = (JSONArray) extractData_JSON(file).get(filter);

 return testData;
}

The fetchData method to be used as the DataProvider will be constructed to support the
data-driven test model. What that means is the parameter to the fetchData method,
java.lang.Reflect.Method, will pass the test method name to the fetchData method
and return only the sets of JSON data for that specific test case. In other words, each test
method will include the DataProvider name as an attribute and it will automatically pull
only the sets of data by the same name.

In essence, TestNG does the filtering for each test case so that only the correct sets of data
are sequentially passed into the test cases that apply. Additional filtering can be added in
the DataProvider.

This method will use the Java class JSON.simple, which provides methods for processing,
reading, and writing JSON data using JSONArray and JSONObject types.

The JSON simple JavaDoc is located at https:/ /cliftonlabs. github. io/
json- simple/ target/ apidocs/ index. html.

https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html
https://cliftonlabs.github.io/json-simple/target/apidocs/index.html

Building a JSON Data Provider Chapter 13

[300]

Now, let's look at the method structure of this DataProvider:

// global variables to be "set" later outside the DataProvider Class
public static String dataFile = "";

/**
 * fetchData - generic DataProvider method that extracts data
 * by JSON key:value pairs
 *
 * @param method
 * @return Object[][]
 * @throws Exception
 */
@DataProvider(name = "myData_JSON")
public static Object[][] fetchData(Method method) throws Exception {
 Object rowID, description;
 Object result [][];
 testCaseName = method.getName();
 JSONArray testData = (JSONArray) extractData_JSON(dataFile)
 .get(method.getName());

 List<JSONObject> testDataList = new ArrayList<JSONObject>();

 for (int i = 0; i < testData.size(); i++) {
 testDataList.add((JSONObject) testData.get(i));
 }

 // include Filter Placeholder

 // exclude Filter Placeholder

 // create object for dataprovider to return
 Object[][] result = new Object[testDataList.size()]
 [testDataList.get(0).size()];

 for (int i = 0; i < testDataList.size(); i++) {
 result[i] = new Object[] { testDataList.get(i) };
 }

 return result;
}

Building a JSON Data Provider Chapter 13

[301]

The next code example is for later use in this framework, but we'll cover it now. There are
third-party test reports that allow users to customize the report content, and having a row
ID and description of the test allows users to filter within the report, name the screenshots
with the test method rowID, add conditions to method setup and teardown routines, and
so on. The following code example shows users how to "stuff" the rowID and description
into the object be created in the DataProvider:

// add in rowID and description for later use

try {
 result = new Object[testDataList.size()]
 [testDataList.get(0).size()];

 for (int i = 0; i < testDataList.size(); i++) {
 rowID = testDataList.get(i).get("rowID");
 description = testDataList.get(i).get("description");
 result[i] = new Object[] { rowID, description,
 testDataList.get(i) };
 }
}

catch(IndexOutOfBoundsException ie) {
 result = new Object[0][0];
}

 return result;
}

Filtering test data
Although TestNG has a feature to run specific groups of tests using the groups attribute,
there may be cases where users will want to filter the data during extraction to include or
exclude a subset of test data. The following filter code can be added to the DataProvider
method (see the preceding placeholders).

Building a JSON Data Provider Chapter 13

[302]

Filtering include and exclude patterns
There may be times when the user might want to run just a subset of the group of tests to
create a "smokeTest" of some sort, narrowing the scope of the test run. Users can use
TestNG groupings to assign tags to the test methods in the classes, and they can also filter
in or filter out rows of data, using the DataProvider itself. This would allow them to select
specific test rows of data or a small set with specific criteria like the rowID in the JSON Data
File.

When filtering with the DataProvider, users can set a TestNG parameter in the suite XML
file, pull in the parameter as a system property, and parse in or out those rows of data.

Here is an example of filtering sets of data in or out of the test run when the extraction takes
place:

// include tests matching this pattern only
...

if (System.getProperty("includePattern") != null) {
 String include = System.getProperty("includePattern");
 List<JSONObject> newList = new ArrayList<JSONObject>();
 List<String> tests = Arrays.asList(include.split(",", -1));

 for (String getTest : tests) {
 for (int i = 0; i < testDataList.size(); i++) {
 if (testDataList.get(i).toString().contains(getTest)) {
 newList.add(testDataList.get(i));
 }
 }
 }

 // reassign testRows after filtering tests
 testDataList = newList;
}

// exclude tests matching this pattern only
...

if (System.getProperty("excludePattern") != null) {
 String exclude =System.getProperty("excludePattern");
 List<String> tests = Arrays.asList(exclude.split(",", -1));

 for (String getTest : tests) {
 // start at end of list and work backwards so
 // index stays in sync
 for (int i = testDataList.size() - 1 ; i >= 0; i--) {
 if (testDataList.get(i).toString().contains(getTest)) {

Building a JSON Data Provider Chapter 13

[303]

 testDataList.remove(testDataList.get(i));
 }
 }
 }
}

JSON Data File formats
Now that we have the JSON Data Provider created, we need some data in the correct
format. Users can actually customize the formatting of the JSON data in the files. Again,
JSON is based on the key/value pairs of data, and the schema is somewhat subjective as to
how you lay out the data:

There is a helpful JSON formatting tool located at https:/ /
jsonformatter. curiousconcept. com/ .

// the following sets of JSON data are laid out vertically

{
 "tc001_getBandInfo":[
 {
 "rowID":"tc001_getBandInfo.01",
 "description":"Kiss Data",
 "name":"Kiss",
 "year":"1973",
 "song":"Rock and Roll All Nite",
 "members":{
 "Vocals":"Paul Stanley",
 "Bass":"Gene Simmons",
 "Guitar":"Ace Frehley",
 "Drums":"Peter Criss"
 }
 },
 {
 "rowID":"tc001_getBandInfo.02",
 "description":"Van Halen Data",
 "name":"Van Halen",
 "year":"1972",
 "song":"Dance the Night Away",
 "members":{
 "Vocals":"David Lee Roth",
 "Bass":"Michael Anthony",
 "Guitar":"Eddie Van Halen",

https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/

Building a JSON Data Provider Chapter 13

[304]

 "Drums":"Alex Van Halen"
 }
 },
 {
 "rowID":"tc001_getBandInfo.03",
 "description":"U2 Data",
 "name":"U2",
 "year":"1976",
 "song":"Sunday Bloody Sunday",
 "members":{
 "Vocals":"Bono",
 "Bass":"Adam Clayton",
 "Guitar":"The Edge",
 "Drums":"Larry Mullen"
 }
 },
 {
 "rowID":"tc001_getBandInfo.04",
 "description":"Thin Lizzy Data",
 "name":"Thin Lizzy",
 "year":"1969",
 "song":"The Boys Are Back in Town",
 "members":{
 "Vocals":"Phil Lynott",
 "Bass":"Phil Lynott",
 "Guitar":"Scott Gorham",
 "Drums":"Brian Downey"
 }
 }
]
}

// the following sets of JSON data are laid out horizontally

{
 "tc002_addEmp":
 [
 {"rowID":"tc002_addEmp.01","description":"Add
 Employee","id":"EMP1","name":"John","gender":"M","age":23},

 {"rowID":"tc002_addEmp.02","description":"Add
 Employee","id":"EMP2","name":"Jane","gender":"F","age":30},

 {"rowID":"tc002_addEmp.03","description":"Add
 Employee","id":"EMP3","name":"Sally","gender":"F","age":19},

Building a JSON Data Provider Chapter 13

[305]

 {"rowID":"tc002_addEmp.04","description":"Add
 Employee","id":"EMP4","name":"Bob","gender":"M","age":40}
]
}

Note that in both examples, there is a method name that starts the data model, and each set
of data for that method is nested within it. For instance, in the first example, the method
name is tc001_getBandInfo, which will be the name of the Java test method in the test
class. Each set of data to be passed into it has rowID using the same name plus an index
such as tc001_getBandInfo.01, tc001_getBandInfo.02, and so on.

For the next test method set of data, the user can include it in the same JSON file, but must
differentiate the method name.

The second example uses the method name tc002_addEmp with the rowID as
tc002_addEmp.01, tc002_addEmp.02, and so on. How the data is structured in the JSON
file is determined by JSONObject, which is being created for the test method. We will
cover that in the next section.

The JSONObject class
Once the data is extracted from the JSON file, it is available for use in the test methods.
Users can cast the extracted data to a JSONObject of any type they desire to create. This
allows them to access each field using a key/value pairing, and that data can be passed into
test case methods that perform the actions on the screen.

Remember, when using the Selenium Page Object Model, each page object class contains all
the methods that pertain to using the features on a specific screen, and those methods are
called from within the test methods to vary data passed to them. This allows the test
methods to be reused for multiple test scenarios, and keeps an abstract layer between the
page object and the test classes.

The JSONObject is an interface that extends the JSONStructure class, inherits common
methods from its superclass, and provides users with a simple data structure to store the
test data. It can be used in conjunction with JSONReader, JSONWriter, JSONArray, and
JSONObjectBuilder.

Building a JSON Data Provider Chapter 13

[306]

Now, let's explore a few examples of how to use it:

The JavaDoc for the JSONObject class is located at http:/ /docs. oracle.
com/javaee/ 7/ api/ javax/ json/ JsonObject. html.

// using the rock bands JSON data we introduced earlier,
// create a JSONObject with the required field types

import org.json.simple.JSONObject;

/**
 * Sample JSONObject Class
 *
 * @author name
 *
 */
public class RockBands {
 private String name, year, song;
 private JSONObject members;

 // the constructor requires the JSONObject when instantiated
 public RockBands(JSONObject object) {
 setName(object.get("name").toString());
 setYear(object.get("year").toString());
 setSong(object.get("song").toString());
 setMembers((JSONObject) object.get("members"));
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getName() {
 return this.name;
 }

 public void setYear(String year) {
 this.year = year;
 }

 public String getYear() {
 return this.year;
 }

 public void setSong(String song) {
 this.song = song;

http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html

Building a JSON Data Provider Chapter 13

[307]

 }

 public String getSong() {
 return this.song;
 }

 public void setMembers(JSONObject members) {
 this.members = members;
 }

 public JSONObject getMembers() {
 return this.members;
 }

 @Override
 public String toString() {
 return "RockBands {" +
 "name = '" + name + '\'' +
 ", year = '" + year + '\'' +
 ", song = '" + song + '\'' +
 ", members = " + members +
 '}';
 }
}

First, the constructor in the class requires JSONObject to be passed into it when
instantiated. Since we are using the JSON DataProvider to extract the data, we can cast it to
a JSONObject on the fly as follows:

@Test(dataProvider="myData_JSON", dataProviderClass=JSONDataProvider.class)
public void tc001_getBandInfo(JSONObject testData) throws Exception {
 // fetch object data and pass into Java object...
 RockBands rockBands = new RockBands(testData);

 // print out the JSONObject data extracted from file
 System.out.println(rockBands.toString());
}

Second, notice that one of the members in the constructor takes another JSONObject
parameter, that is because the band members key is a nested object in itself:

public RockBands(JSONObject object) {
 setName(object.get("name").toString());
 setYear(object.get("year").toString());
 setSong(object.get("song").toString());
 setMembers((JSONObject) object.get("members"));
}

Building a JSON Data Provider Chapter 13

[308]

// again, the data format looks like this in the JSON file:

"tc001_getBandInfo":[
 {
 "rowID":"tc001_getBandInfo.01",
 "description":"Kiss Data",
 "name":"Kiss",
 "year":"1973",
 "song":"Rock and Roll All Nite",
 "members":{
 "Vocals":"Paul Stanley",
 "Bass":"Gene Simmons",
 "Guitar":"Ace Frehley",
 "Drums":"Peter Criss"
 }
 }

Finally, the data can be retrieved from the rockBands object using the key/value pairings:

System.out.println("\nName = " + rockBands.getName() +
 "\nYear = " + rockBands.getYear() +
 "\nSong = " + rockBands.getSong() +
 "\nVocals = " + rockBands.getMembers().get("Vocals") +
 "\nBass = " + rockBands.getMembers().get("Bass") +
 "\nGuitar = " + rockBands.getMembers().get("Guitar") +
 "\nDrums = " + rockBands.getMembers().get("Drums"));

Alternatively, the following can be used:

System.out.println(rockBands.toString());

The output of the first method noted above looks like this (although the intention is to pass
it into a page object class method for processing):

Name = Kiss
Year = 1973
Song = Rock and Roll All Nite
Vocals = Paul Stanley
Bass = Gene Simmons
Guitar = Ace Frehley
Drums = Peter Criss

Building a JSON Data Provider Chapter 13

[309]

The alternative method will produce the following output:

RockBands {name = 'Kiss', year = '1973', song = 'Rock and Roll All Nite',
members = {"Bass":"Gene Simmons","Guitar":"Ace Frehley","Vocals":"Paul
Stanley","Drums":"Peter Criss"}}

Some users prefer to build the Java objects using the builder class interface, which has some
of the same design pattern but allows users to set only the fields they want to change.
Here's an example using the same data structure:

The JavaDoc for the builder interface is located at https:/ /commons.
apache. org/ proper/ commons- lang/ javadocs/ api- 3. 1/org/ apache/
commons/ lang3/ builder/ Builder. html.

/**
 * Sample JSON Object Class
 *
 * @author Name
 *
 */
public class RockBandsBuilder {
 public String name, year, song;
 public JSONObject members;

 /**
 * Builder interface
 *
 */
 public static class Builder {
 private String name, year, song;
 private JSONObject members;

 public Builder() {
 }

 public Builder name(String name) {
 this.name = name;
 return this;
 }

 public Builder year(String year) {
 this.year = year;
 return this;
 }

 public Builder song(String song) {

https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html
https://commons.apache.org/proper/commons-lang/javadocs/api-3.1/org/apache/commons/lang3/builder/Builder.html

Building a JSON Data Provider Chapter 13

[310]

 this.song = song;
 return this;
 }

 public Builder members(JSONObject members) {
 this.members = members;
 return this;
 }

 public RockBandsBuilder build() {
 RockBandsBuilder rockBands = new RockBandsBuilder(this);
 return rockBands;
 }
 }

 public RockBandsBuilder(Builder builder) {
 this.name = builder.name;
 this.year = builder.year;
 this.song = builder.song;
 this.members = builder.members;
 }

 public RockBandsBuilder(RockBandsBuilder rockBands) {
 this.name = rockBands.name;
 this.year = rockBands.year;
 this.song = rockBands.song;
 this.members = rockBands.members;
 }

 @Override
 public String toString() {
 return "RockBandsBuilder {" +
 "name = '" + name + '\'' +
 ", year = '" + year + '\'' +
 ", song = '" + song + '\'' +
 ", members = " + members +
 '}';
 }
}

The test method use of this class would look like this:

@Test(dataProvider="myData_JSON", dataProviderClass=JSONDataProvider.class)
public void tc002_getBandInfo(JSONObject testData) throws Exception {
 // fetch object data and pass into Java object...
 RockBandsBuilder rockBands = new RockBandsBuilder.Builder()
 .name(testData.get("name").toString())
 .year(testData.get("year").toString())

Building a JSON Data Provider Chapter 13

[311]

 .song(testData.get("song").toString())
 .members((JSONObject) testData.get("members"))
 .build();

 // print out the JSONObject data extracted from file
 System.out.println(rockBands.toString());
}

Summary
This chapter introduced users to designing and building a DataProvider class using TestNG
DataProvider features, along with the concept of encapsulating data in JSON file format. As
we proceed further into data-driven test development, it will be important to have the
DataProvider available for use when creating new test methods.

As we learned, the DataProvider method will sort data during extraction based on the test
method name. Filters for including and excluding specific sets of data can also be added,
and finally, users can "stuff" specific data like rowID and description into Java objects on
the fly to be used later on for reporting purposes.

The next chapter will cover the data-driven test development model in respect to designing
and building Java test classes, methods, and data files. The TestNG annotations will be used
to specify which test methods are setup and teardown methods, and which ones are actual
test methods that require data to run.

After the next chapter, the user will have the basic structure of the framework complete,
from the Selenium driver class to the utility classes, page object classes, test classes, and
data files.

14
Developing Data-Driven Test

Classes
This chapter focuses on designing and building data-driven test classes using the TestNG
technologies, integrating a data provider into data-driven tests, and using setup/teardown,
exception handling, and various other TestNG features. The following topics are covered:

Introduction
Annotating test class methods using TestNG
TestNG setup/teardown methods
Naming conventions for test methods
Using the TestNG DataProvider
Calling page object methods in test classes
Exception handling in test classes
Designing base setup classes
TestNG suite file structure
Suite parameters

Introduction
As we mentioned earlier in the book, the main reasons for using a data-driven test
development approach are to be able to reuse test methods with multiple permutations of
data, to encapsulate data in a central location, and to enforce DRY coding practices, which
reduce the amount of code being written and maintained.

Developing Data-Driven Test Classes Chapter 14

[313]

To correctly design and build tests that use this methodology for testing software
applications, test methods must contain a predefined input, a verifiable output, and contain
no hardcoded values within the test method. Data is passed into a test method at runtime,
where it is then used in page object methods to perform an action and verify a result.
Because the data is not hardcoded into the test, methods can be iterated with variations of
datasets, extending the coverage of the test to include positive, negative, boundary, and
limit testing.

This all sounds simple, but in reality, it takes quite a bit of work to convince and train an
engineering organization to follow this model. With time constraints in releasing
applications in continuous development environments, users often just build the test with a
predefined set of data within it. Practices following a copy, paste, change one line of code
approach are no longer acceptable.

Regardless of that fact, as a best practice and standard, test methods should be designed
and built as generically as possible, use a data provider to extract and pass data to them,
and stay small and focused on testing one function per test.

In this chapter, we will design and build data-driven tests using Java and the TestNG
technologies.

As per Wikipedia:

"Data-driven testing is the creation of test scripts to run together with their related data
sets in a framework. The framework provides re-usable test logic to reduce maintenance
and improve test coverage. Input and result (test criteria) data values can be stored in one
or more central data sources or databases, the actual format and organization can be
implementation specific. The data comprises variables used for both input values and
output verification values. In advanced (mature) automation environments data can be
harvested from a running system using a purpose-built custom tool, and the DDT
framework thus performs playback of harvested data producing a powerful automated
regression testing tool. Navigation through the program, reading of the data sources, and
logging of test status and information are all coded in the test script."

The reader will learn how to create data-driven test classes that follow the Selenium POM
to separate page object classes from test classes and data.

Developing Data-Driven Test Classes Chapter 14

[314]

Annotating test class methods using
TestNG
When we start building test classes, we need to think about how we want to structure files.
We are using TestNG as the test framework technology, so we will need to use the
annotations it provides to tag the methods in the class.

Other things to consider: how to instantiate the required page object classes, how to declare
local variables, when to use private methods in the class, how to pass data to the test
methods, and how to structure Java methods so they become setup, teardown, and test
methods. Let's get started on the test class structure itself.

The documentation for TestNG is located at http:/ /testng. org/doc/
documentation- main. html.

TestNG annotations
Here is a list of the standard TestNG annotations available for test methods:

@Test

@Parameters

@DataProvider

@Listeners

@Factory

@BeforeSuite and @AfterSuite
@BeforeTest and @AfterTest
@BeforeGroups and @AfterGroups
@BeforeClass and @AfterClass
@BeforeMethod and @AfterMethod

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html

Developing Data-Driven Test Classes Chapter 14

[315]

@Test
Let's build the test class from the ground up; we will use the Rock Bands test class and data
file as an example:

/**
 * Rock Bands Test Class (JavaDoc left out)
 *
 * @author Name
 *
 */
public class RockBandsTest {

 // setup/teardown methods
 @BeforeSuite
 protected void suiteSetup(ITestContext context) throws Exception {
 }

 @AfterSuite
 protected void suiteTeardown(ITestContext context) throws Exception {
 }

 @BeforeTest
 protected void testSetup(ITestContext context) throws Exception {
 }

 @AfterTest
 protected void testTeardown(ITestContext context) throws Exception {
 }

 @BeforeGroups
 protected void groupsSetup() throws Exception {
 }

 @AfterGroups
 protected void groupsTeardown() throws Exception {
 }

 @BeforeClass
 protected void testClassSetup() throws Exception {
 }

 @AfterClass
 protected void testClassTeardown() throws Exception {
 }

 @BeforeMethod
 protected void testMethodSetup(ITestResult rslt) throws Exception {

Developing Data-Driven Test Classes Chapter 14

[316]

 }

 @AfterMethod
 protected void testMethodTeardown(ITestResult rslt) throws Exception {
 }

 // testcases
 @Test
 public void tc001_getBandInfo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {
 }
}

So, in the page object classes, we created various Java methods to perform actions on
elements in web or mobile pages. Now, when we build the test class, we have to tag the test
methods with the @Test annotation. This tells TestNG that this method is a "test" and it
should be executed when the user runs the class. Some of the attributes available with the
@Test annotation include:

alwaysRun

dataProvider

dataProviderClass

dependsOnGroups

dependsOnMethods

description

enabled

expectedExceptions

groups

invocationCount

invocationTimeOut

priority

successPercentage

singleThreaded

timeOut

threadPoolSize

Developing Data-Driven Test Classes Chapter 14

[317]

Let's discuss a few of the more common ones in the following example:

@Test(groups={"POSITIVE",
 "NEGATIVE",
 "BOUNDRY",
 "LIMIT",
 "SMOKETEST",
 "REGRESSION"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true,
 alwaysRun=true,
 priority=1)
public void tc001_getBandInfo() {
 ...
}

When the groups attribute is used, it allows the user to tag specific test cases to be part of
an overall group, a subset, or a feature test set.

So, in this example, the user defines which group or groups to run in the TestNG suite XML
file, and only that subset of groups will be run. It makes sense to tag only a couple of test
methods in each class as SMOKETEST, so as you develop the functional test classes, you
build a SmokeTest at the same time and "most" of the test methods would be tagged
REGRESSION, except for the LIMIT tests, which would stress out or break the product.

The next two attributes in the example, dataProvider and dataProviderClass, are used
to tell TestNG which DataProvider class and method to use to extract data to pass to the
test method. The last chapter covered building the JSON DataProvider; this is where the
user calls it.

The enabled attribute tells TestNG whether or not the test method should be run; great for
disabling tests that aren't working, are blocked by defects, or for debugging purposes.

The dependsOnMethods attribute will tie the test method to other test methods in the class.
This is a rather tricky one to use, as it will force all test methods to "skip" if the dependent
method fails. It is at times more practical to set up a test class using one of the
setup/teardown annotations rather than using this attribute.

Developing Data-Driven Test Classes Chapter 14

[318]

The alwaysRun attribute tells TestNG to run the test method regardless of a failure to a
method it may depend on.

And finally, the priority attribute tells TestNG which priority order to run the tests in.

The TestNG documentation covers all the attributes in detail; we've discussed a few of the
more common ones here.

TestNG setup/teardown methods
In the previous Rock Bands test class example, we listed some of the annotations that tell
TestNG whether a certain method should be run before or after certain points in time
during the test run. These are the setup and teardown methods. They come before and after
a suite, test, groups, class, and method.

As simple as it may seem, there are various rules and orders of precedence when using
them. Let's look at some examples.

Setup methods
When you build the test class, there will be certain Java methods annotated with @Test,
which tells TestNG that the method is a test and should be run. Those tests will run in
random order by default except, if you use a dependent method, a sequential naming
scheme, or a priority attribute. That will force the tests to run in a specific order.

For all the methods in a suite of tests, there will be common actions that need to be
executed before each suite, test, groups, class, or methods, and instead of calling the same
setup method in each class or test, for instance, it makes sense to do them in one place.
Using the TestNG setup annotations will allow users to execute a routine in a central
place.

Developing Data-Driven Test Classes Chapter 14

[319]

@BeforeSuite, @BeforeTest, @BeforeGroups,
@BeforeClass, and @BeforeMethod
Let's discuss each annotation in detail:

@BeforeSuite: All the methods called in this setup will get executed before
anything else runs in the suite. For instance, if you want to invoke the browser or
a mobile device, you could call the create driver method in @BeforeSuite, and
it would launch the application, maximize it, and load the URL (browser) before
running the test class methods. This is also a good place to retrieve parameters
using the @Parameters annotation from a Jenkins build process, system
property via JVM arguments, and system environment variables. They can then
be processed here for use throughout the suite. Remember, TestNG defines a
suite as all the tests contained in the suite XML file. We will discuss that later on
in the chapter.
@BeforeTest: All the methods called in this setup will run before all test
packages or classes defined in the <test> tag section of the XML file. If building
tests to run in parallel at the <test> level, users would want to invoke the
browser or mobile device here, so each "thread" would run in its own browser or
mobile device. This is also a place where @Parameters can be used, which can
be defined in the XML file as well in each <test> section. The <test> sections in
the XML can contain the same or different test packages or classes, and this
annotation is a way to execute an application setup procedure for all of them.
@BeforeGroups: All the methods called in this configuration setup will run
before a specific group or groups of tests run. The @Test attribute
groups= would need to be used for this to have any effect. This annotation
allows a different setup procedure to be run for different groups of tests.
@BeforeClass: All the methods called in this setup will run before the first test
method runs in the current class. In each test class, there may be a specific setup
that is required before any of the test methods in the class run. This would
include such things as creating default users, accounts, setting up default
preferences in the application, and so on.
@BeforeMethod: All the methods called in this setup will run before each and
every iteration of a test method has run. Users often use this method to set the
application to a known "app" state so that each test starts at the same place,
avoiding conditions where failed tests leave the application in a weird state,
windows left open, and so on.

Developing Data-Driven Test Classes Chapter 14

[320]

Teardown methods
For all the methods in a suite of tests, there will be common actions that need to be
executed after each suite, test, groups, class, or methods, and instead of calling the same
cleanup method in each class or test, for instance, it makes sense to do them in one place.
Using the TestNG teardown annotations will allow users to execute a routine in a central
place, as it did with the setup annotations.

@AfterSuite, @AfterTest, @AfterGroups, @AfterClass,
and @AfterMethod
Let's discuss all the annotations in detail:

@AfterSuite: All the methods called in this teardown will execute after
everything else has completed in the suite. This is a good place to clean up the
AUT, delete users, and accounts created during test runs, uninstall mobile
applications, and close the browser or mobile device. If a report listener is being
used, the report could be constructed in this method after all the TestNG results
are collected.
@AfterTest: All the methods called in this teardown will run after all the test
packages or classes defined in the <test> tag section of the XML file have
completed. If running <test> sections in parallel, users can use this to close the
browsers or mobile devices in each thread, provide cleanup, delete users, and so
on.
@AfterGroups: All the methods called in this configuration teardown will run
after a specific group or groups of tests run. Because test methods generally run
in a random order with TestNG, this method will run at some point after the last
test method runs in the <test> section of the XML file.
@AfterClass: All the methods called in this teardown will run after the last
method runs in the current class. This teardown is very useful for cleaning up all
leftover users, accounts, settings, or anything else the @AfterMethod routine
fails to remove. This is also a good place to process TestNG results (ITestResult)
for reporting purposes.
@AfterMethod: All the methods called in this teardown will run after each and
every iteration of a test method has run. What that means is that when running
data-driven tests, a single test method may execute multiple times, and this
cleanup method will run after each iteration. This routine is useful for cleanup
when exceptions occur during a test method run, taking screenshots, reporting
results, and generally setting the application back to a known "base" state.

Developing Data-Driven Test Classes Chapter 14

[321]

Order of precedence
Other things to note: when using these annotation methods in a superclass of a TestNG test
class, they will be executed in inheritance order of precedence. In other words, users can
create multiple layers of test setup using the same setup annotations, and they will be
inherited and run before the subclass setup methods run. They can also be overridden in
classes that do not require them, using the @Override annotation and calling those
methods by the same setup method name in the test class.

The same precedence rules apply to the teardown methods; those will get executed in
reverse order of inheritance starting with the test class teardowns and then followed by the
execution of the superclass methods. The following code block shows an example of using
the @Override annotation:

// use of setup/teardown methods in base class
public abstract class RockBandsSetup {

 // abstract methods
 protected abstract void testMethodSetup(ITestResult result)
 throws Exception;

 protected abstract void testMethodTeardown(ITestResult result)
 throws Exception;

 // setup/teardown methods
 @BeforeSuite
 protected void suiteSetup(ITestContext context) throws Exception {
 }

 @AfterSuite
 protected void suiteTeardown(ITestContext context) throws Exception {
 }

 @BeforeClass
 protected void testClassSetup() throws Exception {
 }

 @AfterClass
 protected void testClassTeardown() throws Exception {
 }

}

// use of @Override to override setup/teardown methods
public class RockBands extends RockBandsSetup {

Developing Data-Driven Test Classes Chapter 14

[322]

 // implemented abstract methods
 @BeforeMethod
 protected void testMethodSetup(ITestResult rslt) throws Exception {
 }

 @AfterMethod
 protected void testMethodTeardown(ITestResult rslt) throws Exception {
 }

 // overridden inherited methods
 @Override
 @BeforeClass
 protected void testClassSetup() throws Exception {
 }

 @Override
 @AfterClass
 protected void testClassTeardown() throws Exception {
 }

}

Naming conventions for test methods
One standard that is usually followed loosely is naming conventions. But it is still
important to put some standards in place to reduce the maintenance of the overall test
classes. In this section, we will briefly set standards for naming test classes, data files,
methods, setup, cleanup, groups, and row ID parameters.

Test classes and data files
We covered file naming conventions earlier, but to refresh the naming convention for test
classes, it should be something like FunctionalAreaTest.java. The Test suffix tells the
user that this is a test class and not a Java utility class.

Since we are using JSON as the data file format, each test class should have a corresponding
data file minus the Test suffix; so in this case, FunctionalArea.json.

So, in the example test class we are building in this chapter, the class is called
RockBandsTest.java and the data file is called RockBands.json. We will build onto that
class as we define each section of it.

Developing Data-Driven Test Classes Chapter 14

[323]

Test methods
Test methods can have unique names, generic names, or really any name that tells the user
something about what it is testing. But there are some important aspects of the method
names to consider.

First, if a sequential numbering scheme is used, then it forces TestNG to run in a particular
order and the priority attribute is not required.

Second, it makes sense to include a functional area and action in the name as well. So, if
creating Create, Read, Update, and Delete (CRUD) tests for the Google Mail functional
area of the application, we can name them:

tc001_gmailCreateAccount

tc002_gmailReadAccount

tc003_gmailUpdateAccount

tc004_gmailDeleteAccount

To build upon the RockBandsTest.java class, here are the methods following a similar
naming convention:

/**
 * Rock Bands Test Class
 *
 * @author Name
 *
 */
public class RockBandsTest {

 // test methods
 @Test
 public void tc001_getBandInfo() throws Exception {

 }

 @Test
 public void tc002_getBandInfo() throws Exception {

 }

}

Developing Data-Driven Test Classes Chapter 14

[324]

Test parameters
Test method parameters will be discussed in greater detail later on in this chapter, but for
naming conventions, the names for the required method parameters for this framework are
as follows:

String rowID: The row ID of the datasets to extract from the JSON data file to
pass into the method. Note, rowID used in the data file must be the same name
as the method.
String description: The description of the test that will later be used by the
test listener and/or reporter classes to annotate the results.
JSONObject testData: The test data object to pass into the method to run the
test. This object will get built on the fly when using the JSON DataProvider
attribute with the test method.

Test groups
Test groups can be named anything that will categorize them into a subgroup that makes
sense to the application or test environment. The most common group names are
SmokeTest, regression, positive, negative, boundary, and limit.

Including or excluding groups in the suite XML file allows users to run subsets of the entire
regression suite. In the case of the RockBandsTest.java class, we will just use the group
"regression" for now.

Test setup/teardown methods
As we said earlier in the chapter, the setup and teardown methods will be called when the
@Before and @After annotations are used. The names themselves are subjective, but the
key thing to remember here is that, when using multiple layers of setup/teardown, users
can override an inherited setup or teardown method by using the @Override annotation
and the same method name as the overridden one.

Some of the more common names used in this framework correspond to the annotation
names, as follows:

@BeforeSuite: The suiteSetup method
@AfterSuite: The suiteTeardown method
@BeforeTest: The testSetup method

Developing Data-Driven Test Classes Chapter 14

[325]

@AfterTest: The testTeardown method
@BeforeClass: The testClassSetup method
@AfterClass: The testClassTeardown method
@BeforeMethod: The testMethodSetup method
@AfterMethod: The testMethodTeardown method

Here is the RockBandsTest.java class so far using these naming conventions:

/**
 * Rock Bands Test Class
 *
 * @author Name
 *
 */
public class RockBandsTest {
 // local vars
 public static final String DATA_FILE = "myPath/RockBands.json";

 // setup/teardown method go here
 @BeforeClass(alwaysRun=true,enabled=true)
 protected void testClassSetup() throws Exception {
 // set data file...
 JSONDataProvider.dataFile = DATA_FILE;
 }

 @AfterClass(alwaysRun=true,enabled=true)
 protected void testClassTeardown() throws Exception {
 }

 @BeforeMethod(alwaysRun=true,enabled=true)
 protected void testMethodSetup(ITestResult rslt) throws Exception {
 }

 @AfterMethod(alwaysRun=true,enabled=true)
 protected void testMethodTeardown(ITestResult rslt) throws
 Exception {
 }

 // test methods go here
 @Test(groups={"REGRESSION"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc001_getBandInfo(String rowID,
 String description,
 JSONObject testData)

Developing Data-Driven Test Classes Chapter 14

[326]

 throws Exception {
 }

 @Test(groups={"REGRESSION"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc002_getBandInfo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {
 }

}

Using the TestNG DataProvider
In the preceding RockBandsTest.java example, the dataProvider and
dataProviderClass were used as attributes to the @Test method. This tells TestNG that
it should extract all the sets of data in the JSON file that match the method name. In the
previous chapter, we built a basic JSON DataProvider, and one of the parameters to it was
the method name. TestNG passes this in when the test method is run.

Now, as far as the data is concerned, the JSON DataProvider builds a Java object on the fly
and the rowID and description parameter values are stuffed into the object. That
functionality was built into the DataProvider. This will be used later on for reporting
purposes, but it is also handy for determining which set of data failed the test. Again,
the @DataProvider annotation is used to tag the method created that fetches the data in
this class.

It is also worth noting that the @Parameters annotation can be used with the @Test
annotation to pass in parameters for the test method to use, but it is more useful when
using them in @Before type annotations. This will be covered later on when we go over
using the TestNG XML suite file parameters.

So, since we outlined the JSON data file datasets and the Java objects for the
RockBandsTest.java class already in Chapter 13, Building a JSON Data Provider, let's add
the instances of those classes and call a method in them in the test class:

/**
 * Rock Bands Test Class
 *
 * @author Name

Developing Data-Driven Test Classes Chapter 14

[327]

 *
 */
public class RockBandsTest {
 // local vars
 public static final String DATA_FILE = "myPath/RockBands.json";

 // setup/teardown method go here
 @BeforeClass(alwaysRun=true,enabled=true)
 protected void testClassSetup() throws Exception {
 // set data file...
 JSONDataProvider.dataFile = DATA_FILE;
 }

 // test method using Java POJO class object
 @Test(groups={"REGRESSION"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc001_getBandInfo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // fetch object data and pass into Java object
 RockBands rockBands = new RockBands(testData);

 // print the key:value pairs
 System.out.println(rockBands.toString() + "\n");
 }

 // test method using Java Builder class object
 @Test(groups={"REGRESSION"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc002_getBandInfo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // fetch object data and pass into Java object
 RockBandsBuilder rockBands = new RockBandsBuilder.Builder()
 .name(testData.get("name").toString())
 .year(testData.get("year").toString())
 .song(testData.get("song").toString())
 .members((JSONObject) testData.get("members"))
 .build();

Developing Data-Driven Test Classes Chapter 14

[328]

 // print the key:value pairs
 System.out.println(rockBands.toString() + "\n");
 }

}

Using the JSON datasets we previously outlined for the RockBandsTest.java class, the
data and output would look like this for each set of data:

{
 "tc001_getBandInfo":[
 {
 "rowID":"tc001_getBandInfo.01",
 "description":"Kiss Data",
 "name":"Kiss",
 "year":"1973",
 "song":"Rock and Roll All Nite",
 "members":{
 "Vocals":"Paul Stanley",
 "Bass":"Gene Simmons",
 "Guitar":"Ace Frehley",
 "Drums":"Peter Criss"
 }
 }
]
}

The output would look like this:

RockBands {name = 'Kiss', year = '1973', song = 'Rock and Roll All Nite',
members = {"Bass":"Gene Simmons","Guitar":"Ace Frehley","Vocals":"Paul
Stanley","Drums":"Peter Criss"}}

Calling page object methods in test classes
One of the most common mistakes users make when building automated tests is to build
low-level event processing into their test class methods. We have been using the Selenium
POM in this framework design, and what that means for the test classes is that you want to
call the page object methods from within the test class methods, but not access the
WebElements themselves. The goal is to reduce the amount of code being written and
create a "library" of common methods that can be called in many places!

Developing Data-Driven Test Classes Chapter 14

[329]

Now, what can be done in the framework to restrict users from going off track?

Users can set the scope of all WebElements defined in the page object classes to protected.
That allows subclasses to access them, but prevents users from accessing the WebElements
directly in the test methods, after instantiating the class.

Getter/setter methods can be built in the page object classes for cases where the user needs
to get the WebElement to clean up a test (such as closing leftover windows).

Other common mistakes include creating lots of private "helper" methods in the test classes
that wrap lots of small methods in page object classes, but cannot be used or accessed from
outside the test class.

A better approach would be to organize the page object methods into fully functional
routines where an object or set of parameters can be passed into them when called from test
methods.

Of course, it's worth mentioning again that element "locators" do not go in the test classes.
It's very easy to make a dynamic method call in a test method against a page object using
one of the locator types, and many users go down this road, which is not the right one:

@Test
public void tc002_myTest() throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebElement button = driver.findElement(By.xpath("//button[.='Save']"));
}

As we said before, keep an abstract layer of separation between the page object and test
classes.

Let's outline an example of the right and wrong ways of building a test method to log in to
the Gmail application. Notice how GmailLoginPO is instantiated in the test method:

public class GmailLoginTest {

 public class GmailLoginPO <M extends WebElement> {

 public GmailLoginPO() throws Exception {
 }

 @FindBy(id = "identifierId")
 protected M email;

 @FindBy(name = "password")
 protected M password;

Developing Data-Driven Test Classes Chapter 14

[330]

 @FindBy(xpath = "//span[.='Next']")
 protected M next;

 @FindBy(xpath = "//a[.='Sign out]")
 protected M signOut;

 public void login(String email, String password) throws
 Exception {
 this.email.sendKeys(email);
 next.click();
 this.password.sendKeys(password);
 next.click();
 }

 public void verifyTitle(String title) throws AssertionError {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 assertEquals(driver.getTitle(), title, "Verify " + title);
 }

 public void signOut() throws Exception {
 signOut.click();
 }
 }

 // this method follows the Selenium Page Object Model
 @Test(dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class)
 public void tc001_loginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 String email = testData.get("email").toString();
 String password = testData.get("password").toString();
 String title = testData.get("title").toString();

 // Login to app, verify page title, logout of app
 GmailLoginPO gmail = new GmailLoginPO();

 gmail.login(email, password);
 gmail.verifyTitle(title);
 gmail.signOut();
 }

 // this method does Not follow the Selenium Page Object model
 @Test(dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class)

Developing Data-Driven Test Classes Chapter 14

[331]

 public void tc002_loginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 String email = testData.get("email").toString();
 String password = testData.get("password").toString();
 String title = testData.get("title").toString();

 // Login to app, verify page title, logout of app
 WebDriver driver = CreateDriver.getInstance().getDriver();

 driver.findElement(By.id("identifierId")).sendKeys(email);
 driver.findElement(By.xpath("//span[.='Next']")).click();
 driver.findElement(By.name("password")).sendKeys(password);
 driver.findElement(By.xpath("//span[.='Next']")).click();

 assertEquals(driver.getTitle(), title, "Verify " + title);
 driver.findElement(By.xpath("//a[.='Sign out]")).click();
 }

}

So, as you can see, in the first test method an instance of GmailLoginPO was created, and
the login, verifyTitle, and signOut methods were called from that class. The data that
was extracted from the JSON data file was passed into those methods to perform the login.

In the second test method, the user did not use a method from a page object class, but
instead, built the steps dynamically, and thus created a method that was not reusable
anywhere else in the framework!

Note also, when creating page object methods, it is easy to insert a synchronization call into
a method; whereas when creating actions in test methods, it is most often overlooked and
the methods are therefore not robust at all.

Exception handling can easily be inserted into page object methods as well, allowing users
to trap implicit, throw explicit, or test error conditions.

Developing Data-Driven Test Classes Chapter 14

[332]

Exception handling in test classes
Exception handling is extremely important in both page object class methods and test class
methods. All test methods should include throws Exception in the signature or contain a
try...catch block to handle the exceptions (checked exceptions), and the
@BeforeMethod/@AfterMethod methods should query results and clean up if necessary.
Let's look at a couple of scenarios that handle exceptions in test methods.

Here is a link to the most common Selenium exceptions: https:/ /
seleniumhq. github. io/ selenium/ docs/ api/ py/ common/ selenium.
common. exceptions. html.

Test methods
When we developed Java utility and page object classes, we added exception handling to
the methods. In some cases, methods can include specific exception types or just throw
general exception conditions. Users often use the try...catch...finally syntax to trap
exceptions and handle them using a custom set of actions, but using this syntax should not
be exclusive. We want exceptions to occur implicitly or explicitly so we get the exception
type and stack trace for debugging.

Page object methods called from within test methods can also throw exceptions when
certain conditions are not met. So, at any point in the test, an exception could "break" out of
the test method and turn over control to the @AfterMethod, routine per TestNG. It's the
same when all test methods are complete, an exception in the @AfterMethod routine will
turn over control to the @AfterClass routine, and so on.

Here is an example of a test method that can exit in multiple places. First, the method can
throw an exception if the data file is not found. Second, when it loads the properties file, it
can throw an IOException if the properties file is not found. And finally, the TestNG
assertEquals method can throw AssertionError if the Selenium revision is not
matched with the expected value (using TestNG's assetEquals to test Strings, Integers,
Objects, and so on will engage the difference viewer if the condition is not met, which is a
useful tool):

@Test
public void tc001_readPropertyFile(String rowID,
 String description,
 JSONObject testData)
 throws IOException, AssertionError {

https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html
https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html

Developing Data-Driven Test Classes Chapter 14

[333]

 Properties seleniumProps = new Properties();
 String propFile = testData.get("propFile").toString();
 String expRevision = testData.get("revision").toString();

 seleniumProps.load(new FileInputStream(propFile));
 assertEquals(seleniumProps.getProperty("selenium.revision"),
 expRevision,
 "Verify Selenium Revision");
}

The setup/teardown methods
What happens if the test method calls a page object method that fails while a window or
dialog box is open? Users will want to trap that exception using a
try...catch...finally block, and close it so it does not block the next test run. Or, if
using a reporter class, break out of the test method, take a screenshot, and then perform the
cleanup in the @AfterMethod routine. Here is a quick example of both:

public class CreateUserTest {
 public class UserPO <M extends WebElement> {

 public UserPO() throws Exception {
 }

 @FindBy(id = "cancel")
 protected M cancel;

 public void createUser(JSONObject user) throws Exception {
 }

 public void verifyUser(String user) throws AssertionError {
 }

 public WebElement getCancel() {
 return cancel;
 }
 }

 // this test method cleans up in the method
 @Test
 public void tc001_createUser(String RowID,
 String description,
 JSONObject testData) {

 UserPO user = null;

Developing Data-Driven Test Classes Chapter 14

[334]

 // attempt to create a new user
 try {
 user = new UserPO();
 user.createUser(testData);
 user.verifyUser(testData.get("username").toString());
 }

 // trap and throw exception to console
 catch(Exception e) {
 e.printStackTrace();
 }

 // call getter method in UserPO class to get cancel element
 finally {
 user.getCancel().click();
 }
 }

}

The ITestResult class
In order to take a screenshot for a report, instead of trapping the exception (because it could
occur in a number of places), users can let the test method break out, and query the result
using the ITestResult interface. This allows the test to capture the correct screenshot at
the point of the exception for debugging purposes.

Here is the same example as the last one using this strategy:

 // this method aborts and let's the teardown cleanup
 @Test
 public void tc002_createUser(String RowID,
 String description,
 JSONObject testData)
 throws Exception {

 UserPO user = new UserPO();

 // attempt to create a new user
 user.createUser(testData);

 // verify user was created
 user.verifyUser(testData.get("username").toString());
 }

 @AfterMethod

Developing Data-Driven Test Classes Chapter 14

[335]

 public void testMethodTeardown2(ITestResult result) throws
 Exception {
 if (result.isSuccess() != true) {
 CaptureImage.screenShot(result);
 new UserPO().getCancel().click();
 }
 }

Test listener/reporter classes
Using the ITestResult class in the teardown method allows users to query the current
test method result, and call a number of getter or setter methods on it that can be used in
test listener and test reporter classes. Some of those include getName, getMethod,
getParameters, getStartMillis, and getEndMillis. This is a very useful feature of
TestNG and can be useful information in the listener or report! The ITestContext class
also provides a means to get test results data for reporting.

The JavaDoc for the ITestResult interface is located at
https:/ /jitpack. io/com/ github/ cbeust/ testng/ master- 6.
12- g16e5a8e- 107/ javadoc/ org/ testng/ ITestResult. html

The JavaDoc for the ITestContext interface is located at
https:/ /jitpack. io/com/ github/ cbeust/ testng/ master- 6.
12- g16e5a8e- 107/ javadoc/ org/ testng/ ITestContext. html

Designing base setup classes
When the Selenium page object classes were designed, we created an abstract base class to
derive all the common components and methods for each subclass in the framework. This
provided a way to reduce the number of elements and code being written, and a way to
share common methods among pages.

Now we are dealing with the other side of things: the test classes and data. In this case, we
want to design a common setup class using the TestNG annotations for methods, which
will perform common setup and teardown for all the classes in a suite. Up to now, we've
seen how each test class can create its own setup and teardown methods. Another layer of
setup and teardown can precede the test class ones very easily.

https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestResult.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html
https://jitpack.io/com/github/cbeust/testng/master-6.12-g16e5a8e-107/javadoc/org/testng/ITestContext.html

Developing Data-Driven Test Classes Chapter 14

[336]

Here are some examples:

If the user wants to run a set of test classes as part of a <test> section in their
suite file, then they would want to invoke and close the browser or mobile
application before and after each set of tests execute. You wouldn't want to do
this at the test class level. This would be done using the @BeforeTest and
@AfterTest methods defined in a common setup class.
However, if the user wanted to run a set of test classes in parallel as part of a
<test> section in their suite file, then they would want to invoke and close the
browser or mobile application before and after each class executes, since they are
running on different threads. This can be done using the @BeforeClass and
@AfterClass methods defined in the common setup class.

Here are a couple of coding examples:

/**
 * Test Setup Base Class
 * (JavaDoc Intentionally left out)
 *
 * @author Name
 *
 */
public abstract class MyCommonSetup {

 // abstract methods
 protected abstract void testClassSetup(ITestContext context)
 throws Exception;
 protected abstract void testClassTeardown(ITestContext context)
 throws Exception;
 protected abstract void testMethodSetup(ITestResult result)
 throws Exception;
 protected abstract void testMethodTeardown(ITestResult result)
 throws Exception;

 @BeforeSuite(alwaysRun=true, enabled=true)
 protected void suiteSetup(ITestContext context) throws Exception {
 }

 @AfterSuite(alwaysRun=true, enabled=true)
 protected void suiteTeardown(ITestContext context) throws
 Exception {
 }

 @BeforeTest(alwaysRun=true, enabled=true)
 protected void testSetup(ITestContext context) throws Exception {
 CreateDriver.getInstance().setDriver(Global_VARS.DEF_BROWSER,

Developing Data-Driven Test Classes Chapter 14

[337]

 Global_VARS.DEF_PLATFORM,
 Global_VARS.DEF_ENVIRONMENT);
 }

 @AfterTest(alwaysRun=true, enabled=true)
 protected void testTeardown(ITestContext context) throws
 Exception {
 CreateDriver.getInstance().closeDriver();
 }

 @BeforeClass(alwaysRun=true, enabled=true)
 protected void classSetup(ITestContext context) throws
 Exception {
 }

 @AfterClass(alwaysRun=true, enabled=true)
 protected void classTeardown(ITestContext context) throws
 Exception {
 }

 @BeforeMethod(alwaysRun=true, enabled=true)
 protected void methodSetup(ITestResult result) throws Exception {
 }

 @AfterMethod(alwaysRun=true,enabled=true)
 protected void methodTeardown(ITestResult result) throws
 Exception {
 }
}

In this common setup class, the driver is started in @BeforeTest and closed in
@AfterTest methods. This allows the user the ability to run all the classes contained in the
<test> sections of the suite XML file in parallel.

Now, those calls could have been put in @BeforeSuite and @AfterSuite, but that would
have restricted the use of parallel thread runs (TestNG does not allow suite files to be run in
parallel).

Again, if the user wants to run each class in parallel, then the start and close of the driver
needs to be done in the @BeforeClass and @AfterClass methods.

Developing Data-Driven Test Classes Chapter 14

[338]

Here is how the test class inherits these methods:

/**
 * Test Class Method
 *
 * @author Name
 *
 */
public class MyAppTest extends MyCommonSetup {

 // implemented abstract methods
 @Override
 @BeforeClass(alwaysRun = true, enabled = true)
 protected void testClassSetup(ITestContext ctxt) throws Exception {
 }

 @Override
 @AfterClass(alwaysRun = true, enabled = true)
 protected void testClassTeardown(ITestContext ctxt) throws
 Exception {
 }

 @Override
 @BeforeMethod(alwaysRun = true, enabled = true)
 protected void testMethodSetup(ITestResult rslt) throws Exception {
 }

 @Override
 @AfterMethod(alwaysRun = true, enabled = true)
 protected void testMethodTeardown(ITestResult rslt) throws
 Exception {
 }

 // these methods override the Superclass methods
 @Override
 @BeforeClass(alwaysRun=true,enabled=true)
 protected void classSetup(ITestContext ctxt) throws Exception {
 }

 @Override
 @AfterClass(alwaysRun=true,enabled=true)
 protected void classTeardown(ITestContext ctxt) throws Exception {
 }

 @Override
 @BeforeMethod(alwaysRun=true,enabled=true)
 protected void methodSetup(ITestResult rslt) throws Exception {
 }

Developing Data-Driven Test Classes Chapter 14

[339]

 @Override
 @AfterMethod(alwaysRun=true,enabled=true)
 protected void methodTeardown(ITestResult rslt) throws Exception {
 }
}

This is a simple test class example outlining how to use a common setup base class to
perform common setup and teardown actions for all classes in a suite, implement abstract
setup and teardown methods, and use local setup and teardown methods in a test class.

As mentioned earlier, any of the inherited methods can be overridden by using the
@Override annotation and the same method name.

The order of execution precedence in this example is the following:

@BeforeSuite (superclass)
@BeforeTest (superclass)
@BeforeClass (superclass)
@BeforeClass (subclass)
@BeforeMethod (superclass)
@BeforeMethod (subclass)
@AfterMethod (subclass)
@AfterMethod (superclass)
@AfterClass (subclass)
@AfterClass (superclass)
@AfterTest (superclass)
@AfterSuite (superclass)

TestNG suite file structure
TestNG can be invoked using a build tool such as Gradle or Ant from the command line, or
from a suite XML file to group tests together to run. Up to this point, we have covered bits
and pieces of the suite files, but let's look more closely at some of the features it provides us.
There are many ways to define the suite—let's start by covering the suite, groups, listeners,
and test sections.

Developing Data-Driven Test Classes Chapter 14

[340]

The TestNG documentation on the XML suite file is located at http:/ /
testng. org/ doc/ documentation- main. html#testng- xml.

Suite section: <suite>
The <suite> section of the XML file can contain groups, listeners, parameters, and test
sections. It also can have attributes added to it such as name, preserve-order, parallel,
thread-count, verbose, and so on. Here's the format:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

</suite>

The suite name attribute can be used for reporting purposes and can be retrieved using the
TestNG ISuite interface.

preserve-order tells TestNG whether or not to run the test classes in a random order,
and if not, it then lets test class rules take effect: dependsOnMethods, sequential names,
priority, and to name a few. This takes a true or false value.

parallel tells TestNG whether or not to run in single or multithreaded mode. The options
for this attribute are false, test, classes, methods, and instances. The different
options for parallel testing will be discussed in the next chapter.

thread-count determines how many threads to open to run the test suite in parallel. If a
user designs the suite to run in parallel at the classes level, and the <test> section contains
10 classes, then they would want to set the thread-count = "10" to run each one in its
own browser or mobile thread.

verbose tells TestNG how much data to print to standard output when running the tests,
one being the least amount of data.

http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/documentation-main.html#testng-xml

Developing Data-Driven Test Classes Chapter 14

[341]

Groups section: <groups>
In the <groups> section, users can include or exclude groups of tests to run, provided they
have tagged the test methods with the groups attribute. This allows users to change the
type of suite to run on the fly to create a smoke test, feature test, regression test, and so on.

TestNG also allows a BeanShell expression to be inserted in the XML file, which will disable
the <groups> section of the suite file, but allows more flexibility in filtering tests. Here is an
example of include/exclude of groups, building on the suite section:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

 <!-- groups: "regression", "smoke", "limit", "stress", etc... -->
 <groups>
 <run>
 <include name = "SMOKETEST" />
 <!-- include name = "LIMIT" / -->
 <!-- include name = "REGRESSION" / -->
 <!-- include name = "POSITVE" / -->
 <exclude name = "NEGATIVE" />
 </run>
 </groups>

...

Now, here is an example using the BeanShell expression:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

<!-- tests -->
<test name="My_Test_Name">
 <method-selectors>
 <method-selector>
 <script language="beanshell">
 <![CDATA[
 String testGroups = "SMOKETEST,LIMIT";
 String [] splitTestGroups =
 testGroups.split(",");

Developing Data-Driven Test Classes Chapter 14

[342]

 for (String group : splitTestGroups) {
 if (groups.containsKey(group)) {
 return true;
 }
 }

 return false;
]]>
 </script>
 </method-selector>
 </method-selectors>

...

Listeners section: <listeners>
Any number of TestNG-based test listeners can also be used in the suite file; they will come
under a <listeners> section and provide a path to the class:

<?xml version="1.0" encoding="UTF-8"?&gt;
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false" thread-
count="1" verbose="2">

 <!-- test listeners -->
 <listeners>
 <listener class-name="path.saucelabs.SauceOnDemandTestListener"
 />
 <listener class-name="path.reports.ExtentReportNGTestListener"
 />
 <listener class-name="path.listeners.TestNGListener" />
 </listeners>

Test section: <test>
The test section in the suite file contains a name for the <test> set, a list of parameters
(which can also be declared at the suite level), classes, or packages to run. Both classes and
packages can take a wildcard in the entry to run all the test classes in a specific folder or all
of them in a package. Here are a couple of examples:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

Developing Data-Driven Test Classes Chapter 14

[343]

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

 <!-- tests -->
 <test name="My Test">
 <!-- test parameters -->
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 10" />
 <parameter name="environment" value="local" />

 <classes>
 <class name="my.tests.RockBandsTest" />
 </classes>
 </test>
</suite>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

 <!-- tests -->
 <test name="My Test">
 <!-- test parameters -->
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 10" />
 <parameter name="environment" value="local" />

 <packages>
 <package name="my.tests.*" />
 </packages>
 </test>
</suite>

Developing Data-Driven Test Classes Chapter 14

[344]

Suite parameters
In the preceding example, there were parameters added at the <test> section level.
Parameters can also be added elsewhere, such as at the suite or class levels. These TestNG
parameters can be processed using one of the setup or teardown methods and the
@Parameters annotation. Any number of parameters can be added, and it's useful for
processing system properties or environment variables, default settings, browser or mobile
preferences, and so on.

@Parameters
Let's say you want to run a test suite against a specific browser, platform, and environment,
then re-run it on a different browser and platform. Using TestNG's @Parameters allows
you to change the settings in the suite XML file and process them in the setup class. Where
you process them depends on when you want to invoke the browser or mobile device.

Using the previous example, we added them to the <test> section of the suite file, so the
driver will be created before any of the test classes are run. So in the common setup class,
you would add @Parameters to the @BeforeTest method:

@Parameters({"browser", "platform", "environment"})
@BeforeTest(alwaysRun=true, enabled=true)
protected void testSetup(@Optional(Global_VARS.BROWSER) String browser,
 @Optional(Global_VARS.PLATFORM) String
 platform,
 @Optional(Global_VARS.ENVIRONMENT) String env,
 ITestContext context)
 throws Exception {

 // setup driver
 CreateDriver.getInstance().setDriver(browser, platform, env);
}

Notice the use of the @Optional annotation. This allows users to set a default value, which
must be a constant, for each parameter. This provision is for cases where the user doesn't
set them in the suite file. In other words, now that you have set up defaults for the browser,
platform, and environment, it is optional whether or not they are passed in.

Developing Data-Driven Test Classes Chapter 14

[345]

Here is an example on the mobile side:

// suite xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false"
thread-count="1" verbose="2">

 <!-- tests -->
 <test name="My Test">
 <!-- test parameters -->
 <parameter name="browser" value="safari" />
 <parameter name="platform" value="iphone" />
 <parameter name="environment" value="saucelabs" />
 <parameter name="mobile" value="iPhone 8 Simulator" />

 <packages>
 <package name="my.tests.*" />
 </packages>
 </test>
</suite>

// common setup class

@Parameters({"browser", "platform", "environment", "mobile"})
@BeforeTest(alwaysRun=true, enabled=true)
protected void testSetup(@Optional(Global_VARS.BROWSER) String browser,
 @Optional(Global_VARS.PLATFORM) String
 platform,
 @Optional(Global_VARS.ENVIRONMENT) String env,
 @Optional(Global_VARS.MOBILE) String mobile,
 ITestContext context)
 throws Exception {

 // setup driver
 Map<String, Object> prefs = new HashMap<String, Object>();
 prefs.put("deviceName", mobile);
 CreateDriver.getInstance().setDriver(browser,
 platform,
 env,
 prefs);
}

Developing Data-Driven Test Classes Chapter 14

[346]

The difference here is that when we created the Selenium CreateDriver class, we only
allowed three parameters to be passed into the setDriver method. Any other capabilities
must be set on the fly by creating a map and passing that map in as a variable argument to
the method.

Summary
In this chapter, we learned how to build data-driven test classes using the TestNG
annotations. This allowed users to tag Java methods as tests, setup, and teardown methods
to make them run.

We covered the test class structure, naming conventions, use of the JSON DataProvider to
pass in data to page object class methods, exception handling, and using suite XML files.
Attributes for @Test annotations such as groups, enable, dependsOnMethods, and so on
were also covered.

In the next chapter, we will complete the use of encapsulated data in data-driven testing,
property files, storing exception and confirmation messages, parallel testing, and
processing data passed in as system properties.

15
Encapsulating Data in Data-

Driven Testing
This chapter covers subjects such as encapsulating test data into JSON and property files,
casting data to Java objects, positive and negative testing, processing data from system
properties, dual driver support, and parallel testing. The following topics are covered:

Introduction
Casting JSON data to Java objects
Building in positive, negative, boundary, and limit testing
Confirmation and exception property files
Property files and parsing test data on the fly
Global variables versus dynamic data
Processing JVM args
Retrieving JSON data outside of test methods
Supporting multibranded applications
Multiple driver support
Parallel testing

Encapsulating Data in Data-Driven Testing Chapter 15

[348]

Introduction
In the last chapter, data-driven test classes and methods were designed and built to
demonstrate how to use TestNG annotations and parameters to design and build test,
setup, and teardown methods. In this chapter, we will dive further into the topic of test
data. From what we have learned, encapsulating data into central locations and breaking it
out from the test methods and page object classes is an important standard to follow.

What we need to understand about test methods versus test data is this: test methods
should be small engines that perform a task, can take any variation of data, and that can
test positive, negative, boundary, and limits of a feature. There is always an input and a
verifiable output to a test. If users follow this rule, then simple "keyword" templates can
also be built on top of the framework that allow users to extend test coverage by adding
"sets" of data to run through the engines.

So, when designing the test framework for a development environment, put this standard
in place from day one, code review tests that are added to the framework, and evangelize
the use of a data file, property file, or global constants file to store data. Let users fear the
code review process so the framework does not become the Wild West. And most
importantly, let them know that rule number one is do not get caught! (storing data in your
tests or libraries, that is!).

This chapter will also cover how to switch between multiple WebDrivers running
simultaneously, including web and mobile drivers. And finally, the topic of parallel testing
will be introduced and discussed as to what is involved in implementing it.

The reader will learn how to encapsulate test data for use in data-driven testing, including
use of property files, dual-drivers, and parallel testing.

Casting JSON data to Java objects
At this point, it would be good to recap some of the things we learned about designing
JSON objects and how to use them in the test methods. Let's take each point separately and
discuss.

Encapsulating Data in Data-Driven Testing Chapter 15

[349]

JSON object
The JSON DataProvider designed earlier returns an array of objects. In simpler terms, we
cast it at runtime to a JSONObject type when passed to the test methods. This JSONObject
can then be used in any way the user wants—passing it to a Java object of a specific type,
passing it to the Java builder class interface, assigning to local variables in the test method,
and so on.

The main goal is to extract the data from the JSON file, convert it on the fly, and pass it into
page object methods to perform the test.

But what about dynamic data? The tests and suites being built need to remain platform and
environment independent. As most development is now done in Agile rather than
Waterfall, each scrum team works on their own branch and environment, and once they
merge test code to the master branch, it must not contain hardcoded users, servers, IP
addresses, and so on.

We will cover this in detail, but let's review a code sample on the data extraction point
again:

@Test(groups = {"BANDS"},
 dataProvider="fetchData_JSON",
 dataProviderClass = JSONDataProvider.class)
public void tc001_getBandInfo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 RockBands rockBands = new RockBands(testData);

 // or

 RockBandsBuilder rockBands2 = new RockBandsBuilder.Builder()
 .name(testData.get("name").toString())
 .year(testData.get("year").toString())
 .song(testData.get("song").toString())
 .members((JSONObject) testData.get("members"))
 .build();

 // or

 String name = testData.get("name").toString();
 String year = testData.get("year").toString();
 String song = testData.get("song").toString();
 String members = testData.get("members").toString();
}

Encapsulating Data in Data-Driven Testing Chapter 15

[350]

Sequential numbering of row IDs in the data file
The rules for building the JSON data file are fairly simple:

Each section in the file should have the same name as the test method.
Each set of data in each section should be sequentially numbered starting with
the method name + .01, .02, .03, and so on. This will allow users to debug the
set of data that failed the test.
Each key/value pair should correspond to the fields in the JSON object being
used.
The number of sets of data for each test method is unlimited.
All dynamic data should be stubbed out in the data file and replaced on the fly:

{
 "tc001_registerEmployees":
 [
 {
 "rowID": "tc001_registerEmployees.01",
 "description": "Register Employee",
 "id": "ID1",
 "address": {"street": "1600 Pennsylvania Ave NW", "city":
 "Washington",
 "state": "DC", "zip": "20500"},
 "phone": {"home": "800-555-1212", "work": "800-555-1212",
 "mobile": "800-555-1212"}
 },
 {
 "rowID": "tc001_registerEmployees.02",
 "description": "Register Employee",
 "id": "ID2",
 "address": {"street": "1600 Pennsylvania Ave NW",
 "city": "Washington", "state": "DC", "zip":
 "20500"},
 "phone": {"home": "800-555-1212", "work": "800-555-1212",
 "mobile": "800-555-1212"}
 }
]
}

Encapsulating Data in Data-Driven Testing Chapter 15

[351]

Using Java object getter/setter methods
The Java object get and set methods are convenient for passing single parameters to test
methods that do not require an object parameter. The user must build into the JSON object
all these get and set methods. We covered them earlier, but let's review an example:

/**
 * Sample Register Employee Java Object
 *
 * @author Name
 *
 */
public class RegisterEmployee {
 private String id;
 private JSONObject address;
 private JSONObject phone;

 public RegisterEmployee(JSONObject object) throws Exception {
 setId(object.get("id").toString());
 setAddress((JSONObject) object.get("address"));
 setPhone((JSONObject) object.get("phone"));
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }

 public void setAddress(JSONObject address) {
 this.address = address;
 }

 public JSONObject getAddress() {
 return address;
 }

 public void setPhone(JSONObject phone) {
 this.phone = phone;
 }

 public JSONObject getPhone() {
 return phone;
 }
}

Encapsulating Data in Data-Driven Testing Chapter 15

[352]

Passing data to page object methods
The most important thing to remember when designing the data-driven tests is that the
data extracted from the data files will be passed to page object methods called from the test
methods. In keeping with that model, those methods must be generic enough to take a
number of arguments and/or an object as a parameter.

No methods should contain hardcoded data such as server names, usernames, IP
addresses, and so on, or anything else that would prevent them from being portable to
various test and auto-deployed lab environments. We want to build re-usable class libraries
of methods that we can call from the tests and that only need to be updated in one place,
the page object class.

Building in positive, negative, boundary, and
limit testing
Because the test methods are data driven, users can build a variety of different tests and
initially build a positive test for the feature. Test coverage can be extended by varying data
and including additional sets in the JSON data file for each test method. The test methods
should be generic enough to allow those additional sets of data to be used. At the
minimum, the user should include two positive test cases: one to test just the required fields
and one to test all the fields in the feature.

Negative testing
What about negative testing? Usually, when working in the Agile world, users test at the
minimum, and then extend test coverage after the feature has been built. But, when using a
data-driven testing model, users can cover both the positive and negative testing scenarios
all at once. This opens the door to testing the boundary and limits of the feature, testing the
exceptions that may occur when exceeded.

Let's look at how this is done!

When we developed the JSON datasets, we really only talked about positive testing data.
Now, we can easily extend the positive tests to negative testing by adding an exception
message field to the JSON object, setting it to null for the positive tests, and then including
the error for the negative test cases.

Encapsulating Data in Data-Driven Testing Chapter 15

[353]

Here's an example:

{
 "tc001_gmailLoginCreds":[
 {
 "rowID":"tc001_gmailLoginCreds.01",
 "description":"Gmail Login Test - Positive",
 "username":"johnsmith@gmail.com",
 "password":"password",
 "error":null
 },
 {
 "rowID":"tc001_gmailLoginCreds.02",
 "description":"Gmail Login Test - Negative (Invalid Account)",
 "username":"johnsmithxx@gmail.com",
 "password":"password",
 "error":"Couldn't find your Google Account"
 },
 {
 "rowID":"tc001_gmailLoginCreds.03",
 "description":"Gmail Login Test - Force Exception",
 "username":"johnsmithxx@gmail.com",
 "password":"password",
 "error":null
 }
]
}

In this example, there are three sets of data included: one for the positive test, one for the
negative test, and one to force an exception to test the error handling of the login method.

In the positive and force exception tests, the error field was set to null. In the negative
test, the actual error was included. That's all that was required for the dataset. Now, let's
look at the test method:

@Test(groups={"LOGIN"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
public void tc001_gmailLoginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 String user, password;
 GmailLoginPO gmail = new GmailLoginPO();

 // test the login or credentials error

Encapsulating Data in Data-Driven Testing Chapter 15

[354]

 user = testData.get("username").toString();
 password = testData.get("password").toString();

 if (testData.get("error") == null) {
 gmail.login(user, password);
 gmail.signOut();
 }

 else {
 gmail.login(user,
 password,
 testData.get("error").toString());
 }
}

In this example, the testData object was queried to see whether the error field was null,
and if not, the positive test case was run. If it wasn't null, then an overloaded method was
used to take the additional parameter and instead of throwing an exception, as would be
done in the first login method, it will verify the error.

When testing boundary and limit conditions in test methods, users should pass in the first
and last valid choices for a field that can be used, for instance, an integer value. Then, add
in a negative test case to use a value beyond the limit of the feature, and verify an error is
thrown.

So, it is fairly simple to design the test methods in a way that allows users to add positive,
negative, boundary, and limit tests by simply varying the data. Keep in mind, when
creating the page object methods, they should always include exception handling to catch
an error that occurs during the test. Whether the common method allows you to test the
error or an overloaded method is created for testing errors, is up to the user.

Confirmation and exception property files
In the preceding example, we extracted the username, password, and error message data
from the JSON data file. But what if the username and password need to change
dynamically based on the test environment being used? Would we really want to hardcode
in the username and password for a test? What if the error message is used in 10 other
places in the application? Would we really want to change that test message data 10 times if
the message is changed in the application?

Encapsulating Data in Data-Driven Testing Chapter 15

[355]

The answer is simple: probably not! So, in this section, let's start by talking about using
property files to store confirmation and exception messages.

Property files
Using property files in development is fairly common and simple to do. In some
development environments, actual confirmation and exception messages are stored in
confirmation.properties and exception.properties files. In those files, there is
usually a code=message pairing for each type of message and those are pulled on the fly
when specific actions are performed in the application. Dynamic data can be stuffed into
them also by using a placeholder in the file. The same model can be used in testing them.

So, instead of storing the confirmation and exception messages in the test data, create two
files to store them in and pass in the corresponding code to the test method:

// confirmation.properties
001=User account was successfully created
002=We have sent a password reset email to {EMAIL}.
003=You have successfully signed out.
004=Password was successfully updated.
005=Successfully deleted user {USER}.

// exception.properties
001=Please provide a valid email address
002=Couldn't find your Google Account
003=Please provide a password
004=Your account has been locked due to too many invalid login attempts.
005=User account {USER} Not Recognized.

Lookup method in DataProvider
We need to build a method in the DataProvider class to look up the messages on the fly
using the code passed in to it. We can use a similar method to one created earlier in
the utility classes:

/**
 * lookupMessage - method to retrieve error messages using code
 *
 * @param propFilePath - the property file including path
 * @param code - the confirmation or error code
 * @return String
 * @throws Exception
 */

Encapsulating Data in Data-Driven Testing Chapter 15

[356]

public static String lookupMessage(String propFilePath,
 String code)
 throws Exception {

 Properties props = new Properties();
 props.load(new FileInputStream(propFilePath));
 String getMsg = props.getProperty(code, null);

 if (getMsg != null) {
 return getMsg;
 }

 else {
 throw new Exception("ERROR: The Code '" + code + "' was not
 found!");
 }
}

JSON data file data
In the example we used earlier, we will now pass in the code instead of the error message:

{
 "tc001_gmailLoginCreds":[
 {
 "rowID":"tc001_gmailLoginCreds.01",
 "description":"Gmail Login Test - Positive",
 "username":"johnsmith@gmail.com",
 "password":"password",
 "error":null
 },
 {
 "rowID":"tc001_gmailLoginCreds.02",
 "description":"Gmail Login Test - Negative (Invalid Account)",
 "username":"johnsmithxx@gmail.com",
 "password":"password",
 "error":"002"
 }
]
}

Encapsulating Data in Data-Driven Testing Chapter 15

[357]

Converting confirmation/error code on the fly
Finally, in the test method, we can call the lookup method to convert the code to the correct
message. This eliminates having the same message in test data in multiple places and files,
and only requires a change in one place, the property file:

@Test
public void tc001_gmailLoginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 String user, password, getMessage;
 GmailLoginPO gmail = new GmailLoginPO();

 user = testData.get("username").toString();
 password = testData.get("password").toString();

 if (testData.get("error") == null) {
 gmail.login(user, password);
 gmail.signOut();
 }

 else {
 getMessage = Utils.lookupMessage(
 Global_VARS.exceptionMsgs,
 testData.get("error").toString());

 gmail.login(user, password, getMessage);
 }
}

If the confirmation or error messages contain dynamic data such as usernames, account
names, and so on, those can also be stuffed in on the fly with a quick replace call:

...

getMessage = JSONDataProvider.lookupMessage(
 Global_VARS.exceptionMsgs,
 testData.get("error").toString());

gmail.login(user,
 password,
 getMessage.replace("{USER}", Global_VARS.DEFAULT_USER);

...

Encapsulating Data in Data-Driven Testing Chapter 15

[358]

Property files and parsing test data on the
fly
In a lot of cases, the test environment data, such as username, password, servers, IP, and
URL are dynamic, and change with the environment they run on. In these situations, it
makes sense to use a placeholder in the test data and replace the values on the fly when the
test method is run.

To do this, environment data can be stored in property files, a system property can be used
to pass in the name of the file for that specific environment, and it can then be read as part
of the @BeforeSuite method.

Let's take a quick look at the various parts of this equation.

Environment property files
Let's say the server URL, username, and password are dynamic and change for each test
environment that the suite runs against. To handle this type of data, users can create a
property file to store those values:

// sample test environment property file

server.1.url=https://myDomain.com
server.1.username=johnsmith@myDomain.com
server.1.password=SuperEasyPassw0rd

System properties
Now, in order to pass this file to the test suite at runtime, users can create a system
property, read it using their build tool, and process the data when the test suite starts up. In
Java, users can use -D switches to pass system properties to a build process:

-DpropertyFile=MyTestEnvironment.properties

Using Gradle as a build tool, here is an example of how to pull in the system property for
the test JVM:

test {
 useTestNG() {
 if (System.getProperty('propertyFile') != null) {
 systemProperty 'propertyFile',

Encapsulating Data in Data-Driven Testing Chapter 15

[359]

 System.getProperty('propertyFile)
 }
 }
}

Initializing property file data
In the @BeforeSuite method of the common setup method, initialize the property file for
use throughout the suite run. You must also include the absolute path to where the file lives
in the project:

public static Properties testProps = new Properties();

testProps.load(new FileInputStream(Global_VARS.TEST_PROPS_PATH +
 System.getProperty("propertyFile"));

When referencing any of these properties in a test method, users can replace the placeholder
in the test data with the actual value:

@Test
public void tc001_gmailLoginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 GmailLoginPO gmail = new GmailLoginPO();
 WebDriver driver = CreateDriver.getInstance().getDriver();

 String url = testProps.getProperty("server.1.url");
 String user = testProps.getProperty("server.1.username");
 String password = testProps.getProperty("server.1.password");

 driver.navigate().to(url);

 gmail.login(user.replace("[USER]", user),
 password.replace("[PASSWORD]", password));

}

And the test data would look like this:

{
 "tc001_gmailLoginCreds":[
 {
 "rowID":"tc001_gmailLoginCreds.01",
 "description":"Gmail Login Test - Positive",

Encapsulating Data in Data-Driven Testing Chapter 15

[360]

 "username":"[USER]",
 "password":"[PASSWORD]",
 "error":null
 }
]
}

Global variables versus dynamic data
In cases like this where we want to use dynamic data, it sometimes makes sense to store
property settings in global variables or constants that can be used throughout the test run.

Instead of always replacing the placeholders within the test methods, users can do it once
in a central location for properties that are used frequently, assign them to a global variable,
and then reference them in the test methods.

A good place to assign them is within the common setup class's @BeforeSuite or
@BeforeTest methods:

// global variables class

public class Global_VARS {
 public static String DEFAULT_URL = null;
 public static String DEFAULT_USR = null;
 public static String DEFAULT_PWD = null;
}

// common setup class

public static Properties testProps = new Properties();

@BeforeSuite(alwaysRun=true, enabled=true)
protected void suiteSetup() throws Exception {
 testProps.load(new FileInputStream(Global_VARS.TEST_PROPS_PATH +
 System.getProperty("propertyFile")));

 Global_VARS.DEFAULT_URL = testProps.getProperty("server.1.url");
 Global_VARS.DEFAULT_USR = testProps.getProperty("server.1.username");
 Global_VARS.DEFAULT_PWD = testProps.getProperty("server.1.password");
}

Encapsulating Data in Data-Driven Testing Chapter 15

[361]

Now, in the test method, the user doesn't have to read the properties from the Properties
object over and over, they can just reference the props using the global variables:

@Test
public void tc001_gmailLoginCreds(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 GmailLoginPO gmail = new GmailLoginPO();
 WebDriver driver = CreateDriver.getInstance().getDriver();

 driver.navigate().to(Global_VARS.DEFAULT_URL);

 gmail.login(testData.get("user").toString().replace("[USER]",
 Global_VARS.DEFAULT_USR),
 testData.get("password").toString().replace("
 [PASSWORD]",
 Global_VARS.DEFAULT_PWD));
}

Processing JVM args
Users can also set or override suite or global default settings using JVM args. This again is
done in Java using the -D switch. So, in other words, if you are running a test suite that has
parameters set up in the XML file for browser, mobile device, platform, environment, and
many more and you want to change them on the fly to run against another platform, you
can set a JVM argument using -Dbrowser=browser, -Dplatform=platform, and so on.

These can be set in an IntelliJ IDE—run configuration or in a Jenkins project setting. To
summarize, a suite XML may have the following settings:

<parameter name="browser" value="chrome" />
<parameter name="platform" value="Windows 10" />
<parameter name="environment" value="local" />

If it does, those settings can be overridden using a -D switch, and nothing in the XML file
has to be changed.

Encapsulating Data in Data-Driven Testing Chapter 15

[362]

Retrieving JSON data outside of test
methods
It is often required to create a common setup or teardown method that also uses data from
a JSON file. In those cases, you would not pass in a DataProvider attribute to the method,
but instead call an extraction method directly.

The following code samples are a variation of the DataProvider's fetchData method.
These methods allow the user to extract the set(s) of data using rowID and return it as a
JSONObject or JSONArray object. These objects can then be cast to a POJO that the user
defines:

// extractData_JSON method - create JSONObject containing all data sets
public static JSONObject extractData_JSON(String file) throws Exception {
 FileReader reader = new FileReader(file);
 JSONParser jsonParser = new JSONParser();

 return (JSONObject) jsonParser.parse(reader);
}

In the preceding example, the method extracted all sets of data from the file and returned
them as a JSONObject. But users would most likely want just specific sets of data to use, so
the next example shows how to add a filter to pull just specific sets of data. The method
returns them as a JSONArray of objects, one for each set of data:

// fetchDataSet method - create JSONArray containing specific data sets
public static JSONArray fetchDataSet(String file,
 String rowID)
 throws Exception {

 JSONArray testData = (JSONArray) extractData_JSON(file).get(rowID);

 return testData;
}

Finally, in the following setup method, the data is fetched from within the method and
parsed, printing out the values for each object:

// getBandInfo method - extract and print each band info data set
public void getBandInfo(String file,
 String rowID)
 throws Exception {

 JSONArray testData = fetchDataSet(file, rowID);

Encapsulating Data in Data-Driven Testing Chapter 15

[363]

 for (int i = 0; i < testData.size(); i++) {
 RockBands rockBands = new RockBands((JSONObject)
 testData.get(i));
 System.out.println(rockBands.toString() + "\n");
 }
}

Supporting multibranded applications
In continuous development environments, product releases are often done on a monthly,
weekly, or daily basis (Amazon does daily releases). Most often, features do change in some
releases, but not in all at the same time. To support continuous releases with different
feature changes and custom branded versions of the same application, it makes sense to
maintain only one set of automation sources. This reduces the amount of time needed for
maintaining the libraries and merging in changes continuously instead of day-to-day.

There are several ways to support multiple feature sets and multibranded applications.
First, multiple locators for WebElements can be used using CSS or XPath types. Second,
code can be made conditional to check for the existence of one element on a page and,
based on that result, perform a different set of actions in a page object class method. Third,
to support custom branding of applications, a flag based on the release can be passed into
the test suite via a JVM argument, and different sets of tests can be executed at runtime.

Let's review each scenario.

Multilocators
As we learned in earlier chapters, CSS and XPath locators support the use of AND and OR
operators. What that means is that when defining locators for WebElements or
MobileElements in a page object class, users can provide more than one locator to identify
the element on the page. If an element ID, class, attribute, tag, or name changes in another
release, the locator for that element can be changed in the page object class to support
multiple locator types.

So, if the locator being used has some form of text attribute identifying it, and the
application is re-branded, the user can wildcard the text to use a partial string match of
something in common, or include both text strings using the OR operator, first using the
CSS OR type, then the XPath OR type locator.

Encapsulating Data in Data-Driven Testing Chapter 15

[364]

The following examples show various forms using multiple locator attributes:

// 'OR' locators
@FindBy(css = "a[href*='Account Page')], a[href*='Go To Account')]")
@FindBy(xpath = "//a[contains(@href,'Account Page') or contains(@href,'Go
To Account')]")

// wildcarded id locators
@FindBy(css = "input[id*='password']")
@FindBy(xpath = "//input[contains(@id,'password')]")

// wildcarded text locators (native CSS, Non-Firefox, Firefox
@FindBy(css = "a:contains('Copyright'), a[innerText*='Copyright'],
a[textContent*='Copyright']")
@FindBy(xpath = "//a[contains(text(),'Copyright')]")

// wildcarded element locators
@FindBy(css = "*[class*='submit']")
@FindBy(xpath = "//*[contains(@class,'submit')]")

// index locators
@FindBy(css = "div.footer:nth-child(1)")
@FindBy(xpath = "(//button[@class='save'])[2]")

Conditional code
In cases where features change drastically and the use of a multilocator definition doesn't
work, users can declare different sets of controls and add conditional code checks into
methods to perform different sets of actions.

As an example, say a feature is changed from using an input field to enter a value, to using
a select field to select a value from a predefined drop-down list; the method would have
to perform a sendKeys event for the input field, and a select event for the select field. A
condition can be added to the method to check for the existence of one of the fields and
perform the correct action based on the result.

Let's look at an example:

// locators
@FindBy(css = "input[id='myUser']")
protected M myUser;

@FindBy(css = "select[@id='mySelectUser']")
protected M mySelectUser;

Encapsulating Data in Data-Driven Testing Chapter 15

[365]

// page object class method
public void myLogin(String user,
 String password)
 throws Exception {

 if (BrowserUtils.exists(mySelectUser, Global_VARS.TIMEOUT_SECOND))
 {
 new Select(mySelectUser).selectByVisibleText(user);
 }

 else {
 myUser.sendKeys(user);
 }
}

// exists method created using the Selenium ExpectedConditions class
public static boolean exists(WebElement element,
 int timer) {

 try {
 WebDriverWait wait = new WebDriverWait(
 CreateDriver.getInstance().
 getDriver(),
 timer);

 wait.until(ExpectedConditions.refreshed
 (ExpectedConditions.visibilityOf
 (element)));

 return true;
 }

 catch (StaleElementReferenceException |
 TimeoutException |
 NoSuchElementException err) {

 return false;
 }
}

Encapsulating Data in Data-Driven Testing Chapter 15

[366]

Runtime flags
Finally, if an application is completely re-branded or a feature is completely changed and
the first two options are not sufficient, users can set a flag using a JVM argument or a
TestNG parameter with a release version, and code can execute based on that flag.

For multilanguage testing of labels, users can maintain a different set of JSON data and
execute different tests based on the language under test. Of course, this requires the test
method to be completely data-free and generic enough to just change the string labels being
passed into it as JSON data.

The JVM argument or TestNG parameter can be set and pulled in using an @parameters
or System.getProperty() feature:

-Drelease=1.0.x

or

<test name="My Test">
 <parameter name="release" value="1.0.x" />

</test>

Multiple driver support
Occasionally, testing requires more than one client to be involved in a test. There will be
cases where there are two browsers open at the same time, whether they are running the
same application or not, and cases where there are one browser and one mobile device
running simultaneously. This section will cover the requirements for running concurrent
web and mobile drivers.

Dual WebDriver testing
The tricky part about running two or more WebDrivers at the same time is that you must
keep track of which driver is getting the WebDriver events at any point in time. Otherwise,
the current WebDriver, which is the last one that gets instantiated, gets all the events. How
do we do that?

Encapsulating Data in Data-Driven Testing Chapter 15

[367]

It's actually not that difficult. What needs to be done is this:

Create the first WebDriver instance.1.
Assign the first WebDriver instance to a variable.2.
Create the second WebDriver instance.3.
Assign the second WebDriver instance to a variable.4.
Switch back and forth between the two drivers using the variables.5.
Instantiate other page object classes against the correct drivers.6.

Let's take a look at an example of how this is done using a Chrome and Firefox driver at the
same time:

@Test
public void tc001_multiWebDriver(String rowID,
 String description)
 throws Exception {

 // create the first WebDriver instance
 CreateDriver.getInstance().setDriver("chrome",
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM);

 // save the first WebDriver instance
 WebDriver chromeDriver = CreateDriver.getInstance().getDriver();

 // create the second WebDriver instance
 CreateDriver.getInstance().setDriver("firefox",
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM);

 // save the second WebDriver instance
 WebDriver firefoxDriver = CreateDriver.getInstance().getDriver();

 // switch back to the chrome driver
 CreateDriver.getInstance().setDriver(chromeDriver);

 // create a page object class instance that will use this driver
 GmailLoginPO gmail = new GmailLoginPO();
 gmail.login("user1", "password1");

 // switch back to the firefox driver
 CreateDriver.getInstance().setDriver(firefoxDriver);

Encapsulating Data in Data-Driven Testing Chapter 15

[368]

 // create a page object class instance that will use this driver
 GmailLoginPO gmail2 = new GmailLoginPO();
 gmail2.login("user2", "password2");

 // test sending mail back and forth to each user via the 2 clients

 // switch back to chrome and quit driver
 CreateDriver.getInstance().setDriver(chromeDriver);
 chromeDriver.quit();

 // switch back to firefox and quit driver
 CreateDriver.getInstance().setDriver(firefoxDriver);
 firefoxDriver.quit();
}

So, the actions are actually fairly easy to understand, but let's point out a number of things.

Once you instantiate both drivers, you must call the overloaded setDriver method
created in Chapter 9, Building a Scalable Selenium Test Driver Class for Web and Mobile
Applications, to switch to the current driver thread of choice. Remember, the driver class has
multithreading built in, so every time a new driver is created, it exists on a separate thread.

When you instantiate page object classes, the driver is fetched on the fly by the page object
hierarchy, so you do not have to pass in the driver type, it's done automatically for you. But
you must create the instance of the page object class after you call setDriver to set the
instance of the driver to use.

If you switch to a different driver than the one you instantiated the page object class on,
and try to send an event to the page, you will get a runtime error saying that the driver
doesn't exist.

Finally, to test out sending Gmail back and forth between the clients, you will need to call
setDriver to do the switching and use the correct PO class instance to send and receive
the email.

It's the same when quitting the driver, you must switch to the correct one before closing it.

Encapsulating Data in Data-Driven Testing Chapter 15

[369]

Dual WebDriver and AppiumDriver testing
There is not that much difference when creating a WebDriver and AppiumDriver
simultaneously, except that you have to deal with more setup/teardown on the mobile side
of things.

Creating the drivers is relatively similar. Switching between the drivers is also similar. The
WebDriver and AppiumDriver setup/teardown is different, and so are the API methods for
each. With mobile devices, the application is usually installed in setup and uninstalled in
teardown before quitting. That's pretty much it!

Let's take a quick look at an example:

@Test
public void tc002_multiWebMobileDriver(String rowID,
 String description)
 throws Exception {

 // create the WebDriver instance
 CreateDriver.getInstance().setDriver("chrome",
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM);

 // save the WebDriver instance
 WebDriver chromeDriver = CreateDriver.getInstance().getDriver();

 // create the MobileDriver instance, passing in device name
 Map<String, Object> preferences = new HashMap<String, Object>();
 preferences.put("deviceName", "iPhone 6 Simulator");

 CreateDriver.getInstance().setDriver("iphone",
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM,
 preferences);

 // save the MobileDriver instance
 AppiumDriver<MobileElement> mobileDriver =
 CreateDriver.getInstance().getDriver(true);

 // switch back to the chrome driver
 CreateDriver.getInstance().setDriver(chromeDriver);
 // perform some actions on the WebDriver classes

 // switch back to the mobile driver
 CreateDriver.getInstance().setDriver(mobileDriver);
 // perform some actions on the MobileDriver classes

Encapsulating Data in Data-Driven Testing Chapter 15

[370]

 // switch back to chrome and quit driver
 CreateDriver.getInstance().setDriver(chromeDriver);
 chromeDriver.quit();

 // switch back to iphone and quit that driver
 CreateDriver.getInstance().setDriver(mobileDriver);
 mobileDriver.quit();
}

Parallel testing
When testing browser or mobile applications, it is often necessary to test on multiple
browser types or mobile devices. That can be accomplished in this framework by changing
the XML suite file parameters, but it is time consuming to do cross-browser and mobile
testing in serial mode. Using the TestNG suite XML parallel features and the Java
ThreadLocal class for property file initialization, users can design a setup class that will
instantiate the driver in parallel. Let's look at each function in detail.

The TestNG documentation on parallel testing is located at http:/ /
testng. org/ doc/ documentation- main. html#parallel- running.

Suite XML file
The TestNG suite tag has several attributes that control parallel testing. Those attributes
are:

parallel = "false/tests/classes/methods/instances"

thread-count = "number"

For these parallel attributes, users can run in single-threaded mode using a value of false,
or select one of the other modes depending on whether they want to run a group of classes,
tests, methods, or instances in parallel.

For instance, if the user wants to run all the test classes contained in each <test> section of
the suite file in parallel, they can define which classes go in each section, or repeat all the
classes in another section so they can run all the same classes in parallel. They would use
the suite parallel="tests" tag attribute and set thread-count to the number of
<test> sections in the file.

http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running
http://testng.org/doc/documentation-main.html#parallel-running

Encapsulating Data in Data-Driven Testing Chapter 15

[371]

To run all classes in a <test> section in parallel, users would set the
parallel="classes" attribute and again define thread-count to the number of threads
to use, usually equal to the number of classes in the section.

Here is an example of a suite XML file running a set of <test> sections in parallel:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Parallel_Test_Suite" preserve-order="true" parallel="tests"
thread-count="2" verbose="2">
 <parameter name="environment" value="remote" />
 <test name="Test 1 - Chrome/Windows 7">
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 7" />
 <parameter name="propertyFile"
 value="environment1.properties" />

 <classes>
 <class name="com.mypath.ParallelTest" />
 </classes>
 </test>

 <test name="Test 2 - Firefox/Windows 7">
 <parameter name="browser" value="firefox" />
 <parameter name="platform" value="Windows 7" />
 <parameter name="propertyFile"
 value="environment2.properties" />

 <classes>
 <class name="com.mypath.ParallelTest" />
 </classes>
 </test>
</suite>

Things to note here. The thread-count equals the number of <test> sections to run in
parallel. The parameters are contained in the <test> sections for each set of tests, and there
is a parameter to vary the environment properties file. This is required so a different set of
users, servers, and so on are used for each thread to keep the tests from clashing with each
other.

Encapsulating Data in Data-Driven Testing Chapter 15

[372]

Parallel properties method
In the suite file example, there was a parameter set for the environment property file. In
order to keep the parallel sessions from interfering with each other, different sets of servers
and/or users must be used, and the thread that holds the properties during the test must
also run in parallel. The following method extends the Java Properties class to
accomplish that:

/**
 * ParallelProps method - extends Properties class to isolate
 each thread instance
 *
 */
public class ParallelProps extends Properties {
 public static final long serialVerionUID = 12345678L;
 private final ThreadLocal<Properties> localProperties =
 new ThreadLocal<Properties>() {
 @Override
 protected Properties initialValue() {
 return new Properties();
 }
 };

 public ParallelProps(Properties properties) {
 super(properties);
 }

 @Override
 public String getProperty(String key) {
 String localValue = localProperties.get().getProperty(key);
 return localValue == null ? super.getProperty(key) :
 localValue;
 }

 @Override
 public Object setProperty(String key, String value) {
 return localProperties.get().setProperty(key, value);
 }
}

The JavaDoc for the ThreadLocal class is located at https:/ /docs.
oracle. com/ javase/ 7/ docs/api/ java/ lang/ ThreadLocal. html.

https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html
https://docs.oracle.com/javase/7/docs/api/java/lang/ThreadLocal.html

Encapsulating Data in Data-Driven Testing Chapter 15

[373]

Common setup
The tricky part is where to create each instance of the driver, browser, or mobile. In this
example, each <test> section will run in parallel. So, it would make sense to pull in the
parameters defined in each section in the @BeforeTest section of the common setup class.
That would include casting the properties file to a separate thread for just that instance.

Also, it is important to keep all the local variables defined in each test class private when
running in parallel. They should only be available to that class instance so reassigning them
in the test class doesn't interfere with the other parallel thread running.

Here's what the common setup class looks like for parallel testing at the <test> level:

public abstract class CommonSetup_parallel {
 protected ParallelProps configProps_parallel =
 new ParallelProps(configProps);

 @Parameters({"browser","platform","environment","propertyFile"})
 @BeforeTest(alwaysRun=true, enabled=true)
 protected void testSetup(String browser,
 String platform,
 String environment,
 String propertyFile,
 ITestContext context)
 throws Exception {

 configProps_parallel.load(
 new FileInputStream(
 Global_VARS.PROPS_PATH +
 System.getProperty("propertyFile",
 propertyFile)));

 Global_VARS.DEF_BROWSER = System.getProperty("browser",
 browser);

 Global_VARS.DEF_PLATFORM = System.getProperty("platform",
 platform);

 Global_VARS.DEF_ENVIRONMENT = System.getProperty("environment",
 environment);

 Map<String, Object> setBrowserPrefs = new HashMap<String,
 Object>();

 if (Global_VARS.DEF_PLATFORM == "iphone" &&
 Global_VARS.DEF_PLATFORM == "android") {

Encapsulating Data in Data-Driven Testing Chapter 15

[374]

 CreateDriver.getInstance().setDriver(
 Global_VARS.DEF_BROWSER,
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM,
 setBrowserPrefs);
 }

 else {
 CreateDriver.getInstance().setDriver(
 Global_VARS.DEF_BROWSER,
 Global_VARS.DEF_ENVIRONMENT,
 Global_VARS.DEF_PLATFORM);
 }
 }
}

Summary
This chapter concluded the framework design discussion on how to encapsulate and use
test data. The premise of data-driven testing is to store data outside the Selenium page
object and test classes. Again, this does in effect reduce the amount of maintenance and
code that needs to be written to test a specific feature, by reusing test methods with varied
data.

We also covered topics such as positive, negative, boundary, limit testing, dual-drive
support, and parallel testing; all extremely important standards to incorporate in a
Selenium framework.

In the next chapter, the Selenium Grid Architecture will be discussed and users will design
and build a local in-house grid to run the testing on, taking the framework from a local
testing platform to a remote testing platform. This will lead the way to using third-party
grid platforms such as the Sauce Labs Cloud.

16
Designing a Selenium Grid

This chapter covers the Selenium Grid Architecture and how users would build a remote
Selenium Grid using the standalone servers and drivers to create the hub, browser nodes,
and mobile simulator/emulator nodes. The following topics are covered:

Introduction
Virtual grids
Selenium driver class – WebDriver versus RemoteWebDriver
Switching from local to remote driver
Selenium standalone server and client drivers
Selenium standalone server and browser driver command-line options
Appium server and mobile simulator/emulator command-line options
Selenium Grid console
Directing traffic to Selenium nodes

Designing a Selenium Grid Chapter 16

[376]

Introduction
Up to now, the WebDriver class has supported running browser and mobile tests from a
local IDE of choice, and IntelliJ as a standard practice. In that context, browsers can be
tested for Chrome, Firefox, Opera, IE/MS-Edge (if running Windows), and Safari (if
running iOS). For mobile devices, the local choices are somewhat limited: Android phones
and tablets for Linux and Windows environments, iPhone and iPad for iOS environments.

Now, what if there is a need for compatibility testing on, say, 10 different browser/platform
combinations, and 10 different mobile device/platform combinations? It becomes a little
cumbersome to try and test those using local development environments.

This is where the Selenium Grid Architecture comes in. The Selenium WebDriver class has
an extended class called RemoteWebDriver that supports running the same set of tests
remotely across platforms, browsers, and mobile devices. It uses the JSON wire protocol to
communicate between the Selenium server and the different client drivers on the grid. The
fact is this single technology supports every common platform, and Selenium has become
the industry standard because of it.

In this chapter, we will cover how to design and build a Selenium Grid to support all
common browser and mobile platform combinations, how to customize the grid to support
running multiple concurrent drivers on the same nodes, setting up Selenium standalone
servers and Appium server nodes, and how to drive traffic through the Selenium hub and
nodes.

Once that is built, moving to a more comprehensive cloud-based third-party grid such as
Sauce Labs, BrowserStack, or PerfectoMobile will be virtually seamless.

The reader will learn how to design and build a remote Selenium Grid to support cross-
platform testing on browser and mobile devices.

The JavaDoc for the Selenium RemoteWebDriver class is
located at https:/ /seleniumhq. github. io/selenium/ docs/
api/ java/ org/ openqa/ selenium/ remote/ RemoteWebDriver.
html

The Selenium Grid documentation is located at http:/ / www.
seleniumhq. org/ docs/07_ selenium_ grid. jsp

https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
https://seleniumhq.github.io/selenium/docs/api/java/org/openqa/selenium/remote/RemoteWebDriver.html
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp
http://www.seleniumhq.org/docs/07_selenium_grid.jsp

Designing a Selenium Grid Chapter 16

[377]

Virtual grids
When first designing the Selenium Grid, users must decide whether they want to use
physical machines or virtual machines. In this day and age of cloud computing, most users
are going with a virtual grid of some sort, using either Amazon Web Services, VMware, or
the Microsoft Azure Cloud Services. With mobile devices, users can test against iPhone
simulators running on macOS VMs, and Android emulators running on Linux and MS-
Windows VMs.
To connect to the remote VM node, users can use VMware vCloud Director, Apple Remote
Desktop Client, Remote Desktop Client for Windows or Linux, RealVNC, and so on.
When running tests remotely on a grid, the test always starts on either a local IDE or a
Jenkins Slave of some sort. The actual browser or mobile device will start on the remote
node itself, not on the local VM or the Jenkins Slave. The Selenium WebDriver events will
be sent from those clients to the remote hub, which will then redirect the events to the
appropriate platform, start up the driver, and run the tests.

Grid structure
When building the VMs for the Selenium Grid, there will be one hub and various browser
and mobile nodes. The hub will run a Selenium standalone server, use a JSON
configuration file to set all the common desired capabilities for all the nodes, and start up as
a service on the VM. Linux-based hubs seem to run faster and more efficiently, and are
highly recommended over Windows-based hubs.

For each browser node, there are various configurations that can be used. Each node will
run the Selenium standalone server, the client driver(s) for the node (ChromeDriver,
GeckoDriver, and so on), use a JSON configuration file to set specific node desired
capabilities and/or override the hub settings, and start up as a service on the VM.

For each mobile node, users are somewhat limited to using one iPhone, iPad, Android
phone, or Android tablet instance per node; running the Appium server, a simulator or
emulator for the device; using a JSON configuration file to set specific mobile node caps;
and starting up as a service on the VM.

Designing a Selenium Grid Chapter 16

[378]

Single browser nodes
For dedicated browser type node setups, say we want to test against Firefox, Chrome, Edge,
Opera, and Safari browsers. Do we have enough resources to create Windows, Mac, and
Linux platforms for all these browsers? Or do we care more about testing on different
browsers instead and are somewhat ambivalent to the platform they run on?

Here is a design to support dedicated browser type nodes:

Set up each node to only create instances of one browser type. For this scenario, you would need
nine VM nodes, as follows:

Windows 10/Firefox x 5 instances
Windows 10/Chrome x 5 instances
Windows 10/Edge x 5 instances
macOS/Firefox x 5 instances
macOS/Chrome x 5 instances
macOS/Safari x 5 instances
Linux/Firefox x 5 instances
Linux/Chrome x 5 instances
Linux/Opera x 5 instances

So, in essence, although you need 10 VMs for this grid structure (1 hub, 9 nodes), you
actually have 45 virtual platforms to test against. If we test on the Windows 10 node using
Firefox, we can have five separate test suites running on that node at the same time.

This design allows five separate Firefox browsers to be running simultaneously on the
node, since multithreading is built into the driver class. Each thread handles its own set of
instructions, directed of course through the grid hub, which will not interfere with others
tests running on the node.

Multibrowser nodes
Here is a design to support multiple browser-type testing per node:

Designing a Selenium Grid Chapter 16

[379]

Set up each node to create instances of multiple browser types. For this scenario, you would need
three VM nodes, as follows:

Windows 10/Firefox x 5 instances, Chrome x 5 instances, Edge x 5 instances
macOS/Firefox x 5 instances, Chrome x 5 instances, Safari x 5 instances
Linux/Firefox x 5 instances, Chrome x 5 instances, Opera x 5 instances

With this design, you are running 15 instances of different browser types per VM. Of course
the number of instances can vary, as it is mostly based on how much memory is allocated to
the virtual machine. So for this setup, you would only need 4 VMs (1 hub, 3 nodes), and
you would have 45 virtual platforms to run against.

Single mobile device nodes
For mobile simulators and emulators, it is recommended that only one instance is run on a
node at a time. They are very slow and memory intensive and perform poorly using the
Appium server technology. Using Linux for Android emulator platforms is much faster
than Windows-based emulators, though. However, there really is no limit on how many
physical devices can be installed on each mobile node, it just makes sense to only run one
instance at a time.

Here is a design to support single mobile device testing per node:

Set up each node to only create instances of one mobile emulator/simulator type. For this scenario,
you would need eight VM nodes, as follows:

Linux/Android phone emulator x 1 instance
Linux/Android tablet emulator x 1 instance
Linux/Android phone physical device x 1 instance
Linux/Android tablet physical device x 1 instance
macOS/iPhone simulator x 1 instance
macOS/iPad simulator x 1 instance
macOS/iPhone physical device x 1 instance
macOS/iPad physical device x 1 instance

So, in this configuration, you need 9 VMs for this grid structure (1 hub, 8 nodes), but you
only have 8 virtual platforms to test against. The Selenium browser-based technology has
progressed much more than the Appium server technology to date.

Designing a Selenium Grid Chapter 16

[380]

Multimobile/browser nodes
Now, finally, how about a Selenium Grid that has a mixture of browser and mobile device
nodes? You can either just take the scenarios listed previously and add individual nodes as
needed, or you can create a node that supports both a browser and mobile device running
on it. The way to do this is by running both the Selenium standalone server for the browser
instances and the Appium server for the mobile device instances on the same VM.

Set up each node to create instances of browser and mobile emulator/simulator types. For this
scenario, you would need three VM nodes, as follows:

Windows 10/Firefox x 2 instances, Chrome x 2 instances, Edge x 2 instances,
Android phone emulator x 1 instance
macOS/Firefox x 2 instances, Chrome x 2 instances, Safari x 2 instances, iPhone
simulator x 1 instance
Linux/Firefox x 2 instances, Chrome x 2 instances, Opera x 2 instances, Android
tablet emulator x 1 instance

Although this is the most efficient use of virtual machines, as each one is shared between
browser and mobile testing, it could exhibit memory issues with the variety of platforms
running on each, and directing traffic to each one becomes a little more challenging!

Selenium driver class – WebDriver versus
RemoteWebDriver
In the first chapter, the CreateDriver.java Selenium driver class was built. The class has
several setDriver methods that take the parameters passed into the suite for the browser,
mobile device, platform, and environment, and process them when creating the driver
instance.

Now, when running on a remote environment, we need to add several conditions to the
setDriver methods to pass the desired capabilities and preferences to the
RemoteWebDriver class, instead of the local WebDriver instance.

Let's look at these conditions for each setDriver method in this class.

Designing a Selenium Grid Chapter 16

[381]

The setDriver method for browser
In the main setDriver method, we had first set up a series of switch cases for each
browser and mobile type. In those cases, we set the browser/mobile preferences and desired
capabilities. Once that was done, we cast them to the local WebDriver and it was launched.

Now, we need to check and see if the user passed in the environment parameter as
"local" or "remote" and cast caps to the correct driver:

// setDriver method - create the WebDriver or AppiumDriver instance

@SafeVarargs
public final void setDriver(String browser,
 String platform,
 String environment,
 Map<String, Object>... optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;
 String ffVersion = "55.0";
 String remoteHubURL = "http://myGridHubURL:4444/wd/hub";

 switch (browser) {
 case "firefox":
 // set up the browser prefs and capabilities
 ...
 caps = DesiredCapabilities.firefox();

 // then pass them to the local WebDriver or RemoteWebDriver
 if (environment.equalsIgnoreCase("local")) {
 webDriver.set(new FirefoxDriver(caps));
 }

 break;
 }

 if (environment.equalsIgnoreCase("remote")) {

 caps.setCapability("browserName", browser);
 caps.setCapability("version", ffVersion);
 caps.setCapability("platform", platform);
 caps.setCapability("applicationName",
 platform.toUpperCase() + "-" +
 browser.toUpperCase());

 webDriver.set(new RemoteWebDriver(
 new URL(remoteHubURL), caps));

Designing a Selenium Grid Chapter 16

[382]

 ((RemoteWebDriver) webDriver.get()).setFileDetector(
 new LocalFileDetector());
 }
}

In this example, the Firefox driver capabilities were set up in the switch statement and
either cast to local WebDriver or, if running remotely on the grid, cast to
RemoteWebDriver.

Notice the remote hub URL was passed to RemoteWebDriver, along with several
capabilities that would cause the Selenium hub to direct traffic to a specific node. Those
were browserName, version, platform, and applicationName. We will explain them in
more detail as we build the JSON configuration files.

Also, RemoteWebDriver called setFileDetector, which allowed files residing in the
local workspace to be uploaded to the application remotely.

The setDriver method for mobile
Now, here is a slight variation on the same method using the mobile drivers. Of course,
these conditions would be built into the same setDriver method, as would support for all
browsers and mobile devices.

The Appium driver has its own remote driver capabilities, and casting a remote URL to the
driver will start it on the appropriate grid node:

// setDriver method - create the WebDriver or AppiumDriver instance

@SafeVarargs
public final void setDriver(String browser,
 String platform,
 String environment,
 Map<String, Object>... optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;
 String platformVersion = "9.3";
 String localHubURL = "http://127.0.0.1:4723/wd/hub";
 String remoteHubURL = "http://myGridHubURL:4444/wd/hub";

 switch (browser) {
 case "iphone":
 // set up the mobile device capabilities
 ...
 caps = DesiredCapabilities.iphone();

Designing a Selenium Grid Chapter 16

[383]

 // caps = DesiredCapabilities.android();

 // then pass them to the local WebDriver or RemoteWebDriver
 if (environment.equalsIgnoreCase("local")) {
 mobileDriver.set(new IOSDriver<MobileElement>
 (new URL(localHubURL), caps));
 // mobileDriver.set(new AndroidDriver<MobileElement>
 // (new URL(localHubURL, caps));
 }

 break;
 }

 if (environment.equalsIgnoreCase("remote")) {

 caps.setCapability("browserName", browser);
 caps.setCapability("platformVersion", platformVersion);
 caps.setCapability("platform", platform);
 caps.setCapability("applicationName",
 platform.toUpperCase() + "-" +
 browser.toUpperCase());

 caps.setCapability("automationName", "XCUITest");

 mobileDriver.set(new IOSDriver<MobileElement>
 (new URL(remoteHubURL), caps));
 // mobileDriver.set(new AndroidDriver<MobileElement>
 // (new URL(remoteHubURL), caps));
 }
}

In this example, both the iPhone and Android drivers were noted for simplicity's sake; they
would be in a separate case for each.

Overloaded setDriver method for browser
There are also overloaded setDriver methods we spoke about in the first chapter, which
allow switching between multiple drivers running simultaneously. For the browser drivers,
when switching drivers, you must cast WebDriver to RemoteWebDriver:

public void setDriver(WebDriver driver) {
 webDriver.set(driver);

 sessionId.set(((RemoteWebDriver) webDriver.get())
 .getSessionId().toString());

Designing a Selenium Grid Chapter 16

[384]

 sessionBrowser.set(((RemoteWebDriver) webDriver.get())
 .getCapabilities().getBrowserName());

 sessionPlatform.set(((RemoteWebDriver) webDriver.get())
 .getCapabilities().getPlatform().toString());

 setBrowserHandle(getDriver().getWindowHandle());
}

Switching from local to remote driver
When switching from local to remote testing on the fly, users need an easy way to change
the test to the required platforms. As we mentioned when building the setDriver method,
it takes parameters for browser (or mobile device), platform, and environment.

In order to change these parameters, users can either set them in a TestNG suite XML file or
a JVM argument using the -D switch. We covered that previously, but let's go over the rules
of precedence again.

Suite parameters
The following parameters override the default settings for the browser, platform, and
environment:

// suite xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="My_Test_Suite" preserve-order="true" parallel="false" thread-
count="1" verbose="2">
 <test name="My Test">
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Linux" />
 <parameter name="environment" value="remote" />

 <packages>
 <package name="my.tests.*" />
 </packages>
 </test>
</suite>

Designing a Selenium Grid Chapter 16

[385]

JVM argument
The following arguments, whether set in an IDE run configuration or Jenkins project, will
override both the suite XML parameters and the default framework parameters:

-Dbrowser=safari
-Dplatform=macOS 10.12
-Denvironment=remote

Default global variables
There should always be a default constant for browser, platform, and environment, so if
they are not set anywhere and the user runs a test class or suite without them, the test will
run. Usually that is set to the default development environment platform.

Example:

public class Global_VARS {
 public static final String BROWSER = "firefox";
 public static final String PLATFORM = "Windows 10";
 public static final String ENVIRONMENT = "local";
 public static String DEF_BROWSER = null;
 public static String DEF_PLATFORM = null;
 public static String DEF_ENVIRONMENT = null;
}

Processing runtime parameters
Finally, when the test suite is run, there needs to be a place to process the system
properties, suite parameters, or default variables and pass them to the setDriver method.
This can be done in the CommonSetup.java class.

In this case, we are switching from a local run to a remote run on the Selenium Grid, so we
need to set the Global_VARS.DEF_ENVIRONMENT variable:

@Parameters({"browser","platform","environment"})
@BeforeSuite(alwaysRun=true, enabled=true)
protected void suiteSetup(@Optional(Global_VARS.BROWSER) String browser,
 @Optional(Global_VARS.PLATFORM) String platform,
 @Optional(Global_VARS.ENVIRONMENT) String
 environment)
 throws Exception {

Designing a Selenium Grid Chapter 16

[386]

 Global_VARS.DEF_BROWSER = System.getProperty("browser", browser);
 Global_VARS.DEF_PLATFORM = System.getProperty("platform",
 platform);
 Global_VARS.DEF_ENVIRONMENT = System.getProperty("environment",
 environment);

 CreateDriver.getInstance().setDriver(Global_VARS.DEF_BROWSER,
 Global_VARS.DEF_PLATFORM,
 Global_VARS.DEF_ENVIRONMENT);
}

Selenium standalone server and client
drivers
To start setting up the Selenium Grid hub and node VMs, you must first download the
required JAR and Selenium browser driver files. Firefox now uses the geckodriver, which
was new in the Selenium 3.x release, and the Apple Safari driver is now built into the
browser, so the SafariDriver.safariextz is no longer required.

The Selenium Grid JARs and driver files can be downloaded or directed to
third-party sites at the following location: http:/ /www. seleniumhq. org/
download/ .

Here is a list of the files you will need:

Server: selenium-server-standalone-3.x.x.jar
Chrome: chromedriver/chromedriver.exe (linux64, win32, mac64; use 64-bit
when possible)
Firefox: geckodriver/geckodriver.exe (linux64, win64, macOS; use 64-bit
when possible)
Safari: Apple now builds the Safari driver extension into the browser as of the
Safari 10 release
IE11: IEDriverServer.exe (use 64-bit when possible)
Edge: MicrosoftWebDriver.exe
Opera: operadriver/operadriver.exe (linux64, win64, mac64)
Appium: appium/appium.exe

http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/

Designing a Selenium Grid Chapter 16

[387]

Local use of drivers
When running a suite locally through an IDE environment, the framework should store and
point to the required driver files for each browser. The standalone server is not required
when running locally (if running Appium to test mobile devices, you must however run the
Appium server locally). The reason you want to store the files in the repo for the
framework is to provide a means for all users to not have to download the driver files and
install them in their local environment.

Also, when the driver is started locally, it needs a path to find the driver file, and that
should be stored in a properties file, as it is passed into the driver class when it is
instantiated. Here is how that is done for each browser, using the Windows platform as an
example:

// store these in a properties file

selenium.rev=3.7.0
gecko.rev=0.19.0
chrome.rev=2.33
edge.rev=15.15063
ie.rev=x64_3.7.0
opera.rev=2.30

// extract these properties during driver creation

gecko.driver.windows.path=../myPath/selenium-[selenium.rev]/gecko-
[gecko.rev]/geckodriver.exe

chrome.driver.windows.path=../myPath/selenium-[selenium.rev]/chrome-
[chrome.rev]/chromedriver.exe

microsoftedge.driver.path=../myPath/selenium-[selenium.rev]/edge-
[edge.rev]/MicrosoftWebDriver.exe

ie.driver.path=../myPath/selenium-[selenium.rev]/ie-
[ie.rev]/IEDriverServer.exe

opera.driver.windows.path=../myPath/selenium-[selenium.rev]/opera-
[opera.rev]/operadriver.exe

Designing a Selenium Grid Chapter 16

[388]

After defining these in a properties file, you can extract them on the fly when the driver is
created in the setDriver method:

// setup local props in setDriver method
...

Properties props = new Properties();
props.load(new FileInputStream("myPropsFile"));

if (environment.equalsIgnoreCase("local")) {
 System.setProperty("webdriver.gecko.driver",
 props.getProperty("gecko.driver.windows.path"));

 System.setProperty("webdriver.chrome.driver",
 props.getProperty("chrome.driver.windows.path"));

 System.setProperty("webdriver.ie.driver",
 props.getProperty("ie.driver.path"));

 System.setProperty("webdriver.edge.driver",
 props.getProperty("microsoftedge.driver.path"));

 System.setProperty("webdriver.opera.driver",
 props.getProperty("opera.driver.windows.path"));

 webDriver.set(new DriverName(caps));
}

...

Remote use of drivers
When running tests on the Selenium Grid using RemoteWebDriver, you must install and
run a Selenium standalone server on each hub and node, and an Appium server on the
mobile device nodes. The driver will be started on the command line with the server when
the hub and nodes are set up. But you do not have to set a system property on the remote
nodes to where the driver lives. That is set on the command line when starting up the
standalone server. When you direct traffic to the node via the hub, it will find the required
driver automatically.

Designing a Selenium Grid Chapter 16

[389]

Selenium standalone server and browser
driver command-line options
When setting up the Selenium hub and nodes, it makes sense to create an image of each
platform after it is completely set up, which will allow additional nodes to be added by
cloning them. Setting up each one is fairly simple, with the exception of the platform
differences between each node (that is, Linux, Windows, macOS, and so on).

Let's cover how to start each Selenium server on the hub and nodes on the grid.

The Selenium Grid command-line options help is located
at http://www.seleniumhq.org/docs/07_selenium_grid.jsp#g
etting-command-line-help

The Selenium documentation for the grid is located at https:/ /
seleniumhq. github. io/ docs/ grid. html#selenium_ grid

Selenium hub
The Selenium hub VM directs all the traffic flow from the test clients to the nodes under
test. There is only one hub VM in the Selenium Grid.

Using a Linux VM for the hub is faster and more reliable than using a Windows VM. So, for
the following example, here are the requirements and command-line options for the
Selenium hub:

Install Java 8+ on the VM.1.
Update $PATH to include the Java path.2.
Create a folder called /opt/selenium and download the selenium-server-3.
standalone-3.x.x.jar to it.
Create a bash script to run the server with the following commands in it:4.

// selenium_hub.sh

java -jar /opt/selenium/selenium-server-standalone-3.x.x.jar
 -role hub
 -hubConfig /opt/selenium/selenium_hub.json

http://www.seleniumhq.org/docs/07_selenium_grid.jsp#getting-command-line-help
http://www.seleniumhq.org/docs/07_selenium_grid.jsp#getting-command-line-help
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid
https://seleniumhq.github.io/docs/grid.html#selenium_grid

Designing a Selenium Grid Chapter 16

[390]

All the Selenium standalone server hub command-line options can be found by issuing the
following command:

java -jar /opt/selenium/selenium-server-standalone-3.x.x.jar
-role hub -h

Options:

--version, -version, Default: false
-browserTimeout, <Integer> in seconds, Default: 0
-matcher, -capabilityMatcher <String> class name, Default:
org.openqa.grid.internal.utils.DefaultCapabilityMatcher@73c6c3b2
-cleanUpCycle <Integer> in ms, Default: 5000
-custom <String>, Default: {}
-debug <Boolean>, Default: false
-host <String> IP or hostname
-hubConfig <String> filename
-jettyThreads, -jettyMaxThreads <Integer>, default value (200)
-log <String> filename
-maxSession <Integer>
-newSessionWaitTimeout <Integer> in ms, Default: -1
-port <Integer>, Default: 4444
-prioritizer <String> class name, Default to null
-role <String>, Default: hub
-servlet, -servlets <String>, Default: []
-timeout, -sessionTimeout <Integer> in seconds, Default: 1800
-throwOnCapabilityNotPresent <Boolean> true or false, Default: true
-withoutServlet, -withoutServlets <String>, Defaut: []

Selenium hub JSON configuration file
There are various command-line options available to set the hub URL, port, timeouts,
registration, and so on, but instead of listing them all on the command line, the -
hubConfig option allows you to pass in a JSON configuration file with all the common
WebDriver desired capabilities. This makes it easier and more manageable when updating
parameters and desired capabilities, and setting them on the hub propagates them down to
all nodes. But these options can be overridden at the node level as well.

Here is a sample Selenium hub JSON configuration file:

// selenium_hub.json

{
 "_comment":"Configuration for Selenium Hub",
 "host":"http://localhost",

Designing a Selenium Grid Chapter 16

[391]

 "maxSession":1000,
 "port":4444,
 "cleanupCycle":5000,
 "timeout":600,
 "browserTimeout":300,
 "nodeTimeout":600,
 "newSessionWaitTimeout":-1,
 "servlets":[],
 "prioritizer":null,
 "capabilityMatcher":"org.openqa.grid.internal.utils.
 DefaultCapabilityMatcher",
 "throwOnCapabilityNotPresent":true,
 "nodePolling":5000,
 "platform":"LINUX",
 "role":"hub"
}

Selenium nodes
As mentioned before, there are various ways to set up and distribute testing on the
Selenium Grid nodes. For the purpose of showing the command-line options for each type
of driver, let's use the dedicated browser type model for each node. Here are the
requirements and command-line options for each type of browser node:

Install Java 8+ on the VM.1.
Update $PATH to include the Java path.2.
Install the required browser on the node: Chrome, Firefox, Edge, Safari, and so3.
on.
Create a folder called /opt/selenium (Linux and macOS)4.
or C:\Selenium (Windows) and download selenium-server-
standalone-3.x.x.jar to it.
Download the driver for the browser type for the node (ChromeDriver,5.
geckodriver, and so on).
Create a bash (or PowerShell) script to run the server with the following6.
commands in it:

// selenium_node.sh

java -jar /opt/selenium/selenium-server-standalone-3.x.x.jar
 -Dwebdriver.gecko.driver=/opt/selenium/geckodriver
 -role node
 -nodeConfig /opt/selenium/selenium_node.json

Designing a Selenium Grid Chapter 16

[392]

In this example, to load any of the other browser type drivers, you would just replace the -
Dwebdriver option with the appropriate driver name, such as -
Dwebdriver.chrome.driver, -Dwebdriver.edge.driver, and so on.

All the Selenium standalone server node command-line options can be found by issuing the
following command:

java -jar /opt/selenium/selenium-server-standalone-3.x.x.jar
-role node -h

Options:

--version, -version, Default: false
-browserTimeout <Integer> in seconds, Default: 0
-capabilities, -browser <String>, Default: [Capabilities
[{seleniumProtocol=WebDriver, browserName=chrome, maxInstances=5}],
Capabilities [{seleniumProtocol=WebDriver, browserName=firefox,
maxInstances=5}], Capabilities [{seleniumProtocol=WebDriver,
browserName=internet explorer, maxInstances=1}]]
-cleanUpCycle <Integer> in ms
-custom <String>, Default: {}
-debug <Boolean>, Default: false
-downPollingLimit <Integer>, Default: 2
-host <String> IP or hostname
-hub <String>, Default: http://localhost:4444
-hubHost <String> IP or hostname
-hubPort <Integer>
-id <String>, Defaults to the url of the remoteHost, when not specified.
-jettyThreads, -jettyMaxThreads <Integer>, default value (200) will be
used.
-log <String> filename
-maxSession <Integer>, Default: 5
-nodeConfig <String> filename
-nodePolling <Integer> in ms, Default: 5000
-nodeStatusCheckTimeout <Integer> in ms Default: 5000
-port <Integer>, Default: 5555
-proxy <String>, Default: org.openqa.grid.selenium.proxy.DefaultRemoteProxy
-register, Default: true
-registerCycle <Integer> in ms, Default: 5000
-role <String>, Default: node
-servlet, -servlets <String>, Default: []
-timeout, -sessionTimeout <Integer>, Default: 1800
-unregisterIfStillDownAfter <Integer> in ms, Default: 60000
-withoutServlet, -withoutServlets <String>, Default: []

Designing a Selenium Grid Chapter 16

[393]

Selenium node JSON configuration file
Like the Selenium hub command-line options, there is also a -nodeConfig option to load a
JSON configuration file with all the common WebDriver desired capabilities for the nodes.

Here is a sample Selenium node JSON configuration file:

// selenium_node.json

{
 "capabilities":[
 {
 "browserName":"firefox",
 "version":"56.0",
 "platform":"LINUX",
 "applicationName":"LINUX-FIREFOX",
 "maxInstances":10,
 "seleniumProtocol":"WebDriver",
 "acceptSslCerts":true,
 "javascriptEnabled":true,
 "takesScreenshot":true
 }
],

 "_comment":"Configuration for Selenium Node Linux/Firefox",
 "timeout":600,
 "browserTimeout":300,
 "cleanUpCycle":5000,
 "proxy":"org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "maxSession":10,
 "port":5555,
 "hub":"http://127.0.0.1:4444",
 "register":true,
 "registerCycle":5000,
 "nodeStatusCheckTimeout":5000,
 "nodePolling":5000,
 "unregisterIfStillDownAfter":60000,
 "role":"node",
 "downPollingLimit":2,
 "debug":false
}

The JSON config files are the same for each node on the grid, with the exception of
changing the browserName, version, platform, and applicationName. These must be
set in the setDriver method as desired capabilities, and storing properties such as the
version should go in the selenium.properties file.

Designing a Selenium Grid Chapter 16

[394]

When the RemoteWebDriver class is cast, it will look for a node wth the exact parameters
passed into it. And, there are many additional capabilities for mobile device testing, and
those should also be stored in the properties file and passed into the driver. This allows you
to create different nodes on the grid with different browser or mobile device versions,
platforms, and so on.

applicationName is a custom desired capability to "help" direct traffic to
the correct nodes. This must also be set in the setDriver method in the
driver class, which is easy if you just take the parameters passed in for the
browser and platform and merge them together!
caps.setCapability("applicationName",
 platform.toUpperCase()
 + "-"
 + browser.toUpperCase());

Here is another example where one node contains Chrome, Firefox, Safari, and Opera
browser instances on a macOS platform (notice there is no driver for Safari, it's built into
the browser):

// selenium_nodes.sh

java -jar /opt/selenium/selenium-server-standalone-3.x.x.jar
 -Dwebdriver.chrome.driver=/opt/selenium/chromedriver
 -Dwebdriver.gecko.driver=/opt/selenium/geckodriver
 -Dwebdriver.opera.driver=/opt/selenium/operadriver
 -role node
 -nodeConfig /opt/selenium/selenium_nodes.json

And here is the selenium_nodes.json file structure:

// selenium_nodes.json

{
 "capabilities":[
 {
 "browserName":"chrome",
 "version":"62.0",
 "platform":"MAC",
 "applicationName":"MAC-CHROME",
 "maxInstances":10,
 "seleniumProtocol":"WebDriver",
 "acceptSslCerts":true,
 "javascriptEnabled":true,
 "takesScreenshot":true
 },
 {

Designing a Selenium Grid Chapter 16

[395]

 "browserName":"firefox",
 "version":"56.0",
 "platform":"MAC",
 "applicationName":"MAC-FIREFOX",
 "maxInstances":10,
 "seleniumProtocol":"WebDriver",
 "acceptSslCerts":true,
 "javascriptEnabled":true,
 "takesScreenshot":true
 },
 {
 "browserName":"safari",
 "version":"11.0",
 "platform":"MAC",
 "applicationName":"MAC-SAFARI",
 "maxInstances":10,
 "seleniumProtocol":"WebDriver",
 "acceptSslCerts":true,
 "javascriptEnabled":true,
 "takesScreenshot":true
 },
 {
 "browserName":"opera",
 "version":"12.11",
 "platform":"MAC",
 "applicationName":"MAC-OPERA",
 "maxInstances":10,
 "seleniumProtocol":"WebDriver",
 "acceptSslCerts":true,
 "javascriptEnabled":true,
 "takesScreenshot":true
 }
],
 "_comment":"Configuration for Selenium Nodes MAC/All",
 "timeout":600,
 "browserTimeout":300,
 "cleanUpCycle":5000,
 "proxy":"org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "maxSession":100,
 "port":5555,
 "hub":"http://127.0.0.1:4444",
 "register":true,
 "host":"myHubHost",
 "registerCycle":5000,
 "nodeStatusCheckTimeout":5000,
 "nodePolling":5000,
 "unregisterIfStillDownAfter":60000,
 "role":"node",

Designing a Selenium Grid Chapter 16

[396]

 "downPollingLimit":2,
 "debug":false,
 "servlets":[],
 "withoutServlets":[],
 "custom":{}
}

Appium server and mobile
simulator/emulator command-line options
The mobile device simulator and emulator nodes work basically the same as the browser
nodes on the Selenium Grid. You need to build a bash or PowerShell script to start the
Appium server, and in the case of the Android emulator, there is a command-line option to
start the emulator. The Appium driver for the iPhone will launch the correct iPhone/iPad
simulator and close it when complete.

Let's look at a couple of sample scripts and configuration files to start up the mobile device
nodes.

Appium nodes
Appium has an environment setup procedure for setting up the iPhone Xcode SDK and
Android SDK, along with the required simulators and emulators.

The Appium setup instructions are located at http:/ /appium. io.

Of course, Java 8+ must also be installed, as was done for the browser nodes, and the
Appium server needs to be installed in the /opt/selenium (macOS and Linux) or
C:\appium (Windows) directory.

Node.js and npm are also required to install the Appium server, and the procedures are
also outlined on the Appium website:

// appium_iphone.sh

/usr/local/bin/node /usr/local/bin/appium --address 127.0.0.1 --port 4723 -
-session-override -nodeconfig /opt/selenium/iphone_config.json --log-level
debug

http://appium.io
http://appium.io
http://appium.io
http://appium.io
http://appium.io
http://appium.io
http://appium.io

Designing a Selenium Grid Chapter 16

[397]

// appium_android.sh
/usr/local/bin/android-sdk/tools/emulator -avd emulatorName -skin
resolution -dns-server 127.0.0.1 &

/usr/local/bin/node /usr/local/bin/appium --address 127.0.0.1 --port 4723 -
-session-override -nodeconfig /opt/selenium/android_config.json --log-level
debug

Appium node JSON configuration file
Like the Selenium browser node command-line options, there is also a -nodeConfig
option to load a JSON configuration file with all the common AppiumDriver desired
capabilities for the nodes.

Here is a sample Selenium node JSON configuration file for iPhone devices:

// iphone_config.json

{
 "capabilities":[
 {
 "platform":"MAC",
 "platformVersion":"10.0",
 "browserName":"iphone",
 "applicationName":"MAC-IPHONE",
 "maxInstances":1,
 "launchTimeout":"300000",
 "newCommandTimeout":"1800"
 }
],
 "configuration":{
 "_comment":"Configuration for Selenium Node MAC/IPHONE",
 "proxy":"org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "maxSessions":1,
 "cleanUpCycle":5000,
 "timeout":1800,
 "url":"http://127.0.0.1:4723/wd/hub",
 "port":4723,
 "host":"localhost",
 "register":true,
 "registerCycle":5000,
 "hubPort":4444,
 "hubHost":"localhost",
 "browserTimeout":600
 }
}

Designing a Selenium Grid Chapter 16

[398]

Here is a sample Selenium node JSON configuration file for Android devices:

// android_config.json
{
 "capabilities":[
 {
 "platform":"Android",
 "platformVersion":"23",
 "browserName":"android",
 "applicationName":"LINUX-ANDROID",
 "maxInstances":1,
 "newCommandTimeout":"180",
 "deviceReadyTimeout":"60",
 "appWaitDuration":"10000"
 }
],
 "configuration":{
 "_comment":"Configuration for Selenium Node LINUX/ANDROID",
 "proxy":"org.openqa.grid.selenium.proxy.DefaultRemoteProxy",
 "maxSessions":1,
 "cleanUpCycle":5000,
 "timeout":1800,
 "url":"http://127.0.0.1:4723/wd/hub",
 "port":4723,
 "host":"localhost",
 "register":true,
 "registerCycle":5000,
 "hubPort":4444,
 "hubHost":"localhost",
 "browserTimeout":600
 }
}

Selenium Grid console
The Selenium Grid Architecture also provides a grid console page that allows users to view
which nodes are active, available, down, and what capabilities are set for each of them.
Once the Selenium hub is active and running, the user would load the following URL to
view the grid:

http://127.0.0.1:4444/grid/console

Of course, this is the localhost IP address, and you would substitute the DNS name or IP
address of the real Selenium hub VM in this URL.

Designing a Selenium Grid Chapter 16

[399]

The following is a screenshot of a local grid set up to run Chrome, Firefox, Safari, Opera,
and iPhone nodes on a macOS platform. Yes, you can actually run the hub, nodes, and
Appium server on the same VM, but this would cause memory issues in the long run, so it's
better to separate them! As a matter of fact, users can set up a local Selenium Grid in their
development environment to test out the driver class, configuration files, batch files, and so
on:

Selenium Grid console hub configuration

Designing a Selenium Grid Chapter 16

[400]

In this grid console, you can see that the local IP of the machine was aliased to
http://myHubHost, which is shown in the id field. Also, there are 10 instances of each
browser, and 1 instance of an iPhone 6 simulator active on the grid.

If you click on the View Config link, it will open Configuration for the hub, which shows
the common capabilities set up on the hub. This would include timeouts, hub parameters,
ports, and many more. Some of these parameters will propagate down to the grid nodes if
they are not overridden by node configuration settings.

In this next screenshot, you will see that once you click on the Configuration tab in the
console, it will show you the node configuration parameters instead of the hub parameters:

Selenium Grid console node configuration

Designing a Selenium Grid Chapter 16

[401]

This is useful for debugging and determining which node options need to be tweaked as far
as session or browser timeouts, mobile device capabilities, browser versions, and others are
concerned.

Directing traffic to Selenium nodes
Now that the Selenium Grid nodes are set up and running, there are several ways to direct
traffic to them. In most cases, there will be nodes set up on the grid dedicated to a specific
platform and browser or mobile device version, but there are other scenarios that will crop
up. Let's discuss a few of them here before we move onto third-party grids.

Multiple nodes of the same platform and version
Say you do most of your testing on a particular platform, browser, or mobile device. You
can set up a virtual grid node that has multiple instances of that platform, browser, and
device. But, after 5-10 instances, the virtual machine may run out of memory.

So, you could clone the VM, create a second identical node on the grid, and let the Selenium
hub load balance the tests that get started and run on that particular platform.

The Selenium hub keeps track of which nodes are idle, and once a node has the max
number of instances running on it, the hub will either add a waiting test suite to a queue or
distribute it to a node with the same platform and browser/mobile device if it is found. The
user doesn't have to direct it to the other node, the Selenium hub will manage the traffic
flow.

But if the user varies something on the cloned node, such as the browser version, then they
can actually direct traffic to each of the nodes by passing in a different browser version, say,
as a parameter to the test suite!

Directing traffic using desired capabilities
Now, as we mentioned in earlier sections, you can create custom desired capabilities, such
as applicationName, and force the test to a node of your choice.

Designing a Selenium Grid Chapter 16

[402]

Varying the capabilities on the nodes would allow you to direct flow to specific nodes, and
in the case of mobile simulators and emulators, there are many variations that can be tested
(platform, platform version, mobile device type, mobile device version, browser, browser
version (for mobile web apps), and so on).

Maintenance of the Selenium Grid
In a test environment using the Selenium Grid, the test is usually run in the continuous
integration process. That means the build process, whether Ant, Gradle, or another
technology, will run the Selenium test suite XML file via TestNG features. And, based on
the parameters passed into the Jenkins project, it will get built and distributed to one of the
RemoteWebDriver nodes via the hub. The tests will run on the grid nodes, not the Jenkins
Slave.

So, what are the drawbacks of building an in-house Selenium Grid?

Lots of maintenance on the nodes. That includes upgrading the Selenium standalone server
JAR files, the browser and mobile driver files, the browser versions, the simulator and
emulator versions, operating system versions, and so on. If the nodes auto update the
browsers, then the Selenium versions that support the newer browsers must be upgraded.
Network patches reboot nodes when auto-pushed from IT departments, so those nodes can
go down if unattended, or upon reboot, require a service to be created to start the Selenium
node again.

Disk space fills up when storing logs, data, or other application-specific downloads.

Along with these annoyances, the number of platforms that can be supported in-house are
very limited as compared to third-party service providers such as Sauce Labs,
BrowserStack, and PerfectoMobile. The cost of using a service-provided grid versus an in-
house grid will have to be weighed, but having spent many years using both, the third-
party provider route is much more efficient. We will cover some of the advantages of using
them in the next chapter!

Designing a Selenium Grid Chapter 16

[403]

Summary
In this chapter, we covered the Selenium Grid Architecture, which required changes to the
setDriver method to support RemoteWebDriver, changes in the selenium.properties
file, and changes to parameters passed in and processed from the suite XML file. The steps
to create and configure the Selenium hub, browser, and mobile nodes were also outlined in
this chapter, and several design patterns were discussed as to how to set up and maintain
the nodes in a virtual cloud environment.

To test the use of grid features, users can take the sample bash and JSON config files in this
chapter and create a local grid in their development environment. Once the driver class has
all the required capabilities to cast the test to a RemoteWebDriver node, the user can build
out a more robust cloud-based virtual grid using the same configurations, with the
exception of changing the IP and host names in the grid configurations.

In the next chapter, third-party tools and add-ons to the framework will be discussed, as
well as using a third-party grid platform such as Sauce Labs.

17
Third-Party Tools and Plugins

This chapter will cover the use of third-party tools in Selenium Framework design for the
test environment, results processing, reporting, performance, and external grid services.
The following topics are covered:

Introduction
IntelliJ IDEA Selenium plugin
TestNG results in IntelliJ and Jenkins
HTML Publisher Plugin
BrowserMob Proxy Plugin
ExtentReports Reporter API class
Sauce Labs Test Cloud services

Introduction
Most of the framework components you design and build will be customized to your
application under test. However, there are many third-party tools and plugins available
you can use to provide better results processing, reporting, performance, and services to the
engineers using the framework.

In this chapter, some of the more popular APIs and plugins will be covered such as the
Selenium IntelliJ plugin, TestNG, HTML Publisher, BrowserMob Proxy, ExtentReports, and
Sauce Labs.

This is the part of the framework that is optional, but will be requested by many users to
support the testing, debugging, and certification needs of the CI process in the Continuous
Delivery model.

Third-Party Tools and Plugins Chapter 17

[405]

In Chapter 8, Designing a Selenium Grid, setting up an in-house grid using the Selenium
Grid Architecture was covered, and in this chapter, one of the third-party service providers
called Sauce Labs will be discussed.

You will learn how to build in support to the Selenium Framework with third-party tools,
APIs, plugins, and services.

IntelliJ IDEA Selenium plugin
When we covered building page object classes earlier, we discussed how to define the
locators on a page for each WebElement or MobileElement using the @findBy annotations.
That required the user to use one of the Inspectors or plugins to view the DOM structure
and handcode a robust locator that is cross-platform safe.

Now, when using CSS and XPath locators, the hierarchy of the element can get complex,
and there is a greater chance of building invalid locators. So, Perfect Test has come up with
a Selenium plugin for the IntelliJ IDEA that will find and create locators on the fly.

Before discussing some of the features of the plugin, let's review where this is located.

The IntelliJ IDEA Selenium plugin is developed by (c) 2017 Perfect Test
and is located at www.perfect-test.com.

Sample project files
There are instructions on the www.perfect-test.com site for installing the plugin and once
that is done, users can create a new project using a sample template, which will auto-
generate a series of template files. These files are generic "getting started" files, but you
should still follow the structure and design of the framework as outlined in this book.

Here is a quick screenshot of the autogenerated file structure of the sample project:

http://www.perfect-test.com/index.php/en/
http://www.perfect-test.com

Third-Party Tools and Plugins Chapter 17

[406]

IntelliJ project structure

Third-Party Tools and Plugins Chapter 17

[407]

Once the plugin is enabled by simply clicking on the Selenium icon in the toolbar, users can
use the Code Generate menu features to create code samples, Java methods, getter/setter
methods, WebElements, copyrights for files, locators, and so on.

Generating element locators
The plugin has a nice feature for creating WebElement definitions, adding locators of
choice, and validating them in the class. It provides a set of tooltips to tell the user what is
incorrect in the syntax of the locator, which is helpful when creating CSS and XPath strings.

Here is a screenshot of the locator strategy feature:

Selenium settings configuration dialog

Once the WebElement structure is built into the page object class, you can capture and
verify the locator, and it will indicate an error with a red underline.

When moving over the invalid syntax, it provides a tooltip and a lightbulb icon to the left of
it, where users can use features for Check Element Existence on page and Fix Locator
Popup. These are very useful for quickly finding syntax errors and defining locators.

Third-Party Tools and Plugins Chapter 17

[408]

Here is a screenshot of the Check Element Existence on page feature:

Check Element Existence on page dialog

Here is a screenshot of the Fix Locator Popup feature:

Fix Locator Popup dialog

Third-Party Tools and Plugins Chapter 17

[409]

Wrap-up on Selenium Plugin
The Selenium IntelliJ plugin deals mostly with creating locators and the differences
between CSS and XPath syntax. The tool also provides drop-down lists of examples where
users can pick and choose how to build the queries. It's a great way to get started using
Selenium to build real page object classes, and it provides a tool to validate complex CSS
and XPath structures in locators!

TestNG results in IntelliJ and Jenkins
For running Selenium WebDriver or AppiumDriver tests, the TestNG components are
already built into the framework to create a simple report in the IntelliJ IDE. The report can
be also be exported and viewed in HTML or XML format. It is not an elaborate report to say
the least, but it does give statistics and a runtime view of the tests running alongside the
console window.

IntelliJ TestNG results
The following screenshot shows the IntelliJ TestNG and IDE console windows. It provides
the test method names, parameter values, and any standard output printed to the console
window:

IntelliJ TestNG results and console windows

The IDE results can also be exported to HTML format to view in a browser:

IntelliJ TestNG results total

Third-Party Tools and Plugins Chapter 17

[410]

These are the test by test results:

IntelliJ exported TestNG HTML report

Jenkins TestNG results
TestNG can also be used as a plugin to Jenkins, as it provides similar results which can be
drilled down to view stacktrace or console output. On the Jenkins project page, there will
be a TestNG summary report link to the passed, failed, and skipped test results, along with
a link to the failed tests, and so on.

There is also a class summary report that separates the results of each method in each class
and a TestNG trend analysis by method.

The Jenkins TestNG plugin is located at https:/ /wiki. jenkins. io/
display/ JENKINS/ testng- plugin.

https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin
https://wiki.jenkins.io/display/JENKINS/testng-plugin

Third-Party Tools and Plugins Chapter 17

[411]

The following screenshot shows the Jenkins TestNG plugin page:

Jenkins TestNG Plugin

Third-Party Tools and Plugins Chapter 17

[412]

The following screenshot shows a Jenkins class summary report:

Jenkins TestNG class summary report

The following screenshot shows a Jenkins trend analysis summary report:

Jenkins TestNG trend analysis report

Third-Party Tools and Plugins Chapter 17

[413]

HTML Publisher Plugin
There is a Jenkins tool called the HTML Publisher Plugin. It allows users to publish any
HTML report created during a test run and include it within the Jenkins project results.
This is a very useful tool, as there are now many third-party APIs that can be used to
generate HTML reports with Selenium test results.

Installation
The plugin publishes the report as part of the post-run process, allowing the Selenium
Framework reporting to gather all the results data and create the report after all tests have
completed. It will add a link on the project's result page to the physical.html file location
in the workspace.

The Jenkins HTML Publisher Plugin is located at https:/ /wiki. jenkins.
io/display/ JENKINS/ HTML+Publisher+Plugin.

The following screenshot shows the HTML Publisher Plugin page:

https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin
https://wiki.jenkins.io/display/JENKINS/HTML+Publisher+Plugin

Third-Party Tools and Plugins Chapter 17

[414]

Jenkins HTML Publisher Plugin

BrowserMob Proxy Plugin
Another useful tool that is fully integrated with the Selenium WebDriver is called
BrowserMob Proxy, and it is developed by Neustar, Inc. This free open source add-on
allows users to capture performance data for web applications under test, identify network
bottlenecks, modify the behavior of the browser under test, and change traffic patterns on
the fly.

Users will set up this proxy server in their Selenium test environment and cast the
WebDriver to it, allowing them to manipulate HTTP requests and responses during the test
run. It uses the HTTP Archive (HAR) format to capture data.

Third-Party Tools and Plugins Chapter 17

[415]

The BrowserMob Proxy Plugin is developed by (c) 2017 Neustar, Inc and
is located at https:/ / bmp. lightbody. net/ .

Getting started
It is fairly easy to get started using the tool. You would first instantiate the proxy service in
your WebDriver driver class code, pass that proxy capability to your driver, and turn the
capture mode on to retrieve the HTTP responses and requests being sent back and forth
during the test as you drive the browser.

The following code sample to integrate with Selenium WebDriver is from the Neustar
GitHub site:

// start the proxy
BrowserMobProxy proxy = new BrowserMobProxyServer();
proxy.start(0);

// get the Selenium proxy object
Proxy seleniumProxy = ClientUtil.createSeleniumProxy(proxy);

// configure it as a desired capability
DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability(CapabilityType.PROXY, seleniumProxy);

// start the browser up
WebDriver driver = new FirefoxDriver(capabilities);

// enable more detailed HAR capture
proxy.enableHarCaptureTypes(CaptureType.REQUEST_CONTENT,
CaptureType.RESPONSE_CONTENT);

// create a new HAR with the label "yahoo.com"
proxy.newHar("yahoo.com");

// open yahoo.com
driver.get("http://yahoo.com");

// get the HAR data
Har har = proxy.getHar();

https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/
https://bmp.lightbody.net/

Third-Party Tools and Plugins Chapter 17

[416]

The online Wiki documentation to get up and running along with the
source code is located at https:/ /github. com/ lightbody/ browsermob-
proxy#using- with- selenium.

BrowserMob Proxy also has the ability to test REST API requests and responses, allowing
users to capture HTTP data without using the WebDriver. It has full SSL support via the
man-in-the-middle (MITM) proxy using a secure certificate, Node.js bindings, logging,
native, and custom DNS resolution.

ExtentReports Reporter API class
The reporting capabilities of the framework are very important. There are many third-party
open source APIs that can be used to build and/or email reports of the Selenium test results.

One particularly nice tool is called ExtentReports and it is developed by AventStack. This
Java and .NET API allows users to build and customize an HTML report of all the TestNG
results data for a Selenium suite run. There is a Community Edition, which is a free open
source tool, and a Professional Edition, which has a lot of additional features.

The ExtentReports tool is developed by (c) AventStack and is located at
http:/ / extentreports. com/.

The ExtentReports Professional Edition has a number of different features from the
Community Edition. Some of those features are:

Offline reports: This feature provides the ability to create reports offline instead
of interactively while the test is running
Configure view visibility: This feature allows users the ability to turn off some
of the panel views in the report like categories view, exceptions view, authors
view, and TestRunnerLogs view
Custom dashboards: This feature allows users to create custom dashboard
panels with additional test results data in table format
Markup helper: This feature allows users to customize the report adding links,
cards, and modals to each page

https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
https://github.com/lightbody/browsermob-proxy#using-with-selenium
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/
http://extentreports.com/

Third-Party Tools and Plugins Chapter 17

[417]

KlovReporter: There is a feature called KlovReporter that allows users to store
reports in a MongoDB and host them on a server
ExtentEmailReporter: This feature uses the Java Mail API class to create an email
message to send the report after being built by an automated process
ExtentLogger: This new feature currently in development to enhance the logging
features of the ExtentHTMLReporter tool

ExtentHTMLReporter
The ExtentHTMLReporter API is a reporting tool that takes all the TestNG results data
from a Selenium test run and processes it into a concise HTML report. That report can be
published in Jenkins using the HTML Publisher Plugin, which was just covered. And it
doesn't need the Selenium WebDriver to use it. The API will work with other TestNG
results data from API, unit, or headless browser tests.

Since the framework outlined in this book is based on Java and TestNG technologies, it is
fairly easy to integrate the report into the framework. Here are the requirements:

Build the ExtentTestNGIReporterListener class; there is a sample class on1.
the website for users to get up and running
Customize the report to pull in TestNG results along with screenshot data from2.
exceptions
Modify the report's look-and-feel using JavaScript and CSS attributes3.
Include the listener class in the Selenium suite files to generate the report4.

After using the sample code to generate the report, users can modify the CSS attributes in
the extent-config.xml file or by using available report features, customize the theme
from white to black, and use the logging features to log status, data, screenshots, stacktrace,
log file entries, and so on.

Third-Party Tools and Plugins Chapter 17

[418]

Dashboard page
The following screenshot shows the ExtentHTMLReporter's Dashboard page:

ExtentReports Dashboard page

Notice on the Dashboard page, the test results are displayed in graph and statistic format,
as well as the test suite start, end, and elapsed times. There is an Environment panel where
users can freely add system, test, and Selenium data to the report (browser, version, OS,
Java version, Selenium version, and so on). The top banner can be customized to include
your company logo, report headline, report name, and document title.

And finally, there is a Categories panel displaying the test group names and the number of
tests that passed, failed, or skipped for each.

If purchasing the professional license version, you have the ability to add custom panels of
data to the Dashboard page.

Third-Party Tools and Plugins Chapter 17

[419]

Categories page
The following screenshot shows the ExtentHTMLReporter's Categories page:

ExtentReports Categories page

On the Categories page, the test results are listed by the TestNG groups used throughout
the test suite. So, if you only want to review the test results for a specific group, you can
click on that group and sort, or you can sort by using the search bar.

In the right-side panel, each test is listed for the selected group, and if you click on one of
them, it steps into the test results page for that test.

Third-Party Tools and Plugins Chapter 17

[420]

Tests page
The following screenshot shows the ExtentHTMLReporter's Tests page in the default white
theme:

ExtentReports Tests page - Light Theme

Third-Party Tools and Plugins Chapter 17

[421]

The following screenshot shows the ExtentHTMLReporter's Tests page in the default black
theme:

ExtentReports Tests page - Dark Theme

The Tests page has a sequential list of all the test methods run in the Tests panel on the left,
and the test data on the right-side panel for the selected test. There is no limit to what data
or how much test information can be added to these pages.

For example, in the first screenshot, a test that passed is shown. Using the data-driven
model set up in this framework, we can easily log the row ID, which is the test method
name in the report, the test description, the result, data parameters passed into the data-
driven test method, exceptions, screenshots, and stacktrace information.

Third-Party Tools and Plugins Chapter 17

[422]

The second Tests screenshot shows a failed test with the result displayed in red rather than
green, the test data, the exception that was thrown, and the stacktrace of the exception. You
can also include the screenshot of the failed test in this page.

The ExtentHTMLReporter Java Wiki documentation is located at http:/ /
extentreports. com/ docs/ versions/ 3/java/ #htmlreporter- features.

Code sample
The following code is from the ExtentReports website to provide users with an
ExtentHTMLReporter API sample:

public class ExtentTestNGReporter_sample implements IReporter {

 private static final String OUTPUT_FOLDER = "test-output/";
 private static final String FILE_NAME = "Extent.html";

 private ExtentReports extent;

 @Override
 public void generateReport(List<XmlSuite> xmlSuites,
 List<ISuite> suites,
 String outputDirectory) {

 init();

 for (ISuite suite : suites) {
 Map<String, ISuiteResult> result = suite.getResults();

 for (ISuiteResult r : result.values()) {
 ITestContext context = r.getTestContext();

 buildTestNodes(context.getFailedTests(), Status.FAIL);
 buildTestNodes(context.getSkippedTests(), Status.SKIP);
 buildTestNodes(context.getPassedTests(), Status.PASS);
 }
 }

 for (String s : Reporter.getOutput()) {
 extent.setTestRunnerOutput(s);
 }

 extent.flush();

http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features
http://extentreports.com/docs/versions/3/java/#htmlreporter-features

Third-Party Tools and Plugins Chapter 17

[423]

 }

 private void init() {
 ExtentHtmlReporter htmlReporter =
 new ExtentHtmlReporter(OUTPUT_FOLDER + FILE_NAME);

 htmlReporter.config()
 .setDocumentTitle("ExtentReports - Created by TestNG
 Listener");

 htmlReporter.config()
 .setReportName("ExtentReports - Created by TestNG Listener");

 htmlReporter.config()
 .setTestViewChartLocation(ChartLocation.BOTTOM);

 htmlReporter.config().setTheme(Theme.STANDARD);

 extent = new ExtentReports();
 extent.attachReporter(htmlReporter);
 extent.setReportUsesManualConfiguration(true);
 }

 private void buildTestNodes(IResultMap tests,
 Status status) {

 ExtentTest test;

 if (tests.size() > 0) {
 for (ITestResult result : tests.getAllResults()) {
 test = extent.createTest(
 result.getMethod().getMethodName());

 for (String group : result.getMethod().getGroups())
 test.assignCategory(group);

 if (result.getThrowable() != null) {
 test.log(status, result.getThrowable());
 }

 else {
 test.log(status,
 "Test " +
 status.toString().toLowerCase() +
 "ed");
 }

 test.getModel().setStartTime(

Third-Party Tools and Plugins Chapter 17

[424]

 getTime(result.getStartMillis()));

 test.getModel().setEndTime(
 getTime(result.getEndMillis()));
 }
 }
 }

 private Date getTime(long millis) {
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(millis);
 return calendar.getTime();
 }
}

Sauce Labs Test Cloud services
As an alternative to building an in-house Selenium Grid, there are various third-party
service providers that host the virtual machines for companies to use in testing browser and
mobile applications. There are advantages and disadvantages to using a third-party
provider, and these will be discussed later on in the chapter.

One of the best-in-class providers is Sauce Labs. They provide a Selenium/Appium testing
solution in the cloud, where virtual machines are created on-demand with a variety of
platforms and browser or mobile devices of choice. The company boasts of having over 900
platforms for browser compatibility testing and hundreds of platforms for mobile
simulator/emulator, mobile web, native, hybrid, and real-device application testing. Let's
take a look at some of the key features of their service.

The Sauce Labs Test Cloud service is developed by (c) 2017 Sauce Labs.
All rights reserved and located at https:/ /saucelabs. com/ .

https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/
https://saucelabs.com/

Third-Party Tools and Plugins Chapter 17

[425]

Sauce Labs Test Cloud features
In the following sections, some of the Sauce Labs features will be discussed to give users an
idea of what benefits they can gain from using a third-party service provider for their
testing needs.

Browser and mobile platforms
So, what is the Sauce Labs Test Cloud? It is a virtual test lab in the cloud which provides
enterprises with client-side browsers and mobile device platforms to test. Instead of
building a grid and supporting various platform combinations to run the AUT, users can
purchase a license to an unlimited pool of browser and mobile devices. They can be
accessed for manual or automated testing.

Sauce Labs has a dashboard that allows users to review the test running on the virtual
machine, as it records the user session. Once complete, the dashboard provides the
capability of replaying the session, reviewing the Selenium and Appium client and server
logs, and displaying the metadata for the test run.

There is a platform configurator feature that allows users to see what platforms, browser
versions, mobile emulator (Android) and simulator (iOS) versions, and capabilities are
supported for testing.

Driver code changes
The Sauce Labs Test Cloud is another Selenium Grid in the cloud. With that, it requires
some changes to the Selenium Driver class that was built in this framework. The types of
changes required are for the remote hub URL, the sauce-specific desired capabilities, and
any browser or mobile device options to set up the driver.

Here are a few code samples of some of the changes that would go into an
environment section of the driver class called saucelabs instead of local or remote:

// section in CreateDriver.java class for saucelabs URL

String remoteHubURL = null;
String SAUCE_USERNAME = "xyz";
String SAUCE_ACCESS_KEY = "XYZ";

if (environment.equalsIgnoreCase("saucelabs")) {
 if (System.getenv("SAUCE_USERNAME") != null &&
 System.getenv("SAUCE_ACCESS_KEY") != null) {

Third-Party Tools and Plugins Chapter 17

[426]

 remoteHubURL = "http://" + System.getenv("SAUCE_USERNAME") +
 ":" +
 System.getenv("SAUCE_ACCESS_KEY") +
 "@ondemand.saucelabs.com:80/wd/hub";
 }

 else {
 remoteHubURL = "http://[SAUCE_USERNAME]:[SAUCE_ACCESS_KEY]@" +
 "ondemand.saucelabs.com:80/wd/hub";
 }
}

// section in CreateDriver.java class for saucelabs display

if (platform.toLowerCase().contains("mac") ||
 platform.toLowerCase().contains("os x")) {

 caps.setCapability("screenResolution", "1920x1440");
}

else {
 caps.setCapability("screenResolution", "2560x1600");
}

// section in CreateDriver.java class for saucelabs platform

if (System.getenv("SELENIUM_PLATFORM") != null) {
 caps.setCapability("platform",
 System.getenv("SELENIUM_PLATFORM"));
}

// section in CreateDriver.java class for saucelabs features

...

caps.setCapability("build", System.getProperty("BUILD_NUMBER"));
caps.setCapability("maxDuration", 10800);
caps.setCapability("commandTimeout", 300);
caps.setCapability("idleTimeout", 300);
caps.setCapability("tags", platform + "," + browser + "," + "62.0");

if (System.getProperty("RECORDING").equalsIgnoreCase("true")) {
 caps.setCapability("recordVideo", true);
 caps.setCapability("videoUploadOnPass", true);
 caps.setCapability("recordScreenshots", true);
 caps.setCapability("recordLogs", true);
}

Third-Party Tools and Plugins Chapter 17

[427]

if (System.getenv("TUNNEL_IDENTIFIER") != null) {
 caps.setCapability("tunnelIdentifier",
 System.getenv("TUNNEL_IDENTIFIER"));
}

....

These are a few of the driver class capabilities that would be required, but as you can see,
this follows the same approach to setting them using an in-house grid. Sauce Labs has a list
of dozens of capabilities that can be set for both the browser and mobile device platforms.
Notice in these examples, all the System.getenv() method calls are retrieving
environment variables set by the Sauce Labs Jenkins plugin.

Dashboard
There is a Sauce Labs dashboard that provides results to users of the tests run, which can be
accented using the SauceREST API. The API class allows users to modify the data that is
displayed in the Dashboard window.

SauceConnect tunnel
In most enterprise environments, the development and testing is done in a DMZ within the
corporate firewall. This means in order for the Sauce Labs client, which runs in the cloud to
access the application under test, it must have a way to circumvent the firewall to get into
the network.

Sauce Labs has a secure tunneling feature called SauceConnect that allows its cloud
platform to talk to a corporation's development environment. It is fairly complex to set up,
but once it is configured, it can be started and stopped before and after the test run, so it
doesn't leave any tunnel openings into the network on an unlimited time basis.

TestObject Real Device Cloud
Sauce Labs introduced the TestObject Real Device Cloud in 2017. It is a pool of physical
mobile devices, both Android and iOS, that users can purchase a license to access. They can
be used for manually testing mobile applications or by running automated tests. Instead of
running on simulator and emulator platforms, users can actually run on real devices with
the platform and versions of the devices they require to test.

Third-Party Tools and Plugins Chapter 17

[428]

In order to test against the real devices, additional driver class capabilities would have to be
set to direct to a different remote hub:

// section in CreateDriver.java class for TestObject features

...

boolean realDevice = true;

if (realDevice == true) {
 caps.setCapability("testobject_device",
 "iPhone 6");

 caps.setCapability("testobject_cache_device",
 false);

 caps.setCapability("testobject_session_creation_timeout",
 "900000");

 caps.setCapability("testobject_appium_version",
 "1.7.1");

 caps.setCapability("testobject_suite_name",
 "mySuiteName");

 caps.setCapability("testobject_app_id",
 1);

 caps.setCapability("testobject_test_name",
 "myTestName");

 // private pool caps
 caps.setCapability("phoneOnly",
 "iphone.phoneOnly.rdc");

 caps.setCapability("tabletOnly",
 "iphone.tabletOnly.rdc");

 caps.setCapability("privateDevicesOnly",
 "iphone.privateDevicesOnly.rdc");

 if (browser.contains("iphone") || browser.contains("ipad")) {
 caps.setCapability("testobject_api_key",
 "iOSAppKey");
 }

 else {
 caps.setCapability("testobject_api_key",

Third-Party Tools and Plugins Chapter 17

[429]

 "androidAppKey");
 }

 remoteHubURL = "https://us1.appium.testobject.com/wd/hub";
}

Jenkins plugin
Finally, there is also a Sauce Labs plugin for Jenkins. This plugin allows users to pick and
choose from within the Jenkins project, the platform, browser, mobile device, and versions
of their choice. They can also set up the SauceConnect tunnel parameters, and any other
command-line options they require such as the log file, log file path, proxy server, port, and
so on.

Those choices are set as system environment variables which can be pulled into the driver
at runtime. The preceding examples show how those variables are pulled into the driver
class.

Advantages and disadvantages of using in-house
versus third-party grids
Now that we have covered building an in-house Selenium Grid and using a third-party
provider, let's discuss some of the key benefits and limitations of both:

Number of platforms: The major advantage of using a provider like Sauce Labs
is that there is virtually an unlimited pool of browser and mobile platforms
available. There is really no way to build an in-house grid with 900 browser/OS
combinations or hundreds of mobile iOS and Android devices to test against.
Along with all the different combinations, users can also test different browser
versions, OS versions, mobile device versions, mobile device platforms, mobile
device API versions, and so on.

Third-Party Tools and Plugins Chapter 17

[430]

Maintenance: To go along with building an in-house grid, there is maintenance.
Users have to keep up with installing OS patches, security patches, browser
upgrades, Selenium upgrades, driver upgrades, and so on. On the mobile side,
the Xcode or Android SDK and simulator/emulators have to be constantly
upgraded, along with Appium, NPM, Node.js, and so on. The maintenance of
supporting an in-house grid is one of the most time-consuming costs to have to
deal with, whereas there is no maintenance if a third party is used, just a financial
cost.
Performance: The Sauce Labs Test Cloud is much slower than an in-house grid,
by 25–30%. So, that would be one advantage of building an in-house grid. But,
Sauce Labs has a paradigm that if you build tests small and modular, and design
them to run in parallel, you can leverage multiple VMs simultaneously and
actually get the tests to run faster. So, although Sauce Labs would introduce
latency into the test run, it can be overcome if the tests are designed in a
particular fashion. Also, when the Sauce Labs job is running, it is recording the
session, creating logs from Selenium and, updating the dashboard with real-time
results, which contributes to the latency.
High-availability: If using an in-house grid, it's likely that software updates will
be pushed out to VMs on the grid on a regular basis, which in effect, reboots the
nodes. Services can be set up to restart the Selenium servers on the hub and
nodes, but the forced reboots can make the availability of the nodes on the in-
house grid sketchy at times. When using a third-party provider, it's likely the
service will be up most of the time, or at least 99% of the time.
Upgrades: Sauce Labs is continuously providing upgrades to new platforms,
browsers, and mobile devices, both real and simulated. They support the latest
Selenium, Appium, and browser driver revisions as they become available. For
in-house grid upgrades, users have to schedule downtime in-between releases to
bring down the hub and nodes, and those are done less frequently than Sauce
Labs would provide.
Enhancements: Sauce Labs supports Selenium-based plugins like BrowserMob
Proxy for instance, and has the latest technologies tested and available for use.
That would also include the new TestObject Real Device Cloud service they
recently introduced to the market to support mobile testing on physical devices.

Third-Party Tools and Plugins Chapter 17

[431]

Summary
This chapter provided some insight into using third-party plugins to the Selenium
Framework. Because the framework uses Java and TestNG as technologies with the
Selenium WebDriver, the various plugins and APIs available for them are easy to integrate.

For the editor, there is a Selenium plugin available for IntelliJ, one of the more common
IDEs being used. There is also a built-in TestNG plugin for IntelliJ which provides test
results in the console and report format.

For running in CI environments, Jenkins also has a TestNG plugin to provide results and
historical data. There's a nice HTML Publisher Plugin for Jenkins that allows users to
include an HTML report that the framework would autogenerate.

And, the ExtentReports API was discussed and how that would integrate into the
framework using the DataProvider data and TestNG results.

Finally, as an alternative to building out a local Selenium Grid, we looked at the Sauce Labs
Test Cloud services.

The final chapter will provide examples of some page object and test classes for a web and
mobile application, and a driver class to run them!

18
Working Selenium WebDriver

Framework Samples
This final chapter of the book is a working sample framework containing a driver class,
required utility classes, browser page object classes, a browser test class, and JSON data
files. The sample files will demonstrate the standards and best practices outlined in this
book using the Selenium Page Object Model and DRY approaches to data-driven testing.
The sample tests can be run in the IntelliJ or Eclipse IDE and contain the following
components:

Selenium driver and DataProvider classes
Selenium utility classes
ExtentReports classes
Browser page object base and subclasses
Browser test class and data files
Browser suite XML and Maven POM XML files

Introduction
This final chapter is a working set of sample classes to demonstrate some of the best
practices and standards that were discussed in this book. Users should be able to take the
sample classes and run them in their own IDE after setting up their Selenium development
environment.

Working Selenium WebDriver Framework Samples Chapter 18

[433]

The samples were built using Chrome, Firefox, and IE11 browsers. Users should download
the latest Selenium 3.x JAR files, TestNG JAR files, and the required browser driver releases
to support them. The following JARs and files are required to get the sample tests running:

Java 1.8 SDK and JRE
IntelliJ IDEA 2017.3
Selenium 3.7.1 WebDriver JARs
TestNG 6.11 JARs
ExtentReports 3.1.0 JARs
ChromeDriver.exe 2.33 (Windows 32-bit; there is no current 64-bit driver)
Firefox GeckoDriver.exe 0.19.1 (Windows 64-bit)
IEDriverServer.exe 3.7.1 (Windows 32-bit; runs faster than the 64-bit driver)
Chrome browser 62.0
Firefox browser 57.0
Internet Explorer browser 11.0

Users must place the files in a project folder in their IDE and change the paths in the
selenium.properties and Global_VARS.java files to point to the correct package and
driver locations. The sample framework and tests were built and tested using IntelliJ IDE
on a Windows platform, but can be run on Linux or macOS as well; they are completely
platform independent.

If you create the following package structure in IntelliJ, in a project called
SeleniumFrameworkDesign, and add this chapter's files to it, then none
of the imports or global variables need to be changed:
src/main/java/com/framework/ux/utils/chapter10. Also, create
the following folders for the drivers and test output:
SeleniumFrameworkDesign/drivers and
SeleniumFrameworkDesign/test-output.

The sample framework files were built using this open source practice
website: http:/ /www. practiceselenium. com/ . It is developed
by Selenium Framework 2010–2017 Copyrights reserved.

The user will gain a working knowledge of a real Selenium WebDriver Framework and set
of data-driven tests.

http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/
http://www.practiceselenium.com/

Working Selenium WebDriver Framework Samples Chapter 18

[434]

Selenium driver and DataProvider classes
The following code is for the CreateDriver.java and JSONDataProvider.java classes:

CreateDriver.java
The following code is for the CreateDriver.java class:

import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.chrome.ChromeOptions;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.firefox.FirefoxOptions;
import org.openqa.selenium.firefox.FirefoxProfile;
import org.openqa.selenium.ie.InternetExplorerDriver;
import org.openqa.selenium.ie.InternetExplorerOptions;
import org.openqa.selenium.remote.DesiredCapabilities;
import org.openqa.selenium.remote.RemoteWebDriver;

import java.io.FileInputStream;
import java.util.*;
import java.util.concurrent.TimeUnit;

/**
 * @author Carl Cocchiaro
 *
 * Selenium Driver Class
 *
 */
public class CreateDriver {
 // local variables
 private static CreateDriver instance = null;
 private static final int IMPLICIT_TIMEOUT = 0;

 private ThreadLocal<WebDriver> webDriver =
 new ThreadLocal<WebDriver>();
 private ThreadLocal<String> sessionId =
 new ThreadLocal<String>();
 private ThreadLocal<String> sessionBrowser =
 new ThreadLocal<String>();
 private ThreadLocal<String> sessionPlatform =
 new ThreadLocal<String>();
 private ThreadLocal<String> sessionVersion =
 new ThreadLocal<String>();

 private String getEnv = null;

Working Selenium WebDriver Framework Samples Chapter 18

[435]

 private Properties props = new Properties();

 // constructor
 private CreateDriver() {
 }

 /**
 * getInstance method to retrieve active driver instance
 *
 * @return CreateDriver
 */
 public static CreateDriver getInstance() {
 if (instance == null) {
 instance = new CreateDriver();
 }

 return instance;
 }

 /**
 * setDriver method to create driver instance
 *
 * @param browser
 * @param environment
 * @param platform
 * @param optPreferences
 * @throws Exception
 */
 @SafeVarargs
 public final void setDriver(String browser,
 String platform,
 String environment,
 Map<String, Object>... optPreferences)
 throws Exception {

 DesiredCapabilities caps = null;
 String getPlatform = null;
 props.load(new FileInputStream(Global_VARS.SE_PROPS));

 switch (browser) {
 case "firefox":
 caps = DesiredCapabilities.firefox();

 FirefoxOptions ffOpts = new FirefoxOptions();
 FirefoxProfile ffProfile = new FirefoxProfile();

 ffProfile.setPreference("browser.autofocus",
 true);

Working Selenium WebDriver Framework Samples Chapter 18

[436]

 ffProfile.setPreference("browser.tabs.remote.
 autostart.2", false);

 caps.setCapability(FirefoxDriver.PROFILE,
 ffProfile);
 caps.setCapability("marionette",
 true);

 // then pass them to the local WebDriver
 if (environment.equalsIgnoreCase("local")) {
 System.setProperty("webdriver.gecko.driver",
 props.getProperty("gecko.driver.windows.path"));

 webDriver.set(new
 FirefoxDriver(ffOpts.merge(caps)));
 }

 break;
 case "chrome":
 caps = DesiredCapabilities.chrome();

 ChromeOptions chOptions = new ChromeOptions();
 Map<String, Object> chromePrefs =
 new HashMap<String, Object>();

 chromePrefs.put("credentials_enable_service",
 false);

 chOptions.setExperimentalOption("prefs",
 chromePrefs);

 chOptions.addArguments("--disable-plugins",
 "--disable-extensions",
 "--disable-popup-blocking");

 caps.setCapability(ChromeOptions.CAPABILITY,
 chOptions);
 caps.setCapability("applicationCacheEnabled",
 false);

 if (environment.equalsIgnoreCase("local")) {
 System.setProperty("webdriver.chrome.driver",
 props.getProperty("chrome.driver.windows.path"));

 webDriver.set(new
 ChromeDriver(chOptions.merge(caps)));
 }

Working Selenium WebDriver Framework Samples Chapter 18

[437]

 break;
 case "internet explorer":
 caps = DesiredCapabilities.internetExplorer();

 InternetExplorerOptions ieOpts =
 new InternetExplorerOptions();

 ieOpts.requireWindowFocus();
 ieOpts.merge(caps);

 caps.setCapability("requireWindowFocus",
 true);

 if (environment.equalsIgnoreCase("local")) {
 System.setProperty("webdriver.ie.driver",
 props.getProperty("ie.driver.windows.path"));

 webDriver.set(new InternetExplorerDriver(
 ieOpts.merge(caps)));
 }

 break;
 }

 getEnv = environment;
 getPlatform = platform;

 sessionId.set(((RemoteWebDriver) webDriver.get())
 .getSessionId().toString());

 sessionBrowser.set(caps.getBrowserName());
 sessionVersion.set(caps.getVersion());
 sessionPlatform.set(getPlatform);

 System.out.println("\n*** TEST ENVIRONMENT = "
 + getSessionBrowser().toUpperCase()
 + "/" + getSessionPlatform().toUpperCase()
 + "/" + getEnv.toUpperCase()
 + "/Selenium Version="
 + props.getProperty("selenium.revision")
 + "/Session ID="
 + getSessionId()
 + "\n");

 getDriver().manage().timeouts().implicitlyWait(
 IMPLICIT_TIMEOUT, TimeUnit.SECONDS);
 getDriver().manage().window().maximize();
 }

Working Selenium WebDriver Framework Samples Chapter 18

[438]

 /**
 * getDriver method to retrieve active driver
 *
 * @return WebDriver
 */
 public WebDriver getDriver() {
 return webDriver.get();
 }

 /**
 * closeDriver method to close active driver
 *
 */
 public void closeDriver() {
 try {
 getDriver().quit();
 }

 catch (Exception e) {
 // do something
 }
 }

 /**
 * getSessionId method to retrieve active id
 *
 * @return String
 * @throws Exception
 */
 public String getSessionId() throws Exception {
 return sessionId.get();
 }

 /**
 * getSessionBrowser method to retrieve active browser
 * @return String
 * @throws Exception
 */
 public String getSessionBrowser() throws Exception{
 return sessionBrowser.get();
 }

 /**
 * getSessionVersion method to retrieve active version
 *
 * @return String
 * @throws Exception
 */

Working Selenium WebDriver Framework Samples Chapter 18

[439]

 public String getSessionVersion() throws Exception {
 return sessionVersion.get();
 }

 /**
 * getSessionPlatform method to retrieve active platform
 * @return String
 * @throws Exception
 */
 public String getSessionPlatform() throws Exception {
 return sessionPlatform.get();
 }

}

JSONDataProvider class
The following code is for the JSONDataProvider.java class:

import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;
import org.testng.annotations.DataProvider;

import java.io.FileReader;
import java.lang.reflect.Method;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * @author Carl Cocchiaro
 *
 * TestNG JSON DataProvider Utility Class
 *
 */
public class JSONDataProvider {
 public static String dataFile = "";
 public static String testCaseName = "NA";

 public JSONDataProvider() throws Exception {
 }

 /**
 * fetchData method to retrieve test data for specified method
 *

Working Selenium WebDriver Framework Samples Chapter 18

[440]

 * @param method
 * @return Object[][]
 * @throws Exception
 */
 @DataProvider(name = "fetchData_JSON")
 public static Object[][] fetchData(Method method) throws Exception
 {
 Object rowID, description;
 Object[][] result;
 testCaseName = method.getName();
 List<JSONObject> testDataList = new ArrayList<JSONObject>();
 JSONArray testData =
 (JSONArray)
 extractData_JSON(dataFile).get(method.getName());

 for (int i = 0; i < testData.size(); i++) {
 testDataList.add((JSONObject) testData.get(i));
 }

 // include Filter
 if (System.getProperty("includePattern") != null) {
 String include = System.getProperty("includePattern");
 List<JSONObject> newList = new ArrayList<JSONObject>();
 List<String> tests = Arrays.asList(include.split(",", -1));

 for (String getTest : tests) {
 for (int i = 0; i < testDataList.size(); i++) {
 if (
 testDataList.get(i).toString().
 contains(getTest)) {
 newList.add(testDataList.get(i));
 }
 }
 }

 // reassign testRows after filtering tests
 testDataList = newList;
 }

 // exclude Filter
 if (System.getProperty("excludePattern") != null) {
 String exclude =System.getProperty("excludePattern");
 List<String> tests = Arrays.asList(exclude.split(",", -1));

 for (String getTest : tests) {
 for (int i = testDataList.size() - 1 ; i >= 0; i--) {
 if (testDataList.get(i).toString().
 contains(getTest)) {

Working Selenium WebDriver Framework Samples Chapter 18

[441]

 testDataList.remove(testDataList.get(i));
 }
 }
 }
 }

 // create object for dataprovider to return
 try {
 result =
 new Object[testDataList.size()]
 [testDataList.get(0).size()];

 for (int i = 0; i < testDataList.size(); i++) {
 rowID = testDataList.get(i).get("rowID");
 description = testDataList.get(i).get("description");
 result[i] =
 new Object[] { rowID, description, testDataList.get(i)
 };
 }
 }

 catch(IndexOutOfBoundsException ie) {
 result = new Object[0][0];
 }

 return result;
 }

 /**
 * extractData_JSON method to get JSON data from file
 *
 * @param file
 * @return JSONObject
 * @throws Exception
 */
 public static JSONObject extractData_JSON(String file) throws
 Exception {
 FileReader reader = new FileReader(file);
 JSONParser jsonParser = new JSONParser();

 return (JSONObject) jsonParser.parse(reader);
 }

}

Working Selenium WebDriver Framework Samples Chapter 18

[442]

Selenium utility classes
The following code is for the BrowserUtils.java, Global_VARS.java,
TestNG_ConsoleRunner.java, and selenium.properties classes:

BrowserUtils.java
The following code is for the BrowserUtils.java class:

import org.openqa.selenium.*;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

/**
 * @author Carl Cocchiaro
 *
 * Browser Utility Class
 *
 */
public class BrowserUtils {

 /**
 * waitFor method to poll page title
 *
 * @param title
 * @param timer
 * @throws Exception
 */

 public static void waitFor(String title,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebDriverWait exists = new WebDriverWait(driver, timer);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.titleContains(title)));
 }

 /**
 * waitForURL method to poll page URL
 *
 * @param url
 * @param timer

Working Selenium WebDriver Framework Samples Chapter 18

[443]

 * @throws Exception
 */
 public static void waitForURL(String url,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebDriverWait exists = new WebDriverWait(driver, timer);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.urlContains(url)));
 }

 /**
 * waitForClickable method to poll for clickable
 *
 * @param by
 * @param timer
 * @throws Exception
 */
 public static void waitForClickable(By by,
 int timer)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebDriverWait exists = new WebDriverWait(driver, timer);

 exists.until(ExpectedConditions.refreshed(
 ExpectedConditions.elementToBeClickable(by)));
 }

 /**
 * click method using JavaScript API click
 *
 * @param by
 * @throws Exception
 */
 public static void click(By by) throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 WebElement element = driver.findElement(by);

 JavascriptExecutor js = (JavascriptExecutor)driver;
 js.executeScript("arguments[0].click();", element);
 }

}

Working Selenium WebDriver Framework Samples Chapter 18

[444]

Global_VARS.java
The following code is for the Global_VARS.java class:

import java.io.File;

/**
 * @author Carl Cocchiaro
 *
 * Global Variable Utility Class
 *
 */
public class Global_VARS {
 // browser defaults
 public static final String BROWSER = "chrome";
 public static final String PLATFORM = "Windows 7";
 public static final String ENVIRONMENT = "local";
 public static String DEF_BROWSER = null;
 public static String DEF_PLATFORM = null;
 public static String DEF_ENVIRONMENT = null;

 // suite folder defaults
 public static String SUITE_NAME = null;

 public static final String TARGET_URL =
 "http://www.practiceselenium.com/";

 public static String propFile =
 "src/main/java/com/framework/ux/utils/chapter10/selenium.properties";

 public static final String SE_PROPS =
 new File(propFile).getAbsolutePath();

 public static final String TEST_OUTPUT_PATH = "test-output/";
 public static final String LOGFILE_PATH = TEST_OUTPUT_PATH +
 "Logs/";
 public static final String REPORT_PATH = TEST_OUTPUT_PATH +
 "Reports/";
 public static final String REPORT_CONFIG_FILE =
 "src/main/java/com/framework/ux/utils/chapter10/extent-config.xml";

 // suite timeout defaults
 public static final int TIMEOUT_MINUTE = 60;
 public static final int TIMEOUT_ELEMENT = 10;
}

Working Selenium WebDriver Framework Samples Chapter 18

[445]

TestNG_ConsoleRunner.java
The following code is for the TestNG_ConsoleRunner.java class:

import org.testng.ITestContext;
import org.testng.ITestResult;
import org.testng.TestListenerAdapter;

import java.io.*;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
 * @author Carl Cocchiaro
 *
 * TestNG Listener Utility Class
 *
 */
public class TestNG_ConsoleRunner extends TestListenerAdapter {
 private static String logFile = null;

 /**
 * onStart method
 *
 * @param testContext
 */
 @Override
 public void onStart(ITestContext testContext) {
 super.onStart(testContext);
 }

 /**
 * onFinish method
 *
 * @param testContext
 */
 @Override
 public void onFinish(ITestContext testContext) {
 log("\nTotal Passed = "
 + getPassedTests().size()
 + ", Total Failed = "
 + getFailedTests().size()
 + ",
 Total Skipped = "
 + getSkippedTests().size()
 + "\n");

Working Selenium WebDriver Framework Samples Chapter 18

[446]

 super.onFinish(testContext);
 }

 /**
 * onTestStart method
 *
 * @param tr
 */
 @Override
 public void onTestStart(ITestResult tr) {
 if (logFile == null) {
 logFile = Global_VARS.LOGFILE_PATH
 + Global_VARS.SUITE_NAME
 + "-"
 + new SimpleDateFormat("MM.dd.yy.HH.mm.ss")
 .format(new Date())
 + ".log";
 }

 log("\n---------------------------------- Test '"
 + tr.getName()
 + getTestDescription(tr)
 + "' ----------------------------------\n");

 log(tr.getStartMillis(),
 "START-> "
 + tr.getName() + "\n");

 log(" ***Test Parameters = "
 + getTestParams(tr)
 + "\n");

 super.onTestStart(tr);
 }

 /**
 * onTestSuccess method
 *
 * @param tr
 */
 @Override
 public void onTestSuccess(ITestResult tr) {
 log(" ***Result = PASSED\n");

 log(tr.getEndMillis(),
 "END -> "
 + tr.getName());

Working Selenium WebDriver Framework Samples Chapter 18

[447]

 log("\n---\n");

 super.onTestSuccess(tr);
 }

 /**
 * onTestFailure method
 *
 * @param tr
 */
 @Override
 public void onTestFailure(ITestResult tr) {
 if (!getTestMessage(tr).equals("")) {
 log(getTestMessage(tr) + "\n");
 }

 log(" ***Result = FAILED\n");

 log(tr.getEndMillis(),
 "END -> "
 + tr.getInstanceName()
 + "." + tr.getName());

 log("\n---\n");

 super.onTestFailure(tr);
 }

 /**
 * onTestSkipped method
 *
 * @param tr
 */
 @Override
 public void onTestSkipped(ITestResult tr) {
 if (!getTestMessage(tr).equals("")) {
 log(getTestMessage(tr)
 + "\n");
 }

 log(" ***Result = SKIPPED\n");

 log(tr.getEndMillis(),
 "END -> "
 + tr.getInstanceName()
 + "."
 + tr.getName());

Working Selenium WebDriver Framework Samples Chapter 18

[448]

 log("\n---\n");

 super.onTestSkipped(tr);
 }

 /**
 * onConfigurationSuccess method
 *
 * @param itr
 */
 @Override
 public void onConfigurationSuccess(ITestResult itr) {
 super.onConfigurationSuccess(itr);
 }

 /**
 * onConfigurationFailure method
 *
 * @param tr
 */
 @Override
 public void onConfigurationFailure(ITestResult tr) {
 if (!getTestMessage(tr).equals("")) {
 log(getTestMessage(tr)
 + "\n");
 }

 log(" ***Result = CONFIGURATION FAILED\n");

 log(tr.getEndMillis(),
 "END CONFIG -> "
 + tr.getInstanceName()
 + "."
 + tr.getName());

 log("\n---\n");

 super.onConfigurationFailure(tr);
 }

 /**
 * onConfigurationSkip method
 *
 * @param tr
 */
 @Override
 public void onConfigurationSkip(ITestResult tr) {
 log(getTestMessage(tr));

Working Selenium WebDriver Framework Samples Chapter 18

[449]

 log(" ***Result = CONFIGURATION SKIPPED\n");

 log(tr.getEndMillis(),
 "END CONFIG -> "
 + tr.getInstanceName()
 + "."
 + tr.getName());

 log("\n---\n");

 super.onConfigurationSkip(tr);
 }

 /**
 * log method
 *
 * @param dateMillis
 * @param line
 */
 public void log(long dateMillis,String line) {
 System.out.format("%s: %s%n",
 String.valueOf(new Date(dateMillis)),line);

 if (logFile != null) {
 writeTestngLog(logFile,
 line);
 }
 }

 /**
 * log method
 *
 * @param line
 */
 public void log(String line) {
 System.out.format("%s%n", line);

 if (logFile != null) {
 writeTestngLog(logFile, line);
 }
 }

 /**
 * getTestMessage method
 *
 * @param tr
 * @return String
 */

Working Selenium WebDriver Framework Samples Chapter 18

[450]

 public String getTestMessage(ITestResult tr) {
 Boolean found = false;

 if (tr != null && tr.getThrowable() != null) {
 found = true;
 }

 if (found == true) {
 return tr.getThrowable().getMessage() ==
 null ? "" : tr.getThrowable().getMessage();
 }

 else {
 return "";
 }
 }

 /**
 * getTestParams method
 *
 * @param tr
 * @return String
 */
 public String getTestParams(ITestResult tr) {
 int iLength = tr.getParameters().length;
 String message = "";

 try {
 if (tr.getParameters().length > 0) {
 message = tr.getParameters()[0].toString();

 for (int iCount = 0; iCount < iLength; iCount++) {
 if (iCount == 0) {
 message = tr.getParameters()[0].toString();
 }
 else {
 message = message
 + ", "
 + tr.getParameters()
 [iCount].toString();
 }
 }
 }
 }

 catch(Exception e) {
 // do nothing...
 }

Working Selenium WebDriver Framework Samples Chapter 18

[451]

 return message;
 }

 /**
 * getTestDescription method
 *
 * @param tr
 * @return String
 */
 public String getTestDescription(ITestResult tr) {
 String message = "";

 try {
 if (tr.getParameters().length > 0) {
 message = ": "
 + tr.getParameters()[1].toString();
 }
 }

 catch(Exception e) {
 // do nothing...
 }

 return message;
 }

 /**
 * writeTestngLog method
 *
 * @param logFile
 * @param line
 */
 public void writeTestngLog(String logFile,String line) {
 DateFormat dateFormat =
 new SimpleDateFormat("MM/dd/yyyy HH:mm:ss");

 Date date = new Date();
 File directory = new File(Global_VARS.LOGFILE_PATH);
 File file = new File(logFile);

 try {
 if (!directory.exists()) {
 directory.mkdirs();
 }

 else if (!file.exists()) {
 file.createNewFile();
 }

Working Selenium WebDriver Framework Samples Chapter 18

[452]

 BufferedWriter writer =
 new BufferedWriter(new FileWriter(logFile, true));

 if (line.contains("START") || line.contains("END")) {
 writer.append("["
 + dateFormat.format(date)
 + "] "
 + line);
 }

 else {
 writer.append(line);
 }

 writer.newLine();
 writer.close();
 }

 catch(IOException e) {
 // do nothing...
 }
 }

}

selenium.properties
The following code is for the selenium.properties file:

Selenium Properties File

selenium.revision=3.7.1
geckodriver.revision=0.19.1
chromedriver.revision=2.33
iedriver.revision=11.0

firefox.revision=57.0
chrome.revision=62.0
ie.revision=11.0

gecko.driver.windows.path=drivers/geckodriver.exe
chrome.driver.windows.path=drivers/chromedriver.exe
ie.driver.windows.path=drivers/IEDriverServer.exe

Working Selenium WebDriver Framework Samples Chapter 18

[453]

ExtentReports classes
The following code is for the ExtentTestNGIReporterListener.java and extent-
config.xml files:

ExtentTestNGIReporterListener.java
The following code is for the ExtentTestNGIReporterListener.java class:

import com.aventstack.extentreports.ExtentReports;
import com.aventstack.extentreports.ExtentTest;
import com.aventstack.extentreports.MediaEntityBuilder;
import com.aventstack.extentreports.Status;
import com.aventstack.extentreports.reporter.ExtentHtmlReporter;
import com.aventstack.extentreports.reporter.configuration.Protocol;
import com.aventstack.extentreports.reporter.configuration.Theme;
import org.testng.*;
import org.testng.xml.XmlSuite;

import java.io.File;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.Writer;
import java.util.*;

/**
 * @author Carl Cocchiaro
 *
 * ExtentReports HTML Reporter Class
 *
 */
public class ExtentTestNGIReporterListener implements IReporter {
 private String bitmapDir = Global_VARS.REPORT_PATH;
 private String seleniumRev = "3.7.1";
 private String docTitle = "SELENIUM FRAMEWORK DESIGN IN
 DATA-DRIVEN TESTING";
 private ExtentReports extent;

 /**
 * generateReport method
 *
 * @param xmlSuites
 * @param suites
 * @param outputDirectory
 */

Working Selenium WebDriver Framework Samples Chapter 18

[454]

 @Override
 public void generateReport(List<XmlSuite> xmlSuites,
 List<ISuite> suites,
 String outputDirectory) {

 for (ISuite suite : suites) {
 init(suite);
 Map<String, ISuiteResult> results =
 suite.getResults();

 for (ISuiteResult result : results.values()) {
 try {
 processTestResults(result);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 extent.flush();
 }

 /**
 * init method to customize report
 *
 * @param suite
 */
 private void init(ISuite suite) {
 File directory = new File(Global_VARS.REPORT_PATH);

 if (!directory.exists()) {
 directory.mkdirs();
 }

 ExtentHtmlReporter htmlReporter =
 new ExtentHtmlReporter(Global_VARS.REPORT_PATH
 + suite.getName()
 + ".html");

 // report attributes
 htmlReporter.config().setDocumentTitle(docTitle);
 htmlReporter.config().setReportName(suite.getName().
 replace("_", " "));
 htmlReporter.config().setChartVisibilityOnOpen(false);
 htmlReporter.config().setTheme(Theme.STANDARD);
 htmlReporter.config().setEncoding("UTF-8");
 htmlReporter.config().setProtocol(Protocol.HTTPS);

Working Selenium WebDriver Framework Samples Chapter 18

[455]

 htmlReporter.config().setTimeStampFormat("MMM-dd-yyyy
 HH:mm:ss a");
 htmlReporter.loadXMLConfig(new File(
 Global_VARS.REPORT_CONFIG_FILE));

 extent = new ExtentReports();

 // report system info
 extent.setSystemInfo("Browser",
 Global_VARS.DEF_BROWSER);
 extent.setSystemInfo("Environment",
 Global_VARS.DEF_ENVIRONMENT);
 extent.setSystemInfo("Platform",
 Global_VARS.DEF_PLATFORM);
 extent.setSystemInfo("OS Version",
 System.getProperty("os.version"));
 extent.setSystemInfo("Java Version",
 System.getProperty("java.version"));
 extent.setSystemInfo("Selenium Version",
 seleniumRev);

 extent.attachReporter(htmlReporter);
 extent.setReportUsesManualConfiguration(true);
 }

 /**
 * processTestResults method to create report
 *
 * @param r
 * @throws Exception
 */
 private void processTestResults(ISuiteResult r) throws Exception {
 ExtentTest test = null;
 Status status = null;
 String message = null;

 // gather results
 Set<ITestResult> passed =
 r.getTestContext().getPassedTests().getAllResults();

 Set<ITestResult> failed =
 r.getTestContext().getFailedTests().getAllResults();

 Set<ITestResult> skipped =
 r.getTestContext().getSkippedTests().getAllResults();

 Set<ITestResult> configs =
 r.getTestContext().getFailedConfigurations().getAllResults();

Working Selenium WebDriver Framework Samples Chapter 18

[456]

 Set<ITestResult> tests =
 new HashSet<ITestResult>();

 tests.addAll(passed);
 tests.addAll(skipped);
 tests.addAll(failed);

 // process results
 if (tests.size() > 0) {
 // sort results by the Date field
 List<ITestResult> resultList =
 new LinkedList<ITestResult>(tests);

 class ResultComparator implements Comparator<ITestResult> {
 public int compare(ITestResult r1, ITestResult r2) {
 return getTime(r1.getStartMillis()).compareTo(
 getTime(r2.getStartMillis()));
 }
 }

 Collections.sort(resultList , new ResultComparator ());

 for (ITestResult result : resultList) {
 if (getTestParams(result).isEmpty()) {
 test = extent.createTest(
 result.getMethod().getMethodName());
 }

 else {
 if (getTestParams(result).split(",")[0].contains(
 result.getMethod().getMethodName())) {

 test = extent.createTest(
 getTestParams(result).split(",")[0],
 getTestParams(result).split(",")[1]);
 }

 else {
 test = extent.createTest(
 result.getMethod().getMethodName(),
 getTestParams(result).split(",")[1]);
 }
 }

 test.getModel().setStartTime(
 getTime(result.getStartMillis()));
 test.getModel().setEndTime(
 getTime(result.getEndMillis()));

Working Selenium WebDriver Framework Samples Chapter 18

[457]

 for (String group : result.getMethod().getGroups()) {
 if (!group.isEmpty()) {
 test.assignCategory(group);
 }

 else {
 int size =
 result.getMethod().getTestClass().toString().
 split("\\.").length;

 String testName =
 result.getMethod().getRealClass().
 getName().toString().
 split("\\.")[size-1];

 test.assignCategory(testName);
 }
 }

 // get status
 switch(result.getStatus()) {
 case 1:
 status = Status.PASS;
 break;
 case 2:
 status = Status.FAIL;
 break;
 case 3:
 status = Status.SKIP;
 break;
 default:
 status = Status.INFO;
 break;
 }

 // set colors of status
 if (status.equals(Status.PASS)) {
 message = ""
 + status.toString().toUpperCase()
 + "";
 }

 else if (status.equals(Status.FAIL)) {
 message = ""
 + status.toString().toUpperCase()
 + "";
 }

Working Selenium WebDriver Framework Samples Chapter 18

[458]

 else if (status.equals(Status.SKIP)) {
 message = ""
 + status.toString().toUpperCase()
 + "";
 }

 else {
 message = ""
 + status.toString().toUpperCase()
 + "";
 }

 // log status in report
 test.log(status, message);

 if (!getTestParams(result).isEmpty()) {
 test.log(Status.INFO,
 "TEST DATA = ["
 + getTestParams(result)
 + "]");
 }

 if (result.getThrowable() != null) {
 test.log(Status.INFO,
 "EXCEPTION = ["
 + result.getThrowable().getMessage()
 + "]");

 if (!getTestParams(result).isEmpty()) {
 // must capture screenshot to include in report
 if (result.getAttribute("testBitmap") != null)
 {
 test.log(Status.INFO,
 "SCREENSHOT",
 MediaEntityBuilder.
 createScreenCaptureFromPath(
 bitmapDir
 +
 result.getAttribute("testBitmap")).

 build());
 }

 test.log(Status.INFO,
 "STACKTRACE"
 + getStrackTrace(result));
 }
 }

Working Selenium WebDriver Framework Samples Chapter 18

[459]

 }
 }
 }

 /**
 * getTime method to retrieve current date/time
 *
 * @param millis
 * @return Date
 */
 private Date getTime(long millis) {
 Calendar calendar = Calendar.getInstance();
 calendar.setTimeInMillis(millis);
 return calendar.getTime();
 }

 /**
 * getTestParams method to retieve test parameters
 *
 * @param tr
 * @return String
 * @throws Exception
 */
 private String getTestParams(ITestResult tr) throws Exception {
 TestNG_ConsoleRunner runner = new TestNG_ConsoleRunner();

 return runner.getTestParams(tr);
 }

 /**
 * getStrackTrace method to retrieve stack trace
 *
 * @param result
 * @return String
 */
 private String getStrackTrace(ITestResult result) {
 Writer writer = new StringWriter();
 PrintWriter printWriter = new PrintWriter(writer);
 result.getThrowable().printStackTrace(printWriter);

 return "
\n"
 + writer.toString().replace(System.lineSeparator(),
 "
\n");
 }

}

Working Selenium WebDriver Framework Samples Chapter 18

[460]

extent-config.xml
The following code is for the extent-config.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<extentreports>
 <configuration>
 <!-- report theme -->
 <!-- standard, dark -->
 <theme>standard</theme>

 <!-- document encoding -->
 <!-- defaults to UTF-8 -->
 <encoding>UTF-8</encoding>

 <!-- protocol for script and stylesheets -->
 <!-- defaults to https -->
 <protocol>https</protocol>

 <!-- title of the document -->
 <documentTitle></documentTitle>

 <!-- report name - displayed at top-nav -->
 <reportName>
 <![CDATA[
]]>
 </reportName>

 <!-- location of charts in the test view -->
 <!-- top, bottom -->
 <testViewChartLocation>bottom</testViewChartLocation>

 <!-- reportHeadline - displayed at top-nav -->
 <reportHeadline></reportHeadline>

 <!-- global date format override -->
 <!-- defaults to yyyy-MM-dd -->
 <dateFormat>MM-dd-yyyy</dateFormat>

 <!-- global time format override -->
 <!-- defaults to HH:mm:ss -->
 <timeFormat>HH:mm:ss</timeFormat>

 <!-- custom javascript -->
 <scripts>
 <![CDATA[
 $(document).ready(function() {
 $('.waves-effect:nth-child(3)

Working Selenium WebDriver Framework Samples Chapter 18

[461]

 a:nth-child(1) i:nth-child(1)').click();
 });
]]>
 </scripts>

 <!-- custom style -->
 <styles>
 <![CDATA[
 .extent
 {font-size: 12px; font-family: Helvetica Neue,
 Helvetica, Arial, sans-serif;}

 .nav-wrapper
 {background: linear-gradient(to left, white 0%,
 #1a75ff 100%);}

 .side-nav.fixed.hide-on-med-and-down
 {background: linear-gradient(to top, white 0%,
 #1a75ff 100%);}

 .logo-container
 {background: linear-gradient(to bottom,white 0%,
 #1a75ff 100%);}

 .brand-logo
 {background: linear-gradient(to right, blue 0%,
 #1a75ff 100%);}

 .label.suite-start-time
 {background: linear-gradient(to bottom, red 100%,
 red 100%);}

 .s2:nth-child(3) .card-panel:nth-child(1)
 {background-color: #00af00;}

 .s2:nth-child(4) .card-panel:nth-child(1)
 {background-color: #F7464A;}

 .status.pass
 {color: green;}

 .status.fail
 {color: red;}

 .status.skip
 {color: #1e90ff;}

 .test-status.skip

Working Selenium WebDriver Framework Samples Chapter 18

[462]

 {color: #1e90ff;}

 .test-status.right.skip
 {color: #1e90ff;}

 .label.others
 {background-color: #1e90ff;}

 .teal-text > i:nth-child(1)
 {color: #1e90ff;}

 .category-content .category-status-counts:nth-child(3)
 {background-color: #1e90ff;}

 .yellow.darken-2
 {background-color: #1e90ff !important;}
]]>
 </styles>
 </configuration>
</extentreports>

Browser page object base and subclasses
The following code is for the PassionTeaCoBasePO.java and
PassionTeaCoWelcomePO.java classes:

PassionTeaCoBasePO.java
The following code is for the PassionTeaCoBasePO.java class:

import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.support.FindBy;
import org.openqa.selenium.support.PageFactory;

import static org.testng.Assert.assertEquals;

/**
 * @author Carl Cocchiaro
 *
 * Passion Tea Company Base Page Object Class
 *
 */

Working Selenium WebDriver Framework Samples Chapter 18

[463]

public abstract class PassionTeaCoBasePO<M extends WebElement> {
 // local variables
 protected String pageTitle = "";

 // constructor
 public PassionTeaCoBasePO() throws Exception {
 PageFactory.initElements(CreateDriver.getInstance().
 getDriver(),this);
 }

 // elements
 @FindBy(css = "img[src*='01e56eb76d18b60c5fb3dcf451c080a1']")
 protected M passionTeaCoImg;

 @FindBy(css = "img[src*='ab7db4b80e0c0644f5f9226f2970739b']")
 protected M leafImg;

 @FindBy(css = "img[src*='cd390673d46bead889c368ae135a6ec2']")
 protected M organicImg;

 @FindBy(css = "a[href='welcome.html']")
 protected M welcome;

 @FindBy(css = "(//a[@href='menu.html'])[2]")
 protected M menu;

 @FindBy(css = "a[href='our-passion.html']")
 protected M ourPassion;

 @FindBy(css = "a[href='let-s-talk-tea.html']")
 protected M letsTalkTea;

 @FindBy(css = "a[href='check-out.html']")
 protected M checkOut;

 @FindBy(css = "//p[contains(text(),'Copyright')]")
 protected M copyright;

 // abstract methods

 protected abstract void setTitle(String pageTitle);
 protected abstract String getTitle();

 // common methods

 /**
 * verifyTitle method to verify page title
 *

Working Selenium WebDriver Framework Samples Chapter 18

[464]

 * @param title
 * @throws AssertionError
 */
 public void verifyTitle(String title) throws AssertionError {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 assertEquals(driver.getTitle(),
 title,
 "Verify Page Title");
 }

 /**
 * navigate method to switch pages in app
 *
 * @param page
 * @throws Exception
 */
 public void navigate(String page) throws Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();
 BrowserUtils.waitForClickable(By.xpath("//a[contains(text(),'"
 + page + "')]"),
 Global_VARS.TIMEOUT_MINUTE);

 driver.findElement(By.xpath("//a[contains(text(),'"
 + page
 + "')]")).click();

 // wait for page title
 BrowserUtils.waitFor(this.getTitle(),
 Global_VARS.TIMEOUT_ELEMENT);
 }

 /**
 * loadPage method to navigate to Target URL
 *
 * @param url
 * @param timeout
 * @throws Exception
 */
 public void loadPage(String url,
 int timeout)
 throws Exception {

 WebDriver driver = CreateDriver.getInstance().getDriver();
 driver.navigate().to(url);

 // wait for page URL
 BrowserUtils.waitForURL(Global_VARS.TARGET_URL, timeout);

Working Selenium WebDriver Framework Samples Chapter 18

[465]

 }

 /**
 * verifyText method to verify page text
 *
 * @param pattern
 * @param text
 * @throws AssertionError
 */
 public void verifySpan(String pattern,
 String text)
 throws AssertionError {

 String getText = null;
 WebDriver driver = CreateDriver.getInstance().getDriver();

 getText =
 driver.findElement(By.xpath("//span[contains(text(),'"
 + pattern
 + "')]")).getText();

 assertEquals(getText, text, "Verify Span Text");
 }

 /**
 * verifyHeading method to verify page headings
 *
 * @param pattern
 * @param text
 * @throws AssertionError
 */
 public void verifyHeading(String pattern,
 String text)
 throws AssertionError {

 String getText = null;
 WebDriver driver = CreateDriver.getInstance().getDriver();

 getText = driver.findElement(By.xpath("//h1[contains(text(),'"
 + pattern
 + "')]")).getText();

 assertEquals(getText, text, "Verify Heading Text");
 }

 /**
 * verifyParagraph method to verify paragraph text
 *

Working Selenium WebDriver Framework Samples Chapter 18

[466]

 * @param pattern
 * @param text
 * @throws AssertionError
 */
 public void verifyParagraph(String pattern,
 String text)
 throws AssertionError {

 String getText = null;
 WebDriver driver = CreateDriver.getInstance().getDriver();

 getText = driver.findElement(By.xpath("//p[contains(text(),'"
 + pattern
 + "')]")).getText();

 assertEquals(getText, text, "Verify Paragraph Text");
 }

}

PassionTeaCoWelcomePO.java
The following code is for the PassionTeaCoWelcomePO.java class:

import org.openqa.selenium.*;
import org.openqa.selenium.support.FindBy;

import static org.testng.Assert.assertEquals;

/**
 * @author Carl Cocchiaro
 *
 * Passion Tea Company Welcome Sub-class Page Object Class
 *
 */
public class PassionTeaCoWelcomePO<M extends WebElement> extends
PassionTeaCoBasePO<M> {
 // local variables
 private static final String WELCOME_TITLE = "Welcome";
 private static final String MENU_TITLE = "Menu";

 protected static enum WELCOME_PAGE_IMG
 { PASSION_TEA_CO, LEAF, ORGANIC, TEA_CUP, HERBAL_TEA, LOOSE_TEA,
 FLAVORED_TEA };

 protected static enum MENU_LINKS

Working Selenium WebDriver Framework Samples Chapter 18

[467]

 { MENU, MORE_1, MORE_2, HERBAL_TEA, LOOSE_TEA, FLAVORED_TEA,
 SEE_COLLECTION1, SEE_COLLECTION2, SEE_COLLECTION3 };

 // constructor
 public PassionTeaCoWelcomePO() throws Exception {
 super();

 setTitle(WELCOME_TITLE);
 }

 // elements
 @FindBy(css = "img[src*='7cbbd331e278a100b443a12aa4cce77b']")
 protected M teaCupImg;

 @FindBy(xpath = "//h1[contains(text(),'We're passionate
 about tea')]")
 protected M caption;

 @FindBy(xpath = "//span[contains(text(),'For more than 25
 years')]")
 protected M paragraph;

 @FindBy(css = "a[href='http://www.seleniumframework.com']")
 protected M seleniumFramework;

 @FindBy(xpath = "//span[.='Herbal Tea']")
 protected M herbalTea;

 @FindBy(xpath = "//span[.='Loose Tea']")
 protected M looseTea;

 @FindBy(xpath = "//span[.='Flavored Tea']")
 protected M flavoredTea;

 @FindBy(css = "img[src*='d892360c0e73575efa3e5307c619db41']")
 protected M herbalTeaImg;

 @FindBy(css = "img[src*='18f9b21e513a597e4b8d4c805321bbe3']")
 protected M looseTeaImg;

 @FindBy(css = "img[src*='d0554952ea0bea9e79bf01ab564bf666']")
 protected M flavoredTeaImg;

 @FindBy(xpath = "(//span[contains(@class,'button-content')])[1]")
 protected M flavoredTeaCollect;

 @FindBy(xpath = "(//span[contains(@class,'button-content')])[2]")
 protected M herbalTeaCollect;

Working Selenium WebDriver Framework Samples Chapter 18

[468]

 @FindBy(xpath = "(//span[contains(@class,'button-content')])[3]")
 protected M looseTeaCollect;

 // abstract methods

 /**
 * setTitle method to set page title
 *
 * @param pageTitle
 */
 @Override
 protected void setTitle(String pageTitle) {
 this.pageTitle = pageTitle;
 }

 /**
 * getTitle method to get page title
 *
 * @return String
 */
 @Override
 public String getTitle() {
 return this.pageTitle;
 }

 // common methods

 /**
 * verifyImgSrc method to verify page image source
 *
 * @param img
 * @param src
 * @throws AssertionError
 */
 public void verifyImgSrc(WELCOME_PAGE_IMG img,
 String src)
 throws AssertionError {

 String getText = null;

 switch(img) {
 case PASSION_TEA_CO:
 getText = passionTeaCoImg.getAttribute("src");
 break;
 case LEAF:
 getText = leafImg.getAttribute("src");
 break;
 case ORGANIC:

Working Selenium WebDriver Framework Samples Chapter 18

[469]

 getText = organicImg.getAttribute("src");
 break;
 case TEA_CUP:
 getText = teaCupImg.getAttribute("src");
 break;
 case HERBAL_TEA:
 getText = herbalTeaImg.getAttribute("src");
 break;
 case LOOSE_TEA:
 getText = looseTeaImg.getAttribute("src");
 break;
 case FLAVORED_TEA:
 getText = flavoredTeaImg.getAttribute("src");
 break;
 }

 assertEquals(getText, src, "Verify Image Source");
 }

 /**
 * navigateMenuLink method to navigate page menu links
 *
 * @param link
 * @param title
 * @throws AssertionError
 */
 public void navigateMenuLink(MENU_LINKS link,
 String title)
 throws Exception {

 String index = null;
 WebDriver driver = CreateDriver.getInstance().getDriver();

 switch(link) {
 case HERBAL_TEA:
 index = "1";
 break;
 case MENU:
 index = "2";
 break;
 case SEE_COLLECTION3:
 index = "3";
 break;
 case MORE_2:
 index = "4";
 break;
 case MORE_1:
 index = "5";

Working Selenium WebDriver Framework Samples Chapter 18

[470]

 break;
 case LOOSE_TEA:
 index = "6";
 break;
 case SEE_COLLECTION1:
 index = "7";
 break;
 case SEE_COLLECTION2:
 index = "8";
 break;
 case FLAVORED_TEA:
 index = "9";
 break;
 }

 // Firefox occasionally fails to execute WebDriver API click
 String query = "(//a[@href='menu.html'])"
 + "[" + index + "]";

 try {
 driver.findElement(By.xpath(query)).click();
 BrowserUtils.waitFor(MENU_TITLE,
 Global_VARS.TIMEOUT_ELEMENT);
 }

 // make 2nd attempt with JavaScript API click
 catch(TimeoutException e) {
 BrowserUtils.click(By.xpath(query));
 BrowserUtils.waitFor(MENU_TITLE,
 Global_VARS.TIMEOUT_ELEMENT);
 }

 assertEquals(MENU_TITLE, title, "Navigate Menu Link");
 }

}

Browser test class and data files
The following code is for the PassionTeaCoTest.java and PassionTeaCo.json classes:

Working Selenium WebDriver Framework Samples Chapter 18

[471]

PassionTeaCoTest.java
The following code is for the PassionTeaCoTest.java class:

import
com.framework.ux.utils.chapter10.PassionTeaCoWelcomePO.WELCOME_PAGE_IMG;
import com.framework.ux.utils.chapter10.PassionTeaCoWelcomePO.MENU_LINKS;
import org.json.simple.JSONObject;
import org.openqa,selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.testng.ITestContext;
import org.testng.ITestResult;
import org.testng.annotations.*;
import org.testng.annotations.Optional;

/**
 * @author Carl Cocchiaro
 *
 * Passion Tea Co Test Class
 *
 */
public class PassionTeaCoTest {
 // local vars
 private PassionTeaCoWelcomePO<WebElement> welcome = null;
 private static final String DATA_FILE =
 "src/main/java/com/framework/ux/utils/chapter10/PassionTeaCo.json";

 // constructor
 public PassionTeaCoTest() throws Exception {
 }

 // setup/teardown methods

 /**
 * suiteSetup method
 *
 * @param environment
 * @param context
 * @throws Exception
 */
 @Parameters({"environment"})
 @BeforeSuite(alwaysRun = true, enabled = true)
 protected void suiteSetup(@Optional(Global_VARS.ENVIRONMENT)
 String environment,
 ITestContext context)
 throws Exception {

 Global_VARS.DEF_ENVIRONMENT = System.getProperty("environment",

Working Selenium WebDriver Framework Samples Chapter 18

[472]

 environment);

 Global_VARS.SUITE_NAME =
 context.getSuite().getXmlSuite().getName();
 }

 /**
 * suiteTeardown method
 *
 * @throws Exception
 */
 @AfterSuite(alwaysRun = true, enabled = true)
 protected void suiteTeardown() throws Exception {
 }

 /**
 * testSetup method
 *
 * @param browser
 * @param platform
 * @param includePattern
 * @param excludePattern
 * @param ctxt
 * @throws Exception
 */
 @Parameters({"browser", "platform", "includePattern",
 "excludePattern"})
 @BeforeTest(alwaysRun = true, enabled = true)
 protected void testSetup(@Optional(Global_VARS.BROWSER)
 String browser,
 @Optional(Global_VARS.PLATFORM)
 String platform,
 @Optional String includePattern,
 @Optional String excludePattern,
 ITestContext ctxt)
 throws Exception {

 // data provider filters
 if (includePattern != null) {
 System.setProperty("includePattern",
 includePattern);
 }

 if (excludePattern != null) {
 System.setProperty("excludePattern",
 excludePattern);
 }

Working Selenium WebDriver Framework Samples Chapter 18

[473]

 // global variables
 Global_VARS.DEF_BROWSER = System.getProperty("browser",
 browser);
 Global_VARS.DEF_PLATFORM = System.getProperty("platform",
 platform);

 // create driver
 CreateDriver.getInstance().
 setDriver(Global_VARS.DEF_BROWSER,
 Global_VARS.DEF_PLATFORM,
 Global_VARS.DEF_ENVIRONMENT);
 }

 /**
 * testTeardown method
 *
 * @throws Exception
 */
 @AfterTest(alwaysRun = true, enabled = true)
 protected void testTeardown() throws Exception {
 // close driver
 CreateDriver.getInstance().closeDriver();
 }

 /**
 * testClassSetup method
 *
 * @param context
 * @throws Exception
 */
 @BeforeClass(alwaysRun = true, enabled = true)
 protected void testClassSetup(ITestContext context) throws
 Exception {
 // instantiate page object classes
 welcome = new PassionTeaCoWelcomePO<WebElement>();

 // set datafile for data provider
 JSONDataProvider.dataFile = DATA_FILE;

 // load page
 welcome.loadPage(Global_VARS.TARGET_URL,
 Global_VARS.TIMEOUT_MINUTE);
 }

 /**
 * testClassTeardown method
 *
 * @param context

Working Selenium WebDriver Framework Samples Chapter 18

[474]

 * @throws Exception
 */
 @AfterClass(alwaysRun = true, enabled = true)
 protected void testClassTeardown(ITestContext context) throws
 Exception {
 }

 /**
 * testMethodSetup method
 *
 * @param result
 * @throws Exception
 */
 @BeforeMethod(alwaysRun = true, enabled = true)
 protected void testMethodSetup(ITestResult result) throws Exception
 {
 }

 /**
 * testMethodTeardown method
 *
 * @param result
 * @throws Exception
 */
 @AfterMethod(alwaysRun = true, enabled = true)
 protected void testMethodTeardown(ITestResult result) throws
 Exception {
 WebDriver driver = CreateDriver.getInstance().getDriver();

 if (!driver.getCurrentUrl().contains("welcome.html")) {
 welcome.setTitle("Welcome");
 welcome.navigate("Welcome");
 }
 }

 // test methods

 /**
 * tc001_passionTeaCo method to test page navigation
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,

Working Selenium WebDriver Framework Samples Chapter 18

[475]

 enabled=true)
 public void tc001_passionTeaCo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // set the page title on-the-fly
 welcome.setTitle(testData.get("title").toString());

 // navigate to the new page
 welcome.navigate(testData.get("menu").toString());

 // retrieve and verify the page title
 welcome.verifyTitle(testData.get("title").toString());
 }

 /**
 * tc002_passionTeaCo method to test image source
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc002_passionTeaCo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // verify image source
 welcome.verifyImgSrc(WELCOME_PAGE_IMG.valueOf(
 testData.get("img").toString()),
 testData.get("src").toString());
 }

 /**
 * tc003_passionTeaCo method to test page span text
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},

Working Selenium WebDriver Framework Samples Chapter 18

[476]

 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc003_passionTeaCo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // verify text labels
 welcome.verifySpan(testData.get("pattern").toString(),
 testData.get("text").toString());
 }

 /**
 * tc004_passionTeaCo method to test page heading text
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc004_passionTeaCo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // verify headings
 welcome.verifyHeading(testData.get("pattern").toString(),
 testData.get("text").toString());
 }

 /**
 * tc005_passionTeaCo method to test page paragraph text
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc005_passionTeaCo(String rowID,

Working Selenium WebDriver Framework Samples Chapter 18

[477]

 String description,
 JSONObject testData)
 throws Exception {

 // verify paragraphs
 welcome.verifyParagraph(testData.get("pattern").toString(),
 testData.get("text").toString());
 }

 /**
 * tc006_passionTeaCo method to test navigating all "Menu" links
 *
 * @param rowID
 * @param description
 * @param testData
 * @throws Exception
 */
 @Test(groups={"PASSION_TEA"},
 dataProvider="fetchData_JSON",
 dataProviderClass=JSONDataProvider.class,
 enabled=true)
 public void tc006_passionTeaCo(String rowID,
 String description,
 JSONObject testData)
 throws Exception {

 // verify menu links
 welcome.navigateMenuLink(MENU_LINKS.valueOf(
 testData.get("element").toString()),
 testData.get("title").toString());
 }

}

PassionTeaCo.json
The following code is for the PassionTeaCo.json file:

{
 "tc001_passionTeaCo": [
 {
 "rowID": "tc001_passionTeaCo.01",
 "description": "Navigate Passion Tea Co 'Welcome' Page",
 "menu": "Welcome",
 "title": "Welcome"
 },

Working Selenium WebDriver Framework Samples Chapter 18

[478]

 {
 "rowID": "tc001_passionTeaCo.02",
 "description": "Navigate Passion Tea Co 'Our Passion' Page",
 "menu": "Our Passion",
 "title": "Our Passion"
 },
 {
 "rowID": "tc001_passionTeaCo.03",
 "description": "Navigate Passion Tea Co 'Menu' Page",
 "menu": "Menu",
 "title": "Menu"
 },
 {
 "rowID": "tc001_passionTeaCo.04",
 "description": "Navigate Passion Tea Co 'Let's Talk Tea' Page",
 "menu": "Talk Tea",
 "title": "Let's Talk Tea"
 },
 {
 "rowID": "tc001_passionTeaCo.05",
 "description": "Navigate Passion Tea Co 'Check Out' Page",
 "menu": "Check Out",
 "title": "Check Out"
 }
],

 "tc002_passionTeaCo": [
 {
 "rowID": "tc002_passionTeaCo.01",
 "description": "Verify Image Source 'TEA CUP'",
 "img": "TEA_CUP",
 "src": "http://nebula.wsimg.com/7cbbd331e278a100b443a12aa4cce77b?
AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },
 {
 "rowID": "tc002_passionTeaCo.02",
 "description": "Verify Image Source 'HERBAL TEA'",
 "img": "HERBAL_TEA",
 "src": "http://nebula.wsimg.com/d892360c0e73575efa3e5307c619db41?
AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },
 {
 "rowID": "tc002_passionTeaCo.03",
 "description": "Verify Image Source 'LOOSE TEA'",
 "img": "LOOSE_TEA",
 "src": "http://nebula.wsimg.com/18f9b21e513a597e4b8d4c805321bbe3?
 AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },

Working Selenium WebDriver Framework Samples Chapter 18

[479]

 {
 "rowID": "tc002_passionTeaCo.04",
 "description": "Verify Image Source 'FLAVORED TEA'",
 "img": "FLAVORED_TEA",
 "src": "http://nebula.wsimg.com/d0554952ea0bea9e79bf01ab564bf666?
 AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },
 {
 "rowID": "tc002_passionTeaCo.05",
 "description": "Verify Image Source 'PASSION TEA CO'",
 "img": "PASSION_TEA_CO",
 "src": "http://nebula.wsimg.com/01e56eb76d18b60c5fb3dcf451c080a1?
 AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },
 {
 "rowID": "tc002_passionTeaCo.06",
 "description": "Verify Image Source 'LEAF'",
 "img": "LEAF",
 "src": "http://nebula.wsimg.com/ab7db4b80e0c0644f5f9226f2970739b?
 AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 },
 {
 "rowID": "tc002_passionTeaCo.07",
 "description": "Verify Image Source 'ORGANIC'",
 "img": "ORGANIC",
 "src": "http://nebula.wsimg.com/cd390673d46bead889c368ae135a6ec2?
 AccessKeyId=7ECBEB9592E2269F1812&disposition=0&alloworigin=1"
 }
],

 "tc003_passionTeaCo": [
 {
 "rowID": "tc003_passionTeaCo.01",
 "description": "Verify Span Text 'See our line of organic
 teas.'",
 "pattern": "See our line",
 "text": "See our line of organic teas."
 },
 {
 "rowID": "tc003_passionTeaCo.02",
 "description": "Verify Span Text 'Tea of the month club'",
 "pattern": "month club",
 "text": "Tea of the month club"
 },
 {
 "rowID": "tc003_passionTeaCo.03",
 "description": "Verify Span Text 'It's the gift that keeps on
 giving all year long.'",

Working Selenium WebDriver Framework Samples Chapter 18

[480]

 "pattern": "gift that keeps on giving",
 "text": "It's the gift that keeps on giving all year long."
 },
 {
 "rowID": "tc003_passionTeaCo.04",
 "description": "Verify Span Text 'For more than 25 years...'",
 "pattern": "For more than 25 years, Passion Tea Company has
 revolutionized the tea industry",
 "text": "For more than 25 years, Passion Tea Company has
 revolutionized the tea industry by letting our customers
 create a blend that combines their favorite herbs and spices.
 We offer thousands of natural flavors from all over the world
 and want you to have the opportunity to create a tea, and call
 it yours! We proudly partner with seleniumframework.com to
 help them use our website for Continuous Test Automation
 practice exercises "
 },
 {
 "rowID": "tc003_passionTeaCo.05",
 "description": "Verify Span Text 'Herbal Tea'",
 "pattern": "Herbal Tea",
 "text": "Herbal Tea"
 },
 {
 "rowID": "tc003_passionTeaCo.06",
 "description": "Verify Span Text 'Loose Tea'",
 "pattern": "Loose Tea",
 "text": "Loose Tea"
 },
 {
 "rowID": "tc003_passionTeaCo.07",
 "description": "Verify Span Text 'Flavored Tea'",
 "pattern": "Flavored Tea",
 "text": "Flavored Tea."
 }
],

 "tc004_passionTeaCo": [
 {
 "rowID": "tc004_passionTeaCo.01",
 "description": "Verify Heading Text 'We're passionate
 about tea.'",
 "pattern": "passionate about tea",
 "text": "We're passionate about tea. "
 }
],

 "tc005_passionTeaCo": [

Working Selenium WebDriver Framework Samples Chapter 18

[481]

 {
 "rowID": "tc005_passionTeaCo.01",
 "description": "Verify Paragraph Text 'Copyright...'",
 "pattern": "Copyright",
 "text": "Copyright Selenium Practice Website. All rights
 reserved."
 }
],

 "tc006_passionTeaCo": [
 {
 "rowID": "tc006_passionTeaCo.01",
 "description": "Verify Menu Link Text 'MENU'",
 "element": "MENU",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.02",
 "description": "Verify Menu Link Text 'MORE 1'",
 "element": "MORE_1",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.03",
 "description": "Verify Menu Link Text 'MORE 2'",
 "element": "MORE_2",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.04",
 "description": "Verify Menu Link Text 'HERBAL TEA'",
 "element": "HERBAL_TEA",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.05",
 "description": "Verify Menu Link Text 'LOOSE TEA'",
 "element": "LOOSE_TEA",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.06",
 "description": "Verify Menu Link Text 'FLAVORED TEA'",
 "element": "FLAVORED_TEA",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.07",

Working Selenium WebDriver Framework Samples Chapter 18

[482]

 "description": "Verify Menu Link Text 'SEE COLLECTION 1'",
 "element": "SEE_COLLECTION1",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.08",
 "description": "Verify Menu Link Text 'SEE COLLECTION 2'",
 "element": "SEE_COLLECTION2",
 "title": "Menu"
 },
 {
 "rowID": "tc006_passionTeaCo.09",
 "description": "Verify Menu Link Text 'SEE COLLECTION 3'",
 "element": "SEE_COLLECTION3",
 "title": "Menu"
 }
]
}

Browser Suite XML and Maven Pom XML
files
The following code is for the PassionTeaCo.xml and pom.xml files:

PassionTeaCo.xml
The following code is for the PassionTeaCo.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd">

<suite name="Passion_Tea_Company_Test_Suite" preserve-order="true"
parallel="false" thread-count="1" verbose="2">

 <!-- test groups -->
 <groups>
 <run>
 <include name = "PASSION_TEA" />
 <exclude name = "" />
 </run>
 </groups>

Working Selenium WebDriver Framework Samples Chapter 18

[483]

 <!-- test listeners -->
 <listeners>
 <listener class-
 name="com.framework.ux.utils.chapter10.TestNG_ConsoleRunner"
 />
 <listener class-
 name="com.framework.ux.utils.chapter10.
 ExtentTestNGIReporterListener" />
 </listeners>

 <!-- suite parameters -->
 <parameter name="environment" value="local" />

 <!-- tests -->
 <test name="Passion Tea Co Test - Chrome">
 <!-- test parameters -->
 <parameter name="browser" value="chrome" />
 <parameter name="platform" value="Windows 7" />
 <!--<parameter name="includePattern" value="" />
 <parameter name="excludePattern" value="" />-->

 <classes>
 <class name="com.framework.ux.utils.chapter10.
 PassionTeaCoTest" />
 </classes>
 </test>

 <test name="Passion Tea Co Test - Firefox">
 <!-- test parameters -->
 <parameter name="browser" value="firefox" />
 <parameter name="platform" value="Windows 7" />
 <!--<parameter name="includePattern" value="." />
 <parameter name="excludePattern" value="" />-->

 <classes>
 <class name="com.framework.ux.utils.chapter10.
 PassionTeaCoTest" />
 </classes>
 </test>

 <test name="Passion Tea Co Test - IE11">
 <!-- test parameters -->
 <parameter name="browser" value="internet explorer" />
 <parameter name="platform" value="Windows 7" />
 <!--<parameter name="includePattern" value="" />
 <parameter name="excludePattern" value="" />-->

 <classes>

Working Selenium WebDriver Framework Samples Chapter 18

[484]

 <class name="com.framework.ux.utils.chapter10.
 PassionTeaCoTest" />
 </classes>
 </test>

</suite>

pom.xml file
The following code is for the sample Maven pom.xml file to download all the required JAR
files with several additions for this book (excluding Java). It is located at https:/ /
mvnrepository.com/ artifact/ org. seleniumhq. selenium/ selenium- java/ 3. 7.1:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>3.7.1</version>
 <name>selenium-java</name>
 <description>
 Selenium automates browsers.
 </description>
 <url>http://www.seleniumhq.org/</url>
 <licenses>
 <license>
 <name>The Apache Software License, Version 2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 </license>
 </licenses>
 <scm>
<connection>scm:git:git@github.com:SeleniumHQ/selenium.git</connection>
<developerConnection>scm:git:git@github.com:SeleniumHQ/selenium.git</develo
perConnection>
 <url>https://github.com/SeleniumHQ/selenium/</url>
 </scm>
 <dependencies>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-api</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>

https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1
https://mvnrepository.com/artifact/org.seleniumhq.selenium/selenium-java/3.7.1

Working Selenium WebDriver Framework Samples Chapter 18

[485]

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-chrome-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-edge-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-firefox-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-ie-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-opera-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-remote-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-safari-driver</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-support</artifactId>
 <version>3.7.1</version>
 <classifier/>
 </dependency>

Working Selenium WebDriver Framework Samples Chapter 18

[486]

 <dependency>
 <groupId>net.bytebuddy</groupId>
 <artifactId>byte-buddy</artifactId>
 <version>1.7.5</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-exec</artifactId>
 <version>1.3</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.10</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.2</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.8.2</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>com.google.guava</groupId>
 <artifactId>guava</artifactId>
 <version>23.0</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.5.3</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpcore</artifactId>
 <version>4.4.6</version>
 <classifier/>
 </dependency>

Working Selenium WebDriver Framework Samples Chapter 18

[487]

 <dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna</artifactId>
 <version>4.1.0</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>net.java.dev.jna</groupId>
 <artifactId>jna-platform</artifactId>
 <version>4.1.0</version>
 <classifier/>
 </dependency>
 <dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>6.11</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.appium</groupId>
 <artifactId>java-client</artifactId>
 <version>5.0.4</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/javax.mail/mail -->
 <dependency>
 <groupId>javax.mail</groupId>
 <artifactId>mail</artifactId>
 <version>1.4.7</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/commons-io/
 commons-io -->
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/
 com.googlecode.json-simple/json-simple -->
 <dependency>
 <groupId>com.googlecode.json-simple</groupId>
 <artifactId>json-simple</artifactId>
 <version>1.1.1</version>
 </dependency>
 <!-- https://mvnrepository.com/artifact/com.aventstack/
 extentreports -->
 <dependency>
 <groupId>com.aventstack</groupId>
 <artifactId>extentreports</artifactId>

Working Selenium WebDriver Framework Samples Chapter 18

[488]

 <version>3.1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

Summary
Finally, we are done! The code samples provided in this chapter take a lot of the best
practices and standards that were discussed in the book and provide a practical working
framework and set of data-driven tests to get up and running. Users must be diligent about
following the patterns and data-driven approach in order to keep the framework and tests
robust.

In these sample framework files, standards like the Selenium Page Object Model, DRY,
inheritance, JavaDoc, comments, exception handling, synchronization, and locator best
practices were all covered, along with a robust set of 30 data-driven test cases.

Of course, users must set up a development environment to download and compile all the
required JAR files first, but assuming you have some knowledge of automation using
Selenium WebDriver and TestNG, that should be a trivial task.

I hope you have enjoyed reading and learning about Selenium Framework Design in Data-
Driven Testing!

Assessments

Chapter 1
True or false: Selenium is a browser automation library.1.

True.

What are the different types of locator mechanisms provided by Selenium?2.

The different types of locator mechanisms are ID, Name, ClassName,
TagName, Link, LinkText, CSS Selector, and XPATH.

True or false: With the getAttribute() method, we can read CSS attributes as3.
well?

False. The getCssValue() method is used to read CSS attributes.

What actions can be performed on a WebElement?4.

The actions performed are click, type (sendKeys), and submit.

How can we determine whether the checkbox is checked or unchecked?5.

By using the isSelected() method.

Assessments

[490]

Chapter 2
Which version of Java Streams API is introduced?1.

Java 8.

Explain the filter function of Streams API.2.

Java Stream API provides a filter() method to filter stream elements on
the basis of the given predicate. Suppose we want to get all the link elements
that are visible on the page, we can use the filter() method to return the
list in the following way:

List<WebElement> visibleLinks = links.stream()
 .filter(item -> item.isDisplayed())
 .collect(Collectors.toList());

Which method of Streams API will return the number of matching elements from3.
the filter() function?

count().

We can use the map() function to filter a list of WebElements by attribute values:4.
True or false?

False.

Chapter 3
Which are the different formats we can use to output a screenshot?1.

The OutputType interface support screenshot types in BASE64, BYTES, and
FILE formats.

How can we switch to another browser tab with Selenium?2.

We can switch to another browser tab using the
driver.switchTo().window() method.

Assessments

[491]

True or false: The defaultContent() method will switch to the previously3.
selected frame.

False. The defaultContent() method will switch to the page.

What navigation methods are available with Selenium?4.

The Navigate interface provides to() , back() , forward() ,
and refresh() methods.

How can we add a cookie using Selenium?5.

We can add a cookie using the driver.manage().addCookie(Cookie
cookie) method.

Explain the difference between an implicit wait and an explicit wait.6.

An implicit wait once set will be available for the entire life of the WebDriver
instance. It will wait for the element when findElement is called for the set
duration. If the element doesn't appear in DOM in a set time, it will throw
the NoSuchElementFound exception.

An explicit wait, on the other hand, is used to wait for the specific condition
to happen (for example, the visibility or invisibility of the element, a change
in title, a change in attribute of the element, thee element becoming editable
or for a custom condition). Unlike an implicit wait, the explicit wait will poll
the DOM for the condition to fulfill instead of waiting for a fixed amount of
time. It will come out if the condition is fulfilled before the defined timeout,
else it will throw an exception. We can use various predefined conditions
from the ExpectedConditions class with the explicit wait.

Assessments

[492]

Chapter 4
True or false – the drag and drop action requires the source element and the1.
target element.

True.

List the keyboard methods that we can perform using the actions API.2.

sendKeys(), keyUp(), and keyDown().

Which method of the actions API will help in performing a double-click3.
operation?

doubleClick(WebElement target).

Using the actions API, how can we perform a save option (that is to say, Ctrl + S)?4.

new Actions(driver) .sendKeys(Keys.chord(Keys.CONTROL,

"s")) .perform();.

How can we open a context menu using the actions API?5.

By calling the contextClick() method.

Chapter 5
You can listen to WebDriver events using WebDriverEventListener interface:1.
True or False?

True.

How you can automatically clear an input field before calling the sendKeys2.
method using WebDriverEventListener?

We can call the WebElement.clear() method in
the beforeChangeValueOf() event handler.

Selenium supports Accessibility Testing: True or false?3.

False. Selenium does not support Accessibility testing

Assessments

[493]

Chapter 6
True or false: with Selenium, we can execute tests on the remote machine(s)- 1.

True.

Which driver class is used to run tests on a remote machine?2.

The RemoteWebDriver class.

Explain the DesiredCapabilities class.3.

The DesiredCapabilities class is used to specify browser capabilities
needed by the test script from the RemoteWebDriver. For example, we can
specify the name of the browser, operating system, and version in
DesiredCapabilities and pass it to RemoteWebDriver. The Selenium
Standalone Server will match the configured capabilities with the available
nodes and run the test on the matching node.

What protocol is used between the Selenium test and Selenium Standalone4.
Server?

JSON-Wire.

What is the default port used by the Selenium Standalone Server?5.

Port 4444.

Assessments

[494]

Chapter 7
Which argument can be used to specify how many browser instances can be1.
supported by the node?

maxInstances.

Explain how Selenium Grid can be used to support Cross Browser Testing.2.

With Selenium Grid, we can set up nodes for various Browser and Operating
System combinations and run tests in a distributed architecture. Based on
capabilities provided by the test, Selenium Grid selects the appropriate node
and executes the test on the selected node. We can add as many nodes as
required based on combinations we want to test as per the cross-browser
testing matrix required for testing.

What is the URL you need to specify with RemoteWebDriver to run tests on3.
Selenium Grid?

http://gridHostnameOrIp:4444/wd/hub.

Selenium Grid Hub acts as a load balancer: True or False?4.

True. Selenium Grid Hub distributes tests on multiple nodes based on the
availability of the node

Chapter 8
Explain Data-driven Testing.1.

Data-driven is a test automation framework approach, where input test
data is stored in tabular format or in a spreadsheet format and a single test
script reads each row of the data, which can be a unique test case, and
executes the steps. This enables reuse of test scripts and increases test
coverage with varied test data combinations.

True or False: Selenium supports data-driven testing.2.

False.

Assessments

[495]

What are two methods in TestNG to create data-driven tests?3.

TestNG provides two methods for data-driven testing: Suite Parameters and
Data Providers.

Explain the DataProvider method in TestNG.4.

The DataProvider method in TestNG is a special method annotated with
the @DataProvider annotation. It returns an array of objects. We can return
tabular data reading from any format such as CSV or Excel to test the test
case using the data provider.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in this book by Packt:

Mastering Selenium WebDriver 3.0 - Second Edition
Mark Collin

ISBN: 9781788299671

Complement Selenium with useful additions that fit seamlessly into the rich and
well-crafted API that Selenium offers
Use different mobile and desktop browser platforms with Selenium 3
Perform advanced actions, such as drag-and-drop and action builders on web
pages
Learn to use Java 8 API and Selenium 3 together
Explore remote WebDriver and discover how to use it
Perform cross browser and distributed testing with Selenium Grid
Use Actions API for performing various keyboard and mouse actions

https://www.packtpub.com/web-development/mastering-selenium-webdriver-30-second-edition

Other Books You May Enjoy

[497]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@DataProvider annotation 297
@Parameters 344
@Test annotation 298

A
abstract base class
 about 242
 building 242
 common methods, adding 245
 designing 242
 summarizing 247
abstract methods 243
actions, WebElements
 clear() method 48, 49
 performing 47
 sendKeys() method 47, 48
 submit() method 49
actions
 performing 79, 80, 82
alerts
 handling 68, 69
Android
 preferences 187
Appium inspector 276
Appium node
 about 396
 JSON configuration file 397
Appium
 Mobile Apps, testing 11, 12
 reference 396
 server and mobile simulator/emulator command-

line options 396
AppiumDriver API 169
AppiumDriver class
 Selenium Grid Architecture support 197

Application Under Test (AUT)
 about 172, 234
 abstract base classes, building 242
 abstract base classes, designing 242

B
base setup classes
 designing 335
best practices
 for comments 237
 for folder structure 238
 for naming conventions 236
boundary testing 352
browser applications
 page elements, inspecting 270
browser data files 470
browser driver command-line options 389
browser page object base class 462, 466
browser page object subclass 462
Browser Suite XML files
 about 482
 PassionTeaCo.xml 482, 484
browser test class
 about 470
 PassionTeaCo.json 477
 PassionTeaCoTest.java 471
browser
 Chrome 183
 Internet Explorer 184
 Microsoft Edge 184
 Safari 184
BrowserMob Proxy Plugin
 about 414
 reference 414
 working with 415
browsers
 Firefox 182

[499]

By locating mechanism
 By.className() method 36
 By.cssSelector() method 41
 By.id() method 34
 By.linkText() method 37
 By.name() method 35
 By.partialLinkText() method 38
 By.tagName() method 39
 By.xpath() method 40, 41
 using 34

C
Chrome
 reference 184
chromedriver executable
 reference 22
client drivers
 about 386
 local use 387
 remote use 388
cloud-based grids
 using, for cross-browser testing 152, 153, 155
common locators 244
confirmation files 354
confirmation/error code
 converting 357
cookies
 handling 74, 76
Create, Read, Update, and Delete (CRUD) 218,

323

cross-browser testing
 cloud-based grids, using 152, 153, 155

D
data files 322
Data Provider
 data, reading from CSV file 163, 164
 data, reading from Excel file 166, 167, 168
 for parameterizing tests 161, 162
data-driven testing
 about 171
 benefits 158
 overview 157
 reference 172
DataProvider class

 about 434
 CreateDriver.java 434
 JSONDataProvider class 439
 Lookup method 355
de-serialization 132
Developer Tools
 elements, inspecting 27
 elements, inspecting in Google Chrome 32
 pages, inspecting in Google Chrome 32
distributed testing
 multithreading support 188
Document Object Model (DOM) 27
Don't Repeat Yourself (DRY) 171, 172
driver
 optional arguments and parameters, passing

190

dynamic locators
 using, in methods 292
 using, standards 283

E
Eclipse IDE
 reference 12
Eclipse project
 setting up, with Maven and TestNG with Java 6,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23
Edge options
 reference 186
encapsulation
 about 256
 reference 256
environment property files 358
EventFiringWebDriver class 103, 104
EventListener class
 about 103, 104
 AbstractWebDriverEventListener, extending 107
 EventFiringWebDriver instances, creating 108
 EventListener instance, creating 108
 EventListener, registering EventFiringWebDriver

109

 events, executing 109
 events, verifying 109
 instance, creating 105
 multiple EventListeners, registering 111
 WebDriver instance, creating 108

[500]

 WebDriverEventListener, implementing 105
exception handling, test classes
 ITestResult class 334
 setup/teardown methods 333
 test listener/reporter classes 335
 test methods 332
exception handling
 about 257
 explicit exception handling 260
 implicit exception handling 258
 reference 258
 try...catch exception handling 261
exception property file 354
ExpectedConditions class
 reference 207
explicit exception handling 257, 260
explicit wait time 73
ExtentReports classes
 about 453
 extent-config.xml 460
 ExtentTestNGIReporterListener.java 453
ExtentReports Reporter API class
 about 416
 Categories page 419
 code sample 422
 Dashboard page 418
 ExtentHTMLReporter 417
 features 416
 Tests page 420

F
file I/O class
 about 218
 CSV files 220
 log files 221
 lookup table files 220
 property files 218
Firefox
 reference 183
FluentWait class
 reference 207
frames
 locating 65
 switching between 67, 68

G
global variables
 about 204
 versus dynamic data 360
Google's Accessibility Developer Tools
 reference 116

H
HTML Publisher Plugin
 about 413
 installation 413
HTTP Archive (HAR) 414
hub 137, 140, 141
hub-configuration parameters, Selenium Grid
 about 150
 customized CapabilityMatcher 150
 match of desired capability, waiting for 150
 WaitTimeout, for new session 151

I
image capture class
 about 223
 capture image method 224
 capture screen method 223
 compare image method 226
implicit exception handling
 about 257, 258
 TestNG difference viewer 259
implicit wait time 72
inheritance techniques
 used, for building subclasses for feature-specific

pages 248, 255
 used, for designing subclasses for feature-

specific pages 248, 255
Integrated Development Environment (IDE) 12
IntelliJ IDEA Selenium plugin
 about 405
 element locators, generating 407
 sample project files 405
 Selenium Plugin 409
IntelliJ TestNG results 409
Internet Explorer
 reference 186
IReporter class

[501]

 reference 227
iTestContext class
 reference 214
iTestResult class
 reference 214

J
Java 8 Stream API
 about 53, 54
 Stream.collect() 56
 Stream.count() 58
 Stream.filter() 54, 55
 Stream.map() 55
 Stream.max() 56
 Stream.min() 56
 Stream.sort() 55
Java object getter/setter methods
 using 351
Java objects
 JSON data, extracting 298
JavaMail class
 about 229
 reference 229
JavaScript Object Notation (JSON) 131
 about 295
 data extracting, into Java objects 298
 reference 295
JavascriptExecutor class
 about 210
 reference 210
Jenkins TestNG results 409, 410
JSON data file
 data 356
 formats 303
 row IDs, sequential numbering 350
JSON data
 casting, to Java objects 348
 retrieving, outside test methods 362
JSON formatting tool
 reference 303
JSON object 349
JSON simple JavaDoc
 reference 299
JSON wire protocol
 about 131

 reference 132
 using 132, 133, 134
JSONObject class
 about 305, 309
 JavaDoc, reference 306
JVM argument
 Dswitch 193

K
keyboard-based interactions
 about 101
 keyDown actions 101
 keyUp actions 101
 sendKeys method 101

L
limit testing 352
local driver
 switching, to remote driver 384
locators
 about 270
 types 270

M
man-in-the-middle (MITM) 416
Maven Pom XML files
 about 482
 PassionTeaCo.xml 482, 484
Maven
 reference 12
mobile applications
 page elements, inspecting 276
mobile elements
 inspecting 277
mouse based interactions
 about 82
 click and hold at current location action 88, 90
 click and hold at WebElement action 90
 context click at current location action 100
 context click on WebElement action 99
 current location action 84, 85, 86
 double click at current location action 97, 98
 double click on WebElement action 98
 dragAndDrop action 95, 96, 97
 dragAndDropBy action 94, 95

[502]

 moveByOffset action 83, 84
 moveToElement action 92, 93
 release at current location action 91
 release on another WebElement action 91, 92
 WebElement action 87, 88
Mozilla Firefox
 elements, inspecting 29
 pages, inspecting 29
multibranded applications
 conditional code 364
 multilocators 363
 runtime flags 366
 supporting 363
multiple attribute XPath
 versus CSS locators 291
multiple driver support
 about 366
 Dual WebDriver testing 366

N
naming conventions
 for data files 237
 for page object classes 236
 for setup classes 237
 for setup/teardown methods 237
 for test methods 237
 for utility classes 236
Navigate
 exploring 69, 70, 71, 72
Navigation Timing 118
negative testing 352, 354
node 137, 142, 143
node-configuration parameters, Selenium Grid
 browser instances, setting 148
 browser timeout, setting 150
 node health-check times, setting 149
 node timeouts, setting 147
 node, reregistering automatically 148
 specifying 147
 supported browsers, setting by node 147
 unavailable node, unregistering 149

O
objects
 retrieving, from page object classes with

getter/setter methods 256
OpenCSV
 reference 164
optional arguments and parameters
 passing, to driver 190
order of precedence 321
overloaded setDriver method
 for browser 383

P
page elements
 inspecting, on browser applications 270
 inspecting, on mobile applications 276
page object class methods
 synchronization 257
page object classes
 getter/setter methods, used for retrieving objects

256

page object methods
 calling, in test classes 328
 data, passing 352
parallel testing
 about 370
 common setup 373
 multithreading support 188
 parallel properties method 372
 Suite XML file 370
parameterizing tests
 with Data Provider 161, 162
 with suite parameters 158, 160, 161
parameters
 processing methods 194
 varargs parameter 191
Perfect Test 405
platforms 186
POJO (Plain Old Java Object) 296
positive testing 352
preferences
 about 200
 used, for supporting browsers and platforms 182
 used, for supporting emulators 186
 used, for supporting mobile device 186
 used, for supporting real devices 186
Properties class
 reference 220

[503]

properties, WebElement
 getAttribute() method 43
 getCssValue() method 45
 getLocation() method 45
 getSize() method 46
 getTagName() method 46
 getText() method 44
 obtaining 43
property file data
 initializing 359
property files
 and parsing test data 358
 used, for browser selection 201
 used, for device selection 201
 used, for language selection 201
 used, for platform selection 201
 used, for version selection 201

R
RemoteWebDriver class
 Selenium Grid Architecture support 197
RemoteWebDriver URL 200
RemoteWebDriver
 about 120, 121, 122
 client 124
 existing test script, converting 124, 125, 126,

127, 128, 129
 Selenium Standalone Server 122
 using, for Firefox 129
 using, for Internet Explorer 130, 131
reporter class
 about 227
 reference 229
rules, for switching from local to remote driver
 default global variables 385
 JVM argument 385
 runtime parameters, processing 385
 suite parameters 384

S
Safari
 reference 185
Sauce Labs Test Cloud services
 about 199, 424
 browser and mobile platforms 425

 dashboard 427
 driver code changes 425
 features 425
 in-house versus third-party grids, disadvantages

429

 Jenkins plugin 429
 n-house versus third-party grids, advantages

429

 reference 424
 SauceConnect tunnel 427
 TestObject Real Device Cloud 427
Sauce Labs
 reference 153
screenshots
 creating 63, 64
Selenium 2, versus Selenium 3
 about 11
 advanced functionalities 11
 better APIs 11
 browser, handling 11
 developer support 11
 Mobile Apps, testing with Appium 11, 12
Selenium driver 434
Selenium Grid console 398
Selenium Grid documentation
 reference 376
Selenium Grid JARs
 reference 386
Selenium Grid
 configuration, specifying 151
 configuring 146
 existing test script, modifying 143, 145
 exploring 136, 137, 139
 hub-configuration parameters 150
 node-configuration parameters, specifying 146
 nodes, dealing with matching capabilities 146
 non-registered capabilities, requesting 145
 request, queuing on busy node 146
Selenium HQ design
 reference 171
Selenium hub
 about 389
 JSON configuration file 390
Selenium IDE 10
Selenium nodes

[504]

 about 391
 JSON configuration file 393
 traffic nodes, directing 401
Selenium Page Object Model 171
Selenium RemoteWebDriver class
 reference 376
Selenium Server 10
Selenium standalone server 386, 389
Selenium Standalone Server
 about 122
 downloading 122
 executing 122, 123, 124
 reference 122
Selenium synchronization classes
 about 206
 custom synchronization methods 208
 ExpectedConditions class 206
 WebDriverWait/FluentWait classes 207
Selenium utility classes
 about 442
 BrowserUtils.java 442
 Global_VARS.java 444
 selenium.properties 452
 TestNG_ConsoleRunner.java 445
Selenium WebDriver
 about 9, 10
 Stream API, using 58
Selenium
 testing tools 8
serialization 132
setDriver method
 for browser 381
 parameter for 193
setup methods
 @BeforeClass 319
 @BeforeGroups 319
 @BeforeMethod 319
 @BeforeSuite 319
 @BeforeTest 319
 about 318
single attribute XPath, versus CSS locators
 about 284
 MobileElements 287
 WebElements 284
singleton driver class

 about 173
 class methods 177
 class signature 174
 class variables 175
 Javadoc 176
 parameters 176
 reference 173
 requirements 173
standard locators
 CSS locators 280
 simple locators 279
 using, rules 279
 XPath query locators 281
state, WebElements
 checking 50
 isDisplayed() method 50
 isEnabled() method 50
 isSelected() method 51
static elements
 referencing, in methods 281
 retrieving, from other classes 283
static locators
 using, standards 279
Stream API
 actions, filtering on WebElements 61
 actions, performing on WebElements 61
 element attributes, filtering 59
 Map function, using to obtain text value from

elements 60
 using, with Selenium WebDriver 58
 WebElements, counting 58, 59
 WebElements, filtering 58, 59
suite parameters
 @Parameters 344
 about 344
 for parameterizing tests 158, 160, 161
synchronizing methods 263
system properties 358

T
table classes 264, 266
target windows
 locating 65
 switching 65
teardown methods

[505]

 @AfterClass 320
 @AfterGroups 320
 @AfterMethod 320
 @AfterSuite 320
 @AfterTest 320
 about 320
test class methods
 annotating, with TestNG 314
test classes
 about 322
 exception handling 332
 page object methods, calling 329
test data
 filtering 301
 include and exclude patterns, filtering 302
test groups 324
test methods
 about 323
 naming conventions 322
test parameters 324
test setup/teardown methods 324
testing tools, Selenium
 about 8
 Selenium IDE 10
 Selenium Server 10
 Selenium WebDriver 9, 10
TestNG annotations
 @Test 315, 318
TestNG Data Provider class
 @DataProvider annotation 297
 @Test annotation 298
 about 296
 reference 296
 using 326
TestNG data-driven
 reference 171
TestNG Listener class
 about 213
 building 214
 reference 213
 results, logging to console or log file 215
 test runner, including in test class or suite 217
TestNG suite file structure
 about 339
 groups section 341

 listeners section 342
 suite section 340
 test section 342
TestNG
 annotations 314
 reference 314
 setup/teardown methods 318
 used, for annotating test class 314
third-party grid architecture support 199
third-party plugins/tools 275
traffic, directing
 desired capabilities, using 401
 multiple nodes, of same platform and version

401

 Selenium Grid, maintenance 402
try...catch blocks 258
try...catch exception handling
 about 261
 reference 262
tunnel 200

U
utility classes
 synchronization 205

V
virtual grids
 multibrowser nodes 378
 multimobile/browser nodes 380
 single browser nodes 378
 single mobile device nodes 379
 structure 377

W
wait time
 about 72
 explicit wait time 73
 implicit wait time 72
WebDriver API 169
WebDriver event listeners
 accessibility testing, performing 116
 browser back-navigation, listening 113
 browser forward-navigation, listening 114
 browser NavigateTo events, listening for 114
 clicked WebElement, listening 112

 EventListener, unregistering with
EventFiringWebDriver 115

 exception, listening 115
 exploring 112
 page-performance metrics, capturing 117, 118
 script execution, listening 115
 WebElement search event, listening for 113
 WebElement value changes, listening 112
WebDriver
 documentation, reference 243
 exceptions 258
 reference 26
 versus RemoteWebDriver 380
WebDriverWait class
 reference 207
WebElements
 about 24, 25
 actions, performing 47
 attributes, obtaining 43

 elements, inspecting in Mozilla Firefox 29
 inheriting 271
 inspecting 272
 inspecting, with Developer tools 27
 interacting 42
 locating, with By locating mechanism 34
 locating, with findElement method 26
 locating, with findElements method 27
 locating, with WebDriver 25
 pages, inspecting in Mozilla Firefox 29
 properties, obtaining 43
 state, checking 50
 waiting, to load 72

X
XPath query language
 reference 281
xtentHTMLReporter Java
 reference 422

	Cover
	Title Page
	Copyright
	Contributors
	About Packt
	Table of Contents
	Preface
	Chapter 1: Introducing WebDriver and WebElements
	Selenium Testing Tools
	Selenium WebDriver
	Selenium Server
	Selenium IDE

	Differences between Selenium 2 and Selenium 3
	Handling the browser
	 Having better APIs
	Having developer support and advanced functionalities
	Testing Mobile Apps with Appium

	Setting up a project in Eclipse with Maven and TestNG using Java
	WebElements
	Locating WebElements using WebDriver
	The findElement method
	The findElements method
	Inspecting Elements with Developer Tools
	Inspecting pages and elements with Mozilla Firefox
	Inspecting pages and elements in Google Chrome with Developer Tools

	Using the By locating mechanism
	The By.id() method
	The By.name() method
	The By.className() method
	The By.linkText() method
	The By.partialLinkText() method
	The By.tagName() method
	The By.xpath() method
	The By.cssSelector() method

	Interacting with WebElements
	Getting element properties and attributes
	The getAttribute() method
	The getText() method
	The getCssValue() method
	The getLocation() method
	The getSize() method
	The getTagName() method

	Performing actions on WebElements
	The sendKeys() method
	The clear() method
	The submit() method

	Checking the WebElement state
	 The isDisplayed() method
	The isEnabled() method
	The isSelected() method

	Summary
	Questions
	Further information

	Chapter 2: Using Java 8 Features with Selenium
	Introducing Java 8 Stream API
	Stream.filter()
	Stream.sort()
	Stream.map()
	Stream.collect()
	Stream.min() and Stream.max()
	Stream.count()

	Using Stream API with Selenium WebDriver
	Filtering and counting WebElements
	Filtering element attributes
	Using the Map function to get the text value from elements
	Filtering and performing actions on WebElements

	Summary
	Questions
	Further information

	Chapter 3: Exploring the Features of WebDriver
	Taking screenshots
	Locating target windows and Frames
	Switching among windows
	Switching between frames
	Handling alerts

	Exploring Navigate
	Waiting for WebElements to load
	Implicit wait time
	Explicit wait time

	Handling cookies
	Summary
	Questions
	Further information

	Chapter 4: Exploring Advanced Interactions of WebDriver
	Understanding the build and perform actions
	Learning mouse based interactions
	The moveByOffset action
	The click at current location action
	The click on a WebElement action
	The click and hold at current location action
	The click and hold a WebElement action
	The release at current location action
	The release on another WebElement action
	The moveToElement action
	The dragAndDropBy action
	The dragAndDrop action
	The double click at current location action
	The double click on WebElement action
	The context click on WebElement action
	The context click at current location action

	Learning keyboard-based interactions
	The keyDown and keyUp actions
	The sendKeys method

	Summary
	Questions
	Further information

	Chapter 5: Understanding WebDriver Events
	Introducing the eventFiringWebDriver and eventListener classes
	Creating an instance of EventListener
	Implementing WebDriverEventListener
	Extending AbstractWebDriverEventListener
	Creating a WebDriver instance
	Creating EventFiringWebDriver and EventListener instances
	Registering EventListener with EventFiringWebDriver
	Executing and verifying the events
	Registering multiple EventListeners

	Exploring different WebDriver event listeners
	Listening for WebElement value changes
	Listening for the clicked WebElement
	Listening for a WebElement search event
	Listening for browser back-navigation
	Listening for browser forward-navigation
	Listening for browser NavigateTo events
	Listening for script execution
	Listening for an exception
	Unregistering EventListener with EventFiringWebDriver
	Performing accessibility testing
	Capturing page-performance metrics

	Summary
	Questions
	Further information

	Chapter 6: Exploring RemoteWebDriver
	Introducing RemoteWebDriver
	Understanding Selenium Standalone Server
	Downloading Selenium Standalone Server
	Running the server

	Understanding the RemoteWebDriver client
	Converting an existing test script to use the RemoteWebDriver server

	Using RemoteWebDriver for Firefox
	Using RemoteWebDriver for Internet Explorer

	Understanding the JSON wire protocol
	Summary
	Questions
	Further information

	Chapter 7: Setting up Selenium Grid
	Exploring Selenium Grid
	Understanding the hub
	Understanding the node
	Modifying the existing test script to use Selenium Grid
	Requesting for non-registered capabilities
	Queuing up the request if the node is busy
	Dealing with two nodes with matching capabilities

	Configuring Selenium Grid
	Specifying node-configuration parameters
	Setting supported browsers by a node
	Setting node timeouts
	Setting the limit on browser instances
	Reregistering the node automatically
	Setting node health-check times
	Unregistering an unavailable node
	Setting the browser timeout

	Hub-configuration parameters
	Waiting for a match of the desired capability
	Customized CapabilityMatcher
	WaitTimeout for a new session

	Different ways to specify the configuration

	Using cloud-based grids for cross-browser testing
	Summary
	Questions
	Further information

	Chapter 8: Data-Driven Testing with TestNG
	Overview of data-driven testing
	Parameterizing Tests using suite parameters
	Parameterizing Tests with a Data Provider
	Reading data from a CSV file
	Reading data from an Excel file

	Summary
	Questions
	Further information

	Chapter 9: Building a Scalable Selenium Test Driver Class for Web and Mobile Applications
	Introduction
	Data-driven testing
	Selenium Page Object Model
	DRY
	What you will learn

	The singleton driver class
	Requirements
	The class signature
	Class variables
	JavaDoc
	Parameters
	Class methods

	Using preferences to support browsers and platforms
	Browser preferences
	Platforms

	Using preferences to support mobile device simulators, emulators, and real devices
	iOS preferences
	Android preferences

	Multithreading support for parallel and distributed testing
	Passing optional arguments and parameters to the driver
	varargs
	The parameter for setDriver
	JVM argument – -Dswitch
	Parameter processing methods

	Selenium Grid Architecture support using the RemoteWebDriver and AppiumDriver classes
	Third-party grid architecture support including the Sauce Labs Test Cloud
	Using property files to select browsers, devices, versions, platforms, languages, and many more
	Summary

	Chapter 10: Selenium Framework Utility Classes
	Introduction
	Global variables
	Synchronization utility classes
	Selenium synchronization classes
	The ExpectedConditions class
	WebDriverWait/FluentWait classes
	Custom synchronization methods

	The JavascriptExecutor class
	The TestNG Listener class
	Building the test listener class
	Logging the results to the console or log file
	Including the test runner in the test class or suite

	File I/O class
	Property files
	Lookup table files
	CSV files
	Log files

	The image capture class
	The capture screen method
	The capture image method
	The compare image method

	The reporter class
	The JavaMail class
	Summary

	Chapter 11: Best Practices for Building Selenium Page Object Classes
	Introduction
	What you will learn

	Best practices for naming conventions, comments, and folder structures
	Naming conventions
	Comments
	Folder names and structures

	Designing and building the abstract base classes for the AUT
	The abstract class
	Abstract methods
	Common locators
	Common methods
	Wrap up on base classes

	Designing and building subclasses for feature-specific pages using inheritance techniques
	Encapsulation and using getter/setter methods to retrieve objects from the page object classes
	Exception handling and synchronization in page object class methods
	Implicit exception handling
	TestNG difference viewer

	Explicit exception handling
	Try...catch exception handling
	Synchronizing methods

	Table classes
	Summary

	Chapter 12: Defining WebDriver and AppiumDriver Page Object Elements
	Introduction
	Inspecting page elements on browser applications
	Types of locators
	Inheriting WebElements
	Inspecting WebElements
	Third-party plugins/tools

	Inspection of page elements on mobile applications
	Appium inspector
	Inspecting mobile elements

	Standards for using static locators
	Rules for using standard locators
	Simple locators
	CSS locators
	XPath query locators

	Referencing static elements in methods
	Retrieving static elements from other classes

	Standards for using dynamic locators
	Single attribute XPath versus CSS locators
	WebElements
	MobileElements

	Multiple attribute XPath versus CSS locators
	Using dynamic locators in methods

	Summary

	Chapter 13: Building a JSON Data Provider
	Introduction
	What you will learn

	The TestNG Data Provider class
	The @DataProvider annotation
	The @Test annotation

	Extracting JSON data into Java objects
	Filtering test data
	Filtering include and exclude patterns

	JSON Data File formats
	The JSONObject class
	Summary

	Chapter 14: Developing Data-Driven Test Classes
	Introduction
	Annotating test class methods using TestNG
	TestNG annotations
	@Test

	TestNG setup/teardown methods
	Setup methods
	@BeforeSuite, @BeforeTest, @BeforeGroups, @BeforeClass, and @BeforeMethod

	Teardown methods
	@AfterSuite, @AfterTest, @AfterGroups, @AfterClass, and @AfterMethod

	Order of precedence

	Naming conventions for test methods
	Test classes and data files
	Test methods
	Test parameters
	Test groups
	Test setup/teardown methods

	Using the TestNG DataProvider
	Calling page object methods in test classes
	Exception handling in test classes
	Test methods
	The setup/teardown methods
	The ITestResult class
	Test listener/reporter classes

	Designing base setup classes
	TestNG suite file structure
	Suite section: <suite>
	Groups section: <groups>
	Listeners section: <listeners>
	Test section: <test>

	Suite parameters
	@Parameters

	Summary

	Chapter 15: Encapsulating Data in Data-Driven Testing
	Introduction
	Casting JSON data to Java objects
	JSON object
	Sequential numbering of row IDs in the data file
	Using Java object getter/setter methods
	Passing data to page object methods

	Building in positive, negative, boundary, and limit testing
	Negative testing

	Confirmation and exception property files
	Property files
	Lookup method in DataProvider
	JSON data file data
	Converting confirmation/error code on the fly

	Property files and parsing test data on the fly
	Environment property files
	System properties
	Initializing property file data

	Global variables versus dynamic data
	Processing JVM args
	Retrieving JSON data outside of test methods
	Supporting multibranded applications
	Multilocators
	Conditional code
	Runtime flags

	Multiple driver support
	Dual WebDriver testing
	Dual WebDriver and AppiumDriver testing

	Parallel testing
	Suite XML file
	Parallel properties method
	Common setup

	Summary

	Chapter 16: Designing a Selenium Grid
	Introduction
	Virtual grids
	Grid structure
	Single browser nodes
	Multibrowser nodes
	Single mobile device nodes
	Multimobile/browser nodes

	Selenium driver class – WebDriver versus RemoteWebDriver
	The setDriver method for browser
	The setDriver method for mobile
	Overloaded setDriver method for browser

	Switching from local to remote driver
	Suite parameters
	JVM argument
	Default global variables
	Processing runtime parameters

	Selenium standalone server and client drivers
	Local use of drivers
	Remote use of drivers

	Selenium standalone server and browser driver command-line options
	Selenium hub
	Selenium hub JSON configuration file
	Selenium nodes
	Selenium node JSON configuration file

	Appium server and mobile simulator/emulator command-line options
	Appium nodes
	Appium node JSON configuration file

	Selenium Grid console
	Directing traffic to Selenium nodes
	Multiple nodes of the same platform and version
	Directing traffic using desired capabilities
	Maintenance of the Selenium Grid
	Summary

	Chapter 17: Third-Party Tools and Plugins
	Introduction
	IntelliJ IDEA Selenium plugin
	Sample project files
	Generating element locators
	Wrap-up on Selenium Plugin

	TestNG results in IntelliJ and Jenkins
	IntelliJ TestNG results
	Jenkins TestNG results

	HTML Publisher Plugin
	Installation

	BrowserMob Proxy Plugin
	Getting started

	ExtentReports Reporter API class
	ExtentHTMLReporter
	Dashboard page
	Categories page
	Tests page
	Code sample

	Sauce Labs Test Cloud services
	Sauce Labs Test Cloud features
	Browser and mobile platforms
	Driver code changes
	Dashboard
	SauceConnect tunnel
	TestObject Real Device Cloud
	Jenkins plugin

	Advantages and disadvantages of using in-house versus third-party grids

	Summary

	Chapter 18: Working Selenium WebDriver Framework Samples
	Introduction
	Selenium driver and DataProvider classes
	CreateDriver.java
	JSONDataProvider class

	Selenium utility classes
	BrowserUtils.java
	Global_VARS.java
	TestNG_ConsoleRunner.java
	selenium.properties

	ExtentReports classes
	ExtentTestNGIReporterListener.java
	extent-config.xml

	Browser page object base and subclasses
	PassionTeaCoBasePO.java
	PassionTeaCoWelcomePO.java

	Browser test class and data files
	PassionTeaCoTest.java
	PassionTeaCo.json

	Browser Suite XML and Maven Pom XML files
	PassionTeaCo.xml
	pom.xml file

	Summary

	Assessments
	Other Books You May Enjoy
	Index

