

Introduction
Ruby For Kids For Dummies is an introduction to the
basics of coding using the Ruby programming language. In each chapter,
I walk you through a step-by-step set of instructions to create a Ruby
program for your Mac or Windows computer. You don’t need to have
any programming experience to understand this book, but you do need to
have a sense of curiosity and adventure!

The Ruby programming language has been around since the mid-1990s
and has become very popular with web application programmers. It can
be used for so much more than just web apps. In this book, you’ll see
that you can use Ruby for small “command line” tools and calculations;
larger programs for home, work, or school; or even graphical games (and
I’ll show you a lot of games).

Ruby was designed by its creator Yukihiro Matsumoto to be both fun
and productive. My hope is that as you explore the projects in this book,
you’ll definitely have fun and be inspired to continue to use Ruby (or
any other programming language) to realize your own coding ideas.

Programming in general is similar to sports, music, or even creative arts.
It’s hard to just absorb a book on the subject and expect to understand it
completely or start to gain mastery of the topic. Instead, you need to
have keyboard time and practice. Even professional coders continue to
practice throughout their careers.

By exploring and playing around with the projects here, you’ll be taking
the first steps down a really interesting Ruby-colored road.

About This Book
Programming is a large topic, and Ruby itself is a very powerful
language. I’ll be working to shed light on some of the more fundamental
parts of Ruby and coding in general. There is no rush to finish the
projects in the book. Go through each Ruby For Kids For Dummies

project as quickly or slowly as you like. Each chapter’s project is a self-
contained useful utility or fun game. Along the way, you’ll learn how to
use the very same tools that the professionals use, and learn the kinds of
techniques that will help you grow as a programmer.

You don’t need to have any previous programming experience, but if
you know a little, that’s fine — you’ll pick up how Ruby does things and
also see some similarities to other languages. I’ll show you the “Ruby
way” when applicable, but I’ll also show the easy way when you’re just
learning the concepts.

Topics covered in this book include the following:

The general way to structure simple Ruby programs
Ruby expressions and operators
Organizing functionality using methods and objects
Basic ways to represent data like numbers, strings, and arrays
Using loops
Making choices with if…else statements

Learning to program with Ruby isn’t just about writing code in the
language. You also need to learn about the tools, resources, and
community that stand behind the language.

Ruby has become so popular because it’s a relatively simple language to
learn, and the tools needed to write Ruby, test it, and run it are widely
available and free. In this book, I help you get started with just a few
basic, free, programs that do everything you need to create some pretty
sophisticated pieces of software.

You’ll also learn about general programming techniques, and most
important, see a wide variety of projects that will pique your interest and
hopefully encourage you to take your exploration to the next level.

To make this book easier to read, you’ll want to keep in mind a few tips.
First, all Ruby code and all terminal commands appear in monospaced
type like this:

puts "hello programs! Welcome to Ruby"

The margins on a book page don’t have the same room as your monitor
likely does, so long lines of Ruby and any output it creates may break
across multiple lines. Remember that your computer sees such lines as a
single line of Ruby. I show that everything should be on one line by
breaking it at a punctuation character or space and then indenting any
overage, like so:

def room_type

["cave", "treasure room", "rock cavern", "tomb", "guard room", "lair"].sample

end

Ruby is case sensitive, which means that swapping the use of uppercase
or lowercase letters or a combination of the two can break things. In
order to make sure that you get the correct results from the projects in
the book, always stick to the same capitalization and spelling that I use.

Ruby also cares about the kind of quotation marks that you use! So, if
you see double quotes (") or single quotes ('), be sure to use what I
show and make sure they’re straight and not curly.

Foolish Assumptions
To understand programming, you need a bit of patience and the ability to
think logically about a topic. You don’t need to be a computer guru or a
hacker. You don’t need to be able to build a computer or take one apart
(although that might be fun!). You don’t need to know a bit from a byte
or how many programmers it takes to screw in a new light bulb.

However, I do need to make some assumptions about you. I assume that
you can turn your computer on, that you know how to use a mouse and a
keyboard, and that you have a working Internet connection and web
browser. You should also know how to find and launch programs on
your computer.

In this book, I explain everything else you need to get set up and coding
in Ruby.

Icons Used in This Book
Here’s a list of the icons I use in this book to flag text and information
that’s especially noteworthy.

 The Technical Stuff icon highlights technical details that you
may or may not find interesting. Feel free to skip this information,
but if you’re the techie type, you might enjoy reading it.

 The Tip icon highlights helpful tips that show you easy ways or
shortcuts that will save you time or effort.

 Whenever you see the Remember icon, pay close attention. You
won’t want to forget the information you’re about to read — or, in
some cases, I remind you about something that you’ve already
learned that you may have forgotten.

 Be careful. The Warning icon warns you of pitfalls to avoid.

Beyond the Book
I’ve put together a lot of extra content that you won’t find in this book.
Go online to find the following:

Cheat Sheet: An online Cheat Sheet is available at
www.dummies.com/cheatsheet/rubyforkids. Here, you find
information on basic Ruby statements, conditions, loops and objects;
a list of words that can’t be used as Ruby variables or methods; a list
of some of the useful methods provided by common Ruby classes;

http://www.dummies.com/cheatsheet/rubyforkids

descriptions of common errors and what may cause them; and some
small snippets of useful Ruby.
Web Extras: Online articles covering additional topics are available
at www.dummies.com/extras/rubyforkids. In these articles, I cover
things like good ways to organize your Ruby class, some common
Ruby shortcuts (also called “idiomatic Ruby”), Ruby troubleshooting
tips, and more.

Where to Go from Here
Programming is a blast, and doubly awesome with Ruby. Even Ruby’s
creator wants you to have fun! After you learn the basics, you’ll start to
find all kinds of things you can do with your newfound powers.

I’m very interested to hear how it goes as you learn Ruby! If you want to
show me your new ideas, bug fixes, or enhancements to my projects, or
if you have programs you come up with on your own, you can do so on
Facebook (www.facebook.com/mobirobo), on Twitter
(www.twitter.com/mobirobo_inc), or via email at ruby@mobirobo.com.

http://www.dummies.com/extras/rubyforkids
http://www.facebook.com/mobirobo
http://www.twitter.com/mobirobo_inc
mailto:ruby@mobirobo.com

Part I
The Most Basic Building Blocks

In this part …
 Getting Started with Ruby
 Big Numbers
 Bigger Hello World

 For Dummies can help you get started with lots of subjects.
Visit www.dummies.com to learn more and do more with For Dummies!

http://www.dummies.com/

Project 1
Getting Started with Ruby

Computers are almost everywhere today — from
laptops, tablets, or phones, to TVs, watches, medical devices, kitchen
appliances, cars, spaceships, big factories, little robots, and millions of
other places large and small.

How do computers know what to do inside all these things? Someone
has to teach them! Behind every cool animated movie, website, game,
vehicle, or device, someone has worked hard to instruct a computer on
how to perform its task. That person was a programmer.

In this chapter, I give you a little background about programming and
how programmers organize their thoughts when writing computer
software or code. I share some background about Ruby, the
programming language I cover throughout this book. Then I tell you
how to install the tools you’ll use for all the projects in the rest of the
book.

What Is Programming?
Computers are kind of dumb by themselves. Without a person to tell it
exactly what to do, a computer will just sit there. Everything a computer
does — and I mean everything, from the display of pictures and text on a
screen, to the understanding of what you type on a keyboard or touch
and swipe on a tablet — requires some software to interpret signals
coming through the various circuits in one part of the computer and
modify and send them to the right place in another part to get something
done. That’s a lot of work!

Fortunately, over the years, many smart people have come up with
different ways to communicate clearly with computers. Writing
instructions for a computer is called programming or coding, and the end
result is a program or software.

A computer programming language shares many similarities to a human
language. It has symbols and words (like nouns and verbs) that you put
together following a syntax (rules for spelling, order, and punctuation).

When you start learning to program, you open up a wide world in which
you can apply this knowledge when working with any technology that
uses computers. You’ll be able to read other people’s programs to learn
more about computers or to use code you write to solve homework
problems, create puzzles, build a new game, create a website, or even
control machines like robots.

Programs needs to be very precise in order to instruct a computer to do
something. Imagine that you want to tell your friend to do something.
For instance, how would you tell someone to sit down in a desk chair?
You might say:

1. Pull the chair out.
2. Sit down.

Your friend is smart enough that your instructions make perfect sense,
and she’ll sit on the chair safely without falling over or anything crazy
like that. People have a lot of knowledge they can use to interpret
instructions like this.

Now, if you have to tell a computer to sit down, what would that be like?
You have to be a lot more exact. For example, you would have to say:

1. Pull the chair away from the desk.
2. Walk around so your body is in front of the chair.
3. Turn around so your backside is facing the chair.
4. Make sure your body is exactly next to the chair.
5. Start bending your knees and lowering your body.
6. Keep bending your knees until your bottom makes contact with the

seat of the chair.
7. Stop bending your knees when your weight is held by the chair.

Even these instructions might not be enough for a computer because
they make some assumptions (like what your body parts are called).

Try it yourself: How would you tell a computer exactly how to do
something like filling a glass with water?

Programmers need to think in this very detail-oriented way. As you learn
to write computer programs, you’ll get good at breaking a problem down
into smaller and smaller parts. Each of those parts will eventually be a
line of code that you create. Over time, you’ll learn other techniques that
help you identify the different objects you’ll need to describe to the
computer and the actions those objects will take. This will help you
organize your code in ways that make it possible to create very
sophisticated software. Pretty cool, huh?

Why Ruby?
There are many different computer programming languages out there.
Each language has strengths and weaknesses. Some languages are easier
if you’re trying to control large machines. Some languages are
specialized for mobile apps — the kind on an iPhone, for example. Some
languages make it easy to create websites. And some languages are for
doing science and engineering.

A general-purpose programming language is good for many different
kinds of projects. There are many general-purpose programming
languages to choose from. The important thing when you’re wanting to
learn programming is to pick something and dive into training yourself
to think like a programmer. When you learn one programming language,
learning another one is much, much easier.

In this book, I use the language Ruby. Ruby is a flexible, general-
purpose language that is useful for many kinds of projects. It was created
in the mid-1990s in Japan by Yukihiro Matsumoto (best known by his
nickname, “Matz”). Don’t worry — you don’t have to learn Japanese to
program with Ruby! Today Ruby is used around the world for all kinds
of projects, by beginners and professionals alike.

Matz had a wonderful philosophy in mind when creating Ruby: He
wanted programmers to be productive, enjoy programming, and be

happy. This is one of my favorite things about Ruby: As you learn it and
write programs, you’ll have fun!

What Tools Do You Need?
Most obviously, you need a computer that’s running a current version of
a consumer desktop operating system (Mac OS X or Windows).

 If you’re using a computer with Linux on it, you can still follow
along with the projects in this book. I won’t be going through the
instructions here. Instead, check out the official Ruby
documentation: www.ruby-
lang.org/en/documentation/installation. As long as your
selected approach installs at least version 1.9.3 of Ruby, you should
be okay.

For the projects in this book, you need only a few basic tools, and
they’re all free.

First, you need Ruby installed, as well as some other software that helps
Ruby use the capabilities of your computer. I walk you through how to
install Ruby in this section.

Second, you need a text editor that is specifically for coding. Word
processors don’t work well when coding, so you’ll use a tool that is built
for programmers. There are a number of good, free code editors out
there, and I help you install one of them in this section. (You may use
any other editing program you like as long as it’s a code editor of some
kind.)

If you’re on Windows
To run Ruby on Windows, you have to install Ruby and several
developer tools. The following instructions have been tested with
Windows 8 and 8.1.

1. Go to http://rubyinstaller.org in your web browser.

https://www.ruby-lang.org/en/documentation/installation
http://rubyinstaller.org/

2. Click the big red Download button.
A list of RubyInstallers appears.

3. Click Ruby 2.2.2 near the top of the RubyInstallers list (see Figure 1-
1).

 Do not click Ruby 2.2.2 (x64).
An installer program downloads to your computer.

4. Run the installer program by choosing Run Program (if Windows
presents this option) or double-clicking the file when it’s done
downloading.
The installer will ask you to select a language to use during
installation. Accept the license, and then the installer will have you
set some configuration options. Leave the default folder choice
alone, but uncheck the Install Tcl/Tk Support check box (you won’t
be using it for this book), and make sure that the other two check
boxes — Add Ruby Executables to Your PATH and Associate .rb
and .rbw Files with This Ruby Installation — are selected (see
Figure 1-2).
When the installer is done, it will have created a topmost folder with
all the Ruby software on your C: drive called C:\Ruby22. You can
use Windows 8 Desktop and the File Explorer to confirm that it’s
there (as shown in Figure 1-3).

Figure 1-1: Click Ruby 2.2.2 to download installer.

Figure 1-2: Setup Ruby installation settings.

Figure 1-3: Confirm that the Ruby22 folder is created.

You must also download the Development Kit from
http://rubyinstaller.org to get some of the cool tools used by the
projects in this book. Follow these steps:

1. Go to the http://rubyinstaller.org in your web browser.

2. Scroll down to the Development Kit section and click the file under
“For use with Ruby 2.0 and above (32bits version only)” (see Figure
1-4).
An installer program downloads to your computer.

3. Run the Development Kit installer by choosing Run Program (if
Windows presents this option) or double-clicking the file when it
finishes downloading.
The installer will ask you where to put the kit. You want to put the
kit in its own folder, not in the Ruby folder you selected in Step 1. To
make things easy for the projects in this book, select a folder next to
the Ruby22 one at the top of your C: drive.

4. Enter C:\DevKit for the location, as shown in Figure 1-5.

http://rubyinstaller.org/
http://rubyinstaller.org/

Figure 1-4: Download the Development Kit for Ruby 2.0 and above. Be sure to click the
32bits version.

Figure 1-5: Select the DevKit installation directory.

Now you need some final setup. Follow these steps:

1. Open your Windows launch screen (or use the Start Menu).
2. Click the Start Command Prompt with Ruby program (my machine

looks like Figure 1-6).

 If you have a lot of programs installed in your launch screen,
use the search feature and type command to help narrow down the
choices.
In the command prompt application, you type commands to get
things done. Typing commands is a low-level way of working with a
computer. Before the mouse and graphical interface was invented,
this was the only way to tell the computer what to do!

3. Change your location to the Developer Kit folder.
When you first open the command prompt application, you’re
usually in your home directory. To complete setup, you need to move
to the DevKit directory. The display will show you a prompt that
gives a hint of where you’re starting from:

C:\Users\chris>

When you see commands in this book, you see them displayed next
to the prompt. You don’t need to type the prompt part, just the
command line itself.
Change folders by typing cd \DevKit and pressing the Enter key to
tell the computer you’re done with that command.
You see the prompt change to your new location:

C:\Users\chris > cd \DevKit

C:\DevKit>

4. Use Ruby to set up more Ruby tools.
Development Kit has a Ruby setup program called dk.rb that you
use for a couple of different steps. Enter the first command and
watch for it to complete, as shown in Figure 1-7.

C:\DevKit> ruby dk.rb init

If you see the Initialization complete! message,
Development Kit is ready to finish installing its tools.

5. Enter the install command and wait for it to complete (see Figure 1-
8):

C:\DevKit> ruby dk.rb install

Phew! You only have to do these commands once to get your
computer ready for Ruby programming and you’re almost there!

6. The Development Kit is ready and now you can install Ruby gems
(little add-on enhancements for Ruby) that you use for the more
advanced projects in this book.
You learn a lot more about Gosu, the graphics and game
programming library in later chapters. Enter the command and
review the progress messages (see Figure 1-9):

C:\DevKit> gem install gosu

 You may get a Windows security warning saying that Ruby
is trying to use the network. This is okay — you can select the
default values in the dialog box. You may have to enter your
password to dismiss the dialog box.

Figure 1-6: Click Start Command Prompt with Ruby.

Figure 1-7: Initialize the Development Kit.

Figure 1-8: Install the Development Kit.

Figure 1-9: Install the Gosu gem.

Wow, that was a lot, but now you have Ruby installed!

Now you will want a code editor to help make writing your programs
easy:

1. In your browser, go to www.atom.io and click the Download
Windows Installer button (see Figure 1-10).
Atom is a free, powerful code editor that can be used for
programming many different computer languages. It works well with
Ruby.
An installer program downloads to your computer.

2. Run the Atom installer by choosing Run Program (if Windows
presents this option) or double-clicking the installer program when it

http://www.atom.io/

finishes downloading.
You see a progress dialog box. When the installer is done, the Atom
editor starts up (see Figure 1-11).
You see the Atom welcome screen, which means you’re all set to
start programming with Ruby!

Figure 1-10: Download the Atom Editor.

Figure 1-11: The Atom welcome screen.

 Ruby is constantly being updated and improved. The projects in
this book use the current release of Ruby at the time of the book’s
writing, version 2.2.2. Ruby uses a versioning scheme where the
first number is the major version, the second number is the minor
version, and the third number is the current build number
(sometimes called the patch number). Most everything in this book
should work with versions of Ruby all the way back to version
1.9.3, but it would be best if you use version 2.0.0 or better. On
Windows, to utilize the game programming library Gosu, it’s also
important to select the version of Ruby and the Development Kit
that indicate they are 32 bit.

If you’re on Mac OS X

 To install the needed developer tools for Mac OS X, you need to
be logged in to your computer using an account with Admin access.
If you’re the only person using the computer, you’re usually an
administrator by default. If you share a computer at home, school,
or work, you may need help to get access to an administrative
account. You can check your access level by going to the Users &
Groups control panel inside the System Preferences application (my
machine looks like Figure 1-12). You only need Admin access
during setup, not while completing the projects in this book.

Figure 1-12: Confirm that your account is an admin in Users & Groups.

To run Ruby on Mac OS X, you have to install Ruby and several
developer tools. The following instructions have been tested on Mac OS
X Yosemite (10.10.4). They should work fine with Mac OS X El Capitan

(10.11.1) or Mavericks (10.9.5) as long as you’re running the latest
updates for that version of Mac OS X:

1. Open the Applications folder, and then open the Utilities
folder (see Figure 1-13).

2. Open the terminal application.
You see a prompt indicator that looks like a dollar sign ($) (see
Figure 1-14). In the terminal application, you type commands and
press the Return key to get things done. Typing commands is a low-
level way of working with a computer. Before the mouse and
graphical interface was invented, this was the only way to tell the
computer what to do!
Note that your default prompt will include information like the name
of your computer, the directory you’re in, and even who you’re
logged in as:

Christophers-MacBook-Pro:~ chaupt$

 In this book, I omit the full prompt and just show the $ to
save space.

3. Mac OS X comes with a version of Ruby preinstalled; check the
version by typing ruby --version at the command prompt:

$ ruby --version

ruby 2.0.0p481 (2014-05-08 revision 45883) [universal.x86_64-darwin14]

In this example, the version of Ruby is 2.0.0, and the number
following the letter p is the current patch or build number. On my
machine, the patch level is 481. Although newer versions of Ruby
are available, and the Mac’s version will change if you install
updates, the current version should work great for the projects in this
book.

4. To use some of the Ruby gems (little add-on enhancements for
Ruby) needed for the projects in this book, you must install Apple’s
command-line programming tools. These tools are a part of the free

Xcode development tools package that Apple makes available. In the
terminal, enter the following command:

$ xcode-select --install

After you press Return, the program will open a window to confirm
you want to install the tools (see Figure 1-15).

5. Click the Install button, agree to the license, and wait for the tools to
get set up.
This step will take a few minutes depending on the speed of your
Internet connection.

6. Next, you install a set of software installation tools called
Homebrew. Homebrew makes it easy to install and update additional
software, called packages. Some of the projects in this book use
Ruby gems that rely on low-level software to get their jobs done.
Homebrew makes it much easier to get everything working. In your
browser, go to the Homebrew web site, www.brew.sh (see Figure 1-
16).
You see instructions for installing Homebrew. The page shows a
really long command that starts with ruby -e. You can copy it
from the web page and paste it into your terminal window at the
prompt.

 This is one long line, so if something goes wrong, make sure
that you got the whole thing.
The command uses Ruby to install the Homebrew tool. It displays a
warning about using sudo and then asks you for your password to
finish the installation. This warning may be unfamiliar, but it’s safe
to proceed with the installation. Many progress messages will fly by
on your screen (see Figure 1-17). If you get a message saying that
you haven’t agreed to the Xcode license, follow the instructions that
are displayed and continue on here.

http://www.brew.sh/

 If you’re just learning about command-line programs on
Mac OS X, you may be unfamiliar with using sudo. sudo is a way
to give temporary permission to a program to use Administrator
privileges. Homebrew needs this permission to set up the directories
and software needed to do its job. The Homebrew installation
program is used by thousands of people and is very careful about
where it puts its software. If you ever need to use sudo yourself,
you want to be extra careful that you type the associated commands
correctly.

7. Once Homebrew installation is done, you can check that all is okay
by typing the following command:

$ brew doctor

If everything is set up properly, you should see a message saying
Your system is ready to brew. Otherwise, you may
have some instructions to follow to finish updating Homebrew.

8. Homebrew’s purpose is to make installing low-level software easier.
Now, install some of the libraries of code you need for future
projects:

$ brew install sdl2 libogg libvorbis

After you press Return, you see a series of progress reports as
Homebrew installs the software (see Figure 1-18).

9. Now you can install the Gosu gem that you use to build the projects
later in this book. Enter the following command:

$ sudo gem install gosu

Ruby installs the gem and should provide a confirmation message (as
shown in Figure 1-19).
You need to use sudo here because when you install a Ruby gem,
you install it for the entire system to use. Remember to take care
when entering the command — you’re giving it special permissions
using the sudo program.

Figure 1-13: Locate the terminal program in the Utilities folder.

Figure 1-14: The terminal application with a standard prompt.

Figure 1-15: The xcode-select confirmation dialog box.

Figure 1-16: The Homebrew home page and installation command.

Figure 1-17: Homebrew successfully completes installation.

Figure 1-18: Homebrew installs the necessary libraries.

Figure 1-19: Gem installation completes successfully.

You have Ruby and its associated developer software ready to go, so
now you need a programming editor:

1. In your browser, go to www.atom.io.

2. Click the Download for Mac button (see Figure 1-20).
Atom is a free, powerful code editor that can be used for
programming many different computer languages. It works well with
Ruby.
Depending on the settings of your browser, the Atom download
archive may automatically uncompress or a zip file may be placed in
your Downloads folder.

3. Drag the Atom icon to your Applications folder.
If you see a zip file rather than the Atom icon, double-click the zip
file to uncompress it manually.

4. Double-click the Atom icon in the Applications folder and
check out the editor.

http://www.atom.io/

You should see the Atom welcome screen (shown in Figure 1-21).
You’re all set to start programming with Ruby!

Figure 1-20: The Atom editor for Macintosh home page.

Figure 1-21: The Atom editor for Macintosh welcome screen.

Project 2
Big Numbers

When you installed Ruby, a number of tools were placed on
your computer. You’ll use many of these tools time and time again as
you learn to program. In this project, I show you how you can use a
combination of your terminal program and Interactive Ruby to do quick
experiments that let you try new things with Ruby.

You’ll start at the very beginning and explore some of the most basic
things you might ask a computer to do by exploring numbers, simple
math, and storing results in the computer’s memory using variables.

You probably didn’t think Ruby could be used as a calculator for
gigantic numbers, did you?

Starting Interactive Ruby

This project is completed entirely within your terminal (or console)
program and uses Interactive Ruby (known as IRB or irb).

 In this book, I refer to the language Ruby with an initial capital
letter (as a name) and lowercase ruby to mean the Ruby command.
Likewise, I use IRB to mean the name of the program, and irb to
mean the command.

To get ready for this project, locate your terminal program (on the Mac)
or the console with Ruby shortcut (on Windows). When that’s running,
everything else is the same.

 I use the term terminal to mean the terminal or console program,
whether on Mac or Windows.

At the command prompt, enter the irb command and press Return
(Mac) or Enter (Windows):

$ irb

or
C:/> irb

if on Windows.

You now see the irb prompt:
$ irb

2.2.2 :001 >

Depending on your version of Ruby, the prompt may appear slightly
different. In mine, it shows the current version of Ruby (2.2.2) and the
current number of commands I’ve typed (when you first start IRB, you
start on command 001). When I show you commands in IRB in this
book, my version and count may be different from yours, but that’s okay.

Now IRB is ready for your commands, but before you start, let me show
you how to leave IRB. The easiest way is to type exit and press Return

(Enter). Alternatively, you can press Ctrl+D. You pop right out of IRB
back to your terminal’s prompt.

Go back into IRB and proceed to the next section.

Creating a development folder
Even though you won’t be saving any files in this project, I recommend setting up a
space on your hard drive for your work to be stored. Programmers call these spaces
directories, but you may refer to them as folders. In this book, I use the two terms
interchangeably.

In each project in this book, I describe how to initially set up your directories and files.
The process is fairly similar for both Mac and Windows. I show you the commands to
use in your terminal program.

First, I suggest you create a development directory to hold all your projects:

$ mkdir development

The new development directory will be created in your current directory. Remember that
your prompt will look different on Windows and will normally display the current
directory. Then inside of that, create a directory for that chapter’s project:

$ cd development

$ mkdir project02

$ cd project02

Here, I changed the location to be within the development directory, made a new
project directory (named project02 because you’re reading Project 2’s chapter), and
then moved into that directory.

Remember: If you get lost, you can navigate back to the top of your folders by using
the cd command by itself and then changing directories again:

$ cd

You may also want to use the following command to move up one level to the parent
folder of the current directory:

$ cd ..

Entering Numbers
When you’ve started IRB, Ruby is waiting for something to do. I’ll
make this super simple.

Type the number 1 and press Return (Enter).
2.2.2 :001> 1

=> 1

2.2.2 :002 >

What did Ruby do? It showed you that it was listening by printing out
number 1 again. The => prompt is Ruby’s signal that it’s displaying
some kind of result. After it’s done, Ruby shows you a new prompt and
waits for your next command. In future examples, I won’t show you the
next prompt, but you’ll always see it on your screen!

Try entering a few more numbers, and you’ll see Ruby keeps echoing
your typing. Okay, this gets boring quickly, so let’s move on.

Doing Some Basic Math
Ruby includes a large and powerful set of built-in capabilities. You use
many of these capabilities as you progress through this book. One of the
most basic is the capability to do simple arithmetic.

Enter 2 + 2 at the irb prompt and press Return (Enter):
2.2.2 :010 > 2 + 2

 => 4

Wow, Ruby can do math you learned in kindergarten! Let’s look at the
other arithmetic operations of multiplication, division, and subtraction:

2.2.2 :011 > 10 * 5

 => 50

2.2.2 :012 > 10 / 5

 => 2

2.2.2 :013 > 10 - 5

 => 5

Here, the symbols are a little different, but you get the results you’d
expect. What if you want to try something even more complicated, like
writing the math formula to convert degrees Fahrenheit to Celsius:

2.2.2 :018 > (212 - 32) * 5 / 9

 => 100

You’re converting 212 degrees Fahrenheit by first subtracting 32, and
then multiplying the result by . Ruby does the math and displays the
result, 100 degrees Celsius, which is correct.

Why did I include the parentheses in the formula? Try it again without
them. Go ahead, I’ll wait.

Did Ruby still give you the right answer?

No, because Ruby, like some other programming languages, processes
lines of code in a certain order. In the case of mathematics, as well as
other operations it can do, Ruby has a sense of priorities in terms of what
order it will run the code. The parentheses provide a programming hint
to do the math in the order you want it to be done.

Without the parentheses, Ruby runs the formula in the order of doing
multiplication and division before addition and subtraction, which is
very different from what you want. It’s as if Ruby thought you said:

2.2.2 :020 > 212 - (32 * 5 / 9)

 => 195

 Programmers call this prioritization order of operations or
precedence, a fancy term, indeed. If you find that lines of code
aren’t working the way you thought they would, check the
precedence of the code you’re using.

Supersizing the Math with Huge
Numbers

Unlike a pocket calculator, or even the calculator on a smartphone, Ruby
has amazing support for some truly gigantic numbers. Give this a try:

2.2.2 :022 > 1234567890 * 9876543210 * 12345678998765432234567890

 => 150534112319147377922666710346041538891241000

There are 45 digits in that number! You can use the exponent operator
(**) to raise a number by a certain power:

2.2.2 :026 > 10**2

 => 100

Try coming up with some really big numbers of your own and do some
arithmetic on them.

 If you haven’t learned about exponents yet, all you need to know
for this chapter is that it’s the same as taking a number and
multiplying it by itself the number of times indicated by the
exponent number. So 10**2 means multiply 10 by itself two
times: 10 * 10. Sometimes you hear someone talking about
exponents using the phrase some number raised to a certain power.
In this example, 10 is raised to the second power.

Adding Memory by Storing Results
in Variables

So far, you’ve just typed in some math formulas (or expressions) and
immediately seen the results. This is fine for really short tasks, and it
uses you, the human, to remember results and enter them again when
needed.

But computers give you not only the power to calculate, but also the
ability to store information for later retrieval.

You use variables to name a piece of memory, store information in that
memory, and at some later time, retrieve the information again.

 Programmers usually use the word data to refer to any
information they’re working on. I use that term in this book, too.

In Ruby, you typically name variables using lowercase letters, numbers,
and underscores (_). Ruby expects a variable to start with a lowercase
letter, and then you can use any combination of other lowercase letters,

numbers, or the underscore. Ruby convention is to use “snakecase”
when naming a variable. Snakecase splits up words with an underscore,
kind of like using a blank space between words in an English sentence.

Here are some examples of variables:
hello_world_title

programmer1

blue_eyed_cat_name

b

a2

The last two examples, b and a2, are perfectly valid but what they’re
used for is a little mysterious. I suggest you use variable names that are
meaningful to you. In this book, I use some very full names when the
meaning needs to be clear, and I use some short names when
appropriate.

 In later projects, I describe other symbols and conventions for
naming variables. The basic naming I explain here works for local
variables. You’ll use some additional symbols for other purposes
later on.

To store data in a variable in Ruby, you “assign” the data to a variable
using an equal sign (=):

2.2.2 :029 > age_of_my_dog = 4

 => 4

Unlike in math class, the equal sign here doesn’t mean that the left side
is equivalent to the right side (there is another symbol you’ll see later
that is used for that purpose). Instead, think of that equal sign as
meaning “move the data on the right into the memory named with the
variable on the left.”

To get the data back out of the variable, you just use the variable name
as if you typed the data in directly:

2.2.2 :030 > age_of_my_dog * 7

 => 28

You can assign the results of the calculation into a new variable:
2.2.2 :031 > dogs_age_in_people_years = age_of_my_dog * 7

 => 28

 Ruby is pretty generous with respect to what you can name your
variables. Almost anything goes. One of the few rules is that the
name must not conflict with any of Ruby’s built-in names for its
commands. See the following for a list. If you do this accidentally,
you get a syntax error, which I explain in the next section.

BEGIN do next then

END else nil true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return while

def in self __FILE__

defined? module super __LINE__

Using Variables to Repeat a
Calculation

I want to revisit our temperature conversion formula from the preceding
section. Written with a variable f for Fahrenheit. The formula was as
follows:

c = (f – 32) * 5 / 9

I’m going to assign f to be the degrees Fahrenheit I want to convert into
Celsius:

2.2.2 :043 > f = 212

 => 212

2.2.2 :044 > c = (f - 32) * 5 / 9

 => 100

2.2.2 :045 > f = 100

 => 100

2.2.2 :046 > c = (f - 32) * 5 / 9

 => 37

2.2.2 :047 > f = 32

 => 32

2.2.2 :048 > c = (f - 32) * 5 / 9

 => 0

The temperatures seem correct, so I’ll assume Ruby is doing the math
correctly.

 Note that I used a little trick that is hard to see in a book, but that
you should try on your computer: I didn’t actually keep typing that
formula after the first time I entered it. Instead, I used a feature of
IRB that allows me to recall a previous command. If you use the up
and down arrow keys when in IRB, IRB will display earlier (or
later, respectively) commands. You can make small edits to the
command using the left and right arrow keys to move around. You
simply press your Return (Enter) key to run the command again.
This can save a lot of typing.

Fixing Things When Something
Goes Wrong

What happens when you try to get Ruby to display a googolplex?

 A googol is a fun term that means 10 raised to the 100th power.
A googolplex is 1 followed by googol (10100) zeroes. Supposedly,
American mathematician Edward Kasner’s 9-year-old nephew,
Milton Sirotta, coined the term and defined it to be the digit “one,
followed by writing zeroes until you get tired.”

In IRB, store a googol in a variable called googol:
2.2.2 :030 > googol = 10**100

 =>

100

00000000000000000000000000

Now try raising 10 by a googol:
2.2.2 :031 > 10**googol

(irb):31: warning: in a**b, b may be too big

 => Infinity

I guess there are some limits to Ruby’s math skills! Here, Ruby is
showing you a warning that the command you just typed isn’t working
because part of the calculation is too big. It shows the results as
Infinity, which seems about right to me.

Ruby tries to be helpful when some part of your program has a typo or
does something unexpected. Ruby displays a warning or error message,
often with information about where it found the problem in your code.

For instance, if I accidentally made a typo when doing some simple
math, Ruby would tell me that I have a syntax error.

 Syntax is like grammar in English. A programming language’s
syntax is the structure, order, and spelling of commands and
statements in that language.

If I make an intentional spelling mistake:
2.2.2 :036 > 3j + 3

SyntaxError: (irb):36: syntax error, unexpected tIDENTIFIER, expecting end-

of-input

3j + 3

 ^

 from /usr/bin/irb:11:in '<main>'

I didn’t mean to type the letter j after the number 3, and unlike what
you may write in school when learning algebra, this syntax is not valid
Ruby.

Ruby displays an error message that’s a little cryptic, but if you see
syntax error and a line number or location, it gives you a place to
start investigating what went wrong. In this case, Ruby helpfully
displayed my incorrect line with a little arrow symbol pointing at the
point it thought was wrong. Thank you, Ruby!

Let’s see if Ruby can find another problem for us:
2.2.2 :037 > x + 5

NameError: undefined local variable or method 'x' for main:Object

 from (irb):37

 from /usr/bin/irb:11:in '<main>'

In this case, I tried to use a variable that I haven’t stored anything in.
Ruby doesn’t know what to do here, because it can’t find a variable
named x (yet). You often see this error if you make a typo in the name of
a variable (or method, which you’ll learn about in a future project).
Check your spelling and try again.

Another common Ruby error can be seen with this code:
2.2.2 :038 > x = nil

 => nil

2.2.2 :039 > x + 5

NoMethodError: undefined method '+' for nil:NilClass

 from (irb):39

 from /usr/bin/irb:11:in '<main>'

I haven’t explained nil yet, but for now you can think of it as Ruby’s
way of representing “nothing.” The error Ruby is showing us means that
it doesn’t know how to do addition with nil, which seems reasonable.

In your code, this probably would mean you expected to receive results
from some other part of the program, but the code returned nothing.

One last problem you occasionally see is if you try to do something with
incompatible data:

2.2.2 :040 > x = "a"

 => "a"

2.2.2 :041 > x + 5

TypeError: no implicit conversion of Fixnum into String

 from (irb):41:in '+'

 from (irb):41

 from /usr/bin/irb:11:in '<main>'

I assigned the letter a to variable x. You learn more about strings and
letters in the next project. Here, though, I tried to add the number 5 to
the letter a. Clearly this is nonsense. Ruby thinks so, too, and tells me
that it can’t convert the data in a way to make it work.

 Over the course of this book, you’ll probably run into syntax
errors the most often, because typos are the easiest bugs to make.
When you see an error message, your best course of action is to
carefully compare what you typed with the project’s code.

Trying Some Experiments
In this project, you’ve seen some basic Ruby and how to use IRB to test
out Ruby. You got to play with how Ruby can do math and how
variables can help you store and recall data. Believe it or not, these are
the fundamental building blocks on which modern programming is
based. I explain a lot more in the coming projects, but manipulating data
(numbers and arithmetic here), and storing and retrieving results, is what
computers do all the time.

Take a few moments and try a few of these additional experiments:

Use variables to store all the ages for your family or friends. Now
add them together. What is the total age of everyone?
Use Ruby to calculate the circumference of the Earth. The formula
for circumference is 2 * PI * r. Pi is a special value used in
geometry and other areas of math and science. Ruby provides this
value to you automatically using a constant (a special variable whose
value is locked down and can’t be changed). You can access this
value in IRB by typing Math::PI. To complete this experiment, you
need to look up the value of r, which is the radius of the Earth.

What is your age raised by the power of 10?
What is the total if you add the first ten counting numbers (1, 2, 3,
and so on up to 10)?
Can Ruby store negative numbers? What about decimals? Try some
math problems to confirm this.
Try changing the temperature calculation to convert degrees Celsius
to Fahrenheit.

Project 3
Bigger Hello World

In this project, you start to work with letters and words.
Programmers often use the term character for a single letter and the term
string to mean one or more characters connected together to form words
or other patterns.

In this project, you again use Interactive Ruby (IRB) to learn how to
manipulate strings in Ruby and how strings are different from numbers.
You’ll find out that there are some surprising similarities, too, as you
build a program to create a big HELLO!

Starting Interactive Ruby
This project will be completed entirely within your terminal program
using IRB. Follow these steps:

1. Start your terminal program.
2. At the prompt, type irb to get Ruby ready for the project.

 If you aren’t sure how to start your terminal program or IRB,
check out the beginning of Project 1.

Knowing How Letters and Words
Differ from Numbers

Programming languages keep track of the different kinds of data that you
may want to work with in a program. For each type of data, the language
will often provide common and unique capabilities for manipulating that
data.

In Ruby, numbers are a type of data. As you saw in Project 1, you can do
a variety of things with numbers, including performing the common
arithmetic operations on them.

Letters, also know as characters, are another type of data in Ruby. Ruby
can work with individual characters or collections of characters (like
words or sentences). Ruby, like many other programming languages,
calls these collections strings.

Characters, and strings that contain characters, can represent more than
the standard alphabet (A to Z). Characters can be any of the visible
symbols on your keyboard, and many that aren’t directly visible
(including things like spaces, tabs, and other special symbols).

This can get confusing, because that means that the character “3” and the
number 3 look exactly the same. How does Ruby tell them apart?

You may have noticed that I snuck in something in that last paragraph:
quotation marks! Ruby remembers that I used quotation marks when it
repeats its results:

2.2.2 :004 > "3"

 => "3"

2.2.2 :005 > 3

 => 3

In Ruby, if I want to refer to a string of characters, no matter what they
are, I put them between quotation marks. If I mean an actual number, I
just write the digits of that number without quotation marks. Try this:

2.2.2 :001 > "hello"

 => "hello"

2.2.2 :002 > "1000"

 => "1000"

2.2.2 :003 > 1000

 => 1000

The first item, "hello", is a regular English word and is a string. The
second item, "1000", is a string representing one thousand. And the
third item, 1000, is an actual number.

Behind the scenes, Ruby tracks the differences between these resulting
objects and enables different kinds of powerful features depending on
the type of that data.

 In our programs, we use straight quotes (" "), and if you’re
using IRB or a programming editor like Atom, you should be okay.
If you get an error when using strings, you may be using
typographic quotes, also known as curly quotes (“ ”). This may be
because you used a word processor (like Microsoft Word) to write
code instead, and Ruby may get confused.

 Going forward, I often use the word object to refer to a
particular piece of data (like a number or string) and that data’s
different behaviors or features. Later, you’ll learn about more
complicated kinds of objects that allow you to build some really
powerful programs.

Doing Math with Words
In Project 2, you learned how to do basic arithmetic with number data. It
turns out that strings (and individual characters) have many built-in
abilities, some of which look similar to symbols that look like
arithmetic.

You can add two strings, and Ruby smashes the two strings together:
2.2.2 :006 > "hello" + "chris"

 => "hellochris"

Ruby isn’t smart enough to put a space between the greeting and your
name, but you can do that manually:

2.2.2 :007 > "hello " + "again chris"

 => "hello again chris"

 Programmers call adding two strings together concatenation (or
sometimes just catenation).

If you want to display a really excited welcome, you can use
multiplication, and the string will be repeated the number of times you
specify, like this:

2.2.2 :014 > "hello " * 5

 => "hello hello hello hello hello "

Note that you can’t combine strings and numbers, so attempting to use
the addition operator like the following leads to an error:

2.2.2 :015 > "hello number " + 5

TypeError: no implicit conversion of Fixnum into String

 from (irb):15:in `+'

 from (irb):15

 from /Users/chaupt/.rvm/rubies/ruby-2.2.2/bin/irb:11:in `<main>'

Now that we know Ruby tracks types of data, this error starts to be a
little more meaningful in that it’s called a TypeError, and it can’t
convert data automatically.

 If you aren’t sure about error messages in IRB or elsewhere in
Ruby, see Project 1 for some hints about what the errors may mean.

Doing Other Things with Strings
Besides mathlike operations, strings have many other useful functions
built in. As you get more familiar with programming, there will be times
you want to do something more complicated, and Ruby will be there to
save the day! I’ll show you a couple examples in this section.

Imagine you needed to make your greeting appear to shout. In text, you
may want to use all capital letters. But what if the variable doesn’t
already have a name in capitals? You can use a string function to solve
that problem:

2.2.2 :031 > "Chris".upcase

 => "CHRIS"

2.2.2 :032 > name = "Chris"

 => "Chris"

2.2.2 :033 > name

=> "Chris"

2.2.2 :034 > name.upcase

 => "CHRIS"

To use an object’s capabilities in Ruby, you follow the object with a
period (also known as a dot) and then the name of the function you want
to use. This technique works directly with an object like the string
example above, or with a variable.

Here you’re trying to use the upcase function to convert the string to
capital letters on the fly.

 In Ruby, an object’s programmed capabilities or functions are
known as methods. When you write code that makes an object use a
method, you’re “sending a message” to that object. I continue to
use the terms method and messages in this book.

Try this example:
2.2.2 :035 > greeting = "hello there"

 => "hello there"

2.2.2 :036 > greeting.capitalize

 => "Hello there"

If you forgot to capitalize the greeting (or perhaps weren’t sure if it was
capitalized because you got the variable from somewhere else), you can
use the string object’s capitalize method to get the job done.

 The official Ruby documentation site can be a little scary when
getting started. For now, know that it’s there and it’s free. There are
also lots and lots of free resources on the web that will help you
expand your learning beyond this book. The Ruby String
(www.ruby-doc.org/core-2.2.2/String.html) reference is just a
small part of the available documentation. If you scan over the
page, even if you don’t understand it all, you’ll see a huge number
of methods that you can use in the future.

Storing Strings in Variables
Ruby lets you store any data type in a variable, and strings are no
exception.

Here’s how to store your name in a variable:
2.2.2 :016 > name = "Chris"

 => "Chris"

To confirm it’s in there, do the following:
2.2.2 :017 > name

 => "Chris"

Create another variable for a greeting:
2.2.2 :018 > greeting = "Howdy there!"

 => "Howdy there!"

http://www.ruby-doc.org/core-2.2.2/String.html

Now use string addition to assemble a full welcome message:
2.2.2 :019 > greeting + " " + name

 => "Howdy there! Chris"

See how I actually added three things together? I used my greeting
variable, plus a string with a space in it, plus my name variable. You can
string together as many strings as you want this way.

Try changing the order or adding together other words. You can also
combine techniques to get more interesting results:

2.2.2 :024 > greeting = "hi "

 => "hi "

2.2.2 :025 > (greeting * 5) + name

 => "hi hi hi hi hi Chris"

Making Some Big Letters
Now that you’ve experienced the basics of strings, I’ll walk you through
creating some super-sized letters to print out a large “Hello” message.

I’m going to do this by building each letter from a combination of
strings that, when printed out, form the shapes of a large letter. What
does that mean?

Here’s an example. Create four variables and carefully enter the strings
for each. Note that each string is seven characters long when you count
out the empty spaces.

2.2.2 :001 > a1 = " A "

 => " A "

2.2.2 :002 > a2 = " A A "

 => " A A "

2.2.2 :003 > a3 = " AAAAA "

 => " AAAAA "

2.2.2 :004 > a4 = "A A"

 => "A A"

 Programmers call empty spaces created by pressing the spacebar
or tab key on your keyboard whitespace. When such characters are
printed out on paper, nothing is displayed in that spot and you just
see the white color of the paper show through.

If you squint your eyes, you can sort of see the letter A. What happens if
you concatenate the strings together?

2.2.2 :006 > a1 + a2 + a3 + a4

 => " A A A AAAAA A A"

Nope, that isn’t it. Now it’s just a long, strange collection of A’s. You
need to make each string print out on its own line, one on top of the
other.

Ruby gives you a special character that means “go to the next line” (also
known as new line or carriage return). To do this, you use the string
"\n".

You can do this manually:
2.2.2 :007 > a1 + "\n" + a2 + "\n" + a3 + "\n" + a4

 => " A \n A A \n AAAAA \nA A"

But that isn’t any better? What’s going on?

Ruby is showing the results of a combined string, but it isn’t really
displaying it the way you want. To get Ruby to actually interpret the
special symbols, you need to use a new Ruby command called puts
(short for put string). Put the string in a variable and use puts to print it
out:

2.2.2 :009 > big_a = a1 + "\n" + a2 + "\n" + a3 + "\n" + a4

 => " A \n A A \n AAAAA \nA A"

2.2.2 :010 > puts big_a

 A

 A A

 AAAAA

A A

 => nil

Success! That looks much better. Before I move on to creating the letters
we need, let me show you a couple of ways to use Ruby to make
programming with strings easier.

An easy way to combine words
You can add together your variables and new line symbols as you did
above, but Ruby has a number of shortcuts for merging strings.

The first is called by a really fancy term: string interpolation. Don’t
worry about that for now — just check out how you combine strings:

2.2.2 :011 > big_a = "#{a1}\n#{a2}\n#{a3}\n#{a4}"

 => " A \n A A \n AAAAA \nA A"

2.2.2 :012 > puts big_a

 A

 A A

 AAAAA

A A

 => nil

Instead of using the addition operator, you create one big string with
double quotes, and use #{} inside that string. That special combination
of symbols means that any variable inside the curly brackets will have its
value put in that location of the string.

In this example, you took the variables a1, a2, a3, and a4 and had their
values automatically placed inside the new string. Because you included
the newline character, too, the resulting string ends up being exactly like
the longer sequence of addition operators you used.

 Why use the string interpolation approach? Mainly, because it
saves typing. You’ll see it all the time as you read other Ruby code.
In this book, I use it almost all the time when you need to combine
data within a string.

An advanced way to combine strings together
But wait, there is always another way to do things in Ruby. Ruby has a
type of data called an array. I’ll share more about arrays in later projects.

For now, think of an array like a special storage box with multiple
compartments. You can put a different object in each compartment and
separately retrieve those objects.

After numbers and strings, arrays are perhaps one of the most common
data types you’ll encounter when programming. You’ll use arrays in
almost all the future projects in this book.

Ruby represents arrays using square brackets like this:
2.2.2 :013 > big_a_array = [a1, a2, a3, a4]

 => [" A ", " A A ", " AAAAA ", "A A"]

In this example, you assign the array to a new variable called
big_a_array and put the separate a1, a2, a3, and a4 variables into
the array.

The cool thing is that if you print out the array with puts, Ruby does
the right thing automatically:

2.2.2 :014 > puts big_a_array

 A

 A A

 AAAAA

A A

 => nil

This technique saves even more typing!

Now you have all the tools you need to display a big HELLO!

Creating the letter H
Start by creating the string parts for the big letter H:

1. Create the first h1 variable. This time, use nine characters for the
total size of the string. In this step, there will be seven spaces
between the two H’s:

2.2.2 :015 > h1 = "H H"

 => "H H"

2. Create the h2 and h3 variables, which are identical to Step 1:
2.2.2 :017 > h2 = "H H"

 => "H H"

2.2.2 :018 > h3 = "H H"

 => "H H"

3. Check that any of your variables are the right size by using the string
object’s length method to print out its number of characters:

2.2.2 :019 > h3.length

 => 9

4. Create the h4 variable, which is the middle of the letter H:
2.2.2 :020 > h4 = "HHHHHHHHH"

 => "HHHHHHHHH"

Did you notice that you repeated yourself a lot for h2 and h3? The
letter H is interesting because the top and bottom parts of the letter
(at least for the capital version we’re using) is the same.

 Programmers say that the two parts of the letter are
symmetric.
You can use the fact that the top and bottom are the same to save
some work.

 Programmers love to avoid typing! Look for patterns
whenever you can and find ways to let your code do extra work for
you.

5. Create h5 by assigning it the value of h1, because they look the
same:

2.2.2 :021 > h5 = h1

 => "H H"

6. Repeat Step 5 for variables h6 and h7:
2.2.2 :022 > h6 = h1

 => "H H"

2.2.2 :023 > h7 = h1

 => "H H"

7. Put all the parts of the letter into an array for storage and test it out.
Use the variable named h to hold the array:

2.2.2 :024 > h = [h1,h2,h3,h4,h5,h6,h7]

 => ["H H", "H H", "H H", "HHHHHHHHH", "H H",

"H H", "H H"]

2.2.2 :025 > puts h

H H

H H

H H

HHHHHHHHH

H H

H H

H H

 => nil

 You may be curious about that nil being returned at the end
of the last puts command. It turns out that puts is just another
method, and it doesn’t return anything. Ruby represents that lack of
value with the special nil value. You’ll come across nil often as
you learn more about programming with Ruby.

Creating the letter E
Next up is the letter E. You’ll use the same general techniques that you
just used for the letter H.

1. Create the first e1 variable. Use nine E characters for the total size
of the string:

2.2.2 :026 > e1 = "EEEEEEEEE"

 => "EEEEEEEEE"

2. Create the next variable, e2. This one is a little tricky, because for
the vertical part of the letter E, you need to make sure that you
account for both the visible part of the letter and the whitespace:

2.2.2 :027 > e2 = "E "

 => "E "

3. The letter E is pretty repetitive and uses one or the other of the two
parts you’ve already created. Using the timesaving technique you
learned for the previous letter, make the e3 variable the same as e2:

2.2.2 :028 > e3 = e2

 => "E "

4. The fourth variable, e4, will store the middle horizontal part of the
letter. For this project, make it the same as the top part:

2.2.2 :029 > e4 = e1

 => "EEEEEEEEE"

5. Time for some more whitespace, so make the next two variables
store the same value as e2:

2.2.2 :030 > e5 = e2

 => "E "

2.2.2 :031 > e6 = e2

 => "E "

6. Now, create e7 to hold the bottom of the letter:
2.2.2 :032 > e7 = e1

 => "EEEEEEEEE"

7. Store the separate variables in an array and assign that to the variable
e. Test it to make sure that it looks right:

2.2.2 :034 > e = [e1,e2,e3,e4,e5,e6,e7]

 => ["EEEEEEEEE", "E ", "E ", "EEEEEEEEE", "E ",

"E ", "EEEEEEEEE"]

2.2.2 :035 > puts e

EEEEEEEEE

E

E

EEEEEEEEE

E

E

EEEEEEEEE

 => nil

Creating the letter L
The letter L is even easier, because it’s really only made of two unique
parts. I’ll show you a shortcut:

1. Create the first variable l1 (that’s the lowercase letter L and the
numeral for one):

2.2.2 :036 > l1 = "L "

 => "L "

2. Almost all of the letter L is made up of the same pattern as what we
stored in l1, so you’ll reuse that variable when you store it in an
array. Instead, skip ahead to the seventh piece of the shape and create
variable l7:

2.2.2 :037 > l7 = "LLLLLLLLL"

 => "LLLLLLLLL"

3. Now, create the l array by repeating the l1 variable six times. Once
again, you end up saving a lot of typing!

2.2.2 :038 > l = [l1,l1,l1,l1,l1,l1,l7]

 => ["L ", "L ", "L ", "L ", "L ",

"L ", "LLLLLLLLL"]

4. Test the letter to make sure everything is formatted properly:
2.2.2 :039 > puts l

L

L

L

L

L

L

LLLLLLLLL

 => nil

Creating the letter O
The last letter array that you’ll need to spell out HELLO is the letter O.
The shape of the letter O is similar to a circle or oval, and you can take
advantage of that symmetry when creating your letter parts.

1. Create variable o1 for the top of the letter:
2.2.2 :040 > o1 = " OOO "

 => " OOO "

2. Create o2:
2.2.2 :041 > o2 = " O O "

 => " O O "

3. Create o3:
2.2.2 :042 > o3 = " O O "

 => " O O "

4. Variables o4 and o5 are just repeating o3:
2.2.2 :043 > o4 = o3

 => " O O "

2.2.2 :044 > o5 = o3

 => " O O "

5. Variables o6 and o7 are the same as o2 and o1, respectively:
2.2.2 :045 > o6 = o2

 => " O O "

2.2.2 :046 > o7 = o1

 => " OOO "

6. Create the letter O array and test:
2.2.2 :047 > o = [o1,o2,o3,o4,o5,o6,o7]

 => [" OOO ", " O O ", " O O ", " O O ", " O O ",

" O O ", " OOO "]

2.2.2 :048 > puts o

 OOO

 O O

 O O

 O O

 O O

 O O

 OOO

 => nil

Combining the letters into a word
Now it’s time to assemble HELLO. The first thing that comes to mind is
to just use puts to print each array. puts can take a sequence of
variables separated by commas.

Try printing your letters:
2.2.2 :049 > puts h, e, l, l, o

H H

H H

H H

HHHHHHHHH

H H

H H

H H

EEEEEEEEE

E

E

EEEEEEEEE

E

E

EEEEEEEEE

L

L

L

L

L

L

LLLLLLLLL

L

L

L

L

L

L

LLLLLLLLL

 OOO

 O O

 O O

 O O

 O O

 O O

 OOO

 => nil

That sort of works, but it prints vertically. It would be nice if the letters
were arranged horizontally to make it easy to read the word HELLO.

I’m going to show you something more advanced that takes advantage
of the fact that our letters are all stored in arrays. Remember how I
mentioned that arrays are like boxes with compartments? Well, it turns
out you can get the contents of any of those contents by asking for the
compartment number like this:

2.2.2 :050 > h[0]

 => "H H"

2.2.2 :051 > h[1]

 => "H H"

Here, you’re providing the number of the compartment in square
brackets next to the name of the array variable — h, in this case.

 Notice that I started with the number zero in that first example:
h[0]. Many programming languages, Ruby included, start
counting at zero instead of one. As you becoming a more
experienced programmer, you’ll start to automatically count this
way, too!

 I’ve been calling the different storage areas of the array
compartments. That isn’t a technical term — it’s just a way to think
about it. Programmers call the different storage areas of an array
slots or cells, among other terms. I usually use the term slots in the
rest of this book.

Follow these steps to get the letters to print horizontally:

1. Combine the letters using string interpolation to access each array at
the same time:

2.2.2 :053 > puts "#{h[0]} #{e[0]} #{l[0]} #{l[0]} #{o[0]}"

H H EEEEEEEEE L L OOO

 => nil

You can sort of see how the letters are lining up. The problem is that
if you use puts on separate lines in IRB, it won’t look like the letter
rows all connect. You need some way of repeating that command for
each of the seven parts.

2. A more advanced technique that you’ll use a lot in later projects is
called looping. Looping is a way to have your code repeat itself a
certain number of times. In Ruby, there is a handy looping method
that you can call on numbers to count up to another number. Try this
code:

2.2.2 :055 > 0.upto(6) do |count|

2.2.2 :056 > puts h[count] + " " + e[count] + " " + l[count] + "

" + l[count] + " " + o[count]

2.2.2 :057?> end

As soon as you press Return or Enter after the end line, you should
see:

H H EEEEEEEEE L L OOO

H H E L L O O

H H E L L O O

HHHHHHHHH EEEEEEEEE L L O O

H H E L L O O

H H E L L O O

H H EEEEEEEEE LLLLLLLLL LLLLLLLLL OOO

=> 0

Success! The first line, 0.upto(6) do |count| starts the loop.
It prepares Ruby to count starting at zero, up to and including six. As
Ruby counts each number, it places the current number in the
variable named count. Ruby then proceeds to the next line, which
has your puts method. Inside of the string interpolation that
combines all the letter parts, it asks for the zeroth one first, and prints
that row. It then repeats six more times and prints each part in
sequence (a total of seven). The final end line tells Ruby that the
loop should stop there.

You’ll learn more about the power of loops in the next couple of
projects.

Trying Some Experiments
That was a lot of code! In this project, you got a rough idea of the power
of working with strings. When you use strings in combination with basic
arrays and even loops, you can create a powerful program.

To help you practice these new concepts, try some of these experiments:

Create the letters that make up your name (or any word) and print
them.

Instead of using the string concatenation operator, +, try using string
interpolation instead.
Change the letters being used to lowercase letters without re-entering
the values in each variable. Hint: Use the downcase method for a
string.

Part II
Programmers Are Lazy! Stop

Typing So Much!

In this part …
 Shapes
 Simple Adventure
 Number Guessing

 For debugging and troubleshooting tips for Ruby programs,
go to www.dummies.com/extras/rubyforkids.

http://www.dummies.com/extras/rubyforkids

Project 4
Shapes

In this project, you’ll begin to use your programmer’s editor
to write code and get into the flow of programming, testing, and
debugging your software using your terminal program.

You’ll create a simple program that can generate a couple of geometric
shapes using ASCII art to draw the outline and fill the shape with a
pattern.

You’ll also allow the user of your program to customize the output’s size
a bit by learning how to collect simple input from the user.

Organizing a New Project
Up until this project, you’ve been using Interactive Ruby (IRB) to write
and test your code. The nice thing about IRB is that you can get a feel

for what the code is going to do immediately. This works great for small
snippets of Ruby, but as you start to create more complicated programs,
and as they get longer, IRB isn’t very forgiving if you make typos or
want to easily change or save your work.

In this project, you’re going to start using Atom, the programmer’s
editor you installed in Project 1 to write and store code in files. You’ll
continue to use the terminal program to use a different Ruby command
to run and test the code stored in the files you create.

 Before each project, you’ll want to get organized by keeping all
your work for the project together in an easy-to-find place. You’ll
repeat these steps throughout this book, so now is a good time to
get comfortable using the combination of your terminal program
and your code editor.

 If you haven’t created a development folder already, refer to
“Creating a development folder” in Project 2 for information on
how to do that.

Follow these steps to create Project 4’s folder:

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project04

3. Move in to the new directory:
$ cd project04

4. Start Atom by double-clicking its icon.
When Atom starts for the first time, it displays the Welcome tab and
the Welcome Guide tab. You won’t need these tabs during this
project.

5. Click the Welcome Guide tab and choose File ⇒ Close Tab to close
the Welcome Guide tab (see Figure 4-1). Repeat the process for the
Welcome tab.

6. If you don’t have one tab remaining called Untitled, choose File ⇒ 
New File to get a new file started (see Figure 4-2).

7. Even before you’ve written any code, save the file one time to make
sure that it gets placed in the proper folder. To do that, choose File ⇒ 
Save. A standard Save dialog box appears. Navigate to your
development folder in your home directory and then choose the
project04 folder (see Figure 4-3). Name your file shapes.rb
and click Save.

8. Switch over to your terminal program and list out the files in the
project04 folder. On Mac, the command is:

$ ls

On Windows, the command is:
C:\Users\chris\development\project04> dir

 Your prompt on Mac or Windows may look a little different
than mine. That doesn’t matter as long as you type the command
correctly!
You should see shapes.rb. If not, make sure that you saved the
file in the correct folder. Go back to Atom, choose File ⇒ Save As,
and navigate to the correct folder.

Figure 4-1: Close the Welcome Guide tab.

Figure 4-2: Use the New File menu option to create an empty Ruby file.

Figure 4-3: Use the Save dialog box to save your work.

Now you’re ready to write some code!

Printing versus Using puts
The first code you’ll write will print out a message and then gather some
input from your user.

When you were using IRB in earlier projects, you saw a couple of
examples of using Ruby’s built-in puts method, which prints a string
for you. You’ll use puts and another built-in output oriented method
called print for the Shapes project. The print method is exactly like
puts, but instead of automatically adding a newline character at the end
of the string, print leaves the cursor on the same line at the end of the
string.

 A newline character (sometimes called a carriage return, line
feed, or line separator) is an invisible character that instructs the
terminal to move the current position at which it’s displaying
characters down one line and all the way back to the left (by
default). Newline, carriage return, and line feed are actually three
different things, but I’ll pretend they’re the same for this book and
use the term newline.

 The cursor in the terminal is the current position at which the
terminal is printing out characters or waiting for you to type. In
your terminal program, the cursor’s position is usually drawn as an
underscore or block character. It may be blinking, too.

Follow these steps to start your program:

1. Switch to your Atom editor and make sure that you’re looking at
your new shapes.rb window. It should be blank.

2. Enter a comment at the top of the file as a reminder of what the
program is going to do:

#

Ruby For Kids Project 4: Shapes

Programmed By: Chris Haupt

Experiment with drawing ASCII art shapes using code.

#

 Comments are labels, descriptions, explanations, or notes
you put in your code to be read by you and other humans. Ruby
doesn’t try to interpret or run comments. You let Ruby know that a
line is a comment by adding the hash character (#) before your
comment starts. Sometimes it’s useful to “comment out” code that
isn’t working or that you don’t need but also don’t want to delete

from the file. You simply put a comment character in front of the
lines you want to hide from Ruby.

3. Display a message to your user that will show up when the program
is run:

puts "Welcome to Shapes"

print "How big do you want your shape? "

Getting Input with gets
The shapes program will need some information from the program’s
user. You could just write code that makes the shape the same size every
time the program is run, but that wouldn’t be very much fun.

 Programmers call setting a variable to a single value that can’t
be changed hard coding. Hard-coded variables are sometimes
necessary, but they aren’t flexible. It’s better when you can get
input from your user to make the value dynamic (changeable on-
the-fly) instead.

Ruby provides a number of ways to get input from the user. You’ll use
gets here. The gets method is basically the opposite of puts —
instead of printing stuff, it gathers what the user types for you.

1. Right after the print statement in the last section, collect the user’s
input into a variable (shape_size):

print "How big do you want your shape? "

shape_size = gets

2. While you’re here, gather some other input from the user that will be
used to change the way the ASCII shape is drawn with different
patterns:

print "Outside letter: "

outside_letter = gets

print "Inside letter: "

inside_letter = gets

3. Add some final lines to repeat back what the user entered before you
start working on drawing the shape:

puts "About to draw a shape #{shape_size} big"

puts "using #{outside_letter} for the edge"

puts "and #{inside_letter} for the inside"

Now you’re ready to try out the first part of your program.

Running the Program on the
Command Line

Before you add more code, it’s a really good idea to save and run your
program. Programmers follow a pretty common practice of writing some
code, running and testing the code, fixing bugs, and when everything is
okay, writing some more new code.

By getting into this habit, you can check your own work and catch
problems early on. It’s much easier to find bugs in your code soon after
you wrote the code that introduced the unexpected behavior.

1. Save your shapes.rb file by choosing File ⇒ Save.

2. Switch to your terminal program and make sure that you’re still in
the same directory as the shapes.rb file. Use the ls command
(for Mac) or dir command (for Windows).

3. Run the program with Ruby by entering the following:
$ ruby shapes.rb

You should first see the welcome message you wrote, and then the
cursor sitting waiting next to the first prompt (see Figure 4-4).

Figure 4-4: The shapes programming waiting for your input.

 If your program isn’t running, or you see an error message of
some kind, review your code in Atom and make sure you don’t
have any typos. Go back and review Project 2 and the section on
figuring out what to do when things go wrong.

Chomping the newline away
Did you notice how the formatting of the output was a little strange? You probably
expected the final message to be on three lines, but instead it was on six (as shown in
the figure here). What happened?

You just discovered an interesting side effect of how gets works. When it listens for
your input, it reads everything you type. Everything! That means that when you pressed
Return or Enter at the end of your typing, an invisible newline character was also read
and stored by gets. The variable holding your data values is also storing something
you don’t really want.

How do you get rid of it? The good news is that Ruby has all kinds of useful methods
available to you. In fact, Ruby has one specifically for this newline problem called
chomp. chomp is a useful method that comes with Ruby’s string types, and it removes
ending newline characters. Here’s how it works:

1. Change the middle of your code with the prompts and gets code to look like
this:

print "How big do you want your shape? "

shape_size = gets

shape_size = shape_size.chomp

print "Outside letter: "

outside_letter = gets

outside_letter = outside_letter.chomp

print "Inside letter: "

inside_letter = gets

inside_letter = inside_letter.chomp

2. Save changes by choosing File ⇒ Save

3. Rerun your program and compare the results in the following figure to your
own.

In the new code, Ruby reads your values into your variables and then immediately
converts the variables’ contents to remove the newline character.

Creating Code to Draw a Rectangle
Now it’s time to create a rectangle on the screen using ASCII art. From
the first part of the program, you’ve read in the user’s preference for
what size and letters to use to draw the shape, but how will the drawing
part of the program work?

If you were going to draw a rectangle on paper that was filled in with a
pattern, what would you need to do? First, you might draw the outline of
the rectangle, and then you might color in the inside.

But for your program here, you’ll want to instead draw the shape from
the top to the bottom, one line at a time. How would you describe how to
do that? Like this:

1. Draw the top of the rectangle using the outside (or edge) pattern for
the first line.

2. For each of the lines that make up the sides and inside of the
rectangle, draw the left edge, all of the middle, and then the right
edge.
Repeat this step until you need to draw the bottom of the rectangle.

3. Draw the bottom of the rectangle exactly as you drew the top edge.

What I just described is an algorithm for drawing rectangles line by line
from top to bottom.

 An algorithm is just a sequence of steps you follow to
accomplish some task or calculation. In this case, you’ve written
out the sequence to draw a rectangle by scanning across from top to
bottom, line by line.

A first version of the rectangle
The Ruby version of your algorithm reads a lot like the English version I
just wrote out:

1. Below the last line of the program, set up two variables that make it
easier to see what’s going on. You’ll use the user’s choice for shape
size as both the height and width of the figure you’re going to draw:

height = shape_size

width = shape_size

2. You’ll be drawing the rectangle line by line, so set up a loop that will
repeat your code for each row (so, that means you need your drawing

code to run height times):
1.upto(height) do |row|

Drawing code goes here

end

 Loops are a powerful way to repeat code some number of
times (or even an infinite number of times)! Ruby has several ways
to program a loop. I’ll show you more in future projects. The upto
method is an easy way to count from a starting number to a final
number. For the rectangle, you want to count starting at 1 for the first
row and finishing counting when you reach the number represented
by height.

3. Now, for the algorithm to work, you need to check to see what row
you want the program to print. You have three cases: the first row,
the middle rows, and the last row. Add in the case for the first row in
the middle of your loop:

if row == 1

 puts outside_letter * width

end

If the row variable is equal to one, the program will use puts to
print your choice for the outside_letter a number of times
equal to width (you’re reusing the technique you learned in Project
3 of multiplying a string by a number).

 You use if statements when you want to see if some
condition is true or false. The symbol == in Ruby asks the
question: “Is the thing on the left side equal to the thing on the right
side of the == symbol?” If it is, then Ruby will run the lines of code
up until either another condition or an end keyword.

4. Next, add in a check to see if this is the last row. The elsif
keyword starts another condition test, and you place it right before
the previous end keyword. That isn’t a spelling mistake, by the way.

Ruby just has a funny way of saying “else if”! The whole thing will
look like this:

if row == 1

 puts outside_letter * width

elsif row == height

 puts outside_letter * width

end

5. Finally, you need to handle the display of all the rows in the middle,
so add one last condition using Ruby’s else keyword. This code
goes right before the end keyword. Here’s the whole block of Ruby:

if row == 1

 puts outside_letter * width

elsif row == height

 puts outside_letter * width

else

 middle = inside_letter * (width - 2)

 puts "#{outside_letter}#{middle}#{outside_letter}"

end

The middle case looks complicated. What’s it doing? Well, according
to your algorithm, it needs to draw the left and right edges and
everything in the middle.
The middle variable is calculating the string that represents the
center of the rectangle. If you take away one for the left edge
character and one for the right edge character, the final width of the
middle is the full width minus two characters.
The final puts statement uses the string processing you learned
earlier to create the combined row.

6. Run your program and see if you have any errors. Do you get
something like Figure 4-5? If you see an error that says something
like comparison of Fixnum with String failed, this
means Ruby had a hard time using the value inside shape_size as
a number.
Why is that a problem if you typed in a number? Well, gets reads
in your input, but it reads all the characters you type as a string. You
have to help Ruby convert the string to a number.

7. Change the two lines where you set the height and width
variables to use the to_i method, which means convert this
variable’s contents into an integer (number):

height = shape_size.to_i

width = shape_size.to_i

Run your code again. Success (see Figure 4-6)!

Figure 4-5: Ruby isn’t sure how to use strings for numbers.

Figure 4-6: Is this the world’s most exciting rectangle?

A reusable rectangle

What if you wanted to draw two rectangles in a row? You could just
copy the loop code and paste that code multiple times. Instead, you’re
going to put the rectangle code into your very first method.

 Methods (also called functions) give you a way of storing and
naming a piece of code and then using it later, possibly many times.
You can pass different variables in to a method to change its
behavior. You call variables passed to a method the method’s
arguments (no, not the shouting kind!).

Follow these steps to create a reusable method that will draw rectangles:

1. Start by adding a definition for our new rectangle method. Put this
code at the top of your file right under the last comment:

def rectangle(height, width, outside_letter, inside_letter)

 # The rectangle code will go here

end

The keyword def signals to Ruby that you’re about to provide the
definition of a method. def is followed by the name of the method
(rectangle) and then a list of zero or more arguments — each
argument being the name of a variable you can use inside of the
method. You next provide the code that makes up the method’s
functionality and mark the end of the method with the keyword end.

2. Select the entire rectangle drawing loop code, choose Edit ⇒ Cut,
and then choose Edit ⇒ Paste to paste that code inside of the method
in place of the comment shown in Step 1:

def rectangle(height, width, outside_letter, inside_letter)

 1.upto(height) do |row|

 if row == 1

 puts outside_letter * width

 elsif row == height

 puts outside_letter * width

 else

 middle = inside_letter * (width - 2)

 puts "#{outside_letter}#{middle}#{outside_letter}"

 end

 end

end

3. Now you can use the method you’ve created to draw a rectangle. To
do this, you can call the method (in Ruby, this is also referred to as
sending a message). At the bottom of your source code, after the
lines that set the width and height variables, write this code:

rectangle(height, width, outside_letter, inside_letter)

 Note that the variable names you use to call a method don’t
have to be named the same thing as what the arguments’ names are.
In this project, just to keep it simpler, they are the same. In later
projects, the names won’t always match. However, the position of
the variables are important, and the first value you provide when
calling a method goes into the first argument, the second into the
second, and so on.

4. Run the program. It should look exactly like Figure 4-6 again.
5. Copy and paste the rectangle method call so you have two exact

copies of that line, and run the program again. What happens?

 Putting your code into methods allows you to easily reuse the
code and makes it easier to change it or fix bugs. Imagine if you
had pasted the long set of code for drawing a rectangle, twice, three
times, or many, many times. (Try it!) This works, but if you have to
make a small change to your code, you have to hunt down every
version wherever it might be. With a method, you’d only have to
fix it once!

Creating Code to Draw a Triangle
Now that you know about methods, you’ll create a method that can draw
a triangle. First, let’s think about how this might work.

 The triangle you’ll draw will look like an isosceles triangle,
where two sides will be the same size and the base will appear
slightly smaller.

Unlike the rectangle, where each row was easy to format, for the triangle
you need to make each row look different. The first row will be the top
of the triangle (the pointy end). The last row will be the base of the
triangle and will be the width that the user specifies.

I’ll show you the code. See if you can figure out what it’s doing.

1. Start a new method called triangle right after the end keyword
of the rectangle method:

Above here is the end of the rectangle method

def triangle(height, outside_letter, inside_letter)

Code for the triangle will go here

end

Note that you’ll be using the height variable for both the height
and the width inside of this method.

2. Create a loop that will repeat height times. Put this code inside of
the triangle method:

1.upto(height) do |row|

Drawing code goes here in the next step

end

3. For a triangle, you need to draw whitespace (empty areas) for each
row that doesn’t take up the entire width that you’re drawing. As you
draw each row, you’ll be drawing less whitespace. Add this line as
the first line of your loop:

print ' ' * (height - row)

The math here will calculate a smaller number of spaces as the
number of the row gets larger (remember, you’re counting row 1 at
the top, and row will equal the height at the bottom).

4. Next, you have to handle the case for the first row, which is the top
of the triangle:

if row == 1

 puts "#{outside_letter * 2}"

end

Step 4’s code goes immediately after Step 3.
5. Handle the last row case next by adding an elsif condition.

if row == 1

 puts "#{outside_letter * 2}"

elsif row == height

 puts outside_letter * height * 2

end

 I’m showing you the entire condition here. You can just type
in the elsif part if you like.

6. Now add the code for the slightly more complicated case of handling
all the middle rows. For this last part of the condition, you’ll use an
else clause. See the entire condition here:

if row == 1

 puts "#{outside_letter * 2}"

elsif row == height

 puts outside_letter * height * 2

else

 middle = inside_letter * (row - 2)

 print "#{outside_letter}#{middle}#{inside_letter}"

 puts "#{inside_letter}#{middle}#{outside_letter}"

end

The code looks a little strange. Why is there both a print and a
puts statement?

7. It’s time to display the triangle. At the very bottom of the code file,
beneath the rectangle method call, add a triangle method
call:

triangle(height, outside_letter, inside_letter)

8. Save your program file, switch to your terminal, and run the
program. You should see something like Figure 4-7.

Figure 4-7: A rectangle balanced on a triangle.

Drawing a House Using Your Two
Shapes

You can play around with getting different final results by simply
changing the order and number of times you call each method. In
addition, by changing the values that you pass to the method’s
arguments, you can get even more combinations of shapes.

Let’s try drawing a simple house:

1. Inside of your program, change your method calls so that the
triangle method is called first, followed by the rectangle
method:

triangle(height, outside_letter, inside_letter)

rectangle(height, width, outside_letter, inside_letter)

2. Save and run your program, and you should get something similar to
Figure 4-8.

3. The main part of the house isn’t as wide as the base of your triangle,
so it looks like the roof might fall off! How would you fix that? It
seems like the rectangle should use twice the width that it is
currently using, so you should change that. Multiple the width for the
rectangle by 2:

triangle(height, outside_letter, inside_letter)

rectangle(height, width * 2, outside_letter, inside_letter)

Whoa! Yes you can do simple math inside of a method call’s
argument list. Ruby will calculate the value for twice the width
before it calls the method for you.

4. Save and run your program. Now how does the house look? It should
look like Figure 4-9.

Figure 4-8: Not quite a house.

Figure 4-9: Your house.

Testing Your Program
When you get more comfortable with programming, you get into a
regular rhythm of working. First, you think about the problem you want
to solve. Then you write some code that you think will work. Finally,
you save and run your program to see if you were right.

This cycle of thinking, coding, and testing is repeated over and over
again. This is exactly how professional programmers work. If during
your testing you find a bug or want to make a change, you simply start
the cycle again: Think about how to fix it, code the fix, and test again!

In future projects, I’ll encourage you to save frequently and try running
your program, even if it isn’t quite done yet. You may catch errors when
you do this. But catching problems early on when you first write new
code is the easiest time to fix them.

Trying Some Experiments

You’ve learned a lot of new things in this project. You used some of the
string tricks from earlier projects, and added more conditions, loops, and
now methods to your toolbox. These basic building blocks are enough to
write any program you can imagine. Later projects in this book show
you more ways to use these beginning concepts, sometimes with
shortcuts, and sometimes as ways to make writing and maintaining your
code easier.

With your shape program, try a few experiments.

How would you draw three triangles, one on top another using a
loop?
What if you wanted to draw an upside-down triangle? Create a
method called flipped_triangle, and have it draw with the
pointed end on the bottom.
You may have noticed that the triangle code actually draws two
triangles back to back. Experiment with the code to see if you can
separate out and draw only one of them (a right triangle for you
geometry students out there).
Can you come up with a new shape method?

Project 5
Simple Adventure

For this project, you build a turn-based text adventure game
that changes every time you play it. Your player will be trapped inside a
randomly generated cavern, be able to find treasure, and occasionally
have to defeat a monster.

This project is more involved than your prior projects, but it takes
advantage of everything you’ve learned up until now. You’ll get more
experience breaking up code into methods that can be reused throughout
your program. You’ll also see that methods can be used to hide
complicated lines of Ruby to make reading your overall code easier.

Organizing a New Project

In this project, you continue to use Atom to create and edit your source
code file. You use the terminal program to run and play the Adventure
game.

Project 5 will be stored in one Ruby file.

 If you haven’t created a development folder already, refer to
Project 2 for information on how to do that.

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project05

3. Move into the new directory:
$ cd project05

4. Start Atom by double-clicking its icon.
5. Create a new source code file by choosing File ⇒ New File.
6. Save it by choosing File ⇒ Save, and store it in your project05

directory. Call the file adventure.rb.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section in Project 4. It provides more
details for each step.

Now you’re ready to create your adventure game.

Planning the Project
Before you write one line of code, let’s think about the steps that this
program needs to take to create an adventure game. It’s a turn-based, text
adventure game, so everything will happen in the terminal window. But
what exactly will it do?

First, the program needs to set up variables that keep track of the player.
For this game, you’ll track the player’s health, how much treasure she
found, what room she is in, and whether she escaped yet from the
cavern.

The program should welcome the player, tell her what’s going on, and
perhaps tell her how to play.

Each turn, the program should

Check to see whether the player is still alive and hasn’t escaped.
Check to see if a monster has shown up, and if so, let the monster
and the player battle it out if desired.
Allow the player to look for treasure.
Let the player leave the room and go to another room.

The program should

Make sure that different rooms have unique descriptions.
Know how to randomly decide if monsters show up.
Determine randomly whether the player found treasure.

When the player takes too much damage or escapes the cavern, the
program should display an appropriate final message.

Wow, that’s a lot! In this project, you’ll break this down into small bits
of Ruby and see that it isn’t actually too hard to create such a feature-
rich game.

Now it’s time to jump in and create some code!

Looking at the Program Skeleton
The first thing you’re going to do is to create some of the main parts of
the program that manage the game. Later, you’ll fill this all in with the
code that creates the cool features you planned out earlier.

1. In Atom, add a short comment at the top of your adventure.rb
Ruby file to describe what the project is about.
I used this, but you can write whatever you like:

#

Ruby For Kids Project 5: Simple Adventure

Programmed By: Chris Haupt

A random text adventure game.

#

2. Next, set up some starting values for variables you’ll use to run the
game.
I’ll explain what each of these variables is as we use them, but they
should be mostly self-explanatory:

number_of_rooms_explored = 1

treasure_count = 0

damage_points = 5

escaped = false

monster = false

current_room = ""

3. Write the code that will introduce the player to the game, and put it
below the comments:

puts "You are trapped in the dungeon. Collect treasure and try to

escape"

puts "before an evil monster gets you!"

puts "To play, type one of the command choices on each turn."

puts ""

 When this book is printed, some lines will be wrapped
around to look like two lines. You should make the strings you see
here and elsewhere all on one line in your code editor.

4. You’ll be using a special loop to run the main part of the game, so for
now, add a placeholder for that code — you’ll fill in the details later:

while damage_points > 0 and not escaped do

 # Game code will go here

end

 The loop itself is a while loop. The while loop takes a
condition that’s very similar to the condition used in an if
statement. The loop will continue while the condition is true. In this
code, you’re testing whether the player’s damage_points
variable is still greater than zero (he’s alive) and if he hasn’t escaped
from the dungeon (the escaped variable is set to false).

5. Write some code that will display the final results of the game when
the player has either escaped or met an untimely end. Put this code
immediately after the end keyword from the while loop:

if damage_points > 0

 puts "You escaped!"

 puts "You explored #{number_of_rooms_explored} rooms"

 puts "and found #{treasure_count} treasures."

else

 puts "OH NO! You didn't make it out!"

 puts "You explored #{number_of_rooms_explored} rooms"

 puts "before meeting your doom."

end

The condition at the end of the code is used to select one of two final
messages for the player. If the player is still healthy (the
damage_points variable is greater than zero), the player must
have escaped, so you print out a successful message. If the player’s
damage is less than or equal to zero, he hasn’t done so well.

6. Now is a good time to test your code to see what happens. You might
even find a typo or two. Save the program and switch over to your
terminal and run the project:

$ ruby adventure.rb

What happens? Do you get any errors? If so, check your typing and
use the debugging hints found earlier in the book. Does your
program just freeze after printing out the initial message (even if you
type something)? That’s what mine does. Why is that? Press Ctrl+C
to force the project to stop (see Figure 5-1).

Figure 5-1: If the program appears stuck, press Ctrl+C to stop it.

 What you just found is called an infinite loop, which is any kind
of code that continuously repeats itself without ever ending. In the
case of your current code, the while loop is constantly checking to
see if either of the two parts of the condition are false. Because you
haven’t written the code to change these variables, Ruby will just
keep trying forever.

Creating the Main Game Loop
For the adventure project, you’re going to start creating the main game
loop first, where the rules and input and output of the game are. Then
you’ll create small methods to implement the functionality you need to
run the game. You’ll program as if these methods already exist and use
Ruby to help fill in the missing functionality.

 There are a number of ways to write code when implementing a
complicated project. Two common ones are top-down and bottom-
up programming. In this project, you’re starting at the top, building
the bigger concepts first, and assuming you’ll fill in the lower-level
methods that you need. You could also write the lower-level simple
methods first, and then use them as you build them up into the
bigger pieces. That would be bottom-up development.

Creating the room description and actions
First, you’ll need to let the player know what’s going on during that turn
and describe what the player can do.

1. Each turn, the player will have a number of options of what to do on
her turn. You’ll use the actions variable to hold these choices in
an array and reset the array each time you run through the game
engine’s loop. You’ll use the actions array to build a little menu
for the user shortly. Put the following code inside the while loop:

actions = ["m - move", "s - search"]

2. Print out what room number the player is currently in using the count
you’re storing in number_of_rooms_explored:

puts "Room number #{number_of_rooms_explored}"

3. You’ll use a method you write later to generate a new room in the
cavern. For now, just print out the empty variable you set up earlier:

puts current_room

4. Now check to see whether there is a monster in the room and, if so,
print out a message and add another action for the player (the ability
to fight the monster!):

if monster

 puts "Oh no! An evil monster is in here with you!"

 actions << "f - fight"

end

5. Finally, display the actions menu for the player so she knows what
she can do:

print "What do you do? (#{actions.join(', ')}): "

The menu will be the last thing the player sees before you ask her for
her game command. The print statement will leave the cursor on
the same line and show a handy little menu to remind the player of
her choices.

 You’re using a nice little method that is provided to you by
Ruby’s array object called join. The join method will take all the
items inside of the array and connect them together into one string,
using the parameter you provide as the connecting string. In this
case, all the strings inside the array are joined together with commas.

 Be careful with all those symbols in that string. This is an
easy place to make a typo.

6. Save your code and test. You’ll still have an infinite loop, but this
time you can see your output fly by over and over again (see Figure
5-2). Use Ctrl+C to stop the program.

Figure 5-2: An infinite number of messages.

Responding to player actions
Now it’s time to get the player’s command choice and have the game
respond to it.

1. Collect the player’s command choice by using the gets method,
and then see if a monster is present and if it takes action against the
player. Continue to place the following code inside of the while
loop after the previous section’s code:

player_action = gets.chomp

if monster and monster_attack?

 damage_points = damage_points - 1

 puts "OUCH, the monster bit you!"

end

You’re using the chomp method here because you don’t want the
trailing new line character that the gets method returns.

2. The player will enter her commands by typing a single letter that is
shorthand for the action. If the player wants to move out of the
current room of the cavern, she’ll use the letter M. Create a condition
to check that and add the code you’ll use for the move command:

if player_action == "m"

 current_room = create_room

 number_of_rooms_explored = number_of_rooms_explored + 1

 monster = has_monster?

 escaped = has_escaped?

That’s a lot of stuff. What’s going on? When the player moves, a
number of things happen at the same time. First, you need to
generate a new room to explore. You’ll use a method that you create
later called create_room and save the results into the
current_room variable. Next, you’ll add one to the
number_of_rooms_explored variable. Then you’ll check to
see if the new room has a monster in it by using your
has_monster? method. Finally, you’ll also check to see if by

chance the player has found the exit and escaped using the method
has_escaped?.

 Ruby allows you to use the ? and the ! punctuation marks in
method names. Often, the question mark is used in a name to signal
to the programmer that the method will return a Boolean value,
which is either true or false.

3. If the player chooses to search the room, she’ll use the letter S.
Create the condition and code that handles searching:

elsif player_action == "s"

 if has_treasure?

 puts "You found #{treasure}!"

 treasure_count = treasure_count + 1

 else

 puts "You look, but don't find anything."

 end

 # when you look for treasure,

 # you might attract another monster!

 if not monster

 monster = has_monster?

 end

You’re using a few new methods that you’ll create in this case. First,
you check to see if the room has_treasure? and depending on
the answer, you’ll print out the correct message. Regardless of
whether the player found treasure, spending more time in the room
searching around may attract the attention of a new monster, so you
check to see if the room already has a monster!

 You’ve probably noticed some conditions have the keyword
not in them. When used in front of a Boolean value, it reverses its
meaning. That is, not true means false and vice versa. Most of
the conditions you write in this book can be read out loud and will
usually make sense.

4. The last command you’ll support is the fight command represented
by the letter F. Add a condition to support it now:

elsif player_action == "f"

 if defeat_monster?

 monster = false

 puts "You defeated the scary monster!"

 else

 puts "You attack and MISS!!!"

 end

Here you use a new method called defeat_monster? that will
check to see whether the player wins in a fight against the monster.
In either case, you print out a message to let the player know what
happened.

5. Handle the case if the player enters a command that you don’t
support:

else

 puts "I don't know how to do that!"

end

puts ""

The final puts at the end just makes everything look a little better.

6. Save and run again. This time, you get a menu and can actually do
something! Of course, as soon as you enter a command, what
happens? Ruby let’s you know that you have some work to do (see
Figure 5-3). Note that the error you see may be different depending
on what choice you make in the menu. That’s okay!

Figure 5-3: The player can now see a menu of choices, but Ruby shows an error.

Creating Game Rules Methods
When Ruby displayed an error at the end of the last section, it was
telling you that a method was missing. You’ll now start to fix this
problem by coding up the methods that contain the “rules” of your game.

The main game loop is already a big piece of code. As you gain
experience, you’ll figure out ways to shrink it down by moving some of
the code into other methods.

By keeping methods small, it’s easier to test them, and it’s easier to
understand what’s going on just by looking at them. Ruby lets you name
methods pretty much anything. By choosing names that mean something
in the context of the program you’re writing, the code can actually read
very closely to the English meaning of the words.

Adding methods needed for the move command

In this section, you’ll use Ruby to help tell you what to do in each step.

1. Run the program again and choose the M (move) action.
You should see something like Figure 5-3. Ruby is telling you it
can’t find the create_room variable or method. At this point,
Ruby can’t tell what your intention was for create_room, so it
mentions two possibilities. You want create_room to be a method
that will create a random new room description.
Add this method definition right after the topmost comments:

def create_room

 "You are in a room. There is an exit on the wall."

end

This method will return the string when called. Yes, that’s kind of
boring. You’ll make it more interesting in the next section.

 In other languages, you usually have to explicitly say what
value you want to return from a method or function. In Ruby, you
can spell that out with the keyword return, but Ruby will also
automatically send back the value of the last statement in a method.
Because the room description string is the last line in the method,
that’s what Ruby sends back.

2. Use the create_room method to initialize the first room the
player will visit. Change the definition of the current_room
variable to use the value of the method instead of an empty string:

current_room = create_room

3. Save and test to find the next method that needs to be programmed.
Looks like it’s a check for has_monster?.

4. Add has_monster? right below the create_room method near
the top:

def has_monster?

 if roll_dice(2, 6) >= 8

 true

 else

 false

 end

end

This method uses yet another method you need to create to
implement its rule. The roll_dice method will take two
arguments: one for the number of dice to roll and the other for the
kind of dice (number of sides). For this adventure game, all the rules
are based on rolling pretend dice. has_monster? will find a
monster if the virtual roll of two six-sided dice is eight or more.

5. Might as well create the roll_dice method now, because you’ll
need it a lot.

def roll_dice(number_of_dice, size_of_dice)

 total = 0

 1.upto(number_of_dice) do

 total = total + rand(size_of_dice) + 1

 end

 return total

end

The method looks a little complicated, but if you break it down, it
isn’t too bad. You’re using a loop to repeat the “rolling of the die”
for the number of times requested. The upto method is the same as
you used in earlier projects. The new method called rand will give
you a random number between zero and the size of the dice. Since
you don’t want zero, you have to add one. You total up all the rolls to
get the final number.

 I’m showing you the return statement here as an example.
You don’t need to use the explicit return, but you can if you want
to.

 Random numbers in programming are really useful things. In
your game, random numbers are simulating rolling dice. Later in this
project, you’ll see other ways to get random values. Randomness
makes your game act differently each time you play because you
can’t predict exactly what’s going to happen. That is way more fun!

6. You need one more method, has_escaped? for the movement
command:

def has_escaped?

 if roll_dice(2, 6) >= 11

 true

 else

 false

 end

end

7. Run the game.
You should now be able to press the M command multiple times, and
maybe even go through multiple rooms. Eventually you’ll run into a
Ruby undefined method error like Figure 5-4. It is time to handle
monster combat!

Figure 5-4: You can mostly move now, but the monster causes an error!

Adding methods for handling the fighting
monster
Now is the time for handling both the monster attacking the player and
the player being able to fight back. You’ll again use the roll_dice
method to help determine the outcome of the action.

1. Add in the monster_attack? method to see if the monster will
attack the player:

def monster_attack?

 if roll_dice(2, 6) >= 9

 true

 else

 false

 end

end

By setting the needed dice roll on two six-sided dice to nine or
higher, it’s hard for the monster to attack.

2. Next, add in a method to see if the player successfully defeats the
monster:

def defeat_monster?

 if roll_dice(2, 6) >= 4

 true

 else

 false

 end

end

You’re making it easy for the player to defeat the monster here, using
the value four as the needed dice roll.

3. Run the program again. You should now be able to move (M) and
fight (F) if a monster is present. Everything seems to be working
until you decide to look for treasure. Let’s add that next.

Adding methods for treasure searches
The last major piece of functionality for the adventure game is to allow
the player to look for treasure. The main game loop needs one more
method.

1. Add the has_treasure? method now:
def has_treasure?

 if roll_dice(2, 6) >= 8

 true

 else

 false

 end

end

2. The treasure case in the game loop also needs a method to generate
an interesting name for the treasure. Add a method simply called
treasure:

def treasure

 ["gold coins", "gems", "a magic wand", "an enchanted sword"].sample

end

 Here, you’re using another tool that Ruby gives you to make
a random choice. The sample method is associated with an array.
It will randomly pick one of the choices inside the array. Because
your array is full of strings that describe treasure, you can get
different results each time the treasure method is called in the
game. This makes the search for treasure much more interesting!

3. Run the game one more time. It should be completely working now
(see Figure 5-5).

Figure 5-5: A complete game (almost!).

Creating Game Helper Methods
The game is technically complete, and you can test it and look for any
bugs by trying all the different player actions in various combinations.

One common task after the basic game is done is to add a little polish to
make it more interesting. You already did a little of this by making a
treasure method that randomly picked a goodie for the player. Now

you’ll make a set of methods that will generate rooms that are less
boring.

1. Replace the create_room method with this one:
def create_room

 "You are in a #{size} #{color} #{room_type}. There is an exit on the

#{direction} wall."

end

This version uses some other helper methods to create some variety.
You’ll create the code for these next.

 Helper methods are usually small pieces of code that help
the programmer get some often repetitive task done. Sometimes
these methods are called utility methods and are used to tidy up a
program.

2. Add a size helper method to create a randomly selected room size
description:

def size

 ["huge", "large", "big", "regular", "small", "tiny"].sample

end

3. Create another helper for picking a color:
def color

 ["red", "blue", "green", "dark", "golden", "crystal"].sample

end

4. Write a method to select a room type:
def room_type

 ["cave", "treasure room", "rock cavern", "tomb", "guard room",

"lair"].sample

end

5. And finally, for fun, code up a method to pick a direction:
def direction

 ["north", "south", "east", "west"].sample

end

6. Save and run your program.

How does that look (see Figure 5-6)? It is funny how a little
description makes the game feel much more interesting and different
each time you play.

Figure 5-6: A much more interesting set of rooms.

Trying Some Experiments
You did it! You created a full (little) adventure game using Ruby! With
the techniques you’ve used in this project, you can create all kinds of
games.

The adventure game in this project is just the start. There are many
experiments you can try:

The player might get tired of playing, so add a quit command (Q)
to the menu and make the main game loop stop running when it’s
used.

Play with the different settings for the game rules. Does the game get
more or less fun if you change how often the monster attacks or how
easy it is to find treasure?
Add more descriptions for the room generator.
Create a “monster generator” that makes the description of the
monster more interesting.
Come up with a different action the player could take and add that
feature to the game.

Project 6
Number Guessing

Guessing numbers is pretty simple, but what happens
when the person giving you clues isn’t telling the truth? In this project,
you’ll write code in which the computer picks a number and the player
tries to guess the number in the fewest moves.

This project introduces a new way to start to organize your code. You’ll
learn more about objects and classes, which give you a way to store data
and methods together in a way that helps you think more clearly about
the problem you’re trying to solve. In the number guessing game, you’ll
start by simply splitting the program into the player part and the game
part.

Organizing a New Project

You’ll use Atom to create and edit your source code, and you’ll store this
project in a single Ruby file. You’ll use the terminal program to run and
play the number guessing game.

 If you haven’t created a development folder already, refer to
Project 2 for instructions.

Follow these steps to set up your source code directory and file for this
project:

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project06

3. Move in to the new directory:
$ cd project06

4. Start Atom by double-clicking its icon.
5. Create a new source code file by choosing File ⇒ New File.
6. Save the file by choosing File ⇒ Save, and store it in your
project06 directory. Call the file guess.rb.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section in Project 4. It provides more
detail for each step.

Now you’re ready to create your number guessing game.

Planning the Project
This project sounds simple enough: guessing a number that the computer
is “thinking of.” What makes it challenging? There are a couple of new
techniques that I’ll show you as you code this project. You’ll divide the

work into two main objects: one representing the player and the other
representing the computer game engine. For this game, the computer
does most of the work, and the player really just provides some
information (like number guesses) to the engine. Unlike prior projects,
you’ll notice that more and more of the data and coding is hidden away
in these objects.

So, what does the overall program need to do? The program will be
made up of several parts: the overall program, the player code, and the
game engine code. The overall program sets things up and uses the other
two parts to manage the player and the game’s progress and rules. The
player object will keep track of its name, guesses, and score. The game
object will manage all the rules and tell the player to do various things at
the right time.

The program should welcome the player, tell him what’s going on, and
perhaps tell him how to play. The overall program will set up the player
and game objects and connect them so they can interact.

Each turn, the game object should check to see if the current round or
the overall game is complete.

At the start of a new round, the game object should ask the player for the
biggest number it should use for the range of numbers it will use to
select its secret number. Also at the start of a new round, the game object
should ask the player how many guesses the player thinks he’ll need to
guess the secret number. The game will use this guess later to calculate a
score (fewer guesses is better).

The game will proceed to run a round of the game. During a round, the
game will ask the player for a new guess. The game will see if the
player’s guess is higher, lower, or the correct number. The game will
give the player some score if he guessed the number.

If the player didn’t guess the correct number, the game will prepare a
hint as to whether the player is too high or too low. There will be a
chance that the game will lie to the user about this hint!

The game will run multiple rounds of the game. When the last round is
done, the game will display the final score for the player.

For such a simple game, there are a lot of steps when you break it down
in terms of logic and how a program will behave. Ruby will make this
coding as simple as possible, but you’ll get a chance to see a new way to
organize your work. These new techniques will make the more advanced
projects later in the book easier to understand and program.

Looking at the Program Skeleton
Like with your previous projects, you’ll start by sketching out a basic
program and fill in the details as you go. Because I’ll be teaching you
some very basic object-oriented programming techniques, the code will
start to be arranged in a new way that moves most of the data (variables)
and methods into something called a class. A class acts like a template
that describes an object and allows you to set one up and start using it.

 Object-oriented programming (OOP) is one of a number of ways
that computer programmers use to organize complicated software
into pieces of functionality that make it easier to think, plan, build,
debug, and maintain the software. When thinking in an object-
oriented way, you’ll try to identify the objects, which are like nouns
in a sentence (for example, dog, cat, car, computer), and the
objects’ behaviors, which are like the verbs in a sentence (for
example, play, drive, eat, sleep). Ruby is an object-oriented
programming language, and you’ll see over time that everything in
Ruby is an object, and you get these objects to do something by
sending them a message (which is to say, calling a method).

Start the program’s main code:

1. Go in to Atom in your guess.rb file and add a basic comment to
describe what the program is all about:

#

Ruby For Kids Project 6: Guessing Game

Programmed By: Chris Haupt

A guessing game in which the hints might not be true

#

2. Create a helpful message that explains to the player what’s about to
happen:

puts "Welcome to the Guessing Game"

puts "We will play #{Game::TOTAL_ROUNDS} rounds. Try to guess the

number"

puts "I'm thinking of in the fewest guesses."

puts "You'll also estimate how many guesses it will take."

puts "If you do it in fewer guesses, you'll gain bonus points!"

puts ""

 One unusual bit of code in the welcome message is the
variable TOTAL_ROUNDS that you include in the second line. Ruby
programmers use the convention that a variable spelled in all capital
letters means it is a constant. A constant is a variable that will be set
once and never changed. In this project, the constant holds the
number of rounds you want the game to run (three for now). By
using a constant, if you ever want to change the behavior of the
game, you simply change the constant value once, and everywhere
it’s used, it’s automatically up to date. This is easier than hunting
down all the places in the game you might use the number 3 and
figuring out if you should change it.

3. Unlike prior projects, there will only be a few variables in the main
code, and they’ll mostly be used to hold the two objects you’re going
to create:

print "What is your name? "

name = gets.chomp

player = Player.new(name)

game = Game.new(player)

What’s going on here? The first two lines should be familiar to you.
You prompt the user for his name, and then chomp off the new line
character.
The next two lines are a little different. Here you’re creating your
two required objects from their classes, which I call Player and
Game. By calling the new method on those classes, and passing

some variables, you’re telling Ruby to create and set up one object of
each type. Don’t worry about the details for now — just know that
when you see that new method, you’re telling Ruby that you want a
new object of that kind.

4. Now you can write the main game loop, which I’ll show you in a
few parts. This time around, most of the work is going to be done
inside the objects you create, and the main code is just going to use
that functionality to create the loop itself:

while !game.done? do

 puts ""

 puts "------> Round ##{game.round}"

 puts ""

You’re starting the loop and then printing a message that will show at
the start of each round.

 You’re using a familiar while loop here, but with a slightly
different syntax than last time. You can read the first line in English
like this “while not game done do the loop.” The exclamation point
(!) is very similar to the keyword not, which you used previously.
I’m showing you the exclamation point version so you get used to
seeing it.

5. The main part of the loop uses the game object to “run the game”:
if game.get_high_number

 if game.get_guess_count

You’re using a couple of different conditional if statements to first
set up the game. The game object will ask the user for his choice of
maximum high number and how many guesses he thinks he’ll be
able to guess in.
The methods will return true or false depending on whether they
correctly got the player’s input. If not, they’ll fail and the game will
start the round again until it gets good input from the player.

6. When the player has supplied the needed data, the game can run a
round:

game.prepare_computer_number

while !game.round_done? do

 puts ""

 game.get_player_guess

 game.show_results

end

game.next_round

The game prepares its secret number, and then runs another loop
while the guessing is going on, alternating between getting a guess,
and showing the results. The cool thing is you can almost read that
out loud and have it make sense.

 Picking names for variables, objects, and methods is hard.
Some say it’s one of the hardest problems of computer science!
Using names that are descriptive and mean something to you makes
it so much easier to understand what’s going on in your code.

7. Finally, finish up with the missing end statements and final game
results method call:

 end

 end

end

puts ""

game.print_final_score

8. Save your code. Go ahead and try to run it. Ruby will let you know
that something (actually multiple things) are missing (as shown in
Figure 6-1).

Figure 6-1: Hmm, Ruby is wondering where our game is!

Creating Placeholder Classes
Again, you’ll use Ruby to help you figure out what needs to be coded.
You’ll start with the basics and slowly fill them in. Because Ruby was
complaining about not knowing what the Game class is, let’s fix that
first.

 The actual message from Ruby said something about an
“uninitialized constant Game” or something like that. You might
have noticed that the word game started with a capital letter. You
might also remember that I mentioned that Ruby programmers use
capitals for constants. Well, class names turn out to be constants!
Instead of using all capitals, the convention for class names is to
capitalize each “word” in the name like this:
VeryLongClassName.

Creating an empty Game class
First, I’ll show you an empty class. Then you’ll fill it in.

1. Ruby has a special keyword for identifying a class called, well,
class. Add this code to the top of your file after the initial
comments:

class Game

Game class code goes here

end

2. If you saved and ran the code now, you’d notice that Ruby no longer
warns you about missing the constant Game, but instead doesn’t
know about the TOTAL_ROUNDS constant. So, fix that by adding
code below the comment above (all class code will go between the
class line and the final end line.

TOTAL_ROUNDS = 3

3. Now if you run the code, you should get the welcome message using
the number 3 for how many rounds the game will be played in. If
you enter your name at the prompt, you get a new error about
missing Player constants now that is similar to the prior message.

Creating an empty Player class
The process for creating the initial Player class is the same as you just
did for Game:

1. Set up the empty class for a player:
class Player

 # Player class code goes here

end

2. Save and run. This time Ruby indicates that there is something
wrong with initialize and the number of arguments it uses.
What’s that (see Figure 6-2)?

3. Add an initialize method inside of the Player class near its top:
def initialize(name)

 @name = name

 @score = 0

 prepare_for_new_round

end

You’re going to set up some special variables called instance
variables. The variables with the at sign (@) in front of them are
instance variables. Here you have one for the name and one for the
score of the player. You’re assigning the passed in value for the
player’s name to the instance variable called @name. Instance

variables are available to all other methods you will create in the
Player object. Instance variables are not available to other code.

 The initialize method is a method that Ruby calls
every time you create a new object from a class using the new call.
Remember when you created a new Player object in the main
program and passed in the name? Doing that automatically called
initialize for you. Ruby uses the initialize method for
any setup that may be needed for your object. Every object has a
built-in initialize method, but by default it takes zero
arguments. That’s why you got the error you saw earlier.

4. The initialize method uses one other method internally to set
up some additional instance variables. Write that code below the
initialize method:

def prepare_for_new_round

 @total_guess_count = 0

 @high_number = 0

 @current_guess = 0

 @current_number_of_guesses = 0

end

These instance variables will track various pieces of data about the
user. You could put these variables in the initialize method, but
I’m breaking them out here because you’ll want to reset the values
each time the player enters a new round of the game.

5. If you save, test, and run your program again, you’ll see that another
initialize is missing, this time for the Game object, because
you’re passing the player object to its new method. Notice that the
error will look like Figure 6-2, but the line numbers will have
changed.

Figure 6-2: Wrong number of arguments? But what is initialize?

Adding the missing initialize to the Game class
To finish up this section, you’ll want to add the initialization related
methods into the Game class.

1. Near the top of the Game class, after your definition of the
TOTAL_ROUNDS constant, add the following:

def initialize(player)

 @player = player

 @round = 0

 next_round

end

You’re setting up instance variables in the Game class that will refer
to the player object and the current round number. You also call an
instance method to set up some other variables.

2. Complete variable setup with a next_round method:
def next_round

 @computers_number = 0

 @round_done = false

 @round += 1

 @player.prepare_for_new_round

end

This method initializes some variables to track the round and calls a
method on the player object to set itself up.

 Calling a method on another object is called sending a
message to that object. So in this example, the game object is
sending the player object the message
prepare_for_new_round with no arguments (it doesn’t take
any). In this book, I use both “calling” and “sending a message”
when referring to one object working with another.

 That funny @round += 1 is something new. It’s a Ruby
shortcut for adding 1 to the value being held by the instance variable
@round. It could have been written as @round = @round + 1,
but the way I’ve written it is shorter. Programmers like to do as little
typing as possible!

3. Save and test your program. You should see that you got past all the
setup, and now Ruby is telling you that it can’t find the done?
method on the game object at the start of the big while loop (see
Figure 6-3). It’s time to fill in the game’s rules.

Figure 6-3: Setup is working now, but the start of the game loop needs work.

Adding Player Methods

Now that you’re working with multiple objects, you have to decide what
you’re going to write code for first. In your previous project, you
programmed the application “top down,” writing the higher-level
concepts first and slowly working your way down to the low-level stuff.

In the guessing game, you’re doing a bit of both. You coded the main
game loop and the rest of the skeleton of the game, as well as the more
basic parts of the two classes you’re using.

Now you’ll work on filling out the Player class so any player object
that is created will have the functionality needed by the Game class.

Creating player getter methods
Earlier I explained that when you create an object from a class in Ruby,
any instance variables (the ones with the @) are hidden away inside the
object. Without help, the outside world can’t read or write to these
variables.

 Hidden variables sound like a bad thing, but they’re actually
really good. If the variable isn’t visible to the outside of the object,
it can’t be accidentally (or intentionally) messed with and disturb
your intentions. Programmers call this information hiding and talk
about the visibility of variables. Good object-oriented program
design looks for ways to expose only the minimum amount of data
necessary in ways that are safe and under your control.

So how do you make variables available to code outside the object? You
create a getter method to, um, get the data!

1. Getters are super easy — just return the variable. Do that for the
player’s name right after the prepare_for_new_round method
in the Player class:

def name

 @name

end

2. Create a getter for the score:

def score

 @score

end

3. Create a getter for the total guess count:
def total_guess_count

 @total_guess_count

end

4. Create a getter for the player’s high number choice:
def high_number

 @high_number

end

5. Create a getter for the current guess made by the player:
def current_guess

 @current_guess

end

6. Create a getter for the count of guesses in this round:
def guess_count

 @current_number_of_guesses

end

These methods look pretty simple, and they are. But they also serve the
important purpose of requiring a programmer to send the right message
to get the value she wants, and not access the instance variable directly.

Creating player setter methods
Setter methods do the opposite of getter methods. In this game, only one
method is a setter.

The game can change the player’s score at the end of the round, so write
a method to permit this:

def add_score(points)

 @score += points

end

 Why not call this set_score? You could, but I believe it’s
easier to understand the purpose of adding points to the current

score if you call it add_score. Notice that you’re using the
shortcut += to add points to the current value of @score.

Adding player utility methods
A few methods are sort of getters, but are special, so I’m calling them
utility methods. They do get values from the object, but in a special way
as they read input from the keyboard.

Add the utility methods inside of the Player class :

1. Write a method that gets the highest number the player wants the
game to use for the range of numbers to select a secret choice from:

def get_high_number

 @high_number = gets.to_i

end

You’re using your old friend gets to read the player’s input. The
to_i method immediately converts the input to a number, stores it
into the @high_number instance variable, and because this is the
last line of the method, returns that to the code that called this
method.

2. Create a similar method to get the player’s best guess as to how
many turns are going to be needed to figure out the game’s secret
number:

def get_total_guess_count

 @total_guess_count = gets.to_i

end

3. Create a helper method that will be used to get the player’s current
guess during each turn.

def get_guess

 @current_number_of_guesses += 1

 @current_guess = gets.to_i

end

Note how this also keeps track of how many guesses the player had
made by adding one to the @current_number_of_guesses
instance variable.

4. Save and run your code. Because you just wrote a bunch of low-level
methods on the Player class, nothing should have changed. You
really need to finish the Game class now.

Writing the Game Class Code
Now it’s time to finish the Game class. There is a lot to do, so let’s dive
in.

 Be sure to add all this code inside the Game class. You can start
to add it right after the next_round method that should already
be in there.

Coding the Game class getters
The Game class has a few getters that are used in the main program loop
and inside the class itself. Add these methods:

1. Get the current round number:
def round

 @round

end

2. Return a Boolean value of true or false if the game is done:
def done?

 @round > TOTAL_ROUNDS

end

 You don’t have a full if statement there with the conditional
check. Ruby will still figure out what’s going on by comparing the
value inside the @round instance variable with the constant
TOTAL_ROUNDS. If the round number is larger than 3, the condition
will return true; otherwise, it will return false.

3. Return whether the round is done:
def round_done?

 @round_done

end

 The @round_done instance variable is what programmers
call a flag variable. A flag is set in one part of the application to
signal some other part that something happened. In the guessing
game, the game object will set the variable to true when it detects
that the round is done, and the code outside the object will be able to
see that to end the round loop in the main code.

Setting up the round
Each round, the game will ask the player for some numbers it needs to
run the game. The code should use the player object to retrieve inputs
or other data from the player and check that the values make sense for
the game.

1. Get the highest number that the game is permitted to use for the
range in which to pick a secret number:

def get_high_number

 print "I'll pick a number between 1 and what number? "

 high_number = @player.get_high_number

 if high_number <= 1

 puts "Oops! The number must be larger than 1. Try again."

 return false

 else

 return true

 end

end

This method has a lot of text in it, but basically it’s prompting the
player to pick a number. It uses a condition to make sure that the
number is not less than or equal to one. That wouldn’t make any
sense! The method returns true if it worked properly and false if
not. The main game loop uses that value to determine whether to
continue to run the round. (Go back and read the main code if you
need to. I’ll wait.)

 This is an example of using the keyword return explicitly.
You don’t need to do that, but it makes the code easier to read.

2. Get the guess count from the player. This is just a little bit of fun
we’re adding to the game to challenge the player to try to estimate
how many guesses he’ll need to figure out the secret number. If he
can guess the number in fewer guesses, the game will give him
bonus points.

def get_guess_count

 average = calculate_typical_number_of_guesses

 puts "How many guesses do you think it will take?"

 print "(average would be #{average}): "

 total_guess_count = @player.get_total_guess_count

 if total_guess_count < 1

 puts "Seriously #{@player.name}?! You need to at least try!"

 return false

 else

 return true

 end

end

I know this looks long, but it’s printing a lot of text to the user to tell
him what’s going on. The code itself uses the same techniques
you’ve already seen.

3. One method that get_guess_count uses is
calculate_typical_number_of_guesses. Write that
method now:

def calculate_typical_number_of_guesses

 typical_count = Math.sqrt(@player.high_number)

 typical_count.round

end

This method uses some complicated math to come up with a number
for the typical number of guesses needed to pick a randomly selected
secret number. Note that you’re using the Ruby Math libraries square
root method (sqrt) and also the round method to make sure the
number returned from this method is a whole number.

 If you’ve studied algebra or heard of the binary search
algorithm, you may see what’s going on here. If you haven’t, don’t
worry — it isn’t important! Just know that we’re using some math
that estimates the number of tries needed if you used one of the best
algorithms for searching for a number.

4. The last setup thing to do is to have the Game object pick a secret
number:

def prepare_computer_number

 @computers_number = rand(@player.high_number) + 1

 end

Remember that the rand method picks a random number between
zero and one less than your number, so that’s why you add one at the
end.

5. You’ve been typing a lot! You aren’t quite done, but be sure to save!

Running the guessing loop
With everything set up, the game needs code to actually run the guessing
part of the game.

1. Get the player’s guess for this turn:
def get_player_guess

 print "#{@player.name}, what is your guess? "

 @player.get_guess

 compare_player_guess_to_computer_number

end

2. After the player returns a guess, the game needs to see if the player is
correct or needs a hint:

def compare_player_guess_to_computer_number

 if @player.current_guess == @computers_number

 @round_done = true

 puts "YEAH!!!!! You guessed it!"

 calculate_score

 else

 show_hint

 end

end

If the player’s current guess is the same as the secret number selected
by the Game object, then the player is done with the round. This is
where you mark the flag variable @round_done. You also can
calculate the score for the round. If the player didn’t guess the
number, give him a hint.

Adding the hint code
This guessing game is a little devious in that it doesn’t always tell the
truth!

1. Prepare a hint message depending on whether the player’s choice is
higher or lower than the game’s secret number:

def show_hint

 hints = ["low", "high"]

 if @player.current_guess < @computers_number

 hint_index = 0

 else

 hint_index = 1

 end

 if !tell_truth?

 hint_index = hint_index - 1

 hint_index = hint_index.abs

 end

 puts "HINT: You are too #{hints[hint_index]}"

end

This method uses a few interesting techniques. First, it stores the low
or high hint words in an array. Then it tries to figure out which word
it should use by testing a conditional comparing the player’s guess
with the computer’s number. If the player is too low, you set a
variable to zero; otherwise, you set it to one. Those numbers are the
index into the array for the word you want to use. The syntax
hints[hint_index] is how you refer to the correct item.

 Recall in earlier projects where I described an array as a
chain of boxes or series of compartments, which I’ll call slots. Each
slot is numbered, starting with the first slot, which is number zero.
Yes programmers are funny and like to start at zero when counting!
In the hint method, you’re using the hint_index local variable to
point to the correct box, depending on the condition.

2. Create a method that randomly decides whether to tell the truth:
def tell_truth?

 rand(100) >= 4

end

rand will pick a number between 0 and 99. If the number is greater
than or equal to four, the condition will be true and the hint method
will “tell the truth.”

 The math in the truth-telling condition in show_hint is a
little tricky. It’s subtracting one from the current value, and then
taking the absolute value of that number. This changes a current
value of 1 to 0, and changes 0 to –1 (whose absolute value is 1). It
flips the result!

Scoring the round
Scoring the round is pretty simple in comparison:

def calculate_score

 score = 0

 if @player.guess_count > @player.total_guess_count

 score = 1

 elsif @player.total_guess_count < calculate_typical_number_of_guesses

 score = 3

 else

 score = 5

 end

 @player.add_score(score)

end

If the player took more turns then he originally thought he would, he
gets one point. If he took less than the number of turns he thought he
would need, he gets three points. If he is exactly right, he gets the most
points (five) because that is pretty amazing.

Note how you’re using the player setter to add the round’s score to the
player’s overall score.

Showing the player the results
Finally, you need a couple of help methods that display the results of
each turn and the overall game.

1. Display the current status of the turn during a round:
def show_results

 puts "Guess count: #{@player.guess_count} target: #

{@player.total_guess_count}"

end

Nothing too special here. Just printing out some of the player’s
numbers.

2. Show the final score for the game:
def print_final_score

 puts "Final score for #{@player.name} is #{@player.score}"

end

3. Save, test, and run the game. It should run and look like Figure 6-4.

Figure 6-4: The final game in progress.

Trying Some Experiments
This project has a lot of code, but it introduces a number of new
concepts. The most important is that of classes. I only used the most
basic functionality to split the game into three parts: the main code, the
Player object, and the Game object. In future projects, I’ll break
things down even more and show you more of Ruby’s built-in classes
and objects.

There are a lot of things you could do with this game. Why not try a
few?

If the game is dragging on too long, it would be nice if the player
could quit without having to press Ctrl+C. Can you figure out how to
add a quit feature?
Add some additional statistics like the total number of guesses across
all rounds.

Change the scoring to be based on the number of guesses in total. If
the player picks a number that is a lot higher than the average
calculated number of guesses needed, he may get penalized.
Change the hints algorithm to tell the player if he’s getting hotter or
colder based on how close or far his guess is from the actual secret
number.
What is the impact of the “lying” feature of the game? Does it make
the game more or less fun that the computer isn’t always telling the
truth? How would you change this?

Part III
Working with Lots of Your Own

Data

In this part …
 Short Straw
 Code Breaker
 Acey Deucy

 For tips on organizing your Ruby code, go
towww.dummies.com/extras/rubyforkids.

http://www.dummies.com/extras/rubyforkids

Project 7
Short Straw

Sometimes when you have a group of people, you need to
randomly select one of them to do something. Maybe that’s to go first in
a game, to do a chore, or just for fun you want to see who is the last
person standing (think musical chairs). One old game that’s sometimes
used to pick somebody is to take a bundle of straws (or sticks or
pencils), make them all the same size except for one of them, and then
randomly pick from the bundle. Whoever gets the short straw is “out”
(or wins, depending on how you look at it!).

This project is going to dive a little more deeply into the Array object
you’ve been using in some of the prior projects. Up until now, I’ve just
used it with some basic functionality, but here, you’ll see that it’s a
pretty powerful tool. I’ll show you a few different ways to use arrays,
and as a bonus, I’ll show you a few shortcuts you can use when working
with arrays and classes.

Organizing a New Project
You’ll use Atom to create and edit your program. You’ll store this
project in a single Ruby file. And you’ll use the terminal program to run,
test, and play around with the short straw code.

 If you haven’t created a development folder already, refer to
Project 2 for information on how to do that.

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project07

3. Move into the new directory:
$ cd project07

4. Start Atom by double-clicking its icon.
5. Create a new source code file by choosing File ⇒ New File.
6. Save it by choosing File ⇒ Save and store it in your project07

directory. Call the file straws.rb.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section in Project 4. It provides more
details for each step.

You’re now ready to dive into arrays some more and build an
elimination-round, tournament-style straw drawing game.

Planning the Project
In theory, this project is much simpler than prior projects, at least with
respect to the idea of a bunch of people taking a random straw, and then

seeing who picked the “short” one. Don’t let this simplicity fool you,
though! You still want to plan out the overall approach to the code, and
as you write out the Ruby, I’ll take a little time to show you that there is
more than one way to do many of the same logical steps. You’ll see that
Ruby provides a number of tools that make it easier to write less code.

 I have this saying that programmer’s are lazy. Do I mean that
they don’t like to do their chores? Well, no, not usually. I mean that
the best code ever written is the code you never write! What?!? The
more lines of code you write, the more opportunities there are to
create bugs and other problems. To become an expert programmer,
you’ll look for ways to use other people’s code (such as the built-in
methods, objects, and classes that Ruby provides), and you’ll look
for techniques that allow you to write fewer lines of code yet get
the same amount of work done. I’ll show you a few in this project.

There will be a game object that manages a group of players (also
objects) and runs rounds of the game. Each round, the players will be
given new straws (yet additional objects) to compare against one
another. The game object is also where the rules of the game are coded,
even for such a simple game.

The game should welcome the players and provide a short introduction
of what’s going to happen.

Unlike prior projects, you won’t have to enter a bunch of players at the
start of the game. Instead, you’ll provide an array of names, and the
game object will use that to generate a set of associated player objects.

Each round, the game will create a new “bundle” (really just another
array) of straw objects. It will count how many players remain in the
game, and generate one straw for each of those players. The game will
make one of the straws “shorter” than the others.

The game will assign one straw to each player. It’ll print out a message
that shows what round is being played. It’ll also print out all remaining
players so you can see which player has which kind of straw. The game

will remove the player with the short straw from the remaining players
(how sad!). If the game determines that there is more than one player
remaining, it will run another round. When only one player remains, the
game ends and displays the winner.

This is a simple game, but it gives you a chance to try a few different
techniques for working with arrays. Ruby arrays are one of the core data
structures you’ll use all the time in your own programs, so it’s worth
getting familiar with all the tools Ruby gives you.

 Data structure is a fancy term that refers to how you organize
and work with your information. It might be something as simple as
a plain number or string (often called a primitive or primitive data
structure), or it might be something slightly more complicated like
a container such as an array or a hash (which we haven’t used yet).
You may not know it, but you’ve been creating your own data
structures as you’ve implemented classes for objects like Player
or Game in these projects. A data structure can be thought of as an
abstract type of information (so I talk about Player objects, and
know that a player is made up of a name, and a straw in this
project).

Looking at the Program Skeleton
You’ll continue to use what you’ve learned about object-oriented
programming and sketch out this project in the form of several classes
and a main program to use them. You’ll need to create a Player,
Straw, and Game set of classes and a little bit of Ruby to get
everything started.

1. Switch over to Atom and your straws.rb file. Enter a comment at
the top that provides a little information about the project:

#

Ruby For Kids Project 7: Straws

Programmed By: Chris Haupt

Elimination-round, tournament-style, avoid the shortest straw, or

else!

#

2. Be kind to your users and provide a short introduction to let them
know what’s about to happen:

puts "Welcome to the Last Straw Game"

puts "In each round, players will draw straws of two different

lengths."

puts "The players who pick the short straw will be eliminated and"

puts "a new round will begin."

3. Unlike earlier projects, you’ll skip the data entry required when
requesting player names, and instead just build an array of names to
use. Feel free to make these names anything you want and assign
them to the constant called PLAYERS:

PLAYERS = %w(anne bert chris donna ernie franz garfield holden ivy

jose)

 Wait a second! That is an odd-looking array. Remember how
I told you I was going to show a few Ruby shortcuts? Here is the
first one. The little %w symbol means to create an array where the
strings are separated by white space. You can absolutely write this
array the long way like this:

PLAYERS = ["anne", "bert", "chris", "donna", "ernie", "franz",

"garfield", "holden", "ivy", "jose"]

Doing so requires three extra characters to be typed for each name
(two quotes and one comma, except for the last name). Why do all
that extra typing if there is a shortcut? Sometimes you have to use
the longer form — for instance, if your name is Chris von
Programmer, the white space in the name would confuse Ruby and it
would break up the name incorrectly.

4. Create a new Game object by sending the Game class the new
message and passing the PLAYERS array as its argument:

game = Game.new(PLAYERS)

5. You’ll create a number of methods in the Game class to run the
game. For now, write out the main game loop as if those methods
already exist:

while !game.done? do

 game.show_round_number

 game.play_round

 game.show_results

 game.finish_round

end

The sequence of events here pretty much follows what you planned
out earlier. By naming methods appropriately, you’ll find that
reading the code is super easy.

 I mentioned this before, but naming is really important! Pick
variable, method, and class names that are meaningful to you and to
future readers of your code. You may be that future reader. When you
come back and look at your program in six months, you’ll be a lot
happier that you sent your future self some easy-to-read code.

6. Finish the main part of the program by sending the Game object a
message to display the winner of the short straw tournament:

game.show_winner

7. Save your code now. Switch on over to the terminal and run it.
$ ruby straws.rb

As expected, Ruby lets you know that the program isn’t finished yet
(see Figure 7-1).

Figure 7-1: Yup, time to start writing some classes.

Creating Placeholder Classes
As you learned in the previous project, you can use Ruby to guide you
while writing your code. If you add some small bits of Ruby, save, and
then run, the various warning and error messages Ruby produces give
you a pretty good idea whether you’re on track. I’ll use that technique
again here to help you get comfortable with it.

Creating an empty Game class
I’m going to show you the details of this program from the bottom up,
but let’s get some placeholders in the file first:

1. Type the empty Game class to start. Put it at the top of the
straws.rb file, just below your comment:

class Game

 def initialize(player_names)

 end

the rest of the game class code will go here

end

2. Because you already wrote the main program’s implementation that
uses this class, stub in the methods that it calls next.

 The term stub is used by programmers to indicate a
placeholder, temporary, or test implementation of some code. Here
you’re writing the methods that make your programming interface
for the Game class but not (yet) filling in the code that actually does
anything.
Write the method that indicates if the game is done. Put the code
inside the Game class:

def done?

end

3. Write the method that will display the round’s number:
def show_round_number

end

4. Write the method to play a round:
def play_round

end

5. Write the method to show the round’s results:
def show_results

end

6. Write the method to complete the round and do any final
bookkeeping:

def finish_round

end

7. Write the method to display who won the match:
def show_winner

end

8. Save your code and run it. You should see the introduction message,
and then the program just sits there. If you recall, you have a while
loop that is waiting for the Game object to indicate that it’s done.
That never happens, so you’re in an infinite loop. Press Ctrl+C to get
out (see Figure 7-2).

Figure 7-2: There are no immediate errors, but you’re stuck in a loop.

Creating an empty Player class
Next up is the Player class, which will be used to store a player’s
name and current straw.

1. Add the empty Player class first and an initialization method to
accept a name. Put this code above the Game class and below the top
comment in the straws.rb file:

class Player

 def initialize(name)

 @name = name

 end

 # the rest of the player code will go here

end

2. Save the code again. You can run it, too, to see if Ruby detects any
other errors, but otherwise, you’re still going to be stuck in that loop.

Creating an empty Straw class
You’re going to represent the straws that players get with an object as
well. The Straw class will keep track of the size of the straw (as a
number) and be able to tell if it’s the “short straw.” Eventually, it will be
able to draw itself, too.

1. Create a new class and add an initializer that accepts the size of the
straw. Put this code above the Player class and below the top
comment in the straws.rb file:

class Straw

 def initialize(size)

 @straw_size = size

 end

 # the rest of the straw code will go here

end

2. Add some constants that you’ll use to represent two different sizes of
straws. The numbers don’t matter much:

SHORT_STRAW = 5

LONG_STRAW = 20

Put this code right above the initialize method. In most cases the
position doesn’t matter, but I like putting things like constants at the
top of the class to make it easier to find and see them.

3. Save again. Go ahead and run Ruby to look for any typos. Press
Ctrl+C to escape the loop.

Coding the Straw Methods

I’m going to explain the short straw code in a bottom-up fashion for the
rest of this project. As you fill out the classes, you’ll begin to see that
there are different ways to do things in Ruby, and I’ll point out a few.

The purpose of the Straw class is to represent an object that knows
how big it is and is able to display itself, and that’s about it. Pretty
simple. Simple objects are important, because it can make code easier to
understand, easier to reuse, and easier to debug.

It’s also a good idea to put code that is logically related together when
possible. On the other hand, it’s also a good idea to separate out pieces
of code that have different jobs or responsibilities. We could have just
built in the Straw capability directly into the Player class, but we’re
breaking it out because it’s a different thing.

Creating straw getter methods
There are a couple of different pieces of information that need to be
shared by a straw: whether it’s short and what it looks like.

1. Create a method that can be used to test whether the straw is short:
def short?

 @straw_size == SHORT_STRAW

end

This method will return a Boolean (a true or false) value. If the
size of the straw is equal to your constant, it will return true.
Otherwise, the straw will not be considered short and the method
will return false.

2. Return some kind of string that represents what the straw looks like.
You’re still building a program that runs in a terminal window, but
why not give the user something to look at other than just a number?

def appearance

 '=' * @straw_size

end

Pretty simple so far.

Creating the straw factory method

For this program, the main game object will run multiple rounds, each
time reducing the number of players by one. On each of those rounds,
the game also needs to construct another collection of straws for the
players to use. To make this easier, you’ll create a factory method that
builds all the straw objects you need in one shot.

 Programmers usually use the term factory to mean a method that
builds other objects for you. Just like a real-world factory, you’ll
give the factory method an order (in this case, the number of straws
you want), and it’ll build the object(s) for you. In this program, the
factory will create an array of Straw objects.

1. The straw factory will create an array of Straw objects. Let’s call
that array of straws a “bundle” just for fun and start writing the
method like this:

def self.create_bundle(short, long)

This almost looks like a regular method. The name is fine —
create_bundle tells us what the factory is going to build. The
arguments are the number of short and long straws we want
built. The self. part tells Ruby that this is a class method.

 What is a class method? All the methods you have created so
far didn’t have that self. part in front of the method name.
Remember that a method is a message that you send to a related
object. But that assumes that the object exists already. How do you
send a message when the object doesn’t exist? One way is to send a
message to the class itself. For the purposes of a factory method, you
want to create new objects of a particular type, so you attach the
method to the desired class using the self. syntax. You can then
use the code to create any number of objects. You’ll see this pattern
often in Ruby for methods that are used to create or manipulate
groups of objects.

2. Define an empty array for the bundle:
bundle = []

3. Now fill the array with new Straw objects:
1.upto(short) do

 bundle << Straw.new(SHORT_STRAW)

end

You’ve created a loop that will go as many times as the count inside
the short variable. The << syntax is one way to add an object to an
array. Here you’re creating a new Straw object, setting its size to
the value in the SHORT_STRAW constant, and then adding that
object to the array.

4. Write another loop for the long straws using the exact same
technique:

1.upto(long) do

 bundle << Straw.new(LONG_STRAW)

end

You’re adding the long straws to the end of the existing array.
5. Return the value that is held by the bundle variable and end the

method. What do you think is the total length of the bundle?
 bundle

end

6. Save your code and run a quick test. You shouldn’t see any errors,
but nothing else will happen yet either.

An array primer
Arrays are one of the most basic and most useful container data
structures you’ll use when programming. Arrays are like boxes with
many compartments or slots in which you can put things. An array of
straws might look something like Figure 7-3.

Figure 7-3: An array with four Straw objects in it.

Each slot holds one object. The slots are numbered starting at zero. In
Figure 7-3, the first slot holds a short straw, and its number is zero.
Programmers call the position number of an item in an array its index
number.

In the previous section, the create_bundle factory method added
new straws to the end of the array with the << method. In Figure 7-3, if
you were going to add another object at the end, it would go at index
four.

Arrays in Ruby aren’t a fixed size. The illustration here shows a box of a
certain size, but in reality, the only limitation is the amount of memory
available for Ruby to use. You can create some massive arrays if you
need to.

Objects in an array are randomly accessible by referring to the index
number of the object you want. For instance, in Figure 7-3, if you
wanted to access the short straw, and the array was in the variable named
bundle, you would use the syntax bundle[0]. If you wanted to get
to the second item, that would be bundle[1], and so on.

As you’ll see throughout this project and others, there are a large number
of helpful methods available to you to work with arrays.

Coding the Player Methods

The player object in this project is pretty simplistic and is composed of
some getters and setters and a couple of helper methods.

Creating player getters and setters
The only data that the Player class is concerned with in this project is
a name and its current Straw object.

1. Create a name getter. Up until now, you would write this like so:
def name

 @name

end

This is a super simple method that just returns the value of the
@name instance variable. Writing methods like this is extremely
common, so Ruby gives you a shortcut that can be written in one
line:

attr_reader :name

Behind the scenes, Ruby basically writes the same code as the first
version. You get the same behavior but save some possible
keystrokes.

 What does the attr stand for? Programmers have a special
name for instance variables of an object, particularly if they’re
exposed to the outside world. In Ruby, these are called attributes.
Some programmers also call these properties. The call above is an
attribute reader, which is another way to say a getter.

2. You need both a getter and setter to read and write the player’s
current Straw object. Use the short attribute access methods that
Ruby provides:

attr_reader :straw

attr_writer :straw

Huh, that seems like too much typing, right? Well, Ruby has shorter
shorthand for this common case, so use that instead:

attr_accessor :straw

 Accessor is just a fancy way of saying “getter and setter rolled
into one.” Perhaps that isn’t fancy, but it is less of a mouthful! Note
that there is an interesting implication with using accessors. Access
to attributes is available both to code outside the associated object
and inside the object. You’ll notice in future code that I’m not
always using the instance variable directly (the @ is missing). When
you see that, it means I’m using the attribute reader (or writer)
instead.

 It is very important that the name of the accessor (the part after
the colon [:]) is exactly the same as the instance variable name
(without the @). In the code you’re writing, when I show an
accessor, I’m also sometimes using the instance variable. This is
almost always with the initialize method to set up the
variable. If the names were spelled differently, then they wouldn’t
be referring to the same value and you would have a hard to find
bug to track down! For instance, @name and :name are the same
other than the leading symbol, so they’re okay.

Creating player helper methods
The game requires a couple of helpers when working with Player
objects, so write those now:

1. For the user interface of this project, you’ll just want to display the
straw appearance alongside the player’s name. Use string
interpolation to build this up:

def appearance

 "#{straw.appearance} #{name}"

end

2. The game loop is going to need to see if a player is holding the short
straw, so provide a method to test this:

def short_straw?

 straw.short?

end

This is a simple little method that lets the game engine deal with just
testing the player object to see if it’s holding a short straw. The game
engine could reach in and check the straw by getting it from the
player first, but that isn’t a good programming approach. Using a
method on the player instead hides the details of figuring out what
the player is holding and whether it qualifies as “short.”

3. Save the code before moving on to the game object work.

Coding Game Methods
It’s time to finish the project and make use of the other objects you’ve
just written. For each of these tasks, create or update the associated
method inside the Game class.

Code initialization and the end condition
Move over to the Game class to start updating the stubbed methods
there.

1. Enter the full implementation of the initialization code. It will be
used to generate a set of player objects using the supplied name
array:

def initialize(player_names)

 @players = []

 player_names.each do |name|

 @players.push(Player.new(name))

 end

 @rounds = 1

end

You’re also starting the round count at one, and you’ll use that for
the user interface.

 This setup code looks pretty familiar to what you did in the
create_bundle factory method in Straw, doesn’t it? You’re

loading an array with Player objects in this case, but I’m using a
different method called push, rather than <<. The push method
appends the object at the end of the array and is nearly identical to
<<. I want to illustrate that there is often more than one way to do
something in Ruby. If you carefully look at the Ruby documentation,
you may spot some differences, but they aren’t important here. You
should use the method that is easier for you to understand.

2. Update the done? method to provide a real result:
def done?

 @players.length <= 1

end

The test you’re using here is to see if there is more than one player
object in the array in the @players instance variable. Every round will
be removing at least one object, so eventually this condition should be
true.

Code user interface methods
The user interface for the project will display the current round number,
the results of the round, and the final winner’s name.

1. Using your basic string output knowledge, create a simple round
indicator:

def show_round_number

 puts ""

 puts "----> Round #{@rounds}"

 puts ""

end

2. Using the player classes ability to generate an appearance for the
player, display the results of drawing straws for all players in the
current round:

def show_results

 @players.each do |player|

 puts player.appearance

 end

end

The each method loops through the array in the @players
instance variable. In each cycle, it puts the next player object in the
player local variable and then does whatever is in the block of
code between the do and the associated end keyword. This is
probably the most common way to loop through an array.

3. The winner of the game is represented by the last object in the
@players array.

def show_winner

 last_player = @players.first

 puts ""

 puts "The winner is #{last_player.name}"

 puts ""

end

Ruby’s array class gives you a nice method called first that returns
the first element in the array. In your code, there should only ever be one
remaining player at the end of the game. Remember from the array
discussion earlier in this chapter that you can refer to objects in an array
by their index numbers. You could have wrote the last_player
assignment line like this:

last_player = @players[0]

I think using the first method is a little easier to read, but that’s a
matter of personal preference.

Coding the main game logic methods
We’re in the home stretch, but we still need to implement the basic game
logic methods, so let’s do that now.

1. The play_round method does the work of preparing the straws for
the round and passing them out to the players:

def play_round

 bundle_of_straws = setup_new_bundle

 0.upto(@players.length - 1) do |index|

 player = @players[index]

 player.straw = bundle_of_straws.pop

 end

end

 Notice that I’m showing you yet another way to loop
through an array. You may think this is a little more complicated
looking than using the each method, and you’re right. However,
let’s look at what’s going on. I’m using the trusty upto method to
count from zero to the length of the player array minus one. Why is
that? I’m trying to generate the index numbers for the array.
Remember, these start at the number zero for the first item. If I didn’t
take away one at the end, I’d be trying to get one too many items
from the array. Ruby doesn’t like that! Inside of the loop, I get the
current number in the index variable and use the array index access
method (the square brackets: @players[index]) to get the next
player.
One new array method being used here is the pop method. The pop
method removes the last item on the array and returns that. The
bundle_of_straws local variable contains a randomly sorted
array of Straw objects. The code grabs the last one off the array and
assigns it to the player using the straw setter (accessor) of the player
object. Phew! That’s a lot of words for a few short lines of code.

2. The play_round method uses the setup_new_bundle method
that we haven’t created yet, so you’ll write that next:

def setup_new_bundle

 number_of_players = @players.length

 bundle = Straw.create_bundle(1, number_of_players - 1)

 bundle.shuffle

end

This method first determines how many players there are. The array
object provides the length method to return the total number of
items in the array. Next, you use the handy factory method from the
Straw class to create a new array of Straw objects. In this game,
you’re going to create one short straw, and the rest will be long
straws. Finally, the Ruby array class provides a nice utility method
for randomly mixing up the items in the array, much as you would

shuffle a deck of cards. You use shuffle, and the mixed-up array
is returned as the result of the method.

3. Finally, code the Ruby to complete a round of the game:
def finish_round

 @players.delete_if do |player|

 player.short_straw?

 end

 @rounds += 1

end

Here is another method provided to you by Ruby’s array class:
delete_if. This is a special kind of loop. What delete_if
does is loop through the contents of the array, passing each item to
the block of code using the player local variable. Inside of the
block of code, you call the player’s short_straw? method to
check to see if that player has the short straw. If the value is true,
then that tells the delete_if method to remove that object from
the array. How handy!

4. Save the code and run the project. You should get a lot of output
showing the progress of the game and then a final winner just like in
Figure 7-4. Try running the program a few times and you’ll see
different results.

Figure 7-4: The final output should show a winner!

Trying Some Experiments
Although this project is a rather simple idea, it shows you the power of
using Ruby’s array class, one of the most common data structures you’re
likely to use when programming.

You could do more things with this project. Why not try a few?

What happens if you change the composition of the bundle of
straws? Try having more than one short straw.
What happens if you don’t shuffle the straws?
Using techniques you learned in the previous project, try adding the
ability to type in names of players instead of starting with a hard-
coded list.
I didn’t use attr_accessor in the Game class. Could I have? Try
it out.
Come up with some other ways to implement the user interface.

Project 8
Code Breaker

Welcome to the world of encryption, ciphers, and secret
messages! Have you ever wanted to send someone a hidden message
that only you and the person you’re sending it to could understand?
Maybe you came up with a secret code on your own and used it to
manually translate a letter or note — but that can be a lot of work.
Converting messages into a form that hides their meaning is called
encryption, and converting the message back to something that is easy to
understand is called decryption. Why not let a computer do that work for
you?

In this project, you write a Ruby program that will do the labor-intensive
work of encrypting and decrypting your notes. You’ll be able to write
your note in your editor and save it as a file. Then you’ll be able to use
the project’s program to convert the note into a hard-to-read, encrypted
form. The same program will be able to take an encrypted file and
change it back to something you can read.

Organizing a New Project
In this project, you use Atom to create and edit your program and to
create test files with secret messages. You store this project’s source
code in a single Ruby file. The secret messages are stored in other files.
You use the terminal program to run, test, and play around with the
project code.

 If you haven’t created a development folder already, refer to
Project 2 for information on how to do that.

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project08

3. Move in to the new directory:
$ cd project08

4. Start Atom by double-clicking its icon.
5. Create a new source code file by choosing File ⇒ New File. Save it

by choosing File ⇒ Save and store it in your project08 directory.
Call the file codebreaker.rb.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section from Project 4. It provides
more details for each step.

Planning the Project
The challenge of keeping messages secret has been around for a very
long time. In fact, the relatively simple technique I’m going to show you
in this project was used thousands of years ago by the likes of Julius
Caesar! If you’ve ever written out coded message by hand, you may
have even used the Caesar cipher that you’ll program here.

Even though the overall Ruby program will be short, let’s plan out what
the program will do. A main object manages the Code Breaker user
interface and input and output of files to be encrypted and decrypted.
You’ll put all the code to do the work of running the program in here.
Unlike past programs, very little code will be outside of classes, only the
smallest bit necessary to start up the program.

A second object contains the code for the encryption process itself. By
breaking this object out into its own class, you’ll be able to easily swap
in other algorithms if you want to explore encryption a bit more. In fact,
I’ll challenge you at the end of the chapter to find a second way to use
Ruby to implement the Caesar cipher.

The project’s version of the Caesar cipher will use a technique called a
lookup table, which basically will be nearly identical to how you would
use the cipher if you were using paper and pencil. I’ll show you a new
data structure called a hash, which after arrays, I consider to be one of
the most useful built-in data structures that Ruby provides.

I’ll provide a lot of little details as I show you how to write the two
classes for this program. The techniques you’ll use to read and write
files will prove useful in the future when you need to work with a lot of
data. The new data structure that you’ll use will also come into play
frequently in future projects.

Seeing how the Caesar cipher works
Historians tell us that Julius Caesar used his cipher (secret code) to
protect important military and political messages more than 2,000 years
ago. Although other forms of encryption are known to have been used
even before that time, the Caesar cipher is a good one to start with
because it’s relatively easy to understand.

This code is known as a shift cipher or substitution cipher. In it, you take
each letter of your message and change it to another letter following a
specific pattern. Caesar’s original pattern was to take the alphabet and
shift it by three letters to the left. For instance, the letter J would change
to the letter G. For letters near the start of the alphabet, you would rotate
around to the other end of the alphabet, so the letter C would become the
letter Z. See Figure 8-1 for an example:

Figure 8-1: The regular alphabet lines up with the rotated one.

If you line up the original alphabet with the rotated one, you can quickly
look up the original letter and find the encoded one right below it (as in
Figure 8-1). To decode your message, as long as you know how many
spaces the alphabet was rotated, you can reverse the process. Just pick
the letter on the cipher alphabet, and then look up the actual letter in the
regular alphabet. Easy!

Looking at the program skeleton
As you grow your coding skills, you’ll begin to learn ways that you can
write your code so that it’s easier to understand and maintain. With
object-oriented programming languages like Ruby, one such technique is
to wrap as much functionality into reusable classes as possible. The code
breaker project is pretty simple — you’ll place almost all the code into
one of two classes. However, you also need a small bit of code that will
be used to start up the whole program.

1. Like with your previous projects, place some kind of comment at the
top of the codebreak.rb file that describes what it’s all about:

#

Ruby For Kids Project 8: Code Breaker

Programmed By: Chris Haupt

A program that will encrypt and decrypt another document using the

Caesar cipher

#

2. Add a simple welcome message that will be displayed for the user:
puts "Code Breaker will encrypt or decrypt a file of your choice"

puts ""

3. Create a new object by creating an instance of the main project class:
codebreaker = CodeBreaker.new

 Programmers call the process of creating a new object
instantiation; the object is called an instance of the associated class.
In Ruby, when you send a class the new message, it calls your
initialize method if you supplied one and returns the new
object ready for you to use.

4. The CodeBreaker class will do all the work of running the
program, including handling all the user interface needed to interact
with the program’s user. Create a condition that displays a message
depending upon whether the codebreaker object did or did not
work properly:

if codebreaker.run

 puts "All done!"

else

 puts "Didn't work!"

end

 There is nothing special about the name run. I just picked it
to send the message to the object to get started. It returns a Boolean
value of true or false depending on whether it worked. You
could have made the run method just print out a final message, too.

5. Save the code before moving on to the next section. You can test it,
too, and Ruby will remind you that the CodeBreaker class is
missing. You’ll write that next.

Creating Placeholder Classes
There are only two classes in this project. The main CodeBreaker
class does the work of managing the program, dealing with the user’s
files that will be encoded or decoded, and displaying the user interface.
The Caesar class implements the encryption code. By breaking the
encoding functionality out this way, you can easily swap in other forms
of encryption.

The CodeBreaker class
You’ll use some familiar techniques for the main worker class:

1. Just below the top of the file’s comments, define the class body and
initialization method:

class CodeBreaker

 def initialize

 @input_file = ''

 @output_file = ''

 @password = ''

 end

Put the rest of the code here

end

Here you’re clearing out some instance variables with empty strings.
You’ll use that to mean no filename has been selected by the user yet
or no password is being used.

 Recall that in Ruby only two values are recognized to be
false: the keyword nil and false. Everything else is considered to
be true with respect to how conditions work. In this project, you’re
using the empty string to mean no filename for @input_file and
@output_file. If you were to test those variables by themselves
to see if they were true or false in a condition, they would be
considered true. Be careful as you learn other languages — many
languages treat empty strings as false when used in conditions.

2. Add a temporary run method inside of the CodeBreaker class:
def run

 true

end

This is the only method that the main program calls, so you’ll skip
stubbing out the rest of the implementation until the next section.

3. Save and run your program. The current CodeBreaker class
doesn’t do much other than act as a placeholder, but you’ll be able to
test and run the project now and shouldn’t get an error. You can
change the true to false to see the other message.

The Caesar class
Interestingly, the encryption class wasn’t even used in the main class in
the last section. Go ahead and create a placeholder anyway:

1. Above the CodeBreaker class, enter the Caesar class:

class Caesar

Code will go here

end

2. Save the file and test again. Yes, it is a bit anticlimactic, but things
get interesting in the next section.

Coding CodeBreaker Methods
In the Code Breaker project, I show you the code in a top-down manner.
The main class is responsible for all the input and output of the program.
The class gathers the user’s preferences and data, and then writes out a
new file that contains the encrypted results.

You also create the ability to run the process in reverse and take an
encoded file and translate it back into something that is hopefully
readable.

The CodeBreaker run method
The main project code creates an instance of the CodeBreaker class
and sends it one message, run, to get started. The run method is the
only entry point of the entire object.

 An entry point is simply the starting place for some specific
functionality of a program. Programmers also talk about
application programming interfaces (APIs). An API is the part of a
class or program that other programmers see and use to access the
provided functionality.

Implement the entry point inside of the CodeBreaker class by
replacing the run stub:

def run

 if get_command && get_input_file && get_output_file && get_secret

 process_files

 true

 else

 false

 end

end

The run method is calling a series of other methods in the if statement.
The && symbol means “and.” Each of the methods will return true if it
is successful or false if it is not. In order to continue running, all the
methods must be true.

The lines with the true value inside the if statement and the false
line by itself after the else statement are going to be the return values
for this method. Remember that you use those values to decide which
text to print out as a final message in the main program.

User interface methods
The user interface for Code Breaker is going to ask the user what
operation she wants to do (encrypt or decrypt the input file). The
program will also request the name of the input file to use and the name
of the file to write the results out to.

1. Create a constant array object that will contain the values you’ll use
to represent commands:

COMMANDS = ['e', 'd']

Put this line at the top of the CodeBreaker class just before the
initialize method.
I’m using the letter e for the encrypt option and the letter d for
decrypt. You can spell out the words, if you like.

 This is a short array, but you could also write the array this
way: COMMANDS = %w(e d). That looks a little funny but means
the same thing.

2. Write the method that will display the menu of commands and
collect the user’s choice of operation:

def get_command

 print "Do you want to (e)ncrypt or (d)ecrypt a file? "

 @command = gets.chomp.downcase

 if !COMMANDS.include?(@command)

 puts "Unknown command, sorry!"

 return false

 end

 true

end

Here you get to use a few shortcuts of techniques you saw in
previous projects. Ruby objects let you connect a series of method
calls together. This is convenient, although it can be fragile if done
too much. The line @command = gets.chomp.downcase
reads in the user’s command, removes the tailing newline character,
and makes sure the letter is lowercase. This makes it easier for you to
check if they made a valid choice.
In Step 1, you defined the valid commands in the COMMANDS array
constant variable. Because it’s an array, you can use any array
method you might find useful when accessing the variable.
!COMMANDS.include?(@command) uses the include?
method to see if the value in the instance variable is inside of the
array. This saves a bunch of typing. You could’ve written the check
using multiple if conditions. The exclamation point means “not,” so
the whole condition would read “if the command is not in the valid
list of commands” (if you were to convert it to English).

3. Gather the user’s choice of an input file next:
def get_input_file

 print "Enter the name of the input file: "

 @input_file = gets.chomp

 # Check to see if the files exist

 if !File.exists?(@input_file)

 puts "Can't find the input file, sorry!"

 return false

 end

 true

end

This one should look mostly familiar based on what you’ve learned
up until now. The new code in the condition checks to see if a file
exists in your project directory with the name that was entered by the

user. This file must exist for the program to work because it’s the
input for the algorithm.

 The File class provides all kinds of useful functionality for
reading and writing files, as well as for doing other things with files
that are familiar to you if you use your computer’s file management
tools like Explorer or Finder.

4. Create a nearly identical method to the last input file method to get
an output filename from the user:

def get_output_file

 print "Enter the name of the output file: "

 @output_file = gets.chomp

 if File.exists?(@output_file)

 puts "The output file already exists, can't overwrite"

 return false

 end

 true

end

Can you spot the subtle difference between the input and output file
methods’ if statements? Both are checking for existence, but what
else is different?

 The output file will be used by the program to save the
results of the encryption algorithm. Here you want to be sure that the
file does not exist; otherwise, you’d destroy it with the new output.
The ! (not) symbol is absent in this condition, which is really
important, because you want to know when the file actually does
exist.

5. Lastly, collect the user’s choice of a password:
def get_secret

 print "Enter the secret password: "

 @ password = gets.chomp

end

There are no special conditional checks on this method. Whatever
the user enters for a secret is fine. You’ll see why in a bit.

 You might be wondering why you don’t have to return a
true or false here. Remember that Ruby returns the results of the
last statement of a method as the return value for the method. The
last line here assigns the input from gets.chomp to the instance
variable @password, and that will be the result. Recall that any
value other than nil or false is considered true. For the condition
in the run method to pass, the user can enter anything at all. If you
cared about what the return result was specifically (as you did in the
other methods), you could instead return true or false explicitly.
You don’t have to worry too much about this in this program.

6. Save your code and try running it. You should get some prompts, but
what do you answer for the input file (see Figure 8-2)?

7. Using Atom, create a new file and call it message.txt. The name
is not important, so if you want to call it something else, that’s fine
— just use that name for input in later steps. You may enter any
content you like:

Friends, Romans, countrymen, lend me your ears;

I come to bury Caesar, not to praise him.

The evil that men do lives after them;

The good is oft interred with their bones;

So let it be with Caesar. The noble Brutus

Hath told you Caesar was ambitious:

If it were so, it was a grievous fault,

And grievously hath Caesar answer'd it.

Here, under leave of Brutus and the rest--

For Brutus is an honourable man;

So are they all, all honourable men--

Antony

8. Save the message file in the project08 directory next to your
codebreak.rb file and run the program again, using the filename

you choose for the input file prompt. You will get further (see Figure
8-3), but it’s time to implement the file processing code.

Figure 8-2: You need an external input file to encode.

Figure 8-3: The user interface appears to be working, but the processing is missing.

Encryption and decryption methods
The main work of Code Breaker is done when it processes your input
file and creates an output file with the results.

1. The file processing method will be inside the CodeBreaker class.
I’ll show it to you in pieces. Start with the method definition:

def process_files

2. Instantiate an encoder object using the Caesar class:
encoder = Caesar.new(@password.size)

 I’m using the words encoder and encryption as well as
decoder and decryption somewhat interchangeably for this program.

 The Caesar cipher doesn’t really use a password or secret
key, but other algorithms do. The CodeBreaker class is set up so
you could swap out the Caesar class with another class that needs a
real password. Because the Caesar cipher just needs a number for
how many positions to shift the alphabet, you just use the length of
the word(s) that the user enters at the prompt. That means that you
can get the same results with two words that are the same size. Yes,
dogs and cats would be the same thing — shocking!

3. Ruby’s File class is actually a special version of another class
called IO (short for input output). First, open up an output file to
hold the results of the algorithm:

File.open(@output_file, "w") do |output|

Here you’re telling Ruby to open the file that is held by the
@output_file instance variable and that you’ll be writing to it
(the w). The local variable output will be how you access the file.

4. Next, you want to open up the input file and read each line of the
file. Ruby’s IO class gives you a nice tool for doing just that:

IO.foreach(@input_file) do |line|

All in one shot, Ruby can open the file named by the value in
@input_file, and it will read each line and place that data in the
local line variable.

5. Take the input line and convert it based on the user’s choice of
operations. Remember that the user picked to either encrypt or
decrypt the file, so this needs to work in either direction:

converted_line = convert(encoder, line)

Here you use a method that I haven’t shown you yet called
convert. It takes as arguments the encoder object and the
current input line. It returns the data in either an encrypted or
decrypted form.

6. We want to write out the line to store it in another file. You could
actually write this all out to the screen, but I think a file is better for

now:
output.puts converted_line

The puts is familiar to you, isn’t it? When you use puts all by
itself, it just writes output to the screen. If you send the puts
message to a file, such as the one that is stored in the local variable
output, it will write the contents of the converted_line
variable there instead.

 When puts writes its output to the screen, programmers
call that destination standard output (or standard out for short, and
stdout for an even shorter abbreviation). As you might have guessed,
gets can work in much the same way, and when you use it as you do
in this program, you’re reading from standard input (or standard in
or stdin).

7. Finish the method with all the missing end statements:
 end

 end

end

I broke the method up quite a bit, so here is the whole thing and what
it should look like:

def process_files

 encoder = Caesar.new(@password.size)

 File.open(@output_file, "w") do |output|

 IO.foreach(@input_file) do |line|

 converted_line = convert(encoder, line)

 output.puts converted_line

 end

 end

end

8. Add the missing convert method:
def convert(encoder, string)

 if @command == 'e'

 encoder.encrypt(string)

 else

 encoder.decrypt(string)

 end

end

This method simply switches which method will be used on the
encoder object based on the user’s choice of commands. The return
value of the encoder object will be the return value of this method,
too.

9. Save your work. If you test it now, you’ll get an error like in Figure
8-4, complaining that your Caesar class’s initialize method
has the wrong number of arguments. Time to fix that.

Figure 8-4: Getting closer, but your Caesar class isn’t quite set up correctly yet.

Coding Caesar Methods
The Caesar cipher algorithm will be implemented within the Caesar
class. By creating a class that has a standard set of methods, it’s possible
to swap out the Caesar class for another one that implements the same
methods but uses a different algorithm.

Programmers like to create common interfaces, or APIs, to allow
flexibility in their programs. It allows you to easily upgrade and
experiment with other approaches in the future.

Setup methods
In the “Seeing how the Caesar cipher works” section, earlier in this
chapter, you take two copies of the alphabet, line them up next to each

other, and shift the encrypted one by some number of positions. If you
position the two copies of the alphabet side by side, as in Figure 8-1, you
can use them as a kind of table to look up each letter. Depending on
whether you’re encrypting or decrypting a message, you start with the
plain or shifted alphabet, respectively.

1. Create the updated Caesar class initialize method to set up the
copies of the alphabet you’ll need:

def initialize(shift)

 alphabet_lower = 'abcdefghijklmnopqrstuvwxyz'

You start with the plain alphabet.
2. The Caesar cipher isn’t really smart about uppercase versus

lowercase characters. In the project’s lookup table, it’s very literal, so
you need to include the uppercase letters explicitly:

alphabet_upper = alphabet_lower.upcase

alphabet = alphabet_lower + alphabet_upper

Using your knowledge of string methods, you can automatically
convert the lowercase alphabet to an uppercase one, and then add the
two together so your copy of the alphabet contains both cases.

3. For the encrypted version of the alphabet, you need to shift it a
certain number of positions. The shift parameter of the
initialize method contains that number. But what happens if
that number is too big? Let’s use some math to make sure that the
number used will always be less than the length of our array:

index = shift % alphabet.size

 You need the length of the alphabet string, which should be
two times the length of the standard English alphabet (2 × 26 = 52).
You then use that value and divide the shift number using the modulo
operator (%). Modulo division gives you the remainder of the
division. Think back to doing long division in math class. If your
shift number was 3 and alphabet length was 52, how many times
does 52 go in to 3? Zero times. How many items are left over
though? You end up with a remainder of three. Likewise, if your shift

number was 53, then 53 divided by 52 is 1 with a remainder of 1. We
never want our index variable to be bigger than the size of the
alphabet minus 1. Try this out on paper or with IRB to prove to
yourself that it works!

4. Build the encrypted version by grabbing parts of the alphabet and
swapping them around using Ruby’s string methods:

encrypted_alphabet = alphabet[index..-1] + alphabet[0…index]

 Be careful to get the punctuation marks correct here. There
are two periods in the first part and three in the other.

 The syntax is a little odd looking, but let me break it down.
By using the square brackets on a string, you can work with the
string in a manner that is similar to an array. You can provide an
index number into the string, and you’ll get the appropriate character
(letter) for that position. If you provide a range of indexes, you get
that fraction of the string that encompasses the starting and ending
letters described in the range. Programmers call this a substring. In
this code, you’re building a new string by taking the later part of the
alphabet starting at the number inside of index and going to the end
(alphabet[index..-1]), and then adding on the front part of
the alphabet starting at the first letter up to and including the letter at
the position of index (alphabet[0…index]).

5. Wrap up the initialize method by calling out to another method
for further setup:

 setup_lookup_tables(alphabet, encrypted_alphabet)

end

It isn’t completely necessary to break this setup into a separate
method, but I’m doing it to introduce the Ruby hash class.

6. Define the lookup table method and initialize some instance
variables:

def setup_lookup_tables(decrypted_alphabet, encrypted_alphabet)

 @encryption_hash = {}

 @decryption_hash = {}

The decrypted_alphabet parameter holds the regular alphabet.
The new syntax of {} means an empty hash, and is similar to the
array syntax you used in other projects. You’ll fill in the hashes next.

7. The plan here is to loop through the length of the alphabet and, for
each letter, fill in one of two lookup tables. One table will be used to
go from unencoded text to encoded text (encryption), and the other
will go from encoded text to decoded text (decryption).

 0.upto(decrypted_alphabet.size) do |index|

 @encryption_hash[decrypted_alphabet[index]] =

encrypted_alphabet[index]

 @decryption_hash[encrypted_alphabet[index]] =

decrypted_alphabet[index]

 end

end

You’ve used the upto looping method before, and it’s going to loop the
same number of times as the size of your alphabet. The two lines inside
the block load up the hashes. The index number from the loop is used as
an index for the string, and it works much like an index in an array to
return a specific position’s letter.

The syntax for accessing a hash is similar to an array in that it uses
square brackets, but rather than a number as an index, the index can be
anything. You’re using the letters from your alphabets in this project. On
the right side of the equal (assignment) sign, you use the index number
to read into the other alphabet string to get that position’s letter. You
could draw this out like a table if you wanted to see how the letters map
back and forth.

A hash primer
Hashes, sometimes called hash maps or dictionaries, are another core
Ruby data structure. I consider hashes (along with arrays) to be one of
the most useful objects when implementing programs.

Hashes are a container data structure, and like arrays, they have
individual locations that can hold any kind of object. Instead of slots that

are indexed numerically, content in hashes are indexed via a key, which
can be almost any kind of object. Typically, the key is a string or Ruby
symbol. In the project in this chapter, you’re using an alphabetic letter or
number, but always in the form of a string.

You can think of hashes like an English dictionary or the index pages at
the back of a book work. You can look up a word by name, and it will
return a definition or page number, respectively.

Hashes are not a fixed size — they grow (or shrink) as needed. Once a
hash is created with a blank hash via either {} or Hash.new, you can
start adding objects to a hash by providing a key. For instance, if
my_hash = {} were set up, I could store a string that holds a nearby
city using my name as a key with the code my_hash['chris'] =
'San Francisco'.

To retrieve a value, you simply use the same key
my_hash['chris'], and Ruby will return whatever is stored there.

If you use a key that doesn’t exist, by default Ruby will return nil.

In the Caesar cipher code, you’re using a hash as a lookup table. This
means that if you know one of the letters of the string you’re processing,
and you know which hash to use, you can use that letter as the key, and
the hash will return the stored encrypted letter that corresponds to that
letter as the value. For example, @encryption_hash['a'] contains
the letter x if the shift amount was 3.

Encryption and decryption methods
Most of the hard work in this class was setting up hashes for the lookup
tables. Now you’ll create the encryption and decryption functions that
use them:

1. Write the code for encrypting a string first:
def encrypt(string)

 result = []

 string.each_char do |c|

 if @encryption_hash[c]

 result << @encryption_hash[c]

 else

 result << c

 end

 end

 result.join

end

The method starts by setting up an empty array to hold the translated
letters. The each_char method of the Ruby string class will loop
through the given string stored inside the string local variables. It
returns each character in turn. For each character, it uses the value as
the key for the @encryption_hash hash. If the key is valid,
Ruby returns the character — first in the condition to see if it exists,
and then again to append it to the results array. If the key is not
in the @encryption_hash, it returns nil, which Ruby treats like
false. In that case, the else clause is used and the character is
appended to the results as is. Finally, the array join method is
called on the return value. The join method takes each item in the
array and smashes it together to make a string.

2. The decryption method is almost exactly the same. The only
difference is which hash is used:

def decrypt(string)

 result = []

 string.each_char do |c|

 if @decryption_hash[c]

 result << @decryption_hash[c]

 else

 result << c

 end

 end

 result.join

end

3. Save your code and try running the program now. It should run and
look something like Figure 8-5.
In my example, I saved my encrypted message.txt contents out
to the file secret.txt file. It looks like this after encryption:

Lxoktjy, Xusgty, iuAtzxEskt, rktj sk EuAx kgxy;

O iusk zu hAxE Igkygx, tuz zu vxgoyk nos.

Znk kBor zngz skt ju roBky glzkx znks;

Znk muuj oy ulz otzkxxkj Cozn znkox hutky;

Yu rkz oz hk Cozn Igkygx. Znk tuhrk HxAzAy

Ngzn zurj EuA Igkygx Cgy gshozouAy:

Ol oz Ckxk yu, oz Cgy g mxokBuAy lgArz,

Gtj mxokBuAyrE ngzn Igkygx gtyCkx'j oz.

Nkxk, Atjkx rkgBk ul HxAzAy gtj znk xkyz--

Lux HxAzAy oy gt nutuAxghrk sgt;

Yu gxk znkE grr, grr nutuAxghrk skt--

GtzutE

So indeed! It is a little harder to read isn’t it? If I send my
secret.txt file back through the program again with the same
secret password, I should get back my original text like in Figure 8-
6.

Figure 8-5: Now you can encrypt (or decrypt) a message file.

Figure 8-6: The decrypted message file.

Trying Some Experiments
You can experiment with lots of things in this project. The Caesar cipher
itself is relatively simple (and easy to figure out by experienced code
breakers). With the way the code is structured, it should be easy to swap
out the Caesar class with another one that uses the same basic API.

You also learned a fair bit about using hashes and a little regarding file
input and output. These techniques will be useful as you build more
sophisticated programs.

In the Caesar class, I spelled out the alphabet by manually typing out
each letter. Try substituting this Ruby instead and see what it does:
('a'..'z').to_a.join.

If you enter a message that has numbers in it, what happens? How
might you fix this problem?
I showed you how to capture the output of the encoder into a file.
What if you wanted to see it show up onscreen instead?

The Ruby string class has a method called tr, which can transform
one string to another. Look it up in the Ruby documentation and see
if you can replace the body of the Caesar encrypt and decrypt
methods using the tr method instead. Hint: You can do the whole
thing in one line!

Project 9
Acey Deucey

As you become more comfortable with thinking like an object-
oriented programmer, it becomes second nature to break projects down
into objects that represent real-world concepts. You can imagine what
the objects look like and how they behave. When you combine your
ability to program objects with a rich library of built-in features like
Ruby’s, you’ll find that you can create some pretty sophisticated projects
without as much work as you might have to do in another programming
language.

In this project, you’re going to combine a set of custom objects together
with heavy use of Ruby’s array class to build a multiplayer card game
called Acey Deucey, which requires you to create a number of objects,
such as playing cards, a deck, players, and the game rules.

Organizing a New Project
This projects requires that you use Atom to create and edit your
program. This time, you’ll store the project’s source code in multiple
Ruby files, one for each object’s class. You’ll continue to use the
Terminal program to run, test, and play the game.

 If you haven’t created a development folder already, refer to
Project 2 for instructions on how to do that.

1. Start your Terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project09

3. Move in to the new directory:
$ cd project09

4. Start Atom by double-clicking its icon.
5. Create a new source code file by choosing File ⇒ New File. Save it

by choosing File ⇒ Save and store it in your project09 directory.
Call the file acey.rb. As you work through the project, you’ll
create all your other files in the same directory.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section from Project 4. It provides
more details for each step.

Planning the Project
The game of Acey Deucey has been around for many years and has
many local variations of its rules. The basic idea, though, is that you
have one deck of standard playing cards for two or more players in the

game. The players will play rounds of the game until either the deck runs
out or all the players have been eliminated except one. Whichever player
has the most chips at the end is declared the winner.

This game is pretty simple, but you still need to get your plan together to
make it easy to write the program.

The main object starts up the game engine and determines how many
and who the players are. The main object will have just enough code to
launch the game, but it won’t contain any actual game rules.

Perhaps the most important object in the project is the one that
represents the game itself. This object manages rounds of the game, acts
as the “dealer” passing out cards, and requests that the players make bets
on whether cards will be a winning or losing hand. All the rules for the
game will be here.

A third object will represent the players of the game. The player object
will store information about the player like her name, her number of
virtual chips or coins used to place bets, and the actual cards in her hand.

Finally, you need a deck of playing cards. In this project, you break
down the problem into two different classes of objects. There will be
individual playing cards, each storing its rank (its face value, like 2, 10,
Jack, Ace, or Queen) and its suit (diamonds, hearts, clubs, or spades).
The card objects will be stored together in another object that represents
the deck. The deck class knows how to hold, shuffle, and deal cards, but
doesn’t care what the cards themselves are like.

Splitting up the code into a number of classes of objects lets you think
about parts of the game at higher (or lower) levels. I’ll show you the
details in a mostly bottom-up manner in this project.

The rules of Acey Deucey
The card game Acey Deucey has been around a long time. As a relatively simple
game, it allows you to explore object-oriented programming at the same time as you
learn to program some slightly more involved game rules or logic. There are many
variations of the game, so let me describe the rules you’ll use for this project.

The dealer starts with a standard deck of 52 playing cards (where the 2 card is low and
the Ace card is high). The suits (Diamonds, Hearts, and so on) don’t matter in this
variation. The dealer shuffles the cards to prepare for a game.

Each player has a stack of chips used to make bets. At the start of a round of play, each
player antes (contributes) one or more chips to the dealer’s bank (sometimes calls a
pot).

Next, the dealer deals two cards to each player. In the real world, these cards are face
up, so everyone can see them. The dealer goes around the table for each player and
asks the player to bet on whether a third card will be in between the player’s two cards,
as measured by the rank of the card. If a player has a 3 of Hearts and a 10 of Spades,
the player needs to guess whether her next card will be a 4, 5, 6, 7, 8, or 9 of any suit.
She can bet any number of chips between 0 and either the number of chips she has or
the total number of chips in the dealer’s bank, whichever is smaller.

The dealer then flips over a third card. If that card is between the first two cards, the
player wins and collects the number of chips she bet from the bank.

If the flipped over card is outside of the two cards (so either a 2 or a Jack, Queen, King,
or Ace), she loses her bet and must pay that to the dealer’s bank.

If the flipped card is exactly the same rank as either of the first two cards (another 3 or
10), then the player loses double her bet — ouch!

Play continues around the table until everyone has had a turn. That ends the first
round, and play continues for another round as long as there are enough cards to
continue.

In this version, if the bank runs out of chips, the dealer will require that all players ante
up again. If a player runs out of chips, she is eliminated from the game.

The game ends when either the deck no longer has enough cards for a round or all
players but one are eliminated. The player with the most chips at the end is the winner.

Looking at the Program Skeleton
The code in this project uses a handful of classes to represent the main
objects involved with a card game. As you’ve seen in other projects,
there will be one piece of code that has the job of creating the main
object(s) of the application and getting things started. You may have
noticed as you progressed through this book that the code that launches
and runs the rest of the application has been getting simpler and simpler
as you go.

Follow these steps to create the main program’s code:

1. For Acey Deucey, the acey.rb file is your game’s main program
file. It creates and uses the rest of the objects to run the card game.
Start with your standard comment to let the world know what this
program is all about:

#

Ruby For Kids Project 9: Acey Deucy

Programmed By: Chris Haupt

A multiplayer card game where you try to guess whether the next card

will be between two other cards, placing bets on the results

#

2. In this project, you use separate source code files to store each of the
classes you create. Programmers use this technique to keep file size
smaller and more manageable. Once a file gets to be much more than
a full screen’s worth of code, it gets harder to read and maintain.
Ruby doesn’t care whether the code is in one file or many, but if you

do use more than one file, you need to give Ruby a clue where to
find those other files. Do that next:

require_relative "game"

require_relative "deck"

require_relative "card"

require_relative "player"

require_relative tells Ruby that the file that starts with the
supplied name is in the same directory as the current code. You can
put code anywhere, and give Ruby the path to the code, but keep
things simple for now and use the same folder.

3. The Acey Deucey game has a couple of constant variables that can
be used to tune the game, so add those next:

STARTING_NUMBER_OF_CHIPS = 10

MINIMUM_PLAYERS = 2

4. The purpose of the acey.rb file is to create the starting objects and
launch the game. First up is setting up player objects. Ask the user of
the program how many players she wants to simulate:

puts "Welcome to Acey Deucy"

print "Enter number of players: "

player_count = gets

player_count = player_count.to_i

 gets returns a string, so you’re using the to_i method to
transform the string into a number. Ruby ignores whitespace when it
does the conversion, so you don’t need to chomp off the newline
character as you’ve done in the past.

5. Confirm that the minimum number of players has been requested and
prepare an array to hold the player objects. You’ll add the rest of that
code in a moment. Also, add a message in the else condition to let
the user know that she needs to pick another number of players:

if player_count >= MINIMUM_PLAYERS

 # Load up some players

 players = []

 # Add code to create players here

else

 puts "There should be at least #{MINIMUM_PLAYERS}"

end

6. Now go back in the body of the if condition and create some player
objects. Add this code in place of the Add code to create
players here comment:

(0…player_count).each do |index|

 print "Enter name for player ##{index + 1}: "

 name = gets

 name = name.chomp

 players << Player.new(name, STARTING_NUMBER_OF_CHIPS)

end

You should recognize most of the methods here. You’re looping the
number of times needed to create player_count objects. For
each player object, you gather string input for the player’s name.
Then you create the actual Player object, passing in the name and
some amount of chips to be used by that player.

7. You have everything you need to create the main Game object that
will take over and run the game. Add this code right after the player
creation loop:

game_engine = Game.new(players)

game_engine.show_player_chips

game_engine.play

You take three steps to launch the game. First you create the Game
object from the Game class. You pass the players array to the game,
and the Game object will manage the players for the rest of the
program. Second, you use a method on the Game object to display
the starting set of players. This is part of the program’s user
interface. Finally, the last line launches the game.

Creating Classes
The Acey Deucey program will use four classes to run the game. In this
project, I show you these items from the bottom up, starting with the
lower-level classes and then moving to the higher-level classes that use

them. You should compare this technique with the top-down approach
you’ve used in other projects. Which one makes more sense to you?

Creating the card class
Acey Deucy is a card game, so of course you’ll need some object that
represents the concept of a playing card. The card object will know what
its suit and rank are, and how to compare itself with other cards to figure
out which cards are “higher” or “lower” for the game. Because you’re
working bottom-up in your coding, you need to think a bit about the
functionality required by higher-level classes.

1. Switch over to Atom and create a new file called card.rb. Make
sure that you save this file in the same directory as the acey.rb
main program. Create the class definition:

class Card

Code goes here

end

2. This game uses standard playing cards. Create two arrays that hold
the suits and ranks of cards and place them inside of the class:

SUITS = %w(Clubs Diamonds Hearts Spades)

RANKS = %w(2 3 4 5 6 7 8 9 10 Jack Queen King Ace)

 Here you’re using the shorthand %w() syntax for Ruby
arrays that contain a list of strings. You could’ve written this as
SUITS = ["Clubs", "Diamonds", "Hearts",
"Spades"], but since the items in each array are single words (or
numbers treated as words), the shorthand works to save a bit of
typing.

3. The outside world needs to be able to get the card’s suit and rank, so
use Ruby’s accessor functions:

attr_accessor :rank, :suit

Accessors can also be used in the class, and you’ll notice that when
you want to use the variable’s value elsewhere in the program,
you’re using the accessor instead of the instance variable name (the

one with the @ sign). For your purposes, this is a programmer
preference thing.

4. When the card is created, its suit and rank will be assigned to it, so
create an initialize method to accept those values:

def initialize(rank, suit)

 @rank = rank

 @suit = suit

end

5. In the user interface of the game, you’ll want to print out what the
card is, so use Ruby convention for the name of a method to print out
an object as a string:

def to_s

 "#{rank} of #{suit}"

end

Here you’re using the accessors for the two variables. You could’ve
used @rank and @suit. Your choice.

 Almost all objects in Ruby have a to_s method (which
means “to string”). Sometimes the built in to_s isn’t as useful as
you’d like, so you can override the default behavior by defining your
own method as you’re doing here. For the Card class, you’re just
returning a string you make by combining the rank and suit using
string interpolation.

6. Ruby has a built-in method for comparing two values and
determining if the first is less than, equal to, or greater than the
second one. Create a comparison method that you’ll use later on to
create the game’s rules:

returns -1 if card1 is less than, 0 if same as, and 1 if larger

than card2

def self.compare_rank(card1, card2)

 RANKS.index(card1.rank) <=> RANKS.index(card2.rank)

end

 There are a couple of things going on here that are new:
The word self in the method definition tells Ruby that this
method is a class method. A class method is a message you
send to the class itself rather than an instance of (an object
made from) the class. This is super helpful when you need to
create some code that relates to a class but needs to work
outside of specific objects.
The <=> symbol (which Ruby calls the spaceship operator) is
used by Ruby to compare the two objects on the left and right
of the symbol. For this program, you’re using the Array
class’s index method to find the position in the RANKS array
of the two cards’ ranks. When you have those numbers, you
compare the positions to see if the first card is less than, equal
to, or greater than the second card.

7. You need a way to create a collection of all 52 playing cards that can
be used as a deck. Create a factory method on the class that will do
this work:

def self.create_cards

 cards = []

 SUITS.each do |suit|

 RANKS.each do |rank|

 cards << Card.new(rank, suit)

 end

 end

 cards

end

This is another class method and can be called to make a new deck
of cards. It has two loops: The outside one loops through the SUITS
array, and for each suit, an inner loop goes through the RANKS array
to create each card. The method returns the array of all cards, just
like a brand-new deck!

 Programmers call functions that create objects factory
methods. I suppose that’s because a factory is a place that makes
things!

8. Save your code before moving on.

Creating the deck class
The card class creates a deck of cards, but doesn’t really know anything
about the behavior of a deck of cards. The deck class will have that job.

1. Create a new file called deck.rb in the same directory as the other
files. Add the class’s definition:

class Deck

Code goes here

end

2. Create the initialization method that takes an array of cards as its
argument:

def initialize(cards)

 @cards = cards

end

3. One thing decks of cards can do is have their cards be randomly
shuffled, so add that method:

def shuffle

 unless @cards.empty?

 @cards.shuffle!

 end

end

 The unless keyword in Ruby is the opposite of the if
condition keyword. It’s exactly the same as saying “if not.” I’m
demonstrating it in this code for you, because sometimes it reads
more clearly. If it’s harder to understand, just switch the line to if
not @cards.empty?, and you’ll have the same meaning.

 Because @cards holds an array object, you can use all of
Ruby’s built-in methods to implement your project. Here you’re
using the array method empty? to see if any cards remain in the
array; if they do, the shuffle! method randomly mixes up the
array. Ruby uses the convention of adding a question mark (?) at the
end of a method if it generally returns a Boolean value, and an
exclamation point (!) if the method somehow changes the associated
object.

4. Decks of cards are also used to pass cards out to players (dealing), so
create a method to do that:

def deal

 unless @cards.empty?

 @cards.pop

 end

end

5. In some card games, knowing how many cards are left in the deck is
important, so add a method to get the deck’s size:

def size

 @cards.length

end

6. Save your work.

Creating the player class
The player in Acey Deucy is going to have a name, some number of
cards in her hand, a number of chips to place bets with, and a current bet
number.

1. Create a player.rb file and add the class definition:
class Player

Code goes here

end

2. The player has several attributes that you’ll track and use, so create
an accessor for them:

attr_accessor :name, :hand, :chips, :bet

3. Next, in the initializer for this class, you’ll want to set up the starting
values for everything:

def initialize(name, chips)

 @name = name

 @hand = []

 @chips = chips

 @bet = nil

end

 nil is Ruby’s way of saying that the variable has no value
at all. At the start of the game, you’re representing the fact that the
player doesn’t have a current bet by using nil. Also, notice that the
starting value for the player’s hand of cards is an empty array [].
You’ll use an array to hold the player’s cards (those Array objects
are handy aren’t they?).

4. The game needs some way to tell the user to discard her old hand of
cards to get ready for the next round:

def discard_hand

 @bet = nil

 @hand = []

end

You use this method as a chance to reset the player’s bet to nil, too,
since each round will require a new bet.

5. The dealer is going to deal a card and the player needs to put it in her
hand:

def take_card(card)

 @hand << card

end

6. To make the game implementation a little easier, give the player the
ability to sort her cards from low to high, so the lowest-ranked card
will always be first one, and the highest will be the second one:

def sort_hand_by_rank

 @hand.sort! do |card1, card2|

 Card.compare_rank(card1, card2)

 end

end

 Ruby’s Array class really is pretty cool. Here you’re using
the sort! method to arrange the hand array in order, and you’re
able to use your Card class’s compare_rank method you created
earlier. That’s a lot of work with a little bit of code.

7. For this game, if the player doesn’t have any chips, she is eliminated
and can’t play anymore. Create a method that the game can use to
check this out:

def eliminated?

 @chips <= 0

end

In theory, the player can’t have less than zero chips, but we’re
checking just in case we make a programming mistake someplace
else.

8. You need to have some way for the player to pay up if she loses a
bet:

def pay(amount)

 if amount > @chips

 pay = @chips

 @chips = 0

 else

 pay = amount

 @chips -= amount

 end

 pay

end

This code deals with two cases. In the first, you handle what happens
if the amount owned by the player is larger than the number of chips
she has. You’re going to pay up whatever is left in the player’s pile
of chips, and then set the chip count to zero. If the player has enough
chips left, you just subtract that amount from the player’s total.

9. Finally, if the player wins a bet, you need to be able to send those
winnings to the player to put in her pile of chips:

def win(amount)

 @chips += amount

end

10. Save your code!

Creating the Game class
So far so good. You’ve created all the individual kinds of objects that
Acey Deucey needs to actually be played. Time to dive in to the game
rules and user interface.

1. Create the game.rb file and define the class:
class Game

Code goes here

end

2. Define the attributes you’ll want to access, and define a useful
constant:

attr_reader :players, :deck, :bank, :round

ANTE_AMOUNT = 1

 The ante is how much each player needs to put in at the start
of each round to help fund the dealer’s bank.

3. The initialization method for this class sets up a number of instance
variables that you’ll mostly access through the accessors in Step 2:

def initialize(players)

 @players = players

 @deck = Deck.new(Card.create_cards)

 @deck.shuffle

 @bank = 0

 @round = 0

end

The players array is passed in to the Game object from the
acey.rb main program. The Game object does the rest of the setup
by using your Card and Deck classes to set up the playing cards.

4. Provide a method that the Game object can use to determine if there
are any active players remaining. Remember: We’re defining an
active player in this game as one that still has chips to play with:

def remaining_players

 players.count {|player| !player.eliminated?}

end

This code uses the Array class’s count method to loop through
each item in the array. For each item, it calls the player object’s
eliminated? method. If it isn’t true, it will increase the count by
one. This one line is an example of how compact Ruby can be if you
use all its built-in power.

5. Create the main game loop. This method looks super long, but it’s
almost all user interface code using puts to print out messages for
you to see:

def play

 while deck.size > (players.length * 3) && remaining_players > 1 do

 new_round

 puts "-" * 40

 puts "Round #{round}! The dealer has #{bank} chips."

 puts "-" * 40

 puts "Everyone antes"

 ante

 puts "The dealer now has #{bank} chips."

 deal_cards(2)

 sort_cards

 puts "---> Current cards:\n"

 show_cards

 puts "---> Players bet:\n"

 players_bet

 puts "\n---> Dealer deals one more card\n"

 deal_cards(1)

 show_cards

 puts "---> Determining results\n"

 determine_results

 puts "\n---> New standings\n"

 show_player_chips

 puts ""

 end

 game_over

end

If you ignore the output lines, you’ll see that the remaining method
calls represent the separate steps of the game’s rules. You can almost
read this out loud and get a feel for how the game is played.
The game uses a while loop to keep playing until either the deck is
too small to do a complete round or there is only one player left.

6. At the start of each round, the game updates its counter and tells all
the players to discard their hands:

def new_round

 @round += 1

 players.each do |player|

 player.discard_hand

 end

end

7. Next, each player needs to contribute a chip to the bank as part of the
ante step:

def ante

 players.each do |player|

 if not player.eliminated?

 @bank = @bank + player.pay(ANTE_AMOUNT)

 end

 end

end

 I’m using the not keyword in the conditions in this code.
You could also write that line as if !player.eliminated? to
mean the same thing. Use the syntax that is easier for you to
understand.

8. The dealer needs to give each player his or her cards next:
def deal_cards(num_of_cards)

 players.each do |player|

 next if player.eliminated?

 1.upto(num_of_cards) do

 player.take_card(deck.deal)

 end

 end

end

The deal_cards method is handy, because it can be used to deal
any number of cards to the player. In Acey Deucey, you need to give
each player cards twice: once for the initial two cards, and then again
for the third card. This method can be used both times. Reuse is
great!

 You’ve probably noticed that many of the Game class’s
methods use the same pattern of code. They each loop through the
players array and take some action by sending a message to the
player (or other objects). In deal_cards, the one new keyword
is the use of next. That line will skip to the next iteration of the
loop if the trailing condition is true. You don’t want to deal cards to
eliminated players, so you bypass that work when the player is out of
chips.

9. When the game has dealt the initial two cards to the players, you
want them to sort their hands to make it easier to pick out the low
and high cards later on:

def sort_cards

 players.each do |player|

 next if player.eliminated?

 player.sort_hand_by_rank

 end

end

10. Now it is time for the players to get involved. You want to ask each
one to bet on his or her hand:

def players_bet

 players.each do |player|

 if player.eliminated?

 puts "#{player.name} passes. (Out of chips!)"

 else

 print "#{player.name} can bet between 0 and #

{max_bet(player)}: "

 bet = gets.to_i

 if bet < 0 || bet > max_bet(player)

 bet = 0

 end

 puts "#{player.name} bet #{bet}"

 player.bet = bet

 end

 end

end

Players who are out of chips aren’t playing the round, so you skip
them. For all other players, you need to ask them to bet some chips.
Each player’s individual bet is either the total number of chips in the
bank or the number of chips the player is holding, whichever is
smaller. The logic in this method checks those game rules. Notice
how the player object then holds the final bet amount as a kind of
memory of this action.

11. Create the helper method used to determine the maximum bet
allowed by the player:

def max_bet(player)

 [player.chips, bank].min

end

This method uses a neat little method on the Array class. It will
look inside the array and find the minimum (min) number in the
array and return that. Because you want the lower amount of the
player’s chips in the banks, this is just the trick.

12. Create a user interface method to nicely display all the player’s
current chip amounts:

def show_player_chips

 players.each do |player|

 if player.eliminated?

 puts "#{player.name} has been eliminated"

 else

 puts "#{player.name} has #{player.chips} chips"

 end

 end

end

13. Create another user interface method to review the players’ cards:

def show_cards

 players.each do |player|

 puts "Player #{player.name}"

 if player.eliminated?

 puts "Has been eliminated!"

 else

 player.hand.each do |card|

 puts card.to_s

 end

 end

 puts ""

 end

end

14. Maybe the most complicated method of the whole game is the one
that runs the game’s rules for determining if the player won or lost.
I’ll break it down a little bit:

def determine_results

 players.each do |player|

 if not player.eliminated?

 low_card = player.hand[0]

 high_card = player.hand[1]

 middle_card = player.hand[2]

For each player still in the game, get the player’s cards. Remember:
You sorted the first two into low and high cards. The last card in the
hand array is the “third” card, which is the one that should be in the
middle of the other two in order to win.

15. Write a set of three conditions to check each game rule. If the rule
turns out to be true, calculate how many chips the player will pay or
win.

if Card.compare_rank(low_card, middle_card) == 0 ||

Card.compare_rank(high_card,middle_card) == 0

 puts "#{player.name} got an exact match, loses twice the bet!"

 chips = player.pay(player.bet * 2)

elsif Card.compare_rank(middle_card, low_card) < 0 ||

Card.compare_rank(middle_card, high_card) > 0

 puts "#{player.name} wasn't inbetween loses the bet!"

 chips = player.pay(player.bet)

else

 puts "#{player.name} wins bet!"

 chips = -player.bet

 player.win(player.bet)

end

In each case, store the change in the number of chips so you can
adjust the dealer’s bank next. Note that in the winning case, you need
to subtract the player’s bet from the bank, which is why you store the
negative number of chips in the else case.

16. Adjust the bank with the winnings or losses of the player. If the bank
“runs out of chips,” the rules require that all players ante up again
until the bank has a positive number of chips:

 @bank = @bank + chips

 if @bank <= 0

 puts "Dealer is out of chips, everyone needs to ante

up!"

 end

 while @bank <= 0

 ante

 end

 end

 end

end

17. You’re in the home stretch! Add a method to display the final
messages at the end of the game:

def game_over

 puts "Game Over!"

 players.sort! do |player1, player2|

 player1.chips <=> player2.chips

 end

 puts "The winner is #{players.last.name}"

end

Here you’re using the Array class’s sort! method again and the
spaceship operator to sort the players by their chip count, lowest to
highest. The last player in the array is the one with the most chips.

18. Save your code and test your project. Fix any typos, particularly
from the long lines in this class. The game should run, let you set up
some players, and keep placing bets until the deck runs out or
someone is the last player with chips (see Figure 9-1)!

Figure 9-1: Acey Deucy in action.

Trying Some Experiments
Now that you have objects that can be used for a card game, you can
start to experiment with different rules to make up your own games.

Here are a few things to try to test your Ruby understanding:

A number of the loops in the Game class used the next keyword.
How would you write those loops without the next keyword?

Change the rules of the game so that the players only ante once at the
start of the game and again when the bank runs out of chips. How
does that change the way the game is played?
Check to see if the player has enough chips to play that round. She
needs at least ANTE + 1 chips, why?

This version of the game deals two cards to each player first, and
then conducts the betting round. What would be different if you dealt
only two cards to one player, had them bet, and then went on to the
next player? Is that fair?

How might you change the game to play multiple rounds, where you
would start with a fresh deck of cards when the last deck ran out?

Part IV
Using Shared Code to Get

Graphical

In this part …
 A-maze-ing
 Tower
 Game of Life

 For information on working with RubyGems, go to
www.dummies.com/extras/rubyforkids.

http://www.dummies.com/extras/rubyforkids

Project 10
A-maze-ing

It’s time to take the leap into graphical programs and user
interfaces. Up until now, you’ve programmed a series of projects that
used output to the terminal to interact with the code’s user. ASCII art is
fun, but making a project with colorful graphics that the user can interact
with is even better.

In this project, you create a simple maze exploration and treasure
gathering game. You can design any maze that you like using text strings
that describe the level. The text looks a little like ASCII art, in fact! But
in this project, your code converts it into a graphical display with
different color tiles. The user moves around in the maze and collects as
many treasures as she can in the least time possible.

Organizing a New Project
In this project, you’ll use Atom to create and edit your program. Unlike
other projects, this program’s source code will be stored in five different
files, one for each class you create. Each file will be named after the
class it contains, and all the files will be stored in the same project
directory. You’ll use the terminal program to run and test the code, but
this time the project will create its own window in which the game is
played.

 If you haven’t created a development folder already, refer to
Project 2 for instructions on how to do that.

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project10

3. Move in to the new directory:
$ cd project10

4. Start Atom by double-clicking its icon.
5. Create the first source code file by choosing File ⇒ New File

command. Save it by choosing File ⇒ Save and store it in your
project10 directory. Call the file amazing.rb.

6. This project uses the graphical game library you installed in the first
chapter (Project 1), called Gosu. If you aren’t sure that you have it
installed, run the following command in your terminal program:

$ gem list

You should see a number of item lists, and a version of Gosu should
be listed (see Figure 10-1). If it isn’t, go back to Project 1 and follow
the instructions there to install it.

Figure 10-1: Confirm that gosu appears in your Ruby Gem list.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section from Project 4. It provides
more details for each step.

Get ready to search the maze for some awesome treasure!

Planning the Project
As your projects have grown, you may have noticed that the file you
were writing your Ruby code in was getting a bit long. Experienced
programmers who work on larger projects, alone or with teammates,
usually break the code into separate files, each of which contains one
specific bit of functionality. In this project, you’ll start to use that
technique and put (mostly) one class in each source code file.

The goal of this project is for you to create a simple, 2D game in which
the player moves a piece around a mazelike board, collecting treasures
and reaching the exit in the least amount of time possible. Let’s figure
out what objects we need for such a project:

You need a main object that is used to setup and launch the game.
This main class’s job is to connect with the game library Gosu so
you can use its abilities.
You’ll have another object that represents the game itself. The game
object will be responsible for setting up the player object and the
game board (which I’ll call a level, although there is only one level
to start). The game object will also be responsible for the player and
level to display themselves, and the game object will show a user
interface that displays a timer and current score.
The level object is responsible for taking data you provide that
describes what the board should look like and setting up some
graphical tiles to lay out the design. The level manages movement
within the maze and determines what are valid moves for the player.
The player object is actually going to be a special version of a tile
object. The tile object is an object that knows how to draw itself on
the playing board. For this project, you’ll have a number of different
types of tiles (walls, treasure, exit, player, and so on).

To keep this project as simple as possible, I’ll keep it to the objects I
listed here, but as you go, you’ll probably start thinking of different
ways you could improve the objects you code.

What is a game engine?
The Gosu code library is a relatively simple two dimensional (2D) game engine that is
great for creating many different kinds of games. But what is a game engine?

For now, think of a game engine as a collection of code that handles all the boring work
needed to write a game program so you can focus on the fun stuff.

What do I mean by the boring work? Instead of having to write a lot of common code,
the engine takes care of that for you. Good engines will include code for drawing
graphics and text, getting input from the user, playing sound effects and music,

calculating physics simulation for lifelike movement and collisions, communicating for
multiple player support, and other capabilities.

A game engine typically goes through multiple steps when running your program. It first
sets up the game environment, initializing the graphics support and the data needed for
the game, and loading other resources that might be required (like sounds). The engine
then enters what is called the game loop. The game loop is a loop like you’ve learned
about, and it runs from the start of the game until the end. Inside of the loop, there are
two main parts. The update part is where the engine reacts to user input and other
changes to the game’s data. The draw part is when all the user interface is updated and
the engine draws the latest graphics based on the game data (see the following figure).

In this project, during the update part of the game loop, you’ll use your keyboard’s arrow
keys for input to determine how to move the player. You’ll also update a timer to show
the player how long she has been playing.

During the draw portion of the loop, Gosu will be used to draw the maze and the pieces
on it, display scores and the current elapsed time, and when the game is over, display
the final Game Over message.

Looking at the Program Skeleton
This project uses a handful of classes to coordinate all the objects needed
to make a simple, but very flexible game. The main starting point for
your code will create all the objects needed and set up the Gosu library.

1. The amazing.rb source code file is your program’s entry point.
Add a comment to identify the file, but also write a note that helps
people know how to run the program. Because there are going to be
multiple files in this project, the note gives a little hint in case you
forget which file is which.

#

Ruby For Kids Project 10: A-maze-ing

Programmed By: Chris Haupt

A mazelike treasure search game

#

To run the program, use:

ruby amazing.rb

#

2. Provide a hint to Ruby as to what external code is going to be used:
require 'gosu'

 Ruby doesn’t automatically know about code in the other
files you create or extra Ruby gems you may have loaded. The
require line tells Ruby to look for and load gosu in the standard
system locations.

3. Create the Amazing class as a child class of Gosu’s Window class.
This will connect your project up so you can use Gosu’s capabilities:

class Amazing < Gosu::Window

def initialize

 super(640, 640)

 self.caption = "Amazing"

 # More code will go here

 end

Even more code will go here

end

The class’s initialize method creates a square window 640
pixels on a side. It also sets the window title (caption).

4. Create an instance of the class and call the Gosu show method to
display the window and get the game going. Place this code just after
the final end keyword:

window = Amazing.new

window.show

5. Save the code and run it in the terminal window with $ ruby
amazing.rb. You should get a square, black window like in
Figure 10-2. If not, make sure to check for any error messages in the
terminal window and check for typos. If you don’t have the Gosu
gem installed, you may have to go back and do that.

Figure 10-2: Gosu is running if you see a blank window.

To quit, just close the window or press Ctrl+C in the terminal.

Creating Placeholder Classes
There are four other classes besides the Amazing class you’ve already
coded. Each of these classes will be placed in its own file and then
connected using Ruby’s require functionality.

The Game class
The Game class is responsible for setting everything up and managing
all the updates and drawings that may be required from the other classes.

1. In Atom, create a new file called game.rb in the same directory as
amazing.rb. Add the require functions that connect this class
to others in the project:

require 'gosu'

require_relative 'level'

require_relative 'player'

class Game

 LEVEL1 = []

You’ve already seen the require function. The
require_relative function is used to tell Ruby to load up and
use code that is in the same directory as the current file. You’ll fill in
the constant LEVEL1 later with your maze design.

2. Define an initialization method:
def initialize(window)

 @window = window

 @player = Player.new(@window, 0, 0)

 @level = Level.new(@window, @player, LEVEL1)

 @font = Gosu::Font.new(32)

 @time_start = Time.now.to_i

end

This method prepares a number of instance variables based on
classes you have yet to write. The @font variable assignment looks
odd — it’s creating a new object using the Gosu library. Font
objects are how Gosu draws text. You’ll use that for some of the user
interface (UI) later on. The @time_start instance variable is
using Ruby’s Time class to get the current time and convert it into
an integer (the to_i method). That number represents the current
time in seconds since the beginning of computer time!

3. Stub in the game loop related methods and end the class:
 def button_down(id)

 end

 def update

 end

 def draw

 end

end

These methods are standard functions when using Gosu. The
button_down method is used to detect if the user has pressed a
button on her keyboard. You’ll use update to make changes to the

game’s data (including updating tiles based on user input). The
draw method will be used to tell everything to display itself.

4. Save the code.

The Level class
The Level class is responsible for the game board and its pieces. The
class will draw the maze based on a textual description you pass in.

1. In Atom, create a new file called level.rb in the same directory
as amazing.rb. Add the initial Ruby require functions and
class definition:

require 'gosu'

require_relative 'tile'

require_relative 'player'

class Level

2. This initialization method is a bit long, mostly because you’re going
to store a lot of data. I’ll explain most of the variables in later
sections:

def initialize(window, player, level_data)

 @window = window

 @tiles = []

 @player = player

 @level_data = level_data

 @total_rows = 0

 @total_columns = 0

 @exit_reached = false

 if @level_data

 @total_rows = @level_data.length

 if @total_rows > 0

 @total_columns = @level_data.first.length

 end

 setup_level

 end

end

Most of the variable setup should be self-explanatory (even if you
don’t know what the variables are used for yet). The last part is a

little complicated. It’s checking to see if any level data has been
supplied and, if it has, calculates the total number of rows and
columns for the data before setting up the board.

 The playing board for the A-maze-ing project is a grid.
Think of it like a chessboard or piece of imaginary graph paper.
You’ll fill in each square of the grid with a wall, an empty space, or
your other playing pieces (entrance, exit, treasure, and player). The
layout is a little different from graphing you might have done in
math class. The rows are the y-axis and run down vertically on your
imaginary graph paper. The first row is numbered zero (0) and gets
larger as you move down the paper. The columns of the grid run
horizontally across the imaginary graph paper. This is your x-axis,
and it, too, starts counting at zero (0) and increases as you move to
the right. This coordinate system is how Gosu works in general (see
Figure 10-3).

3. Stub in the setup_level method for now:
def setup_level

end

4. Stub in the standard game loop methods and end the class:
 def button_down(id)

 end

 def update

 end

 def draw

 end

end

5. Save the code before moving on to the next placeholder.

Figure 10-3: The Gosu coordinate system and the layout of a Level object’s tiles.

The Tile class
The Tile class represents a visible piece on the playing board (level). It
will know how to draw itself based on its type. In this project, you use a
simple code to represent the type of the tile (for example, wall, empty,
exit, treasure, and so on).

1. In Atom, create the tile.rb file in the same directory as the
amazing.rb file. Add the require line and define the class:

require 'gosu'

class Tile

2. Set up a number of constants that will be used to make it a little
clearer what the different types of tiles are and how big they are on
screen:

PLAYER_TYPE = 'P'

START_TYPE = 'S'

EXIT_TYPE = 'E'

TREASURE_TYPE = 'T'

EMPTY_TYPE = '.'

WIDTH = 32

HEIGHT = 32

In your level design, you’ll use these symbols to place objects on a
map. Any unrecognized symbol will be treated as a wall.

3. Add an attribute accessor to make it easier for other parts of the code
to use a tile’s variables:

attr_reader :row, :column, :type

4. Define an initialization method for tiles:
def initialize(window, column, row, type)

 @@colors ||= {red: Gosu::Color.argb(0xaaff0000),

 green: Gosu::Color.argb(0xaa00ff00),

 gold: Gosu::Color.argb(0xaaffff00),

 blue: Gosu::Color.argb(0xaa0000ff)}

 @@font ||= Gosu::Font.new(24)

 @@window ||= window

 @row = row

 @column = column

 @type = type

 @hidden = false

end

Not only does this method set up some basic instance variables
needed for any individual class (like @row and @column), but it
also creates some shared class variables.
The symbol ||= is made up of two vertical bars and one equal sign.
The vertical bars are sometimes called pipes.

 Ruby’s class variables start with two at signs (@@) and are
shared by all instances of a class. In this program, you need only one
hash of colors for looking up appearance. Likewise, the font and
window targeted for drawing can be shared across all tile objects.
Using class variables is a convenience and saves a little memory.
Perhaps the most complicated variable here is @@colors. The
symbol ||= means that if the variable doesn’t already have a value,
set it up; otherwise, don’t do anything. The @@colors variable is
being assigned a Ruby hash where the keys are names of colors, and
the values are using Gosu to define a color using a hexadecimal
code. You can place numbers and letters A through F in that value to
change the color.

5. Stub in the draw method and finish the class:
 def draw

 end

end

6. Save the code before moving on.

The Player class
The Player class is a specialized kind of tile object. You could break
out many different special tiles, but I want to show you one that you’ll
use to track the user’s location and score.

1. In Atom, create a player.rb file next to the other files in the
project. Add the standard requires and class definition:

require 'gosu'

require_relative 'tile'

class Player < Tile

Because player is a child class of Tile, you’ll use the subclass
syntax that you’ve seen before.

2. Provide access to the player’s score with a read-only accessor:
attr_reader :score

3. Set up the object with an initializer and close up the class with end:
 def initialize(window, column, row)

 super(window, column, row, Tile::PLAYER_TYPE)

 @score = 0

 end

end

Mostly this just calls its parent class using the super keyword. You
pass the parent class the tile type (using the appropriate constant
you set up earlier), and then set the starting score to zero.

4. Save the file before moving on. You can try running the code at this
point, but you won’t see anything other than a blank screen. If you
get error messages in the terminal, fix those before continuing.

Coding Amazing Methods
For this project, you’ll work top-down to get a feel for how the Gosu
library’s game loop works. The Amazing class kicks things off, so start
there.

1. Inside of the amazing.rb file, add the missing
require_relative call just below the other require:

require_relative 'game'

2. Create a game object in the initialize method right after the
caption is set (shown for context):

self.caption = "Amazing"

@game = Game.new(self)

3. Add the Gosu related game loop methods to the Amazing class
below the initialize method:

def update

 @game.update

end

def draw

 @game.draw

end

def button_down(id)

 @game.button_down(id)

end

4. Save the file before moving on.

Coding Game Methods
The Game class will contain the data that describes the level and a
variety of methods to help out with the game interface.

1. The LEVEL1 constant is up first. The constant is made up of an
array of 20 strings. Each string is made up of 20 characters. If you
type this up in Atom and line things up, it looks like a map.

LEVEL1 = [

 "+------------------+",

 "|S.|….T……….|",

 "|..|.--------..|++.|",

 "|..|.|….|T|..|T..|",

 "|.+|.|.E|.|….|…|",

 "|..|.|---.|.|--|…|",

 "|..|.|….|.|……|",

 "|+.|.|……|..|-|.|",

 "|..|.|-----.|..|+|.|",

 "|..|T…….|..|+|.|",

 "|.++--------+..|+|.|",

 "|.+….+++…..|+|.|",

 "|…++…..+++.|+|.|",

 "|---------------+..|",

 "|T+|……|…..|.||",

 "|..|..|……+T.|.||",

 "|+…+|---------+..|",

 "|..|………….+.|",

 "|T+|..++++++++++…|",

 "+------------------+"

]

The critical symbols here are the period (.) for blank spaces, S for
where the player starts, E for the exit from the maze, and T for

treasure markers. You can use any other symbol you like for the
walls. I did a little ASCII art here using |, -, and +.

 You can change this map however you like, but remember
that there needs to be 20 strings of 20 characters! There also needs to
be a comma at the end of each string in the array except for the last
one.

2. Add code to the game loop related methods you stubbed out
previously:

def button_down(id)

 @level.button_down(id)

end

def update

 @level.update

 if !@level.level_over?

 @time_now = Time.now.to_i

 end

end

def draw

 @level.draw

 draw_hud

end

Mostly this just calls down to the level object to take care of things.
In the update method, you’ll also keep track of the current time
until the player reaches the exit of the maze. You’ll use the elapsed
time in the heads-up display (HUD), which displays the user
interface for important game information. In Amazing, the HUD will
contain the current score and the clock.

3. Draw the HUD:
def draw_hud

 if @level.level_over?

 @font.draw("GAME OVER!", 170, 150, 10, 2, 2)

 @font.draw("Collected #{@player.score} treasure in #

{time_in_seconds} seconds!",

 110, 300, 10)

 else

 @font.draw("Time: #{time_in_seconds}", 4, 2, 10)

 @font.draw("Score: #{@player.score}", 510, 2, 10)

 end

end

This method changes what it draws depending on whether the level
is over (the player reached the exit). If the game is still being played,
the method uses Gosu’s font draw method to draw text on the upper
corners of the screen. If the level is over, the method displays a
Game Over message and the final score.

 The first three number arguments of the @font.draw
method calls are the x-, y-, and z-axis locations (no, this game isn’t
3D, but the z-axis is used for determining how items stack up when
drawn). The other two numbers used in the Game Over message are
used to scale up the size of the message. In this case, the text will be
twice as high and twice as wide.

4. Add a helper for calculating the number of seconds that have gone
by since the game started. Remember that you capture the current
game time each pass through the Gosu game loop.

def time_in_seconds

 @time_now - @time_start

end

5. Save your code before moving on.

Coding Level Methods
The Level class is the workhorse of the game and manages all the
objects needed to display the playing board.

1. Inside the level.rb file, replace the stubbed setup_level
method with code that translates the string array description of the
board with Tile objects:

def setup_level

 @level_data.each_with_index do |row_data, row|

 column = 0

 row_data.each_char do |cell_type|

 tile = Tile.new(@window, column, row, cell_type)

 # Change behavior depending on cell_type

 if tile.is_start?

 @player.move_to(column, row)

 end

 @tiles.push(tile)

 column += 1

 end

 end

end

This code uses a couple of new methods, but the concepts will be
familiar. The each_with_index method is a looping method like
the plain each method you’ve used before. Besides passing the next
object to the block of code that follows, it also passes the index
number of the object (its position within the array). You need to
know what row number you’re on, and this is a handy way to get that
info.
Inside of the outer loop, you need to also track the column number
(remember the graph paper metaphor I used earlier?) as you look at
each row’s string.
Once again, you use the each_char method of the string to loop
through the characters that make up that row. Each specific character
represents one of the types of tiles you want to build.
After creating the tile, you check to see if it’s the starting location for
the player. If it is, you get the tile’s coordinates and move the player
object to them.
Finally, you add the tile to the @tiles array using the array push
method. Then you add one to the column count and start on the next
character in the string.

2. Replace the button_down method with code that moves the
player if the move is valid:

def button_down(id)

 if level_over?

 return

 end

 column_delta = 0

 row_delta = 0

First, check to see if the level is actually over. If the player reached
the exit of the maze, you’ll ignore any other moves since the game is
done. If the level isn’t over, you’ll calculate the direction of the
movement. Setting the variables to zero means “no movement in that
direction.”

3. Find out if Gosu detected any player input:
if id == Gosu::KbLeft

 column_delta = -1

elsif id == Gosu::KbRight

 column_delta = 1

end

if id == Gosu::KbUp

 row_delta = -1

elsif id == Gosu::KbDown

 row_delta = 1

end

If the player pressed one of the arrow keys on her keyboard, Gosu
will pass your method an ID of that button. You use constants
provided by Gosu to see which button was pressed. The numbers for
the movement are based on a bit of math. If the player wants to move
left, the column she wants to move to is one less than the current
one, so you use –1. If the player wants to move right, it’s one more
(refer to Figure 10-2 if you’re still uncertain about the coordinates
used in the project).
The same technique is used for moving up or down a row in the
maze.

 Delta is a word that programmers use to mean a change in
something. Here I use it to mean a change in columns or rows.

4. Now calculate whether the move is valid. You don’t want the player
to be able to move through walls after all! If the move is good, then
move the player to the new location and get that location to see if the

player reached the end of the maze or maybe found something to
pick up:

 if move_valid?(@player, column_delta, row_delta)

 @player.move_by(column_delta, row_delta)

 tile = get_tile(@player.column, @player.row)

 if tile.is_exit?

 @exit_reached = true

 tile.hide!

 else

 @player.pick_up(tile)

 end

 end

end

Note that if the player moves on to the exit tile, you remember that
fact in an instance variable (and hide the exit tile so it looks better).

5. Add the helper to find a tile by its coordinates:
def get_tile(column, row)

 if column < 0 || column >= @total_columns || row < 0 || row >=

@total_rows

 nil

 else

 @tiles[row * @total_columns + column]

 end

end

The condition has logic that checks to see if the requested
coordinates are outside the grid. If the request isn’t correct, the
method just returns nil. If the request is okay, then it calculates which
tile to grab out of the @tiles array. The math is a little funky, but
it’s what is required to find an item in a single array that is holding a
grid like yours.

6. Next, write a method to check for a valid move by the player:
def move_valid?(player, column_delta, row_delta)

 destination = get_tile(player.column + column_delta, player.row +

row_delta)

 if destination && destination.tile_can_be_entered?

 true

 else

 false

 end

end

This method calculates where the player wants to move by adding
her move’s changes (deltas) to her current position and then using a
helper method from the tile object to see if it is somewhere that can
be moved into.

7. Provide a helper that can be used by other code to see if the level is
done (the player reached the exit):

def level_over?

 @exit_reached

end

8. Finally, update the draw method to actually display all the tiles and
the player:

def draw

 @tiles.each do |tile|

 tile.draw

 end

 @player.draw

end

9. Save your code. This class was probably the most complicated of the
whole project. Take a breath before moving on!

Coding Tile Methods
The Tile class mostly just knows where it is located and how to draw
itself. You’ll provide a number of helpers to also figure out what kind of
tile it is.

1. Go into the tile.rb file and replace the draw stub with the code
for drawing a tile:

def draw

 if tile_is_drawn? && !hidden?

 x1 = @column * WIDTH

 y1 = @row * HEIGHT

 x2 = x1 + WIDTH

 y2 = y1

 x3 = x2

 y3 = y2 + HEIGHT

 x4 = x1

 y4 = y3

 c = color

 @@window.draw_quad(x1, y1, c, x2, y2, c, x3, y3, c, x4, y4, c,

2)

 x_center = x1 + (WIDTH / 2)

 x_text = x_center - @@font.text_width("#{@type}") / 2

 y_text = y1 + 4

 @@font.draw("#{@type}", x_text, y_text, 1)

 end

 end

This looks complicated, but it’s almost entirely code used to draw a
square with text in the middle of it. First, it checks whether it should
even be drawn. There are some tiles, like the empty tile type, that
should be blank. Other tiles may be hidden, so the code skips those,
too.
Otherwise, the Gosu library method draw_quad is used to render
(draw or display) a rectangle. You need to give it the coordinates for
each corner of the shape. x1 and y1 are the coordinates for the
upper-left corner of the square, and the rest of the variables work
their way around clockwise.
The text coordinate variables try to figure out the center of the tile
and draw the letter used for its type.

 Watch all the punctuation on this method — there are a lot of
symbols, and it’s easy to make a typo. If you get errors later when
testing the code, check that your code exactly matches.

2. Add a method to look up what color to draw based on the type of the
tile:

def color

 if is_player?

 @@colors[:red]

 elsif is_exit?

 @@colors[:green]

 elsif is_treasure?

 @@colors[:gold]

 else

 @@colors[:blue]

 end

end

This is just a big condition statement to figure out which color to
pick from the @@colors class variable’s hash structure.

3. Code up the methods used to move a tile:
def move_to(column, row)

 @column = column

 @row = row

end

def move_by(column_delta, row_delta)

 move_to(@column + column_delta, @row + row_delta)

end

The first method sets the tile’s instance variables to the exact
location provided. The latter method does the calculation of where
the tile should move based on the delta numbers.

4. Create helper methods to test for the kind of tile:
def is_treasure?

 @type == TREASURE_TYPE

end

def is_start?

 @type == START_TYPE

end

def is_exit?

 @type == EXIT_TYPE

end

def is_player?

 @type == PLAYER_TYPE

end

def is_empty?

 @type == EMPTY_TYPE || @type == ' '

end

5. Also code up some helpers to set or check whether the tile is hidden:
def hidden?

 @hidden

end

def hide!

 @hidden = true

end

6. The code is going to need to make a tile empty when the player picks
up an object like a treasure:

def make_empty

 @type = EMPTY_TYPE

end

7. Finally, add some helpers that simplify conditions that need to test
for several different common tile situations:

def tile_is_drawn?

 !is_empty? && !is_start?

end

def tile_can_be_entered?

 is_empty? || is_start? || is_treasure? || is_exit?

end

In many ways, these represent the “rules” of the game and how it
allows movement and determines what to draw.

8. As always, save your work!

Coding Player Methods
The Player class is a special kind of tile, so it can use all the code you
just wrote for tiles to display itself. Player objects also need to track a
score and figure out if they can pick up another tile like a treasure.

1. Go back to the player.rb file and add the pickup functionality:
def pick_up(tile)

 if tile.is_treasure?

 @score += 1

 tile.make_empty

 end

end

If it’s a treasure tile, the player’s score will be updated and the old
treasure tile will be cleared out.

2. That’s it! Save it and test your project. If you get any errors in the
terminal, go back and double-check that your code matches the
instructions for writing each Ruby class above. It’s super easy to
make typos. If it all works, the game should look like it does in
Figure 10-4. Try moving around with the arrow keys and picking up
some treasures. How fast can you collect them all and get to the
green exit?

Figure 10-4: The game is alive!

Trying Some Experiments
When you get the hang of even the most basic features of Gosu, your
imagination is the limit for the kinds of games and graphical programs
you may create. The Ruby community has all kinds of free and open-
source gems for pretty much any kind of coding need. Gosu is a great
example of the kinds of code people create for the benefit of all.

There are many things you can try with the A-maze-ing code. Give a few
a try:

The maze for the level object is described with an array of strings.
Try making your own mazes. If you want to keep them around, just
define different constant names and swap in which constant you pass
to the initializer.
What if you wanted to add new kinds of tiles? Perhaps there are
different types of treasures? Create a couple of new ones and use
different colors and different numbers of points.
What if there were a time limit to how long you could explore the
maze? Try setting a limit, and if the time runs out, have the player
lose his points.
How would you make the maze window bigger and the mazes more
complicated?
What if the game had more than one level?

Project 11
Tower

You can use computer graphics to create games, make art,
study science, or understand and solve problems. Graphical
programming becomes a powerful tool, and when combined with a
language like Ruby, it’s relatively easy to get something working with
minimal work.

For the Tower project, you’re going to create both a game and a tool to
think about a specific algorithm. The program lets you solve the Tower
of Hanoi puzzle using graphics and a point-and-click interface. If the
name isn’t familiar to you, you’ve probably seen the puzzle, where you
move a stack of donutlike disks from one peg to another, without ever
allowing a larger disc to sit on top of a small one.

Organizing a New Project
You’ll will use Atom to create and edit your program and, like the
preceding project, this program’s source code will be stored in multiple
files, one for each class you create. Following standard Ruby practice,
each file will be named after the class it contains using the lowercase
version of the class name. All the files will be stored in the same project
directory. The Tower project is another Gosu-based graphical program,
but you’ll still use the terminal program to run and test the code.

 If you haven’t created a development folder already, refer to
Project 2 for more information on how to do that.

1. Start your terminal program and enter the development folder:

$ cd development

2. Create a new directory for this project:
$ mkdir project11

3. Move in to the new directory:
$ cd project11

4. Start Atom by double-clicking its icon.
5. Create the first source code file by choosing File ⇒ New File. Save it

by choosing File ⇒ Save and store it in your project11 directory.
Call the file tower.rb.

6. This project uses the graphical game library called Gosu, which you
installed in Project 1 and used in Project 10. If you aren’t sure you
have it installed, run the following command in your terminal
program:

$ gem list

You should see a number of items lists, and a version of Gosu should
also be listed (refer to Figure 10-1 in Project 10). If it isn’t, go back to
Project 1 and follow the instructions there to install it.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section in Project 4. It provides more
details for each step.

You’re now ready to implement a mouse-driven interactive Tower of
Hanoi puzzle game!

Planning the Project
In past projects, you learned about algorithms and how computer
programs use algorithms to get work (or fun) done. In reality, algorithms
are everywhere — you follow instructions and procedures all day long.
Maybe you have a sequence of steps you follow when you get up in the
morning, or when you do homework or work, or when you do a chore.
You definitely follow steps if you play games.

The Tower of Hanoi puzzle is a math problem in disguise. What’s
interesting about the algorithm for this puzzle is that if you can solve the
puzzle for a really easy case (one, two, or three discs), then you can also
solve it for more complicated ones (lots of discs) by breaking the
problem down into a series of simpler cases. Programmers have a term
for this kind of approach: The solution uses a recursive algorithm.

The puzzle is made up of one or more discs (donuts, circles, tiles, or
whatever you want to call them), each a different size. The discs sit in a
stack with the largest on the bottom and the smallest on top. The pile
looks a little like a pyramid. Sometimes the discs sit on posts or pegs,
but that’s optional. There are three positions, the starting spot with the
pile of discs and two empty ones. The object is to move the entire pile
from the starting pile to the last pile, one disc at a time. You can only
move the topmost disc in a pile in a move, and you can never place a
larger disc on top of a smaller one.

Sounds pretty easy, right?

Your program will allow the player to solve the puzzle by clicking the
mouse on a graphical version of discs and pegs. The program knows the
rules, so the player can’t make illegal moves.

Here’s what you need for the code.

Like other projects, you’ll need a main object that sets up the game
and interfaces with the Gosu graphics library.
You’ll have a game object that creates all the graphical objects and
knows how to manage them. The game object will also be where you
create the rules of the game and the code that lets the player interact
with the playing pieces.
A post object will be the holder of zero or more discs. It will act like
a container for discs and also know how to draw itself.
The last object you need is a disc! You’ll have some number of discs
of different sizes. The disc objects will be fairly simple, mostly just
knowing how to draw themselves when they’re sitting on a post and
when they’re being clicked to select and move them.

It’s definitely possible to come up with other collections of objects, but
I’ll start with this set. If you see ways to make things easier for yourself,
try that out after you get the program running.

Looking at the Program Skeleton
For simple programs like this project, you can connect the main entry
point of your project with the Gosu graphics library. Set up your main
entry point so that it contains the required methods to work with the
library and relies on your other objects to build and run the game itself.

1. Following the pattern you’ve been using for previous projects, the
named file (tower.rb) will be your main starting point for running
the puzzle. Add an introductory comment to the file to kick things
off:

#

Ruby For Kids Project 11: Tower

Programmed By: Chris Haupt

Towers of Hanoi puzzle

#

To run the program, use:

ruby tower.rb

#

2. Ruby will need to be told that you’re using Gosu, so do that by
adding a require line. Also let the program know about the Game
class you’ll use for most of the functionality:

require 'gosu'

require_relative 'game'

3. Create the skeleton of the Tower class that inherits most of its
behavior from Gosu’s Window class:

class Tower < Gosu::Window

 def initialize

 super(800, 600, false)

 self.caption = "Tower of Hanoi"

 @game = Game.new(self)

 end

More code here in a moment!

end

 You create the game object here and pass the Tower object
using the Ruby keyword self to it. Because Tower is really just a
Gosu Window, by passing itself to the game, it’s handing the game a
window to draw and interact in.

4. At the bottom of the file, after the last end keyword, create an
instance of the Tower class and display its window:

window = Tower.new

window.show

5. This code is pretty similar to the previous Gosu project. If you save
and run it now, Ruby will present an error because you haven’t
created the Game class yet. Before you leave this section, stub in
three more methods inside of the class, right after the initialize
method:

def needs_cursor?

 true

end

def button_down(id)

 @game.button_down(id)

end

def draw

 @game.draw

end

There isn’t much to the main Tower object — it uses the game object to
do all the work. You may notice a new method called
needs_cursor?. Its job is to tell Gosu to not hide the mouse pointer.
Because your user will be using the mouse to click on objects in the
game, you want her to be able to see where the mouse is!

Creating Placeholder Classes
In this project, you’re creating three other classes that make up the
behavior and appearance of the game. Each class will be in its own file,

using the Ruby naming convention of the filename being the lowercase
version of the class name. You’ll also let Ruby know where to find the
classes by using the require method.

The Game class
The Game class is used to connect all the other objects together, and it
manages all the user interaction with those objects. This is where you’ll
create the code that embodies the stacking “rules” of the puzzle.

1. Using Atom, create a new file called game.rb in the same directory
as tower.rb. Start out by informing Ruby what other classes and
gems are going to be used:

require 'gosu'

require_relative 'disc'

require_relative 'post'

 The require_relative method works by searching for
the named item starting in the same directory as the source code file
you write it in. The require line by itself looks in other Ruby
system directories, such as where the Gosu gem was previously
installed.

2. Create the Game class and define some useful constant variables:
class Game

 POST_TOP = 150

 POST_LEFT = 120

 POST_GAP = 240

 POST_WIDTH = 40

 POST_HEIGHT = 400

 NUM_DISCS = 5

Most of these variables are used to tune what the puzzle looks like.
You can play with them to alter the size and shape of the other
objects. You can also change the number of starting discs here.

3. Write your initialization method:
def initialize(window)

 @window = window

 @font = Gosu::Font.new(32)

 @time_start = Time.now.to_i

 @posts = []

 @discs = []

 initialize_posts

 initialize_discs

 @current_disc = nil

 @move_count = 0

end

Because this is a Gosu program, you’ll need to hang onto the
window variable for use in drawing later on. You also prepare a set
of arrays that hold the discs and posts for drawing and other puzzle
functions.

4. Set up the posts next:
def initialize_posts

 0.upto(2) do |index|

 @posts << Post.new(@window,

 POST_LEFT + (index * POST_GAP),

 POST_TOP,

 POST_WIDTH,

 POST_HEIGHT)

 end

end

This code uses the loop methods you’ve seen before to create three
posts. Remember: Programmers count starting at zero! The Post
class is created with the new method, and the constants are used to
tell the post what it looks like (where it is and how big it is). After
the post is created, the << method adds the post to the @posts array
for later use.
You’ll see in a minute that there are other ways to organize and use
your constants when you write the Disc class.

 The math used in the line POST_LEFT + (index *
POST_GAP) is just a clever way of making each post set itself up a
little to the right of the last one. POST_LEFT is the starting place for

the first post, and because the index value of the first post is 0, 0
times POST_GAP is still 0, so it stays in that place. The next post is
index with a value of 1, so that post’s position is POST_LEFT +
POST_GAP (a little to the right). The third post is two times that
distance away. A little math saves a lot of duplicate code!

5. Next, set up the discs:
def initialize_discs

 first_post = @posts.first

 0.upto(NUM_DISCS - 1) do |index|

 disc = Disc.new(@window, index, first_post)

 @discs << disc

 end

end

You need to create multiple discs, so you again use a loop to set up
each object. Discs sit on a post, so you grab the first post in the
@posts array, and then loop through creating discs. As you’ll see in
a minute, discs determine their size by storing their assigned index
number as a starting value, so bigger numbers represent bigger discs.

 Think about how the discs are going on to the post versus
how you need them to be arranged to follow the rules. It may be
easier to see the bug if you draw a stack on paper to visualize this.
Later on, you’ll fix this problem.

6. Add a draw method to the class so it can display all the game
objects, and close up the class with the final end keyword:

 def draw

 @posts.each {|post| post.draw}

 @discs.each {|disc| disc.draw}

 @font.draw("Move tower from left to right most post!", 4, 2, 10)

 @font.draw("Moves: #{@move_count}", 640, 2, 10)

 end

end

Nothing too fancy here. Each array of objects is looped through
using the each method and using the short form for the following

block of code (using { } instead of do and end). I added some text
output so you could display some instructions and a move (click)
counter.

7. Save the code before moving on. You’ll add a couple of additional
methods in this class later that implement the game rules and mouse
support.

The Post class
The Post class manages a set of zero or more discs and gives the user a
target to click on to select a destination for a disc move. As you’ll see,
although there appears to be a lot of code in here, almost all of it has to
do with managing discs.

1. Use Atom to create a post.rb file and start the class:
require 'gosu'

class Post

First, you let Ruby know about Gosu. Then start writing the class
here.

2. Set up the initialization method:
def initialize(window, x, y, width=40, height=400)

 @height = height

 @width = width

 @x = x

 @y = y

 @color = Gosu::Color.argb(0xaa0000ff)

 @window = window

 @discs = []

end

Most of the instance variables in this class have to do with where the
post is to be displayed and what it looks like. The @discs array is
dedicated to the set of discs that are sitting on the post at any given
time.

 One new trick is the argument list for the initialize
method itself. You’ll see that I included some actual values in that
line, such as width=40. This is Ruby’s way of suggesting a default
value for a method call. In this case, if you call the new method for
Post and do not provide a width or height in the parameter list,
Ruby will fill in the parameters with the default values instead.

3. Add a draw method:
 def draw

 @window.draw_quad(

 @x, @y, @color,

 @x + @width, @y, @color,

 @x + @width, @y + @height, @color,

 @x, @y + @height, @color)

 end

end

I’ve made the choice to have the main game object draw all of the
game pieces. The draw code in the Post class only knows how to
draw the post itself (as a rectangle). You could change that to have it
draw its discs, too, if you want to experiment with the code later on.

4. Save the code before moving on. You’ll be back to this class to finish
all the disk management methods in a bit.

The Disc class
The Disc class deals with the main playing pieces for the puzzle.

1. Create the disc.rb file in Atom and fill in the start of the class:
require 'gosu'

class Disc

 DISC_HEIGHT = 30

 BASE_DISC_SIZE = 40

 DISC_VERTICAL_GAP = 10

 You can see that there are some constant variables in the
class for the disc’s appearance. It’s up to you where to place this
information. In the Post class, you passed in the values from
outside. Either is valid, so just be aware that you can do what you
want.

2. Add some attribute accessor methods to make it easy to use some of
the disc data outside of the disc object:

attr_reader :number

attr_accessor :post

 Remember that attribute accessors are a shortcut for writing
code to read or write values in an instance variable. attr_reader
provides read-only accessors, so code outside of the disc can’t
change the disc’s number. You’ll be assigning a post to a disc later
on, so the attr_accessor is used because it provides both a read
access method and a write access method for you.

3. The initialization method is long, but mostly because it’s setting up a
lot of instance variables to draw the disc:

def initialize(window, number, starting_post)

 @window = window

 @number = number

 @height = DISC_HEIGHT

 @width = BASE_DISC_SIZE * (@number + 1)

 @color = Gosu::Color.argb(0xaaff00ff)

 @selected_color = Gosu::Color.argb(0xaaffeeff)

 @selected = false

 @x = 0

 @y = 0

 @post = starting_post

end

 You’re going to use the number of the disc as its size. The
bigger the number, the larger the disc. You’ll use that value to
compare discs later. You can also see that the number is used to
calculate the size of the disc in the @width variable by multiplying
the base size by its number. Because numbers start at zero, you need
to add one. (Do you know why? If you didn’t add one, you’d
multiply the size by zero, which is zero. A zero width would be
invisible!)

4. The complicated job for a disc is to draw itself correctly. The shape
is easy — it’s just a rectangle. The hard part is that discs move based
on where the user puts them. You’ll fix up the draw method a little
later after you add needed support in the Post class:

 def draw

 @window.draw_quad(

 @x, @y, @color,

 @x + @width, @y, @color,

 @x + @width, @y + @height, @color,

 @x, @y + @height, @color)

 end

end

5. Save your code and give it a whirl. You just have the stubs of the
classes in place, so it’ll look a little crazy, and you can’t even click
anything yet (see Figure 11-1 and Figure 11-2)!

Figure 11-1: What’s going on with those discs?

Figure 11-2: Oops, you don’t have code to handle clicks yet!

Coding Post Methods

Since the Post class contains most of the code needed to manage discs
and is necessary to write the game rules, you should start there to finish
things up.

1. First, you need some methods to allow the game to add and remove
discs to the post. Add this code at the end of the Post class before
the final end keyword:

def add_disc(disc)

 @discs.push(disc)

 disc.post = self

end

def remove_disc(disc)

 @discs.delete(disc)

 disc.post = nil

end

These methods use the Array class’s push and delete methods,
respectively. They also use the disc object’s post attribute to store
the current post for easy access later. When a disc is removed from a
post, you’re using Ruby’s nil value to mean “no post.”

2. Provide a little utility method to get the topmost disc on the post. In
the array of discs, “top” means the last one on the array. Also create
a utility to find a specific disc’s position:

def last

 @discs.last

end

def find_disc_position(disc)

 @discs.find_index(disc)

end

Ruby helps you out here with the last and find_index built-in
methods.

3. Remember I hinted that the discs might not be in the correct order on
the post when first created? Create a method to sort things out:

def sort_discs

 @discs.sort_by! { |disc| -disc.number }

end

This method uses the Array class’s sort_by! method, which
reorders the contents of the array in place. The block of code after
that is used by Ruby to determine what attribute of the disc should be
used to sort with. In this case, you want to use the number, but you
want to sort in reverse order, so the “biggest” is at the front of the
array and the smallest is at the end of the array (remember what last
means above). To reverse things, you take the negative version of the
disc’s number.

4. The game is going to need some help figuring out whether a disc is
being moved to a valid post. Create a method to test things out:

def valid_move?(disc)

 disc.top_most? &&

 (@discs.empty? ||

 disc.number < last.number)

end

First, the code asks the disc that is about to be moved if it’s on “top”
of its current post (not blocked in by another disc). Then the
condition code also checks that either the current post’s array of
discs is empty or if the size of the disc being moved is smaller than
the topmost one on this post.

5. Provide a method to actually move the disc:
def move_disc(disc)

 disc.post.remove_disc(disc)

 add_disc(disc)

end

A move happens in two steps. First, the disc removes itself from its
old post; then it adds itself to the current post.

6. Now you need some methods to help with the user interface. Start
with a method that determines if a click happened on the post. You’ll
use this fact to pick a destination for a disc.

def contains?(mouse_x, mouse_y)

 mouse_x >= @x && mouse_x <= @x + @width &&

 mouse_y >= @y && mouse_y <= @y + @height

end

 Gosu provides mouse click information using X and Y
coordinates. Your job is to figure out if the click is inside the
rectangle that makes up the post’s shape. This long condition
compares the Xs and Ys. It can be helpful to draw a rectangle and
label the four corners’ coordinates if the math seems a little
complicated.

7. The drawing code for discs is going to need to know where the post’s
position is. Provide a couple of utility methods that calculate the
post’s center and bottom edge:

def center

 @x + (@width / 2)

end

def base

 @y + @height

end

 Remember that the Y axis goes down instead of up in Gosu,
which is different from what you may be familiar with from
beginning algebra or geometry.

8. Save all this code before moving on. You can run the program to see
if you get any new errors, but the drawing and clicking problems
aren’t all fixed yet.

Coding Disc Methods
The Disc class doesn’t need a lot of new code, but it does need to
connect with its post and know how to draw itself.

1. Go in to the initialize method of the Disc class, and change the
last line that starts with @post = starting_post to this:

@post = starting_post

starting_post.add_disc(self)

This uses the new code you just wrote in the Post class to properly
add discs to the post.

2. Provide a utility method to determine if the given disc is the top one
on its post:

def top_most?

 @post.last == self

end

 The disc’s code gets its post’s last disc and then compares
that object’s identity with itself. If the two discs are identical, then
that means the disc is on top of the post. The keyword self in Ruby
means the current object.

3. To better allow the user of the puzzle to know when she selects a
disc, toggle the @selected variable to be true or false when
the disc is clicked on:

def toggle_selected

 @selected = !@selected

end

 Putting the ! symbol in front of the instance variable
reverses its value. It will change true to false and false to
true.

4. Just like the post, the disc needs to provide a way to detect clicks
inside its rectangle:

def contains?(mouse_x, mouse_y)

 mouse_x >= @x && mouse_x <= @x + @width &&

 mouse_y >= @y && mouse_y <= @y + @height

end

5. Now you can tackle updating the draw method to properly place the
disc on top of its post in the correct stack position. Replace draw
with this code:

def draw

 if @post

 @x = @post.center - @width / 2

 position = @post.find_disc_position(self)

 if position

 if @selected

 c = @selected_color

 else

 c = @color

 end

 # calculate the y position based on height of post

 @y = @post.base - @height - (position * (@height +

DISC_VERTICAL_GAP))

 @window.draw_quad(

 @x, @y, c,

 @x + @width, @y, c,

 @x + @width, @y + @height, c,

 @x, @y + @height, c)

 end

 end

 end

The bottom part is the same as before, almost. The top part is
calculating the new X and Y positions. The X position is based on
the post’s center coordinate. The Y position needs to determine how
high up it is from the base of the post, using its stack position to
help. The long math line does that calculation for you. Lastly, you’re
now using two different colors when drawing discs — one color for
when the disc is the active one that is clicked on and another when it
isn’t selected.

6. Save all this code and test things out again. It should look like Figure
11-3. Oops!

Figure 11-3: Something appears to be upside down!

Coding Game Methods
You have all the parts to fix up and run the puzzle.

1. Fix the upside-down starting tower first. Inside the Game object’s
initialize_discs method, add this one line right before the
end keyword:

first_post.sort_discs

That will use the sort_discs method you wrote earlier to put the
stack of discs in the proper order.

2. Write some code that will be used by the interface to manage
selecting and unselecting discs. Place the method anywhere inside of
the Game class:

def select_disc(disc)

 if @current_disc == disc

 return

 elsif @current_disc

 @current_disc.toggle_selected

 end

 @current_disc = disc

 if disc

 @current_disc.toggle_selected

 end

end

3. Now the “rules” of the Tower puzzle need to be created. This will
have the side effect of fixing the clicking bug you keep seeing, too,
since the Game object needs a button_down method:

def button_down(id)

 if id == Gosu::MsLeft

Gosu tells you which button was pressed. In this case, you’re looking
for mouse clicks using the left mouse button.

4. The game is played when the user first clicks a disc, and then clicks
a target post to move the disc to. If a disc is already selected, it’s
being held in the @current_disc instance variable. In that case,
check to see if a post was hit as a target:

if @current_disc

 hit_post = @posts.find do |post|

 post.contains?(@window.mouse_x, @window.mouse_y)

 end

 if hit_post && hit_post.valid_move?(@current_disc)

 hit_post.move_disc(@current_disc)

 select_disc(nil)

 @move_count += 1

 return

 end

end

First, the code looks for a post that may contain the mouse click. If a
post is found, it’s checked to see if a valid move is being made. If
that is true, too, then the disc is moved, the selected disk is cleared
out, and you keep track of the number of clicks the user has made so
far.

5. Finally, handle the case when there is not a currently selected disc,
and try to pick one:

 hit_disc = @discs.find do |disc|

 disc.contains?(@window.mouse_x, @window.mouse_y)

 end

 select_disc(hit_disc)

 end

end

6. Save and run your code. The stack of discs should be in the right
order, and when you click on them, they should toggle their colors.
Moving them should work, too, and each successful move should
update the Moves counter on the screen. See Figure 11-4 for an
example.

Figure 11-4: Moving discs!

Trying Some Experiments
The code in the Tower project has two jobs. First, there is all the code
used to handle the interface. Gosu helps a lot here, and most of the code
that seems complicated has to do with properly moving the object to be
drawn to the right place on the screen. The second job of the code is to
run the rules of the puzzle. This code is a lot less complicated, especially
because you’re able to use a lot of built-in Ruby to handle the idea of a
“stack” of discs.

The code for Tower is set up so you can experiment a bit, so try some of
these challenges:

Change the NUM_DISCS constant variable in the Game class to 3.
What is the minimum number of moves you need to make to relocate
all the discs to the right side of the screen? Can you come up with a
formula for this number? Test it by changing the number to 2 or 4.

Alter some of the other visual elements of the game to see what
happens when the size, shape, or color of a post or disc is changed.
Add the ability for the user to specify the number of discs to use
when the program is first run by using the gets Ruby method and
passing the value in to the program through the various object’s
initialize methods.

A simple AI
Wouldn’t it be cool if the computer could solve the puzzle for you? Here is a bonus
experiment:

1. Save a copy of your program, and try the following. Open the tower.rb file
and add the following method inside of the Tower class:

def update

 @game.update

end

2. Create a new file in Atom called ai.rb. Add this code:
class AI

 def move(game, num_disks, start, target, temp)

 Fiber.yield

 sleep(0.1)

 if num_disks == 1

 target.move_disc(start.last)

 game.increment_clicks

 else

 move(game, num_disks-1, start, temp, target)

 move(game, 1, start, target, temp)

 move(game, num_disks-1, temp, target, start)

 end

 end

end

3. Open up game.rb, and add a new require_relative line at the top:
require_relative 'ai'

4. Add two new methods in the Game class:
def increment_clicks

 @move_count += 1

end

def update

 if @fiber.nil?

 @fiber = Fiber.new do

 AI.new.move(self, NUM_DISCS, @posts[0], @posts[2],

@posts[1])

 end

 else

 @fiber.resume rescue nil

 end

end

5. Save your work and try running the program again. After a few seconds, it will
run itself! Wow, artificial intelligence!

The explanation of how this works is a bit beyond the level of this book, but basically
you’re using Ruby’s ability to do more than one thing at a time to calculate the next valid
move. The AI class uses a technique called recursion to break the moves down to a
simpler case. Earlier, I mention that if you can do this puzzle for one or two discs, you
can do it for any number. The program does just that.

Project 12
Game of Life

Have you ever wondered how a flock of birds can fly
together without running into one another? What about bees building a
hive or ants building a nest? When you have many animals, plants, or
even software objects following simple rules all at the same time, it can
lead to surprising behavior that appears quite complex.

For the last project in this book, you’ll be writing the software that
implements British mathematician John Conway’s Game of Life. You’ll
use Gosu to visually explore how following a very simple set of rules
can lead to cool visual effects.

Organizing a New Project
For your last project, you’ll create multiple Ruby source files using
Atom. Again, all files will be named after either the project or the class
that they contain, using the lowercase version of the class name when
available. All the files will be stored in the same project directory. The
Game of Life project uses Gosu to visualize the simulated single-cell
creatures you create and also uses the command line to launch the
program and gather options from the user.

 If you haven’t created a development folder already, refer to
Project 2 for details on how to do that.

1. Start your terminal program and enter the development folder:
$ cd development

2. Create a new directory for this project:
$ mkdir project12

3. Move in to the new directory:
$ cd project12

4. Start Atom by double-clicking its icon.
5. Create the first source code file by choosing File ⇒ New File. Save it

by choosing File ⇒ Save and store it in your project12 directory.
Call the file life.rb.

6. If you skipped to this project, make sure that you have the Gosu
RubyGem installed as described in the first chapter (Project 1). If
you aren’t sure you have it installed, run the following command in
your terminal program:

$ gem list

You should see a number of items lists, and a version of Gosu should be
listed (see Project 10 for an illustration). If it’s missing, go back to
Project 1 and follow the instructions there to install it.

 If some of these steps are confusing to you, refer to the
“Organizing a New Project” section in Project 4. It provides more
details for each step.

Now you’re ready to explore the fascinating world of simulation!

Planning the Project
Engineers and scientists create simulations (or sims) to explore
interesting phenomena or hard-to-create experiments. Instead of having
to build a spaceship and fly to the outer planets to test a theory, an
expensive and possible dangerous (for the spaceship) journey, it’s often

possible to use math and computers to come up with a virtual experiment
in software that can test some of the researcher’s ideas.

In this project, you’re going to study a set of rules that British
mathematician John Conway invented in the 1970s. Conway called his
experiment the Game of Life because it simulated the growth of a colony
of single-cell creatures that followed his rules. The rules were as
follows: Imagine a gridlike sheet of graph paper. On the grid, each
individual box, or cell, would either be empty or occupied. For each
round of the sim, you visit each cell of the grid. For each cell, you count
how many neighbors the cell has. If the cell is occupied (alive), and it
has two or three neighboring cells that are alive, it stays alive. If it has
more or fewer neighbors, it dies. If an empty cell has exactly three
neighbors, than a new cell is born in that spot. For cells on the edge of
the grid, you treat all the possible neighbors that are outside of the grid
as empty.

This simple set of rules leads to some fun and unexpected behavior.
Scientists call this seemingly more complicated world emergent
behavior.

You’re going to recreate this experiment and get to play with it!

First, you’ll need a main program that will set up the Gosu environment
as in other projects. It will also gather some basic information from the
user to adjust the behavior of the system. You’ll use the simple
command line gets and puts Ruby methods for that.

You’ll create a Game class that builds and uses the other classes to run
the rules of the game and display the resulting output on screen.

You’re going to need a Grid class that represents your “graph paper,” as
described earlier. In computer programming terms, you need an array of
arrays to simulate the two dimensions of the grid. In each spot you’ll
store your cells.

You’ll need a basic object that represents the cell. Cells are alive or dead,
which in turn affects how they’re displayed onscreen.

This project will use some more advanced Ruby programming
techniques. I’ll be explaining some of them, and for others just giving
some hints. Remember: The object of all of the projects is to type things
in and see what happens! Don’t worry if you’re not clear on the
programming language parts — just stay curious!

Looking at the Program Skeleton
For the Game of Life, you’ll use Gosu to display the results of
calculating one or more “generations” of the single-cell critters you’re
simulating. You’ll also use regular Ruby command-line techniques to
gather some input from the user before the sim is launched.

 Computer scientists call software systems like the Game of Life
cellular automatons, which is a cool name.

Begin by starting the main program code:

1. Create a life.rb file using Atom, and drop in an informative
comment describing what the program does:

#

Ruby For Kids Project 12: Life

Programmed By: Chris Haupt

A graphical version of Conway's Game of Life

#

To run the program, use:

ruby life.rb

#

2. Tell Ruby about the other code you’ll be using with require
method calls:

require 'gosu'

require_relative 'game'

3. Begin the Life class as a child class of the Gosu Window class so
you can hook up the graphics support you’ll need later:

class Life < Gosu::Window

 def initialize(generations, sim)

 super(800, 800)

 self.caption = "Game of Life"

 @ game = Game.new(self, generations, sim)

 end

Notice in this project that you’re passing additional parameters to the
initialize method. You want to send some user select variable
values to the game engine. One, generations, will be how many
loops of the simulation to run, and the other will be which simulation
starting environment to use (there will be many over time).

4. You’ll use the Game class to do the actual visualization work, so
pass on Gosu-related calls to that object before closing up the class:

 def update

 @ game.update

 end

 def draw

 @ game.draw

 end

end

5. Before creating an instance of the Life class, display a welcome
message and gather some input from the user:

puts "Welcome to the Game of Life"

print "How many generations? (0 for infinite) "

generations = gets.to_i

print "Pick a simulation (1-5) "

sim = gets.to_i

6. Now launch the simulation by creating an instance of the Life class
and show that object:

window = Life.new(generations, sim)

window.show

7. Save your code before moving on.

Creating Placeholder Classes

You’re going to use three other Ruby classes in this project. Once again,
you’ll have a main game object that is responsible for the rules of the
game and getting stuff displayed onscreen. The other objects will be
used to store the data and assist with the calculations needed for the
simulation.

The Game class
The Game class will set everything up and run the rules of the game.
Start with the stubbed-out version of the class.

1. Create a new file called game.rb in the same directory as the
life.rb file. Set up the require statements needed to connect all
the other code:

require 'gosu'

require_relative 'grid'

require_relative 'cell'

 If you don’t remember the difference between require
and require_relative and want to know more, see Project 11.

2. Open up the Game class and set up some initial constants:
class Game

 GENERATION_FREQUENCY = 100 # in milliseconds

 SEED_BLINKER = [[11,10],[11,11],[11,12]]

 SEED_LIST = [SEED_BLINKER]

 GRID_WIDTH = 80

 GRID_HEIGHT = 80

The generation frequency value is how quickly the program will
calculate the next set of results of the sim in milliseconds.

 Milliseconds are 1/1,000 of a second (super fast)! So 100
milliseconds is about 1/10 of a second. We want to change the
simulation about 10 times a second. You can experiment with this
setting to speed up or slow down the sim.

The SEED_BLINKER constant is an array of arrays. Each little array
has an x-coordinate and a y-coordinate. When the system sets the
simulated world up, it will use this value to populate three initial
cells in the whole world. You can create your own seed patterns later
and add them to the SEED_LIST.

3. Set up the initialization method:
def initialize(window, generations, sim)

 @window = window

 seed = SEED_LIST[sim - 1]

 @grid = Grid.new(@window, GRID_WIDTH, GRID_HEIGHT, seed)

 @font = Gosu::Font.new(32)

 @time_now = @time_start = Time.now.to_i

 @last_update = 0

 @generation = 0

 @max_generations = generations.to_i

 @status_message = "Completed"

end

Most of the work in here is for variables used by the display of the
simulation. The @grid value is the grid object, which manages our
simulated world.

4. Create a utility that will be used to tell if the simulation has
completed:

def simulation_over?

 (@max_generations > 0) && (@generation >= @max_generations)

end

You will use a comparison of the current generation and the
maximum requested number of generations.

5. Create placeholder update and draw methods where you’ll put the
rules of the game and visual output later on. Close up the class with a
final end keyword, too:

 def update

 end

 def draw

 @ grid.draw

 end

end

6. Save your code and move on.

The Grid class
The Grid class will act as the container for all your cell objects, and
will arrange them in a two-dimensional structure made up of an array of
arrays.

1. Create a new file called grid.rb and enter the require statements
and start of the Grid class:

require 'gosu'

require_relative 'cell'

class Grid

 include Enumerable

 The include Enumerable code tells Ruby to
automatically add code into this class from its Enumerable
module. Enumerable provides a lot of the functionality that is
used by other containers like the built-in Ruby Array class. You’re
going to make a Grid act just like other standard Ruby containers to
simplify programming and make it more “Rubylike.”

2. Set up internal variables in an initialization method:
def initialize(window, columns, rows, seeds=nil)

 @window = window

 @total_rows = rows

 @total_columns = columns

 @board = setup_grid

 plant_seeds(@board, seeds)

end

You’re using two other methods to create the grid and then set up
any cells that are initially “alive.”

3. The grid used in this simulation is an array of arrays. The outer array
represents the rows of the grid, and each row has an array of
columns. You’ll sometimes refer to rows as the y-coordinate and the
columns as the x-coordinate (think about graph paper if you need to).

def setup_grid

 grid = []

 @ total_rows.times do |row|

 cells = []

 @ total_columns.times do |col|

 cells << Cell.new(@window, false, col, row)

 end

 grid << cells

 end

 grid

end

4. The grid needs some starting values for its cells. The
plant_seeds method will either set a random collection of cells
to be alive or, if a seed array is provided, use that to set cells as alive:

def plant_seeds(board, seeds)

 if seeds.nil? || seeds.empty?

 40.times do

 board[rand(@total_rows)][rand(@total_columns)].live!

 end

 else

 seeds.each do |x,y|

 cell(x,y).live!

 end

 end

end

 The line that starts with board[rand is one long line that
ends with live!. So be careful when typing that in.

5. A small utility method is used to get the cell object at a specific x-
and y-coordinate in the grid. This just makes the rest of your code a
little cleaner:

def cell(x, y)

 if @board[y]

 @board[y][x]

 else

 nil

 end

end

6. Finally, stub out the draw method. It won’t do anything yet, but it
will be ready to use some code you’ll write soon to display the grid:

 def draw

 end

end

7. Save the code and move on to the next class.

The Cell class
The Cell class’s job is to store the state of the cell (alive or dead) and to
display the cell based on that state.

1. Create a new file called cell.rb and add the standard require and
start of class code:

require 'gosu'

class Cell

 WIDTH = 10

 HEIGHT = 10

You’re using two constants to represent the size of the cell’s square.
The grid will tell it where to draw later in the initialization method.

2. Set up the starting instance variables in an initialization method:
def initialize(window, alive, column, row)

 @@colors ||= {red: Gosu::Color.argb(0xaaff0000),

 green: Gosu::Color.argb(0xaa00ff00),

 blue: Gosu::Color.argb(0xaa0000ff)}

 @@window ||= window

 @alive = alive

 @column = column

 @row = row

end

 Note that some of the variables use the @@ symbol instead of
a single @. The @@ variables are class instance variables and are
shared across all objects that are created from this class. Why do

that? Wouldn’t @window work just as well as @@window? Yes, it
would! However, because there are going to be a lot of Cell objects
(80 × 80 = 6,400 of them) for each copy of the grid, and because that
value for those variables will be the same, you can use this technique
to save some memory and have only one of the values stored rather
than lots of copies. You don’t have to worry about this too much; I
just wanted to show you it was possible.

3. For now, just drop in the draw method and close up the class:
 def draw

 if @alive

 x1 = @column * WIDTH

 y1 = @row * HEIGHT

 x2 = x1 + WIDTH

 y2 = y1

 x3 = x2

 y3 = y2 + HEIGHT

 x4 = x1

 y4 = y3

 c = @@colors[:green]

 @@ window.draw_quad(x1, y1, c, x2, y2, c, x3, y3, c, x4, y4, c,

20)

 end

 end

end

Here I show you a different way to set up the draw call. You’re
calculating each corner of the rectangle and, if the @alive variable
is true, you’re drawing the cell.

4. Save the code and test it. You haven’t quite hooked things up yet, so
you’ll see prompts like in Figure 12-1, but then the program will
crash looking for a missing method on a Cell object. Time to finish
the classes up!

Figure 12-1: Everything works up until the grid object is being set up.

Coding Cell Methods
The Cell class stub doesn’t have a lot of additional code in it. You need
to create a few methods that help make it easy to check and set its alive
status.

1. Add a utility method that indicates how many life points the cell
represents. For now, if the cell is alive, it’s worth one point, and if
it’s dead it’s worth zero. The game will use this to implement its
rules about how many neighbors are alive. You could tweak this
value to change the way the game works.

def life_points

 alive? ? 1 : 0

end

2. Instead of using Ruby accessors to work with the alive value of the
object, create your own methods to check and set the state of the cell:

def alive?

 @alive

end

def die!

 @alive = false

end

def live!

 @alive = true

end

3. Because you have a nice method to check the alive status of the cell,
why not clean up the draw method to use it? Change the second line
of draw so it looks like this:

def draw

 if alive?

4. Save your code. If you test now, the error message from Figure 12-1
should be gone. Now you just see a black screen.

Coding Grid Methods
Time to put some life onto the screen! Bad pun, sorry!

1. First up, you need some methods to access the Grid object’s
contents. By adding Enumerable methods to the class, you allow
other parts of the program to loop through the contents just like any
other built-in Ruby container. Start with an each method:

def each

 @ total_rows.times do |row|

 @ total_columns.times do |col|

 yield cell(col, row)

 end

 end

end

 This code uses the Ruby yield statement, which passes its
parameter to another block of code. This fills in the variables you see
between the vertical bar characters (| |) when you use the each
method on arrays and other containers. Here, you’re looping through
each column of each row, one cell at a time.

2. Although the each method returns each cell, you also want to
sometimes loop over the whole grid and get the x- and y-coordinates
of each of those cells instead:

def each_cell_position

 @ total_rows.times do |row|

 @ total_columns.times do |col|

 yield col, row

 end

 end

end

3. You can use the above methods to determine if there is any life on
the entire grid. This check will be useful for implementing the game
rules later on:

def lifeless?

 none? do |cell|

 cell.alive?

 end

end

The none? method comes from the Ruby Enumerable module
that you included earlier and uses the each method you created to
test each cell to make sure that none of them is true (alive).

4. You also want the opposite kind of check so you can collect all cell
positions that are alive. You’ll use that later to act as a seed creating
future generations of the grid.

def life

 living_cells = []

 each_cell_position do |x,y|

 living_cells << [x,y] if cell(x,y).alive?

 end

 living_cells

end

5. A slightly more complicated piece of code is the method that checks
each of the surrounding cells from the current one to see how many
of the neighbors are alive:

def surrounding_cells(x, y)

 cells = []

 (y - 1).upto(y + 1) do |row|

 (x - 1).upto(x + 1) do |column|

 next if row < 0 || row >= @total_rows

 next if column < 0 || column >= @total_columns

 next if x == column && y == row

 cells << cell(column,row)

 end

 end

 cells.compact

end

This looks complicated, but once you understand the syntax, it isn’t
too bad.
It sets up two loops:

The outer loop looks at each row starting one above the
current row and ending one below the current row.
A second loop looks at the columns just to the left of the
current column and ends on the column immediately to the
right of the current column.

If you think about graph paper again, you can imagine that there are
eight squares that surround any single non-edge square.
The three next statements check to make sure that the row and
columns don’t fall outside of the grid. If they do, they’re
automatically considered “empty” cells. You also want to ignore the
cell itself, because it can’t be a neighbor of itself.
Finally, you collect the remaining cells into a cells array. Some of
those cells may be nil because of possible programming mistakes.
The compact method of the Array class cleans out any nil
values from an array, leaving just real cells behind.

6. You need a method that allows one grid to be compared with another
one. One of the rules you’ll create shortly says that if the grid doesn’t
change from generation to generation, it’s considered “frozen,” and
the sim should end. Here you’re comparing the two grids’ lists of
“live” cells to see if they’re identical:

def ==(other)

 self.life == other.life

end

This method looks a little strange, but it shows you that you can use
symbols like == for the name of a method just as easily as letters and
numbers.

7. Finally, update the draw method to use the earlier code to walk
through each cell and have it display itself:

def draw

 each do |grid_cell|

 if grid_cell

 grid_cell.draw

 end

 end

end

8. Save your code and test again. You shouldn’t get any errors, and you
start to see some (simple) life on the screen (see Figure 12-2).

Figure 12-2: This little critter is just waiting to dance.

Coding Game Methods
You have all the parts you need to actually implement Conway’s Game
of Life rules and get a user interface up on the screen.

Programming the user interface

The simulation will be interesting to look at, but it will be even better if
you provide some feedback to the user regarding what is happening:

1. Starting with the user interface, update the draw method to also
display a generation counter and timer:

def draw

 @ grid.draw

 draw_hud

end

2. The heads-up display (HUD) uses Gosu text drawing code like you
used in earlier projects:

def draw_hud

 if simulation_over?

 @ font.draw("Sim all done!", 200, 150, 10, 2, 2)

 @font.draw("#{@status_message} in #{@generation} generations after

#{time_in_seconds} seconds!",

 110, 300, 10)

 else

 @ font.draw("Time: #{time_in_seconds}", 4, 2, 10)

 @ font.draw("Generation: #{@generation}", 540, 2, 10)

 end

end

While the simulation is running, it will show the time and generation
counter. If the sim completes for any reason, the HUD will show the
final message and generation count.

3. Create the small utility method that the HUD needs to calculate the
elapsed time:

def time_in_seconds

 @time_now - @time_start

end

Writing the game rules
The Game of Life rules are run in a loop, where the code examines the
grid and all the cells on it, determines which cells change, and then
creates a new grid with the results. This loop will continue until the
maximum generations are reached or the game is in a state that can’t

progress further. The two cases you’ll look for are if the grid is empty of
life or if the grid isn’t changing from generation to generation.

1. Start by replacing the Game class update method and determining
the current time:

def update

 this_time = Gosu::milliseconds()

Gosu provides a method that calculates the number of milliseconds
since the game started. You’ll use that to determine if enough time
has passed before calculating a new generation of cells.

 Gosu runs its game loop at a speed that tries to be as close to
the requested frame rate as possible. The frame rate is the number of
times per second that the program tries to refresh the screen. The
word frame refers to a screen’s worth of data. By default, this is set
to be 60 frame (screen) updates a second. If you calculated a new
generation each time update was called at this rate, the simulation
would run too quickly. For this project, you want to update the
simulation only 10 times a second, so you need to write some code to
wait until the right amount of time has passed.

2. Check that the right amount of time has passed:
if (this_time - @last_update > GENERATION_FREQUENCY &&

 (@max_generations == 0 ||

 @generation < @max_generations))

 new_grid = evolve

 @generation += 1

The condition checks a couple of things. First, has the desired
amount of time passed? Second, does the simulation have no limit on
number of generations or, if it does, has that limit not yet been
reached? If the condition passes, then you’ll calculate a new grid
with the evolve method and increase the generation counter.

3. Now check the new grid to see if it’s still viable (able to support new
generations):

if new_grid.lifeless?

 @status_message = "Life disappeared"

 @max_generations = @generation

elsif new_grid == @grid

 @status_message = "Life froze"

 @ max_generations = @ generation

end

This set of conditions uses the methods you wrote in the Grid class
to test the board for lack of life or a board that isn’t changing. You
use a little trick of setting the @ max_generations instance
variable to the current generation as a way of making the condition at
the top of the update method fail so you no longer run the
simulation. If the grid is stuck for some reason, there is no point in
continuing.

4. Finish the update method with some variable updates:
 @grid = new_grid

 @last_update = this_time

 @time_now = Time.now.to_i

 end

end

Swap out the old grid with the new one and keep track of the time
for the next pass.

5. The evolve method’s job is to walk through the entire current grid
and apply the Game of Life rules to each cell. You then create a new
grid using those cells as the seed cells for another round:

def evolve

 life = []

 @ grid.each_cell_position do |x,y|

 if determine_fate(x, y)

 life << [x, y]

 end

 end

 Grid.new(@window, GRID_WIDTH, GRID_HEIGHT, life)

end

6. The rules of the game are in the determine_fate method:
def determine_fate(x, y)

 cell = @ grid.cell(x, y)

 neighbors = @ grid.surrounding_cells(x, y)

 score = 0

 neighbors.each {|n| score += n.life_points}

 (cell.alive? && score >= 2 && score <= 3) || (score == 3)

end

For the coordinates that are passed in as parameters, you get the cell,
find all the cell’s neighbors, and count how many are alive.
Remember that the rules say that if the current cell is alive, then it
needs to have a neighbor score of 2 or 3 to stay alive. If the current
cell is not alive, then it is “born” if the neighbor score is 3 only. For
all other conditions, the cell “dies.”

7. Save the code and try running it now. It should start animating. If
you set a number of generations to run, it should stop after that
number (check out the HUD!) and look like Figure 12-3. The seed
pattern you have in the code now is called the “blinker” pattern. Why
is that?

Figure 12-3: Blinker has blinked.

Adding more seed patterns

The fun thing about this project is that there are a lot of different patterns
to experiment with. You’ll add a few more here to get started.

1. Inside of the Game class, add the following constants immediately
under the SEED_BLINKER line:

SEED_RANDOM = []

SEED_GLIDER = [[1,0],[2,1],[0,2],[1,2],[2,2]]

SEED_THUNDER = [[30,19],[30,20],[30,21],[29,17],[30,17],[31,17]]

SEED_GROWER = [[12,12],[13,12],[14,12],[16,12],[12,13],[15,14],

[16,14],[13,15],[14,15],[16,15],[12,16],[14,16],[16,16]]

 Watch the use of square brackets and commas when typing
this in. It’s easy to make a typo here.

2. Update the SEED_LIST array with the names of the new constants:
SEED_LIST = [SEED_RANDOM, SEED_BLINKER, SEED_GLIDER, SEED_THUNDER,

SEED_GROWER]

3. Save the code and run it again. This time, as you type different
numbers for the “Pick a simulation (1–5)” prompt, you should see
different results (see Figure 12-4 for one possible example). How
would you describe each pattern you see?

Figure 12-4: Some sims generate interesting patterns after some time.

Trying Some Experiments
The Game of Life opens up all kinds of interesting experiments you
could try, just by changing the seed patterns. Because it’s such a widely
studied algorithm, you can find lots of suggestions online — some that
create repeating patterns, some that freeze after a time, and some that
generate new patterns forever.

Try creating a few of your own lists of coordinates in the Game class
and add them to the SEED_LIST. Can you make ones that fill the
screen?
Change the number of seed cells that are created for the random
option in the plant_seeds method of the Grid class. What
happens with bigger or smaller numbers?
Using what you learned in the previous project, add support for
clicking the mouse on the grid and have that create a new live cell in
that spot. This one is hard, but can lead to lots of interesting
discoveries.
Look up Conway’s Game of Life online and find some of the
repeating patterns and different “life forms” that are out there. Can
you re-create some of them in this program? The Wikipedia page
(https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life) is a
good place to start to see some “still lifes,” “oscillators,” and
“spaceships” among others. Just convert the graph-paper-like
locations into x- and y-coordinates and enter them into an array like
the other seed patterns in this project.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

About the Author
Christopher Haupt is a computer scientist, entrepreneur, game
designer, and startup advisor who loves to spend his time teaching and
mentoring kids of all ages on the wonders of programming. Christopher
is an active member within his regional school district and broader
community, helping to grow interest and support for STEAM programs,
science fairs, and other places kids can explore technology, exercise their
curiosity, and release their creativity.

Dedication
This book is dedicated to my kids, Zachary and Sydney Haupt. The two
of you continue to inspire me to find new ways to help the next
generation of scientists, technologists, engineers, artists, and
mathematicians grow and be successful.

Author’s Acknowledgments
I’d like to give special thanks to everyone who advised me and helped
with testing each of the projects and making suggestions, including
Sydney Haupt, Lynda Haupt, the fine folks of the Sacramento Ruby
(#SacRuby) Meetup and Sacramento HackerLab, Don Scott and all of
his great students over the years at EV Cain STEM Charter Middle
School, and my technical reviewers. I also deeply appreciate the support
of the following: Carole Jelen, for getting me writing professionally
again; Elizabeth Kuball, for making what I write intelligible; my readers
and local students, family, and friends; all of my social media followers;
and the awesome team at Wiley. All the good stuff is due to the help of
these wonderful people. All the typos and mistakes are my own!

Publisher’s Acknowledgments
Executive Editor: Steve Hayes

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Srinivas Kolli

Production Editor: Kinson Raja

To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/rubyforkids.

http://www.dummies.com/cheatsheet/rubyforkids

Find out "HOW" at Dummies.com

http://www.dummies.com/

Take Dummies with you
everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

http://www.dummies.com/
http://www.dummies.com/
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/

Circle us on google+

Subscribe to our newsletter

Create your own Dummies book cover

Shop Online

https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com/
http://dummiesmerchandise.com/

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

Ruby For Kids For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo,
Dummies.com, Making Everything Easier, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc., and
may not be used without written permission. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE
THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE
ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT
BE SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A PROFESSIONAL WHERE APPROPRIATE.

http://www.wiley.com/
http://www.wiley.com/go/permissions

NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM.

For general information on our other products and services, please
contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical
support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-
on-demand. Some material included with standard print versions of this
book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015941961

ISBN 978-1-119-05590-7 (pbk); ISBN 978-1-119-05599-0 (ebk); ISBN
978-1-119-05600-3

http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://www.wiley.com/

Ruby For Kids For Dummies®
Visit www.dummies.com/cheatsheet/rubyforkids
to view this book's cheat sheet.

Table of Contents
Cover
Introduction

About This Book

Foolish Assumptions

Icons Used in This Book

Beyond the Book

Where to Go from Here

Part I: The Most Basic Building Blocks
Project 1: Getting Started with Ruby

What Is Programming?

Why Ruby?

What Tools Do You Need?

Project 2: Big Numbers
Starting Interactive Ruby

Entering Numbers

Doing Some Basic Math

Supersizing the Math with Huge Numbers

Adding Memory by Storing Results in Variables

Using Variables to Repeat a Calculation

Fixing Things When Something Goes Wrong

Trying Some Experiments

Project 3: Bigger Hello World
Starting Interactive Ruby

http://www.dummies.com/cheatsheet/rubyforkids
file:///C:/Users/Administrator/AppData/Local/Temp/calibre_1zqwkd73/o02pr86__pdf_out/OPS/cover.xhtml

Knowing How Letters and Words Differ from Numbers

Doing Math with Words

Doing Other Things with Strings

Storing Strings in Variables

Making Some Big Letters

Trying Some Experiments

Part II: Programmers Are Lazy! Stop Typing So
Much!

Project 4: Shapes
Organizing a New Project

Printing versus Using puts

Getting Input with gets

Running the Program on the Command Line

Creating Code to Draw a Rectangle

Creating Code to Draw a Triangle

Drawing a House Using Your Two Shapes

Testing Your Program

Trying Some Experiments

Project 5: Simple Adventure
Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating the Main Game Loop

Creating Game Rules Methods

Creating Game Helper Methods

Trying Some Experiments

Project 6: Number Guessing
Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Placeholder Classes

Adding Player Methods

Writing the Game Class Code

Trying Some Experiments

Part III: Working with Lots of Your Own Data
Project 7: Short Straw

Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Placeholder Classes

Coding the Straw Methods

Coding the Player Methods

Coding Game Methods

Trying Some Experiments

Project 8: Code Breaker
Organizing a New Project

Planning the Project

Creating Placeholder Classes

Coding CodeBreaker Methods

Coding Caesar Methods

Trying Some Experiments

Project 9: Acey Deucey
Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Classes

Trying Some Experiments

Part IV: Using Shared Code to Get Graphical
Project 10: A-maze-ing

Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Placeholder Classes

Coding Amazing Methods

Coding Game Methods

Coding Level Methods

Coding Tile Methods

Coding Player Methods

Trying Some Experiments

Project 11: Tower
Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Placeholder Classes

Coding Post Methods

Coding Disc Methods

Coding Game Methods

Trying Some Experiments

Project 12: Game of Life
Organizing a New Project

Planning the Project

Looking at the Program Skeleton

Creating Placeholder Classes

Coding Cell Methods

Coding Grid Methods

Coding Game Methods

Trying Some Experiments

About the Author
Cheat Sheet
Advertisement Page
Connect with Dummies
End User License Agreement

	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: The Most Basic Building Blocks
	Project 1: Getting Started with Ruby
	What Is Programming?
	Why Ruby?
	What Tools Do You Need?

	Project 2: Big Numbers
	Starting Interactive Ruby
	Entering Numbers
	Doing Some Basic Math
	Supersizing the Math with Huge Numbers
	Adding Memory by Storing Results in Variables
	Using Variables to Repeat a Calculation
	Fixing Things When Something Goes Wrong
	Trying Some Experiments

	Project 3: Bigger Hello World
	Starting Interactive Ruby
	Knowing How Letters and Words Differ from Numbers
	Doing Math with Words
	Doing Other Things with Strings
	Storing Strings in Variables
	Making Some Big Letters
	Trying Some Experiments

	Part II: Programmers Are Lazy! Stop Typing So Much!
	Project 4: Shapes
	Organizing a New Project
	Printing versus Using puts
	Getting Input with gets
	Running the Program on the Command Line
	Creating Code to Draw a Rectangle
	Creating Code to Draw a Triangle
	Drawing a House Using Your Two Shapes
	Testing Your Program
	Trying Some Experiments

	Project 5: Simple Adventure
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating the Main Game Loop
	Creating Game Rules Methods
	Creating Game Helper Methods
	Trying Some Experiments

	Project 6: Number Guessing
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Placeholder Classes
	Adding Player Methods
	Writing the Game Class Code
	Trying Some Experiments

	Part III: Working with Lots of Your Own Data
	Project 7: Short Straw
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Placeholder Classes
	Coding the Straw Methods
	Coding the Player Methods
	Coding Game Methods
	Trying Some Experiments

	Project 8: Code Breaker
	Organizing a New Project
	Planning the Project
	Creating Placeholder Classes
	Coding CodeBreaker Methods
	Coding Caesar Methods
	Trying Some Experiments

	Project 9: Acey Deucey
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Classes
	Trying Some Experiments

	Part IV: Using Shared Code to Get Graphical
	Project 10: A-maze-ing
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Placeholder Classes
	Coding Amazing Methods
	Coding Game Methods
	Coding Level Methods
	Coding Tile Methods
	Coding Player Methods
	Trying Some Experiments

	Project 11: Tower
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Placeholder Classes
	Coding Post Methods
	Coding Disc Methods
	Coding Game Methods
	Trying Some Experiments

	Project 12: Game of Life
	Organizing a New Project
	Planning the Project
	Looking at the Program Skeleton
	Creating Placeholder Classes
	Coding Cell Methods
	Coding Grid Methods
	Coding Game Methods
	Trying Some Experiments

	About the Author
	Cheat Sheet
	Advertisement Page
	Connect with Dummies
	End User License Agreement

