

Beyond Coding

Beyond Coding
How Children Learn Human Values through Programming

Marina Umaschi Bers

The MIT Press
Cambridge, Massachusetts | London, England

© 2022 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

The MIT Press would like to thank the anonymous peer reviewers who provided comments on
drafts of this book. The generous work of academic experts is essential for establishing the
authority and quality of our publications. We acknowledge with gratitude the contributions of these
otherwise uncredited readers.

This book was set in ITC Stone Serif Std and ITC Stone Sans Std by New Best-set Typesetters
Ltd.

Library of Congress Cataloging-in-Publication Data

Names: Bers, Marina Umaschi, author.
Title: Beyond coding : how children learn human values through programming / Marina Umaschi

Bers.
Description: Cambridge, Massachusetts : The MIT Press, 2022. | Includes bibliographical

references.
Identifiers: LCCN 2021013278 | ISBN 9780262543323 (paperback)
Subjects: LCSH: Early childhood education—Computer-assisted instruction. | Computer

programming—Study and teaching (Early childhood) | Computers and children. | Child
development. | Values.

Classification: LCC LB1139.35.C64 B469 2022 | DDC 372.210285—dc23
LC record available at https://lccn.loc.gov/2021013278

10 9 8 7 6 5 4 3 2 1

d_r0

“I believe in people. If I trust someone, we can work together to make our ideas
concrete. But ideas cannot change anything themselves. They have to be shown to be
true. And only people, living human beings, can do that.”

Martin Buber (as told to Aubrey Hodes in Encounter with Martin Buber)

Contents

Acknowledgments
Preface

1 Coding, Robotics, and Values
Foundations: A Coding Playground
Languages for Children
Starting Early
A Window into Their World: Mouths Cannot Read Bar Codes

2 The Coding Wars
The Two Sides: A Simplified Story
The Role of the Teacher
The Role of the Student
The Role of Education
The Role of Coding
A Window into Their World: Robotics Guarding Nature

3 The Rise of STEM
The Work Pipelines
Global Experience
Computer Science and Computational Thinking
The Problem with STEM
A Window into Their World: Programming a Map, Building a Language

4 Coding as Another Language
Transitioning Languages

Meaningful Sequences
Doing Things with Language 80
A Window into Their World: Georgia, Elena, and the Old Lady

5 From Theory to Practice
Powerful Ideas
A Teacher’s Perspective
Coding Stages
A Window into Their World: The Missing Audience

6 Coding Character
The Narrative Approach: Moral Identities
The Reasoning Approach: Moral Thought
The Experiential Approach: A Moral Life
The Values in Coding as Another Language
A Window into Their World: The Best Use of Her Time

7 The Palette of Virtues
The Coding Playground
The Ten Virtues
Coding a Mensch
A Window into Their World: The Learning Family

8 Coding Bridges
The Hidden Curriculum
My Four Powerful Ideas: A Summary
A Window into Their World: A Diversity of Approaches

Further Readings
Resources

Acknowledgments

Gracias a la vida, que me ha dado tanto. “Thanks to life, which has given
me so much” goes the song composed by Chilean Violeta Parra in 1966,
just a year before she committed suicide. This song is beautifully performed
by many, but my favorite version is by the Argentinean Mercedes Sosa,
who made it into a personal anthem. In the United States, Joan Baez
popularized it in 1974.

Gracias a la vida, que me ha dado tanto. This book tells the story of my
intellectual journey. I started when I was a student of journalism and social
communication sciences at the Universidad de Buenos Aires (UBA) as I
first became interested in the communicative function of language. Later
on, through my graduate work at the MIT Media Lab, I discovered the
power of programming languages to think about who we are and the human
values we cherish. During the last twenty years of teaching and doing
scholarly research at Tufts University, I have worked with others to create
new programming languages and support different forms of expression to
develop computational thinking, coding skills, and character strengths.

In that journey, it is not only “life, which has given me so much” but also
individual people: at the UBA, my professors, mentors, and friends, the late
Aníbal Ford and Alejandro Piscitelli. Aníbal died several years ago, but I
know he would have been proud of this work as he was a man of integrity.
Alejandro is still active in his own research and teaching. For this book,
through Zoom, we revisited old materials about the role of orality and
literacy in society and discussed their relevance today. What a privilege to
discuss this book with a mentor I gained when I was only twenty years old,
thirty years later! Gracias a la vida, Alejandro and Anibal, y Universidad
de Buenos Aires.

At the MIT Media Lab, the late Seymour Papert, Mitch Resnick, and
Sherry Turkle played a very special role in my academic life. They taught
me some of the most powerful ideas I ever encountered. Each one of them,
in their uniqueness, supported my explorations, passions, and intellectual
growth. Today, I am honored that one of my greatest mentors became a

colleague. When in 2014 we launched ScratchJr, Mitch and I initiated
together an adventure that impacts the lives of millions of young children
all over the world. Gracias a la vida, Seymour, Mitch, Sherry, y MIT.

Rabbi Sergio Bergman has played a key role in my life. He is my rabbi,
my teacher, my intellectual partner in new projects, and my friend.
Throughout the years, we found different ways to work together and to
engage in some of the most meaningful conversations of my life. As I
started to write this book, Zoom conversations with Sergio helped me
crystalized some of the harder ideas. Gracias a la vida, Sergio.

Over my two decades at Tufts University, so many people have inspired
my work. In particular, I want to thank my colleagues Chris Rogers, from
the Department of Mechanical Engineering, and Richard Lerner and Hanna
Gebretensae from my own Eliot-Pearson Department of Child Study and
Human Development, and Debbie Lee Kennan and Becky New, who are no
longer at Tufts. All of them have been generous in discussing ideas,
brainstorming projects, and teaching me about their own disciplines and
methodologies. Gracias a la vida, Tufts University.

However, the biggest thank you at Tufts is for the wonderful students and
staff at the DevTech Research Group. I started DevTech in 2001 as a brand-
new assistant professor. Since then, the lab grew to over twenty people, an
interdisciplinary group of committed undergraduate and graduate students,
postdocs, staff, and research scientists working together to create the most
amazing place to play and learn. It is at DevTech that the positive
technological development (PTD) theoretical framework gets truly realized
and the palette of virtues put in practice. None of the work I describe in this
book could have been possible without the contributions of past and present
DevTech members. In particular, for the preparation of this book, the
following DevTech’ers helped me with different aspects: Megan Bennie,
Melanie Becker, Riva Dhamala, Madhu Govind, Ziva Hassenfeld, Tess
Levinson, Maya Morris, Emily Relkin, Amanda Strawhacker, Amanda
Sullivan and Aim Unahalekhaka. Jessica Blake-West read and gave
comments to the complete first draft. Laura De Ruiter suggested the paint
by numbers metaphor. Gracias a la vida, DevTech.

At DevTech, we create prototypes and do research to improve them.
However, to reach millions of children, we need products. I thank Mitch
Rosenberg, who believed in my ideas and cofounded KinderLab Robotics

with me in 2014. I also thank the wonderful team at KinderLab and its
board members for making it possible for KIBO to reach thousands of
homes and schools all over the world. Gracias a la vida, KinderLab
Robotics.

Research needs money. Throughout the years, I have been fortunate to
receive generous funding from the National Science Foundation, the
Scratch Foundation, the Siegel Family Foundation, the David Lear Sulman
Computing, Science, and Engineering Fund, and the Templeton Charity
Foundation to support my work. Gracias a la vida, foundations.

My good friend Carey Schwartz graciously read and edited with a detail-
oriented eye the manuscript several times and provided invaluable feedback
on evenings at 9:00 p.m. sharp via email. Frank DeVito, one of the first
friends I made when I moved to Boston, gave me thoughtful impressions
based on his vast experience as an educator strongly grounded in the
Catholic faith. Zvi Beckerman, from the Hebrew University of Jerusalem,
reminded me of the relational aspect of any human activity. Mona Abo-
Zena, from the University of Massachusetts Boston, discussed with me
cultural funds of knowledge. My best friend from Argentina since I was a
child, Vale Bakalar, a computer programmer herself, highlighted areas that
were not clear, rejoiced at my stories, and confirmed their veracity. Gracias
a la vida, my friends.

At home, my husband, Patricio (Pato) O’Donnell read the first complete
draft and provided suggestions to clarify certain concepts and ideas for
those, like him, who are not in the world of education. Pato’s edits are just
one more way in which he gives me the unconditional love and support that
allows me to become a better person every day. Furthermore, as I watched
him discover his new hobby of acrylic painting during the COVID-19
quarantine, the metaphor of a palette of virtues came to life. Gracias a la
vida, mi amor.

My mother, Lydia Umaschi, who sent me to learn LOGO in Buenos
Aires back in the 80s, is not only one of the smartest people I know but
also, still, in her older years, a wonderful listener and intellectual partner. It
was in conversation with her that the ideas in this book started to become
clear and early drafts took shape. My dad, Héctor Umaschi, died in 2001,
too young for his time, but he showed me, through his commitment to

justice, how to live a meaningful life contributing to our communities.
Gracias a la vida, mami y papi.

My children, Tali, Alan, and Nico, inspire me to repair the world and
make it a better place. For many years, they have listened to my talks and
contributed to my research by testing new technologies, providing
feedback, and assisting in different tasks. As they grow, I grow with them.
As they learn, I learn with them, and as they explore, I explore with them. It
is in them that I see the palette of virtues coming to life. Tali, for whom
coding is another language, inspires me with her kindness and sharpness.
Gracias a la vida, Tali. Alan, thoughtful and insightful, challenges me to
see the world in a different way. Gracias a la vida, Alan. Nico, hardworking
and creative, teaches me about the mystery of the universe and suggested
the title for the book. Gracias a la vida, Nico.

I want to thank Susan Buckley, from The MIT Press, for believing in this
book and providing feedback to make it stronger. Finally, my deep gratitude
to the thousands of children and early childhood educators, principals, and
administrators, religious leaders, and researchers all over the world who
have been part of this research over so many years and who have inspired
me with their own palette of virtues.

Gracias a la vida, que me ha dado tanto.

Preface

It is March 30, 2020, and I am sitting with my computer in front of Mystic
Lake in Massachusetts. Despite the beauty around me, my laptop is my
connection to the world. During the pandemic, all my meetings happen
online. And my teaching. And my social gatherings. And my shopping. And
my yoga. Even my religious worship. We are navigating the COVID-19, or
coronavirus, crisis. In the last few weeks, the world as we know it came to a
close, slowly, country by country. The number of those infected, those who
died, those who could not receive proper health care, and those in
mandatory quarantine grows every day.

My screen became my window into humanity. I see creativity and need
for connection, solidarity, and generosity. I see it in Winchester, my
hometown in a suburb of Boston, and I see it in Buenos Aires, the place
where I was born and raised. I see it when I speak with my friends and my
family scattered around the world. It comes in different shapes and forms,
according to unique cultural traditions. Musicians give concerts from their
living rooms. Families in big cities go out on their balconies to clap in
support of health professionals and essential workers. Some people chat
with their neighbors for the first time. Others offer to go shopping for those
at high risk. In some countries, the police and army enforce a “no one on
the street” rule. In other places, people choose social distancing.
Meanwhile, scientists and labs work around the clock on a vaccine.
Engineers and factories struggle for efficient and cheap ways to make and
distribute ventilators and tests. Immunologists and politicians map the curve
and propose strategies to keep it as flat as possible.

As I write this book, it is obvious that both science and technology play a
key role in how we respond to the coronavirus. So do our human values.
These values guide our choices: staying home or going out, wearing a mask
or leaving it at home, helping the elderly with groceries, or returning from
the store as soon as possible. Today, more than ever, we are routinely faced
with choices about how to live a good life. While hand washing is a
personal choice, social distancing is not. It only works if everyone does it.

The epidemiologist Jonathan Smith from Yale warns us on the radio station
WBUR that “this unprecedented outbreak will not be overcome in grand,
sweeping gesture, rather only by the collection of individual choices our
community makes in the coming months. This virus is unforgiving to
unwise choices.” Science and technology are not enough. The pandemic of
2020, a transformational world event during which I started to write this
book, reminds us of the importance of human values.

This book is about integrating the teaching and practicing of values with
the learning of a programming language to express ourselves. As we engage
in the process of creating our computational projects, we discover that
values such as persistence, curiosity and generosity, open-mindedness, and
forgiveness play an important role. In this book, much like the artist who
works with a color palette, I offer a palette of virtues that shape the color of
our process of learning to code. Programming becomes an opportunity for
moral and ethical development as well as social and emotional growth. In
this palette of virtues, I chose to place ten universal values, based on
decades of observing the kinds of interactions, behaviors and attitudes
happening in coding environments: curiosity, perseverance, patience, open-
mindedness, optimism, honesty, fairness, generosity, gratitude, and
forgiveness. Just as colors can be mixed to obtain new shades, new values
can be added. Palettes change over time and colors morph. Different social
contexts and cultures might have different palettes of virtues, but there is a
universality to it. The metaphor of the palette of virtues reminds us that
coding is not only a science but also an art produced by creativity and
imagination, situated within the diversity of the human experience.

The ideas for this book started to emerge back in the early ’90s. At the
time, I was a student at the Universidad de Buenos Aires in Argentina.
During the weekends, I served as a teacher in the religious school of my
synagogue. I wanted to find better ways to teach young children about the
core values of Judaism. I wanted to do more than just read traditional
biblical stories and have conversations. Through my classes at the
university, I learned about hypertexts and hypermedia. At the time, the
World Wide Web was only for a handful of academics, and computers were
not part of our daily lives. I developed a project called “Genesis para
armar” (“Genesis to build up).” I was fascinated by the metaphor that the
word creates the world, as it is portrayed in the Bible: “And God said, ‘Let

there be light,’ and there was light” (Genesis 1:3). I wanted to explore how
different cultural and religious traditions told the creation story.

I used HyperCard, one of the first hypermedia systems predating the
World Wide Web, to create an application for the children at the synagogue
to explore both science and religion, creation stories from different cultures
and scientific explanations. With HyperCard, the children could find their
own path to navigate existential questions and learn how to ask more
questions. As I learned how to program, I realized that I was creating a
world. For me, learning to code involved learning another language to
express myself.

My journey into finding ways to integrate technology and identity,
computer science and character development, and coding and human values
continued in the United States during graduate school. My masters and
doctoral work at the MIT Media Lab followed a similar path but using and
creating more sophisticated technologies: virtual worlds and robotics. Later,
during my tenure at Tufts University, I developed approaches and
technologies for different age ranges. At the core of this intellectual journey
is an obsession: leveraging the opportunities offered by new technologies to
engage children in new ways of thinking, new ways of creating, and new
ways to make themselves and the world better. I see the teaching of coding
as an activity to explore, promote, and practice a palette of virtues that can
change over time according to different cultures and contexts.

Before you start reading the book, I invite you to disconnect the learning
of computer programming from STEM (science, technology, engineering,
and math). I ask you to go back in time and remember when you first
learned to read and write. You encountered a new symbolic system of
representation. You discovered grammar and syntax. You realized that order
matters in how you arrange letters in a word, words in a sentence, sentences
in paragraphs, and paragraphs in narratives. You made mistakes, learned
from them, and problem-solved. You marveled about the diversity of texts
that can be created with only twenty-six letters in English or twenty-seven
in Spanish. The first time you used written language to express yourself, to
make a birthday card or to write a short story, you felt proud and shared it
with others.

Slowly, over time, you learned to write your own complex narratives.
You realized you have a unique story to tell. You also read other people’s

stories. You explored genres and interpreted what was not written explicitly
but rather was conveyed through the text. In this process, you understood
that reading and writing involve much more than the mechanics of coding
and decoding. Literacy is a tool for expression and communication, for
meaning-making and empowerment. That is the power of written
languages, both natural and artificial.

When we use symbolic systems of representation, we can create or
destroy worlds; we can build bridges or walls. Intention matters. It is the
values we hold and cherish, our palette of virtues, that help us make
choices. Learning how to program robots to move around, or to make
animations dance on the screen, entails a cognitive activity, a
socioemotional experience, and an opportunity for character development.
The approach I describe in this book is not about teaching children how to
code so that they become software developers. It is about children
becoming future citizens who can think and act in new ways toward making
the world a better place, about making explicit some of the implicit positive
values hidden in the process of learning to code.

This is possible when we understand coding as another language, as a
relational symbolic system that supports new ways of expression and
communication. This book views coding as a literacy for the twenty-first
century and proposes a pedagogy accordingly. Coding as Another Language
(CAL) borrows strategies from alphabetic literacy to teach computer
science. I focus on meaning-making and interpretation, expression and
communication, dialogue and interaction. In this process, human
relationships come to the forefront as well as the values, virtues, and
character strengths that make them work. This approach focuses on coding
but incorporates elements from a rich tradition grounded on moral
education: using narratives to explore identity and values, developing
logical thinking to think critically and to solve ethical problems, and having
experiences in the community that enable the formation of personal
relationships.

I hope you will enjoy the journey offered by this book and, as you read,
explore your own palette of virtues.

1

Coding, Robotics, and Values

Pat (five years old): Look! My KIBO is flying!
Jeremy (five years old): It is not. You are making it fly.
Pat: I am pretending it is flying.
Jeremy: Your KIBO is not flying. You did not program it to fly.
KIBO can’t fly. You are just pretending.
Pat: So, what? It will land on your head.

On Tuesday August 1, 2017, the New York Times published a story about
my work with robotics and young children. It described children’s creativity
and problem solving when programing our KIBO robots to dance the
Hokey Pokey. The reporters narrated how five-year-old children learned to
manage frustration when things did not work out. They wrote about
children’s persistence, determination, curiosity, generosity, and fairness, and
they described how the children shared materials and helped each other.
They quoted me saying “technology can be a vehicle to help people create
and collaborate better, but at the end of the day, people need to learn how to
work with people.” I was proud to see my words chosen as the quotation of
the day in this major newspaper. However, the heading of the story, in big,
bold letters read as follows: “Preparing Young Children for the Automated
Economy.” I was not happy.

The heading associated learning robotics with preparing the future
workforce, and there is nothing wrong with that association. In fact, the jobs
in information technology will grow 12.5 percent from 2014 to 2024, and
robotics and automation will play a big role. However, for me, the heading
emphasized the wrong thing. I do not teach robotics to a five-year-old so
that she can find a job when she grows up. Learning robotics is much more
than fulfilling the workplace pipeline. It is an opportunity to become critical
thinkers, creative problem-solvers, communicators, and team players as

well as to develop character strengths to make good choices and become a
good person. It is an occasion to examine our values so that we can
contribute to the making of strong communities. It is a good time for
engaging with the ethical domain and not only the mastering of technical
skills.

In the work I have been doing for the last twenty-five years with coding
and education, I have found that the child’s socioemotional and moral world
grows alongside the cognitive dimension. I teach robotics to a five-year-old
so that she can grow into a mensch, a Yiddish word describing a person of
integrity and honor. If along the way her early exposure to coding and
computational thinking helps her find a well-paying STEM job, that is
wonderful. But that is not my goal.

Today, there is a growing push for bringing STEM education and robotics
to schools all over the world. The focus is mostly on technical knowledge
and skills. While those are important, cultivating character virtues alongside
is crucial. This book provides a pedagogical roadmap that goes beyond
STEM, which I call Coding as Another Language. Language is inherently
social; it is about sharing information, stories, and ideas. It is about
communication and interpretation. My choice to put the word Coding next
to Another Language highlights creative expression, communication, and
problem solving. It underscores that coding, when conceived as a language,
situates us in the social world of relationships: with ourselves, with others,
and with the world.

The philosopher Martin Buber, in his philosophy of dialogue,
distinguished between I–Thou and I–It relationships that characterize the
human existence as different kinds of encounters. In short, the I–Thou
relationship stresses the mutual, holistic existence of two beings who
engage in a dialogue, while the I–It relationship is nearly the opposite. The
beings do not actually “meet,” and one treats the other as an object to be
used and experienced. Therefore, the I–It relationship is in fact a
relationship with oneself; it is not a dialogue but a monologue. It is a
transactional encounter. Buber argued that human life consists of an
oscillation between I–Thou and I–It experiences and believed that the
expansion of a purely analytic, material view of existence risked advancing
I–It relationships, even between human beings.

My work hopes to highlight the I–Thou relationships, even in the context
of learning how to manipulate the It, technologies. By focusing on learning
to code as learning how to use an artificial language for expressive and
communicative functions, this pedagogy not only situates the learning of
programming as a new literacy for the twenty-first century but also as an
opportunity for experimenting with I–Thou relationships that require us to
treat ourselves, others, and the world with respect. In my perspective, this is
one of the ultimate goals of education. We can get to know others and build
bridges across language and racial barriers, cultural, and religious
differences. It is in this process that we develop and practice our palette of
virtues and learn how to find universal common ground within diversity.

The CAL approach involves much more than preparing students for
STEM careers. It is about new ways of thinking, relating, and behaving.
Literacy has the power to bring about social change and so does coding.
Those who can produce digital technologies, and not just consume them,
will create the democracies of tomorrow in an increasingly multicultural,
multiethnic, and multireligious world. They will develop their own voices
and grow up playing a role in both the economy and civic society. They will
have the tools to innovate toward social justice and equity. They will
understand that algorithms hide in our social media platforms and
determine how the news, among other things, is presented to us. They will
know that code determines rankings and can impact public opinion and will
be aware of the racial and gender biases built into our algorithms. There is
no doubt that they will have the technical knowledge to change the world.
But they will also need character strengths and a moral compass to navigate
the complexities of a global world in which universal values play with local
contexts. The coding class, which I call a coding playground, can become
another place to develop and practice them.

In this book I present four key ideas: coding as a playground, coding as
another language, coding as a palette of virtues, and coding as a bridge.
These ideas position the teaching and learning of computer programming as
an opportunity to create I–Thou relationships. As you progress through the
chapters, you will encounter them all. This chapter will explore the first
idea, coding playgrounds, as environments that support open-ended
discovery through the fun process of creating technology-rich projects to
share with others. Coding playgrounds nurture I–Thou relationships by
promoting cognitive, social, emotional, and ethical dimensions of the

human experience. The next chapters, two and three, will provide the
context in which computer science emerged as a discipline to be taught in
schools and an overview of two very different pedagogical philosophies.
Chapters four and five will investigate the second key idea, CAL, by
exploring the relationships between alphabetical and digital literacies and
practical approaches to bring it into the classroom. CAL is an integrated
curriculum and pedagogy founded on a palette of virtues, described in
chapter six, aimed at developing I–Thou relationships by working with
technologies (the It).

The third key idea, coding as a palette of virtues, will be examined in
chapter seven by presenting examples of how ethics and moral education
might be infused into programming experiences at a very early age. Finally,
the fourth idea, coding as a bridge, will be introduced in chapter eight as a
new metaphor that puts forward the notion that, through programming, it is
possible to provide opportunities for diverse cultural, ethnic, and religious
groups to find points of connection, put assumptions and stereotypes behind
them, and work together toward a common goal: learning to create
personally meaningful computer-based projects that require coding skills.

Foundations: A Coding Playground
Young children are ready and eager to learn. They are curious and open to
the world. They are creative sponges and have the needed cognitive and
social structures to learn. Early childhood is a critical period. The brain
develops rapidly and has a high capacity for change. These are the years
when we must lay a foundation for health, well-being, and lifelong learning.
However, we do not teach young children by lecturing them; it will not
work. Children learn by playing. They play with numbers and letters, with
objects and their bodies, and with rules and societal roles. They should also
play with code. Then, our classroom can become a coding playground.

In this book, I advocate that in the coding playground, children can
experiment with technical problem solving while also exploring values,
virtues, and character strengths. The metaphor of a playground evokes
playfulness in a social space. Children not only run around but also learn to
negotiate and communicate. Conflicts are solved and ethical dilemmas

arise. Should a child wait patiently in line for her turn on the seesaw or cut
the line when no one is watching? Should she take over the sandbox and get
rid of the castle with no owner in sight to build a bigger structure?

Not all experiences in the playground are the same. In this book, I
explore how to create coding playgrounds in which I–Thou relationships
can be nurtured, coding playgrounds that can serve to build bridges between
those who are different and those who have no other shared language other
than the programming language. Coding playgrounds in which children
develop a palette of virtues useful for academic success and technical
achievement as well as for being a mensch who understands responsibilities
and consequences and who wants to make the world a better place.

Programming is a verb. It involves actions and not only thinking. Will the
determination of a child who keeps debugging her program, even when
outside recess is called, transform into grit in every aspect of her life? Can
the generosity of a child who chooses to slow down and help another,
instead of finishing his own robot as fast as possible, translate outside the
coding playground? Can the creative ways in which children debug while
coding transfer to solving social problems that impact equity and justice in
the world? How about a child who chooses to share his KIBO robot with a
child who has none instead of using it by himself? Will this child also
display positive choices of conduct when faced with more complex
decisions? In this book, I explore how to intentionally integrate
opportunities for children to develop character strengths and to make
choices about their behaviors into the teaching of computer programing.

I will use the terms character strengths, values, and virtues
interchangeably. Although this book talks about coding, its focus is the
human dimension. My intention is to offer an intellectual connection
between the natural and the artificial symbolic systems of representation
and between the cognitive and the social dimensions. In teaching coding, I
see an opportunity to create I–Thou relationships, develop a palette of
virtues, and put it to practice in the diversity of our experiences.

The CAL approach evokes alphabetical literacy. In the early years,
literacy is an umbrella term that includes listening, speaking, reading, and
writing as well as motivation, comprehension, vocabulary and socialization,
and community participation. As children grow, they slowly learn how to
comprehend and manipulate a symbolic system of representation—the

written alphabet and punctuation. Reading and writing is not an isolated,
one-year event in kindergarten but the result of multiple experiences that
take place across many years in homes, childcare settings, and
communities. Later on, schooling introduces literacy through formal
instruction.

Our relationship with technology follows a similar path. While two-year-
olds might learn how to use an iPad to find their favorite cartoons, it is
doubtful they will be ready to navigate a complex interface. Neither will
they create their own projects with a programming language. As children
become developmentally ready, teaching can begin. As a pedagogy, CAL
invites us to teach computer science by intentionally working with a palette
of virtues that can be promoted in the coding playground. For now, the
palette has ten values: curiosity, perseverance, patience, open-mindedness,
optimism, honesty, fairness, generosity, gratitude, and forgiveness. Like the
painter’s palette in which new colors can be added, mixed, and matched, in
this palette new values can be incorporated. While these values might be
thought of as universal in the highly connected global world, different
cultures, ethnicities and religions find their own ways to express, celebrate,
and transmit them from generation to generation. They use their own words
to describe them. They have their own sets of stories to illustrate the values
in action. They develop their own rituals and practices to remember and
celebrate them.

Programming languages also have a vocabulary of their own. Learning to
code involves acquiring the syntax and the grammar of a particular
language as well as the ways of thinking and behaving associated with the
discipline of computer science. Problem solving, persistence, and open-
mindedness are required to break a complex problem into simple processes;
the disposition to work with others is necessary because programming
involves working with a system created by another human being. The
coding playground is an opportunity to put to use the values in our palette
and further develop them. However, if the learning environment is solely
focused on instrumental success and technical efficiency, or product over
process, some of the values in our palette of virtues might go unexplored. I
advocate that in early education, values are a priority. As children grow,
they will have opportunities to develop efficient algorithms using
sophisticated programing languages.

Languages for Children
We do not read Shakespeare in kindergarten nor do we ask children to write
complex poetry. The same applies to coding; children need developmentally
appropriate programming languages and age-appropriate projects. Back in
2007, when my children were young (Tali was seven, Alan was five, and
Nico was three), I realized there were no programming languages for them.
Scratch, developed by the Lifelong Kindergarten team led by my colleague
Mitch Resnick at the MIT Media Lab, was designed for children eight and
up. As wonderful as Scratch is, children need to know how to read and
write. They also need a long attention span and a good working memory to
not become overwhelmed by the large number of possibilities that Scratch
offers.

That realization started a long-lasting research agenda for my DevTech
research group at Tufts University. With colleagues and students, we
designed and studied two introductory programming environments
explicitly designed for young children aged four to seven: ScratchJr and
KIBO.

ScratchJr was designed in collaboration with Mitch Resnick and the
Playful Invention company and is currently used by over forty million
young children all over the world. With an iPad or an android device, they
can create animations, interactive collages, and games while learning how
to program in expressive ways. Through generous funding from the
National Science Foundation and the Scratch Foundation, we can offer
ScratchJr for free.

The KIBO robot can be programmed with wooden blocks, without
screens or keyboards. It was developed in my DevTech lab, with funding
from the National Science Foundation, and is now commercialized by
KinderLab Robotics, a company I cofounded in 2014 with Mitch
Rosenberg, with funding from the National Science Foundation’s Small
Business Innovation Research program to make KIBO available all over the
world. At the writing of this book, KIBO is available in sixty-four
countries.

Both ScratchJr and KIBO are developmentally appropriate and engage
children in a coding playground. However, technologies alone cannot
change the way we teach. Thus, we also developed curriculum, teaching

materials, assessments, and professional development strategies built upon
the four foundational ideas in this book: coding as a playground, coding as
another language, coding as a palette of virtues, and coding as a bridge.
While technologies are likely to become obsolete sooner or later, ideas can
have lasting power.

In my previous book, Coding as a Playground, I told the story of Liana, a
five-year-old who proudly shared her ScratchJr animation with her
kindergarten teacher. She had programmed the ScratchJr kitten to appear
and disappear on the screen by putting together a long sequence of purple
programming blocks. Liana cannot read yet, but she knows that these
programming blocks can make her ScratchJr kitten show and hide. Liana,
like most children her age, wants to make the longest possible sequence, so
she puts together ten blocks and screams, “Look at my cat! Look at my
cat!”

Liana’s kindergarten teacher walks over to see Liana’s project. Liana is
proud to show “my movie,” as she calls it. Liana says, “I made it. Look at
my cat. It appears and disappears, it appears and disappears, it appears and
disappears. Many times. Look!” She clicks on the green flag on the
ScratchJr interface, and the animation starts. Liana’s teacher asks her, “How
many times does the kitten show and hide?” “Ten times,” replies Liana. “I
ran out of room. I wanted more times.” The teacher shows her a long
orange programming block, called “repeat.” This block allows for other
blocks to be inserted inside its “loop.” That way, Liana can make her
program run for longer time despite the lack of space in her screen.

After some trial and error, during which Liana plays with inserting
different combinations of the purple blocks inside the repeat block, she
figures it out. She can put just one of each purple block (a show and a hide
block) inside the repeat block and set the number of repetition times to the
highest she can think of. She chooses the number ninety-nine and clicks the
green flag to see the animation. The kitten starts appearing and
disappearing. After a few seconds, she gets bored of watching. She goes
back to her code and reduces the number of repetitions to twenty (figure
1.1).

During this playful experience, Liana engaged with powerful ideas of
computer science that are accessible for a young child. She discovered the
concept of loops and parameters. She also learned that a programing

language has a vocabulary and syntax in which symbols represent actions.
She understood that her choices had an impact on what was happening on
the screen. She was able to create a sequence of programming blocks to
represent a complex behavior (e.g., appearing and disappearing), used logic
in a systematic way to correctly order the blocks in a sequence, and
problem-solved when needed.

Figure 1.1
Liana’s movie featuring the ScratchJr kitten animation

She practiced and applied the concept of patterns, which she had learned
earlier in the year during math time. She engaged with mathematical ideas
of estimation and number sense (i.e., ninety-nine is way longer than
twenty). At the same time, she exercised her tenacity at tackling something
she truly cared about (i.e., making a very long kitten movie). Liana created
a project from her own original idea and turned it into a final product. She
was proud to share it with others and happy to revise it when the final
outcome did not meet her expectations (i.e., it ended up being so long that it
was boring to watch).

All of this was possible because Liana’s teacher integrated ScratchJr in a
coding playground in which children had the freedom to make a project
they cared about. Liana was excited and passionate. She was not going to
give up until her cat did exactly what she wanted. She worked hard and
rejoiced in that process, and she enjoyed learning and was fully engaged in
it. For her, developing computational thinking involved more than problem
solving; it meant gaining the concepts, skills, and habits of mind to express
herself through coding.

A coding playground engages emotional and social domains as well as
cognitive growth. Liana stuck to her project; she was persistent and
debugged as needed because she truly cared about it. She felt proud and in
control, and she wanted to share it. Her “cat movie” displayed an aspect of
who she is: a five-year-old movie maker. Liana loves to watch animated

movies and was thrilled to make her own. Through Liana’s story, it is
evident that programming languages such as ScratchJr provide a tool for
expression. We need to learn their syntax and grammar, and over time, the
more we engage with them, the more fluent we get. They become another
language to us.

Coding does not only belong to the STEM disciplines. Similarly, the
learning of a written language does not belong only to the language arts or
English class. As an heir to Aristotle’s philosophy and its logical systems,
coding indeed engages children in critical thinking. This type of thinking
belongs to every discipline and can be integrated into the general
curriculum. Coding is for those who want to problem-solve technically and
for those who want to problem-solve socially. Coding is for those searching
new ways of expression and communication. Coding is for storytellers and
engineers. Most of the dimensions of the human experience—the cognitive,
the socioemotional, the language, the physical, the moral, and the spiritual
—can be displayed and addressed by a well-designed coding playground,
just like in the physical playground.

Starting Early
I first learned programming when I was ten years old back in the ’80s. A
renowned credit card company was running an after-school camp with the
LOGO programming language in my home city, Buenos Aires, to promote
their brand. My mother signed up both my brother and me. Twice a week,
we went to a tall office building, sat in front of a computer, and learned how
to make a little turtle on the screen draw a shape by moving up and down,
putting its imaginary pen down, and choosing different colors.

I do not remember much about the experience except that it was difficult.
I had a hard time thinking about left and right. It was confusing to draw the
geometrical figures we were asked to do. A square required us to program
the turtle to go forward first, and then turn right, and then go forward again,
and then? I kept messing up. Which was my right? Was it the same as the
right of the turtle on the screen? I needed to stand up and try things out with
my own body.

Decades later, I would get to learn that Seymour Papert, the father of
LOGO, had a name for that: body-syntonic learning. An example is a child
pretending to be the turtle in order to learn. We can use our bodies and not
only our heads to understand new ideas. I also did not know then Seymour
Papert would become my doctoral advisor at MIT and that I would create
my own introductory programming languages for children.

Although Papert became known as the pioneer of programming and
education, his emphasis was never on the tools. He admonished us against a
technocentric perspective that puts technology at center stage. His focus
was on ideas. Papert wanted children to learn to think in new ways about all
subjects and, most importantly, about the nature of thinking itself. He had
worked with Jean Piaget before arriving to MIT to become codirector of the
Artificial Intelligence Lab. With Piaget, he learned about cognitive
development and “thinking about thinking.”

I was inspired by Papert. However, I want children to not only think but
to act as well. I want children to use those new ideas they encounter when
programming to make the world a better place and themselves better human
beings. I want them to be aware of their palette of virtues and put them to
use. I want them to engage in I–Thou relationships and to understand the
power of languages, both natural and artificial, for making them happen.
We can create and destroy with them. The intention with which we use the
language, and our guiding principles and values, make all the difference.
CAL reminds us of this.

At the time when I was learning LOGO in Buenos Aires, most
programming languages required reading and writing. It was impossible to
think that a younger child could learn them. Today’s interfaces do not need
reading and writing. They can be block based, like ScratchJr, or tangible,
like KIBO, so that we can start early.

We know that both economic and developmental reasons exist for
teaching computer programming to children as early as possible, as long as
it is done in developmentally appropriate ways. First, research in the
neurobiological, behavioral, and social sciences extensively shows the
importance of early life experiences. These impact brain development and
human behavior, emotions, and social skills. Planned interventions and
early educational experiences are crucial. Second, research by Nobel
Laureate economist James J. Heckman and colleagues shows that early

childhood programs can produce higher economic returns and are
associated with lower costs and more durable effects than interventions that
begin later on. Starting early is a good investment.

An influential report published in 2000 by the National Academies Press,
“From Neurons to Neighborhoods: The Science of Early Childhood
Development,” alerts that “programs that enhance social and emotional
development are just as important as those that enhance linguistic and
cognitive competence.” The approach I propose in this book taps into all of
these components when bringing computer science to early childhood.
Thus, it seems better suited than placing computer science as merely part of
the STEM curriculum.

Of course, there are advantages to welcoming STEM. Research shows
that when children are exposed to it at an early age, they demonstrate fewer
gender-based stereotypes regarding STEM careers, increased interest in
engineering and computer science, and fewer obstacles entering these fields
later in life. Those arguments are important, but they reinforce the
workforce pipeline. I have no problem with STEM education per se, and I
welcome the addition of the arts into the STEAM acronym, but it limits the
power of coding to a narrow group of disciplines and to the particular
demands of the economy. It limits its power as a true literacy. Hopefully,
after reading this book, you will be convinced of the power of coding as
another language.

Starting early requires pedagogical strategies, curriculum, assessments,
and programming languages that are developmentally appropriate for young
children. It is not enough to copy or adapt what has been developed for
older children. Creating models for younger children is the essence of my
work. In my first book, Blocks to Robots, published in 2008, I wrote about
how the development of new tangible interfaces that are age-appropriate for
young children made it possible to introduce abstract computational
concepts in very concrete ways. Papert, among others, had already argued
that Piagetian stages could be questioned if children were given new
intellectual tools. For example, a child does not need to understand the
formal mathematical definition of randomness to see that when she uses a
random variable in her program, there is an apparent lack of pattern or
predictability.

A few years later, in my books Designing Digital Experiences for
Positive Youth Development and Coding as a Playground, I used the
metaphor of playgrounds versus playpens to explore pedagogical strategies.
Coding can become a playground: an environment for us to be creative, to
express ourselves, to explore alone and with others, to learn new skills and
problem-solve while having fun. Playgrounds are open-ended, while
playpens are limited. In a coding playground, children become producers,
rather than just consumers, of digital artifacts that can be shared with
others.

As children become producers of technology, they learn to master
programming languages. Thus, I look carefully at what it means to use a
symbolic system of representation, with its syntax and grammar, to produce
an artifact that can be shared with others. However, the coding playground
provides a learning experience that extends beyond coding and can
intentionally promote the development of I–Thou relationships that reflect
our human values.

I evoke written literacy, which for centuries has engaged people in the
dialogical activity of meaning-making and interpretation through textual
artifacts. Important lessons can be learned from experiences all over the
world that see literacy as an opportunity for liberation, social justice, and
equality as well as those who see literacy as imposing a colonialist set of
values. If coding is to become the new literacy of the twenty-first century,
what can we learn from the successes and failures of how this old literacy
was taught? How can we design coding pedagogies and curriculum that
take advantage of everything we know about teaching other symbolic
systems of representation, such as textual literacy? How do we build on the
power of artificial languages to bring people together, to learn about each
other? How can coding serve to create bridges, not walls, in a global world
that embraces diversity and pluralism?

I am concerned with character development, moral education, and ethics.
Becoming a producer, learning how to use a programming language to
create an artifact to share with others, means taking on a responsibility.
First, it means we need responsibility with ourselves: working hard,
persevering in the face of difficulty, and not giving up. It requires having a
sense of excellence and acquiring the needed skills. Second, it means
responsibility toward others: putting ourselves in their shoes, developing

empathy, taking a different perspective, anticipating their reactions to our
production, and making sure it is accessible and respectful. Becoming a
producer also means accepting consequences: fixing what does not make
sense and what breaks and anticipating that our creation might take on a
different life when others make it their own. Last, it means understanding
our responsibility toward the environment we are working with, the
materials we are using and developing, and those we must learn to take care
of. As you read the book, you will encounter all of these forms of
responsibility described in the ten values I chose for my palette of virtues in
the coding playground.

Responsibilities and consequences are the realm of both the humanities
and the technical disciplines: literacy and STEM. This book describes a
path for integration through eight chapters and a last section of
recommendations for further readings and resources. Each of the chapters
concludes with a vignette describing young children’s experiences with
coding and the role of the adults in the classroom. These stories help ground
the discussion and provide a window into their world. Next, I present the
first of these windows.

A Window into Their World: Mouths Cannot
Read Bar Codes
Pauline is in kindergarten. Today, her teacher, Mrs. Payne, brought five
orange robots to class called KIBO. According to Mrs. Payne, these robots
can do many things, but they need someone to tell them what to do. They
cannot think on their own and follow instructions. Pauline is not convinced.
“How can we talk to them and tell them what to do? They will not
understand us. They cannot hear us,” says Pauline. “You will see,” responds
Mrs. Payne, “that there is a way of ‘talking’ to them. They ‘understand’
their own language. And we are going to learn it so that we can
communicate with them. When we learn their language, we will become
programmers.” Pauline is confused. She always thought robots were smart,
but now she must learn how to program them when they cannot even
understand her.

Children sit down on their assigned spots on the classroom rug and make
room for Mrs. Payne and her big box with the KIBO robots and colorful
wooden blocks. Pauline is curious. Mrs. Payne explains to the children that
they will learn the KIBO language, which is made of wooden blocks. “Take
a look at all of these,” Mrs. Payne says, inviting the children as she shows,
one by one, the different blocks. “What do they have in common? What
makes them different?”

Figure 1.2
KIBO’s programming blocks

Some of the blocks are blue, others are yellow, and there is a purple one.
Some are cubes, and others are rectangles. They all have a peg on one side
and a hole on the other, and they are meant to be connected to each other.
After a more careful look, Pauline notices that not all of them have both a
hole and a peg. There is a green block that only has a peg, and there is a red
block that only has a hole (figure 1.2).

All of the blocks have a picture in the center, a word in English on the
top, and a familiar image of multiple vertical lines of different depths.
Pauline cannot read yet, but she recognizes the strange shape with multiple

lines. She has seen it at the supermarket. “It is a bar code,” shouts Carole.
“When I go shopping with my mom, there is a machine that can tell you
how much everything costs if you scan the bar code.” The children nod.
They have also seen it.

Mrs. Payne explains to her class that the KIBO robot has a scanner that
can read the bar codes. “It looks like a mouth,” adds Pauline. “No, mouths
are red. This is made of plastic,” responds Carl. “Mouths cannot read bar
codes,” shoots back Pauline. “If I press the button, there is a red light
coming out of it. I think it is waking up the robot,” contributes Carole. “I
tried scanning the block, but nothing happened,” she adds. The classroom
becomes noisy with the excitement of different scanning strategies
proposed by five-year-old children.

Mrs. Payne patiently explains to the children how in the KIBO language,
the scanner can only read “sentences,” not individual blocks. She calls these
sentences sequences. She also explains that programmers like to use the
word algorithm. She tells them that every sequence has to start with a green
block and end with a red block. Those blocks signal to the KIBO scanner to
start reading and to stop reading. “Like the red lights on the street,” says
Jasmine. “My dad stops driving when there is a red light and starts driving
again when the green shows up.” “Yes,” adds Fermin, “like capital letters in
a sentence and periods at the end. My sister is teaching me how to read.”

Pauline volunteers to make the first sequence. She puts a blue block
between the green and the red and scans all three blocks. Right before she is
about to press the KIBO button to start, Mrs. Payne asks the class, “What
do you think will happen?” “It will move,” says Ron. “How do you know?”
replies Mrs. Payne. “Because there is an arrow on the blue block,” responds
Pauline, who cannot read yet. “I know because the word says ‘forward,’”
adds Fermin.

Mrs. Payne explains to the class that the KIBO language is designed for
different kinds of readers: those who know the alphabet in English and can
read letters, like Fermin; those who can figure things out by looking at the
symbols, the drawings on the block, like Pauline; and those who can scan
the bar codes, like the KIBO robot. The students find this hilarious and start
laughing. What follows is an engaging discussion about the many different
languages spoken by children in that kindergarten classroom and the
different alphabets that are used. Fermin shares that in his house they write

in English, but in his grandparent’s house they write in Spanish. He
recognizes that the letters are mostly the same. Ron says that in his house,
his parents use different letters. They come from Israel. Ron cannot read
Hebrew or English, but he can see that the letters look different. Suddenly,
the coding playground becomes a place to discuss culture and diversity.

Mrs. Payne stops the conversation and asks the children to program
different sequences for KIBO. They make KIBO move forward and
backward, turn its white light on and then its blue light on, and make it
shake after someone claps and repeat forever a silly beep. They try different
sensors, like the one shaped as an ear, that can “hear” a clap and do
something, like shake.

This introductory KIBO lesson is designed to encourage children to think
about programming languages in the context of natural languages. At this
age, most five-year-old children do not know how to read or write yet, but
they can recognize symbols. And they know that symbols stand for
something else: meaning. After forty-five minutes of guided free play,
children are ready to program silly moves for their KIBOs. Divided in small
groups, they first need to decorate the robots with ribbons and colorful
papers so that they can look even more silly (figure 1.3).

Designed with a playground approach, KIBO supports children in
making almost anything: a character from a story, a dancer, a dog sled. The
possibilities are endless, as wide as children’s own imaginations. No
computer, tablet, or other form of “screen time” is required to program with
KIBO. This design choice is aligned with the American Academy of
Pediatrics’ recommendation to limit young children’s exposure to screens.

Figure 1.3
A decorated KIBO

KIBO’s programming language contains twenty-one different wooden
blocks. Some of those blocks are simple, while others represent complex
programming concepts including repeat loops, conditionals, and nesting
statements. When we designed KIBO in the DevTech Research Group at
Tufts University, we were inspired by a long tradition of using blocks and
tangible manipulatives in early childhood.

Since the mid-nineteenth century, Froebel, Montessori, and others
developed learning manipulatives to teach abstract concepts such as shapes,
size, and colors. Many years later, Mitch Resnick extended that tradition by
creating digital manipulatives to explore computational concepts. KIBO’s
design is inspired by this work and by tangible languages that use physical
objects to represent the various aspects of computer programming.

Radia Perlman, a researcher at the MIT LOGO Lab, began experimenting
with tangible programming languages as early as the mid-1970s. Since
then, multiple tangible languages have been created around the world in
which the physical properties of objects enforce syntax. For example, the
KIBO begin block does not have a hole, only a peg, because there is
nothing that can be placed before the beginning. The end block does not
have a peg because there is no instruction that can go after the program
ends. The language syntax in KIBO is designed to support and reinforce
sequencing skills; its blocks can be sequentially connected in physical ways
to each other. Learning how to sequence, understanding that order matters,

is foundational in early childhood. It is needed for math, literacy, and most
academic disciplines as well as for everyday life.

In addition to wooden blocks, the KIBO robot comes with sensors,
motors, lightbulbs, a sound recording device, art platforms, and different
extensions. For example, the expression module includes a whiteboard,
markers, and flagpole so that children can make their own homemade flags,
a Free Throw set with a catapult arm to explore physics and force, and a
Marker Extension set that allows children to affix markers to KIBO’s body
to draw through code. This is one of my favorite modules, and it reminds
me of the LOGO turtle and its different color pens. In Buenos Aires, I had a
very hard time making geometrical shapes on the screen, but with KIBO on
the floor, things are a lot easier. Of course, I am several decades older now.

2

The Coding Wars

Maria (five years old): My KIBO doesn’t work.
Peter (five years old): Did you try new batteries?
Maria: No. I will debug first. It is missing a wheel.
Peter: Will that work?
Maria: I don’t know. I will try.

It is 2018. I just finished giving a keynote in Lausanne, Switzerland, for the
francophone community of computer science educators. There were
researchers and teachers from Switzerland, France, Canada, Senegal, Ivory
Coast, and a few other French-speaking countries. It was my first public
talk in French, and I was exhausted. After the lecture, several people
approached me. They had questions about computational thinking and
wanted to know more about my coding as a playground metaphor.

As the conversations dwindled to an end, a tall man came closer. Behind
him were fifteen or so girls, dressed in the same color t-shirts. They were all
smiling. He explained that he is a teacher from a very small town in France
and came to the conference with his students. The girls wanted to meet me,
as I was their “hero.” They loved ScratchJr and used it every day in his
class. They wanted a photograph with me and also wanted to show me their
ScratchJr projects.

Although I was ready to call it a day, I sat and invited them to join me.
After the group picture, every girl, one by one, showed me her ScratchJr
project. They were all the same! I was shocked. Gathering my best polite
French, I commented, “These projects are interesting. How strange! All of
them look exactly the same!” “Of course,” replied the proud teacher, “I
taught them well.” He then proceeded to explain how he gave step-by-step
instructions so that the girls knew exactly what to do. As a result, all of the
projects looked the same. “I am very proud. In what other class can you

have all students mastering the content so well?” he asked. I stuttered.
Those fifteen identical ScratchJr projects represented what I had always
fought against. ScratchJr, which we designed as a coding playground, had
been converted into a playpen. Worse than that, it had become a factory that
could produce identical copies of a project. Personal creativity was gone.

This encounter stayed with me for a long time. Back at Tufts, I talked
about it in my classes and used it as an example of why pedagogy and
curriculum are so important. The technology by itself is not enough, and
even the best playground can be converted into a playpen. However, the
teacher’s attitude also remained with me: he was proud because all of his
students mastered the content. I wished I had kept his email to ask him
follow-up questions: Were these projects the first ones the girls
programmed? What did he plan for them to do next? Were the girls engaged
in this activity? Was this step-by-step instruction part of a bigger curricular
unit?

My experience in Lausanne captures what I am naming the Coding Wars,
in honor of a different kind of educational war, the Reading Wars, which
started in the late ’80s and has been raging for decades. While learning to
talk is a natural process, learning how to read and code are not. People need
to learn and need to be taught. The question is how. That is where the war
starts, and two opposing camps emerge. One emphasizes teaching using
step-by-step instructions, following a scope and sequence in a well-
designed curriculum. The other, in sharp opposition, emphasizes learning
by integration into meaningful activities following the development of the
child and her active construction of an understanding. Both camps ground
their pedagogies in research-based evidence. Like in any war, both sides
have aspects that are right and both have aspects that are wrong. A balanced
approach is usually needed, and CAL provides a middle way.

In the Reading Wars, academics, practitioners, and policymakers stand in
opposing factions regarding how to teach reading. On the one side are those
who champion “phonics” or letter-to-sound correspondence in a specific
sequence so that children can learn to sound out words. On the other side is
a focus on “whole language,” or the meanings of written words embedded
in text. Teachers provide a literacy rich environment for their students that
combines speaking, listening, reading, and writing. Students are taught to

use critical thinking strategies and context to guess the words they do not
recognize.

The Reading Wars, like the Coding Wars, are research battles too.
Academics on both camps propose different metrics for evaluating success,
and these methodological differences often make it almost impossible to
know who is right. The very essence of what is a good research question
and how to answer it comes into play. Different views of the world are
displayed when each side answers the “what” and “how” but also “why” it
matters: the purpose of education.

In this chapter, I use the metaphor of the Coding Wars to tell a story
about the confrontation between two opposing views on learning to
program. On one side are instructionists and on the other are
constructionists. The battleground: how to take advantage of the power of
computation. As you read through the chapter, you will notice that I present
an approach that, although is deeply grounded on constructionism, has
elements of instruction.

The Two Sides: A Simplified Story
The simple story is this: instructionists focus on teaching and
constructionists on learning. However, there is more to it. Instructionists
draw from behavioral theories resulting from studies of animal behavior. In
the 1930s, Harvard psychologist B.F. Skinner and colleagues conducted
multiple experiments with rats. They found that rats learn to do tasks when
they receive rewards in the form of food pellets. A behavior followed by a
pleasant consequence is reinforced and likely to be repeated and a behavior
followed by an unpleasant consequence is not. Extrinsic rewards, such as
food pellets, play a key role in reinforcing the behavior. Behavioral theories
informed the design of experimental studies with control groups to test the
effectiveness of interventions for changing rats’ behaviors and the
behaviors of many others, including humans. Think about it: students
receive a good grade as a reward for their high performance on a test, and
this external reward might reinforce good study habits.

However, humans are not rats. It takes a little bit more than pellets or
grades to change our learning behaviors. The process of education involves

communication. However, the mechanisms and processes of
communication are understood differently by instructionists and
constructionists. Instructionists draw on the transmission model proposed
by information theory in the mid-1940s. The mathematician Claude
Shannon, the founder of information theory, studied the process of
transmission of a message over a noisy channel. The goal was for the
receiver to reconstruct the message with a low probability of error. In this
linear model, the receiver is viewed as a target or end point, and she either
successfully receives and understands the message or does not. It is the
sender’s responsibility to ensure the message is successfully transmitted and
understood. Instructionists apply information theory to education, and thus
instruction is very important. The channel is always noisy, and teachers
need strategies to break communicative barriers so that the message can
reach students without distortions.

Constructionists stand in sharp contrast. Knowledge is not transmitted
like information in a pipeline; it is constructed by each individual. The
sender has no control of how the message will be received. In contrast with
the transmission model, instructionists describe communication as an
interaction process in which participants alternate positions as senders and
receivers. There is a feedback loop, and meaning is actively constructed.
The focus is not on how to preserve the information itself (e.g., the
message) in a noisy channel but on the interactive process of
communication that creates new social forms, new information, and new
knowledge.

In psychology, constructivist theories, such as those proposed by Jean
Piaget and Lev Vygotsky, are aligned with this perspective. Furthermore,
when coining the term constructionism for his philosophy on computers,
learning, and children, Seymour Papert chose to capture the essence of
“constructivism” with this new word. He replaced the “v” of constructivism
with the “t” of constructionism. Although different in their approaches to
cognitive development, both Piaget and Vygotsky understood children as
active agents in the process of knowledge construction. In interacting with
the physical and the social world, the reward that motivates learning is
fundamentally intrinsic, feeling good about successfully accomplishing a
task.

Full disclosure: I was trained in the constructionist camp. Papert, my
mentor at MIT, had worked with Piaget and believed strongly that
computers, and most explicitly the activity of programming, could help
children develop new knowledge. Papert added a new dimension to
Piagetian stage theory. He proposed that when programming with tools such
as LOGO, children could engage with abstract ideas in very concrete ways.
For example, while a nine-year-old cannot recite the mathematical function
that makes a triangle, she can draw one with turtle LOGO and construct a
personal understanding of angles.

Although there is no formal war between instructionists and
constructionists, the pedagogies and the teaching materials, as well as the
research studies and methodologies, often reflect opposing views on the
process of teaching and learning. Instructionists and constructionists think
differently about the role of the teacher and the student in this process, the
role of education in society, and even the reasons why coding is taught.
However, much like in the Reading Wars, extremes never win. Only a
balanced approach can integrate best practices.

The Role of the Teacher
Instructionists favor explicit teaching. The “sage in the stage” decides what,
where, when, and why to teach. The teacher follows a planned sequence in
the curriculum, and the scope is decided a priori, based on the core content
and skills of the discipline and the mandated policies. Although the
teaching of computer science and the available programming languages
changes over the years, problem solving remains at the core. The teacher
presents problems or challenges, and children solve them using taught
strategies. As they learn more, the problems become more difficult. The
teacher makes the instruction accessible to students according to their
ability and their prior knowledge. In this teacher-centric model, the teacher
rewards students and gets them ready for the next level. An experienced
teacher can judge the student’s understanding and engagement and adjust
the transmission of the message.

Most of my teachers in elementary and high school were instructionists,
and some were better than others. There was a syllabus with a scope and

sequence of the content to be covered and daily lessons. The teacher was at
the front of the room, writing on the black board with white chalk while we
all sat in neat rows. Some teachers were fun and engaging; they could
capture our attention with their stories and were master entertainers. Others
were oblivious to our moods. They repeated their lessons by heart. At the
end of the year, there was a test, and based on the outcomes, students could
move up a grade or repeat it.

In kindergarten there wasn’t a neat row of seats, but the teacher was still
at the front. Small round tables with four or five little chairs populated the
classroom. The teacher would read a story out loud, and we all had to draw
what we heard. We had to copy the shapes of letters in our notebooks,
making sure we did not go over the dotted lines. We all sang the same song
during music time. Although play was a big part of my kindergarten
classroom experience, that was not considered instruction. That was play
time.

In contrast, constructionists embrace play and emergent curriculum as
part of the learning process. Papert, the father of constructionism, refused to
give a concrete definition. In 1991, he wrote that “it would be particularly
oxymoronic to convey the idea of constructionism through a definition
since, after all, constructionism boils down to demanding that everything be
understood by being constructed.” He believed in learning much more than
in teaching. Constructionists set up environments for children to bring their
own passion into learning, to discover, to invent, and, while doing so, to
encounter new powerful ideas.

Those ideas might not follow a neat sequence. There is not a priori
curriculum, and instead the curriculum emerges based on the child’s needs
and interests. The teacher becomes a coach, a guide to help children explore
their passions and to ask new questions. The teacher’s job is to meet the
students where they are and to offer a rich environment based on the
changing and evolving interests of the child. They provide “just in time”
guidance. In other words, the less teaching, the better. For constructionists,
problem solving in computer science is not a goal in itself but a means to
create personally meaningful projects. Teachers do not offer challenges;
they present a theme to explore. Children find the challenges on their own
as they embark on projects of their choice. All projects in a classroom look

different from each other because all children are different and so are their
passions.

Back in the late ’90s, when I was a doctoral student at the MIT Media
Lab, the internal joke was that Papert did not come with LOGO to schools.
What we meant was that although we were bringing LOGO to classrooms,
many teachers used LOGO in instructionist ways; they did not incorporate
Papert’s pedagogy. Creativity and personal expression were left out.

The Coding Wars narrative oversimplifies the role of the teacher in the
education process. However, by making a caricature of the two extremes, I
am able to highlight the differences. Although I was trained as a
constructionist, through experience, I realized we must adopt a flexible
approach that is responsive to student needs, passions, and ideas and, at the
same time, provides equal opportunities for every child. In a nutshell, that is
a curriculum. A well-designed curriculum supports teachers to notice and
ask questions, plan in advance and improvise, use the classroom as a site of
inquiry, experiment with different teaching interventions, take risks, and
provide scaffolded opportunities for students to encounter new powerful
ideas. In this process, both teachers and children become agents of their
own learning.

The Role of the Student
Instructionists believe that students should follow instructions. If the
student pays attention and the teacher is a good instructor, the result will be
positive. This approach emphasizes product over process. As long as the
student can produce the desired outcomes, she will be rewarded. The
grading system, as we know it, is based on an instructionist mindset. The
student receives the instruction, performs the test (which is often multiple
choice and hides the student’s thinking that led to the chosen answer), and
is rewarded with a grade. The student is passive, and the motivation is
external. Depending on the student’s cognitive resources, she might use rote
memorization, visual learning, auditory cues, and so on. This student is
contributing little, if anything, to the instruction process. She receives what
the teacher gives her and, if needed, can ask for clarifications.

The girls in Lausanne who showed me their identical ScratchJr projects
appeared to be happy, proud, and motivated. The teacher was an engaging
man. For all of them, instructionism seemed to work. These girls were
socialized in a school culture in which every student does the same thing. In
French class, they copy the same poem from the white board. In math, they
solve the same problem using the same strategies. Coding class was not
different. Girls knew what to expect and so did the teacher. These girls were
lucky because they had an engaging teacher. This teacher was also lucky, as
sometimes there are students who cannot follow. That is when
instructionism breaks down.

When I was ten years old learning LOGO in Argentina, I failed miserably
as an instructionist student. I did not understand angles and could not follow
the teacher’s instructions. Despite my good attitude, I could not program the
turtle to draw the geometrical shapes the teacher wanted. Instead, strange
looking triangles and messy shapes showed up on my screen. I was not
proud of those creations. In my mind, I was a failure. I was not able to do
what I was told and felt like there might be something wrong with me.

In a constructionist environment, my role as a student would have been
conceived differently. My identity as a learner also would have been
different. The teacher might have encouraged me to make my own
geometric shapes. She would have invited me to explore their differences
and similarities. She would have asked me questions, and based on those,
she would have challenged me to make new shapes. She would have
celebrated my unique contributions to the class and might have even asked
me to share them with others. Together, as a class, we would have explored
my shapes.

What was special about my angles? How many steps did my turtle move
forward after turning? Could I teach the class how to make such strange
shapes? My teacher would have taught me the names of those shapes, and I
would have learned something new. I would not have followed a scope and
sequence that determines which shapes should be learned first, but in the
end, I would have learned them all. And most importantly, I would have felt
proud of myself as a learner.

Constructionists see the child as an active learner in charge of choosing
what she wants to learn and how. The child needs to be internally motivated
because there is no external reward waiting. If the tasks and projects are

sufficiently authentic and meaningful, the child’s motivation would be high
and she would want to learn. She will do well if given the opportunity to
create self-directed independent projects based on her own interests.

Decades after my failed LOGO experience in Argentina, I took my
favorite class at the MIT Media Lab. It was 1994 and the class was Mitch
Resnick’s Technological Tools for Learning. During one of our first
meetings, I was asked to make any project I wanted with LOGO. Fear
immediately swept me. I remembered that I was not able to program perfect
triangles. The fact that I was now a twenty-four-year-old taking graduate
classes at MIT did not matter. My mind went straight to my first painful
experience with LOGO.

However, Resnick’s class was different. Having been a student of Papert,
Resnick set up his class in such a way that students could be in charge of
their own learning. I could create any project I wanted. For the next few
hours, I programmed two turtles to dance tango, avoiding the triangles. To
dance, I programmed the turtles to trace figure eights. Despite my initial
fear of failure, I loved the project. I loved LOGO and loved programming. I
had a story to tell and wanted to share with my classmates my favorite
dance, the tango. In the process, I explored the hidden geometry. This
experience worked for me, and I was motivated to succeed at MIT.
However, sometimes children grow so out of touch of what motivates them
that it is hard to tap into it. It takes time, patience, mentoring and
scaffolding.

At opposite sides of the Coding Wars, both instructionists and
constructionists fall into a similar trap. Despite the role of the teacher,
children’s experiences are as varied as their diverse socioeconomic, racial,
linguistic and cultural contexts. For some children, to be part of a reward
system, such as getting a good grade, might be perceived as reinforcing
unequal traditional societal roles. For others, achievement within the system
is the goal. Some may place greater emphasis on group or family
expressions of achievement and approval. In addition, children from
different social classes and ethnic backgrounds come to school differently
prepared by their home and preschool experiences and by their parents’
involvement, values, aspirations, and motivations. For example, there are
consistent findings that show that the higher the family’s social status, the
more likely the child is to have high scores on achievement tests.

The Anglo-American definition of achievement motivation based on
individualistic achievement efforts might not work with children from
different racial or ethnic groups. Children enter school with different
capacities and levels of preparation as well as culturally different
socialization goals and experiences. We know that the schooling experience
varies for different socioeconomic backgrounds. Even when students live in
comparable neighborhoods, home environment is still a variable. And if
everything in the environment is equal, physical growth, cognitive, and
socioemotional maturation still cause inevitable differences in learning.
Children do not develop following an exact path or timeline.

Furthermore, while some children learn best in structured environments,
others need to find personal meaning. Each child is different. The
challenges of having to define, a priori, the role of the child in the
educational system are many. The child becomes an object of the
educational system and stops being a subject. In Martin Buber’s terms, the
I–Thou relationship becomes I–It. Who is this individual? What does she
need at this time? What motivates her? If instructionists and
constructionists come to the teaching and learning process without asking
these questions, the real outcome of this process, the child, risks being
ignored.

Just like in any other academic war, the Coding Wars need balance: an
active role for the child in guiding the learning process, presence of diverse
curricular materials to stimulate student exploration and learning, a
combination of group and individualized instruction, a scope and sequence
of what needs to be taught, a teacher’s flexibility to achieve those goals, and
diagnostic iterative evaluation to assess the learning process. Without all of
these components, it is easy to lose sight of the end goal: to educate our
children.

The Role of Education
Instructionists and constructionists agree that schools must provide
opportunities to develop cognitive and socioemotional competencies as well
as to serve other less obvious societal functions: childcare while parents
work or pursue personal interests; maintain established social roles, power

dynamics, and institutions; and delay children’s entrance into the
workforce.

Instructionists see the role of education, and therefore schools, to impart
knowledge and skills so that learners can participate successfully in
society’s institutions. Thus, according to instructionists, in a globalized
world in which technology is having a growing impact in every area, the
teaching of coding must fulfill the needs of society: workforce development
and a pipeline for growing STEM careers. Every school needs to have “an
hour of code,” at a minimum, so that all students can be exposed to this new
skill. If students like it, then they might consider taking a course later on
and even contemplate a technical career. The needs of the economy will be
met, and education will have played its part. School is the official institution
that ministers education, and as such coding needs to be included in the
coursework.

In contrast, constructionists focus on individual development. According
to constructionists, the role of education is to foster independence and a
sense of personal power to express ourselves. Children need to discover
their own passions, and learning to code can bring a sense of empowerment
by making those passions come alive. The role of education is to support
that process by helping and guiding children in this individual pursuit.
Papert wrote that “if you love what you learn, you’ll get to love yourself
more. And that has to be the goal of education, that each individual will
come out with a sense of personal self-respect, empowerment, and love for
oneself, because from that grow all the other loves: for people, for
knowledge, for the society in which you live.”

Constructionists do not always see schools as the most likely place where
education happens. Quite the opposite. There is extensive writing on how
schools might damage learning by forcing everyone to learn the same things
at the same time. Furthermore, in its earlier days, constructionists aligned
with some of the ideas of the deschooling society movement proposed by
Ivan Illich and others. Illich wrote that “equal educational opportunity is,
indeed, both a desirable and a feasible goal, but to equate this with
obligatory schooling is to confuse salvation with the Church.” Ahead of his
time, back in the early ’70s, Illich saw technology as an opportunity for
deschooling society through the formation of what he called “learning
webs.” These webs would “provide all who want to learn with access to

available resources at any time in their lives; empower all who want to
share what they know to find those who want to learn it from them; and,
finally, furnish all who want to present an issue to the public with the
opportunity to make their challenge known.” As we read this today, we of
course think about the internet.

Constructionists also saw the power of learning webs to spark more
authentic learning experiences than schools. Learning webs could help form
communities of practice, people engaged in a process of collective learning
in a shared domain. Papert used the example of Rio de Janeiro’s escolas de
samba (samba schools) to describe an ideal learning setting. He wrote the
following:

A very remarkable aspect of the Samba School is the presence in one
place of people engaged in a common activity—dancing—at all levels
of competence from beginning children who seem scarcely yet able to
talk, to superstars who would not be put to shame by the soloists of
dance companies anywhere in the world. The fact of being together
would in itself be “educational” for the beginners; but what is more
deeply so is the degree of interaction between dancers of different
levels of competence. From time to time a dancer will gather a group
of others to work together on some technical aspect; the life of the
group might be ten minutes or half an hour, its average age five or
twenty-five, its mode of operation might be highly didactic or more
simply a chance to interact with a more advanced dancer. The details
are not important: what counts is the weaving of education into the
larger, richer cultural-social experience of the Samba School.

Samba schools or traditional schools present a different perspective on
education’s role in society. While constructionists hope for the
apprenticeship model of the samba school to replace the current structure
and function of schools, instructionists want to work with the existing
educational system to bring about pedagogical reform. For both, the
introduction of coding is an opportunity to bring about change and engage
in the reenvisioning of policies and institutional decision making.

However, we must avoid what Papert called technocentrism. Papert, who
loved to play with words, borrowed this term from Piaget’s egocentrism:

“This does not imply that children are selfish, but simply means that when a
child thinks, all questions are referred to the self, to the ego.
Technocentrism is the fallacy of referring all questions to the technology.”

Will coding have this or that effect on the schooling experience? Will the
learning of computer science improve mathematics or literacy outcomes?
Will it increase children’s creativity and interpersonal skills? Or will it lead
to isolation of children from one another? All of these questions reflect
technocentric thinking. No single content area or skill is powerful enough to
restructure the way we think about schools and the role of education in
society. The how, when, and why we teach coding and computational
thinking reflect deeper issues of educational theory, policy, and philosophy.
Education occurs in the context of society at large, and schools’ functions
are not independent of other societal institutions and power structures.

I believe that Papert asked relevant questions that are central to the ideas
I am presenting in this book: “What kind of people, what kind of citizens,
do we want? Do we want empowered individuals who will feel the power to
make their own decisions and to shape their lives? Or do we prefer citizens
who will accept the discipline of following the instructions and the
programs that are set up for them by others?” I find these questions useful
for thinking about education in general and most specifically about why and
how we teach coding.

The Role of Coding
Instructionists and constructionists agree on the importance of teaching
computer science starting early on. However, in my opinion, the rationale is
slightly different. Instructionists see coding as a needed skill set for a future
that will require a highly trained technical workforce. Coding knowledge
will be a must in the job market. This perspective might be problematic in
early childhood. Is it developmentally appropriate to advocate teaching
coding to five-year-old children so that they can have a job in the future?
Instructionists might respond yes because computer science is not merely
for computer scientists anymore. It permeates every discipline, and thus we
need to teach it as soon as possible. The challenge is how to instruct in a
developmentally appropriate way.

In contrast, constructionists see coding as a new way of thinking, beyond
workforce preparation. Building upon the Piagetian legacy, Papert and
colleagues focus on intellectual growth. When coding, children encounter
powerful ideas from computer science, such as algorithms, representation,
control structures, and modularity. These ideas are personally useful,
epistemologically interconnected with multiple disciplines, and have roots
in intuitive knowledge that a child has already internalized over a long
period of time. For example, an algorithm is a sequence of actions that
serves to both instruct a robot what to do but also tells a cook how to follow
a recipe. In early childhood, understanding algorithms requires
comprehending sequencing and that order matters. This logical way of
thinking is foundational for later academic success, such as setting the
building blocks of math and literacy. It is also important for recognizing
that when getting dressed in the winter mornings, boots come after pants.

Instructionists and constructionists agree that coding engages children in
a new way of thinking. However, the question is how to teach it. In early
childhood, it is often the case that instructionists teach coding through
computer games and puzzles. Children progress through problem-solving
levels in a sequenced instruction with rewards. For example, in Code.org’s
Classic Maze game, children write lines of code in a setting inspired by a
popular game to help the angry birds get to the naughty pigs (figure 2.1).
Each level makes it increasingly more difficult to navigate to the pigs, as
new concepts are introduced with new tasks and rewards. These kinds of
sequenced games can be effectively used worldwide, even when there are
not enough trained teachers to teach computer science to children. As
evidenced by the success of the Hour of Code global movement that has
reached tens of millions of students with over 500+ one-hour tutorials and
is available in over forty-five languages, instructionist types of experiences
can promote a democratization of computer science education.

Figure 2.1
Screenshot of level 1 of the Classic Maze game on Code.org

Constructionists view these types of games as limiting. They are
playpens that offer a narrow set of experiences. While they focus on
computer science and problem solving, they do not support children in the
process of creating their own meaningful projects. In contrast, coding
playgrounds, such as ScratchJr, are open-ended and promote child-directed
exploration and the creation of projects that express the child’s unique
interests and individuality. Inspired by a long-lasting tradition of
constructionist programming languages, such as LOGO and Scratch, with
ScratchJr, children learn by experimenting and by making mistakes, fixing
their bugs, problem solving, and encountering powerful ideas from
computer science.

Figure 2.2
Screenshot of the ScratchJr interface

As an introductory programming language, ScratchJr provides
developmentally appropriate blocks, spanning from simple sequencing to
control structures. When children put them together as a jigsaw puzzle, they
can control their character’s actions on the screen (figure 2.2). As children
create their ScratchJr projects, they learn how to use a symbolic system of
representation to make a sharable product that others can interpret. In the
process, both problem solving and personal expression emerge.

ScratchJr is a playground; the Classic Maze game is a playpen. The
playground versus playpen metaphor that I coined in my previous work
describes the preferences that constructionists and instructionists choose
when introducing programming and computational thinking. Coding
playgrounds invite open-ended imagination and creativity. They require
time to fully explore and enjoy them. In contrast, coding playpens can be
visited during a short period of time, but there is less freedom to experiment
and explore. Although playpens are goal directed and safer, playgrounds
support infinite possibilities. In the coding playground, social interactions
are important. I–Thou relationships can be nurtured and sustained; learning
involves humans working with humans. In the coding playpens, instead,
sophisticated artificial intelligence algorithms might be enough.

As a designer of coding playgrounds for young children, I am clearly in
the constructionist camp of the Coding Wars. Inspired by the work of Papert
and Resnick, tools such as ScratchJr and KIBO robotics engage children in
the making of creative projects and learning communities. In the process,
they learn new skills and journey through the design process from an early
idea to a final sharable product. They learn how to manage frustration and
how to persevere toward finding a solution rather than giving up when
things get challenging. They fail and start all over again, and they develop a
muscle for forgiving their own mistakes and those of others. They come up
with strategies for debugging and fixing their projects. They grow
optimistic in their ability to be open-minded and flexible in trying different
approaches. They learn to collaborate with others, are generous in helping
each other, and grow proud of their hard work. They develop their own
palette of virtues.

A Window into Their World: Robotics Guarding
Nature
A kindergarten public classroom in Buenos Aires, Argentina, has been
exploring environmentalism for several weeks. They have read books and
learned about how to take care of our environment. They created a list of
doable actions at home, school, and the neighborhood. They explored
different habitats and discovered what is needed to keep them healthy. They
learned that plastic trash is bad in every habitat but in the ocean it can also
hurt fish. They also made drawings and watched documentaries.

One day, Malena, the teacher, brought a surprise: several KIBO robots.
The children were excited. They had seen robots in popular movies and
were eager to share their knowledge. Marcos saw a video clip of a robot
that explored Mars. Julia’s aunt bought a robot vacuum cleaner. Sofia told
the class how her father, a surgeon, uses robots in his work. After a
discussion centered on what is and what is not a robot, Malena explained to
the eager five-year-olds that the KIBOs she brought were now their
classroom robots. She showed how to program them with wooden blocks
and how to use the art platforms to decorate them.

Some children were deeply disappointed. They expected KIBO to be big
and smart and to “look more like a robot.” Others were excited because
KIBO has an art platform “and we can make it look the way we want.”
“Exactly!” responded Malena. “We will transform the KIBOs into our
‘guardians of nature.’ and we will program them to go around the classroom
cleaning up our environment. But first we will use these posters to represent
our environment. We will draw the different habitats that we have been
studying.”

Students were divided into groups and slowly started making oceans,
mountains, lakes, and cities on big posters. Malena walked around the room
with plastic bottles, cups, and other 3D materials to represent trash and
slowly spread all of them in the different poster environments drawn by the
children. “Now,” she said, clapping her hands three times to get the
children’s attention, “We will program our KIBOs to go around the room
and stop when they find something that needs to be cleaned up.”

The classroom liked the challenge. Divided into groups, the children
came up with different strategies to program their KIBOs to know when to
stop and clean up. A group decided that KIBO needed the help of
superpowers to do a better job and drew a superhero to sit on KIBO’s back.
Some children counted the steps from one spot to the other and hardcoded
KIBO to travel from trash to trash. This strategy posed a problem when a
distracted child would kick the trash and move it to another spot. Other
groups used the clap sensor to avoid this issue. A child would program
KIBO to go forward forever and stop when it heard a clap, and another
child was designated as the clapper and would follow KIBO around. When
it encountered trash, she would clap so that KIBO would know when to
stop. This strategy also had its limitations in a noisy classroom.

Creativity and laughter abounded in Malena’s class. The children were
drawing and programming, counting steps, and exploring different
strategies. They were creating long sequences and debugging them.
Conversations about nature, ethics, and robots were loud as the children
worked with others and problem-solved together. There was lots of trial and
error and children running around. It was hard to tell it was robotics time
and not a playground.

3
The Rise of STEM

Andy (seven years old): Let’s make the cat run a race with the
fish. He can win. I will program it to win.
Clara (six years old): I don’t want to. Can we make them go to
the park?
Andy: It is boring. Let’s make them race. The cat can jump up
and down after he wins.
Clara: No.
Andy: Ok. I will make them race to the park.

It is 1992. I am living in Buenos Aires, Argentina, and I am excited. I
cannot wait to tell my dad that Seymour Papert has finally answered my
questions. As a junior journalist, I was working on a story about him for the
Uno Mismo magazine and had sent him an email with follow-up questions.
Day after day, I would go to the only office that had a computer with email
access to check if Papert had responded. My mentor, Alejandro Piscitelli,
gave me an account and let me use his computer. At the time, I did not have
an email account or connectivity of any kind, like most people around the
world. After a few weeks of checking, Papert’s response was finally in my
inbox. Piscitelli printed it out for me, and I ran home.

I found my dad sitting at the dinner table, watching a soccer game. I
turned off the television and showed him the printed email. My dad, who
did not speak English and could not understand the words, saw my
enthusiasm. I translated for him and explained that I wanted to study with
Papert at MIT in Boston. I told him that I was captivated by Papert’s ideas.
My dad looked at me with a sarcastic grin and asked, “You do not like
math, or science, or technology! What is so thrilling about programming?”

My dad’s question evokes the widespread association between STEM
and coding. In the United States, the history of this connection can be traced

back to October 4, 1957, when the Soviet Union launched Sputnik I. The
world’s first artificial satellite was small, the size of a beach ball, and not
very heavy, only 83.6 kilograms or 183.9 pounds. However, in the midst of
the Cold War, Sputnik I changed the power play between the United States
and the Soviet Union. In addition, and more relevant to this book, it brought
about educational changes to improve the technical skills of the workforce
and to protect national security.

Sputnik took about ninety-eight minutes to orbit the earth on its elliptical
path. In the process, it transmitted radio signals that could be picked up by
amateur radio operators. The Sputnik launch caught the world’s attention
and stood as a symbol of the technical and scientific achievements by the
Soviet Union that surpassed the United States. On November 3, 1957,
Sputnik II was launched. It carried a much heavier load, including a dog
named Laika. Fear about the capability of the Soviets to also launch
ballistic missiles with nuclear weapons started to spread. In response, the
US Department of Defense approved new funding for a US satellite. The
space race began.

A few months later, the United States successfully launched Explorer. In
addition, two federal agencies were created: the National Aeronautics and
Space Administration (NASA) and the Advanced Research Projects
Agency (later renamed the Defense Advanced Research Projects Agency, or
DARPA). It took almost ten years, with the Apollo lunar landing program,
for the United States to take a giant leap and land two astronauts on the
moon’s surface in July 1969.

The realization of the need to improve the technical workforce had
positive consequences for education. In September 1958, the US Congress
enacted the National Defense Education Act (NDEA) with the goal to grow
the workforce and maintain national security. While the NDEA covered
many areas of education, it has been credited with an emphasis on
increasing the number and quality of US scientists and engineers. This
policy marked the federal commitment to disciplines that we now group
under the STEM acronym.

At the time, the NDEA provided funding and incentives for all levels of
the American school system to improve—among other subjects—math,
science, and engineering, as well as modern foreign language curricula. The
underlying rationale was that other languages beyond English were needed

to conduct foreign policy and to help US businesses expand into
international markets. The NDEA did not identify or promote the teaching
of computer science, as the role of computers and programming was limited
at the time. With the rapid growth of digital technologies in everyday life,
however, this has changed.

Cultivating a high-tech workforce involves a long educational process
and a pipeline that starts in early elementary school and sustains itself
through high school and college. The story of the space race between the
United States and the Soviet Union is tightly linked to the story of how
computer science came to be included in K–12 American education.
Throughout different historical periods, the STEM acronym went through
variations in the order of its letters, such as SMET and MSTE, and finally
settling as STEM in 2001. Over the past twenty-five years, STEM
education has evolved from a clustering of four overlapping disciplines
toward a more cohesive knowledge base and skill set. Recently, the scope
has broadened to include the arts, and STEM is now sometimes called
STEAM. The claim for this change in scope is that design thinking and
creativity are essential for innovation.

The Work Pipelines
As the Cold War ended, the concern for national security diminished, and
thus the American urgency to teach foreign languages included in the
NDEA dropped. However, the need to prepare the technical workforce did
not. Throughout the 1970s, 1980s, and 1990s, personal computers, cell
phones, and technological innovations were developed. The presence of
everyday technologies involving some form of computational power grew
exponentially. By 2007, the report “Rising Above the Gathering Storm,”
published by the National Academies of Sciences, Engineering, and
Medicine, warned that the United States was again falling behind in STEM
abilities compared to other countries. By showing that STEM jobs are
linked to prosperity and innovation, the report predicted dire consequences
if the country could not compete in the global economy as the result of a
poorly prepared workforce.

Although the report was disputed by some, it focused the federal
conversation on STEM and led, in part, to the passing of the America
Creating Opportunities to Meaningfully Promote Excellence in Technology,
Education, and Science Act (or America COMPETES Act). At the same
time, two international evaluations, the Trends in Mathematics and Science
Study and the Programme for International Student Assessment showed that
American students ranked poorly in math and science in comparison to their
international counterparts.

In response, the government and nonprofit organizations decided again to
fund and improve STEM education. This time the goal was to have an
impact on workforce preparation—and ultimately economic
competitiveness. Attention was placed on raising awareness about STEM
careers, in particular with underrepresented groups (e.g., women and girls)
and minorities. Efforts flourished to provide a deeper understanding of
STEM content through interdisciplinary applications and problem-solving
activities. Most of these early initiatives focused on overlapping disciplines
such as math and science and left out computer science.

As the economy grew to need a technologically savvy workforce, the “T”
in STEM started to shine. Today, STEM jobs in the United States continue
to grow at a faster pace than employment in other occupational fields.
STEM workers command higher wages than their non-STEM counterparts.
With millions in funding for teacher training, curriculum development, and
research grants, STEM education is now a household name that includes the
discipline of computer science.

The tech boom of the 1990s and 2000s brought a modern-day Sputnik
call, but this time it was focused on computer science. By 2011, a report by
the National Research Council showed that computational thinking skills
are essential in the K–12 curriculum for “succeeding in a technological
society, increasing interest in the information technology professions,
maintaining and enhancing U.S. economic competitiveness, supporting
inquiry in other disciplines, and enabling personal empowerment.”
Furthermore, in the 2011 State of the Union Address, President Barack
Obama stated, “This is our generation’s Sputnik moment.” It was his call
for the United States to ramp up technological innovation to stay
competitive, spur economic growth, and preserve national security.

In 2015, the STEM Education Act was passed. This was the first time
that federal funding for STEM was extended to cover computer science
programs. In addition, the National Science Foundation launched the STEM
+ C (Computer Partnerships) program for “helping all students—but
particularly students in science, technology, engineering and mathematics
disciplines—understand the role of computation and computational thinking
within disciplinary problem solving” and “to build the evidence base for
effective pedagogy and pedagogical environments that will make the
integration of computing within STEM disciplines more age-appropriate
and contemporaneously relevant to pre-K–12 STEM education.” It is
important to notice that attention was paid to beginning at an early age—in
early childhood, elementary and secondary school, before stereotypes
develop and pipelines are broken.

While computer science entered the federal agencies, well-funded
nonprofits such as Code.org championed national and international
awareness and access to computer science in schools, such as Computer
Science Education Week and the popular Hour of Code. They launched
curricular initiatives, new K–12 educational frameworks, professional
development opportunities, and policy changes. Today, at the time of the
writing of this book, Code.org has impacted over forty-two million students
and one million teachers with all kinds of different programming in all fifty
states.

A 2018 report by the Committee on STEM Education of the National
Science and Technology Council shared a federal five-year strategic plan
that highlights the importance of computer science for laying a strong
foundation for the STEM workforce of the future: “Today’s students are
tomorrow’s data analysts, artificial intelligence and machine learning
specialists, software and applications developers, automation technicians,
quantum information scientists, and cyber-security experts. For these
reasons and more, a particularly strong area of emphasis within STEM
education is computer science education.”

The main propeller for the inclusion of computer science in education
was the need to increase technical skills in the workplace. It was natural,
then, to integrate it into the already existing umbrella of STEM. Although
this chapter is focused on the United States as a case study, there is an
increasing global trend to mandate the teaching of computer science in K–

12 in multiple countries across all continents. Fortunately, there is still a
healthy debate regarding the content to be taught, the pedagogies to use,
and how to make it accessible and developmentally appropriate for all
students.

Global Experience
At the time of writing this book, many countries are developing and
implementing policies to bring computer science education to K–12
schools. Around the world, there are tensions regarding the best ways to
integrate coding and computational thinking in the curriculum. While some
countries teach it through specialized subjects such as computer science and
robotics, others integrate them into already existing practices, thus linking
computer science and computational thinking with content in other
disciplines. Some countries promote the development of higher order skills,
especially problem solving, while others prioritize the teaching of coding in
a stand-alone format. It is too early yet to determine what approaches work
best since we currently lack longitudinal data and large-scale comparative
evaluations. In addition to making different pedagogical choices, countries
differ in the timing they choose to initiate the teaching of computer science.
Some start in the early grades, while others in high school to enhance job-
related programs.

To the best of my knowledge, one of the first countries in the world to
understand the potential of coding as a new way of thinking and expression
was Costa Rica. Established in 1988, the Costa Rican Computers in
Elementary Education Program seeks “to prepare a new generation of
children and teachers for the challenges of the future,” explains Clotilde
Fonseca, founding director of the program and the Omar Dengo
Foundation. Fonseca continues that “from the beginning, its main emphasis
has been on the development of creativity, thinking skills and problem-
solving abilities—long-term benefits that are expected to impact upon the
country’s socio-economic and technological development.”

Costa Rica installed telecommunications infrastructure and provided
support services to both rural and urban schools, giving priority to
underprivileged populations. In addition, it benefited from a long-lasting

collaboration with Papert and his team who brought LOGO and the
constructionist pedagogy to the country. At the time, the Costa Rican
program was unique and visionary. It broke away from the international
standard by focusing on very young children first and by introducing coding
and computational thinking rather than merely computer literacy
instruction.

Almost ten years later, in the 90s, Papert’s vision also gave birth to
Project Lighthouse in Thailand, an ambitious attempt to use coding to
highlight new paths to learning. Given the diversity of needs of the Thai
people’s rural and urban populations, the goal was to provide examples of
powerful technology-rich learning environments in the digital age as
opposed to a blueprint for education. David Cavallo, who was then my
office mate at the MIT Media Lab, took a leading role in the project and
orchestrated the needed conditions for multiple pilot projects, or
lighthouses, across the country to illuminate possible paths. Most of them
where outside the structure of existing schools. For example, back in 1998,
I worked in rural villages teaching workshops on LOGO and LEGO
robotics and helping teenagers learn HTML to create websites so that they
could publish their own newspapers and explore the nascent field of e-
commerce to sell their arts and crafts directly without the need of
intermediaries.

Cavallo recounts how the project was first conceived in 1997, when “a
group of Thai industrialists, educators, and government officials had come
to believe that the considerable economic success Thailand had achieved in
the previous decade could not be sustained unless the educational system
could help develop learners who could function productively in a global,
knowledge-based economy. They further believed that trying to
incrementally reform the school system would take too long, cost too much,
and still leave them, after perhaps twenty years of effort, with the same
problems the rest of the developed world has now.”

When I started my journey at the MIT Media Lab, I was lucky to
experience firsthand how constructionism and the ideas that I describe in
this book had an impact on teachers and children in both Thailand and
Costa Rica. While I spent more time in Thailand and got to work directly
with children, I traveled twice to Costa Rica, met with Clotilde Fonseca and

Eleonora Badilla, and participated in several workshops. I noticed the
impact that this long-lasting creative approach to coding had.

Years later, I visited Costa Rica again, this time to bring ScratchJr. While
the Costa Rican case exemplifies an early experience of what a developing
nation can accomplish given a sustained commitment to a vision, more
recently other countries in Central and Latin America have been working to
implement policies and programs to bring coding and computational
thinking into their schools. Colombia, Uruguay, Chile, and Argentina are
among those. I was fortunate to be involved in providing some of the
training on both ScratchJr and KIBO for teachers in my home city of
Buenos Aires. Throughout the book, different vignettes recount that work.

Across the ocean, in Europe, over forty-four countries are integrating
coding into the curriculum at the national, regional, or local level, including
Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Estonia,
Finland, France, Hungary, Ireland, Lithuania, Malta, Poland, Portugal,
Slovakia, Spain, and the UK. In Asia, countries such as Singapore are
embarking on an ambitious project to start as early as preschool. Steve
Leonard, the executive deputy chairman of Singapore’s Infocomm Media
Development Authority who launched the initiative, understood that “as
Singapore becomes a Smart Nation, our children will need to be
comfortable creating with technology.” Singapore is trying to change the
idea of what technology in preschool settings looks like, from a screen-
based approach to a maker-centered approach.

Singapore’s vision is consistent with the coding playground. As a result
of this, I was invited to participate in the nationwide PlayMaker Programme
that, at the time, introduced robotics making and computational thinking to
160 preschool centers across Singapore. I trained a first cohort of early
childhood teachers, conducted research with KIBO as part of the initiative,
and experienced firsthand how the playfulness and learning in the coding
playground was infused with the uniqueness of the palette of virtues of a
diverse multicultural and multilingual society in Singapore.

Other countries such as Australia, Israel, Japan, New Zealand, Nigeria,
South Africa, South Korea, Taiwan, and Turkey are also developing policies
and programs to bring computer science and computational thinking to a
wide population of students. This is not surprising since in an increasingly
high-tech and connected world, digital devices and the internet are

transforming society. Thus, computer science plays a major role in all
domains, from shopping to voting.

Computer Science and Computational Thinking
Despite its current high visibility across the world, the value of
incorporating computer science in K–12 education dates back to the 1960s.
For example, in 1963, as president of the Association of Computing
Machinery (ACM), computer scientist Alan Perlis observed that since
computer programming requires logical and creative thought, its teaching
needs to start early in life and become part of everyone’s education. Perlis
received the inaugural Turing Award in 1966 and was known as a founding
father of computer science as a separate discipline. His insights echoed
Papert’s beliefs that learning programming empowers people to think in
new ways.

In the early 2000s, distinguished computer scientist Jeannette Wing
popularized the term computational thinking to refer to these “new ways of
thinking.” In a seminal 2006 article, she defined computational thinking as
“solving problems, designing systems and understanding behaviors by
drawing upon the concepts of Computer Science.” More colloquially,
computational thinking encompasses a set of processes that defines a
problem, breaks it down into components, and develops models to solve the
problem and then evaluates the result, iterates changes, and does it again.

Echoing Perlis and Papert, Wing argued that computational thinking is a
problem-solving skill set that, although rooted in computer science, is
universally applicable and therefore should be a part of every child’s
analytical ability. Wing’s definition of computational thinking puts a heavy
weight on solving problems algorithmically. In contrast, Papert’s original
concept involved the ability to think in new ways, not only as a means to
solve problems but also for personal expression. A child who can think like
a computer is a child who can use the computer to express herself in a
fluent way. She is a child who masters another language, a language of
logic and abstraction.

There is agreement that computational thinking requires a broad set of
cognitive abilities, including, but not limited to, elements of abstraction,

pattern recognition, conceptualization, sequencing, planning, and problem
solving. However, researchers actively discuss whether computational
thinking merits its own cognitive category or if it relies on other areas of
thought. While the debate continues, the term made it into the school
curriculum and educational policies. Today, most countries advocate for the
teaching of computational thinking, and not only coding, to start in
kindergarten.

Unfortunately, computers and other technological devices are still
expensive. The unplugged movement proposes low-cost approaches to help
people think like computer scientists without investing in expensive
hardware and software that ultimately becomes obsolete every few years.
Unplugged activities and games expose children to powerful ideas from
computer science that can be introduced without a programming language.
These place emphasis on promoting computational thinking rather than on
learning the syntax of a particular coding language.

Unplugged computing grew appealing for the early childhood
educational segment, not only because it is affordable but also because it
promises to expose children to computational thinking while limiting screen
time. For example, an unplugged computer science activity in kindergarten
might involve directing a teacher who plays robot by giving her commands
to reach an object in the room. Other examples include playing board games
with decision trees, creating bead necklaces in binary with beads that
represent ones and zeros, using a grid and symbols to put classic fairy tales
in a logical order, and making a peanut butter sandwich following a set of
instructions or algorithm.

Although unplugged activities can engage children in computational
thinking, they do not expose them to programming or the ability to master a
new artificial language. A child playing with a board game might problem-
solve but might not understand the possibilities and challenges associated
with learning a programming language and using it to make an expressive
project. Languages, both natural and artificial, provide opportunities to
create and inhabit new worlds and, ultimately, meaning-making. Children
who are not exposed early on might be at a disadvantage. There is a risk of
a growing new digital divide: those who can think computationally and
those who can act computationally. And of course, there will be those who
can do neither.

Children in wealthier neighborhoods may be exposed to coding through
tablets, computers, and robots from an early age. They may learn
programming languages to create the artifacts and systems they need, and
they will develop their own voices and appropriate the tools. However,
those from poorer neighborhoods might not be exposed and fall victim to
the new illiteracy of the twenty-first century. In an increasingly
technological and complex global economy, computational thinking and
learning how to code need to come together. We need a new generation of
innovators who know the languages to create a more fair and better world
and not only think about it.

The Problem with STEM
As I described earlier in the chapter, in the United States the history of the
consolidation of STEM, launched by the Sputnik I, originated in the need to
maintain international primacy, a strong economy, and national security.
Back in the late 50s, there was also a push for teaching foreign languages
alongside math and science. However, after the end of the Cold War, with
the emergence of a new world order and the growing industry of digital
technologies, the foreign language component slowly disappeared and
computer science became stronger in the STEM cluster.

However, things could have turned out differently. For example, what if
instead of linking computer programming to economic growth and
workforce preparation, it had also been linked to literacy? What if the early
argument was that coding is the new literacy of the twenty-first century and
therefore needs to be taught to everyone early on, alongside reading and
writing? What if the pedagogies for teaching coding had also borrowed
methods from literacy instruction instead of just math? Would this have
prevented the current lack of women and underrepresented minorities in the
field? Would the cluster of STEM disciplines still own computer science,
and would computer science become another way to engage in critical
thinking? Would computational thinking be incorporated into every subject?
What if the role of computer science was conceived, from the beginning, as
a tool to both educate the future workforce and educate the future citizenry?
What can the field of computer science education learn from the rich

history of textual literacy to support educational interventions for all? Might
the invisible bridge between STEM and natural languages traced back to the
50s serve to create a gateway to new forms of teaching and learning and to
new populations of learners?

Only a subset of the world’s problems can be solved by STEM. Grouping
computer science with STEM subjects restricts the power of coding to a
limited group of disciplines, to a limited group of students and teachers, and
to the particular demands of the workforce. It limits coding’s power as a
true literacy that promotes new ways of thinking and changing the world.
As more people learn to code and computer programming leaves the
exclusive domain of computer science and becomes central to other
professions, the civic dimension of literacy comes into play. We are leaving
the scribal age, when literacy was just for a few chosen ones. We are
entering the printing press era, where the power of computation is for the
masses.

A Window into Their World: Programming a
Map, Building a Language
In Watertown, Massachusetts, the parents of the kindergarten class of a
small Jewish day school gather for a special morning. The children will
show the Hebrew skills they acquired during the year. The Jewish
Community Day School (JCDS) is an immersive school in which children
learn both English and Hebrew through the day. This is a big moment for
everyone. As families walk into the school’s multipurpose room, they see a
huge map on the floor and a three-dimensional installation with a landscape
that resembles the hills and deserts of Israel. As they get closer, they can see
small orange robots stationed next to wooden blocks neatly arranged in
sequences. Posters also hang on the walls with drawings and pictures done
by the children.

As the event begins, a teacher welcomes the guests and explains that
during Hebrew class, children learned a popular song called “Eretz Yisrael
Sheli” (“My Land of Israel”), which tells the story of the different elements
that were planted and built by the earlier pioneers: trees, roads, and bridges,
all of which make the land beautiful. The teacher explains that “at JCDS we

teach Hebrew and celebrate our connection to Israel as part of our heritage
and religion. However, this time, the kindergarten students not only learned
the Hebrew vocabulary of the song, but they also learned the KIBO robotics
language.” The room becomes noisy as some children clap. “We chose this
song,” continues the teacher, “because it has a clear sequence of events and
repetition. That is very good for both vocabulary memorization and for
thinking about a sequence of steps needed to be programmed in the
KIBOs.”

JCDS has an integrated curriculum, and teachers organize content from
different disciplines into meaningful projects as much as possible. This
time, they chose to bring together the learning of two different languages:
KIBO robotics and Hebrew. As children studied the song’s Hebrew
vocabulary (house, trees, farm, etc.), they also programmed the KIBO
robots to travel across the map in sync with the lyrics (figure 3.1).

The KIBOs were decorated with colorful paper and strings. One boasted
a brilliant flame, symbolic of the passion for learning and curiosity that the
school seeks to inspire in its students. Another displayed the Israeli and US
flags riding on the backs of the KIBO to epitomize the immersive
Hebrew/English experience the school provides. When students press a
KIBO’s “on” button, the robot flashes different colors of light as music fills
the room. One KIBO dances away from the others, twirls, and comes back,
signaling the others’ turn to spin and shake to the music. Another one waits
for a student to clap before starting its journey. All of the KIBOs move
across the landscape and perform their unique routines.

Figure 3.1
Map created by the children with a poster displaying KIBO’s code.

When all KIBOs reach their destinations and stop their dances, children
congregate and sing together “Eretz Yisrael Sheli.” Friends and family clap
profusely, and the room is full of energy and pride. After the formal
presentation ends, guests are invited to engage with the young engineers.
Every visitor is handed a sheet listing sample questions to initiate a
conversation with the children. “How does your robot know where to go?”
asks a grandmother. “I programmed it,” responds Ronit, a jumping five-
year-old. “But where is the computer?” continues grandma. Ronit replies,
“You don’t need a computer. KIBO is the computer. You just use these
blocks to tell KIBO what to do. And then, you scan them. Like this.” She
proceeds to show how it works. “This is KIBO’s language,” explains Ronit.
“Like I speak English and I am learning Hebrew, KIBO speaks these
wooden blocks. Well, it doesn’t really speak them, but it understands them.
See, here?” Ronit points to the arrow and words in a blue motion block.
“This block tells KIBO to move.”

In this short exchange, Ronit clearly sees programming as a system of
communication: “You tell KIBO what to do.” Programming is a means to
communicate with the robot. The agency is on the child, and she decides

what she wants to communicate. However, like in any system of
communication, there is always a minimum of two: a sender and a receiver.
Ronit’s explanation shows an awareness that KIBO needs to understand the
language to do what it was commanded. This powerful idea applies not only
to programming languages but also to natural languages used by humans.

Behind the final project was a tremendous amount of work and
collaboration from both teachers and students. The children worked in
teams of two or three. The teaching team was composed of a lead teacher
who is Jewish and spoke minimal Hebrew, an Israeli teacher who was
responsible for the Hebrew language immersion, and a non-Jewish STEM
teacher. These three teachers coordinated the learning of key Hebrew
vocabulary, the study of the song, the art project that built the map and
landscape of Israel, and the programming skills to make KIBO travel
around the map at the right tempo with the song’s lyrics. Humor ensued as
the kindergarten students had to constantly remind the STEM teacher what
each refrain in the all-Hebrew song referred to. “Is this the house part?” she
would ask with a smile. “No,” they would respond in unison, “That word
means farm!”

In this kindergarten integrated Hebrew/robotics unit, children learned
about the design process, algorithms, repeat loops, and debugging. They
also explored new vocabulary in a second language. They worked hard and
had successes and frustrations. They learned how to solve problems,
integrated the arts through their drawings of the landscape, worked together,
honed their Hebrew vocabulary, and used math to count how many KIBO
steps it would take to move from point A to B. Furthermore, they
confidently stepped into the role of experts, sharing all they had learned
throughout the curriculum during the final exhibit. It was a celebration of
their accomplishments, even if some of the KIBOs ran out of batteries or
steered away from their original path on the map. It did not matter. The
accomplishment was not a polished performance but instead the learning
process.

4

Coding as Another Language

Annie (five years old): My robot comes from Egypt.
Lara (five years old): How do you know?
Annie: It reads hieroglyphics.
Lara: Mine reads price tags, like in the supermarket.
Annie: Yes, that is hieroglyphics.

In August 1994, I moved to Boston from Buenos Aires to attend graduate
school. With the move, I left behind not only my family and my city but
also my native language. I love Spanish; I can truly express myself in it. For
example, I started to keep a diary when I was twelve years old, and in high
school, I received an award for one of my stories. In college, my friend
Florencia Arbiser and I taught an after-school writing workshop for
children. I did coursework in journalism, and because writing came easily
for me, I was offered a full-time job while still in school. I spent my
undergraduate education working as a junior editor at a popular magazine in
the mornings and attending university to study “social communication
sciences” in the afternoons. I woke up every morning with written words in
Spanish and did not stop using them until bedtime.

The move to Boston meant, among many changes, losing my confidence
and my expertise with the mainstream written language. With effort, I
slowly learned to replace the long, twisted Spanish narrative for the direct,
to-the-point English. During the first few years, I missed Spanish; I missed
the metaphors, the sentence constructions, and the word etymologies.
English was a new challenge. While I became comfortable using it in
academia, I did not enjoy reading novels or poems in English. I also kept
my diary in Spanish. Slowly, I embarked on the long journey of finding
pleasure in the written language of my new home. Knowing the syntax and
the grammar of a written language is not the same as comfortably

expressing ourselves with it: our dreams and fears, our hidden memories
and hopeful futures, our passions and dreads. It takes time to grow a
language. For me, it only happened once I felt comfortable with the
American culture. Language and culture come hand in hand.

Over the last two-and-a-half decades, my work with children has focused
on creating programming languages and innovative cultures of learning. In
1997, I developed SAGE (Storytelling Agent Generation Environment) for
my master’s thesis at the MIT Media Lab under the supervision of Justine
Cassell. This authoring tool engaged children in programming wise
storytellers to interact with.

SAGE was inspired by Eliza, created by Joseph Weizenbaum in the early
’70s. While doing research on artificial intelligence and natural language
understanding, Weizenbaum made a simple computer program that
simulates a psychotherapist called Eliza. Eliza mirrors what the client says;
it is a “dumb” program that only recognizes character strings, responds by
making grammatical substitutions, and does not understand meaning.
Although Eliza’s first users were technically sophisticated, Weizenbaum’s
students, and colleagues who knew the limitations of the program, they still
engaged with it in a deep and personal way.

Something similar happened with SAGE. Children programmed their
own wise storytellers to engage in personal conversations. In return, SAGE
would offer an inspirational story. Children were both programmers and
users. SAGE’s simple graphical editor allowed children to program the flow
of the conversational interaction and to create a database of comforting
stories. They annotated each of the stories with keywords so that they could
be matched by the system. As the conversation progressed between the
SAGE character and the user, stories were triggered when keywords were
matched. For example, if the user was writing about her mother, the SAGE
matching system would find an inspirational story in the database that
contained the word mother or a synonym.

In addition, to make SAGE more appealing for young children and to
explore tangible interfaces at a time in which these were novel, I created a
robotic bunny with hidden servomechanisms that could also be
programmed by the children. The bunny’s role was to be the SAGE
storyteller’s assistant. Children could program the movements of the stuffed
animal. For example, if the bunny was “listening” to the user’s problems, it

inclined its ears forward and blinked its eyes to indicate attentiveness
(figure 4.1).

Figure 4.1
The SAGE system with a programmable stuffed rabbit, storyteller’s assistant, and programming
interface

While programming SAGE was fun, it was even better to interact with it.
During my research, both children and adults created wise storytellers from
different traditions. My favorites were a Hasidic rabbi and a Buddhist
scholar. When interacting with them, children revealed aspects of their
inner lives and the problems they faced every day. Following research
guidelines to protect children’s privacy and safety, logs were kept and
analyzed. The following is a sample resulting from a conversation log
between Leo, a thirteen-year-old, and a character programed to behave like
a Hasidic rabbi:

SAGE: You seem a little shy, Leo. I also was shy to tell stories,
but since my father and my grandfather were Hasidic rabbis I
knew I had to become one. That is the way it is. Leo how old are
you?
USER: 13
SAGE: Oy vey, I am 77 years older than you. You know Leo, a
story is more than a story . . . a story has power. What is your
story?

USER: I had my first day at school today and everybody was
making fun of me because I did not know the text.
SAGE: Oy vey . . . go on, Leo.
USER: So they started to beat me up because I was so stupid.
SAGE: I understand—what more can you tell me Leo?
USER: And every day when I come home from school I cry for a
long time.
SAGE: Do you think you are the first one in this situation? Leo,
let me tell you a story: When Rabbi Wolf Zbarazer was on a
journey, he would not permit the driver to beat his horses, saying
to him: “You have no need even to scold them, if you understand
how to address them properly.” Can you find a connection with
your own story?

In this example, the child, Leo, shares his problems at school with the
Hasidic SAGE who tells him an inspirational story from the database by
matching nouns, verbs, and values. In the next sample, the same format is
used, but this time the interaction happens between a Taoist SAGE who
tells a comforting story to another boy named Conor, who is also
experiencing problems with school:

SAGE: Ni hau. What is your name?
USER: Conor.
SAGE: My name is Chuang-Tzu. I am a Taoist master who lives
by the Way, the Tao, wandering free and easy. How old are you,
Conor?
USER: 13.
SAGE: I am 87 years older than you. I am older than the
mountains and the seas, while you, Conor are still young. You are
here because you seek knowledge. Conor, tell me your troubles,
and I will enlighten you with the sayings of the Tao, the Way.
USER: I want to do better in school. I have a lot of math
homework, and I don’t understand all of it.
SAGE: Go on, Conor. We are becoming one.

USER: The teacher was vague in explaining it.
SAGE: I see, Conor. Maybe this teaching of the Way will help
you. To understand others is to be knowledgeable; to understand
yourself is to be wise. To conquer others is to have strength; to
conquer yourself is to be strong. To know when you have enough
is to be rich. To go forward with strength is to have ambition. To
not lose your place is to last long. To die but not be forgotten,
that’s true long life. Do you get it?
USER: Yes, I’m supposed to learn from my mistakes.
SAGE: So, Conor, now you understand the Way. I must go now
to become one again with heaven and earth. Conor, don’t stop
thinking about the Way, and you will find your own way. May
you, Conor, become one with the Tao.

Over sixty young children engaged with the Hasidic and the Taoist sages.
They both told their own stories and interpreted the hidden meaning behind
the inspirational stories offered by the sages. As my research progressed, I
worked with many young people who were able to suspend disbelief and
engage in the storytelling interactions with different characters.

Over the two-year period of my master’s thesis, I used SAGE in different
classrooms, hospital settings, and after-school environments. In creating a
SAGE, children designed that person to whom they wished they could turn
to with their problems. They also played with different notions of self by
creating or imitating the narrative voices they wanted or needed to hear.
Children programmed storytellers as projections of fears, feelings, interests,
and role models. For example, while some chose to create characters such
as Mother Nature, Shaquille O’Neil, and the Big Orange Fox, young
cardiac patients used SAGE to create Mrs. Needle or Mr. Tape as a way of
coping with cardiac illness, hospitalizations, and invasive medical
procedures.

Over time, I refined the authoring environment and created experiments
to adjust the matching system between users’ personal stories and
inspirational stories in the database. I learned that when the matching
system was off, meaning the computer could not make any match, it did not
matter. Children still interpreted the offered inspirational stories according
to their own situations. There was no matching algorithm needed. Children

created sports stars, grandmothers, doctors, cartoon characters, and
historical figures. They interacted with them and shared them with others.
In the process, they explored the power of both natural and artificial
languages. As an augmented Eliza, SAGE offered a limited programming
language. However, as a tool for expression, it had unlimited possibilities.

A few years later, for my doctoral work under the mentorship of Seymour
Papert, I extended SAGE into a virtual world called Zora. At the time,
three-dimensional virtual spaces were not popular, as the field was just
beginning. In Zora, users were graphically represented as avatars, which
could both navigate and build a virtual city. They had tools to create 3D
objects and to program conversational interactions for each of these objects
(figure 4.2). While constructing the city’s private and public spaces children
could also converse with other children in real time through a graphical chat
system.

Figure 4.2
Zora City Hall

In Zora, all virtual objects had three different kinds of attributes that
needed to be personalized by the children: the presentation attributes
determined the object’s graphical appearance and motion, the

administration attributes determined who owns the object and can therefore
edit it, and the narrative attributes determined the object’s conversational
flow and stories as well as the personal and ethical values that were used to
tag it. For example, a flower could be tagged with the value “love of
nature” by one child and “responsibility for nature” by a different child.
While presentation and administration attributes are needed for any
graphical virtual world, the narrative ones were unique to Zora. They
provided a structure for thinking about the role of objects as carriers of both
ideas about self and community and personal and moral values. In addition,
they served to launch conversations between children about the different
values used to tag similar objects and the universality of some of them.

The following vignette describes a Zora experience during a summer
workshop for teens to explore cultural and religious differences.

Sixteen-year-old Janet connects to Zora, a multiuser virtual city. There,
during a summer workshop for youth, she has created an avatar, a virtual
representation of herself, a virtual home, and a Jewish temple. A visit to
Janet’s virtual home on Zora reveals much about her: her favorite friends,
her most-loved games, and her family’s history. After working on her own
virtual home, she creates the Jewish temple. She makes a virtual rabbi to
welcome visitors with a blessing.

She invites other children to make the decorations of the virtual
synagogue. There are Hebrew letters, a map of Israel, and a picture of a
man praying. Janet clicks on a silver mezuzah (a small piece of parchment
inscribed with biblical passages from Deuteronomy, which is rolled up in a
container and affixed by many Jewish households to their door frames in
conformity with Jewish law and as a sign of their faith). It tells her a story
about the meaning of the prayers it holds.

She decides to add a television to the temple. Inside it, she puts a
snapshot from the movie Schindler’s List that she found on the web. The
system enables her to associate objects with values. She associates the
television with the value “documentation” and defines it as “very important
to remember history. That way, bad things won’t happen again. Holocaust
survivors are getting very old now, and if someone doesn’t record their
stories of what happened, we are doomed to forget and repeat the horrors.”
While exploring the Jewish temple, Janet encounters Marie. Both girls chat

via their avatars, and then Marie invites Janet to visit the virtual Baptist
church she created.

Although Zora had colorful graphics and playful ways to construct and
navigate the virtual world, it was the stories and the conversations that
pulled children to it. The community was more appealing than the coding.
We learned all of this by looking at the Zora system logs. Zora provided
tools for researchers and teachers to evaluate the experience by keeping a
log, with dates and times, of everything users said or did online. At the
time, this was innovative.

For my doctoral thesis, I worked with Zora with different populations of
preteens and teens who created their own virtual worlds and narrative
interactions. Middle schoolers participated in a virtual Zora summer camp
to explore diversity issues. Pediatric patients with renal disease shared
coping strategies while facing hemodialysis. Later on, after graduating from
MIT and starting as an assistant professor at Tufts University, through
generous funding from the CAREER program at the National Science
Foundation, I was able to continue working with Zora. This time, my focus
was children who received organ transplants and had long hospitalizations
and with teenagers all over the world who created a virtual clubhouse to
learn about each other’s cultures and countries. I also did work with
incoming freshman at Tufts who created a virtual campus to express their
feelings about starting college life.

Back in early 2000, when I did all of this work, Zora and three-
dimensional virtual worlds were novel technologies. However, the idea of
using the power of computation to help children express themselves dates
back to the late 1960s when Seymour Papert and colleagues developed
LOGO. In my own trajectory as a researcher, my work is about finding
ways to use technology for identity expression and for exploration of
values. Who we are is connected to the values we hold and cherish. Thus, I
always try to work with both. In my early projects, SAGE and Zora, I also
highlighted the relationships between natural and artificial languages in a
more salient way than with ScratchJr or KIBO. Back then, my target
population was preteens and teens, a time when alphabetical literacy has
already developed, and it was possible to engage in more sophisticated
explorations.

My focus has now shifted age groups. I mostly work with younger
children who have not yet mastered written language. However, my mission
remains the same: providing opportunities for children to express
themselves and their values through using technologically rich socially
situated symbolic systems of representation. With their own grammar and
syntax, these artificial languages can be used to convey meaning, to create
something new, to communicate things that are displaced in time or space,
and to build community. There is magic power in written languages, both
natural and artificial. Think about it: the Spanish alphabet has twenty-seven
letters, English has twenty-six, ScratchJr has twenty-eight blocks, and
KIBO has twenty-one. However, there is an almost infinite number of ways
to express ourselves with these limited numbers.

Transitioning Languages
Coding is a new literacy. For something to be deemed as a literacy “means
that it is important to the status and financial health of a nation,” writes
Annette Vee in her 2017 book, Coding Literacy: How Computer
Programming Is Changing Writing. Coding is perceived as involving a set
of skills and knowledge that today’s society highly values. It serves to build
a competitive workforce in the global economy and is infrastructural for
daily life across many different sectors. Other domains have also attained
the literacy status: health literacy, cultural literacy, visual literacy, and so
forth. However, the achievement of alphabetical literacy was a world-
changing event. This kind of literacy is both instrumental and
epistemological. It enables us to do new things and to organize social
practices around symbol systems but also restructures the way we know the
world and the way we think.

Walter Ong, an American Jesuit priest and scholar, documented a
fundamental shift in the form of thought while studying societies that are
transitioning from orality to literacy. Ong wrote that “without writing, the
literate mind would not and could not think as it does, not only when
engaged in writing but even when it is composing its thoughts in oral form.
[. . .] The fact that we do not commonly feel the influence of writing on
our thoughts shows that we have interiorized the technology of writing so

deeply that without tremendous effort we cannot separate it from ourselves
or even recognize its presence and influence.”

Ong describes writing as a technology that must be learned. After
mastery, there is a transformation of thinking from the world of sound to the
world of sight. For example, oral cultures might not understand the concept
of “looking something up.” It would have no meaning because without
writing, words have no visual presence, even when the objects they
represent are visual. Spoken words happen in time, not in space. Words are
sounds and visual metaphors cannot describe them.

Oral cultures use mnemotechnic strategies for preserving information
over time in the absence of writing. For example, some rely on proverbs,
condensed wisdom, epic poetry, and characters. These oral cultures favor
cyclic thought. The shaman or storyteller invites people to hear stories,
which are told in iterative, redundant ways to aid with memory. In contrast,
cultures of literacy favor linear, logical, historical, or evolutionary thought,
which depend on writing.

Literacy is an historical and social phenomenon with strong
epistemological implications. The technologies of writing, which have
changed over time, have impacted the world of knowledge. The printing
press facilitated the wide distribution of ideas, while the early scribes kept
knowledge isolated for just a few chosen people. Due to his interest in
cultures transitioning from orality to literacy, Ong noticed how early
criticism of computers had similarities to early criticism of literacy. Both
blamed the new technology (writing or coding) for the potential loss of
memory and intellectual capability.

This is nothing new. Centuries earlier, Plato had already criticized
writing. Despite this, earlier critiques might have missed the fundamental
ways in which both writing and coding restructure our thinking. They
support logical sequential thinking and allow the separation of the subject
from the produced object. The resulting production takes a life of its own
and can be analyzed, deconstructed, fixed, and interpreted.

This process is likely to trigger metacognition: “thinking about thinking.”
Papert used to say that “you can’t think about thinking without thinking
about thinking about something.” In his witty way, he was referring to the
importance of understanding our own way of knowing and making sense of
the world. In his view, the computer, and the ability to program it, provided

an opportunity for children to create a “something” (i.e., a computational
project) for thinking about thinking.

Meaningful Sequences
In a first-grade classroom, Ms. Lorna begins to introduce students to
robotics. The students eagerly situate themselves at their tables and hush as
she starts reciting the children’s book There Was an Old Lady Who
Swallowed a Fly. While reading, Ms. Lorna points to various uses of
repetition, a term the students have recently learned in English class. She
calls upon them to raise their hands when repetition is used throughout the
story. Again and again, students’ hands shoot up across the classroom at the
countless repeating words or phrases. Ms. Lorna refers to the predictability
of this repetition as a pattern. At the end of the story, Ms. Lorna explains
that repetition is not only essential in natural languages such as English but
also in programming languages such as KIBO.

Soon after, she takes out the KIBO robot, and the children become happy
and clap. In the front of the room, holding KIBO high so that everyone can
see, she asks for a volunteer to help her hold the KIBO blocks. Ms. Lorna
starts to make a program using a begin block followed by four forward
blocks. Intentionally, she leaves out the end block that is necessary to
complete the program. Without hesitation, the class shouts all together:
“You forgot the end block!” Ms. Lorna reacts with surprise, all the while
aware of the mistake, and says, “Thank you for debugging my program!”
She then asks, “What is repeating in my now complete program?” An eager
student shoots his hand into the air and answers, “The forward block!” Ms.
Lorna nods approvingly and follows with a second question: “How many
times does it repeat, class?” Students respond by lifting their four fingers
high. Ms. Lorna nods in affirmation and explains, “We have now created a
repeating pattern of blocks, just as we read a story with repeating patterns
of words.” Then she adds with enthusiasm, “Now let’s run the program!”

Another student volunteers to do the routine scanning program with
KIBO. Signaling a successful job, KIBO alerts the student that it is ready to
run its program with a flashing green button. As the student presses play,
KIBO begins to move forward four steps until completing its program.

Variations of chants for KIBO fill the room while the robot moves, followed
by a large sigh as KIBO comes to a stop. A student shouts out, “I want
KIBO to go forward for even longer!” Ms. Lorna animatedly responds,
“How do you suggest we do that, Aaliyah?”

Aaliyah takes a moment to think before responding. “Maybe if we use
more forward blocks, like one hundred of them!” Ms. Lorna seizes the
moment to go back to the concept of repetition and teach a new KIBO
block and says, “That’s a great idea, Aaliyah! Unfortunately, we do not
have one hundred forward blocks—but there is another way.”

The students pay attention as the teacher goes back into KIBO’s kit to
pull out two new blocks. “This is what we call a repeat loop,” the teacher
says and shows the gray begin block and the end repeat block. “We use
these blocks when we want KIBO to repeat an action, like going forward.”
Ms. Lorna puts the forward block in-between the loop created by the gray
begin block and the end repeat block and says, “See! It is like we are
making a cheese sandwich. The forward block is our cheese, and it goes in-
between the two slices of the bread, the beginning and the end repeat
blocks.”

“But how do we tell KIBO how many times to repeat going forward?”
inquires a student. Ms. Lorna explains to them the use of parameters, a
numbered or infinite small card that attaches to the repeat block with
Velcro. “I do not see a one hundred card,” says Aaliyah, but she adds,
“Let’s make it repeat infinite times, forever. That is better than one
hundred.” The other children agree and start giggling. Ms. Lorna creates a
new program using the repeat loop, forward block, and the infinite
parameter card. After KIBO is scanned and begins its run, Aaliyah makes
an observation: “This is great. It would have taken a really long time to scan
one hundred blocks. And this is like a one hundred. It’s even a lot more,
nonstop!” Ms. Lorna responds by affirming to the class, “Exactly, repeat
loops make it easier to scan a KIBO program that has a repeating pattern!”

The class is now eager to program on their own. The teacher tells the
students to get into their KIBO playgroups to begin assembling their own
repeat loop programs. The room bustles as students work in their small
groups to create repeating patterns of various kinds: motion, sound, and
light blocks. As students finish building their programs, they work together
in roles such as scanner and assistant to scan their programs. While some

groups build their repeating patterns, others struggle to have KIBO run a
program. Frustration is evoked in the echoes of foot-stomping and loud
sighs. However, students know that debugging is part of the coding process,
and they get at it. Elated groups with elaborate programs beckon Ms. Lorna
to watch their KIBO repeat their programs several, if not infinite, times. As
the lesson ends, students begin to clean up. The students assigned to the
group organizer role take charge, placing each KIBO part back into its
respective bin, as they have done many times.

Ms. Lorna’s classroom was following the CAL KIBO curriculum
developed by my DevTech Research Group at Tufts University. This
curriculum introduces powerful ideas of computer science, such as repeat
loops, in direct conversation with powerful ideas from literacy, such as
repetition. However, before getting to this, it focuses on the concept of
sequencing. Sequences can be found in natural languages through words
and stories and also in artificial languages; algorithms are sequences of
instructions for a robot or program to follow.

At its simplest level, computer programming is the activity of putting
together a sequence of instructions. In the process of making this sequence,
the programmer engages in abstract, logical thinking. Although most of us
can identify the act of thinking and recognize its value, there is no scholarly
consensus on its definition. Thinking is the ability to represent, model,
make sense, interpret, predict, and invent our experiences in the world.
Thinking is facilitated by language. As Soviet psychologist Lev Vygotsky
wrote, “Thought development is determined by language, i.e., by the
linguistic tools of thought.” Thus, as educators, we strive to help children
develop one of the most powerful tools for thinking: natural written
languages. In the coding playground, we give them another tool: artificial
programming languages.

Early childhood education has many strategies for building language
skills and supporting the transition from oral to written language. The
teaching of literacy has occupied the early grades for a long time. Today, we
have a new opportunity: teaching children how to think by using both
natural and artificial languages. While humans understand written
alphabets, smart objects only understand programming languages.

I am using the term language, whether natural or artificial, to refer to a
formal representational system of signs, governed by syntactic and

grammatical combinatory rules, that serves to communicate. This broad
definition encompasses natural languages such as English, Spanish,
Japanese, computer languages such as C or ScratchJr, sign languages, the
musical notation system, and tangible languages such as KIBO robotics
among others. Natural and artificial languages have a limited set of signs
that represent meaning and can be combined in multiple ways following a
set of rules. Research has explored the similarities and differences between
natural and artificial languages, and interdisciplinary endeavors such as
natural language processing and computational linguistics have emerged.
Exploring those is beyond the scope of this book.

Here, I am sharing a pedagogical approach to make coding a literacy of
the twenty-first century. The goal of literacy is to master the syntax and
grammar but also the meanings and uses of the systems of representation. A
literate person knows that reading and writing are tools for interpretation
and, in time, tools of power. They support new ways of thinking. Echoing
Brazilian educator Paulo Freire, literacy is a tool for critical comprehension,
for understanding the world, and for actively changing it. He wrote in the
early 70s and 80s that the written word is a tool for personal transformation
and social change. His work inspired mass literacy campaigns as a way to
liberate the oppressed. I believe this could be the same with coding.
Furthermore, thinking of coding as a literacy give us access to new ways to
teach both programming and reading and writing both literacies of the
twenty-first century.

Philosophers like Ludwig Wittgenstein argued that the language we
speak determines the thoughts we are able to have. Will using a logical
programming language engage children in thinking in analytical ways? In
other words, will learning a new language help form new patterns of
thought, new conceptual frameworks, and new ways of using language?

I coined the term Coding as Another Language (CAL) to refer to a
pedagogical approach for learning how to use a new language, a
programming language. CAL proposes that programming, as a literacy,
engages new ways of thinking and new ways of communicating and
expressing ideas, not only new ways of problem solving. Languages are
grounded in cultures. CAL promotes a learning culture in which I–Thou
relationships can flourish in the process of learning to program; a learning
culture in which the ten values of the palette of virtues are explored and

practice; a learning culture that adds new virtues to the palette, adapts
existing ones, and dives into what it means for each particular community
to help children develop character strengths to make the world a better
place. Coding is a semiotic act, a meaning-making activity.

Within the CAL pedagogy, learning to program is akin to learning how to
use a written language, a socially situated system of symbolic
representation. How do we learn languages? Extensive work has been done
to understand the cognitive and neural basis that support the acquisition and
use of natural languages, both in oral and written forms. However, few
studies focus on artificial languages. This is not only an intellectual
challenge but also a prerequisite for developing robust educational coding
initiatives for children. If computer programming is a cognitive invention,
like reading and writing, how do emergent skills, such as learning a new
programming language, get incorporated into already existing ones? What
are the mechanisms that facilitate this process? While there is a rich
tradition of cognitive scientists, experimental and developmental
psychologists, and psycholinguists doing basic research on how the brain
learns to read and write, we need more research on the cognitive
mechanisms involved when learning to code.

Some work explores the differences between expert and novice
programmers and employs qualitative and quantitative methods to collect
and analyze sample programs, surveys, and interview data. Other studies
use tools such as fMRI (functional magnetic resonance imaging) to directly
measure the blood flow in the brain, thereby providing information on brain
activity. In our pilot work with a team of cognitive neuroscientists at MIT,
we started to explore some of these questions by conducting exploratory
studies using fMRI to capture what happens in the brain when people are
coding. Although we do not have certainties, we learned that some aspects
of the language system might be involved when doing certain tasks. We
need more interdisciplinary teams working on these issues.

It took many decades and financial commitment for cognitive scientists
and neuroscientists to grow a research agenda to explore the mechanisms
involved in reading. What if the research agenda would extend to also
explore what happens when learning to code? Are some of the cognitive
mechanisms associated with coding also found with reading and writing?
What pedagogical strategies could we put in place once we understand

similarities and differences? As coding gains literacy status and is taught in
schools, why wait to realize that many children are left behind? Would that
influence our curricular grouping choices? Would we think of a different
way to integrate coding rather than mostly with STEM disciplines?

This book proposes an alternative pathway. At a time when the United
States, among other nations, is struggling to understand if, how, and when
the teaching of computer science becomes mandatory, it is important to
grapple with these questions before policies are put in place.

Doing Things with Language
A strong body of research has shown the mechanisms and social practices
by which young children learn the alphabetical system of representation and
what instructional strategies are most successful for teaching reading and
writing. When successful, literacy instruction goes beyond coding and
decoding by providing a tool for interpretation and expression.
Furthermore, as Vee wrote, “A democracy—at least ideally—demands an
informed citizenry, and when information circulates in texts, being
informed means being able to read.”

What happens when information is hidden in algorithms? Should
everyone learn to program? How do we teach it? The CAL pedagogy is
grounded in the principle that programming involves learning how to use a
new symbolic system of representation for communicative and expressive
functions. Therefore, decades of teaching children alphabetical literacy
might offer insights. Research has shown how children transition from oral
to written language through a series of fairly predictable stages culminating
in the deep understanding, interpretation, and production of text.

Literacy instruction starts with spoken language. Given the right
conditions, a child might unfold the ability to read and write, but she needs
appropriate instruction. In teaching how to code, there is a myriad of
unplugged games and e-toys that also leverage the use of spoken language
to engage in computational thinking as a stepping-stone to further learning.
It does not happen naturally; it requires teaching strategies. While some
children might learn to code on their own, they usually follow a tutorial or

find someone who can mentor them through their first steps. They master
the language once they can express themselves with it.

Mitchel Resnick and David Siegel, when discussing the creation of the
Scratch Foundation to promote an expressive approach to coding, wrote that
“for us, coding is not a set of technical skills but a new type of literacy and
personal expression, valuable for everyone, much like learning to write.”
Learning to program is more than job preparation. It is about using
programming languages to express our ideas in systematic ways, to
communicate and engage in creative problem solving, and to develop an
informed citizenry who can change the world.

From smart watches to cell phones to automated cars, most of our daily
objects have been programmed. Algorithms dictate the news displayed in
our social media, the people we want to meet, and the merchandise we need
to purchase. If we do not understand algorithms, we might not understand
why and how certain information is or is not presented to us. Programming
is a form of literacy; however, it has been taught as a special skill.
Unfortunately, this approach has diminished coding’s true power as a
literacy that promotes new ways of thinking, new ways of acting in the
world, and new ways of building communities.

The exclusivity of programming is reminiscent of reading and writing
when it was taught only to scribes and monks at one point in history. At that
time, books were expensive and safely kept by a minority who could afford
them. Today, everyone needs to know how to read and write, and books are
common in most households. Of course, neither literacy or coding are truly
democratized, and inequities still exist between the rich and the poor.
However, despite of this, according to the Global Age-Specific Literacy
Projections Model produced by the UNESCO (United Nations Educational,
Scientific and Cultural Organization) Institute for Statistics, the global
literacy rate for all people aged fifteen and above is 86.3 percent. To the
best of my knowledge, there are no large studies yet about people’s coding
literacy. However, a growing number of studies, such as those produced by
the Pew Research Center, have documented the growth in the adoption and
distribution of the internet, home technologies, and smartphones.

We do not teach people to write because they are going to be professional
writers, and we should not teach them how to code so that they become
software developers. If coding is a literacy for the twenty-first century, can

it borrow strategies from alphabetic literacy to teach computer science? Can
these strategies tap into children’s character strengths and universal values
to build caring communities in which I–Thou relationships are nurtured?
Can those values be practiced and adapted based on local sociocultural
contexts? That is the proposition behind the CAL approach.

A Window into Their World: Georgia, Elena, and
the Old Lady
Georgia declares, “We need to deliver the frog!” While it was not entirely
clear what Georgia means by this, it is obvious she has a plan for designing
a KIBO program aligned with the story read by Ms. Stacey. She quickly
begins to put blocks together. Georgia programs KIBO to spin forever “like
a frog” and explains that she needs to “deliver the frog to the river” and “the
frog spins because she is excited!” Georgia scans the programming blocks,
and the KIBO frog moves forward until it reaches the river made of green
construction paper. Once there, it spins round and round. “The frog is
spinning now, but she doesn’t know that she will be eaten by a cat,”
explains Georgia to Ms. Stacey, who asked about the connection between
this project and the book they read in class, There Was an Old Lady Who
Swallowed a Fly.

Ms. Stacey had read this story to her first-grade students, and together, as
a group, they explored the sequence in which the old lady swallows
increasingly large animals. After making sure they all got the right order of
events, she invited them to retell the story of the old lady with their KIBOs
but this time choosing the animals they would like the lady to swallow. The
trick was that children needed to develop a logic for swallowing. For
example, big animals can only swallow small animals. Children had to
choose at least four animals for their sequence before the lady was able to
swallow the last one that would cause her death.

Georgia explains that after the frog and the cat comes the eagle who will
eat the cat and then the bear who will eat the eagle. “My old lady will not
die when she eats the bear because she will vomit it back,” explains
Georgia. “Look!” and she shows Ms. Stacey how a KIBO with a black box

and two eyes on top shakes three times. “That is my bear after the lady
vomited him,” smiles a proud, creative Georgia.

In a different corner of the classroom, Elena is showing Michaela her
project. “I programmed KIBO to move forward and stop every time there is
an animal on the floor.” Elena’s KIBO is dressed up with colorful cloth and
represents the old lady. KIBO is programmed to beep every time it eats a
new animal and to “move back and forth to show it is swallowing.” Elena
chose a different way to retell the story through KIBO. While in Georgia’s
story KIBO was dressed up as different animals and the old lady was not
represented, in Elena’s story KIBO was the old lady and the animals were
plastic toys found in the classroom. Ms. Stacey is happy about the diversity
of ways to tell and retell the story. She is also excited to see how her
students were able to use multiple strategies in their coding and decorations
(figure 4.3).

Figure 4.3
Different versions of There Was an Old Lady Who Swallowed a Fly

After informally visiting with each group, Ms. Stacey asked the class to
come sit at the rug and bring their programming blocks and their KIBOs as
well as anything else they would need to share their projects. During the
technology circle, one by one of the ten children in this small class shared
their robotic stories. Together they laughed about the creative retelling and
also identified sequences that did not have a clear logic.

All of this learning happened during a time identified by Ms. Stacey’s
school as “literacy block.” However, Ms. Stacey was able to integrate the

coding playground into the literacy block to address and strengthen one of
the educational targets in the frameworks: the ability to tell and retell a
story and the use of sequencing.

5

From Theory to Practice

Lila (six years old): Banana will get into the bus now and
disappear. Watch!
Jenny (seven years old): It is still there. The bus is gone. It
doesn’t work.
Lila: I will fix it.
Jenny: Can you do it now?

Lila changes the location of the ScratchJr “hide” block in her sequence. She
shows the program again to Jenny.

Jenny: That was fast! Can you fix my story? [She gives Lila a
written paper.] I did not program it yet. But Mrs. Peterson says
there are mistakes.
Lila: That will take longer for me because I have to read it first.

Over the years, I have learned that one of my favorite parts of doing
research is working with teachers. By now, I have taught over a hundred
professional development workshops, trainings, and special courses.
Regardless of the location, Portugal, Singapore, Spain, Costa Rica, or
Thailand, there is always an “aha” moment followed by laughter and a hug.
That is the time when teachers truly get it.

At that time, teachers make an emotional connection to coding as another
language, as a tool for expression. They realize they can create their own
projects. They are proud to share with each other and take videos to show
their students and often their own children and families. At that time, they
connect with the values in the palette of virtues and understand that their
determination, persistence, and patience were worth it. They are grateful to
the group for providing help and support during the hard process of learning

to code. They are honest with themselves and choose to keep working at
problem solving because the project is not exactly what they hoped for.
They also forgive themselves for being slow and for not getting it. At that
moment, in every professional development workshop, teachers become
confident that they will ultimately get their project to work.

While many teachers who participate in the trainings choose to come,
others are sent by their principals or districts. Often, they are not interested
in coding, and the reasons vary. Sometimes they want their young students
to first master the three “Rs,” the basic skills taught in schools: reading,
writing, and arithmetic. Other times they believe that what is more
important than teaching coding is to facilitate socioemotional learning:
managing emotions, setting and achieving goals, developing empathy for
others, establishing and maintaining positive relationships, and making
responsible decisions. Usually they are just overwhelmed by their so many
teaching responsibilities. As the training progresses and teachers understand
that coding can provide opportunities for reinforcing academic skills,
engaging in socioemotional learning and developing, and practicing
character strengths and values, they relax, see the benefit, and start to enjoy
the coding playground.

In some of my early writing, I used the acronym CAL for the phrase
Coding as Literacy instead of Coding as Another Language. Research is
never a neat straight line path. Ideas are messy, and it takes time. It takes
sharing with others, hearing feedback, and engaging in discussions to
further develop them. While the concept of Coding as Literacy has been
advanced by many as an intellectual effort, I find that CAL has an
interventionist tone to it. It is about how we teach coding and not only what
coding is.

The CAL pedagogy positions the teaching and learning of programming
as the study of a socially situated symbolic system of representation with
communicative and expressive functions to promote I–Thou encounters. It
is a pathway for character development, for exploring the socioemotional
and ethical dimensions of learning, and for practicing values and building
bridges through learning a new language. Ultimately, it helps us to
understand that our actions, like the actions of anyone who creates, have
consequences.

To make this pedagogy accessible, my DevTech Research Group at Tufts
University developed the free CAL curriculum for both KIBO and
ScratchJr. Designed for prekindergarten to second grade, it provides a scope
and sequence for content and skills to be taught in a coding playground as
well as opportunities to develop a palette of virtues by engaging in positive
behaviors. While exploring the parallels between artificial and natural
languages, CAL targets the whole child. It is grounded in the PTD
theoretical framework, which I developed, and is inspired by the field of
positive youth development and many conversations with my colleague
Richard Lerner. In 2012 I described PTD extensively in my book Designing
Digital Experiences for Positive Youth Development: From Playpen to
Playground.

CAL offers coding activities and games involving cognitive and
socioemotional aspects that engage children in six positive behaviors
described by PTD: content creation, creativity, communication,
collaboration, community building, and choices of conduct. These six
behaviors, which we can often see at the neighborhood playground, can also
be promoted in the coding playground. However, a coding playground
needs guiding values, not only behaviors. The ten values in the palette of
virtues intentionally serve this purpose: curiosity, open-mindedness,
perseverance, patience, optimism, honesty, fairness, generosity, gratitude,
and forgiveness.

New values can be added to the palette, and different blends can be
mixed and matched according to the particular classroom and cultural
context. For instance, while some teachers might focus on turn-taking,
taking care of materials, and learning how to work collaboratively with
others, others might pay attention to learning how to be patient when trying
to problem-solve or how to help others debug. Some might use mindfulness
for helping children work through the frustration of trying to debug with
little success, and others might use thank-you cards to acknowledge the
generous spirit of helping each other problem-solve.

The CAL curriculum juxtaposes coding and literacy as powerful tools of
communication, creative expression, and meaning-making. Each unit
contains a minimum of twelve, one-hour lessons or a maximum of twenty-
four, forty-five minutes lessons, centered on coding projects about books,
both fiction and nonfiction. For example, fictional storybooks include

Where the Wild Things Are by Maurice Sendak or There Was an Old Lady
Who Swallowed a Fly by Simms Taback. Nonfiction books tell the story of
a pioneer in computer science, such as Ada Lovelace, Poet of Science: The
First Computer Programmer by Diane Stanley or A Computer Called
Katherine: How Katherine Johnson Helped Put America on the Moon by
Suzanne Slade. Teachers are encouraged to substitute any of these with their
own favorite books as long as they have a clear sequencing of events.

The CAL curriculum presents a scope and sequence of coding skills and
content, a structure based on powerful ideas from computer science, and a
learning pathway. At the same time, it is designed to be flexible, and the
lessons are adaptable to better integrate with the rest of the teaching. The
timing can be adjusted to make lessons longer or shorter to better suit the
curricular needs of different schools. While the content is organized in
terms of powerful ideas of computer science, explicit connections are made
in each of the units to early childhood literacy. In addition, opportunities to
engage with math and other subject areas are presented.

Constructionism has not always viewed a predetermined curriculum
favorably, as it is doubtful it can support all children’s personal interests.
My perspective is that a well-designed curriculum that can be adapted and
modified is a wonderful tool for equity in education. First, it ensures that
the targeted powerful ideas of the computer science discipline will be
covered in a developmentally appropriate way, despite differing depths of
understanding across different teachers. Second, it keeps the playfulness
and encouragement of open exploration. Third, it highlights that the coding
activities must support socioemotional growth and the development of
character strengths.

Jerome Bruner, the influential American psychologist who made
significant contributions to cognitive learning theory, among other things,
wrote in his 1960s seminal book The Process of Education that “curriculum
of a subject should be determined by the most fundamental understanding
that can be achieved of the underlying principles that give structure to that
subject.” Seymour Papert called these powerful ideas: such are deeply
rooted in a discipline, are personally useful, inherently interconnected with
other disciplines, and are grounded in intuitive knowledge that a child has
internalized over a long period of time. For example, in mathematics, the
concepts of zero or addition or estimation are all powerful ideas. In literacy,

there are the notions of grammar and syntax. In coding, there are algorithms
and conditionals.

In his 1980s book Mindstorms: Children, Computers, and Powerful
Ideas, Papert wrote that “when one enters a new domain of knowledge, one
initially encounters a crowd of new ideas. Good learners are able to pick
out those which are powerful.” While this is the goal, the reality is that
people need to learn how to become good learners. Most teachers do not
have the time to become good learners of computer science. Thus, they
cannot identify its powerful ideas, nor can they make it developmentally
appropriate. That is when a curriculum becomes empowering; it already did
the work of picking up the important ideas from a crowd of many.

The CAL curriculum identifies in each lesson powerful ideas from both
computer science and literacy. These ideas are aligned with federal
Common Core literacy standards and K–12 computer science frameworks
so that teachers can meet federal and state requirements. While each
district, state, or country has its own specific frameworks, the powerful
ideas cover most of them. Furthermore, the curriculum is designed in such a
way that localization is possible by proposing a palette of virtues with
universal values that can be adapted and modified to particular cultural,
social, and religious contexts.

Powerful Ideas
In my previous book Coding as a Playground, I wrote extensively about
seven powerful ideas from the discipline of computer science that I have
identified as being developmentally appropriate: algorithms, design process,
representation, debugging, control structures, modularity, and
hardware/software systems. These ideas capture some of the core concepts
and skills a child can acquire when learning to program and thinking
computationally (figure 5.1).

The CAL curriculum organizes each of its lessons around these powerful
ideas and provides opportunities for engaging in unplugged games, warm-
up activities, and coding projects to explore them. As children grow, the
ideas grow with them. For example, understanding algorithmic thinking in
prekindergarten might focus on linear sequencing, while in second grade it

extends to loops. Children can understand that within a sequence, there are
patterns that repeat themselves.

Figure 5.1
Powerful, developmentally appropriate ideas from computer science

In addition, CAL presents powerful ideas from literacy: the writing
process, recalling, summarizing and sequencing, using illustrative and
descriptive language, recognizing literary devices such as repetition and
foreshadowing, and using reading strategies such as predicting,
summarizing, and evaluating. These ideas are informed by literacy
frameworks and research by experts in the early years.

While the CAL curriculum might focus on a particular programming
environment, such as ScratchJr or KIBO, the powerful ideas, if they are
indeed powerful, remain the same. That is true for coding and for reading
and writing in most languages. Furthermore, these ideas can also be
encountered when engaging in low-tech games or unplugged activities
aimed at promoting computational thinking and alphabetical literacy. They
can even inspire the development of cartoons and media for children. For
example, for some time now I have been serving as content director for a
series to be aired in 2023 by PBS Kids (Public Broadcasting Service) in the
United States. Cute, animated Wombats encounter these powerful ideas as
they face new adventures.

Table 5.1 presents both sets of powerful ideas, from computer science
and from literacy, and describes their intersection. One curricular domain is
used to leverage the other. Examples include when children encounter
algorithmic thinking, they are also exploring sequencing and storytelling;

when they engage in the design process, they make active connections to
the writing process; and when they set to debug their ill-functioning
programs, they tap into revising strategies that share similarities with the
systematic editing of their writing.

Table 5.1
Powerful Ideas from Computer Science and Literacy Placed in
Conversation in the CAL Curriculum

Powerful
ideas from
computer

science

Powerful
ideas from

literacy Connecting the powerful ideas

Algorithms Sequencing Emphasis on “order matters” and
that complex tasks can be broken
down into step-by-step instructions
in a logical way.

Design
process

Writing
process

Creative, iterative, cyclic processes
that involve imagining, planning,
making, revising, and sharing, with
different starting points.

Representation Alphabet and
letter-sound
correspondence

Symbols have different attributes
(color, shape, sound, etc.) to
represent something else.

Powerful
ideas from
computer

science

Powerful
ideas from

literacy Connecting the powerful ideas

Debugging Editing and
audience
awareness

Systematic analysis, testing, and
evaluation to improve
communication to the intended
audience (computer or person).
Whenever miscommunication
occurs, the programmer or writer
uses a variety of strategies to solve
the problem.

Control
structures

Literary
devices

Advanced strategies to communicate
a set of ideas using repetition,
patterns, conditionals, and events.

Modularity Phonological
awareness

Decomposition, or breaking down a
complex task into smaller tasks and
reusing those new modules.

Hardware and
software

Tools of
communication
and language

Communicating abstract ideas
through tangible means. Just like
how hardware and software work
together, expressing thoughts
through language requires a medium
for communicating to the outside
world, such as the spoken or written
word.

There are significant differences between using programming languages
and natural languages for expressing ourselves. CAL does not ignore them.
However, as an integrated curriculum, the focus is on shared practices: the

creation of projects, either through coding or through writing; the creative
design process involved in making these projects; the need to revise and fix
them at each step of the way; and the sharing of final projects with others as
a way to express our individuality, interests, passions, and identities.

All seven ideas are powerful. However, in the coding playground the idea
of design process calls for special attention. CAL invites children to use
language, programming, and alphabetical written language to create,
express, and communicate. That requires a process and an audience. It
involves realizing there is another: a computer or a robot that needs to
“understand” our ideas or a person who needs to read our composition.

In our pedagogy and curriculum, awareness of audience and design
process also provides an opportunity for developing our palette of virtues.
We engage in the hard work of creating something we are proud of and
ready to share with others. Working with the design process involves
mastery of skills and systematic revisions, creativity to come up with an
idea, persistence, and patience to stick with it until having a sharable
product. Generosity is important to give constructive feedback, and
optimism is crucial for completing our project. Gratitude is necessary to
acknowledge those who helped us in the process, and fairness is essential
for assessing how we are doing.

For example, when programming KIBO to dance the Hokey Pokey, some
children may spend a long time in the testing phase, dancing and singing
together along with their robot until they get the timing for their program
right. Once they receive feedback, they may want to go back to testing to
include a dance step they missed. Others may choose to plan each step of
their Hokey Pokey program in a design journal before testing out any ideas.
As children become more familiar with the design process, they develop the
ability to iteratively create and refine their work, to give and receive
feedback to others, and to continually improve a project based on
experimenting and testing. This leads to iterative improvement, involves
perseverance, and has strong associations with some aspects of executive
functions, such as self-control, planning, prioritizing, and organization, all
of which are important in our lives.

We use the design process not only when coding and writing but also in
most endeavors in which expression is the final outcome and there is a
genuine concern about “the other,” about an audience that needs to interact

with or use our creation. Across different disciplines, each design process
has a distinct flavor. The level of granularity and detail in each of its steps
varies according to the goal it serves. The design process involved in
engineering a highway is not the same process required for painting a wall.
However, in both of these examples, there is a sense of responsibility
associated with the process of creation.

In previous work, I described the design process involved in coding as
consisting of six steps that are easy for young children to remember: 1) ask
a question, 2) imagine an idea, 3) plan and brainstorm, 4) create a
prototype, 5) test and improve the prototype, and 6) share the final product.
At DevTech, we even wrote a song about it to the tune of “Twinkle,
Twinkle, Little Star” to facilitate memorization in the early childhood
classroom.

We chose to visualize the design process as an infinite loop involving
these six steps (figure 5.2). Although there is a defined sequence, each step
is interrelated with the others. One is likely to go back and forth between
steps or to miss some of them rather than follow a linear path. In the coding
playground, designing is a messy, creative activity. We do not expect
children to neatly follow each of the steps. Thus, we must offer multiple
opportunities to experience the design process as an iterative cycle with
different entry points.

Figure 5.2
The design process

Throughout the steps of the design process, the I–Thou and I–It
relationships described by Buber take on a different meaning. There is an
interplay between the I who creates and the Thou who provides feedback.

The I who revises and the Thou who brainstorms. The I who fixes and the
Thou who tests. The I who programs and the Thou who uses. The It, the
prototype or product of our creative activity, becomes a vehicle for
nurturing relationships. Within this Buberian framework, the last step of the
design process, sharing the final product, becomes both an act of generosity
and gratitude, an opportunity for deep human connection.

With its focus on both coding and literacy, the CAL curriculum explores
how the design process and the writing process are parallel to one another.
The design process is used to create computational projects, while the
writing process is used to create texts (figure 5.3). Both require an audience
that becomes active by interpreting the text or by interacting with the
computational artifact. Both involve responsible creation and awareness
about others. Skillful teachers can explore the similarities and differences in
the process of creation in two learning environments that initially might
seem very different from each other, such as the writer’s workshop and the
coding playground, but share pedagogical strategies and a sense of ethical
responsibility toward our creations.

Figure 5.3
Alignment of the design and the writing process

While the teaching of different design processes is similar regardless of
the programming language used because it focuses on revision and

iteration, the teaching of the symbol system, syntax, and grammar vary
across languages. Like natural languages, different programming languages
have their own characteristics. For example, Spanish has the letter ñ, which
does not exist in English. Similarly, the KIBO programming language
includes sensors, which are absent in ScratchJr. ScratchJr has the possibility
to program speed, which is not found in KIBO.

Each CAL curriculum addresses the uniqueness of each programming
language as it relates to the core powerful ideas of computer science. For
example, while both CAL-KIBO and CAL-ScratchJr focus on the powerful
idea of software/hardware systems and discuss how to take care of
materials, the specifics are language dependent. The CAL-KIBO
curriculum teaches about sensors and makes explicit connections between
human, animal, and artificial sensors. In contrast, the CAL-ScratchJr
curriculum focuses on navigating the interface, plugging, unplugging, and
charging batteries.

Despite the variation of coding tools, all curriculum units follow a similar
structure: warm-up games to playfully introduce ideas, coding activities to
solidify skills, structured challenges to practice, creative explorations to
tinker and expand skills, off-screen unplugged games to promote social
interactions and movement, reading and writing activities, and technology
circles to share and reflect. The curriculum is composed of individual, small
group, and whole classroom activities. Some of these can happen in centers;
they can be located in specific areas around the classroom so that children
can work in small groups or independently. Lessons strongly incorporate
one or many of the six Cs of PTD by promoting content creation, creativity,
communication, collaboration, choices of conduct, and community
building. In addition, there are games and activities designed to reinforce
each of the values in the palette of virtues.

Throughout the curriculum, students keep a design journal. While
kindergarten students are invited to draw or voice record their ideas in the
journal, older students are expected to write according to their literacy level.
Sometimes written journals are used to assess literacy skills, and they are
often included in the portfolio of projects that children can take home to
their families. The journals make learning visible. The culmination of each
CAL unit involves a multi-day, open-ended project to share with family and

friends. This provides an opportunity to celebrate the children’s hard work
and thank all of those who contributed to the their learning process.

A Teacher’s Perspective
It is early morning in Norfolk, Virginia. A community room is awoken by
the shuffling of chairs, the connection of a projector, and the smell of
coffee. Soon enough, the first teachers start to trickle into the room. On a
day that would have been a holiday, teachers from eight different schools
are attending a day-long CAL-KIBO training. Slowly, they greet each other
and sort themselves into their school groups. The room comes to a hush as
Madhu Govind, a doctoral student in my DevTech lab, welcomes them with
a smile, introduces the research team, and asks everyone, “What are your
initial thoughts and expectations for today?”

Encouraged to express with honesty, teachers go around the room: “I
can’t wait to bring robotics into my second grade.” “I am not sure if it will
work with my class. We have many children for whom English is their
second language.” “I do not feel comfortable with technology.” “I barely
know how to use my iPhone. How will I learn KIBO?” The answers are as
varied as the personalities of the participating teachers, and emotions such
as hesitancy and uncertainty fill the room.

Once feelings are shared, the DevTech team starts the professional
development. They show the KIBO robot, explain how it works, and invite
teachers to program it to dance the Hokey Pokey. This is an opportunity for
grown-ups to become children again, to display their creativity in a fun
context without the pressure to both learn a new tool and figure out how to
integrate it into the curriculum. After sharing their Hokey Pokey dances,
teachers feel more relaxed. There is laughter in the room. There is trial and
error. There is silliness and cooperation. The palette of virtues is on full
display.

After this hands-on introductory KIBO experience, attention is shifted to
pedagogy and curriculum. Slowly, the pedagogy of CAL is introduced as
well as the PTD framework and its six Cs. Questions and answers are
discussed. When everyone seems to be on board, Govind asks the teachers

to be quiet. It is time to play again, but this time it will be with both books
and robots.

Teachers are invited to choose one of two books, Where the Wild Things
Are and There Was an Old Lady Who Swallowed a Fly, as their inspiration
for a KIBO project. The room is filled with chatter and collaboration,
making teachers aware of the importance of communication when coding.
The activity in the room ranges from handling scissors that snip away at
construction paper to scanning endless sequences of blocks to retell the
stories. After the final warning, teachers came together for the first
technology circle. Each group presents their KIBO decorations and the
reasoning behind their choice of programming blocks to recreate the
sequences in the books.

For the last few years, the DevTech Research Group has been
collaborating with Angela R. de Mik and the Norfolk Public Schools in
southeastern Virginia in kindergarten through second grades. Later, this
section discusses a vignette depicting the experience of teachers who
implemented the CAL-KIBO curriculum in eight schools through a grant
from the US Department of Defense.

The CAL approach requires that teachers understand the pedagogy of
why and how coding is taught as another language and not only the
technical aspects of computer programming and KIBO robotics.
Furthermore, professional development must appeal to the emotional
experience and not only the intellectual challenge. If teachers love what
they learn in their training, they are more likely to put the effort into
bringing it to their students.

Educators are constantly inundated with new initiatives, curricula, and
programs. This can feel exhausting and breeds a disposition of skepticism.
The more experienced the teachers, the truer this can be, as they have seen
fads pop up and fade out throughout their careers. “When you’re a teacher,
it’s always something new. Someone always wants to tell us something new
that we need to do. When we first found out that we would be coding, it
sounded intimidating, we didn’t know anything about it,” described one of
the Norfolk teachers. “I think the training kind of eased our minds, and then
actually doing it and seeing how much kids loved it and the benefit that it
had, was great.”

Throughout the curriculum, different activities integrate computer
science and literacy by using the book Where the Wild Things Are by
Maurice Sendak. For example, in lesson 6 (What Did Max Sense), they read
about how the protagonist of the book, a little boy named Max, uses his five
senses. This activity leads into the introduction of the various sensors in the
KIBO robotic kit, where the older children are exposed to the wider variety
of sensors. While in the younger grades children talk about the difference
between human, animal, and technological sensors, in the second grade,
teachers guide a discussion comparing the “poetic” language used in the
story to describe Max’s senses and the contrasting command language in
the KIBO programming language to describe sensing.

For the final project, children imagine and discuss what was happening in
the wild rumpus described in the book and write their own ideas as to what
a wild rumpus robotics dance would look like. While in the younger
classrooms, children are invited to draw their dances in their journals, in the
older grades, they are given prompts to write using descriptive language. At
the end, they all decorate their KIBOs and program them to dance the wild
rumpus.

During the professional development day in Norfolk, teachers themselves
created a wild rumpus dance and shared it with each other (figure 5.4). For
many, this was the highlight of the day, as it incorporated dance, arts, crafts,
and music, turning the robotics class into a coding playground.

Figure 5.4
Wild rumpus characters created by Norfolk teachers

In addition to the one-day professional development, prior to working
with their students, teachers had multiple opportunities for ongoing
professional learning. This consisted of lesson slide decks, video tutorials,
coaching calls with my DevTech team, and additional in-person support
provided by the district’s instructional technology resource technicians.

While some teachers were more successful than others, all of the schools
were able to complete the implementation of the CAL-KIBO curriculum,
approximately twice a week for a period spanning six to eight weeks.
Naturally, the more advanced lessons in the curriculum were more difficult
and time-consuming. Teachers who were successful in completing them
consistently met with their colleagues to discuss plans, took advantage of
opportunities to practice with KIBO on their own, and were able to adapt
the lessons to serve the needs of their own students. The teachers who
struggled would have benefited from more time spent on training,
developing their own KIBO skills, and taking advantages of the provided
resources. Teachers who had many students with not enough floor space for
them to work on or had rigid grade-level schedules faced more challenging
experiences.

During the CAL-KIBO project, we collected multiple types of data from
teachers and students at various points in the curriculum. We used the data
to answer the following research questions: How did our CAL-KIBO
curriculum promote students’ coding and computational thinking skills?
What is the relationship between students’ coding and computational
thinking and their literacy and math skills? How did teachers react to KIBO
and our CAL approach? What did teachers learn during the training and
intervention? What factors impacted teachers’ ability to integrate coding
into their classrooms? In the last chapter of this book, Resources, you can
find a link to further readings and peer-reviewed publications with the
findings.

Overall, students and teachers had a generally positive experience with
CAL-KIBO. For many teachers, the hands-on nature of the robot was a
welcomed addition to their classrooms. For example, Selma expressed “I
learned that coding doesn’t just involve sitting in front of a computer and
typing things; it actually involves using your mind and talking things out.”
Selma showed a great skill at integrating dance and movement into the
CAL-KIBO curriculum. However, other teachers struggled with the

logistics of so many tangible materials. Carla shared with us that “things
were messy, the KIBOs were in and out of the classroom, and things got
mixed up, so I color-coded mine.” Carla complained that keeping track of
the materials added more work for her.

The organization of KIBO blocks and modules presented its own set of
challenges, particularly shifting materials between classrooms and
managing clean-up time. Some teachers developed strategies such as
creating a clear rotational system with fellow teachers, having select
students in charge of KIBO clean-up, and keeping three to four KIBOs in
their own classrooms at all times. For some, managing the KIBO materials
was an opportunity to put into practice the palette of virtues; for others, it
felt as if coding was just taking time away from teaching required content.

During the teacher interviews and conversations with the leadership, we
learned that classroom and school contexts clearly played an important role
in the success of the CAL-KIBO curriculum. For instance, manageable
classroom sizes, flexible schedules to accommodate KIBO at least twice a
week, and enough KIBO kits for students to work in small groups proved to
be the most effective.

Teachers varied in how they responded to the CAL pedagogy. Even the
most resistant teachers felt that the curriculum reinforced oral
communication and collaboration, which is very important in early
childhood. However, in terms of literacy, there was a distinct trend: teachers
who understood literacy instruction as singularly focused on discrete skills
(e.g., phonics, punctuation) were less open to the CAL-KIBO curriculum
and to the overall integration of computer science and literacy. For example,
some teachers complained the writing activities embedded in CAL “aren’t
going to meet the student’s needs for writing or reading as required by state
standards” and that CAL “does not reinforce capitalization and grammar.”

Conversely, teachers who understood literacy in broader terms and saw
metacognitive ideas about reading and writing as essential to the
development of robust literacy abilities (e.g., communication, creative
expression, interpretation, telling and retelling skills, awareness of audience
and purpose) were very welcoming to the curriculum. For example, Jenna
expressed how happy she was with the inclusion of writing alongside
coding: “The editing piece to me was very strong, going back and fixing
things and not getting frustrated when you face challenges and really

looking at it as something else to figure out.” Pat shared that “the parallels
between the engineer design and the writing process is a solid connection
that the kids can see and understand.”

During our analyses of writing samples in students’ design journals, we
observed that the CAL-KIBO curriculum appealed to students of all
abilities. We saw this trend repeatedly throughout this project. Students’
writing in the context of CAL-KIBO was substantively different from their
standardized writing tests. In addition, when writing about their robotic
projects, students were often more creative writers than when writing for
other subjects.

Coding Stages
Curriculum and assessment display two sides of the same coin. When we
teach, we want to know whether children are learning. If they are not, we
need to revise our instruction. Assessment provides opportunities to adjust
and modify teaching practices and to gather the needed information to
communicate with parents.

There are different ways to assess student’s learning in early childhood.
Observing children’s behaviors, listening to their stories and reasoning, and
analyzing the work they produce, through portfolios, are popular. Other
methods involve testing to identify challenges and special needs.
Sometimes these assessments are done by an outsider to the classroom and
others by the classroom teachers. Each of these methods poses it owns
challenges to monitor students’ progress. However, they have been around
for a long time, and many lessons have been learned from their
standardization.

When it comes to coding in early childhood, that is not the case. Few
assessments have been validated and children, who are just learning to read
and write, cannot complete individual worksheets or exams. Furthermore,
in most early childhood classrooms, due to the lack of access to
technological devices, children work in groups. While the resulting projects
can be assessed, it can be challenging to evaluate a child’s individual
learning trajectory when she has been working in a team.

The DevTech Research Group developed new instruments to capture the
individuality of children’s learning to code in expressive ways. In the last
chapter of this book, Resources, you will find links to a rubric to evaluate
both KIBO and ScratchJr projects with a CAL perspective as well as links
to TechCheck, a platform-independent unplugged validated instrument to
capture computational thinking. You will also find the Coding Stages
Assessment (CSA) for both KIBO and ScratchJr. CSA is a validated
cumulative assessment that identifies the coding level attained by each
student. It can be used when CAL curriculum is completed or at any time
teachers or researchers want to know the coding level a child is at.

CSA captures not only mastery of syntax and grammar of the
programming language but also the child’s ability to engage in the
expressive and purposeful usage of the programming language. What is
unique about the CSA assessment is both the approach in which it is
couched (CAL) and its development and validation process: we combined
design-based research with psychometric methods to create an instrument
that builds on the pedagogical and design traditions of decades of work and
has good measurement properties.

Often, I am asked by teachers and parents how to know if their child is
learning to code. They appreciate that our approach encourages children to
create their own projects, to express themselves, and to follow their true
interests, but this sometimes makes it difficult to truly assess their skills. “Is
my daughter choosing to always program her characters with simple motion
blocks in ScratchJr because she likes it or because she doesn’t know how to
use other blocks?” “Why do my students never use the passing of messages
blocks when programming their dialogues in ScratchJr? Is it because they
find there is no need to or because they do not understand how to use
them?” “Is my son avoiding the light sensor with the if command in KIBO
because he doesn’t want it for his project or because he can’t get it to
work?” These are many of the questions that parents and educators ask
themselves when looking at their children’s projects.

Over many years, in the DevTech Research Group we also asked those
questions. We observed young children coding expressively with KIBO and
ScratchJr. We collected and analyzed data, interviewed children and
teachers, and found patterns and regularities, transition points, and dead
ends. We also read the work of other researchers, who in their own fields of

study faced similar challenges in assessing children’s stage development
and learning trajectories in authentic contexts.

For example, we looked carefully at the work on developmental stages of
reading conducted by Harvard professor Jeanne Chall in the late 60s. She
was among the first researchers to describe reading as a developmental
process and to identify several stages. We also looked at the work of
Douglas Clements and Julie Sarama, now at the University of Denver, on
mathematical learning progressions in early childhood. And we looked at
the work of the Argentinian educational psychologists Emilia Ferreira and
Ana Terbosky on the psychogenesis of written language. All of their
fascinating research shows that once educators understand developmental
progressions based on research-based evidence and can sequence their
curriculum activities based on them, the learning of new ideas and skills can
be developmentally appropriate and effective for young children. The same
is true for coding.

We identified five coding stages, or developmental progressions, that
children move through when creating their own personally meaningful
projects using a developmentally appropriate programming language. These
coding stages are emergent, coding and decoding, fluency, new knowledge,
and purposefulness. While in my early work I had presented six stages,
further research and empirical studies with hundreds of children with the
CSA showed us that multiple perspectives, the stage I discussed in my
earlier work as the fifth stage, was indeed the same as purposefulness. Thus,
our current model of coding stages has five stages. The transition between
all stages might not happen without scaffolded instruction. While learning
to code is possible by just tinkering and exploring the coding playground,
figuring out some of the syntax and grammar and progressing through all
stages until mastering the last stage, purposefulness, might require explicit
teaching.

The choice of the term stages is influenced by Piaget’s work. However,
our coding stages depart from Piaget in an important way. We are not
engaging in a universal effort to explain a naturally occurring phenomenon,
like Piaget’s cognitive development stages do. Coding stages are a blueprint
to describe a learning path for young children engaged with a
developmentally appropriate programming language. They are levels or

benchmarks of growth that represent distinct ways of mastering creative,
expressive coding.

Traditionally, developmental progressions are seen as sequential, orderly,
and cumulative. However, development is fluid and interconnected. Coding
stages are interconnected and not fixed or fully linear. Depending on the
level of instruction received, and the degree of a child’s curiosity to explore
on her own, a child can jump or never reach a particular stage. For example,
using the ScratchJr programming language, children in the earlier stages
might be able to select motion blocks but might not understand how to
create an animation connecting those blocks. Although the coding stages
are not universal, they can be observed across different programming
languages.

The coding stages have some hierarchy based on syntax and grammar—
mastery of simpler structures or commands (e.g., start/end) occurs before
mastery of more complex structures (e.g., if statement). The five sequential
stages capture a growing skill set with a specific programming language: at
each of these levels of attainment, a child can create an expressive
computational project with growing complexity. Identifying a child as being
at one of these stages indicates that she has gained creative programming
knowledge; she has learned the grammar and syntax of the programming
language, not only to solve a puzzle but to also create an expressive project.

The last stage, purposefulness, captures the ability to use the
programming language for expression while mastering all of its elements
(figure 5.5). This stage captures intentionality and the ability to tell a story
about the created project, to reflect and engage in metacognition. For
example, a child in the last stage, purposefulness, can not only code in a
rapid and efficient manner at high levels of abstraction requiring skill and
flexibility by using all commands but also design her personally engaging
projects applying that knowledge. The focus is on expression and
communication, not only on problem-solving or computational thinking
abilities.

Figure 5.5
The five coding stages. From light to dark, the color gradient shows a typical child’s directional
progression with coding. However, the purposefulness stage breaks this linear progression as
elements can be found at each stage.

I developed the concept of coding stages to serve three goals. The first
goal is to guide the development of coding curriculum and the scope and
sequence of instructional activities matched to each of the levels. The
second is to evaluate children’s mastery of coding with a developmentally
appropriate programming language, and the third is to advance a
developmental approach for the nascent field of early childhood computer
science that includes the use of validated research instruments.

Table 5.2 describes the five coding stages identified over decades of
working with young children with KIBO and ScratchJr. Given that both are
introductory programming languages, it is possible for young children to
reach the more complex stages that would be difficult to attain with more
sophisticated programming languages. We have not done the work to
explore whether these five coding stages transfer to other programming
languages and pedagogical approaches for young children.

A Window into Their World: The Missing
Audience
Sarah looked intently at the picture of a cartoon turtle and fox hugging. She
tapped her pencil against her writing journal. Soon, with a spark of
inspiration, she began to write a story about it. She wrote in silence, her
head buried in her writing. Five minutes later she looked up. “Done,” she
said. Dr. Ziva Hassenfeld, then a postdoc in my DevTech Research Group
and now an assistant professor at Brandeis University, asked Sarah to read
her composition out loud. Sarah read her story with difficulty. She
encountered grammatical and syntactical errors, which she orally fixed as
she read, but she did not edit her writing.

A week later, during “writer’s workshop,” Sarah continued working on
her turtle and fox story. After six minutes, she declared herself done. She
reread her composition and declined an invitation to revise the writing. The
following week, after reading what she had composed in the previous two
weeks, Sarah declared, “This is the story, but . . .” She pointed to many
words. “This is not how you spell this stuff,” she reflected. “It is confusing
when I read it, but if I tell it to you, you will get it.” And then, instead of
fixing her writing, she meticulously crossed the whole thing out—line by
line, page by page. Writing was hard for this seven-year-old girl but
revising it was even harder. It would take less effort to start all over again.

Table 5.2

The Five Coding Stages

Coding Stage Description

Coding Stage Description

1. Emergent • The child recognizes that technologies are human
engineered and designed with a variety of
purposes.

• The child understands the concept of
symbolization and representation (i.e., a command
is not the behavior but represents the behavior).

• The child understands what a programming
language and the purpose of its use is (knows that
a basic sequence and control structure exists).

• The child is familiar with the basics of the interface
(turn the tool on and off and correctly interact).

This is a beginner’s stage.

2. Coding and
decoding

• The child understands sequencing matters and that
the order in which commands are put together
generates different behaviors.

• The child has learned a limited set of symbols and
grammar rules to create a simple project.

• The child can correctly create simple programs
with simple cause and effect commands.

• The child can identify and fix grammatical errors
in the code.

• The child performs simple debugging through trial
and error.

• The child engages in goal-oriented command
exploration.

The most growth can be seen at this stage. Children
learn the basics of the programming language and
understand it can serve to create projects of their
choice.

Coding Stage Description

3. Fluency • The child has mastered the syntax of the
programming language and can correctly create
programs.

• The child is personally motivated to create
complex programs.

• The child understands how to distinguish and fix
logical errors in the code.

• The child is beginning to be strategic in debugging.
This stage is characterized by the child moving from
a “learning to code” to a “coding to learn” creative
stance.

4. New
knowledge

• The child understands how to combine multiple
control structures and create nested programs that
achieve complex sequencing.

• The child engages in more goal-oriented logical
exploration with their programs.

• The child is personally motivated to create
complex programs.

• The child is strategic in debugging and has
developed strategies.

• The child learns how to learn new commands or
novel uses of the interface.

This stage is characterized by the child’s ability to
use her knowledge to create a personally meaningful
project and, if needed, acquire new knowledge on
her own to meet the demands of the project.

Coding Stage Description

5. Purposefulness • The child can skillfully create complex programs
for her needs and purpose.

• The child understands how to analyze, synthesize,
and translate abstract concepts into code and vice
versa.

• The child can identify multiple ways to translate
abstract concepts into code.

• The child understands how to create programs that
involve the user’s input.

• The child can create multiple programs that
interact with one another.

• The child can debug multiple control structures.
This stage is characterized by the child being able to
code in a rapid and efficient manner at high levels of
abstraction requiring skill and flexibility and
applying those skills to create a personally
meaningful project. A child who reaches this stage
has mastered all of the commands, grammar, and
syntax of the programming language and has the
ability to express herself through the project she
creates.

Sarah’s teacher described Sarah as being right on target with her writing
skills, maybe even a little bit more advanced than the rest of her second-
grade classmates. In the phonics lessons, Sarah was in the highest-level
group. She hit the specific benchmarks for spelling, decoding, and basic
grammar. She was able to recognize errors but was not willing to put the
extra work to revise and edit them.

This attitude in the writing class was in sharp contrast with Sarah’s
behavior in the coding class. On her first coding day, she started a ScratchJr
animated version of the turtle and fox story, loosely based on her original

writing composition. By the second time she met with Dr. Hassenfeld,
Sarah had a programming project displaying a conversation between the
two characters. She tested her program often and found many problems to
fix. Without hesitation, Sarah debugged her animated story with ease and
eagerness, and she debugged logical errors as well as fixed the aesthetics of
her program. She did not choose to delete everything and start over when
things did not work. Quite the opposite: she persevered and kept working.
This was in marked contrast with her writing experience. When Dr.
Hassenfeld asked her about her different attitudes, Sarah expressed that
revising writing requires a lot of energy with little in return. Instead,
debugging is more rewarding: “You can see it working.”

Before observing Sarah’s attitude when debugging her code, the teacher
had assumed that Sarah was not trying hard at writing and was why she
would not sit down and spend the needed time and effort revising her story.
However, after observing Sarah’s high level of personal investment in
fixing her coding project, she realized there must be another reason. “CAL
is aligned so well with writing,” explained Sarah’s teacher. “Each day with
each lesson the kids are writing and programming. And there is also lots of
reading. We read them a book and they read other people’s instructions and
projects and stuff like that. They learn to improve their writing and revise
and edit. I think it is aligned well, but it is not working for Sarah. She is
shining in her ScratchJr project, but she is not revising her writing.”

After working with Sarah for an extended period, Dr. Hassenfeld
discovered what was troubling Sarah. One of her biggest challenges was the
imaginative leap required to engage in the revision process in writing.
Sarah, the all-knowing author, had to transition to become an unknowing
reader. She had a difficult time switching perspective. Instead, while
coding, she did not need to switch. She could remain an all-knowing
programmer and fix what did not work: the syntactical and logical errors.

ScratchJr gave her specific feedback (it works or it does not), and Sarah’s
job was to address the problems. In contrast, when writing, she had to
switch to become an audience, a reader. As a writer, she understood what
was happening, but as a reader things did not always make sense. To fix her
writing, she needed to switch back and forth between being the author and
the audience, which proved exhausting for Sarah. Writing demands to make
things explicit, and that is a lot of work if there is not an authentic

motivation to put the effort. What would she do with her writing? It would
be one more piece of paper in her messy portfolio to take home at the end
of the year.

In conversations with Dr. Hassenfeld, Sarah’s teacher realized that
although Sarah was performing well in the standardized reading and writing
assessments, these were not capturing her lack of motivation for editing.
She put in place different strategies for helping Sarah and other children
like her. For example, she engaged children in other compositional
activities that also involve a revision process, such as art and music
activities, and asked her students to vocalize their thoughts as they revised.
She also went over the design and writing process again and taught the
children how to make books to take their stories home to share with their
parents.

When interviewed, Sarah’s teacher expressed that “for me, debugging
and revising are connected conceptually and pedagogically. Now, my
students are increasingly seeing that debugging in coding compositions is
the means by which clarity is achieved and that this skill is related to
editing in written composition. However, they need to have an authentic
reason to want to put the effort.” The motivation comes easily with coding
because children are excited to show their projects to others. And for that to
happen, projects need to work. In contrast, with writing, the audience can
fill the gaps if there are syntactic and grammatical errors and still appreciate
the story.

In the coding playground, the hope is that by working through the
different steps of the design process, from an initial idea to a finished
product to share with others, motivation is promoted by creating an
authentic learning community. This community will sustain the child in the
process of working hard at both coding and writing.

6

Coding Character

Joan (five years old): I want to make a good robot. What can it
do?
Researcher: Why don’t you make the robot help you store your
toys?
Joan (five years old): My mom will help me. My robot will cook
so my mom can clean up with me.

The Media Lab at MIT is a very special place to learn. During the late 90s,
when I did my masters and PhD, the lab had lots of funding, opportunities
for cutting-edge research, and possibilities to collaborate with industries
and organizations to take our prototypes out of the lab and make a societal
impact. What I appreciated the most were the people: individual stars and
collaborative peers who were creative and skilled, supportive, and
challenging.

My background was not in computer science, like most of my classmates.
Technical classes were difficult for me. I had ideas but needed help
implementing them. I spent hours working with my peers. Sometimes I
would get recommendations for books to read and lectures to attend, while
other times I needed help debugging code or writing a technical job
description to hire a bright undergraduate student to assist me. Almost
twenty years after my graduation, I still remember the intellectual
generosity of the many students I interacted with at the MIT Media Lab.

For me, going to school meant problem solving with others. In that
context, the character of the others mattered a lot. Some were helpful and
others not. Some wanted to collaborate, and others wanted to compete.
Some pushed boundaries so that each other’s work would become better.
Others sought personal glory and the press. Although we were solving
technical challenges, character strength rather than technical expertise was
the best predictor of the quality of the experience.

The values we cherish, and how we behave, permeate every aspect of our
lives. However, both identity and character are not fixed constructs. People
change, people learn, and people develop. Good character can be cultivated.
In this book, I am proposing that the coding playground can be another
space to promote character development and positive behaviors.
Furthermore, over the past twenty-five years, I have explored how to
intentionally design these spaces.

We live in a society where concepts of self, family, community, and what
is right and wrong are constantly changing. At the same time, there are
values that seem to hold true regardless of historical periods or social
contexts. Justice, honesty, and generosity are a few examples. Our complex
and pluralistic societies face the challenge of welcoming diversity of
perspectives, cultures, ethnicities and religions while embracing universal
values that enable people to coexist in peace, seek prosperity, and respect
fundamental human rights. The term values suggest the importance or
worth of something. Values are anchored to traditions and a sense of
belonging, to identity and emotions, to morality and civics, and to character
strengths and virtuous deeds.

Over the centuries, the religions of the Book—Judaism, Christianity, and
Islam—have provided a moral code of conduct and an invitation to interpret
it. Unfortunately, as religions became institutionalized and sought political
power, the ethical code was sometimes forgotten and the moral teachings
misused. In the East, Confucius developed theories of proper human
behavior and social organization, which today would be called ethical and
political philosophy. Buddhism focused on lovingkindness and compassion
for all beings and offered a framework for healing the suffering of the
world. In ancient Greece, Socrates strived to live an “examined life,” and
his disciples Plato and Aristotle created a logic system for reasoning, the
foundation of what we now call critical thinking. In The Republic, Plato
was concerned with the character and the mind of the young Greek; the
final goal of education was as moral as it was intellectual.

From theology to philosophy and from psychology to sociology,
competing and conflicting theories study values, virtues, and character.
Education is charged with engaging in the deliberate effort to advance them.
Religious institutions always understood that part of their mission was to
educate people about values and virtues. When the new institution of school

emerged in the wake of the Industrial Revolution, there was a need to make
the learner’s experience uniform and universal through a standardized
curriculum. Where was then the place for values? Which values were to be
taught?

In countries like the United States, the first schools were founded by New
England puritans who believed the moral code resided in the Bible. As
waves of immigrants came to the country from the mid-nineteenth century
forward, the orthodoxy of the schools came under scrutiny. A growing
movement advocating the separation of church and state pushed for
distancing public schools from moral education, which was so deeply
associated with religion. Some educators became proponents of “value-
free” schooling, ignoring the fact that it is impossible to create a school
devoid of ethical issues and controversies. Others explored different
approaches that led civics education and character development to emerge.

While the term moral carries religious overtones for many, the word
character speaks to good habits and civic virtues, which hold a community
together in harmony. A person who exhibits personal qualities desirable by
society might be considered to have good character. One of the purposes of
education is developing these good personal qualities. However, proponents
of character education are far from agreement as to what “good” means or
what qualities are desirable.

Scientists are developing research programs to better understand this
question. However, since character involves both personality and behavioral
components, it is a challenging problem. With no clinical definitions, it is
difficult to measure if an individual has a particular strength of character, or
if a school program can improve it. Some efforts, such as the Character
Strengths and Virtues handbook published in 2004, attempts to classify and
develop a common vocabulary of measurable positive traits. The handbook
classifies twenty-four character strengths under six broad virtues that
consistently emerge across history and cultures: wisdom, courage,
humanity, justice, temperance, and transcendence. The development of
classifications such as this one allows us to better study in a scientific way
how people live a good life and how to implement educational programs to
promote it.

Over the decades, many programs have been put in place. However,
without validated measurement instruments, it is hard to research their

effectiveness and impact. Each of these programs has their own pedagogical
tools and methodologies, success stories, anecdotal evidence, and failures.
In this chapter, I will present an overview of what I consider the three major
trends to promote character education as they relate to the coding
playground: the narrative, the reasoning, and the experiential approaches.

After describing these three, I present how my approach integrates
elements of all of them by using the learning of computer programming as a
tool to promote positive behaviors and character development. As children
in the coding playground learn to create and share their own computational
projects, they explore and practice the ten values in the palette of virtues.
They might also add new values and mix and match existing ones. CAL
proposes an intentional awareness of the values at play when learning to
code. Since the palette of virtues is dynamic, it invites educators to
incorporate their own colors and to extend and adapt to the needs and
cultural practices of their own classrooms.

The Narrative Approach: Moral Identities
Narrative plays an important role in the construction of identity. We tell and
listen to stories. We make sense of the world. Some of these stories
represent different fragments of our experience. Over time, we develop a
life narrative that revisits our moral choices and invites us to think about
consequences for ourselves and others. Slowly, through those narratives, we
construct a moral identity. We become aware of our character strengths.

Narratives operate at three different levels: cognitive, social, and
emotional. At the cognitive level, narratives are fundamental constituents of
human memory. They provide a distinctive way of creating, ordering, and
understanding an experience. At the social level, the tales that one knows
can define the social group or culture to which one belongs. Myths, legends,
and traditional stories provide a sense of continuity between generations as
well as models for human behavior that define a particular group. Finally, at
the emotional level, narratives allow us to work and rework our feelings
about past experiences. As Anna Freud and the growing field of narrative
therapy have shown, through verbal play or the written experience of
storytelling, people can find not only recreation but also self-cure.

Narratives appeal to the intellect and the emotional lives; they invite
imagination and anchor us to traditions. It is not surprising, then, that
narratives are highly used to teach and learn about values and to promote
character strengths and moral development. Within the narrative approach,
several programs have flourished and perished over time to teach about
values. For example, the “Bag of Virtues,” exemplified by William
Bennett’s Book of Virtues, involves a compendium of children’s stories that
present universal human values. Fairy tales, myths, and biographies are also
commonly used. Different cultural, ethnical and religious groups have their
own repertoire that can serve pedagogical functions.

The assumption of the narrative approach to moral education is that an
external authority (the writer, teacher, curricula, institution, community,
religion, culture, country, etc.) selects the moral truths to be told through
stories. Children listen to the narratives and eventually appropriate them by
internalizing the conveyed values. This might or might not work, depending
on the quality of the experience, but always requires a shared agreement
about cherished values and character strengths.

For example, in religious settings, the teacher might use biblical stories.
The hope is that by telling and retelling stories, moral codes and ethical
insights will be passed from generation to generation. In creative learning
environments, stories are adapted and reinterpreted so that children can
identify with plot and characters in the context of their own lives. Some
believe that only chaos and disorder can result from multiple interpretations
and advocate for literal readings of foundational religious narratives.
Fundamentalists are the most extreme cases, and a narrow interpretation of
the story coupled with the certainty of holding a moral truth can lead to
indoctrination instead of education. However, when interpretation is
welcomed, the narrative approach can lead to the development of moral
identities within a group that shares beliefs and practices, a history, and a
vision of the future.

The narrative approach only works if people agree on the virtues
conveyed through the stories. What happens when virtues are not shared by
everyone? Are there credible universal narratives that can bring about
global ethics and global character strengths? These questions are difficult to
answer in pluralistic societies. Thus, a different approach, one that engages
moral reasoning as opposed to the content of the stories, is also appealing.

The Reasoning Approach: Moral Thought
Extending Piaget’s work on children’s moral judgment, American
psychologist Lawrence Kohlberg identified six stages of moral
development. These start with value judgments of a highly egocentric form,
“what I like is what is good,” and are followed by a decentering process,
“something is good because it is good for somebody else.” The final stage
is reached when abstract moral principles develop, such as “I don’t kill
because killing is bad.”

In their research, Kohlberg and his colleagues used fictional dilemmas to
categorize and assess stages of moral development. The assumption behind
this cognitive developmental approach is that there is a universal
progression from a concrete to an abstract way of thinking about moral
issues. Although the universal stages have been challenged in regard to
cross-cultural and gender validity, Kohlberg’s work was instrumental in
creating a new field within psychology: moral development.

When Kohlberg’s stages of moral development were taken into the
classroom, they were translated into the practice of engaging students in
discussions of hypothetical dilemmas and emulated the Socratic method of
inquiry. However, these philosophical debates rarely lead to behavioral
changes. In the later years of his life, Kohlberg realized the importance of
students’ involvement in social institutions to promote change. He urged
educators to transform their schools into “just communities” to accelerate
students’ stages of moral development. These participatory democracies
could serve as a model of the larger political community in which the child
would participate as an adult. Kohlberg’s “just community” approach was
successfully implemented and studied in schools and prisons. Today, his
legacy is alive in internal school committees and the model of “schools
within schools” that have some level of operational power and autonomy.

The cognitive approach to moral development is attractive to educators.
On the one hand, it provides an intellectual bridge between the moral and
the civic domains. On the other hand, it can be implemented in most
educational institutions. Born as a reaction to the perceived danger of
indoctrination carried by the narrative approach, it values the process of
moral reasoning but not its content. For example, programs such as values
clarification, originally espoused by Louis Raths and colleagues in the mid-

60s, helps children understand that the process of valuing is present in every
situation in which we need to make a decision: capital punishment,
abortion, relationships, or choosing a book or gift for someone. This
perspective helps the individual clarify, express, and organize her values
while rejecting the set of values imposed by external authority. The teacher
orchestrates the learning situation to help students express their own
feelings and apply valuation skills. The assumption is that students need
practice choosing among moral alternatives and teachers can facilitate the
clarification process rather than indoctrinate.

The values clarification approach is built upon the implicit assumption
that the process of valuation has little relationship to historical, religious,
social, or familial contexts. The student is encouraged to clarify her
personal values without exploring how those relate to her identity. Critiques
of this approach claim that regarding values as matters of personal concern
and choice carries the danger of naïve relativism. While currently few
educators confidently advocate for the values clarification approach, teacher
neutrality and hesitance to actively address ethical issues in the classroom
might originate in this perspective.

Over the years, other programs were developed along the lines of moral
reasoning. For example, ethical inquiry by Lipman teaches students how to
use logic to distinguish better from worse reasoning. The teacher and the
school are models of behavior and responsible citizenship, and thus the
method of teaching needs to be consistent with what is taught. Lipman’s
ethical inquiry and Kohlberg’s just community share the emphasis on
disciplined discussion and community of inquiry as conditions for moral
education. The individual is not necessarily encouraged to explore her own
personal values, as in values clarification, but to cultivate civic values and
apply critical thinking.

While engaging children in reasoning and critical thinking might avoid
indoctrination, thinking does not always lead to doing. Thinking about a
moral, good life is not the same as living a moral, good life.

The Experiential Approach: A Moral Life

The idea that education emerges from experience, and vice versa, dates
back to John Dewey’s experiential learning philosophy. For this prominent
American scholar from the first half of the twentieth century, education
must include a civic and moral imperative. Back in the early 1900s, Dewey
understood schools as social centers to promote democratic living and
behavior and to influence cooperative membership in the community. While
in its early forms, membership to the community was understood as local
community; after the First World War, progressives rallied around the idea
of expanding civic education programs to the world community. Today,
service learning, community service, and volunteering programs make
experiential learning across the globe a reality in the modern educational
system.

These popular opportunities provide students with guidance, mentorship,
and practice at being moral actors. They combine academic learning with
personally meaningful encounters. Starting in kindergarten, children are
given small chores such as feeding the classroom’s pet or straightening the
desks and chairs. As they grow, they can tutor younger students and
eventually work up to more demanding service activities such as leading
clubs, organizing fundraisers, volunteering at shelters, and generally
contributing to the greater good.

As students go to college, an array of opportunities expands from gap
years devoted to local and international community service to service-
learning trips during school breaks. Alternative experiences and trips focus
on a wide range of issues such as poverty, education, refugee resettlement,
disaster relief, and clean water. Students can choose the experience based
on their own interests. They might travel with a professor to a site for an
intensive weeklong experience, or they might join an already existing
organization. Service-learning trips during school breaks, originated in the
1980s as a counter to traditional spring breaks, is a growing trend that now
even offers credit.

Service-learning experiences are one of the many ways in which students
can learn to engage in civic life through activism. Research shows that
adults are more likely to vote and participate in civic life if, as youth, they
were involved in community-based extracurricular activities and civic
education programs. Thus, the importance of these kinds of experiences
promotes not only character development but also civic engagement. The

experiential approach speaks directly to the formation of a good citizen and
attracts a wide network of supporters.

These kinds of experiences position multicultural understanding as a
bedrock of American democracy. However, a critical perspective
illuminates how, using the language of economic prosperity and civic
education, the globalization of the Western mindset, hegemonic policies,
and power structures are legitimized.

The Values in Coding as Another Language
CAL incorporates elements from these three approaches to moral education:
the narrative, the reasoning, and the experiential. First, inspired by the
narrative approach, children engage in a coding playground in which they
tell and listen to stories and share orally and in written form their own
learning process. Second, grounded on the reasoning approach, children
develop logical and abstract thinking while programming and debugging
their projects and translating their ideas into an algorithm. Third, influenced
by the experiential approach, children make computational projects to share
with others and participate in a learning community in which a palette of
virtues guides curricular decisions and classroom experiences. In the
process, values are explored and practiced. While the coding playground
reinforces ten values in the palette of virtues, new values can be added.

The narrative approach, and its focus on telling stories to construct moral
identities, is present every time children are asked to think about themselves
as agents of their own learning. Children who learn to code become
producers of technologically rich projects as opposed to consumers. They
develop an identity as creators. When in the coding playground, these
children are invited to reflect about their own creations and the design
process they followed, presenting an opportunity to tell their stories. The
stories they tell can focus on the “I–It” relationship with the technology, to
borrow Martin Buber’s language, or can include the “I–Thou” bond with
others. A teacher following the CAL curriculum will find herself inviting
children to think about the latter and not only the former. For example, she
will ask about how children worked together in teams, how they helped
each other, and how they showed gratitude to each other.

The reasoning approach, and its goal to promote logical thinking and
problem-solving skills, is inherent in the activity of coding. Programming is
about creating a sequence of logical instructions, being able to think in
abstract ways, and translating those instructions into a symbolic system of
representation that the computer can understand: a programming language.
While programmers have been around for a century, philosophers have
existed long before, thinking about how to translate human language into a
structured argument with consistent logic in its premises and conclusions.
Much of the work of critical thinking in philosophy involves mastering
structured language to translate the messiness and vagueness of human
language. The CAL approach, by focusing on learning to code as learning
another language, embraces this. Coding is a way to organize our thinking
and uses a symbolic system to express it. As an heir to Aristotle’s logical
systems, programming can be a gateway to critical thinking about not only
technical problems but also societal issues.

Today, more than ever, we need a critical mindset. The rapid acceleration
of new discoveries and technical innovations, coupled with the unparalleled
access to information “anytime, anywhere” through the internet, and the use
of artificial intelligence and machine learning, has created new sets of
problems. The basic intellectual tools to think about these problems has
been around since the days of Socrates and Aristotle: understanding the
structure of an argument and translating human language into the premises
and conclusions that make up the basis for logical analysis. These
intellectual tools allow us to judge information, to evaluate evidence, and to
make decisions applying formal rules. However, the intellectual toolbox
needs to be expanded. Coding adds the ability to create new realities
through novel systems and processes.

Although most grade schools do not teach formal logic, its practical
application in the form of structured thinking through an artificial language,
that is, computer programming, is being learned by more students today
than ever before. If we limit its application to the growth of a STEM
workforce, we will be missing the great opportunity envisioned by the early
philosophers of ancient Greece: to form the ethical character of future
citizens who can grow as autonomous individuals capable of thinking
systematically and independently, problem-solve when needed, and act
toward the good of self and society.

The experiential approach is found everywhere in the coding playground.
Children learn by doing, experimenting, trial and error, collaborating with
others and solving social conflicts, feeling overwhelmed with the challenge
ahead, and learning how to manage time and frustration. In the social
interactions of the coding playground, character strengths are developed
and values are put to practice. The six Cs or behaviors of the PTD
framework (content creation, creativity, choices of conduct,
communication, collaboration, and community building) are intentionally
promoted in the CAL coding experience.

Most specifically, several pedagogical tools explicitly use narrative,
reasoning, and experiential learning:

• Book integration: The curriculum is designed around stories.
While it is key for these stories to have a sequence of events that
can be retold, the content might vary. Teachers are encouraged to
find their own stories and adapt lessons to them. Stories are not
chosen because of their moral message or the values they promote
but because of their “algorithmic” rhythm: the sequencing of
orderly events that engage thinking about cause and effect. Most
of the final coding projects involve children retelling and
changing the end of the story. A CAL-trained teacher will know
what books to choose, and will engage children in thinking about
choices of conduct by playing around with different endings. She
will be aware of the palette of virtues and bring it up as it fits. In
addition, she will encourage conversation about responsibilities
and consequences and the moral and ethical implications of
certain choices.

• Technology circles: Most early childhood classrooms have a
central space, usually around a rug, in which children come
together in a circle to greeting each other, singing, going over the
daily schedule, or reading a story. Circle time provides protected
time in a consistent fashion for listening, developing attention
span, promoting oral communication, and learning new concepts
and skills. The curriculum builds on this practice and
intentionally sets up technology circles at the beginning and end
of the day. These provide scaffolded opportunities for children to

talk with each other about their coding projects, the challenges
and solutions explored, the strategies discovered, and the feelings
encountered. The use of oral language in the technology circles
addresses not only literacy standards but also the nurturing of
human relationships. Children are taught how to provide
constructive feedback and engage in peer-interviews. When the
Cs of communication and collaboration are practiced, a teacher
trained in the CAL pedagogy will ask questions so that children
can share both their technical expertise and aspects of their
identity: How did you feel while working on this? What did you
learn about yourself as a learner? How did this experience help
you get to know yourself and others better? During the
technology circles, the palette of virtues becomes alive through
the children’s personal reflections.

• Design journals: Every child is given a notebook to keep track of
ideas and sketches, to brainstorm about her project, and to
document progress. While younger children might record or draw,
older ones are encouraged to write. Depending on the grade level,
the journal writing is structured to meet different literacy
frameworks. Design journals are authentic tools used in many
sectors and industries. For example, in engineering, they serve not
only for planning but also as a legal record in case of a legal
proceeding. In the coding classroom, the journals serve as a
learning record for assessment and for reflective practice. The
classroom practice of keeping design journals during the creation
process makes transparent to the children (as well as teachers and
parents) their own thinking, their own learning trajectories, and
the project’s evolution over time. In addition, design journals
serve for practicing with the symbolic system of human
languages.

• Community open house: Children work toward creating a final
integrative project to share with others during a final open house.
Open houses provide authentic opportunities for children to share
and celebrate the learning process and product with others who
are also invested in their learning. During these open houses,
family, friends, and community members visit the class for a
demonstration. Creativity is displayed in the use of novel arts and

crafts materials as well as the choice of programming blocks and
settings. The goal of demonstrating a project is to foster
computational thinking and technological fluency among not only
the participating children and teachers but also the wider
community. It is an opportunity to extend the I–Thou encounters
outside of the classroom. Each child is given the chance to play
the role of teacher as she explains how she built, programmed,
and worked through problems. While the technological
accomplishments are celebrated, it is the story children can tell
around the project that counts most. It is in the child’s narration
that we can observe if and how the palette of virtues has been
explored. A CAL-trained teacher will encourage children to
discuss how they needed patience, perseverance, open-
mindedness, and optimism to work on their projects and will
invite children to express their gratitude to all of those who
helped them in the process.

• Collaboration web: This low-tech pedagogical tool is designed to
help children become aware of their collaborative patterns in the
coding playground. Along with design journals and robotic kits or
tablets, children are given personalized printouts with their
photograph in the center of the page. Their photographs are
displayed along with those of all other children in the class,
arranged in a circle surrounding their own photo. This represents
their classroom community and intentionally shows children that
learning does not happen alone. In preparation for the final open
house, children are invited to think about those individuals who
helped them and those whom they helped in the process of
creating their projects. Children are asked to draw arrows in their
collaboration webs in two different directions: from their own
picture to the pictures of children who they helped and from the
picture of classmates who helped them to their own picture. For
this purpose, collaboration is defined as getting or giving help
with a project, programming or working together on a common
task, and lending or borrowing materials. Teachers collect the
collaboration webs and discuss them during technology circles.
They can graph the data with children and observe patterns.

• Gratitude cards: Using the “data” provided by the collaboration
webs, children are encouraged to write, or draw, thank-you notes
to the classmates and adults who helped them the most. In
contrast to polite thank-you cards, the writing of gratitude cards is
an exercise in self-reflection and perspective-taking. It is an
acknowledgment of the importance of developing and practicing
values and not only technical skills. Some teachers choose to
hand out these gratitude cards during the final open house in a
public ceremony, while others do it in the intimacy of the
classroom routine.

• Expertise badges: Differentiation of roles is important to the
growth of a responsible learning community. Teachers can assign
children expertise badges that carry the responsibility of helping
others on a topic for which the child is an expert. Some badges
might be technical, such as efficient scanner or expert with nested
loops, some might be social such as conflict mediator, and others
emotional, such as stress reliever. As the curriculum progresses,
children master different areas. A trained teacher will encourage
the child to try on new roles and wear different expertise badges
at different times. The focus on learning to code is as important as
helping children become flexible in their approach and develop an
inner compass to guide their actions in a just and responsible way.

• Diversity of materials: The coding playground provides both
high-tech materials, such as robots and tablets, and low-tech
materials, such as arts and crafts, and recyclables to support
creative expression, graphic organizers to sequence activities, and
anchor charts for reinforcing concepts. In addition, there are
posters with the design process, the six Cs of PTD, and the palette
of virtues. There are large, printed icons of the different blocks of
the programming language so that children can play with those
and incorporate them into unplugged games such as “Programmer
Says.” This game mimics the traditional “Simon Says,” in which
children need to pay attention to distinguish which actions told by
Simon (or the programmer) to perform or not. Teachers make
important choices in the way they display and introduce the
diversity of materials to the children. The kind of storage and
access can change the way children experience the coding

playground. For example, when working with robots, some
teachers may choose to give a complete robotic kit to each group
of students. Children may label the kit with their names and use
the same kit for the duration of the curriculum. Other teachers
may choose to take apart the kits, have materials sorted by type,
and place all the materials in a central location for children to
collect. If working with tablets, it is important to remind children
that tablets need to be charged. Some schools provide carts that
roll the tablets into the classroom, and therefore children and
teachers do not need to worry about batteries running out. Other
classrooms have their own equipment, and it is therefore the
classroom’s responsibility to have everything ready to use.
Regardless of the technological platform, the curriculum reminds
teachers of the importance of setting expectations for how
materials will be used and taken care of. This is an opportunity to
explore the responsibility associated with creation and the
associated values in the palette of virtues.

• Music and movement: The curriculum positions programming as
an expressive language. Therefore, it welcomes the use of other
expressive languages, such as music and dance. After all, those
also have symbolic systems of representation that one can get to
master if time is devoted to practicing them. CAL includes catchy
songs, such as the design process song, the robot parts song, and
the clean-up song to the tune of popular children’s songs. In
addition, several games that use movement such as robot corners
and freeze dance are integrated. One of my favorites is an activity
that invites children to program their robot or ScratchJr kitten to
dance the Hokey Pokey, which provides a structured sequence of
actions, and children can dance along.

A Window into Their World: The Best Use of Her
Time
Nancy entered the classroom smiling, sat down on her spot on the
technology circle, and waited for class to begin. Ms. Cleary welcomed

everyone back from recess and invited her kindergarten students to sing the
robot part song. Nancy stood up, delighted, and danced along moving side
to side: “The body is connected to the motor, the motor is connected to the
wheel, so move robot, move.”

After singing, the children discussed different robots they had seen and
compared them to KIBO. They also shared how excited they were to finally
get to play with KIBO today. They could not wait for Ms. Cleary to end the
technology circle. Finally, Ms. Cleary invited everyone to get up and walk
over to the small tables in the back of the room. She had organized and
sorted all of the KIBO materials into different storage bins. There were bins
with wheels and motors and sound sensors and programming blocks with
different color stickers. Ms. Cleary split her students into pairs. She asked
each pair to approach the tables and collect their robotic materials from the
bins. She gave each pair an empty tray and explained, “To start with, every
pair needs to get a KIBO body, motors, wheels and at least three
programming blocks.”

Nancy and her partner waited patiently as students mulled over the KIBO
bins. Finally, it was their turn. They searched the bins and took as many
parts as they could fit on their tray. Soon, they found a quiet place on the
room and began building. They worked collaboratively, taking turns. They
put a wheel and a motor on each side of the KIBO robot and set aside the
other four they had collected. They created a program with three blocks, as
Ms. Cleary requested, using a green block to start, a blue block to shake,
and a red block to end. They left aside three other red blocks they had
collected.

Excited, the children started to program KIBO to shake. They did not get
discouraged when the scanning did not work. They did not call their teacher
over. They worked together and kept trying. As they explored different
strategies for scanning, they heard Ms. Cleary clap three times. That was
the signal for everyone to stop doing what they were doing and listen
carefully. “How many wheels and how many motors does KIBO need to
move forward?” asked Ms. Cleary to the class. “Two,” responded the group
in unison. Some children lifted the motors up, others shouted the number
two, and a few used their index fingers to show the number two. “Exactly,
only two,” smiled Ms. Cleary. “Now, please look at your trays and the floor
around you. I suspect many of you will find that you took more than two

motors and wheels. We have a problem. Some of you were not able to grab
any of them because when time came to find them in the bins, they were all
gone.”

The children giggled uncomfortably. Slowly, most of them started to
return the overflow materials to the bins in the back of the room. This
teaching moment, from the time Mrs. Cleary invited them to choose what
they needed to put on their trays to the time she asked them to return what
they did not need, took approximately ten minutes. For a class that
generally lasts forty-five minutes, that is a very long time. However, it was
one of the best uses of her time, an opportunity to practice some of the
values in the palette of virtues.

Ms. Cleary had planned for this to happened. She expected children
would take as many motors and wheels as possible, and she was aware that
some pairs were going to be left with nothing to work with until she called
the class to return what they would not need. She was cognizant that she
risked some children getting upset for a little bit. She also knew this was an
authentic opportunity to experience the importance of sharing, of taking
what is needed and not more.

Ms. Cleary was trained on the CAL-KIBO curriculum and therefore
knew that it did not matter how fast the robots were built and programmed
as much as the process of doing it. In her kindergarten coding playground,
character strengths were as valued as technical efficiency. The time she took
to engage the class in a discussion about fairness and generosity, not by
preaching or telling a story but by having her students experience the lack
of, was the best use of her time. She knew that children would eventually
learn how to program KIBO. However, learning about values in an
authentic way and putting them to use required constant practice.

7

The Palette of Virtues

Ari (five years old): Give me the ear!
Cala (five years old): It is mine.
Ari: But there are a lot of them in the sensor box.
Cala: Yes, but I found this one and it is mine.
Ari: Can you go find another one for me?
Cala: Sure!

Approximately once a month, five women gather in one of our homes to
study. We are two academics: me and a neuroscientist, a psychologist, a
librarian, and an engineer trained as a physicist. At one time, there was also
a lawyer, who became a rabbi. We study Musar, a Jewish spiritual practice
to live a meaningful and ethical life. We read Jewish texts and discuss them.
We explore how this ancient tradition can bring about personal
transformation through a Jewish lens.

While we drink tea and share fruits and cookies, we immerse ourselves in
a shared inner journey. Musar offers a curriculum of ethical qualities
spanning forty-eight universal midot (Hebrew plural of mida, character
strength, value, or virtue) like kindness, humility, and joy. We start by
reading a text from the Torah (Old Testament) and then dive into selected
scholarly interpretations. Finally, we move on to discuss how a chosen mida
plays out in the text and how it relates to our personal lives. Sometimes we
laugh, and other times we cry. Before going home, we agree on
“homework” or a monthly mida practice until the next meeting.

Musar is a field of study and an individual practice anchored in the
Jewish tradition concerned with ethical instruction, practical wisdom, and
guidance. For centuries, the Musar masters recognized that simply learning
about values does not translate into action. Studying kindness does not
make us more kind. There is a need for practice and experience. Musar was

considered a minor part of the Jewish literature until the nineteenth century,
when Rabbi Israel Salanter created the Musar movement that transformed
an individual experience into a community practice. By 1939, Musar had a
significant presence in the major yeshivas (house of studies) in Eastern
Europe. Tragically, many teachers and practitioners were murdered in the
Holocaust.

Today, Musar has become widely practiced in the liberal Jewish world,
beyond the Orthodox community. People are attracted to its mindfulness
and ethical aspects. Different teachers have their own methods. For
example, some daily practices include a morning mantra, a mindful action
as one goes through the day, and nightly journaling. In our group, we
incorporated a monthly phone call as a “check in” to address challenges
when practicing the mida of the month.

What does this old tradition have to do with new technologies? Why am I
describing Musar in a book about coding? What are the connections
between the ancient practices of a spiritual journey and the new habits of a
cognitive adventure? The coding playground provides an intentional
opportunity to practice midot and to develop virtues. CAL is not only a
pedagogy for learning computer science but also for acquiring, promoting,
and reflecting on character strengths.

Stanford professor Carol Dweck coined the term growth mindset to refer
to the belief that talents or skills can be developed through hard work, good
strategies, and input from others. My work shows that coding can lead to a
growth mindset. However, it also offers an opportunity to develop a growth
spirit. This is the confidence that we can become better human beings.
While a growth mindset highlights intellectual talents and abilities, a
growth spirit also includes emotional, ethical, and character strengths.

Sherry Turkle wrote extensively about how the computer’s true potential
was its “second self” nature. Computers are not only instrumental tools but
also psychological machines that serve us to think about identity and about
what makes us uniquely human. She eloquently explained that this is not
because the computer has a psychology of its own but because it provokes
us to think about our own psychological and social lives. It can impact our
awareness of ourselves, of one another, and of our relationships with the
world.

My first conversation with Turkle happened in Spanish in 1987, sitting in
my bedroom in Buenos Aires, Argentina, when I was seventeen years old. It
was not exactly a two-way interactive dialogue; it was more like me writing
in the margins of her newly translated book, The Second Self: Computers
and the Human Spirit. Although I was still in high school, I read and reread
those pages many times. I engaged deeply with the idea that computers
could help us explore our own identities, that they could become a second
self. Little did I know that a decade later I would have weekly
conversations with Turkle in her MIT office or at her house in Boston when
she became a thesis committee member for my doctoral work at the MIT
Media Lab.

In this book I am building on Turkle’s ideas. Technology is powerful
when it can engage people in self-reflection, community building, and
meaningful conversations. These are the kind of I–Thou encounters that
Martin Buber refers to. I learned from Turkle to understand technology as a
window into the human spirit. However, I am not fascinated by the
computer per se but by our relationship to it. When we code, we create with
and through the computer. We learn its language and can enter its world to
make our world a better place. We express ourselves: we become
intentional agents who can creatively produce unique projects.

The Coding Playground
In 2012 I published my second book, Designing Digital Experiences for
Positive Youth Development: From Playpen to Playground. Most people
loved the metaphor of playgrounds versus playpens to understand the role
that new technologies can have in children’s lives. Playgrounds are open-
ended. Playpens are limited. Playgrounds invite fantasy play, imagination
and creativity, social interaction, and teamwork; there are spaces to
experiment with conflict resolution, and they require less adult supervision.
In contrast to the open-ended playground, playpens convey lack of freedom
to experiment, lack of autonomy for exploration, lack of creative
opportunities, and lack of taking risks. Although playpens are safer,
playgrounds offer infinite possibilities for growth and learning. Tools such
as ScratchJr and KIBO are coding playgrounds for young children.

The playground versus playpen metaphor was successful. However, it
eclipsed some of the important ideas behind it. Theoretical frameworks are
not as popular as metaphors. In the book I described the PTD framework
that I developed. It consists of six behaviors or activities, the six Cs, that we
can often see at the neighborhood playground and we want to promote in
the coding playground: content creation, creativity, choices of conduct,
communication, collaboration, and community building. Inspired by the
field of positive youth development and my colleague Richard Lerner, I
coined the phrase “positive technological development” to describe a
theoretical lens that captures these psychosocial behaviors in the context of
using technology. I take an interventionist approach. PTD provides
guidelines for designing and evaluating technological programs to promote
character strengths through positive behaviors or activities. Below, I
describe the six behaviors, or six Cs, of PTD that can be found in the best
coding playgrounds (figure 7.1).

Figure 7.1
The six Cs of the PTD framework

• Content creation: The activity of coding involves using an
artificial language to create. In this journey, the child engages in a
series of interrelated steps that might or might not be linear: the
design process. To create her own project, she learns to ask
questions, identify a goal, formulate an action plan, make an
initial attempt, test, evaluate, and revise her ideas by assessing

what went wrong and what could be done better. At the end of the
creation process, she has a sharable project.

• Creativity: Coding playgrounds are playful spaces in which
creativity can flourish. The ability to transcend traditional
strategies to imagine and create original projects supports
personally meaningful expression. A creative child can frame
problems in innovative ways and find divergent approaches and
solutions. However, creativity requires training and hard work.
Contradicting some popular myths, the creative child is not
necessarily the one who wakes up one morning saying “Eureka!”
but the one who is disciplined in her work, takes risks, and can
find new connections.

• Choices of conduct: Anytime we do something, we make choices
and must assume consequences. This process, when authentic,
builds character. On the one hand, our character strengths inform
the choices we make. On the other hand, those choices have an
impact on our character. We are surrounded by news about people
choosing to use their coding skills in positive or negative ways, to
help or to harm society. Coding is a tool and, like any other tool,
can be used for good or bad. Like a hammer, it can build or
destroy. The coding playground engages children in situations in
which they will have to make choices and provides a palette of
virtues so that those choices can be made with a sense of purpose
and responsibility.

• Communication: In the playground, there is conversation.
Language socialization plays a key role in cognitive development
as well as personal, social, and emotional growth. A healthy
playground is not a quiet place. Similarly, in the coding
playground children talk to externalize and exchange ideas and
thoughts. However, most programming languages do not have a
built-in feature to promote communication. A good curriculum
provides explicit communication mechanisms and strategies to
support the formation and sustainment of positive bonds through
coding. It is only through dialogue that I–Thou encounters can
happen.

• Collaboration: Two or more people working on a team is not the
same as collaboration. For collaboration to happen, there is a need
for a shared goal and cooperation on a common task. This can be
challenging in early childhood; for a typically developing young
child, the turn-taking, self-control, and self-regulation required to
effectively collaborate on a project is difficult. Coding provides
another opportunity to practice these skills because teamwork is
intentionally built into the curriculum.

• Community building: The previously discussed Cs of
communication and collaboration support the establishment and
sustainment of social relationships in the coding playground.
Community building takes this a step further by offering
mechanisms for giving back to others and contributing to our
communities. For example, open houses and family coding nights
in which children demo their coding projects are an authentic
opportunity to share and celebrate the processes and products of
learning with parents, family, and friends.

Although in my previous work I described these six Cs as “positive
behaviors,” I realize that what makes them positive, or not, is the
intentionality behind them: the values or character strengths that inform and
are expressed through these behaviors. The six Cs are value neutral. We can
create a video game to practice shooting skills or to learn the ABCs, we can
communicate in dysfunctional ways to harm others or to praise, or we can
choose to include others in our teams or exclude them. A coding
playground needs guiding values and not only behaviors. While different
cultural contexts might have a diversity of values, the activity of
programming in a culture in which the act of creative production is
rewarded lends itself to values such as curiosity, determination, and
persistence.

The Ten Virtues
What are the values of the people who use technology to produce as
opposed to merely consume? How are these values expressed through

actions? How do we teach values in the coding playground? Are these
values universal or particular? These are difficult questions to answer. Over
the centuries, attempts have been made to create lists and classifications of
universal values. The challenges are many, starting with the difficulty of a
shared vocabulary.

I am standing on the shoulders of positive psychologists, moral
philosophers, and religious thinkers who created lists and categorized them.
However, I am thinking as an educational designer, as someone who uses
the language of code to create, to express, and to communicate. I am
inspired by artists. The artist creates a color palette rather than a list to work
with. In this book, based on over two-and-a-half decades of working with
children and teachers, I offer my palette of virtues for the coding
playground. I am not advocating a hierarchy in the importance of the
values, nor I am claiming that these are the only values in the color wheel. I
am not concerned with primary, secondary, or tertiary colors or values, nor
am I advancing a theoretical contribution to the study of ethics and moral
philosophy in education.

I am proposing a metaphor to think about values in the coding
playground. The artist chooses colors and creates her own palette. She
mixes and matches, and she adds new colors and continues to mix. A little
bit here, a little bit there. She creates shades and saturations. She finds
harmony and dissonance. She uses her imagination and there is no absolute
right and wrong; it depends on the context of how the colors are used and
their relationships. Ultimately, it is about intentionality.

The metaphor of the color palette is in sharp contrast with the popular
paint by number kits. These kits, which have been around since the 1950s,
present a board with a drawing divided into different areas to paint. Each
area has a number marking and a corresponding numbered paint to use. The
kits come with little compartmentalized boxes where the numbered colors
are stored. The artist’s job is to match numbered paint areas to numbered
paint colors, making sure there is no spilling over. She is encouraged to
wash the paintbrush every time a new numbered color is being used so that
the original drawing can be exactly replicated.

While the color palette invites messiness and choices, the paint by
number kits provide structure and directions. As metaphors for thinking
about the role of values in education, they convey very different messages.

In the coding playground, the CAL approach offers a palette of virtues as
opposed to a paint by virtues kit. As the artist develops her color palette,
she needs to explore, get it wrong, and try again. The paint by numbers kit
is safer. We do what we are told. If we are careful and develop the skill, the
likelihood of success is very high. We do not need to think about context,
consequences, and responsible choices. The boundaries are given to us, and
our job is to follow the guidelines at the cost of limited individual
expression and creativity.

Color palettes and paint by number kits are metaphors. They evoke
strategies for helping children develop personal and ethical values,
character strengths, and positive behaviors. As educators, we know that
teaching a class in which children can experiment with their own color
palettes is harder, but it is also more rewarding. We can see the engagement,
excitement, and frustration. Each child is following her inner compass but
at the same time must adhere to some universals. The best learning happens
when children can experience color theory, when they discover how
humans perceive color and the visual effects of how colors mix, match, or
contrast with each other, not when we instruct them how to do it. It is
similar with values.

While many classrooms have a list of their school’s core values or virtues
hanging on the walls, it is doubtful that children will appropriate them if
they do not experience them. Of course, experimenting with values is
riskier than experimenting with colors. There are people and relationships
involved, not only aesthetics. The coding playground can become a safe
place to experiment with values. However, there are universals that must be
accepted, for example, the golden rule that says we must treat others as we
would like them to treat us.

There are also universals when working with color palettes. There are
physics, wavelength, and the wiring of the brain. Back in 1666, Sir Isaac
Newton designed the first color wheel based on his scientific investigations
with prisms, mirrors, and light. Artists and designers still use it to make
their own color palettes. Some artists develop a unique identity by only
working with a specific color palette, and others work with multiple
palettes. The color palette is both unique and universal.

Color palettes are dynamic. The painter arranges and mixes different
paints for each of her creations. Likewise, in the values palette, an educator

can intentionally choose the values to put into practice in her lessons and
incorporate new values as needed. In the palette of virtues I put together for
the coding playground, I work with ten values: curiosity, open-mindedness,
perseverance, patience, optimism, honesty, fairness, generosity, gratitude,
and forgiveness (figure 7.2). However, others can include their own values
and make substitutions.

Mitch Resnick uses the imagery of the paintbrush for describing the
activity of coding. In 2006, he wrote that “in my view, computers will not
live up to their potential until we start to think of them less like televisions
and more like paintbrushes.” Resnick was referring to the creative
expressive potential of paintbrushes. I am extending the metaphor. The
paintbrush by itself is not enough; it needs colors. The artist chooses the
colors. She is aware of her choices and understands that context and
relationships play a big role. She has intentionality.

In the coding playground, the child is the artist who learns to code, and
the paintbrush is the programming language that supports creativity. The
colors are the values the child learns and expresses while coding. The
coding playground becomes an art studio for practicing a palette of virtues.
Creative programming can be a pathway for character development.

Figure 7.2
The palette of virtues

The following vignettes are examples of how the ten values in the palette
of virtues play out in the coding playground. They tell stories as opposed to
providing academic definitions. As you read through them, pay attention to
the teacher’s role. You will see that in most situations, the teachers, who
were trained in the CAL pedagogy, had to choose what to prioritize in the
short time they were allocated to work with coding in the classroom. In
some specific cases, they had to choose between advancing students’
technical skills or character strengths. They chose the latter. In the coding
playground, socioemotional development does not take the back seat; good
teachers plan their lessons, but great teachers know how to slow down if the
opportunity to work with values arises.

Curiosity

Noun: a strong desire to know or learn something; novelty seeking
Tyla waits in line to get her tablet. She is very excited. Her first-grade
teacher, Ms. Robins, said that today they would make their very own story

with ScratchJr. Tyla’s mind has been racing with ideas. As she eagerly
walks to her seat with her iPad in hand, she knows she will make a story
about penguins. They are her favorite animals. Although she loves them,
she does not like the boring black and white color of their bodies. She
wishes they were more colorful.

She opens her design journal and starts sketching a rainbow penguin with
crayons. She tries a few sketches and then puts the journal down. She
wonders what kind of penguin she is drawing. She launches a Google
search on her iPad and starts browsing images of penguins from all over the
world and chooses the Galapagos penguin as inspiration. While she is
drawing, Ms. Robins tells everyone that it is time to put away their design
journals and open ScratchJr.

Ms. Robins explains how to get to the app’s character creation tool so
that the children can make their own characters for their stories. On Tyla’s
screen shines a bright canvas underlined by an array of colors, ScratchJr’s
paint tools. Tyla wants to use these tools to make a ScratchJr rainbow
penguin, like the one she drew on her journal. She taps a bright pink color
and begins to draw the outline of her character. As she works, the rainbow
penguin becomes a pink penguin with long purple hair and a red cape
around its neck. She loves the way it looks so far, but the body looks much
blander than it did on her design journal. She thinks for a moment and adds
blue polka dots. Tyla smiles. She likes it much better.

Noticing that Tyla has stopped using the iPad, Ms. Robins walks over to
her and asks, “Are you all done designing your character, Tyla?” Tyla nods
energetically, saying “Look, Ms. Robins! I figured out how to give my pink
penguin polka dots!” She points to the teal circles that dot her penguin’s
body. Ms. Robins replies, “That’s great, Tyla! Since you’re already done
making your penguin, do you want to start programming her?” Tyla nods.
“What is your story about?” asks Ms. Robins. Tyla is not sure. She has only
thought about the main character, not what role the character would play in
the story. “No problem,” says Ms. Robins. “We have not discussed the story
yet in class. We will. But not today. The other kids are still making their
characters. Why don’t you start exploring ScratchJr programming blocks on
your own? Why don’t you try some of them and see what you can
discover?”

Tyla’s eyes grow big and round. “I will be like a ScratchJr detective!” she
exclaims, turning to her iPad. She decides to try with the purple blocks first
by dragging a random one into her program. When she presses the green
flag to run it, she watches as her penguin vanishes before her eyes. “Woah!”
Tyla jumps and says, “I figured out how to make my penguin disappear!”
She makes the penguin appear and vanish again. “This is going to be a
magic penguin now,” she announces. As she tests out the other purple
blocks, she creates a penguin that can appear and reappear, grow to the size
of a skyscraper, and shrink to the size of an ant.

Now that she made a magic penguin, she decides to go back to the
character creation tool and edit her drawing. She makes a magician’s hat
and a magic wand for her penguin. As she begins to explore the orange
blocks, Ms. Robins calls out that it is time to put the tablets away and go to
recess. “Aw, man,” Tyla mutters, looking at her unfinished work. As she
lines up to put her tablet back on the charging station, she knows that her
penguin was saved and will still be in her ScratchJr project tomorrow.

In Ms. Robins’s coding playground, curiosity plays an important role. It
inspires children to create their own meaningful projects, to learn new
programming concepts and tools, and to explore different resources. Ms.
Robins knows that she often evokes curiosity in her virtues palette. As she
teaches, she asks questions, explores ideas, and tries things out. She wants
to model a curious attitude. Ms. Robins understands that as a teacher, she
has the responsibility to not only talk about values but to also display them
through her own actions. She sees her job as a keeper of curiosity. That is
not difficult since first graders are always curious. However, she knows
some children will lose their curiosity as they move along the educational
system. She hopes her coding playground will help maintain their
inquisitive stance.

Open-mindedness

Noun: the quality of being willing to consider ideas, opinions, and
feelings that are new or different from your own; flexibility in taking

different perspectives

During ScratchJr time, Sumant learns how to use the send message block.
“As soon as a character has the send message block,” his first-grade teacher
explains, “it tells another character to start doing something else.” She
points to the screen projector displaying an icon with an envelope. “See, it
is like sending a message. Someone sends the message inside an envelope,
and someone else receives it and starts doing what the message told him to
do.”

Sumant watches the example. There is a dog and a pig. The dog barks
first and sends a message to the pig. When the pig opens the message, she
makes an oink noise. The characters react in time to each other’s actions.
Sumant thinks this is too complicated. He can just use the wait block, which
he has already used many times.

After getting his tablet, Sumant begins a new project. It is ScratchJr free
time, and he will make an epic battle from Pokémon, his favorite TV show.
He decides to use the wait block instead of the newly learned send message
block. Until now, every time he created a battle, he had struggled to make
his characters react to each other’s actions at the right time, but after a lot of
trial and error, he always got them to work.

On the internet, he finds pictures of Pokémon for his battle, takes pictures
of them, and makes them into ScratchJr characters using the character
creation tool. He then choreographs the first Pokémon’s attack, inserting a
wait block so that the other Pokémon can avoid it at exactly the right
moment. He starts the second Pokémon’s evasion with a green flag, and,
eager to watch his progress, he presses the green flag at the top of the
screen to see what will happen.

Sumant quickly runs into the same timing problem he always
encountered. The avoiding character begins its movements well before the
attacking one. Sumant frowns and tries running the program again. When
this does not work, he tries everything he can think of to solve the timing
problem. He reads his program out loud, counts how many seconds the
character should wait before running away from the attack, and makes a
new Pokémon character. Nothing works. He cannot get the timing right.

His teacher, Mr. Jones, happens to walk by his table and notices Sumant’s
frustration. “Sumant, are you okay?” he asks. Sumant sighs. “I just can’t get
my project to work, and I wanted to make a really cool Pokémon battle,” he
responds. “That sounds awesome!” Mr. Jones says, “What can’t you figure

out?” Sumant shows him his problem, and Mr. Jones nods in understanding.
“Sumant, have you thought of using the send message block we learned
today? I think that will solve your timing issue,” he adds by pointing to the
screen and then continues to check on the other children’s progress.

Mr. Jones words fill him with a second wind, and Sumant decides to give
it a try and experiment with this new approach: the send message block.
The problem is that when his teacher was explaining how it worked,
Sumant was not paying attention. He was not ready then to learn anything
new since he assumed that he was going to use the wait block again for his
battle. Sumant watches over his friend’s project to see if he can understand
how she is using the send message block. He notices that there are two
types of envelopes; some blocks have open envelopes and some have closed
ones. Suddenly, he remembers what his teacher said: “send message”
always comes with “receive message.” They work together.

Sumant decides to try that out and makes a new project with a very
simple program. He does not want to mess up his Pokémon battle. It works.
He is happy and goes back to his Pokémon battle to debug it. He watches
with delight as the characters move in perfect step with one another. With a
surge of reassurance, he begins to code the rest of the battle, pausing to
think and test out solutions every time he hits another roadblock. After he
finishes the code and designs the background, Sumant smiles widely as the
battle comes to life on the screen. The timing is just perfect, he thinks, now
knowing why the send message block was a better option than the wait
block.

Although reluctant to try anything new at the beginning, Sumant was
able to have an open mind and revise the approach he was using for his
project until it worked the way he wanted. Motivation played a key role in
Sumant’s change of attitude; he wanted the project to work exactly as he
had planned. Mr. Jones gave him a hint of where to look for the problem but
did not solve it for him. He gave him positive feedback and encouraged him
to be flexible in his solution. Mr. Jones knows that not all of his students are
as willing to consider new ideas as Sumant. Some of them give up, and
some of them get frustrated. Some of them demand instant help and
gratification. Mr. Jones knows his students well, and he intentionally adjusts
how much guidance he gives to each of them based on how open they are to
try new things. His own goal is that by the end of the year, if he can tap into

every student’s personal motivations, all of them will grow the ability to be
flexible.

Perseverance

Noun: persistence in a course of action in spite of difficulty or
adversity; determination in pursuing goals; firmness of purpose; grit;

belief that we can improve
Josué is a second grader who loves to make up stories. Whenever he gets to
school early, he rushes to the bin with the dolls and action figures and
enacts the stories in his head. He tells his teacher, Ms. Barnard, that when
he grows up, he will make really long stories. Yet, during the ScratchJr
CAL curriculum, during which there are many chances for creating stories,
he does not. Ms. Barnard is consistently surprised that Josué does not take
the opportunity. He seems to enjoy himself, but he uses the time to practice
the coding blocks they learned that day instead of creating a story.

One day, as he takes his tablet to his desk, Ms. Barnard approaches him.
“Josué,” she asks, “You’re such a wonderful storyteller. Have you ever
considered creating one of your stories with ScratchJr?” Josué’s eyes widen.
“I’m not sure. In ScratchJr there are only four pages, but my stories have
many pages,” he responds. “Let me think about this. There might be a way.”
Ms. Barnard smiles. She has seen projects done with multiple tablets
before.

The following day, she walks over to Josué and explains, “I checked the
website and I learned that if you use more than one tablet to tell your story,
then you could just have your characters go from tablet to tablet when you
need more pages. Each tablet can have four pages, so you can just keep
adding tablets and you will have a very long story.” Josué thinks about this.
He loves the idea of using multiple tablets, but that seems like a lot of work.
Ms. Barnard smiles again and says, “Of course, I am sure it will be a lot of
work, but you could have a really long story like you talked about. Let me
know if you need more tablets.”

Josué does not like challenges, but he wants to make his story. It is about
a prince who loses his kingdom to an evil dragon and must slowly make his
way back to defeat the dragon and become king again. Josué gets to work

and spends the first fifteen minutes designing the story’s main characters
and settings. By the end of the lesson, he has only just begun programming
the first scene. “How did it go?” Ms. Barnard asks after walking over to
him. “It was fun, but I think it could take me a really, really long time to
finish it. I’m not even close!” he tells her. “I’ll bet that’s true,” Ms. Barnard
muses, “but I also bet it will be amazing when it’s finished.”

This is the thought that carries Josué forward as he continues working on
his project. Every time he uses ScratchJr, it is all he focuses on; whenever
the class learns a new block, he finds a way to incorporate it into his story
so he can keep working on it with each lesson. In one scene, he wants a
wizard to help the prince get into his castle by creating an explosion and
bursting open the entrance to a tunnel. When he envisions the spell
traveling across tablet screens, shooting to the prince’s rescue from a
distance, he knows how to make it happen; they learned about recording
today, and he can easily record the sound of the spell and make it vanish on
one screen and reappear on the next.

After struggling to figure out how to make the wizard look like he cast a
spell, Josué decides to make a shooting star character on both screens to
represent a beam of magic. When the first one travels to the edge of its
screen, he wants the second one to appear and travel across its own screen,
ultimately making the explosion. But Josué quickly finds out that the timing
for this is impossible. No matter when he presses it, there is always a slight
lag in the transition between screens. He keeps trying until Ms. Barnard
gives a five-minute warning. Josué slumps back in frustration. “I’m never
going to get this right,” he frets. Dispirited, he decides to stop working on
his story for the day.

The next day, though, their class covers coordination blocks. They can
make characters speed up, slow down, stop entirely, or wait to continue
their code. Once again, Josué’s mind is bursting with ideas. Not only can he
now make the spell travel across the screens in the blink of an eye, but he
can also make the second shooting star wait until the perfect moment to
begin its code by simply pressing the green flags at the same time on both
tablets. He spends a long time trying to get the timing right, but when he
finally does it, he is left with a seamless transition between the screens and
excitedly continues the rest of his story.

“You’re so creative, Josué,” says Ms. Barnard. “Look at the amazing
things you can do when you don’t give up!” Each day, she celebrates the
smaller accomplishments, which propels him to keep going. The full project
takes him two weeks to complete. When he is ready, Ms. Barnard asks him
if he wants to project his story onto the white board and show it to the class.
He nods energetically. The cheers of his classmates fill the room as they are
taken on an adventure with Josué’s prince. They jump up and down when
they watch the wizard’s spell zap across the screens with its sound. Josué
leaves school that day bursting with pride. He cannot wait for the next time
they use ScratchJr so he can work on a new story.

In the coding playground, it does not matter how long it takes to create a
project. Teachers want children to develop persistence. Thus, longer and
more difficult projects that are exciting and personally meaningful are a
good opportunity.

Alan Kay, a pioneer in the development of the personal computer, coined
the phrase “hard fun” to describe an activity that engages us because it is
both enjoyable and challenging. In the coding playground, children learn to
have hard fun and to manage frustration. Some teachers set up a culture in
which succeeding the first time is a rarity. Others remind students that a
project will fail a hundred times before it works, thus anticipating the
inevitable. This creates a safe learning environment. It happens to everyone;
we learn from failure and need to keep trying. Some of the best teachers I
have seen over the years invite laughter over failure. Just as children laugh
at their mistakes on the playground, they can find silliness in their bugs in
the coding playground.

Patience

Noun: the capacity to accept or tolerate delay, trouble, or suffering
without getting angry or upset

Today marks the second day that Shreya and Falyn will use the KIBO robot
in their kindergarten class. Their teacher, Ms. Shah, noticed yesterday that
Falyn was taking a long time to scan, whereas Shreya picked it up fairly
quickly. She hoped that by partnering them up, Shreya might help Falyn.
Once the girls sit down with their KIBO, they begin programming right

away. They are only experimenting with motion blocks, but before they
know it, they have put together a short sequence of movements for KIBO to
follow.

“Can I scan first?” Shreya asks eagerly. “Okay,” Falyn agrees, “but I get
to scan next!” Ms. Shah had told them that they should take turns scanning
so that everyone is treated fairly and has a chance. Shreya begins scanning
each block one by one, quickly moving on as soon as KIBO beeps. “Do you
want to press the button?” she offers her friend. Falyn nods excitedly and
presses the triangle-shaped start button to launch KIBO into the moving
sequence they programmed together.

“Yay!” The girls shout. They begin making another program for Falyn to
scan. This one is a little longer; there are about ten wooden blocks for Falyn
to get through. She starts by holding KIBO above the begin block, making
the red light from the scanner touch the block. Shreya notices that the
scanner is touching the center of the block and the red line is not running
across the barcode. It does not work. “Try putting it on the black and white
lines,” Shreya suggests immediately. With difficulty, Falyn moves the red
scanning line to the barcodes. It does not work either, but after what feels
like an eternity to Shreya, KIBO beeps in affirmation.

Falyn moves to the next block. Shreya notices that the scanner is very
diagonal and only cuts through the middle of the barcode rather than
running straight through it. Seconds go by, and Falyn moves KIBO’s
scanner within a centimeter of the block; Shreya knows that this is too close
to work. At this point, Shreya notices that their classmates have begun to
make more intricate programs. She rests her chin in her hands,
remembering how quickly she had scanned through the first program.

“Can I help you?” she asks warily. “No, I want to do it,” Falyn says.
Shreya groans as Falyn continues to move the scanner up and down without
much success. Shreya cannot take it anymore. She snatches the KIBO out
of Falyn’s hands and begins to scan the program herself. “Hey!” Falyn
cries, reaching to get it back. “You’re taking ten million years! It’ll be faster
this way!” Shreya retorts. “But it is my turn!” Falyn shouts back.

Ms. Shah hears the girls shouting and rushes over. “What’s going on?”
she asks them, looking concerned. “Shreya stole KIBO right out of my
hands!” Falyn exclaims. Ms. Shah raises her eyebrows and asks, “Shreya, is
this true? Remember, we need to take care of KIBO so it doesn’t break.”

Shreya sighs and replies, “Yes, but she was taking up the whole time trying
to scan the blocks!” Ms. Shah asks Shreya to come to the side with her. The
two go to a table where the other students cannot hear their conversation
and they sit down together. “Shreya, do you play any sports?” asks Ms.
Shah. “Yes,” Shreya nods, “I like to play tennis.” Ms. Shah smiles. “Good!
Do you remember the first time you ever played?” Shreya takes a moment
to think and then nods. She started taking lessons last summer. Ms. Shah
asks, “Was it easy for you to get the ball over the net?” Shreya shakes her
head. She remembers how embarrassed she felt that most children were
able to return the coach’s balls except her. “Sometimes it takes time and
practice to get good at something,” says Ms. Shah. “Falyn will get better at
scanning, just like you did at tennis. She needs time to practice. You need to
be patient.”

Shreya thinks about this for a moment and then nods in agreement. She
remembers how long it took her to hit a ball over the net. Disappointed, she
realizes that it will be a long time until Falyn learns to scan. “Okay, Ms.
Shah.” As Shreya makes her way back over to Falyn, she notices that her
friend already stopped holding KIBO too close to the blocks and has made
it through a few more of them. “Sorry, Falyn,” Shreya says. “It’s okay,” her
friend smiles. “If you try holding it so that the red goes straight through the
barcode, it might beep faster,” Shreya offers. Falyn tries it, but it still takes
her a little while to get KIBO oriented correctly. Shreya does not say
anything; she waits and lets her friend figure it out for herself. Eventually,
KIBO beeps and Falyn goes through the last few blocks much more
quickly. “You did it!” Shreya smiles. The girls high five and begin to watch
KIBO perform its sequence.

In the coding playground, patience is an important skill that is developed
over time. In this case, patience involved a girl respecting her friend’s own
learning time. In other cases, it is about patience with one’s own self,
allowing time to learn. Regardless, patience does not come easily to young
children. In an environment in which competition rules, patience will be
easily forgotten in the palette of virtues. However, that is not the case in the
coding playground in which the outcome is meaningful expression, not
speed or efficiency.

Optimism

Noun: hopefulness and confidence about the future or a successful
outcome; expecting the best

First grader Jordan is dreading playing with ScratchJr today. Yesterday, the
first day his class used the app, he did not pay much attention. He was too
hungry, and his mind kept wandering. As a result, today he is totally lost
sitting with the iPad in front of him. He has tried stringing blocks together,
but for some reason, they will not work. While his classmates begin
experimenting, he cannot even start. Fear of being the only person who
does not understand keeps creeping back into his mind, and he becomes
more disappointed.

Jordan is completely stuck. He is not really sure what the many blocks
mean; they simply look like strange symbols to him. Looking around, he
notices that his classmates have all already begun making their characters
do interesting things. “That looks so cool,” he tells his friend April, whose
character is growing and shrinking. When he looks at his friend Xavier’s
iPad, he notices that he has already designed two of his own characters and
they are having a conversation. Jordan half-heartedly begins dragging
blocks onto the screen, but no matter where he moves them or how he taps,
nothing happens. Finally, he pushes his iPad away and puts his head down
on his desk, giving up.

“Jordan?” Ms. Shin sees Jordan looking defeated and walks over to him.
“Are you done programming?” He looks up to find his teacher’s warm eyes
looking at him. “I’m not good at ScratchJr,” he says frowning. “What do
you mean?” she asks. Jordan exclaims, “I can’t do it! No matter what I do,
it never works.” Ms. Shin thinks for a moment and then smiles. “Do you
want to know a secret?” she asks. Jordan nods. “No one is supposed to be
good at something they’ve never done before. You’ve gotten so great at the
things you’ve practiced this year, like reading, or basketball at recess. I’ll
bet anything that you can do it.” Jordan looks skeptical, but he turns back to
his iPad. “Do you remember how we learned to start a ScratchJr program?”
asks Ms. Shin. Jordan shakes his head. “That’s okay!” she says. “We use a
green flag block. Do you think you can find that for me?”

Jordan clicks through the many tabs until he finds the green flag block
and drags it with difficulty. “Okay, that’s our beginning; now the blocks you
attach to it will be the middle, and the red end block will be the last.”
Jordan drags whatever blocks he can find next to the green flag. Ms. Shin

directs him to press the green flag in the top corner of the app. When he
does, his character begins moving, growing, shrinking, and spinning, just
like his classmates’ characters. Jordan’s face lights up. “See? I knew you
could do it. The only thing that stops you is when you think that you can’t.”
Ms. Shin smiles at him. He smiles back. As the class continues using
ScratchJr throughout the year, Jordan needs extra help. However, he does
not let himself get daunted. He knows that he can learn if he puts his mind
and heart into it. His final project is simple but very creative (see figure 7.3)

Some children are naturally optimistic, and others are not. It is the same
with teachers. Some trust their students will achieve success if given the
right conditions and help, and others have doubts. In the coding playground,
the belief that one can learn and grow plays an important role in the
learning process. Dweck calls this a “growth mindset” as opposed to a
“fixed mindset.” Individuals who believe that their talents can be developed
through hard work, good strategies, and input from others have a growth
mindset. They tend to achieve more than those with a more fixed mindset or
those who believe their talents are innate gifts. In the coding playground,
optimism or a positive attitude toward achieving one’s goals makes for a
better learning experience. Although teachers are aware this is not an innate
characteristic of every student in their class, by understanding optimism as
a virtue in the palette, they can intentionally design situations to reinforce
and practice it.

Figure 7.3
Jordan’s final ScratchJr project

Honesty

Noun: the quality of being honorable; rectitude; uprightness; integrity
Today is a big day in Lola’s second-grade class; after a semester of working
with KIBO, it is finally time for the class to begin their big final projects.
For the past few weeks, Lola’s class has been reading Where the Wild
Things Are and discussing the sequence of the story. At the same time, they
have explored all of the programming blocks and the KIBO sensors. Lola
can use repeats and conditionals, nested loops, and light sensors. She is an
expert, and now it is time to put all of that knowledge together. “Today,”
Mr. Watkins begins, “We’re going to plan for our projects in our design
journals and then program our own wild rumpuses!” Lola’s friend Maria
gasps and turns to her excitedly. “I know exactly what I want to do!” she
whispers. Lola smiles back but does not say anything. She has no idea what
she would do but is hopeful that her creativity will flow once she puts
pencil to paper. The wild rumpus is a big party that the story characters
throw at the end of the book. Lola and her classmates have been asked to

create their own party and write a story about what happens in their design
journals, and later they will program the KIBOs to enact it.

Lola loves parties, and she is looking forward to creating her own. But
when she sits at her desk to write in her design journal, nothing comes to
mind. Every now and again, she writes something down, stares at it, and
scribbles it out. As their time for planning winds down, she only has a
couple of ideas written on her page, and she does not like them. “Let’s plan
for five more minutes, and then we can start programming,” announces Mr.
Watkins. “Remember to share your ideas with your neighbor for feedback!”
At this point, chatter breaks out across the room.

Lola realizes with dismay that she has nothing to share. Out of the corner
of her eye, she notices that Maria’s design journal is filled to the brim with
ideas. Lola imagines being the only student without a final project idea.
Gulping, she quietly glances over at Maria’s journal and tries to make out
the words. She writes down everything she sees, deciding that she will just
program it differently so no one can tell that the ideas came from her friend.
“Okay, everyone!” Mr. Watkins calls over the quiet chatter in the room.
“I’m going to start calling everyone by table to line up and get your KIBOs.
You will be programming in pairs! But first, you each need to share your
ideas written in the design journal. Discuss them and choose what to do.”

When Lola sits on the floor with Maria, blocks sprawled out in front of
her, she still does not know what to say. She wrote down ideas like
“drinking fruit punch,” “eating cake,” and “dancing,” but she never had a
vision for how to translate those ideas into code because they were not hers.
She starts worrying that any attempt at incorporating them into her program
will not make sense, and she glances at Maria’s choice of blocks as guilt
swells in her chest. Slowly, she begins copying Maria’s program. As the
two girls work side by side, Maria cannot help but notice what is going on.
“Lola! Why are you copying me?” Maria asks, folding her arms over her
chest. “I’m not!” Lola says quickly. Maria glares at her incredulously as her
hand shoots into the air. Lola is speechless as Mr. Watkins makes his way
over to the two friends and crouches down to talk to them.

“Mr. Watkins,” Maria begins, “Lola says she isn’t copying my program,
but she is! Look, her code is exactly the same as mine, but it’s shorter!”
Lola’s heart starts racing as Mr. Watkins looks back and forth between their
codes. “Lola, is this true?” he asks. Lola looks at him but does not say

anything, afraid of what will happen if she admits what she did. “You’re not
in trouble, but it’s important to tell the truth so we can make this better,” he
assures her. Lola pauses and then stares at the floor. “Sorry,” she says, “I
just couldn’t figure out what to write, and I got scared that I wouldn’t be
able to make anything and then I would have nothing to share.” Mr.
Watkins smiles encouragingly and tells her, “Thank you for apologizing and
for telling the truth.”

He turns to Maria and asks, “Maria, do you think you can help your
friend? What did you do to come up with your project idea?” Maria’s face
brightens and answers, “I wrote down everything I could remember from
my birthday party last month! Yours was really fun too, Lola.” Lola starts
remembering the day; she and her friends went swimming, played hide and
seek, and even knocked over a piñata! “Does that help you think of some
ideas for the wild rumpus party, Lola?” Mr. Watkins asks. She nods, a big
smile forming on her face. Lola takes the rest of the day to replan her
project. Next time, whenever she cannot decide what to write, she shares
with her friend that she has hit a roadblock and asks for help brainstorming.

When confronted by Maria and her teacher, Lola chose to take the high
road, confess, and apologize. She was able to come forward because Mr.
Watkins set up a classroom environment in which honesty was deeply
valued. In the coding playground, the teacher’s values have as much of an
impact as the children’s values. Those need to be made explicit so children
know what to expect. When I work with teachers on CAL professional
development, I make sure teachers spend time exploring their own palette
of virtues and how those relate to the values in the coding playground. That
is the only possible way for them to later bring the palette of virtues into
their classrooms.

Fairness

Noun: impartial and just treatment without favoritism or
discrimination; justice

“Okay everyone, find your KIBO partners and line up to get your robots
and blocks!” Ms. Alvarez announces to her kindergarten class. “Today,
we’ll get to have KIBO free play!” Excited whispers ripple through the

room; the students had only used KIBO a few times up until now and only
ever to do projects the teacher gave them, like programming KIBO to dance
the Hokey Pokey or follow a maze. Everyone has been waiting for the
chance to play with their own ideas. “Remember,” Ms. Alvarez says, “there
are four of you working with each KIBO. Everyone is in charge of making
sure all partners get a turn programming, a turn building, a turn scanning,
and a turn decorating the robot.” Kentaro, Taylor, Briana, and Carl are
group one. They negotiate who will take which role first. “Kentaro, I have
an idea!” Taylor exclaims as they get their robot. “Do you want to pretend
KIBO is a car for some of the toys?” she asks. Kentaro’s face brightens.
“Yeah, that would be so cool!” Briana agrees, but Carl does not seem that
interested in the choice of project.

On their way over to the bin of toys, Kentaro and Taylor talk excitedly
about their ideas. As they place their things down and find the toys they
want as passengers, they notice that Briana has already started putting
together a sequence of blocks. “Maybe we should test what we have so far,”
suggests Kentaro. “Good idea!” says Taylor. She reaches for KIBO and
begins scanning each barcode. “Can I press the start button?” Carl asks. But
as soon as he finishes his sentence, Taylor has already pressed KIBO’s
blinking green triangle and launched it into its program. “Hey! I wanted to
do that!” Carl protests. “Sorry!” Taylor says. “I was closest to KIBO, so I
got to press it.” Kentaro stays silent and privately vows to be closest to
KIBO next time.

The four children start to negotiate whose turn it is to be the programmer
next. After a few more minutes of work, Taylor picks up KIBO. “I think we
should test again!” she says, beginning to scan each block. “Taylor! I was
closest to KIBO, so that means I get to scan it this time!” Kentaro shouts.
Taylor shrugs. “Well, I’m already holding it, so it’s just easier,” she
explains, beginning to scan each block. When she puts KIBO on the
ground, Kentaro jumps toward it to try to press the green start button, but
Taylor gets there first. “No fair!” he shouts. “You never let me scan the
blocks or press start!” He reaches for KIBO again, but Carl snatches it
before he gets there. “Stop, Carl!” Taylor turns her body to prevent him
from getting KIBO. “Fine,” he says, standing up. He then walks to the
corner of the room and sits down, burying his face in his knees and hugging
them to his chest.

Taylor keeps working with the other children for a few minutes. Before
she knows it, though, Carl is walking toward them. This time, Ms. Alvarez
is with him. “Taylor,” their teacher begins, “Carl told me what happened.
Can you tell me your side of the story?” Taylor nods and explains that Carl
got upset and ran away because he did not get a chance to scan the
programs or press the start button. “But it was just always closer to me, so I
always scanned with it,” he explains. “Hmm,” Ms. Alvarez says, “Taylor,
how would you feel if you never got to scan with KIBO, even though you
wanted to?” Taylor thinks about this for a moment and then looks down.
“Sad,” she admits.

“Do you remember when I said to make sure everyone got a turn? Why
do you think that’s an important rule?” asks Ms. Alvarez. Briana, who was
distracted drawing little passengers to put in the toy cars, lifts her head and
responds, “So that no one gets sad that they don’t get a turn.” Ms. Alvarez
nods and then addresses all four children. “Right. What can we do to make
sure that everyone is happy when playing together?” she asks. Kentaro
thinks for a moment. “We can take turns,” Taylor proposes. “Does this
sound like a good plan to all of you?” asks Ms. Alvarez. They all nod.

Next Ms. Alvarez helps them write down a turn-taking schedule so they
would not forget who has each job and when they switch jobs. As a five-
year-old, it is not easy to remember four different roles and who comes after
whom. Despite the large number of children in a group having to share one
KIBO, due to the lack of classroom resources, this is an opportunity to
explore civility. This sequencing exercise is not only about fairness but also
aligns with the core computer science concept taught in kindergarten: an
algorithm is a list of instructions that a robot or program will follow. In this
case, creating a list of orderly jobs becomes another way to explore the
precursor of algorithms: order matters in a sequence. This applies for both
computers and for people.

Generosity

Noun: the quality of being kind; giving and receiving, helping self and
others

Mikah is six years old, and she looks forward to playing with KIBO at
school. Today, her kindergarten class is learning about the repeat block: a
block that makes KIBO perform the same series of actions multiple times.
Before the class breaks into partners to practice what they have learned,
Mikah’s teacher announces that everyone is going to use the repeat block to
program a dance for KIBO. She adds, “At the end of the hour, all KIBOs
will come together to attend a dance party at the front of the room.” At this
news, Mikah and her partner Javier look at each other excitedly. They
quickly begin brainstorming their KIBO’s dance and work together to start
building the program. It takes them a few tries to get it right, and before
they know it, Mikah and Javier put the blocks in the right order. KIBO spins
and twirls over and over again. They add colorful lights and are about to
experiment with the sound sensor.

As they are working on their project, Mikah is approached by Ms.
Tanaka, who kneels beside her. “Mikah,” she whispers, “I noticed that
Alexander looks very upset. Would you mind seeing what’s wrong for me?”
Mikah searches the room for Alexander and realizes immediately that Ms.
Tanaka is right. Alexander is crying, his arms are crossed, and he is facing
away from his KIBO. Mikah nods and then turns to Javier. “I’ll be right
back,” she says. “Okay!” he responds. Mikah walks over to her friend and
asks him what is wrong. “I can’t do it!” Alexander mumbles. “I’ve tried
scanning my program so many times, but it won’t work.” Alexander’s
partner is absent today, so he is working by himself. “Hmm,” Mikah muses.
She does not like seeing her friend look so sad. “Can you show me? Maybe
I can help.” Alexander takes his KIBO and scans the program. As he scans
each barcode, Mikah covers the surrounding blocks with her hands to make
sure he scans them in the right order. Everything seems to be going fine, but
when KIBO scans the end block, it makes a noise their teacher warned them
about. It means that KIBO cannot understand the code. “See?” Alexander
looks at Mikah dejectedly. “I can’t figure it out.”

Mikah thinks for a moment. Suddenly, a lightbulb goes off in her head;
she realizes that Alexander is making the same mistake that she and Javier
had made earlier. “Wait a minute!” she exclaims. “I know what’s wrong!
You forgot to put the end repeat block at the end of what you want KIBO to
repeat. That way KIBO knows when to stop repeating.” Alexander’s eyes
grow wide, remembering this from the lesson. “Oh!” he realizes. Mikah
goes over to the bin, digs for the end repeat block, and hands it to

Alexander. After putting it where he wants it in the program, Alexander
rescans the code as Mikah covers the surrounding barcodes again. This
time, KIBO does not make the error sound, and its triangle flashes green.
Alexander presses the triangle, and KIBO launches into his dance routine,
repeating it four times.

Earlier on, as Ms. Tanaka walked the room to see students’ progress, she
noticed that Alexander was frustrated. By looking over his shoulder, she
quickly understood the bug in his code. It was a simple syntax issue. At that
point, Ms. Tanaka had a choice to make on her own: quickly help
Alexander by handing him the missing end repeat block or find another
child in the class who was already an expert with repeat blocks and could
figure this out. The latter was more time-consuming for Ms. Tanaka and
was also riskier. Ms. Tanaka suspected that Mikah was going to be able to
help Alexander. She knew Mikah had the needed skills, both technically
and emotionally. However, maybe Mikah could not help Alexander in time
to prevent a meltdown, or maybe Mikah would refuse to leave her own
project and spend time with someone else’s. Despite these maybes, from the
point of view of promoting generosity, calling a child to help another is a
win-win situation. Even if things did not work out as expected, there was
still an opportunity to address so many other aspects of socioemotional
development. Ms. Tanaka knew all of this when she called on Mikah, who
had mastered repeat blocks, to go help Alexander.

Later that day, when Ms. Tanaka asked the class to stop their robotics
work and get out their collaboration webs, Mikah was proud to draw a line
from her name to Alexander’s name. She had helped a friend that day.
Alexander did the same in his own collaboration web, but the arrow had a
different direction. He had received help. In the coding playground, setting
up situations for children to help each other is seen as an act of generosity
and not only teamwork. There is intentionality in asking children to help
someone outside of their team.

Gratitude

Noun: the quality of being thankful; readiness to show appreciation;
being aware of good things

Today is a special day in Gabriela’s second-grade class. Ms. Daniels
announces at the beginning of coding class that they will get to play freeze
dance, which is Gabriela’s favorite game. During the first round, Gabriela
has lots of fun jumping around with her classmates, expecting the music to
stop at any second. After they end, Ms. Daniels says that everyone will
program their own freeze dance on ScratchJr by using the “wait” block, a
command that causes a character to stop in the middle of its program for a
certain amount of time.

Gabriela vows to make her best program yet in honor of her favorite
game. Gabriela usually likes to share what she creates during technology
circle, and today she wants to share more than ever. “As you program, think
about the things you like about your project,” Ms. Daniels instructs.
“Everyone is going to talk about the part of their project that they’re most
happy about.”

Once she gets her tablet, Gabriela gets right to work. First, she draws a
character that looks like a speaker and uses the sound recorder block to
record herself singing. Occasionally, she cuts herself off mid-word and
stops singing to represent the “freezes” in the music. Then, she creates an
intricate party room as her setting. She takes her time adding small details
and creating a sparkling disco ball, a glowing dance floor, and even a
turntable for a DJ. Her older brother has one and explained to her how it
works. Then, she begins drawing the rest of her characters. She wants at
least three characters that do their own separate dances and a DJ running the
show in the background. That will be her older brother. Tomorrow, she will
take a picture of him and bring it to school to incorporate into the project.
For now, she takes her time drawing the other characters, giving each of
them a different costume to wear at her dance club. Exactly as she is
finishing her third character, she hears Ms. Daniels call out, “We’re going to
start sharing in about five minutes!”

Gabriela’s heart starts racing. She had become so engrossed in her project
that she completely lost track of time! Quickly, she decides that she will not
design a DJ and begins to code all the characters’ separate dances. She
knows it will take her much longer than five minutes to make up a good
dance move for each of her characters. She works as quickly as she can and
thoughtfully drags blocks onto the screen. As she thinks she is almost done,
she frantically remembers that she needs to time the wait blocks to freeze

the characters at the same time as the music. “Okay everyone, it’s time to
start wrapping up!” her teacher calls.

Gabriela only has one character’s dance programmed, and it only has one
wait block that is not even synced with the music. The other two characters
are totally static and have no programs. As her classmates start sharing their
dances, Gabriela tries to keep working in secret. “Gabriela, it’s time to
listen to our friends,” her teacher calls. Gabriela takes one last look at her
incomplete project before slumping onto the floor, dismayed. She will not
be able to share her project during technology circle. When the class is done
reflecting and begins putting the tablets away, Ms. Daniels looks up to find
Gabriela crouched by her desk. “What’s wrong, Gabriela? You’re usually
one who likes to share her project,” she asks, smiling. Gabriela explains that
she could not get to finish her project on time. “Can I see what you have so
far?” Ms. Daniels asks.

Gabriela shows her the tablet. “Wow, I see lots of fantastic detail in this
project! What’s your favorite part about it?” asks Ms. Daniels, since
Gabriela did not get to share with the class. “It would have been the freeze
dance and my brother, the DJ,” Gabriela mutters, sadly. Ms. Daniels pauses
for a moment. “Hmm, well what’s the favorite part that you did make?”
Gabriela looks again at her project, reconsidering it. “Well, I like the setting
I drew for the background a lot. I like the spot for the DJ and the disco ball,
but I don’t have my brother’s picture here,” she admits. “And you had great
ideas for the project, right? Even though you didn’t have time to do them?”
Ms. Daniels asks. Gabriela nods in response. “Isn’t it amazing that you
came up with those ideas?” Gabriela smiles widely at her teacher. “If you
want, next time there is free time in class, you can continue working on this
project. I will save it for you. Bring your brother’s picture tomorrow.” Ms.
Daniels knows that even though Gabriela did not get to finish her dance on
time, she had put a lot of effort and cared deeply about it. There was a lot to
acknowledge about what she accomplished. “Thank you, Ms. Daniels,” she
says. She puts her tablet away feeling proud of what she created and
grateful for getting an opportunity to share it as soon as she is finished with
it.

The CAL pedagogy trains teachers to become aware of the good things
that happen in the coding playground and recognize them. Sometimes that
means making exceptions, deviating from a well-designed plan, or delaying

final outcomes. Coding is hard. It requires time and commitment, dealing
with frustration, and engaging in difficult problem solving. In addition,
when creating projects that are personally meaningful, one might get so
absorbed in some of the details that time flies by quickly.

The well-known psychologist Mihaly Csikszentmihalyi proposed the
concept of flow, a highly focused mental state conducive to productivity, to
describe experiences such as the one Gabriela had. The intense and focused
concentration on the present moment, the sense of personal control and
agency over her project, and the loss of time and experiencing the activity
as intrinsically rewarding are all aspects of being in a state flow, where
nothing else matters. Gabriela was engrossed in drawing and programming
her dance party, and Ms. Daniels recognized this and was grateful for it.
What more can a second-grade teacher wish for than one of her students
putting all of her heart, brain, and soul into making a project?

The CAL pedagogy, which engages children in learning to use the
language of coding to express themselves in personally meaningful ways,
seeks to nurture flow experiences. It recognizes and appreciates them by
welcoming flexibility around the day’s schedule. Unfortunately, class times
are generally broken into forty-five-minute slots and creativity cannot be
corralled nor rushed. Just like in the physical playground, where children
often want to stay longer, in the coding playground we hope for children to
get so absorbed and engaged in their projects that they lose track of time.
As they grow, they will learn about time management and meeting
deadlines. In this vignette, Ms. Daniels recognized that Gabriela was not
procrastinating but was fully engaged in her project. The coding playground
strives for a balance between the challenge of the task and the skill of the
performer. If the task is too easy or too difficult, flow cannot occur.
However, when achieved, both teachers and students are grateful.

Gratitude is not only about children thanking those teachers or peers who
provide technical help but also about recognizing when they alter their
plans to accommodate a particular need or passion. Gratitude is one of the
most important elements in forging long-lasting I–Thou relationships.

Forgiveness

Noun: the action of pardoning and accepting, giving a second chance to
self and others

Yakov and Annie have been best friends since kindergarten, and today they
get to be KIBO partners. They just listened to their teacher read the book
There Was an Old Lady Who Swallowed a Fly, a story about an old woman
who swallows a fly and continues to swallow increasingly large animals as
the story progresses. After finishing the book, Yakov and Annie’s teacher,
Mr. Arambulo, announces that today’s KIBO project is to program the robot
to act like the old lady from the story. Pictures of each animal she swallows
line the floor, and the students have to make KIBO visit each animal and
perform an action to indicate that it is “swallowing” the animal it reaches.

As Yakov and Annie begin coding together, they figure out how to get
KIBO to approach the fly. It takes three forward blocks. Annie scans the
blocks and places KIBO on the floor. Yakov then presses the start button.
After KIBO makes its way to the fly, it is time to decide what it will do to
convey that it swallows it. “I think KIBO should sing because we sing
along when we read the book!” Annie exclaims, referring to the tune used
to turn the book’s words into a song. “No way,” Yakov shakes his head.
“She needs to swallow the fly, not sing to the fly. It should get to the fly and
shake so it looks like it’s eating it!” Annie furrows her brow and crosses her
arms. “No! I want it to sing,” she insists. “No! Shaking is way better,”
Yakov says. Annie snaps, “If we don’t do the singing, then I don’t want to
do KIBO with you anymore!” Silence fills the space between the pair for a
moment. “Fine,” Yakov says, and he begins to collect all the sing blocks
and put them behind him so she can’t reach them. “Yakov!” she cries. “Give
them back!” Yakov does not do anything and continues to protest. “Ugh!”
she shouts, finally giving up on getting the blocks back from him. The two
face away from each other angrily.

“Yakov? Annie? Are you done making your program?” The partners look
up to find Mr. Arambulo. “Annie says she doesn’t want to do KIBO with
me anymore,” Yakov says bitterly. “That’s because Yakov took all of the
sing blocks, and he won’t let me use them!” retorts Annie. Mr. Arambulo
crouches down to talk to them and asks them to tell him the full story, one
at a time. Once he is finished hearing both sides, he thinks for a moment.
“Annie, would you like it if Yakov said he didn’t want to play with you
anymore?” he asks. Annie stares at the floor and shakes her head. “Yakov,

would you like it if someone took all the blocks you wanted to use?” asks
Mr. Arambulo. “No,” Yakov admits. “Friends upset each other all the time,”
Mr. Arambulo says, looking at the two. “But now we have to decide what to
do next. We can keep being angry, or we can apologize and try to find a
way to program KIBO so everyone will be happy. What do you both want
to do?”

Yakov and Annie look at each other. Suddenly, Annie is struck with an
idea. “Yakov, what if KIBO sings and shakes when it reaches each animal?”
A smile runs across Yakov’s face. “I really like that!” he says. Mr.
Arambulo smiles too and says, “Great job, you two. But I think that Yakov
still owes an apology to Annie for taking all of the blocks. Annie, you still
owe an apology to Yakov for not wanting to play with him.” The pair looks
at each other and apologizes. Next, they sit together to keep working on
their KIBO project until time runs out. By the end, the old lady KIBO sings
and shakes before it eats the fly and the rest of the animals.

In this vignette, forgiveness involves two children who did something
wrong and chose to make amends. However, pardoning sometimes involves
the self. In the coding playground we have seen many cases in which
children are so upset with themselves because they did not catch a syntax
error or a simple bug that they cannot move on and continue working. The
CAL pedagogy identifies the ability to forgive, oneself, or others as an
important value in the palette of virtues.

Coding a Mensch
The ten vignettes just presented reflect multiple experiences in many
classrooms over many years of working with both ScratchJr and KIBO. For
narrative purposes, I chose to focus each one of them on a particular value
in the palette of virtues. I also chose to highlight the teacher’s role.

A skeptical reader might wonder what is unique about these classrooms.
What is so special about the coding playground and the palette of virtues?
In which ways were these teachers handling things differently than in the
math or literacy class time? Isn’t socioemotional learning one of the most
important aspects of schooling? Why do we need coding to remind us of the
importance of working with values and promoting character strengths?

Some educators understand that despite the academic subject they are
teaching, their goal is to nurture children’s socioemotional and ethical lives.
These teachers will intentionally promote character development and will
take advantage of any opportunity that arises. However, for others, that is
not the case. In particular, with the growing movement to delegate
computational subjects to specialized technology coaches who only meet
with students a few hours a week, we might start to see a divide between
the teaching of technical skills and the human dimension. I worry about
this. Every time we teach, we have an opportunity and a responsibility to
bring about a mensch into the world. The problem solving that naturally
occurs in the coding playground is a fertile ground for this.

When programming is viewed as not only an instrumental tool to
problem-solve technical challenges but also a symbolic system of
representation for creative expression, we enter the realm of human
relationships and the possibility of nurturing I–Thou encounters.

A Window into Their World: The Learning
Family
It is 1998 in Buenos Aires, Argentina. We were exploring how the LEGO
Mindstorms robotic kit, which had been recently commercially released
after years of research at the MIT Media Lab, could be used by families to
explore values at the Arlene Fern Community School. At the time, the field
of educational robotics was emerging.

At the school, a group of parents and children gathered for a week around
the time of the Jewish High Holidays, a period of ten days between the
Jewish New Year and the Day of Atonement. This timing was carefully
chosen due to the spiritual work of reflection and forgiveness that takes
place both in the school and the community around the most sacred
holidays for Judaism.

The rabbi, Sergio Bergman, was co-leading the robotics workshop with
me and Claudia Urrea. On one of the tables, we had placed cards with
different values. Some were universal and others were directly related to the
Jewish holidays. Each family was invited to choose a value card as

inspiration for their robotic project. After the initial training, during which
parents and children learned how to use motors and sensors, how to
program with the LEGO Mindstorms software, and how to build a sturdy
LEGO project, they began working on their choice of project.

At the end of the workshop, right before the Friday’s kabbalat shabbat
religious service, the projects were displayed in the hallway of the
synagogue so congregants can play with them during an open house. In
addition, each family prepared a poster telling the story of their work
together and wrote a technological prayer, reflecting on their experience and
showing gratitude for a specific aspect of their learning. Those
technological prayers were photocopied and included in the prayer book to
be used that Friday night. Finally, the group wrote a collective prayer
together to show gratitude for all the new things they learned and
experimented with during the workshop.

Around twenty-five people participated in the workshop. Children were
granted special permission from the school principal to miss classes during
that week, and parents took time off from work. When evaluating the
experience, I grouped the resulting projects into three different categories
according to the unique ways in which families used robotics to explore
values.

The first category were projects to represent symbols. For example,
Michael, a ten-year-old boy, explained, “We built a Magen David, Star of
David, as a symbol of our Jewish people, and we programmed it to turn
forever like the wheel of life and have flashing lights resembling candles
welcoming the New Year. We also reproduced the sound of the shofar, an
ancient musical instrument typically made of a ram’s horn, used for Jewish
religious purposes. It has three different tones that are supposed to awake us
for reflection and atonement.” Michael and his father had chosen the value
“awakening” or “call for reflection.”

Projects in the second category used robotics to represent abstract values
as opposed to concrete symbols. For example, Marcia and her father chose
the value of Teshuvah, repentance or repairing mistakes. They created a
puppet theater in which two friends hug after a fight. Later, I will share
more about this project.

The third category involved projects that used robotics to evoke
reflection and conversation. For example, Paula and her ten-year-old son

Matias created a conveyor belt contraption to transport the actions of the
previous year. Paula explained that “during the High Holidays we think
about our actions, about what we did right and what we did wrong. It is the
time of the year to reflect and become conscious about our past deeds so we
can choose to continue in a good direction or to rectify our actions.” The
conveyor belt was designed to carry actions, represented by foam rubber
cubes wrapped in colored paper and labeled, until a reflection point
signaled by two sensors. At that time, the conveyor belt would stop so users
could spend the needed time to decide whether the action was positive and
press the “good” sensor or negative and press the “bad” sensor. After the
sensor was pressed, the conveyor belt resumed its movement. An action
considered good was transferred to a good container, and an action
considered bad was taken back, meaning that people had to amend it.

During the open house for the community, Matias presented the conveyor
belt. When playing with the contraption, one of the adult visitors pressed
the “good action” touch sensor and observed the action block move forward
very slowly. He commented, “I see that the good actions take more time.
Since they are good, they should last longer.” This reflection about values
was triggered by the performance of the mechanics behind the belt structure
and engaged everyone in an interesting discussion.

Each of these three different ways of using robotics represents a unique
pathway to work with values. Projects in the first category, technology to
represent symbols, treated values in a shallow way. People created artifacts
that resembled the Jewish symbols without deeper exploration of the nature
of the values represented by these symbols. Projects in the second category,
technology to represent values, involved both artifacts and stories that made
the chosen value more explicit. Projects in the third category used
technology to evoke reflection and conversation, treated values in a more
elaborated way, and provided an opportunity for others to engage in
experiencing the complexity of the chosen values and participate in
thoughtful discussion.

Next, I will tell two stories to better understand the difference between
the last two categories, which are the most interesting ones, in terms of
learning about values. Juan is an engineer who participated with his young
daughter. “Pattie and I talked a lot about giving, and we realize that giving
is, at the same time, receiving. Through our project we wanted to show that

when we give something, we do not exactly know what we are receiving,
but we always receive something back,” explained Juan. This is a
sophisticated concept to understand with words; however, Juan and Pattie
started playing with the robotics and arts and crafts materials before they
developed a fully functional project idea. Pattie found fabric she liked and
wanted to make a moving doll. From this simple idea, father and daughter
started to explore how the concept of giving and receiving could be
incorporated into a LEGO doll.

After four days of working together, the doll was ready. Pattie explained,
“We made a doll with two yellow hands, and every time you give her a
present in one hand, she turns around and gives you something back with
her other hand. But you don’t know what she is giving you. I made little
boxes. Inside they have pictures of smiles, flowers, and hugs. So you can’t
see them. There is a sensor in the empty hand, and when it sees that you
gave it something, it makes the motor move, and the doll gives you her
other hand with one of the boxes.”

The first component of the “giving and receiving” project was the head
of the doll, built out of materials they glued and colored (figure 7.4). Pattie
took the design lead here but commanded her dad to use the glue gun in
ways she was afraid to. The body consisted of gears, which provided strong
motion to the rest of the doll, and a motor attached to a rotation sensor that
kept track of the turns. Both hands had light sensors and light sources. They
used the source to make the light more constant so that the small changes in
the light reading were easy to detect. Juan was the lead engineer, and it is
not clear if Pattie was able to fully understand what he was doing. It
evolved into a complex technical project.

Figure 7.4
A giving and receiving LEGO doll

Juan wrote a program to detect a new object in the receiving hand, make
the doll turn to offer a gift with the giving hand, and wait to turn back after
it detected the gift was taken. The project’s complexity did not overwhelm
this pair. They had chosen the value giving and receiving and wanted to
have their project display it properly. Pattie did not lose interest, as the idea
was mainly hers and the doll was looking good and even becoming alive
every time it moved. While father and daughter worked on their project,
they were also engaged in a conversation about the nature of giving and
receiving and how it relates to the Jewish holidays. Pattie contributed her
ideas and Juan his technical skills. They both learned to ask questions and
solve problems in a way that the other could understand. They had to learn
each other’s languages.

In another corner of the room, Marcia and her dad also chose the value of
Teshuvah but gave it a different interpretation. “This project tells the story
of two girls that after a fight give each other a hug and become best
friends,” explained Marcia. “It is about the Teshuvah that allows us to repair
our mistakes. The friends did Teshuvah and became friends again with a big
hug.”

To represent this abstract value, the father and daughter created a puppet
theater inside a box and installed a curtain that opened to show the
performance of two LEGO dolls hugging after a fight. Marcia wrote a play
about the girls’ situation and narrated in the background as the show started.
She built the dolls with LEGO bricks, attached colorful strings as hair, and
placed motors in the arms to swing back and forth simulating a hug.
Meanwhile her dad, the rabbi of the school, was busy in and out of the
classroom. Marcia worked mostly on her own. The project was not as
technically sophisticated as Juan and Pattie’s but stood out for the
abundance of art materials and colorful cloth that Marcia used to create the
puppet theater and to dress the dolls.

Marcia had a hard time building and programming the movement of the
arms as well as writing the code to control the hug. Her dolls looked as if
they were hitting each other instead of hugging. During the first technology
circle, when families showed their projects to each other in preparation for
the final community open house, Peter, a child participating in the
workshop with his mother, told Marcia, “This is not about Teshuvah! The
dolls are not hugging but slapping each other. They are not sorry. They keep
fighting.” The young boy was referring to the fact that both arms would not
move up at the same speed and would not reach the same altitude. Marcia
tried to convince him that he was wrong and, on the spot, came up with a
complex explanation of a new type of hug that looks like a slap. But the
young boy would not give up. After engaging in a long discussion about
what Teshuvah is, everyone jumped in and agreed that this project did not
represent it. The LEGO dolls did not behave like friends. Marcia was not
happy.

The next day she talked with her dad and they agreed that there were two
possible solutions. They must either change the story and the value
conveyed by the project or work harder on the programming and the
mechanics. Her dad agreed to help her and stay in the room with her.
However, halfway through the morning, her dad had to leave the classroom
again.

Even though Marcia said that she hated programming, she chose to work
hard at it because Teshuvah was an important value to her. She was not
ready to give it up. She debugged her program, asked for help, and played

with the mechanics of her contraption until she came up with a movement
that looked very much like a hug. She was thrilled!

Marcia’s theater, and the fact that it was not working as expected,
generated an in-depth discussion about the chosen value. In a different class
situation, this philosophical discussion would have been initiated by the
teacher (e.g., the teacher telling a story about Teshuvah and asking kids to
comment on it) or at a very high personal cost (e.g., if there was a fight and
the conflict needed to be resolved). In this experience, the personal
attachment that Marcia had to the value of Teshuvah motivated her to work
hard to debug her program and to acquire new technical skills, even if her
dad could not help her.

At the end of the week, all of the projects were presented in the open
house for the whole community. It was held in the synagogue hall an hour
before the religious service started. Community members were invited to
walk around, ask questions, play with the projects, and talk with the
presenters. Even though the number of visitors kept growing, the open
house ended with Rabbi Bergman inviting everyone to sit down to start the
traditional religious service.

During the sermon, he referred to the learning experience that occurred
during the workshop and connected the act of creation that happened that
week with our role as partners in the creation of the world. From the pulpit,
he read the collective prayer created by all parents and children: “We, the
participants of the Lego–LOGO workshop give thanks because we had the
possibility to experiment, to work, and to share new materials with
classmates, our parents, and people whom we didn’t know before. We were
creative and we could build projects that express what we believe, feel, and
live by. We played with materials that opened up many new possibilities.
We shared within community, and we were able to create while playing.”

This experience truly integrated technology and values. Most
specifically, it integrated the palette of virtues of the Jewish High Holidays.
The robotic projects were used not only to explore and display them but
also to evoke conversations about them. Furthermore, the project was truly
integrated into the fabric of the school and the synagogue, through an open
house for all community members right before the religious service and
through the mention in Rabbi Bergman’s sermon.

8

Coding Bridges

Jim (seven years old): My fish swims across the screen and a
mean shark will eat it.
Gabe (six years old): There is no mean shark in ScratchJr.
Jim: I will make one.
Gabe: Can you make it not very scary?

I am proud of ScratchJr and KIBO. From my time at the MIT Media Lab, I
am proud of SAGE and Zora. However, my deep passion, what I think
about when I daydream and when I swim in the lake, is not technology. It is
children. It is their potential to be happy, to be good people, to connect with
others and the world, and to develop a sense of transcendence through I–
Thou relationships.

When I finished my doctoral work in 2001, the natural option would have
been for me to teach in a computer science or media studies department.
However, I chose a child development department. My peers and mentors
had a hard time understanding my choice. My response was always the
same: I want to make a lasting impact on children and their lives, their
families, their communities, and their institutions. Technology is just a tool
for me. I want to use it in the service of something else: children.

Now, twenty years later, I do not regret my choice. I have been able to
bring my expertise in designing and studying learning technologies to a
different discipline. At my DevTech lab in the Eliot-Pearson Department of
Child Study and Human Development at Tufts University, I train students to
make an impact on the lives of children through technology. They become
professors and educational designers; they work in start-ups and ed-tech
companies, museums and schools, hospitals, and nonprofits. They
understand and use the language of computer science, the maker movement,
and educational robotics to design better experiences. They can apply

interdisciplinary approaches and research methodologies, and they see the
challenges of developmentally appropriate tools and pedagogies and want
to make a difference in the world. They also know that, although powerful,
the teaching of coding will not be enough to fix the digital gap between
those who have access to power, resources, networks, and new devices and
those who lack the same access unless structural and complex changes are
made to our educational system.

My doctoral mentor at the MIT Media Lab, Seymour Papert, started as a
pioneer in the field of artificial intelligence. However, his passion was
making machines to help children think better, in contrast to machines that
think on their own. That is why he spent time in Geneva, Switzerland,
working with Jean Piaget. Papert was adamant about changing the world
through his work. He wanted to go beyond observing and describing. He
wanted to intervene, to design new learning experiences. And that is what I
learned from him.

In this book I presented an approach that brings together the human and
the technological, the uniqueness of the written language with what is
special about programming languages. While my expertise is in designing
technologies, I am deeply interested in integrating those technologies into
the design of encounters that build I–Thou relationships. Learning to code
is a gateway to learning about each other and about our own selves, and it is
an opportunity to build bridges.

In her book Bring the World to the Child: Technologies of Global
Citizenship in American Education, Katie Day Good documents the history,
dating back to the first half of the twentieth century, of using new
technologies and emerging media to promote world-minded citizenry and
cultural pluralism in education. Magazines, lantern slide projectors,
photographs, pen pal correspondence, messenger dolls, scrapbooks, drama
pageants, student assemblies, radio, motion pictures, TV, and, most recently,
the internet, have all penetrated the imagination of progressive educators.
The multisensory and experiential learning of these new media open up
opportunities to prepare children for democratic values and global
citizenship in a multicultural, multiethnic, and multireligious world.

Over the years, following this long-lasting tradition, I have also
developed and run a series of programs that make use of CAL to build local
and global bridges. In previous chapters I described my work with the Zora

virtual world and SAGE. Here, I am sharing the experiences I have had
with robotics, culture, and values with children, families, and educators.
Over a span of over twenty years, I used different kinds of robotic kits in
many different educational settings. I learned from each one of them and
refined the pedagogy as well as the methodologies for evaluating success.

The first program, named Con-science, was in 1998, while I was a
graduate student at the MIT Media Lab. I took several LEGO Mindstorms
robotic kits to a Jewish school in Argentina and worked with parents and
children around the Jewish High Holidays. The vignette in the previous
chapter’s section “A Window into Their World” tells the story of that
project.

Later, when I was starting as a professor at Tufts, I wondered how I could
extend that experience and engage families from different religious
backgrounds and traditions in a joint exploration. As a result, Project Inter-
Actions was born in the early 2000s. Over several weekends, we conducted
robotics workshops with a diverse group of over twenty families. Project
Inter-Actions workshops helped participants learn robotics by hands-on
exploration and by having ample time to learn about each other’s cultures
and religions. The final challenge was for parents and children to create a
robotic project reflecting the family’s cultural or religious background to
teach others. Some examples are the water scooper from a village in India, a
shaking Easter Bunny, a Christmas tree with flashing lights, a hopping
Eskimo that recognized different shades of white, and Go-Lem, the matzoh-
seeking robot.

Most recently, in 2019, I developed the “Beyond STEM” program that
works with KIBO and the CAL pedagogy. Many of the vignettes in this
book were taken from this experience in eight secular and religious schools
from the three major monotheists religions, Judaism, Christianism, and
Islam, in Boston, Massachusetts, and Buenos Aires, Argentina. The project
first involved the training of thirty-six kindergarten teachers and school
administrators in both cities. Then, they adapted the CAL curriculum to
work in their own classrooms over the course of a twelve-week period with
a total of 224 children. Over those twelve weeks, through ethnographic
observation, focus groups, and surveys, we came to better understand how
robotics can be used as a tool for character development in diverse settings

and how KIBO and CAL can be tailored to reflect each school’s specific
palette of virtues.

For example, Our Lady’s Academy, a Catholic school in Boston, created
a virtues parade as a culminating project. Children programmed their
KIBOs to parade through the school hallway displaying colorful balloons.
Each balloon had taped on it a virtues card representing one of the nine
school values: faith, love, kindness, generosity, courage, honesty, respect,
responsibility, and humility (figure 8.1). Balloons whirled around as the
KIBOs spun in an infinite loop, and children cackled and jumped up and
down as the parade went down the hallway; watching some robots crash
into the walls was just part of the process.

Figure 8.1
The virtues parade

At the end of the Beyond STEM project, every school posted their
resulting robotic projects on a website to share among all participating
schools in both English and Spanish. The teachers were encouraged to
peruse the projects made by other schools, show them to their students in
their own classrooms, and leave comments for one another. While all of the
robotics projects differed in content, technical skills, and art decorations

amid religious and cultural differences, educators chose to create robotic
projects to express their different identities and talk about their associated
challenges. The vignette in this chapter will tell that story.

The Hidden Curriculum
The vision of a world populated by people happy with themselves, deeply
tolerant, and respectful to each other is shared by almost everyone.
However, in democratic societies, the pairing of values and education is
sometimes controversial: Whose values are to be taught? How can we teach
and learn multiple and sometimes opposing values? How do we avoid
indoctrination without falling in a relativistic perspective? Is it possible to
learn about values without exploring identity issues? How does diversity
play out in the search for universality?

These questions do not have easy answers. Some educators chose to
avoid them by rejecting moral education in schools. Instead, they support
civic education and antibias approaches but want to avoid associations with
conservative proponents of a moral truth. Others choose to welcome
socioemotional learning in their classrooms but shy away from using the
term character development.

Willingly or unwillingly, however, teachers teach values, and these
values are part of the hidden curriculum. The coding playground makes
values visible by offering an initial palette of virtues to work with. Most of
these values and characteristics are usually displayed by successful
programmers and cultures of innovation. Different traditions, societies, and
groups might want to add or remove some of them. Others might want to
mix and match and prioritize some values and character strengths over
others. The intentional teacher makes her own palette with universal and
particular elements. In the coding playground, by understanding coding as
another language, that is, by situating the activity of programming as a
vehicle for expression and communication, children can experience values
and develop virtues in the context of forming I–Thou relationships.

STEM educators have identified the potential of computer science to
contribute to their disciplines. However, those interested in issues of values
and identity are yet to discover how. While games and apps have been

designed for this purpose, in this book I show a different pathway: how to
intentionally integrate the teaching and learning of coding with values
education and character development. In this way, every child who wishes
to can grow to create her own games and apps.

The activity of programming positions the child as an agent, as someone
who can make things happen, and as someone with a voice. As the child
codes, she develops technical skills and computational thinking. She can
problem-solve and deal with abstraction; she can sequence, understand
patterns, and use variables and conditionals. However, she must also learn
to act with rectitude and become a mensch. In this book, informed by
decades of working with children and teachers, I show how the coding
playground can become a place to practice: an intentional space to develop
a moral compass and character strengths.

I have a sense of urgency. We are educating a generation who will need
to put their technical knowledge in conversation with their ethical
knowledge. We must start when children are young. Otherwise, we risk
growing a new digital divide, in addition to the uneven distribution of
access to technology: those who can only think computationally and those
who can also act computationally to create a better world and improve their
own communities.

My Four Powerful Ideas: A Summary
Throughout the book, I explored the concept of powerful ideas. I discussed
how Papert coined the term and how I use it to organize the content and
skills we teach in the CAL curriculum. Ideas are mental representations,
and they become powerful when we put them to use. The activity of coding
enables that transition: from an abstract thought to a concrete action.

I recall my first meeting with Papert in the early 90s. I had recently
arrived in Boston from Buenos Aires. I was nervous. I had prepared lots of
questions and several sketches of ideas to discuss with him. However, as
soon as I got to his office, he told me that we needed to get some groceries
he had forgotten. So, our first meeting happened in a supermarket. While
choosing tomatoes and cheeses, we were able to more or less engage in a
meaningful conversation about ideas.

It was not at all the way I had planned it. I could hardly understand
Papert’s South African accent, and he probably could not understand my
thick Argentinean accent either. I could not show him my diagrams since
we were constantly walking the aisles of the supermarket. However, the
background noise made it less awkward to ask each other to repeat our
sentences several times. It forced us to take the time and pause often. Papert
wanted to understand me. I do not think he was interested in getting to
know me; he wanted to understand my ideas.

Papert was a man of ideas. I think that he fell in love with computer
programming because of its potential to bring about new ideas both at the
personal and the societal level. Ideas can change the world. Having grown
up under Apartheid, Papert wanted to change the world. I also want to
change the world, and I believe that education is one of the best tools to do
so. The following are the four powerful ideas that I elaborated in this book.
I hope that they will be helpful to others who also believe in the
empowering role of new ideas.

• Coding as a playground: When engaging children in a computer
science learning experience, we welcome play. Through play we
can impact all areas of human development: cognitive,
socioemotional, language, moral, physical, and even spiritual.
The coding playground, in contrast to the coding playpen,
promotes opportunities for open-ended exploration, creation of
personally meaningful projects, imagination, problem solving,
conflict resolution, and collaboration. The coding playground
engages children in six behaviors that we can also find in the
neighborhood playground: content creation, creativity, choices of
conduct, communication, collaboration, and community building.
However, for these behaviors to emerge, we need
developmentally appropriate tools and pedagogies. When
working with young children, it is not enough to borrow
programming languages or strategies for middle school or high
school. Hence my effort has been focused on creating
developmentally appropriate languages such as ScratchJr and
KIBO robotics as well as the CAL pedagogy and curriculum. My
advice is that when having the choice between technological
playgrounds and playpens, choose playgrounds.

• Coding as another language: Characterizing coding as a STEM
or problem-solving activity is limiting. Instead, if we position the
teaching and learning of programming as a new way of thinking
and expressing ourselves, we are in the domain of language.
Mastering a symbolic system of representation with
communicative and expressive functions opens up many
opportunities. Learning to code becomes a creative and
expressive activity to produce something meaningful and
sharable, not only a problem-solving skill set. It has
socioemotional implications. The CAL pedagogy promotes the
exploration of the similarities and differences between natural and
artificial languages for the creation process, their syntax and
grammar, and their potential to empower individuals. When
coding is taught as a language and not only as STEM, the human
dimension comes into play.

• Coding as a palette of virtues: Any human activity involves
values and making choices to engage in some behaviors and not
others. It also involves understanding and taking on
responsibilities and consequences. The coding playground
provides an intentional opportunity to teach and learn values. The
metaphor of a palette of virtues recalls the painter’s palette, as
opposed to the paint by numbers kit. Like the artist who makes
her palette with new colors and mixes and matches them, the
coder also has a dynamic virtues palette that is put to use. In the
coding playground, ten of these values are explicitly explored:
curiosity, perseverance, patience, open-mindedness, optimism,
honesty, fairness, generosity, gratitude, and forgiveness. However,
new ones can be added. Creative programming can be a pathway
for character development and for exploring the socioemotional
dimension as well as the ethical dimension of learning.
Ultimately, programming helps us to understand that our actions,
like the actions of anyone who creates, have consequences.

• Coding as a bridge: Programming is a semiotic act that can
enable human interactions. It is a meaning-making activity that
uses and combines symbols to represent abstract ideas. When we
learn to code, we learn a new language. Languages can create or
destroy, or they can serve to build bridges or walls. In the coding

playground, the intention is to build bridges. CAL proposes that
by learning the artificial language of machines, we can also learn
the human language that serves us to interact with others, to
connect in deep ways, and to craft I–Thou relationships, using
Martin Buber’s term. Coding can become a bridge, as opposed to
a wall that restricts communication and the free exchange of
information. The metaphor of coding as a bridge promotes
dialogue and meaningful encounters with others. It recognizes the
potential of new ways of learning with and about technology to
sustain global citizenship in our highly interconnected world with
a diversity of local and universal identities and values.

Throughout the book, for each of these four powerful ideas I presented a
metaphor contrasting two viewpoints: coding playgrounds versus coding
playpens, coding as another language versus coding as STEM, coding as a
palette of virtues versus coding as paint by numbers, and coding as a bridge
versus coding as a wall. Metaphors shape the way we think and act. As
George Lakoff and Mark Johnson’s work, Metaphors We Live By, showed
in the ’80s, metaphors might go unnoticed but still structure our most basic
understandings of our experiences. My hope is that after you have read
through the book, you start to interrogate the role of coding in education
and ask yourself how our practices can change as we modify our metaphors.

A Window into Their World: A Diversity of
Approaches
It is 2019 and I am sitting in my office. I am navigating the website that
features the content produced by the participants in the Beyond STEM
project The website is in both English and Spanish, but Arabic and Hebrew
are also available. There are pictures of KIBO projects and videos of
children and teachers in both Boston and Buenos Aires.

The Beyond STEM project came out of a long-lasting dream I had more
than a decade ago: to use programming languages to bring together people
from diverse religious and cultural backgrounds, and who speak different
natural languages, to learn together. In 2019, the dream became a research

project funded by the Templeton World Charity Foundation. In the project,
we used KIBO in secular and religious schools, from the three monotheistic
faiths (Judaism, Christianity, and Islam), in both Boston and Buenos Aires.
Our goal was to understand how robotics can enhance programs with a
strong character development component. Each of the eight schools
participating in the project would convert their kindergarten classrooms into
coding playgrounds. We taught them about KIBO and the CAL pedagogy
and curriculum. In the process of coding together, they also learned about
each other, their cultures and beliefs, and the ways they approach values
education.

On the website, the Colegio Rey Fahd, the Muslim school in Buenos
Aires, shares two different projects created by its two kindergarten
classrooms. One class chose to adapt the CAL curriculum and focused on
the students’ experiences as immigrants. The school attracts families from
all over the world, and part of its mission is to explore diversity. The class
created a beautiful floor map on a giant blue sheet of paper, where painted
on the blue spots were continents and in the left-hand corner, the shape of
South America. Children decorated and programmed the KIBOs to travel
from each of the countries of origin to Argentina (figure 8.2). At the bottom
of the map, on a large white shape in children’s handwriting, a legend read
Somos un montón de gente, todos diferentes y nos encontramos para
aprender a jugar juntos. In English, this means “We are a lot of people, all
different, and we meet to learn and play together.”

The second classroom followed the CAL curriculum. The children
brainstormed about what made their school special and created concrete
representations of those things, people, and values. They then placed the
representations in a treasure chest in the middle of the room. Divided into
teams, the children programmed their KIBOs to move around and create a
path to the treasure chest to discover the school treasures.

Figure 8.2
All the KIBOs made it safely to Argentina

The teachers at Colegio Cardenal Copello, the Catholic school in Buenos
Aires, also followed the CAL curriculum very closely. They focused on the
treasures that distinguish the school from others, such as the school badge
and uniform, the favorite routines, songs, and games. In teams, students
created artwork representing these treasures and placed them into a treasure
chest. Each group worked with a KIBO kit to figure out how to program it
to move from an assigned corner of the room to the treasure chest so that
the treasures could be revealed. Taking advantage of the fact that the
children needed to work in large teams due to their large class size, the
teachers decided to focus on the values of sharing and collaboration. In their
teaching, they reinforced the concept of sharing materials and taking on
different roles when working with KIBO.

The Escuela Comunitaria Arlene Fern, the same school I had first worked
with robotics and values back in 1998, also stayed close to the CAL
curriculum. Differently from other schools, where teaching was done by the
kindergarten classroom teaching team, at Arlene Fern the computer science
specialist was in charge. Children created and decorated a treasure box,
which they placed at the center of the room (figure 8.3). Pairs of students
created objects they wanted to put in the treasure box. The objects

represented both the students’ pride in their school (a school t-shirt, a song,
a game, an English book) and their connections to Judaism (a cup used for
the ritual blessing over wine, candles, flowers). KIBO’s job was to deliver
the objects to the treasure chest. Students learned to program KIBO to take
different paths and explored different ways to attach the objects to the
robots so they could be safely delivered. Most of them ended up using the
KIBO art platforms as carrying devices.

Figure 8.3
Escuela Comunitaria Arlene Fern treasure chest

The public school in Buenos Aires, JIN E DE 17 Juana Manso, had two
participating kindergarten classrooms. In one, they adapted the CAL
curriculum so students could revisit all past projects done throughout the
year and identify connections to the school’s values. Working in
collaboration with the arts teacher and the librarian, the classroom teachers
created a giant maze populated with the different projects. Students
programmed KIBO to take a tour through the maze, explore all of the
projects, and choose the ones they wanted to take back to the treasure chest.
That is, students had to decide which of the projects best represented the
values of their school community to be kept in the treasure chest. In
addition, this classroom chose to place a GoPro camera atop one of the
KIBOs so the students could experience a “KIBO eye view” of the route the
robots took.

The second classroom also worked with the CAL curriculum but chose to
focus on the value of environmentalism, which they had been exploring
throughout the year. They transformed KIBO into a guardian of nature and
gave it a friend named KIBA. They created two dolls with recyclable
material and placed them atop KIBO and KIBA. They then programmed the
robots to travel to various elements of nature including trees, fish, and
others, which they had carefully created in their classroom, to protect them.

Unlike the projects from the Buenos Aires schools, the projects from the
Boston schools did not closely follow the CAL curriculum. Teachers felt
more comfortable adapting it, maybe because most of them had previous
KIBO experience. The schools in Boston were also smaller and had smaller
class sizes, and thus, the size of the groups of children working with KIBO
was also smaller.

At Al Bustan/Malik Academy in Boston, the students begin learning
about God and the Quran as soon as they start kindergarten. This is very
different than what happens at Colegio Rey Fahd in Buenos Aires, in which
religion is almost absent in the kindergarten curriculum. At Al Bustan, the
teachers used the KIBO final project as an opportunity to deepen the
children’s understanding of Islam. The students were taught a popular song
called “Rahman ya Rahman,” which talks about connecting with God
through the Quran and filling our hearts with the words of God. They then
choreographed a dance to the song to perform alongside the KIBOs. As the
students stepped forward and clapped in their dance, the KIBOs moved
forward and waited for their claps and then they all moved backward. This
song was both an opportunity to engage with the Arabic language and with
some of the major tenets of their faith. It also brought dance and movement
to the coding playground. The KIBOs were not decorated, and art materials
were not integrated into the project because according to Islam, there
cannot be pictorial representations of God.

In preparing the dance, the students came up with many questions, like
“Who is Allah? How can He see us, but we can’t see Him?” The teachers
chose to follow the student’s lead and extended the final project to grapple
with the concept of God. They read the book Ilyas and Duck Search for
Allah by Omar S. Khawaja and the children acted it out together with
KIBO: one little girl played Ilyas, and KIBO was programmed to play
Duck. Together, they made their way through different parts of the

classroom searching for Allah, before ultimately understanding that God is
everywhere.

Our Lady’s Academy in Boston took the final project in a different
direction. As a Catholic school, they work with nine virtues: faith, love,
kindness, generosity, courage, honesty, respect, responsibility, and humility.
Each month, a student from each classroom is acknowledged for displaying
one of those traits, and each day the teachers conduct their classes with
these virtues in mind. They created a virtues parade in which KIBOs
marched together. Each pair of students chose one of the nine school
virtues, created a flag for that virtue, and attached it to a balloon carried by
a KIBO. To integrate the literacy component, they read Clifford and the Big
Parade by Norman Bridwell and Balloons over Broadway by Melissa
Sweet. Every student was given two small squares of paper. At the top of
each was one of the school’s virtues, and beneath it was a blank space for
them to draw a representation of what that virtue meant to them. One
student drew herself helping collect potatoes for a Thanksgiving food drive,
showing humility. Another drew herself and her classmates walking into the
school chapel, showing faith. One boy drew a picture of himself and his
“girlfriend,” showing love.

At the JCDS in Boston, students programmed the robots to travel a
student-made landscape of Israel as the song “Eretz Yisrael Sheli” (“My
Land of Israel”) played in the background. Throughout the CAL
curriculum, teachers integrated KIBO with Hebrew language education.
The final project was a culmination of that integration and the collaboration
between the different members of the teaching team: a lead teacher who
was Jewish and spoke minimal Hebrew, an Israeli teacher who was
responsible for the Hebrew language immersion, and a non-Jewish STEM
teacher who partnered with the lead classroom teachers throughout the day.

Students shared the final projects with the larger community, and the
multipurpose room in the school was converted into an exhibit room.
Family and friends were invited to come see KIBO travel through the Israel
landscape. After the formal presentation, which included children singing
and dancing to the song, visitors were handed a sheet of questions to
discuss with the children. During this interactive part of the exhibit, visitors
asked questions and students explained the design process, decision points,
successes and frustrations, and, fundamentally, how to program KIBO.

The secular school in Boston, the Eliot-Pearson Children’s School
(EPCS), is the lab school of the Department of Child Study and Human
Development at Tufts University. The school chose to work on two final
projects. For the first one, they programmed the KIBO robots to dance and
light up as the song “This Little Light of Mine” played in the background.
The students used repeat loops to make KIBO dance to the song and
programmed the lightbulbs to light up at every “I’m gonna let it shine” line.
The choice of this beloved children’s tune, which is a spiritual song
transformed by the US civil rights movement into an anthem of solidarity
and power, is interesting at a secular school. The lyrics repeat, “Everywhere
I go, Lord, I’m gonna let it shine. Let it shine, let it shine, let it shine!” That
said, the song, which became a celebration of the light within the self,
embodies the values of EPCS, a school that focuses on antibias education,
acceptance, and the celebration of individuality. The song was used to teach
the concept of repeat loops but also to facilitate discussion about the
school’s values.

The second project was closely aligned with the CAL curriculum and the
treasure chest idea. Following an extended discussion about the different
characteristics of their school, the students engaged in drawing and writing
cards about their favorite school treasures. At the end of the class, the
teacher collected the cards and placed them in a treasure chest for safe
keeping. The final project then emerged out of a game the teachers led.
“Someone broke into the chest and took out all the treasures and hid them
in different parts of the classroom,” explained the teachers. “We need to
program KIBOs to travel through the different obstacles in our classrooms,
to find the treasures, and return them to the chest.” In a clever way, EPCS
teachers took the CAL curriculum and made it into a game.

As I navigate the Beyond STEM project website and read the stories of
the different KIBO projects in the eight schools, I see that each found a
unique way to integrate the teaching of robotics and values. I see creativity
in children’s projects but also in the teacher’s adaptations of the CAL
curriculum. I admire how the teachers tailored their KIBO time to
emphasize different cultural and religious traditions. I learned about how
each of the schools chose to display their palette of virtues, and I see the
particulars and the universals. I am amazed by the diversity of approaches
and configurations of the teaching teams.

I see coding playgrounds in which students developed computational
thinking, coding, and problem-solving skills. We conducted coding
assessments and found that an overwhelming number of kindergartners, 75
percent of the students in the sample, reached the top two levels of
knowledge, skills, and understanding at the end of the curriculum. The
children were curious, determined, and persistent. We discovered that they
deeply engaged with the values in the palette of virtues. They learned to
take turns, collaborate, and share classroom resources while developing
patience, generosity, and gratitude. They were forgiving to themselves,
others, and their teachers, and they brought optimism and fairness to their
work with KIBO. Across the city and across the globe, the learning of a
programming language provided a powerful venue to explore the
universality and the particularities of bringing values into the coding
playground.

On the website, I see comments that teachers wrote to one another. The
original idea was to hold a final virtual synchronous conference for all
teachers in both Buenos Aires and Boston to come together and share their
learning. However, due to the lack of a shared language and logistical
difficulties regarding the project’s timing, this was not possible. Instead, we
conducted two final meetings in Buenos Aires and in Boston.

In those meetings I learned that some teachers reported that for their
young students, it was easier to understand why a school of a different faith
focused their final KIBO project around a song, book, or value they were
not familiar with rather than understand the cross-continental differences
within faith communities. For example, when the kindergarten students at
the Jewish day school in Boston watched the video of the Jewish day school
in Buenos Aires, they were delighted to see the kids in blue and white (the
colors of the Israeli flag). But they were quite confused as to why the
Jewish children were talking in Spanish, a language they did not associate
with Judaism. To the adult viewer, this detail goes unnoticed.

Similarly, while the Muslim schools in Boston and in Buenos Aires
include Arabic in their instruction, the final project video from Boston
showcased a variety of accents as the children sang and danced with KIBO
to a popular devotional song about Allah. For some of the children in
Buenos Aires, who came from countries with different Arabic dialects, the

different accents were noticeable. The idea that there are different Muslim
communities around the world was made tangible through this experience.

The Beyond STEM project was borne from a dream I had long time ago.
Despite the project’s success, its implementation was not exactly what I
dreamed. We were not able to take teachers and children to visit each
other’s schools, nor could we have more time to learn from each other or
include families in the work. However, one story from the final meeting
with all the Boston teachers showed me the potential of this kind of work to
build bridges. The teachers from Al Bustan explained to the group the
importance of the song they chose for the final KIBO project. “Allah is at
the heart of everything that happens in the world. The job of the young
child, who is not yet, in Muslim tradition, responsible for formal liturgy or
text study, is to notice the world around her and think about Allah,”
explained one of the teachers.

Immediately, the Israeli Hebrew teacher from JCDS raised her hand and
asked the name of the book. The teachers from Al Bustan told her the name
hesitantly, “It’s about Allah.” In other words, it is a Muslim book. The
Israeli teacher seemed unphased and said, “I love it. I want to teach it. I
have another book I think you might like, Abraham in Search of God.” The
exchange was powerful. A modern Jewish Israeli teacher sharing books to
teach about God’s presence in the world with a religious Muslim teacher in
hijab. These were not teachers interested in interfaith work. They
participated in the project because they wanted to bring robotics and
computational thinking to their classrooms, yet the coding playground
provided an opportunity to engage in a meaningful dialogue that would
never have otherwise occurred. Borrowing Buber’s language, through the It
of the KIBO, they were able to engage in an I–Thou encounter.

Further Readings

This book focuses on my own work, first as a graduate student at the MIT
Media Lab and then, for the last twenty years, as a professor at Tufts
University and director of the DevTech Research Group. However, my
research draws on ideas, projects, and studies conducted by many people in
many places over a long span of time. You can find those citations in peer-
reviewed papers I have published in the past, which are linked on my
website: http://www.tufts.edu/~mbers01/.

In addition to the materials cited in the text, I chose a small subset of
books with powerful ideas that have inspired my thinking and my writing
for the making of this book.

Bruner, Jerome. Child’s Talk: Learning to Use Language. New York: W. W.
Norton & Company, 1983.

Buber, Martin. I and Thou. New York: Scribner, 1958.
Csikszentmihalyi, Mihaly. Flow: The Psychology of Optimal Experience.

New York: HarperCollins, 2000.
Dehaene, Stanislas. Reading in the Brain: The New Science of How We

Read. New York: Penguin, 2009.
Duckworth, Angela. Grit: The Power of Passion and Perseverance. New

York: Scribner, 2016.
Ford, Aníbal. Navegaciones: Comunicación, Cultura y Crisis. Buenos

Aires: Amorrortu, 1994.
Gilligan, Carol. In a Different Voice. Cambridge: Harvard University Press,

1982.
Goody, J. The Logic of Writing and the Organization of Society (Studies in

Literacy, the Family, Culture and the State). Cambridge: Cambridge
University Press, 1986.

Kohlberg, Lawrence. The Philosophy of Moral Development: Moral Stages
and the Idea of Justice. San Francisco: Harper & Row, 1981.

http://www.tufts.edu/~mbers01/

Lave, Jean, and Wenger, Etienne. Situated Learning: Legitimate Peripheral
Participation. Cambridge, England: Cambridge University Press, 1991.

Lerner, Richard. The Good Teen. New York: Three Rivers Press, 2007.
Ong, Walter J. Orality and Literacy: The Technologizing of the Word.

London: Methuen, 1982.
Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas.

New York: Basic Books, 1980.
Papert, Seymour. The Children’s Machine: Rethinking School in the Age of

the Computer. New York: Basic Books, 1993.
Piscitelli, Alejandro. Ciberculturas 2.0. En la Era de las Máquinas

Inteligentes, Buenos Aires, Argentina: Paidos, 2002.
Resnick, Mitchel. Lifelong Kindergarten: Cultivating Creativity through

Projects, Passions, Peers, and Play. Cambridge: The MIT Press, 2017.
Turkle, Sherry. The Second Self: Computers and the Human Spirit. New

York: Basic Books, 1984.
Turkle, Sherry. Reclaiming Conversation: The Power of Talk in a Digital

Age. New York: Penguin Press, 2015.
Vee, Annette. Coding Literacy: How Computer Programming Is Changing

Writing. Cambridge: The MIT Press, 2017.
Vygotsky, Lev S. Mind in Society: The Development of Higher

Psychological Processes. Cambridge: Harvard University Press, 1978.
Wolf, Maryanne. Proust and the Squid: The Story and Science of the

Reading Brain. New York: HarperCollins, 2007.

Resources

For links to videos, projects, curriculum materials, teaching tools, and other
resources related to the work mentioned in this book, please visit the
website of my DevTech Research Group at Tufts University:
https://sites.tufts.edu/devtech/.

Seymour Papert warned us again about technocentrism, which he
described as the fallacy of referring all questions to technology. If and when
you visit the DevTech website, you might be tempted to spend time
browsing information about ScratchJr and KIBO and the many videos of
different experiences done in classrooms all over the world. However, there
are other less shiny and appealing elements that still make a coding
playground possible. Please make sure to also find them.

Curriculum
We have developed over twenty free curricular units that integrate the
teaching of coding, robotics, and computational thinking through both
ScratchJr and KIBO, with diverse subjects such as literacy, math, social
sciences, geography, and Judaic studies. All of the units are
developmentally appropriate for children ages four through eight and are
aligned with the coding as a playground philosophy that engages the
cognitive as well as the socioemotional dimensions of learning. The units
provide opportunities for promoting the six Cs or positive behaviors of the
PTD framework through plugged and unplugged activities that use
movement, song, and arts and crafts. In addition, the curriculum is designed
to encourage the development and practice of the character strengths in the
palette of virtues.

Three of our curricular units have been widely used, evaluated, and
improved over the years. Make sure you check them out:

https://sites.tufts.edu/devtech/

• The Coding as Another Language (CAL) curriculum for both
KIBO and ScratchJr that integrates literacy:
https://sites.tufts.edu/codingasanotherlanguage/.

• The Dances Around the World curriculum for KIBO that integrates
social sciences:
https://sites.tufts.edu/devtech/files/2018/03/KIBOCurriculum_Da
ncesAroundtheWorld.pdf.

• The Limudei Code-esh series for both KIBO and ScratchJr that
integrates Jewish studies through six different holidays:
http://sites.tufts.edu/devtech/jewish-curricula-series/.

Positive Technological Development Tools
PTD is a theoretical framework that guides the design and evaluation of
curriculum, teaching resources, and technologies to specifically address six
behaviors: content creation, creativity, communication, collaboration,
choices of conduct, and community building. We have created a set of free
PTD tools to help teachers, researchers, and designers implement PTD in
their own work:

• PTD cards: A set of cards with games and instructions to foster
discussion among adults who plan to bring technology into a
learning setting for children. The cards can be printed back-to-
back, cut out, and used in the collaborative, interactive evaluation
of technological tools or technology-rich learning setting.

• PTD engagement checklists: Two different rubrics serve to
evaluate if the six Cs of PTD are happening. The first can be used
to assess if children are developing these behaviors; the other can
be used to evaluate the learning environment and the
teacher/facilitator.

These can be found here: http://sites.tufts.edu/devtech/ptd/.

https://sites.tufts.edu/codingasanotherlanguage/
https://sites.tufts.edu/devtech/files/2018/03/KIBOCurriculum_DancesAroundtheWorld.pdf
http://sites.tufts.edu/devtech/jewish-curricula-series/
http://sites.tufts.edu/devtech/ptd/

Assessments
We have developed different ways to evaluate if children are learning to
code in expressive ways and develop computational thinking. In classrooms
with scarce resources, children tend to share robots and tablets; therefore,
the final projects do not always present the result of an individual learning
experience but rather the progress of a group. Hence, we developed
assessment tools that can be used to evaluate both the final project and an
individual’s learning progression:

• Final project rubric: This easy-to-use tool serves to assess the
complexity and creativity demonstrated by the final KIBO and
ScratchJr project and places them on a one to five continuum:
budding, developing, proficient, advanced, and distinguished.
Rubric evaluation criteria include complexity of programming
concepts, block variety, purposefulness, and elaboration. The
rubric can be used by both researchers and educators and includes
specific guidelines for scoring.

• TechCheck: This is a validated, unplugged assessment used to
evaluate computational thinking in children. TechCheck presents
children with logical tasks that do not require prior coding
knowledge and can thus be used not only in teaching but also in
research studies that employ a control group. The assessment
contains multiple choice questions that can be administered to
individuals, whole classrooms, or groups in an average of twelve
minutes.

• Coding stages assessment (CSA): This tool evaluates the coding
stage in which a child fits in with respect to KIBO and ScratchJr.
Its format requires prior knowledge of the coding tool. CSA
consists of open-ended questions and can take ten to forty-five
minutes, depending on the child’s knowledge. The assessment
begins with questions from the early most stages and only
progresses to later stage questions if the child has sufficiently
answered the prior set.

Professional Development Opportunities
On the DevTech website, you will find many opportunities for both online
and face-to-face professional development. These trainings focus not only
on KIBO and/or ScratchJr but also on the powerful ideas discussed in this
book. In addition, if you are interested in different kinds of training
opportunities, please do not hesitate to contact me.

	Contents
	Acknowledgments
	Preface
	1 Coding, Robotics, and Values
	Foundations: A Coding Playground
	Languages for Children
	Starting Early
	A Window into Their World: Mouths Cannot Read Bar Codes

	2 The Coding Wars
	The Two Sides: A Simplified Story
	The Role of the Teacher
	The Role of the Student
	The Role of Education
	The Role of Coding
	A Window into Their World: Robotics Guarding Nature

	3 The Rise of STEM
	The Work Pipelines
	Global Experience
	Computer Science and Computational Thinking
	The Problem with STEM
	A Window into Their World: Programming a Map, Building a Language

	4 Coding as Another Language
	Transitioning Languages
	Meaningful Sequences
	Doing Things with Language
	A Window into Their World: Georgia, Elena, and the Old Lady

	5 From Theory to Practice
	Powerful Ideas
	A Teacher’s Perspective
	Coding Stages
	A Window into Their World: The Missing Audience

	6 Coding Character
	The Narrative Approach: Moral Identities
	The Reasoning Approach: Moral Thought
	The Experiential Approach: A Moral Life
	The Values in Coding as Another Language
	A Window into Their World: The Best Use of Her Time

	7 The Palette of Virtues
	The Coding Playground
	The Ten Virtues
	Coding a Mensch
	A Window into Their World: The Learning Family

	8 Coding Bridges
	The Hidden Curriculum
	My Four Powerful Ideas: A Summary
	A Window into Their World: A Diversity of Approaches

	Further Readings
	Resources

