

LEARN MICROPYTHON
WITH ESP32

Python Programming, Raspberry Pi, Micro-
python Modules, Bme280 Environment Sensor,

Max7219 8x8 Matrix Display, Micro-python
Projects And More

By

Jansa Selvam

TABLE OF CONTENTS
WHAT IS MICROPYTHON AND PYTHON FOR
MICROCONTROLLER
WHAT IS UPYTHON AND WHY SHOULD YOU CARE
SOFTWARE YOU WILL NEED
HARDWARE YOU WILL NEED
HOW TO GET THE MOST OUT OF THIS PROJECT
GET THE DEMO SCRIPTS FOR THE PROJECT
UPYTHON VS CPYTHON
UPYTHON RESOURCES
UPYTHON COMPATIBLE BOARDS
GETTING STARTED WITH THONNY IDE FOR PYTHON
HOW TO INSTALL THE MICROPYTHON FIRMWARE TO YOUR
ESP32
SETTING AN INTERPRETER
HOW TO WRITE AND EXECUTE A MICROPYTHON PROGRAM
OTHER VIEWS IN THONNY IDE
THONNY IDE WITH RASPBERRY PI PICO
USING THONNY IDE WITH BBC MICROBIT
THONNY IDE ADVANCED CONFIGURATION
FIND PYTHON PACKAGES AT PYPI
THE MICROPYTHON SHELL
HOW TO INTERRUPT A RUNNING PROGRAM
HOW TO RUN A PROGRAM AT BOOT
HOW TO DEBUG MICROPYTHON PROGRAM
ABOUT MICROPYTHON MODULES
BUILT-IN MODULES
COMMUNITY MODULES

HOW TO INSTALL AN EXTERNAL MODULE
BLINK AN LED WITH LOOP
FADE AN LED WITH PWM
READ A BUTTON WITH LOOP
READ A BUTTON WITH HARDWARE INTERRUPT
READ A BUTTON WITH TIMER INTERRUPT
READ A POTENTIOMETER
DHT22 ENVIRONMENT SENSOR
BME280 ENVIRONMENT SENSOR
ESP32 INTERNAL TOUCH SENSOR
ADXL335 ANALOG ACCELEROMETER
HC-SR04 ULTRASONIC DISTANCE SENSOR
2X16 LCD DISPLAY WITH PCF8574 - PART 1 HARDWARE I2C
2X16 LCD DISPLAY WITH PCF8574 - PART 2 SOFTWARE I2C
OLED SSD1306 I2C
OLED SH1106 I2C
OLED SSD1315 I2C
NEOPIXELS
MAX7219 8X8 MATRIX DISPLAY - PART 1 RANDOM PIXELS
MAX7219 8X8 MATRIX DISPLAY - PART 2 TEXT

WHAT IS MICROPYTHON AND
PYTHON FOR

MICROCONTROLLER
So some of you might think micro pies and what is this super tiny
snake or maybe something to do with Monte Python or so the triple
E spectrum realized his ranking of the most used programming
languages in 2018.

And it's very interesting. Python is on the top and it says a 100%
coverage shrink. it's in the web, it's on your desktop computer and
it's now, already, also used on microcontrollers. And what I find
quite interesting is that assembly entered into top. This year, which
means probably because of the internet of things that are
programmed with assembly.

So micro Piven is a fully reimplementation of Python and it leads to
be lean and efficient to run on a microcontroller because you
couldn't be just using Python as you know, from your desktop
computer. It needs. it was rewritten from sketch to fit on the
microcontroller. It has a virtual machine and a runtime system with
garbage collection and everything you need to make it really
efficient. There's bike code or native machine code you can use
with. The micropython and is also in support for Atlanta smaller.
when you have a project where you like to use Python, because you
want to get it up easy, but you need to make it more efficient in
some, your tiny bits. There's also Atlanta San Francisco Portland.
The compilation happens on the chip. it's not compile your program.
You write as the compile on your desktop sheen, it's complete
compact on the hardware use. as late as I have this fantastic camera
over here, I will show you some demos.

how easily can use microbiomes and how did this start? How me
one think of having a high level, really high level scripting language
to run on a director and a microcontroller about five years ago,
Damion George at the time, working at Cambridge university
thought, oh, this would be fantastic to control my little robots with
Python because it's easy. And I know, and I don't need to interact
with all the low-level stuff. he had the idea, let's run a Kickstarter
because at that time everybody was doing it and I would really like
to see how it is to do a Kickstarter as well. , And he wanted to think
maybe other people will be interested in having him. And he would
like to have an open source community around it to support the
project. Because as we think open source is very important because
I profit from it every day and we want to give something back. this
means micropython is open source. Everybody is welcome to
contribute and it's, it's open to everybody.

So
this was about five years ago and today. Uh, up till today, a lot has
happened when you look at our guitar page, they have more than
7,000 stars and more than 200 contributors. Very interesting is that
the contributors come out of different areas. they are makers, but
they are also people that work as embedded developers in the
industry because they saw the benefit of. a high level language,
which you can start up making it run up easy and focus on the
bottlenecks of your actual project. And there are also more than
2000. Which means a lot of people are working on it. me of you
might have known the BBC microbit. That's also one project in the
UK. They were given about a million of these little PCB margins to
the children in the UK to get them up and running quite early in the
education process. Python is taught in school in the UK and. This
also, there are other languages support as well, but microbiome is
also on it. Then there are a lot of different development bolts. For
example, other fruit has its own micro Python part. That's called
circuit Python. if you want to try microbiomes and you have a wide
range of development boards, and there is all, of course, the official
micropython board, the piebald. Which I'm going to show you today

because there's always an advantage on having your own hardware,
because you all know the saying, if you're serious about your
software, you should do your own hardware. Then last year there
was the first micropython Riley book from Nicholas Holloway,
which is also quite big. There are a few, actually a few makeup
books already out there, but this is quicker kind of milestone for us.
And also. After five years, it's time to make a new board. And I
have this one with me today. what I'm going to try to do is from the
original Kickstarter, which was fine, five years ago, this board is
still supported. if you have one of these software updates are still
running and getting to be supported on the old board, but we were
talking to people. What would you like to see? What do you missing
at the actual on the market? And we tried to listen and make a new
board as well.

So
what's the benefit of a scripting language used instead of traditional.
See, for example, to program microcontroller it's learnability, it's
easy. You can read it more easily. You have the ability to do rapid
prototyping, which means your time to market is very quick. even if
all of you are just doing this for fun and our makers, if you see all

this really, really cool project, I did, maybe I can do a product out of
this. And some people might be interested. I've heard about these
stories or this all started as a hobby, but now I'm selling a couple of
thousand units per year. I started as a maker, but now I'm a kind of
already business thing. It's also very easy to extended by a user. if
you have something already up and running and you want to ask a
special specific module implemented, you just get out as like it's
almost, as you can just pick it up and move it into your own way.
this is all very positive talk, but when I go out to people am and tell
them what I do, especially when I talk to embedded programmers
that work quite near the hardware, they say, oh my God, why would
I do that? Microbiome, uh, Python is super slow and I can't really
use this on a microcontroller. This will kill all my benefit, why I'm
actually using a microcontroller for this project. , and, and also,
well, we are very used to see and be very good. And so this is kind
of turning a little bit around the open, open the minds of some
people that work in this. Area. they say they are interpreted, so they
are slow. They loose, they use a lot of resources, Python. this can't
be energy efficient or efficient in any way at all. But I say, well,
micropython is fast. If you look at the development time. Just think
about it. When you get a new microcontroller out there, there are
thousands of sites of data sheets, and you need to get anything out
of it in rubbing. metimes you have working examples from the
manufacturers, but you still well, that's what I did. My final thesis in
electrical engineering. It kept me up a long time to make it. And
then make it efficient and make it really, for example, a really altar
low power STD described in the data sheet working. if you have
functions that already give you the access, you can really focus on
the bottleneck of your project and don't waste your time in just
making it get up and running.

So as there's to make a Trek, I thought there are a lot of. Brodie's
out there. for example, Damian George was, was the initial idea to
do the pie bot for the first Kickstarter. He wanted to do a quarter
copter. And if you want to learn more about this, that will be a QR
code later on. And all, for example, you can do this weather,
weather station, which are run by microplasm. if you like to find out
more, there are a lot of what make approaches. We can see and they
are described on GitHub, so you can build up on them if you're
interested to use this. that's the maker side. A lot of people picked
up, but I am also involved in industrial project that used microplasm
for the co-op texture. And when I talked to some of the developers
over there, they asked me, or that. I asked them, why did it just
them? Because it's just around for maybe five years, there is no
really long time. there is no saying yes, we have tested this 10 times
in the field and it's up and running and it's running 24 7. Anything.
There's nothing there. it's quite a brave step to do it like this. but one
of the developers said, yes, we are looking for a replacement for our
embedded Linux system, because an embedded Linux system for
this tiny device we're using is just too bloated. We don't need it for

that much. the first. Product prototype was bloated was, was, was
with shell scripts and they replaced it with micro Pythen. and after
two times, not with this initial project they got on and on with it
because they really liked to use micropython. They are. In low
power system that consume less than 500 nano AMS with active
program on the microcontroller, which is quite impressive. When
you think about the real-time image processing, they're using it in.
the, the interesting part is you have it in your development phase,
but you can also run it on the final product to, for example, get some
updates on there. And I hope this gets more clear when I'm trying to
do a little demo later. And what they said is yes, of course you
cannot use microbiomes and for everything, because you might
need some assembler code there and there are bits, and then you just
integrate integrated and you really, really fast to show a first
prototype to a customer or to your supervisor, that you get
something up and running from with new hardware or,

and also in, is quite famous for used in school calculators. about.
Two years ago. Now the first calculator picked microbiome, which
is number works. It's a startup and they have this graphical

calculators that use micro Python on them. And just recently we
heard about that Kazia is also putting it into them. Micro control
trellis. This is the old cute little snake logo from the original
Kickstarter, which you put on. that's the good thing about the open.
They are allowed to do it. they pick it up and move it into the
direction.

So I hope a few, you got excited about it and think, oh, that's cool. I
would try this out, but I don't have a boat to worry. You can go on
our homepage. And there is an emulator where you have this little
pie bot and you can run a few demo scripts and can see if you like
it. And put it up. no need to buy hardware. Just we have this
emulator as well.

more companies that are using micro pipelines, obviously Damon
George, who created micro Python and also offers, development
board around the. he designs hardware, especially specific hardware
or specific modules in Python. And what he says is, so my
background is theoretical physics. I'm not a typical engineer who.
Who looks like more just to getting a problem done or solved. He's
more research oriented. He believes. And I believe that too. That's
the thing where microbiomes got so, so successful to not just find a
solution for a specific problem, otherwise go on and make it more
usable for everybody. And there are other companies. this is just, I
put pictures.

One more people are using it like these consultants that do. Uh,
development board development for customers and travel trailers,
travel set. For example, he come across microbiomes and because
it's always hard to find components and tools that on the one side,
they're easy to use, but need to be on a professional applications
level and destroy him to microbiomes. And so that's what he told
me. He can get up, set up. Adaptable to stuff. As you can see here,
these chips he's using, he is the same as the PI bot, which is the
original one. Just plug it into unadaptable and get stuff up and
running easily. just as a little bit of an ask as an example. when we
look at this, it's the amazing software, all this implementation, like
all this rewrite of Python to make it real. Running like clockwork on
the hardware. that's one side, but the other side is a micro pies or
George robotics,

the company behind it does their own hardware as well. if we could
switch to the camera for a second, I can show you yes. you can see
here, this one is still original, so ever. How small it is. This is the
original PI bot.

This is the pilot light actually, but the form factor is the same. And
the new generation moved to this one because we was, we were
thinking what, what people told us. Well, yeah, well, we liked this

little module. He was a, probably have heard of the ESP 32 other
ESP, 82, 66. They are. they're small, tiny, easy to access and
everything. But when you buy these modules, you still have to
design a little PCB to program it for the first time. that's what they
were missing. we designed in micro USB. Connector to make this
up and running easy. uh, Caltex,

M
seven CPU for hype, for power. a wifi module with BLE and on the
other side of my trusty cart. you can still exchange your, so you
have internal file system, obviously, but if you want to really collect
data locally, you might like to have an SD card as well, or storing all
your programs. And here you see this bus connectors, which are
officially designed on being plucked in. Other adaptable notes,
which you can design yourself. that's the aim of microphone. There
will be some obviously to get you up and started, but what we really
want is that people easily can design their own product and having
the heart of the products out of the box already up and running. yes.
Okay. I would go on with the demo now. And show you, uh, a little
bit of the code that's on the board. I'm starting, I'm starting with the
original pie ball. Yeah, very good. and here's, you can see the salts

and adopter bot, so, and he will, he has a sensor bot which can be
plugged in. as well. here we have RGB led temperature and
humidity sensor, a light sensor, and a little buzzer for some sound.
you can see it's actually something happening. Everything is better
with a little buzzer. Isn't it?

okay, so, I'm gonna, this one is packed in now. And if I switched
back. Perfect. so I started like this, uh, so this is the pipe. Flesh just
comes out as a, it pops up like a USB stick or something. , so when
I. Go in there. I have my main PI, which is empty now, I believe.
you can put your code here, just type code and save it to your board
and run it. But obviously I have something prepared because we
want to show, I want to show you how easy it is to run, to run the,
the little sensor Tyler I've shown you.

 So
this is just a little driver written for the, for the different. For this tile
that I plugged in on the top. so you have, the optical sensor, as you
can see here, or the temperature and humidity. This is just to see,
this code is already on there. I don't have time to do all this now.

So, I'm going to show you how easy access. in the background,

sorry. as you can see, micropython pilot light help type, help for
mine. we are already on the sport.

You can see, I showed you early before. If you type the help, it has a
little bit about the control and. And I'm going to import the program.
I just sold, showed you earlier and run a little off the test script. As
you can see there's roughly 25. 3 degrees 32. This seems a little bit
low,

but, I also want to show you a little, if we could now switch back to
as you can see,

it's arguably led just counting, counting the different colors. And I'm
going to do some measurements and it's going to be shown in the
interactive for apple. there is, what's. The amazing thing about is, as
I would say, when I first came across, this is like, oh my God, I just

need nothing to employ to install anything. I just did my pies and
code. And obviously I need to know how to interact with my senses
and everything, but I don't have to install an IDE. I can use one if
I'm used one, but I don't have. I'm going to just like lock this into a
text file and then I have this, I can use these data easy, like from the
plugging it in and using the orange data to make some, some of my
plots or whatever I need them for. this is still the original piebald
and the same, uh, can be used with this one. I like this is the half
sizes and the same cone runs on this spot. Like this. I can see
something. if I now go back. To my code and run exactly the same
pork, the same program.

That's also on the So what I try to show, we try to do this all very
modular. still the old, all of the old hardware will be still supported
with the new upcoming sensors. Since tiles, I think most impressive
what I said that they managed to make these things very, very small,
because I think that's the most important part. If you run the internet
of things at some point, You have the type of things should be tiny
and mostly running on very low power. rry. That's the wrong button.

The right button. And as you can see, there's a microcontroller on it
and the wife and what you have is separate.

So why is that to make the board more, more expensive obviously
now to have the real-time availability of the microcontroller so that
you. I can really focus on the task. And most of the time you might
just need the wifi to send the data off and not on, don't have to really
have it on all the time or something, or need to wake it up through
Bluetooth or whatever. when you can see here, there's just a
comparison to the old piebald 1. 1 and the pilot D which is the new
one. It's got faster, obviously, because the current role has evolved
and it's from 34 million AMS to a deep sleep to 10 micro amps with
the real time clock still enabled. which means you can be, it can be
woken up. this is a whole new. Area on what we really like to see
the internet of things running on. When you think about it, that you
don't want to go around and exchange batteries every time, or I
think is a 20 billion by the time of 2020, that will be out and running
and collecting data and sending them back. the power problem is
really a thing that needs to be focused on. this is all very positive.

Isn't it? It's, can't be all so good about microbiome Kenneth. what
bison cannot do is not as you can, as it always, you need to see your
problem is you want to solve, and then you need to look at what is
available or what would I could I use with it? So really, really small
MCUs that don't have enough Ram to put in like the micro piles and
source. They use still will use traditional C because they are just not
made for having these kind of operating system. Microphone is not
operating system like an outhouse. You might know it's
implemented on the bare metal, but still kind of acts like an
operating system. As you can see how easy it was for me to just
switch on and access these different pins. And also, for example,
for. Larger projects, especially when you work with a lot of people,
you might like to have an embedded Linux system on your device
where you can control everything. But I know of a company that
has an embedded Linux system on a product, but still uses
microphones and for the special tasks, which is very interesting
because they already use this hardware on. extension box and they
are running and really rely on like in industries where you need to
be, have the reliable, the whole time.

so as I know, this is the maker, uh, track. But when you think about
it making a product or really designing something for that's be used
in a couple of thousand times, so microbiome that can help you with
the product development in productivity traceability, because the,
the code and the different firmware releases are very, like, it's very
well maintained in the open so people can work together, fix
problems, and the community can, can profit from that. It makes the
test that testability easier as I've shown you before, there are more
than 200 different developers involved and they come all from
different areas and sometimes you get these ideas from people you
have not even thought about because that's the main thing they do.
And so that's really fantastic to see how everybody makes each
makes each other better. Then the license of microbiomes and the
MIT license, which is very flexible too. you can use microplasm,
but you don't have to have everything open source. You can build on
it and close up the thing that makes your product that generates the
profit for your company. For example, and yeah, as I said, as the
support in general, the Python community is quite open and. it's the
microbiome as well. the disadvantages, again, you might have

increased hardware resources. If it can use a smaller
microcontroller, which is obviously cheaper, but it's too small to fit
microbiomes and you cannot use it. this needs to be like, you always
have to look at the time you need to pay for your. That's the actual
heart and software development compared to the price of the Harbor
you're using in your, in your product. And sometimes it isn't this
area, still people don't use Python, they still use C or even assembler
or the low level languages for, for designing and programming with
microcontrollers.

WHAT IS UPYTHON AND WHY
SHOULD YOU CARE

Hi and welcome back. In this project, I'll talk about Michael Python and I
talk about it's written to exist, how it relates to Python and about some of
its most important characteristics.

Around Meet the 2014 Demián George published a new programming
language for Marketplace called Macra Python. This publication was a
successful completion of an ambitious Kickstarter project that began in
2013 at the Time magazine. Troller programming was dominated by the
seed language. If you are familiar with their, then you know what she looks
like. On a microcontroller like the sea is not very difficult to learn,
however, things do get more complicated as programs get bigger. As
microcontrollers started becoming more and more powerful, more people
started being interested in them and to be programming them. Many of
them were first time programmers and this included people in all age
brackets. So Damien wanted to create a language that would work on a
microcontroller that would be much easier to learn and use. Then C he
didn't want to reinvent the wheel, so he chose Python as his prototype. His

challenge then was to create a language that can mimic Python, but that can
also run on the bare metal of a multicultural, not without an operating
system. And that's how Michael Python came about. And here's a
description of the language from the Micro Python website. And the
emphasis in both characters is mine. So Micro Python is a lean and
efficient implementation of the Python three programming language that
includes a small subset of the Python standard library and is optimized to
run on microcontrollers and in constrained environments.

Now, because Michael Python contains the word python, it is easy to
become confused and think that Python is simply a smaller version of
Python. It is the same confusion that I constantly see between Java and
JavaScript, while Python and Market Python have a similar name. They
are totally different languages with a different set of goals and
implementation. I talk more about the differences between Python and
macro python in a later project, but for now I just want to make sure that
you are not confused by the similarity in the name.

What Margaret Python has taken from Python is the language architecture,
its programming philosophy for code readability and a huge pool of
programmers that already know how to use Python. Python is this can
quickly become micro python estás and write programs for
microcontrollers. According to the papal popularity of programming,
language indexed, Python is the most popular programming language in
the world with a 30 percent share. This index is calculated based on the
amount of searching that is done on Google for programming, language,
tutorials and resources. And as a comparison, it's interesting to see that C
C++ that is used by the boards ranks around fifth place in this index. This
popularity translates to a python universe that is filled with all the
documentation, libraries and community support you ever need. Micro
python is as easy as Python to learn, and it follows Python tradition for
excellent development tools and documentation. In this course you see me
constantly browsing through the Python code. The documentation as well
as many of the excellent libraries will be using in terms of tools. You have
many choices in this course, in particular will be using thony, but you can
also choose tools such as you, Pycroft, and the new ED. What I really like
about Tony is that it's a full python, Ed, on its own merit with excellent
debugging tools, but also that fully supports market python on the E.S.P
three two, as well as other target boards like the Recipe Pickle and the BBC

Microfit. Another big advantage of the macro python language is that once
you learn it, you can use your skills across multiple hardware targets. At
the time I'm recording this project, Micropayment Python has support for
the original mainboard version one and disappears, as well as third party
boards such as the SDM 32 NUCLEO and Discovery Boards, The Peko,
the Raspberry Pi, Pekoe, the White Pine, the EPA two, six, six and three to
the tiny Pikul and the BBC. Markovits, I mentioned earlier and this was
just a partial list.

Now let's take a quick tour of Michael Python's most important features,
first and most important for anyone new to this language is that Michael
Python aims to implement the Python three point four with a little bit of
three point five standard for language and syntax. This simply means that
anyone who already programs in Python three will be able to start
programming in Python immediately. Python, three reserved keywords
operators functions in the infamous white space incantation is faithfully
implemented in micro python. Second, because micro python targets
embedded computers and microcontrollers is not possible to implement the
Python standard library with all of its modules and methods. There's
simply not enough storage on ITHAKA devices for that. Therefore, Micro
Python implements a selected subset of C Python standard library, and even

that is implemented with emphasis in efficiency. Micro python versions of
Python libraries have a name with the you or lowercase you the letter
prefix. So that allows you to distinguish which is which. Whenever you
see a micro python library with a U letter prefix, know that it's a more
efficient version or optimized version of the original C Python Library
implemented for micro Python devices for Micro Python has an interactive
interpretive mode, also known as Reppel Rebel stands for Reidsville Print
Loop. Think of it as a command line for Python. It can use this command
line to issue Python instructions or even code blocks. The report will
evaluate the Python code immediately, and the macro Python report is fully
featured with the intent of the completion ability to interrupt the Iranian
program with controversy to invoke a soft reset and so on. There's also a
paiste mood, and you can also use the underscore variable, the stores, the
output of the previous computation in this course of using the ruble
extensively to demonstrate in test code. Fourth, outside of the
micropayment standard library, there are countless libraries contributed by
users and published online on repositories like GitHub and Piper, which is
the Python package index, similar to see Python Micro Python has a simple
mechanism for including external code programs. In this case, I'll show
you how to find and use the external libraries that make it easy to integrate
hardware components like screens and sensors to your mark of Python
projects. Fifth, Margaret Python has the ability to access a small filesystem
on the target market with a device, this filesystem makes it possible to store
your micro python programs, supporting library files and arbitrary files,
such as text files for storing sensor data or credentials for networks and Iot
services or even bitmap image files. You want to display them on and or
ality, for example, by showing you a similar example later on in this
course. In this course, I have prepared several examples where I
demonstrate how to use the filesystem or the ESB 30 to. And finally, the
six point micro python has a single command line python tool that allows
you to run a script or access the file system on a target device. This tool is
called PIEBALD. Don't apply in this course. We won't be using this tool
because Sony idea has built in support for micro python on a variety of
target devices, including the ESB three two. However, I wanted to mention
piebald that we are here because it is something useful for you to be aware
of.

Let's talk about market python on a variety of hardware targets now, as you
probably already know, micro python works on many different
microcontrollers, and diversity of the hardware means that not all micro
python code will work across those devices without modifications. In
general, there are two points to remember in relation to Shery micro python
code across different targets. One, most of the code that uses micro python
standard library functions and the core of a language will work without any
modifications. Language, syntax, reserve key words, control structures and
functions that come from these standard libraries such as math for
mathematics. YIVO is for basic operating system services and use time for
time and date related functions will work across all micro python hardware
targets. Nothing to worry about to throw. On the other hand, any
functionality that is uniquely implemented on a market controller requires a
unique implementation in micro python. For example, the way the digital
pen functionality is implemented on a device like the E.S.P 32 is different
to the implementation on a Raspberry Pi. There are things that Raspberry
Pi pickle pens can do, for example, that E.S.P 32 can do. And it's a similar
case for how functions relating to network interfaces is Quixey and Spart
interfaces, analog digital converters and so on are implemented across
boards. These differences are reflected in the micro python implementation
for each board. And for this reason, in addition to the standard, the Library

Micro Python has libraries specifically implemented for each supported
board. You should take a bit of time to study your target device special
libraries so that you know what is available and what isn't. And therefore
you can go about taking advantage of the specific capabilities of the device
that you have chosen. And one more thing, when I'm talking about this,
not old device capabilities can be accessed through micro python, for
example, in the E.S.P 32 Micron Python firmware. There is no support for
Bluetooth. There is no Bluetooth module, even though, as you know, the
ability to has Bluetooth capability. But there is support for Wi-Fi. And it's
just one example of a capability that you won't be able to use using micro
python.

OK, now let's wrap up this project by going back to Michael Python's most
important attribute, Michael Python, like Python, is designed to be
readable. It almost reads like natural language. And here you can see an
example of a segment of a code that I extracted from one of the projects
that are coming up later on in this cause. Even if you've never seen my cat
Python written before, perhaps you never even programmed before. You
may be able you should be able actually to understand kind of what this
code segment is doing. You can make inferences about what this code
segment is supposed to do. You do need to have a basic understanding of

electronics. So, for example, keywords like pin that out and pin dot pull up
may not make much sense. However, the language barrier to entry for
micro python is minimal. Essentially, it's much lower than the barrier to
entry for a language like C or C++. And this is the number one reason why
Python became so popular and why Michael Python has been gaining
massive support in popularity since the Kickstarter campaign in 2014. All
right. It's about it. With this project and in the next few projects of this first
section of the course, I've covered a few housekeeping topics, including the
software and hardware requirements and how to make the most out of this
course to please do take the time to watch these projects before continuing
to Section two, which focuses a python.

SOFTWARE YOU WILL NEED
To complete all the projects in this course, you need a programming editor,
the micro python firmware to match your microcontroller and a few micro
python libraries to match the individual mini project requirements. Please
take a minute to watch this project and learn more about the required
software.

Let's begin with the ED. It can write Micro Python and Python programs
with any text editor. You certainly don't need anything fancy, expensive or

complicated. Python programmers often use integrated development
environments that provide them with a rich toolset, including features like
syntax highlighting debugging and easy access to the Python console. You
may have heard of ideas such as clips with the high def extension sublime
text with various Python packages and atin also with the Python language
extensions. Because we'll be working with micro python. We need to be
able to do more than just write and edit programs. We also need to be able
to install or update the market python firmware on our target
microcontroller to access the file systems so we can upload a download
files across the micro python level, of course, and to be able to do basic
operations like resetting the board or running a program. And all this can
be done with a collection of tools where each tool does one thing or by
using phony. Phony is a free open source, Python Ed, which has integrated
support for micro python and several microcontrollers, including the E.S.P,
to think of Tony for micro Python. What you do with the idea for I do not
boards. Phony was made for education, so it's designed to be simple to use
and easy to learn. It just does the basics and it does them well. The
installation of the thorny ed on your computer is very easy. We'll start using
Thornlie in Section three, but feel free to go ahead and download the latest
available version from Thony dot org and install it in your computer now.

Of course, it's available for Windows, Mac OS and Linux, and let's move on
to the firmware now to use Micro Python on the E.S.P 32, you must first
install the micro python firmware on the microcontroller. The firmware
will enable the micro python interpreter and provide the rep for us to use.
Each separate microcontroller has its own micro python firmware file. You
can download the appropriate one from the Micro Python website. Just be
careful though. You need to select the appropriate version for your
microcontroller. But there may be multiple versions for the same
microcontroller for the E.S.P 30 to go for the latest available generic but
stable for point X firmware. Unstable versions are also available which
contain new experimental features. But of course it may not work as you
expect reliably on your microcontroller, so only use the unstable firmware
if you really know what you're doing. If you are using an ISP 3-2 with
Spirent, you can use the stable, generic spiring version of the firmware.
Don't worry about doing this right now. I have prepared a project in Section
three where I show you how to do this in detail next libraries.

It is easy to integrate various components with the ESB three to micro
python projects and four that will be using several external libraries. Just
like with the Arduino, there are libraries for an extensive range of
components like sensors, motors and displays. You can find information

about the specific libraries that you need for each mini project in the
relevant project. And it's about it, that's it with the software requirements
when you are ready. Please continue with the next picture where I'll talk
about the hardware, who's using this week's.

HARDWARE YOU WILL NEED
To successfully complete the projects in this course, you'll need a few easy
to get hardware components. If you've completed my advanced step by step
courses, you probably already have everything that you need. So let's have
a look at the required hardware now.

Of course, you need an E.S.P theory to develop and kickboard it really
doesn't matter which one have tested the micro python scripts from this
quote in a variety of generic workplace attitudes, and they all worked fine.
Now, one of using this quote is so generic that it doesn't even have any
model information printed on it. It's a 19 PIN board with the SPW Room
32 designation on the MCU package.

For the first round of experiments will use and ID with its current limiting
resistor, a button and a particular mirror for the button will use an internal
pullup resistor to simplify the external circuitry so you don't need an
additional resistor for the button.

Next, we're going to work with sensors. So in the section on sensors, you'll
experiment with the DHC 20 to the PMA. Two hundred and eighty. The
ATX held three three five, which is an analog accelerometer and the C. S
zero for ultrasonic distance sensor.

Then we are going to move on to the displaced section of the section on this
place is quite busy with several different devices included in your war
testing. They are in experiments with the OLED screens. There are three
options to choose from, but I particularly like the displays with the Hajj one
one zero six driver because they work well with both the hardware and the
software options for AI squared. See, the driver is pretty good in this
section. We also experiment with a two by 16 Ice Cube see LCD screen,
which is based on the P, C, F eight five seven four parallel to ice, which C
converter. We are also playing around with Pyxis modules. So I'm using
one that has eight individual addressable LEDs and eight by eight Haliday
Matrix, which is driven by the max seven to one nine module.

And we are also going to experiment with motors. You need a five four
vote mini, a motor and a five old mini DC motor to drive the DC motor.
You need the RV eight eight seven one motor controller. And that's it with
the hardware requirements. When are you ready? Please continue with the
next project. We'll talk a little bit about a few simple things that you can do
to make the most out of schools.

HOW TO GET THE MOST OUT
OF THIS PROJECT

I'd like to say a few things that I believe will help you get in the right state
of mind so that the time that you spent on this course is both effective and
enjoyable.

Learning anything worthwhile takes time to plan for your learning and set
time aside for this specific activity in your busy schedule, without
dedicated time, you'll feel that you have to rush your way through the
projects, making the experience stressful. Learning and the stress is not an
effective way to learn, on the contrary, without planning to learn, you will
not learn. So be in control of your learning through planning. I suggest that
you plan to complete one section in one sitting. For most sections, you'll be
able to comfortably complete them within one hour, of course, if you have
more time, consider scheduling enough time to complete more than one
sections. I find that I learn best when I can dedicate big, uninterrupted
blocks of time to a project, and I believe that this is true for most people.
That's because big, uninterrupted blocks of time also reduce the overall
duration of the project, because they allow you to reduce the amount of
time needed to change your mental context from whatever you happen to
be doing to the context of the project or the course it goes without saying,
but I'll say it anyway. Plan will to learn. Will.

Each project has one or two, but no more than two learning outcomes and
usually an equal number of practical outcomes. Do not proceed to the next
project until we have succeeded in both understanding the learning
outcomes of the current project and achieving the practical outcomes of the
project. If you proceed without completing the learning and practical
outcomes of a project, you'll be hit with an obstacle later and you have to
come back and try again. Of course, it's OK to peek ahead, but be mindful
that previous projects will need to be completed first.

OK, that's it with the introductory set of projects, it's now time for you to
roll up your sleeves and start making. Are you ready? Please continue
with the next section and project when you.

GET THE DEMO SCRIPTS FOR
THE PROJECT

Typing is boring and error prone. I've already done all the typing and fixed
all the typos, so you don't have to. You can download a single zip file that
contains all of the scripts that have demonstrated in the course, just point
your browser to this Eurail and download and expand the zip file. Feel free
to test out those scripts and modify them, which.

UPYTHON VS CPYTHON
As you know by now, Michael Python and see, Python had two different
programming languages Micro Python has copied, Python is faithfully as
possible to create a high level language programming experience for
microcontrollers. There are differences between the two languages, which I
would like to summarize in the next few minutes.

Now, the differences between micro python and Python are documented in
detail in the Python website. There you can find a full list of those

differences, as well as code examples that demonstrate them. In this
project, I will mention only some of those differences that I believe are
more relevant for the purposes of this course.

So let's begin with syntax in Python. You can do things like forget to put a
space between a literal number and a keyword to form an expression, and
they will be OK. Python has enough flexibility to forgive mistakes like
this. The same mistake in my code. Python, however, will generate a
syntax error. Mokra Python developers had to throw away the logic needed
to deal with tab was like that in order to make it fit in the limited storage of
the target devices.

Another example of the differences between the two languages is how the
self Keywood is handled when self is used in a function in Python. It does
not count it as an additional argument, but Michael Python does. As a
result, if you provide an incorrect number of arguments to a function that
contains self Keywood, then the error message it will get in Python will be
different to what you get in micro python. I've got an example here. You
can see this example. I'm calling the same function calculator both in
Python and Python, and I'm putting a single argument. I should have
passed two arguments, but I made a mistake. It just a single argument here
you can see them and coding the exact same function with this same
parameter. But the messages that are coming back to indicate the error are
different. So, see, Python is telling me that I've got one required argument
missing where your python is telling me that in total that are supposed to
be three arguments I've only given to in fact, I've given one. So you can see
that the message that is coming through here in Python is or can be a bit
confusing, which can throw you off and cause you to delay you debarking.
As long as you are aware of the situation with the self key word, I think
you'll be able to get past issues like this.

Here's another subtle difference that has to do with formatting in this
particular example of a floating point number. When you print out
formatted floating point numbers, the result may differ between Python and
C Python here, printing out this floating number and using the same exact
commands between you, Python and C Python, you python being Mokra,
Python. And you can see that what comes out is different in each occasion.
In this case, the G operator, when used with C Python, applies the
exponential format to a number in the output. The chief operator differs
between the two implementations.

OK, next example of differences is the string C. Python, as you may know,
contains powerful string manipulation functions and not all of them are
available on micro python. Two examples are start with and end with these
allow you to check if a string starts or ends with a specific character or
string of characters in Micro Python. These functions only work in their
basic format without the start and end indexed parameters. In the example
here in this slide, you can see that the call to the end with function fails
when we use it with the three parameters, but work with a single parameter
in Python. No problem. Either one will just work properly and as
expected.

All right, next up. We've got Jason, and this course will use the
micropayment Jason module to work with Internet of Things services,
unlike, say, Python and the Python version of the Jason module, you, Jason,
does not throw an exception if an object is not serializable. And this means
that if your program receives a JSON document from a Web service that is
not valid, you will not be able to deal with it gracefully. Using an
exception handler, you will have to deal with this manually or your program
will just crash. All right, so these were just some of this subtle differences
between see Python and the micro python implementation and of course,
there are many more. The best place again, to learn about them and about
the changes is the python documentation in the next project. I'll show you
some of the best online resources for Macur Python. And these are the
resources that you'll want to watch so that we can access them anytime that
you with Michael.

UPYTHON RESOURCES

Michael Python is relatively new. Nevertheless, continuing that tradition
set by Python, it is very well documented in this project. We show you
some of the best online, free and community supported resources that I use
a guarantee that these resources will save you time and help you as you are
taking your first steps with micro python.

Micropayment OAG is the home of the Michael Python language on the
Web. This is where you can find Michael Python firmware for the support
boards, links to the documentation, a discussion forum and a store from
where you can purchase PI boards. I've prepared a separate project where I
discuss supported hardware as opposed to any hardware related questions.
For now in this course will be spending a lot of time browsing the
documentation and I'll talk about that shortly. I do encourage you to sign
up for an account to the Market Python Forum where you can participate in
relevant discussions. The forums, including the one dedicated to the E.S.P
thirty two, is very busy with multiple new discussion threads almost daily.

As I mentioned a minute or so ago, we'll be spending a lot of time browsing
through the Michael Python Documentation Documentation website is
hosted Underdog's Dot, Michael Python, Torchy. It contains details about
the python libraries, the language and implementation. In almost every
case. The documentation provides a detailed definition of every function
and class, as well as simple examples of how to use it. The limitation
covers the Python standard libraries and make a python specific libraries as
well as libraries specific to the piebald weepie ESP a 266 NDP 32 boards.

The micro python documentation focuses on topics specific to micro python
because the micro python syntax, language and programming philosophy
comes from Python. You'll need to refer to the Python documentation from
time to time. For example, if you don't remember how to initiate a tuple,
then you can quickly look it up in Python. The limitation you'll find this at
Doakes taught Python Oji for three and then click on the language
reference link.

Margaret Python, as with Python, has a substantial library of packages
created by its community of programmers. A repository where you can
find many of those packages is the Python package index at peepy dot org.
The Python package index contains packages designed for seed python and
micro python. So you need to be a little careful when you search. Often
packages written in micro python indicate that in the title. So, for example,
a micro python package for the 12 sensor can be found by searching for
Micro Python DHT 12 to distinguish it from either packages written for
other platforms, such as which is a Python package that works on the
Raspberry Pi computer. Of course, even when you find a package that
specifically indicates it is written form like a python, you need to check it,
that it supports your hardware target, not all of them do. OK.

Then we've got awesome Michael Pathum, and that's an awesome name, by
the way, and that's a curated list of libraries for micropayment specifically.
That's unlike the Python package index that we looked at a minute ago. In
most cases, when I'm hunting for a micro python library, I go to Awesome
Micro Python first. They curated list contains libraries grouped according
to their purpose. You'll find libraries for it and quiddity communications
displays like the paper and LCD, GPO and input output, libraries, all kinds
of sensors, schedules, storage and much more. But as with the Python
package index, once you find a library that looks promising, you need to
take a closer look and ensure that it will work with your microcontroller of
choice. This information is not always readily available in the library
supplementation. In many cases you'll have to download the library and
test it on your device just to make sure that is compatible with it. OK,
that's about it with suggested resources. There is one more project in this
section before we get started with the first hands on activity in the next
project. Talk about the lack control of laws that are compatible with
Microplace.

UPYTHON COMPATIBLE
BOARDS

When Michael Python was first published in 2014, only one board
supported the original pinboard a few years later this month of Python
support for a wide range of microcontrollers, including the specialty to
which is the one that will be using this course in this project. We'll take a
closer look at the boards that can use Markward Python.

And let's start with the original pinboard board. The PIEBALD one is the
board that Damián George designed to run Michael Python for his
Kickstarter project in 2014. The pay board contains an SDM 32
microcontroller chip, which is based on an cortex and for C.P.U, it has one
thousand twenty four kilobytes of flash room and one hundred ninety two
kilobytes of RAM. It also features a micro SD card slot for an expanded
file system and accelerometer real time clock for programmable LCD.
Twenty nine CEOs and two digital unlooked converters, among other
things. Then you add these series. PIEBALD also uses an SDM 32
microcontroller, but has a deep style form factor that makes it easier to
integrate into projects. Got more flash and ram capability for external flash

as well wi fi and Bluetooth connectivity and improvements across the
board. The pay board is the golden standard for what a micro python
device looks like.

OK, then of course we have the if E.S.P family of devices, the E.S.P 32 and
the other E.S.P eight to six six are almost fully supported by micro python
learnt about the lack of Bluetooth support, for example, for the E.S.P 32 in
the previous project E.S.P. Three to specific libraries, a document that on
the main micro Python documentation website next to the PI Board, the
E.S.P three, two and SBA to six six seem to have the widest range of
community contributed micro python libraries. This means that there is a
good chance that you'll be able to find a device driver for your favorite
display or since at the time of writing this Bluetooth is not supported and
this is because of how much memory this implementation would require wi
fi. However, as you probably already know, it's fully functional. So apart
from Bluetooth, almost all of the end user features on the E.S.P three two
can be used in Micro Python, Tyner's, CPU's, M, wi fi ice, Quixey, Spy
Sleep and the digital converters. All of those work. It's even possible to
read the internal temperature sensors there, especially to is the
microcontroller that have chosen to use in this course because of the

excellent micro python implementation, the richness of its hardware and
my familiarity with it from previous projects.

Now let's have a look at the Raspberry Pi pickle, the Raspberry Pi picture
was released earlier in twenty one, selling for around five dollars. And it's
powered by the brand new iPad 20 40 microcontroller. These
microcontroller was actually designed by the Raspberry Pi Foundation.
And very quickly, several new boards came out that are based on the same
microcontroller like the Feather 20, 40, the tiny 20, 40. All of them can
run the micro python firmware. And the Raspberry Pi Foundation provides
excellent documentation through its website. I find that compared to the
pinboard and the E.S.P boards, it is much harder to find micro python
device drivers for the Raspberry Pi pickle. It's still a new board, so I
expect that this is going to change. The Raspberry Pi pickle is an excellent,
simple board. It doesn't have any wireless communications capability, but I
think that this is a case where simplicity is an advantage. Along with the
BBC Micro bit, the Raspberry Pi pickle is probably the easiest way to learn
micro python.

Next up is expected probably the BBC Microfit, so the BBC MacRobert is a
small board designed specifically for education. It uses a Nordic and RF
five to eight three three application processor and contains an impressive
array of built-In peripherals, such as an LCD matrix display, a touch
sensor, a microphone, a couple of buttons and then accelerometer. It also
has a two point four gigahertz transceiver that students can experiment with
and create a simple radio communications protocol and get Markovitch to
talk to each other wirelessly. The Michael Python implementation on the
MacRobert is excellent, as expected, tested many of its hardware
components and everything seems to be working, even the radio
communications.

OK, next up, we've got the SDM thirty two boards at Texas Instruments
NUCLEO and discovery boards in the spring of Pico, a based on the
microcontrollers from the same SDM to family. I remind you that the
PIEBALD also uses an SDM 32 microcontroller unit. There are several
NUCLEO and discovery boards geared towards rapid prototype
development for engineers, but are also used in education. The Spring
Pickle is a particularly popular board among makers because of how much
power is packed in such a tiny board on the Market Python website. It's
mentioned that the stem free to line of Michael Trollies from Estima
Electronics are officially supported by Micro Python via the SDM 32
Cube. How libraries the SDM through to Port of Micropayment Python
contains the source code for these MCE use. OK, this was just a short list,
some examples of the boards that can work with Micro Python in this
course, we'll experiment with the SB 32. As you know, in the last few
sections of this course, I have prepared a few projects to show you how
micro python works on the Raspberry Pi Pickle and the BBC bit. It's now
time to get busy. The first hands on task is to set up a copy of Phony on
your computer as a development tool that would be using to learn micro
python or the pathetic two. We're going to do that in the next section.

GETTING STARTED WITH
THONNY IDE FOR PYTHON

And welcome to a new section in this course, in this section, I am going to
talk about the thorny idea, which is any open source integrated
development environment that will be using to program the E.S.P 32 using
micro python throughout this course in this first project of this section. I'd
like to show you around funny in my already set up instance, if you can see
here and show you the location where you can download the installation
utility so you can install it on your own computer. So let me show you
around what it looks like. So here's Tony running. As I've said already, I've
done a little bit of configuration to customize the font types and sizes and
things like that. But largely what you're seeing here is, though, it looks like
as soon as you install it, Tony, is very capable and configurable, integrated
development environment. At its most basic view, it would look like this
where you get the upper part of the window where you can see one or more
tabs, you can have multiple tabs with your various python programs or
components for program. And then down below, you've got to show that
you can use to interact with the Python interpreter.

In this case, as you can see, I'm running Micro Python on my E.S.P 32,
which is connected to worry about this. For now. I'm going to show you
first how to install the necessary interpreter on your AHP 32 in the next
project and then show you how the connections and be able to interact with
Micro Python on the HP 32. But for now, all I want to show you is that the
show allows me real time interaction with the Python interpreter that is
running on the issue between the two. But apart from that, it's got many
more capabilities. For example, if I go into tools and options, I can change
the interpreter from micro python to one of the other variable interpreters,
for example. This one here is Python that ships with only or you can go for
Python that is running on a virtual environment or with Python running
somewhere else. Even through the Internet, you can access interpreters via
perhaps S.H. or other means. And you can also see here that the only
instance that I'm running, which is version three point three point four,
which is the latest version at the time of this recording, also ships with
capability of running micro python on BBC Microdata Raspberry Pi, Pekoe
E.S.P 32 in the ESP eight to six six, the source or circuit python
environment. So it's already fully featured just out of the box. But you can
install a lot more python targets, as you can see, via plug. All right.

Now, another thing that I want to show you is that Tony is used not just for
micro python on a medical device, but for general python development.
And it gives you a lot of tools here. He can see to help you with that. So,
for example, you can turn on the files view and this gives you access to all
files in a particular location on your local file system. In this case, it's on
my computer. But also it gives you a view of the files that exist on the
target device file system like these. So these files are stored on the ESB
itself. There's also a series of other types of tools, such as the ability to
inspect the contents of the heap memory or. Let's say the stack, which is
useful when you are jumping from one function into another. Keep track of
which function you are in and give you a little demonstration of this. A
little later in another section, you can check out the variables that have been
set up and so on.

Let's have a look at some of the most important features of Tony. First of
all, you've got the configuration window. We can access it from
preferences, but you can access the exact same thing by going to tools and
options. And that allows you to customize the look and feel of Tony, which
forms you using, et cetera, have the debugger works, which terminals to
use, Schill and so on. So you can just customize the way that your Thony
Ed works this way.

This also got into tools and plug ins. There's a whole variety of plug ins
that you can install, some of them, as I said earlier, in version three point
three point four, come built into Thorney itself.

For example, there is the E.S.P tool package, which allows the idea to
interact with the two and, for example, flash new firmware on it. But

there's others you can search on paper, which is the repository of Python
repository of the packages and see what else is available to show you how
to use that later. It's also a package manager like this also allows you to
search and pipeline for python packages that contain libraries or code that
is shareable. And then you can use. Again, I'm going to show you this a
little later on, how to install a paper package. Okay, so this little
introduction, we're going to talk a lot more about Sony later. And I'm going
to show you how to use the specific functions that we are going to need
throughout this course. We're going to need all of them, because, as I said,
we're not programming in the desktop version of the Python interpreter, but
in the micro python interpreter. It runs on an ISP 32. And therefore, many
of the features that are available on Sony in general will not work with
micro python.

To get the money, go to the phony website, which attorney Doug can have a
quick look at this and just to get a rundown of the most important features,
It's a demonstration of some of the most interesting features, especially the
debugging features produced by one of the developers. So check it out to
download Thony. Just click on your operating system. And in my case, I'm
working on a Mac download a file, double click on it and install it. There's
n othing special about it. It's very easy.

Another Web resource I want to show you is the GitHub repository so you
can see the source code of the project. Now, here you will find additional
releases.

So click on the releases link and you will take it to a page where you can
access not just the latest release, three, three, four. In my case, three

through five is just being worked on at the moment. It's not available via
the download button here. Can see this is still three, three, four. The
bleeding edge version is through three five. But I found on the Mac in
particular, if you are using Mac OS, Big Bixler, which is Mac OS 11, then
version three three four does not work properly. You may need to go to an
older version. Let's say three three three did work for me. So in case you
need another version, this is where you can get it from. OK, that concludes
this first introductory project to this section in the next section, I'm going to
show you how to install the micro python interpreter on your ISP 32, so
then you can start using it with thirty first.

HOW TO INSTALL THE
MICROPYTHON FIRMWARE

TO YOUR ESP32
Right at this point, you should already have installed your Thorney on your
computer, and if you haven't done so, you should do it.

Now, come back to this later when you have some let's say that you have
installed your ID on your computer and you have a brand new HP 32,

which, of course, does not come with micro python installed. So what you
need to do before you can actually start working with micro python on this
controller is to install the micro python firmware.

To do that, you need two things. First, you need to download the firmware
for the particular device from the Micro Python website. And then the
second one is to use a appropriate tool to upload them. Where to your ISP
to? We are lucky because phony version three point three, I believe, and
light up comes with the E.S.P to building to 30. So we don't have to do
anything outside the Sony environment. So in this project, I actually had to
use Thony to upload the micro python firmware on your HP 32.

So step number one is go to the Micro Python website, mark
representativity and click on download and then look for your hospitality
device, which is this here I'm using the generic hospitality module blinco
that. And then here you've got several choices for this thing where there's
basically three down here.

And this version, of course, will go full version full. And I'm going to be
using this stable version, one point one for all of the firmware. There are
unstable versions and there are also versions for especially two with the
additional S.P.I Ram chip, which provides additional memory. I don't have
that. I'm going to go with the generic. Stable version, one point one for so
click on the link to download the file and you'll end up with a file like this.
So this is about one point five megabytes in size. And this is the thundery
file that contains the firmware that will use Funi in a moment to upload it
to. So it's good to Sony now. Can put this away, so Anthony, obviously
connect your two to your computer, that and the tools and options select
the micro python, especially to interpretor, which is the one that we want to
use from the port drop down menu.

Select the port to which your brother is connected. If it's anything like
mine, then they will have an entry that looks like this. My soon to be
controller is simply to want to, at least in my version of the EPA, to
microcontroller and monitor them using just like that and then click on
install or update them with this will take it to the security system where
installer again will need to select the appropriate port and then browse for
the firmware, which is this.

And open, you can leave the citrus or the selection's here is the default erase
flash before installing at the tool, it's going to clean up the flash memory of
the pathetic two before installing the firmware. So are going to end up with
the insecurity of being in sort of factory mode once it comes back from the
installation process, which is what you want, and then click on install.
You'll see the progress down the left side and bottom left in a few minutes.
We're back to the installation is complete. We're done here, we will close
the tool kit, OK? And you can see that now we have the prompt from the
python prompt. Michael Python, one point fourteen is running on the
hospitality module.

If you type in help you see some information about this installation, just
enlarge the shopping loop. All right. So that's my code. Python on the
three to give you some information about the machine module and things
that you can do to manipulate pins, for example, we are going to look at all
of this in detail a bit later, tells you how to configure whiteflies from
various commands to work with on the show. And I can just say one plus
one equals two. The calculation happened on the HP 32 using micro
python and now you have the ability to run micro python on the HP. Thirty
two. And let's continue with our review of the thorny idy. There's a few
more things that I want to show you. Continuing with the next project,
we'll show you how to select and interpret among the many that are
available on Sony. And after that, actually, you have to put your first
Michael Python.

SETTING AN INTERPRETER
This is mentioned in the first project. So the idea is able to work with
multiple Python interpreters, not at the same time, of course, but it does
give you the ability to select which interpreter you want to use next, also
which device that interpreter is installed on. So in this project, I want to

quickly show you how you can switch between interpreters to do that will
be using this show exclusively.

So if you go through tools and then options, you will see that under the
interpreter to expand that drop down menu and you'll see that then it comes
equipped with a variety of interpreters. There's an interpreter, that -- with
itself, which is part of the environment. But you can also choose to use the
python instance that is installed on your computer. Of course, you can run
micro python on a variety of devices, including Acrobat Raspberry Pi
picture, and it's better to have already selected to be reduced since we
installed the micro python firmware on my brand new device here and we
tested it as well. I just did a simple calculation a second ago. So we've got
the micro python print. This is information about the Python interpreter
that we are using at the moment. So if I do a little calculation like that,
you'll see that it works from here.

I want to switch to the only built in. Environment. I can just do that for
you. That's only option it and go for the same interpretor which runs with
Tony and do the same calculation and the result, of course, the same.

So you can see that the name of this environment they're working on right
now is Python three point seven point nine. But it's not micro python. All

right. But how about something else? How about we try micro python on
the new Raspberry Pi pickle? So this came out recently, about a month
ago. And I got a hold of a couple of those. And it's a Raspberry Pi
microcontroller that runs Micro Python. I've got an letter here which is just
showing me when power is connected. This is this is not connected to a
GPO.

So I'm just going to disconnect my inability to connect the Raspberry Pi
pickle. Is on indicating this power.

Let's see if we can use Microplace and it will go to two swaptions. Select
my out the Raspberry Pi pickled. There's support for the picture. OK, now
I've got a new project here for Python.

This is Michael Python on a Raspberry Pi pickled with this C.P.U. This
microcontroller senior should say it are two zero four zero and. That's one

plus one two, so I was able to switch from the HP to microcontroller
interpretor to the Raspberry Pi pickle microcontroller inhibitor, and that's
how you can switch from one device to the other. I've got a couple of
projects later on in this section where do a little bit more experimentation
with the Raspberry Pi pickle.

And I also got a micro bit here to show you how you can run the micro
python on the micro bit as well and use phony and easy to program these
two devices. All right. Let's move on to the next election and we'll show
you how to execute your first simple program, the.

HOW TO WRITE AND
EXECUTE A MICROPYTHON

PROGRAM
I in this project want to show you how to write and execute a very, very
simple with the simplest possible really micro python program. We are
going to run it using the ID in a couple of different ways. So let me show
you first. Bring up your idea, Ed, and this time I'm going to open up these
files. Sidebar on the left side of the macro python window so you can see

that my experience is already connected to my computer via the USB
cable, and I'm not seeing it, though, on my environment.

So I'm going to check first that I have selected the correct interpreter and I
have not. So let's switch that to the hospital, to the appropriate port down
here. That's the first thing to do, make sure that we have a connection.
Then we have the correct device selected. So since I did that, you can see
that the micro part of the device did appear here again under the psy ops
tab. And because this is a very fresh installation, I just thought the
firmware a couple of years ago, the only thing that appears, the only file
that appears on the device is the boot P1. I'm going to talk more about the
people in the next section, which is dedicated to making Python on the
E.S.P 32. I just double clicked on it and the file company appeared in the
new tab. They could see the contents are lines of code that come out. So
they're not going to have any effect and there's just some python command.
But you can totally forget about this right now because we don't really need
it. What I want to do is to run a very simple program. First, I'm going to
run the program on the shell. Which is basically the problem is just one
single line of code, and then I'm going to create a file which would allow
me to run the program as a file using microprocessor. So the program is the
classic world.

I'm just going to say print and then like the string of text. I want to print
out words from Michael Python and say into this instruction, then Michael
Python running on the two will print out this message. Now, you notice
that I entered this command on the comment from the Michael Python
command prompt, which is running on my HP three two. So this is the
interactive show or also known as recall. So whenever you hear a report,
basically what it means is the ability to issue commands life essentially
with two micro python and have those commands execute it immediately in
any way that you want to go about executing programs in the macro
python, especially for larger programs, of course, is to do so. One is to do
so in a file like this. So just copied my single command. But the small
program into a file I'm going to enter a convent is what I'm going to use.
The sharp symbol precision, like a simple python program. And I'm going
to say this program, the only idea it gives me a choice of where is it that I'd
like to see this program that my computer or the Python device in this
instance, I'm going to go for the computer and that will give me the option
to store it somewhere.

So let's say I'm going to put it. On this location and just saying hello,
world, be watching as the final system and say that. All right, so you can
see that that program appeared right here.

And now what I can do is to click on this green button and have the
program executed. Now, this is sometimes a confusing concept for people

new to Python and to eat what just happened is that I've got a small python
program without a safety net. I've got a Python program here stored on my
computer, which was executed on the E.S.P 30 device. So you can see that
I'm connected again to my python running the city, too. And this program
is stored on a file on my computer, which, upon pressing the green button,
was sent to the ISP three to four execution. It was executed and then its
output came back to me on the show. So this is one way of doing this.

Another way is, of course, to have the Python script stored on the device
itself. So there's a couple of ways by which you can do that. The easiest
way, since we already have this file on our local machines to right click and
then select upload to forge, which is going to send the file and stored on the
E.S.P 32 flash file system. Now, if I double click on it, you'll see that a new
tab comes up. It's called Square Brackets with the same file name. And the
square brackets indicate that this file is stored on the device.

No square brackets means that the file is stored on my computer. So then
once I had the father I would execute with, regardless of whether it's on the
computer or on the computer to the same thing, just press on the green
button or F5 and it will execute it. Really this absolutely no difference.
Once you have the file, regardless of where the final is, it will be executed.
By sending it to the appropriate interpreter, which you have selected and the
only options. All right, there are a few instances of this system that we're
going to explore a little later, those nuisances have to do with
dependencies. For example, what if her children go to their file that is
stored on my computer? What if there is a dependency in my program?
For example, what if there is a module that is required by this program
which is not stored on the micro python device, then can you just be able to
upload and execute this file on the device? You also need to take care of
those dependencies. And there are a few examples later on in this course
where I show you how that works. In particular, if you are curious, then
you want to go ahead, have a look at the Wi-Fi example with a Wi-Fi
example. There are dependencies. We've got, for example, a Jason text file
that contains Wi-Fi network credentials, things of that sort that the program
depends on. And those dependencies will ultimately be stored on the
micropayment device.

Or obviously, we're going to do a lot more into how to write that and
execute programs on the ability to use in micro python. But in this quick
introduction, I just want to show you the simplest possible way of doing
that. In the next project, I want to do a simple demonstration of some of the
other capabilities and features of learning and in particular of the heap and
the stack and fireballs.

Patents, which are interesting from the point of view of using them during
Python programming, they are not very useful in terms of micro python
programming. But nevertheless, these questions that I often get and I
wanted to just show you what these three page. Listed, at least.

OTHER VIEWS IN THONNY IDE
In this project, I'd like to show you some of the other capabilities of Sony in
particular relating to debugging that a lot of people are asking about. I've
got to say that these features are not really available for micro python
programming on the episode of two, but they are available for general
purpose, Python and for desktop version of Python. And I'm going to use
that for examples that are coming up. Again, these are not features that we
are going to be using later on in this course, but things that people do ask
about. And I just wanted to make sure that you've got a good understanding
of the Sony ID, Ed, before we get on with my python. So I have a lready
opened up the via Ghosheh and Stack Winderlich.

You can do that by going to view and choose the window that you want to
open up the service, for example, the program tree that you can see down
here.

And let's have a look at your object, inspector and so on. I'm not going to
go through all of them because then we are going outside of the scope of
this course, which is to focus on micro python.

And before I start with my small demonstration, I also want to point out that
if you go to these Thorney dot org website, it's a very homepage. There's a

demo project here which I have mentioned previously. You should really
take a look at it will give you a really good overview of those features. And
I'm also going to touch upon in this project. OK, so I'm going to turn off
the object inspector and the program that really need it.

And I'm going to switch my targeted interpreter to the default one, because,
as I said, these features don't work with the especially to micro python
version. So now we are running Python three point seven point. And I got
a little program here that just adds to numbers of code number one. And
number two, just a couple of arbitrary random numbers. You can also use
the input function to allow you to enter those numbers during runtime. But
let's keep things simple then. I've got a calculation happening here. The
result goes into the some variable and print out the results onto the show
like this. And I'm using the format function to talk more about this in
Section five, which is fairly detailed introduction to Python. So there were
better details about what this does. What is important right now is what the
output is.

So you run this program and you see that the output is just the sum of the
calculation with a bit of information about what was calculated by the
component of the calculation. Now, see what happened as soon as they
executed the program is that the variables tab became populated with the
numbers you can see here that have got the value idea, which is this is a
memory location where no one is stored. And number two, and some also
have the heap. Memory in the stack is empty and a hidden memory is
where both he and Stack are stored in Ram Python in particular uses heap
and stack differently. So it said both are part of their end. But in memory,
Python is going to store the global variable she can see here. No one is a
global variable and stored at this remote location. c.B zero, and that
matches this idea here in the heap, which has this value one point five as it
was assigned here, and line number three in the script. And similarly,
number four line declares initializes variable number two, which you can
see here. This is its value add in RAM, which is right here in the heap.
Again, here is where Python stores its global variables. You've got some
which was created later and its content are the result of the addition
between number one and number two. We don't have anything in the stack
because we don't have any functions.

So let me show you an alternative of this little simple program. So here I've
got the exact same thing happening, but now I've got a function declared
called add numbers. And again, don't worry about the details. I'm going to
talk about how to create functions in Section five of this course. But you'll
see that we've got the global variables. We've got some variable created
here, and then we've got a call to the function at numbers. So essentially
the program jumps from here to here and then we're going to line number
five and execute it. Now, if I run this program, see what happens. So after
the execution of the program, one thing that we didn't really see was what
happened in this attack, if at all. So this attack, as I said earlier, is where
Python keeps track of its position in the program. Trees are especially
useful when we have to go from one part of the program and continue with
the execution of the program inside a function. So for Python to know
where to return once the execution of the function is complete, it needs to
keep track of the origin of the call inside the stack and to be able to see the
start getting populated.

I'm going to use the debug function first. I'm going to have a little line stop
here. Just double click on the line where I want the execution to stop
temporarily and then I'm going to click on the current screw button and that
will start executing the program. But they will stop at the location where
I've got the red dot, the stop line, and you can see that I've got my variables
here, the global variables. I've got my head exactly as we did earlier. Now
we've got an additional component in the heap. We've got the function ID
numbers.

So the program does know about it. And I can continue the execution of
the program by using one of those patterns here. So step over, step into and
step out, step over allows me to move on to the next line of the program
without actually drilling in into the individual components that make up this
line of code instead of going stepping over. I'm going to go step into to
explain more about what I'm talking about here, to remember that we are
now executing line 15.

And I'm going to step in to and you can see that now with step into the
execution continues into the right side of the equals sign. And if I click on
Step into again, it drops further into the first component of this edition.

And it will evaluate that you can see that it will change it into its I.D., so
Vago no one now has been replaced in the code itself with its value I.D.,

which you can see the variables tab. And also in the caps, you can see it's
actually assigned value. Do one more step in two and then it goes over to
the other side and have a look at the number. And again, you can guess if I
click on it again, it's going to into the number and replace it with its
eyeteeth. But instead I'm going to go and do a step over and that is going to
skip it and start exiting. And until eventually the whole thing, the sum of
these two numbers is replaced by the idea where those numbers are stored,
which is B three zero seven point eight. And it's just about again, it's going
to jump into line nineteen. Now, look what happens here. As soon as I
went into line 19, what is the call to the add numbers function? The stack
keeps track of that. The stack now keeps track of where I'm going to jump
into another part of the program, which happens to be a function so that
this is where I'm going to return or the problem is going to return to once
the function execution is complete and it's going to step over there and be
finished. So it's not going to go into the function because I did a step over
when to do one more thing here. And I'm going to say Trent finished like
that and I'm going to execute again. And using the debugger this time, I'm
going to go for that over for the first time and then I'm going to do step into
four to do that. I'm going to open up the stack.

When you can see that the module line 19 is in the first position of the stack
them I'm going to step into now drilling into the function. And now this is
interesting. You see that a new window popped up because now we have
drilled into the add numbers function. So a new window popped up to
show us what is happening inside that function. And you can see there are
another entry has been made into the stack.

This is now line five, which is the line that we are executing right now so as
to step into again, see drilling into the individual components and replacing
them with the ideas in the heap that contain the values for those variables.
So those that adhere as they are being executed and evaluated. And so on,
so the whole print statement and its parameter is replaced by a single
location of single idea, I should say, right here, eight four zero eight if
you're like this, which is where the string of the result message is stored.
So one more, OK, finished, so that's done so you can see that we are now
coming back from the stack into the main part of the program. So they
stack entries now only contains like 19 because we are done with the
python is really done with the execution and the variation of the function.

So let's do one more. Actually, I'm going to go for a step over now and
print up finished and we done. So this demonstration just wanted to show
you what kind of work you can do with the additional views and features
that are available here under The View menu.

Again, we're not going to be able to use these features in our micro python
programming on the specific two, but they are available, if you're
interested in general purpose, desktop or C Python programming.

The debugger that we saw in action here is actually a Python project called
the Bird's Eye. So you can find project documentation for Birds Eye here,
including a tutorial on how you can use it and what else you can do with it.
I've only scratched the surface. It's a very interesting and useful python
debugger that if you're interested in doing some more complicated Python
programming, is good to know how to use that time. OK, now, in the next
couple of projects, like to show you how to do simple micro python
programming tasks with the BBC Microgrid and the Raspberry Pi.

THONNY IDE WITH
RASPBERRY PI PICO

In this project, I want to give you a quick demonstration of how you can use
the IDB and Micro Python to do something simple with the big picture,
which is this case to make the board ality link. At the moment, I've got my
inspirited connected, so it's unconnected and instead connect the Raspberry
Pi pickle back into the thorny idy.

And the two options change the integral to the three pickle and show that
the port is properly selected and OK. So now we've switched the target
device to the Raspberry Pi pickle, which means running micro python.

This is actually how it comes from the factory. It didn't have to do anything
in terms of installing a micro python interpreter from on it. Just plug and

play.

We can find information about the pickle on its Web page. You can see
here Raspberry Pi dot org documentation. They could get started and scroll
down and the board specifications.

You see the pin map out there. Big picture is well equipped with all sorts of
Tapio capabilities and communications capabilities. One interesting
technology that comes with that is a programmable input output, Appio
State machines, which basically allow you to write simple programs and
execute on specific bios. And because they run directly on the side of the
checkpoint, not occupying any MCU cycles, they're very, very fast. It's a
fairly advanced topic, though, but I thought I should mention, because it's
really a feature that stands out when compared to other microcontroller
units. Anyway, in this simple example, I can show you how to toggle the
state of the built in. And just as you can see in the pin map out, it is
connected to the chip. Twenty five using thony to eat.

All right, so the first thing that you need to do is to import the PIN module
from the machine to the library and the machine library, you learn about
this in more detail a bit later. It is a library that is available for all of units
that support micro python, and it contains functions that are specifically
created for the microcontroller that you're targeting. So in this case, the
machine library contains functions that specifically apply to their pickle.
Later on will be using a different version of the machine library that
specifically applies to the capabilities of the HP 32 and so on. And that's
because each hardware target is different in terms of its hardware

capabilities. And those differences are reflected in the individual machine
libraries. So now that you've got the PIN module, I'll be able to use the
capabilities the PIN module provides me to do things such as toggle the
state of the entity, which is, as you said, connected to JP twenty five. The
first is going to create the entity object and I'm going to use the PIN
constructor so that we are targeting JP twenty five. And this is going to be
an output which that's how you set this up in Raspberry Pi. Piggot and now
that we've got this object we can collect on the work of. The. Perhaps I
should say, to not talk like that there, Verizon. That's also another way that
you can do this if you want to be more specific about the value that you're
writing to the top twenty five, which is the only thing, is to use the venue
method. And in this case, the world is turned off now. So I'm going to turn
it on by putting value one like that. You can also check the state of the ality
by just calling the value, but had a parameter. You could see now that it is
on a fight top level and check the value again, you'll see that it's off now.
It's zero.

It's just a quick demonstration is the focus of this course is on the three.
But if you're curious about learning more about the Cross-Breed Pekoe,
then have a look at the documentation here, a full book with a lot of

content, including the link example that I've just shown you and lots of
other bits of information that you'll find interesting.

All right, so then the next thing that I want to do in the next project is to
show you how to do something similar with the BBC.

MacRobert The purpose of this, of course, is to show you how the versatile
micro python nature allows you to jump from one kind of hardware to
another with some small, relatively small modifications to your Microplace
approach. So let's go ahead and extend the ABC a.

USING THONNY IDE WITH BBC
MICROBIT

In this election, can you show you how to run a simple program on the
BBC, MacRobert that escrows of that, we have a world text on the eight
point eight bitmap display on the back of the micro bit, and of course, that
using micro python and funny idea.

So essentially there are some here already connected the micro bit on to my
computer.

If I use B, once you do that, go to auctions and ensure that Margaret Python
Micro is selected as the interpreter for this session and then select the

appropriate port. And the thing to remember here is that the micro does not
come from a factory with micro python interpreter installed on it.

So if you are not able to make this work with your Sony ATV, once you
have selected the interpreter in the port click of the install or update
firmware in order to go ahead and install the micro python interpreter or
the MacRobert.

I've already done that, so I'm not going to overwrite my family. They don't
cancel. But in your case, you may need to do that. If this is the first time
that you're connecting your McAveety computer and wanting to use it as a
micro python interpreter in the target device. So cancel and cancel.

Another resource that is very useful and I encourage you to look at if you
are interested in using the individual as a micro python device, is to look at
the BBC market a bit micro python documentation. And here is the
location for that. MacRobert nine inch python. Don't read the Dockstader
IO. And let me take you here now. There's a law that you can do with the
macro between the macro bit that does come with a load of onboard
hardware, like it's got an accelerometer, for example.

It's got potentially two parts of this side. It's got a dot matrix display, very
bright red and is it's got outputs here and so on. And the documentation
shows you how to use all of that hardware in this case, in this simple
example.

What I want to do is to just use the display and create a simple Hello World
program that just printed out how the world in a way that the text and the
individual letters just scroll across the screen and the commands for that
scroll, which is inside the display module, which itself is inside the micro
bit package.

And you can see here in its constructor, the only requite value is a string in
the first parameter. The rest are optional and they have their own default
value. So choose to not provide them. They've got the default values like
this. I'm going to go with the minimal instance of this core function and
just use it like that. So the first thing to do that, you're going to put the
documentation on the side, make a bit of room here, and I'm going to flip
the bit upside down so we can see the dot matrix display in the back which
make it oriented. Let's reorient it like this.

OK. So that's actually going to do is to improve the whole Michael Vick
package. It's hard to say what Michael Vick and now say Michael Vick.
Plain and cruel, and I would like that.

And check out the contents of the screen now. So the message is scrolling
across the dot matrix display . All right. Another thing that she can do is
just another example is to use the individual set pixel command. So that
would work like this. So I can say to so let's say position zero point zero,
so we've got five pictures across four, five and then another five vertical.
One, two, three, four, five. So five on the x axis and five on the Y axis.
And the starting from index zero. So zero point zero. And then I need to
provide the intensity of the light that is going to come out of the ality. One
is the faintest, nine is the brightest, some of the brightest.

And there's the brightest ality. Let's turn on one more. Going to go for full
and full.

And there is the bottom right corner. Absolutely. I can use clear. It's a bit
of typing and that will turn off the screen. Can also use get pixel and let's
try this out bit. And I'm doing a code completion, so I'm hitting the tab key

and then Sony is going to give me information about which keywords are
available. And I want to go for a get pixel keyword. Sorry, it was display a
got completed, and then from here on, again, I'm going to go get this plane
and I want to know whether the the pixelate position zero zero,

for example, is on or off. I'm just going to say is looking for the
coordinates. Oh, sorry. Let's not get this that you get pixel like that and it's
turned I its attitude on. Let's go back to one of my previous commands like
this one and get the picture at the same location. And it's not getting that
intensity, not just whether it's on or off. So this just gives you a quick
example demonstration of how you can use the display on the ABC.
MacRobert If you're curious and interested, you can have a look at the
condition to learn how to use its other capabilities.

THONNY IDE ADVANCED
CONFIGURATION

In this project, I'd like to show you the advanced configuration file, 113 E in
case you want to modify some of the functionality, and that is not possible
to do via the menus here to begin with.

Go to the thorny project on GitHub and scroll down to find the wiki link
down here and the end users.

Then here look for micro python and the available pages and on the micro
python or in the micro python page, have a look at the advanced
configuration. S.

And then it gives you some information that is specifically addressing some
of the advanced configuration issues for the E.S.P 32. It gives you which
keywords are available. Such is submit mood and roadblock signs, et
cetera.

The ones that are more interested at the moment, the sink time and the clock
time. So as you know, the DP 32 has a real time clock integrated into the
ship. And when you use Thorney to upload a program, it is possible for
Thony to reset the clock to the correct system time and date and to make
that work. You make sure that the sync time keyword is set to true.
Another thing that you can consider doing is whether you want the real time
clock to be set to UTC time or to your consistent time, and you can control
that via the UTC clock Keywood.

So when you say false, then the accuracy of your authority will be synched
to your computer's local time to access the configuration file where you can
do all this, go to 30 and then undertows click on the data folder full time
and they will open up the folder where the configuration file and is.

Here's the text file. Just open it up with a text editor such as Atum and
you'll see its contents.

There's a lot of blocks that control a variety of things. Look at them in
detail if you are interested. But down here you'll find the E.S.P threat to
block it contains things such as the report and then you can say sync time.
She said that now equals true and I'm going to. It is a clock equals force, so
these are some of the more advanced configuration options for the two
men. Speaking of sync time. I just want to mention that in Section 12, I
have a couple of projects where I show you how to set the time in the RTC
of your inability to programmatically both manually and by getting accurate
time and date from an infinite atomic clock. So you've got three ways of
setting the odyssey. You can let Thony do it for you or you can
programmatically manually set it or programmatically get accurate time
and date from the International Atomic.

FIND PYTHON PACKAGES AT
PYPI

Phony I.D. allows you to install Python packages from Pipeline Pipeline.
There is a website which contains a list of available python packages to

Python package intakes that you can see right here.

You can install a Python package directly from the Python interface. We go
to tools and manage packages and you get a search box here, which
basically allows you to search the same projects that you can directly via
the Pipeline Authority website. Let me give you an example.

So let's say that you're just doing a broad search on, like Python. To see
what kind of market python related packages are available and you can see
that there's a C Python, C Python project. A lot of those I'm not familiar
with. I don't know exactly what they are. This is Aristocats module for
Monty Python and these five modules while generating hashas. Dummy B,
three, four data structures, figures and so on, so there's a lot of packages you
can browse and try to figure out what it is that you want. I'm going to pick
one randomly, let's say, and I'm going to go this page to actually see what
else there is.

Let's say let's say this like this. I have no idea what this does, but let's say
that this is the package that you want to also install in your micro python
project internally so that you have a name.

You can copy that and paste it in your. Michael Python geophony
installation, so I'll try that again. Copy and control the search and pipeline,
and there is the exact same project as what we have found directly on the
website. I do my initial research on the pipeline to Daichi website. Now
that I've got that, I will click on it gives more information about it.

If there is the same one that I'm looking at, version zero zero one and I can
install it and I'm installing. This package here it is, tells me where it's been
installed, let's close that and check it out. I'm going to view it files pain and
my micro python device right here.

She's got a new directory and the selectors package has been installed. You
can have a look at it as well. And in this case, it's empty, but it seems like
it's got anything in it. Yeah. So suddenly to let this model of a good
selection for this example, but let's do another example, how about we are
looking for something specific to the ASPCA, too? So I'm going to search
for, let's say, Michael Python and there Speed 32 and see what comes up.
So the thing to remember here is that because Michael Python can be used
across a lot of different hardware modules, not all of them will be
compatible with all of the hardware modules. For example, you may find a
that's car and have a look at the actually, you may find a DH, the living
module that works perfectly on the Raspberry Pi, but it won't work on your
HP 32. So then you will need to find one DHT for the facility. So you will
need to do a little bit of digging around here and a bit of research carefully
to find a micro python package that is specifically compatible with your
module. Speaking of the three two usually modules that are working and
available for the EPA, six six will also be working properly on DHP 32. In

most cases, we do have that compatibility across the two and E.S.P eight
two six six.

So let's say multipotent wi fi manager zero point thirty six. It's interesting.
It's a network configuration utility. I've never used it in the past. I didn't
really know what it does, but let's install it on the. And Anthony, again,
Tool's package is. Paste that in here. Suich.

Here it is, and it's raising zero point three point six, which is the one that I'm
looking at directly on the website. So install it.

OK, it's interesting, I think. OK, so this is I've been work for something
else. Going to look for somebody I found earlier to say a little bit of time
here so that I can think this one here.

So this package looks interesting. It allows me to create a hotspot in very
hot spots so that I can see I can set up Wi-Fi on my E.S.P 30 to. And there
is version zero point three three, which is the one that I found on the
website to install it.

And this one looks like it is working properly close and so you can see it,
they installed a bunch of files that all together make up this module and
you can see what it looks like, its configuration and the nature of his photo
and so on. You want to learn how to use it.

You can have a look at the documentation here. But it's just an example of
how you can find and then install and use third party packages, open
source Markov Python software that can help you achieve your objectives
for your own projects. I'll be using some of those later on when you start
the practical experiments. Beginning in 60 second.

THE MICROPYTHON SHELL
Hi and welcome to a new section in this discourse, in this section of several
projects where I'll show you some topics that are specifically related to
working with Michael Python on the E.S.P. Thirty two,

for example, in this first project of the section, I'll show you a couple of
ways by which he can interact with the micro python show and run
interactive programs or even execute programs that are already stored on
the file system. Then in the next project, I'll show you how to upload and
download files using thony from your computer's file system to the security
file system and vice versa, and how to do things such as interrupt a running
program and so on. So let's begin here with the shell. The shell, of course,
is running on the E.S.P 32 note on Sony. Sony just gives us access to the
shell. And it's just one of the various ways by which you can access said
we're going to show you how to do that with Sony. And this is something
that you've already seen in previous projects. But I'm going to show you an
alternative here where I use a program called Serial, which gives me access
to the exact same schill running on the E.S.P 32. So I'm going to keep
those two side by side. And of course, only one of the two tools can be
connected to the micro python show on the E at a time. And right now I
have connected Thorney to the show. You can see that micro python device
is available here on the left side of the Tony Idy and of course, the
shopfront right here waiting for my command. So to demonstrate a couple
of things here, I have connected a rate ality to Gibril twenty one and then
via a two hundred and twenty ohm resistor current the meeting resistor to
ground the C here, the cathode of the LDA goes towards ground and let me

just put that back in place. All right. When you work with the show
exclusively and let's imagine that we are not doing this on phonier right
now, so we don't have access to this file browser in particular here, one of
the modules that you want to be familiar with is the OS or the operating
system.

So this module is a core module with Python or that is C Python. And in
this case, because we are working with Micro Python, there is a micro
operating system where you OS or micro OS services module, which
contains a subset of the functions that you'll find in the full blown C OS
module.

The functions are listed here looking at the macro python documentation
and you can see some of those, for example, that you named the the micro
main function gives you a table that contains those items in it that helps
you identify which device your script is working with, this random object
with random numbers, et cetera, et cetera.

But the one that I find interesting and we're going to use in the moment is
this one here list directory. So I'm going to use this directory to see what
files are already running on my show, and then I'll show you how to
execute those files.

We can create directories or remove files, et cetera, so we can have a look at
this location to see what kind of functions are available to inside the OS
services module. So this is very useful. Let's try it out.

I'm going to import U. S first, and then I'm going to do a listing to see what
files are available. Of course, we can see those files here, but I'm going to
do that one on the show. So let's pick this command. It's this just copy and
paste in here, open close parentheses. And you can see that in the root
directory of these three files. Of course, the whole world wide contains this
script and I can just type it in the shell and run it interactively. I just say
hello here and it will come back. Now, let's say that instead of you typing
the interactive comment into the show, you want to execute an existing file
like the Arrow and the score will be Wi-Fi. Right. So how do you do that?
There's a python command called Exec File, which I find very useful for
exactly this purpose. So I'm going to copy the name of the file. And pasted
in here, you can see as I clicked on this item in the array, the object
inspector came out and he told me what the contents of this array are, just
pretty interesting. And you get such beautiful partnership data and we close
it for now. So I have used a file past the argument, which is the name of the
file and enter, and that would just execute the program that is contained
inside this file here.

So let's go over to the alternative, which is just another way of connecting
to the exact same shell in achieving the exact same thing.

So the first thing to do here is to disconnect. And release my especially two
and then I'm going to connect. Heat control command to deal on my

computer, but you can also do the terminal connect and that will connect
you to the shell hit enter to get the prompt and the prompt.

And I can do the exact same thing as I did in Sony.

So import your as so micro OS and then try out the directory Alistaire
function where it is code completion as well as I can hit tab and I'll get a

code completion feature activated. So these are the three of the two files
plus the directory. At this level there is no differentiation between a file in
the directory and I'll use exec file to execute. Hello World P y and it
works. No problem at all. So I'm going to disconnect from Serial and
continue with a couple of other experiments in the. She provided by Sony.

So let's click on Stop to actually start and the connections a bit counter, but
still potentially to stop and restart the back end so easily. Three, two is
connected again. You can see it here. It is good to go. This is a look at
another example here that involves the ability to now copy some code from
the Python file here on my local file system onto the shelf.

So first of all, there is the machine module, which contains various
modules, including Pend, that allows me to work with pins. And I've got a
lot more information about this in Sections seven and on which where I'm
going to go deep into those modules. So for now, don't worry too much
about them. Just play along and see how this works then. Actually, I'm not
going to import any time or micro time. I'm not going to worry about that
for now. Next thing to do is to create the ality object. Connect the object to
PIN twenty one and configure it as an output, then I'm going to use Alyda
on. To turn on the radio and really off to turn it off, very simple, so you can
now control hardware resources from the shell, but the show also allows
you to create blocks of code. So, for example, here there's a block of code,
there's an infinite loop. This is going to execute forever because the
condition here is true. It doesn't change. So it's going to turn on the ality,
hold it on for half a second and then turn it off and leave it off for another
second. And this will give you the opportunity to show you how to work
with loops on the comment on the shell and also how to interrupt them.

So because we're using the Sleeth function here, I need to import sleep from
the MICRA time module. So there's sleep and I'm just going to take this.
So while true, don't forget the the two dots, in the end I can see that the
shell is waiting for me with indentation type something in that is going to
be part of this wire block. So Nelida on. Then sleep or have a second and
then the early days of and sleep for another half a second. So now I'm
done. I've got to go back up and put the parentheses there. So there is some
intelligence in the show. So you see that the show didn't panic. I was just
able to use the Iraqis to go back up one line and add the missing
parentheses. And they showed that show, knew there was something wrong
there because they did had the Korei highlight like that. So you know that
you need to close the parentheses to match the opening parentheses. So
done with that line and I'm actually done with the blog. So I'm going to hit
Enter one more time. And now the entity is blinking on of half a second
each time and you can see them not having the prompter down here. I
don't see the prompter because my micro python instance is busy blinking
this time. So my DP 32 can't really do anything else right now. It's locked
up in this infinite loop to stop the infinite loop and to be able to do
something else like upload or download a file.

I need to either go in to run and say interrupt execution or just hit control,
see, which is what I'll do.

And that we interrupt the execution and break out of the loop forcefully, but
it does break out of the loop, the memory is not quite it's still there.

So I can still go back or turn on or off senility. So the objects are still in
memory. And. And she can see I am able to use the shield to write simple
programs, test concepts out, and then go in to my script and work on larger
programs as part of a file one or more files. So this was a demonstration of
the things that you can do with the show, regardless of how you are
connected to the show, either using phony or some other tool. In the next
project, I'll show you how to do file management operations using phony
phony. It's a very convenient file manager, these two windows here which
allow you to send files back and forth between your host computer and the
spirit listening post.

HOW TO INTERRUPT A
RUNNING PROGRAM

In this election, we show you a few ways to interrupt the running program
and actually a little bit more than interrupt their own program, and I'm just
going to show you how to restart your especially to using soft reset feature
and connect the disconnect from thony and disconnect the show.

To do that, I'm going to begin by running the red blinking script. The only
thing that I learned here is on line seven, I thought. So I'm just representing
the blinking here by using a new dot. And of course, while this is
happening, the E.S.P 32 is locked into executing this loop to interrupt it.

You can hit control, see, or you can go to the run menu and he'd interrupt
execution or choose this option. Here it is the control seat.

When you do that, you get the keyboard interrupt and then you have control
of your speech to again. Going to clear this and to restart the program now,

got certain you dodge coming up, another option that you have to send an
end of fire or soft reboot.

And this is done by using control the on the keyboard so we can control the
and see what happens here.

It's basically a resetting, but not breaking the loop. It's just starting the
program from the beginning. So that is the effect that it has now when she
one more thing, when it hit control, say, to stop the program from running,
just clear the show and then do a controlled day.

And you can see that the event just occurred with a soft reboot. So with a
soft reboot, the memory is not reset, the memory remains.

So any program that is loaded to any variables that have been said will not
be lost. But what is better it is going to do is to start executing the program
from scratch. All right, so this annual Tannadice.

Another thing that he can do, of course, is to stop and restart the back end.
This has more the effect of a hard reset. It's like pressing the reset button on

the board itself. So, of course, that is going to stop the program. Let's try it
out. Right, and run and stop, start back in the said to. And that will have
the effect of the EU treaty rebooting effectively.

And then finally, of course, you can disconnect, but disconnecting, let's
connect again.

Give her a moment to restart, stop, restart. Democrat Party, the device
back, I'm going to run the program.

And now I'm going to disconnect. And you can see that by disconnecting
the DP through to the aid has stopped blinking, which means that the
program has stopped operating as well. So these are a few ways by which
you can effect the execution of a program using the available options here
under their own menu in the next election, I showed you how to
automatically start the program at Boot, said that the program starts when
you power up your especially to especially useful when it is not connected
to your.

HOW TO RUN A PROGRAM AT
BOOT

Up to now, we have been programming the 3-2 by having it constantly
connected to the computer and we were able to click on the green button to
get the program to run. I imagine when you have finished development and
you want your hospitality to be independent of your computer and to be
able to automatically execute a given script when power is applied.

There's a couple of ways by which you can do that in this. Let's show you
both of them both ways involve the supply file.

So the bid to be fine as long as it exists, is going to be the file that the EPA
authority will attempt to execute when it's powered up. You can see here
that in this instance, it does have some code in it, but it's all commented

out. And that's why when we do start the hospitality, nothing happens.
There is code that is coming out is not going to be executed. You can
replace this code with your own code.

So I'm going to do this right now. I'm going to copy the code from previous
project and I'm going to pasted here. It's going to leave the previous
committed out code as it is. I'm going to paste it in here and then save this
file.

Now, what I'm going to do is I'm going to disconnect the computer, cable,
USB, cable, and I'm going to replace it with a cable that I have connected
to a power supply. This one's a battery power supply and plug it in and you
can see the reality is blinking, meaning that my code in the P. Y script is
being executed. So that's the first way. Could you connect my Richard
back to my computer and now let's see what happens.

Remember that pill, one that contains code and my attitude is executing it,
which means that it's locked inside this loop, going to click on the stop
restart back in button. And. I'm not getting any files in the file browser for
the connected device.

Because, again, the device is busy executing the Blink script, so I'm going
to send a control scene to interrupt the execution so that the device is
released and I can continue to interact with it via Sony.

So that's something to remember. When you do have a script that contains
infinite loops like that, you need to remember to hit control, see to regain
control of the device. So the first way is to just simply copy your code
inside the file and then it will execute the contained code. But a better way
to go about doing this is to use input. And because we already have the
code that we want to execute on bood in a separate file, we don't want
really to copy across into the boot.

So a better way to do that and reuse the work that we have already done is
to use the import function and just simply import Elida. And it's called
Blinkx without the extensions. So this. To save this file, so say the new
version of Bitter Pill, why so what's going to happen now is when power is
applied to the big three to it is going to look inside. Would it be wise for
executable code? It's going to find a link to the ality and it's called blink.
That file will import it and they will execute it as it comes in. And the
effect is going to be exactly the same, except that now we can continue
working on our ALYDA linked or Peepli File, knowing that it will be
executed on boot up because of the input instruction in line seven of the top
file. So I've got my input statement here. But just one thing that I've
noticed is that the ability in cobbling to Kidwai file is not my ISP through
the device, it's on my local file system, so I won't need to bring it across.

I believe there is this file here, so I'm just going to upload it. And now that
it is here, that reference will actually be correct and it will work. All right.

So I'm going to unplug the data from my computer and then bring the
power cable from the battery room. And there you go. It works. Let's
connect back to Sony, and it's like power, like two computers, USB, cable.

And the hospital, too, is now locked into the infinite loop. So I'm going to
hit on the stop button to restart the back end.

And then control, see? To stop the execution and we've got control back.

OK, so let's sit with the two methods by which you can automatically run a
program on time or power up on your AHP suited to the last thing that I

want to show you in this section is how to do simple debugging of your of
Python scripts using phony I.D. And we'll do that in the next project.

HOW TO DEBUG
MICROPYTHON PROGRAM

Like in the previous project, I showed you how to automatically execute a
script when the writing is pallett up.

And we did it by adding some code inside the to a program. Of course, if
you don't want that to actually happen and you want any code to be
executed when there is power up, then make sure that there's no executable
code in this file. Or you can just delete this file and recreate it later when
you n eed it.

So I'm going to put this away from now. And in this project, which is the
last one for this section, I want to show you a few techniques useful when
you do debugging and troubleshooting of your macro Python script. So I've
got the Blink script here, and the first thing that I've done in order to help
me with troubleshooting is to use print statements. If you come from the
Adreno world, then you are familiar with how we use print statements there
to try and figure out what is happening during the runtime, during the time
that our script or our sketch is being executed on. And that is a similar
principle here. Again, I'm using print statements to print out in this case
what is happening with this particular object, and I'm printing out its
value.

So when I run the current script, you can see that here it is on then I get no
one for value when it's all gets zero and so on. So this is telling me that the
ality object is behaving as I expect it to behave.

So control it is stupid and clear. So another thing that you can do is to read
the comprehensive usually error messages that come from Python when

there is a problem. So the Python interpreter, it's actually pretty good at
providing information about what has gone wrong with the execution of a
script. First of all, look at a couple of examples.

Let's say that we are trying to access Tapio that doesn't exist. So it's just an
honest mistake here. It's sent that script to the two and you see a pretty
clear error line for. We tried to do something with an invalid pin. So this is
easy to solve, right? You've got to for have a look at the pin parameter and
fingers. You know, which pins are valid for the especially to have you have
a pin map nearby, then you know that there is no two hundred eleven pin
and that he probably meant 21, which is where my ID is connected to
something with things like other parameters.

In this case the pin parameter. Let's say we only have pin in and pin out as
constants for the type of pin object that we are trying to create. If you had
a typo here, again, that would generate a fairly accurate error message
saying that again in line for you, trying to create an object of a type that
doesn't exist. Him, that doesn't exist, so you can go ahead and fix that is
similarly.

Any type typically will generate a message that is accurate or you can see in
this case, it says line 13, which is not very accurate. Obviously at the end
of the script, it's pointing the error at the end of the script, but the name
error is more appropriate here. It gives you more clues to figure out what
the problem may be. So initially, we will look at line 13. You won't find
anything strange there. You look at the rest of the error message and it will
guide you to where the problem is. So you may need to carefully assess the
entire error message in to trace back until you can figure out where the
problem is. So for things like typos typically have very good accuracy in
the error messages to come back from the interpreter.

I'm going to give you one more example. Let's say that we have a typo in
one of the methods. So let's say that we try to insert a parameter in line 13.
Let's see what comes back then. He did execute the program to line 11 and
then it very accurately said that there is a problem here. The function takes
one positional argument, but to given actually this this function does not
require any commands. But in a later project, I'm going to explain why
you're getting another one here instead of zero. But the fact is that the
problem here has to do with the number of arguments that we have
provided. This function does not take any arguments and I have given one.
And therefore I'm getting into a message.

It can look at the documentation here as well if. You're having trouble
figuring out what the appropriate syntax is. So in this case, we would go to
ESP three to.

We would go to Pince and Jebril because we have imported the module
from machine, and this will tell you how to use these particular functions

here, you can drill down to the documentation itself and get more
information about all this, including, let's say, the type of constants that are
available for the mode.

So I said earlier this only in Allapattah actually opened drain and out and
out of introducers quite a few there. And having a look at the methods,
you'll see that the value can be.

One or zero, if not providing a parameter, if it's empty. And also here is on
and off on the paramedics who set into one of facilities zero.

Again, no parameters. So sometimes you may need to refer to the
limitation to figure out what is going on. All right.

So I'm going to leave it at that over the next few sections and dozens of
projects will be bumping into problems with my scripts. And in many
cases, I'll be showing you live how I've gone about solving those issues.
But for now, just keep in mind that it's a good idea to keep print statements,
especially if you are developing a new script so that you get real time
information about what is happening inside the program as it's executing
and become familiar over time with reading those traceback error messages
from the Python interpreter. And I guarantee that every single time to be
able to fix the.

ABOUT MICROPYTHON
MODULES

Hi and welcome to a new section in this course in this section. I want to
talk about Michael Python module's Michael Python module's just like a
regular python.

Modules are files that contain functions and code that you can import and
use in your own scripts. Very often we tend to use the word libraries
instead of modules, but those two words are equivalent. You they can use
either one and understand what you're talking about myself. I often use the
word libraries instead of modules. So just wanted to give you a quick
example of what a module can do for your programming and for your
productivity. And in the next few projects in this section, I'm going to talk
about the modules that you find integrated into my python. So let's call
those built in modules and then there are the community modules. So these
are modules that are contributed by people that use micro python or
python. And what we're going to show you how to install such community
modules. This script is a script that I'm demonstrating in a later project, and
it's showing how to use a two by 16 LCD screen with your E.S.P 32. Now,
if you notice here in line thirty seven, I am importing an external module
and the name of this module is E.S.P eight two six six. And it going see
underscore L'Occitane now using the Keywood as. To nominate a different
name by which I'm going to reference the contents of this module in my

script so you can sit down here, for example, in line 44, where I am cr
eating a object out of this eye to see LCD class that I'm using the
nominated names specified after the keyword. So you can do things like
that in order to shorten perhaps a name of a very long named module. Now,
back to the module itself. The name that I'm using here to input the module
is simply the name of the file for that same module.

So if you look here in my micro python device file listing, you'll see that
there is a file with the exact same name, except that it also has the dot p y
extension and have opened it up right here.

And you can have a look at it. So this is the. Module that I am importing
and you can see the code in it and you can see what it does. Now, the other
interesting thing to notice here is that this module actually has one more
dependency. So you can see in line number four, it depends on another
module. That is also an external module that I had to download from its
source called LCD API. And you can get from this the actual file name of
the file that contains this module is LCD and the API dot p y, which is right
here. But this is a fairly large module, don't click on and then you can have
a look inside, you can see that it's called one class here called the LCD
API, and it's got a bunch of functions in it. And so therefore it's quite
large.

And for that reason, I'm using the key word import to import a specific class
instead of importing the whole lot. Now, imagine that this file of this
module contained to multiple classes. So instead of just the single one that
this one contains. Imagine that he had multiple classes. By using this type
of notation, you can narrow down the class or classes that you want to
import as opposed to importing the entire module, which is something very
useful when you're working with devices that have limited capacity. So all
this is stored in RAM. Of course, when you import and instantiate a class
and you have an object to work with or that is in RAM. So by being
selective about the components of a module that you want to import, then
you can preserve the resources of your microcontroller unit in the same file
here. Just to continue this for one more step. You can see that we are also
importing modules from machine and from time. And these these modules
are built into micro python, which means that we don't have to install the
files that contain those modules like we did with the DSP. So we can notice
here that there is no file called machine PCI or time dot behind this, because
these two modules are built in two micro parties. They come with the
language and they're part of the interpreter.

So that's just the quick introduction about modules. We can understand the
concept behind them and why they are useful. So that means we can go
ahead into the next couple of projects where I can talk more about built in
modules, show you a few things about them, including where to find the
documentation, because there are a lot of them. There's no way that I'd be
able to cover them in this course. But I'll give you the source of all the
information that you need. And then in the project after that, I'll show you
how to search the community on the Internet in order to look and find
micro python modules that would be useful for your project for go into.

BUILT-IN MODULES

This actually talk about micro python built in modules, these are modules
that come with the micro python interpreter and they are accessible from
the scripts running from your E three to you don't have to import or install
any additional files to be able to use the built in modules.

So let's have a quick look at the documentation to begin with and then I'll
give you a short demonstration. Let's go to the latest version of the macro
python, the competition. I'm looking at version one point fourteen here and
the very top you'll see a section of micro python libraries in here. You'll
see there's a few different subcategories of subsections. First of all, you've
got the Python standard libraries and micro libraries right here. You've got
libraries such as math or C UI, although we also use an S for the operating
system and so on. Then after that, you've got micro python specific
libraries such as Machine, which we are going to be using a lot, and the
social network and so on. And then you've got libraries that are specific to
the market and using in our case there is three 32. So you drill into that and
you see that there's a couple of modules here that provide functions specific
to the ISP 32.

Now back to the beginning, just to talk a little bit more about what each one
of these does. The Python standard libraries are libraries that you normally
find in the regular or C Python programming language. And these are also
modules in libraries that come with standard python. The implementation
of those libraries into Micra Python is very close to you, but you cannot
expect one to one correspondence between the functions available, for
example, in the IO input output library in Python against that, that is
available in micro python.

So, for example, in this case, you see that I o or the Python Library starts
with a U in front of it, which makes it micro IO and that indicates that this
is the micro python version of the IO module that comes with C Python.
So you can see here there is a reference to this Python input output or IO
module.

We're going to click on that and take us over to that documentation. And
we are now looking at Python version three point five and this is the IO.
Documentation of the condition for the library and you can see it right here
against what you provides us in a micro python environment.

So the basic functions will be available, but they will be optimized to
operate on a limited performance environment, preserve memory, for
example, and lower ship use cycles. And some functions might not even be
available at all.

So we've got the function open, for example, here, and it's a search for open
mic that is also available here. And you can use it typically in the same
way. So in Python, the function open requires a file to open. Then you've
got the open modifier sort of mode of the operation of the file. So whether
you'd like to read it, for example, or appended or write and so on, we talk
more about this later. And then there's also the type of encoding that the
file contains. Now, on the other side, on the micro python side, we have the
name again, then the mode, as well as the third parameter here for the
encoding. But just not notice what it says here or ports which provide
access to the file system are required to support the mode parameter, this
parameter right here. But whether the other arguments are supported, these
arguments over here depend on the port, which means depending on which
target device you are writing, your micro python program for, whether it is
for the security or the weepie or something else. So you need to be a bit
careful and consider your target as well when you use in those classes and
those functions. So that's what's happening here with the Python standard
libraries. And we've got micro python specific libraries.

So these are libraries that only exist in the micro python world that don't
exist in Python, for example, the machine module, which contains
functions that relate to the hardware. You can do things such as reseeded in
soft, reset it, disable or enable Arcus and so on. And these don't make
sense, of course, for the regular C Python language.

So if you go over to the C documentation and try to search for a machine
module, you find it here, some machine module specifically designed for
micro python and for the hardware tankage that it supports. Then we've got
the port specific libraries, so these are libraries that specifically operate on
target hardware devices and target microcontrollers. So we're talking about
things such as PIB or Pay Board or the HP three to show that.

We'll take us down here for us in our case, since we're using the hospital to
click on the ASPCA to a specific library and you'll see that there is one. Its
name is ASPCA two, which gives us functions such as to wake up one
touch or an external pen sending an IQ or that reads the integrated
thermometer to give us the real temperature.

I'll give you an example of this in a moment and so on. So this is a library
that only works on the E.S.P 32 and provides specific functions that only
make sense on the age of two. So let's play a little with this particular
library here. Just going to make a little bit of room here so we can have the
two in the side by side.

And I'm using the show. I'm connected to my ears to to use the ASPCA to
board specific library. I just need to import it. So, as usual, I just say
import E.S.P 32. I didn't have to install a file with the name E.S.P 32. Why
said this integrated into the firmware that is running on the microcontroller.
And I do something simple, like I get the internal temperature, internal
temperature of my HP 32 right now. I'm just going to copy this, paste it in
here and enter. And there is its te mperature in Fahrenheit. So you can see
very simple. Can you see the whole sensor with this case? I'm going to
type it in and use code completion, open close parentheses. And that is the
reading from the integrated magnetic code sensor. Very easy, as I said, the
other thing that you can do here is you can be very specific. As I said, the
memory of the two and other microcontrollers running micro python is
fairly limited compared to that of a computer running python. So by me
importing the whole of the ISP through tumultuously means that are
imported all of those functions, even though I am only interested in using,
for example, the real temperature function. So what I wanted, what I can do
in order to be a bit more nimble with my use of resources, I can just import
the specific function that I want to use so I can say. From E.S.P ferry to
import real temperature like that, and now I can call real temperature by
name like this without having to prevent the security dot, as I did earlier,
because earlier I just imported a whole lot, just imported the real
temperature function, which means that I can just call it by name and I'm
getting back the same result. So the second instance, I have been a lot more
precise about what it is that I want to import from a large module. You'll
see later in the next project. Actually, some of the modules that you can
import for your projects can be very large in size because they are designed
to cover a multitude of situations and multitude of target hardware. So you
can be specific about which parts of those modules you want to import in
order to preserve memory. All right, so that's about it with the building
modules. Let's go over to the next picture now and a look at that particular
community, which was.

COMMUNITY MODULES
What's next for you, some places where you can find micro python modules
that you can use in your project?

Of course, the first place to look for anything here is a search engine, in this
case, I'm using duct tape to go and I've issued a fairly open ended and
generic search. I'm just simply looking for my python modules and
libraries. And what comes back is kind of no generic as well. Scrolling
down this list, I eventually find.

Something relevant here that's kind of specific to a micro pattern display
library, but it's mostly and here's one from my block as well, but most of
the top entries are generic about modules and libraries for micro python,
but with no specific library hits. So lesson to be learned here is just be
more specific about what is it that you are looking for.

So in my next tab here, I'm searching for my code Python LCD library. So
in this case, for example, I may have a 16 by two character LCD display
and I'd like to find a micro python library to make it easy for me to use.
And this search in DR Congo actually reveals a few interesting
possibilities. So now the next step for you would be to assess which one of
those libraries might be best and it could be a matter of trial and error, or it
could be a matter of looking at the limitation and deciding which one is
best fitted for your needs.

In my case here, I've done a search, a relevant search in the past and found
that the city and the school IPY library alongside the EPA, the two six six
and there is here is the best source for these libraries worked best through
these two files are part of the same module.

Actually, they work together. So here, let's see, maybe we can go for this
one here. Looks promising.

Have a look inside this and make a python. I see. Or should they use the
library folder folder? Which contains the files that you will need to then
import and store on the marketplace and device itself will show you how to
do that in the next project and have a look at the documentation.

So the functions that are available and you then decide whether this is going
to work for you, sir.

Now another consideration is to see whether there's any information about
the hardware on which this market python model has been tested. And
apparently I don't see and especially to target at least tested, it doesn't mean

that it won't work on the capability to test means that the author hasn't
tested it so very often. That is stand up to you to give it a go into test it.

If you want to be a little bit more specific with your search, then you can
add the target device name in your search as well. And that will probably
give you some more accurate results as well.

So I would say maybe this one would actually be a better suit for the ESB
32 and maybe actually it is. Right. So so this is one part of the process.
Now, there's other places, apart from search engines that at least I consult
first before I revert into doing a Internet search.

There is a project here called Awesome Micro Python. This is its GitHub
repository and this is its front end, its website. So you can just go directly
to the front end. And they have curated a very big list of micro python
modules.

Macro Python libraries can see the Kovalik, a very extensive array of types
of modules here that work with all sorts of hardware and software
capabilities. And let's say, since we are looking for a model to use with our
LCD screen, let's say that we've got an LCD character displayed to still
down to that.

And you see that there are several options that you can use. Some of them
may be compatible with your hardware. Some may not be. So then you
need to drill into the kind of hardware that you have. In my case, I found at
this library here actually works. I did that or I found that out through trial
and error. I tried a few libraries first before I narrowed down to this one,
and this one worked. It's using a squishy interface. We found this one
earlier as well, and it's not available through Ocean Python in a found that
works anyway. So many of the libraries that I'm using in this course, I was
able to find them by browsing through awesome micro python and then
doing a lot of testing, rejecting some of them and accepting others. So
finally, there's one more place where you can look for Michael Python
modules, and that is Pippi Dog, the Pied Piper Authority does not
specifically target Michael Python. It's an index for python packages in
general. So you can see it's huge. Two hundred and ninety three thousand
projects. Some of them are micro python projects, but not all of them. So
here you are, just like with a generic Internet search, you need to be specific
with the thing that you're looking for. So, again, let's say that we are
looking for a module to help us out with using a LCD display on a project.

So I'm going to use a word micro python in order to narrow down my
search to make a python specific libraries and let's say al Qaeda to begin
with from the first step here. And you can see if you come back. Now,
which one is the one that I use? I'm not sure yet at this point. There's quite
a lot.

Fifty one pages, maybe only to narrow down a little bit more, maybe make
it 12 or 16 by two for the type of LCD with the dimensions of the LCD
screen and see if anything comes back. OK, maybe that's a little bit better,
but still not that much better than, say, some of those libraries work for the
Raspberry Pi. Which is not what I'm looking for.

So my next search term would be especially to and that brings back one
thousand two hundred forty four or actually knowing that the HP three two
and the PSP eight two six six are compatible in much of the way that they
work. And I'm going to look for that. I'm at that closed area as well and.
And. Reply.

And I need to continue playing around with this and remove these two parts
of my search. Keep looking. Check out the second page.

Hmm, maybe there is something promising here. LCD 2.0. Check this out,
project description alone.

You can have a look at the homepage to see this and think they are. All
right.

So this is not going to work for the city, too, because this is for the pie or
the big boned black. Get rid of that. And go back. And what's going to
add the term I squared see or to see, because I like the idea that comes back

to be able to use the ice quartzite interface. So let's see, do we have
something better now? Oh, no. Not that.

No, I'm going to continue with this. I mean, we're going to put in place my
point then with E.S.P 32 first. No more E.S.P, a 266.

This is not looking very promising, so at this point, I would have given up
and gone back to awesome micro python or I would have gone to do an
Internet search instead of getting paid for this.

Now, the reason that I brought up Pipeline is that, yes, you will be able to
find MegaPath Python modules that you can use. The nice thing about
Pipeline, if you do find something useful, is that you can use the package
manager and the tools to install the package that you find.

So let's say, for example, that this library here was the one that you wanted.

You would be able to search for this by name inside. Sony discovered that
across search on pipeline.

Find it here and then click on this button to install it and look into it. Of
course, because this is not a module that is compatible with the USA is just
for demonstration once you install it.

This library would be stored inside the loop directory right here, and then
you'd be able to use it from your projects. All right. So just to recap, to

find Michael Python modules that you can use in your projects, I typically
start by doing an Internet search, trying to make my search as precise as
possible. And after a couple of iterations, I typically find what I'm looking
for. Another place that you can look at for modules is awesome, like a
python. It's a curated list of the micro python modules. And finally, you
may also want to have a look at the paper dot org repository of python
modules. And once you find what you're looking for, you need to install it
to show you how to do that in the next.

HOW TO INSTALL AN
EXTERNAL MODULE

In this project can show you how to install an external module so that you
can use it with your micro python protection, SB 32.

In this case. In this example, I'm going to use awesome micro python to
look for an interesting module. And there's quite a lot here.

But one that drew my attention is this one here. Micro math, micro
mathematics and analytics looks interesting.

So click on the link here that will take you to the repository for this
particular project. Now, this is a GitHub project and the files are up the top
with a description of the project down the bottom.

So there's a wiki as well. I can see issues and documentation page. Let's
have a look at those to see what's happening here. Just click there. So the
wiki doesn't have much just a list of to do items here. They could have a
documentation.

I can take you back to the same GitHub main page. So not much there
either.

But we do have access to the source code so we can drill inside the source
code. The math directory contains a bunch of python files. You can browse
these files to see what this project is all about. In many cases with micro
python projects, the source code itself is the limitation you can find.

So we have a look inside. Operator, operator, Dopy why has a few simple
functions for additional application, power calculations, etc.. Let's
compare it to a look at another one, maybe inside calculus.

So it looks like this is populated with calculus related functions. OK, it's a
few to do items here as well. But for the sake of this example, this is

actually good to go. So to install it, the first thing to do is to download a zip
version of this archive.

So click on the green button, then click on Download Zib that will bring the
zip file onto your computer.

And in my case I have already downloaded it and expanded it from the zip
file so that this is now the contents of the repository on my computer. Now
the thing that you need is the math. That victory, very often a module will
contain a single file. But in some cases, like in this case here, the module
comes as a collection of files usually bundled inside a directory. So the
next thing to do is to get this directory over to a folder that I can use in
order to upload from that folder to my HP through to the server. Look at
30. So 30 has got the file step here. And right now I've browsed into Micro
Python E.S.P 32 two, which is sitting on my desktop so I can either redirect
this over to my downloads folder in order to be able to see the math
directory inside this list of files and directories.

Or in this particular case, I'm just going to copy. This directory and pasted
inside. My open directory, I'm just going to come wait and paste it over, so
it's a very standard and move to the top now.

So there is my UMass directory right there inside my micro python,
especially two, and it's cruel.

And yet they just appeared now in my list of files and the phony. Right
there. And the next thing to do to be able to use it on my experience is to

transfer the whole directorate into my especially to flash memory and
system. So the easiest way to do that is to. Right.

Click on the director or the TransFair and then select upload forward slash.
Do that. Wait for a few seconds. And there's math, right? So I'm going to
do a couple of experiments. To try out the contents of this module, just
trying to expand the shelf part of the window so you can see more what's
happening. Of course, remember, you always have the source code. Let's
say that you want to play around with the functions inside operator Torpy.

So just double click on Operator to provide to see what's inside. And you
see the three or four functions that are available here.

And the first thing that you want to do is to import the module into your
show so that you can use it. So the easiest way to do that is to say that you
want to use the new math module, but specifically you want to import

operator. So if you just say import your math, then you'll be importing all
of the files that are part of the you must directory, but if you only want to
use the functions inside the operator file, then you can say from your
mouth the name of the directory import operator, the name of the file
without the extension. So enter and now we can use the ADD function in
this way, so two, three has those two numbers across and the addition is
five. What about Peter W. Power? Two in the power of three is eight and
so on. You can subtract. And it works now in the exact same way as what
you've just seen me doing on the show, they can use the exact same method
to import a library file or a module file to your ISP. Three to one more
thing that I want to show you before we close with this project, and this
section is to show you what you can do if you only really need one of those
files, you don't need all of them.

They may not be taking RAM if you have an import them, but they are
taking up precious flash memory space. So maybe you don't want all of
them.

But let's say that you only want the operator functions. So let's clean up
here and remove the directory from my device.

I can then go to operate on just the single file that I want to store on my
micro python device and upload it.

And that appears here on the same level as the rest of my files, it's not
inside a directory this time around, just going to do actually a soft actually

up to a reset in order to reboot essentially my ISP three, two and clear
memory.

All right. So starting from fresh new, I want to import operator, so just say
the import operator. And now I can use the functions that come with
operator and the look inside the file again, just like before you could say
operator, add two and three together and that will give us five. So there's a
couple of of ways by which you can do that, but virtually with every single
case you'll be able to use this methodology to import a module to your
ability to be able to use on the show or through Python filed.

BLINK AN LED WITH LOOP
Hi and welcome to a new section in this course, this section is the first one
where I'll be doing practical demonstrations and showing you how to use
micro python with a variety of peripherals.

And of course, we'll start with the classic blink example in this and in the
next project. Just a couple of things before we begin since, as I said, it is
the first practical demonstration. Just want to talk to you a little bit about
how I've set up these experiments, both on the hardware side and in terms
of the software that we're using. So on the hardware side, to begin with, I'll
be using just a generic SB 32 board. This one is the one with the 19 pins on
each side. There's nothing special about this board is a cheap one that I
found on eBay. It is a generic SB 32, and that's how you'll find it as well in
Thony when you download and install the firmware. I'm not using external
flash or anything like that now for my peripherals. I'm using too many
boards attached, one next to each other. So I've got double the amount of
space. And you can see here that I have wired the power rails to the three
point three volt pin. So this pin right here and the ground pin and I've just
taken those pins and connected them to the to the ground rail and to the
three point three fourth rail and again with wires, I've connected the
additional two power rails. Also, whenever possible, I will be using a

sticker here with the number of the pin to which a component like Enilda
or later on a potential on that or a button is connected to. So that all you've
got to do is to look at any project frame and you'll be able to see where a
particular component is connected to. So having said all that, I'm going to
like in my ears to back onto the boards and connect. Legazpi Cable. All
right, let's have a look at what's happening on the software side. So in
general, each experiment I'll be starting with thrown in a blank slate like
this, nothing is loaded. You can see that I've got typically my scripts in a
local directory and then you can navigate inside thony. You can navigate
the directory where you have downloaded the scripts from the courses
GitHub repository to in most cases, like in this case here. I'll be opening
up the example script,

having a look around, just become familiar with the way that it works.
And then I will be there's a couple of ways to copy the script onto your ISP.
Three to one way is to open up a new file, then copy the contents of the
local file onto the new file,

and then from here you can save it to your ISP for it to do that in a
moment. Another way by which you can do that, you can close that another
way by which you can do that is to go to file and then say save a copy.
And then again, as long as your 32 is connected, then it's going to give you
an option to save the copy on to the device or on to your local computer
file system. So let's have a look at those.

You can see that Mike is referring to is connected via USB, but it's not
appearing yet in Sony. So I'm going to click on this button here just to
trigger the connection of the device. And now it's a simple by default,
when you upload the firmware for microprobe and onto your especially to
the only file present is the boot p y file, which looks like that it doesn't do
anything in general. I'm not going to be doing anything with dot p way
because I want to be able to click on the run current script button up here,
hit F5 to arbitrarily execute a Python script that is stored on my ISP 32
instead of having two power cycle in order to trigger whatever code is
inside. But P y. But just remember that once you are happy with the
operation of a script, then you can always change that script name to be P y
and then you'll be able to execute it just by powering up your ISP 32.
Alright, right. So now that we have the ISP 32 micro python device
connected and you can see the listing of its file system here inside thony,
then I can go ahead with step number two and copy my script across to the
East 32. So I'm going to follow the copy method. So I'm just going to say
save copy and then choose from a Python device and I'll give it the same
name. I'm going to type it in and give it the same name as the name that the
file is saved on my local computer file system. So this is really the blink or
21. P why right now it appears right here going to double click on it to
open it up. And here's my second tab with my Python script as it is saved

on my ISP through to device and to highlight the difference in storage
location between the two files, you can see that the local file system
computer file system file does not have the square brackets around its file
name while the ISP three to one or the file that is stored on the ISP three to
filesystem per square brackets around its file name. So now you can get rid
of the local file system, copy of the file and just work with the one that is
stored on the ISP three two. With each one of the demonstration files, I
tried to provide sufficient documentation in its header. So in general the
header will look like this is going to have the number title for the script in
the demonstration, a description of what it does, a listing of its components
and then the documentation. So here we are using the PIN and the Slocum's
function so you can find documentation about those two in the rules that
are provided here. And in the case of the sleep function, for example,
which is quite interesting, you click on this, you are or you copied across to
your browser and it will take you to the appropriate part of the macro
python or documentation side. Now, this function is interesting because
this is the regular python or C Python time module. It's got the you in. In
front of it to indicate that this is a micro python version of the time module
and the difference between the full C Python time module and the new time
module is that the module is optimized to make it work better, more
efficiently on a micro python device. So it's missing a few functions. It's a
bit more efficient in terms of memory usage and therefore will be using
your time instead of time to introduce a delay, as you can see here of
QWERTY while Loop and I've got a delay here to get the ability to blink
on and off as similarly with the pins GPO server. Look, I'm going to use it
especially to part of the documentation for this.

And you can see that here as Pins and KBIO. And this is an example of
how to use pins in the security of using micro python to be able to turn
them on and off. We can also see how you can turn on the pull up resistor.
We've been making use of this function in a later example, led a project in
this section. So here you learn that you can turn on a bill just by calling the
function of the PIN object. Here we've got a PIN object called P0 and that's
how you create this object. You can turn it off by calling the function or
you can use the value function and pass a one or a zero to it to turn it on
and off. You can also check for the current value of a bill. We're going to
show you how to use it in the very next project here. But it's a very
convenient for you to see whether the GPA stand on and off without having
to keep track of its state in an additional variable. So you can see there's a
few ways by which you can manipulate the process using micro python on
an E.S.P 32. Of course, you use the same techniques to achieve the same
kind of functionality on other market python devices like the Raspberry Pi
Pekoe, for example. Or add back to a sketch. Again, it's pretty simple. All
we do is to import the PIN functions from the machine module, the slip on
the school. And as for microseconds from the time module, you can also
import sleep instead of sleep image. And then we'll be talking about
seconds instead of microseconds. Personal preference here, which one you
want to go with creating then the ality object which represents the ality

connected to your 21 and this is an output pin. And then the method that
I'm using this example is to just use a loop, which is very similar to how
you do this on an arduino and then turn on the ALYDA sleep for five
hundred milliseconds and turn it off, sleep for another five hundred
milliseconds, etc.. If you had chosen to import sleep instead of sleep and
this, then this function here would look like this. And if you wanted to
have a five hundred millisecond or half a second delay, you would just use
decimals. You'd go like that. So this would be half a second. Let's go back
to the original. With the emphasis now, instead of saying early on or off,
you could also say ality taught value one or ability to add value zero,
whichever you prefer, is fine. All right, so I'm going to save that totally
saved and click on the play button here or hit F5 on your computer to
upload this script and. As you can see, it works. No problems at all. OK,
so this was quite easy now in the next project, I want to show you an
alternative way of getting this reality to blink. But in this alternative case,
instead of using the loop like we did here, we are going to use a timer,
which, as you can imagine, is a much more efficient way to use the
resources of your. I could literally just go right ahead and have a look at
this kwatinetz scenario.

Blink an LED with timer

Hi and welcome to a new look changes section.

In the previous project, you learned how to make this link so disconnected
to your 21 and you make that work by using the while loop. You've got a
while true loop here that never ends and it will just turn on the on and off
and each time it'll keep its state for half a second. In this project, I want to
show you an alternative way of making this ability to blink, and that is by
using a hardware timer instead of a loop. So I've got this script right here.
It's five twenty and you can see it's about the same size as the blink with the
wild true loop. But now we are using a timer. You can see that I'm setting
the timer down here. This timer has an I as are assigned. This is an
interrupt service routine assigned, which is a simple function that inside that
function, all it does is that they will check the current value of the ability
by using the value function.

And if it is false, therefore the elite is turned off and it will turn the lights on
and if it's not, it will turn it off. So the logic here is that we don't have an
infinite loop. We just have a hardware timer which is connected to a
routine that contains the functionality that we want, whether in this case it
is to blink an on and off or to do something else periodically.

The new thing to learn here is the use and the configuration of the hardware
timer. And you can see that here I've got a Eurail, a link to the

documentation where you can look it up and learn more about it. But as
you can see, it's quite simple. I'm looking inside the quick reference for
E.S.P 32 times instead of this paragraph here, which contains the way to
use a hardware timer. So first, we need to start by importing the time a
module from the machine module here, we create the timer object to give it
a day. It doesn't need to be a negative number. You can see here that I just
said timer parentheses one for the ID and then you can set that time up to
whichever interval you want. There's the init or initialization function and
it takes these parameters. First you've got the period. So how often which
it like this time to call your function then the mode it's going to be a one
shot, which means the time it's going to trigger once and then it will stop or
periodic, which is what we are doing in this example, which means that the
time I was going to call your you will retain your function every time that
the period elapses. And then we've got a call back here. The callback is a
Lambda Lambda is a python feature that allows you to define a very small
function in line. So instead of defining the function as we are doing here,
right here, somewhere else in your program with the lambda, you define
your function in line with the callback declaration. And this case is just
going to print out one which in this case, the lung function printshop out to
also want to show you the full class time on module that comes with the
macro python firmware. And you can see how it works here. A little bit
more information about it. You can see that the mode can be that this one
short or periodic, and you can also use the Internet to initialize it time and
basically stop it. Disable it if needed properly, can enable it by using in it
and then you can disable it by using the Internet. We are just enabling it by
using init in this example. There's no reason to initialize it. And there's the
constants. And it's a very simple way to take advantage of the hardware
time in the E.S.P three to. So the next thing to do here is to upload this
script to the ISP 3-2, so I'm going to use the save a copy method so they
will go to the market python device. OK, so I'll do this again to see what
happens. So I tried to make a copy to make a Python device, but as you can
see, the device is busy right now because it still running the sketch from
the previous project.

So I first have to stop the execution of the script to interrupt it and then
copy the new script along. You can do that a couple of ways. The first one
is to hit control, see, and that will stop the execution of the script. Or you
can go to run and choose to interrupt execution option, which is, as you can
see, control see from the menu. So I'll do that via the menu this time and
from now on, which I'll be using my keyboard to do a control see and
interrupt execution. All right. So let's try again our fail safe copy Micro
Python, and I'm going to give you the same name ality link timer here.
Why I got the twenty one for the GPO. Right, so here it is. Double click to
bring it up.

All right, so now I'm going to make sure that I've selected the blink time.
I've got to wonder why a script with the square brackets that is the one that
is stored on the 32 and with that selected or pressed the play button, the
green play button, or go to run and click on run current script. And that
will have the same effect. So click on that and. You can see that the effect
is exactly the same as before. So we've got the deep thinking I can change
the hardware time to make it blink a little faster. So let's make this two

hundred and fifty milliseconds just to see the difference between
description and ensure that this is the one that is really being executed. So
I made a small change here to the period and then click on Save to save it to
the device and then click a. on the green play button. And you can see that
the elite is now blinking faster. The other thing that is interesting is that I
can make changes and save them or make them say two hundred
milliseconds and I'm going to save it. And you can see that there was no
complaint from Sony to complain that the device is busy, like there was a
complaint earlier when we were running the ality blink with the while loop
here. And that is because when we were using the wire loop, the device
was really engaged, either making the little blink or sleeping. So the
device was engaged. We couldn't save on. I can make any changes, but
when we are running the script with the interrupt, the device is only busy
when the timer is actually calling the isobutane and only when the security
is executing these highlighted lines and all other times it's not busy. So it
can be ready to receive, for example, a new file update from Sony without
complaining about it being busy. So that's another positive effect from
this. You can see that the use of the U.S. military to hardware is more
efficient when we use the hardware time versus the while troop. All right,
so let's move on and do one more experiment that involves the energy on
Tiberio 21, which is learning how to make it fate using copes with
modulation.

FADE AN LED WITH PWM

But in this project, I'll show you how to use pulse width modulation to
control the intensity of the light that comes out of infinity in this case, just
like in the previous examples of conditionality connected to Chipo 21.

Now, talking about the hardware, before we move on to the software side,
just wanted to remind you that on the E.S.P 32, you're looking here at the
PIN layout chart. Just zoom out for a second.

You can see that any Tapio with a tilt next to its pin is capable in this case.
For this example, I'm using Chip here you are 21, which is capable. So as
long as there is a tilde next to the pin that you want to use and it is free, it's
not occupied with something else, then you can apply and function to it.

All right, let's have a look at the script here, so I have created a little
demonstration file called Fadeout. As you can see, it's on my computer file
system. I haven't copied it over to the three yet. Having a quick look at it, I
am going to be using, of course, repeatably m. Module to control the ability
and of course, the documentation being right here and also using a function
called range that comes with the Standard Micro Python and Python
libraries and its documentation link.

Is this having a quick look at those two resources? You can see that the
W.M. functionality is part of the machine module and you can use this
notation to create a piece, an object. You basically just call them. Then
you pass on the GPO that you want to use. You can read or set the
frequency of your M channel. The default is 1000. So if you don't set it
and the default of 1000 is going to be used and then you can set its duty
cycle by calling the duty function and putting the duty cycle just a number
between zero and one thousand twenty three. As you can see here, the
documentation, if you don't pass a parameter in the function, then this
would return the current duty cycle. So you can always check to see what it
is before you change it. It's another example here of how you can create a
W object and set both its frequency and its duty cycle in one in one
function like that.

So I'm using the M functionality. First of all up here, I'm just going with
the default C, I'm just setting the pin to be a twenty one and then down here
in the infinite loop using the wild true loop, I've got a couple of loops. The
first one is counting up for the two to circle from zero to one thousand
twenty three in step five and then calling the duty cycle and setting the --
cycle according to what it is inside the loop. And then the second that I'm
counting down, that's within range function is useful. I'm counting down
from one thousand twenty three to zero in step, negative five minus five
each time going for a little sleep and then continuing with the loop.

So the built in function range looks like this. It's got to overloaded
functions. The first one just has one parameter, the stop. So if you go for
range and then you give it a number, then it will count from zero up to that
number in step one. The alternative is to go for this function here, which
requires three parameters start to stop. And then the step, which is the one
that I'm using right here. That makes it easy to count from a number to any
other number using any step that you want. All right.

So I'm going to upload this as a copy to the marketplace and device. It's
called his fate dot p y. All right, and loaded into phony just to get rid of the
one stored on the local filesystem, so don't confuse it to this.

And I'm going to press the wrong button to get it to start. And then you get
the LDH on and off. For the speed things up a little. Which case I will
need to interrupt.

Before I can make any changes to the sketch and then let's make that say 15
and minus 15 and save and play again. You can see that it now fades on
and off faster, so you can either change the step parameter or reduce or
increase the sleep amount of time, and that will have an effect on the speed
with which the on and of. All right. That was easy enough. Let's move on
to the next project where I show you how to read the state of a button, and
we do that in a few variations, a few different ways by which you can read
the state of the.

READ A BUTTON WITH LOOP
In this project, you have to read the state of the commentary button. I'm
going to show you how to do that, using three different examples each time
to bring a different capability of the ECB through in macro python to
achieve the same thing.

But each time with a bit more efficiency across the three examples, the
hardware is not going to change in all cases. Have the ECB three to have a
momentary pattern. She can see that is connected to Jebril for this pin right
here. And I am using the ECB 32 internal pull up so that I don't need to use
an additional wire to bring up the unpressed state of the button to high
would use the internal pull up register for that. And I also have a wire here
that will bring the state of the button to know when it's pressed. So that's
what will be detecting to show, in effect of the button press I've got in here,
just like in the previous projects that is connected to Tapio 21 and that's
about it with a hardware.

In the first example that I'll show you in this project, I am reading the state
of the button in the simplest possible way by using an infinite loop here.
So I'm using the while loop than a passing true as its permanent state so that
the program is going to be locked inside this block. So constantly it will be
using this instruction to read the value of the button and if it is low
represented by zero here. So logical state is low because you can see that
the pressed state of the button is pushed down to zero volts, then will turn
the old on and will stay there for ten milliseconds. And if the state of the
button is not zero, it's one because of the internal pull up then will turn the
ability of a couple of other things in this sketch worth talking about, I have
used this expression here to declare the object of the button and you can
see that I'm using the PIN constructor, just like I did with a PIN constructor
for the ality here. But in this case, I've got three arguments. The first one is
the GPO. The second one indicates that this is going to be an input and
then the third one activates the internal pull up front.

To learn more about the PIN constructor, have a look at this link here,
which will take you to this page in the quick reference for the HB three two
or the Micro Python website. And it shows you an example of how to use
these functions. And again, if you want even more information than good
to have a look at the machine Dot Pincott, which is this page right here.
This is it.

And you can see the constructors in my example. I'm using this constructor
here to create an object for idea of the Tapio number for in our case then
for mode, I'm using Penkin as opposed to pin down for the elite. This
opinion is for the button. And then we also have the polyposis, stuff like
that. So Pincott pull up is a way to turn on the pull up resistor you can see.
And like the other, you know, you can also have the pull down resistor if
you use Pendo, pull down and that's about it. The rest can be immediate
and they will just take the default values. Another new thing that I'm using
here is the tick and the call and this function. You can see that I'm using
that down here. I'm importing it from you time. So from Micro Python
version of the time, I see Python module. So this function here, you can get
more information about it right there. It gives us the number of
milliseconds since we have power to up the speed. Three, two. And that's
because we want to see information about the moment that I pressed on the
button and I'm bringing out the number of milliseconds since the activity
was powered up when I pressed the button right here. OK, let's try this
out. So at the moment, I've noted the script from my computer disk and my
computer file system.

So what I do is to save a copy with the macro python device in the name
will be Button and it's call for the API. All right, here it is and double click

on it to bring it up, you know, close the window that contains the version of
the script on the computer file system. You know that I've got the script
selected on the E.S.P 32. I will play it.

All right, to press the button, you it is one text comes through to the show
of my Thony Editor Button pressed, and then the number of seconds when
the button pressed, it's been detected. All right. Obviously, this is not a
very efficient way, again, to use the hardware. So I want to show you two
additional methods of the set of a button that do not involve using a wire, at
least not to do the reading. So let's have a look at the next project where I'll
show you how to do the exact same thing more efficiently using a hardware
interactive.

READ A BUTTON WITH
HARDWARE INTERRUPT

Welcome back. In the previous project, you learned how to read the state of
the button in the simplest possible way.

As you can see here, we just use a while, true infinite loop. And in it we
just take a reading of the button, fairly painful, and then act accordingly.
The problem with this method, of course, is that you've got an infinite loop
here that looks at the execution of the program in it. It's not a very efficient
way to use your hardware.

In this project, I want to show you an alternative which is more efficient
and allows us to read the state of the button using a hardware interrupt. So
in this line here, line 58, I have to find an IQ and interrupt request on button
painful and have configured it in a way that is very efficient. So what I'm
saying here to the trigger is the falling edge of the signal that is produced by
the button. So when you press the button, the voltage on your full force
from high to low, and that is the IQ falling edge which is detected in
triggers this interrupt. And when this edge, the falling edge is detected,
then they interrupt. Is calling this routine here a function, the button and
this compressed underscore ESR interrupted service request or retain his
ISO, which branches the program inside this function and again act
accordingly. Will get to this in a minute in order to display the ality lighting
up. When I press the button, I'm still using a while loop here. It's just the
easiest way just to demonstrate the interaction between an eyesore and then
a different part of your program. And I'm also demonstrating the ability of
Intisar and other parts of your program to communicate using global
variables in this case.

Now let's have a look at some of the details. You can see up here in line 36,
I am importing the PIN function, disable IQ and enable IQ functions from
the machine module. And again, the slip in there from the time module.
I'm starting by creating the object as usual, and then the pattern object,
which is exactly what we did in the previous example. Same thing here.
Nothing has changed. Then I'm declaring a couple of variables. This is the
button pressed portable. It allows the IQ routine of the ISIS recorded here,
retained to communicate with other parts of my program. So when a
button is pressed, then I update this variable here. You can see it is updated
here and then used here to determine whether they should be turned on or
off. They also have integer like a numerical variable here that keeps track
of how many times have pressed the button before it's reset. So you can
play around with those variables as well. Now, inside the definition of the
routine that we will be called by the IQ, you can see that it requires one
parameter. And this is the object that has caused the IQ and this is passed
by the IQ routine here as well. And I'm using this object here to print out
some information about what is it that has caused the IQ to see I'm taking
PIN and exactly what it is and passing it into the button pin global Viterbo,
which is then printed out down here so I can get some information about
the object that caused the IQ. A couple of other interesting things that are
happening in here is, first, that I am calling the disabled IQ routine, which,

as you can probably guess, will disable further excuse. So when I press the
button, the first thing that happens with disability IQ, while the Isar
function is busy, any further button presses will just be ignored until I re-
enable the IQ right at the bottom of the isobutane. So when I'm done doing
whatever needs to be done to deal with the existing IQ, then I will re-
enable it so that the 32 can detect the next button. Press a couple of other
interesting things here that are perhaps a bit unusual for you is that I'm
using the global keyword here so you can see what's happening, of course,
available, such as Button Pressed, which I have already declared at the
header of my program. So you would expect that this variable would be
global already just by the fact that it's been declared the header of the
program, but in fact, it isn't. I won't be able to make any changes to this
variable from inside this context before I use the global keyword to convert
it into a variable that I can make changes to. I've got a link for more
information about this here. If you're curious about how this works, if you
don't use this keyword, then you are going to get a syntax error or you're
going to get an interim message on line 53 when you try to make a change
to the value stored in this variable. So do the same thing with the other two
variables that I'm using across different sections of the program. So button
spin and press count, you can see that all of those have been declared up
there. And I still need to use a group of able to be able to make changes to
them. All right, so then I just store to the button, pressed as to the object
that is causing the IKEA into button pin and then I increment the press
counter to what? And then I close the cube in here. You've got the infinite
loop, which is similar to the loop function in the Adreno is just constantly
going around executing whatever codes you have in it. And in this case, it's
constantly checking for the value stored inside the button pressed variable.
And when it's true, you will go inside, change it into force, turn on the ality,
print out the two messages zero. The counter will reset the counter and
keep the lady on for half a second. If it's not true, then it will turn off the
reality and that's about it. So I am going to save a copy of this program to
make replacing it with PCs and it's going to hit control. See you stop the
execution. All right. And then try again, save a copy of Python and you
can call this. I tend food interrupt why? All right, how close these two and
not that one, I need to open up the interruptive position, but program this

one right here. And now that I've got the program opened on the target
market Python device, I will play it. And.

Press the button and works. Stays on for half a second as well. Right. And
one thing to notice here is that in the message that starts with Button
pressed at it right here, you can see that the output of button pin, which is
this variable here, which contains the object that has caused the interrupt, it
says painful that way. If you have multiple interrupts from different areas,
then you can always differentiate as to which button or which interrupt is
the one that has triggered your interrupt service routine. OK, so that's about
it with the bat, an example using the hardware interrupter. I want to show
you one more variation of the same in the next project, which involves this
time using a timer interrupt this ticket out.

READ A BUTTON WITH TIMER
INTERRUPT

Like in this example, I'm going to show you how to read the state of a
button using a hardware timer. Just remind you that in the previous two
variations of the same exercise, you learned how to read the state of a
button using an infinite loop, like in this example right here.

And also how to use a hardware interact as in this example here.

The example in which I'm using the hardware timer is really a variation of
the hardware in the example.

And you ought to know how to use the hardware timer from an earlier
example with reality, which you can see here in this script as we have
defined the time down here and lines three, four and thirty five. So in this
project, basically taking these scripts and putting them together and creating
a hybrid that looks like this. So what's happening here is that I've got a

timer which has a period of 50 milliseconds and this is a periodic timer.

So it fires every 50 milliseconds and each time it fires, it will call the
interruption of this routine called button on this compressed and this call
ISO, which is right here. What it does is to check the state of the button.
And if it is pressed, then it will update these variables here. At the same
time, we've got the while loop infinite loop constantly checking for the
value stored inside the global pattern and this compressed variable. And if
it is true, then it will turn on the LCD and wait here for a second. It's a very
it's a very simple way of going about reading the state of a button, taking
advantage. Had we interrupt in terms of efficiency, I'm not quite sure which
of these two is more efficient is hard really to say. I would say that the
hardware interrupted is perhaps more efficient from the point of view that
you don't occupy a hardware timer to keep firing every 15 milliseconds and
calling the interrupt service routine. In this example here with the
hardware interrupt, the ISI is only called when the button is actually
pressed.

But in this example here, I thought that this our way of using the hardware
timer is interesting and worthwhile dedicating a project for it. Let's have a
quick look at the beginning. There's nothing new really here. We import
the appropriate functions from the machine in time modules, define the
ality, define the button with its pull up resistor. We've got our button
pressed variable, the interrupt service routine with a global keyword so that
the button pressed and button event variables are global and then we can
make changes to those variables from inside the ISO. Then when the ISI is
called, we check for the value of the button and if it is down there, meaning
that button is pressed so the value returned by value is going to be false or
zero. Remember that of got this wire here which grounds the button value
when it's pressed and therefore GPL four will read a low value or false
value in the python speak. So Button is pressed. In this case, you apply the
variables. We also store the event object in the event variable. Otherwise
button is false. And notice that I have declared the button, pressed the
function before I create the end, initialize the hardware timer because I
need to pass it to the timer via this callback parameter. And if I call the ISO
before it's actually declared, you're going to get an error message by the
compiler when you try to compile and run the script. After that, we've got
the while true, which constantly checks for the value stored in the button
on this compressed file and then it just turns on reality and keeps it on for

one second. Otherwise, it will turn it off. All right. So I'm going to make a
copy of this script onto the device. I will call it button for time. I thought
he y. And let's run it. OK. And it stays on for one second and you can see
the event with it, we're passing and printing out here, starting the button
and it's called event variable, which is created up here. And it's really its
origins are the event parameter that is passed by the time I had with him up
to the ISO. And when you print out, this is what you get. Okay, so that's
about it with a button, you know, enough now to be able to use buttons in
your sketches. Now there's one more project in this section, which is the
next one in which I'll show you how to use a particular mirror and make
use of the analog to digital converter.

READ A POTENTIOMETER
Hi, welcome to the last project in this section, in this project. I'll show you
how to read a value from a potential error and then use it to drive. And
using GWM this potential race, regular 10 kiloton potential murder. I have
connected to your 34 right here. And I've got one pin going to the three
point three volt power rail and the other one to ground. Let's have a look at
the sketch. There's a couple of interesting things happening here.

First of all, as you can see here in my notes, we will be using the ADC, the
analog to digital converter, to take readings from the potential mirror, and
then we'll convert those readings to an appropriate peak in value. Now, the
thing to remember is that by default, ATC producer values 12 bits, which
means that the range of an ATC value goes from zero to four thousand and
ninety five. And as you've seen in the previous election, the Section
PITIABLY and Values Pettifor have 10 bits in width, so values ranging

from zero to one thousand point twenty three. And therefore we need to do
a little calculation to scale the ADC value into a P value. And this
calculation is simply divide the range of the M by the range of the ADC and
that will give us the scaling factor, which happens to be three point twenty
four, probably closer to zero point twenty five. But OK. And we'll see
what values come out later. And that means that you just multiply whatever
comes out of the ADC by zero point twenty four and that will give you a
new value that is within the range. I also have the documentation for the
ATC here.

I'm going to refer to this in a moment. And there's also documentation for a
built in python function called E.A. Integer that converts floating point in
this into integers. Again, we need to make this conversion from floating
point to integer in sketchiest. You'll see in a moment. Let's have a look at
the script. So we need to first import ADC pain and P m from the machine
module and sleep from the time module. Here I'm using sleep, which
allows me to define a sleep time in seconds instead of milliseconds of
time. In some of the previous scripts in line thirty nine, I create the M
object ytterbium twenty one. Just to make it easy for me to remember that
this is connected to Shapir twenty one and for the ADC I'm using pin thirty
four as I said earlier and using ADC constructor in the object.

Now here's one interesting way to configure the attenuation of your ADC.
The analog to digital converter is to use the atin function. You can find out
what the available attenuation levels by having a look at the documentation
but hyperlink to right here.

Let's check it out. It is this section of the document and there is the attend
function and these are the available attenuation. So zero degrees with those
two and a half decibel, six and eleven. And I've gone for the eleven decibel

attenuation which gives me maximum input voltage up to three point six
volts. So depending on what it is that you are connecting, you can choose
the appropriate attenuation. You can also control the width of your analog
to digital converter. I'm not doing that here. I'm just leaving it to its
default. Twelve page. You can see you can go for nine, ten, eleven, twelve
bits for the width.

OK, and moving on now, I've got a infinite loop here, while true, start by
taking reading of the potential murder, using the read function, then I
multiplied by the scaling factor, your point twenty four that I calculated up
here. And that gives me a floating point that I need to convert it to an
integer using the anti function. And I stole the result in PWI and then in
line 47 or print out those two numbers so I can see the original and the
scaled number, then use that to set the short cycle for the entity. And then
take a little nap for zero point one seconds, OK? Let's try this out, I'm
going to get a copy of the script on the device log. Great report, which is
connected to Perio 34 Togepi y. Yes, but an earlier version of this earlier
this script to double click on it, you open it up, can you get rid of the other
two? So that does confuse me as to which script I'm uploading to my
hospitality. And this is the one that I want to upload. So let's do it. You go
right, you can see the current values for the potential. Let's move at One
Direction. Then you saw moving the early days, becoming fainter to goes

off, let's go to the other extreme. Trying to do this in a nangle, simple, all
right, going up in this chaos, and that's the maximum, you can see that the
potential murder is at four thousand ninety five is nine hundred and eighty
two, which means maybe I can increase this factor by maybe as much and
that they allow me to go for the full MGD cycle extent without going over
it. So save and play soldier one thousand twenty three point twenty five
Scaling factor, which works out perfectly. Right. So that's how you can
use the ATC and your is pathetic to using micro python.

DHT22 ENVIRONMENT
SENSOR

Hi and welcome to a new section in this course, in this section, you learn
how to use a variety of senses, typical senses that you are unlikely to want
to connect to your especially to start starting this project with a look at the
THC 22, since this is so not only is very popular, obviously you probably
have one in your choice already, but also because the ability to moderate
Python firmware already comes with a driver for this sensor.

So there's nothing else that you would need to import or to install. And
therefore it makes it a very good choice for it being our first sensor. So I

have connected this sensor on my breadboard to remove it.

We can take a closer look. So I've got my sensor looking at it from the
front where the grill is. Number one is power. I've connected that to three
point three volts power. To the other side you've got ground pin number. It
goes to ground, of course, a pin number three. This one right here is not
connected to anything. Just leave it floating. And then pin number to this
pin is the pin that I have connected it by this jumper wire to chip here, four
to one that I have connected it. Just knowledge that is. Not in 04, actually
put in 18, so it's fixed it on the fly right there. OK, so I'm going to plug the
sensor back on my breadboard and have a look at the sketch. Now, I've got
some information on how to connect your sensor.

He could use DHT 22 or DHT 11 for this experiment. Either one will work
and the driver for either one is available in the market, both in firmware.
I've got information about this right here. Might start with this. So go to
this. You're real.

And we'll take you to the micro python documentation. And I'm looking at
the E.S.P three two quick reference. And down here you'll see the DHT
driver. You can choose between the 11 or the two. Just tell it which pin
your data pin is connected to, which Appio, you terrapin of the sensor it's
connected to, and then you can take a measurement by calling the measure
function and then you can read out temperature and humidity by calling the
appropriately named functions very easy.

So in my sketch, this looks like that I have imported the module, importing
the PIN and Taimur functions from the machine module. This is where I
create my DHT 22 object. And then as you've learned in previous projects,
I'm using a timer. I've given it a period of 5000 milliseconds or five
seconds. Is this since I was quite slow and it's a couple of seconds to
recover. Each call takes a couple of seconds to complete. So five seconds
seems like a reasonable amount of time to wait before the next
measurement. And every time this clock ticks or every time this clock
expires, I call the take measurement ISO function right here, which calls
the measure function. And then I'm putting out temperature and humidity
like this very easy. So let's try this out.

Right now, I'm looking at this script as stored on my computer file system,
so I am going to save a copy. And you can see that my security is
connected, but it does not appear in the final steps. I'm just going to click
on Stop.

To wake it up and make this connection, that's why I got confused, I
thought that it was a connected, but it was so here I am going to now save a
copy to the Michael Python device.

And I use the same name, DHT p y. Let's try this with lower case. OK.

And. Play. Wait for five seconds. And there's a first measurement appears
here. Right. Out of curiosity, let's see if the plot works. So the plot doesn't
work because it can't figure out the values here that are coming out. I'm just
going to turn this off and stop the execution and stop putting.

And I'm just going to move. The values that save. And start again.
Medicare now the employer can show the two values, GraphicLy. Of
course, I'm just sending through the numbers instead of numbers, followed
by the symbol of the value, I'm going to play around with a product as well
in a later project. Well, we'll have a look at the accelerometer. All right,
good.

I'm going to put the symbols for the units back because that's how I'd like to
keep my sketch. Right. So this was quite easy, as you can see, because the
driver is part of the firmware.

In the next project, I'll show you how to use the BMY. Two hundred and
eighty cents, which requires an external driver for this to something to show

you how to find and install this driver before you can use.

BME280 ENVIRONMENT
SENSOR

But in this project, I show you how to use the permit 280 with your E.S.P,
32 using micro python.

Now, unlike in the previous project, we are to learn how to use the DHT 22
using a driver that comes with the micro python firmware. The two
hundred and eighty does not have an integrated driver, which means that
you need to go out to find one that works with your set up and then
imported into your S.P.C.A. stored in the flash memory so that your script
can use it. So this is the main difference between the approach that we used
in the previous project with the 22 and the one that we use now with the
BMY 280 is that we're going to use a third party micro python driver for
this sensor.

In most cases, this is the approach that you have to take with pretty much
any other peripheral to your ESP 32. You'll have to use Google or some
other search engine to look for an available driver for the device that you
want to use.

In my case, I find that awesome micro python dot com contains an excellent
list of drivers or libraries for Macra Python. Not all of them work in my
experience. But you've got a good chance that whatever hardware you want
to use, you will find a micro python driver in this list, in particular for the
BMY 280, he could look for sensors and say around.

Here you'll find that the BMY 280 has a few options, so there's 280 this 180
as a 280 with the 266. There's another one here. So there's a bunch of
potentially working drivers here. There's no sure way to know which one is
actually going to work, because some of these, for example, may have been
written in the past for previous versions of the marker Python firmware.
They may not be working perfectly for your current setup. So it's a matter
of just trying out some of those and figure out which one eventually works.

In my case, I found that this one works perfectly with my setup, with my
SB 32, and I believe that it is this one here, perhaps. That chick. Now
that. Not this one either. It's by Robert 8H. Like this one here. So the
name here does not really indicate the author or the source, but as a matter
of trial and error, eventually you will find the one that works for you. So
once you have access to the source code of the driver that you want to use,
the process includes taking a copy of the driver.

So in my case, I have determined that a lot of trial and error that being made
to 80 underscore float dot p.. Why is the driver that works? You want to
go and copy the raw version of this driver? Just copy the whole text. Then
you can go and create a new file. Anthony Paiste. The code in. Then go
ahead and save it on the device.

In my case, I've already got the source code saved under this file name here,
so I won't do it again. But you type in the phone in the file name is
important because you will use this file name to import the library into
your script. He'd cancel here and get rid of that a new tab and you'll see
that this driver is stored on my Microplace device.

My guess 32 under this file name, he can take a little bit of time to have a
look around, become familiar with the features of this source code. An
interesting variable here is the address and the default address of the
sensor. It is 76 in most cases that is going to work. It is going to work with
my sensor because I haven't shorted any of the pads here in order to change
the default address. So I'm going to go with the one that is configured
here. I can see the operating modes. So how many samples do you want to
take in order to improve the accuracy of the readings further down?

Using the name of the class will be using that later in our input statement,
you know, script, you can see the constructor here as well. So the
parameters for the constructor and so on.

So there's also a few functions that you may want to use a bit later. There's
a few ways by which you can extract the environmental data from the

sensor and you can learn all that, not through the documentation, even if it
does exist in this case.

Go back to the root of this repository. You'll see that there is a little bit of
documentation and it's telling you how to use the driver. But if it doesn't,
you can always go and have a look at the source code. Python is very often
self explanatory, so you can do that. So become familiar with the driver.
And then go ahead and construct your own sketch. I have some
information here about my setup, which you can copy.

The most important thing to remember here is a type of R-squared, see that
we are using. So I'm actually going to remove this because it's not totally
true. And I'm going to explain what I mean by that.

Notice that the E.S.P 32 has a hardware R-squared interface, and this is
something that, of course, you can use with your sensor or with any other

squishy device that you want. But the micro python firmware has an ice
quixey implementation that allows you to also use software ICE see.

So let's have a look at it. And I've got a link to this page here in my header
right here. Right, so go and have a look at this, the ice could see
implementation in micropayment for the SB 32 allows you to use either a
hardware ice creates the interface or a software ice Quixey interface in our
example and be using soft ice quazi, which allows me to nominate any to
SEAL and Steet.

And those will work perfectly well with my current high squidgy device to
be in the sensor in later projects, in particular in the projects on display at
an OLED display. So I'll be using the hardware interface just to get a little
bit better and more consistent performance that students will be using a
higher speed device. The display. But here I want to show you how you
can go about using soft ice Quixey instead. I squit see in my script I've
used the Jupiter for for the FDA. They've a pin and then you're twenty two
for the clock and.

It just looks like this this is how you can create the ice Quixey object by
calling the soft I swear to see constructor, they pass the two tipoffs for
clock in data and the frequency doesn't really matter. You can go for a
variety of frequencies and it will still work. So here I'm going for four
hundred kilohertz. OK, the next thing that I'm doing here in line 35 is to
import the driver to remember that the name for the driver is being made
two hundred and eighty underscore float, which is you can see right here,
you import this module by using the file name, excluding the dot p y
extension. So that's how you imported that, because this is quite an
extensive name to be using it in our code. I rename it by using the S
keyword as PMA two hundred and eighty. So from that point on, which I'll
be able to use the code inside the driver by using the BMY 280 dot
notation instead of this whole thing. Right. So if I had just said import
this. Without doing the renaming here, I would have to use this notation to
make reference to code inside the driver code. All right. Let's go back to
the original and another thing to notice here is that because this line is quite
long, if I make if I really arrange the parameters one next to each other.
You said that it takes a lot of space horizontally in Python. You can split
lines like this so that you've got one parameter per line just makes
everything fit a little bit better. So I'm using the square see object that I
created in line 37. And then I'm also setting the mood in the address, again,

using the constants that I have found in the drive itself. So here are the
operating modes. Constants are usually eight bit here or the eight sample
shown in the sample option. And then for the address I am using the
default. The trees are clear. If your eyes could see device is quite a
different address, then of course you can adjust that to the appropriate
correct address. These two parameters just point to defaults anywhere. So
instead of this whole thing could have just said this and it would work just
by passing the ice Quixey object and leaving the rest of the parameters to
the default values.

OK, that's about it with the set up, the rest of the code should be fairly
familiar instead of using an infinite loop. I'm going to use a timer here and
I'm taking one reading every 1000 milliseconds, every one second. And
when the clock ticks, the hardware timer will call the sensor ESR function
right here. There's a couple of ways by which you can grab data from the
sensor. First is to call the values property on the object, on the B in the
object, and that is going to print out all three values. Or you can be a bit
more selective and you can pick one value at a time. So here's the
temperature, here's the humidity, and here is the story. Here's a pressure
and then here's the humidity. Now, one thing that I want to mention here is
that this parameter of this variable, I should say, returns a python tuple so

of good information about what that is. In case you're not familiar with
tuples, but think of a table. There's an array, but in a regular array, each cell
must contain data of the same data type. So you either have, for example,
an array of integers or an array of strings, et cetera. A top off, on the other
hand, can contain data of different types. So each cell in a couple can be a
number, can be a string, can be another array. Even so, you can use the
same notation as if this was an array. But the difference is that, as I said, it
contains items of different types and unlike an array as well. Another
difference is that a table is immutable. So once you set it, you can change
its values. So if you're curious, just go to this location and read more about
tabs. So this about it. Let's go ahead and try this program out.

I've just saved it and I'm going to run it on the device and that's what comes
out. Right, so you can see that. The. Print statement in line 45 returns this
line. Can we stop the execution? I'm going to click on the stop button here,
because this is not an infinite loop. It's a timer. So hitting control. See, it's
just touch and go. If I hit control on the exact moment when this function is
executing, then the program will stop. Otherwise it will not catch it at a
moment where the problem is actually running. Anyway, so line forty five
prints out this table, so that's what a table looks like, parentheses, and then
he's got the items. This is item zero item on and item two. And if I want to

print out the individual components of the tuple, the individual cells of the
couple and the values, then I go with this array notation.

So this should be a meat value zero. And it looks like this. It includes the
C symbol as well. He's a pressure for being sworn in the humidity with the
percentage sign for used to. OK, now, if you're curious as well, have a look
at the driver, could you expand this window a little, you know? So I am
calling.

The values function search for values in here. So the values function is in
line two hundred and forty, and that's what comes back to the caller. So you
can modify this, of course, if you don't want the symbols to appear. You
can just remove them in the source code of the driver, but you can modify
the couple that is returned by just making the appropriate change in 1955.

ESP32 INTERNAL TOUCH
SENSOR

I let's show you how to use the 3-2 integrated capacitive touch sensor.

Just wanted to Munyakei, you look familiar with this, that the inspectorates
who has touched since says that are accessible via some of its typewriters.
In particular, you've got touch sensors available here on your for zero two
and 15. And on the other side right here, Chapuis, 27, 14, 12 and 13, it was
32 and 33.

So you can use those sensors so that your attitude can detect when a user is
touching a copper wire or a pad and therefore you can use it as a button.

In a way, the E.S.P 32 micro python implementation gives you a module
called capacitive touch right here, gives you that limitation here, which you
can access by importing the touchpad function from the machine module.
When you've got to do is to tell it which pin you want to use as a touch
sensor and then create the object for that touch sensor and then use the read
function to take a reading out of it. And depending on the integer that
comes back from the read function, you can infer whether there has been a
touch event or not. Down here you'll see an example implementation of a
touch sensor. So I've got a very simple example here. Basically following
the documentation I have connected. They just touch the pin here.

From a hero to Jebril, 15, they have said that they say Tetrapod, here's the
key object for TouchPad and then in an infinite loop, I just take readings
and print them out to the shill.

I found out empirically that if you take readings too quickly between each
other, then this reading may not be very reliable. In my case, I had the

authority looking out. So if you did take readings like these, just spaced
them out at least 50 milliseconds apart. All right. So I've already copied
this script onto the perpetrator's flash and she's got the square brackets
around the filename.

So it's ready to run. It's going to click on the play button. And I can use a
jump away, of course, but just prefer to use the pin here, just keep things
more tidy, just touching.

Consider the value in the shell is changing, if I make more contact with the
pin, the number becomes smaller so you can use these numbers in the
range of numbers that come out to. Right. Appropriate code in your script
so that you can detect these events and reject other events. Another thing
that I want to show you is because the number that comes out of the shell in
this printout example is just a single no Perreault. I can invoke the pleura
and it gives a visual representation of. Touching the face. And looks quite
interesting, but as you can see, it is a very simple way to implement a
button like functionality has a touch interface with your PSP three gadget.

ADXL335 ANALOG
ACCELEROMETER

In this project, I'll show you how to use an analog accelerometer like the
ATX or three three five breakout device.

So in this example, I have connected the accelerometer to three Gio's that
are capable of analog to digital conversion, just removing it so you can see
the warming underneath. So I've got the X, Y, Z pinch of the
accelerometer. And via this chunk of wires, these are connected to tapirs 30
to 35 and 34. So Z is 32, Y is thirty five and X is thirty four and foreground
close to the ground rail and addition to the three point three volt rail like
that back into the breadboard.

And having a look at the sketch, if you have watched the project on the
potential mirror, then you already know how to use the ATC function. Part
of the machine module. Well you've got to do is to import it and then you
create the three analog to digital conversion objects that we need for the X
and Y. Just pass the pin to which you have connected each one of the
accelerometer pins, then offset the attenuation for each one of those. And
look, the digital converter objects found that 11 decibels attenuation is the
best that fits here. The purpose, since we are using three point three volt
input for the accelerometer power input, is that also defines the range of the
output. So 11 destabilises what we need here. And I've got a timer. The
timer expires every 15 milliseconds and calls the eight zero three three five
since I saw function right here, which simply takes the three readings and
then puts them out to the shell. And because I have to get three clear
numbers, print that in the shell. The Explorer also works and it gives me
the three values. They should be represented in these acts in this two x y
axis. So if I move my breadboard with the accelerometer on it, you can see
that the values vary. In this case, the X and Y values very little bit more
than busy site and a board upside down breadboard. You can see that. The
orange. So the green. Line and value also changes. Move over to the y
axis with y axis front and back, you can see the headline moves so. This is
just a simple case of using the ADC typewriters to receive three analog

values from an analog accelerometer. And this way now it's better to
gadget knows which way it's it's facing or which way it's oriented based on
the readings of three. Excellent.

HC-SR04 ULTRASONIC
DISTANCE SENSOR

In this project, you have to use the agency as 04 ultrasonic distance, since
the sensor provides an easy way to measure the distance between itself and
a usually flat, reflective object in front of it, like this container that I'm
using here as a sample target.

The principle of operation for this sensor is that you've got two modules.
One emits an ultrasound which bounces off the object in front of it and goes
back into the receiver. And the amount of time that it takes for the signal to
travel between the emitter and the receiver provides information so that the
distance can be calculated.

Now, in this case, I needed to find a easy to use and reliable driver for the
census so that I didn't have to code the functionality myself. And to do
that, I was able to go to the market.

Python listing of such drivers, search for distance since ultrasonic or
something like that.

And it's I was able to find this driver right here, click on it, and it will take
you to the GitHub repository where you've got some information on how to
use it.

And of course, you've got access to the driver itself, the python drive itself,
so you can click on the raw button just to get a clear text of the code of the
driver. Copy that and then create a new page in phony paste the code in and
save it on your device using this name here, HTC. And this call is

scheduled for in lowercase because this is the name that I use to import this
code into my example script.

So I've already done that, of course. So I'm not going to repeat the process
here to save a bit of time.

This is the example script that are prepared. As you can see, it's very
simple. I've got some information on how to connect the sensor to your

ESP three to using the regular ground and three point three four panes for
power. And then the echo pin, which is the second from the right, which is
this pin right here via a couple of jumper wires, goes to Tip-offs 15 right
there. And then the trigger pin, which is this pin right here, goes to be able
to OK, those embedded with the connections, nothing fancy. I've got
information about the driver so you can download the driver and install it or
save it on your HP 32.

And as far as the script itself is concerned, I'm importing the necessary
modules and I'm creating the sensor object as per the instructions from the
driver module. I'm calling the CSR constructor, passing the trigger and
expense. And there's also Eneko Timeout is a pretty large number in
microseconds. I'm using a hardware timer here like I've done in previous
projects, and I'm taking reading every one second, one third milliseconds
periodically. And every time that the timer expires, it will call the
interrupted service routine, which is this one here. I'm simply getting a
distance measurement in centimeters and I'm rounding this number to two
decimal points and printing it out. And because I've got just a simple
number here, I can also use the pleura, which gives me a nice visual
representation. So actually it really works. So I'm going to move the target,
make it a bit closer.

You can see that the. Numbers change as well as a plot of that number back
a little. This just increases. You can take more frequent measurements, for
example, I've gone down to 250 milliseconds, depending on the distance
that you want to measure, you need to be mindful of how frequently you
can take measurements. If you want to take measurements that are, say,
beyond 10 or 20 centimeters, then you need to take into account the
amount of time that is needed for the ultrasound to travel back and forth.
And it seems that about half a second to a second is a good number for such
measurements. Right. So that's about it with the want system since the.

2X16 LCD DISPLAY WITH
PCF8574 - PART 1 HARDWARE

I2C
Hi and welcome to a new section in this course, this section is dedicated to
this place. I'm going to show you how to use a series of displays such as
this to buy 16 LCD display. Very common. I've got a graphics display like
these, actually.

I've got a variety of graphics displays to show you, plus displays such as
this eight by eight Matrix and so on. So in this first project and the one that
follows, I'm going to show you how to use the very common two by 16
LCD display, which contains a backpack like this one, which allows us to
use it in cereal ICQ, which see mode instead of its native parallel mode via
those pins here. So in my case, I have sold the backpack onto the display
itself, and that makes it easier to use in one piece as if there is one single
module.

Now this module here just said contains the F eight five seven four
integrated circuit, which makes it possible to convert the displays native
parallel interface into in a square C interface. So I've got the wiring here set
up and in this project I'm going to show you how to use the USB 32
hardware I see in the face and in the next project will do the same thing,
but will use a software interface which allows us to use squishier with any
compatible chips on the 32 instead of being confined to the hardware. I
could see. So the wiring in this first example is very simple for ground.
And this is see, I'm using the ground pens on the ground rail on my
breadboard, and I'm using the five volt pin on the speaker to say I'm just
using this long red wire to take five votes into the FCC on the backpack for
state and SEAL because I'm using the E.S.P 32 hardware. I could see this,
too, had I switched to interfaces. I'm using the one with ID zero. I'm going
to talk a little bit more about this in a moment. I'm using pins 19 for a.D.A
and 18 for a ACL.

All right, now let's have a look at the software side, so the software side
depends on two libraries that you need to download. The first one is this
one here, LCD on this call API P y, which contains some of the basics of
the functionality for the LCD display. And then on top of that, we use the
SBA to six six call I squared see on this LCD, which basically builds top of
the OCD and this score API with functionality that is specifically
compatible with the SBA eight to six six. And it's an extension with our

E.S.P 32. So you need to get those libraries.

And I have the locations from where you can download them from here. So
these are the required modules that you need to download and install. Apart
from that, I'm using a few other bits and pieces here, for example, you need
to import the pins module and sleep, put a bit of delay their motor using the
string formatter or the string formatting operator, the percentage string, as
you can see, percentage the string here to allow me to display this number.
And it's increasing every second. So I use the string formatter for that. If
you're not familiar with how to use it and have a look at this reference
documentation. Let's talk a little bit about Isaac we see on the especially to
using micro python. We've got a link for that here, specifically for the
hardware interface that we are using. This example, it would take you to
this page here. We are now looking at a quick reference for the E.S.P 32 in
the macro Python website, and that is the hardware squid seabass. And
you can see that the is 32 gives us two lots of atheel. Is the HP use that
implement the hardware I could see. And in this example we are using I d
zero, which means that the seal is on Jhpiego 18 and is the Orangeville 98.

And to create an ice quazi object on the hardware, I would say interface or
you've got to do is to tell Macra Python which ID it is that you want to
use. So that's all there is to it. There's a single no single Idei as a parameter
to the ice quartzite constructor will give us the ice quazi object and that's
what we do. Right here. After that, we take that Asgard, it's to see object
becomes the first parameter in the constructor for the LCD object in case it
LCD. The name that I've given to the module, you can see I'm importing
the ISP a 266. And this call I to see an LCD and I'm renaming it to this,
which is a little shorter and easier to use on words. I'm using that as the
name of the module. I'm calling the constructor for the LCD, passing the
object for the ice quazi that we created in line for the two and also grabbing
the default. I could see a address. I could have created a local variable with
her address and just use this in here. But I was taking a look at the.
Librarian, you can see that that address is already included in the in the
library module. So I was just able to get this constant and edit into my
constructor like that. And that meant that I didn't really need to have an
additional line of code here. I'll keep it here just for reference. So after
that, we've got the number of rose in the third parameter. In the fourth
parameter is the number of columns. So if you have a different sized LCD
display, then you can just change those numbers to match the size of your
particular box. Could see this could have, for example, three rows. Once

we're done with that, we've got the object to go and clear everything in the
display. So prepare the display to write something on it, clearing the and
creating the counter variable here and giving it an initial value zero and
will go into an infinite loop. I can set the cursor on the Ill-suited to a
particular location.

So this is a move to function, which you can see here. OK, so starting this
won't you, to API look through it in here.

All right. So here it is. So you can see that first goes the X coordinate and
then the Y coordinate in the move to function. So you've got X Y zero
zero. So it will go up to the very first block. Can barely see it, but there's a
block. Right. And then number two and will use they've put is the function
to print out this text, this string of text then will move to the next line
down. So X is zero and then Y one shot will go down here and print out
this string of counter followed by Percentage De, which is the string
modifier for a digit, they say percentage sign here. And then in parentheses
I'm printing out the variable value counter, which I have just updated by
one each time we're going through the loop and we'll wait for one second if
you sleep one, which I then put it up here, it takes Sinisa. Now, given the
number of seconds that I want, you wait here and it goes back and repeats
the loop and that's about it that you can see. It's fairly easy to use your
LCD display using the square to see hardware interface to print changing
text or static text. Let's jump into the next project where I'll show you how
to use the software I took with C capability that comes with macro python,
which is useful if you just don't have access to the hardware which could
see interface for some.

2X16 LCD DISPLAY WITH
PCF8574 - PART 2 SOFTWARE

I2C
In a previous project, you learned how to use your to buy 16 LCD display
using the Quixey hardware interface HB 32 and like a python in this
project to modify the connections so that instead of the hardware I could
see were used to arbitrarily selected Kypreos so that we can then use this
software.

ICE could option instead of the hardware, I switched the option. So this
gives you the ability to move your eyes. Quixey wiring as needed to
unoccupied Kypreos in case your hardware is quartzite interface so
occupied. I just want to add one thing here. As I've been doing a lot of
testing with various HWC devices, I found that in some cases the hardware
arts quartzite interface would not work with particular devices such as a
sensor, for example.

And then I had to fall back to the software I could see to get it to work. So
sometimes just keep in mind that if a device and nice the device does not
work with one of your eyes could see Conexion methods. Try the other
one and there's a good likelihood that one of the two, either hardware or
software, will work. All right. So I still am running the script from the
previous project on the With Reducers. You can see the wiring is still the
hardware quartzite interface. And what I'm going to do is move over to this
tab here. LCD soft eyes could see and the got test y and I'm going to make
some changes to my connections, so I'm going to hit control. See, first,
just to interrupt the running script and I'm going to take my two flexible
jumper wires. This is why I used flexible copper wires for this LCD
example so I can just move them around easily and I'm going to use your
full for FCL, which do this carefully.

So FCL is the red wire from the backpack, which is the yellow wire when
the Bridport and there is going to go to Chipo four, which is right here.
And the FDA. In my software side here, I've got a zero that's a wide wire
that's going to go right here to Tapio zero selected those because, of course,
they're right next to each other. Another thing to see here is that I'm using
soft eyes Quazi instead of eye squared, see, which gives me a slightly
different constructor here. I have information about software which could
see the software implementation of the old squirty protocol, micro python.

And you can see that link right here shows you how to use it. So these two
pins for FCL and SDK can be any other unoccupied and available to appear
on the E.S.P 32. Once you have created the ice quazi object, though, using
soft AI to see, as you can see in the example here, you can use it in the
exact same way as you did with the hardware art which interface.

So nothing has changed below this line between the two scripts. It's exactly
the same script. So the only thing that has changed is how I create the ice
Quixey object. All right. So I'm going to save this script and run it. And
she could she works in the exact same way as we see where I could see
example.

OLED SSD1306 I2C
In this project hall show you how to use one of these tiny OLED graphics
displays, which is based on the essayistic one three zero six controller
chip. So this is an ice Quixey device.

It was able to print text and arbitrary graphics there. Library that I'm going
to use and can show you provides access to functions that allow you to
print primitives such as lines and boxes and circles. And it is connected to
the E.S.P 32 via the software. It's Quazi module. I did try to get it to work
with the hardware I took, which module, but it didn't quite work. So there
is an issue there most likely has to do with the library that I'm using. I did
try to find one that would support hardware. I could see but to do so. So if
I do, I will update this project with a new updated library. So in terms of
the wiring, things are pretty simple. I just provide power through. This is
just going to unplug it to show you what's underneath, actually. All right.
So there's VXI, which goes to the three point three volt pin, which is this
one right here. And the module got a tiny jumper wire that connects this
pin to the red power real. Then ground goes to the ground up in here again,
I've got jumper wire to connect this pin to the blue ground radio. And then
there's the ACL and SDK. And I have connected those to those twenty six
for FDA and twenty five for FCL. I've got that information listed here in
the header of the example script. One thing I want to note here about these
displays, not just this particular one, but the one that I'll show you in the
next project, is that there there are no markings on the displays themselves
about which type of controller they are using. So what I do as a habit these
days is to print a label and stick the label on the PCAOB, on the back of the

BCB with a model of the controller integrated circuit, because without it,
it's going to be nearly impossible to at least quickly find the driver that
matches your display.

You'd have to go with a lot of trial and error, or you'd have to somehow find
the original documentation of the purchase of the module. Just a tip to
save you a lot of time whenever you buy a display like this with no
information on it printed about the controller integrated circuit, just they
they use a Post-it note or printer use something like this to print out the
model number of the controller, and that can save you a lot of time later on,
I'm going to plug the display back onto my breadboard.

All right, and let's have a look at the software side, so the script that I'm
using, it's very simple. It just all it's really here is to print out a bit of text
and some primitives, like fill the screen with a turn on all the pixels. That's
what one means, means the pixel is on over and the screen off by writing
zeros to all the pixels of a line and then a bit of text back to the beginning
by cleaning it up. So the whole thing is based on this library is a very
simple script that are found that act as a driver for the screen, just like other
displays drivers.

It is based on the frame buffer module that is part of the micro python
implementation for the DP 32 and of course, are the microcontrollers. So
everything is based on this. You can refer to the source code of this module
to see what kind of functions are available, for example, initialization.
This power of you can control the contrast and this is when you call this
show function in order to print on the display whatever image is stored in
the buffer. And you can see this pixel feel, scroll, text, horizontal line,
vertical line, arbitrary line, cetera. These are the primitive graphics that
you can use. So back to my simple script. I am using this software. It's
Kwesi module. I destroy the hardware one. As you can see here, for
example, I try to use the the first idea which actually uses twenty five and
twenty six anyway, but the creates the hardware put in work and I get the
same pins using soft ice. Quixey and it worked. So for this particular
screen I'm going with the software implementation of the ice which the
protocol. And I'm using a couple of variables to store the horizontal and
vertical within height number of pixels for this particular screen is 128 by
64 and I'll use the as is the one three zero six. I could see constructor
passing those parameters across and get my or ality object. And from then
onwards, I can use the primitives that you can see here in the source code of
the screen driver to do things such as write text in a particular location or
fill the screen with particular colors or draw a line or pixels or any other

kind of graphics based on those primitives that you want. And then you
will just do that again and again and again each time that I'm doing some
drawing in the buffer in order to make that drawing visible onto the screen,
I need to call the show function. So whenever you call one of those
drawing primitives, the drawing actually happens in the buffer, not on the
screen itself. And it's only when you call the show function that the screen
is updated with whatever it is stored in the buffer. All right. So I'm going
to hit control. See, cancel the script was not working because I removed the
screen a bit earlier this year. You what's underneath? So let's run the script
again to make sure that it still works that way, wouldn't it? But just to finish
up with the screen actually working where you can cut the line of text file
screens and back to the beginning. OK, so that was quite easy. The next
project, I'm going to show you how to use this slightly bigger OLED
display, which again is using the same interface. I see same pin layout just
to swap between the two screens. But this one is using a different controller
chip to show you how to make use of this screen. This will. This jump
over to the next.

OLED SH1106 I2C
Like in the previous project, he learned how to use This is your boy six inch
display, which based on the SSD, one three or six controlled chip.

And in this project, I'll show you a slightly larger display again, eighty
seven point three inch, using the one one zero six controller chip. I'm
going to use the exact same connections between the screen and the three
two. I'm using the square to see interface, which involves the ACL and the
pins going to JBoss 25 and 26. Now, unlike our previous experiment with
the SSD one three or six display, I was able to get this display to work both
with software I could see and hardware I quite see and of course, hardware
see, which is more efficient with resources. So in this demonstration here,
I'm using the hardware interface instead of the software interface. Now, in
terms of the driver Python Library that I'm using here, I found a really good
one which is available at this location right here. And you can see its
source code right here, really well documented up in the header. This
library allows you to use this screen both with the FBI or the squared C
interface for the module that I've got here, of course, only provides Pince
for the ice Quixey interface, and that's how I'm using it here. But in a way,
the library does allow you to use the same Oletta display with the as one
one zero six controller, you know, using the S.P.I connection if the more to
the to using breaks out those pins. Right. We may come back to this source
code in a minute. Let's go back to the example script of code information
about the connections right here. You can go ahead and wire up your screen
just to change this to software or hardware. I could see because the both

work fine. Now, down here in the actual code, I'm importing the ice quazi
and PIN modules as well as the driver code. And you can see that I'm
creating the ice quazi object by using the minimal version of the
constructor. I'm just passing the idea of the hardware interface being No.

One just remind you could go to the macro python documentation. You'll
see that the eight squared C ID one channel means that a seal is connected
to your twenty five a.D.A, the GPO twenty six, which is how often the
wiring here. So that's all the code you need in order to create the ice.
Quixey object also mentioned that I have tried software. It's Quassey and
that works as well. I've just committed out that code in case you want to
use it. It's a very flexible library. Then in line forty one, we are creating the
display object by calling the Hajj one one zero six and the skylights could
see constructor.

You can search for that constructor function in the source code and you'll
take it to this and you can see the initialization function and its parameters,
the width to hide the object. I'm not sure what this is, but I'm just going to
go with the default of none.

And finally, you've got the address here, so you've got the display object
here and then initialize it. And the contents lead to true if you want to
minimize the power consumption. But of course, make sure that the display
is awake by passing falls to the sleep function, then we'll start printing out
some various test text or patterns. In this case, turn the screen to black.
Surpassing zero means all the pixels are turned off. Then I'm writing a bit
of text here at this location. This is X and Y.

You can see if you search for text, you can see the. Come right here, this
shackled to the frame buffer implementation of text function. So you've got
a bit of text pointing out and then we call show to bring this drawing out of
the box and implemented and show it onto the screen. Go to sleep for a
second, then fill the screen by turning all the lights on so that we light up
the whole screen, then I'm going to print out a bit of text. But this time I'm
going to print it in black and turn off its pixels. You can also rotate the
screen so that you can have the screen pointing upside down if you need,
depending on the orientation. So this is something that the library for the
SSD one three zero six in the previous project did not provide us with such
rotate function. So we can flip things around and then we can print a
rectangle. And in this case here, I'm filling the screen by printing multiple
rectangles. Each one is larger than the previous until eventually fills the

whole screen. And then finally, I've got a little bit of an animation going on
here, I've got a little box that is travelling from the left end of the screen to
the right and then back to the left, which is what you can see happening
right here. The little box there is bouncing off the sides of the screen.

I'm going to get control, see? To stop the program from running and then
I'm going to start from the beginning so we can see what is going on until
we get see the bouncing ball segment.

You're testing one, two inverted, it's a box in the middle and then the full
screen, the gradual full screen. And finally, the bouncing ball is an
example of a simple animation. Now this is happening using hardware. It's
quite easy so that it's an efficient way to drive this great.

OLED SSD1315 I2C

Hi, welcome back in this project.

I'll show you how to use this -- nine six inch or ality display with the SSD
one three one five controller, which I happen to have implemented as a
seed studio growth component. You can see its markings here is probably
the only way you display that. I have with a marking of its controller on the
board itself makes it very easy to identify. So since this is a growth
component to a growth cable and then a bunch of jumper wires to connect
it to the E.S.P 32, which is going to use these little pin to attach it back into
my breadboard, which states put. Right. So I use the exact same pin I sent

wiring's as in the previous project. This is a three point three volt display.

So the efficiency is connected to the three point three volt railing. Then for
Star, as you can see here as well, in the information they provided, the head
of the sample script, FDA, is connected to Tiberio, 25, and S.L to appear
26. Now, similarly to this display here, the 096 OLED display with the it is
the one three zero six controller.

I'm using the exact same driver Python script, and just like with this display
here, they will looked at a previous project. I have only been able to make
use of the software I took, which interface I have been able to use the
hardware interface, even though the approach that I am using are Channel
one or I one. As per the documentation here you can see I could see ID one
uses CEO twenty five and a twenty six, which are the pins that I'm using in
this example. Hardware hwc has failed, but my backup which is software
has worked, so I'm going along with that. So here's my example script. I'm
importing the various modules that are necessary, including the sixty one
three zero six and here I'm using software I squared seal it you see in the
constructor to create the squared C object. These are the dimensions of this
display and I'll create the OLED object by calling the edges the one three
zero six and the call it squared C constructor and passing through the
parameters for the width, height and the squishy object.

And then in a loop I go ahead and print a little bit of text here and then call
the show function to bring the content of the screen from the buffer and
draw it onto the actual physical screen. I can use feel one zero zero here to
invert the screen from blank or pixels of two or pixels on. And I can use
here a line. To draw a single line from two arbitrary picks or positions
using one is the carrot up the line so the pixels are turned on and you can
use the same primitives as you already know from previous projects. So

there's fill this pixel scroll text, horizontal line, vertical line and so on. And
that's about it. The script is already running in a loop and gives you a text
screen to the end of the line, in fact, to.

NEOPIXELS
In this project,

I'll show you how to use the new pixels which are individually addressable
AGP these in this example, and using a module from other fruit that
contains eight now pixels. The nice thing about new pixels is that the micro
python firmware contains a built-In driver. So there's nothing else that you
need to install and there's nothing else you need to Google around and
find. So you simply import the nail pixel module and you're ready to go.
And here's the example here, which I also referenced in my example script.
In terms of the way that is connected, the pixel to the E.S.P 32, I'm just
going to unplug it so we can see in the back there are four pins, but really
just three pins that you need to connect to the ground, the data input pin
and the five pin. So obviously five votes spend goes to the final pin on the
right to ground across the ground. And for the end, you can choose
whichever port you want. In my case of connected to your 13, which is not
even close to the five-fold pin, it makes it easier to make short length
connections. All right. Have a look at the example sketch. Here are the

connections that I'm using in this example.

Have got links to the appropriate documentation for the pixel driver and
having a look at the header of my program on importing the various
modules, including random, since as you can see here, there's a random
pattern of colors that appears. I create the PIN object here for the data input
pin and then I'm passing that over to the pixel constructor so that I can
create the pixel object in my example. As I said, I'm using our module from
other Frood that contains eight new pixels on it. Hence of code number
eight here. And the second parameter of the picture constructor. Once you
have the picks or object, you can treat it as an array and address each one of
the nail pixels individually. So this example here, I'm going for the first
pixel C zero, index zero, and I'm passing a color to it.

And therefore, as I said, you can individually address each one of these no
pixels. I'm actually going to do this in a moment on this show down here.
Once you finish with setting the individual pixels, you call the right
function and then the each picture will display the configured color in the
buffer. I'm calling Buffer here, but of course, not doing anything because I
haven't said anything. So I'm just going to comment that out as well. So in
this example, we just go straight into this infinite loop. I have a for loop
that goes around and programs each one of the Nhill pixels individually.
Then for each Nael pixel x, which comes out of the loop structure, I just
pick a color for each hajib, red, green, blue. I'm going from zero to 10 here
in order to keep the intensity of the light that is coming out of the pixels to
low.

The maximum is 255, but it's almost impossible to look at the actual pixels
in room lighting conditions without going blind. Now, pixels, very
powerful light source. So you'd be able to see them out in broad daylight as
well. But if you're planning to use your new pixels indoors, just tone it
down a little bit by using our smaller numbers for RGV. All right. So I'm
programming each now pixel individually with a random color. And once I
go through the loop and all of the pictures are programmed, I call the right
function and that will pass the information off to the actual no pixels and
create that color. And I stay there for 60 milliseconds and I go through a
similar loop and turn all of the pixels off so that I can see the effect of the
momentarily of situation for 15 milliseconds. Just to make that blink kind
of effect. You can try it a few different other effects if you're interested in
creating different patterns. And this is the effect of this random color
generator as it looks in the eight Nhill pixel module. Just wanted to show
you a little thing here on this. You're going to hit control, see to cancel out
of the program. And I'm just going to. Use the shell. I could do a little bit
of experimentation, so I've imported no pixels, I'm going to create a pin
object just copying from a program and then the pixel object as well. And
I'm going to go and turn on just enough pixel zero. Actually, I'm going to
turn them all off first, because as you can see from the previous example,
they are all running. So let's do this with some kind of copy of this code for

the loop so that if you type it in. And then all of the pixels of. Double enter
and then call the write function. OK. The pictures are now of then less 10
pixel at index zero on. So this is going to be AGP. It's going to be blue at
two hundred intensity. Just bring back. Right. And there is. The new
picture with day or index zero as to the last one. So this is going to be
mostly red with a little bit of blue in it and call the right function again, the
kind of pink, I think. OK, so that's basically how you go about individually
creating colors or assigning colors to each pixel. It can also get the color of
a individual pixel by using this notation to just read or extract the colors for
it to be from no pixel position zero. And that will give you. So they are a
zero, the G zero. Let's check out the blue said there would be just as
multiple assignment in a single line of code so I can extract the current
colors of the particular nail pixel. All right. It's about it. So that's how you
can use the new pixels with your DP 32 and.

MAX7219 8X8 MATRIX DISPLAY
- PART 1 RANDOM PIXELS

Fight in this project, we'll show you how to drive the next seven to one
night metrics display like this one here in this demonstration, in which case
I have connected four of those individual displays in a row.

You can see that by just tuning the display over these displays have an input
and an output. So this is where one can connect to the other and then create
various configurations. I've chosen to go for a single row of these displays
using for displays one after the other. But you can also configure it as a
rectangle or as a square. So I'm going to like this one back in. Right. I'm
going to have to initialize it, not to get the last one to work. One thing that I
do with all of my displays is that I use a sticker to indicate the drive circuit
for the display because typically it's not indicated on the participation of
printed on. And it's an important piece of information to know so that, you
know, which driver, which software driver to use. All right.

So I
begin by having a look at the wiring information and then we'll look at the
software side and talk about the driver that I've found and used and found
that it works with this display. And you that a couple of examples. In the
first example, she had to just display random pixels. And then in the next
example, in the next project, she had to display text. But I'm also going to
talk about how to create about graphics primitives like lines and circles. It's
actually very easy with a driver that I found. All right. So about the wiring
first hand this thing over. You can have a look at the wiring in conjunction
with the software. Because of the header of my example script. I've
indicated the wiring as well.

So you've got the ground pin which goes to any of the ground pins on the
HP to in my case, I have connected the ground pins, the green jumper
wire. It goes to the ground power rail on the breadboard. Then we've got
this you see this display, it requires five votes, so this is C is the blue wire
that goes here, and then

I'm using this long red jumper wire to connect it to the east, whether it is
five or 10 right there. Next up, we've got the data in PIN now I forgot to
mention that this display is using the spy interface. So data in for the spy
interface is the Mausi. PIN, which is PIN 23 on the E.S.P 32, this pin right

here. I'm using a jumper wire to take that out and connect it to display.
Now we've got the spy clock pin, which is. Pain 18, it is this one right
here. And finally, we need the SS pin, which is the chip select or spy
traditional Parli, it is the sleeve select for this right here, which you can use
any pin, actually. And I've used your five for this. So these are the pin
outs. Having done that, let's check out the software side, so for the software
side, I have chosen and found that it works this library here. It's called
Max 71 nine Thorpey. Why there's information on where to get it from and
also have the information. Or I should have that information in which I just
put it in right now that would give here. It paste doesn't quite work.

All right. This is for the max seven two one nine driver library. All right.
So as you can see, this is not a big library. Builds on the frame buffer
module, which is built into the micro python firmware. And so it builds
onto that and makes it possible to do things such as fill the whole screen
with a particular color, either on or off the black or white. I guess you
would call that you can create individual pixels. So this is the function that
we are using in this demonstration. You can create horizontal and vertical
lines, arbitrary lines from any point to any other point, rectangles and field
rectangles.

Text, which will be using in the next example, can get text to scroll. I'm not
sure what it is. And then you can initialize the screen, which is also
something that we are using. These are the available functions that this
driver library provides us to back into the demonstration sketch. In this
example, I just wanted to show random pixels so there wasn't much to it. I
have imported the appropriate modules, the library itself and then the pen
and spy functions from the machine module you time so I can put a little
bit of sleep. You can see that happening here 15 milliseconds. And then I
also imported the random module so that I can add a bit of randomness
when I am calculating or actually figuring out which early days or which
pixels to turn on.

Other than that, I am creating the spy object here. This is spy object with
the two because the civil nuclear documentation can see that the E.S.P 32
with this micro python implementation has got to S.P.I hardware interfaces
available. The first one has got ID one and these are the pince. So this
interface 14, 13 and 12 for Clock Mozi and Mizu. And the second one,
which is the one that I'm using, have got these two bios for the three pins of
the interface and I'm using 23 and I'm not using the MISO GPA because I
don't need it with this interface. So one way only. So I'm using this
constructor to create the spy object I'm defining here Jhpiego number five
to be my slave selector or chip select. And then I'm using this constructor,
the eight by eight constructor and much six, eight by eight to create an
object that allows me to control this row of four matrix displays.

So I'm passing the SBI object, the slate select or CHIP select Tapio. And
then I'm indicating that this is going to be a display with four eight by eight
displays in a row. And that's the display object. Next, I'm using the full
function to turn all of the entities off. So in effect, I'm painting it black,
setting the brightness to five and that's how bright Brightness five is. I
want to know more of that brightness than what the limits are. You can just
go to the library itself and just search for full brightness or the right part of
the word is enough.

And you can see that the limits are from zero to 15 with Tuffin being the
brightest possible setting. And after that, we are ready to start printing
pixels, so we've got a loop that repeats 10 times because what I want to do
is to create 10 randomly little pixels across my screen. And I do that by
calculating a random X and Y position. So if you look at the pixel function
in the driver library right here. Here it is, you'll see that it requires an X, a
Y and optionally a color, which I am passing a color X Y so that the pixel
is turned on.

So here's my color one. And then for the exposition. The exposition is
this. So this is pixel number one, so this is pixel number zero index and
zero in the x axis and this is 31. So I'm getting a random number between
zero and thirty one. And I'm doing the same thing for the Y axis vertical.
So this is zero on the Y axis and this is eight on the Y axis.

And then that would give me a random number between zero and eight. I
don't remember if the eight is inclusive. So if the top end of this range is

inclusive. Having a look at the random module in here, we've got. The
random E.A. function, which is a function that I'm using and you can see
that this is returning a random number between A and B, inclusive of A
and B. So there's the answer to this function is going to return a random
number between zero and eight once I've got my ten random pixels in the
buffer of my display and I call the show function to make the numbers
visible, leave them visible for 15 milliseconds, then empty the display
display off by writing zero and then go back and calculate and create the
next ten random pixels.

If I comment out this dysfunction. Can heat control see now to stop
execution and then save and upload again? You see that you get this effect
where eventually the display turns all on the wall itself being on. All right,
what about effect as well as quite nice? All right, so that's how you can use
this eight by eight display to randomly display pixels and then let's have a
look in. The next picture will show you how to display text.

MAX7219 8X8 MATRIX DISPLAY
- PART 2 TEXT

In a previous project, he learned how to use the next seven to one nine
displayed in its CINQUERA with four displays configuration to display
random pixels. In this project, I'll show you how to display a bit of text,
although you'll see the text display capabilities are not that amazing and
there are few limitations. So the wiring, of course, hasn't changed exactly
the same as the previous project. So let's jump right into the software side
here.

The software for the text demonstration is identical to that of the random
ality demonstration, except that down here we are using the text function to
display just four letters at this position here, zero zero. So we start from
the top of the display and then use color zero, which is unlet, which means
that the light is going to be turned off. So then a bit earlier, right here in
line 39, I'm using field, but this time I'm passing one to the field function

instead of zero that I did in the previous example.

It means that the field command, the field function is going to turn all of the
latest on the display on.

Therefore, by printing text with Callard zero, I'd be using black on white to
print out the latest ABCDE. I've also said the brightness to five and by
calling show and making those letters visible. So I'm going to hit control,
see on my keyboard to stop the random pixels example and then. Start the

text, there you go. So the text looks like this one, it's black black text on
white background and obviously this red background, because of the color
of the early days, has a dark on. Right. Can it do a couple of changes?
Let's see what capitals look like. And then I'm going to change the field to
zero and the color of the text to one right at that.

And it looks like this is interesting, that did not occur, it did not appear
because I did not tight-fitting. All right. And of course, he can also display
numbers.

So there's numbers that I mentioned earlier, there are some limitations with
using text in with these displays and with this particular library, for once,
you can't change the size of the library. It is the size that takes up the whole
individual eight by eight display to display one single character and
another limitation that are found to be quite annoying is that you can't rotate
your characters, so you have to use your display in this vertical orientation
can really go horizontally and have your characters turned by 90 degrees in
a horizontal way. You can dig into the driver itself. And if your python
knowledge is good enough, you'll be able to make those changes in the code
itself and then have perhaps a rotation function that allows you to rotate by
90 degrees. But without making modifications to the library itself, you
can't at least I wasn't able to find a library that can do this. So if you can
live with these limitations of this, Max, seven to one nine library, and
especially if you want to use it for displaying graphics, using the graphics
primitives, I think it is a good idea. Tootles.

	WHAT IS MICROPYTHON AND PYTHON FOR MICROCONTROLLER
	WHAT IS UPYTHON AND WHY SHOULD YOU CARE
	SOFTWARE YOU WILL NEED
	HARDWARE YOU WILL NEED
	HOW TO GET THE MOST OUT OF THIS PROJECT
	GET THE DEMO SCRIPTS FOR THE PROJECT
	UPYTHON VS CPYTHON
	UPYTHON RESOURCES
	UPYTHON COMPATIBLE BOARDS
	GETTING STARTED WITH THONNY IDE FOR PYTHON
	HOW TO INSTALL THE MICROPYTHON FIRMWARE TO YOUR ESP32
	SETTING AN INTERPRETER
	HOW TO WRITE AND EXECUTE A MICROPYTHON PROGRAM
	OTHER VIEWS IN THONNY IDE
	THONNY IDE WITH RASPBERRY PI PICO
	USING THONNY IDE WITH BBC MICROBIT
	THONNY IDE ADVANCED CONFIGURATION
	FIND PYTHON PACKAGES AT PYPI
	THE MICROPYTHON SHELL
	HOW TO INTERRUPT A RUNNING PROGRAM
	HOW TO RUN A PROGRAM AT BOOT
	HOW TO DEBUG MICROPYTHON PROGRAM
	ABOUT MICROPYTHON MODULES
	BUILT-IN MODULES
	COMMUNITY MODULES
	HOW TO INSTALL AN EXTERNAL MODULE
	BLINK AN LED WITH LOOP
	FADE AN LED WITH PWM
	READ A BUTTON WITH LOOP
	READ A BUTTON WITH HARDWARE INTERRUPT
	READ A BUTTON WITH TIMER INTERRUPT
	READ A POTENTIOMETER
	DHT22 ENVIRONMENT SENSOR
	BME280 ENVIRONMENT SENSOR
	ESP32 INTERNAL TOUCH SENSOR
	ADXL335 ANALOG ACCELEROMETER
	HC-SR04 ULTRASONIC DISTANCE SENSOR
	2X16 LCD DISPLAY WITH PCF8574 - PART 1 HARDWARE I2C
	2X16 LCD DISPLAY WITH PCF8574 - PART 2 SOFTWARE I2C
	OLED SSD1306 I2C
	OLED SH1106 I2C
	OLED SSD1315 I2C
	NEOPIXELS
	MAX7219 8X8 MATRIX DISPLAY - PART 1 RANDOM PIXELS
	MAX7219 8X8 MATRIX DISPLAY - PART 2 TEXT

