LEARN MICROPYTHON

WITH ESP32

Python Programming, Raspberry Pi,

Micro-python Modules, BME280 Environment
Sensor, Max7219 8x8 Matrix Display,
Micro-python Projects And More

LLETERLL]

daca8da®886838¢F©°3

LEARN MICROPYTHON

WITH ESP32

Python Programming, Raspberry Pi, Micro-
python Modules, Bme280 Environment Sensor,
Max7219 8x8 Matrix Display, Micro-python
Projects And More

By

Jansa Selvam

TABLE OF CONTENTS

WHAT IS MICROPYTHON AND PYTHON FOR
MICROCONTROLLER

WHAT IS UPYTHON AND WHY SHOULD YOU CARE
SOFTWARE YOU WILL NEED

HARDWARE YOU WILL NEED

HOW TO GET THE MOST OUT OF THIS PROJECT

GET THE DEMO SCRIPTS FOR THE PROJECT
UPYTHON VS CPYTHON

UPYTHON RESOURCES

UPYTHON COMPATIBLE BOARDS

GETTING STARTED WITH THONNY IDE FOR PYTHON

HOW TO INSTALL THE MICROPYTHON FIRMWARE TO YOUR
ESP32

SETTING AN INTERPRETER

HOW TO WRITE AND EXECUTE A MICROPYTHON PROGRAM
OTHER VIEWS IN THONNY IDE

THONNY IDE WITH RASPBERRY PI PICO
USING THONNY IDE WITH BBC MICROBIT
THONNY IDE ADVANCED CONFIGURATION
FIND PYTHON PACKAGES AT PYPI

THE MICROPYTHON SHELL

HOW TO INTERRUPT A RUNNING PROGRAM
HOW TO RUN A PROGRAM AT BOOT

HOW TO DEBUG MICROPYTHON PROGRAM
ABOUT MICROPYTHON MODULES

BUILT-IN MODULES

COMMUNITY MODULES

HOW TO INSTALL AN EXTERNAL MODULE

BLINK AN LED WITH LOOP

FADE AN LED WITH PWM

READ A BUTTON WITH LOOP

READ A BUTTON WITH HARDWARE INTERRUPT

READ A BUTTON WITH TIMER INTERRUPT

READ A POTENTIOMETER

DHT22 ENVIRONMENT SENSOR

BME280 ENVIRONMENT SENSOR

ESP32 INTERNAL TOUCH SENSOR

ADXL335 ANALOG ACCELEROMETER

HC-SR04 ULTRASONIC DISTANCE SENSOR

2X16 L.CD DISPLAY WITH PCF8574 - PART 1 HARDWARE I2C
2X16 LCD DISPLAY WITH PCF8574 - PART 2 SOFTWARE 12C
OLED SSD1306 12C

OLED SH1106 I2C

OLED SSD1315 12C

NEOPIXELS

MAX7219 8X8 MATRIX DISPLAY - PART 1 RANDOM PIXELS
MAX7219 8X8 MATRIX DISPLAY - PART 2 TEXT

WHAT IS MICROPYTHON AND
PYTHON FOR
MICROCONTROLLER

So some of you might think micro pies and what is this super tiny
snake or maybe something to do with Monte Python or so the triple
E spectrum realized his ranking of the most used programming
languages in 2018.

Top Programming Languages 2018

Language Rank Types Spectrum Ranking
1. Python i3] 1@ 100.0
2. C++ 0.8 e84
8, C 0% @82
4. Java &0% 97.5
5. C# S0L 89.8
6. PHP @ 85.4
7. R . 833
8. JavaScript &0 82.8
9. Go & 76.7
10. Assembly] 74.5

And it's very interesting. Python is on the top and it says a 100%
coverage shrink. it's in the web, it's on your desktop computer and
it's now, already, also used on microcontrollers. And what I find
quite interesting is that assembly entered into top. This year, which
means probably because of the internet of things that are
programmed with assembly.

What is MicroPython?

 lean and efficient rewrite of Python
* Includes complete parser, compiler,
virtual machine, runtime system
and garbage collector

- byte code or native machine code

\J

=

&
* REPL (read, evaluate, print — loop) h‘

» Supports inline assembler
« Compilation on the chip

So micro Piven is a fully reimplementation of Python and it leads to
be lean and efficient to run on a microcontroller because you
couldn't be just using Python as you know, from your desktop
computer. It needs. it was rewritten from sketch to fit on the
microcontroller. It has a virtual machine and a runtime system with
garbage collection and everything you need to make it really
efficient. There's bike code or native machine code you can use
with. The micropython and is also in support for Atlanta smaller.
when you have a project where you like to use Python, because you
want to get it up easy, but you need to make it more efficient in
some, your tiny bits. There's also Atlanta San Francisco Portland.
The compilation happens on the chip. it's not compile your program.
You write as the compile on your desktop sheen, it's complete
compact on the hardware use. as late as I have this fantastic camera
over here, I will show you some demos.

How everything started

KICKSTARTER

Micro Python: Python for microcontrollers
by Damsen George

Miere Pythen: Py vome Updwes[l] Bacers [] = | 9 Cambridge, il Mg F Jee—

v F
o
The Python language made lean and fast lo run on
microcontrollers. For beainners and exnerts. contro

how easily can use microbiomes and how did this start? How me
one think of having a high level, really high level scripting language
to run on a director and a microcontroller about five years ago,
Damion George at the time, working at Cambridge university
thought, oh, this would be fantastic to control my little robots with
Python because it's easy. And I know, and I don't need to interact
with all the low-level stuff. he had the idea, let's run a Kickstarter
because at that time everybody was doing it and I would really like
to see how it is to do a Kickstarter as well. , And he wanted to think
maybe other people will be interested in having him. And he would
like to have an open source community around it to support the
project. Because as we think open source is very important because
I profit from it every day and we want to give something back. this
means micropython is open source. Everybody is welcome to
contribute and it's, it's open to everybody.

5 years in

» GitHub
7 000+ Stars, 200+ contributers, 2 000+ forks

42 Releases v1.9.4 with code coverage 99.2%

* In the UK all 11-12 year old children got a
BBC Micro:Bit

» Development boards

shipping with MicroPython pre-installed from
different companies

Adafruit (CircuitPython), PyCom, OpenMV...

« 2rd Generation of pyboards ready to launch

So
this was about five years ago and today. Uh, up till today, a lot has
happened when you look at our guitar page, they have more than
7,000 stars and more than 200 contributors. Very interesting is that
the contributors come out of different areas. they are makers, but
they are also people that work as embedded developers in the
industry because they saw the benefit of. a high level language,
which you can start up making it run up easy and focus on the
bottlenecks of your actual project. And there are also more than
2000. Which means a lot of people are working on it. me of you
might have known the BBC microbit. That's also one project in the
UK. They were given about a million of these little PCB margins to
the children in the UK to get them up and running quite early in the
education process. Python is taught in school in the UK and. This
also, there are other languages support as well, but microbiome is
also on it. Then there are a lot of different development bolts. For
example, other fruit has its own micro Python part. That's called
circuit Python. if you want to try microbiomes and you have a wide
range of development boards, and there is all, of course, the official
micropython board, the piebald. Which I'm going to show you today

because there's always an advantage on having your own hardware,
because you all know the saying, if you're serious about your
software, you should do your own hardware. Then last year there
was the first micropython Riley book from Nicholas Holloway,
which is also quite big. There are a few, actually a few makeup
books already out there, but this is quicker kind of milestone for us.
And also. After five years, it's time to make a new board. And |
have this one with me today. what I'm going to try to do 1s from the
original Kickstarter, which was fine, five years ago, this board is
still supported. if you have one of these software updates are still
running and getting to be supported on the old board, but we were
talking to people. What would you like to see? What do you missing
at the actual on the market? And we tried to listen and make a new
board as well.

Benefits of Scripting
Languages
« Initial acquaintance/learnability
» Rapid prototyping
» Time to market
» Easy extensibility by a user
« Security of extensibility by a user
* natural sandbox

» extension code, to maintain product integrity
and protection against attack vectors.

So
what's the benefit of a scripting language used instead of traditional.
See, for example, to program microcontroller it's learnability, it's
easy. You can read it more easily. You have the ability to do rapid
prototyping, which means your time to market is very quick. even if
all of you are just doing this for fun and our makers, if you see all

this really, really cool project, I did, maybe I can do a product out of
this. And some people might be interested. I've heard about these
stories or this all started as a hobby, but now I'm selling a couple of
thousand units per year. I started as a maker, but now I'm a kind of
already business thing. It's also very easy to extended by a user. if
you have something already up and running and you want to ask a
special specific module implemented, you just get out as like it's
almost, as you can just pick it up and move it into your own way.
this is all very positive talk, but when I go out to people am and tell
them what I do, especially when I talk to embedded programmers
that work quite near the hardware, they say, oh my God, why would
I do that? Microbiome, uh, Python is super slow and I can't really
use this on a microcontroller. This will kill all my benefit, why I'm
actually using a microcontroller for this project. , and, and also,
well, we are very used to see and be very good. And so this is kind
of turning a little bit around the open, open the minds of some
people that work in this. Area. they say they are interpreted, so they
are slow. They loose, they use a lot of resources, Python. this can't
be energy efficient or efficient in any way at all. But I say, well,
micropython is fast. If you look at the development time. Just think
about it. When you get a new microcontroller out there, there are
thousands of sites of data sheets, and you need to get anything out
of it in rubbing. metimes you have working examples from the
manufacturers, but you still well, that's what I did. My final thesis in
clectrical engineering. It kept me up a long time to make it. And
then make it efficient and make it really, for example, a really altar
low power STD described in the data sheet working. if you have
functions that already give you the access, you can really focus on
the bottleneck of your project and don't waste your time in just
making it get up and running.

Maker Projects

Remote, wireless
weather station
network

by Peter Hinch

Quadrocopter
by Damien George

So as there's to make a Trek, I thought there are a lot of. Brodie's
out there. for example, Damian George was, was the initial idea to
do the pie bot for the first Kickstarter. He wanted to do a quarter
copter. And if you want to learn more about this, that will be a QR
code later on. And all, for example, you can do this weather,
weather station, which are run by microplasm. if you like to find out
more, there are a lot of what make approaches. We can see and they
are described on GitHub, so you can build up on them if you're
interested to use this. that's the maker side. A lot of people picked
up, but I am also involved in industrial project that used microplasm
for the co-op texture. And when I talked to some of the developers
over there, they asked me, or that. I asked them, why did it just
them? Because it's just around for maybe five years, there is no
really long time. there is no saying yes, we have tested this 10 times
in the field and it's up and running and it's running 24 7. Anything,.
There's nothing there. it's quite a brave step to do it like this. but one
of the developers said, yes, we are looking for a replacement for our
embedded Linux system, because an embedded Linux system for
this tiny device we're using is just too bloated. We don't need it for

that much. the first. Product prototype was bloated was, was, was
with shell scripts and they replaced it with micro Pythen. and after
two times, not with this initial project they got on and on with it
because they really liked to use micropython. They are. In low
power system that consume less than 500 nano AMS with active
program on the microcontroller, which is quite impressive. When
you think about the real-time image processing, they're using it in.
the, the interesting part is you have it in your development phase,
but you can also run it on the final product to, for example, get some
updates on there. And I hope this gets more clear when I'm trying to
do a little demo later. And what they said is yes, of course you
cannot use microbiomes and for everything, because you might
need some assembler code there and there are bits, and then you just
integrate integrated and you really, really fast to show a first
prototype to a customer or to your supervisor, that you get
something up and running from with new hardware or,

MicroPython on calculators

and also 1in, 1s quite famous for used in school calculators. about.
Two years ago. Now the first calculator picked microbiome, which
1s number works. It's a startup and they have this graphical

calculators that use micro Python on them. And just recently we
heard about that Kazia is also putting it into them. Micro control
trellis. This is the old cute little snake logo from the original
Kickstarter, which you put on. that's the good thing about the open.
They are allowed to do it. they pick it up and move it into the
direction.

So I hope a few, you got excited about it and think, oh, that's cool. I
would try this out, but I don't have a boat to worry. You can go on
our homepage. And there is an emulator where you have this little
pie bot and you can run a few demo scripts and can see if you like
it. And put it up. no need to buy hardware. Just we have this
emulator as well.

Companies using MicroPython

George Robotics
The developers of MicroPython

“My background is theoretical physics, so | approach the design
and development of MicroPython from a much more academic
and research-oriented point of view,

compared to simply engineering a solution to a problem.

| believe this has been part of the reason for the success of MicroPython”

— Damien P. George Creator of MicroPython & Director of George Robotics

more companies that are using micro pipelines, obviously Damon
George, who created micro Python and also offers, development
board around the. he designs hardware, especially specific hardware
or specific modules in Python. And what he says is, so my
background is theoretical physics. I'm not a typical engineer who.
Who looks like more just to getting a problem done or solved. He's
more research oriented. He believes. And I believe that too. That's
the thing where microbiomes got so, so successful to not just find a
solution for a specific problem, otherwise go on and make it more
usable for everybody. And there are other companies. this is just, I
put pictures.

Companies using MicroPython

"Mechanical, electrical and software design
and development"

"The constant battle of finding components and tools that have ease of
use, while also being capable for professional applications, is what drew
me to Micropython. It allows me to design, build and iterate efficiently"

One more people are using it like these consultants that do. Uh,
development board development for customers and travel trailers,
travel set. For example, he come across microbiomes and because
it's always hard to find components and tools that on the one side,
they're easy to use, but need to be on a professional applications
level and destroy him to microbiomes. And so that's what he told
me. He can get up, set up. Adaptable to stuff. As you can see here,
these chips he's using, he is the same as the PI bot, which 1s the
original one. Just plug it into unadaptable and get stuff up and
running easily. just as a little bit of an ask as an example. when we
look at this, it's the amazing software, all this implementation, like
all this rewrite of Python to make it real. Running like clockwork on
the hardware. that's one side, but the other side is a micro pies or
George robotics,

pyboard D!

the company behind it does their own hardware as well. if we could
switch to the camera for a second, I can show you yes. you can see
here, this one is still original, so ever. How small it is. This is the
original PI bot.

This 1s the pilot light actually, but the form factor is the same. And
the new generation moved to this one because we was, we were
thinking what, what people told us. Well, yeah, well, we liked this

little module. He was a, probably have heard of the ESP 32 other
ESP, 82, 66. They are. they're small, tiny, easy to access and
everything. But when you buy these modules, you still have to
design a little PCB to program it for the first time. that's what they
were missing. we designed in micro USB. Connector to make this
up and running easy. uh, Caltex,

- Py

i ¥

oy . M
seven CPU for hype, for power. a wifi module with BLE and on the
other side of my trusty cart. you can still exchange your, so you
have internal file system, obviously, but if you want to really collect
data locally, you might like to have an SD card as well, or storing all
your programs. And here you see this bus connectors, which are
officially designed on being plucked in. Other adaptable notes,
which you can design yourself. that's the aim of microphone. There
will be some obviously to get you up and started, but what we really
want 1s that people easily can design their own product and having
the heart of the products out of the box already up and running. yes.
Okay. I would go on with the demo now. And show you, uh, a little
bit of the code that's on the board. I'm starting, I'm starting with the
original pie ball. Yeah, very good. and here's, you can see the salts

and adopter bot, so, and he will, he has a sensor bot which can be
plugged in. as well. here we have RGB led temperature and
humidity sensor, a light sensor, and a little buzzer for some sound.
you can see it's actually something happening. Everything is better
with a little buzzer. Isn't it?

okay, so, I'm gonna, this one is packed in now. And if I switched
back. Perfect. so I started like this, uh, so this is the pipe. Flesh just
comes out as a, it pops up like a USB stick or something. , so when
I. Go in there. I have my main PI, which is empty now, I believe.
you can put your code here, just type code and save it to your board
and run it. But obviously I have something prepared because we
want to show, I want to show you how easy it is to run, to run the,
the little sensor Tyler I've shown you.

o/ PYBFLASH) - gedit

1 from micropython
2 import pyb
3from pyb import Pin
4 import machine

5

import const

const(64)
const (69)

6 HDC_ADDR
7 0PT_ADDR

8
9class TILE ONE:

value=0)

mode=Pin.OUT_0D, pull=Pin.PULL UP, value=1)

continous mode,

11 def init (self, slot="X'):

12 if (slot != 'X') and (slot != 'Y'):

13 raise ValueError('either "X" or "Y" slot')

14 12¢ = machine.I2C(slot)

15

16 self.buz_en = pyb.Pin(slot+'l", mode=pyb.Pin.0OUT_PP,

17 self.buz = Pin(slot+'6')

18

19 leds = [1]

20 for i in range(2, 5)

21 leds.append (pyb.Pin(slot+'%d' % i, mode=Pin.OUT 0D, value=1))
22 self.leds = leds

23

24 self.opt_int = pyb.Pin(slot+'12',

25 self.hdc_int = pyb.Pin{slot+'8', mode=Pin.OUT 0D, pull=Pin.PULL UP, ualue-1
26

27 try:

28 i2c.writeto_mem(OPT_ADDR, 6x1, b"\xcc\x1@"

29

i2c.writeto mem({HDC_ADDR, OxBe, b'\x75')

5Hz,

heater off, ir

So

this 1s just a little driver written for the, for the different. For this tile

that I plugged in on the top. so you have

, the optical sensor, as you

can see here, or the temperature and humidity. This is just to see,
this code 1s already on there. I don't have time to do all this now.

ASH fmediajchristine /PYBFLASH) - gadit

i, mode=Pin.OUT 0D, value=1))

0D, pull=Pin.PULL_UP, value=1)

P
pyb.Pin(slot+'8', mode=Pin.OUT_OD, pull=Pin.PULL_UP, value=1)

continous mode, 800ms
5Hz, heater off, int act low, comp m
start

inl SeLT, sLot= H

if (slot != 'X') and (slot != 'Y'):
13 raise ValueError('either "X" or "Y" slot')
14 i2¢ = machine.I2C(slot)
15
16 self.buz_en = pyb.Pin(slot+'1l', mode=pyb.Pin.OUT_PP, value=8)
17, self.buz = Pin(slot+'6")
18
19 leds = []
20 for i in range(2, 5):
21 leds.append(pyb.Pin(slot+"%d" %
22 self.leds = leds
23
24 self.opt_int = pyb.Pin(slot+'12', mode=Pin.QUT_
25 self.hde_int =
26
27 try:
28 i2c.writeto_mem(OPT_ADDR, @x1, b'\xcc\x1@')
29 i2c.writeto_mem(HDC_ADDR, @x@e, b'\x75')
38 i2c.writeto_mem(HDC_ADDR, @x@f, b'\x@1')
31 except:
32 pass
33
34 self.i2c = i2c
33
36 if slot == 'K":
37 self.tim = 2
38 self.chan = 1
39 else:
AR calf +im = 1

Pythan = Tab Width: 8 =

So, I'm going to show you how easy acc

ess. in the background,

sorry. as you can see, micropython pilot light help type, help for
mine. we are already on the sport.

Servo methods: calibration(..), angle([x, [t]l])
pyb.Accel() -- create an Accelerometer object
Accelerometer methods: x(), y(), z(), tilt(),)

Pins are numbered X1-X12, X17-X22, Y1-Y12, or by their MCU name
Pin I0 modes are: pyb.Pin.IN, pyb.Pin.OUT PP, pyb.Pin.OUT 0D

Pin pull modes are: pyb.Pin.PULL NONE, pyb.Pin.PULL UP, pyb.Pin.PN
Additional serial bus objects: pyb.I2C(n), pyb.SPI(n), pyb.UART(n)

Control commands:
CTRL-A on a blank line, enter raw REPL mode
CTRL-B on a blank line, enter normal REPL mode
CTRL-C interrupt a running program
CTRL-D on a blank line, do a soft reset of the hnard
CTRL-E on a blank line, enter paste

For further help on a specific object, type help
For a list of available modules, type help('modu
>>>

You can see, I showed you early before. If you type the help, it has a
little bit about the control and. And I'm going to import the program.
I just sold, showed you earlier and run a little off the test script. As
you can see there's roughly 25. 3 degrees 32. This seems a little bit
low,

Pin pull modes are: pyb.Pin.PULL NONE, pyb.Pin.PULL UP, pyb.Pin.PN
Additional serial bus objects: pyb.I2C(n), pyb.SPI(n), pyb.UART(n)

Control commands:
CTRL-A on a blank line, enter raw REPL mode
CTRL-B on a blank line, enter normal REPL mode
CTRL-C interrupt a running program
CTRL-D on a blank line, do a soft reset of the board
CTRL-E on a blank line, enter paste mode

For further help on a specific object, type help(obj)
For a list of available modules, type help('modules’)
>>> import tile one

>>> s=tile one.TILE ONE()

>>> s.demo()

112732 0 TIO7d0 25.3 C 32.8 % TI3001 794.56 lux

>>> s.demo()

115859 0 TIO7dO 25.4 C 32.8 % TI3001 795.20 lux

>>>

but, I also want to show you a little, if we could now switch back to
as you can see,

it's arguably led just counting, counting the different colors. And I'm
going to do some measurements and it's going to be shown in the
interactive for apple. there is, what's. The amazing thing about is, as
I would say, when I first came across, this is like, oh my God, I just

need nothing to employ to install anything. I just did my pies and
code. And obviously I need to know how to interact with my senses
and everything, but I don't have to install an IDE. I can use one if
I'm used one, but I don't have. I'm going to just like lock this into a
text file and then I have this, I can use these data easy, like from the
plugging it in and using the orange data to make some, some of my
plots or whatever I need them for. this is still the original piebald
and the same, uh, can be used with this one. I like this is the half
sizes and the same cone runs on this spot. Like this. I can see
something. if I now go back. To my code and run exactly the same
pork, the same program.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'AT' isn't defined

B> ~Y Y~

Traceback (most recent call last):
File "<stdin>", line 1

SyntaxError: invalid syntax

>>>

>>>

>>>

>>>

>>> D

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'D' isn't defined

>>>

>>>

>>> import tile_one
> 5.

That's also on the So what I try to show, we try to do this all very
modular. still the old, all of the old hardware will be still supported
with the new upcoming sensors. Since tiles, I think most impressive
what I said that they managed to make these things very, very small,
because I think that's the most important part. If you run the internet
of things at some point, You have the type of things should be tiny
and mostly running on very low power. rry. That's the wrong button.

The right button. And as you can see, there's a microcontroller on it
and the wife and what you have 1s separate.

Pyboard D

PYBvV1.1 (168 MHz) 216 MHz
PYBD (120 MHz) (1.75 x PYBV1.])

Idle at 18 mA
EYEUAL Run at 55 mA —
Idle: 34 mA
PYED Idle at 18 mA Run: 112 mA
Run at 55 mA Light-sleep: 500 uA

Deep-sleep with RTC: 10 uA

Downloading data to PYBD 100 mA around 800 Kbyte/sec
Uploading data out of PYBD 140 mA 1 Mbyte/sec
Listening HTTP server connected to WiFi router ~ImA

So why 1s that to make the board more, more expensive obviously
now to have the real-time availability of the microcontroller so that
you. I can really focus on the task. And most of the time you might
just need the wifi to send the data off and not on, don't have to really
have it on all the time or something, or need to wake it up through
Bluetooth or whatever. when you can see here, there's just a
comparison to the old piebald 1. 1 and the pilot D which is the new
one. It's got faster, obviously, because the current role has evolved
and it's from 34 million AMS to a deep sleep to 10 micro amps with
the real time clock still enabled. which means you can be, it can be
woken up. this is a whole new. Area on what we really like to see
the internet of things running on. When you think about it, that you
don't want to go around and exchange batteries every time, or I
think is a 20 billion by the time of 2020, that will be out and running
and collecting data and sending them back. the power problem is
really a thing that needs to be focused on. this is all very positive.

Isn't it? It's, can't be all so good about microbiome Kenneth. what
bison cannot do is not as you can, as it always, you need to see your
problem is you want to solve, and then you need to look at what is
available or what would I could I use with it? So really, really small
MCUs that don't have enough Ram to put in like the micro piles and
source. They use still will use traditional C because they are just not
made for having these kind of operating system. Microphone is not
operating system like an outhouse. You might know it's
implemented on the bare metal, but still kind of acts like an
operating system. As you can see how easy it was for me to just
switch on and access these different pins. And also, for example,
for. Larger projects, especially when you work with a lot of people,
you might like to have an embedded Linux system on your device
where you can control everything. But I know of a company that
has an embedded Linux system on a product, but still uses
microphones and for the special tasks, which is very interesting
because they already use this hardware on. extension box and they
are running and really rely on like in industries where you need to
be, have the reliable, the whole time.

MicroPython for product

development!
PRO CON
* productivity * increased hardware
- traceability resources
« testability * lack of developer skills
. regarding scripting
» portability languages
* licensing
» support

so as I know, this is the maker, uh, track. But when you think about
it making a product or really designing something for that's be used
in a couple of thousand times, so microbiome that can help you with
the product development in productivity traceability, because the,
the code and the different firmware releases are very, like, it's very
well maintained in the open so people can work together, fix
problems, and the community can, can profit from that. It makes the
test that testability easier as I've shown you before, there are more
than 200 different developers involved and they come all from
different areas and sometimes you get these ideas from people you
have not even thought about because that's the main thing they do.
And so that's really fantastic to see how everybody makes each
makes each other better. Then the license of microbiomes and the
MIT license, which is very flexible too. you can use microplasm,
but you don't have to have everything open source. You can build on
it and close up the thing that makes your product that generates the
profit for your company. For example, and yeah, as I said, as the
support in general, the Python community is quite open and. it's the
microbiome as well. the disadvantages, again, you might have

increased hardware resources. If it can use a smaller
microcontroller, which is obviously cheaper, but it's too small to fit
microbiomes and you cannot use it. this needs to be like, you always
have to look at the time you need to pay for your. That's the actual
heart and software development compared to the price of the Harbor
you're using in your, in your product. And sometimes it isn't this
area, still people don't use Python, they still use C or even assembler
or the low level languages for, for designing and programming with
microcontrollers.

WHAT IS UPYTHON AND WHY
SHOULD YOU CARE

Hi and welcome back. In this project, I'll talk about Michael Python and |
talk about it's written to exist, how it relates to Python and about some of
its most important characteristics.

MicroPython is...

“.. a lean and efficient
programming language that
includes a small subset of the

Python standard library and is MicroPython
optimised to run on

microcontrollers and in
constrained environments.”

https:/micropython.org/

Around Meet the 2014 Demian George published a new programming
language for Marketplace called Macra Python. This publication was a
successful completion of an ambitious Kickstarter project that began in
2013 at the Time magazine. Troller programming was dominated by the
seed language. If you are familiar with their, then you know what she looks
like. On a microcontroller like the sea is not very difficult to learn,
however, things do get more complicated as programs get bigger. As
microcontrollers started becoming more and more powerful, more people
started being interested in them and to be programming them. Many of
them were first time programmers and this included people in all age
brackets. So Damien wanted to create a language that would work on a
microcontroller that would be much easier to learn and use. Then C he
didn't want to reinvent the wheel, so he chose Python as his prototype. His

challenge then was to create a language that can mimic Python, but that can
also run on the bare metal of a multicultural, not without an operating
system. And that's how Michael Python came about. And here's a
description of the language from the Micro Python website. And the
emphasis in both characters is mine. So Micro Python is a lean and
efficient implementation of the Python three programming language that
includes a small subset of the Python standard library and is optimized to
run on microcontrollers and in constrained environments.

Python # MicroPython

m MicroPython
Python and MicroPython are two

different programming

languages that “look” the same. ﬂ p [JJ[h on

Now, because Michael Python contains the word python, it is easy to
become confused and think that Python is simply a smaller version of
Python. It is the same confusion that I constantly see between Java and
JavaScript, while Python and Market Python have a similar name. They
are totally different languages with a different set of goals and
implementation. I talk more about the differences between Python and
macro python in a later project, but for now I just want to make sure that
you are not confused by the similarity in the name.

Excellent for learning and using

= MicroPython is as easy as Python to ~ 0 e
learn. EEE

= It has excellent documentation and x -
community support.

» It has excellent development tools (we'll
use Thonny).

» |t works on multiple mature hardware
targets.

What Margaret Python has taken from Python is the language architecture,
its programming philosophy for code readability and a huge pool of
programmers that already know how to use Python. Python is this can
quickly become micro python estas and write programs for
microcontrollers. According to the papal popularity of programming,
language indexed, Python is the most popular programming language in
the world with a 30 percent share. This index is calculated based on the
amount of searching that is done on Google for programming, language,
tutorials and resources. And as a comparison, it's interesting to see that C
C++ that is used by the boards ranks around fifth place in this index. This
popularity translates to a python universe that is filled with all the
documentation, libraries and community support you ever need. Micro
python is as easy as Python to learn, and it follows Python tradition for
excellent development tools and documentation. In this course you see me
constantly browsing through the Python code. The documentation as well
as many of the excellent libraries will be using in terms of tools. You have
many choices in this course, in particular will be using thony, but you can
also choose tools such as you, Pycroft, and the new ED. What I really like
about Tony is that it's a full python, Ed, on its own merit with excellent
debugging tools, but also that fully supports market python on the E.S.P
three two, as well as other target boards like the Recipe Pickle and the BBC

Microfit. Another big advantage of the macro python language is that once
you learn it, you can use your skills across multiple hardware targets. At
the time I'm recording this project, Micropayment Python has support for
the original mainboard version one and disappears, as well as third party
boards such as the SDM 32 NUCLEO and Discovery Boards, The Peko,
the Raspberry Pi, Pekoe, the White Pine, the EPA two, six, six and three to
the tiny Pikul and the BBC. Markovits, I mentioned earlier and this was
just a partial list.

MicroPython features

1. Aims to implement the Python 3.4 (CPython)
standard for language and syntax.

Shail
23
=

2. MicroPython standard library implements a subset
of the CPython standard library (marked with the “u”
prefix).

3. The REPL interactive prompt (read-eval-print-loop)
is available in MicroPython.

4. Easy toinstall and use third-party code packages.
Many available on PyPlI. 7 pirigowrite igttat (1)

5. Support for on-device filesystems.

6. Simple command line tool to interact with a
MicroPython device: pyboard.py

Now let's take a quick tour of Michael Python's most important features,
first and most important for anyone new to this language is that Michael
Python aims to implement the Python three point four with a little bit of
three point five standard for language and syntax. This simply means that
anyone who already programs in Python three will be able to start
programming in Python immediately. Python, three reserved keywords
operators functions in the infamous white space incantation is faithfully
implemented in micro python. Second, because micro python targets
embedded computers and microcontrollers is not possible to implement the
Python standard library with all of its modules and methods. There's
simply not enough storage on ITHAKA devices for that. Therefore, Micro
Python implements a selected subset of C Python standard library, and even

that is implemented with emphasis in efficiency. Micro python versions of
Python libraries have a name with the you or lowercase you the letter
prefix. So that allows you to distinguish which is which. Whenever you
see a micro python library with a U letter prefix, know that it's a more
efficient version or optimized version of the original C Python Library
implemented for micro Python devices for Micro Python has an interactive
interpretive mode, also known as Reppel Rebel stands for Reidsville Print
Loop. Think of it as a command line for Python. It can use this command
line to issue Python instructions or even code blocks. The report will
evaluate the Python code immediately, and the macro Python report is fully
featured with the intent of the completion ability to interrupt the Iranian
program with controversy to invoke a soft reset and so on. There's also a
paiste mood, and you can also use the underscore variable, the stores, the
output of the previous computation in this course of using the ruble
extensively to demonstrate in test code. Fourth, outside of the
micropayment standard library, there are countless libraries contributed by
users and published online on repositories like GitHub and Piper, which is
the Python package index, similar to see Python Micro Python has a simple
mechanism for including external code programs. In this case, I'll show
you how to find and use the external libraries that make it easy to integrate
hardware components like screens and sensors to your mark of Python
projects. Fifth, Margaret Python has the ability to access a small filesystem
on the target market with a device, this filesystem makes it possible to store
your micro python programs, supporting library files and arbitrary files,
such as text files for storing sensor data or credentials for networks and Iot
services or even bitmap image files. You want to display them on and or
ality, for example, by showing you a similar example later on in this
course. In this course, I have prepared several examples where I
demonstrate how to use the filesystem or the ESB 30 to. And finally, the
six point micro python has a single command line python tool that allows
you to run a script or access the file system on a target device. This tool is
called PIEBALD. Don't apply in this course. We won't be using this tool
because Sony idea has built in support for micro python on a variety of
target devices, including the ESB three two. However, I wanted to mention

piebald that we are here because it is something useful for you to be aware
of.

MicroPython on different devices

1.The MicroPython language and its core
libraries work across different targets.

2.Due to target board hardware
differences, code that controls pins,
interfaces etc often needs to be
customised.

Let's talk about market python on a variety of hardware targets now, as you
probably already know, micro python works on many different
microcontrollers, and diversity of the hardware means that not all micro
python code will work across those devices without modifications. In
general, there are two points to remember in relation to Shery micro python
code across different targets. One, most of the code that uses micro python
standard library functions and the core of a language will work without any
modifications. Language, syntax, reserve key words, control structures and
functions that come from these standard libraries such as math for
mathematics. YIVO is for basic operating system services and use time for
time and date related functions will work across all micro python hardware
targets. Nothing to worry about to throw. On the other hand, any
functionality that is uniquely implemented on a market controller requires a
unique implementation in micro python. For example, the way the digital
pen functionality is implemented on a device like the E.S.P 32 1s different
to the implementation on a Raspberry Pi. There are things that Raspberry
P1 pickle pens can do, for example, that E.S.P 32 can do. And it's a similar
case for how functions relating to network interfaces is Quixey and Spart
interfaces, analog digital converters and so on are implemented across
boards. These differences are reflected in the micro python implementation
for each board. And for this reason, in addition to the standard, the Library

Micro Python has libraries specifically implemented for each supported
board. You should take a bit of time to study your target device special
libraries so that you know what is available and what isn't. And therefore
you can go about taking advantage of the specific capabilities of the device
that you have chosen. And one more thing, when I'm talking about this,
not old device capabilities can be accessed through micro python, for
example, in the E.S.P 32 Micron Python firmware. There is no support for
Bluetooth. There is no Bluetooth module, even though, as you know, the
ability to has Bluetooth capability. But there is support for Wi-Fi. And it's
just one example of a capability that you won't be able to use using micro
python.

MicroPython is readable

» As with CPython, MicroPython is a high- 1ed = Pin(21, Pin.OUT) ,
|EVE| |anguage that iS easv to read. button pind4d = Pin(4, Pin.IN, Pin.PULL UP)
while True:

= Even if you have never programmed ERbEE oLE stoniust) == O
before, you will be able to understand sleep(0.1)
what this code segment does. else:

led.off ()

MicroPython with the ESP32 xplorations

OK, now let's wrap up this project by going back to Michael Python's most
important attribute, Michael Python, like Python, is designed to be
readable. It almost reads like natural language. And here you can see an
example of a segment of a code that I extracted from one of the projects
that are coming up later on in this cause. Even if you've never seen my cat
Python written before, perhaps you never even programmed before. You
may be able you should be able actually to understand kind of what this
code segment is doing. You can make inferences about what this code
segment 1s supposed to do. You do need to have a basic understanding of

electronics. So, for example, keywords like pin that out and pin dot pull up
may not make much sense. However, the language barrier to entry for
micro python is minimal. Essentially, it's much lower than the barrier to
entry for a language like C or C++. And this is the number one reason why
Python became so popular and why Michael Python has been gaining
massive support in popularity since the Kickstarter campaign in 2014. All
right. It's about it. With this project and in the next few projects of this first
section of the course, I've covered a few housekeeping topics, including the
software and hardware requirements and how to make the most out of this
course to please do take the time to watch these projects before continuing
to Section two, which focuses a python.

SOFTWARE YOU WILL NEED

To complete all the projects in this course, you need a programming editor,
the micro python firmware to match your microcontroller and a few micro
python libraries to match the individual mini project requirements. Please
take a minute to watch this project and learn more about the required
software.

The Thonny editor

[Sr———

* Free.

« Open-source.

* Used for any Python or MicroPython project.
« Simple to learn and use

* Perfect for beginners.

* https://thonny.org

Let's begin with the ED. It can write Micro Python and Python programs
with any text editor. You certainly don't need anything fancy, expensive or

complicated. Python programmers often use integrated development
environments that provide them with a rich toolset, including features like
syntax highlighting debugging and easy access to the Python console. You
may have heard of ideas such as clips with the high def extension sublime
text with various Python packages and atin also with the Python language
extensions. Because we'll be working with micro python. We need to be
able to do more than just write and edit programs. We also need to be able
to install or update the market python firmware on our target
microcontroller to access the file systems so we can upload a download
files across the micro python level, of course, and to be able to do basic
operations like resetting the board or running a program. And all this can
be done with a collection of tools where each tool does one thing or by
using phony. Phony is a free open source, Python Ed, which has integrated
support for micro python and several microcontrollers, including the E.S.P,
to think of Tony for micro Python. What you do with the idea for I do not
boards. Phony was made for education, so it's designed to be simple to use
and easy to learn. It just does the basics and it does them well. The
installation of the thorny ed on your computer is very easy. We'll start using
Thornlie in Section three, but feel free to go ahead and download the latest
available version from Thony dot org and install it in your computer now.

MicroPython firmware for the ESP32

Firmware with ESP-IDF vé&.x
Firmware bulk with ESP-IDF vd.x, with suppert for BLE and PR, bu na LAN

* Free.

* Open-source.

« Enables the ESP32 to run the MicroPython sl
REPL and programs. SR

cccccc

* Easy to install using Thonny.

 http://micropython.org/download/esp32/ ;

Of course, it's available for Windows, Mac OS and Linux, and let's move on
to the firmware now to use Micro Python on the E.S.P 32, you must first
install the micro python firmware on the microcontroller. The firmware
will enable the micro python interpreter and provide the rep for us to use.
Each separate microcontroller has its own micro python firmware file. You
can download the appropriate one from the Micro Python website. Just be
careful though. You need to select the appropriate version for your
microcontroller. But there may be multiple versions for the same
microcontroller for the E.S.P 30 to go for the latest available generic but
stable for point X firmware. Unstable versions are also available which
contain new experimental features. But of course it may not work as you
expect reliably on your microcontroller, so only use the unstable firmware
if you really know what you're doing. If you are using an ISP 3-2 with
Spirent, you can use the stable, generic spiring version of the firmware.
Don't worry about doing this right now. I have prepared a project in Section
three where I show you how to do this in detail next libraries.

MicroPython external libraries

g e kit

* Free.

* Open-source.

¥ m— - m a
« Implement support for peripherals like e .
screens, sensors, motors. —
« Easy to install using Thonny. README e
= Various sources (see individual lectures for = ot e

It is easy to integrate various components with the ESB three to micro
python projects and four that will be using several external libraries. Just
like with the Arduino, there are libraries for an extensive range of
components like sensors, motors and displays. You can find information

about the specific libraries that you need for each mini project in the
relevant project. And it's about it, that's it with the software requirements
when you are ready. Please continue with the next picture where I'll talk
about the hardware, who's using this week's.

HARDWARE YOU WILL NEED

To successfully complete the projects in this course, you'll need a few easy
to get hardware components. If you've completed my advanced step by step
courses, you probably already have everything that you need. So let's have
a look at the required hardware now.

An ESP32 board

* Any ESP32 board will work.
« We'll install the MicroPython firmware.

* Learn how to use the MicroPython REPL.

* Learn how to write and run MicroPython
programs.

Of course, you need an E.S.P theory to develop and kickboard it really
doesn't matter which one have tested the micro python scripts from this
quote in a variety of generic workplace attitudes, and they all worked fine.
Now, one of using this quote is so generic that it doesn't even have any
model information printed on it. It's a 19 PIN board with the SPW Room
32 designation on the MCU package.

Simple components

* LED.
* Resistors.
* Button.

* Potentiometer.

For the first round of experiments will use and ID with its current limiting
resistor, a button and a particular mirror for the button will use an internal
pullup resistor to simplify the external circuitry so you don't need an
additional resistor for the button.

Sensors

* DHT22 environment sensor.

* BME280 environment sensor.

* ADXL335 analog accelerometer.

HC-SR04 ultrasonic distance sensor.

Next, we're going to work with sensors. So in the section on sensors, you'll
experiment with the DHC 20 to the PMA. Two hundred and eighty. The
ATX held three three five, which is an analog accelerometer and the C. S
zero for ultrasonic distance sensor.

Displays

* 2x16 LCD with PCF8574 I2C.
» 0.96" OLED I2C SSD1306.

» 1.3” OLED I2C SH1106.

* 0.96” OLED I2C SSD1315.

* Neopixels.

« 8x8 LED matrix with the MAX7219.

Then we are going to move on to the displaced section of the section on this
place 1s quite busy with several different devices included in your war
testing. They are in experiments with the OLED screens. There are three
options to choose from, but I particularly like the displays with the Hajj one
one zero six driver because they work well with both the hardware and the
software options for Al squared. See, the driver is pretty good in this
section. We also experiment with a two by 16 Ice Cube see LCD screen,
which is based on the P, C, F eight five seven four parallel to ice, which C
converter. We are also playing around with Pyxis modules. So I'm using
one that has eight individual addressable LEDs and eight by eight Haliday
Matrix, which is driven by the max seven to one nine module.

Motors

* A 5V mini servo motor.
* A 5V mini DC motor.

« DRV8871 motor controller breakout.

And we are also going to experiment with motors. You need a five four
vote mini, a motor and a five old mini DC motor to drive the DC motor.
You need the RV eight eight seven one motor controller. And that's it with
the hardware requirements. When are you ready? Please continue with the
next project. We'll talk a little bit about a few simple things that you can do
to make the most out of schools.

HOW TO GET THE MOST OUT
OF THIS PROJECT

I'd like to say a few things that I believe will help you get in the right state
of mind so that the time that you spent on this course is both effective and
enjoyable.

08 - Sensors

DHT22 environment sensor

BME280 environ

ESP32 internal t
ADXL335 analog elerome ter

HC-SR04 ultrasonic distance sensor

09 - Displays

Take yo u r ti me, plan 2x16 LCD display with PCFBE74 - Part 1: hardware 12

2x16 LCD display with PCFB574 - Part 2: software 12C
» Learning takes time —> Make the time. 096" OLED SSD1306 12C
* . 1.3 OLED SH1106 12C
= Learning in a rush does not work. e
= Plan for setbacks. Neopixels
MAXT7219 8x8 Matrix display - Part 1: random pixels
MAX7219 8x8 Matrix display - Part 2: text

10 - Motors

Mini servo motor
DC motor with DRVBET1

Learning anything worthwhile takes time to plan for your learning and set
time aside for this specific activity in your busy schedule, without
dedicated time, you'll feel that you have to rush your way through the
projects, making the experience stressful. Learning and the stress is not an
effective way to learn, on the contrary, without planning to learn, you will
not learn. So be in control of your learning through planning. I suggest that
you plan to complete one section in one sitting. For most sections, you'll be
able to comfortably complete them within one hour, of course, if you have
more time, consider scheduling enough time to complete more than one
sections. I find that I learn best when I can dedicate big, uninterrupted
blocks of time to a project, and I believe that this is true for most people.
That's because big, uninterrupted blocks of time also reduce the overall
duration of the project, because they allow you to reduce the amount of
time needed to change your mental context from whatever you happen to
be doing to the context of the project or the course it goes without saying,
but I'll say it anyway. Plan will to learn. Will.

Complete +
understand each
lecture

Mark a lecture as “complete” only if you feel you
have learned to mastery.

Each lecture has one or two specific objectives.

Each project has one or two, but no more than two learning outcomes and
usually an equal number of practical outcomes. Do not proceed to the next
project until we have succeeded in both understanding the learning
outcomes of the current project and achieving the practical outcomes of the
project. If you proceed without completing the learning and practical
outcomes of a project, you'll be hit with an obstacle later and you have to
come back and try again. Of course, it's OK to peek ahead, but be mindful
that previous projects will need to be completed first.

Time to start

Be part of the community.
Discuss your progress.

Show your work

OK, that's it with the introductory set of projects, it's now time for you to
roll up your sleeves and start making. Are you ready? Please continue
with the next section and project when you.

GET THE DEMO SCRIPTS FOR
THE PROJECT

Typing is boring and error prone. ['ve already done all the typing and fixed
all the typos, so you don't have to. You can download a single zip file that
contains all of the scripts that have demonstrated in the course, just point
your browser to this Eurail and download and expand the zip file. Feel free
to test out those scripts and modify them, which.

UPYTHON VS CPYTHON

As you know by now, Michael Python and see, Python had two different
programming languages Micro Python has copied, Python is faithfully as
possible to create a high level language programming experience for
microcontrollers. There are differences between the two languages, which I
would like to summarize in the next few minutes.

Want to know the details?

+ MroPythn ditersmces from CPythan

MicroPython differences from CPython
aticns HAE i P41 S8CTn Brodhce CORMTINGPes

he apes 3 1 MACTEPyaon mhen
Pythaan Microfython implements Python 4 andd wme welet

The differences between
MicroPython and Python are
documented in detail.

http:/docs.micropython.org/en/latest/genrst/index.html

Now, the differences between micro python and Python are documented in
detail in the Python website. There you can find a full list of those

differences, as well as code examples that demonstrate them. In this
project, I will mention only some of those differences that I believe are
more relevant for the purposes of this course.

Syntax: spaces

CPython
uPython requires spaces :; ;and B4 oLk s
between literal numbers and
keywords. uPython
>>> land 0 # Doesn’t work
CPython doesn't. Traceback (most recent call last):

File "<stdin>", line 1
SyntaxError: invalid syntax for -dinteger
with base 10
>>>

So let's begin with syntax in Python. You can do things like forget to put a
space between a literal number and a keyword to form an expression, and
they will be OK. Python has enough flexibility to forgive mistakes like
this. The same mistake in my code. Python, however, will generate a
syntax error. Mokra Python developers had to throw away the logic needed
to deal with tab was like that in order to make it fit in the limited storage of
the target devices.

Core language: functions

CPython
Error messages for methods >>> a = Calculator(l) # Requires 2 arguments
may display unexpected Traceback (most recent call last):

File "<pyshell>", line 1, in <module>
argument counts. TypeError: __init__() missing 1 required
positional argument: 'num2'

uPython counts “self” as an upython

argument. >>> a = Calculator(l) # Requires 2 arguments
Traceback (most recent call last):
. File "<stdin>", line 1, in <module>
CPython doesn't. TypeError: function takes 3 positional
arguments but 2 were given

Another example of the differences between the two languages is how the
self Keywood 1s handled when self is used in a function in Python. It does
not count it as an additional argument, but Michael Python does. As a
result, if you provide an incorrect number of arguments to a function that
contains self Keywood, then the error message it will get in Python will be
different to what you get in micro python. I've got an example here. You
can see this example. I'm calling the same function calculator both in
Python and Python, and I'm putting a single argument. I should have
passed two arguments, but I made a mistake. It just a single argument here
you can see them and coding the exact same function with this same
parameter. But the messages that are coming back to indicate the error are
different. So, see, Python is telling me that I've got one required argument
missing where your python is telling me that in total that are supposed to
be three arguments ['ve only given to in fact, ['ve given one. So you can see
that the message that is coming through here in Python is or can be a bit
confusing, which can throw you off and cause you to delay you debarking.
As long as you are aware of the situation with the self key word, I think
you'll be able to get past issues like this.

Types: float formatting

CPython

>>> print("%.1g" % -9.9)
When you print out formatted ;i?gii o
floating point numbers, the -9.9
results differ between uPython yPython
and CPython.

>>> print("%.1g" % -9.9)
-10
>>> print("%.2g" % -9.9)
-9.9

“Ja
2Qr s, - ¢

Here's another subtle difference that has to do with formatting in this
particular example of a floating point number. When you print out
formatted floating point numbers, the result may differ between Python and
C Python here, printing out this floating number and using the same exact
commands between you, Python and C Python, you python being Mokra,
Python. And you can see that what comes out is different in each occasion.
In this case, the G operator, when used with C Python, applies the
exponential format to a number in the output. The chief operator differs
between the two implementations.

Types: str

CPython
>>> "testing 123".endswith("23")
o True
Start/end indices >>> "testing 123".endswith("23",3,5)
False
such as
orendswithis. start uPython
str.endswi (S'S a) >>> "testing 123".endswith("23")
not implemented. True

>>> "testing 123".endswith("23",3,5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function expected at most 3 arguments

OK, next example of differences is the string C. Python, as you may know,
contains powerful string manipulation functions and not all of them are
available on micro python. Two examples are start with and end with these
allow you to check if a string starts or ends with a specific character or
string of characters in Micro Python. These functions only work in their
basic format without the start and end indexed parameters. In the example
here in this slide, you can see that the call to the end with function fails
when we use it with the three parameters, but work with a single parameter
in Python. No problem. Either one will just work properly and as
expected.

Modules: json

Sample code:

import json

a = bytes{x for x in range(256))
try:
z= !san.dumpstal
JSON module does not throw iz ks R
. . i except TypeError
exception when object is not

serialisable.
CPy output: uPy output:

TypeError Should not get here

All right, next up. We've got Jason, and this course will use the
micropayment Jason module to work with Internet of Things services,
unlike, say, Python and the Python version of the Jason module, you, Jason,
does not throw an exception if an object is not serializable. And this means
that if your program receives a JSON document from a Web service that is
not valid, you will not be able to deal with it gracefully. Using an
exception handler, you will have to deal with this manually or your program
will just crash. All right, so these were just some of this subtle differences
between see Python and the micro python implementation and of course,
there are many more. The best place again, to learn about them and about
the changes is the python documentation in the next project. I'll show you
some of the best online resources for Macur Python. And these are the
resources that you'll want to watch so that we can access them anytime that
you with Michael.

UPYTHON RESOURCES

Michael Python is relatively new. Nevertheless, continuing that tradition
set by Python, it is very well documented in this project. We show you
some of the best online, free and community supported resources that I use
a guarantee that these resources will save you time and help you as you are
taking your first steps with micro python.

MicroPython.org

MicroPython

Mercityticr .8 e o st rpie—aigiee o Py erogramg

The home of the MicroPython e ‘
language on the web.

Micropayment OAG is the home of the Michael Python language on the
Web. This is where you can find Michael Python firmware for the support
boards, links to the documentation, a discussion forum and a store from
where you can purchase PI boards. I've prepared a separate project where 1
discuss supported hardware as opposed to any hardware related questions.
For now in this course will be spending a lot of time browsing the
documentation and I'll talk about that shortly. I do encourage you to sign
up for an account to the Market Python Forum where you can participate in
relevant discussions. The forums, including the one dedicated to the E.S.P
thirty two, is very busy with multiple new discussion threads almost daily.

MicroPython documentation

MicroPython decumentation

The documentation contains
details about the MicroPython
libraries, language, and

implementation.

2Qr s, -

As I mentioned a minute or so ago, we'll be spending a lot of time browsing
through the Michael Python Documentation Documentation website is
hosted Underdog's Dot, Michael Python, Torchy. It contains details about
the python libraries, the language and implementation. In almost every
case. The documentation provides a detailed definition of every function
and class, as well as simple examples of how to use it. The limitation
covers the Python standard libraries and make a python specific libraries as
well as libraries specific to the piebald weepie ESP a 266 NDP 32 boards.

Python Language Reference

The Python Language Reference

Because the MicroPython
language stems from Python,
you will need to refer to the
Python documentation from
time to time.

A
P-TR

The micro python documentation focuses on topics specific to micro python
because the micro python syntax, language and programming philosophy
comes from Python. You'll need to refer to the Python documentation from
time to time. For example, if you don't remember how to initiate a tuple,
then you can quickly look it up in Python. The limitation you'll find this at
Doakes taught Python Oji for three and then click on the language

reference link.

Python Package Index

o

Find, install and publish Python packages
with the Python Package Index

This is a repository where you
can find many MicroPython
packages. e Ui R T

python

Margaret Python, as with Python, has a substantial library of packages
created by its community of programmers. A repository where you can
find many of those packages is the Python package index at peepy dot org.
The Python package index contains packages designed for seed python and
micro python. So you need to be a little careful when you search. Often
packages written in micro python indicate that in the title. So, for example,
a micro python package for the 12 sensor can be found by searching for
Micro Python DHT 12 to distinguish it from either packages written for
other platforms, such as which is a Python package that works on the
Raspberry Pi computer. Of course, even when you find a package that
specifically indicates it is written form like a python, you need to check it,
that it supports your hardware target, not all of them do. OK.

awesome-micropython

= Awesome MicroPython aQ

A curated list of awesome
MicroPython libraries,
frameworks, software and
Awesome MicroPython

resources.

(Y
2Qr s, - ¢

Then we've got awesome Michael Pathum, and that's an awesome name, by
the way, and that's a curated list of libraries for micropayment specifically.
That's unlike the Python package index that we looked at a minute ago. In
most cases, when I'm hunting for a micro python library, I go to Awesome
Micro Python first. They curated list contains libraries grouped according
to their purpose. You'll find libraries for it and quiddity communications
displays like the paper and LCD, GPO and input output, libraries, all kinds
of sensors, schedules, storage and much more. But as with the Python
package index, once you find a library that looks promising, you need to
take a closer look and ensure that it will work with your microcontroller of
choice. This information is not always readily available in the library
supplementation. In many cases you'll have to download the library and
test it on your device just to make sure that is compatible with it. OK,
that's about it with suggested resources. There is one more project in this
section before we get started with the first hands on activity in the next
project. Talk about the lack control of laws that are compatible with
Microplace.

UPYTHON COMPATIBLE
BOARDS

When Michael Python was first published in 2014, only one board
supported the original pinboard a few years later this month of Python
support for a wide range of microcontrollers, including the specialty to
which is the one that will be using this course in this project. We'll take a
closer look at the boards that can use Markward Python.

Pyboard

= pyboard 1

» pyboard D-series

= The original MicroPython
microcontrollers.

And let's start with the original pinboard board. The PIEBALD one is the
board that Damidn George designed to run Michael Python for his
Kickstarter project in 2014. The pay board contains an SDM 32
microcontroller chip, which is based on an cortex and for C.P.U, it has one
thousand twenty four kilobytes of flash room and one hundred ninety two
kilobytes of RAM. It also features a micro SD card slot for an expanded
file system and accelerometer real time clock for programmable LCD.
Twenty nine CEOs and two digital unlooked converters, among other
things. Then you add these series. PIEBALD also uses an SDM 32
microcontroller, but has a deep style form factor that makes it easier to
integrate into projects. Got more flash and ram capability for external flash

as well wi fi and Bluetooth connectivity and improvements across the
board. The pay board is the golden standard for what a micro python
device looks like.

Espressif ESP-based boards

= ESP8266
s ESP32

s Powerful, low cost, full-
featured.

oo
Dy R

OK, then of course we have the if E.S.P family of devices, the E.S.P 32 and
the other E.S.P eight to six six are almost fully supported by micro python
learnt about the lack of Bluetooth support, for example, for the E.S.P 32 in
the previous project E.S.P. Three to specific libraries, a document that on
the main micro Python documentation website next to the PI Board, the
E.S.P three, two and SBA to six six seem to have the widest range of
community contributed micro python libraries. This means that there is a
good chance that you'll be able to find a device driver for your favorite
display or since at the time of writing this Bluetooth is not supported and
this is because of how much memory this implementation would require wi
fi. However, as you probably already know, it's fully functional. So apart
from Bluetooth, almost all of the end user features on the E.S.P three two
can be used in Micro Python, Tyner's, CPU's, M, wi fi ice, Quixey, Spy
Sleep and the digital converters. All of those work. It's even possible to
read the internal temperature sensors there, especially to is the
microcontroller that have chosen to use in this course because of the

excellent micro python implementation, the richness of its hardware and
my familiarity with it from previous projects.

RP2040 boards

Raspberry Pi Pico

Feather 2040

ItsyBitsy 2040

Tiny 2040

s Etc.

Now let's have a look at the Raspberry Pi pickle, the Raspberry Pi picture
was released earlier in twenty one, selling for around five dollars. And it's
powered by the brand new 1Pad 20 40 microcontroller. These
microcontroller was actually designed by the Raspberry Pi Foundation.
And very quickly, several new boards came out that are based on the same
microcontroller like the Feather 20, 40, the tiny 20, 40. All of them can
run the micro python firmware. And the Raspberry Pi Foundation provides
excellent documentation through its website. I find that compared to the
pinboard and the E.S.P boards, it is much harder to find micro python
device drivers for the Raspberry Pi pickle. It's still a new board, so |
expect that this is going to change. The Raspberry Pi1 pickle is an excellent,
simple board. It doesn't have any wireless communications capability, but |
think that this is a case where simplicity is an advantage. Along with the
BBC Micro bit, the Raspberry Pi pickle is probably the easiest way to learn
micro python.

BBC Micro:Bit

» Designed for Education.
» Lot's of on-board peripherals.

» Excellent MicroPython
implementation.

https://microbit-micropython.readthedocs.io/en/v1.0.1/
https.//tech.microbit.org

Next up 1s expected probably the BBC Microfit, so the BBC MacRobert is a
small board designed specifically for education. It uses a Nordic and RF
five to eight three three application processor and contains an impressive
array of built-In peripherals, such as an LCD matrix display, a touch
sensor, a microphone, a couple of buttons and then accelerometer. It also
has a two point four gigahertz transceiver that students can experiment with
and create a simple radio communications protocol and get Markovitch to
talk to each other wirelessly. The Michael Python implementation on the
MacRobert is excellent, as expected, tested many of its hardware
components and everything seems to be working, even the radio
communications.

STM32

There ks current ly support for the following ST boards:
= B-LOT2Z-LAWAN1
o B-LATSE-IOTOIA
= NUCLEO-FO91RC
= MUCLEO-F401RE

» STM32 Nucleo & Discovery

= STM32F4DISCOVERY (with STM32F407 MCLU)
= Espruino Pico e /
(with STM3ZF 746 MCLU) ’ <A
= STM32L476G-DISCO .
- STMAa2L486G-DISCO 2. ?\ g J
= Many more... + USBDONGLE-WBSS & 5A é :
The official reference hardware for MicroPython is the Q“"‘ __“ . o

pyboard which contains an STM32F405 microcontroller. L) 'f‘, i~
.m-‘i‘) >
33
w

http://micropython.org/stm32/

OK, next up, we've got the SDM thirty two boards at Texas Instruments
NUCLEO and discovery boards in the spring of Pico, a based on the
microcontrollers from the same SDM to family. I remind you that the
PIEBALD also uses an SDM 32 microcontroller unit. There are several
NUCLEO and discovery boards geared towards rapid prototype
development for engineers, but are also used in education. The Spring
Pickle is a particularly popular board among makers because of how much
power is packed in such a tiny board on the Market Python website. It's
mentioned that the stem free to line of Michael Trollies from Estima
Electronics are officially supported by Micro Python via the SDM 32
Cube. How libraries the SDM through to Port of Micropayment Python
contains the source code for these MCE use. OK, this was just a short list,
some examples of the boards that can work with Micro Python in this
course, we'll experiment with the SB 32. As you know, in the last few
sections of this course, | have prepared a few projects to show you how
micro python works on the Raspberry P1 Pickle and the BBC bit. It's now
time to get busy. The first hands on task is to set up a copy of Phony on
your computer as a development tool that would be using to learn micro
python or the pathetic two. We're going to do that in the next section.

GETTING STARTED WITH
THONNY IDE FOR PYTHON

And welcome to a new section in this course, in this section, I am going to
talk about the thorny idea, which is any open source integrated
development environment that will be using to program the E.S.P 32 using
micro python throughout this course in this first project of this section. I'd
like to show you around funny in my already set up instance, if you can see
here and show you the location where you can download the installation
utility so you can install it on your own computer. So let me show you
around what it looks like. So here's Tony running. As I've said already, I've
done a little bit of configuration to customize the font types and sizes and
things like that. But largely what you're seeing here is, though, it looks like
as soon as you install it, Tony, is very capable and configurable, integrated
development environment. At its most basic view, it would look like this
where you get the upper part of the window where you can see one or more
tabs, you can have multiple tabs with your various python programs or
components for program. And then down below, you've got to show that
you can use to interact with the Python interpreter.

General | twicdeter Editor Theme A Fort Run&Debug Terminal Shell Assistent

Which intacpreter of device should Thanny use fer nuning your code?
)

In this case, as you can see, I'm running Micro Python on my E.S.P 32,
which is connected to worry about this. For now. I'm going to show you
first how to install the necessary interpreter on your AHP 32 in the next
project and then show you how the connections and be able to interact with
Micro Python on the HP 32. But for now, all I want to show you is that the
show allows me real time interaction with the Python interpreter that is
running on the issue between the two. But apart from that, it's got many
more capabilities. For example, if I go into tools and options, I can change
the interpreter from micro python to one of the other variable interpreters,
for example. This one here is Python that ships with only or you can go for
Python that is running on a virtual environment or with Python running
somewhere else. Even through the Internet, you can access interpreters via
perhaps S.H. or other means. And you can also see here that the only
instance that I'm running, which is version three point three point four,
which is the latest version at the time of this recording, also ships with
capability of running micro python on BBC Microdata Raspberry Pi, Pekoe
E.S.P 32 in the ESP eight to six six, the source or circuit python
environment. So it's already fully featured just out of the box. But you can
install a lot more python targets, as you can see, via plug. All right.

oled h1106.i2epy [apeena cs fiapy]

12.89 - Write/append data to a CSV file,
The ESP32 contains a flash memory file system that is accessible via micropython,
example, I will show you how to
the data by downloading the Tile to your computer, o
ate program (I provide this in &
Incraase font size M4+
Decreass font size 3~

Focus editor TRE

Now, another thing that I want to show you is that Tony is used not just for
micro python on a medical device, but for general python development.
And it gives you a lot of tools here. He can see to help you with that. So,
for example, you can turn on the files view and this gives you access to all
files in a particular location on your local file system. In this case, it's on
my computer. But also it gives you a view of the files that exist on the
target device file system like these. So these files are stored on the ESB
itself. There's also a series of other types of tools, such as the ability to
inspect the contents of the heap memory or. Let's say the stack, which is
useful when you are jumping from one function into another. Keep track of
which function you are in and give you a little demonstration of this. A
little later in another section, you can check out the variables that have been
set up and so on.

& Thonny Fle Edt View Run Tools

Ve 0
[
[T
Ona18bde

Genersl \verproter ftlor Theme & Fort Runf Debug Terminal Shell Assistant

i i - Thaany use 0 your code?
MiCrePyThon (ESP3Z)

Getats

Canmacting s USH exbia:

ook for your device name, "USE Serial® or "UART™).
you cant find b, you may sed to instal proper USB driver frst,

Conmecting vis WebREPL (EXPERIMENTAL):
 your device supports WeCHEBL, first connect via serial, make sure WebHEEL is snabled
. CoPWC your Computer and device 10 £ama network and sekect

watrepd_sotug),
© WebREPL > below.

Pt or WebREPL
cP2102 AT Brige -cP2 Bridge Controlies (idew =

Let's have a look at some of the most important features of Tony. First of
all, you've got the configuration window. We can access it from
preferences, but you can access the exact same thing by going to tools and
options. And that allows you to customize the look and feel of Tony, which
forms you using, et cetera, have the debugger works, which terminals to
use, Schill and so on. So you can just customize the way that your Thony
Ed works this way.

e Edit View Run Tools Help

Manage paciages...
* Open system shall

Open Thonny program folder...

Open Thonny data folder..
Marage chug-ina .
Options

This
{ Wsers | paterd [Deskiop |
' [

) sccemrometsr_tlestpy
& aralog_resd pot_34.0y
& sonena oo ey

bme280_Noat py

& bme 280 est py

& voot gy

button_4_interrupt py
buiten_4_joop.py

. buron_4_vmer py

& course_welcome_sh1108.py
B cav_duta_file vt

é .

& nalsersor tost py
& he_srtd py

L ;nmma,-\ sestpy

Micrefytnon device
appera cav fle.oy
& boot v
& ata_fie et
@ resd_cxv_fiapy
& w1080y

« Thosry - MicraPython device : jappand_csv_tle.py @ 66

M108i2epy [topend civ fiepy |

You Can retrieve the data by downloading the Tile to your computer, of
by \|rg.1 seperate progran (I provide this in the next Lecture).

Component

- ESPIZ
Nothing elze.

To the best of my knowledge, there is na function that returns the amount of flash space is available for
your script to use. 50, you need to cons ider ng the space that your data file takes up prograssatical
A way to do this is to use the uo: t() function, which returns infornation about a given file. I give ar
example of how to use this fumcti

Cow
Mic on Wit £
https: i m—-u: orat ions. com

a0
Oudfiedeta

OudtaDums
Ou3r418bde

This also got into tools and plug ins. There's a whole variety of plug ins
that you can install, some of them, as | said earlier, in version three point
three point four, come built into Thorney itself.

& Thonmy File Edi

& e 280_fosl.py

@ b 280 test.py

st oy

[r———

& bution_&_loop.py

& butice_4_timer gy

course_weicome_sh1108.py

& e tentoy
& espB268 32¢ 60 py
& tadeoy
£ traguancy tuet py
& hall-sarsor_test oy
& bt py

) Pt et
& icd_api.oy
& icd i2c testoy

& react_cav_filepy
& ch1 1080y

You g the file to
by his in the n
Components

- ESPX2
Mothing else.
Thonny phug:ins

‘communicate & flash code 10 Expressit ESPE266 & ESP3Z chips.
Asthar; lmm [shemadinventor) & Angus Gratton (projmctaus)
B L

lary-cbject-promy
rczabe Homepags:

ey Py page: hispe/iovDi ofaixoeclespiool)
reypy-exiansons

paramkn

parsa

e

lyprocess

rcparsar

Eyion

Wk 10
DxiMfesend
OxManatal
x4t Bl

For example, there is the E.S.P tool package, which allows the idea to
interact with the two and, for example, flash new firmware on it. But

there's others you can search on paper, which is the repository of Python
repository of the packages and see what else is available to show you how
to use that later. It's also a package manager like this also allows you to
search and pipeline for python packages that contain libraries or code that
is shareable. And then you can use. Again, I'm going to show you this a
little later on, how to install a paper package. Okay, so this little
introduction, we're going to talk a lot more about Sony later. And I'm going
to show you how to use the specific functions that we are going to need
throughout this course. We're going to need all of them, because, as I said,
we're not programming in the desktop version of the Python interpreter, but
in the micro python interpreter. It runs on an ISP 32. And therefore, many
of the features that are available on Sony in general will not work with
micro python.

Thonny

Python [DE for beginners

To get the money, go to the phony website, which attorney Doug can have a
quick look at this and just to get a rundown of the most important features,
It's a demonstration of some of the most interesting features, especially the
debugging features produced by one of the developers. So check it out to
download Thony. Just click on your operating system. And in my case, I'm
working on a Mac download a file, double click on it and install it. There's
n othing special about it. It's very easy.

Python IDE for beginners
& thonny.org

Pyten lsarving-pyton ide

awring-programming theany

& e 280_testy
& bootpy

& buton_4_ined
P
& button_4_timd

I packaging
5 thonny
aditereonfiy
gitattributes
gitigrons

& e 2 ety il
icd_soltite i
& lad_bird_21.8
@ o ik sy pyitre F J

& mateis_x8 8 Used by 318

e wravisymi 2vears
e T e, CCACTHRETS -

(Y CHANGELOG st
& bootpy

gydavproject

5 eav_cata_fiel [CONTRIBUTING.rst

Smicnnd ONTRIBUTING. 5% i
& hi 18 ey CREDITS.rst " i . " Contributors £

LICENSE.1x U a " o . u

| build.sh

eyt

Another Web resource I want to show you is the GitHub repository so you
can see the source code of the project. Now, here you will find additional
releases.

@ thonny | thonny

<3 Code bsues B4 Pul requests 0 s Sacurity Insights

Version 3.3.5

This release is mostly for fixidg a regression introduced in 334

This is mostly a bug-fix release
hai-sansor 18
& b s py 3

8 bl et Installation
& icd.apl oy
: ﬂ '::I:L: » Windows: download and ewecute thonny-3.3.5.exe. You may receive a warning dialog from Defender until it gains more
led_blnk 21,8
- led_binik_time « macOS: download and open thonny-3.3.5.pkg and follow the instructions. NBI While using Thonny you may be asked for
& sotent iy permissicn to use Desktop or Documants. Make Sure you grant the permission, othewise Thonny can't wark in that folder!

Mhcrolython + macOS Big Sur: thonny-3.3.5.pkg may work, but i you ars having problems, than try thonny-3.3.1_alt plg from a pravious release
: instead. This one has universal bulld of Python 3.0 (instead of 3.7) and newer Tk (B.6:10 instead of B.6.8).

bostpy

8 cov_cata_flad
& cand_cov.find
& 211080y thonay-xx1 variants have more packages preinstalled.

reputation. Just click "More infa" and "Run anyway”,

* Linux: download thonmy-3.3.5.bash and execute it with Bash [bash thenny-3.3.5.bash |

Changes since 3.3.4:

» Fix too short reprs at MicroPython REPL (regression introduced in 3.3.4), #1627

« Fix incorrect presentation of lang output lines, 91628

» Fix emor in nicer debugger when stepping in generators, #1631

* Fix infinite recursion error when evaluating globats() in MicroPython REPL while cbjact inspector is open, #1641

So click on the releases link and you will take it to a page where you can
access not just the latest release, three, three, four. In my case, three

through five is just being worked on at the moment. It's not available via
the download button here. Can see this 1s still three, three, four. The
bleeding edge version is through three five. But I found on the Mac in
particular, if you are using Mac OS, Big Bixler, which is Mac OS 11, then
version three three four does not work properly. You may need to go to an
older version. Let's say three three three did work for me. So in case you
need another version, this is where you can get it from. OK, that concludes
this first introductory project to this section in the next section, I'm going to
show you how to install the micro python interpreter on your ISP 32, so
then you can start using it with thirty first.

HOW TO INSTALL THE
MICROPYTHON FIRMWARE
TO YOUR ESP32

Right at this point, you should already have installed your Thorney on your
computer, and if you haven't done so, you should do it.

2 08 WM WY

10 008 108 AW

Now, come back to this later when you have some let's say that you have
installed your ID on your computer and you have a brand new HP 32,

which, of course, does not come with micro python installed. So what you
need to do before you can actually start working with micro python on this
controller is to install the micro python firmware.

MicroPython

MCroPython is 8 lean and eficient implementation of the Pyihon 3
Programming language that ncludes & smal subset of the Python
‘standard ibeary and s optimised 1o nun on microcontroliers and in
conairained sevironments.

The Y pyboard is s
MACIOPythan o the bare metal, giving you a Kow-ievel Pyihon cperating
‘systern that can be used to confrol all kinds of slecironic projects.

MicroPython is packoed ful of advarced Ieatunes such as an Menctve
Prompt, arbivary peecision inlegars. closurss, ksi comprenansion,
anarmions, mcepion handing sed more, Vet il is compact snough 1o it
i run winin just 256k of code space and 16K of RAM.

MGIOFYIhon ims 10 be &8 compatible wilth normal Python as possible 1o
alkow you 10 ransier code wit sase from the deskiop 10 & microcontroler
or ambedded sysiem

m

To do that, you need two things. First, you need to download the firmware
for the particular device from the Micro Python website. And then the
second one is to use a appropriate tool to upload them. Where to your ISP
to? We are lucky because phony version three point three, I believe, and
light up comes with the E.S.P to building to 30. So we don't have to do
anything outside the Sony environment. So in this project, I actually had to
use Thony to upload the micro python firmware on your HP 32.

[+

I MicecPythen - Pythas tor micracontrollers

Espressif ESP-based boards

MicroPython

So step number one is go to the Micro Python website, mark
representativity and click on download and then look for your hospitality
device, which is this here I'm using the generic hospitality module blinco
that. And then here you've got several choices for this thing where there's
basically three down here.

Firmware Is provided using eiher ESP-IOF 3.1 0r vi.x. If In doubl use v x

Firmware with ESP-IDF vé.x
Frmware buil with ESP-IDF v, suppont for BLE and PPP. but no LAN.

+ GENERIC : oy 0-g"

* GENERIC : &

« GENERIC : &

« GENERIC : &

+ GENERIC : &

* GENERIC : o

* GENERIC : o

© GENERIC : eapd2u

» GENERIC : o

* GENERIC : oy i,

= GENERIC : espdd-+

= GENERIC-SPIRAM

+ GENERIC-SPIRAM : o

o GENERIC-SPIRAM - o3

= GENERIC-SPIRAM : espd

° GENERIC-SPIRAM : #4903

* GENERIC-SPIRAM - o

* GENERIC-SPIRAM - o3

= GENERIC-SPIRAM : a5

° GENERIC-SPIRAM : #4p0

+ GENERIC-5PIRAM - %

+ GENERIC-SPIRAM : s5pa2spiram-dia-20191220:41.12.6n

Firmware with ESP-IDF v3.x

And this version, of course, will go full version full. And I'm going to be
using this stable version, one point one for all of the firmware. There are
unstable versions and there are also versions for especially two with the
additional S.P.I Ram chip, which provides additional memory. I don't have
that. I'm going to go with the generic. Stable version, one point one for so
click on the link to download the file and you'll end up with a file like this.
So this 1s about one point five megabytes in size. And this is the thundery
file that contains the firmware that will use Funi in a moment to upload it
to. Soit's good to Sony now. Can put this away, so Anthony, obviously
connect your two to your computer, that and the tools and options select
the micro python, especially to interpretor, which is the one that we want to
use from the port drop down menu.

Correcting v USH cabie:
device o

{look for your devios name, “USB Seriar or “UART"}
¥ you can't find it, you may need to install proper USB driver first.

port below

Conrecting v WebREPL (EXPERIMENTAL):

¥ your davice supports WeBREPL, first connect via serial, make sure WebREPL s snablod
limport webrepl setup), connect your computer and device to sams network and select
< WebAEPL » below

Select the port to which your brother is connected. If it's anything like
mine, then they will have an entry that looks like this. My soon to be
controller is simply to want to, at least in my version of the EPA, to
microcontroller and monitor them using just like that and then click on
install or update them with this will take it to the security system where
installer again will need to select the appropriate port and then browse for
the firmware, which is this.

And open, you can leave the citrus or the selection's here is the default erase
flash before installing at the tool, it's going to clean up the flash memory of
the pathetic two before installing the firmware. So are going to end up with
the insecurity of being in sort of factory mode once it comes back from the
installation process, which is what you want, and then click on install.
You'll see the progress down the left side and bottom left in a few minutes.
We're back to the installation is complete. We're done here, we will close
the tool kit, OK? And you can see that now we have the prompt from the
python prompt. Michael Python, one point fourteen is running on the
hospitality module.

If you type in help you see some information about this installation, just
enlarge the shopping loop. All right. So that's my code. Python on the
three to give you some information about the machine module and things
that you can do to manipulate pins, for example, we are going to look at all
of this in detail a bit later, tells you how to configure whiteflies from
various commands to work with on the show. And I can just say one plus
one equals two. The calculation happened on the HP 32 using micro
python and now you have the ability to run micro python on the HP. Thirty
two. And let's continue with our review of the thorny idy. There's a few
more things that I want to show you. Continuing with the next project,
we'll show you how to select and interpret among the many that are
available on Sony. And after that, actually, you have to put your first
Michael Python.

SETTING AN INTERPRETER

This is mentioned in the first project. So the idea is able to work with

multiple Python interpreters, not at the same time, of course, but it does
give you the ability to select which interpreter you want to use next, also
which device that interpreter is installed on. So in this project, I want to

quickly show you how you can switch between interpreters to do that will
be using this show exclusively.

) Thaery options
General | imorpretec Eitor Thewe & Fort RunSDsbug Terminal Shel Assistant

Which inberpreter or device should Thoney use for running your code?
| e
Dotails
Connecting via USH catie:
dovice

and salect
ook for your device name, "USB Serial” o "UART").
H you can't find i, you may need 1o instad proper UISH driver first

(EXPERMENTAL):
s st connect via serial, make sure WebREPL is enatled
fimpon webeenl sebup), connect y compuler snd device to same network and select
< WebREPL » below L
Port or WebRERL
£PI102 USB o LIART Bridge Cantraller - CP2103 LSS o LIART Bridge Contralier (e

So if you go through tools and then options, you will see that under the
interpreter to expand that drop down menu and you'll see that then it comes
equipped with a variety of interpreters. There's an interpreter, that -- with
itself, which is part of the environment. But you can also choose to use the
python instance that is installed on your computer. Of course, you can run
micro python on a variety of devices, including Acrobat Raspberry Pi
picture, and it's better to have already selected to be reduced since we
installed the micro python firmware on my brand new device here and we
tested it as well. I just did a simple calculation a second ago. So we've got
the micro python print. This is information about the Python interpreter
that we are using at the moment. So if I do a little calculation like that,
you'll see that it works from here.

ene Tharny aptions

Genarsl ioprater Editor Theme AFort Run & Debug Terminal Shell Assistact

Which interpreter or device should Thonny use for runing your code?

I want to switch to the only built in. Environment. I can just do that for
you. That's only option it and go for the same interpretor which runs with
Tony and do the same calculation and the result, of course, the same.

So you can see that the name of this environment they're working on right
now is Python three point seven point nine. But it's not micro python. All

right. But how about something else? How about we try micro python on
the new Raspberry Pi pickle? So this came out recently, about a month
ago. And I got a hold of a couple of those. And it's a Raspberry Pi
microcontroller that runs Micro Python. I've got an letter here which is just
showing me when power is connected. This is this is not connected to a
GPO.

So I'm just going to disconnect my inability to connect the Raspberry Pi
pickle. Is on indicating this power.

sn® Thanny opticns

Genersl wiwpretor Bditr Theme kFont BunbDebug Terminal Shell Assistant

Wikch intermnter or device shoid Thanmy use far runnieg your code?
" McroPython (Raspberry B Pico)
Detaks
actd

Connsct your.

and selsct
ook for your device name, “USB Serisl® or “LART)
 you can't find &, you may need to install proper USB driver first.

Port

Let's see if we can use Microplace and it will go to two swaptions. Select
my out the Raspberry Pi pickled. There's support for the picture. OK, now
I've got a new project here for Python.

This 1s Michael Python on a Raspberry Pi pickled with this C.P.U. This
microcontroller senior should say it are two zero four zero and. That's one

plus one two, so I was able to switch from the HP to microcontroller
interpretor to the Raspberry Pi pickle microcontroller inhibitor, and that's
how you can switch from one device to the other. I've got a couple of
projects later on in this section where do a little bit more experimentation
with the Raspberry Pi1 pickle.

And I also got a micro bit here to show you how you can run the micro
python on the micro bit as well and use phony and easy to program these
two devices. All right. Let's move on to the next election and we'll show
you how to execute your first simple program, the.

HOW TO WRITE AND
EXECUTE A MICROPYTHON
PROGRAM

I in this project want to show you how to write and execute a very, very
simple with the simplest possible really micro python program. We are
going to run it using the ID in a couple of different ways. So let me show
you first. Bring up your idea, Ed, and this time I'm going to open up these
files. Sidebar on the left side of the macro python window so you can see

that my experience is already connected to my computer via the USB
cable, and I'm not seeing it, though, on my environment.

So I'm going to check first that I have selected the correct interpreter and |
have not. So let's switch that to the hospital, to the appropriate port down
here. That's the first thing to do, make sure that we have a connection.
Then we have the correct device selected. So since I did that, you can see
that the micro part of the device did appear here again under the psy ops
tab. And because this is a very fresh installation, I just thought the
firmware a couple of years ago, the only thing that appears, the only file
that appears on the device is the boot P1. I'm going to talk more about the
people in the next section, which is dedicated to making Python on the
E.S.P 32. I just double clicked on it and the file company appeared in the
new tab. They could see the contents are lines of code that come out. So
they're not going to have any effect and there's just some python command.
But you can totally forget about this right now because we don't really need
it. What I want to do is to run a very simple program. First, I'm going to
run the program on the shell. Which is basically the problem is just one
single line of code, and then I'm going to create a file which would allow
me to run the program as a file using microprocessor. So the program is the
classic world.

I'm just going to say print and then like the string of text. I want to print
out words from Michael Python and say into this instruction, then Michael
Python running on the two will print out this message. Now, you notice
that I entered this command on the comment from the Michael Python
command prompt, which is running on my HP three two. So this is the
interactive show or also known as recall. So whenever you hear a report,
basically what it means is the ability to issue commands life essentially
with two micro python and have those commands execute it immediately in
any way that you want to go about executing programs in the macro
python, especially for larger programs, of course, is to do so. One is to do
so in a file like this. So just copied my single command. But the small
program into a file I'm going to enter a convent is what I'm going to use.
The sharp symbol precision, like a simple python program. And I'm going
to say this program, the only idea it gives me a choice of where is it that I'd
like to see this program that my computer or the Python device in this
instance, I'm going to go for the computer and that will give me the option
to store it somewhere.

$RidadaLARRAE]

»s5 print(~Hello World from Microfy Mew Fole

L
@
&
&
&
&
&
e
@
@
@
& n
&
L
&
e
#r
&
&
&
- .
Micro
L

¢

melie werld from microrythes.

e

MicroPython (ESP32)

So let's say I'm going to put it. On this location and just saying hello,
world, be watching as the final system and say that. All right, so you can
see that that program appeared right here.

® Thonmy Fie Edit View Run Toaks Help

Thonny - Asarsipeter 3/Deskiop/Micropython ESPE3hello workd.oy @ 2: 30

or
{ Users | pater2 | Deskiog |
Micropython ESF32

he_sr0ed gy

o

355 print{“Hello World from MicroPythee.®

Emllo moria trom micraryuen.
=
Belio WOria e WicTOFyUMGn

MicroBython (ESP32)

And now what I can do is to click on this green button and have the
program executed. Now, this is sometimes a confusing concept for people

new to Python and to eat what just happened is that I've got a small python
program without a safety net. I've got a Python program here stored on my
computer, which was executed on the E.S.P 30 device. So you can see that
I'm connected again to my python running the city, too. And this program
is stored on a file on my computer, which, upon pressing the green button,
was sent to the ISP three to four execution. It was executed and then its
output came back to me on the show. So this is one way of doing this.

Another way is, of course, to have the Python script stored on the device
itself. So there's a couple of ways by which you can do that. The easiest
way, since we already have this file on our local machines to right click and
then select upload to forge, which is going to send the file and stored on the
E.S.P 32 flash file system. Now, if I double click on it, you'll see that a new
tab comes up. It's called Square Brackets with the same file name. And the
square brackets indicate that this file is stored on the device.

No square brackets means that the file is stored on my computer. So then
once I had the father I would execute with, regardless of whether it's on the
computer or on the computer to the same thing, just press on the green
button or F5 and it will execute it. Really this absolutely no difference.
Once you have the file, regardless of where the final is, it will be executed.
By sending it to the appropriate interpreter, which you have selected and the
only options. All right, there are a few instances of this system that we're
going to explore a little later, those nuisances have to do with
dependencies. For example, what if her children go to their file that is
stored on my computer? What if there is a dependency in my program?

For example, what if there is a module that is required by this program
which is not stored on the micro python device, then can you just be able to
upload and execute this file on the device? You also need to take care of
those dependencies. And there are a few examples later on in this course
where I show you how that works. In particular, if you are curious, then
you want to go ahead, have a look at the Wi-Fi example with a Wi-Fi
example. There are dependencies. We've got, for example, a Jason text file
that contains Wi-F1 network credentials, things of that sort that the program
depends on. And those dependencies will ultimately be stored on the
micropayment device.

3 e w osewe wS
503 552 013 B0 012 84 427 835 098

“E"ﬁ" @?EHJ

e

ESERRARAS

Or obviously, we're going to do a lot more into how to write that and
execute programs on the ability to use in micro python. But in this quick
introduction, I just want to show you the simplest possible way of doing
that. In the next project, I want to do a simple demonstration of some of the
other capabilities and features of learning and in particular of the heap and
the stack and fireballs.

= 3

1 # A simple Python progras
1 print(“hello World from MicroPython.”)

Patents, which are interesting from the point of view of using them during
Python programming, they are not very useful in terms of micro python
programming. But nevertheless, these questions that I often get and I
wanted to just show you what these three page. Listed, at least.

OTHER VIEWS IN THONNY IDE

In this project, I'd like to show you some of the other capabilities of Sony in
particular relating to debugging that a lot of people are asking about. I've
got to say that these features are not really available for micro python
programming on the episode of two, but they are available for general
purpose, Python and for desktop version of Python. And I'm going to use
that for examples that are coming up. Again, these are not features that we
are going to be using later on in this course, but things that people do ask
about. And I just wanted to make sure that you've got a good understanding
of the Sony ID, Ed, before we get on with my python. So I have a Iready
opened up the via Ghosheh and Stack Winderlich.

||||||

You can do that by going to view and choose the window that you want to
open up the service, for example, the program tree that you can see down
here.

And let's have a look at your object, inspector and so on. I'm not going to
go through all of them because then we are going outside of the scope of
this course, which is to focus on micro python.

Credits

M UNIVERSITY~TARTU

Main development of Thoany toak place in Institute of Computer Science of
University of Tacy, Estonia.

And before I start with my small demonstration, I also want to point out that
if you go to these Thorney dot org website, it's a very homepage. There's a

demo project here which I have mentioned previously. You should really
take a look at it will give you a really good overview of those features. And
I'm also going to touch upon in this project. OK, so I'm going to turn off
the object inspector and the program that really need it.

m e Geneml | Pierceesc Eotor ThemeSFord fun8Dsbug Teminal Shel Assistant

| Whichinterpreter or device sheuld Thonny wse for running yous code™

R e same interpreter wevch runs Thonny [detat] -

And I'm going to switch my targeted interpreter to the default one, because,
as I said, these features don't work with the especially to micro python
version. So now we are running Python three point seven point. And I got
a little program here that just adds to numbers of code number one. And
number two, just a couple of arbitrary random numbers. You can also use
the input function to allow you to enter those numbers during runtime. But
let's keep things simple then. I've got a calculation happening here. The
result goes into the some variable and print out the results onto the show
like this. And I'm using the format function to talk more about this in
Section five, which is fairly detailed introduction to Python. So there were
better details about what this does. What is important right now is what the
output is.

This computer

i Usars [patar? | Deskiop |
Micropython ESP3 [Examole Pythan
scripts

@ addition.py
@ sddition_fureton py

So you run this program and you see that the output is just the sum of the
calculation with a bit of information about what was calculated by the
component of the calculation. Now, see what happened as soon as they
executed the program is that the variables tab became populated with the
numbers you can see here that have got the value idea, which is this is a
memory location where no one is stored. And number two, and some also
have the heap. Memory in the stack is empty and a hidden memory is
where both he and Stack are stored in Ram Python in particular uses heap
and stack differently. So it said both are part of their end. But in memory,
Python 1s going to store the global variable she can see here. No one is a
global variable and stored at this remote location. ¢.B zero, and that
matches this idea here in the heap, which has this value one point five as it
was assigned here, and line number three in the script. And similarly,
number four line declares initializes variable number two, which you can
see here. This is its value add in RAM, which is right here in the heap.
Again, here 1s where Python stores its global variables. You've got some
which was created later and its content are the result of the addition
between number one and number two. We don't have anything in the stack
because we don't have any functions.

JF o %

{ Usars | pater2 | Duskice [
Micropython ESP3 | Example Python
scripts

& adition.py
@ addition,_funetion py
& bumon py

So let me show you an alternative of this little simple program. So here I've
got the exact same thing happening, but now I've got a function declared
called add numbers. And again, don't worry about the details. I'm going to
talk about how to create functions in Section five of this course. But you'll
see that we've got the global variables. We've got some variable created
here, and then we've got a call to the function at numbers. So essentially
the program jumps from here to here and then we're going to line number
five and execute it. Now, if I run this program, see what happens. So after
the execution of the program, one thing that we didn't really see was what
happened in this attack, if at all. So this attack, as I said earlier, is where
Python keeps track of its position in the program. Trees are especially
useful when we have to go from one part of the program and continue with
the execution of the program inside a function. So for Python to know
where to return once the execution of the function is complete, it needs to
keep track of the origin of the call inside the stack and to be able to see the
start getting populated.

This &
1 Usars [pater2 | Dasktop |
Micropython ESP33 | Example Pythan
scripts

& addition.oy

nTreBGOIRRCO0 7.8
Ou7feBG0I8BCHD 1.5
OnTfeb028BC00 6.3
On7HeBGAIMIZ0 <hunction add_mumbers at CfeB6R11832

Stack
Functusn

I'm going to use the debug function first. I'm going to have a little line stop
here. Just double click on the line where I want the execution to stop
temporarily and then I'm going to click on the current screw button and that
will start executing the program. But they will stop at the location where
I've got the red dot, the stop line, and you can see that I've got my variables
here, the global variables. I've got my head exactly as we did earlier. Now
we've got an additional component in the heap. We've got the function ID
numbers.

[Usars | peter? | Dusktop |
Micropython ESP13 [Example Python daf add_nusbers():
seripts

@ sditonry print(*The sum of {8} and {1} is o

numberl = 1.5
numberz = 6.3

.A!lu.n = ramber] + musber]

add_nunbers()

So the program does know about it. And I can continue the execution of
the program by using one of those patterns here. So step over, step into and
step out, step over allows me to move on to the next line of the program
without actually drilling in into the individual components that make up this
line of code instead of going stepping over. I'm going to go step into to
explain more about what I'm talking about here, to remember that we are
now executing line 15.

- Thonny - fUsripsterd/Deskiop/Miroyhon ESPI2/Exkmpse PyEhon scrptusaston functicn oy 8 318

[+] ahEe> @
)

addtionpy sadtion function by

| Ve &
| Usars | pater2 | Duskice | Ca7HB26862400
Micropython ESP33 | Example Python dat add_nusbers (f: mbert CaTRI08T 0800

print(*The sum of (8} and {1} i5 {2)'.format(nusber, nuster2, sum)) o

numberl
nmber? = 6.

& hetic_veorid py

& toa_blink py

Du7TAI9RTRRNR0 1
On 7182907810

Stack
Funcionn
made:

And I'm going to step in to and you can see that now with step into the
execution continues into the right side of the equals sign. And if I click on
Step into again, it drops further into the first component of this edition.

| e
CuI2E8G 2400
daf add_numbars () : CNIRETONSR0

print(*The sum of (8} and {1} is {2}'.fermat(nusberl, ruster2, sus)) e Lt

@ helis_werld py
& lod_blink py

@ fim = O71E208750500 + number? 3 |5 —
<hunction add_rumbers at O T8 25862 4dd.
15
add_nunbers() T208TBeT10 L+

And it will evaluate that you can see that it will change it into its I.D., so
Vago no one now has been replaced in the code itself with its value I.D.,

which you can see the variables tab. And also in the caps, you can see it's
actually assigned value. Do one more step in two and then it goes over to
the other side and have a look at the number. And again, you can guess if
click on it again, it's going to into the number and replace it with its
eyeteeth. But instead I'm going to go and do a step over and that is going to
skip it and start exiting. And until eventually the whole thing, the sum of
these two numbers is replaced by the idea where those numbers are stored,
which is B three zero seven point eight. And it's just about again, it's going
to jump into line nineteen. Now, look what happens here. As soon as |
went into line 19, what is the call to the add numbers function? The stack
keeps track of that. The stack now keeps track of where I'm going to jump
into another part of the program, which happens to be a function so that
this is where I'm going to return or the problem is going to return to once
the function execution is complete and it's going to step over there and be
finished. So it's not going to go into the function because I did a step over
when to do one more thing here. And I'm going to say Trent finished like
that and I'm going to execute again. And using the debugger this time, I'm
going to go for that over for the first time and then I'm going to do step into
four to do that. I'm going to open up the stack.

® Thonny Fle ot View Run Tools Help

add_numbens()
add_numbars
1'Unars [peter2 | Daskion |
Micropython ESP33 | Examole Prthan daf add_numbers () :
seriots - - -
print{"The sum of {8F and {1} is {Z1'.format{nusberl, nusberz, suml)

addition.py

el werld gy

THcAeB4DI20 <hunction add_ru mbers st OuPcde8di9a 2

<modex

When you can see that the module line 19 is in the first position of the stack
them I'm going to step into now drilling into the function. And now this is
interesting. You see that a new window popped up because now we have
drilled into the add numbers function. So a new window popped up to
show us what is happening inside that function. And you can see there are
another entry has been made into the stack.

def add_nusbers () : It
| print (BETTCFCRUEEEED, Format (Wx] TcIcBbaes ™0, O] {cichtae 18, Balfciedd {ib0H)

This is now line five, which is the line that we are executing right now so as
to step into again, see drilling into the individual components and replacing
them with the ideas in the heap that contain the values for those variables.
So those that adhere as they are being executed and evaluated. And so on,
so the whole print statement and its parameter is replaced by a single
location of single idea, I should say, right here, eight four zero eight if
you're like this, which is where the string of the result message is stored.
So one more, OK, finished, so that's done so you can see that we are now
coming back from the stack into the main part of the program. So they
stack entries now only contains like 19 because we are done with the
python is really done with the execution and the variation of the function.

2, Thonny - MUtarupess2iDeskispcropy hon ESPILLagtch PYNn SPIIIGSECA NSNSy © 29 1

additiongy sddtion function By

This computer .)

{ Usars | pater2 | Dusitep | Orffcledatadzo
Micropython ES#332 | Example Python daf add_numbers () : -

print(*The sum of (8} and {1} is {2)'.format(numberl, nusbera, sum)) CxNciches?10

& addiion.oy OxTiclalaf 160
@ adaition_fure!

on . numberl = 1.5
& bunonpy number? = 6.3
& hetic_worid py
loa_pisipy

. Heap
@ sum = rumberl + nusber? o ek
On1067da0ss Nane
Ou7PCICHOBAR4D The sum of {0} and {1} (2
add_numbers () OnTicIcHIACETO Finished
& Ouiicichbaeo0 1.6
print{'Finished") OnTicichiae?i0 6.3
OnTicACATONO “The sum of 1.5 and 6.31s 7.8
OnPhcBeBAfOII0 <hunction add_rumbars at OxcdeBd32
OuThcBeBAITbG 78

Shell

The sus of 1.5 amd 6.3 &8 T8
o

The wum of 1.5 and 4.3 0 1.8
o

The wum of 1.5 and 6.3 48 1.8
Finsnes

So let's do one more. Actually, I'm going to go for a step over now and
print up finished and we done. So this demonstration just wanted to show
you what kind of work you can do with the additional views and features
that are available here under The View menu.

- Thonny - fUseripsster2/DeskiopiMirosyThon ESPI2/Exkmpse PyEhon SCptuiaston functicnoy B 20 1

‘acidition_function gy

| vae &
OxTiclel4faizo
OxTicichtaes o0
Outicichbae? 10
OuPiclalaft 160

daf add_nusbars():
print{*The sum of (8} and {1} is {2}'.format(nusberl, nusber2, susl)

numberl = 1.5
number? = 6.3

increase font size O+X+
Decresas font size K-

Focus editor RE

Focus shell xS =

o
Ox1067d0088 Mone
CufcachOB4edd “The sumof 0} and (1} is {2
add_numbers () Ou7icIcBIdes?0 Finished'
N OxFfcichbaedB0 18
print(*Finished") CaPtcachian? 10 8.3
OuPHCICATONIO The sum of 1.8 and 6.31s 7.8
Ou7fcBeBAIDII0 <hunction add_rumbers at OxTIce 841932
OuTtcaeBatt 160 .

Shail

The sus of 1.5 asd 6.3 &8 T8
0

The sum of 1.5 and 6.3 18 1.0
o

™ 15 ana
Finishes

Again, we're not going to be able to use these features in our micro python
programming on the specific two, but they are available, if you're
interested in general purpose, desktop or C Python programming.

= | o %
i birdseye

This computer
{ Lisars | peter2 | Dug

Micropython ES#33 | Navigation
seripts

Rather than stepping through lines, move back and forth through loop iterations and
see how the values of selected expressions change:

The debugger that we saw in action here is actually a Python project called
the Bird's Eye. So you can find project documentation for Birds Eye here,
including a tutorial on how you can use it and what else you can do with it.
I've only scratched the surface. It's a very interesting and useful python
debugger that if you're interested in doing some more complicated Python
programming, is good to know how to use that time. OK, now, in the next
couple of projects, like to show you how to do simple micro python
programming tasks with the BBC Microgrid and the Raspberry Pi.

THONNY IDE WITH
RASPBERRY PI PICO

In this project, I want to give you a quick demonstration of how you can use
the IDB and Micro Python to do something simple with the big picture,
which is this case to make the board ality link. At the moment, I've got my
inspirited connected, so it's unconnected and instead connect the Raspberry
P1i pickle back into the thorny idy.

_eaoe Thanfy cptioni.

And the two options change the integral to the three pickle and show that
the port 1s properly selected and OK. So now we've switched the target
device to the Raspberry Pi pickle, which means running micro python.

This is actually how it comes from the factory. It didn't have to do anything
in terms of installing a micro python interpreter from on it. Just plug and

8 o rmapber B oo s on el g tng st ared

Hardware Software Books & magazines Leamn Teach About us

i Raspberry Pi

Raspberry Pi Pico
The new flexible microcontroller board from
Raspberry Pi.

Welcome to your Raspberry Pi Pico

We can find information about the pickle on its Web page. You can see
here Raspberry Pi dot org documentation. They could get started and scroll
down and the board specifications.

ner on-chip

LR y-point libraries on-chip
eep and dormant modes « Bx Programmable|/Q (P10) state machines for custom

peripheral support

e - NECRRERY v kx|
I T

You see the pin map out there. Big picture is well equipped with all sorts of
Tapio capabilities and communications capabilities. One interesting
technology that comes with that is a programmable input output, Appio
State machines, which basically allow you to write simple programs and
execute on specific bios. And because they run directly on the side of the
checkpoint, not occupying any MCU cycles, they're very, very fast. It's a
fairly advanced topic, though, but I thought I should mention, because it's
really a feature that stands out when compared to other microcontroller
units. Anyway, in this simple example, I can show you how to toggle the
state of the built in. And just as you can see in the pin map out, it is
connected to the chip. Twenty five using thony to eat.

All right, so the first thing that you need to do is to import the PIN module
from the machine to the library and the machine library, you learn about
this in more detail a bit later. It is a library that is available for all of units
that support micro python, and it contains functions that are specifically
created for the microcontroller that you're targeting. So in this case, the
machine library contains functions that specifically apply to their pickle.
Later on will be using a different version of the machine library that
specifically applies to the capabilities of the HP 32 and so on. And that's
because each hardware target is different in terms of its hardware

capabilities. And those differences are reflected in the individual machine
libraries. So now that you've got the PIN module, I'll be able to use the
capabilities the PIN module provides me to do things such as toggle the
state of the entity, which is, as you said, connected to JP twenty five. The
first is going to create the entity object and I'm going to use the PIN
constructor so that we are targeting JP twenty five. And this is going to be
an output which that's how you set this up in Raspberry Pi. Piggot and now
that we've got this object we can collect on the work of. The. Perhaps I
should say, to not talk like that there, Verizon. That's also another way that
you can do this if you want to be more specific about the value that you're
writing to the top twenty five, which is the only thing, is to use the venue
method. And in this case, the world is turned off now. So I'm going to turn
it on by putting value one like that. You can also check the state of the ality
by just calling the value, but had a parameter. You could see now that it is
on a fight top level and check the value again, you'll see that it's oft now.
It's zero.

What is MicroPython?

It's just a quick demonstration is the focus of this course 1s on the three.
But if you're curious about learning more about the Cross-Breed Pekoe,
then have a look at the documentation here, a full book with a lot of

content, including the link example that I've just shown you and lots of
other bits of information that you'll find interesting.

2.5. Blink an LED

The onboard LED on Raspberry Pi Pico is connected to GPIO pin 25. You can blink this on and off from the REPL. When
you see the REPL prompt enter the fallowing,

»»» from machine import Pin
»»» led = Pin{25, Pin.OUT)

The machine module IP wsed 1o control on-chip hardware. This is standard on all MicroPython pons, and you can read mone

2.3. Connecting from a Mac using USB n

Raspberry Pi Pico Python SDK

about it in the MicroPython docuementation. Here we are using it to take control of a GPIO, so we can drive it high and low.
If you type this in,

»»> led.value(1)

All right, so then the next thing that I want to do in the next project is to
show you how to do something similar with the BBC.

_micro:bit

y= -

MacRobert The purpose of this, of course, is to show you how the versatile
micro python nature allows you to jump from one kind of hardware to
another with some small, relatively small modifications to your Microplace
approach. So let's go ahead and extend the ABC a.

USING THONNY IDE WITH BBC
MICROBIT

In this election, can you show you how to run a simple program on the
BBC, MacRobert that escrows of that, we have a world text on the eight
point eight bitmap display on the back of the micro bit, and of course, that
using micro python and funny idea.

So essentially there are some here already connected the micro bit on to my

computer.

LN) Thonny sptions

Thanmy e for running your code?

Which
| MicroPython (BBC micra i)

Detais

Connact your deics 1o tha computer and seact cormasponding pert bulow
ook for your device name, "USB Sertal” or "UART").

i
|

If I use B, once you do that, go to auctions and ensure that Margaret Python
Micro is selected as the interpreter for this session and then select the

appropriate port. And the thing to remember here 1s that the micro does not
come from a factory with micro python interpreter installed on it.

Connect your derce o the Cometer and select Comes
ook for your device name, "USB Serlal” or "UART").

So if you are not able to make this work with your Sony ATV, once you
have selected the interpreter in the port click of the install or update
firmware in order to go ahead and install the micro python interpreter or
the MacRobert.

General wiepreter Editor Theme & Font Run & Debug Termiral Shel Assistant

b intm - v cocdat
AN rstal MicroPythan firmware for B micro bt

infarmation apoears.
3. Click “Install’ and wail f- some seconds until dane.
4, Ciowe the disiog and 113t programming!

davion.

Version to b installed: 1.0.1 (2018-12-13)
Target device location: Wokumes/MICROBIT
Target device model: BSC micrabit v1.3

[] |
E——

WicroPython (BBC micro:bit)

I've already done that, so I'm not going to overwrite my family. They don't
cancel. But in your case, you may need to do that. If this is the first time
that you're connecting your McAveety computer and wanting to use it as a
micro python interpreter in the target device. So cancel and cancel.

® Sefei File Edn View Hstory Bockmarks Devekp Window Help

s [.a] Y i microb-micropython.resdthadacs ajenylatestindex S e
L C macro e MicraPython. reston — WEC macrn

BEC microchit MicroPython

Docs = BBC micsobit MicroPython decumentation © Edi

BBC micro:bit MicroPython documentation

it is 2 small computing device for children. One of the languages it understands is
srogramming language. The version of Python that runs on the BBC microcbit is

Tor developers fcheck out

ope you enjoy develaping for the BBC micra:bit using MicroPython,

or unsise where to start, begin with the tutarials.

First Steps with MicroPython

Werarbon wai ereated by Darven

Projects related to MicroPythen o the BBC micro:bit intude

Another resource that is very useful and I encourage you to look at if you
are interested in using the individual as a micro python device, is to look at
the BBC market a bit micro python documentation. And here is the
location for that. MacRobert nine inch python. Don't read the Dockstader
I0. And let me take you here now. There's a law that you can do with the
macro between the macro bit that does come with a load of onboard
hardware, like it's got an accelerometer, for example.

It's got potentially two parts of this side. It's got a dot matrix display, very
bright red and is it's got outputs here and so on. And the documentation
shows you how to use all of that hardware in this case, in this simple
example.

o n s

1 Conrey — 88C e b Wity 101 decumeratien

Functions

microbit.display.get_pizelixy)
Return the brightness of the LED at column = and row y s an integer between O (off) and 9

{oright).

microbit.display. set_pixelix v, value)

Set the brightness of the LED at column x and row y to valse , which has to be an integer
between 0 and 7.

microbit.display.clear]
Set the brightness of all LEDs to 0 {off]

microbit.display. showimage)

Display the isage

microbit.display. showivolue, delry=400, *, waits True, koop=False, clear=False]

What I want to do is to just use the display and create a simple Hello World
program that just printed out how the world in a way that the text and the
individual letters just scroll across the screen and the commands for that
scroll, which is inside the display module, which itself is inside the micro
bit package.

L B |

1 Dy — BBC mictoc bt WietoPyihee 101 decuentstion
1 Wil repeat forever

It clear is Tree , the display will be cleared after the iterable has finished.

Note that the it , loop and clesr SEUMENts Must be specified using their keyword.

f using a generator as the irer then take care not to allocate any memory in the

generator a3 allocating memory in an interrupt is prohibited and wil raise 3

algrobit.display. scrolUsake, deiay=150 *, wait=Tnue, koop=Fake, monospace=False] %
Scrolls valus horizontally on the display. If vales ks an integer or float it i first converted to 3

string using stri) . The dalay parameter controls how fast the text is scrofling.

It wait s Trus , this function will block until the animation ks finished, otherwise the animation

will hagen in the background
It less i True . the animation will repeat forever

If messspace is Trus , the characters will all take up 5 pixel-columns in width, ctherwise there

will be exactly 1 blank pixel-column between each character as they scroll.

Note that the wait , loop and ssssspace arguments must be specified using thelr keywosd

microbit.display.on)

Use onf) to tum on the display.

microbit.display.off)
Use off) to turn off the display (thus allowing you to re-use the GPID pins associated with the
display for other purposes]

microbit.display. is_on]

Returns True if the display is on, otherwise returns False .

microbit.display.read Light Level]

And you can see here in its constructor, the only requite value is a string in
the first parameter. The rest are optional and they have their own default
value. So choose to not provide them. They've got the default values like
this. I'm going to go with the minimal instance of this core function and
just use it like that. So the first thing to do that, you're going to put the
documentation on the side, make a bit of room here, and I'm going to flip
the bit upside down so we can see the dot matrix display in the back which
make it oriented. Let's reorient it like this.

microit-MCTOpYINGn. adTheOnCE K0/e= ISTUpUY T S1ES PR R

I clasr b5 Trus . the display will be clesred after the iterable has finished

Note that the wait , lsop and clsar anguments must be specified using their keyword

isport micrebit
microbit.display. scroll(“Hells World!")

N Scrolls value horizontally on the display. If float it is first converted to a

If sossspace is True

will be exactly 1 blarik phwek-
Notethat the wait . lLsep and sossspace arguments must be specified using their keyword.
microbit.display.osl
Use ond) to turn on the display.
microbit.display.off)
Use offf] to turn off the display (thus allowing you to re-use the GPIO pins assodated with the
display for other purpases).

microbit.display. is_on]

Returns True If the display is on, otherwise retums False

MicroPytihon (BEC micro be)
microbit display. read_Light_Levell

OK. So that's actually going to do is to improve the whole Michael Vick
package. It's hard to say what Michael Vick and now say Michael Vick.
Plain and cruel, and I would like that.

And check out the contents of the screen now. So the message is scrolling
across the dot matrix display . All right. Another thing that she can do is
just another example is to use the individual set pixel command. So that
would work like this. So I can say to so let's say position zero point zero,
so we've got five pictures across four, five and then another five vertical.
One, two, three, four, five. So five on the x axis and five on the Y axis.
And the starting from index zero. So zero point zero. And then I need to
provide the intensity of the light that is going to come out of the ality. One
is the faintest, nine is the brightest, some of the brightest.

i
microbit.display.scroll(™Hells Worldi™)
microbit.display. set_pixel(s,8,9)

Functions
microbit.display. get_pixellc]

Return the brightness of the LED at column = and row y as an integer between O off) and %
(oright].

microbit.display. set_pluelic v vole)
Set the brightness of the LED at column x and row y to wles , which has tobe an Integer
between 0 and %.

microbit.display. clear)
Set the brightness of all LEDs to 0 joff).

And there's the brightest ality. Let's turn on one more. Going to go for full

and full.

& Thoany

o micrabit

303 microbit.display. serall(*Hello World!")
20
pee.
20

microbit.display. set_pixel(,0,
Illcfﬂbll .display. set_picelld,4,9)

Functions
microbit.display. get_pixells v

Return the brightness of the LED at column & and row y as an integer between O (off) and %
(brighth.

micrebit.display. set_pixells v obe|
Set the brightness of the LED at column x and row y 10 vales , which has to be an integer
between 0 and 9.

microbit.display. clear]
Set the brightness of all LEDs to 0 (off).

And there is the bottom right corner. Absolutely. I can use clear. It's a bit
of typing and that will turn off the screen. Can also use get pixel and let's
try this out bit. And I'm doing a code completion, so I'm hitting the tab key

and then Sony is going to give me information about which keywords are
available. And I want to go for a get pixel keyword. Sorry, it was display a
got completed, and then from here on, again, I'm going to go get this plane
and I want to know whether the the pixelate position zero zero,

Functions

microbit.display. get_pizelic v
Return the brightness of the LED at column & and row y as an integer between O (aff) and ¥
Doright)

microbdt.display. set_pixelis y, vobe|
Set the brightness of the LED at column x and row y o wales , which has to be an integer

o= micrebit,display. set_picel(®,®,9)
e microbit.display. get_pixel(s,d)

for example, is on or off. I'm just going to say is looking for the
coordinates. Oh, sorry. Let's not get this that you get pixel like that and it's
turned I its attitude on. Let's go back to one of my previous commands like
this one and get the picture at the same location. And it's not getting that
intensity, not just whether it's on or off. So this just gives you a quick
example demonstration of how you can use the display on the ABC.
MacRobert If you're curious and interested, you can have a look at the
condition to learn how to use its other capabilities.

THONNY IDE ADVANCED
CONFIGURATION

In this project, I'd like to show you the advanced configuration file, 113 E in
case you want to modify some of the functionality, and that is not possible
to do via the menus here to begin with.

O mypyni
O pyproject.comi
O requirements.txx

0 senappy

README r3t

Thonny

Thonny is a Python IDE meant for learning programming.
End users

See hitps3//thonny.crg and sk for more info.
Contributors

Contributions are welcome! See CONTRIBUTING rst for more infe.

Go to the thorny project on GitHub and scroll down to find the wiki link
down here and the end users.

Home
ClassroomSetup
Custom layout
Customn shartcuts
DeplaymentOptions
FAD

Friendly traceback

installingPackages

Then here look for micro python and the available pages and on the micro
python or in the micro python page, have a look at the advanced
configuration. S.

) sobritan TonmiTany Wikl Gk

configuration page (Fun => Select interpreter) has @ button for this.

Time Synchronization

Thonny will sutornatically syne the RTC (Real Time Clock) on your beard with your local time on connaction. If
you'd like to disable this, see the sync_tine configuration option below. If this is supported for your board,
calling utime.tine() will give you the cormect time automatically.

Unti version 3.3.3 RTC was synced to UTC, Since 3.3.4 it is synced to local time by detault, but you can chocse
UTC by setting ute_clock 1o True .

Advanced configuration

There are some hidden configuration options, which most of the users don't need 1o tweak, but which may be
useful in some cases. In order to change them, you need to find the location of configuration.ini (Tools => Open
Thanny data fokder], clase Thonny and edit the file by hand.

Here is an example section for ESP32 back-end

[EsP32)

* subnit_sode controls how code is sent to the board. Thonny 3.2 sent it via raw mode, Thanny 330 and
3.31via paste mode and since 3.3.2 the defaultis raw_paste if the device supports it (a new maode
appearing in MicroPythan 114} or raw as falback, If you want paste mode as fallback, then you can
specify it here. (Note, that some devices have problems with paste made, see
https://github.com/thonnythonny/issues/1461 for an example.)

And then it gives you some information that is specifically addressing some
of the advanced configuration issues for the E.S.P 32. It gives you which
keywords are available. Such is submit mood and roadblock signs, et
cetera.

&
() erabrthen . sarvihanmy Wikl Qi

* submit_mode controts how code is sent 1o the board. Thonny 3.2 sem & via raw mode, Thonny 3.3.0 and
via paste mode and since 137 the default is raw_paste if the device supparts it (a new mada
g in MicroPython 1.14) or raw as faliback. i you want paste mode a3 fallback, then you can
[Note, that so s have problems with paste mode, see
51451 for an exarmphe.}

o and write_block_delay control how the code is submitted in raw mode and for
submitting data to stdin { write_block_size is also used with paste model. Thonny will break the data

into blocks of write_block_size and waits write block delay seconds after writing sach block, You
may need to lower write_black_delay andfor increase write_block_delay Thonny is having trouble with
communicating with your device. Different back-ends have different detaults for these options (0.01 suffices
for many boards, but 0.5 may be required for WebREPL connec tion on ESP32.)

+ syncitise = True (default] makes Thonny to update device's real time clock (RTC) after connecting. You
may want to turn it off when you are using anather means for updating ATC (eg. NTP) ar when you don't
care and want connecting to be as fast as possible

* utc_clock = False means device's RTC gets synchronized to (or is assumed to keep) local time (default
since Thonny 3.3.4). ute_cloeck = True would use UTC instead (default until 3.3.3). File browser will adapt
to either setting and shows moddication times in local time.

The section identifiers for different back-ends are ESP32 , ESPEZ66 , GenericMicrofythen , CircuitPythen,
microbit . If the section doesn't exist yed, then acd it, but make sure you don't end up with several sections
with sama identifier (Thonny wonit start then). f you mess up the configuration fils, then you may delate it and
Thanny will start with default options.

The ones that are more interested at the moment, the sink time and the clock
time. So as you know, the DP 32 has a real time clock integrated into the
ship. And when you use Thorney to upload a program, it is possible for
Thony to reset the clock to the correct system time and date and to make
that work. You make sure that the sync time keyword is set to true.

Another thing that you can consider doing is whether you want the real time
clock to be set to UTC time or to your consistent time, and you can control
that via the UTC clock Keywood.

® Thonny Flo o View Run Tools Heip
Mansge packages .
[Open system shatl.

Open Thaney program falder_
Gpen Thoewny data foider...
Manage plug-ins..

‘Options...

mny 32 sent it via raw mode, Thonny 3.3.0 and
Jaste if the device supports it (a new mode

want paste mode as falback, then you can

fth paste made, see

ple.)

the code is submitted in raw mode and for

with paste mode). Thonny will break the data
Ldelay seconds after writing each block. You
write_block_delay Thanny is having trouble with
different defaults for these options (0.01 suffices
Anection on ESP32.)

Wice's real time clock (RTC) after connecting. You
for updating RTC (eg. NTP) or when you don't

fed to (or is assumed to keep) local time (default
Pestead (detault until 3.3.3). File browser will adapt
L

266, GenericMicroPython , CircuitPython
ke sure you don't end up with several sections
the configuration file, then you may delete it and

So when you say false, then the accuracy of your authority will be synched
to your computer's local time to access the configuration file where you can
do all this, go to 30 and then undertows click on the data folder full time
and they will open up the folder where the configuration file and is.

figuration in™

wnny 3.2 sent it via raw mode, Thonny 3.30 and
saste if the device supports it (a new mode

want paste mode as faliback, then you can

ith paste made, see

ple.)

¥ the code is submitted in raw mode and for

with paste mode). Thonny will break the data
Ldelay seconds after writing each block. You
write_block_delay Thanny is having trouble with
& different defaults for these options (0.01 suffices
nnection on ESP32.)

wice's real time clock [RTC) after connecting. You
for updating RTC (eg. NTP) or when you don't

ted to (or is assumed to keep) local time (default
nstead (default until 3.3.3). File browser will adapt
.

8266 , GenericHicrofythen , CircuitPythen,
ke sure you don't end up with several sections
e configuration file, then you may delete it and

Here's the text file. Just open it up with a text editor such as Atum and
you'll see its contents.

ithe board. Thonny 3.2 sent it via raw mode, Thonny 3.3.0 and
Lpaste if the device supports it (a new maode
ouwant paste mode as fallback, then you can
s with paste mode, see
B1 for an example.)
control how the code is submisted in raw mode and for
od with paste moda). Thonny will break the data
selay seconds after writing each block. You
ite_block_delay Thonny is having trouble with
Pack-ends have different defaults for these options (0.01 suffices
ection on ESP3Z)
&'s real time clock (RTC) after connecting. You
s for updating RTC (eg. NTP) or when you don't

ed to keep) time (default
fauit until 3.3.3). File browser will adapt

reral sections

There's a lot of blocks that control a variety of things. Look at them in
detail if you are interested. But down here you'll find the E.S.P threat to
block it contains things such as the report and then you can say sync time.
She said that now equals true and I'm going to. It is a clock equals force, so
these are some of the more advanced configuration options for the two
men. Speaking of sync time. I just want to mention that in Section 12, I
have a couple of projects where I show you how to set the time in the RTC
of your inability to programmatically both manually and by getting accurate
time and date from an infinite atomic clock. So you've got three ways of
setting the odyssey. You can let Thony do it for you or you can
programmatically manually set it or programmatically get accurate time
and date from the International Atomic.

FIND PYTHON PACKAGES AT
PYPI

Phony I.D. allows you to install Python packages from Pipeline Pipeline.
There 1s a website which contains a list of available python packages to

Python package intakes that you can see right here.

| [wsTAL

Manage packages for MicroPython device @ jdewou SLAN LSBoNART
Search on PyP1

sl from
Hyou don't know where ba get the from, mmnwmﬂlmw-—-mnwm-nhcm
Index. Start by ensering the name of the package in the 3earch bex sbove and pressing ENTER

Inutall from requirements file
Chick bary e wecifind in it

Iurduf
Fuur\lnlulnq

Scops
™

uninatall
Ny ifachy Patal e packag sppla
corraspunding e

d publish Python packages
Python Package Index

Or browse projects.

105,985 releases 3,924,974 files 487,709 users

1 Package Index (PyPl) is a repository of software for the Python
ng language.

u find and install soltware developed and shared by the Python commun
lasges B2

ors use PyPl to distribute their software. Learn how to package your Pyt

You can install a Python package directly from the Python interface. We go
to tools and manage packages and you get a search box here, which
basically allows you to search the same projects that you can directly via
the Pipeline Authority website. Let me give you an example.

o a o
E

-y oy searchy

U micropython Q

Filter by classifier

© Framework
Install from
H e gt know whirs 1 gat the package frem, O Topic
e, St by entering e narme o the package
Inutall from requirsments file © Development Ratus
fere L
e e A O License

For aping gy lestll 12 package sgebs
For uninstaling elate corwiponding fivs.

@ Programming Language

Seope
b

884 projects for *micropythan®

Order by | Relevance

micropythen-cpython-migeopython 0.1.1
MicroPython moduke micropython ported to CPythan

micropythen-risocket 0.1.1
taocket module for MicroPythan

micropython-hashlibs 2.4.2.postT
PyPy hashlis module ported to MicroPython

micropython-shelve 0.0.1
Dummy shelve module for MicroPython

micropython-modulefinder 0.0.0
Bummy modulefinder module for MicroPythan

micropython-mds 0.0.0
Dummy mds module for MicraPythan

So let's say that you're just doing a broad search on, like Python. To see
what kind of market python related packages are available and you can see
that there's a C Python, C Python project. A lot of those I'm not familiar
with. I don't know exactly what they are. This is Aristocats module for
Monty Python and these five modules while generating hashas. Dummy B,
three, four data structures, figures and so on, so there's a lot of packages you
can browse and try to figure out what it is that you want. I'm going to pick
one randomly, let's say, and I'm going to go this page to actually see what
else there is.

icropythen-asynchat 0.0.0
as

ynchat module for MicraPython

micropython-pkgutil 0.1.1
wtil madule for MicroPythan

icropython-unittest 0.4

Let's say let's say this like this. I have no idea what this does, but let's say
that this is the package that you want to also install in your micro python
project internally so that you have a name.

S micropython-selectors 0.0.1

‘mitrosvihen-selectars
Dy seaictons made for MicroBython (AL RLEL i c ropython-selectorsill J

e ot ricaopion srted o Chython
e it o hcPhen

BBy R masde Soted Micsopyan

Dumimy stve mosvie fox MkroRythen

mereevthon-medylglinger
Dumemy modulelinder module for Mcreythen

You can copy that and paste it in your. Michael Python geophony
installation, so I'll try that again. Copy and control the search and pipeline,
and there is the exact same project as what we have found directly on the
website. I do my initial research on the pipeline to Daichi website. Now
that I've got that, I will click on it gives more information about it.

L ropython-selectors 0.0.1

pip install micropython-selectors I

If there is the same one that I'm looking at, version zero zero one and I can
install it and I'm installing. This package here it is, tells me where it's been
installed, let's close that and check it out. I'm going to view it files pain and
my micro python device right here.

,1[<ropython-selectors 0.0.

pip install micropython-selectors

L —

She's got a new directory and the selectors package has been installed. You
can have a look at it as well. And in this case, it's empty, but it seems like
it's got anything in it. Yeah. So suddenly to let this model of a good
selection for this example, but let's do another example, how about we are
looking for something specific to the ASPCA, too? So I'm going to search
for, let's say, Michael Python and there Speed 32 and see what comes up.
So the thing to remember here is that because Michael Python can be used
across a lot of different hardware modules, not all of them will be
compatible with all of the hardware modules. For example, you may find a
that's car and have a look at the actually, you may find a DH, the living
module that works perfectly on the Raspberry Pi, but it won't work on your
HP 32. So then you will need to find one DHT for the facility. So you will
need to do a little bit of digging around here and a bit of research carefully
to find a micro python package that is specifically compatible with your
module. Speaking of the three two usually modules that are working and
available for the EPA, six six will also be working properly on DHP 32. In

most cases, we do have that compatibility across the two and E.S.P eight
two six six.

42

Fles.] < m

¢ R

This computer
{ Wsers { pater2 | Deskiop |
Micropython

micropython-wifimanager 0.3.6

pip install micropython- L] Released: Feb 6, 2009
wifimanager

Asimple network configuration utility for MicroPython on the ESP-8266 and ESP-32 boards

Project description

micropython-wifimanager

A simple network configuration utility for MicroPythen on boards such as ESPB266 and ESPAL
Configuration

Project links Simply upload your JSON file with your metworks, the default path is/networks json', which is specified in the class
property canfig_fils

& Homepage
sample confi o mary look like this:

So let's say multipotent wi fi manager zero point thirty six. It's interesting.
It's a network configuration utility. I've never used it in the past. I didn't
really know what it does, but let's install it on the. And Anthony, again,
Tool's package is. Paste that in here. Suich.

J5

This computer
{ Uners | pater2 | Desktop |

v Latest version

Released: Feb §, 2009

on the ESP-&266 and ESP-32 boards

sscription

thon-wifimanager
k configuration utility for MicroPython on Boards su
L

your JSON file with your networks, the default path is ' netwearks. json’, which is specified in the class

g file

guration may book like this

Here it is, and it's raising zero point three point six, which is the one that I'm
looking at directly on the website. So install it.

J5

Flas

This computer
| Lsers | paterd | Deskiop |

¥ Latestvenion

<INSTALL® Released: Feb 6, 2009

on the ESP-B266 and ESP-32 boards

sscription

thon-wifimanager

ik configuration utility for MicroPython on boards such as ESP!

5

JOur JSON file With your Retworks, the default path is '/networks. json’, which is specified in the class
g file

guration may ook like this:

OK, it's interesting, I think. OK, so this is I've been work for something
else. Going to look for somebody I found earlier to say a little bit of time
here so that I can think this one here.

J5

Fles.] < m

{J R

This computer
{ Uners | pater2 | Deskiop |
Micropython ESP32 | Example Pythan

esp32-net-config{k k| e

<INGTALL® i i pip install esp22-net-config & Released: Sep 5,2009

module to allow configuration of netword ssid and password through local access point

Package is not avalable at micropython.ong. Versien

Navigation Project description

m ESP.32 Notwork Config. if 5T made fails, enable AP mode to configure ST

D Retease history

& Download files

Project links

& Homepage

O Download

So this package looks interesting. It allows me to create a hotspot in very
hot spots so that I can see I can set up Wi-Fi on my E.S.P 30 to. And there
1s version zero point three three, which is the one that I found on the
website to install it.

J5

Flas

Thia computer
{ Users | patard | Desktop |
Micropyinon ESP32 | Example Python 3
o
.....

esp32-net-configi kK]

espdi-net-config

INGTALL pip install esp32-net-config I

madule to allow configuration of netword ssid and password through local access point

Navigation Project description

ESP-32 Network Config, If STmeode falls, enable AP mode to configure

4

1fas

esp32_net_config
config.connect_netwark_or_ge_inta_config_mc

EY S

Project links

#4 Homapage

& Download

And this one looks like it is working properly close and so you can see it,
they installed a bunch of files that all together make up this module and
you can see what it looks like, its configuration and the nature of his photo
and so on. You want to learn how to use it.

12

a’ P =
Isslectorspy] | configpy] o0 X o a0 @ github comtianderieipdd-mecnine-emuan

Fies
This 1 dimport jsen T
{ Uners | patar2 | Desktop |

Micropython ESP33 | Example Pythen - .)
scripts class Config: o Why GitHub? - Team Enterprise Explore Marketplace Pricing
sasron oy &
. scdition function gy P
& bunonpy 1

& tflander [esp32-machine-emulator

daf asdseniself):
return json.dusps({"ssid"; self.ssid, “password”; self.password})
Eclassnathod
def resdicls, filename):
try:
1 = open| 11 lenane]
except O5Error:
© = Contigl**, **) =
c.exists = False Todd Flanders and Todd Flanders support machine.reset() 317377 on 28 Aug 2000 D 26 commi
raturn ©

1
i

Y MAMIFEST

Y READMErst

O machine.py

You can have a look at the documentation here. But it's just an example of
how you can find and then install and use third party packages, open
source Markov Python software that can help you achieve your objectives
for your own projects. I'll be using some of those later on when you start
the practical experiments. Beginning in 60 second.

THE MICROPYTHON SHELL

Hi and welcome to a new section in this discourse, in this section of several
projects where I'll show you some topics that are specifically related to
working with Michael Python on the E.S.P. Thirty two,

for example, 1n this first project of the section, I'll show you a couple of
ways by which he can interact with the micro python show and run
interactive programs or even execute programs that are already stored on
the file system. Then in the next project, I'll show you how to upload and
download files using thony from your computer's file system to the security
file system and vice versa, and how to do things such as interrupt a running
program and so on. So let's begin here with the shell. The shell, of course,
is running on the E.S.P 32 note on Sony. Sony just gives us access to the
shell. And it's just one of the various ways by which you can access said
we're going to show you how to do that with Sony. And this is something
that you've already seen in previous projects. But I'm going to show you an
alternative here where I use a program called Serial, which gives me access
to the exact same schill running on the E.S.P 32. So I'm going to keep
those two side by side. And of course, only one of the two tools can be
connected to the micro python show on the E at a time. And right now I
have connected Thorney to the show. You can see that micro python device
is available here on the left side of the Tony Idy and of course, the
shopfront right here waiting for my command. So to demonstrate a couple
of things here, I have connected a rate ality to Gibril twenty one and then
via a two hundred and twenty ohm resistor current the meeting resistor to
ground the C here, the cathode of the LDA goes towards ground and let me

just put that back in place. All right. When you work with the show
exclusively and let's imagine that we are not doing this on phonier right
now, so we don't have access to this file browser in particular here, one of
the modules that you want to be familiar with is the OS or the operating
system.

w3 + MicroPython libraries » wos - basic “operating system” services View page source

ugs — basic “operating system” services -

= Python standand libraries and micro- i 30 sulrel of th Python module, a3 described below. For more
libraries

tuple (possibly a named tuple] containing information about the underlying machine

and/or its operating system. The tuple has five fields in the following order, each of them being

MicraPythan (£5233)

So this module is a core module with Python or that is C Python. And in
this case, because we are working with Micro Python, there is a micro
operating system where you OS or micro OS services module, which
contains a subset of the functions that you'll find in the full blown C OS
module.

math - mathesatical functiors.
warvay - wrravs of numeric dats

manymcia = awpnchronges 10

bdracss = binaryASCH
o

wenliactions - collection and
‘comisines types

e rra - sysiem eever codes
hashLib - hashing algorithms
heapy - heap quee sigorithm
ke - INPULAUIPUL Streams
apsen - 1SON encoding and
Secoding.

s - e "operating system”

e - gl ogulac expressions.

uslct - wait for events on 2 st
o stroams

oS . aname
Return a tuple (possibly a named tupbe) containing information about the underlying machine
and/or its operating system. The tuphe has five fiekds in the following order, each of them being
astring:

A5 R the name of the undertying system

* sadesams - the network name [can be the same 35 sysasss |
= releass - the version of the undertying system

* warsiss - the MicroPythan version and build date

* machise - an identifier for the underlying hardware (eg board, CPU)

uos _urndosin) %

Return 3 bytes object with n random bytes. Whenever passible, it is generated by the hardware
random number generator.

Filesystem access

s . chdiripath)

Change current directory

wes . gatewdl

Get the current directary.

uos . {Liutdin|[dr])

MicroPython (E5931]

The functions are listed here looking at the macro python documentation
and you can see some of those, for example, that you named the the micro
main function gives you a table that contains those items in it that helps
you 1dentify which device your script is working with, this random object
with random numbers, et cetera, et cetera.

(-1 o4 o

I o8 - b “cparatng sysien” sareicas — Macrayaron 11 decunanistion

‘usechet - sacket module

wos . Alistdir([dr])
sl - SSLITLS module.

st - pack and unpack
primitive data types.

sy - system specific functions
atsam - time related functisng
uelit - 2 decempression
_thrast - mubtithresding supgort
MicroPython-specific ibraries

This function returns an iterator which then yields tuples corresponding to the entries in the
directory that it s lsting, With no argument it Ests the current directary, atherwise It lists the
directory ghven by dir

The tuples have the form iname, type, inodel, size]

= name s a string for bytes if dir is 3 bytes object) and is the name of the entry:

* trpe is an integer that specifies the type of the entry, with 0x4000 for directories and
OwBO00 for regular files

Port-speci raries » inode Is an integer comesponding to the inode of the file, and may be 0 for flesystems

that don't have such a notion.

Libraries specific to the pyboard
Libraries specific to the WiPy

WLibraries specific to the ESPA266 snd
ESPI2

4-tuple that inchudes the entry's size. For file

e of the file or -1 if unknawn, ks meaning s cumently

undefined for directary entries.

s RRER []) %

L]
With no angument, list the current directory. Otherwise list the given directary.

wos . mkdir{seth)

Create a now directory.

uos . removelsath)

Remove 3 file

wos . rediripath)

MicroPythan (E3932)

But the one that I find interesting and we're going to use in the moment is
this one here list directory. So I'm going to use this directory to see what
files are already running on my show, and then I'll show you how to
execute those files.

1 docs micropyihon. e ates Tbraryos him] oW o

U] o4 - Do “cparntng st sarvices — MCTIPRGn 114 decumentaton

..... SOM encoding and oS renasalold_path, new_path]
Rename a file

wos . statipoth]

Get the status of a file or directory.
ok aton uos . statvfsipath) =
Fievpsters mourerg Gt the status of a fleystem
Returms a tuple with the flesystem information in the following order
Betse - fle system biock size
fraize - fragment size

Becks - size of 5 in f_frsize units

number of free blocks
1 = number of free blocks for
number of inades
number of free inodes

number of free inodes for unp

MicraBythan (£5233)

We can create directories or remove files, et cetera, so we can have a look at
this location to see what kind of functions are available to inside the OS
services module. So this is very useful. Let's try it out.

This compuiter

§ Usars | patar2 | Dusitop |
Micropython ESP)2 | Example Python
scripts

I'm going to import U. S first, and then I'm going to do a listing to see what
files are available. Of course, we can see those files here, but I'm going to
do that one on the show. So let's pick this command. It's this just copy and
paste in here, open close parentheses. And you can see that in the root
directory of these three files. Of course, the whole world wide contains this
script and I can just type it in the shell and run it interactively. I just say
hello here and it will come back. Now, let's say that instead of you typing
the interactive comment into the show, you want to execute an existing file
like the Arrow and the score will be Wi-Fi. Right. So how do you do that?
There's a python command called Exec File, which I find very useful for
exactly this purpose. So I'm going to copy the name of the file. And pasted
in here, you can see as I clicked on this item in the array, the object
inspector came out and he told me what the contents of this array are, just
pretty interesting. And you get such beautiful partnership data and we close
it for now. So I have used a file past the argument, which is the name of the
file and enter, and that would just execute the program that is contained
inside this file here.

This computer .
{ Usars | petar? | Dusitop |
Micopython E5P12 | Example Python.
scripts

> jmport uos
»on o3, Listdir()
[*boat.py’, *helle_world.py*, *lib‘]
s55 print(“Hello")
nello
»os exectilel hello werld.py"}

Hallo world from micrarythos

MicroPythan (E5932]

So let's go over to the alternative, which is just another way of connecting
to the exact same shell in achieving the exact same thing.

J &
Fles
[™=

commpter
1 Users | pater? | Dusitop |
Micropython E5P13 | Example Python
scripts

“helle_world.py’, *lib']
sss print(“Hello")

mall

on execfilel"hello_werld.py")

icroPythan (E3932)

So the first thing to do here is to disconnect. And release my especially two
and then I'm going to connect. Heat control command to deal on my

computer, but you can also do the terminal connect and that will connect
you to the shell hit enter to get the prompt and the prompt.

& Serisl File Edt View

MicraPythan (£8232]

And I can do the exact same thing as I did in Sony.

J 3
Fles
« B

coerprater

{ Usars { pater? | Dusitop |

[Connected] Micropython ESPAZ | Example Pythen
scripts

=== import uos

»>> yos. Listdir()

['boot.py', 'hello_world.py', 'lib']
>3 exectile("hello_warld.py")

Hello World from MicrgPython.

>3 -
[Disconnected]

22> import vos
om yos, Listair()

['boot.py’, *hells_world.py’, *lib']
203 print{“tello")

nalls
= exectilel"hello_world.py™

Wallo world fr

o
Bachend tarminated r discossected. Ues Stepiestart’ te ressart.

MicroPython (E3937]

So import your as so micro OS and then try out the directory Alistaire
function where it is code completion as well as I can hit tab and I'll get a

code completion feature activated. So these are the three of the two files
plus the directory. At this level there is no differentiation between a file in
the directory and I'll use exec file to execute. Hello World P y and it
works. No problem at all. So I'm going to disconnect from Serial and
continue with a couple of other experiments in the. She provided by Sony.

So let's click on Stop to actually start and the connections a bit counter, but
still potentially to stop and restart the back end so easily. Three, two is
connected again. You can see it here. It is good to go. This is a look at
another example here that involves the ability to now copy some code from
the Python file here on my local file system onto the shelf.

(ke et wastokor |
This cormgniter " 1 from machine import Pin

| Usars | paterd | Cusiion | 2 from utime ispert sleep

Micreoython ESPI2 3

4 led = Pini21, Pin.OUT}H - t t
5

0 wnils Trus:

7 ‘ed. onif)

o dmport ues
o uos. Listdir()

['boot.py’, 'hello_werld.py’, 'Lib'|

o

nnnnnn

So first of all, there is the machine module, which contains various
modules, including Pend, that allows me to work with pins. And I've got a
lot more information about this in Sections seven and on which where I'm
going to go deep into those modules. So for now, don't worry too much
about them. Just play along and see how this works then. Actually, I'm not
going to import any time or micro time. I'm not going to worry about that
for now. Next thing to do is to create the ality object. Connect the object to
PIN twenty one and configure it as an output, then I'm going to use Alyda
on. To turn on the radio and really off to turn it off, very simple, so you can
now control hardware resources from the shell, but the show also allows
you to create blocks of code. So, for example, here there's a block of code,
there's an infinite loop. This is going to execute forever because the
condition here is true. It doesn't change. So it's going to turn on the ality,
hold it on for half a second and then turn it off and leave it off for another
second. And this will give you the opportunity to show you how to work
with loops on the comment on the shell and also how to interrupt them.

LX) 5 Thoney - werigtafied bink.py @ 21
JSHE © L

- bt gy | e pieson

This comgnater L] 1 from machine Pin

| Usees | pater | Desiton | e i e std

Microgythan ESPI2 | Example 3

Pythen

sleep(s.5)

So because we're using the Sleeth function here, I need to import sleep from
the MICRA time module. So there's sleep and I'm just going to take this.
So while true, don't forget the the two dots, in the end I can see that the
shell is waiting for me with indentation type something in that is going to
be part of this wire block. So Nelida on. Then sleep or have a second and
then the early days of and sleep for another half a second. So now I'm
done. I've got to go back up and put the parentheses there. So there is some
intelligence in the show. So you see that the show didn't panic. I was just
able to use the Iraqis to go back up one line and add the missing
parentheses. And they showed that show, knew there was something wrong
there because they did had the Korei highlight like that. So you know that
you need to close the parentheses to match the opening parentheses. So
done with that line and I'm actually done with the blog. So I'm going to hit
Enter one more time. And now the entity is blinking on of half a second
each time and you can see them not having the prompter down here. 1
don't see the prompter because my micro python instance is busy blinking
this time. So my DP 32 can't really do anything else right now. It's locked
up 1in this infinite loop to stop the infinite loop and to be able to do
something else like upload or download a file.

scripiafied_blink gy @ 2: 1

o prant(“hel(6"]
el
s gxectile(“hello world.py”)

Welle world from siorerython.

o
Backesd tarminated oF dlscomascted. Dee SUSp/RASEATL’ e EesAry.

o> from nachine rt Pin
o Lod = Pin(21, Pin.OUT)

sleepl(d.5)

I need to either go in to run and say interrupt execution or just hit control,
see, which 1s what I'll do.

) — 3 werigtued phok.py @ 2 1
JsN O -

thoad Unetoworiapy] | ek

This comguner . from machine ﬂ Pin
{ Usars { petard | Desiton | 2

Abciceython

neripts.

ESPI2 | Exampls Pyt 3
4 led = Pini21, Pin.ouT}

& yadition py

while True
® acdition functionoy ted.onl)

& button oy 6 sleapld. 5
L ted.of 1}
bt Bk py 10 sleepld. 5}

med Lessinated or disconsected. Die Slep/Bestirt’ to sestart.

30> from machine isport Pin
s> led = Pini21, Pin.OUT)

And that we interrupt the execution and break out of the loop forcefully, but
it does break out of the loop, the memory is not quite it's still there.

~ Thorey -

fex (bt ey | vty |

This comganer () 1 from machine ﬂ Pin |

| Users | paterd | Desitop | ?I |
4 led = Pin(z1, Pin.OUT} te out "

while True

Backend tasminated or dissowsscted. Dve ‘HLep Mastary’ ve wesare

- > from machine iapert Pin
»» led = Pin{21, Pin.OUT)
& postey -

led.on(
& Palle_worid gy s> led.off()
o Led.onl)

un Led.off ()

nnnnn

So I can still go back or turn on or off senility. So the objects are still in
memory. And. And she can see [am able to use the shield to write simple
programs, test concepts out, and then go in to my script and work on larger
programs as part of a file one or more files. So this was a demonstration of
the things that you can do with the show, regardless of how you are
connected to the show, either using phony or some other tool. In the next
project, I'll show you how to do file management operations using phony
phony. It's a very convenient file manager, these two windows here which
allow you to send files back and forth between your host computer and the
spirit listening post.

HOW TO INTERRUPT A
RUNNING PROGRAM

In this election, we show you a few ways to interrupt the running program
and actually a little bit more than interrupt their own program, and I'm just
going to show you how to restart your especially to using soft reset feature
and connect the disconnect from thony and disconnect the show.

 Thanay -

To do that, I'm going to begin by running the red blinking script. The only
thing that I learned here 1s on line seven, I thought. So I'm just representing
the blinking here by using a new dot. And of course, while this is
happening, the E.S.P 32 is locked into executing this loop to interrupt it.

 Thoner - | opy /Example Fythen scriots/led bink oy @ 7:5

led ey [arhmetieoy] [e aithmatic oy |
from machine import Pin
from utine inpart sleep

led = Pin(21, Pin.OUT)

while True:

You can hit control, see, or you can go to the run menu and he'd interrupt
execution or choose this option. Here it is the control seat.

+ Thaney - [Users/peter/Desiton/Micropython ESP32/Emmple Pythen scrts/ied bink py @ 7: 5§

led bikpy [arithmeticoy] [use aithmatic.py]

compaer . 1 from machine import Pin
1 Ustes | patar2 | Desitop | from utine inport sleep
SPI2

[T led = Pin(21, Pin.0uT)

MicroPython (ES937)

When you do that, you get the keyboard interrupt and then you have control
of your speech to again. Going to clear this and to restart the program now,

got certain you dodge coming up, another option that you have to send an
end of fire or soft reboot.

+ Thaney = | Py fExample Pythen Scrgtsien_Dinky @ 7:5

led biekpy Jathmeticoy] | usemithmtic oy]
1 from machine impert Pin
from utine import slecp

led = Pin(21, Pin.0UT}

And this is done by using control the on the keyboard so we can control the
and see what happens here.

+ Thanay - i - Exampie Python scriptaiied bink gy @ 75

led biekpy | [ahmeticpy] | [s mithmatic oy]
‘This compater = 1 from machine import Pin
1 Users | patard | Desiciop | from utine import sleep
ESPA2

[T — led = Pin(21, Pin.0UT)

MicroPython (ES937)

It's basically a resetting, but not breaking the loop. It's just starting the
program from the beginning. So that is the effect that it has now when she
one more thing, when it hit control, say, to stop the program from running,
just clear the show and then do a controlled day.

+ Thanay - [Usery/peter2/Desiiog/Micropython ESP32/Exampile Pythen scrptyied bink py @ 7:5
-

led bick gy Jahmeticoy] | wseaithmetic oy]

This computer 1 from machine isport Pin
{ Users | pater2 | Besktop | from utine isport sleep
Micropython ESPEZ

[1——rT— led = Pinl21, Pin.0uT)

course weicome sh1 108.0y
8 cxv._data,_file ter

And you can see that the event just occurred with a soft reboot. So with a
soft reboot, the memory is not reset, the memory remains.

/Example Fythen seriptsfled_bink py @ 7

ted bieky [arhmeticpy] [uearithmaticoy |

So any program that is loaded to any variables that have been said will not
be lost. But what is better it is going to do is to start executing the program
from scratch. All right, so this annual Tannadice.

» Thaney - I Py /Example Fythen scriptfied bink oy @ 7:5

led by [arithmeticoy] [use arithmatic.py |

1 from machine import Pin
from utine import sleep

Another thing that he can do, of course, is to stop and restart the back end.
This has more the effect of a hard reset. It's like pressing the reset button on

the board itself. So, of course, that is going to stop the program. Let's try it
out. Right, and run and stop, start back in the said to. And that will have
the effect of the EU treaty rebooting effectively.

. Thanay - i - 2/Exampie Pythen scraisied bink oy @ 7: 5

led biskpy Jahmeticpy] | usemithmati oy]

1 from machine impert Pin
from utine ispart 3leep

led = Pin(21, Pin.oUT}

And then finally, of course, you can disconnect, but disconnecting, let's
connect again.

=+ Thanay - oy fExample Pythen scriptafied_bink.oy @ 7:5

fed biekpy [arhmeticpy] e arithmeticpy |
1 from machine import Pin
from utine import sleep

led = PAn(21, Pin.OUT}

Give her a moment to restart, stop, restart. Democrat Party, the device
back, I'm going to run the program.

MicroPython (ES931)

And now I'm going to disconnect. And you can see that by disconnecting
the DP through to the aid has stopped blinking, which means that the
program has stopped operating as well. So these are a few ways by which
you can effect the execution of a program using the available options here
under their own menu in the next election, I showed you how to
automatically start the program at Boot, said that the program starts when
you power up your especially to especially useful when it is not connected
to your.

HOW TO RUN A PROGRAM AT
BOOT

Up to now, we have been programming the 3-2 by having it constantly
connected to the computer and we were able to click on the green button to
get the program to run. I imagine when you have finished development and
you want your hospitality to be independent of your computer and to be
able to automatically execute a given script when power is applied.

= Thonry - [Users/peter2 Desktop/Miceupython ESP32/Example Python seriptsfed binkpy @ 11: 15

There's a couple of ways by which you can do that in this. Let's show you
both of them both ways involve the supply file.

® Thonny Fle ot View Run Tools Help

ety - MicroPython devce - fboclpy @ 3:5

So the bid to be fine as long as it exists, is going to be the file that the EPA
authority will attempt to execute when it's powered up. You can see here
that in this instance, it does have some code in it, but it's all commented

out. And that's why when we do start the hospitality, nothing happens.
There is code that is coming out is not going to be executed. You can
replace this code with your own code.

This computer
1 Users | paterd | Daskiop |
Mcrogythan ESP3Z

espa266_i2c_od py
fade py
& frequency_tast py from machine sport Pin
from utise import sleep

B led = PiniZ1, Pin.ouT)

led. of 1)
sleep(o. 5N

So I'm going to do this right now. I'm going to copy the code from previous
project and I'm going to pasted here. It's going to leave the previous

committed out code as it is. I'm going to paste it in here and then save this
file.

RN E R R RN
pEEE RS EE e . e

AR R R R
cEEEESEEEREN

Now, what I'm going to do is I'm going to disconnect the computer, cable,
USB, cable, and I'm going to replace it with a cable that [have connected
to a power supply. This one's a battery power supply and plug it in and you
can see the reality is blinking, meaning that my code in the P. Y script is
being executed. So that's the first way. Could you connect my Richard
back to my computer and now let's see what happens.

« Thoney - MicroPyihon device :: ooty @ 15: 16
[l ey | [ooctr1
. 1

5)
&
i from machine isport Fin
from utine import ileep
9
10 led = PEN(21, Pin.OUT)
15 while Troe:
3 print(*.")
= 14 Led.on()
od_softi2c_testpy 15 sleep(0.5)
) led_bink_21.py] .
B led ik timer_21 gy 17 sleep(0.5)
A matrix_Bx8_random, best gy

Remember that pill, one that contains code and my attitude is executing it,
which means that it's locked inside this loop, going to click on the stop
restart back in button. And. I'm not getting any files in the file browser for
the connected device.

= Thoney - Micro@yihon device : /ooty @ 15: 15

I blskpy | [Bootpy]

! from machine isport Pin
from utine import sleep

led = Pin{21, Pin.0UT)
12 while True:
print(®."

Because, again, the device is busy executing the Blink script, so I'm going
to send a control scene to interrupt the execution so that the device is
released and I can continue to interact with it via Sony.

So that's something to remember. When you do have a script that contains
infinite loops like that, you need to remember to hit control, see to regain
control of the device. So the first way is to just simply copy your code
inside the file and then it will execute the contained code. But a better way
to go about doing this is to use input. And because we already have the
code that we want to execute on bood in a separate file, we don't want
really to copy across into the boot.

So a better way to do that and reuse the work that we have already done is
to use the import function and just simply import Elida. And it's called
Blinkx without the extensions. So this. To save this file, so say the new
version of Bitter Pill, why so what's going to happen now is when power is
applied to the big three to it is going to look inside. Would it be wise for
executable code? It's going to find a link to the ality and it's called blink.
That file will import it and they will execute it as it comes in. And the
effect is going to be exactly the same, except that now we can continue
working on our ALYDA linked or Peepli File, knowing that it will be
executed on boot up because of the input instruction in line seven of the top
file. So I've got my input statement here. But just one thing that I've
noticed is that the ability in cobbling to Kidwai file is not my ISP through
the device, it's on my local file system, so I won't need to bring it across.

 Thaney - MicroPyinon device - lbeotoy @ 7:17

e piekpr | {uostpr) |
1 from machine import Pin
i from utise import sleep

I believe there is this file here, so I'm just going to upload it. And now that
it is here, that reference will actually be correct and it will work. All right.

o el .
M A E R

—_— T
LR Y

So I'm going to unplug the data from my computer and then bring the
power cable from the battery room. And there you go. It works. Let's
connect back to Sony, and it's like power, like two computers, USB, cable.

And the hospital, too, is now locked into the infinite loop. So I'm going to
hit on the stop button to restart the back end.

 Theeey - MiroPython dewice : ooty ® 7:17
(o |
L

3

OK, so let's sit with the two methods by which you can automatically run a
program on time or power up on your AHP suited to the last thing that I

want to show you in this section is how to do simple debugging of your of
Python scripts using phony [.D. And we'll do that in the next project.

HOW TO DEBUG
MICROPYTHON PROGRAM

Like in the previous project, I showed you how to automatically execute a
script when the writing is pallett up.

And we did it by adding some code inside the to a program. Of course, if
you don't want that to actually happen and you want any code to be
executed when there is power up, then make sure that there's no executable
code in this file. Or you can just delete this file and recreate it later when
you n eed it.

So I'm going to put this away from now. And in this project, which is the
last one for this section, I want to show you a few techniques useful when
you do debugging and troubleshooting of your macro Python script. So I've
got the Blink script here, and the first thing that I've done in order to help
me with troubleshooting is to use print statements. If you come from the
Adreno world, then you are familiar with how we use print statements there
to try and figure out what is happening during the runtime, during the time
that our script or our sketch is being executed on. And that is a similar
principle here. Again, I'm using print statements to print out in this case
what is happening with this particular object, and I'm printing out its

value.

« Theery - [Userspeter2DesktogyMicropython ESPIZ/Exsmple Python scriptsfed bink gy @ 11:41
-
ol _blek By

This comenter - from machine import Pin
{ Users | patar2 | Boskton | from utine isport sleep
Wcropython ESBT2 | Examele Python

seriprs led = Pini21, Pin.0UT)

while True:

ted.onl)

print(“LED is *, led.value())
sleepld.5)

led.off()

5 ", led.valve(})

print(*LED i
sleep(0.5)

MicroPython (ES#32)

So when I run the current script, you can see that here it is on then I get no
one for value when it's all gets zero and so on. So this is telling me that the
ality object is behaving as I expect it to behave.

« Theery - [Userupeter2iDesktog/Micropython ESPIZ/Exsmple Python scriptafed_bink gy @ 11:41
-
el
1 Ustes | patar2 | Desitop |

ESPRZ | Example Python
seripes

B aaciricn py

PrANTI™LED 15 *, led.value(})
sleep(0.5)

MicroPython (ES937)

So control it is stupid and clear. So another thing that you can do is to read
the comprehensive usually error messages that come from Python when

there is a problem. So the Python interpreter, it's actually pretty good at
providing information about what has gone wrong with the execution of a
script. First of all, look at a couple of examples.

Let's say that we are trying to access Tapio that doesn't exist. So it's just an
honest mistake here. It's sent that script to the two and you see a pretty
clear error line for. We tried to do something with an invalid pin. So this is
easy to solve, right? You've got to for have a look at the pin parameter and
fingers. You know, which pins are valid for the especially to have you have
a pin map nearby, then you know that there is no two hundred eleven pin
and that he probably meant 21, which is where my ID is connected to
something with things like other parameters.

=« Theeey - [Usersipeter2/Desitop/Micropython ESPIZ/Example Python seriptsfbed_binkpy @ 422
-
e e gy
This comguter - from machine isport Pin
{ Users | patar2 | Boskton | from utine ispert sleep

Mcropython ESPI2 | Example Pythan
seriprs 4 led = Pini21, Pin.oUTH)

5 %, led.value())

print(“LED i
sleep(0.5)

NicroPython (ES932)

In this case the pin parameter. Let's say we only have pin in and pin out as
constants for the type of pin object that we are trying to create. If you had
a typo here, again, that would generate a fairly accurate error message
saying that again in line for you, trying to create an object of a type that
doesn't exist. Him, that doesn't exist, so you can go ahead and fix that is
similarly.

+ Thaney - [Users/peter 2 Desktop/Micropython ESPAZ/Exsmple Pythen scrigtyfled binkpy @ 7: 1
-
oo

computer

{ Users | paterd | Desitop |
Micropython ESPAZ | Example Python
seripes

5 *, lea.value())

MicroPython (ES937)

Any type typically will generate a message that is accurate or you can see in
this case, it says line 13, which is not very accurate. Obviously at the end
of the script, it's pointing the error at the end of the script, but the name
error is more appropriate here. It gives you more clues to figure out what
the problem may be. So initially, we will look at line 13. You won't find
anything strange there. You look at the rest of the error message and it will
guide you to where the problem is. So you may need to carefully assess the
entire error message in to trace back until you can figure out where the
problem is. So for things like typos typically have very good accuracy in
the error messages to come back from the interpreter.

I'm going to give you one more example. Let's say that we have a typo in
one of the methods. So let's say that we try to insert a parameter in line 13.
Let's see what comes back then. He did execute the program to line 11 and
then it very accurately said that there is a problem here. The function takes
one positional argument, but to given actually this this function does not
require any commands. But in a later project, I'm going to explain why
you're getting another one here instead of zero. But the fact is that the
problem here has to do with the number of arguments that we have
provided. This function does not take any arguments and I have given one.
And therefore I'm getting into a message.

Filen,

This ccmpunnt
1 Usars petar2 | Duskiop |
Micrugytren ESPAZ | Exampie Python
werts

& adstion py

& sadtion_hunction oy

& btion oy

& el workdpy

Micrlython device
tam
#: adction_function. gy
& arnteatic oy
bostpy
& hallc_workd py
bl
& aa asithmatc oy

ek py *
from machine import Pin
from utime impert sleep
led = Pin(71, Pin.0uT)

whils True:

led. onl)
PrARE("LED is *, led.valuel}}
sleep(d.5)
led.of f()

print("LED is ", led.value(}}
5)

P

wneles - vealt for events on 2 st
of streaems

unsenes - socket module
wanl - SSLITLS modube

et - pack and ungack
et data types

et - sysbem secifc unctiom

4tme - tima reatee function.

tLis - 20 decompresion

R ———
Micrafython ipecific braries
Prt-specific fbraries
Librasies specihc to the pybosrd
Ubraies specific to the WiPy
Ubraries specific o the ESPIZ66 and
EsPaz

N R] % o
W o0 - banke “coerating ayste sarvicen — Micrsdiribon | 14 daoumataten

undefined for directory entries.

SSILSRR ar])

With no angument. list the curment directory, Otherwise list the given directory,

vos mhdiripon)
Create a new directory.

s . resovels

Remaove a file.

ues . redirisath)

Remave a directory.

uos . renameiold_path, new_path

Rename a fike.

ues . statiparh

Get the status of a file or directory,

vos.statvispen)
Get the status of a fileystem
Returns a tuple with the filesystem information in the following arder:
* f halze - file system block sire

o t_traire - fragment size

It can look at the documentation here as well if. You're having trouble
figuring out what the appropriate syntax is. So in this case, we would go to

ESP three to.

This exmenter

{ Usars | patar2 | Dusiton |
Micreoythen ESPZ | Exsmele Python
& actionpy

& sustion_furstion oy

battor oy

& halio,workd o

lad_blisk py

& 1o

& adStion hunction, oy
[pe——

& bestpy

& halic_workd. py

& ted_blink py

& e seithmatic oy

el i py

from machire import Pin
from utime import s%ep

led = Pinl21, Pin.0uT)
while True:
led.onl)
pnml'lH; is ", led.value{}}
5

. is ", led.valuel}}

Tracesach fsost t

womst call Lawt)s
Typabrrar: fusction takes § pos

o

the ESPI2
Installng MicraPythan

General board contrrt
Networking

Delay 2 timing

Timeny

Pins and GPID.

PN [z width modulation
ADE laralog to digihal cormersiont
Software S bus

Hanswane 5P b

Saftware 2 bus

Hansware (7€ tan

nal time clock (RTC)
Decp-slees mode

RMT

Dewtien dver

NeaPicel driver

Capacitive touch

BT driver

WeLREPL farels breracies inleracthve

8 decs micrpyIhOn oA Vep IRk B a0 o' o
) Qe rwiwrarce Sor tha FS932 — MicroPyhan 114 decumentation

Pins and GPIO

Use the machine.Pin class:

Prom michise bapart Pin
= Pinid, Pis.00T)
ol

N, Pin. AL UF) ¢ ens
T, valvest] & set po

Pins are from the following ranges (nchushvel 0-19, 21-23, 25-27, 32-3%. These

o to the sctusl GPIO pin rumbers of ESP32 chip, Note that many end-user boars use
their own adhos pin numbering {marked ¢.g. DO, D1, ..J. For mapping between board logical pins
and physical chip pins consult your board documentation

Notes:

Pins 1 and re REPL UART TX and RX respectively

Pins &, 7. 8, 11, 16, and 17 are wsed for connecting the embedded flash, and are not
recommendesd for other uses

Pins 34-3% are input onty, and alsa do nat have intermal pul-up resistors

The pull value of some pins can be set to » to reduce power comsumption during

deepsleep.

PWM (pulse width modulation)

We would go to Pince and Jebril because we have imported the module
from machine, and this will tell you how to use these particular functions

here, you can drill down to the documentation itself and get more
information about all this, including, let's say, the type of constants that are
available for the mode.

] F i ceckmicropyihon omyenyiatesReranymaction in hamis:
from machine impart Pin

I frem utime impert sieep

5 led = PIn(21, Pin,OUT)

g2 Pin - control /O pins.

5 "y led.valuei)}

is ", ed.valoe())] & Mcropython b class Pin - control I/0 pins

Possibilities for the identifier are an integer, a string or a tuple with port and pi

Usage Modet

from suchise impart Pin

So I said earlier this only in Allapattah actually opened drain and out and
out of introducers quite a few there. And having a look at the methods,
you'll see that the value can be.

Filen.

Thes ecmenter
{ \sars patar2 | Coskiop |
Micropytron ESFAZ | Example Python
vt

& addition oy

£ gadition fumesion oy

& betion oy

& halte_workd oy

tod_blink.py

'

& agstion fumstion py
& arntnetic oy

bostiy

@ halio,workd oy

b bl py *

from machine import Fin
from utime import sieep
led = Pin(21, Pin.0uT)
while Trus:
Led.onl)
print(“LED is *, led.valuel}}
sleap(®.5)
led.of f()

print(“LED is ", led.value(}}
sheeple.5)

s e 3
Fracabach {nost

Typerzer: fusctlen takes 1 pos

P

alettoath ~ lou-devel Bumtooth.
weeymtelin - Cryptographic
cigher

sttypen = SO binary data in g
‘stroctured way
Port-specific libraries

Ubraries spacific to the pybaard
Ubrasies specific to the Wiky

Ubraries specific t0 the ESPE264 and
E5PE2

ko et 4 i = Myt 114 st st

madee- 1, pue- 1. *, valse, drive
Access the pin s 10 pin) associated with the given &d . If additional anguments are
given In the comstructor then they are used to initialise the pin. Any settings
specified will remain in their previous state.

The arguments are:

* 14 is mandatory and can be an arbitrary object. Among possible value types are: int an

internal Pin identifier), str (3 Pin namel, and tuple (pair of fport, pinl)
o mide specibes the pin mode, which can be one of

#in s configured for . I wiewed as an output I

I
Impedance state.
#in.ut - Pin ks configured for {normal] out

Fin.crEn_smATH - Pin is configured for opon-dral st. Open-drain output works
in the following way: if the output value is set to O the pin is active at a low level if
the output value is 1 the pin is In a high-impedance state, Not all parts implement this

mode, or some might only on certaln pins.

Fin.ALT - Pin bs configured to perform an alternative function, which is port specific
For a pin configured in such a way any other Pin methods jexcept Fin. iait() } are not
applicable [calling them will lead to undefined, or 3 hardware-specific, resulth. Not all
ports mplement this mode.

FinALT oren mam - The Same as Pis.ALT , but the pin bs configured as open-drain

Mot all ports imglement this micde.

One or zero, if not providing a parameter, if it's empty. And also here is on
and off on the paramedics who set into one of facilities zero.

This computer

1 Usars | peter? | Desktop |
Microgythen ESPIZ | Example Python
erigty.

& sadtion gy

& saction_furction py

& batton py

& ke word. oy

. lod_bliok oy

&

MicraPhtinan device
B
& sdtion Awtion.cy

& haic_workpy
& e bl py
e asithmatic oy

ek py ¢

from machire import Pin
from utise impert sleep

led = Pin(21, Pin.0uT}

while True:

led.onl)

print("LED is ", led.valuel}}
sleep(d.

Led.off()

D:Jn\I'LEV‘- is ", led.value(}}
1!

Typabrrar: fusction takes | pos

.

s toath — low-level Buetooth
YRl - Cryptagraphic
dghers

sty - atree bury gt)
‘stroctured wary

Port-specific libraries
Librasies specific to the pybaard
Libraries specific to the WiPy

Ubraries specific o the ESPE2A4 and
Espaz

Pin. 00T ,OF Pin,OPER_DRATH , the alterr

" vks, drive. alt)
Re-initialise the pin using the given parameters. Only thase anguments that are specified will be
set. The rest of the pin peripheral state will remain unchanged. See the constnuctor

documentation for detals of the arguments.

Retums Ness

i valuel [2])
Thiis meethoed aliows to set and get the value of the pin, depending on whether the argu

plled or not

e argument is omitted then this method gets the digital logic level of the pin, returming O of
1 enresponding o low and high voltage signals respectively. The behavious of this method
depends on the mode of the pin

Pin. I8 - The method returns the actual input value cur present o
rin.our - The behaviour and retum value of the method b undefsned
i the p 0" then the behaviour and re the

method Is undefined Otherwise, i the pin is In state '1', the method returns the actual

input value currently present on the pin

I the argument is supplied then this method sets the digital logic level of the pin. The argument
x canbe amything that converts to boolean. If it converts to Tras , the pin it set to state L'

otherwise it is set 1o state "0 The behavio 4 depends on the mode of the pin

* Pin.ou - The valse is stored in the o . The pin state does not

Again, no parameters. So sometimes you may need to refer to the
limitation to figure out what is going on. All right.

led bl py *

from machine import Pin
i from utime import sieep

led = Pin(21, Pin.0uT}

whils Trus:

is *, led.value()}
Led, 0fF{)

print{"LED is ", led.valuel}} . \

sleep(®. 5} lettseth — lpw-bevel Betooth o .o omann - If the value is 0 the pin Is set 1o a low voltage state. Otherwise the pin

- b set to high-impedance state
cishers

= e B e W Wihen setting the valse this method retums s
stroctured way

Pt specific iorarkes Pin._call_|[x]}

Uibraries specific to the pybosrd Pin objects are callable. The call method provides a {fast] shartcut to set and get the value of the

Librasies specific to the Wiy pin. It s equivalent to Pinvaluelld) See pin.valeet) for mone detals

Ubrasies specific 10 the ESPA264 and

E5P32 vin. 680

Sat pin to *1° output level

Pn.oft)

Set pin to *0d output level,

Pin. irqihandier=None, triggerPin B0 FALLING | PinIRQ_RISING, *, priarity=1, wake=Herr, hard=Fabe]

So I'm going to leave it at that over the next few sections and dozens of
projects will be bumping into problems with my scripts. And in many
cases, I'll be showing you live how I've gone about solving those issues.
But for now, just keep in mind that it's a good idea to keep print statements,
especially if you are developing a new script so that you get real time
information about what is happening inside the program as it's executing
and become familiar over time with reading those traceback error messages

from the Python interpreter. And I guarantee that every single time to be
able to fix the.

ABOUT MICROPYTHON
MODULES

Hi and welcome to a new section in this course in this section. I want to
talk about Michael Python module's Michael Python module's just like a
regular python.

& Thonny Fi Gor

Modules are files that contain functions and code that you can import and
use in your own scripts. Very often we tend to use the word libraries
instead of modules, but those two words are equivalent. You they can use
either one and understand what you're talking about myself. I often use the
word libraries instead of modules. So just wanted to give you a quick
example of what a module can do for your programming and for your
productivity. And in the next few projects in this section, I'm going to talk
about the modules that you find integrated into my python. So let's call
those built in modules and then there are the community modules. So these
are modules that are contributed by people that use micro python or
python. And what we're going to show you how to install such community
modules. This script is a script that I'm demonstrating in a later project, and
it's showing how to use a two by 16 LCD screen with your E.S.P 32. Now,
if you notice here in line thirty seven, I am importing an external module
and the name of this module is E.S.P eight two six six. And it going see
underscore L'Occitane now using the Keywood as. To nominate a different
name by which I'm going to reference the contents of this module in my

script so you can sit down here, for example, in line 44, where [am cr
eating a object out of this eye to see LCD class that I'm using the
nominated names specified after the keyword. So you can do things like
that in order to shorten perhaps a name of a very long named module. Now,
back to the module itself. The name that I'm using here to input the module
is simply the name of the file for that same module.

from machine rt 12, Pin
7 a5 espazss_lcd

rt
from time import sleep

i i2c = L2C(0)

4 lcd = espB2es_lod. [2clod(iZc, espies_led DEFAULT_T2C_ADOR, 2, 1)
Led.clear()
counter =

while Tree:
L. move_tole, @)
T mibat el " Iels § 0T

So if you look here in my micro python device file listing, you'll see that
there is a file with the exact same name, except that it also has the dotp y
extension and have opened it up right here.

llcd o smspy] | I cpH26E (2o
“Implesents a HDATED ¢

i from lcd_api impert LodApi
from machine ispert [IC
from time import sleep ms

class I2cled(Leddpi)
“““Inplements a

MD447E character LCD connected via PCFEST4 on T2C."

1f, i2e, i2¢_addr, num_lines, ram_colusns):

{self,LCD_FUNCTION_RESET)

cl3eLf.LC0_FNCTION_RESET)

l(DjU’K'TIiNJ‘lMS

And you can have a look at it. So this is the. Module that [am importing
and you can see the code in it and you can see what it does. Now, the other
interesting thing to notice here is that this module actually has one more
dependency. So you can see in line number four, it depends on another
module. That is also an external module that I had to download from its
source called LCD API. And you can get from this the actual file name of
the file that contains this module is LCD and the API dot p y, which is right
here. But this is a fairly large module, don't click on and then you can have
a look inside, you can see that it's called one class here called the LCD
API, and it's got a bunch of functions in it. And so therefore it's quite
large.

lled Gesmstpy] |esp8286i2ckedpy] | (Icdanioy]
import tine

LCD_CLR = ekl
LCD_HOME = a2

=T
@
r
rs
e
@
L4
i
r
el

WOVE = 81
= Bl
WOVE_RIGHT = @xid

LCD_FUMCTION = 829
LCD_FUMCTION_ 8817 = #x18
LCD_FUMCTION_JLINES = dxdd
LCO_FUNCTION_ 1600TS = &4
LCD_FUNCTION_RESET = @#x30

LCD_CGRAM = Bxid
LCO_DORAN = BB

shen

And for that reason, I'm using the key word import to import a specific class
instead of importing the whole lot. Now, imagine that this file of this
module contained to multiple classes. So instead of just the single one that
this one contains. Imagine that he had multiple classes. By using this type
of notation, you can narrow down the class or classes that you want to
import as opposed to importing the entire module, which 1s something very
useful when you're working with devices that have limited capacity. So all
this is stored in RAM. Of course, when you import and instantiate a class
and you have an object to work with or that is in RAM. So by being
selective about the components of a module that you want to import, then
you can preserve the resources of your microcontroller unit in the same file
here. Just to continue this for one more step. You can see that we are also
importing modules from machine and from time. And these these modules
are built into micro python, which means that we don't have to install the
files that contain those modules like we did with the DSP. So we can notice
here that there is no file called machine PCI or time dot behind this, because
these two modules are built in two micro parties. They come with the
language and they're part of the interpreter.

Pin
impart espd266_i2c_lcd as esph2ih_lcd
from tine impart slsep

i2c = [3C(8)

4 led = espB2B6_Led. T2clcd(ide, espB266_led.DEFAULT_T2C_ADDR, 2, 16)

led.cleari)

So that's just the quick introduction about modules. We can understand the
concept behind them and why they are useful. So that means we can go
ahead into the next couple of projects where I can talk more about built in
modules, show you a few things about them, including where to find the
documentation, because there are a lot of them. There's no way that I'd be
able to cover them in this course. But I'll give you the source of all the
information that you need. And then in the project after that, I'll show you
how to search the community on the Internet in order to look and find
micro python modules that would be useful for your project for go into.

BUILT-IN MODULES

This actually talk about micro python built in modules, these are modules
that come with the micro python interpreter and they are accessible from
the scripts running from your E three to you don't have to import or install
any additional files to be able to use the built in modules.

B i
Fies

MicroPython
Docs » MicroPython libraries

This compasnr
1 Users | pater? | Dusiton |
Rhcsogythan ESR1T

MicroPython libraries

Port-specific lbraries
Libraries specific € the pybasrd
Libraries specific to the WiPy
Libearies specific to the ESPE264 and

So let's have a quick look at the documentation to begin with and then I'll
give you a short demonstration. Let's go to the latest version of the macro
python, the competition. I'm looking at version one point fourteen here and
the very top you'll see a section of micro python libraries in here. You'll
see there's a few different subcategories of subsections. First of all, you've
got the Python standard libraries and micro libraries right here. You've got
libraries such as math or C Ul, although we also use an S for the operating
system and so on. Then after that, you've got micro python specific
libraries such as Machine, which we are going to be using a lot, and the
social network and so on. And then you've got libraries that are specific to
the market and using in our case there is three 32. So you drill into that and
you see that there's a couple of modules here that provide functions specific
to the ISP 32.

J &5

Fies

This ceemgunr
1 Users | pater? | Dusiton |
Microgythan ESPIZ

Now back to the beginning, just to talk a little bit more about what each one
of these does. The Python standard libraries are libraries that you normally
find in the regular or C Python programming language. And these are also
modules in libraries that come with standard python. The implementation
of those libraries into Micra Python is very close to you, but you cannot
expect one to one correspondence between the functions available, for
example, in the 1O input output library in Python against that, that is
available in micro python.

Fies
This comgaster

{ Usern | paterd | Destton |
Mecrepythan ESPI2

& tedagy

B tregesncy_teanpy

s - bl “npevating system”
& ralio_workdt oy v

@ icd apioy

B e (2e neat

McrePython device

v - timgle ragulsr eprevons

wesit for events ona st
of streams:

4 b

& operstor ey
‘adlticn function gy
acithmetic oy
bootpy
HPETEE_ITC_kapy
Puadlo_worid pry
ted_npl g1y

wnecunt - socket module
sl - SE/TLS modsle

aatruit - pack and unpack
rienithe daty bypes

s - syvtem apecifc Ronetiont.

whima - Hrme reisted functiom

- i decowpresion
thrass - multthrasding wpport

MicroPython-specific libraries

Part-specifc ibvaries

oy
wt_srithmate py

a
I
@
@
@
#
&
&
8

Libeasies specific 10 the pybosrd

Ubearias specific 10 the ESPRIES and
ESPE2

— dhoew micrapythan erglen istest el

» wio - inQUt/output streams

uio = input/output streams

This module implements o subset of the corresponding CPython mocule, o5 described below, For mare
Information, refer to the original CPython documentation: |

This module contsins addi i types of stress (Hle-Bke} objects and helper functions,

N
Conceptual hierarchy

Conceptual hicrarchy of stream base classes is simpfied in MicraPython. as described in this

section

{Abstra
adhere to few dichotomies [pair-wise classifications) in CPython. In MicroPython, they are

) base siream classes, which serve as 2 foundation for behavior of al the concrete classes,

somewhat simplifved and made implicit to achieve higher efficiencies and save resounces.

An important dichatomy in CPythan is unbuffered vs buffered streams. In MicroPythan, all streams

are eurrently unbutfered. This is because all madern OSes, and even many RTOSes and flesystem
drivers already perform butfering on their side. Adding another layer of buffering Is counter
productive

bustteri

ue known as “butfertiloat”] and takes precious memary. Note that there still caves

e & may be useful, so we may introduce optional bultering support at 3 Lutes
But in CPython, another important dichotomy is tied with “bufferedness” - it's whether a stream
ead/ weites or not. A shart read is wh

fy for writes. In CPython, unbuffered streams are automatically short operation

may incur she er asks e.g. 10 bytes from a stream,
but gets less, simila
susceptible, whie buffered are guarantee against them. The no short read/writes s an important
trait, 85 It aBows 10 evelop MOne concise a1 EFCK BIOTamS - Something which is highty

desirable for MicroPython. So, while MicroPython doesn’t support buffered st
ort-operations streams. Whether there will be short operations or not depends on each

ams, it still provides

for nar

So, for example, in this case, you see that I o or the Python Library starts
with a U 1n front of 1t, which makes it micro IO and that indicates that this
1s the micro python version of the IO module that comes with C Python.
So you can see here there is a reference to this Python input output or IO

module.

J3
Fies

Table of Contents

162 4
warking with s
Outreien
* 16.2.11 Tet 1jO
® 16.2.1.2 Binary

Corn toels for
tedegy

Hrecuney test oy
Pall-sansor_test oy

2.3. Class hierarchy
o 16.2.3.1. 10 Ba
Classes

‘addition_function gy o 16.2.3.2. Raw File

annmetic gy
Boatpy
*spET06 iZc edpy
Puatle_worid oy .
ed_aplpy
Ied_iZe_testpy
ety
wse_arithmete py o 16.24.2 Tent O
* 16.2.4.3 Mult

1o

o 16.20.30 Rullered

Sereama

16.2.1.4. Text 1O

16.2.4. Performance

* 16.2.4.1 Binary
vo

. EELEEEE T

ing
16.2.4.4
Rewetrancy

Previous topic
1 - Miscellaneous

ing system inteslacas

Next topic
163, wime

Time access
and sions

This Page

Raport a g
Shew Saurce

16.2. io — Core tools for working with streams

Source code: Lib/io.py

16.2.1. Overview

The io module provides Python's main facilities for dealing with various types of I/0. There are three
main types of /0 text i/0, binary /O ang raw /0. These are generic categories, and various backing
stores can be used for each of them. A concrete object belonging to any of these categories Is called a
file object. Other commaon terms are stream and file-like object.

Independently of its category, each conerete stream object will also have various capabilities: it can be
read-only, write-anly, or read-write. It can also allow arbitrary random access (seeking forwards or
backwards to any location), of only sequential access (for example in the case of a socket or pipe).

All streams are ca
weite{) method of a binary stream will raise 3 TypeError. 50 will giving 2 bytes object 1o the
writa() method of a text stream

ful about the type of data you give 1o them. For example giving a str object to the

Changed in version 3.3: Operations that used to raise 0
riowr an alias of os:

16.2.1.1. Text 1/O

Text |/0 expects and produces svx objects. This means that whenever the backing store s natively
made of bytes (such as in the case of a file), encoding and decoding of data is made transparently as
well as optional translation of platform-specific newline characters.

The easiest way to ereate a text stream Is with openi |, optionally specifying an encading

open{*myfile.txt®, “r", sncoding="utf-8°)

In-memory text streams are also available a 10 objects

io.Stringio] “nome

We're going to click on that and take us over to that documentation. And
we are now looking at Python version three point five and this is the 1O.
Documentation of the condition for the library and you can see it right here
against what you provides us in a micro python environment.

168

Fins

This compunr
{ Users | pater? | Dusitoo |
Miesceythan ESRIT

ion. All ports fwhich provide access

uppart for other anguments vary by

Classes

chass wlo, FleT00)

open in binary mode, €. using speninane, “re”} . You should not

clows ulo, TextT0Wrapperi.|

a e open in text mode, e.4. using spe(name, “ri”} . You should not instantiate

closs wlo. StringI0f | siing] }

closs ulo, Bytesol [sirng |)

getvalus)

Get the current contents of the underlying buffer which holds data.

So the basic functions will be available, but they will be optimized to
operate on a limited performance environment, preserve memory, for
example, and lower ship use cycles. And some functions might not even be
available at all.

* 16.24.2. Text O
" 16.24.3. Mult-

Drsding Changed in version 3.3; Operations that used to raise ToBrror now ralse osErroc, since 10Error
LR EEEN now an alias of oeErrar,
Reertrancy

Previous topic 16.2.1.1. Text /O

16,1, o8 — Miscellaneous
woerating sysbern intesiaces. Text |/Q expects and produces sir objects. This means that whenever the backing store |s natively

made of bytes (such as in the case of a file), encoding and decoding of data i+ made transparently as
MNext topic well as optional translation of platform-specific newline characters.
16,3 wime — Time access
and tomversion The easiest way to create a text stream is with <u<n{), optionally specifying an encoding:
This Page 1 = open|‘myfile-tat®, "r", encoding="utf-8")
Repatt a Bug
Show Source In-memory text streams are also available as stringTo objects:
£ = io.Stringl0| some initial test data®j

The text stream AP is described in detail in the documentation of Text108ase.

16.2.1.2. Binary 1/O

Binary 1/0 (also called buffered 1/Ch expects bytes-like objects and produces byrss objecis. No en-
coding, decoding, or newline translation is performed. This category of streams can be used for all
kinds of non-text data, and also when manual control over the handling of text data is desired.
‘The easiest way to create a binary stream is with .y« () with ‘B In the mode string:

1 = open(“myfile.jpe’, “rb")

In-mermory binary streams are also available as sytesIo objects:

£ = lo.Bytesl0{b sone initial binary date: \=00\z01")

The binary stream AP{ is described in detail in the docs of nuffersdionass.

Other library modules may provide additional ways to create text or binary sireams. See

So we've got the function open, for example, here, and it's a search for open
mic that is also available here. And you can use it typically in the same
way. So in Python, the function open requires a file to open. Then you've
got the open modifier sort of mode of the operation of the file. So whether
you'd like to read it, for example, or appended or write and so on, we talk
more about this later. And then there's also the type of encoding that the
file contains. Now, on the other side, on the micro python side, we have the
name again, then the mode, as well as the third parameter here for the
encoding. But just not notice what it says here or ports which provide
access to the file system are required to support the mode parameter, this
parameter right here. But whether the other arguments are supported, these
arguments over here depend on the port, which means depending on which
target device you are writing, your micro python program for, whether it is
for the security or the weepie or something else. So you need to be a bit
careful and consider your target as well when you use in those classes and
those functions. So that's what's happening here with the Python standard
libraries. And we've got micro python specific libraries.

‘himi

{ Users | petard | Desitop | R - .
Micrepythan ESPI2 machine unctions related to
& todeoy
& treguencyt

machine — functions related to the hardware

The nacnine module contains specifc functions relatedita the hardware on particuar boa
Most functions in this module allow to achieve direct and ur tricted sccess to and control of
wscropyinen - weewwm and comtrel hardware blocks an a system (lioe CPU, Himers, buses, etc), Used incomectly, this can lead to
: - malfunction, lockiups, crashes of your board, and in extremne cases, hardware damage.
& operstor py setuars — etk conhguration

addition_function oy P " . S
adthmatic gy it ot b Wbl A note of callbacks used by functions and class methods of sacsise module: all these callbacks

boatpy
serystalis - crypRsgraghe
SSpE66 iR ooy cighan

should be cos lered 2 executing in an interrupt context. i true for both physical devi
105 »= 0 and “virtual® devices with negative (D5 B -1 (hess
shims on top of real hardware and real hardware interrupts). See Writ
wxtypen - SCCEYS REnary daka B
structured wiy
Reset related functions

Part-specific ibraries

a
@
@
@
@
@
Fy
&
8

Uibearies specific to the pybosrd
machineg. rese
Libeasies specific to the WPy
Resats the device in 8 man ar v extemal RESET button.
Libearies spacific to the ESPE266 and
E5Pa2

machine. seft_reset]

Performs a soft reset of the interpreter, deleting all Python objects and resetting the Python
Peap. It tries 1o retain the method by which the user is connected to the MicroPython REPL (eg

sevial, UISE, Wif)

machine. reset_cause)

Gt the reset cause. Ses constants for the possible retum values.
Interrupt related functions

machine.dissble_irg)

So these are libraries that only exist in the micro python world that don't
exist in Python, for example, the machine module, which contains
functions that relate to the hardware. You can do things such as reseeded in
soft, reset it, disable or enable Arcus and so on. And these don't make
sense, of course, for the regular C Python language.

Fies .
This comgadter This document is for an old version of Python that is e lenger supported. You should upgrade, and read the Python documentation for the current
7 Users | patard | Deskton | stable release,

Micropython ESP32

B [Documentatian s Q| previcus | next | modules | index

et ope The Python Standard Library
fed_apigy 10. Full Grammar

B ied (72 taat e specification While The Python Language Reference describes the exact syntax and semantics of the Python lan-
McroPyinon device guage, this library reference manual describes the standard library that is distributed with Python, it
= i b Next topic also describes some of the optional components that are commonly included in Python distributions.

& operator pry L intraducticn

@) nebian, Sirtion.py Python's standard library is very extensive, offering a wide range of facilities as indicated by the long
& arnmetic oy This Page table of contents listed below, The library contains built-in modules (written in C) that provide access
to system functionality such as file 1/O that would otherwise be inaccessible to Python programmers,
as well as modules written in Python that provide standardized solutions for many problems that o
cur in everyday programming. Some of these modules are explicitly designed to encourage and en-
hance the portability of Python programs by abstracting away platform-specifics into platform-neutral
APl

Report a bug
Show Source

The Python instaliers for the Windows. platform usually include the entire standard library and often
also include many additional components. For Unix-like operating systems Python is normally provid-
ed as a collection of packages, so it may be necessary to use the packaging tools provided with the
Dperating system to obtain some or all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from
individual programs and modules to packages and entire application development frameworks), avail
able from the Python Package Index.

Introduction
unctians
Constants
Constants added by the sice module
Types
uth Value Testing
Boobean Operations

Sequence Types

So if you go over to the C documentation and try to search for a machine
module, you find it here, some machine module specifically designed for
micro python and for the hardware tankage that it supports. Then we've got
the port specific libraries, so these are libraries that specifically operate on
target hardware devices and target microcontrollers. So we're talking about
things such as PIB or Pay Board or the HP three to show that.

& Sefarl Fie Eon View History Bockmarks Develop Window Help

J3 e ¢ s a 1 Hict Secune — docs micropython orglen/istest Thraryessd bl

T compaser -
/ Umees | paterd | Desktop | MicraPython lbraries = = e specil o
Mieropythan ESPI2 LT H unctionality specific to the ESP32
Python stardard Eearies and micro-
braries
MecraPythan- specifc Brares : . .
3 S esp3z — functionality specific to the ESP32
Part -tpecific libraries
Librarien specific ta the grybasrd The el module containg functions and classes specifically aimed at controlling ESP32 modules.
Ubearies specific 1o the WPy
£ Libwarkes wpocHfic to the ESPE2SS Functions
and ESP32

M Frra YT

anr — turtions related 1o the ®5p32, wake_on_touchiwais
ESPEROG aned E5PIT

Configure whether o nat 8 touch will wake the device from sieep
7 anp — uncranslity pecibe ta .

walue.

#5p32 . wake_on_sxtiloin, level]

Configure haw EXTO wakes the device from sleep. pin can be ase or 3 valid Pin abject. foved

(TELEEE T
EE ¥

should be espll MAKESE ALL LOW OF sl WARELP_AY_K

e3p32. wake_on_sxt sk, leel

Configure haw EXT1 wakes the device from skeep. pins can be_seme

objects. level should be espld WAEP AL LM O essh2 WAKEUP_ANY_N1EH

espi. raw_temperature(

Read th raw vabue of the internal Eemperature Sensor, rEtUMing an integer.

#5p32, hall_senseori

Read the raw value of the internal Hall sensor, returning an integer

€532, 44¢_banp_Lntolcapabittien

Rety t the ESP-IDF heap memory regions. One of them contains the

Mic he: others are used by ESPIDF, e.g., for network buffors and other data.

We'll take us down here for us in our case, since we're using the hospital to
click on the ASPCA to a specific library and you'll see that there is one. Its
name i1s ASPCA two, which gives us functions such as to wake up one
touch or an external pen sending an IQ or that reads the integrated
thermometer to give us the real temperature.

Fies

This cemmgann
1 Users | peter? | Dusiton |
Mcropythan ESPIZ

ey
e (3 raat p
MiCrPython devioe
4 b
& operator py
‘adaiticn,_bunction py
arithmetic oy
oot py
SpETEELiZe lodpy

ot Smcuure — doca micropythn. orglenatest b vies 3 Wl e

B x5 — fuscronairy specitc 1 ESPIZ — WcraPython 114 documssiaon .

MicroPython

& MicroPython Rbraries

Python starsdsed Scaries and micro-
brasies

MicroPython specific Bbraries
Port-specific lbraries

Libraries specific to the pybaard
Librasies specific to the WiPy

5 Libraries specihe to the ESPEZS4
and ESPX2

eun — fureSioni related o the
ESPEILA et ESPI2
© wapd2 — hunctionality specic to
the ESPEZ
P
Flaah paritiona

E3p32.wake_on_ext i level
Configure how EXT1 wakes the device from siesp. pins can be ses or a tuphe/Iist of valid Pin
objects. level should be sspks WAaHS_ALL_L0W OF ssph2 MAKEP_ANY_s18A

e3p3Z. row_temperature!
Read the raw value of the internal temperature sensor, retuming an integer

®3p32, hall_sensari

Read the raw value of the internal Hall sensor, netum

®8p32. Ldf_heap_intolapabing
Returns information about the ESP-IDF heap memory regions. One of them contains the
MicroPython heap and the others are used by ESP-IDF. e.g., for network buffers snd other data.
This data Is useful to get a sense of how much memary ks avallable to ESP-IDF and the
networking stack in particudar, It may shed some light on situstions where ESP-IDF operations
1 due to allocation faikures. The information returmed s not useful to troubleshoat Python

allocation fallures, use micrspythes.ses infs() instead

" .

The capabilities parameter corresponds to ESP-IDF's MALLOC cAR xix. values but the two mast
useful ones are predefined a5 espl2.MEAP BATA for data heap regions and espia MEN_EXEC for
executabie regions as used by the native code e er

The retum value bs 3 lst of 4-tuples, whens each 4-tuple cormespands to one heap and contains:
the total bytes, the free bytes, the Largest free block, and the minimum free seen over time.

Examgple after booting.

impart espd2; espdl. i8f_heap_ a1
8, &), (7248, 8, 8, 8], (166, . 4), (79912, 35712, 3812,
15 a3, 15834, 19038), (11088

Flash partitions

I'll give you an example of this in a moment and so on. So this is a library
that only works on the E.S.P 32 and provides specific functions that only
make sense on the age of two. So let's play a little with this particular
library here. Just going to make a little bit of room here so we can have the

two 1in the side by side.

-
=
Fles
This comgnin
{ Usstes | patard | Busktop |
Micropython ESP3Z
* tadepy
& recncy testpy
& pall-sansor_test oy

LT
8 el txt

e
il (2 tast e

McroPython device
) b

addition_function oy
amnmetie oy

oot py
wspa268 i2c ledpy
Prello_worid oy

oy
ed_i2e_est gy
bl gy
use_arithmete py

tEELEEEEEY

+ Thanny - MisroPyihen devica :: ficd_i2c_tastpy @ 331

Sl

s55 impert espll

»55 £5p32. raw_temperature()
127

s05 espdl2.hall_semsor()

38

>>> from espdl import raw_tesperaturd

=>= raw_tesperature!}
27

hon prgren

wsp32. wake_on_ext dping, kevel)
Canfigure how EXT1 wakes the device from sleep. pins can be Kens

or a tuple/list of valid Pin objects. level should be
sz WAKEUP_ALL_LOW OF espld . WAKELP_ANY_NTGH

wsp32. raw_tesparature)
Read the raw value of the int empErature sensor, returning an

integer

wsp32. hall_sessor])

Read the raw value of the internal Hall sensor, returming an integer.

#spl2. idf_heap_inTeicapabiin

Returns information about the ESP-IDF heap memory regions. One of
them eontains the MicroPython heap and the others are used by ESP-
IDF, e.g., for network buffers and other data. This data is useful to get
a sense of how much memory is available to ESPIDF and the
networking stack in particular, It may shed some light on situations
where ESP-IDF operations fail due to allocation fallures. The
information returned is not useful to troubleshoot Python allocation

fallures, use micropython.se_isfel) Instead

The capabilities parameter corresponds to ESPIDFs mauLoc_cwr oo

walues but the two most useful ones are predefined s
3532, HEAP_DATA for data heap regions and esp2.MEKP_EXEC for

executablo regions as used by the native code emitter,

The return vabue is a list of 4-tuples, whers each 4-tuple corresponds
o one heap and contains: the total bytes, the free bytes, the largest

free block, m free seen over time.

Example o

And I'm using the show. I'm connected to my ears to to use the ASPCA to
board specific library. I just need to import it. So, as usual, I just say
import E.S.P 32. I didn't have to install a file with the name E.S.P 32. Why
said this integrated into the firmware that is running on the microcontroller.
And I do something simple, like I get the internal temperature, internal
temperature of my HP 32 right now. I'm just going to copy this, paste it in
here and enter. And there is its te mperature in Fahrenheit. So you can see
very simple. Can you see the whole sensor with this case? I'm going to
type it in and use code completion, open close parentheses. And that is the
reading from the integrated magnetic code sensor. Very easy, as I said, the
other thing that you can do here is you can be very specific. As I said, the
memory of the two and other microcontrollers running micro python is
fairly limited compared to that of a computer running python. So by me
importing the whole of the ISP through tumultuously means that are
imported all of those functions, even though I am only interested in using,
for example, the real temperature function. So what I wanted, what I can do
in order to be a bit more nimble with my use of resources, I can just import
the specific function that I want to use so I can say. From E.S.P ferry to
import real temperature like that, and now I can call real temperature by
name like this without having to prevent the security dot, as I did earlier,
because earlier I just imported a whole lot, just imported the real
temperature function, which means that I can just call it by name and I'm
getting back the same result. So the second instance, I have been a lot more
precise about what it is that I want to import from a large module. You'll
see later in the next project. Actually, some of the modules that you can
import for your projects can be very large in size because they are designed
to cover a multitude of situations and multitude of target hardware. So you
can be specific about which parts of those modules you want to import in
order to preserve memory. All right, so that's about it with the building
modules. Let's go over to the next picture now and a look at that particular
community, which was.

COMMUNITY MODULES

What's next for you, some places where you can find micro python modules
that you can use in your project?

& duciauckgs. com/M-Hablqumicropython s medules s g Bbrariesh tbes 230 tine. &
5

®

Fles

Thiis cemmgustn . microj#thon modules and ibraries
1 Users | peter? | Gusiton |
Micropython ESPI2

-9

MicroPython libraries — MicroPython

Of course, the first place to look for anything here is a search engine, in this
case, I'm using duct tape to go and I've issued a fairly open ended and
generic search. I'm just simply looking for my python modules and
libraries. And what comes back is kind of no generic as well. Scrolling
down this list, I eventually find.

L 0 cuckiuckge.com - e micropy o smidules sand SbeiresAatt v 1 30- his

®

Something relevant here that's kind of specific to a micro pattern display
library, but it's mostly and here's one from my block as well, but most of
the top entries are generic about modules and libraries for micro python,
but with no specific library hits. So lesson to be learned here is just be
more specific about what is it that you are looking for.

So in my next tab here, I'm searching for my code Python LCD library. So
in this case, for example, I may have a 16 by two character LCD display
and I'd like to find a micro python library to make it easy for me to use.
And this search in DR Congo actually reveals a few interesting
possibilities. So now the next step for you would be to assess which one of
those libraries might be best and it could be a matter of trial and error, or it
could be a matter of looking at the limitation and deciding which one is
best fitted for your needs.

J &

Fies

This cemmgustn
1 Users | pater? | Gusiton |

icroBython (ES932)

In my case here, I've done a search, a relevant search in the past and found
that the city and the school IPY library alongside the EPA, the two six six
and there is here is the best source for these libraries worked best through
these two files are part of the same module.

Idaplpy] [esp8208 i2cicdpy)
44780 chorscter LED connected via PCFEST4 on [2C.
I§EtBS /ot wen0s, e/ Broduct /dl—sind. html =
from Led_spi dmport LedApi
from machine import 12
from time import sleep_ms

DEFAULT_T2(_ADCR. = #x27
SHIFT_BACKLIGHT = 3
SHIFT_BATA = 4

cdipd) 2
ements 8 HM47B8 character LCD connected via PCFESTA on 12C."""

1, i2c, i2c_addr, mum_lines, num_columns):
2e

r = i2c_sddr
tetolself. i2c_addr, bytearrayl[0]})

MicroPython (ES#32)

Actually, they work together. So here, let's see, maybe we can go for this
one here. Looks promising.

& Bucknalla / micropython-i2c-led

Pull fequests 7 Actions

¥ master - micropython-i2e-led / lib

Alex Bucknall Added fixes for i2c bus ervors

O i2ejedpy

Have a look inside this and make a python. I see. Or should they use the
library folder folder? Which contains the files that you will need to then
import and store on the marketplace and device itself will show you how to
do that in the next project and have a look at the documentation.

T e { Dustcs | 8 i Tested Dev Kits
Micrepythen ESPI2

& tsdepy o LoPy
& trecuency gy

A il sansor_testoy . Wiky
o he_sr0apy : » SiPy
8l Pile et

& pulio_workd oy p

& e apigy 2 Module

e (30 rast pw

T Y e . This odule supports writing to, clearing and refreshing the LCD screen, among other functions.
i 8
& operator py B .
@ asdtice_function py write(text)
B achmetic o
! Prints text fo LCD screen at the location of the cursor.

autoscroll(bool)
@ icd 2c st oy

L
) wse_srithmatic py

Enables lcd to scroll text as typed,
cursor(bool)

Sets cursor visibility.
blink(bool)

Sets biink visibiity.
display(bool)

Sets display state (onjoft).
home()

Returns the cursor to the (0,0) location on screen

move(col, row)

So the functions that are available and you then decide whether this is going
to work for you, sir.

J&

Fien

ke N
1 Unars [peterd | Dusktop |

Mecropython ESPI2

Sl BT % #MicroPython 12C 16x2 LCD Screen
rabsensor_test py

L]
This library Is designed to support a MicroPython interface for [2¢ LCD character screens. It's designed around the
Pycom implementation of MicroPython so will need to be tweaked to work for CircutPython

-
McroPython device
-l s T ad
& coerator by a7 + Grove LCD RGB Backlight
@ sadition_hanction by

Compatible LCDs

Tested Dev Kits

o LaPy
& ica iz testoy niny
® lod bk py * siPy
& use_arithmetic oy

Module

This module supports writing to, clearing and refreshing the LCD screen, among other functions

write(text)

Prints text to LCD screen at the location of the cursor.

autoscroll(bool)

Enables led to scroll text as typed.

cursor({boal)

Sets cursor visibility

Now another consideration is to see whether there's any information about
the hardware on which this market python model has been tested. And
apparently I don't see and especially to target at least tested, it doesn't mean

that it won't work on the capability to test means that the author hasn't
tested it so very often. That is stand up to you to give it a go into test it.

= 0 & Suchduckge.comigemicrpythons LD Brades cesp kbt iabdarnes P30 1Bt (2
X5 o

Fies

This compunnr
{ Usars | patrd | Dusiton |
Rherogythan ESRTT

If you want to be a little bit more specific with your search, then you can
add the target device name in your search as well. And that will probably
give you some more accurate results as well.

J o

Fies

This cemmgastnr
1 Users | pater? | Dusiton |
Mesogythan ESPI2

README.md

MicroPython CharlLCD library

A ibrary to control a character LCD display in 4 bit mode on an ESPB266 or ESP32 running MicroPython.
implementation inchudes:

* Display text strings

So I would say maybe this one would actually be a better suit for the ESB
32 and maybe actually it is. Right. So so this is one part of the process.
Now, there's other places, apart from search engines that at least I consult
first before I revert into doing a Internet search.

J3 o

Fes A eurated list of awesome

Wil o = 1 « cAdoddt on7 Jan mmits WicroPythan libraries, frameworis,
ol Kt 2 software and resources.

@ wwesome-micropython com

Contributors 7

&190-020

Languages

® Mskfile 100,05

There 1s a project here called Awesome Micro Python. This is its GitHub
repository and this is its front end, its website. So you can just go directly
to the front end. And they have curated a very big list of micro python
modules.

15 (+]

Fies

This computar
{ Users | pater? | Dusiton |
Rhcropythan ESPIE

A curated list of awesome MicroPython libraries, frameworks, software and resounces.

ython is a lean and efficient implementation of the Python 3 programming language that
includes a small subset of the Python standard library and is optimised to run on

and

Libraries
Other places you can look for MicroPython Libraries:

P - This filter shaws just the MicroPythan irsries an PyPi

micropython libraries. Se croPythan docs for

for projects tagged with MicroPython
b Explore - Explore repositories an GitLab

MICTOMLF - A micro neural network multilayes perceptron for MicroPython {used on ESP3Z

el Pycom modules)

Analytics

= uMath - Comguter Algebra for microcantroliers.

madule for MicroPythan.

Macro Python libraries can see the Kovalik, a very extensive array of types
of modules here that work with all sorts of hardware and software
capabilities. And let's say, since we are looking for a model to use with our
LCD screen, let's say that we've got an LCD character displayed to still
down to that.

® Giove RGE_LCD - Deiver for SeeedStudias Grove RGE LCD.

® lodidc - Deiver for HD44780 compatible dot matrix LCDs.

» miciopython-charicd - Orifbr for HDA4780 compatible LCDs
. i2elord - Drivet far [2C 216 LCD Screens.

e Jod_drives - Diver for SesedStudic's Grove RGE LCD.
dinplay - PyBoard diiver for HDDA4780 compatible 1602 LCDs.
'or HI44780 compatible dot matrix LCDs.
Class for yihon pyboard

12484 - ESPB266 driver for AQM1Z48A graphic LCD
18544 - Drives for Nokia 5110 PCD8544 B4x48 LCD madules
128264 LCDS.

smple graphic primitives on ST7920 128x64 monochiome

544 - ESPR266 driver for Nokia 5110 PCD8544

1 - Deiver for official MicroPyihon LCD160CR display with resistive touch

MicroPythen Rorary for HX1230 96168 LED modules

Collection of drivers for TET displays, ILIS341, $H1106, $S0160¢

4x - SPI driver for ILIS34X series based TFT / LCD displays

And you see that there are several options that you can use. Some of them
may be compatible with your hardware. Some may not be. So then you
need to drill into the kind of hardware that you have. In my case, I found at
this library here actually works. I did that or I found that out through trial
and error. I tried a few libraries first before I narrowed down to this one,
and this one worked. It's using a squishy interface. We found this one
earlier as well, and it's not available through Ocean Python in a found that
works anyway. So many of the libraries that I'm using in this course, I was
able to find them by browsing through awesome micro python and then
doing a lot of testing, rejecting some of them and accepting others. So
finally, there's one more place where you can look for Michael Python
modules, and that is Pippi Dog, the Pied Piper Authority does not
specifically target Michael Python. It's an index for python packages in
general. So you can see it's huge. Two hundred and ninety three thousand
projects. Some of them are micro python projects, but not all of them. So
here you are, just like with a generic Internet search, you need to be specific
with the thing that you're looking for. So, again, let's say that we are
looking for a module to help us out with using a LCD display on a project.

& i ergearey

0]

This comgnter
1 Users | pater? | Desktion |
Micregython ESPI2

& tadagy

& trequency testpy

& rall-sansor_test gy
Filter by classifier 1,013 projects for “mécrapython lod® 2 Relevance

Framewark
micropython-led 0.0.0
Topic Dummy led module for MicroPython

& operstor py Development Status

‘addition_bunction gy
arthmetic oy
boatpy

L]
L]
[-]
upymenu0.0.1 |
® Uowse Amicropython Menu for LCD Displays
© Progam
Puell_worid gy
ed_apipy 2 @ Opersting System i d ing-led Feb 14,
[-]
(-]
L]
L]

cd_i2e_best gy
bed_blink gy
wte_srithmatic py

Some LCD Menu functionality for Micropython
E

@
a
F
@
@
®
F
#
&

ntended Audience
char-led 2.0

Natural Language Library to drive character LD display and plate

Typing
luma.led 2.8.0
Alibrary to drive PCDBSA4, HT1621, STITES, STTSET, UCITOLY and ILI3AL-based LCDs

mopidy-led 1.2.1
This s an MPC for Pi Music Bax using Adafruit's Character LCD with buttons

led2ush 1.3
LCD2USE's Pythan Library

So I'm going to use a word micro python in order to narrow down my
search to make a python specific libraries and let's say al Qaeda to begin
with from the first step here. And you can see if you come back. Now,
which one is the one that [use? I'm not sure yet at this point. There's quite
a lot.

@ pypiorgfusachTgemicropython sicd+ 18xion
® 03]

Filter by classifier 1,313 projects kor "micropython lcd 162 Orderby | Relevance
This comgasinr
§ Usars | patar? | Desktop |
Mcrapyiben E0Pe2 © Framework
& tade gy - raspberry-p-led 1.1.1
A trecuney testpy @ Topic Easy to use LCD API for the adafruit raspberry pi bed module.
& allgansor_test oy
& b w0py .
B helic.txt Development Status

micropython-led 0.0.0

R Dummy lcd modube for MicroPython

al
i (20 tast e
MicroPytnon device Programming Language

o b 6 B
i Operating System pi-led 0.0.2

@ adition function.py 1% LD Bbeary for RasphevryPi
& annmetic oy Emironment

d Audierce
piboath-ted-i2c 1.0.0

Natural Language Plugin to handie small LD display
& icd_ize_estpy Ly
L S0
) wse_arithmatic py yping

charled 0.6

charled is a handler for char lods Hitachi HDA4TS0 @ Raspberry P

Mopidy-16x2LC0 0.1.0
Mopidy frontend to see track name and volume on a 1622 LCD

upymenu 0.0.1 Jan 35,2000
Amicropython Menu for LCD Displays

adafruit-circuitpython-charled 3.3.8
ython library for standard character LCDs.

Fifty one pages, maybe only to narrow down a little bit more, maybe make
it 12 or 16 by two for the type of LCD with the dimensions of the LCD

screen and see if anything comes back. OK, maybe that's a little bit better,
but still not that much better than, say, some of those libraries work for the
Raspberry Pi. Which is not what I'm looking for.

& Safari Gia o

15 o
Fies

ety Help Sponsor login Register
Rheropython ESP32

Filter by classifier 1,369 projects for“micropython lcd 162 exp32 ovdery [T
SpRT66

esp0.2.0%
Evident Secusity Platiorm (ESP) SDK for Python

ESPI210
Module d'utilisation de la carte esp 32 (10T

cloudmanager-micropython-esp8266 1.9.70
Cloudmanager esp8266 flash image

uPyExplorer 1.16.0
Explorer for Micropython Device

e 6 0 0 60 0 0 0 0 0

thonny-esp 0.2
ESPA266 and ESP32 MicroPython support for Thomny IDE

e5pB266.py 0.0.3 Julg, 2018
ESPE26E python lIbrary, 3 wrappar for AT commands (Hayes command set] using UART sarial

esp-trainer 1.0.1

So my next search term would be especially to and that brings back one
thousand two hundred forty four or actually knowing that the HP three two
and the PSP eight two six six are compatible in much of the way that they
work. And I'm going to look for that. I'm at that closed area as well and.
And. Reply.

Thits cemmputter
1 Users | peter? | Gusiton |
Micropython ESP32

& ey

& trequancy_teatpy
& rall-sansor_testgy
& me_sr04.py

2 pulo.tt

B hlle_word gy

) b

& operstor py
@ addition_tuncticn oy
acnhmetic oy

& icd_i2e_test py
W lec_blink pry

microp,

Filter by classifier

Framewark
Topic

Development Status
; Language

ntended Audiernce

Natural Language

L]
e
L]
L]
L]
L]
-]
-]
L]
L]

& g el T ey i

0]

hon lcd espa266

1,053 prajects bor “micrapythol led espaaec Order by

micropython-led 0.0.0
Dummy led modube for MicroPythan

micropython-cloudmanager 0.0,165
Micropythan client that allows network attached boards 1o be ¢

cloudmanager-micropython-espE266 1.9.70
Cloudmanager espd266 flash image

upymenu 0.0.1
A icropython Menw for LCD Displays

clouddrpi 1.1.2
ClouddRPi elisnt library

esp02.0
Evident Security Platiorm [ESP) SDK for Python

ESP32 L0
Module d'utilisation de La carte esp 32 (10T)

Login Register

May 30,2008

ol redis server

Jun 4, 20018

Jan 25,2000

Jun 25,2020

Jun 14,2017

Sep 12,2020

And I need to continue playing around with this and remove these two parts

of my search. Keep looking. Check out the second page.

© Natural Language Configure MicroPython WLAN/AP/WebRepl startup with your own code

Thin compasten
{ Users | pater? | Desktop | 2 @ Typing
Micropython ESP2 n

& tadogy - glowingbike 1.0.10

& trecuancy tastey Upgrade your bike with LEDs, raibows ary

il sansor_test oy

& e arDdpy

8] heito txt
4 halic_workd oy 1 mpymadeore 0,0.19 Dec 12,2020
lcd_apipy
e (7 teat e
MCroPython device
o b F

& operstor gy x micropython-eydam-prototyping-led-menu 0.0.2
B addtion_bunction gy Some LCD Men fur ality for Micrapythen
& aranmetic oy

mpymadcare

picoredis 0.1.1

Avery minimal Pythen Redss client lbrary (not only) for MicroPytha
& icd_ize_estpy ¥ ¥ ¥ ¥ ¥
) hoc_bln pry
B use_writhmene py

char-led 2.0

Library 10 drive character LCD display and plate

pi-LCD0.0.1 Jan3, 2020
LED Intertacing

led-stT032 0.2.0 Jun 29,2008
Python medule for STT032 LCD controller with 12€ interface.

pycopy-led 0.0.0 Jul 14,2009

Dummy led madule

Hmm, maybe there is something promising here. LCD 2.0. Check this out,
project description alone.

Thiss cemmpuser
1 Usees | peterd | Dusitng |
Microgythan ESPIZ

& todegy
& trequency tean gy
& rall-sansor_test gy
& e _s0a.py
| Plle et
& hello_worid oy
@ fed apioy
B it (26 teat e
MiCroPython device
= b
@ perator py
8 addnen tunction gy

® led d
& Lsa_arithmate py

d llazzaro [char_lcd

<3 Code 1 Pull recuests

' master - P oanch 0 tag

W) Nazzars Fix papd and change praject name
= githus
chae_icd
8 exampies
wrigrene
[LcEnse
README el
ez setup gy

oD, py
README md

Adafruit_Python_CharLCD

Python library for accessing Adafruit character LCDs from a Raspberry Pi or BaagleBone Black

Designed specifically to work with the Adafruit character LCDs ----»> https:/lesm.adafruit.comjcharacter
ledsfoverview

You can have a look at the homepage to see this and think they are. All

right.

This companer
{ Ursees | partard | Duskton |
Micropythan ESPIZ

tedegy

& trecuaney 1

& e worid gy
e apisy
ke (2 rest e
MCroPython device
o J b
& oparatorsy
& sdcition furctionpy

xampies
oI Releases
LICENSE

README.md
ez setup py

O semppy

At Contributors 7

Adafruit_Python_CharLCD bihudsbaied

Pythan library for accessing Adafruit character LCDs from a Raspberry Pi or BeagleBone Black Languages.

Designed specifically to work with the Adafruit character LCDS ~---> hittps://learm.adafruit.comycharacter
Iedsjoverview

® Pytran |

For all platforms (Raspberry Pi and Beaglebone Black) make sure you have the following dependencies:

sudo apt-get update
sudo apt—get install bulld-essentisl python-dev python-sebus python-plp

Far a Raspberry Pi make sure you have the RPiGPIO Rbrary by axecuting:

sude pip imstall APL.GPIOD

For a BeagloBone Black make sure you have the Adafruit_BBIO brary by exscuting

sude pip Anstall Agafrult_BEID

So this 1s not going to work for the city, too, because this is for the pie or
the big boned black. Get rid of that. And go back. And what's going to
add the term I squared see or to see, because I like the idea that comes back

to be able to use the ice quartzite interface. So let's see, do we have
something better now? Oh, no. Not that.

qermics apthn ket

® ® ®

hon led ize g Sponsor Login Register

This computar
{ Users | peter? | Duskton |
Rhesogythan ESRLD

& todegy
o trequency_testpy
& il sansor et oy
2,012 projects bor "micropython led iZe” Orderby | Relevance

i2¢_led 0.1.0 Jun 23,2007

2 et v
LT 12C LED interface in Pytho
MorsPython device
b
& operator py
B asdton_tunction oy upymenu 0.0.1 Jan 25,2020

& achmetic oy Amicropython Men for LCD Displays

Development Status

anguage

micropython-lcd 0.0.0
Dummy led modube for MicroPython

nterded Audierce y
pibooth-led-iZc 1.0.0 How 7,2020

Natural Language Plugin to handle small LCD display

raspberry-pi-led 1.1.1 Sep 26, 2013
Exsy to use LCD AP for the sdafruit raspberry pi led modube.

asukisaa-py-i2e-led 0.1.4 May 18,2018
12¢ library to control AQM1E02

RPI-GPID-i2¢-LCD 0.1.3
Simple module for using a MD44T80 LCD aver (2

No, I'm going to continue with this. I mean, we're going to put in place my
point then with E.S.P 32 first. No more E.S.P, a 266.

® L]

Thes coomgnsie:
{ Users { peter? | Desitop | Sponsor Login Register
Micropythan ESP3Z

& tadepy

& recsncy testpy

& pall-sansor_test oy

Filter by classifier 1,348 projects for "espd2 led i2e” Orderby | Relevance

@ Pk i2¢_led 0.1.0 Jun 23,2007
iR 12€ LED interface in Python made for AP}

Development Status
additicn_function gy raspberrypi-esp32-i2e 0.0.6
arithmetic oy R E— e Rasg ster on ESPE2 ke slave when use ESPI2 i2c Slave v+ bbrary
oot py - o

#pEI6E [2c o py 22 Frogs & Language

hello_worid_y

ted_apigy 24 Operating System piboath-led-i2c 1.0.0 Now 7, 2020
e i2e_testpy z

led_blink pry
se_arithmetic py

Plugin to handle small LCD display.

tEEEEEELEY

ntended Audierce .
raspberry-pi-led 1.1.1 Sep 26,2013

Matural Language Easy to use LD APY for the adafruit raspberry pi led module.

Typing
RPI-GPIO-i2c-LCD 0.1.3 May 17,2020
Simple module for using & MD44T80 LLD over 2C

asukisas-py-izc-led 0.1.4 May 18,2018
An i2¢ library to control AQM1602

pi-display-webthing 0.1.0
A web connected LCD display module

This is not looking very promising, so at this point, [would have given up
and gone back to awesome micro python or I would have gone to do an
Internet search instead of getting paid for this.

15
Fies

bt £t Daain | 3 2 1 Help Sponsor Login Register
Rheropython ESP32

Filter by classifier 1,353 projects for "espB266 lod i2e” Orderty | Relevance

i2¢_led 0.1.0
12€ LED interface in Python made for RP

raspberrypi-esp32.i2 0.0.6
st Raspberry P a3 master on ESP3Z (2¢ slove when use ESPI2 i2c Slave oo+ ibrary

piboath-led-i2c 1.0.0
Plugin to handle small LCD display.

raspberry-pi-lod 1.1.1 Sep 26,2003
Easy to use LCD AP for the sdafruit raspberry pi bed module.

@
e
LN
L]
Q P
[
© En
L]
e
L]

asukiaaa-py-ize-led 0.1.4

An i2e library to control AQM1602

RPi-GPI0-i2¢-LCD 0.1.3
Simple module for using a HD44TB0 LD over (€

pi-display-webthing 0.1.0
Aweb connected LED display module

Now, the reason that I brought up Pipeline is that, yes, you will be able to
find MegaPath Python modules that you can use. The nice thing about
Pipeline, if you do find something useful, is that you can use the package
manager and the tools to install the package that you find.

Mansos cksges
[Opan system shall..
thon device :; fespdatd,iic kdgy @ 1: 10
Open Tharey program falkder._
Gpen Thoey data foider...

Manage plug-ing... el

Optices. character LCD connected via PCFEST4 on [2C
: NULBS ./ A, wen0S. C/Broduct/d1-aind. hak (RS RS e

from lod_apl dmport Loddpl
from machine import 12
from time import sleep_ms

Orderby | Relevance

DEFAULT_IZC_ADDR = @x27

HASK RS = @xdl
MASK P = @xi2
MASKE = i
.= 6 SHIFT_BACKLIGHT = 3
& operator py SHIFT_DATA = 4
B aadten_function gy
& acnmetic oy B rees TclodiLodheails Aave whven use ESP32 idc Slave oo+ lbrary
"=“Isplesents a HD447B8 character LCD connected via PCFAST4 on [2C."""
def __init_ (self, i2c, i2c_addr, num_lines, num_colusns):
] self.i = ide
o icd (20 test 2 self.idc_addr = i2c_addr
B led_biek pry self. i2c.writetolself. i2¢_addr, bytearray([8]])
5 sleep_ms{20)

ey pi bod madule.

asukisas-py-i2c
An i2c library to control AQM1602

Thiia computer
1 Users | patar? | Gusiton |
Micropython ESP3Z

RPi-GPIO-i2e-LCD 0.1.3 May 17,2020
Simple module for using a MDA4780 LED over

* tadepy
& recncy testpy
& all-sansor_test oy
& e _ardd py

8 s txt

pi-display-webthing 0.1.0 Jans, 2021

ey
A ied i7e teate Aweb connected LCD display module

MACroPython devic.

o J b

& operatorg | SINSTALLS '

& addition_fune | TP iBe 0.0.6 Wov3, 2017

aanmetic oy Infinity ote Compiler

bostpy

@ espazeeize

& ello_workd

& ted apipy FaBolCD_PCFESTA 1.0.0

: fed_iZc_testg This s a libraey for the Faio LCD
led_blinkpry

ue_wriihmetd

charled 46
chaled is & handler for char lods Hitachi HD44TS0 @ Rasplenry Pi.

wupymenu 0.0.1
Amicropython Menu for LCD Displays

digole 0.0.5
Digole LCD Drivers

micropython-ahtx0 0.1.0
MicroPython driver for the AHT10 and AHT20 temperature and humindity sensors.

You would be able to search for this by name inside. Sony discovered that
across search on pipeline.

dapipy] | [esp82es izccdpr)
F=tImplesents a HD44780 character LCD connected via PCFEST4 on [2C.
L This vas tested with: N Help Sponsor Login Register

from machine import
from time import sleep_ms

from led apl import %5?«

DEFAULT_IZC_ADOR = @x27 | Latestvession

Marage packages for MicroPython device @ /dewicu. SLAB USBIoUART
A Released: Feb 19, 2020

.
@ operstorg | INSTALL: charlcd
@ adction fung | "PUH

& arhmetic.o Latest stable version: 0.6

& hantor fer ehar leds Hitkehi HDAATBO @ Rassiberry BL

booipy -

Awthor: Bartosz Kodadw
wspezes i2g Homepage: i
& hello_worid g Py page: hitos ipvpl orgforgiecticharicd!

& lcd_aploy
& icd_i2e_teste
O e bl gy
B e writhmetd

Find it here and then click on this button to install it and look into it. Of
course, because this is not a module that is compatible with the USA 1is just
for demonstration once you install it.

o Thenny - MicroPython device :: fespdd6d.idc cdpy @ 2:10

Dlediaply] | [espaz08.3c)cdpy |

1 "';ﬁ:r‘:::::y:,;?:‘:?:.:b..r:r'.fr D comected vis PCFEST4 on f2C. falo I oo 1 Loah B Foglitar

from Led_spi dmport Ledhol
from mochine inport 12
from time dmport slop_ms

DEFAULT_IZ(_ADOR = @x27 o Latestession

Released: Feb 19, 2020

SHIFT_BACKLIGHT = 3
SHIFT_DATA = 4

28 class I2clod|LodApi):
"=“Isplesents a HMATBE character LOD connected via PCFESTA ea I20."""
© eapi 268 126 kdpy 21 Isplements o HO44780 charscter LOD connected via PCFSTA sn [2C
& halto_swurtd py def _init_(self, i2c, i2c_ssdr, num_lines, nus_colusns):
& ked_spipy eIf.4% = i2e
& icd_i2c_test py 2 self,id
self. i

c_addr = idc_sddr
led_blni py e

ritetoiself. ide_addr, bytearray((811}

sleep_nsi20)

This library would be stored inside the loop directory right here, and then
you'd be able to use it from your projects. All right. So just to recap, to

find Michael Python modules that you can use in your projects, I typically
start by doing an Internet search, trying to make my search as precise as
possible. And after a couple of iterations, I typically find what I'm looking
for. Another place that you can look at for modules is awesome, like a
python. It's a curated list of the micro python modules. And finally, you
may also want to have a look at the paper dot org repository of python
modules. And once you find what you're looking for, you need to install it
to show you how to do that in the next.

HOW TO INSTALL AN
EXTERNAL MODULE

In this project can show you how to install an external module so that you
can use it with your micro python protection, SB 32.

Awesoma MicroPython

Awesome MicroPython

microcontrollers and in constrained environments.

Libraries

Other places you can look for MicroPyihon Libraries:

In this case. In this example, I'm going to use awesome micro python to
look for an interesting module. And there's quite a lot here.

This cemputer
1 Usars | petar? | Dusitop |
Microgython ESP32

b) Example Pythen

& bma?B0_Noat.oy
& b 280 test.py

NMicreeytnon device
& aadition function oy
& arhmetic oy
& bootpy
& apaz68 i2c ked.py
& helio_worid oy
& ica_apipy
e _i2e_test oy
& led_blinicpy
& o _srithmatic oy

s« Libraries. io query for MicroPython,

re - Explore repositories on Gitlab

roMLF - A micro neural network multilayer percep
and Pycom modules)

Analytics

UMaih = Computer Algebra for microcantrollers.
Tectogy Jlas - A numpy-ike fast veetor module for MicroPython.
Ticrogython-founar - Fast Fourier transform in MicroPython's inkine ARM assembler

1l - Small size matrix handling module with 8 few linear aigebra operations specifically
fior MicroPythen (Pythond)

it - Fast Matrix Multiplication and Linear Solver on MicroPython

Vector Oparations on MicroRython

- Driver for JOE5S00 UART MP3 modules.
3 - Driver for KTA03A, used by DFPlayer Mini and Grove MP3 v20.
Play nokia compose and mid files on buzzers
layer - Diiver for DFPlayer Mini using UART.
- - WAV player for MicroPython board
53 - Asyrichronous driver for VS1053b MP3 player

i - A mic implementation example for MicroPython

Communications

coth

Cryplograghy

LoaWAN
MDNS
MaTT

NTP
OneWine
Oekyo EISCP

Serial
sMTP

But one that drew my attention is this one here. Micro math, micro
mathematics and analytics looks interesting.

analog reed_pot_J4ey
appanc_cav_fie.py
a8 float.py
& bwaB0_test.py
& poait o
MicroRyEnon device
#: addtion function oy
& arthmetic oy
& bootpy
& espazes j2e_jod.py
@ Plo_workd py
& icd_apioy
& led_iTe_best py
& lad_bliric py
& wrn_sriihmatc py

& AaronKel [uMath

') Pull requests

Actions Security Insights

P master + P Zbmanches 0 tags

Camputer Algebra for microcontrobers

W Aaronkel Travis: Update to custom Firmware

N umath
O travisymi
[LICENSEmd
[READMEmd

[Testsule.py

O contgym

[uMath-ioga.png

ore: Add random

[1[Build Status][travis-img]] [travis-repa] [1[Coverage Status]{coveratls- coveralls-repa] [travis-img]:

1M,

ath.svgThranch=master [travis-repa]: hips:/iravis-cl.org/Aaronkel/uMath
athiadge. nchsmaster [coveralls-repol:

So click on the link here that will take you to the repository for this
particular project. Now, this is a GitHub project and the files are up the top
with a description of the project down the bottom.

& b com b arankelubiath 5 o

oL ——————————

This compnter

1 Usars | pertar | Dusiton | Currently source is being tested on a custom Unix version of the micropython project that needs atleast 120Kb of
Micrapythen E9P52 RAM to run. When the project is mare fleshed out and is parted fully fram Pythen.

B 1) Example Python

Usage
& apper_cav_fie.py

& b0 Nost.py
& b0 test.py

Using uMath will be farmilliar to anyone using other CAS systems on python

>from umath isport =

Mcreeytnon device
& adsition function oy
@

Contributing

Sea Wiki on contributing guidelines
& cvo_withmatic oy
History

Based on the Symath project by Brandan Niemczyk, 2012 for Python 2. t was then ported to Python 3 by Aaron
Kelly, 2017 and currently work is undergoing to allow it to run on some of the cheaper STM or ESPE266 modules
with MicroPython, hence renaming it to uMath(MicroMath)

Authours

Brandon Niemezyk

Aaron Kelly

License

This project is licensed under the MIT License - see the LICENSE.md file for details

So there's a wiki as well. I can see issues and documentation page. Let's
have a look at those to see what's happening here. Just click there. So the
wiki doesn't have much just a list of to do items here. They could have a
documentation.

@ g comharonsiel ubath/wi (-]

[e————

This commgnses
{ Usars | petar? | Dusitop |
Micropython ESPIZ

®) Example Python f - Clome this wiki locally

_cav._fie
& b B0 Noat.py
& b0 testpy

MicroPython device
& adaition_ function oy List of TODO:
& amhmetic py

b Losce A Retactor code to make it smaler
rpech Reduce dependancies on buitin libs, take critical code and cptimise
Impliment Risch-Norman integrator (In progress after finishing the heuristic differentatior)
Imgliment solver
Impliment matricies (In progress, got a simple vectar class howsver neads bettor caling methods)
Imgliment graphing
Unit testing
* Build testing
* Documentation

Currently the focus is on the computer algebra section of the code to get a strong base fior bullding on top of. Please try and
stretch the engine 5o | can know where to focus, a lot of erors are known to myself but it would be good to get some written
record of them to strategically tackle them

© Aaron Kaly, 2017 - ubiath foundation.

I can take you back to the same GitHub main page. So not much there
either.

) WhGitho? Team Enerprise Explore

¥ master - ubath / umath |

W Aaronkel Core: Add random for travis |

O sy

But we do have access to the source code so we can drill inside the source
code. The math directory contains a bunch of python files. You can browse
these files to see what this project is all about. In many cases with micro
python projects, the source code itself is the limitation you can find.

J &

Fies,

This cemputer
1 Usars | petar? | Dusitop |
Microgython ESP32

Pull requests T Actions

uMath umath | operator.py / ¢ > Jumg to -

So we have a look inside. Operator, operator, Dopy why has a few simple
functions for additional application, power calculations, etc.. Let's
compare it to a look at another one, maybe inside calculus.

& githusb.comiharnkie fubbathybiobmasterumattyicalcishu gy

(O ————————,

appnd Y
& bma?B0_Noat.oy
& b0 test.py
& hant o

So it looks like this is populated with calculus related functions. OK, it's a
few to do items here as well. But for the sake of this example, this is

actually good to go. So to install it, the first thing to do is to download a zip
version of this archive.

& ginut eomLaransubiath
JF

O ST SYP S S ———
Fles

This computer
{ Usaes | peterd [Gesitap | Pull requests [Projects 1 Insights
Microgythen ESP32

Example Python sct
aceuisromenee -
es 0 tags

a v 10 py Camputer Algebra for microcontrobers
Bme80 flost.oy W Aaronkel Travis: Update to custom firmware
BmeB0 test.py

2323%%

mimicropython/micro

wmath

O oravisymi

LICENSE.mdl -

& septzenzc ocd oy = 3 T4 Open with Gitiub Desitop
& il _worid gy READAE rmd [

& icd_apipy

& lod e test gy
& lad_bliric py O _configym
& rn_srithmatic py 3 J

[TostSuite.py sty d t 0 Dewnload 2iP

uhath-Ioga.png

README. md

1B S It wallitrawis-repo] [H[Coverage I

https:/travis-clorg/AaronKel uMath. svg Toranch: ster [travis-repo): My

[coveralls-imgl: hitgs:/fcoveralls. iofreposiAaronkoluMath/badge svgbranch=master [coveralls-repa)
haronke|/ubathTbranch=master

Wiki | Isswes | Document

So click on the green button, then click on Download Zib that will bring the
zip file onto your computer.

Pull requests 0 Security Insights

F ma

Camputer Algebra for microcontrobers
using
https:igith

pythen

& bme280_floatoy W Aaronkal fraves
& bwe80_test py
B bt oy
WhcrsPython device

& aoston_runction oy po——
& arithmetic gy ey i
& pootpy 0 UCENSEmd
& e3pB268 [2¢ od.py
& blle_worid py README md
& icd_api oy .
& led e best oy O TestSuite.py
& lod_bliripy

math

M Reasme

& a0 _sentmane py b

uath-logo.png

README md

ps i travis-clorg/Asronkel uMath.svg T aster [travis.
[coveralls-img]: https:/fcoveralls infrepos/Aarcnieliubathbadge.
hittps:j/coveralls iojr/Aaronke|ubathThranch=master

Wiki | Issues | Documentation

And in my case I have already downloaded it and expanded it from the zip
file so that this is now the contents of the repository on my computer. Now
the thing that you need is the math. That victory, very often a module will
contain a single file. But in some cases, like in this case here, the module
comes as a collection of files usually bundled inside a directory. So the
next thing to do is to get this directory over to a folder that I can use in
order to upload from that folder to my HP through to the server. Look at
30. So 30 has got the file step here. And right now I've browsed into Micro
Python E.S.P 32 two, which is sitting on my desktop so I can either redirect
this over to my downloads folder in order to be able to see the math
directory inside this list of files and directories.

Or in this particular case, I'm just going to copy. This directory and pasted
inside. My open directory, I'm just going to come wait and paste it over, so
it's a very standard and move to the top now.

Camputer Algebra for microcontrobiers

usng
https:

MicroBython (ESP12)

So there is my UMass directory right there inside my micro python,
especially two, and it's cruel.

J &
Files.

Thin computer
{ Usars | petar? | Gusitop |
Microgython ESP3Z

Computer Algebra for microcontrobiers
using
hittps

MicroBython (ESPI2)

And yet they just appeared now in my list of files and the phony. Right
there. And the next thing to do to be able to use it on my experience is to

transfer the whole directorate into my especially to flash memory and
system. So the easiest way to do that is to. Right.

® Thonny File o View Run Toow Heip

sssss

Cemputer Algebra fer microcontroliers
using
hitps:igithub.commicropython/micro

(EEEETIEEE]

MicroPython (ESPA2)

Click on the director or the TransFair and then select upload forward slash.
Do that. Wait for a few seconds. And there's math, right? So I'm going to
do a couple of experiments. To try out the contents of this module, just
trying to expand the shelf part of the window so you can see more what's
happening. Of course, remember, you always have the source code. Let's
say that you want to play around with the functions inside operator Torpy.

This computer
[usars | paterd | Deskicp |
£5pa2

b 4 Example Python sesipts

itrobers

Vrmicro

(EEEEREETEY Y

So just double click on Operator to provide to see what's inside. And you
see the three or four functions that are available here.

This eamputasr
[sars | paterd | Deskiog |
Micropythan E8P32

D4 Example Pythen seripts
» umath

itrolers

Vrmicro

»55 from umath dsport operator
s> operater.add(2,3)

5

* Operator.pow(2,3)
L]
55 operator.sub(z,3)
o

(EEEETEEY Y

And the first thing that you want to do is to import the module into your
show so that you can use it. So the easiest way to do that is to say that you
want to use the new math module, but specifically you want to import

operator. So if you just say import your math, then you'll be importing all
of the files that are part of the you must directory, but if you only want to
use the functions inside the operator file, then you can say from your
mouth the name of the directory import operator, the name of the file
without the extension. So enter and now we can use the ADD function in
this way, so two, three has those two numbers across and the addition 1s
five. What about Peter W. Power? Two in the power of three is eight and
so on. You can subtract. And it works now in the exact same way as what
you've just seen me doing on the show, they can use the exact same method
to import a library file or a module file to your ISP. Three to one more
thing that I want to show you before we close with this project, and this
section 1s to show you what you can do if you only really need one of those
files, you don't need all of them.

They may not be taking RAM if you have an import them, but they are
taking up precious flash memory space. So maybe you don't want all of
them.

~ Thonmy - MicroPythan device . Asmatrvapers
13 o
Fies
This computer
1 Users | pater2 | Deskies |
£5932
Exampla Pyihon scripta
— return
ealculus py
powla, b): itroders.
return

dat subla, b): Ve
return

aod = wid
Tl = sl

—pou_
—sub_ = sub

(EEEEEEEEEES

T

Propentes
cpeeaton py e
simpestruct oy »o5 operator. subl2,3)
ity oy

o008 Dy 1

(EEEEEEETETYET Y

addion function py
anthemetc py

@
*
&
@
F
P
P
&
&

use_anthmetc py

fumathjoperatorgry @ 17 : 14

[aperatar.zy |
This computer det add(a, b):
J Usars [pacerd | Deskiog | “Same a5 @ + b."
Mecropytnan £5P32 return a + b
D 4 Examele Pythen seripts
def mul(a, bl:

L return a = b

& caloudus gy
det powla, bl: itrobers

return o == b

A you surs? |

h-4 det subla, b: Vmicro
-l 1 return a - b PR —————
& memoize. oy | _add_ = add B! Recycle bin won't be used {no way
& cpemmtor oy —ml_ = mul 16 undaleta)t
& simplastruct.py o Dirsctories will be delsted with content.
sub_ = su

& simoity oy ¥ - v~ | EECEE

from umath iaport operator
operator. add(2,3)

operator.pow(2,3)

‘simplestruct py sperator. sub(2,3)
simpity.py

Stios oy

typespy

AIRBAAIBBBIAD

_n_py
) addition_function.py
& withmetic oy

boot py

& espazes_izc ked oy
#: heto_world.py

1cd_acipy

® kcd i2c_test py

& lec bk oy

& use_arithmetic.py

But let's say that you only want the operator functions. So let's clean up
here and remove the directory from my device.

itrobers

Vrmicro

> operater.subi2,3)
1

MicroPython (ESP3Z)

I can then go to operate on just the single file that I want to store on my
micro python device and upload it.

itrobers

Vmicro

>»5 from umath import operater
a2 operater.add(2,3)

5
* Operator.powi(2,3)
L]
»55 operator. subiz,3)
-1

e |

erePyhon [ESPI2}

And that appears here on the same level as the rest of my files, it's not
inside a directory this time around, just going to do actually a soft actually

up to a reset in order to reboot essentially my ISP three, two and clear
memory.

All right. So starting from fresh new, I want to import operator, so just say
the import operator. And now I can use the functions that come with
operator and the look inside the file again, just like before you could say
operator, add two and three together and that will give us five. So there's a
couple of of ways by which you can do that, but virtually with every single
case you'll be able to use this methodology to import a module to your
ability to be able to use on the show or through Python filed.

BLINK AN LED WITH LOOP

Hi and welcome to a new section in this course, this section is the first one
where I'll be doing practical demonstrations and showing you how to use
micro python with a variety of peripherals.

And of course, we'll start with the classic blink example in this and in the
next project. Just a couple of things before we begin since, as I said, it is
the first practical demonstration. Just want to talk to you a little bit about
how I've set up these experiments, both on the hardware side and in terms
of the software that we're using. So on the hardware side, to begin with, I'll
be using just a generic SB 32 board. This one is the one with the 19 pins on
each side. There's nothing special about this board is a cheap one that I
found on eBay. It is a generic SB 32, and that's how you'll find it as well in
Thony when you download and install the firmware. I'm not using external
flash or anything like that now for my peripherals. I'm using too many
boards attached, one next to each other. So I've got double the amount of
space. And you can see here that I have wired the power rails to the three
point three volt pin. So this pin right here and the ground pin and I've just
taken those pins and connected them to the to the ground rail and to the
three point three fourth rail and again with wires, I've connected the
additional two power rails. Also, whenever possible, I will be using a

sticker here with the number of the pin to which a component like Enilda
or later on a potential on that or a button is connected to. So that all you've
got to do is to look at any project frame and you'll be able to see where a
particular component is connected to. So having said all that, I'm going to
like in my ears to back onto the boards and connect. Legazpi Cable. All
right, let's have a look at what's happening on the software side. So in
general, each experiment I'll be starting with thrown in a blank slate like
this, nothing is loaded. You can see that I've got typically my scripts in a
local directory and then you can navigate inside thony. You can navigate
the directory where you have downloaded the scripts from the courses
GitHub repository to in most cases, like in this case here. I'll be opening
up the example script,

fod_blirik_31.py

esea2
This sketch shows how to blink an LED connected to GPID 21 using & loop.

rrrrr

having a look around, just become familiar with the way that it works.
And then I will be there's a couple of ways to copy the script onto your ISP.
Three to one way is to open up a new file, then copy the contents of the
local file onto the new file,

w - [Ussruipeterd/Deskiop/Miceopython ESP32/ed_bink

from machine impert Pin

from utine inport slesp ms
led = Pin{21, Pin.0UT)
while True:

MeroPython (ESPIZ)

and then from here you can save it to your ISP for it to do that in a

moment. Another way by which you can do that, you can close that another
way by which you can do that is to go to file and then say save a copy.

And then again, as long as your 32 is connected, then it's going to give you
an option to save the copy on to the device or on to your local computer
file system. So let's have a look at those.

File B0 Vi

Trom saching
from utine & |

led = Pin{20

while True:

MeroPython (ESPIZ)

from machine

impart Pin
from utine import sleep ms

You can see that Mike is referring to is connected via USB, but it's not
appearing yet in Sony. So I'm going to click on this button here just to
trigger the connection of the device. And now it's a simple by default,
when you upload the firmware for microprobe and onto your especially to
the only file present is the boot p y file, which looks like that it doesn't do
anything in general. I'm not going to be doing anything with dot p way
because I want to be able to click on the run current script button up here,
hit F5 to arbitrarily execute a Python script that is stored on my ISP 32
instead of having two power cycle in order to trigger whatever code is
inside. But P y. But just remember that once you are happy with the
operation of a script, then you can always change that script name to be P y
and then you'll be able to execute it just by powering up your ISP 32.
Alright, right. So now that we have the ISP 32 micro python device
connected and you can see the listing of its file system here inside thony,
then I can go ahead with step number two and copy my script across to the
East 32. So I'm going to follow the copy method. So I'm just going to say
save copy and then choose from a Python device and I'll give it the same
name. I'm going to type it in and give it the same name as the name that the
file 1s saved on my local computer file system. So this is really the blink or
21. P why right now it appears right here going to double click on it to
open it up. And here's my second tab with my Python script as it is saved

on my ISP through to device and to highlight the difference in storage
location between the two files, you can see that the local file system
computer file system file does not have the square brackets around its file
name while the ISP three to one or the file that is stored on the ISP three to
filesystem per square brackets around its file name. So now you can get rid
of the local file system, copy of the file and just work with the one that is
stored on the ISP three two. With each one of the demonstration files, 1
tried to provide sufficient documentation in its header. So in general the
header will look like this is going to have the number title for the script in
the demonstration, a description of what it does, a listing of its components
and then the documentation. So here we are using the PIN and the Slocum's
function so you can find documentation about those two in the rules that
are provided here. And in the case of the sleep function, for example,
which is quite interesting, you click on this, you are or you copied across to
your browser and it will take you to the appropriate part of the macro
python or documentation side. Now, this function is interesting because
this is the regular python or C Python time module. It's got the you in. In
front of it to indicate that this is a micro python version of the time module
and the difference between the full C Python time module and the new time
module is that the module is optimized to make it work better, more
efficiently on a micro python device. So it's missing a few functions. It's a
bit more efficient in terms of memory usage and therefore will be using
your time instead of time to introduce a delay, as you can see here of
QWERTY while Loop and I've got a delay here to get the ability to blink
on and off as similarly with the pins GPO server. Look, I'm going to use it
especially to part of the documentation for this.

And you can see that here as Pins and KBIO. And this is an example of
how to use pins in the security of using micro python to be able to turn
them on and off. We can also see how you can turn on the pull up resistor.
We've been making use of this function in a later example, led a project in
this section. So here you learn that you can turn on a bill just by calling the
function of the PIN object. Here we've got a PIN object called PO and that's
how you create this object. You can turn it off by calling the function or
you can use the value function and pass a one or a zero to it to turn it on
and off. You can also check for the current value of a bill. We're going to
show you how to use it in the very next project here. But it's a very
convenient for you to see whether the GPA stand on and off without having
to keep track of its state in an additional variable. So you can see there's a
few ways by which you can manipulate the process using micro python on
an E.S.P 32. Of course, you use the same techniques to achieve the same
kind of functionality on other market python devices like the Raspberry Pi
Pekoe, for example. Or add back to a sketch. Again, it's pretty simple. All
we do is to import the PIN functions from the machine module, the slip on
the school. And as for microseconds from the time module, you can also
import sleep instead of sleep image. And then we'll be talking about
seconds instead of microseconds. Personal preference here, which one you
want to go with creating then the ality object which represents the ality

connected to your 21 and this is an output pin. And then the method that
I'm using this example is to just use a loop, which is very similar to how
you do this on an arduino and then turn on the ALYDA sleep for five
hundred milliseconds and turn it off, sleep for another five hundred
milliseconds, etc.. If you had chosen to import sleep instead of sleep and
this, then this function here would look like this. And if you wanted to
have a five hundred millisecond or half a second delay, you would just use
decimals. You'd go like that. So this would be half a second. Let's go back
to the original. With the emphasis now, instead of saying early on or off,
you could also say ality taught value one or ability to add value zero,
whichever you prefer, is fine. All right, so I'm going to save that totally
saved and click on the play button here or hit F5 on your computer to
upload this script and. As you can see, it works. No problems at all. OK,
so this was quite easy now in the next project, I want to show you an
alternative way of getting this reality to blink. But in this alternative case,
instead of using the loop like we did here, we are going to use a timer,
which, as you can imagine, is a much more efficient way to use the
resources of your. I could literally just go right ahead and have a look at
this kwatinetz scenario.

Blink an LED with timer

Hi and welcome to a new look changes section.

& Thonny

In the previous project, you learned how to make this link so disconnected
to your 21 and you make that work by using the while loop. You've got a
while true loop here that never ends and it will just turn on the on and off
and each time it'll keep its state for half a second. In this project, I want to
show you an alternative way of making this ability to blink, and that is by
using a hardware timer instead of a loop. So I've got this script right here.
It's five twenty and you can see it's about the same size as the blink with the
wild true loop. But now we are using a timer. You can see that I'm setting
the timer down here. This timer has an I as are assigned. This is an
interrupt service routine assigned, which is a simple function that inside that
function, all it does is that they will check the current value of the ability
by using the value function.

The period s in milliseconds.

Pins and GPIO

ESPX2 port

Installing MicroPython
General board contral
Hetwarking

Drelay and timing

Timers

Pins and GO

PYWM (gt width madlation)

ADE [anabog bo digital conversan)

Software 5P| bus
Hardware SPI bus
12C bus

Rueal time chock (RTC)
Dreep-sieep mode
Onewire driver
e diver
Capacitive Touch

* Pins 1 and 3 are REPL UART TX and RX respectively

® Pins 4, 7, 8,11, 14, and 17 are used for connecting the embedded flash, and are not

And if it 1s false, therefore the elite is turned off and it will turn the lights on
and if it's not, it will turn 1t off. So the logic here 1s that we don't have an
infinite loop. We just have a hardware timer which is connected to a
routine that contains the functionality that we want, whether in this case it
is to blink an on and off or to do something else periodically.

T o o

[] T cans T < comtrod harddwars time

Methods

Timar. {alt(", mode~Timer PERIODC, period=-1, collback-Mane

Initialise the timer, Example

Timer. deinitl

Deinitialises the timer. Stops ¢

Constants

Timer. ONE_SHOT
Ubearies spercific 1o the pybowrd

Timer.PERIODIC

Timer cperating mode

© Previous

The new thing to learn here is the use and the configuration of the hardware
timer. And you can see that here I've got a Eurail, a link to the

documentation where you can look it up and learn more about it. But as
you can see, it's quite simple. I'm looking inside the quick reference for
E.S.P 32 times instead of this paragraph here, which contains the way to
use a hardware timer. So first, we need to start by importing the time a
module from the machine module here, we create the timer object to give it
a day. It doesn't need to be a negative number. You can see here that I just
said timer parentheses one for the ID and then you can set that time up to
whichever interval you want. There's the init or initialization function and
it takes these parameters. First you've got the period. So how often which
it like this time to call your function then the mode it's going to be a one
shot, which means the time it's going to trigger once and then it will stop or
periodic, which is what we are doing in this example, which means that the
time I was going to call your you will retain your function every time that
the period elapses. And then we've got a call back here. The callback is a
Lambda Lambda is a python feature that allows you to define a very small
function 1n line. So instead of defining the function as we are doing here,
right here, somewhere else in your program with the lambda, you define
your function in line with the callback declaration. And this case is just
going to print out one which in this case, the lung function printshop out to
also want to show you the full class time on module that comes with the
macro python firmware. And you can see how it works here. A little bit
more information about it. You can see that the mode can be that this one
short or periodic, and you can also use the Internet to initialize it time and
basically stop it. Disable it if needed properly, can enable it by using in it
and then you can disable it by using the Internet. We are just enabling it by
using init in this example. There's no reason to initialize it. And there's the
constants. And it's a very simple way to take advantage of the hardware
time in the E.S.P three to. So the next thing to do here is to upload this
script to the ISP 3-2, so I'm going to use the save a copy method so they
will go to the market python device. OK, so I'll do this again to see what
happens. So I tried to make a copy to make a Python device, but as you can
see, the device 1s busy right now because it still running the sketch from
the previous project.

~ Thonny - AiseruipeterZ/Deskiop/Micropython ESP32led_blink timer 21.0y @ 15 24

[ledblink 21.gy] e birk_timer 21 oy

85.20 - LED blink with timer

from nachine import Pin, Tiser
\ed = Pin(2L, Pin,0UT)

dof blisk_isrievent):
it led.valuel) = False:
Ted.onl)
lse:
led.off

blirk_timer = Timer(1)
blink_timer. init(period=5ed, modesTimer,PERICOIE, callback=blink_isr)

So I first have to stop the execution of the script to interrupt it and then
copy the new script along. You can do that a couple of ways. The first one
is to hit control, see, and that will stop the execution of the script. Or you
can go to run and choose to interrupt execution option, which is, as you can
see, control see from the menu. So I'll do that via the menu this time and
from now on, which I'll be using my keyboard to do a control see and
interrupt execution. All right. So let's try again our fail safe copy Micro
Python, and I'm going to give you the same name ality link timer here.
Why I got the twenty one for the GPO. Right, so here it is. Double click to
bring it up.

Dl ik 20gy] bed.birk timer 2 oy

85.20 = LED blink with timer

blink_times = Timer(1)
blink_t imer. init(period=589, mode=Timer,PERIOOIE, callback=blink_isr)

olse:
Ted.off()

ink_timer = Timer{1)
ink_timer. nit(period=500, modesTimer.PERIODIC, callbacksblink_isr)

MeroPyThon (ESPIZ)

All right, so now I'm going to make sure that I've selected the blink time.
I've got to wonder why a script with the square brackets that is the one that
is stored on the 32 and with that selected or pressed the play button, the
green play button, or go to run and click on run current script. And that
will have the same effect. So click on that and. You can see that the effect
is exactly the same as before. So we've got the deep thinking I can change
the hardware time to make it blink a little faster. So let's make this two

hundred and fifty milliseconds just to see the difference between
description and ensure that this is the one that is really being executed. So
I made a small change here to the period and then click on Save to save it to
the device and then click a. on the green play button. And you can see that
the elite is now blinking faster. The other thing that is interesting is that I
can make changes and save them or make them say two hundred
milliseconds and I'm going to save it. And you can see that there was no
complaint from Sony to complain that the device is busy, like there was a
complaint earlier when we were running the ality blink with the while loop
here. And that is because when we were using the wire loop, the device
was really engaged, either making the little blink or sleeping. So the
device was engaged. We couldn't save on. I can make any changes, but
when we are running the script with the interrupt, the device is only busy
when the timer is actually calling the isobutane and only when the security
is executing these highlighted lines and all other times it's not busy. So it
can be ready to receive, for example, a new file update from Sony without
complaining about it being busy. So that's another positive effect from
this. You can see that the use of the U.S. military to hardware is more
efficient when we use the hardware time versus the while troop. All right,
so let's move on and do one more experiment that involves the energy on
Tiberio 21, which is learning how to make it fate using copes with
modulation.

FADE AN LED WITH PWM

But in this project, I'll show you how to use pulse width modulation to
control the intensity of the light that comes out of infinity in this case, just
like in the previous examples of conditionality connected to Chipo 21.

Now, talking about the hardware, before we move on to the software side,
just wanted to remind you that on the E.S.P 32, you're looking here at the
PIN layout chart. Just zoom out for a second.

ADC1_4 _
ADC1._5 3 CC iD2ACTzEsPwRO0M2 < ¢ 38 ~ I sp) 1
ADC2_8 14 : s i ac . 018 -

ADC2_9 HEB2EY .. 15 s« 34 NS
ADC2_7 NO27 6 i iy ' 27~ NOE
ADC2_6 R - : < 25~ .
ADC2 5 i B i ¢ 24~

0 TOUCHO
WEEE 3 ~ RGN / TOUCH1
Apc2_4 [iSH gl T 22 ~ 02 TOUCH2
: 21 ~MOI8} ADC2 3 TOUCH3

13 ~ e SD1

You can see that any Tapio with a tilt next to its pin is capable in this case.
For this example, I'm using Chip here you are 21, which is capable. So as
long as there is a tilde next to the pin that you want to use and it is free, it's
not occupied with something else, then you can apply and function to it.

All right, let's have a look at the script here, so I have created a little
demonstration file called Fadeout. As you can see, it's on my computer file
system. I haven't copied it over to the three yet. Having a quick look at it, I
am going to be using, of course, repeatably m. Module to control the ability
and of course, the documentation being right here and also using a function
called range that comes with the Standard Micro Python and Python
libraries and its documentation link.

o+ E B 4 (@ F v Secu— doc micropython crglenmestsaptiuckret - (5

B Sk rememe et EEP42 — WPyt 134 dmmumaminiion

PWM (pulse width modulation)

Is this having a quick look at those two resources? You can see that the
W.M. functionality is part of the machine module and you can use this
notation to create a piece, an object. You basically just call them. Then
you pass on the GPO that you want to use. You can read or set the
frequency of your M channel. The default is 1000. So if you don't set it
and the default of 1000 is going to be used and then you can set its duty
cycle by calling the duty function and putting the duty cycle just a number
between zero and one thousand twenty three. As you can see here, the
documentation, if you don't pass a parameter in the function, then this
would return the current duty cycle. So you can always check to see what it
is before you change it. It's another example here of how you can create a
W object and set both its frequency and its duty cycle in one in one
function like that.

So I'm using the M functionality. First of all up here, I'm just going with
the default C, I'm just setting the pin to be a twenty one and then down here
in the infinite loop using the wild true loop, I've got a couple of loops. The
first one is counting up for the two to circle from zero to one thousand
twenty three in step five and then calling the duty cycle and setting the --
cycle according to what it is inside the loop. And then the second that I'm
counting down, that's within range function is useful. I'm counting down
from one thousand twenty three to zero in step, negative five minus five
each time going for a little sleep and then continuing with the loop.

f 0 Pp— — &
Fies
T coma class range(stap)
class ringelstart, stopl, step])
tadupy Rather than being a function, is actually an immutable sequence type, as documented in
iec pamk] Ranges and Sequence Types e, range,
oo bk}
repriobject)
Return a string containing a printable representation of an object. For many types, this function
makes an attempe to retum a string that would yield an object with the same value when passed to
umi eval(], otherwise the representation is a string enclosed in angle brackets that contains the name
bootoy of the type of the object together with additional information often ineluding the name and ad-
LT dress of the object. A class can contral what this function returns for its instances by defining a
© warisy ropr_{) method.
reversed(seq)
Return a reverse ierator. seq must be an object which has a _ reversed method or supports
the sequence protocol {the _Len__ () method and the __getites () Method with integer argu-

ments starting at o).

round(susber], adigits])
. Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is
Hane, it returns the nearest integer to its input.

For the bullt-in types supporting round(), values are rounded to the closest multiple of 10 to the
power minus naigits; If two multiples are equally close, rounding IS done toward the even choice
(30, for example, both reund(0.5) and round(-0.5) are 0, and round(1.5) is 2). Any integer val-
ue is valid for ndigirs (positive, zero, or negative). The return value is an integer if ndigits is omit-
ted or mons. Otherwise the return value has the same type as number.

For a general Python object number, round delegates to nusber. _round

Mote: The behavior of seund() for floats can be surprising: for example, rousd(2.675, 2)
gives 2.67 instead of the expected 2.68. This is not a bug: it's a result of the fact that most
decimal fractions can’t be represented exactly as a float. See Floating Point Arithmetic: lssues
and Limitations for more information.

class mat([iterable])
Return 3 new sst object, optionally with elements taken from inerable. sat is a built-in class. See
set and Set Types — set. frozenset for documentation about this class.

So the built in function range looks like this. It's got to overloaded
functions. The first one just has one parameter, the stop. So if you go for
range and then you give it a number, then it will count from zero up to that
number in step one. The alternative is to go for this function here, which
requires three parameters start to stop. And then the step, which is the one
that I'm using right here. That makes it easy to count from a number to any
other number using any step that you want. All right.

omputer
| Usars | potee2 | Desiiog |
cropython ESPIZ

tadeny

& loc bliok 21,57
o b timae 21 55

Wacrafython devies

* oot ey e w21 py
st bk 21 py o bink_imes 21y
e bl it 21,80

Fiename: [tade oyl

TR T or uty_cycle in rangele, 1023, S):
@ puntduty{duty_cycle)
Floep_ms (10)

for duty_cycla in range(1823, 8, =5)
pund, Sty duty_cycle)
sleen_nsi10)

So I'm going to upload this as a copy to the marketplace and device. It's
called his fate dot p y. All right, and loaded into phony just to get rid of the
one stored on the local filesystem, so don't confuse it to this.

ane - Theeey - MicroPython device - fadeny @ 4. 16
156 9 - @
Peses el
L [tadnpy]
e = LB LB A P 1 LA SRR S L
{ Unars | petar2 | Desstop | - —
Mo BeY I MicroPythen with the ESPIZ
fadecy 32 https://techexplorations. com
) o i 21 oy n
P —— -
70 frem machine isport Pin, Pt
17 from time import sleep ss
n
I pwnl = PMIPIN(21})
MacroPythan sevoe . o
boot py B
5 wnile True:
tadapy 3 el duty (108}
b ok 31y M sleep_ms (1008}
LT Y ¥
% et disty | 200}
5 sLeep_ss (1000}
=
s-. puant, sty {500}
“ sLeep_ms {1606)
a1
2 . duty | 1080)
) sLoep_ms (1008}
.
“
45 while True:
a for duty_cycle in rangeld, 123, 5:
“ pusd_duty| duty_cycle)
] sleen_ms(10)
“
51 for duty_cycle in range(1823, 8, -5}
] -duty(duty_cycle)
53 sleep_ms (18)
Shall
WARSENS 1ok s Tnanpectad acho. Expectad bW -3 MEVITOR CONTENT\I\A', §ot b \KHTIRCSMGL (oKt TeceNt 8
lioi
-
o
20
—
o

And I'm going to press the wrong button to get it to start. And then you get
the LDH on and off. For the speed things up a little. Which case I will
need to interrupt.

+ Thanmy - Micruyinan device - flade.py @ 49 .21

P T T

1croPyt
e

hon with the ESPIZ
P r

techexplarat lons, con

3 frem maching dsgert Pin, P
21 from tise isport sleep s
]

20 pasd = AMPIN(ZI))
|

Microython devica. "
& boot by -
3 while Troes
@ tade.py 3 ot cuty (100
Lo ik 31y " Slees_ms| 1008)
& ot bk _Simar_21 py 1]

3 et duty | 200)
37 sleep_ms(1000)
3

0 . duty(580)
a“ sleep sl 1000)
a1

a pund, Suty | 1088)
& sleep_ms(1000)
-

45

4 while Tree:

a7 for guty_cycle in range(s, 1823, 15)1
an . duty (duty_cycle)
45 sleep_ss{10)

for duty_cycle in range(182, 8, -15}:
puandduty lduty_cycle)
sleep_ws (18}

Before I can make any changes to the sketch and then let's make that say 15
and minus 15 and save and play again. You can see that it now fades on
and off faster, so you can either change the step parameter or reduce or
increase the sleep amount of time, and that will have an effect on the speed
with which the on and of. All right. That was easy enough. Let's move on
to the next project where I show you how to read the state of a button, and
we do that in a few variations, a few different ways by which you can read
the state of the.

READ A BUTTON WITH LOOP

In this project, you have to read the state of the commentary button. I'm
going to show you how to do that, using three different examples each time
to bring a different capability of the ECB through in macro python to
achieve the same thing.

EmEs SRS
" mEEE L

But each time with a bit more efficiency across the three examples, the
hardware is not going to change in all cases. Have the ECB three to have a
momentary pattern. She can see that is connected to Jebril for this pin right
here. And I am using the ECB 32 internal pull up so that I don't need to use
an additional wire to bring up the unpressed state of the button to high
would use the internal pull up register for that. And I also have a wire here
that will bring the state of the button to know when it's pressed. So that's
what will be detecting to show, in effect of the button press I've got in here,
just like 1in the previous projects that is connected to Tapio 21 and that's
about it with a hardware.

In the first example that I'll show you in this project, I am reading the state
of the button in the simplest possible way by using an infinite loop here.

So I'm using the while loop than a passing true as its permanent state so that
the program is going to be locked inside this block. So constantly it will be
using this instruction to read the value of the button and if it is low
represented by zero here. So logical state is low because you can see that
the pressed state of the button is pushed down to zero volts, then will turn
the old on and will stay there for ten milliseconds. And if the state of the
button is not zero, it's one because of the internal pull up then will turn the
ability of a couple of other things in this sketch worth talking about, I have
used this expression here to declare the object of the button and you can
see that I'm using the PIN constructor, just like I did with a PIN constructor
for the ality here. But in this case, ['ve got three arguments. The first one is
the GPO. The second one indicates that this is going to be an input and
then the third one activates the internal pull up front.

Thia compuner
1 Usew | poter? | Daktng |
Micropythom ESFI1

button_4_interrupt py
button 4 loop oy

button_4_simer py
fad.py

lod_blei_21.py

lod_blink timer_21.py

WicrePyihon device
bootoy

fadepy

lod_biiek_21.py

lod_biink times_21 5y

. <% ‘o A

I ket rotmrunce for o ES732 — WhcrsPython 114 docaen

Quick referemce for the ESPIZ

Gereeral information about the
ESP32 port

Contting searted with Microfytion on
the ESPI2

- Instaling Mooyt
General bard controd
Hetworkg
Detay wnd toming
Timers
Pins and GPIO
PR (puisi it modbulation]
ADE laraog 1o dgital conversion)
Software 5P1 bus.

Hardware SP1 bus
Saftware 12C bus
Hardware ©C bus
Rl time clock (RTC)
Do sheap mante
RMT

ot drveee
Mo diver
Capacitive touch
DM debver

WESRERL fr browser roenacte
prompt;

Awallable Pirs are from the following ranges finchesivel: 0-1%, 21-23, 25-27, 32-39. These
comespond to the actual GPIO pin numbers of ESPI2 chip. Note that many end-user boards use
Hheir o adhox pin numbe For mapging between bosrd logical pirs

and physical chip pins consult your
Motes:

® Pins 1 and 3 are REPL UART TX and RX respectively

® Pins, 7. 8,11, 16, and 17 ane used for connecting the embedded flash, and are not
recomemended for ather uses

= Pins 34-39 are input andy, and also do not have internal pull-up resistors

® The pull vakue of some pins can be set to 0 rexduce power consumgtion during
deepsieep

PWM (pulse width modulation)

PWM can be enabled on all output-enabled pins. The base frequency can range from 1Mz to
ADMBEZ but there Is 3 tradeoff; 5 the base frequency increases the duty resolution decreases. See

LED Control for more details. Currently the duty cycle has 1o be in the range of 0-1023

Use the =a: w class

To learn more about the PIN constructor, have a look at this link here,
which will take you to this page in the quick reference for the HB three two
or the Micro Python website. And it shows you an example of how to use
these functions. And again, if you want even more information than good
to have a look at the machine Dot Pincott, which is this page right here.
This is it.

@ Salari File Edt View

P St = O e B al e e
computer . v BB i - ot VO e — Ml it 174 G
| Useen | petes3 | Dwskiog |
[

& bustton_4_intarrupt pry i

buston_4_loop.py S given In the co
® button_4_tmer oy 1
& fade oy

& lod_blink_21.py The arguments are:
led_biink_timer_21.py

(o . M additional argumants are
Any settings that are not
specified wi rem

s mandekony snd can arbitrary object. Among possible value types are: int fan

FUAE - Pin is configured for input. It viewed a5 an output the pin is in high
& lod_biink_timer_21.py mpedance state.
tantsats ~ low v Batncg

#ia.001 - Pin Is configured for (nor st

[———— o onfigured for (nommall outp
ured for apen-drain output. Open-drain output works

wsyps - e by dutain 8

s ety

O the pin is active at 2 low level, if

stk Imlement this
Bort-specthe lraries

Witwarien wpecite: 1o the pybosrd
Litearies. specite 10 the Wiky

braries wpecife 10 the ESPR2S4

[calling them will lead to undefined. or 2 hardware-specific, result). Mot all
[T

ports implement this made.

wen sary - The Sarme 25 Pia.ALT , but the pin s configured as open-drain

S4t 38 ports implement this mode

o pall specifies if o

pis Fus e - Pull up resistor emabled

N
Pis. UL B0 - Pull down resistor enabled

alid only for Pin.OUT and Pin OPEN_DRAIN modes and specifies Initial output

e if given, otherwise the state of the pin peripheral remains unchanged.

o drive specifes th Ut wer G Ehe i and can be one of: Pin. Lo PR

And you can see the constructors in my example. I'm using this constructor
here to create an object for idea of the Tapio number for in our case then
for mode, I'm using Penkin as opposed to pin down for the elite. This
opinion is for the button. And then we also have the polyposis, stuff like
that. So Pincott pull up is a way to turn on the pull up resistor you can see.
And like the other, you know, you can also have the pull down resistor if
you use Pendo, pull down and that's about it. The rest can be immediate
and they will just take the default values. Another new thing that I'm using
here is the tick and the call and this function. You can see that I'm using
that down here. I'm importing it from you time. So from Micro Python
version of the time, I see Python module. So this function here, you can get
more information about it right there. It gives us the number of
milliseconds since we have power to up the speed. Three, two. And that's
because we want to see information about the moment that I pressed on the
button and I'm bringing out the number of milliseconds since the activity
was powered up when I pressed the button right here. OK, let's try this

out. So at the moment, I've noted the script from my computer disk and my
computer file system.

PrINTI"BUTTON Pressed at ™, TICKS_Ws())
sleep_ms(108)

So what I do is to save a copy with the macro python device in the name
will be Button and it's call for the API. All right, here it is and double click

on it to bring it up, you know, close the window that contains the version of
the script on the computer file system. You know that I've got the script
selected on the E.S.P 32. I will play it.

.'I JE P .
Fie | -_Lu-m
This comeister . - Sam Lkd
Ju-unn-ua—bu :3 - Wires
Merogython £9832 14 - Breadboard
@ bution_&_interruptpy 13
* wm 16 Documentation:
17 Pins and GPID: https://micropython-d
® bution_4_timer. gy 18 sleep_ms: http://docs.micropython. !
® tade.py 18 ticks_ms: http://docs.micro python.org/en/latest/Libra
& lod_blink_21.py 0
loci_blink_timer_21,py 21 Course:
22 MicroPython with the ESP33
MictoPython device: . 23 https://techexplorations,com
 boctpy B ...
bution_4_loop.py 26
tade py 47 from machine import Pin
& lodd_blink_21.py 26 from utime import slecp_ms, ticks_m:
led_blink_timer_21.py 8

30 led = Pin(21, Pin,0UT) ste output pin on GPIDZ1
31 button_pind = Pin(4, Pin. IM hn.l’!lLl._UF]

33 while Tru.
4 if buttor!_plnl.vllu:(] == @
d ni}

38 int{"Button pressed at *, ticks_ms(})
n” sle!n Is!‘lel

38 alse

39 ed.of 1)

i3]
essed L e
udn 'mul

213!
n-eﬂ i
= nas

pressed “ mzm

prrzremereenen bl
mmmsim |

pres:
p-n
pn-
preased

All right, to press the button, you it is one text comes through to the show
of my Thony Editor Button pressed, and then the number of seconds when
the button pressed, it's been detected. All right. Obviously, this is not a
very efficient way, again, to use the hardware. So I want to show you two
additional methods of the set of a button that do not involve using a wire, at
least not to do the reading. So let's have a look at the next project where I'll
show you how to do the exact same thing more efficiently using a hardware
interactive.

READ A BUTTON WITH
HARDWARE INTERRUPT

Welcome back. In the previous project, you learned how to read the state of
the button in the simplest possible way.

[btion_4 locp.py |

Thus computer
| Users | peter | Besktop §
Micropythan E5PIZ

button_4_interrupt py

button_4_loop.py

& button_8_timer oy

& tade.py

lod_blink_21.py

led_blink_timer_21.py

MicroPython device

boot py

@ button_4_loop.py 2

& tade py frem machine

& led_blink_21.py from utime import sleep ms, ticks_ms
lnd_blink_timer_21.py

led = Pin(21, Pin,0UT)
1 button_pind = Pin(4, Pin.IN, Pin.PULL_UP)

while True:
it ytton_pind.value(] == &
ed.on()
print("Button pressed at *, ticks_ms())

els

MicroPython (ESPIZ]

As you can see here, we just use a while, true infinite loop. And in it we
just take a reading of the button, fairly painful, and then act accordingly.
The problem with this method, of course, is that you've got an infinite loop
here that looks at the execution of the program in it. It's not a very efficient
way to use your hardware.

In this project, I want to show you an alternative which is more efficient
and allows us to read the state of the button using a hardware interrupt. So
in this line here, line 58, I have to find an IQ and interrupt request on button
painful and have configured it in a way that 1s very efficient. So what I'm
saying here to the trigger is the falling edge of the signal that is produced by
the button. So when you press the button, the voltage on your full force
from high to low, and that is the IQ falling edge which is detected in
triggers this interrupt. And when this edge, the falling edge is detected,
then they interrupt. Is calling this routine here a function, the button and
this compressed underscore ESR interrupted service request or retain his
ISO, which branches the program inside this function and again act
accordingly. Will get to this in a minute in order to display the ality lighting
up. When I press the button, I'm still using a while loop here. It's just the
easiest way just to demonstrate the interaction between an eyesore and then
a different part of your program. And I'm also demonstrating the ability of
Intisar and other parts of your program to communicate using global
variables in this case.

[uton.d jooppy] | txston 4 nimrut oy
ine LMY BUST De 01ssADLed Tor

Now let's have a look at some of the details. You can see up here in line 36,
I am importing the PIN function, disable 1Q and enable IQ functions from
the machine module. And again, the slip in there from the time module.
I'm starting by creating the object as usual, and then the pattern object,
which is exactly what we did in the previous example. Same thing here.
Nothing has changed. Then I'm declaring a couple of variables. This is the
button pressed portable. It allows the IQ routine of the ISIS recorded here,
retained to communicate with other parts of my program. So when a
button is pressed, then I update this variable here. You can see it is updated
here and then used here to determine whether they should be turned on or
off. They also have integer like a numerical variable here that keeps track
of how many times have pressed the button before it's reset. So you can
play around with those variables as well. Now, inside the definition of the
routine that we will be called by the IQ, you can see that it requires one
parameter. And this is the object that has caused the IQ and this is passed
by the 1Q routine here as well. And I'm using this object here to print out
some information about what is it that has caused the 1Q to see I'm taking
PIN and exactly what it is and passing it into the button pin global Viterbo,
which i1s then printed out down here so I can get some information about
the object that caused the 1Q. A couple of other interesting things that are
happening in here is, first, that I am calling the disabled IQ routine, which,

as you can probably guess, will disable further excuse. So when I press the
button, the first thing that happens with disability 1Q, while the Isar
function i1s busy, any further button presses will just be ignored until I re-
enable the IQ right at the bottom of the isobutane. So when I'm done doing
whatever needs to be done to deal with the existing 1Q, then I will re-
enable it so that the 32 can detect the next button. Press a couple of other
interesting things here that are perhaps a bit unusual for you is that I'm
using the global keyword here so you can see what's happening, of course,
available, such as Button Pressed, which I have already declared at the
header of my program. So you would expect that this variable would be
global already just by the fact that it's been declared the header of the
program, but in fact, it isn't. I won't be able to make any changes to this
variable from inside this context before I use the global keyword to convert
it into a variable that I can make changes to. I've got a link for more
information about this here. If you're curious about how this works, if you
don't use this keyword, then you are going to get a syntax error or you're
going to get an interim message on line 53 when you try to make a change
to the value stored in this variable. So do the same thing with the other two
variables that I'm using across different sections of the program. So button
spin and press count, you can see that all of those have been declared up
there. And I still need to use a group of able to be able to make changes to
them. All right, so then I just store to the button, pressed as to the object
that is causing the IKEA into button pin and then I increment the press
counter to what? And then I close the cube in here. You've got the infinite
loop, which is similar to the loop function in the Adreno is just constantly
going around executing whatever codes you have in it. And in this case, it's
constantly checking for the value stored inside the button pressed variable.
And when it's true, you will go inside, change it into force, turn on the ality,
print out the two messages zero. The counter will reset the counter and
keep the lady on for half a second. Ifit's not true, then it will turn off the
reality and that's about it. So I am going to save a copy of this program to
make replacing it with PCs and it's going to hit control. See you stop the
execution. All right. And then try again, save a copy of Python and you
can call this. I tend food interrupt why? All right, how close these two and
not that one, I need to open up the interruptive position, but program this

one right here. And now that I've got the program opened on the target
market Python device, I will play it. And.

ene = Thanny - MicroPylhen device - ftutton & et oy ® 70: 5

LDEE Q8 r ©

- [[z

Foes = [button & |

This compater - 3 Course:

| Uners | patar? | Desktes | 31 MicroPython with the ESPI2
Micropytten E5P12 32 https://techexplorations.con
button_4_interrupt py 1

button_4_loop.py - .

& button_4_timer.py

P4 36 from machine import Pin, disable_irg, enable_irg
* fade.py 37 from time import sleep_as

& lad_blink_21.p 38

@ loc_blink_timar_21.py 39 led = Pini21, Pin.OUT}

Mcrsdython device - I; button_pind = Pinl4, Pin.IN, Pin.PULL_UP}
r
:hww 43 button_pressed = False
. 44
buttan_4_joop.py 45 press_counter = @
& tade.py 45
& jod_blink_21.py A7 def hnul_'nuﬂl_hr{?;n]:
P . 4 48 state = disable_irg
S 49 global button_pressed
5@ global button_pin

51 global press_counter

53 button_pressed = Troe

54 button_pin n

55 press_counter = press_counter + 1
le_irg(state)

button_pind. irq(trigger=Pin, IRQ_FALLING, handler=button_pressed_isr) -

Press the button and works. Stays on for half a second as well. Right. And
one thing to notice here is that in the message that starts with Button
pressed at it right here, you can see that the output of button pin, which is
this variable here, which contains the object that has caused the interrupt, it
says painful that way. If you have multiple interrupts from different areas,
then you can always differentiate as to which button or which interrupt 1s
the one that has triggered your interrupt service routine. OK, so that's about
it with the bat, an example using the hardware interrupter. 1 want to show
you one more variation of the same in the next project, which involves this
time using a timer interrupt this ticket out.

READ A BUTTON WITH TIMER
INTERRUPT

Like in this example, I'm going to show you how to read the state of a
button using a hardware timer. Just remind you that in the previous two
variations of the same exercise, you learned how to read the state of a
button using an infinite loop, like in this example right here.

icroPythan device - fiution, 4 loop.gy @ 39 18

[led blink times_21.py] button, & timer.py [button & interrugtpy] | button 4 Jooppy |

This computer - = smm L0
[Uners | peterZ | Deskicp [-
Microoython ESPI2

& bution_4_interrupt.py

button_4_jeop.py

button_d_timer py

& tade py

& lad_blink_21.py

#: lod_blink_timer_21.py

o/en/espll_doc/espI2/quickref. html#pins-and-gpio
e.htal7highlight=utime%2ds leepiut ime, s leep_ms
#ut ime., t

icr hon with the ESP3I2
McroPython device - ht /ftechexplorations,com
€ boat ey
€ button_4_interupt.py
& button_4_loop.py from machine import Pin
® fadepy from ytime import sleep_ms, ticks_ms
lod_blink_21.py
) lad_link_timar_21 led = Pin{21, Pin.OUT)
s lyol button_pind = Pin(4, Pin.IN, Pin.PULL_UP)

i1 while True:
if button_pind.value() == 8:
Lon()

.
print(“Button pressed at ", ticks_ms(})
sleep_ns(18)

alse:
Lled.off({)|

And also how to use a hardware interact as in this example here.

[loe bk fimer_ 212y] button & timery | button 4 interrustpy |

This computer .
J Uners | peterZ | Deskiop | button_pressed = False
Micropython ESP32 s

button_4_interrupt py press_counter = @

: b“"’"':':: def button_pressed_isripin):
- "’““"- c state = disable_irg()
ade gy ‘ global button_pressed
& led_blink_21.py global button_pin
#: led_blink_timer_21.py global press_counter
Whcromyinon devce . button_pressed = True
button_pin = pin
boat.ay press_counter = press_counter + 1
& bution, 4 nlemptpy enable_irq(state)
button_4_Joop.py
& tade.py 9 button_pind.irq(triggersPin. IRO_FALLING, handlersbutton_pressed_isr)| s
#. led_blink_21.py
lad_blink_timer_21_py while Trus:
E = 5 it button_pressed == True:
button_pressed = False
led.on()
print(“Button pressed at”, button_pin)
print{"Press counter: “, press_counter}
press_counter = @
sleep_ms (500}

else:
led.of i)

The example in which I'm using the hardware timer is really a variation of
the hardware in the example.

v Thoney - MicroPythen devics ;- led, blink,_Smec 218y @ 34 1

lled_pirk timer 210y | juthon 4 timergry [button 4 internaptpy] | button 4 joop.py |
This computer 1 By

P32
button_4_interrupt.py
button_4_oop.py
button_d_timer py
& tade.py o
& lad_blink_21.py imers: https://micropython-docs-espd2. readthedocs.io/en/espl2_doc/esp32/quickref.html#tiners
\od_blink_timer_21.py hedocs . 10/en/esp32_doc/esp32/quickref htmlepins-and-gpio

MecroPythan devce
bool.oy
bution_4_interrupt.py
bution_4_joop.py
® fadegy
& lod_blink_21.py from machine import Pin, Timer

& led_blink_timer_21
il led = Pin(21, Pin.OUT)

def blink_isrievent):
if led.value() == False:
led.on()
alse:
led.off()

34 blink_timer = Timer{1)
blink_timer. init(period=250, mode=Timer.PERIODIC, callback=blink_isr)

Shes
tton

B
P
o
P
Bus
P
Bus
P
Bt
"
™

And you ought to know how to use the hardware timer from an earlier
example with reality, which you can see here in this script as we have
defined the time down here and lines three, four and thirty five. So in this
project, basically taking these scripts and putting them together and creating
a hybrid that looks like this. So what's happening here is that I've got a

Thanny - (seraipeter d/DeskiopMacropython ESPE buiion 4,

[lod blink timer 21.py] Wttondtimerpy [button d interraptpy] [button 4 loop.py |

Tris computer .
{ Users | petesz | Deskics [led = Pin(21, Pin.OUT)
Mecrogython ESP32

& bution_4_interrupt.py button_pind = Pin(4, Pin.IN, Pin.PULL_UP)

& button_4_loop py
button_d_timer.oy
. tade py 15 def button_pressed_isrlevent):
& \ad_blink_21.py 4 global button_pressed

#: lod_blink_timer_21.py global button_event

button_pressed = False

MezroPython device . 4 it hullun_pmﬂ.vs;uel% == False:
tton_pressed = True
® bocloy button_event = event
& bution_d_interruptpy alaa:
@ button_4_loop.py button_pressed = False
® tadepy
#. led_blink_21.py
4 ladl_blink_timar_21.py button_timer = Timer(1)
2 ¥ button_timer.init(periods€8, sode=Timer.PERIODIC, callbacksbutton_pressed_isr)|

while True:
if button_pressed == True:
button_pressed = False
led.on()
print{*Button pressed event™, button_event)
sleep_ms(1008)

else:
led.off(}

So it fires every 50 milliseconds and each time it fires, it will call the
interruption of this routine called button on this compressed and this call
ISO, which is right here. What it does is to check the state of the button.
And if it is pressed, then it will update these variables here. At the same
time, we've got the while loop infinite loop constantly checking for the
value stored inside the global pattern and this compressed variable. And if
it 1s true, then it will turn on the LCD and wait here for a second. It's a very
it's a very simple way of going about reading the state of a button, taking
advantage. Had we interrupt in terms of efficiency, I'm not quite sure which
of these two 1s more efficient is hard really to say. I would say that the
hardware interrupted is perhaps more efficient from the point of view that
you don't occupy a hardware timer to keep firing every 15 milliseconds and
calling the interrupt service routine. In this example here with the
hardware interrupt, the ISI is only called when the button is actually
pressed.

1 Users | peter2 { Deskiop |

43 button_pressed = False
44
® fube.py 45 def button_pressed_isr(event):
a8 glebal button_pressed
. lodt blink_timer_21.py a7 glebal butten_event
L
MecroPythan device . 49 if button_pind,value() == False:
button_pressed = Trus
button_event = event

else:
button_pressed = False

n_timer = Timer(1) o
n_timer.init{period=58, modesTimer.PERIOOIC, callbacksbuttoialiali
b

_pressed == True:

print{“Button pressed ev
sleep_ns{1088)

else:
led.off(}

TeEER® :

pammnm &

oM wENE
fliommww

But in this example here, I thought that this our way of using the hardware
timer is interesting and worthwhile dedicating a project for it. Let's have a
quick look at the beginning. There's nothing new really here. We import
the appropriate functions from the machine in time modules, define the
ality, define the button with its pull up resistor. We've got our button
pressed variable, the interrupt service routine with a global keyword so that
the button pressed and button event variables are global and then we can
make changes to those variables from inside the ISO. Then when the ISI is
called, we check for the value of the button and if it is down there, meaning
that button is pressed so the value returned by value is going to be false or
zero. Remember that of got this wire here which grounds the button value
when it's pressed and therefore GPL four will read a low value or false
value in the python speak. So Button is pressed. In this case, you apply the
variables. We also store the event object in the event variable. Otherwise
button is false. And notice that I have declared the button, pressed the
function before I create the end, initialize the hardware timer because |
need to pass it to the timer via this callback parameter. And if I call the ISO
before it's actually declared, you're going to get an error message by the
compiler when you try to compile and run the script. After that, we've got
the while true, which constantly checks for the value stored in the button

on this compressed file and then it just turns on reality and keeps it on for

one second. Otherwise, it will turn it off. All right. So I'm going to make a
copy of this script onto the device. I will call it button for time. I thought
hey. And let's run it. OK. And it stays on for one second and you can see
the event with it, we're passing and printing out here, starting the button
and it's called event variable, which is created up here. And it's really its
origins are the event parameter that is passed by the time I had with him up
to the ISO. And when you print out, this is what you get. Okay, so that's
about it with a button, you know, enough now to be able to use buttons in
your sketches. Now there's one more project in this section, which is the
next one in which I'll show you how to use a particular mirror and make
use of the analog to digital converter.

READ A POTENTIOMETER

Hi, welcome to the last project in this section, in this project. I'll show you
how to read a value from a potential error and then use it to drive. And
using GWM this potential race, regular 10 kiloton potential murder. I have
connected to your 34 right here. And I've got one pin going to the three
point three volt power rail and the other one to ground. Let's have a look at
the sketch. There's a couple of interesting things happening here.

2 jen sead_pot gy @ 2674

- Breadboard

Documentation:

Pins and GPIO: https://micropython-docs-espdl.readthedocs.io/en/esp32_doc/esp32/quickref html#pins-and-gpio

sleep_ms: hitp://decs.micropython.org/en/latest/library/utime.hial7highlight=utime%2®s lecpfut ine. slecp_ms

ADC: https://micropython-docs-espl2. readthedocs. io/en/espl2_doc/espl2/quickref.htalfadc-analog-to-digital-conversion
2 int(): https://docs.python.org/3/library/functions.htal®int

Beware:
By default, ADC values are 12 bits, therefore they range from & to 4895.
i‘: default, PWM values are 10 bits, therefore they range from 8 to 1823.
7 must scale a ADC value to the PWM range to correctly control the LED.
Te do so, divide 1823/4095 = 9.24, and multiply the actual ADC value by 9.24.

Course:
MicroPython with the ESP32
https://techexplorations.com
bution_4_interrupt.py
& button_4_oop.py
#: button_d_timer. py
fadepy
& lod_blink_21.py
€ led_blink_timer_21.py pwm2l = PWM(Pin(21})
adc = ADC(Pin(34))

from machine import ADC, Pin, PWM
from time import sleep

adc.atten{ADC.ATTN_1108) =«

First of all, as you can see here in my notes, we will be using the ADC, the
analog to digital converter, to take readings from the potential mirror, and
then we'll convert those readings to an appropriate peak in value. Now, the
thing to remember is that by default, ATC producer values 12 bits, which
means that the range of an ATC value goes from zero to four thousand and
ninety five. And as you've seen in the previous election, the Section
PITTABLY and Values Pettifor have 10 bits in width, so values ranging

from zero to one thousand point twenty three. And therefore we need to do
a little calculation to scale the ADC value into a P value. And this
calculation is simply divide the range of the M by the range of the ADC and
that will give us the scaling factor, which happens to be three point twenty
four, probably closer to zero point twenty five. But OK. And we'll see
what values come out later. And that means that you just multiply whatever
comes out of the ADC by zero point twenty four and that will give you a
new value that is within the range. I also have the documentation for the
ATC here.

& sateri Fio

134 ©
Flas anaing read o & 0 F i micosyten-deos-essdl medthedec el toces |

This e D Gk rbermnce o e ESF3T — WcraPythan 1514 documantstion

omputer
1 Users | peter2 | Desktcp |
Mecragythan ESPI2
anaiog_read_pot_34.py
#: button_4_interrupt.py
buttor_4_loop py
. button_4_timer py
& isdapy
#® lod_blink_21.0y
& led_blink_timer_21.py

McroRyInon device. . £ port
snalog_sead_pot_34.py It afang MicraPython
& boot py from
button_4_interrupt.py from
& button_4_loop oy Networkng
& button_d_timer py I pem2l
& tadesy i adec =
#: lod_blink_21,py . . Thmars

#: led_blink_timer_21.py ! P 2 GEVO.

General bawd contral

Deay and timing

Vhils| pyri fpuise width modulation] 5932 specific ADC class method reference
ADE (anabog o dgital corversion)

i wa ABC. at temistienustion) %

Pe

P

|

1 Harthare 5P bun
1€ bus

Rl thoe clock RTCH
Deep-sieep mode
DreMWine deiver
NeoPieel driver

Capacitive Touch

OHT drver

WeBRER el brreies interadtive
peomet)

I'm going to refer to this in a moment. And there's also documentation for a
built in python function called E.A. Integer that converts floating point in
this into integers. Again, we need to make this conversion from floating
point to integer in sketchiest. You'll see in a moment. Let's have a look at
the script. So we need to first import ADC pain and P m from the machine
module and sleep from the time module. Here I'm using sleep, which
allows me to define a sleep time in seconds instead of milliseconds of

time. In some of the previous scripts in line thirty nine, I create the M
object ytterbium twenty one. Just to make it easy for me to remember that
this is connected to Shapir twenty one and for the ADC I'm using pin thirty
four as I said earlier and using ADC constructor in the object.

@ Thonny Flla Edit View R

fanalog read_pot 34 gy @ 36 ;34

analog_read_pos_34.py

AUL: RETPS!//M1CFOPYTAON-O0CS-SSpIL. FEAITNEA0ES. 10/ 6N/ ESPIL_00C/ ESPAL/QULICKIET . ATA LESOC—-SNA LOG-T0-01]1 T8 L-Comr——Sww
int(): hitps://docs.python.org/3/library/functions.htal#int

Beware:

By default, ADC values are 12 bits, therefore they range from @ to 4095,

By default, PWM values are 10 bits, therefore they range from @ to 1023.

We must scale a ADC value to the PWM range to correctly control the LED.

To do so, divide 192374895 = 0.24, and multiply the actual ADC value by 8.24.

W Course:
led_blink_timeer_21.py 31 MicroPython with the ESPI2
32 https://techexplorations.com

MroRyInGn device: 35
#: analog_reed_pot_34.py from machine import ADC, Pin, PwM
& boot py 17 from time import sleep
® putton_d4_interrupl py :
button_4_loop py
button_d_timer py s
& iadepy 42 adc.atten(ADC.ATTN_110B)
& led_blink_21.py .
lod_blink_timer_21 py 4 while True:
45 pot_value = adc.read()
pwm_value = int{pot_value = 8.24)
print{"pot: “, pot_value, ®, pwm: “, pwn_value)
pem21.duty (pwa_value) '
sleep(d.1)

39 pwm21 = PWM(Pin(21))
i adc = ADC(Pin(34))

Now here's one interesting way to configure the attenuation of your ADC.
The analog to digital converter is to use the atin function. You can find out
what the available attenuation levels by having a look at the documentation
but hyperlink to right here.

D) 3, Thuvny - MicraPytioon device | fanaicng ead_pod 3.5y &
J &
eew)
[| analog_read pot_34.py |
This computer L] Components
{ Users | pater2 | Dusitop { iy
O s 1 - EsPa2
analog_read_pot_34.py = 3300hm resistor for the LED
& bution_4_interrupt py 13 - Sem LED
® bution_4_loop py 14 = 18Kohm potentiometer
@ button_4_timer py B - Wires
& hdapy 16 - Breadboard

oct_blinic_21.0y

Documentation:
. led_blink_timer_21.py

Pins and GPIO: https://micropython-docs-esp3z. readthedocs. fo/e
28 sleep_ms: http://docs.micropython.org/en/latest/library/utime.
21 ADC: https://micropython-docs-espil.readthedocs. io/enfespl2_dog

= 22 int(): https://docs.python.org/3/Library/functions. htalgint

analog read_pot_34.5y Beware:

& boot py 2 By default, ADC values are 12 bits, therefore they range from
& bution_a_interruptpy 26 By default, PWM values are 10 bits, therefore they range from
bution_4_Joop.py 27 We must scale a ADC value to the PWM range to correctly contro
@ bution_4_fimer py 28 To do so, divide 1023/4895 = 9.24, and multiply the actual ADC
& fade.py i

Course:

lod blink_21,py

MicroPython with the ESP32
) lad_blinik_timer_21py

https://techexplorations. com

i from machine import ADC, Pin, PwM

S #ram bime immact claan

4095, pumi 982
4098, pum: 982
4095 | pm 982

14095 , g 982
4095 | pum: 982

: 2

i

4095 |, pamr 882
4095 | pam 982
‘ 1
4095 | pam 82
we | B o
983

3

mmmmnn i
1

. pum: 982
4095, pemi 982

Let's check it out. It is this section of the document and there is the attend
function and these are the available attenuation. So zero degrees with those
two and a half decibel, six and eleven. And I've gone for the eleven decibel

attenuation which gives me maximum input voltage up to three point six
volts. So depending on what it is that you are connecting, you can choose
the appropriate attenuation. You can also control the width of your analog
to digital converter. I'm not doing that here. I'm just leaving it to its
default. Twelve page. You can see you can go for nine, ten, eleven, twelve
bits for the width.

3 Thony - MicraPyihon dewce i fanaicg. mad_pot Mgy &

™ L mnalog_rasd pot 34.py |
- £1 ABL: BTERSI//MICFOPYTAOR-00CS-€SPis. FESOENEAOCS.10,6n/espss_ood
https://docs.python.org/3/ Library/functions. htel#int

& v sy || Joc velues e 12 bass,
:"""'““—'“‘“W 2 e n le a ADC value to th
bution 4 timer gy 2 o . divide 1923/4895 = 9.24,

& fodepy 2
r:P- h th the ESP32
ons,

ython wi
ps://techexplorati om

analog read_pot_34 5y 36 from machine import ADC, Pin, PWM
boot py 37 from tise import sleep

38
15 pwm2l = PWM(Pin(21))
® bution_4 Joop.py 48 adc = ADCIPin(34})

& fadepy 43 adc.atten{ADC.ATTN_1108)

ledl_blink_timer 21 44 while True:

L b pot_value = adc.read()

pwa_value = int{pot_value » 8725)
print{*pot: *, pot_value, ", pwm: ", pwm_value)
pom2l. duty (pwm_value) + 4 v

sleep(d.1)

mmmn | sessase

OK, and moving on now, I've got a infinite loop here, while true, start by
taking reading of the potential murder, using the read function, then I
multiplied by the scaling factor, your point twenty four that I calculated up
here. And that gives me a floating point that I need to convert it to an
integer using the anti function. And I stole the result in PWI and then in
line 47 or print out those two numbers so I can see the original and the
scaled number, then use that to set the short cycle for the entity. And then
take a little nap for zero point one seconds, OK? Let's try this out, I'm
going to get a copy of the script on the device log. Great report, which is
connected to Perio 34 Togepiy. Yes, but an earlier version of this earlier
this script to double click on it, you open it up, can you get rid of the other
two? So that does confuse me as to which script I'm uploading to my
hospitality. And this is the one that I want to upload. So let's do it. You go
right, you can see the current values for the potential. Let's move at One
Direction. Then you saw moving the early days, becoming fainter to goes

off, let's go to the other extreme. Trying to do this in a nangle, simple, all
right, going up in this chaos, and that's the maximum, you can see that the
potential murder is at four thousand ninety five is nine hundred and eighty
two, which means maybe I can increase this factor by maybe as much and
that they allow me to go for the full MGD cycle extent without going over
it. So save and play soldier one thousand twenty three point twenty five
Scaling factor, which works out perfectly. Right. So that's how you can
use the ATC and your is pathetic to using micro python.

DHT22 ENVIRONMENT
SENSOR

Hi and welcome to a new section in this course, in this section, you learn
how to use a variety of senses, typical senses that you are unlikely to want
to connect to your especially to start starting this project with a look at the
THC 22, since this is so not only is very popular, obviously you probably
have one in your choice already, but also because the ability to moderate
Python firmware already comes with a driver for this sensor.

So there's nothing else that you would need to import or to install. And
therefore it makes it a very good choice for it being our first sensor. So |

have connected this sensor on my breadboard to remove it.

issaasRRRNEERNRMNNNR ”i’aﬁ&f XN
(R lns:!\nlltt‘ltﬂntlllls

We can take a closer look. So I've got my sensor looking at it from the
front where the grill is. Number one is power. I've connected that to three
point three volts power. To the other side you've got ground pin number. It
goes to ground, of course, a pin number three. This one right here is not
connected to anything. Just leave it floating. And then pin number to this
pin is the pin that I have connected it by this jumper wire to chip here, four
to one that I have connected it. Just knowledge that is. Not in 04, actually
put in 18, so it's fixed it on the fly right there. OK, so I'm going to plug the
sensor back on my breadboard and have a look at the sketch. Now, I've got
some information on how to connect your sensor.

& Thonny ¢

computer
1 Users | paterd | Do |
Micropython E5P32

acceleromater_test py

& anslog read_pot_ 34 py

& bra280_flost py

& bme280_test py

& button_4_interrupt py

& button_4 Joop.py

button,_4_timer.py

& dhe_test.py

& tade py

#: led_blink 21.py

) lod_link_timer_21.py

sktop/McropyEhon ESPIZ/EM_testpy @ 14

08, DHT22 environment sensor

This sketch shows how to use the DHT11 or DHT22 sensor.

= DHT2Z or DHT11:

- Facing the grill:

- Pin 1 (left-most) to 3.3V,
- Pin 2 to GPIDM,

- Pin 4 to GND

- (Pin 3 not connected).|

- Wires

- Breadboard

Documental
micropython-docs-espll. readthedocs. io/en/espl2_doc/espl2/quickref. html#tiners
kref.html#pins-and-gpio
on.org/en/ latest/espl2/

Course:

MicroPython with the ESP32
https://techexplorat ions. com

from machine import Pin, Timer
import dht

dht22 = dht.DHT22(Pini4))

He could use DHT 22 or DHT 11 for this experiment. Either one will work
and the driver for either one is available in the market, both in firmware.
I've got information about this right here. Might start with this. So go to

this. You're real.

a e Met Secre — BeCt mucrpy NG O/ en e LEsn 2/ guck el Hmiba -Sriver

ek rafmrarnce fox m ESP3E — Mcrofpthen 114 decumantatien

Quick reference for the ESPI2

General information about the
ESPIZ port

Getting started with MicroPython on
the E5P32

Imtalling MicroPythan
Gonersi board control
Networkong
Delay and timing
ey
Pirws sed GPIO
P [pubie widhth masshulution]
ADC laralog o dgital conversion]
Software 5P bus
Hatvare S b
Software 12C bus
Hasdvearn [3C bus
Fleal time clock (RTC)
Doep-sieep mode
AT
Oretiire dhries
MocPixel driver
Capacitive bouch
DHT driver

WeBRIPL [web browser interactive

DHT driver

The DHT driver is implemented in software and works on all pins

WebREPL (web

WebREPL [REPL over WebSackets, accessible via a web browser) ks an experimental §

avallable in ESP32 port. Download web client from b 8 vin on/we

(hasted version available at hitp:d micropyth vl configure it by executing

impart webrepl_satep

and following on-screen instructions. After reboot, it will be ave

o boot. you may rur

The WebREPL da n ail active whi ws ¥
connect to the ESP32 STA interface) or directly when connected to its access

point

ion to terminal/command prompt access, WebREPL also has provision for file transfer (bath
upload and download). The web client has buttons for the correspanding functions, o you can use

And we'll take you to the micro python documentation. And I'm looking at
the E.S.P three two quick reference. And down here you'll see the DHT
driver. You can choose between the 11 or the two. Just tell it which pin
your data pin is connected to, which Appio, you terrapin of the sensor it's
connected to, and then you can take a measurement by calling the measure
function and then you can read out temperature and humidity by calling the
appropriately named functions very easy.

or
1 Users | peter2 | Desketog |
Mcrogythan E5#32

& acceleramater_tes!]
€ analog read_pot_34.py
& bma280_flost py

& bre2B0_test oy

& button_4_interrupt py

& button_4_loop.py

& button_4 timer.py

icroPython with the ESP32
lorat ions. co

from machine import Pin, Timer
import dht

dht22 = dht.DHT22(Pin(4))
¢ det take_measuresent_isr{event):

dht22.measurel)
print(“Teap: =, dht22.tesperature(), C, Humidity: “, dht22.humidity(), “%")

dht_timer = Timer(1)
48 dht_timer.init{pericd=5088, mode=Timer.PERIODIC, callback=take_measurement_isr)

So in my sketch, this looks like that I have imported the module, importing
the PIN and Taimur functions from the machine module. This is where I
create my DHT 22 object. And then as you've learned in previous projects,
I'm using a timer. I've given it a period of 5000 milliseconds or five
seconds. Is this since I was quite slow and it's a couple of seconds to
recover. Each call takes a couple of seconds to complete. So five seconds
seems like a reasonable amount of time to wait before the next
measurement. And every time this clock ticks or every time this clock
expires, I call the take measurement ISO function right here, which calls
the measure function. And then I'm putting out temperature and humidity
like this very easy. So let's try this out.

& Thonny

skiop/Mcropython ESPIL/_testpy @ 1816
-
o _test py
UMLEL OF UmMILL
1 Users | peter2 | Gaakeiog | Facing the grill:
P Pin 1 (left-most) to 3.3V
Pin 2 to GPIO4,
Pin 4 to GND s
(Pin 3 not connect

acceleromater_test py
& anslog read_pot_34.py
& bre280_flost py 1 — Wires
€ bma280 test py - Breadboard
& button_4_interrupt py

ton_4_loop.py 18 Documentation:|
button_4_timer oy Timers: https://micropython-da
W Pins and GPIO: https://micropy
& tade.py - DHT: http://docs.micropython,g Fees
 led_biink 21.py Caaraas o
& lod_blink_timer_21.py MicroPython with the ESP32 AP B

https://techexplorations. com | i

IClowsd Deive

% Cocuments

from machine import Pin, Timer |[oessn
import dht

dht22 = dht.DHT22(Pini4))

def take_measurement_isr(event)
dht22.measure()
print("Teap: ®, dht22.tespd .. coe

Farmat: | Pyiben fles |py, Bys, Byl

dht_timer = Timer(1)
dht_timer.init{period=5888, mode=Timer.PERIODIC, callback=take measurement_isr)

Right now, I'm looking at this script as stored on my computer file system,
so [am going to save a copy. And you can see that my security is
connected, but it does not appear in the final steps. I'm just going to click
on Stop.

r UniLL OF UmidLi

| Users | patee | Desktog | [Facing the grill:
Micropython [5P32 Pin 1 (left-most) to 3.3V,

e —— ey RIR 2/t '::l:-‘cﬂ.

in 4 to G

:mlw'lﬂd'w'uw (Pin 3 not connected).

bma280_float py i
@ bma280 tast oy Breadboard
& button_4 interrupt py
& buttor_4 Joop py 1 Documen

& button_4_timer gy Timers: i . /quickref.
Py Pins and G ; y docs-esp32. readthedocs. io/en/esp32_doc/esp32/quickref.htmlépins-and-gpic
,m;m” DHT: http://docs.micropython.org/en/latest/esp32/quickref.htnl#dht-driver

& led_blink 21.py Course:
lod_blink_timar_21.py MicroPython with the ESP?Q

. @ Wheen 10 seve
https://techexplorations

MACroPYIhOn devece s

€ acceleromater_testoy 25 from machine impert Pin, °

& analog read_pot_34.py import dht

& bme280_flost oy

& bma280_test py dht22 = dht.DHT22{Pin{4))

& bost.py

© button_ 4 iniemeptay def take_measurement_isr(i

& button_4_Joop py WAL mmmary’ | we "

Sluticd print({“Temp: =, dht22.tesperature(), “*C, Humidity: “, dhi22.humidity(), “¥*)

ton_4_timer. py

& tace.py 3 l

& lod_blink_21.py dht_timer = Timer{1)

& lad_blink_timee_21.8y 0 dht_timer.init{period=5808, modesTimer.PERIODIC, callbackstake_measurement_isr)

To wake it up and make this connection, that's why I got confused, I
thought that it was a connected, but it was so here I am going to now save a
copy to the Michael Python device.

o
1 Users | peter2 | Deskiog |
Mcrogythan E5#32

& acceleramater_test gy

€ analog read_pot_34.py

& bma280_flost py

& bre2B0_test py
nterrupt py

& button_4 Joop py

& button_4_timer.py

 lad_blink,_timer_71 By

|

accelsrometer_test Dy
analog_read_pot_34.py
bmeZB0_float py

bma 280 _test py
bost.py
button_d_interrupt.py
button_4_loop py
button,_4_timer. py
tade py
led_blink_21.py
fed_blink_timar_21.py

r
s
e
&
r
e
&
&
e
&
é

& Thoeny |

1 Users | peter2 | Deskto |
Wicragython £5732

& accoleromater_test py
& analog read_pot_34.py
& bma280_float py

& bre280 test py

& button_4_interrupt py

& button_4 Joop.py

& button,_4 timer.py

dha_testpy

€ tade py

& led_blink_21.py

& lod_blink_timer_21.py

§
i

accelrometer_test.py
analog read_pot_34 py
bme280,flost py
bma280_test.py

boot py
button_4_nterupt py
button_4_loop py
button_d_timer py
dhe_test.py

fade py
led_blink_21.py
bud_blink_timer_21.5y

TEEETEEETEET T}

UNILL OF Umiadi
Facing the grill:
Pin 1 (left-most) to 3.3V,
Pin 2 to GPIOM,

Sarve 16 M

WersPython deve
N
& acceleramater_test oy !
& " ef. ers
'x;:n.:l:::;mw fquickref.htmlépins-and-gpio
& bme280 test oy
& bootpy
& button_4_interrupt py
& bution_4_loop.py
& bytton_4_timer.py
@ tace py
& lod_blink_21.py

File name: [DHT
dl

def take_measurement_isrievent):
dht22.measurel)
print(“Teap: *, dht22.tesperature(), “*C, Humidity » Oht22.humidity(),

dht_timer = Timer(1)
dht_timer.init{period=5088, mode=Timer.PERIODIC, callback=take measurement_isr)

~ Thonny - AUsarypeter 3 Deskiopficropython ESPIL/dM et py @ 20 31

DHT22 or DHT11:
Facing the grill:

Pin 1 (left-most) to 3.3V,

Pin 2 to GPIOM,

Pin 4 to GND

(Pin 3 not connected)
Wires
Breadboard

eadthedocs. io/en/espl2_doc/espi2/quickref, imers
esp32. readthedocs. lo/en/espd2_doc/esp32/quickref .htmlopins-
atest/esp32/quickref driver

MicroPython with the ESP32

https://techexplorat ions. com

from machine import Pin, Timer
import dht
dht22 = dht.DHT22(Pin(a))

def take_measurement_isrievent):
dht22.measure()

tys 766 4
4.0 %
58.0 %

LI

Tomp: @ °C, Humidty: %

MicroPythen (ES932)

And. Play. Wait for five seconds. And there's a first measurement appears

here. Right. Out of curiosity, let's see if the plot works. So the plot doesn't
work because it can't figure out the values here that are coming out. I'm just
going to turn this off and stop the execution and stop putting.

+ Thonny - fisers/peier2/DeskiopMcropythan ESPI3/_lestpy @ 38 : 71

o
1 Users | peter2 | Deskiog |
Mcrogythan E5#32

€ accelromater_test gy
 analog read_pot_34.py Timer apythen + readthedoc fen/espi2_doc/espi2/quickref html#tiners
& bme280_float py - ocs. io/en/espd2_doc/espl2/quickref htmlipins-and-gpio
& bre2B0_test py

& button_4_interrupt pry ars

& bution_4_loop py & MicroPython with the ESP32

& button_4_timer.py https:f/techexplorations. com

& dn_test.py

tade.py

& led_blink 21 py

 lod_blink_timer_21.py from machine impert Pin, Timer

0 import dht

dht22 = dht.DHT22(Pin{4))
MacroPython device
acceleameter test oy i def take_measurement_isr(event):
dht22.measure()

& read_pot 34,
SSLTELBAY print(*Temp: *, dht22.teaperature(), *, Humidity: ®, dht22.humidity(), **)

#: bme280,_float py
& bma280_test py
& bootpy dht_timer = Timer(1)

& button_4 jntemapt By 10 dht_timer.init(period=5008, mode=Timer PERIODIC, callback=take_measurement_isr)
& buttor_4 Joop py ’

& button_4_timer. py

& dh_test py

& tada.py

& lad_blink_21.py

& lad_ulink timer_21.py

3> Temp: 6.5 , Humidity: 54.1
Temp: 26.5 , Bamidity: 4.2
Tespi 6.5 , Bamidity: 34.)

And I'm just going to move. The values that save. And start again.
Medicare now the employer can show the two values, GraphicLy. Of
course, I'm just sending through the numbers instead of numbers, followed
by the symbol of the value, I'm going to play around with a product as well
in a later project. Well, we'll have a look at the accelerometer. All right,
good.

= Thonny - fUsersipete /Ceskiop/Mcropython ESPIZ N, testpy @ 06 46

- Wires
- Breadboard

accelerometer_test py Documentation:
& snsiog_resd pot_IA gy Timers: https://micropython-docs-espll.readthedocs. io/en/esp32_doc/espI2/quickref.htnl#t imers
ns and GPIO: https://micropython-docs-espld2, readthedocs. io/en/esp32_doc/espl2/quickref htal#pins-and-gpio

&t Py
AN et ey DHT: https//docs.micropython. org/en/latest/esp32/quickref. htmi#dht-driver

bme280_test py

@ fuston, interragt py Course:
MicroPython with the ESP32
https://techexplorations.com

@ led_blink_timer21.py 2 fm;l:::ne import Pin, Timer

31
dht22 = dht.DHT22(Pin(4))

MecroPythan device 33
r g def take_seasurement_isrievent):
analog_read pot_34.py uidi-pentare() i g
& bme280_flaat py print(“Temp: “, dht22.temperature(), “*d, Humidity: *, dht22.husidity(), “%*)
& bme280_test.py 8
® boot.oy dht_timer = Timer(1)
@ bution_4_intemupt py dht_tiser.init(period=5000, mode=Timer.PERIO0IC, callback=take measurement_isr)
& bution_4_joop py
® button_d_timer.py
& dhi_test.py
tadepy
led_biink_21.py
® lod_blinik_timar_21.py

>55 Temps 6.5 , umidity: $4.1
. , Wamidity: 4.2

3
5,

=1

4 iy
s

£,

i

i,

I'm going to put the symbols for the units back because that's how I'd like to
keep my sketch. Right. So this was quite easy, as you can see, because the
driver is part of the firmware.

T
casamamsE ¥
pEEFREEEEEE
paEENENEE R
M EEEEEEE SRR
pEEEEEEEEEE

R R N

sEmsms smmms

In the next project, I'll show you how to use the BMY. Two hundred and
eighty cents, which requires an external driver for this to something to show

you how to find and install this driver before you can use.

BME280 ENVIRONMENT
SENSOR

But in this project, I show you how to use the permit 280 with your E.S.P,
32 using micro python.

N

Now, unlike in the previous project, we are to learn how to use the DHT 22
using a driver that comes with the micro python firmware. The two
hundred and eighty does not have an integrated driver, which means that
you need to go out to find one that works with your set up and then
imported into your S.P.C.A. stored in the flash memory so that your script
can use it. So this is the main difference between the approach that we used
in the previous project with the 22 and the one that we use now with the
BMY 280 is that we're going to use a third party micro python driver for
this sensor.

This computer
{ Users | petar2 | Desktop |
Microgythen ESPE

 rEEEEEEELE)

accelerometer_test gy

bme280._float gy
bme280_test.py
Button_4_intemupt py
button_4 Joop gy
button_4_timer.py

led_blink_timer_21.py

5
;

ABBBBBIBDAD

fest.py
analog resd_pot_34.py
bme280_float py
bme2B0 test py

boot oy

button_ 4 intemupt oy
button_4_loop. py
button_a_timer.py
fade py
led_biink_21.py
led_biink_timer_21.py

=

[bme280,test oy |

+ Thanny - MicroPython device : fbme280 flost oy @ 247 :1

[bme280_flost py |

BME280_TIMEOUT = consti10@)

class BME2SI

def

_init__(self,
mode=BME288_0SAMPLE_B,
address=AME280_T2CADDR,
i2c=Nom
wekwargs) :

if mode not in (BME2B0_OSAMPLE_1, BMEZS0_OSAMPLE_2, BME2B8_DSAMPLE
BME2B0_OSAMPLE_B, BME288_DSAMPLE_16):
raise ValueError(
'Unexpected mode value {0). Set mode to one of
'BME280_OSAMPLE_1, BME280_OSAMPLE_2, BME288_OSAMPLE_4,'
'BMEZBO_OSAMPLE_B, BME280_OSAMPLE_16°, format(mode))
self._mode = mode
self.address = address
if i2c¢ is None:
raise ValueError('An I2C object is required.’)
self.i2c = i2¢c
self.__sealevel = 191325

dig_88_al = self.ilc.readfrom_mem(self.address, @xi#B, 26)
dig_el_e7 = self.ilc.readfrom_mem(self.address, 8xE1, 7)

self.dig T1, self.dig T2, self.dig_T3, self.dig_P1, \
self.dia P2, self.dio P3, self.dia P4, self.dio PS5, \

MicroPythen (ES932)

In most cases, this is the approach that you have to take with pretty much
any other peripheral to your ESP 32. You'll have to use Google or some

other search engine to look for an available driver for the device that you
want to use.

S EEEEEEREETEER:

[
&
&b
&b
&
&b
&p
&
-
.
&

Irrver for ADKL g J-axs accelerometer
Driver for ADXL345 16g 3-axis sccelerometer
12C driver for LISZHH12 3-axis accelerometer

Driver for MMATS60 1.5 3-axis accel

CCSB11 Air Quality Sensor
Air Quality monitor using PMSS003 sensor and WiPy
- MicroPython driver for the PMS7003 Air Guality Sensor
Driver for pms5003 air quality sensor for MicroPython
Driver for pmsS003 air quality sensor for MicroPython

SDS011 pollution sensor » Wemos D1 mini pro + MicroPython

Driver for the Bosch BMEZ80 temperature/pressure/humidity sensor
Driver for Bosch BMP180 temperatuse. pressure and altitude sensor
Bosch BMEZB0 temperature/ pressure/humidity sensor
Driver for the Bosch BMEZ80 temperature/ pressure/humidy sensol
MicroPython driver for the BME2B0 sensor, target platform Pycom devices

80 - Module for the BMP280 sensor

MicroPython class for OV2640 camens
Motion buert
A thon - Remate trigger for a Nikon camera using an IR LED, For R
PyBoardvl.1 Soil Moisture
Tempersture Ansiog
- OW2640 camera driver for MicroPython on ESP32. e ’
emperat.re Dapts

s digital compass on the ESPB26E.

In my case, I find that awesome micro python dot com contains an excellent
list of drivers or libraries for Macra Python. Not all of them work in my
experience. But you've got a good chance that whatever hardware you want
to use, you will find a micro python driver in this list, in particular for the
BMY 280, he could look for sensors and say around.

& Seleri Fie E View History Bookmark

o @B 0 a M wme .

Awesome MicraPythan

i - Diver for ADXL345 16g 3-axis accelerometer

thon - Driver for ADXLI45 16 3-axis accelerometer

12C driver for LIS2HH12 3-axis accelerometer.

Driver for MMATE60 1.59 3-axis accelerometer.

CCSB17 Aur Quality Sensor

LR LT REEEREE T ER:

ing PMS5003 sensor and WiPy.

y - SS011 pollution sensar + Wemas D mini pro + MicroPython,
Barometer
« [GTopyiGREmeEnEDriver for the Bosch BMEZB0 1emperature/ pressune/humidity sensor
Driver for Bosch BMP180 ternpe

Bosch BME280 temperature press

&
&
&1
&b
&
&b
&b
&
&
&
&

e 280 - Driver for the Bosch BMEZ80 temperatu

MEZ80 - MicroPython driver for the BMEZEO sensor, target platform Pycos

0 - Module for the BMP280 sensor

40 - MicroPython class for OV2640 camers.

Remote trigger for a Nikon camera wsing an IR LED. For

era driver for MicroPython on ESP32

Here you'll find that the BMY 280 has a few options, so there's 280 this 180
as a 280 with the 266. There's another one here. So there's a bunch of
potentially working drivers here. There's no sure way to know which one is
actually going to work, because some of these, for example, may have been
written in the past for previous versions of the marker Python firmware.
They may not be working perfectly for your current setup. So it's a matter
of just trying out some of those and figure out which one eventually works.

Micropython driver for the BME280
‘TP robert-hh ak Upcate & rearrange the license natice = #dsBite on 7 Dec 2020 15T commits sensor, target platform Pycom devices

L EEEEEEEER TN

Y UCENSE

HEADME md *

a
L
&b
rs
L
&b
s
& p
&
L
&

BME280 Micropython driver for the BME280 sensor

This is a driver for the Bosch BMEZB0 temperature/pressure/humidity sensor, for use with MicroPython on Pycom
of ESPR266 boards. It is also comgatible with the BMP280 which provides the same interface but temp
pressure anly.

Two differant variants of the library are supplied. bma 20, int.py uses integer arithmetic, bme280_float.py wses float
arithmetic for the compensation of the raw values. The results are (almost) the identical, but the format of the
returned values differs.

About the BME280

The Bosch BME2B0 Enwironmental Sensor is a combined temperature, pressure and humidity sensor. it can

In my case, I found that this one works perfectly with my setup, with my
SB 32, and I believe that it is this one here, perhaps. That chick. Now
that. Not this one either. It's by Robert 8H. Like this one here. So the
name here does not really indicate the author or the source, but as a matter
of trial and error, eventually you will find the one that works for you. So
once you have access to the source code of the driver that you want to use,
the process includes taking a copy of the driver.

& Saterl Fie
8 ST OB T, TODA T BME T80 maste b 280 iodt By

2018 asd 3020
le is based on the balow cited -

bassd oo the tatios as provided in the Bosch Data Shest and

the sasple isplessntatios provided thereis.

Final Docusent: BET-BHEINS-D8001-15

nheres Paul Cennane 3916, Peter Dahlsbrg 2016

aa
™

is module borrows from the Adsfrsit BMEI#S Prebos iibrary. original
B # Copyright notices are r Balow.
.

B # thoss libcaries were written for the Raspberry Pi. This modificstion is
B # intesded for the Microbython and ssphl6s boards.
B @ Copyright () 3814 Matruit Induatslen
B # Mutheri Teay BiCsla

v

Based om the BNFIS0 driver with BNEISO chasyes provided by
David 7 Taylor, Bdinburgh (wwr.satsignal.es)

BIBBIAIBISI D &

.
Based on Adafrult_13C.pr crested by Kewin Tounsesd.
.

Parmission is hareby grasted, fres of charge. to asy parson chtaining a copy
of this softwars and associsted docesantation files (the “Softwars®), to deal
in the Softwars without restrictiss, includisy withowt limitation the rights
to e, , modify, mecye, publish, distribute, sebliceass, and/os sall

copies of Lhe Softwars, asd Lo perRIt persses Lo whem the Seftware i

furnished to do so, mubject to the followiny conditions:

¢

The above copyright notice and this permission notice shall be included in
Bl # 41l copiss or substantisl portions of the Softwars.
.

ARBBBRIBBBAID G

from ustrect ispert unpack, wnpack_from
from arrey import array

WNEIN Sefault sddrems.
BMEZNO_TICADOR = SxT

Opazating Wodes
BMEING_OSMMFLE

MODE_SLEEF = comet (0}

So in my case, | have determined that a lot of trial and error that being made
to 80 underscore float dot p.. Why is the driver that works? You want to
go and copy the raw version of this driver? Just copy the whole text. Then

you can go and create a

new file. Anthony Paiste. The code in. Then go

ahead and save it on the device.

Tha computer
{ Usars | peter2 | Desktop |
Micropytton ESP31

accelerometer_test.py
3py

bme80_float py

£ breZBO_test.py

putton 4 jntemupt py

& button_4_loop.py

& button_4_timer.py

& at_test.py

& fadepy

lod_blink_21.py

lod_biink_timer_21.py

Microfython device
& accelercmeter_test py
& analog read_pot_34.py
© bmaTB0_foat py
& bme 280 testpy
& boot.py
button_ 4 intemupt py
& button_4_loop.py
& patton 4 timerpy
& fade py
& lod_blink_21.0y
& lod_blink_timer_21.py

of

“fianive.

MicroPython device
ame

& accelerometer_test.oy
& analog_read_pot_34 gy
@ bme280_float py

& bme280 test.oy

& bootpy

& pution_a_intermupt py
& button_4_loop py

& button_4_timer.py

& fade.py

& lod_blink_21.py
Eme280_flaat oy

o Cancel

RIS saftware ond 8ssocisted documentation TILes (the "SoTtware~], to deal

MicroPythen (E3932)

formatih))

In my case, I've already got the source code saved under this file name here,
so I won't do it again. But you type in the phone in the file name is
important because you will use this file name to import the library into
your script. He'd cancel here and get rid of that a new tab and you'll see
that this driver is stored on my Microplace device.

[bmeZ80 tesipy] [bme2Bd fostpy |
The computer
| Usees | petar2 | Desitop |
Iiuwlpw(sﬂr 48 BME280_I2CADDR = Bx7d

accelerometer_testpy

anslog resd pot 34 py | BME28_OSAMPLE_1 = 1
€ bme80_float py BME280_OSAMPLE_2 = 2
& bme2B0_test.py BME280_0SAMPLE 4 = 3
& button_4_intemupt.py BME288_OSAMPLE_B = 4
& batton 4 jsop.y BMEZBO_DSAMPLE_16 = 5
& button,_4_timer.py

& o wtpy BME288_REGISTER_CONTROL_HUM = 8xF2

BME280_REGISTER_STATUS = 0xF1
& tadepy BME280_REGISTER_CONTROL = @xF4
& lod_blink_21.py L
lod_biink_timer_21 py MODE_SLEEP = const(@)

MODE_FORCED = const(l)
MODE_NORMAL = const(3)
icroRytmon device
accelerometer_test.py
& analog read_pot_34.py class BMEZBO:
bmeZ80_float py
& bmelBD test py A def __imit__(self

BME280_TIMEOUT = consti180)

- 9 mode=BHEZED_OSAMPLE 8,
add

 button 4 intemupt oy Tt
& button 4 Joop oy wekwargs) :
Atirer

MicroPythen (E3932)

My guess 32 under this file name, he can take a little bit of time to have a
look around, become familiar with the features of this source code. An
interesting variable here is the address and the default address of the

sensor. It is 76 in most cases that is going to work. It is going to work with
my sensor because I haven't shorted any of the pads here in order to change
the default address. So I'm going to go with the one that is configured
here. I can see the operating modes. So how many samples do you want to
take in order to improve the accuracy of the readings further down?

yition device : (brmaZi0 flostoy @ 73 : 37

[bme280 testpy] [bmeIB0 fostpy |
L——— AUUE_FURLED = constil)
{ Unars { petar2 | Desktop | MODE_MORMAL = const(3)
Micropython ESPIE

acosemeter_ leeLDy BMEZ80_TIMEOUT = const(188)
34y -

bmeZ80_flcat py

bme 280 test py def __init__(self,

buttn_4_intermupt py B mode=BME2B0_OSAMPLE_B,

button_4_Joop.py 1 address=BMEZB0_I2CADDR,

baittan 4 _timer. gy 2 i2c=None,

dhit_test.py ’ wskwargs)|:

tade. py

class BME28

if mode not in [BME2B@_OSAMPLE_1, BME288_OSAMPAE_2, BME288_OSAMPLE_4,
led_blink 21.py BME280_0SAMPLE_8, BME288_OSAMPLE_16]:
led_blink_timer_21.py raise ValueError(
‘Unexpected mode value {0}. Set mode to one of
BME2B0_OSAMPLE_1, BMEZB0_OSAMPLE_Z, BMEZ80_OSAMPLE_4,'
‘BME280_0SAMPLE_B, BME280_DSAMPLE_16',format(mode))
self. mode = mode
self.address = address
if i2¢ is None:
bma280_float oy raise ValueError('An I2C object is requir
bme280_test.py 1f.i2¢c = i2¢
ooty .__sealevel = 181325
button_4_intemupt py
buitton_4 Jeop. fy
button_4_timer.py
fade py
led_blink_21.py
led_biink_timar_21.py

BABBIABIDAD

5
s

accelerameter test py
anslog resd_pot_34.py

dig_88_al = self.ilc.readfrom_mem(self.address, @x88,
dig_el_e7 = self.ilc.readfrom_mes(self.address, OxE

ABBABBIBDAD

MicroPythen (E5932)

Using the name of the class will be using that later in our input statement,
you know, script, you can see the constructor here as well. So the
parameters for the constructor and so on.

ubrtarcant i 78
Thonny - MicraPython device Sostoy @ 113

[bme280testpy] |bmez8a_fospy |

This computer
| Users | peter2 | Desktop | self._11_barray(@] = self. _mode << 5 | self. _mode << 2 | MODE_SLEEP
Microgytion ESPY. self.iZc.writeto_mem(self.address, BME288_REGISTER_CONTROL,
£ accslerometer_testpy d self._11_barray)
S4py self.t_fine = @
bmeZ80_float py
bme B0 test.py
button_4_intermupt py
button_4 loop.py Args:
button,_8_timer. py result: array of length 3 or alike where the result will be
lestoy stored, in temperature, pressure, humidity order
Returns:
None

read_raw_data(self, result):
""" Reads the Yaw (uncompensated) data from the sensor.

fade oy
lod_blink_21.py
led_blink_timer_21.py

AEBAIBIIIDD

11_barray (8] = self._mode
self.i2c.writeto_nem(self.address, BME2BO_REGISTER_CONTROL_HUM,
self._L1_barray)
- self._11_barray(8] = self._mode << 5 | self. mode << 7 | MODE_FORCED
ST oy self.i2c.writeto_nem(self,address, BME2BO_REGISTER_CONTROL,
snalog_resd_pot_34.py 2 self._L1_barray)
beme280_float py
bme280 test py]
Seskoy 1 for _ in range(BME280_TIMEQUT):
S A i 2 If self.i2c.readfrom_sem(self.address, BME2BQ_REGISTER_STATUS, 1) (0] & oxee:
tise.sleep_ms (18]

i
i
i

button_4_loop.py
button_4_timer.py
fade.py
led_biink_21.py
lod_biink_timer_21.py

[
L
*
[
o
*
L
&
*
[
&

MicroPython (E5#12)

So there's also a few functions that you may want to use a bit later. There's
a few ways by which you can extract the environmental data from the

sensor and you can learn all that, not through the documentation, even if it
does exist in this case.

[T r—

BME280 Micropython driver for the BME280 sensor

This is a driver for the Basch BME280 temperature/pressure/humidity sensar, for use with MicroPython on Pycom
of ESPB266 boards. It is also compatible with the BMP280 which provides the same interface but tempaeraturs +
pressure onily.

Tiwo different variants of the library are supplied, bre20_int.py uses integer arithmetic, bme280_flat py uses flaat
arithmetic for the compensation of the raw values. The results are (simost) the identical, but the format of the
roturned values differs.

About the BME280

LR R EEEEEE L ER:

The Bosch BMEZB0 Enwironmental Sensor is a combined temperature, pressure and humidity sensor. it can
communicate via 12C or 5P, this driver uses [2C.

See the datasheet at https:/jse-bst resource bosch com/media/_tech/media/datasheets/BST-BME280_DS002 pdf
for details.

Class

bme= BME2B0(i2c=i2c, mod E260 OSAMPLE_8, ad BMEZB0_I2CADDR)

made is the setting for oversampling of the humidity value, address the i2c address used

&
&
&
&b
&
&
&1
&
-
&
&

Properties

values = BMEZ80.values

The values property is a convenience function that provides a tuple of human-readabile string values to quickly
check that the sensor is working. In practice, the method to use is read_cospensated_data() which retums a
(tesperature, pressure, humidity) -tuple

altitude = bmp.altitude

Altitude in m. The altitude is calculated based on the value given to the property sealevel (see below). Obvicusly,
this vakue does Not have to be the sealevel p , but any pressure you may select, for instance to measure
sititude difference in general

Go back to the root of this repository. You'll see that there is a little bit of
documentation and it's telling you how to use the driver. But if it doesn't,
you can always go and have a look at the source code. Python is very often
self explanatory, so you can do that. So become familiar with the driver.
And then go ahead and construct your own sketch. I have some
information here about my setup, which you can copy.

+ Thonny - MicroPython device - fomelB0_ test.oy @ 1021

(bmazs0 sestoy 1" | flmezb tomay] |

86.10 - Read temperature and humidity from the BME28@ using I12C

accelerometer_test py This sketch shows how to read sensor data from the BME28® using I2C.
L S
& bme?80_ficat gy 6 The script requires an external module (see below for source URL).
& brme B0 _test py
button_4_intermupt py S 0
& button. 4 Joop.py = ESP32 using I2C | SDA GPIO 4, SCL GPID 22
& baitton 4 _timer.py 1 - BME/BMP288 breakout
& dnt_test.py = Wires
& tadepy 1 - Breadboard
& bilink_21 3
Soosmnziey
LEna 1oy 16 BME28@_float: https://github.com/robert-hh/BME2E0
7 Python tuple: https://docs.python.org/3/library/stdtypes.html?highlight=tupleftuple
18 I2C: https://docs.micropythen.org/en/latest/Library/machine. 12C. htnl#class-i2c-a-two-wire-serial-protocol
MicroPythan device g

Components

@ scovie gy o :har!; t the ik file (bme2Bd_float) th t d t f ESP32 L d

2 on't forget to save e Librar ile ne. oat.p in & roo’ irectory o our + alongside
:mmalu Bl this test file, If you are uiv\; 5 INE200 nofu\e siallar to aine, its dofalt sddress will be ex7e, This is

" 3 what the Library expects. If not, provide its actual address in the third parameter of the comstructor,

& bme280_test.py 2
bootoy
& button_4_intemupt py 6
& bution_4_loop.py 7 Course:

28 MicroPython with the ESP32
:‘ ::.:"""“ 39 htips://techexplorations.com
& lod_blink_21.py
lod_bink_timer_21.py

You can search for other sensor drivers: https://awesome-micropython.com/

The most important thing to remember here is a type of R-squared, see that

we are using. So I'm actually going to remove this because it's not totally
true. And I'm going to explain what I mean by that.

SVP ADC1_0 HOSE
SVN ADC1_3 @
ADC1_6 MO . 1
ADC1_7 q / b
TOUCHS ADC1_4 . i B G#CG @ g
TOUCH8 ADC1 5
DAC_1 ADC2 8
DAC 2 ADC2 9

EFl) ese-wrpoM.32 4

~ BB spj \iso

~ MO8 sp) sck
SPI 8s
TXD

| ADC2 0 TOUCHQ
ADC2 1 TOUCH7

Notice that the E.S.P 32 has a hardware R-squared interface, and this is
something that, of course, you can use with your sensor or with any other

squishy device that you want. But the micro python firmware has an ice
quixey implementation that allows you to also use software ICE see.

@ Baca. microEThon. D e etesn e aryimaching (2T himeeciass-iC-4-tws wine-berial pratocal (%

lass 12C - a two-wire serial protocel

itz class I2C - a two-wire serial protocol
Python standard Ebvaries and micro
Raries
& MicroPython-specific libraries
ptree - dimple @Tree databave
Trametet — rame buffer
manpuiaton

1 sahisn ~ functions related to the
hasthaare

EEEREEEREEEEN:

Inermap reisted henctions

&
&
&
&1
-
&
&
&
&8
&
&

Libraries specifc 1o the pybosed
Ubraries specific to the WiPy

Uitraries spacifc 10 the ESPRZ66 and
ESP32

Constructors

So let's have a look at it. And I've got a link to this page here in my header
right here. Right, so go and have a look at this, the ice could see
implementation in micropayment for the SB 32 allows you to use either a
hardware ice creates the interface or a software ice Quixey interface in our
example and be using soft ice quazi, which allows me to nominate any to
SEAL and Steet.

A 0 decs.micropython ey e latest ibaryimactine K himisclass-e-a-two-wine-seria-pratocol

B s 553 - 0 v e i provecs — ety 114 00

Constructors

class maching. [2CHd, °, 5ol sda, freg=400000)

2C object using the following parameters:

SR EEEEEE R TN

Port-specifc ibearies
Ubraries specific to the pyboard
Uik i apuecife 15 the Wil

Libeuries specific to the ESPE266 and
ESPY2

P
P
&b
o
Py
&b
P
o
[
.
&

a ehesck stretehing (SCL Meld low
pouT) exception ks ratsed

And those will work perfectly well with my current high squidgy device to
be in the sensor in later projects, in particular in the projects on display at
an OLED display. So I'll be using the hardware interface just to get a little
bit better and more consistent performance that students will be using a
higher speed device. The display. But here I want to show you how you
can go about using soft ice Quixey instead. I squit see in my script I've
used the Jupiter for for the FDA. They've a pin and then you're twenty two
for the clock and.

Thes computer E 5 t
{ Uners { peter2 | Dusktop | ytho flibrary/stdtypes.html7highlight=tuplestuple
Micropython £SP31 ibrary/machine. 12C. htal#c lass=i2c-a=two

accelerometer_test.py
@ anslog resd_pot_34.py

bme280_float py

& bre B0 _test py

button_4_intemupt oy
& button_4_loop.py

button_4_timer. py

& dt_teat.py

& tade py

& lod_blnk_21.py

& lod_blink_timer_21.py

Microfythan device. . from machine import SoftI2C, Pin, Timer
& acoalerometer_test.py 15 [import bme280_float as bmel88
anslog read_pot_34.py
& bma80_float py
& bme280 test.py bme = bme280.BME280(i2c=ilc,
& bootpy node=bme280.BME2BO_OSAMPLE_B,
& button_4_intermupt py 1 address=bme280.BME280_I2CADOR)
& button 4 Joop.py
#: button_4_timer.py
& fadepy
& lod_blink_21.py
& lod_biink_timer_21 py

i2c = SoftI2C(scl=Pin(22), sda=Pin(4), freq=400000)

def read_sensor_isrievent):

MicroPython (E5#32)
Initialise the 12 buss with the given anguments:

It just looks like this this is how you can create the ice Quixey object by
calling the soft I swear to see constructor, they pass the two tipoffs for
clock in data and the frequency doesn't really matter. You can go for a
variety of frequencies and it will still work. So here I'm going for four
hundred kilohertz. OK, the next thing that I'm doing here in line 35 is to
import the driver to remember that the name for the driver is being made
two hundred and eighty underscore float, which is you can see right here,
you import this module by using the file name, excluding the dotp y
extension. So that's how you imported that, because this is quite an
extensive name to be using it in our code. I rename it by using the S
keyword as PMA two hundred and eighty. So from that point on, which I'll
be able to use the code inside the driver by using the BMY 280 dot
notation instead of this whole thing. Right. So if I had just said import
this. Without doing the renaming here, [would have to use this notation to
make reference to code inside the driver code. All right. Let's go back to
the original and another thing to notice here is that because this line is quite
long, if I make if I really arrange the parameters one next to each other.
You said that it takes a lot of space horizontally in Python. You can split
lines like this so that you've got one parameter per line just makes
everything fit a little bit better. So I'm using the square see object that I
created in line 37. And then I'm also setting the mood in the address, again,

using the constants that [have found in the drive itself. So here are the
operating modes. Constants are usually eight bit here or the eight sample
shown in the sample option. And then for the address I am using the
default. The trees are clear. If your eyes could see device is quite a
different address, then of course you can adjust that to the appropriate
correct address. These two parameters just point to defaults anywhere. So
instead of this whole thing could have just said this and it would work just
by passing the ice Quixey object and leaving the rest of the parameters to
the default values.

154 O
Fien.

Ths computer
{ Usars | peter2 | Desktop |
Micropytton ESP3T

& button, 4 intemuptpy
#: button_4_loop.py

& button_4_timer.py import SoftI2C, Pin, Timer
280

from machine
& ant_test.py import bmel80_float as bm
& fadepy
& lod_blink 21.p¢
& lod_blii timee_21.0y bme = bme280.BME2BO(i2c=ile,
mode=bme2B0. BMEIB0_OSAMPLE_B,

i2c = SoftI2C(scl=Pin(22), sda=Pin(4), freq=420000)

address=bme200. BME28S_I2CADOR)

def read_sensor_isr{event):
print(bae.values)
print("")
print("Temp: *, b-e.vll-‘e!llal. ¥, Pressure: *, bme.values[1], *, Humidity: *, b

button_4_intemupt.py 4

& button_4joopay blink_timer = Timer(1)
& butten A timarpy I blink_timer.init(period=1089, mode=Timer,PERIODIC, callback=read_sensor_isr)
& tade py

& lod bk 21,0y

& lod_biink_timer_21.py

MicroPythen (E3932)

OK, that's about it with the set up, the rest of the code should be fairly
familiar instead of using an infinite loop. I'm going to use a timer here and
I'm taking one reading every 1000 milliseconds, every one second. And
when the clock ticks, the hardware timer will call the sensor ESR function
right here. There's a couple of ways by which you can grab data from the
sensor. First is to call the values property on the object, on the B in the
object, and that is going to print out all three values. Or you can be a bit
more selective and you can pick one value at a time. So here's the
temperature, here's the humidity, and here is the story. Here's a pressure
and then here's the humidity. Now, one thing that [want to mention here is
that this parameter of this variable, I should say, returns a python tuple so

of good information about what that is. In case you're not familiar with
tuples, but think of a table. There's an array, but in a regular array, each cell
must contain data of the same data type. So you either have, for example,
an array of integers or an array of strings, et cetera. A top off, on the other
hand, can contain data of different types. So each cell in a couple can be a
number, can be a string, can be another array. Even so, you can use the
same notation as if this was an array. But the difference is that, as I said, it
contains items of different types and unlike an array as well. Another
difference is that a table is immutable. So once you set it, you can change
its values. So if you're curious, just go to this location and read more about
tabs. So this about it. Let's go ahead and try this program out.

[bma280 sestoy] | [bme28o fostpy |
This computer '
fLMIfW;J Desitop |

& button_4_intermupt py
& button_4_loop.py
& button_4_timer. gy from machine import SoftI2C, Pin, Timer
& ant_test.py import bwe288_float as bme280
& fadepy .
& lod_blink 215y
© lod_blirk timar_21.0y bme = bme280.BME28O(i2c=ilc,
node=bme2B80. BME2B0_OSAMPLE_ 8,
address=bme280. BMEI80_I2CADOR)

i2c = SoftI2C{scl=Pin(22), sda=Pin(4), freq=428800)

Microfython device
#: accelercmeter_test g
i def read_sensor_isr(event):
print(bae.values)
print("")
& bme80_test oy print("Temp: *, bme.values[8], ", Pressure: ", bme.values[1], *, Humidity: *, b
& boot.oy
button 4 intemupt py 4
& button_ 4 jooppy blink_timer = Timer(1) P 5
& bubion_4_timer.py 1 blink_timer.init(period=10088, msode=Timer.PERIODIC, callback=read_sensor_isr)
& tade py
& lod_blink 21 py
& lod_blink_timer_21.py .

& analog read_pot_34.py
bme?80_flot py

J.00hPe , Bumidityr 49.17%

1 991.95hPa . Humidity: 49.140
9.0y

Tesp: 29.57C , Pressure: 392.98nPa , Remidity: 49.100

MicroPythen (ESP32)
Initislive the 12 birs with the ghven arguments: .

I've just saved it and I'm going to run it on the device and that's what comes
out. Right, so you can see that. The. Print statement in line 45 returns this
line. Can we stop the execution? I'm going to click on the stop button here,
because this is not an infinite loop. It's a timer. So hitting control. See, it's
just touch and go. If I hit control on the exact moment when this function is
executing, then the program will stop. Otherwise it will not catch it at a
moment where the problem is actually running. Anyway, so line forty five
prints out this table, so that's what a table looks like, parentheses, and then
he's got the items. This is item zero item on and item two. And if I want to

print out the individual components of the tuple, the individual cells of the
couple and the values, then I go with this array notation.

(bee280 testgy] [bme280_fostpy |

#: bme?80_flost py
& bme280_test.py

putton 4 intermupt p i-Furt time
UpLPY 44 from ustruct import unpack, wnpack_fro

P -
button_4 Joop.py 5 from array import array

& button_4_timer.py
& dnt_test oy 4
& tade oy 40 NENSRNIROADOR - 76
& lod_blink_21.py)
& lod_blink_timer_21.py o
BME280_0SAMPLE_1 = 1
2 BME280_OSAMPLE 2 = 2
z BME280_OSAMPLE 4 = 3
S —— L BME280_0SAMPLE 8 = 4
accolorometer testny BME286_OSAMPLE_16 = 5
& analog resd pot_34 py
bme280_oat py BME280_REGISTER_CONTROL_HUM = 8xF2
BME280_REGISTER_STATUS = 0xF3

p+
R e BME280_REGISTER_CONTROL = BxFd

& pootpy 8
button_ 4 intemupt py 1 MODE_SLEEP = const(@)
& button 4 Joop.py MODE_FORCED = const(1)
& putton_4_timer.py L MODE_NORMAL = const(3)
tade py

& lod_blnk_21.0v

& lnd_blink_timer_21.py

i BME286_TIMEOUT = const(188)

class BME280:

Shetl
Tomp:

35,60 , ure:
(*2%.66C°, "99).00mPa’,

Tesp: 35.60C ,
(' 2h.eec’, 98l
Tesp: 29.60C ,
('25.65C", ‘W91,
Temp: 25.60C , ¥93.04hPa , Humidity: 49.02%

MicroPython (E59#12)
Initialise the I2C bus with the given arguments:

So this should be a meat value zero. And it looks like this. It includes the
C symbol as well. He's a pressure for being sworn in the humidity with the
percentage sign for used to. OK, now, if you're curious as well, have a look
at the driver, could you expand this window a little, you know? So I am
calling.

[bme280 testpy] [bmeZBd fiostpy |
Th computer . woroperty
{ Users { petar2 | Dusktop | det sltitude(self):
Micropython £S932
accelerometer_test py .nu. ude in m.
2 anslog resd pot 34 py
bme?80_float py =
2 bmazou. st oy P = 44330 » (1.0 - powiself.read_compensated_datai) (1] /
& button 4 nterrupt oy self. _sealevel, 8.1993))
#: bautton 4 Joop.py 4 axcept:
& button_4_timer py p=d.e
& dht_test.py return p
& tadepy
& lnd_bilink_21.py
& lod_blink_timer_21 py

from math import pow
tn

@property
def d-u _point(self):

Copute the dew pod t tenperature for the current Temperatur
and Humidity measured pai

o lru math import Loy

© scoshwaneter loskoy t, p, h= sm renuqcolnensated data()

 ansiog read_pot_34.5y h = (loglh, 18) = 2J /84343 + (17.62 = t) / (243.12 + t)

bme?80_flcat py return 243.12 « h / (17.62 - h)

bme280_test.py

& boot.py @proper

& button_4 intemupt oy B def \llLIlll[iell]

& batton 4 loop By FE— T

button 4 _timer py

& fadepy

& lod_blnk_21.p¢ 4s return (“{:.21}C". formatit), "{:.21}Hpg". format(p/100),

€ lod_bilink_timer_21.py “{:.21}%", format(h))

adable values

t, p, h = self.read_cospensated_datal)

Shell

Tesp: 35.40C , Pr ¥9).00hPa , Memidity: 49,054
('78.66C°, "993.00MPa’, ‘4

Temp: 29.40C , P 9).02hPa , Memidity: 49,000
('23.66C", 993,00

Temp: 24.60C , Pr 91.03hPa , Hamidityr 49.00%
i T+ N

Temp: 24.40C , Pressure: $53.04hPa , Humidity: 49.02%

MicroPythen (ESP32)
Initialise the I2C bus with the given arguments:

The values function search for values in here. So the values function is in
line two hundred and forty, and that's what comes back to the caller. So you
can modify this, of course, if you don't want the symbols to appear. You
can just remove them in the source code of the driver, but you can modify
the couple that is returned by just making the appropriate change in 1955.

ESP32 INTERNAL TOUCH
SENSOR

I let's show you how to use the 3-2 integrated capacitive touch sensor.

1036

1039

> 1034
ADC1_7 e 1
HO ADC1_4 HESER~ 12
H8 ADC1_5 HESS- 13
1 ADC2_8 HBEER- 14
2 ADC2 9 HEEEN. 15
CH7 ADC2 7 | 3

CH6 ADC2 6

CH5 ADC2_5

CH4 ADC2 4

Rty Took R S -DevKitC Pins
ss/defaultfiles/ £5P32 for Busy People Wy ESOIomations an doy version of this map
wroom-32 datasheet en.pdf Serious learning happaning At Aacty i

Just wanted to Munyakei, you look familiar with this, that the inspectorates
who has touched since says that are accessible via some of its typewriters.
In particular, you've got touch sensors available here on your for zero two

and 15. And on the other side right here, Chapuis, 27, 14, 12 and 13, it was
32 and 33.

So you can use those sensors so that your attitude can detect when a user is
touching a copper wire or a pad and therefore you can use it as a button.

be used on the ESPAZ: 0, 2. 4, 12, 13 14, 15,

PWM igaubie width modulation)

ADC [analog to digitsl conversion)

For more details on touchpads refer o Espressil Touch Sensar

DHT driver

The DHT driver Is implemented in scftware and works on al pins:

In a way, the E.S.P 32 micro python implementation gives you a module
called capacitive touch right here, gives you that limitation here, which you
can access by importing the touchpad function from the machine module.
When you've got to do is to tell it which pin you want to use as a touch
sensor and then create the object for that touch sensor and then use the read
function to take a reading out of it. And depending on the integer that
comes back from the read function, you can infer whether there has been a
touch event or not. Down here you'll see an example implementation of a
touch sensor. So I've got a very simple example here. Basically following
the documentation I have connected. They just touch the pin here.

From a hero to Jebril, 15, they have said that they say Tetrapod, here's the
key object for TouchPad and then in an infinite loop, I just take readings
and print them out to the shill.

[touch_test.py |
| Components
- ESP32
- Connect a jumper wire to GPI0 15 (leave the other end unconnected)

- Wires
- Breadboard

Documentat ion:

Timers: https://micropython-docs-espll. readthedocs.io/en/esp32_doc/esp32/quickre! . htmlstiners

Pins and GPIO: https://micropython-docs-espl2.readthedocs. io/en/espld_doc/espl2/quickre! himlipins-and-gpie
Touchs http://docs.micropython.org/en/ latest/esp32/quickref. htalfcapacitive-touch

Course:
MicroPython with the ESP32
https://techexplorations, com

|
= | 24 from machine import TouchPad, Pin
25 from time import sleep_ms

It = TouckPad(Pin(15))

25 while True:
print(t.read(})
sleep_ns(58)

I found out empirically that if you take readings too quickly between each
other, then this reading may not be very reliable. In my case, | had the

authority looking out. So if you did take readings like these, just spaced
them out at least 50 milliseconds apart. All right. So I've already copied
this script onto the perpetrator's flash and she's got the square brackets
around the filename.

Tha computer
{ Usars | peter2 | Desktop |
Microprtton ESP3T

accelerometer_test.py
& analog read_pot_34.py
bmaZ80_float py

£ brmeZBO_best.py

& putton_4_intermupt py

& button_4_loop.py

& button_4_timer.py

& dnt_test.py

& fadepy

& led_blink _21.py

lod_biink_timer_21.py

@ touch test.oy

MicroFython devics L i from machine import TouchPad, Pin
accelerometer_test py from tise import sleep_ms

& analog read_pot_34.py
bme280_float py

& bme 280 test oy whila Trea

t = TouchPad(Pin(15))

& boct.py 8 print{t.read(})
button_4_intemupt.py sleep_ns(50)

& button 4 _loop oy

& button_4_timer.py

& ant_test py

& fade oy

& lod_blink_21.py

& led_blink_timer_21.py

touch_test.py

MicroPython (E5932)

So it's ready to run. It's going to click on the play button. And I can use a
jump away, of course, but just prefer to use the pin here, just keep things
more tidy, just touching.

o Thorey - MicroPython devics :: owch testoy @ 10 10

[tomch test oy |
jil Components

8 - ESP32
g - Connect a jumper wire to GPID 15 (leave the other end unconnected)

psif/n hon—do: p12 eadthe: ofen/es p:u d c/e psuquukre .html#tiners
nd EPIO n\[p .".-" opy:h -do. px? d\n docs 5p3 p‘z\pl?a’l‘l chref . htaLPpins-and-gpio
http://doc npyu- org/en ,-’L test/es p]i‘.-’q hrel' ln u p l ~touch

N D thon with kh FSP?)
hetps: //techexplor om

24 from machine import TouchPad, Pin
25 from time impo

27 t = TouchPad(Pin(15))
28
29 while True:

print(t.read(})
sleep_ms(50)

.....

Consider the value in the shell is changing, if I make more contact with the
pin, the number becomes smaller so you can use these numbers in the
range of numbers that come out to. Right. Appropriate code in your script
so that you can detect these events and reject other events. Another thing
that I want to show you is because the number that comes out of the shell in
this printout example is just a single no Perreault. I can invoke the pleura
and it gives a visual representation of. Touching the face. And looks quite
interesting, but as you can see, it is a very simple way to implement a
button like functionality has a touch interface with your PSP three gadget.

ADXIL335 ANALOG
ACCELEROMETER

In this project, I'll show you how to use an analog accelerometer like the
ATX or three three five breakout device.

So in this example, I have connected the accelerometer to three Gio's that
are capable of analog to digital conversion, just removing it so you can see
the warming underneath. So I've got the X, Y, Z pinch of the

accelerometer. And via this chunk of wires, these are connected to tapirs 30
to 35 and 34. So Z is 32, Y is thirty five and X is thirty four and foreground
close to the ground rail and addition to the three point three volt rail like
that back into the breadboard.

+ Thosny - MicroPyihon device

sccslerometee Seat.py | scceisrometer test oy |
31 Course:
on with the ESP32
xplorations,com

acceleromater_test oy
& analog read_pol_34 oy
& bme280_fost.py
bme280_test py
& button_4_intemupt py 36 2 = ADC{Pin(34))
button_4_loop.py 40 x = ADC(Pin(32)}
bustton_4_timer. oy 41 y = ABC(Pin(35))
& sty .
& tadepy
lod_blink_21 oy

17 from machine impert ADC, Pin, Tiser

44 x.atten(ADC.ATTN_11DE)
15 y.atten(ADC,ATTN_1108}
lod_bink_timer_21.py 16 z.atten(ADC.ATTN_11DB}
touch_testpy 47

A5 def adx1335_senser_isr(event):
4 x_value = x.read()

MicroPython devics _
& scceleromater_test.oy y_value = y.read(}
v anslog.reedset 3oy _value = z.read()

bme280_fost oy

bme280_test. By

& bootpy

button_4_intermugi py 6 blink_timer = Timer(1}

bution_4_loop.py blink_timer.init(period=50, mode=Timer.PERIODIC, callback=adx1335_sensor_isr)

print{"x:", x_value, ",y: ", y_value, ",2: ", 2_value}

& button_4_timer.oy
& @ testoy
L

touch_testpy

And having a look at the sketch, if you have watched the project on the
potential mirror, then you already know how to use the ATC function. Part
of the machine module. Well you've got to do is to import it and then you
create the three analog to digital conversion objects that we need for the X
and Y. Just pass the pin to which you have connected each one of the
accelerometer pins, then offset the attenuation for each one of those. And
look, the digital converter objects found that 11 decibels attenuation is the
best that fits here. The purpose, since we are using three point three volt
input for the accelerometer power input, is that also defines the range of the
output. So 11 destabilises what we need here. And I've got a timer. The
timer expires every 15 milliseconds and calls the eight zero three three five
since | saw function right here, which simply takes the three readings and
then puts them out to the shell. And because I have to get three clear
numbers, print that in the shell. The Explorer also works and it gives me
the three values. They should be represented in these acts in this two x y
axis. So if move my breadboard with the accelerometer on it, you can see
that the values vary. In this case, the X and Y values very little bit more
than busy site and a board upside down breadboard. You can see that. The
orange. So the green. Line and value also changes. Move over to the y
axis with y axis front and back, you can see the headline moves so. This is
just a simple case of using the ADC typewriters to receive three analog

values from an analog accelerometer. And this way now it's better to
gadget knows which way it's it's facing or which way it's oriented based on
the readings of three. Excellent.

HC-SR04 ULTRASONIC
DISTANCE SENSOR

In this project, you have to use the agency as 04 ultrasonic distance, since
the sensor provides an easy way to measure the distance between itself and
a usually flat, reflective object in front of it, like this container that I'm
using here as a sample target.

The principle of operation for this sensor is that you've got two modules.
One emits an ultrasound which bounces off the object in front of it and goes
back into the receiver. And the amount of time that it takes for the signal to
travel between the emitter and the receiver provides information so that the
distance can be calculated.

-
[hewOipy] | [wtrassnic_testpy |

Tris compuner Vee > 3.3V
§ Unars | poterd | Duskton | : Wires
e Breadboard
© accelarometer_tast py

& ssiog read pot_34.py

bme280_flost.py

& bra280_test.py

® button_8 nteinpt py

& button 4 loop.py

& button_A_timer.py c the ESP32
& dhe_test.py

D c/espdd/quickref htal#timers
s://micropython-docs-espl2. readthedocs. lo/en/enpl2_doc/espd2/quickret .html#pini-and-gpio
ce: https://github.com/rsc1975/micropython-hcsrid

v from machine import Pin, Timer
® luci_blink_timer_21.py from he_sr@d import HCSAB4

§
i

sansor = HCSRB4(trigger_pin=2, scho_pin=15,echo_tiseout_us=1000800)
sccelarometer_testy
o read_pot_34.py
bme280_flost oy
bma280_taat py

boot oy blink_timer = Timer(1)

Buttton_4_inbemupt oy 4 blink_timer.init(period-1808, mode-Timer.PERTODIC, callback=hcrs@d_isr)
button_4_loop py

bautton_4_timar py

def hersd_isrievent):
distance = sensor.distance_ca()
print(round{distance,2))

lndl_biinik_timar_21.py
touch e py

& uitrasonic_test oy

ARIBBIBIBIIZIINID

Now, in this case, I needed to find a easy to use and reliable driver for the
census so that I didn't have to code the functionality myself. And to do
that, [was able to go to the market.

& satari

Awesome MicroPython \ & e

Oviver for ATMSOEZS ertry metering device.

-ESPA266 scripts for reading MCP39F521 power manita

Diivers for MO serns gas sensors
Driver for MQ135 gus sensor
Basic MicroPython drives for CCS811 on ESPE266 boards.

MicroPython 12C driver for Sensinon SCO 2 ensor moduly

145 11145 UV indaex, IR, vissble ight snd peoximity sensor
Driver for the TSL2561 illumination sensor from TAOS / ams.
CSPB246 driver for BH1 T507V) asnsor
BH1750 iZc digital ight ssnaor driver
Maticn inertial
- Drives for Bosch BMXOSS5 IMU sensor
Bosch Sensortec BNODSS 9D0F IMU sefsor, 12C interface

LSMIDSO (-force bnear acceleration, gauss magnetic and das

12C driver for MPUSZ50 9-uriy. ucking device

Driver for the ImvenSerse MPUS2S0 inertial msasurement unit
ESPA266 drives for MPUSDSD scceleromile /gyroscope.

ESPH268 driver far MPUBSO acceluronwtin /gy1oscope.

Python listing of such drivers, search for distance since ultrasonic or
something like that.

i pithu comae 197G microeyihon hesr0d

() it acmrapricrppthn-heae: Wy e o hrmacnk s -

HC-SR04 Sensor driver in micropython

Micropythan driver for the well-knawn unts isanic sensor HE -SRO4
Thar'driver has besn tasted cn Wamos D mini PRO, but i should work on whataver cther micropython board, if
anyona find problema in other boards, plesss open an s and we'll ses.

Motivation

The existing drivers in micropythan ane s bit old and they don't us
machine, tise_pulse_us() which s more sccurste that whatever thod using pure pythan, besides the
code is compliant with “standard™ micropython, thare is no code for specific boseds.

Finally I've added a method, distasce_ssi) that don't use flsating point sperations, for srvircnmants whers there
s na floating point capabilities.

Examples of use:

How to get the distance

The distance_co{) method retums @ flaat with the detance mewsured by the sensor

stance_mml) , that retums five dislance in milmelers [int type) and no floating point
15 that doesn't support floating point operations.

And it's I was able to find this driver right here, click on it, and it will take
you to the GitHub repository where you've got some information on how to
use it.

0 b o 1T iy en Resr i masiet el gy

) mremnan et mearss o s P mirspynan e Svne

And of course, you've got access to the driver itself, the python drive itself,
so you can click on the raw button just to get a clear text of the code of the
driver. Copy that and then create a new page in phony paste the code in and
save it on your device using this name here, HTC. And this call is

scheduled for in lowercase because this is the name that I use to import this
code into my example script.

o8
JSHE 0 &

Fies. [restdpy] [fUasnis seston] =

This compater . import machine, time

1 Unars | peterd | Desitop [from machine import Pin

Miciopythen PEPIY

sccelarometer_tast oy class HCSROA:

wwiog read_pot_34 py s

bme280_foat oy

MRAE. (43LF. Cricear nin. SORG BN, ‘Hchi ¢4

locd_biink_21.py
& lel_blink_timer 21,0y

self.acho_timeout_us

MctuPytie demes:
accelsrometer_tast py self.trigger = Pin{trigger_pin, modesPin.OUT, pull=Nene)
& siog read_pot_Iipy self.trigger.value(®)

#: bme280_foat oy
bme280_test py self.acho = Pinlecho_pin, mode=Pin.IN, pull=Nens)

def _send_pulse_ond_woit(self)

.
MicroPythen (ESP3Z]

So I've already done that, of course. So I'm not going to repeat the process
here to save a bit of time.

<
[hesbdpy] | wvemenc ey |
apanant

i
§

BAARIBBBIBAINNN
¥

L sachine impert Pin, Tise
rom he_srid impert WCSAB

wnsor = HCSAM(trigger_pine2, wc

This is the example script that are prepared. As you can see, it's very
simple. I've got some information on how to connect the sensor to your

ESP three to using the regular ground and three point three four panes for
power. And then the echo pin, which is the second from the right, which is
this pin right here via a couple of jumper wires, goes to Tip-offs 15 right
there. And then the trigger pin, which is this pin right here, goes to be able
to OK, those embedded with the connections, nothing fancy. I've got
information about the driver so you can download the driver and install it or
save it on your HP 32.

& bution 4 loce.py
& button_4_timerpy
& dhe_test py

& fade.py

_blink 28 from machine import Pin, Timer
:uq_nnm_mm_ﬂ oy 5 from hc_srid import HOSR4

MicrPyhon device . i1 sensor = HCSRBA(trigger_pinel, echo_pi
& scceleomater_tat py 3
€ o read_pot_34.py
& bme280_flost py
& bme280_test py
& bootpy blink_timer = Timer{1)
& button_4_intermugt. oy 38 blink_timser.init(period=1004, mode=Timer.PERIODIC, callback-hcrstd_isr)
& button_4_loop.py 3
& button_4_timer py
& ane_estey S
& tadepy 7.7 %
& ho_ud py iR
& iod_blink_21.py
& lad_biink .oy
& 1ouch_lest py
& unrasonic_testpy

And as far as the script itself is concerned, I'm importing the necessary
modules and I'm creating the sensor object as per the instructions from the
driver module. I'm calling the CSR constructor, passing the trigger and
expense. And there's also Eneko Timeout is a pretty large number in
microseconds. I'm using a hardware timer here like I've done in previous
projects, and I'm taking reading every one second, one third milliseconds
periodically. And every time that the timer expires, it will call the
interrupted service routine, which is this one here. I'm simply getting a
distance measurement in centimeters and I'm rounding this number to two
decimal points and printing it out. And because I've got just a simple
number here, I can also use the pleura, which gives me a nice visual
representation. So actually it really works. So I'm going to move the target,
make it a bit closer.

sccelerometer_tast py
& wwiog_read_pot 34 py
bme2B0 float.oy
& bma280 text py

19 ins ®
{] H{-5Rd4 d
button_4_interupt oy - a

28 from machine import Pin, Timer
25 from hc_srid import HCSRBM

senyor = HCSROA(trigger_pins2, wcho_pin
3 daf herstd_isrlevent):

b fui g : dixtance = sensor.dist

bme 200 tast py

mode:Timer, PERIODIC, callback=hcrsdd_isr)

%

SEPWaen

lod_bink timer_21.py
& touch_test py
ultrasanic._iest.py

Mierubython [ELF13)

You can see that the. Numbers change as well as a plot of that number back
a little. This just increases. You can take more frequent measurements, for
example, I've gone down to 250 milliseconds, depending on the distance
that you want to measure, you need to be mindful of how frequently you
can take measurements. If you want to take measurements that are, say,
beyond 10 or 20 centimeters, then you need to take into account the
amount of time that is needed for the ultrasound to travel back and forth.
And it seems that about half a second to a second is a good number for such
measurements. Right. So that's about it with the want system since the.

2X16 LCD DISPLAY WITH
PCF8574 - PART 1 HARDWARE
12C

Hi and welcome to a new section in this course, this section 1s dedicated to
this place. I'm going to show you how to use a series of displays such as
this to buy 16 LCD display. Very common. I've got a graphics display like
these, actually.

I've got a variety of graphics displays to show you, plus displays such as
this eight by eight Matrix and so on. So in this first project and the one that
follows, I'm going to show you how to use the very common two by 16
LCD display, which contains a backpack like this one, which allows us to
use it in cereal ICQ, which see mode instead of its native parallel mode via
those pins here. So in my case, I have sold the backpack onto the display
itself, and that makes it easier to use in one piece as if there is one single
module.

Now this module here just said contains the F eight five seven four
integrated circuit, which makes it possible to convert the displays native
parallel interface into in a square C interface. So I've got the wiring here set
up and in this project I'm going to show you how to use the USB 32
hardware I see in the face and in the next project will do the same thing,
but will use a software interface which allows us to use squishier with any
compatible chips on the 32 instead of being confined to the hardware. I
could see. So the wiring in this first example is very simple for ground.
And this is see, I'm using the ground pens on the ground rail on my
breadboard, and I'm using the five volt pin on the speaker to say I'm just
using this long red wire to take five votes into the FCC on the backpack for
state and SEAL because I'm using the E.S.P 32 hardware. I could see this,
too, had I switched to interfaces. I'm using the one with ID zero. I'm going
to talk a little bit more about this in a moment. I'm using pins 19 for a.D.A
and 18 for a ACL.

B Gtk rebemeree for e EAPE] — MeeraP e 14 swmemert YR XD OF ATIONS. COM

Hardware I12C bus

There are two hardware [2C peripherals with identifiers O and 1. Am
Couck rafarence for the E5P32 can be used for SCL and SDA but the defaults are ghven belo

General inloemation sbaut the
ESP32 port 12ci0) 2ciy)

Getting started with MicroPythan on
e ESPI2

PAWM (gutsn wicth modidation)

ADC [anslog to digitsl convernion]

Deep-sleep mode
The following code can be used to sleep, wake and check the reset cause:

WebREPL tweb browser interactive

pe—

& tocs microgyshon org/eniatest/esn 3 ikt bl

for the ESPI2

Gereral information about the
ESP22 port

Geetting started with MicroPythan s
the E5PI2

Installing MicroPython
Gerersl boaed control
Networking

Ciclay and timing

Timers

P and GPIO

PWM |pulse wadth modulation)
ADC (analog o dgital conversion)
Softars SPY s

Harduars SPI bus

Software 12C bus.

Hurdwae (2C s

Realtima clock TC)
Diwes-sieep mode

RMT

The Espressif ESP32 Development Board (image attribution: Adafruit)

Below is a quick reference for ESPI2-based boards. If 1t is your first time
may be useful to get an microcontroller

WebREPL wed browser interacthve
promet]

Installing MicroPython

All right, now let's have a look at the software side, so the software side
depends on two libraries that you need to download. The first one is this
one here, LCD on this call API P y, which contains some of the basics of
the functionality for the LCD display. And then on top of that, we use the
SBA to six six call I squared see on this LCD, which basically builds top of
the OCD and this score API with functionality that is specifically
compatible with the SBA eight to six six. And it's an extension with our

E.S.P 32. So you need to get those libraries.

This
{ Uers | putar2 | Dasktop |
Micropythan E5F32

s
i
H
i
%

ine import 12, Pin
Al led as espB2sE_\cd
from time import sleep ¥

AEBABABALBALN

iZe = [2C(0)
led = espli266_led. [2eLed(i2e, espl266_Led. DEFAULT_IZC_ADDR, 2, 16)

s "
o
boot
Bt
butt
Bt
an_
fadepy
od_n
led 2e_tes
MicraPython devic
oo

&
P
&b
ps
#
&
*
e
P
@
&0
*
& oo
P
é
e
e
¢
&
e
&
r
b
®
¢
-

MicroPython (ESP12)

And I have the locations from where you can download them from here. So
these are the required modules that you need to download and install. Apart
from that, I'm using a few other bits and pieces here, for example, you need
to import the pins module and sleep, put a bit of delay their motor using the
string formatter or the string formatting operator, the percentage string, as
you can see, percentage the string here to allow me to display this number.
And it's increasing every second. So I use the string formatter for that. If
you're not familiar with how to use it and have a look at this reference
documentation. Let's talk a little bit about Isaac we see on the especially to
using micro python. We've got a link for that here, specifically for the
hardware interface that we are using. This example, it would take you to
this page here. We are now looking at a quick reference for the E.S.P 32 in
the macro Python website, and that is the hardware squid seabass. And
you can see that the is 32 gives us two lots of atheel. Is the HP use that
implement the hardware I could see. And in this example we are using I d
zero, which means that the seal 1s on Jhpiego 18 and is the Orangeville 98.

And to create an ice quazi object on the hardware, I would say interface or
you've got to do is to tell Macra Python which ID it is that you want to

use. So that's all there is to it. There's a single no single Idei as a parameter
to the ice quartzite constructor will give us the ice quazi object and that's
what we do. Right here. After that, we take that Asgard, it's to see object
becomes the first parameter in the constructor for the LCD object in case it
LCD. The name that I've given to the module, you can see I'm importing
the ISP a 266. And this call I to see an LCD and I'm renaming it to this,
which is a little shorter and easier to use on words. I'm using that as the
name of the module. I'm calling the constructor for the LCD, passing the
object for the ice quazi that we created in line for the two and also grabbing
the default. I could see a address. I could have created a local variable with
her address and just use this in here. But I was taking a look at the.
Librarian, you can see that that address is already included in the in the
library module. So I was just able to get this constant and edit into my
constructor like that. And that meant that I didn't really need to have an
additional line of code here. I'll keep it here just for reference. So after
that, we've got the number of rose in the third parameter. In the fourth
parameter is the number of columns. So if you have a different sized LCD
display, then you can just change those numbers to match the size of your
particular box. Could see this could have, for example, three rows. Once

we're done with that, we've got the object to go and clear everything in the
display. So prepare the display to write something on it, clearing the and
creating the counter variable here and giving it an initial value zero and
will go into an infinite loop. I can set the cursor on the Ill-suited to a
particular location.

This
{ Uers | putar2 | Dasktop |
Micropythan E5P32

scceterometar test oy 1o loa el o
#: aralog_read_pot_34 oy from tise isport sleep ms
& bme280 floatpy
#: bme260,_testpy
bootoy
button 4 ieterrupt oy
& buthon_4 loop.py]
& button_4_timer gy I - » | L
am_test py 0 .
& eapazes ite ledpy
: 1:1:;: al SHIFT DATA = 4 The specitied test was Aot found
& icd_spioy Cane senmitive up * Down
o led i2e_test py class [2clod(LodApi):
- sments & HOM47B8 character L(D conmected via PCFEST4 on TGOS

fing & Replace

daf __dndt_(self, iZc, i2c_sddr, num_lines, nem_colusns):
self.idc = ¢
self,12c_addr = iZc_addr
self.i2c.writeto(self. i2e_sddr, bytearray((8]))
sleep_ns(28)
self.hal_write_init_nibole(self.LCD_FINCTION_RESET)
sleep_ns(5)
b self.hal_write_init_nibble(self.LD_FINCTION_RESET)
Nt e g i
d self.hal_write_init_nibble(self.LCD_FINCTION_RESET)
p8208 i2e ledpy sleep_nsi1)
* tadepy
& he_wroa oy self.hal_write_init_nibble(self.LD_FUNCTION)
& ot apioy
® icd i2c_test py

& maxr2100y

recoet

€ cied_sn1

€ clec sn1 .
@ ciect st 306 test oy
@ i uuct1 316 test oy
A earoe

MicroPython (ESP12)

Lled_apipy) [fed i2e tent py | *
This computer oat ?Nllml,’lsr_.\l:
1 Usars | pater2 | Desiiop | Turns the ba ht o,
ESP32 »
Yy eally an LCD command, but some modules have backlight
el 5, 50 this allows The hal T pass TAFough the command.
aralog_read_pet_34.py -
bme280 flostoy self.backlight = Tres
#: bme280_test py self.hal_backlight_on()
def backlight off(self): Fina & Aeplace
"==Turms the backlight off
This & y 88 LCD comms
& anttest oy controls, se this
@ eapB268 it ledpy
tadepy
® he w04y
& cd aploy det TITRE(self, cursor_x, cursor_y)
o led 2e_test py cursor p
MicrePython device
@ acceterometer 1t py
® sralog read_per_34 oy
bme280 flost oy
bme2B0 test py

self backlight = False
self.hal_backlight_eff(}

pos is zero based [

self.curser_x = cursor_x
self.curser_y = cursor_y

it cursor_y & 2:
r += self.num_colusns
self.hal_write_command(self.LOD_DORAN | addr)
& button_4_timer gy daf putchariself, char
& ooty L i
& 4upa208 ie kdpy ~
& tadupy r
& he_sr0a oy of omr =W
& icd_spioy

. bout_blink_timar 21 py
& mutrin Bell_randorm Sest by
€ manix 8ol test oy

& chedt sh 1 _
& clact_sed1 308 test py
& olect a1 315wt py
-

MicroPython (ESP32)

So this is a move to function, which you can see here. OK, so starting this
won't you, to API look through it in here.

J3d O
Fes
This computer
{ Unars | pater2 | Dasktop |
Mcropython E5P32
scceterometer_test oy

from machine import 12, Pin
inport espA266_i2c_\cd @s esph2se_led
from tise isport sleep

iZc = [2C(0)
led = espli266_led. I2eLed(ide, espB266_Led. DEFAULT_IZC_ADDR, 2, 16)

ted.clear()

led.mave_toi®, #)
Lod.putstr(~2xl6 LD deso”)
Led. is, 1}

MicroPython (ESP32)

All right. So here it is. So you can see that first goes the X coordinate and
then the Y coordinate in the move to function. So you've got X Y zero
zero. So it will go up to the very first block. Can barely see it, but there's a
block. Right. And then number two and will use they've put is the function
to print out this text, this string of text then will move to the next line
down. So X is zero and then Y one shot will go down here and print out
this string of counter followed by Percentage De, which is the string
modifier for a digit, they say percentage sign here. And then in parentheses
I'm printing out the variable value counter, which I have just updated by
one each time we're going through the loop and we'll wait for one second if
you sleep one, which I then put it up here, it takes Sinisa. Now, given the
number of seconds that I want, you wait here and it goes back and repeats
the loop and that's about it that you can see. It's fairly easy to use your
LCD display using the square to see hardware interface to print changing
text or static text. Let's jump into the next project where I'll show you how
to use the software I took with C capability that comes with macro python,
which is useful if you just don't have access to the hardware which could
see interface for some.

2X16 LCD DISPLAY WITH
PCF8574 - PART 2 SOFTWARE
12C

In a previous project, you learned how to use your to buy 16 LCD display
using the Quixey hardware interface HB 32 and like a python in this
project to modify the connections so that instead of the hardware I could
see were used to arbitrarily selected Kypreos so that we can then use this
software.

sEwssasssnn
Eessamenaag

ICE could option instead of the hardware, I switched the option. So this
gives you the ability to move your eyes. Quixey wiring as needed to
unoccupied Kypreos in case your hardware is quartzite interface so
occupied. I just want to add one thing here. As I've been doing a lot of
testing with various HWC devices, I found that in some cases the hardware
arts quartzite interface would not work with particular devices such as a
sensor, for example.

-

lled aplpy] lled e testpy]® | [lcd sshide testpy]®

from machine dmport SoftIzC, Pin
import espB266_iZc_\cd as evph2e lcd
from tise ispert sieep '

0 iZc = SOTtIIC(sclspin(a), ssasPinil), freqeasoned)
Lod = espl266_\lcd. I2cled(ide, esph266_Led. DEFAULT_I2C_ADOR, 2, 16)
ted.clear()

counter = &

*
@
*
!
'
LT
@
L
P
&
*
&
'3
[
&
&0
&
e
&
@
F

MicroPython (ESP32)

And then I had to fall back to the software I could see to get it to work. So
sometimes just keep in mind that if a device and nice the device does not
work with one of your eyes could see Conexion methods. Try the other
one and there's a good likelihood that one of the two, either hardware or
software, will work. All right. So I still am running the script from the
previous project on the With Reducers. You can see the wiring is still the
hardware quartzite interface. And what I'm going to do is move over to this
tab here. LCD soft eyes could see and the got test y and I'm going to make
some changes to my connections, so I'm going to hit control. See, first,
just to interrupt the running script and I'm going to take my two flexible
jumper wires. This is why I used flexible copper wires for this LCD

example so I can just move them around easily and I'm going to use your
full for FCL, which do this carefully.

EEEHH |

So FCL is the red wire from the backpack, which is the yellow wire when
the Bridport and there is going to go to Chipo four, which is right here.
And the FDA. In my software side here, I've got a zero that's a wide wire
that's going to go right here to Tapio zero selected those because, of course,
they're right next to each other. Another thing to see here is that I'm using
soft eyes Quazi instead of eye squared, see, which gives me a slightly
different constructor here. I have information about software which could
see the software implementation of the old squirty protocol, micro python.

Thonny - MicraPythan device = flod_softidc_test.oy @ 2287

[boel_ssitide_smst py] *

This
1 Uvers | putar2 | Dasktop |
Micropythan E5P32

esp32_doc/es
sccelerometer._test oy v . test/Library/uti highlIght

- . o http on-reference. readthedocs . io/ens Latest /dacs /st

snalog_read_pet_34 py https://docs. micropython. org/en/ Latest/espll/guickre! himlosef tuare- i2c—buy

bme280, float oy

#: bme280_testpy

€ bootoy

5 button_4 intarrupt oy

buttn 4 _loop.py

& button_4_timer gy

& an_est gy

eapazes ite ledpy

& tadepy

b ragirped from machine import SoftIaC, Pin

. import espB266_ilc_\cd as esph2e6_lcd

& led 2e_test py from time impart sleep
MicroPyshon device

accelerometer_testpy

& sralog read_pot 3oy iZe = SOTUI2C(sclaPin(a), saasPinie), Treqeasoned)

#: bme280_flost oy
& bme2B0 test gy
& pootpy Led.clear()
& butnen_a_ieerrugt py

& button 4 Joop.py counter = @
& button_4_timer gy
& an et oy

& 4upaz08 ite kdpy

Ned = espl266_\lcd. D2cLed(ile, espB266_Led. DEFAULT_T2C_ADOR, 2, 16)

while True:
\cd.move_told, 8
led.putstr(2xls LCD desa”)
\ed.move_tol®, 1)

& sateri Fie

I Gusch retarmnce B 1ha ESPIZ — WaieaPyihon 118 Sacumeniatior

Software I2C bus

Satta jusing bit-banging) works on all cutput-capable pins, and ks accessed via the
Cuick rebesence foe the ESPIZ choe

Copreal idurmation about the
E5P32 port from machine impart Pin, SeftIC

Getting started with MicroPython on i2¢ = SaftI2CiscPIn(S), sdasPin(d), freqeinased)
the ESP32

Irataling MicroPython

Corrmeral e coantel

Metaorking

Delay and timing

Tirsers

Pirs and GO

P [ondse width monhilation]
hardware [2C peripherals with identifiers 0 and 1. Ay available output-capable pins

ADC arlog 1o dyital comenion)

Software $91 bus

SDA but the def ® given below,

e 5P b
Saftware [2C bus

Mandware I2C bus

[=4]

Rl i clock (RTC)
sl 19 26

Deep-sheen mode
BT

The driver is accessed via the machine I2C class and has the same methods as software 12 sbove:
raiicr drives
e from machise inpart Pin, 1
Capacitive touch
DHT driver 12¢ = [201, SCLPINIS), SABsPLAIA], Treqeaseon
WebREPL [web browser intesactive

perompt)

Real time clock (RTC)

And you can see that link right here shows you how to use it. So these two
pins for FCL and SDK can be any other unoccupied and available to appear
on the E.S.P 32. Once you have created the ice quazi object, though, using
soft Al to see, as you can see in the example here, you can use it in the
exact same way as you did with the hardware art which interface.

from machine dmport Softl2C, Pin
import espH266_iic_lod as esphlf_lcd
o

{gc = SOTUICIsclaPin(d), sgasPin(e), fregeasoeee)

Led = espl266_Lcd. T2cLed (i, esph266 Led. DEFAULT_I2C_ADOR, 2, 16)
Led.elear()

counter = @

while True:
Led. mave,

teld, #)
\od. putsir(~2a16 LD dema”}
Lod.move_to(d, 1}

counter = counter + 1
led. putstr(“Counter: % % (counter))
print(~Cownter: %™ % (counter))

1

MicroPython (E5#32)

So nothing has changed below this line between the two scripts. It's exactly
the same script. So the only thing that has changed is how I create the ice
Quixey object. All right. So I'm going to save this script and run it. And
she could she works in the exact same way as we see where I could see
example.

OLED SSD1306 12C

In this project hall show you how to use one of these tiny OLED graphics
displays, which is based on the essayistic one three zero six controller
chip. So this is an ice Quixey device.

It was able to print text and arbitrary graphics there. Library that I'm going
to use and can show you provides access to functions that allow you to
print primitives such as lines and boxes and circles. And it is connected to
the E.S.P 32 via the software. It's Quazi module. I did try to get it to work
with the hardware I took, which module, but it didn't quite work. So there
is an issue there most likely has to do with the library that I'm using. I did
try to find one that would support hardware. I could see but to do so. So if
I do, I will update this project with a new updated library. So in terms of
the wiring, things are pretty simple. I just provide power through. This is
just going to unplug it to show you what's underneath, actually. All right.
So there's VXI, which goes to the three point three volt pin, which is this
one right here. And the module got a tiny jumper wire that connects this
pin to the red power real. Then ground goes to the ground up in here again,
I've got jumper wire to connect this pin to the blue ground radio. And then
there's the ACL and SDK. And I have connected those to those twenty six
for FDA and twenty five for FCL. I've got that information listed here in
the header of the example script. One thing I want to note here about these
displays, not just this particular one, but the one that I'll show you in the
next project, is that there there are no markings on the displays themselves
about which type of controller they are using. So what I do as a habit these
days is to print a label and stick the label on the PCAOB, on the back of the

BCB with a model of the controller integrated circuit, because without it,
it's going to be nearly impossible to at least quickly find the driver that
matches display.

ene Thanny - MicraPyihon device :: joled_sad 1306 testoy @ 1424

[SSDA308py] | [oted ssan 306 estpy | =

You'd have to go with a lot of trial and error, or you'd have to somehow find
the original documentation of the purchase of the module. Just a tip to
save you a lot of time whenever you buy a display like this with no
information on it printed about the controller integrated circuit, just they
they use a Post-it note or printer use something like this to print out the
model number of the controller, and that can save you a lot of time later on,
I'm going to plug the display back onto my breadboard.

1 Users | peter? | Deskiop |
Micropython ESP12

import Pin, Softlzt

i2¢ = SoftIICIscl=Pin(35), sdu=Pin(26), freqeidooid)

oled_width = 128
uled_height = B4
oled = SS01306.S5D1386_13C(oled_width, oled_height, ilc)

while Trus:
oled. filL(e)
oled. text | "Welcone’, 8,)
oled. text{"OLED Display’, 0, 10}
oled.text(Line 3°, 8, 20)
oled.text(*Line 4°, 8, 30)
oled. showl)

sleepil)
oled. Fi1L(8)
oled. showl)

sleep(1)

oled. Line(8,8,118,58,1)
oled. showl)

steep(il

T3 oparation mn supported

TITTITEIAREBBBRIERARADE
Y TEEEE T

All right, and let's have a look at the software side, so the script that I'm
using, it's very simple. It just all it's really here is to print out a bit of text
and some primitives, like fill the screen with a turn on all the pixels. That's
what one means, means the pixel is on over and the screen off by writing
zeros to all the pixels of a line and then a bit of text back to the beginning
by cleaning it up. So the whole thing is based on this library is a very
simple script that are found that act as a driver for the screen, just like other
displays drivers.

This
1 Users | peter? | Deskiop |

cmeh(SET_COL_ADDR}
el x)

o

]

_cmd{5e11. pages - 1)
_data(Selr.buffer)

, K1, 1, 52, ¥1,
buf. Linelxl, y1, x col)

f bLit(self, fbut
selr. framebur. bLIT(TRUT, X, ¥)

306_L2€(5501306) :

t_(self, width, height, i2c, addr=udc, external_vec=False):
seli.izc = iZc
11 add

It is based on the frame buffer module that is part of the micro python
implementation for the DP 32 and of course, are the microcontrollers. So
everything i1s based on this. You can refer to the source code of this module
to see what kind of functions are available, for example, initialization.
This power of you can control the contrast and this is when you call this
show function in order to print on the display whatever image is stored in
the buffer. And you can see this pixel feel, scroll, text, horizontal line,
vertical line, arbitrary line, cetera. These are the primitive graphics that
you can use. So back to my simple script. I am using this software. It's
Kwesi module. I destroy the hardware one. As you can see here, for
example, I try to use the the first idea which actually uses twenty five and
twenty six anyway, but the creates the hardware put in work and I get the
same pins using soft ice. Quixey and it worked. So for this particular
screen I'm going with the software implementation of the ice which the
protocol. And I'm using a couple of variables to store the horizontal and
vertical within height number of pixels for this particular screen is 128 by
64 and I'll use the as is the one three zero six. I could see constructor
passing those parameters across and get my or ality object. And from then
onwards, I can use the primitives that you can see here in the source code of
the screen driver to do things such as write text in a particular location or
fill the screen with particular colors or draw a line or pixels or any other

kind of graphics based on those primitives that you want. And then you
will just do that again and again and again each time that I'm doing some
drawing in the buffer in order to make that drawing visible onto the screen,
I need to call the show function. So whenever you call one of those
drawing primitives, the drawing actually happens in the buffer, not on the
screen itself. And it's only when you call the show function that the screen
is updated with whatever it is stored in the buffer. All right. So I'm going
to hit control. See, cancel the script was not working because I removed the
screen a bit earlier this year. You what's underneath? So let's run the script
again to make sure that it still works that way, wouldn't it? But just to finish
up with the screen actually working where you can cut the line of text file
screens and back to the beginning. OK, so that was quite easy. The next
project, I'm going to show you how to use this slightly bigger OLED
display, which again is using the same interface. I see same pin layout just
to swap between the two screens. But this one is using a different controller
chip to show you how to make use of this screen. This will. This jump
over to the next.

OLED SH1106 12C

Like in the previous project, he learned how to use This is your boy six inch
display, which based on the SSD, one three or six controlled chip.

Rl
"
-
-
-
ae

ER
I LN

B SANAS sesuus anmmE
" sEEEs EEEEw -IIII"_'_

And in this project, I'll show you a slightly larger display again, eighty
seven point three inch, using the one one zero six controller chip. I'm
going to use the exact same connections between the screen and the three
two. I'm using the square to see interface, which involves the ACL and the
pins going to JBoss 25 and 26. Now, unlike our previous experiment with
the SSD one three or six display, I was able to get this display to work both
with software I could see and hardware I quite see and of course, hardware
see, which is more efficient with resources. So in this demonstration here,
I'm using the hardware interface instead of the software interface. Now, in
terms of the driver Python Library that I'm using here, I found a really good
one which is available at this location right here. And you can see its
source code right here, really well documented up in the header. This
library allows you to use this screen both with the FBI or the squared C
interface for the module that I've got here, of course, only provides Pince
for the ice Quixey interface, and that's how I'm using it here. But in a way,
the library does allow you to use the same Oletta display with the as one
one zero six controller, you know, using the S.P.I connection if the more to
the to using breaks out those pins. Right. We may come back to this source
code in a minute. Let's go back to the example script of code information
about the connections right here. You can go ahead and wire up your screen
just to change this to software or hardware. I could see because the both

work fine. Now, down here in the actual code, I'm importing the ice quazi
and PIN modules as well as the driver code. And you can see that I'm
creating the ice quazi object by using the minimal version of the
constructor. I'm just passing the idea of the hardware interface being No.

I ik rebarmnce for o P37 — Mhcrayihen

Hardware I12C bus

There are two hardware 12C peripherals with identifiers 0 and 1. Any available output-capable pins
e for the ESPX2 can be used for SCL and SDA but the defaults are given below.

General infarmation about the
E5P2Z pont 12ci0) 12ci)

Goetting started with MicroPython om
he E5PI2

Imwtating MicraPython
Ganeral boaed control

ety
vine. 12T class and has the same methods as software 12C abave:

Dislay e timing A

L EEEE R EEEEEE LN

Tinans
Pirs and GPYO

WM [putie width modhulation]

ADC faralog to dgital corversion]

Sottware S8 bus

Hardware SP1 bus

Saftware 12C by

Hardware 12C bus.

Beal tme choch (RIC)

Deeo theeo mode

RMT

Oveire driver

Hoaieel debvpe Deep-sleep mode

Capacitive touch

DHT driver The following code can be used 1o sheep, wake and check the reset cause:

WEDAEPL (web browner imteractive
prompt)

P
-
P
'
-
-
P
-
&
-
Y
a
o
-
.
P
-
.
&
&
&
L
-
L
.

One just remind you could go to the macro python documentation. You'll
see that the eight squared C ID one channel means that a seal is connected
to your twenty five a.D.A, the GPO twenty six, which is how often the
wiring here. So that's all the code you need in order to create the ice.
Quixey object also mentioned that I have tried software. It's Quassey and
that works as well. I've just committed out that code in case you want to
use it. It's a very flexible library. Then in line forty one, we are creating the
display object by calling the Hajj one one zero six and the skylights could
see constructor.

This computm
| Uners | pater2 | Dusitnp |
Micropythan £5917

soceerometer
analog

bme280 |

bme2B0 test.py
Boatpy

tton & _imarmupt gy
button_4_Joap. oy
uttom 4 timar gy
et py
espBEE (e jod oy
tndepy

TEIYITEEEELEE)

utton_4_timer py
et py
eapA208 (e jod by

bod_i2e_best oy
ho_sotcde, test oy
Be_biinik 21,py

e 21,0y

8_teatpy
7210

siea_sat1 315 tevt oy
w1106 py
5501306 9y

touch_test py

& uarsenic_testpy

S EEEEEE L L EEEEEEE LR L]

matrin, Ax_andam _best py

[30106, 2 bosty) (110601

def resetiself, res):

i1 res is not Mone:
resil)
tine. sleep_m(1)
res(®)
time, sleep_ms (29)
resti)
tine. sleep w2

uu;j:ﬂ]ﬁcmnm-
== external_vecoFalse)!
Wi2e = f2¢
addr = addr
res = res
self,tenp = bytearray(2)
if res is not Wome:
Fes. init(res.0UT, valuesl)
— h, heignt,

end
ide.writetolvelf.addr, se

_detalself, buf)
12c.writetolself. addr, b’

resetiself):
superi). resetself. res)

class SHI106_SPL(SHI106) :

Init_{self, width, height, iZc, ressMoas, addredulc,

external_vce)

temp)

xél sbuf'}

def nlt (self. h. heioht. Soi. dC. resshons. cisNone.

Fmd & fiaplace

SH1 106120

You can search for that constructor function in the source code and you'll
take it to this and you can see the initialization function and its parameters,
the width to hide the object. I'm not sure what this is, but I'm just going to
go with the default of none.

Tha computm
{ Unery { pater? | Dwakiop |
Mcopython £58 12
accelerometer test oy
aralog_read_pot_14 gy
Dma20 fiost.py

Bme 280, test.py

oot py

utton, &_intarrupt py
wtton_4_joop gy
utton_ 4 timer gy

ot best gy

espl206 i3 jed py
tadany

(TEEEEEEEELEEYL)

Ettan, 4 interrupt By
ation,_4_loop.ry
utton_a_timer py
et gy
eapA208 (e jod py

mecpinel_lest oy
‘eind_sh? 108 ey

w1 106py
55013089y
fouch_testpy
rasonic_test py

@
&
@
@
@
*
#
&
#
&
#
&
@
-
e
*
*
#
&
.
P
*
"
*

Thanng - M

]
time. sleep_ms (28}
resi1)

time. sleep msi?

class SH1186 I2C(SHI106):
def _ialt_f oLt
external_vecoFalse)!
\f.temp = bytearrayi2)
ome

res is not 3
nft{res. 0T, values1}

croPyiten devce - fsh1 106 9y

ddth, height, iZc, reshons, sddrsiuic,

o height, external_vcc)

1] = ond
iZe.writetolself.addr, sel

_datalself, b
12c.writeto(self, nddr, b*

self):
superd). reset(self. res)

class SHILE6_SPL(SHI106)

dalt (self, width, heioht, soi. dc. reshome. co=homs.

x40 sbuf)

And finally, you've got the address here, so you've got the display object
here and then initialize it. And the contents lead to true if you want to
minimize the power consumption. But of course, make sure that the display
is awake by passing falls to the sleep function, then we'll start printing out
some various test text or patterns. In this case, turn the screen to black.
Surpassing zero means all the pixels are turned off. Then I'm writing a bit
of text here at this location. This is X and Y.

You can see if you search for text, you can see the. Come right here, this
shackled to the frame buffer implementation of text function. So you've got
a bit of text pointing out and then we call show to bring this drawing out of
the box and implemented and show it onto the screen. Go to sleep for a
second, then fill the screen by turning all the lights on so that we light up
the whole screen, then I'm going to print out a bit of text. But this time I'm
going to print it in black and turn off its pixels. You can also rotate the
screen so that you can have the screen pointing upside down if you need,
depending on the orientation. So this is something that the library for the
SSD one three zero six in the previous project did not provide us with such
rotate function. So we can flip things around and then we can print a
rectangle. And in this case here, I'm filling the screen by printing multiple
rectangles. Each one is larger than the previous until eventually fills the

whole screen. And then finally, I've got a little bit of an animation going on
here, I've got a little box that is travelling from the left end of the screen to
the right and then back to the left, which is what you can see happening
right here. The little box there is bouncing off the sides of the screen.

[oled_sh1106 i2c sestov | * |[uh1 3080y]

Thve computer
1 Usars [pesar? | Desiop |
Micragython E5#13

displa
| ok s 1086 iZe testoy

for x da e

atsplay. FND)
display. fILL_rect(x, 9,5,5,1)
display. showl)

I'm going to get control, see? To stop the program from running and then
I'm going to start from the beginning so we can see what is going on until
we get see the bouncing ball segment.

You're testing one, two inverted, it's a box in the middle and then the full
screen, the gradual full screen. And finally, the bouncing ball is an
example of a simple animation. Now this is happening using hardware. It's
quite easy so that it's an efficient way to drive this great.

OLED SSD1315 12C

Hi, welcome back in this project.

88D1315 f

I'll show you how to use this -- nine six inch or ality display with the SSD
one three one five controller, which I happen to have implemented as a
seed studio growth component. You can see its markings here is probably
the only way you display that. I have with a marking of its controller on the
board itself makes it very easy to identify. So since this is a growth
component to a growth cable and then a bunch of jumper wires to connect
it to the E.S.P 32, which is going to use these little pin to attach it back into
my breadboard, which states put. Right. So I use the exact same pin I sent

wiring's as in the previous project. This is a three point three volt display.

So the efficiency is connected to the three point three volt railing. Then for
Star, as you can see here as well, in the information they provided, the head
of the sample script, FDA, is connected to Tiberio, 25, and S.L to appear

26. Now, similarly to this display here, the 096 OLED display with the it is
the one three zero six controller.

There are fweo hartears [2C perioherain with identifens 0 and 1. Any svailsble output -Capable pir
€30 be used for SCL and SDA but Bhe Setaults are phen below

T crver 5 S00EURPG via T miactore 100 CUN B0 P Dt Lame Methoy 1 AOMTaary 11 s

rem wechine Lagart Fin,

code can be Lsed 10 deep, wake and check the reset e

I'm using the exact same driver Python script, and just like with this display
here, they will looked at a previous project. I have only been able to make
use of the software I took, which interface I have been able to use the
hardware interface, even though the approach that I am using are Channel
one or [one. As per the documentation here you can see I could see ID one
uses CEO twenty five and a twenty six, which are the pins that I'm using in
this example. Hardware hwc has failed, but my backup which is software
has worked, so I'm going along with that. So here's my example script. I'm
importing the various modules that are necessary, including the sixty one
three zero six and here I'm using software I squared seal it you see in the
constructor to create the squared C object. These are the dimensions of this
display and I'll create the OLED object by calling the edges the one three
zero six and the call it squared C constructor and passing through the
parameters for the width, height and the squishy object.

And then in a loop I go ahead and print a little bit of text here and then call
the show function to bring the content of the screen from the buffer and
draw it onto the actual physical screen. I can use feel one zero zero here to
invert the screen from blank or pixels of two or pixels on. And I can use
here a line. To draw a single line from two arbitrary picks or positions
using one is the carrot up the line so the pixels are turned on and you can
use the same primitives as you already know from previous projects. So

there's fill this pixel scroll text, horizontal line, vertical line and so on. And
that's about it. The script is already running in a loop and gives you a text
screen to the end of the line, in fact, to.

NEOPIXELS

In this project,

(]

L]

Y

h

N

8

Py
N, 4

I'll show you how to use the new pixels which are individually addressable
AGP these 1n this example, and using a module from other fruit that
contains eight now pixels. The nice thing about new pixels is that the micro
python firmware contains a built-In driver. So there's nothing else that you
need to install and there's nothing else you need to Google around and
find. So you simply import the nail pixel module and you're ready to go.
And here's the example here, which I also referenced in my example script.
In terms of the way that is connected, the pixel to the E.S.P 32, I'm just
going to unplug it so we can see in the back there are four pins, but really
just three pins that you need to connect to the ground, the data input pin
and the five pin. So obviously five votes spend goes to the final pin on the
right to ground across the ground. And for the end, you can choose
whichever port you want. In my case of connected to your 13, which is not
even close to the five-fold pin, it makes it easier to make short length
connections. All right. Have a look at the example sketch. Here are the

connections that I'm using in this example.

[necpinel testpy | =
from machine import

pin = Pin(13, Pin.0UT)
o = MeoPixelpin, 8)

np.write()

while Tres:
for x in ra)

x in rangel8):
nplx] = (randintie, 18), ramdintie, 18), randint(®, 18))

Have got links to the appropriate documentation for the pixel driver and
having a look at the header of my program on importing the various
modules, including random, since as you can see here, there's a random
pattern of colors that appears. I create the PIN object here for the data input
pin and then I'm passing that over to the pixel constructor so that I can
create the pixel object in my example. As I said, I'm using our module from
other Frood that contains eight new pixels on it. Hence of code number
eight here. And the second parameter of the picture constructor. Once you
have the picks or object, you can treat it as an array and address each one of
the nail pixels individually. So this example here, I'm going for the first
pixel C zero, index zero, and I'm passing a color to it.

[necpinel testpy | =

pin = Pin{13, Pin.0UT)
np = MeoPixelipin, 8)

while Tros:
x in range(8):
rolx) = (randint(e, B, randint(d, 18), randint(®, 18))

o
x in range(8):
nplxl = (8, B, 0)

mp.writel)
sleep_ms(15)

And therefore, as I said, you can individually address each one of these no
pixels. I'm actually going to do this in a moment on this show down here.
Once you finish with setting the individual pixels, you call the right
function and then the each picture will display the configured color in the
buffer. I'm calling Buffer here, but of course, not doing anything because I
haven't said anything. So I'm just going to comment that out as well. So in
this example, we just go straight into this infinite loop. I have a for loop
that goes around and programs each one of the Nhill pixels individually.
Then for each Nael pixel x, which comes out of the loop structure, I just
pick a color for each hajib, red, green, blue. I'm going from zero to 10 here
in order to keep the intensity of the light that is coming out of the pixels to
low.

...........
......

The maximum is 255, but it's almost impossible to look at the actual pixels
in room lighting conditions without going blind. Now, pixels, very
powerful light source. So you'd be able to see them out in broad daylight as
well. But if you're planning to use your new pixels indoors, just tone it
down a little bit by using our smaller numbers for RGV. All right. So I'm
programming each now pixel individually with a random color. And once |
go through the loop and all of the pictures are programmed, I call the right
function and that will pass the information off to the actual no pixels and
create that color. And I stay there for 60 milliseconds and I go through a
similar loop and turn all of the pixels off so that I can see the effect of the
momentarily of situation for 15 milliseconds. Just to make that blink kind
of effect. You can try it a few different other effects if you're interested in
creating different patterns. And this is the effect of this random color
generator as it looks in the eight Nhill pixel module. Just wanted to show
you a little thing here on this. You're going to hit control, see to cancel out
of the program. And I'm just going to. Use the shell. I could do a little bit
of experimentation, so I've imported no pixels, I'm going to create a pin
object just copying from a program and then the pixel object as well. And
I'm going to go and turn on just enough pixel zero. Actually, I'm going to
turn them all off first, because as you can see from the previous example,
they are all running. So let's do this with some kind of copy of this code for

the loop so that if you type it in. And then all of the pixels of. Double enter
and then call the write function. OK. The pictures are now of then less 10
pixel at index zero on. So this is going to be AGP. It's going to be blue at
two hundred intensity. Just bring back. Right. And there is. The new
picture with day or index zero as to the last one. So this is going to be
mostly red with a little bit of blue in it and call the right function again, the
kind of pink, I think. OK, so that's basically how you go about individually
creating colors or assigning colors to each pixel. It can also get the color of
a individual pixel by using this notation to just read or extract the colors for
it to be from no pixel position zero. And that will give you. So they are a
zero, the G zero. Let's check out the blue said there would be just as
multiple assignment in a single line of code so I can extract the current
colors of the particular nail pixel. All right. It's about it. So that's how you
can use the new pixels with your DP 32 and.

MAX7219 8X8 MATRIX DISPLAY
- PART 1 RANDOM PIXELS

Fight in this project, we'll show you how to drive the next seven to one
night metrics display like this one here in this demonstration, in which case
I have connected four of those individual displays in a row.

You can see that by just tuning the display over these displays have an input
and an output. So this is where one can connect to the other and then create
various configurations. I've chosen to go for a single row of these displays
using for displays one after the other. But you can also configure it as a
rectangle or as a square. So I'm going to like this one back in. Right. I'm
going to have to initialize it, not to get the last one to work. One thing that |
do with all of my displays is that I use a sticker to indicate the drive circuit
for the display because typically it's not indicated on the participation of
printed on. And it's an important piece of information to know so that, you
know, which driver, which software driver to use. All right.

[P —————TT T

So I
begin by having a look at the wiring information and then we'll look at the
software side and talk about the driver that I've found and used and found
that it works with this display. And you that a couple of examples. In the
first example, she had to just display random pixels. And then in the next
example, in the next project, she had to display text. But I'm also going to
talk about how to create about graphics primitives like lines and circles. It's
actually very easy with a driver that [found. All right. So about the wiring
first hand this thing over. You can have a look at the wiring in conjunction
with the software. Because of the header of my example script. I've
indicated the wiring as well.

=~ Thsnery - MicroPythen device : fmas?210.0y @ 3:1

[matris_Ballrandom testoy | [matr Beftestpy] [max?2i0or)

MicroPythen max7210 ¢ & 838 LED matrix driver
. hitps:/fgithub, com/acauser/micropython-nax7219

So you've got the ground pin which goes to any of the ground pins on the
HP to in my case, | have connected the ground pins, the green jumper
wire. It goes to the ground power rail on the breadboard. Then we've got
this you see this display, it requires five votes, so this is C is the blue wire
that goes here, and then

I'm using this long red jumper wire to connect it to the east, whether it is
five or 10 right there. Next up, we've got the data in PIN now I forgot to
mention that this display is using the spy interface. So data in for the spy
interface 1s the Mausi. PIN, which is PIN 23 on the E.S.P 32, this pin right

here. I'm using a jumper wire to take that out and connect it to display.
Now we've got the spy clock pin, which is. Pain 18, it is this one right

here. And finally, we need the SS pin, which is the chip select or spy
traditional Parli, it is the sleeve select for this right here, which you can use
any pin, actually. And I've used your five for this. So these are the pin
outs. Having done that, let's check out the software side, so for the software
side, I have chosen and found that it works this library here. It's called
Max 71 nine Thorpey. Why there's information on where to get it from and
also have the information. Or I should have that information in which I just
put it in right now that would give here. It paste doesn't quite work.

W Thonny Fie Eon View Run

* (b ddsestpy] (mabom)

text("1234°,8,0,1

self.num = nom
fb = framebuf.FrameBuffer(self.buffer, § » num, §, framebuf MOND_HLSH)
self. framebuf = b

seLf. AL = fh PN |

@
e
rs
*
rs
e
*
rs
® gn
& o
& tade
& e
® o
® o
®ica
® e
& e
& m
L

MicroPython [ESP32)

All right. This is for the max seven two one nine driver library. All right.
So as you can see, this is not a big library. Builds on the frame buffer
module, which is built into the micro python firmware. And so it builds
onto that and makes it possible to do things such as fill the whole screen
with a particular color, either on or off the black or white. I guess you
would call that you can create individual pixels. So this is the function that
we are using in this demonstration. You can create horizontal and vertical
lines, arbitrary lines from any point to any other point, rectangles and field
rectangles.

Thonery - MicroPython deves - fmatris 818 random ety § 40 . 3

[matria Ba random test oy |* | [matie Sulliestoy] | (mac218.0y]
(a1 > GPID 1B (SPT S(X)
P10 23 (5P WIS

39 Matrixaeplops, 5,

1
43 display.brightness(5)

isplay =
splay. f1

sleep_ms{15)
display. fill(a)

Text, which will be using in the next example, can get text to scroll. I'm not
sure what it is. And then you can initialize the screen, which is also
something that we are using. These are the available functions that this
driver library provides us to back into the demonstration sketch. In this
example, I just wanted to show random pixels so there wasn't much to it. I
have imported the appropriate modules, the library itself and then the pen
and spy functions from the machine module you time so I can put a little
bit of sleep. You can see that happening here 15 milliseconds. And then I
also imported the random module so that I can add a bit of randomness
when I am calculating or actually figuring out which early days or which
pixels to turn on.

Quaick reference for the ESP32

General information about the
ESPI2 port
Getting starbed with MicroPythan an
the ESPIZ
VIP1 (id=2)

installing MicroPython
18

7

PWM (putse width modulation)
ADE sl to digtal comversiond
Saftware $P bua
Hardware SP1 bus.

Software 12C bus

Hardware G2C b

Duep sleep mods Software I2C bus

RMT
Software 12 {using bit-banging) works on all cutput-capable pins, and s accessed via the

ConetWirn driver T4

NeoPued drver

Capacitive touch

DHT driver

VWebREPL (wvets browser interac tive
—

Other than that, I am creating the spy object here. This is spy object with
the two because the civil nuclear documentation can see that the E.S.P 32
with this micro python implementation has got to S.P.I hardware interfaces
available. The first one has got ID one and these are the pince. So this
interface 14, 13 and 12 for Clock Mozi and Mizu. And the second one,
which is the one that I'm using, have got these two bios for the three pins of
the interface and I'm using 23 and I'm not using the MISO GPA because |
don't need it with this interface. So one way only. So I'm using this
constructor to create the spy object I'm defining here Jhpiego number five
to be my slave selector or chip select. And then I'm using this constructor,
the eight by eight constructor and much six, eight by eight to create an
object that allows me to control this row of four matrix displays.

----------------- dvicn : Imax?2 0.0y @ 82 :43

dut initiself):
for command

, data in (

{_SHUTDOWN, 91,
I DISPLAYTEST. @)

So I'm passing the SBI object, the slate select or CHIP select Tapio. And
then I'm indicating that this is going to be a display with four eight by eight
displays in a row. And that's the display object. Next, I'm using the full
function to turn all of the entities off. So in effect, I'm painting it black,
setting the brightness to five and that's how bright Brightness five is. I
want to know more of that brightness than what the limits are. You can just
go to the library itself and just search for full brightness or the right part of
the word 1s enough.

Thonmy - MaraPythen devics . [matrin 8k sandom

LR

[matrin faB random testoy | * [matrie Sulisstoy] [maa7210py]

C GPID 1B (SPT SCX}
DIM —> GPID 23 (SPT MOSI)

Wires
Breadboard

And you can see that the limits are from zero to 15 with Tuffin being the
brightest possible setting. And after that, we are ready to start printing
pixels, so we've got a loop that repeats 10 times because what I want to do
is to create 10 randomly little pixels across my screen. And I do that by
calculating a random X and Y position. So if you look at the pixel function
in the driver library right here. Here it is, you'll see that it requires an X, a
Y and optionally a color, which I am passing a color X Y so that the pixel
is turned on.

Thit computar
1 Unars | peterd | Dusktop |
Micropython ES#32

& scosieromiter sout by
@ aratog resd_pot_34.py
& bemaT80 Soatoy

%0

ica jZc_test.py
MicroPython device

pccateomater et oy
#. sraiog resd_pot_34 oy
bma280 Mot oy

#: bme280_test oy

bootoy

#. buston 4 ineerrept py
#: burton,_4_joop. gy

#: button_4_timer oy

dbe_tmst oy

008266 2 jod oy
& tagepy

& he_srot oy

& iod_sipy

lod i2c_test.oy

icd_sohize testpy

led ok 21 py

bt k_timer_21.py
#: matres B8 random testpy
mat

® neopixel_test py

& oled_sh1108 22 py

5 ol sn1108 i2e_ sty
& et 331308 twst py
) aled w1315 imst.py

MicraPythen devics . jmatris_Sai_sandom test gy @ 496

[matris_BaB_random testoy | *

> GPID 18
> GPI0 73

[matrix_ Sl test oy |
(SPT SCX)
<PT MOST)

ImeT2100y]
Wires
Breadboard

fquickref s mLehardware-spi-bus

isport max7219

Soms itk lo et 1oy 2%
frem utine import sleep

frem randos import »

= SPT(Z, 10800009, sckePin(1B), mosi=Pin(23))
58 = PinlS, Pin 0T}

display = ma7219. Matrixtadispi, 53, 4)

display. 1il1(8]

display.brightnessis)

while True:
for x in rangel(18):
display.pixel(randint(8, 31),
display. show()
a‘Lm_-a-:.ﬂ

randint(®, §1,1)

snes

Reyboardintarrupts

e

Reybcardintarrapts
racmback
napoa

e

So here's my color one. And then for the exposition. The exposition is
this. So this is pixel number one, so this is pixel number zero index and
zero in the x axis and this is 31. So I'm getting a random number between
zero and thirty one. And I'm doing the same thing for the Y axis vertical.
So this 1 is zero on the Y axis and this is eight on the Y axis.

& Ssateri File

o randiam — Ganarats pascs-random mamsen — Prihon 1T

The positional argument pattern matches that of ranges|
because the function may use them in unexpected ways

. Keyword arguments should not be used

Changed in version 3.2 randrange() Is more sophisticated about producing equally distributed
values. Formerly it used a style like int(randes(j*n) which could produce slightly uneven
distributions.

randon. randiat(a &)

Return a random integer Nsuch that a <= & <= b. Alias for randrange(a, B+1).

randsen, gotrandbits(x)

Returns a non-negative Python integer with k random bits. This method is supplied with the
MersenneTwister generator and some other generators may also provide it as an optional part of
the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.

Changed in version 3.9: This method now accepts zero for k.

Functions for sequences

randon, choice(seq)

randon, choices (population. weighta=None, *.

Return a random element from the non-empty sequence seq. I seq is empty, raises Indexfrror.

. cum_weighta=None, k=1)
Return a k sized I.si of elements chosen from the population with replacement. If the population is
empty, raises Tndex

IF a weights sequence is specified, selections are made according to the relative weights. Alterna
tively, if & cum_weights sequence is given, the selections are made according to the cumulative
weights (perhaps computed wsing ivertools.scousulate()). For example, the relative weights
110, 5, 39, 5] are equivalent to the cumulative wei ghts (10, 13, 45, 50]. Internally, the rela
tive welghts are converted to cumulative weights before making selections, so supplying the cu-
mulative weights saves work

If neither weights nor cum_weights are specified, selections are made with equal probability. if a
weights sequence is supplied, it must be the same length as the population sequence. It is a
TypeError 10 specify both weights and cum_weights

The weights o cum_weights can use any numeric type that interoperates with the flsat values
returned by random() (that includes integers, floats, and fractions but excludes decimals). Behav.

ior is undefined if any weight is negative. A valuekrror is raised if all weights are zero.

And then that would give me a random number between zero and eight. I
don't remember if the eight is inclusive. So if the top end of this range is

inclusive. Having a look at the random module in here, we've got. The
random E.A. function, which is a function that I'm using and you can see
that this is returning a random number between A and B, inclusive of A
and B. So there's the answer to this function is going to return a random
number between zero and eight once I've got my ten random pixels in the
buffer of my display and I call the show function to make the numbers
visible, leave them visible for 15 milliseconds, then empty the display
display off by writing zero and then go back and calculate and create the
next ten random pixels.

If I comment out this dysfunction. Can heat control see now to stop
execution and then save and upload again? You see that you get this effect
where eventually the display turns all on the wall itself being on. All right,
what about effect as well as quite nice? All right, so that's how you can use
this eight by eight display to randomly display pixels and then let's have a
look in. The next picture will show you how to display text.

MAX7219 8X8 MATRIX DISPLAY
- PART 2 TEXT

In a previous project, he learned how to use the next seven to one nine
displayed in its CINQUERA with four displays configuration to display
random pixels. In this project, I'll show you how to display a bit of text,
although you'll see the text display capabilities are not that amazing and
there are few limitations. So the wiring, of course, hasn't changed exactly
the same as the previous project. So let's jump right into the software side
here.

The software for the text demonstration is identical to that of the random
ality demonstration, except that down here we are using the text function to
display just four letters at this position here, zero zero. So we start from
the top of the display and then use color zero, which is unlet, which means
that the light is going to be turned off. So then a bit earlier, right here in
line 39, I'm using field, but this time I'm passing one to the field function

instead of zero that I did in the previous example.

It means that the field command, the field function is going to turn all of the
latest on the display on.

Therefore, by printing text with Callard zero, I'd be using black on white to
print out the latest ABCDE. I've also said the brightness to five and by
calling show and making those letters visible. So I'm going to hit control,
see on my keyboard to stop the random pixels example and then. Start the

text, there you go. So the text looks like this one, it's black black text on
white background and obviously this red background, because of the color
of the early days, has a dark on. Right. Can it do a couple of changes?
Let's see what capitals look like. And then I'm going to change the field to
zero and the color of the text to one right at that.

W Themny Fie

And it looks like this is interesting, that did not occur, it did not appear
because I did not tight-fitting. All right. And of course, he can also display
numbers.

& Thoany Fis

This e
1 Usars | peter2 | Desktop |

222322355555

inport max7719
from machine iapert Pin, SPT

5pl = SPI(Z, 10000009, sck=Pin(l8), mosi=Pin(23))

FEREEiiEg

FESES

LEEEEFE

*
rs
®
&
@
e
@
e
rs
@
L
@
e
r
.
L
r
[
&
[
'
@
#
@
I

So there's numbers that I mentioned earlier, there are some limitations with
using text in with these displays and with this particular library, for once,
you can't change the size of the library. It is the size that takes up the whole
individual eight by eight display to display one single character and
another limitation that are found to be quite annoying is that you can't rotate
your characters, so you have to use your display in this vertical orientation
can really go horizontally and have your characters turned by 90 degrees in
a horizontal way. You can dig into the driver itself. And if your python
knowledge is good enough, you'll be able to make those changes in the code
itself and then have perhaps a rotation function that allows you to rotate by
90 degrees. But without making modifications to the library itself, you
can't at least I wasn't able to find a library that can do this. So if you can
live with these limitations of this, Max, seven to one nine library, and
especially if you want to use it for displaying graphics, using the graphics
primitives, I think it is a good idea. Tootles.

	WHAT IS MICROPYTHON AND PYTHON FOR MICROCONTROLLER
	WHAT IS UPYTHON AND WHY SHOULD YOU CARE
	SOFTWARE YOU WILL NEED
	HARDWARE YOU WILL NEED
	HOW TO GET THE MOST OUT OF THIS PROJECT
	GET THE DEMO SCRIPTS FOR THE PROJECT
	UPYTHON VS CPYTHON
	UPYTHON RESOURCES
	UPYTHON COMPATIBLE BOARDS
	GETTING STARTED WITH THONNY IDE FOR PYTHON
	HOW TO INSTALL THE MICROPYTHON FIRMWARE TO YOUR ESP32
	SETTING AN INTERPRETER
	HOW TO WRITE AND EXECUTE A MICROPYTHON PROGRAM
	OTHER VIEWS IN THONNY IDE
	THONNY IDE WITH RASPBERRY PI PICO
	USING THONNY IDE WITH BBC MICROBIT
	THONNY IDE ADVANCED CONFIGURATION
	FIND PYTHON PACKAGES AT PYPI
	THE MICROPYTHON SHELL
	HOW TO INTERRUPT A RUNNING PROGRAM
	HOW TO RUN A PROGRAM AT BOOT
	HOW TO DEBUG MICROPYTHON PROGRAM
	ABOUT MICROPYTHON MODULES
	BUILT-IN MODULES
	COMMUNITY MODULES
	HOW TO INSTALL AN EXTERNAL MODULE
	BLINK AN LED WITH LOOP
	FADE AN LED WITH PWM
	READ A BUTTON WITH LOOP
	READ A BUTTON WITH HARDWARE INTERRUPT
	READ A BUTTON WITH TIMER INTERRUPT
	READ A POTENTIOMETER
	DHT22 ENVIRONMENT SENSOR
	BME280 ENVIRONMENT SENSOR
	ESP32 INTERNAL TOUCH SENSOR
	ADXL335 ANALOG ACCELEROMETER
	HC-SR04 ULTRASONIC DISTANCE SENSOR
	2X16 LCD DISPLAY WITH PCF8574 - PART 1 HARDWARE I2C
	2X16 LCD DISPLAY WITH PCF8574 - PART 2 SOFTWARE I2C
	OLED SSD1306 I2C
	OLED SH1106 I2C
	OLED SSD1315 I2C
	NEOPIXELS
	MAX7219 8X8 MATRIX DISPLAY - PART 1 RANDOM PIXELS
	MAX7219 8X8 MATRIX DISPLAY - PART 2 TEXT

