

Programming iOS 11
EIGHTH EDITION

Matt Neuburg

Programming iOS 11, Eighth Edition
by Matt Neuburg
Copyright © 2018 Matt Neuburg. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com/safari). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown
Proofreader: O’Reilly Production Services
Indexer: Matt Neuburg
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Matt Neuburg
May 2011: First Edition
March 2012: Second Edition
March 2013: Third Edition
December 2013: Fourth Edition
December 2014: Fifth Edition
November 2015: Sixth Edition
November 2016: Seventh Edition
December 2017: Eighth Edition

Revision History for the Eighth Edition:
2017-12-06: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491999226 for release
details.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491999226

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc.
Programming iOS 11, the cover image of a kingbird, and related trade dress
are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.
While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.
978-1-491-99922-6
[LSI]

Preface

Aut lego vel scribo; doceo scrutorve sophian.
Sedulius Scottus

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking
announcement: “We have a new programming language.” This came as a
huge surprise to the developer community, which was accustomed to
Objective-C, warts and all, and doubted that Apple could ever possibly
relieve them from the weight of its venerable legacy. The developer
community, it appeared, had been wrong.
Having picked themselves up off the floor, developers immediately began
to consider this new language — Swift — studying it, critiquing it, and
deciding whether to use it. My own first move was to translate all my
existing iOS apps into Swift; this was enough to convince me that Swift
deserved to be, and probably would be, adopted by new students of iOS
programming, and that my books, therefore, should henceforth assume that
readers are using Swift.
Therefore, Swift is the programming language used throughout this book.
Still, the reader may also need some awareness of Objective-C (including
C). The Foundation and Cocoa APIs, the built-in commands with which
your code must interact in order to make anything happen on an iOS device,
are still written in C and Objective-C. In order to interact with them, you
might have to know what those languages would expect.

The Scope of This Book
Programming iOS 11 is actually the second of a pair with my other book,
iOS 11 Programming Fundamentals with Swift; it picks up exactly where
the other book leaves off. They complement and supplement one another.
The two-book architecture should, I believe, render the size and scope of

http://shop.oreilly.com/product/0636920107415.do

each book tractable for readers. Together, they provide a complete
grounding in the knowledge needed to begin writing iOS apps; thus, when
you do start writing iOS apps, you’ll have a solid and rigorous
understanding of what you are doing and where you are heading. If writing
an iOS program is like building a house of bricks, iOS 11 Programming
Fundamentals with Swift teaches you what a brick is and how to handle it,
while Programming iOS 11 hands you some actual bricks and tells you how
to assemble them.
Like Homer’s Iliad, Programming iOS 11 begins in the middle of the story,
with the reader jumping with all four feet into views and view controllers.
Discussion of the Swift programming language, as well as the Xcode IDE
(including the nature of nibs, outlets, and actions, and the mechanics of nib
loading), plus the fundamental conventions, classes, and architectures of the
Cocoa Touch framework (including delegation, the responder chain, key–
value coding, key–value observing, memory management, and so on), has
been relegated to iOS 11 Programming Fundamentals with Swift.
So if something appears to be missing from this book, that’s why! If you
start reading Programming iOS 11 and wonder about such unexplained
matters as Swift language basics, the UIApplicationMain function, the
nib-loading mechanism, Cocoa patterns of delegation and notification, and
retain cycles, wonder no longer — I don’t explain them here because I have
already explained them in iOS 11 Programming Fundamentals with Swift. If
you’re not sufficiently conversant with those topics, I’d suggest that you
might want to read that book first; you will then be completely ready for
this one.
Here’s a summary of the major sections of Programming iOS 11:

Part I describes views, the fundamental units of an iOS app’s interface.
Views are what the user can see and touch in an iOS app. To make
something appear before the user’s eyes, you need a view. To let the user
interact with your app, you need a view. This part of the book explains
how views are created, arranged, drawn, layered, animated, and touched.

Part II starts by discussing view controllers. Perhaps the most important
aspect of iOS programming, view controllers enable views to come and
go coherently within the interface, thus allowing a single-windowed app
running on what may be a tiny screen to contain multiple screens of
material. View controllers are used to manage interface and to respond to
user actions; most of your app’s code will be in a view controller. This
part of the book talks about how view controllers work, and the major
built-in types of view controller that iOS gives you. It also describes
every kind of view provided by the Cocoa framework — the primary
building blocks with which you’ll construct an app’s interface.
Part III surveys the most commonly used frameworks provided by iOS.
These are clumps of code, sometimes with built-in interface, that are not
part of your app by default, but are there for the asking if you need them,
allowing you to work with such things as sound, video, user libraries,
maps, and the device’s sensors.
Part IV wraps up the book with some miscellaneous but significant
topics: files, networking, threading, and how to implement undo.
Appendix A summarizes the basic lifetime event messages sent to your
app delegate.
Appendix B catalogs some useful Swift utility functions that I’ve
written. My example code takes advantage of these functions, but they
aren’t built into iOS, so you should keep an eye on this appendix,
consulting it whenever a mysterious method name appears.
Appendix C is an excursus discussing an often misunderstood aspect of
iOS programming: asynchronous code.

Someone who has read this book (and is conversant with the material in iOS
11 Programming Fundamentals with Swift) will, I believe, be capable of
writing a real-life iOS app, with a clear understanding of what he or she is
doing and where the app is going as it grows and develops. The book itself
doesn’t show how to write any particularly interesting iOS apps; but it is
backed by dozens of example projects that you can download from my
GitHub site, http://github.com/mattneub/Programming-iOS-Book-

http://github.com/mattneub/Programming-iOS-Book-Examples

Examples, and it constantly uses my own real apps and real programming
situations to illustrate and motivate its explanations.
This book is also intended to prepare you for your own further explorations.
Certain chapters, especially in Parts III and IV, introduce a topic, providing
an initial basic survey of its concepts, its capabilities, and its
documentation, along with some code examples; but the topic itself may be
far more extensive than that. Your feet, nevertheless, will now be set firmly
on the path, and you will know enough that you can now proceed on your
own whenever the need or interest arises. In Part IV, for example, I peek at
Core Data, and demonstrate its use in code, but a true study of Core Data
would require an entire book of its own (and such books exist); so, having
opened the door, I quickly close it again, lest this book suddenly double in
size.
Indeed, there is always more to learn about iOS. iOS is vast! It is all too
easy to find areas of iOS that have had to be ruled outside the scope of this
book, and are not mentioned at all. For example:

OpenGL
An open source C library for drawing, including 3D drawing, that takes
full advantage of graphics hardware. This is often the most efficient way
to draw, especially when animation is involved. iOS incorporates a
simplified version of OpenGL called OpenGL ES. Open GL interface
configuration, texture loading, shading, and calculation are simplified
by the GLKit framework. The Metal and Metal Kit and Model I/O
classes allow you to increase efficiency and performance.

Sprite Kit
Sprite Kit provides a built-in framework for designing 2D animated
games.

Scene Kit
Ported from macOS, this framework makes it much easier to create 3D
games and interactive graphics.

Accelerate

http://github.com/mattneub/Programming-iOS-Book-Examples

Certain computation-intensive processes will benefit from the vector-
based Accelerate framework.

Game Kit
The Game Kit framework covers three areas that can enhance your
user’s game experience: wireless or Bluetooth communication directly
between devices (peer-to-peer); voice communication across an existing
network connection; and Game Center, which facilitates these and many
other aspects of interplayer communication, such as posting and
viewing high scores and setting up competitions. Users can even make
screencasts of their own game play for sharing with one another.

Printing
See the “Printing” chapter of the Drawing and Printing Guide for iOS.

Security
This book does not discuss security topics such as keychains,
certificates, and encryption. See the Security Overview and the Security
framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface
aloud. To participate, views must be configured to describe themselves
usefully. Built-in views already do this to a large extent, and you can
extend this functionality. See the Accessibility Programming Guide for
iOS.

Telephone
The Core Telephony framework lets your app get information about a
particular cellular carrier and call. Call Kit allows VoIP apps to integrate
with the built-in Phone app.

Pass Kit
The Pass Kit framework allows creation of downloadable passes to go
into the user’s Wallet app.

Health Kit
The Health Kit framework lets your app obtain, store, share, and present
data and statistics related to body activity and exercise.

Externalities
The user can attach an external accessory to the device, either directly
via USB or wirelessly via Bluetooth. Your app can communicate with
such an accessory. See External Accessory Programming Topics. The
Home Kit framework lets the user communicate with devices in the
physical world, such as light switches and door locks. This book also
doesn’t discuss iBeacon or near field communication (the Core NFC
framework, new in iOS 11).

Handoff
Handoff permits your app to post to the user’s iCloud account a record
of what the user is doing, so that the user can switch to another copy of
your app on another device and resume doing the same thing. See the
Handoff Programming Guide.

Spotlight
The user’s Spotlight search results can include data supplied by your
app. See the App Search Programming Guide.

Siri Kit
The SiriKit framework lets you configure your app so that the user can
talk to the device to tell it what to do.

Augmented Reality
New in iOS 11, certain devices can impose drawn objects into the world
viewed live through the device’s camera by means of the ARKit
framework.

Machine Learning

New in iOS 11, the Core ML framework embraces image analysis (the
Vision framework) as well as decision trees (Gameplay Kit) and
language analysis (NSLinguisticTagger).

Versions
This book is geared to Swift 4, iOS 11, and Xcode 9. In general, only very
minimal attention is given to earlier versions of iOS and Xcode. It is not my
intention to embrace in this book any detailed knowledge about earlier
versions of the software, which is, after all, readily and compendiously
available in my earlier books.
A word about method names. I generally give method names in Swift, in
the style of a function reference — that is, the name plus parentheses
containing the parameter labels followed by colon. Now and then, if a
method is already under discussion and there is no ambiguity, I’ll use the
bare name. In a few places, where the Objective-C language is explicitly
under discussion, I use Objective-C method names.
Please bear in mind that Apple continues to make adjustments to the Swift
language and to the way the Objective-C APIs are bridged to it. I have tried
to keep my code up-to-date right up to the moment when the manuscript left
my hands; but if, at some future time, a new version of Xcode is released
along with a new version of Swift, some of the code in this book might be
slightly incorrect. Please make allowances, and be prepared to compensate.
Screenshots of Xcode were taken using Xcode 9 under macOS 10.12 Sierra.
I have not upgraded my machine to macOS 10.13 High Sierra, because at
the time of this writing it was too new to be trusted with mission-critical
work. If you are braver than I am and running High Sierra, your interface
may naturally look very slightly different from the screenshots, but this
difference will be minimal and shouldn’t cause any confusion.

Acknowledgments

My thanks go first and foremost to the people at O’Reilly Media who have
made writing a book so delightfully easy: Rachel Roumeliotis, Sarah
Schneider, Kristen Brown, Dan Fauxsmith, Adam Witwer, and Sanders
Kleinfeld come particularly to mind. And let’s not forget my first and long-
standing editor, Brian Jepson, whose influence is present throughout.
As in the past, I have been greatly aided by some fantastic software, whose
excellences I have appreciated at every moment of the process of writing
this book. I should like to mention, in particular:

git (http://git-scm.com)
SourceTree (http://www.sourcetreeapp.com)
TextMate (http://macromates.com)
AsciiDoc (http://www.methods.co.nz/asciidoc)
Asciidoctor (http://asciidoctor.org)
BBEdit (http://barebones.com/products/bbedit/)
EasyFind (http://www.devontechnologies.com/products/freeware.html)
Snapz Pro X (http://www.ambrosiasw.com)
GraphicConverter (http://www.lemkesoft.com)
OmniGraffle (http://www.omnigroup.com)
GoodReader (http://www.goodreader.com)

The book was typed and edited entirely on my faithful Unicomp Model M
keyboard (http://pckeyboard.com), without which I could never have done
so much writing over so long a period so painlessly. For more about my
physical work environment, see http://matt.neuburg.usesthis.com.

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that
provides an insight into the goals and mindset of those who created it.
When I first encountered Cocoa Touch, my assessment of its personality
was: “Wow, the people who wrote this are really clever!” On the one hand,

http://git-scm.com/
http://www.sourcetreeapp.com/
http://macromates.com/
http://www.methods.co.nz/asciidoc
http://asciidoctor.org/
http://barebones.com/products/bbedit/
http://www.devontechnologies.com/products/freeware.html
http://www.ambrosiasw.com/
http://www.lemkesoft.com/
http://www.omnigroup.com/
http://www.goodreader.com/
http://pckeyboard.com/
http://matt.neuburg.usesthis.com/

the number of built-in interface objects was severely and deliberately
limited; on the other hand, the power and flexibility of some of those
objects, especially such things as UITableView, was greatly enhanced over
their OS X counterparts. Even more important, Apple created a particularly
brilliant way (UIViewController) to help the programmer make entire
blocks of interface come and go and supplant one another in a controlled,
hierarchical manner, thus allowing that tiny iPhone display to unfold
virtually into multiple interface worlds within a single app without the user
becoming lost or confused.
The popularity of the iPhone, with its largely free or very inexpensive apps,
and the subsequent popularity of the iPad, have brought and will continue to
bring into the fold many new programmers who see programming for these
devices as worthwhile and doable, even though they may not have felt the
same way about OS X. Apple’s own annual WWDC developer conventions
have reflected this trend, with their emphasis shifted from OS X to iOS
instruction.
The widespread eagerness to program iOS, however, though delightful on
the one hand, has also fostered a certain tendency to try to run without first
learning to walk. iOS gives the programmer mighty powers that can seem
as limitless as imagination itself, but it also has fundamentals. I often see
questions online from programmers who are evidently deep into the
creation of some interesting app, but who are stymied in a way that reveals
quite clearly that they are unfamiliar with the basics of the very world in
which they are so happily cavorting.
It is this state of affairs that has motivated me to write this book, which is
intended to ground the reader in the fundamentals of iOS. I love Cocoa and
have long wished to write about it, but it is iOS and its popularity that has
given me a proximate excuse to do so. Here I have attempted to marshal
and expound, in what I hope is a pedagogically helpful and instructive yet
ruthlessly Euclidean and logical order, the principles and elements on which
sound iOS programming rests. My hope, as with my previous books, is that
you will both read this book cover to cover (learning something new often

enough to keep you turning the pages) and keep it by you as a handy
reference.
This book is not intended to disparage Apple’s own documentation and
example projects. They are wonderful resources and have become more
wonderful as time goes on. I have depended heavily on them in the
preparation of this book. But I also find that they don’t fulfill the same
function as a reasoned, ordered presentation of the facts. The online
documentation must make assumptions as to how much you already know;
it can’t guarantee that you’ll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully
written example, no matter how well commented, is difficult to follow; it
demonstrates, but it does not teach.
A book, on the other hand, has numbered chapters and sequential pages; I
can assume you know views before you know view controllers for the
simple reason that Part I precedes Part II. And along with facts, I also bring
to the table a degree of experience, which I try to communicate to you.
Throughout this book you’ll find me referring to “common beginner
mistakes”; in most cases, these are mistakes that I have made myself, in
addition to seeing others make them. I try to tell you what the pitfalls are
because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You’ll also see me
construct many examples piece by piece or extract and explain just one tiny
portion of a larger app. It is not a massive finished program that teaches
programming, but an exposition of the thought process that developed that
program. It is this thought process, more than anything else, that I hope you
will gain from reading this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/mattneub/Programming-iOS-Book-
Examples.
This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and

https://github.com/mattneub/Programming-iOS-Book-Examples

documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Programming
iOS 11 by Matt Neuburg (O’Reilly). Copyright 2018 Matt Neuburg, 978-1-
491-99922-6.”
If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
NOTE

Safari (formerly Safari Books Online) is membership-based training and
reference platform for enterprise, government, educators, and individuals.
Members have access to thousands of books, training videos, Learning
Paths, interactive tutorials, and curated playlists from over 250 publishers,
including O’Reilly Media, Harvard Business Review, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.
For more information, please visit http://oreilly.com/safari.

How to Contact Us

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://bit.ly/programming_iOS11.
To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://bit.ly/programming_iOS11
mailto:bookquestions@oreilly.com
http://www.oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part I. Views

Views are what your user sees on the screen and interacts with by touching
the screen. The book begins by explaining how they work.

Chapter 1 discusses views in their most general aspect — their hierarchy,
visibility, position, and layout.
Chapter 2 is about drawing. A view knows how to draw itself; this
chapter explains how to tell a view what you want it to draw.
Chapter 3 explains about layers. The drawing power of a view comes
ultimately from its layer.
Chapter 4 talks about animation, which you’ll use to enliven your app’s
interface.
Chapter 5 explains how your app senses and responds to the user
touching the screen.

Chapter 1. Views

A view (an object whose class is UIView or a subclass of UIView) knows
how to draw itself into a rectangular area of the interface. Your app has a
visible interface thanks to views; everything the user sees is ultimately
because of a view. Creating and configuring a view can be extremely
simple: “Set it and forget it.” For example, you can configure a UIButton in
the nib editor; when the app runs, the button appears, and works properly.
But you can also manipulate views in powerful ways, in real time. Your
code can do some or all of the view’s drawing of itself (Chapter 2); it can
make the view appear and disappear, move, resize itself, and display many
other physical changes, possibly with animation (Chapter 4).
A view is also a responder (UIView is a subclass of UIResponder). This
means that a view is subject to user interactions, such as taps and swipes.
Thus, views are the basis not only of the interface that the user sees, but
also of the interface that the user touches (Chapter 5). Organizing your
views so that the correct view reacts to a given touch allows you to allocate
your code neatly and efficiently.
The view hierarchy is the chief mode of view organization. A view can
have subviews; a subview has exactly one immediate superview. Thus there
is a tree of views. This hierarchy allows views to come and go together. If a
view is removed from the interface, its subviews are removed; if a view is
hidden (made invisible), its subviews are hidden; if a view is moved, its
subviews move with it; and other changes in a view are likewise shared
with its subviews. The view hierarchy is also the basis of, though it is not
identical to, the responder chain.
A view may come from a nib, or you can create it in code. On balance,
neither approach is to be preferred over the other; it depends on your needs
and inclinations and on the overall architecture of your app.

The Window and Root View
The top of the view hierarchy is the app’s window. It is an instance of
UIWindow (or your own subclass thereof), which is a UIView subclass.
Your app should have exactly one main window. It is created at launch time
and is never destroyed or replaced. It forms the background to, and is the
ultimate superview of, all your other visible views. Other views are visible
by virtue of being subviews, at some depth, of your app’s window.

NOTE
If your app can display views on an external screen, you’ll create an additional UIWindow to
contain those views; but in this book I’ll assume there is just one screen, the device’s own screen,
and just one window.

How an App Launches
How does your app, at launch time, come to have a main window, and how
does that window come to be populated and displayed? If your app uses a
main storyboard, it all happens automatically. Your app consists, ultimately,
of a single call to the UIApplicationMain function. (Unlike an Objective-
C project, a typical Swift project doesn’t make this call explicitly, in code; it
is called for you, behind the scenes.) Here are some of the first things this
call does:

1. UIApplicationMain instantiates UIApplication and retains this
instance, to serve as the shared application instance, which your code
can later refer to as UIApplication.shared. It then instantiates the
app delegate class. (It knows which class is the app delegate because
it is marked @UIApplicationMain.) It retains the app delegate
instance and assigns it as the application instance’s delegate.

2. UIApplicationMain looks to see whether your app uses a main
storyboard. It knows whether you are using a main storyboard, and
what its name is, by looking at the Info.plist key “Main storyboard file
base name” (UIMainStoryboardFile). (You can easily edit this key,

if necessary, by editing the target and, in the General pane, changing
the Main Interface value in the Deployment Info section. By default, a
new iOS project has a main storyboard called Main.storyboard, and
the Main Interface value is Main. You will rarely have reason to
change this.)

3. If your app uses a main storyboard, UIApplicationMain instantiates
UIWindow and assigns the window instance to the app delegate’s win
dow property, which retains it, thus ensuring that the window will
persist for the lifetime of the app. It also sizes the window so that it
will initially fill the device’s screen. This is ensured by setting the
window’s frame to the screen’s bounds. (I’ll explain later in this
chapter what “frame” and “bounds” are.)

4. If your app uses a main storyboard, UIApplicationMain instantiates
that storyboard’s initial view controller. (I’ll talk more about that in
Chapter 6.) It then assigns this view controller instance to the
window’s rootViewController property, which retains it. When a
view controller becomes the main window’s rootViewController,
its main view (its view) is made the one and only immediate subview
of your main window — the main window’s root view. All other
views in your main window will be subviews of the root view.
Thus, the root view is the highest object in the view hierarchy that the
user will usually see. There might be just a chance, under certain
circumstances, that the user will catch a glimpse of the window,
behind the root view; for this reason, you may want to assign the main
window a reasonable backgroundColor. In general you’ll have no
reason to change anything else about the window itself.

5. UIApplicationMain calls the app delegate’s application(_:didFin
ishLaunchingWithOptions:).

6. Your app’s interface is not visible until the window, which contains it,
is made the app’s key window. Therefore, if your app uses a main

storyboard, UIApplicationMain calls the window’s instance method
makeKeyAndVisible.

Launching Without a Main Storyboard
It is also possible to write an app that lacks a main storyboard, or that has a
main storyboard but, under certain circumstances, effectively ignores it at
launch time by overriding the automatic UIApplicationMain behavior.
Such an app simply does in code — typically, in application(_:didFini
shLaunchingWithOptions:) — everything that UIApplicationMain does
automatically if the app has a main storyboard (see Appendix B for a full
implementation):

1. Instantiate UIWindow and assign it as the app delegate’s window
property. With a little clever coding, we can avoid doing this if UIApp
licationMain did it already:

self.window = self.window ?? UIWindow()

2. Instantiate a view controller, configure it as needed, and assign it as
the window’s rootViewController property. If UIApplicationMain
already assigned a root view controller, this view controller replaces
it.

3. Call makeKeyAndVisible on the window, to show it. This does no
harm even if there is a main storyboard, as UIApplicationMain will
not subsequently repeat this call.

For example, imagine something like a login screen that appears at launch if
the user has not logged in, but doesn’t appear on subsequent launches once
the user has logged in. In step 2, we would look (probably in UserDefaults)
to see if the user has logged in. If not, we set the rootViewController to
our login screen’s view controller. Otherwise, we do nothing, leaving the
storyboard’s initial view controller as the rootViewController.

Subclassing UIWindow
Another possible variation is to subclass UIWindow. That is uncommon
nowadays, though it can be a way of intervening in hit-testing (Chapter 5)
or the target–action mechanism (Chapter 12). To make an instance of your
UIWindow subclass your app’s main window, you would need to prevent U
IApplicationMain from assigning a plain vanilla UIWindow instance as
your app delegate’s window. The rule is that, after UIApplicationMain has
instantiated the app delegate, it asks the app delegate instance for the value
of its window property. If that value is nil, UIApplicationMain
instantiates UIWindow and assigns that instance to the app delegate’s windo
w property. If that value is not nil, UIApplicationMain leaves it alone.
Therefore, to make your app’s main window be an instance of your
UIWindow subclass, all you have to do is assign that instance as the default
value for the app delegate’s window property:

@UIApplicationMain

class AppDelegate : UIResponder, UIApplicationDelegate {

 var window : UIWindow? = MyWindow()

 // ...

}

Referring to the Window
Once the app is running, there are various ways for your code to refer to the
window:

If a UIView is in the interface, it automatically has a reference to the
window through its own window property. Your code will probably be
running in a view controller with a main view, so self.view.window is
usually the best way to refer to the window.

You can also use a UIView’s window property as a way of asking
whether it is ultimately embedded in the window; if it isn’t, its window
property is nil. A UIView whose window property is nil cannot be
visible to the user.

The app delegate instance maintains a reference to the window through
its window property. You can get a reference to the app delegate from
elsewhere through the shared application’s delegate property, and
through it you can refer to the window:

let w = UIApplication.shared.delegate!.window!!

If you prefer something less generic (and requiring less extreme
unwrapping of Optionals), cast the delegate explicitly to your app
delegate class:

let w = (UIApplication.shared.delegate as! AppDelegate).window!

The shared application maintains a reference to the window through its k
eyWindow property:

let w = UIApplication.shared.keyWindow!

That reference, however, is slightly volatile, because the system can
create temporary windows and interpose them as the application’s key
window.

Experimenting with Views
In the course of this and subsequent chapters, you may want to experiment
with views in a project of your own. If you start your project with the
Single View app template, it gives you the simplest possible app — a main
storyboard containing one scene consisting of one view controller instance
along with its main view. As I described in the preceding section, when the
app runs, that view controller will become the app’s main window’s rootVi
ewController, and its main view will become the window’s root view.
Thus, if you can get your views to become subviews of that view
controller’s main view, they will be present in the app’s interface when it
launches.

In the nib editor, you can drag a view from the Object library into the main
view as a subview, and it will be instantiated in the interface when the app
runs. However, my initial examples will all create views and add them to
the interface in code. So where should that code go? View controllers aren’t
formally explained until Chapter 6, so you’ll just have to believe me when I
tell you the answer: The simplest place is the view controller’s viewDidLoa
d method, which is provided as a stub by the project template code.

The viewDidLoad method has a reference to the view controller’s main
view as self.view. In my code examples, whenever I say self.view, you
can assume we’re in a view controller and that self.view is this view
controller’s main view. For example:

override func viewDidLoad() {

 super.viewDidLoad() // this is template code

 let v = UIView(frame:CGRect(x:100, y:100, width:50, height:50))

 v.backgroundColor = .red // small red square

 self.view.addSubview(v) // add it to main view

}

Try it! Make a new project from the Single View app template, and make
the ViewController class’s viewDidLoad look like that. Run the app. You
will actually see the small red square in the running app’s interface.

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its own
rectangular area. No part of any view that was not a subview of this view
could appear inside it, because when this view redrew its rectangle, it would
erase the overlapping portion of the other view. No part of any subview of
this view could appear outside it, because the view took responsibility for
its own rectangle and no more.
Those rules, however, were gradually relaxed, and starting in OS X 10.5,
Apple introduced an entirely new architecture for view drawing that lifted
those restrictions completely. iOS view drawing is based on this revised

architecture. In iOS, some or all of a subview can appear outside its
superview, and a view can overlap another view and can be drawn partially
or totally in front of it without being its subview.
For example, Figure 1-1 shows three overlapping views. All three views
have a background color, so each is completely represented by a colored
rectangle. You have no way of knowing, from this visual representation,
exactly how the views are related within the view hierarchy. In actual fact,
View 1 is a sibling view of View 2 (they are both direct subviews of the
root view), and View 3 is a subview of View 2.

Figure 1-1. Overlapping views

When views are created in the nib, you can examine the view hierarchy in
the nib editor’s document outline to learn their actual relationship (Figure 1-
2). When views are created in code, you know their hierarchical

relationship because you created that hierarchy. But the visible interface
doesn’t tell you, because view overlapping is so flexible.

Figure 1-2. A view hierarchy as displayed in the nib editor

Nevertheless, a view’s position within the view hierarchy is extremely
significant. For one thing, the view hierarchy dictates the order in which
views are drawn. Sibling subviews of the same superview have a definite
order: one is drawn before the other, so if they overlap, it will appear to be
behind its sibling. Similarly, a superview is drawn before its subviews, so if
they overlap it, it will appear to be behind them.
You can see this illustrated in Figure 1-1. View 3 is a subview of View 2
and is drawn on top of it. View 1 is a sibling of View 2, but it is a later
sibling, so it is drawn on top of View 2 and on top of View 3. View 1
cannot appear behind View 3 but in front of View 2, because those two
views are subview and superview and are drawn together — both are drawn
either before or after View 1, depending on the ordering of the siblings.
This layering order can be governed in the nib editor by arranging the views
in the document outline. (If you click in the canvas, you may be able to use
the menu items of the Editor → Arrange menu instead — Send to Front,
Send to Back, Send Forward, Send Backward.) In code, there are methods
for arranging the sibling order of views, which we’ll come to in a moment.
Here are some other effects of the view hierarchy:

If a view is removed from or moved within its superview, its subviews
go with it.
A view’s degree of transparency is inherited by its subviews.
A view can optionally limit the drawing of its subviews so that any parts
of them outside the view are not shown. This is called clipping and is set
with the view’s clipsToBounds property.

A superview owns its subviews, in the memory-management sense,
much as an array owns its elements; it retains them and is responsible for
releasing a subview when that subview ceases to be its subview (it is
removed from the collection of this view’s subviews) or when it itself
goes out of existence.
If a view’s size is changed, its subviews can be resized automatically
(and I’ll have much more to say about that later in this chapter).

A UIView has a superview property (a UIView) and a subviews property
(an array of UIView objects, in back-to-front order), allowing you to trace
the view hierarchy in code. There is also a method isDescendant(of:)
letting you check whether one view is a subview of another at any depth.
If you need a reference to a particular view, you will probably arrange it
beforehand as a property, perhaps through an outlet. Alternatively, a view
can have a numeric tag (its tag property), and can then be referred to by
sending any view higher up the view hierarchy the viewWithTag(_:)
message. Seeing that all tags of interest are unique within their region of the
hierarchy is up to you.
Manipulating the view hierarchy in code is easy. This is part of what gives
iOS apps their dynamic quality, and it compensates for the fact that there is
basically just a single window. It is perfectly reasonable for your code to rip
an entire hierarchy of views out of the superview and substitute another,
right before the user’s very eyes! You can do this directly; you can combine
it with animation (Chapter 4); you can govern it through view controllers
(Chapter 6).

The method addSubview(_:) makes one view a subview of another; remov
eFromSuperview takes a subview out of its superview’s view hierarchy. In
both cases, if the superview is part of the visible interface, the subview will
appear or disappear; and of course this view may itself have subviews that
accompany it. Just remember that removing a subview from its superview
releases it; if you intend to reuse that subview later on, you will need to
retain it first. This is often taken care of by assignment to a property.

Events inform a view of these dynamic changes. To respond to these events
requires subclassing. Then you’ll be able to override any of these methods:

willRemoveSubview(_:), didAddSubview(_:)

willMove(toSuperview:), didMoveToSuperview

willMove(toWindow:), didMoveToWindow

When addSubview(_:) is called, the view is placed last among its
superview’s subviews; thus it is drawn last, meaning that it appears
frontmost. That might not be what you want. A view’s subviews are
indexed, starting at 0, which is rearmost, and there are methods for inserting
a subview at a given index, or below (behind) or above (in front of) a
specific view; for swapping two sibling views by index; and for moving a
subview all the way to the front or back among its siblings:

insertSubview(at:)

insertSubview(belowSubview:), insertSubview(aboveSubview:)

exchangeSubview(at:withSubviewAt:)

bringSubview(toFront:), sendSubview(toBack:)
Oddly, there is no command for removing all of a view’s subviews at once.
However, a view’s subviews array is an immutable copy of the internal list
of subviews, so it is legal to cycle through it and remove each subview one
at a time:

myView.subviews.forEach {$0.removeFromSuperview()}

Visibility and Opacity
A view can be made invisible by setting its isHidden property to true, and
visible again by setting it to false. Hiding a view takes it (and its
subviews, of course) out of the visible interface without the overhead of
actually removing it from the view hierarchy. A hidden view does not

(normally) receive touch events, so to the user it really is as if the view
weren’t there. But it is there, so it can still be manipulated in code.

A view can be assigned a background color through its backgroundColor
property. A color is a UIColor. A view whose background color is nil (the
default) has a transparent background. If such a view does no additional
drawing of its own, it will be invisible! Such a view is perfectly reasonable,
however; you might create one just so that it can act as a convenient
superview to other views, making them behave together.

A view can be made partially or completely transparent through its alpha
property: 1.0 means opaque, 0.0 means transparent, and a value may be
anywhere between them, inclusive. A view’s alpha property value affects
both the apparent transparency of its background color and the apparent
transparency of its contents. For example, if a view displays an image and
has a background color and its alpha is less than 1, the background color
will seep through the image (and whatever is behind the view will seep
through both). Moreover, a view’s alpha property affects the apparent
transparency of its subviews! If a superview has an alpha of 0.5, none of
its subviews can have an apparent opacity of more than 0.5, because
whatever alpha value they have will be drawn relative to 0.5. A view that
is completely transparent (or very close to it) is like a view whose isHidde
n is true: it is invisible, along with its subviews, and cannot (normally) be
touched.
(Just to make matters more complicated, colors have an alpha value as well.
So, for example, a view can have an alpha of 1.0 but still have a
transparent background because its backgroundColor has an alpha less
than 1.0.)

A view’s isOpaque property, on the other hand, is a horse of a different
color; changing it has no effect on the view’s appearance. Rather, this
property is a hint to the drawing system. If a view completely fills its
bounds with ultimately opaque material and its alpha is 1.0, so that the
view has no effective transparency, then it can be drawn more efficiently

(with less drag on performance) if you inform the drawing system of this
fact by setting its isOpaque to true. Otherwise, you should set its isOpaqu
e to false. The isOpaque value is not changed for you when you set a
view’s backgroundColor or alpha! Setting it correctly is entirely up to
you; the default, perhaps surprisingly, is true.

Frame
A view’s frame property, a CGRect, is the position of its rectangle within
its superview, in the superview’s coordinate system. By default, the
superview’s coordinate system will have the origin at its top left, with the x-
coordinate growing positively rightward and the y-coordinate growing
positively downward.
Setting a view’s frame to a different CGRect value repositions the view, or
resizes it, or both. If the view is visible, this change will be visibly reflected
in the interface. On the other hand, you can also set a view’s frame when
the view is not visible — for example, when you create the view in code. In
that case, the frame describes where the view will be positioned within its
superview when it is given a superview. UIView’s designated initializer is i
nit(frame:), and you’ll often assign a frame this way, especially because
the default frame might otherwise be CGRect.zero, which is rarely what
you want.

NOTE
Forgetting to assign a view a frame when creating it in code, and then wondering why it isn’t
appearing when added to a superview, is a common beginner mistake. A view with a zero-size
frame is effectively invisible. If a view has a standard size that you want it to adopt, especially in
relation to its contents (like a UIButton in relation to its title), an alternative is to call its sizeToFi
t method.

We are now in a position to generate programmatically the interface
displayed in Figure 1-1 (for the CGRect initializer with no argument labels,

see Appendix B):

let v1 = UIView(frame:CGRect(113, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:CGRect(41, 56, 132, 194))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

let v3 = UIView(frame:CGRect(43, 197, 160, 230))

v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

self.view.addSubview(v3)

In that code, we determined the layering order of v1 and v3 (the middle and
left views, which are siblings) by the order in which we inserted them into
the view hierarchy with addSubview(_:).

CORE GRAPHICS INITIALIZERS

Starting in Swift 3, access to Core Graphics convenience constructor functions such as CGRectM
ake is blocked. You can no longer say:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194)) // compile error

Instead, you are forced to use an initializer with labeled parameters, like this:

let v1 = UIView(frame:CGRect(x:113, y:111, width:132, height:194))

I find this tedious and verbose, so I’ve written a CGRect extension (Appendix B) that adds an
initializer whose parameters have no labels. Thus, I can continue to speak compactly, just as CG
RectMake allowed me to do:

let v1 = UIView(frame:CGRect(113, 111, 132, 194)) // thanks to my extensio

n

I use this extension, along with similar extensions on CGPoint, CGSize, and CGVector,
thoughout this book. If my code doesn’t compile on your machine, it might be because you
need to add those extensions. I’m not going to comment on this again!

Bounds and Center

Suppose we have a superview and a subview, and the subview is to appear
inset by 10 points, as in Figure 1-3. CGRect methods like insetBy(dx:d
y:) make it easy to derive one rectangle as an inset from another. But what
rectangle should we inset from? Not the superview’s frame; the frame
represents a view’s position within its superview, and in that superview’s
coordinates. What we’re after is a CGRect describing our superview’s
rectangle in its own coordinates, because those are the coordinates in which
the subview’s frame is to be expressed. The CGRect that describes a view’s
rectangle in its own coordinates is the view’s bounds property.

Figure 1-3. A subview inset from its superview

So, the code to generate Figure 1-3 looks like this:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

You’ll very often use a view’s bounds in this way. When you need
coordinates for positioning content inside a view, whether drawing
manually or placing a subview, you’ll refer to the view’s bounds.
If you change a view’s bounds size, you change its frame. The change in the
view’s frame takes place around its center, which remains unchanged. So,

for example:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

v2.bounds.size.height += 20

v2.bounds.size.width += 20

What appears is a single rectangle; the subview completely and exactly
covers its superview, its frame being the same as the superview’s bounds.
The call to insetBy started with the superview’s bounds and shaved 10
points off the left, right, top, and bottom to set the subview’s frame
(Figure 1-3). But then we added 20 points to the subview’s bounds height
and width, and thus added 20 points to the subview’s frame height and
width as well (Figure 1-4). The subview’s center didn’t move, so we
effectively put the 10 points back onto the left, right, top, and bottom of the
subview’s frame.

Figure 1-4. A subview exactly covering its superview

If you change a view’s bounds origin, you move the origin of its internal
coordinate system. When you create a UIView, its bounds coordinate
system’s zero point (0.0,0.0) is at its top left. Because a subview is
positioned in its superview with respect to its superview’s coordinate

system, a change in the bounds origin of the superview will change the
apparent position of a subview. To illustrate, we start once again with our
subview inset evenly within its superview, and then change the bounds
origin of the superview:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

v1.bounds.origin.x += 10

v1.bounds.origin.y += 10

Nothing happens to the superview’s size or position. But the subview has
moved up and to the left so that it is flush with its superview’s top-left
corner (Figure 1-5). Basically, what we’ve done is to say to the superview,
“Instead of calling the point at your upper left (0.0,0.0), call that point (1
0.0,10.0).” Because the subview’s frame origin is itself at (10.0,10.0),
the subview now touches the superview’s top-left corner. The effect of
changing a view’s bounds origin may seem directionally backward — we
increased the superview’s origin in the positive direction, but the subview
moved in the negative direction — but think of it this way: a view’s bounds
origin point coincides with its frame’s top left.

Figure 1-5. The superview’s bounds origin has been shifted

We have seen that changing a view’s bounds size affects its frame size. The
converse is also true: changing a view’s frame size affects its bounds size.
What is not affected by changing a view’s bounds size is the view’s center.
This property, like the frame property, represents a subview’s position
within its superview, in the superview’s coordinates; in particular, it is the
position within the superview of the subview’s bounds center, the point
derived from the bounds like this:

let c = CGPoint(theView.bounds.midX, theView.bounds.midY)

A view’s center is thus a single point establishing the positional relationship
between the view’s bounds and its superview’s bounds.
Changing a view’s bounds does not change its center; changing a view’s
center does not change its bounds. Thus, a view’s bounds and center are
orthogonal (independent), and completely describe the view’s size and its
position within its superview. The view’s frame is therefore superfluous! In
fact, the frame property is merely a convenient expression of the center
and bounds values. In most cases, this won’t matter to you; you’ll use the f
rame property anyway. When you first create a view from scratch, the
designated initializer is init(frame:). You can change the frame, and the
bounds size and center will change to match. You can change the bounds
size or the center, and the frame will change to match. Nevertheless, the
proper and most reliable way to position and size a view within its
superview is to use its bounds and center, not its frame; there are some
situations in which the frame is meaningless (or will at least behave very
oddly), but the bounds and center will always work.
We have seen that every view has its own coordinate system, expressed by
its bounds, and that a view’s coordinate system has a clear relationship to
its superview’s coordinate system, expressed by its center. This is true of
every view in a window, so it is possible to convert between the coordinates
of any two views in the same window. Convenience methods are supplied
to perform this conversion both for a CGPoint and for a CGRect:

convert(_:to:)

convert(_:from:)

The first parameter is either a CGPoint or a CGRect. The second parameter
is a UIView; if the second parameter is nil, it is taken to be the window.
The recipient is another UIView; the CGPoint or CGRect is being converted
between its coordinates and the second view’s coordinates.

For example, if v1 is the superview of v2, then to center v2 within v1 you
could say:

v2.center = v1.convert(v1.center, from:v1.superview)

WARNING
When setting a view’s position by setting its center, if the height or width of the view is not an
integer (or, on a single-resolution screen, not an even integer), the view can end up misaligned: its
point values in one or both dimensions are located between the screen pixels. This can cause the
view to be displayed incorrectly; for example, if the view contains text, the text may be blurry.
You can detect this situation in the Simulator by checking Debug → Color Misaligned Images. A
simple solution is to set the view’s frame to its own integral.

Window Coordinates and Screen
Coordinates
The device screen has no frame, but it has bounds. The main window has
no superview, but its frame is set with respect to the screen’s bounds:

let w = UIWindow(frame: UIScreen.main.bounds)

In iOS 9 and later, you can omit the frame parameter, as a shortcut; the
effect is exactly the same:

let w = UIWindow()

The window thus starts out life filling the screen, and generally continues to
fill the screen, and so, for the most part, window coordinates are screen

coordinates. (I’ll discuss a possible exception in Chapter 9.)
In iOS 7 and before, the screen’s coordinates were invariant. iOS 8
introduced a major change: when the app rotates to compensate for the
rotation of the device, the screen (and with it, the window) is what rotates.
Thus there is a transposition of the size components of the screen’s bounds,
and a corresponding transposition of the size components of the window’s
bounds: in portrait orientation, the size is taller than wide, but in landscape
orientation, the size is wider than tall.
The screen therefore reports its coordinates through two different
properties; their values are typed as UICoordinateSpace, a protocol (also
adopted by UIView) that provides a bounds property:

UIScreen’s coordinateSpace property

This coordinate space rotates. Its bounds height and width are
transposed when the app rotates to compensate for a change in the
orientation of the device; its origin is at the top left of the app.

UIScreen’s fixedCoordinateSpace property

This coordinate space is invariant. Its bounds origin is at the top left of
the physical device, regardless of how the device itself is held. (A good
way to think of this is with respect to the Home button, which is at the
bottom of the physical device.)

To help you convert between coordinate spaces, UICoordinateSpace
provides methods parallel to the coordinate-conversion methods I listed in
the previous section:

convert(_:from:)

convert(_:to:)

The first parameter is either a CGPoint or a CGRect. The second parameter
is a UICoordinateSpace, which might be a UIView or the UIScreen; so is
the recipient.

So, for example, suppose we have a UIView v in our interface, and we wish
to learn its position in fixed device coordinates. We could do it like this:

let screen = UIScreen.main.fixedCoordinateSpace

let r = v.superview!.convert(v.frame, to: screen)

Imagine that we have a subview of our main view, at the exact top left
corner of the main view. When the device and the app are in portrait
orientation, the subview’s top left is at {0,0} in window coordinates and in
screen fixedCoordinateSpace coordinates. When the device is rotated left
into landscape orientation, and if the app rotates to compensate, the window
rotates, so the subview is still at the top left from the user’s point of view,
and is still at the top left in window coordinates. But in screen fixedCoord
inateSpace coordinates, the subview’s top left x-coordinate will have a
large positive value, because the origin is now at the lower left and its x
grows positively upward.
Occasions where you need such information, however, will be rare. Indeed,
my experience is that it is rare even to worry about window coordinates. All
of your app’s visible action takes place within your root view controller’s
main view, and the bounds of that view, which are adjusted for you
automatically when the app rotates to compensate for a change in device
orientation, are probably the highest coordinate system that will interest
you.

Transform
A view’s transform property alters how the view is drawn — it may, for
example, change the view’s apparent size and orientation — without
affecting its bounds and center. A transformed view continues to behave
correctly: a rotated button, for example, is still a button, and can be tapped
in its apparent location and orientation.
A transform value is a CGAffineTransform, which is a struct representing
six of the nine values of a 3×3 transformation matrix (the other three values
are constants, so there’s no need to represent them in the struct). You may
have forgotten your high-school linear algebra, so you may not recall what
a transformation matrix is. For the details, which are quite simple really, see

the “Transforms” chapter of Apple’s Quartz 2D Programming Guide,
especially the section called “The Math Behind the Matrices.” But you
don’t really need to know those details, because initializers are provided for
creating three of the basic types of transform: rotation, scaling, and
translation (i.e., changing the view’s apparent position). A fourth basic
transform type, skewing or shearing, has no initializer.

By default, a view’s transformation matrix is CGAffineTransform.identi
ty, the identity transform. It has no visible effect, so you’re unaware of it.
Any transform that you do apply takes place around the view’s center,
which is held constant.
Here’s some code to illustrate use of a transform:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

v1.transform = CGAffineTransform(rotationAngle: 45 * .pi/180)

print(v1.frame)

The transform property of the view v1 is set to a rotation transform. The
result (Figure 1-6) is that the view appears to be rocked 45 degrees
clockwise. (I think in degrees, but Core Graphics thinks in radians, so my
code has to convert.) Observe that the view’s center property is unaffected,
so that the rotation seems to have occurred around the view’s center.
Moreover, the view’s bounds property is unaffected; the internal coordinate
system is unchanged, so the subview is drawn in the same place relative to
its superview. The view’s frame, however, is now useless, as no mere
rectangle can describe the region of the superview apparently occupied by
the view; the frame’s actual value, roughly (63.7,92.7,230.5,230.5),
describes the minimal bounding rectangle surrounding the view’s apparent
position. The rule is that if a view’s transform is not the identity transform,
you should not set its frame; also, automatic resizing of a subview,

discussed later in this chapter, requires that the superview’s transform be the
identity transform.

Figure 1-6. A rotation transform

Suppose, instead of a rotation transform, we apply a scale transform, like
this:

v1.transform = CGAffineTransform(scaleX:1.8, y:1)

The bounds property of the view v1 is still unaffected, so the subview is
still drawn in the same place relative to its superview; this means that the
two views seem to have stretched horizontally together (Figure 1-7). No
bounds or centers were harmed by the application of this transform!

Figure 1-7. A scale transform

Methods are provided for transforming an existing transform. This
operation is not commutative; that is, order matters. (That high school math
is starting to come back to you now, isn’t it?) If you start with a transform
that translates a view to the right and then apply a rotation of 45 degrees,
the rotated view appears to the right of its original position; on the other
hand, if you start with a transform that rotates a view 45 degrees and then
apply a translation to the right, the meaning of “right” has changed, so the
rotated view appears 45 degrees down from its original position. To
demonstrate the difference, I’ll start with a subview that exactly overlaps its
superview:

let v1 = UIView(frame:CGRect(20, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:v1.bounds)

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

Then I’ll apply two successive transforms to the subview, leaving the
superview to show where the subview was originally. In this example, I
translate and then rotate (Figure 1-8):

v2.transform =

 CGAffineTransform(translationX:100, y:0).rotated(by: 45 * .pi/180)

Figure 1-8. Translation, then rotation

In this example, I rotate and then translate (Figure 1-9):

v2.transform =

 CGAffineTransform(rotationAngle: 45 * .pi/180).translatedBy(x: 100, y: 0)

Figure 1-9. Rotation, then translation

The concatenating method concatenates two transform matrices using
matrix multiplication. Again, this operation is not commutative. The order
is the opposite of the order when chaining transforms. Thus, this code gives
the same result as the previous example (Figure 1-9):

let r = CGAffineTransform(rotationAngle: 45 * .pi/180)

let t = CGAffineTransform(translationX:100, y:0)

v2.transform = t.concatenating(r) // not r.concatenating(t)

To remove a transform from a combination of transforms, apply its inverse.
The inverted method lets you obtain the inverse of a given affine
transform. Again, order matters. In this example, I rotate the subview and
shift it to its “right,” and then remove the rotation (Figure 1-10):

let r = CGAffineTransform(rotationAngle: 45 * .pi/180)

let t = CGAffineTransform(translationX:100, y:0)

v2.transform = t.concatenating(r)

v2.transform = r.inverted().concatenating(v2.transform)

Figure 1-10. Rotation, then translation, then inversion of the rotation

Finally, as there is no initializer for creating a skew (shear) transform, I’ll
illustrate by creating one manually, without further explanation (Figure 1-
11):

v1.transform = CGAffineTransform(a:1, b:0, c:-0.2, d:1, tx:0, ty:0)

Figure 1-11. Skew (shear)

Transforms are useful particularly as temporary visual indicators. For
example, you might call attention to a view by applying a transform that
scales it up slightly, and then applying the identity transform to restore it to
its original size, and animating those changes (Chapter 4).

App Rotation
In iOS 7 and before, the transform property lay at the heart of an iOS
app’s ability to rotate its interface: the window’s frame and bounds were
invariant, locked to the screen, and an app’s interface rotated to compensate
for a change in device orientation by applying a rotation transform to the
root view, so that its origin moved to what the user now saw as the top left
of the view.
In iOS 8 and later, as I’ve already mentioned, this is no longer the case. The
screen’s coordinate space is effectively rotated, but a coordinate space
doesn’t have a transform property. You can work out what has happened,
if you really want to, by comparing the screen’s coordinateSpace with its
fixedCoordinateSpace, but none of the views in the story — neither the
window, nor the root view, nor any of its subviews — receives a rotation
transform when the app’s interface rotates.

Instead, you are expected to concentrate on the dimensions of the window,
the root view, and so forth. This might mean their absolute dimensions, but
it will often mean their dimensions as embodied in a set of size classes
which are vended by a view’s traitCollection property as a
UITraitCollection object. I’ll discuss trait collections and size classes
further in the next section.
You can thus treat app rotation as effectively nothing more than a change in
the interface’s proportions: when the app rotates, the long dimension (of the
root view, the window, and the screen’s coordinate space bounds) becomes
its short dimension and vice versa. This, after all, is what your interface
needs to take into account in order to keep working when the app rotates.
Consider, for example, a subview of the root view, located at the bottom
right of the screen when the device is in portrait orientation. If the root
view’s bounds width and bounds height are effectively transposed, then that
poor old subview will now be outside the bounds height, and therefore off
the screen — unless your app responds in some way to this change to
reposition it. Such a response is called layout, a subject that will occupy
most of the rest of this chapter. The point, however, is that what you’re
responding to is just a change in the window’s proportions; the fact that this
change stems from rotation of the app’s interface is all but irrelevant.

Trait Collections and Size Classes
Every view in the interface, from the window on down, as well as any view
controller whose view is part of the interface, inherits from the environment
the value of its traitCollection property, which it has by virtue of
implementing the UITraitEnvironment protocol. The traitCollection is a
UITraitCollection, a value class. UITraitCollection was introduced in iOS 8;
it has grown since then, and is now freighted with a considerable number of
properties describing the environment. In addition to its displayScale (the
screen resolution) and userInterfaceIdiom (the general device type,
iPhone or iPad), a trait collection now also reports such things as the

device’s force touch capability and display gamut. But just two properties in
particular concern us with regard to views in general:

horizontalSizeClass

verticalSizeClass

A UIUserInterfaceSizeClass value, either .regular or .compact.
These are called size classes. The size classes, in combination, have the
following meanings when, as will usually be the case, your app occupies
the entire screen:

Both the horizontal and vertical size classes are .regular
We’re running on an iPad.

The horizontal size class is .compact and the vertical size class is .regula
r

We’re running on an iPhone with the app in portrait orientation.

The horizontal size class is .regular and the vertical size class is .compac
t

We’re running on an iPhone 6/7/8 Plus with the app in landscape
orientation.

Both the horizontal and vertical size classes are .compact
We’re running on an iPhone (except an iPhone 6/7/8 Plus) with the app
in landscape orientation.

(I’ll explain in Chapter 9 how your app might not occupy the entire screen
due to iPad multitasking.)
The size class trait collection properties can change while the app is
running. In particular, the size classes on an iPhone reflect the orientation of
the app — which can change as the app rotates in response to a change in
the orientation of the device. Therefore, both at app launch time and if the
trait collection changes while the app is running, the traitCollectionDid
Change(_:) message is propagated down the hierarchy of

UITraitEnvironments (meaning primarily, for our purposes, view controllers
and views); the old trait collection (if any) is provided as the parameter, and
the new trait collection can be retrieved as self.traitCollection.
It is possible to construct a trait collection yourself. (In the next chapter, I’ll
give an example of why that might be useful.) Oddly, though, you can’t set
any trait collection properties directly; instead, you form a trait collection
through an initializer that determines just one property, and if you want to
add further property settings, you have to combine trait collections by
calling init(traitsFrom:) with an array of trait collections. For example:

let tcdisp = UITraitCollection(displayScale: UIScreen.main.scale)

let tcphone = UITraitCollection(userInterfaceIdiom: .phone)

let tcreg = UITraitCollection(verticalSizeClass: .regular)

let tc1 = UITraitCollection(traitsFrom: [tcdisp, tcphone, tcreg])

The init(traitsFrom:) array works like inheritance: an ordered
intersection is performed. If two trait collections are combined, and they
both set the same property, the winner is the trait collection that appears
later in the array or further down the inheritance hierarchy. If one sets a
property and the other doesn’t, the one that sets the property wins. Thus, if
you create a trait collection, the value for any unspecified property will be
inherited if the trait collection finds itself in the inheritance hierarchy.

To compare trait collections, call containsTraits(in:). This returns true
if the value of every specified property of the parameter trait collection
matches that of this trait collection.

TIP
You cannot insert a trait collection directly into the inheritance hierarchy simply by setting a
view’s trait collection; traitCollection isn’t a settable property. Instead, you’ll use a special ov
errideTraitCollection property or method; I’ll give an example in Chapter 6.

Layout

We have seen that a subview moves when its superview’s bounds origin is
changed. But what happens to a subview when its superview’s bounds (or
frame) size is changed?
Of its own accord, nothing happens. The subview’s bounds and center
haven’t changed, and the superview’s bounds origin hasn’t moved, so the
subview stays in the same position relative to the top left of its superview.
In real life, however, that often won’t be what you want. You’ll want
subviews to be resized and repositioned when their superview’s bounds size
is changed. This is called layout.
Here are some ways in which a superview might be resized dynamically:

Your app might compensate for the user rotating the device 90 degrees
by rotating itself so that its top moves to the new top of the screen,
matching its new orientation — and, as a consequence, transposing the
width and height values of its bounds.
An iPhone app might launch on screens with different aspect ratios: for
example, the screen of the iPhone 5s is relatively shorter than the screen
of later iPhone models, and the app’s interface may need to adapt to this
difference.
A universal app might launch on an iPad or on an iPhone. The app’s
interface may need to adapt to the size of the screen on which it finds
itself running.
A view instantiated from a nib, such as a view controller’s main view or
a table view cell, might be resized to fit the interface into which it is
placed.
A view might respond to a change in its surrounding views. For
example, when a navigation bar is shown or hidden dynamically, the
remaining interface might shrink or grow to compensate, filling the
available space.
The user might alter the width of your app’s window on an iPad, as part
of the iPad multitasking interface.

In any of those situations, and others, layout will probably be needed.
Subviews of the view whose size has changed will need to shift, change
size, redistribute themselves, or compensate in other ways so that the
interface still looks good and remains usable.
Layout is performed in three primary ways:

Manual layout

The superview is sent the layoutSubviews message whenever it is
resized; so, to lay out subviews manually, provide your own subclass
and override layoutSubviews. Clearly this could turn out to be a lot of
work, but it means you can do anything you like.

Autoresizing
Autoresizing is the oldest way of performing layout automatically.
When its superview is resized, a subview will respond in accordance
with the rules prescribed by its own autoresizingMask property value.

Autolayout
Autolayout depends on the constraints of views. A constraint (an
instance of NSLayoutConstraint) is a full-fledged object with numeric
values describing some aspect of the size or position of a view, often in
terms of some other view; it is much more sophisticated, descriptive,
and powerful than the autoresizingMask. Multiple constraints can
apply to an individual view, and they can describe a relationship
between any two views (not just a subview and its superview).
Autolayout is implemented behind the scenes in layoutSubviews; in
effect, constraints allow you to write sophisticated layoutSubviews
functionality without code.

Your layout strategy can involve any combination of these. The need for
manual layout is rare, but it’s there if you need it. Autoresizing is used by
default. Autolayout may be regarded as an opt-in alternative to autoresizing,
but in real life, if you’re doing layout at all, you generally will opt in.
Autolayout can be used for whatever areas of your interface you find

appropriate; a view that uses autolayout can live side by side with a view
that uses autoresizing.
The default layout behavior for a view depends on how it was created:

In code
A view that your code creates and adds to the interface, by default, uses
autoresizing, not autolayout. This means that if you want such a view to
use autolayout, you must deliberately suppress its use of autoresizing, as
I’ll explain later in this chapter.

In a nib file
All new .storyboard and .xib files opt in to autolayout. To see this, select
the file in the Project navigator, show the File inspector, and examine
the “Use Auto Layout” checkbox. This means that their views are ready
for autolayout. But a view in the nib editor can still use autoresizing,
even with “Use Auto Layout” checked, as I’ll explain later.

Autoresizing
Autoresizing is a matter of conceptually assigning a subview “springs and
struts.” A spring can stretch; a strut can’t. Springs and struts can be
assigned internally or externally, horizontally or vertically. Thus you can
specify (using internal springs and struts) whether and how the view can be
resized, and (using external springs and struts) whether and how the view
can be repositioned. For example:

Imagine a subview that is centered in its superview and is to stay
centered, but is to resize itself as the superview is resized. It would have
struts externally and springs internally.
Imagine a subview that is centered in its superview and is to stay
centered, and is not to resize itself as the superview is resized. It would
have springs externally and struts internally.
Imagine an OK button that is to stay in the lower right of its superview.
It would have struts internally, struts externally to its right and bottom,
and springs externally to its top and left.

Imagine a text field that is to stay at the top of its superview. It is to
widen as the superview widens. It would have struts externally, but a
spring to its bottom; internally it would have a vertical strut and a
horizontal spring.

In code, a combination of springs and struts is set through a view’s autores
izingMask property, which is a bitmask so that you can combine options.
The options (UIViewAutoresizing) represent springs; whatever isn’t
specified is a strut. The default is the empty set, apparently meaning all
struts — but of course it can’t really be all struts, because if the superview
is resized, something needs to change; in reality, an empty autoresizingMa
sk is the same as .flexibleRightMargin together with .flexibleBottom
Margin.

NOTE
In debugging, when you log a UIView to the console, its autoresizingMask is reported using the
word “autoresize” and a list of the springs. The margins are LM, RM, TM, and BM; the internal
dimensions are W and H. For example, autoresize = LM+TM means that what’s flexible is the left
and top margins; autoresize = W +BM means that what’s flexible is the width and the bottom
margin.

To demonstrate autoresizing, I’ll start with a view and two subviews, one
stretched across the top, the other confined to the lower right (Figure 1-12):

let v1 = UIView(frame:CGRect(100, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView(frame:CGRect(0, 0, 132, 10))

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

let v1b = v1.bounds

let v3 = UIView(frame:CGRect(v1b.width-20, v1b.height-20, 20, 20))

v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

v1.addSubview(v3)

Figure 1-12. Before autoresizing

To that example, I’ll add code applying springs and struts to the two
subviews to make them behave like the text field and the OK button I was
hypothesizing earlier:

v2.autoresizingMask = .flexibleWidth

v3.autoresizingMask = [.flexibleTopMargin, .flexibleLeftMargin]

Now I’ll resize the superview, thus bringing autoresizing into play; as you
can see (Figure 1-13), the subviews remain pinned in their correct relative
positions:

v1.bounds.size.width += 40

v1.bounds.size.height -= 50

Figure 1-13. After autoresizing

If autoresizing isn’t sophisticated enough to achieve what you want, you
have two choices:

Combine it with manual layout in layoutSubviews. Autoresizing
happens before layoutSubviews is called, so your layoutSubviews
code is free to come marching in and tidy up whatever autoresizing
didn’t get quite right.
Use autolayout. This is actually the same solution, because autolayout is
in fact a way of injecting functionality into layoutSubviews. But using
autolayout is a lot easier than writing your own layoutSubviews code!

Autolayout and Constraints
Autolayout is an opt-in technology, at the level of each individual view. You
can use autoresizing and autolayout in different areas of the same interface
— even for different subviews of the same view. One sibling view can use
autolayout while another sibling view does not, and a superview can use
autolayout while some or all of its subviews do not.
However, autolayout is implemented through the superview chain, so if a
view uses autolayout, then automatically so do all its superviews; and if (as
will almost certainly be the case) one of those views is the main view of a
view controller, that view controller receives autolayout-related events.
But how does a view opt in to using autolayout? Simply put: by becoming
involved with a constraint. Constraints are your way of telling the
autolayout engine that you want it to perform layout on this view, as well as
how you want the view laid out.
An autolayout constraint, or simply constraint, is an NSLayoutConstraint
instance, and describes either the absolute width or height of a view or a
relationship between an attribute of one view and an attribute of another
view. In the latter case, the attributes don’t have to be the same attribute,
and the two views don’t have to be siblings (subviews of the same
superview) or parent and child (superview and subview) — the only
requirement is that they share a common ancestor (a superview somewhere
up the view hierarchy).

Here are the chief properties of an NSLayoutConstraint:

firstItem, firstAttribute, secondItem, secondAttribute
The two views and their respective attributes involved in this constraint.
If the constraint is describing a view’s absolute height or width, the
second view will be nil and the second attribute will be .notAnAttrib
ute. Aside from that, the possible attribute values are
(NSLayoutAttribute`):

.width, .height

.top, .bottom

.left, .right, .leading, .trailing

.centerX, .centerY

.firstBaseline, .lastBaseline

.firstBaseline applies primarily to multiline labels, and is some
distance down from the top of the label (Chapter 10); .lastBaseline is
some distance up from the bottom of the label.
The meanings of the other attributes are intuitively obvious, except that
you might wonder what .leading and .trailing mean: they are the
international equivalent of .left and .right, automatically reversing
their meaning on systems for which your app is localized and whose
language is written right-to-left. Starting in iOS 9, the entire interface is
automatically reversed on such systems — but that will work properly
only if you’ve used .leading and .trailing constraints throughout.

multiplier, constant
These numbers will be applied to the second attribute’s value to
determine the first attribute’s value. The multiplier is multiplied by
the second attribute’s value; the constant is added to that product. The
first attribute is set to the result. (The name constant is a very poor
choice, as this value isn’t constant; have the Apple folks never heard the
term addend?) Basically, you’re writing an equation a1 = ma2 + c,

where a1 and a2 are the two attributes, and m and c are the multiplier
and the constant. Thus, in the degenerate case where the first attribute’s
value is to equal the second attribute’s value, the multiplier will be 1
and the constant will be 0. If you’re describing a view’s width or height
absolutely, the multiplier will be 1 and the constant will be the width or
height value.

relation

How the two attribute values are to be related to one another, as
modified by the multiplier and the constant. This is the operator that
goes in the spot where I put the equal sign in the equation in the
preceding paragraph. Possible values are (NSLayoutRelation):

.equal

.lessThanOrEqual

.greaterThanOrEqual

priority

Priority values range from 1000 (required) down to 1, and certain
standard behaviors have standard priorities. Constraints can have
different priorities, determining the order in which they are applied.
New in iOS 11, a priority is not a number but a struct
(UILayoutPriority) wrapping the numeric value as its rawValue,
initializable with init(rawValue:).

A constraint belongs to a view. A view can have many constraints: a
UIView has a constraints property, along with these instance methods:

addConstraint(_:), addConstraints(_:)

removeConstraint(_:), removeConstraints(_:)
The question then is which view a given constraint will belong to. The
answer is: the view that is closest up the view hierarchy from both views
involved in the constraint. If possible, it should be one of those views. Thus,
for example, if the constraint dictates a view’s absolute width, it belongs to

that view; if it sets the top of a view in relation to the top of its superview, it
belongs to that superview; if it aligns the tops of two sibling views, it
belongs to their common superview.
However, you’ll probably never call any of those methods. Starting in iOS
8, instead of adding a constraint to a particular view explicitly, you can
activate the constraint using the NSLayoutConstraint class method activat
e(_:), which takes an array of constraints. The activated constraints are
added to the correct view automatically, relieving you from having to
determine what view that would be. There is also a method deactivate
(_:), which removes constraints from their view. Also, a constraint has an
isActive property; you can set it to activate or deactivate a single
constraint, plus it tells you whether a given constraint is part of the interface
at this moment.

NSLayoutConstraint properties are read-only, except for priority, consta
nt, and isActive. If you want to change anything else about an existing
constraint, you must remove the constraint and add a new one.

WARNING
Once you are using explicit constraints to position and size a view, do not set its frame (or bounds
and center) subsequently; use constraints alone. Otherwise, when layoutSubviews is called, the
view will jump back to where its constraints position it. (However, you may set a view’s frame
from within an implementation of layoutSubviews, and it is perfectly normal to do so.)

Autoresizing Constraints
The mechanism whereby individual views can opt in to autolayout can
suddenly involve other views in autolayout, even though those other views
were not using autolayout previously. Therefore, there needs to be a way,
when such a view becomes involved in autolayout, to generate constraints
for it — constraints that will determine that view’s position and size
identically to how its frame and autoresizingMask were determining
them. The autolayout engine takes care of this for you: it reads the view’s f

rame and autoresizingMask settings and translates them into implicit
constraints (of class NSAutoresizingMaskLayoutConstraint). The
autolayout engine treats a view in this special way only if it has its transla
tesAutoresizingMaskIntoConstraints property set to true — which
happens to be the default.
I’ll construct an example in two stages. In the first stage, I add to my
interface, in code, a UILabel that doesn’t use autolayout. I’ll decide that this
view’s position is to be somewhere near the top right of the screen. To keep
it in position near the top right, its autoresizingMask will be [.flexible
LeftMargin, .flexibleBottomMargin]:

let lab1 = UILabel(frame:CGRect(270,20,42,22))

lab1.autoresizingMask = [.flexibleLeftMargin, .flexibleBottomMargin]

lab1.text = "Hello"

self.view.addSubview(lab1)

If we now rotate the device (or Simulator window), and the app rotates to
compensate, the label stays correctly positioned near the top right corner by
autoresizing.
Now, however, I’ll add a second label that does use autolayout — and in
particular, I’ll attach it by a constraint to the first label (the meaning of this
code will be made clear in subsequent sections; just accept it for now):

let lab2 = UILabel()

lab2.translatesAutoresizingMaskIntoConstraints = false

lab2.text = "Howdy"

self.view.addSubview(lab2)

NSLayoutConstraint.activate([

 lab2.topAnchor.constraint(

 equalTo: lab1.bottomAnchor, constant: 20),

 lab2.trailingAnchor.constraint(

 equalTo: self.view.trailingAnchor, constant: -20)

])

This causes the first label to be involved in autolayout. Therefore, the first
label magically acquires four automatically generated implicit constraints of
class NSAutoresizingMaskLayoutConstraint, such as to give the label the

same size and position, and the same behavior when its superview is
resized, that it had when it was configured by its frame and autoresizing
Mask:

<NSAutoresizingMaskLayoutConstraint:0x6000002818b0 h=&-- v=--&

 UILabel:0x7f9d3820bf80'Hello'.midX == UIView:0x7f9d383079d0.width-29>

<NSAutoresizingMaskLayoutConstraint:0x60000009fe50 h=&-- v=--&

 UILabel:0x7f9d3820bf80'Hello'.midY == 31>

<NSAutoresizingMaskLayoutConstraint:0x60000009fef0 h=&-- v=--&

 UILabel:0x7f9d3820bf80'Hello'.width == 42>

<NSAutoresizingMaskLayoutConstraint:0x6000002821c0 h=&-- v=--&

 UILabel:0x7f9d3820bf80'Hello'.height == 22>

It is important to bear in mind, however, that within this helpful automatic
behavior lurks a trap. Suppose a view has acquired automatically generated
implicit constraints, and suppose you then proceed to attach further
constraints to this view, explicitly setting its position or size. There will
then almost certainly be a conflict between your explicit constraints and the
implicit constraints. The solution is to set the view’s translatesAutoresi
zingMaskIntoConstraints property to false, so that the implicit
constraints are not generated and the view’s only constraints are your
explicit constraints.
In a nib with “Use Auto Layout” checked, there is no difficulty in this
regard. The nib editor itself will switch a view’s translatesAutoresizing
MaskIntoConstraints property to false as soon as you add constraints
that would cause a problem. The trouble is most likely to arise when you
create a view in code and then position or size that view with constraints,
forgetting that you also need to set its translatesAutoresizingMaskInto
Constraints property to false. If that happens, you’ll get a conflict
between constraints. (To be honest, I usually do forget, and am reminded
only when I do get a conflict between constraints.)

Creating Constraints in Code
We are now ready to write some code that creates constraints! I’ll start by
using the NSLayoutConstraint initializer:

init(item:attribute:relatedBy:toItem:attribute:multiplier:

constant:)

This initializer sets every property of the constraint, as I described them a
moment ago — except the priority, which defaults to .required (1000)
and can be set later if necessary.
I’ll generate the same views and subviews and layout behavior as in Figures
1-12 and 1-13, but using constraints. First, I’ll create the views and add
them to the interface. Observe that I don’t bother to assign the subviews v2
and v3 explicit frames as I create them, because constraints will take care of
positioning them. Also, I remember (for once) to set their translatesAuto
resizingMaskIntoConstraints properties to false, so that they won’t
sprout additional implicit NSAutoresizingMaskLayoutConstraints:

let v1 = UIView(frame:CGRect(100, 111, 132, 194))

v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

let v2 = UIView()

v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

let v3 = UIView()

v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)

self.view.addSubview(v1)

v1.addSubview(v2)

v1.addSubview(v3)

v2.translatesAutoresizingMaskIntoConstraints = false

v3.translatesAutoresizingMaskIntoConstraints = false

Now here come the constraints:

v1.addConstraint(

 NSLayoutConstraint(item: v2,

 attribute: .leading,

 relatedBy: .equal,

 toItem: v1,

 attribute: .leading,

 multiplier: 1, constant: 0)

)

v1.addConstraint(

 NSLayoutConstraint(item: v2,

 attribute: .trailing,

 relatedBy: .equal,

 toItem: v1,

 attribute: .trailing,

 multiplier: 1, constant: 0)

)

v1.addConstraint(

 NSLayoutConstraint(item: v2,

 attribute: .top,

 relatedBy: .equal,

 toItem: v1,

 attribute: .top,

 multiplier: 1, constant: 0)

)

v2.addConstraint(

 NSLayoutConstraint(item: v2,

 attribute: .height,

 relatedBy: .equal,

 toItem: nil,

 attribute: .notAnAttribute,

 multiplier: 1, constant: 10)

)

v3.addConstraint(

 NSLayoutConstraint(item: v3,

 attribute: .width,

 relatedBy: .equal,

 toItem: nil,

 attribute: .notAnAttribute,

 multiplier: 1, constant: 20)

)

v3.addConstraint(

 NSLayoutConstraint(item: v3,

 attribute: .height,

 relatedBy: .equal,

 toItem: nil,

 attribute: .notAnAttribute,

 multiplier: 1, constant: 20)

)

v1.addConstraint(

 NSLayoutConstraint(item: v3,

 attribute: .trailing,

 relatedBy: .equal,

 toItem: v1,

 attribute: .trailing,

 multiplier: 1, constant: 0)

)

v1.addConstraint(

 NSLayoutConstraint(item: v3,

 attribute: .bottom,

 relatedBy: .equal,

 toItem: v1,

 attribute: .bottom,

 multiplier: 1, constant: 0)

)

Now, I know what you’re thinking. You’re thinking: “What are you, nuts?
That is a boatload of code!” (Except that you probably used another four-
letter word instead of “boat.”) But that’s something of an illusion. I’d argue
that what we’re doing here is actually simpler than the code with which we
created Figure 1-12 using explicit frames and autoresizing.
After all, we merely create eight constraints in eight simple commands.
(I’ve broken each command into multiple lines, but that’s mere formatting.)
They’re verbose, but they are the same command repeated with different
parameters, so creating them is simple. Moreover, our eight constraints
determine the position, size, and layout behavior of our two subviews, so
we’re getting a lot of bang for our buck.
Even more telling, these constraints are a far clearer expression of what’s
supposed to happen than setting a frame and autoresizingMask. The
position of our subviews is described once and for all, both as they will
initially appear and as they will appear if their superview is resized. And it
is described meaningfully; we don’t have to use arbitrary math. Recall what
we had to say before:

let v1b = v1.bounds

let v3 = UIView(frame:CGRect(v1b.width-20, v1b.height-20, 20, 20))

That business of subtracting the view’s height and width from its
superview’s bounds height and width in order to position the view is
confusing and error-prone. With constraints, we can speak the truth directly;
our constraints say, plainly and simply, “v3 is 20 points wide and 20 points
high and flush with the bottom-right corner of v1.”
In addition, constraints can express things that autoresizing can’t. For
example, instead of applying an absolute height to v2, we could require that
its height be exactly one-tenth of v1’s height, regardless of how v1 is

resized. To do that without autolayout, you’d have to implement layoutSub
views and enforce it manually, in code.

Anchor notation
The NSLayoutConstraint(item:...) initializer is rather verbose, but it
has the virtue of singularity: one method can create any constraint. There’s
another way to do everything I just did, making exactly the same eight
constraints and adding them to the same views, using a much more compact
notation that takes the opposite approach: it concentrates on brevity but
sacrifices singularity. Instead of focusing on the constraint, the compact
notation focuses on the attributes to which the constraint relates. These
attributes are expressed as anchor properties of a UIView:

widthAnchor, heightAnchor

topAnchor, bottomAnchor

leftAnchor, rightAnchor, leadingAnchor, trailingAnchor

centerXAnchor, centerYAnchor

firstBaselineAnchor, lastBaselineAnchor
The anchor values are instances of NSLayoutAnchor subclasses. The
constraint-forming methods are anchor instance methods, and there are a lot
of legal combinations, with your choice depending on how much
information you need to express. You can provide another anchor, another
anchor and a constant, another anchor and a multiplier, another anchor and
both a constant and a multiplier, or a constant alone (for an absolute width
or height constraint). If the constant is omitted, it is 0; if the multiplier is
omitted, it is 1. And in every case, there are three possible relations:

constraint(equalTo:)

constraint(greaterThanOrEqualTo:)

constraint(lessThanOrEqualTo:)

constraint(equalTo:constant:)

constraint(greaterThanOrEqualTo:constant:)

constraint(lessThanOrEqualTo:constant:)

constraint(equalTo:multiplier:)

constraint(greaterThanOrEqualTo:multiplier:)

constraint(lessThanOrEqualTo:multiplier:)

constraint(equalTo:multiplier:constant:)

constraint(greaterThanOrEqualTo:multiplier:constant:)

constraint(lessThanOrEqualTo:multiplier:constant:)

constraint(equalToConstant:)

constraint(greaterThanOrEqualToConstant:)

constraint(lessThanOrEqualToConstant:)

In iOS 10, a method was added that generates, not a constraint, but a new
width or height anchor expressing the distance between two anchors; the
idea is that you could then set a view’s width or height anchor to equal it:

anchorWithOffset(to:)

New in iOS 11, additional methods create a constraint based on a constant
value provided by the runtime. This is helpful for getting the standard
spacing between views, and is especially valuable when connecting text
baselines vertically, because the system spacing will change according to
the text size:

constraintEqualToSystemSpacing(after:multiplier:)

constraintGreaterThanOrEqualToSystemSpacing(after:multipli

er:)

constraintLessThanOrEqualToSystemSpacing(after:multiplie

r:)

constraintEqualToSystemSpacing(below:multiplier:)

constraintGreaterThanOrEqualToSystemSpacing(below:multipli

er:)

constraintLessThanOrEqualToSystemSpacing(below:multiplie

r:)

All of that may sound very elaborate when I describe it, but when you see it
in action, you will appreciate immediately the benefit of this compact
notation: it’s easy to write (especially thanks to Xcode’s code completion),
easy to read, and easy to maintain. The anchor notation is particularly
convenient in connection with activate(_:), as we don’t have to worry
about specifying what view each constraint should be added to.
Here we generate exactly the same constraints as in the preceding example:

NSLayoutConstraint.activate([

 v2.leadingAnchor.constraint(equalTo:v1.leadingAnchor),

 v2.trailingAnchor.constraint(equalTo:v1.trailingAnchor),

 v2.topAnchor.constraint(equalTo:v1.topAnchor),

 v2.heightAnchor.constraint(equalToConstant:10),

 v3.widthAnchor.constraint(equalToConstant:20),

 v3.heightAnchor.constraint(equalToConstant:20),

 v3.trailingAnchor.constraint(equalTo:v1.trailingAnchor),

 v3.bottomAnchor.constraint(equalTo:v1.bottomAnchor)

])

That’s eight constraints in eight lines of code — plus the surrounding activ
ate call to put those constraints into our interface. It isn’t strictly necessary
to activate all one’s constraints at once, but it’s best to try to do so.

Visual format notation
Another way to abbreviate your creation of constraints is to use a text-based
shorthand called a visual format. This has the advantage of allowing you to
describe multiple constraints simultaneously, and is appropriate particularly
when you’re arranging a series of views horizontally or vertically. I’ll start
with a simple example:

"V:|[v2(10)]"

In that expression, V: means that the vertical dimension is under discussion;
the alternative is H:, which is also the default (so you can omit it). A view’s
name appears in square brackets, and a pipe (|) signifies the superview, so
we’re portraying v2’s top edge as butting up against its superview’s top
edge. Numeric dimensions appear in parentheses, and a numeric dimension
accompanying a view’s name sets that dimension of that view, so we’re also
setting v2’s height to 10.
To use a visual format, you have to provide a dictionary that maps the string
name of each view mentioned by the visual format string to the actual view.
For example, the dictionary accompanying the preceding expression might
be ["v2":v2].
Here is yet another way of expressing of the preceding example, generating
exactly the same eight constraints using four commands instead of eight,
thanks to the visual format shorthand:

let d = ["v2":v2,"v3":v3]

NSLayoutConstraint.activate([

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:|[v2]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:|[v2(10)]", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:[v3(20)]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:[v3(20)]|", metrics: nil, views: d)

].flatMap{$0})

(The constraints(withVisualFormat:...) class method yields an array
of constraints, so my literal array is an array of arrays of constraints. But ac
tivate(_:) expects an array of constraints, so I flatten my literal array.)
The visual format syntax shows itself to best advantage when multiple
views are laid out in relation to one another along the same dimension; in
that situation, you get a lot of bang for your buck (many constraints
generated by one visual format string). The syntax, however, is somewhat
limited in what constraints it can readily express; it conceals the number

and exact nature of the constraints that it produces; and personally I find it
easier to make a mistake with the visual format syntax than with the explicit
expression of each individual constraint. Still, you’ll want to become
familiar with the visual format syntax, not least because console messages
describing a constraint sometimes use it.
Here are some further things to know when generating constraints with the
visual format syntax:

The metrics: parameter is a dictionary with numeric values. This lets
you use a name in the visual format string where a numeric value needs
to go.

The options: parameter, omitted in the preceding example, is a bitmask
(NSLayoutFormatOptions) chiefly allowing you to specify alignments
(which are applied to all the views mentioned in the visual format
string).
To specify the distance between two successive views, use hyphens
surrounding the numeric value, like this: "[v1]-20-[v2]". The numeric
value may optionally be surrounded by parentheses.
A numeric value in parentheses may be preceded by an equality or
inequality operator, and may be followed by an at sign with a priority.
Multiple numeric values, separated by comma, may appear in
parentheses together. For example: "[v1(>=20@400,<=30)]".

For formal details of the visual format syntax, see the “Visual Format
Syntax” chapter of Apple’s Auto Layout Guide.

Constraints as Objects
The examples so far have involved creating constraints and adding them
directly to the interface — and then forgetting about them. But it is
frequently useful to form constraints and keep them on hand for future use,
typically in a property. A common use case is where you intend, at some
future time, to change the interface in some radical way, such as by
inserting or removing a view; you’ll probably find it convenient to keep

multiple sets of constraints on hand, each set being appropriate to a
particular configuration of the interface. It is then trivial to swap constraints
out of and into the interface along with views that they affect.

In this example, we create within our main view (self.view) three views,
v1, v2, and v3, which are red, yellow, and blue rectangles respectively. For
some reason, we will later want to remove the yellow view (v2)
dynamically as the app runs, moving the blue view to where the yellow
view was; and then, still later, we will want to insert the yellow view once
again (Figure 1-14). So we have two alternating view configurations.
To prepare for this, we create two sets of constraints, one describing the
positions of v1, v2, and v3 when all three are present, the other describing
the positions of v1 and v3 when v2 is absent. For purposes of maintaining
these sets of constraints, we have already prepared two properties, constra
intsWith and constraintsWithout, initialized as empty arrays of
NSLayoutConstraint. We will also need a strong reference to v2, so that it
doesn’t vanish when we remove it from the interface:

var v2 : UIView!

var constraintsWith = [NSLayoutConstraint]()

var constraintsWithout = [NSLayoutConstraint]()

Here’s the code for creating the views:

let v1 = UIView()

v1.backgroundColor = .red

v1.translatesAutoresizingMaskIntoConstraints = false

let v2 = UIView()

v2.backgroundColor = .yellow

v2.translatesAutoresizingMaskIntoConstraints = false

let v3 = UIView()

v3.backgroundColor = .blue

v3.translatesAutoresizingMaskIntoConstraints = false

self.view.addSubview(v1)

self.view.addSubview(v2)

self.view.addSubview(v3)

self.v2 = v2 // retain

Now we create the constraints and combine them into two groups:

// construct constraints

let c1 = NSLayoutConstraint.constraints(withVisualFormat:

 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v1])

let c2 = NSLayoutConstraint.constraints(withVisualFormat:

 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v2])

let c3 = NSLayoutConstraint.constraints(withVisualFormat:

 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v3])

let c4 = NSLayoutConstraint.constraints(withVisualFormat:

 "V:|-(100)-[v(20)]", metrics: nil, views: ["v":v1])

let c5with = NSLayoutConstraint.constraints(withVisualFormat:

 "V:[v1]-(20)-[v2(20)]-(20)-[v3(20)]", metrics: nil,

 views: ["v1":v1, "v2":v2, "v3":v3])

let c5without = NSLayoutConstraint.constraints(withVisualFormat:

 "V:[v1]-(20)-[v3(20)]", metrics: nil, views: ["v1":v1, "v3":v3])

// first set of constraints

self.constraintsWith.append(contentsOf:c1)

self.constraintsWith.append(contentsOf:c2)

self.constraintsWith.append(contentsOf:c3)

self.constraintsWith.append(contentsOf:c4)

self.constraintsWith.append(contentsOf:c5with)

// second set of constraints

self.constraintsWithout.append(contentsOf:c1)

self.constraintsWithout.append(contentsOf:c3)

self.constraintsWithout.append(contentsOf:c4)

self.constraintsWithout.append(contentsOf:c5without)

Finally, we apply our constraints. We start with v2 present, so it is the first
set of constraints that we initially make active:

// apply first set

NSLayoutConstraint.activate(self.constraintsWith)

Figure 1-14. Alternate sets of views and constraints

All that preparation may seem extraordinarily elaborate, but the result is
that when the time comes to swap v2 out of or into the interface, swapping
the appropriate constraints is trivial:

if self.v2.superview != nil {

 self.v2.removeFromSuperview()

 NSLayoutConstraint.deactivate(self.constraintsWith)

 NSLayoutConstraint.activate(self.constraintsWithout)

} else {

 self.view.addSubview(v2)

 NSLayoutConstraint.deactivate(self.constraintsWithout)

 NSLayoutConstraint.activate(self.constraintsWith)

}

In that code, I deactivated the old constraints before activating the new
ones. Always proceed in that order; activating the new constraints with the
old constraints still in force will cause a conflict (as I’ll explain later in this
chapter) and will break the example (because the same constraints appear in
both groups).

Margins and Guides
So far, I’ve been assuming that the anchor points of your constraints
represent the edges and centers of views. For example:

let c = v2.leadingAnchor.constraint(equalTo:v1.leadingAnchor)

Sometimes, however, you want a view to vend a set of secondary edges,
with respect to which other views can be positioned. For example, you
might want subviews to keep a minimum distance from the edge of their
superview, and the superview should be able to dictate what that minimum
distance is.
This notion of secondary edges is expressed in two different ways:

Edge insets
A view vends secondary edges as a UIEdgeInsets, a struct consisting of
four floats representing inset values starting at the top and proceeding

counterclockwise — top, left, bottom, right. This is useful when you
need to interface with the secondary edges as numeric values — to set
them, for example, or to perform manual layout.

Layout guides
The UILayoutGuide class (introduced in iOS 9) represents secondary
edges as a kind of pseudoview. It has a frame (its layoutFrame) with
respect to the view that vends it, but its important properties are its
anchors, which are the same as for a view. This, obviously, is useful for
autolayout.

Safe area
An important set of secondary edges you’ll encounter when programming
iOS 11 is the safe area. This is a feature of a UIView, but it is imposed by
the UIViewController that manages this view. One reason a safe area is
needed is that the top and bottom of the interface are often occupied by a
bar (status bar, navigation bar, toolbar, tab bar — see Chapter 12). Your
layout of subviews will typically occupy the region between these bars. But
that’s not easy, because:

A view controller’s main view will typically extend vertically to the
edges of the window behind those bars.
The bars can come and go dynamically, and can change their heights.
For example, by default, in an iPhone app, the status bar will be present
when the app is portrait orientation, but will vanish when the app is in
landscape orientation; similarly, a navigation bar is taller when the app is
in portrait orientation than when the app is in landscape orientation.

Therefore, you need something else, other than the literal top and bottom of
a view controller’s main view, to which to anchor the vertical constraints
that position its subviews — something that will move dynamically to
reflect the current location of the bars. Otherwise, an interface that looks
right under some circumstances will look wrong in others.
Consider, for instance, a view whose top is literally constrained to the top of
the view controller’s main view, which is its superview:

let arr = NSLayoutConstraint.constraints(withVisualFormat:

 "V:|-0-[v]", metrics: nil, views: ["v":v])

When the app is in landscape orientation, with the status bar removed by
default, this view will be right up against the top of the screen, which is
fine. But in portrait orientation, this view will still be right up against the
top of the screen — which might look bad, because the status bar reappears
and overlaps it. If this view is a label, for example, the status bar is now
overlapping its text.
To solve this problem, a UIViewController imposes the safe area on its
main view, describing the region of the main view that is overlapped by the
status bar and other bars. The top of the safe area matches the bottom of the
lowest top bar, or the top of the main view if there is no top bar; the bottom
of the safe area matches the top of the bottom bar, or the bottom of the main
view if there is no bottom bar. The safe area changes as the situation
changes — when the top or bottom bar changes its height, or vanishes
entirely.
In real life, you’ll be most concerned to position subviews of a view
controller’s main view with respect to the main view’s safe area. Your
views constrained to the main view’s safe area will avoid being overlapped
by bars, and will move to track the edges of the main view’s visible area.
Moreover, when a view performs layout, it imposes the safe area on its own
subviews, describing the region of each subview that is overlapped by its
own safe area. Thus, every view “knows” where the bars are.

To retrieve a view’s safe area as edge insets, fetch its safeAreaInsets. To
retrieve a view’s safe area as a layout guide, fetch its safeAreaLayoutGuid
e. You can learn that a subclassed view’s safe area has changed by
overriding safeAreaInsetsDidChange, or that a view controller’s main
view’s safe area has changed by overriding the view controller’s viewSafeA
reaInsetsDidChange; in real life, however, using autolayout, you probably
won’t need that information — you’ll just allow views pinned to a safe area
layout guide to move as the safe area changes.

In this example, v is a view controller’s main view, and v1 is its subview;
we construct a constraint between the top of v1 and the top of the main
view’s safe area:

let c = v1.topAnchor.constraint(equalTo: v.safeAreaLayoutGuide.topAnchor)

The safe area is new in iOS 11. Earlier systems used two objects, the so-
called “top layout guide” and “bottom layout guide,” which were actually
invisible views injected by the view controller as subviews of its main
views. The Xcode 9 nib editor provides access to a view controller’s main
view’s safe area so that you can make constraints to it (as I’ll explain later
in this chapter); if you have an older project, you can transition to using the
safe area in the nib editor by checking Use Safe Area Layout Guides in the
File inspector.
A view controller can inset even further the safe area it imposes on its main
view; set its additionalSafeAreaInsets. This, as the name implies, is
added to the automatic safe area. For example, if you set a view controller’s
additionalSafeAreaInsets to a UIEdgeInsets with a top of 50, and if the
status bar is showing and there is no other top bar, the default safe area top
would be 20, so now it’s 70. The additionalSafeAreaInsets is helpful if
your main view has material at its edge that must always remain visible.
The safe area permits effects that were difficult to achieve in previous
systems, such as centering a view vertically within the visible region
between the top and bottom bars.

TIP
The safe area insets are of increased importance on a device without a bezel, such as the iPhone X,
where they help keep your views away from the rounded corners of the screen, and prevent them
from being interfered with by the sensors and the home indicator, both in portrait and in
landscape.

Margins

A view also has margins of its own. Unlike the safe area, which propagates
down the view hierarchy from the view controller, you are free to set an
individual view’s margins. Once again, the idea is that a subview might be
positioned with respect to its superview’s margins, especially through an
autolayout constraint. By default, a view has a margin of 8 on all four
edges.

A view’s margins are available as a UILayoutGuide through the UIView la
youtMarginsGuide property. Here’s a constraint between a subview’s
leading edge and its superview’s leading margin:

let c = v.leadingAnchor.constraint(equalTo:

 self.view.layoutMarginsGuide.leadingAnchor)

In visual format syntax, a view pinned to its superview’s edge using a single
hyphen, with no explicit distance value, is interpreted as a constraint to the
superview’s margin:

let arr = NSLayoutConstraint.constraints(withVisualFormat:

 "H:|-[v]", metrics: nil, views: ["v":v])

The layoutMarginsGuide property is read-only. To allow you to set a
view’s margins, a UIView has a layoutMargins property, a writable
UIEdgeInsets. New in iOS 11, however, Apple would prefer that you set the
directionalLayoutMargins property instead; this has the feature that
when your interface is reversed in a right-to-left system language for which
your app is localized, its leading and trailing values behave correctly (the
left-to-right leading value becomes the right-to-left leading value). It is
expressed as an NSDirectionalEdgeInsets struct (also new in iOS 11),
whose properties are top, leading, bottom, and trailing.
Optionally, a view’s layout margins can propagate down to its subview, in
the following sense: a subview that overlaps its superview’s margin may
acquire the amount of overlap as a minimum margin of its own. To switch
on this option, set the subview’s preservesSuperviewLayoutMargins to t
rue. For example, suppose we set the superview’s directionalLayoutMar

gins to an NSDirectionalEdgeInsets with a leading value of 40. And
suppose the subview is pinned 10 points from the superview’s leading edge,
so that it overlaps the superview’s leading margin by 30 points. Then, if the
subview’s preservesSuperviewLayoutMargins is true, the subview’s
leading margin is 30.
New in iOS 11, a view’s margin values are treated as insets from the safe
area. For example, suppose a view’s top margin is 8. And suppose this view
underlaps the entire status bar, and thus has acquired a safe area top of 20.
Then its effective top margin value is 28 — meaning that a subview whose
top is pinned exactly to this view’s top margin will appear 28 points below
this view’s top. If you don’t like that behavior (perhaps because you have
code from iOS 10 that predates the existence of the safe area), you can
switch it off by setting the view’s insetsLayoutMarginsFromSafeArea
property to false; now a top margin value of 8 means an effective top
margin value of 8.
In iOS 10 and before, a view controller imposed margins on its main view,
and these could not be changed; you could set the main view’s margins, but
this would have no effect. New in iOS 11, this policy has been softened.
The view controller now has a systemMinimumLayoutMargins property; it
imposes these margins on its main view as a minimum, meaning that you
can increase the main view’s margins beyond these limits, but an attempt to
decrease a margin below them will fail silently. You can evade even that
restriction, however, by setting the view controller’s viewRespectsSystem
MinimumLayoutMargins property to false. The systemMinimumLayoutMa
rgins default value is a top and bottom margin of 0 and side margins of 16
on a smaller device, with side margins of 20 on a larger device.

A second set of margins, a UIView’s readableContentGuide (a
UILayoutGuide), which you cannot change, was introduced in iOS 9. The
basic idea is that a subview consisting of text should not be allowed to grow
as wide as an iPad in landscape, because that’s too wide to read easily,
especially if the text is small. By constraining such a subview horizontally

to its superview’s readableContentGuide, you ensure that that won’t
happen.

Custom layout guides
You can add your own custom UILayoutGuide objects to a view, for
whatever purpose you like. They constitute a view’s layoutGuides array,
and are managed by calling addLayoutGuide(_:) or removeLayoutGuide
(_:). Each custom layout guide object must be configured entirely using
constraints.
Why would you want to do that? Well, you can constrain a view to a
UILayoutGuide, by means of its anchors. Thus, since a UILayoutGuide is
configured by constraints, and since other views can be constrained to it, it
can participate in layout exactly as if it were a subview — but it is not a
subview, and therefore it avoids all the overhead and complexity that a
UIView would have.
For example, consider the question of how to distribute views equally
within their superview. This is easy to arrange initially, but it is not obvious
how to design evenly spaced views that will remain evenly spaced when
their superview is resized. The problem is that constraints describe
relationships between views, not between constraints; there is no way to
constrain the spacing constraints between views to remain equal to one
another automatically as the superview is resized.
You can, on the other hand, constrain the heights or widths of views to
remain equal to one another. The traditional solution, therefore, is to resort
to spacer views with their isHidden set to true. But spacer views are
views; hidden or not, they add overhead with respect to drawing, memory,
touch detection, and more. Custom UILayoutGuides solve the problem;
they can serve the same purpose as spacer views, but they are not views.
I’ll demonstrate. Suppose I have four views that are to remain equally
distributed vertically. I constrain their left and right edges, their heights, and
the top of the first view and the bottom of the last view. This leaves open
the question of how we will determine the vertical position of the two

middle views; they must move in such a way that they are always
equidistant from their vertical neighbors (Figure 1-15).

Figure 1-15. Equal distribution

To solve the problem, I introduce three UILayoutGuide objects between my
real views. A custom UILayoutGuide object is added to a UIView, so I’ll
add mine to the superview of my four real views:

let guides = [UILayoutGuide(), UILayoutGuide(), UILayoutGuide()]

for guide in guides {

 self.view.addLayoutGuide(guide)

}

I then involve my three layout guides in the layout. Remember, they must
be configured entirely using constraints (the three layout guides are
referenced through my guides array, and the four views are referenced
through another array, views):

NSLayoutConstraint.activate([

 // guide left is arbitrary, let's say superview margin

 guides[0].leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 guides[1].leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 guides[2].leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 // guide widths are arbitrary, let's say 10

 guides[0].widthAnchor.constraint(equalToConstant:10),

 guides[1].widthAnchor.constraint(equalToConstant:10),

 guides[2].widthAnchor.constraint(equalToConstant:10),

 // bottom of each view is top of following guide

 views[0].bottomAnchor.constraint(equalTo:guides[0].topAnchor),

 views[1].bottomAnchor.constraint(equalTo:guides[1].topAnchor),

 views[2].bottomAnchor.constraint(equalTo:guides[2].topAnchor),

 // top of each view is bottom of preceding guide

 views[1].topAnchor.constraint(equalTo:guides[0].bottomAnchor),

 views[2].topAnchor.constraint(equalTo:guides[1].bottomAnchor),

 views[3].topAnchor.constraint(equalTo:guides[2].bottomAnchor),

 // guide heights are equal!

 guides[1].heightAnchor.constraint(equalTo:guides[0].heightAnchor),

 guides[2].heightAnchor.constraint(equalTo:guides[0].heightAnchor),

])

I constrain the leading edges of the layout guides (arbitrarily, to the
leading edge of their superview) and their widths (arbitrarily).
I constrain each layout guide to the bottom of the view above it and the
top of the view below it.
Finally, our whole purpose is to distribute our views equally, so the
heights of our layout guides must be equal to one another.

In that code, I clearly could have (and should have) generated each group of
constraints as a loop, thus making this approach suitable for any number of
distributed views; I have deliberately unrolled those loops for the sake of
the example.
In real life, you are unlikely to use this technique directly, because you will
use a UIStackView instead, and let the UIStackView generate all of that
code — as I will explain a little later.
Unfortunately, a custom UILayoutGuide can be created and configured only
in code. If you want to configure a layout entirely in the nib editor, and if
this configuration requires the use of spacer views and cannot be
constructed by a UIStackView, you’ll have to use spacer views — you
cannot replace them with UILayoutGuide objects, because there are no
UILayoutGuide objects in the nib editor.

Intrinsic Content Size and Alignment Rects
Some built-in interface objects, when using autolayout, have an inherent
size in one or both dimensions. For example:

A UIButton, by default, has a standard height, and its width is
determined by its title.
A UIImageView, by default, adopts the size of the image it is displaying.
A UILabel, by default, if it consists of multiple lines and if its width is
constrained, adopts a height sufficient to display all of its text.

This inherent size is the object’s intrinsic content size. The intrinsic content
size is used to generate constraints implicitly (of class
NSContentSizeLayoutConstraint).
A change in the characteristics or content of a built-in interface object — a
button’s title, an image view’s image, a label’s text or font, and so forth —
may thus cause its intrinsic content size to change. This, in turn, may alter
your layout. You will want to configure your autolayout constraints so that
your interface responds gracefully to such changes.
You do not have to supply explicit constraints configuring a dimension of a
view whose intrinsic content size configures that dimension. But you might!
And when you do, the tendency of an interface object to size itself to its
intrinsic content size must not be allowed to conflict with its tendency to
obey your explicit constraints. Therefore, the constraints generated from a
view’s intrinsic content size have a lowered priority, and come into force
only if no constraint of a higher priority prevents them. The following
methods allow you to access these priorities (the parameter is a
UILayoutConstraintAxis, either .horizontal or .vertical):

contentHuggingPriority(for:)

A view’s resistance to growing larger than its intrinsic size in this
dimension. In effect, there is an inequality constraint saying that the
view’s size in this dimension should be less than or equal to its intrinsic
size. The default priority is usually .defaultLow (250), though some
interface classes will default to a higher value if initialized in a nib.

contentCompressionResistancePriority(for:)

A view’s resistance to shrinking smaller than its intrinsic size in this
dimension. In effect, there is an inequality constraint saying that the
view’s size in this dimension should be greater than or equal to its
intrinsic size. The default priority is usually .defaultHigh (750).

Those methods are getters; there are corresponding setters. Situations where
you would need to change the priorities of these tendencies are few, but
they do exist. For example, here are visual formats configuring two
horizontally adjacent labels (lab1 and lab2) to be pinned to the superview
and to one another:

"V:|-20-[lab1]"

"V:|-20-[lab2]"

"H:|-20-[lab1]"

"H:[lab2]-20-|"

"H:[lab1(>=100)]-(>=20)-[lab2(>=100)]"

The inequalities ensure that as the superview becomes narrower or the text
of the labels becomes longer, a reasonable amount of text will remain
visible in both labels. At the same time, one label will be squeezed down to
100 points width, while the other label will be allowed to grow to fill the
remaining horizontal space. The question is: which label is which? You
need to answer that question. To do so, it suffices to raise the compression
resistance priority of one of the labels by a single point above that of the
other (see Appendix B for an extension allowing a number to be added to a
UILayoutPriority):

let p = lab2.contentCompressionResistancePriority(for: .horizontal)

lab1.setContentCompressionResistancePriority(p+1, for: .horizontal)

You can supply an intrinsic size in your own custom UIView subclass by
overriding intrinsicContentSize. Obviously you should do this only if
your view’s size depends on its contents. If you need the runtime to ask for
your intrinsicContentSize again, because that size has changed and the

view needs to be laid out afresh, it’s up to you to call your view’s invalida
teIntrinsicContentSize method.
Another question with which your custom UIView subclass might be
concerned is what it should mean for another view to be aligned with it. It
might mean aligned with your view’s frame edges, but then again it might
not. A possible example is a view that draws, internally, a rectangle with a
shadow; you probably want to align things with that drawn rectangle, not
with the outside of the shadow. To determine this, you can override your
view’s alignmentRectInsets property (or, more elaborately, its alignmen
tRect(forFrame:) and frame(forAlignmentRect:) methods).

WARNING
Be careful with changing a view’s alignmentRectInsets, as you are effectively changing where
the view’s edges are for purposes of all constraints involving those edges. For example, if a view’s
alignment rect has a left inset of 30, then all constraints involving that view’s .leading attribute
or leadingAnchor are reckoned from that inset.

By the same token, you may want to be able to align your custom UIView
with another view by their baselines. The assumption here is that your view
has a subview containing text and, therefore, possessing a baseline. Your
custom view will return that subview in its implementation of forFirstBas
elineLayout or forLastBaselineLayout.

Stack Views
A stack view (UIStackView), introduced in iOS 9, is a view whose primary
task is to generate constraints for some or all of its subviews. These are its
arranged subviews. In particular, a stack view solves the problem of
providing constraints when subviews are to be configured linearly in a
horizontal row or a vertical column. In practice, it turns out that many
layouts can be expressed as an arrangement, possibly nested, of simple rows

and columns of subviews. Thus, you are likely to resort to stack views to
make your layout easier to construct and maintain.
You can supply a stack view with arranged subviews by calling its
initializer init(arrangedSubviews:). The arranged subviews become the
stack view’s arrangedSubviews read-only property. You can also manage
the arranged subviews with these methods:

addArrangedSubview(_:)

insertArrangedSubview(_:at:)

removeArrangedSubview(_:)

The arrangedSubviews array is different from, but is a subset of, the stack
view’s subviews. It’s fine for the stack view to have subviews that are not
arranged (and which you’ll have to provide with constraints yourself), but if
you set a view as an arranged subview and it is not already a subview, the
stack view will adopt it as a subview at that moment.

The order of the arrangedSubviews is independent of the order of the sub
views; the subviews order, you remember, determines the order in which
the subviews are drawn, but the arrangedSubviews order determines how
the stack view will position those subviews.
Using its properties, you configure the stack view to tell it how it should
arrange its arranged subviews:

axis

Which way should the arranged subviews be arranged? Your choices are
(UILayoutConstraintAxis):

.horizontal

.vertical

alignment

This describes how the arranged subviews should be laid out with
respect to the other dimension. Your choices are
(UIStackViewAlignment):

.fill

.leading (or .top)

.center

.trailing (or .bottom)

.firstBaseline or .lastBaseline (if the axis is .horizontal)

If the axis is .vertical, you can still involve the subviews’ baselines
in their spacing by setting the stack view’s isBaselineRelativeArran
gement to true.

distribution

How should the arranged subviews be positioned along the axis? This
is why you are here! You’re using a stack view in the first place because
you want this positioning performed for you. Your choices are
(UIStackViewDistribution):

.fill

The arranged subviews can have real size constraints or intrinsic
content sizes along the arranged dimension. Using those sizes, the
arranged subviews will fill the stack view from end to end. But there
must be at least one view without a real size constraint, so that it can
be resized to fill the space not taken up by the other views. If more
than one view lacks a real size constraint, one must have a lowered
content hugging (if stretching) or compression resistance (if
squeezing) so that the stack view knows which view to resize.

.fillEqually

The arranged subviews will be made the same size in the arranged
dimension, so as to fill the stack view. No view may have a real size
constraint along the arranged dimension.

.fillProportionally

All arranged subviews must have an intrinsic content size and no
real size constraint along the arranged dimension. The views will
then fill the stack view, sized according to the ratio of their intrinsic
content sizes.

.equalSpacing

The arranged subviews can have real size constraints or intrinsic
content sizes along the arranged dimension. Using those sizes, the
arranged subviews will fill the stack view from end to end with
equal space between each adjacent pair.

.equalCentering

The arranged subviews can have real size constraints or intrinsic
content sizes along the arranged dimension. Using those sizes, the
arranged subviews will fill the stack view from end to end with
equal distance between the centers of each adjacent pair.

The stack view’s spacing property determines the spacing (or
minimum spacing) between all the views; new in iOS 11, you can set
the spacing for individual views by calling setCustomSpacing(_:afte
r:).

isLayoutMarginsRelativeArrangement

If true, the stack view’s internal layoutMargins are involved in the
positioning of its arranged subviews. If false (the default), the stack
view’s literal edges are used.

WARNING
Do not manually add constraints positioning an arranged subview! Adding those constraints is
precisely the job of the stack view. Your constraints will conflict with the constraints created by
the stack view. On the other hand, you must constrain the stack view itself (unless the stack view
is itself an arranged view of a containing stack view).

To illustrate, I’ll rewrite the equal distribution code from earlier in this
chapter (Figure 1-15). I have four views, with height constraints. I want to
distribute them vertically in my main view. This time, I’ll have a stack view
do all the work for me:

// give the stack view arranged subviews

let sv = UIStackView(arrangedSubviews: views)

// configure the stack view

sv.axis = .vertical

sv.alignment = .fill

sv.distribution = .equalSpacing

// constrain the stack view

sv.translatesAutoresizingMaskIntoConstraints = false

self.view.addSubview(sv)

let marg = self.view.layoutMarginsGuide

let safe = self.view.safeAreaLayoutGuide

NSLayoutConstraint.activate([

 sv.topAnchor.constraint(equalTo:safe.topAnchor),

 sv.leadingAnchor.constraint(equalTo:marg.leadingAnchor),

 sv.trailingAnchor.constraint(equalTo:marg.trailingAnchor),

 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),

])

Inspecting the resulting constraints, you can see that the stack view is doing
for us effectively just what we did earlier (generating UILayoutGuide
objects and using them as spacers). But letting the stack view do it is a lot
easier!
Another nice feature of UIStackView is that it responds intelligently to
changes. For example, having configured things with the preceding code, if
we were subsequently to make one of our arranged subviews invisible (by
setting its isHidden to true), the stack view would respond by distributing
the remaining subviews evenly, as if the hidden subview didn’t exist.
Similarly, we can change properties of the stack view itself in real time.
Such flexibility can be very useful for making whole areas of your interface
come and go and rearrange themselves at will.

Internationalization

Your app’s entire interface and its behavior are reversed when the app runs
on a system for which the app is localized and whose language is right-to-
left. Wherever you use leading and trailing constraints instead of left and
right constraints, or if your constraints are generated by stack views or are
constructed using the visual format language, your app’s layout will
participate in this reversal more or less automatically.
There may, however, be exceptions. Apple gives the example of a
horizontal row of transport controls that mimic the buttons on a CD player:
you wouldn’t want the Rewind button and the Fast Forward button to be
reversed just because the user’s language reads right-to-left. Therefore, a
UIView is endowed with a semanticContentAttribute property stating
whether it should be flipped; the default is .unspecified, but a value of .p
layback or .spatial will prevent flipping, and you can also force an
absolute direction with .forceLeftToRight or .forceRightToLeft. This
property can also be set in the nib editor (using the Semantic pop-up menu
in the Attributes inspector).

Interface directionality is a trait, a trait collection’s .layoutDirection; and
a UIView has an effectiveUserInterfaceLayoutDirection property
that reports the direction that it will use to lay out its contents, and which
you can consult if you are constructing a view’s subviews in code.

TIP
You can test your app’s right-to-left behavior easily by changing the scheme’s Run option
Application Language to Right to Left Pseudolanguage.

Mistakes with Constraints
Creating constraints manually, as I’ve been doing so far in this chapter, is an
invitation to make a mistake. Your totality of constraints constitute
instructions for view layout, and it is all too easy, as soon as more than one
or two views are involved, to generate faulty instructions. You can (and
will) make two major kinds of mistake with constraints:

Conflict
You have applied constraints that can’t be satisfied simultaneously. This
will be reported in the console (at great length).

Underdetermination (ambiguity)
A view uses autolayout, but you haven’t supplied sufficient information
to determine its size and position. This is a far more insidious problem,
because nothing bad may seem to happen. If you’re lucky, the view will
at least fail to appear, or will appear in an undesirable place, alerting
you to the problem.

Only .required constraints (priority 1000) can contribute to a conflict, as
the runtime is free to ignore lower-priority constraints that it can’t satisfy.
Constraints with different priorities do not conflict with one another.
Nonrequired constraints with the same priority can contribute to ambiguity.
Under normal circumstances, layout isn’t performed until your code
finishes running — and even then only if needed. Ambiguous layout isn’t
ambiguous until layout actually takes place; it is perfectly reasonable to
cause an ambiguous layout temporarily, provided you resolve the ambiguity
before layoutSubviews is called. On the other hand, a conflicting
constraint conflicts the instant it is added. That’s why, when deactivating
and then activating constraints in code, you should deactivate first and
activate second, and not the other way around.
Let’s start by generating a conflict. In this example, we return to our small
red square in the lower right corner of a big magenta square (Figure 1-12)
and append a contradictory constraint:

let d = ["v2":v2,"v3":v3]

NSLayoutConstraint.activate([

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:|[v2]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:|[v2(10)]", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:[v3(20)]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:[v3(20)]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:[v3(10)]|", metrics: nil, views: d) // *

].flatMap{$0})

The height of v3 can’t be both 10 and 20. The runtime reports the conflict,
and tells you which constraints are causing it:

Unable to simultaneously satisfy constraints. Probably at least one of the

constraints in the following list is one you don't want...

<NSLayoutConstraint:0x60008b6d0 UIView:0x7ff45e803.height == + 20 (active)>,

<NSLayoutConstraint:0x60008bae0 UIView:0x7ff45e803.height == + 10 (active)>

TIP
You can assign a constraint (or a UILayoutGuide) an identifier string; this can make it easier to
determine which constraint in a conflict report is which.

Now we’ll generate an ambiguity. Here, we neglect to give our small red
square a height:

let d = ["v2":v2,"v3":v3]

NSLayoutConstraint.activate([

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:|[v2]|", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "V:|[v2(10)]", metrics: nil, views: d),

 NSLayoutConstraint.constraints(withVisualFormat:

 "H:[v3(20)]|", metrics: nil, views: d)

].flatMap{$0})

No console message alerts us to our mistake. Fortunately, however, v3 fails
to appear in the interface, so we know something’s wrong. If your views fail
to appear, suspect ambiguity. In a less fortunate case, the view might
appear, but (if we’re lucky) in the wrong place. In a truly unfortunate case,
the view might appear in the right place, but not consistently.

Suspecting ambiguity is one thing; tracking it down and proving it is
another. Fortunately, the view debugger will report ambiguity instantly
(Figure 1-16). With the app running, choose Debug → View Debugging →
Capture View Hierarchy, or click the Debug View Hierarchy button in the
debug toolbar. The exclamation mark in the Debug navigator, at the left, is
telling us that this view (which does not appear in the canvas) has
ambiguous layout; moreover, the Issue navigator, in the Runtime pane, tells
us more explicitly, in words: “Height and vertical position are ambiguous
for UIView.”

Figure 1-16. View debugging

Another useful trick is to pause in the debugger and give the following
mystical command in the console:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

The result is a graphical tree describing the view hierarchy and marking any
ambiguously laid out views:

UIWindow:0x7fe8d0d9dbd0

| •UIView:0x7fe8d0c2bf00

| | +UIView:0x7fe8d0c2c290

| | | *UIView:0x7fe8d0c2c7e0

| | | *UIView:0x7fe8d0c2c9e0- AMBIGUOUS LAYOUT

UIView also has a hasAmbiguousLayout property; I find it useful to set up
a utility method that lets me check a view and all its subviews at any depth
for ambiguity:

extension NSLayoutConstraint {

 class func reportAmbiguity (_ v:UIView?) {

 var v = v

 if v == nil {

 v = UIApplication.shared.keyWindow

 }

 for vv in v!.subviews {

 print("\(vv) \(vv.hasAmbiguousLayout)")

 if vv.subviews.count > 0 {

 self.reportAmbiguity(vv)

 }

 }

 }

}

You can call that method in your code, or while paused in the debugger:

(lldb) expr NSLayoutConstraint.reportAmbiguity(nil)

To get a full list of the constraints responsible for positioning a particular
view within its superview, log the results of calling the UIView instance
method constraintsAffectingLayout(for:). The parameter is an axis
(UILayoutConstraintAxis), either .horizontal or .vertical. These
constraints do not necessarily belong to this view (and the output doesn’t
tell you what view they do belong to). If a view doesn’t participate in
autolayout, the result will be an empty array. Again, a utility method can
come in handy:

extension NSLayoutConstraint {

 class func listConstraints (_ v:UIView?) {

 var v = v

 if v == nil {

 v = UIApplication.shared.keyWindow

 }

 for vv in v!.subviews {

 let arr1 = vv.constraintsAffectingLayout(for:.horizontal)

 let arr2 = vv.constraintsAffectingLayout(for:.vertical)

 NSLog("\n\n%@\nH: %@\nV:%@", vv, arr1, arr2);

 if vv.subviews.count > 0 {

 self.listConstraints(vv)

 }

 }

 }

}

And here’s how to call it from the debugger:

(lldb) expr NSLayoutConstraint.listConstraints(nil)

UILayoutGuide responds to hasAmbiguousLayout and constraintsAffec
tingLayout(for:) as well.
Given the notions of conflict and ambiguity, it is easier to understand what
priorities are for. Imagine that all constraints have been placed in boxes,
where each box is a priority value, in descending order. Now pretend that
we are the runtime, performing layout in obedience to these constraints.
How do we proceed?

The first box (.required, 1000) contains all the required constraints, so we
obey them first. (If they conflict, that’s bad, and we report this in the log.) If
there still isn’t enough information to perform unambiguous layout given
the required priorities alone, we pull the constraints out of the next box and
try to obey them. If we can, consistently with what we’ve already done,
fine; if we can’t, or if ambiguity remains, we look in the next box — and so
on. For a box after the first, we don’t care about obeying exactly the
constraints it contains; if an ambiguity remains, we can use a lower-priority
constraint value to give us something to aim at, resolving the ambiguity,
without fully obeying the lower-priority constraint’s desires. For example,
an inequality is an ambiguity, because an infinite number of values will
satisfy it; a lower-priority equality can tell us what value to prefer, resolving
the ambiguity, but there’s no conflict even if we can’t fully achieve that
preferred value.

Configuring Layout in the Nib

The focus of the discussion so far has been on configuring layout in code.
This, however, will often be unnecessary; instead, you’ll set up your layout
in the nib, using the nib editor. It would not be strictly true to say that you
can do absolutely anything in the nib that you could do in code, but the nib
editor is certainly a remarkably powerful way of configuring layout (and
where it falls short, you can always supplement it with some code in
addition).
In the File inspector when a .storyboard or .xib file is selected, you can
make three major choices related to layout, by way of checkboxes. The
default is that these checkboxes are checked, and I recommend that you
leave them that way:

Use Auto Layout
If unchecked, no constraints can be created in the nib editor: layout for
your views must be configured entirely using autoresizing.

Use Trait Variations
If checked, various settings in the nib editor, such as the value of a
constraint’s constant, can be made to depend upon the environment’s
size classes at runtime (“Trait Collections and Size Classes”); moreover,
the modern repertoire of segues, such as popover and detail segues,
springs to life.

Use Safe Area Layout Guides
If unchecked, the top layout guide and bottom layout guide (invisible
views imposed on its main view by a view controller) are displayed, and
you can construct constraints to them. If checked, the iOS 11 safe area
is used instead. The nib’s safe area is backward compatible to systems
before iOS 11; it will be translated into the top layout guide and bottom
layout guide on those systems.

Autoresizing in the Nib
When you drag a view from the Object library into the canvas, it uses
autoresizing by default, and will continue to do so unless you involve it in

autolayout by adding a constraint that affects it.
When editing a view that uses autoresizing, you can assign it springs and
struts in the Size inspector. A solid line externally represents a strut; a solid
line internally represents a spring. A helpful animation shows you the effect
on your view’s position and size as its superview is resized.

Creating a Constraint
The nib editor provides two primary ways to create a constraint:

Control-drag
Control-drag from one view to another. A HUD (heads-up display)
appears, listing constraints that you can create (Figure 1-17). Either
view can be in the canvas or in the document outline. To create an
internal width or height constraint, Control-drag from a view to itself.
When you Control-drag within the canvas, the direction of the drag is
used to winnow the options presented in the HUD; for example, if you
Control-drag horizontally within a view in the canvas, the HUD lists
Width but not Height.
While viewing the HUD, you might want to toggle the Option key to
see some alternatives; for example, this might make the difference
between an edge or safe area constraint and a margin-based constraint.
Holding the Shift key lets you create multiple constraints
simultaneously.

Figure 1-17. Creating a constraint by Control-dragging

Layout bar buttons
Click the Align or Add New Constraints button at the right end of the
layout bar below the canvas. These buttons summon little popover
dialogs where you can choose multiple constraints to create (possibly
for multiple views, if that’s what you’ve selected beforehand) and
provide them with numeric values (Figure 1-18). Constraints are not
actually added until you click Add Constraints at the bottom.

Figure 1-18. Creating constraints from the layout bar

To set a view’s layout margins explicitly, switch to the Size inspector and
change the Layout Margins pop-up menu to Fixed (or better, new in Xcode
9, to Language Directional). To make a view’s layout margins behave as re
adableContentGuide margins, check Follow Readable Width.
A view controller’s main view’s safe area is displayed automatically in the
document outline, so you can Control-drag to it to create a constraint. If you
need to see any other view’s safe area, switch to the Size inspector and
check Safe Area Layout Guide.

TIP
A constraint that you create in the nib does not have to be perfect immediately upon creation! You
will subsequently be able to edit the constraint and configure it further, as I’ll explain in the next
section.

If you create constraints and then move or resize a view affected by those
constraints, the constraints are not automatically changed. This means that
the constraints no longer match the way the view is portrayed; if the
constraints were to position the view, they wouldn’t put it where you’ve put
it. The nib editor will alert you to this situation (a Misplaced Views issue),
and can readily resolve it for you, but it won’t do so unless you explicitly
ask it to.

Viewing and Editing Constraints
Constraints in the nib are full-fledged objects. They can be selected, edited,
and deleted. Moreover, you can create an outlet to a constraint (and there
are reasons why you might want to do so).
Constraints in the nib are visible in three places (Figure 1-19):

Figure 1-19. A view’s constraints displayed in the nib

In the document outline

Constraints are listed in a special category, “Constraints,” under the
view to which they belong. (You’ll have a much easier time
distinguishing these constraints if you give your views meaningful
labels!)

In the canvas
Constraints appear graphically as dimension lines when you select a
view that they affect (unless you uncheck Editor → Canvas → Show
Constraints).

In the Size inspector
When a view affected by constraints is selected, the Size inspector lists
those constraints, along with a grid that displays the view’s constraints
graphically. Clicking a constraint in the grid filters the constraints listed
below it.

When you select a constraint in the document outline or the canvas, you can
view and edit its values in the Attributes or Size inspector. The inspector
gives you access to almost all of a constraint’s features: the anchors
involved in the constraint (the First Item and Second Item pop-up menus),
the relation between them, the constant and multiplier, and the priority. You
can also set the identifier here (useful when debugging, as I mentioned
earlier).
The First Item and Second Item pop-up menus may list alternative
constraint types; thus, for example, a width constraint may be changed to a
height constraint. New in Xcode 9, these pop-up menus may also list
alternative objects to constrain to, such as other sibling views, the
superview, and the safe area. Also, these pop-up menus may have a
“Relative to margin” option, which you can check or uncheck to toggle
between an edge-based and a margin-based constraint. Thus, if you
accidentally created the wrong constraint, or if you weren’t quite able to
specify the desired constraint at creation time, editing will usually permit
you to fix things. For example, when you constrain a subview to the view
controller’s main view, the HUD offers no way to constrain to the main

view’s edge; but if you hold Option and constrain to the main view’s
margin, you can then uncheck “Relative to margin” in the pop-up menu.
For simple editing of a constraint’s constant, relation, priority, and
multiplier, double-click the constraint in the canvas to summon a little
popover dialog. When a constraint is listed in a view’s Size inspector,
double-click it to edit it in its own inspector, or click its Edit button to
summon the little popover dialog.
A view’s Size inspector also provides access to its content hugging and
content compression resistance priority settings. Beneath these, there’s an
Intrinsic Size pop-up menu. The idea here is that your custom view might
have an intrinsic size, but the nib editor doesn’t know this, so it will report
an ambiguity when you fail to provide (say) a width constraint that you
know isn’t actually needed; choose Placeholder to supply an intrinsic size
and relieve the nib editor’s worries.
In a constraint’s Attributes or Size inspector, there is a Placeholder
checkbox (“Remove at build time”). If you check this checkbox, the
constraint you’re editing won’t be instantiated when the nib is loaded: in
effect, you are deliberately generating ambiguous layout when the views
and constraints are instantiated from the nib. You might do this because you
want to simulate your layout in the nib editor, but you intend to provide a
different constraint in code; perhaps you weren’t quite able to describe this
constraint in the nib, or the constraint depends upon circumstances that
won’t be known until runtime.

Problems with Nib Constraints
I’ve already said that generating constraints manually, in code, is error-
prone. But it isn’t error-prone in the nib editor! The nib editor knows
whether it contains problematic constraints. If a view is affected by any
constraints, the Xcode nib editor will permit them to be ambiguous or
conflicting, but it will also complain helpfully. You should pay attention to
such complaints! The nib editor will bring the situation to your attention in
various places:

Canvas
Constraints drawn in the canvas when you select a view that they affect
use color coding to express their status:

Satisfactory constraints
Drawn in blue.

Problematic constraints
Drawn in red.

Misplacement constraints
Drawn in orange; these constraints are valid, but they are
inconsistent with the frame you have imposed upon the view. I’ll
discuss misplaced views in the next paragraph.

Document outline
If there are layout issues, the document outline displays a right arrow in
a red or orange circle. Click it to see a detailed list of the issues
(Figure 1-20). Hover the mouse over a title to see an Info button which
you can click to learn more about the nature of this issue. The icons at
the right are buttons: click one for a list of things the nib editor is
offering to do to fix the issue for you. The chief issues are:

Conflicting Constraints
A conflict between constraints.

Missing Constraints
Ambiguous layout.

Misplaced Views
If you manually change the frame of a view that is affected by
constraints (including its intrinsic size), then the canvas may be
displaying that view differently from how it would really appear if
the current constraints were obeyed. A Misplaced Views situation is
also described in the canvas:

The constraints in the canvas, drawn in orange, display the
numeric difference between their values and the view’s frame.
A dotted outline in the canvas may show where the view would
be drawn if the existing constraints were obeyed.

Figure 1-20. Layout issues in the document outline

TIP
You can turn off ambiguity checking for a particular view; use the Ambiguity pop-up menu in the
view’s Size inspector. This means you can omit a needed constraint and not be notified by the nib
editor that there’s a problem. You will need to generate the missing constraint in code, obviously,
or you’ll have ambiguous layout.

Having warned you of problems with your layout, the nib editor also
provides tools to fix them.
The Update Frames button in the layout bar (or Editor → Update Frames)
changes the way the selected views or all views are drawn in the canvas, to
show how things would really appear in the running app under the
constraints as they stand. Alternatively, if you have resized a view with
intrinsic size constraints, such as a button or a label, and you want it to
resume the size it would have according to those intrinsic size constraints,
select the view and choose Editor → Size to Fit Content.

WARNING
Be careful with Update Frames: if constraints are ambiguous, this can cause a view to disappear.

The Resolve Auto Layout Issues button in the layout bar (or the Editor →
Resolve Auto Layout Issues hierarchical menu) proposes large-scale moves
involving all the constraints affecting either selected views or all views:

Update Constraint Constants
Choose this menu item to change numerically all the existing
constraints affecting a view to match the way the canvas is currently
drawing the view’s frame.

Add Missing Constraints
Create new constraints so that the view has sufficient constraints to
describe its frame unambiguously. The added constraints correspond to
the way the canvas is currently drawing the view’s frame.
This command may not do what you ultimately want; you should regard
it as a starting point. After all, the nib editor can’t read your mind! For
example, it doesn’t know whether you think a certain view’s width
should be determined by an internal width constraint or by pinning it to
the left and right of its superview; and it may generate alignment
constraints with other views that you never intended.

Reset to Suggested Constraints
This is as if you chose Clear Constraints followed by Add Missing
Constraints: it removes all constraints affecting the view, and replaces
them with a complete set of automatically generated constraints
describing the way the canvas is currently drawing the view’s frame.

Clear Constraints
Removes all constraints affecting the view.

Varying the Screen Size

The purpose of constraints will usually be to design a layout that responds
to the possibility of the app launching on devices of different sizes, and
perhaps subsequently being rotated. Imagining how this is going to work in
real life is not always easy, and you may doubt that you are getting the
constraints right as you configure them in the nib editor. Have no fear:
Xcode is here to help.
There’s a View As button at the lower left of the canvas. Click it to reveal
(if they are not already showing) buttons representing a variety of device
types and orientations. Click a button, and the canvas’s main views are
resized accordingly.
When that happens, the layout dictated by your constraints is obeyed
immediately. Thus, you can try out the effect of your constraints under
different screen sizes right there in the canvas.

WARNING
This feature works only if the view controller’s Simulated Size pop-up menu in the Size inspector
says Fixed. If it says Freeform, the view won’t be resized when you click a device type or
orientation button.

Conditional Interface Design
The View As button at the lower left of the canvas states the size classes
(see “Trait Collections and Size Classes”) for the currently chosen device
and orientation, using a notation like this: wR hC. The w and h stand for
“width” and “height,” corresponding to the trait collection’s .horizontalS
izeClass and .verticalSizeClass respectively; the R and C stand for .re
gular and .compact.
The reason you’re being given this information is that you might want the
configuration of your constraints and views in the nib editor to be
conditional upon the size classes that are in effect at runtime. You can
arrange in the nib editor for your app’s interface to detect the traitCollec
tionDidChange notification and respond to it. Thus, for example:

You can design directly into your interface a complex rearrangement of
the interface when an iPhone app rotates to compensate for a change in
device orientation.
A single .storyboard or .xib file can be used to design the interface of a
universal app, even though the iPad interface and the iPhone interface
may be quite different from one another.

The idea when constructing a conditional interface is that you design first
for the most general case. When you’ve done that, and when you want to do
something different for a particular size class situation, you’ll describe that
difference in the Attributes or Size inspector, or design that difference in the
canvas:

In the Attributes or Size inspector
Look for a Plus symbol to the left of a value in the Attributes or Size
inspector. This is a value that you can vary conditionally, depending on
the environment’s size class at runtime. The Plus symbol is a button!
Click it to see a popover from which you can choose a specialized size
class combination. When you do, that value now appears twice: once for
the general case, and once for the specialized case which is marked
using wR hC notation. You can now provide different values for those
two cases.

In the canvas
Click the Vary for Traits button, to the right of the device types buttons.
Two checkboxes appear, allowing you to specify that you want to match
the width or height size class (or both) of the current size class. Any
designing you now do in the canvas will be applied only to that width or
height size class (or both), also modifying the Attributes or Size
inspector as needed.

I’ll illustrate these approaches with a little tutorial. You’ll need to have an
example project on hand; make sure it’s a Universal app.

Size classes in the inspectors

Suppose we have a button in the canvas, and we want this button to have a
yellow background on iPad only. (This is improbable but dramatic.) You
can configure this directly in the Attributes inspector, as follows:

1. Select the button in the interface.
2. Switch to the Attributes inspector, and locate the Background pop-up

menu in the View section of the inspector.
3. Click the Plus button to bring up a popover with pop-up menus for

specifying size classes. An iPad has width (horizontal) size class
Regular and height (vertical) size class Regular), so change the first
two pop-up menus so that they both say Regular. Click Add Variation.

4. A second Background pop-up menu has appeared, marked wR hR.
Change it to yellow (or any desired color).

The button now has a colored background on iPad but not on iPhone. To see
that this is true, without running the app on different device types, use the
View As button and the device buttons at the lower left of the canvas to
switch between different screen sizes. When you click an iPad button, the
button in the canvas has a yellow background. When you click an iPhone
button, the button in the canvas has its default clear background.
Now that you know what the Plus button means, look over the Attributes
and Size inspectors. Anything with a Plus button can be varied in
accordance with the size class environment. For example, a button’s text
can be a different font and size; this makes sense because you might want
the text to be larger on an iPad. A button’s Hidden checkbox can be
different for different size classes, so that the button is invisible on some
device types (new in Xcode 9). And at the bottom of the Attributes
inspector is the Installed checkbox; unchecking this for a particular size
class combination causes the button to be entirely absent from the interface.

Size classes in the canvas
Suppose your interface has a button pinned by its top and left to the top left
of its superview. And suppose that, on iPad devices only, you want this
button to be pinned by its right to the top right of its superview. (Again, this

is improbable but dramatic.) That means the leading constraint will exist
only on iPhone devices, to be replaced by a trailing constraint on iPad
devices. The constraints are different objects. The way to configure
different objects for different size classes is to use the Vary for Traits
button, as follows:

1. Among the device type buttons, click one of the iPhone buttons
(furthest to the right). Configure the button so that it’s pinned by its
top and left to the top left of the main view.

2. Among the device type buttons, click one of the iPad buttons (furthest
to the left). The size classes are now listed as wR hR.

3. Click Vary for Traits. In the little popover that appears, check both
boxes: we want the change we are about to make to apply only when
both the width size class and the height size class match our current
size class (they should both be .regular). The entire layout bar
becomes blue, to signify that we are operating in a special conditional
design mode.

4. Make the desired change: Select the button in the interface; select the
left constraint; delete the left constraint; slide the button to the right of
the interface; Control-drag from the button to the right and create a
new trailing constraint. If necessary, click the Update Frames button
to make the orange Misplaced Views warning symbol go away.

5. Click Done Varying. The layout bar ceases to be blue.
We’ve created a conditional constraint. To see that this is true, click an
iPhone device button and then click an iPad device button. As you do, the
button in the interface jumps between the left and right sides of the
interface. Its position depends upon the device type!
The inspectors for this button accord with the change we’ve just made. To
see that this is true, click the button, select the trailing or leading constraint
(depending on the device type), and look in the Attributes or Size inspector.
The constraint has two Installed checkboxes, one for the general case and
one for wR hR. Only one of these checkboxes is checked; the constraint is
present in one case but not the other.

TIP
In the document outline, a constraint or view that is not installed for the current set of size classes
is listed with a faded icon.

Xcode View Features
This section summarizes some miscellaneous view-related features of
Xcode that are worth knowing about.

View Debugger
To enter the view debugger, choose Debug → View Debugging → Capture
View Hierarchy, or click the Debug View Hierarchy button in the debug bar.
The result is that your app’s current view hierarchy is analyzed and
displayed (Figure 1-21):

Figure 1-21. View debugging (again)

On the left, in the Debug navigator, the views and their constraints are
listed hierarchically. (New in Xcode 9, view controllers are also listed as
part of the hierarchy.)

In the center, in the canvas, the views and their constraints are displayed
graphically. The window starts out facing front, much as if you were
looking at the screen with the app running; but if you swipe sideways a
little in the canvas, the window rotates and its subviews are displayed in
front of it, in layers. You can adjust your perspective in various ways; for
example:
— The slider at the lower left changes the distance between the layers.
— The double-slider at the lower right lets you eliminate the display of
views from the front or back of the layering order (or both).
— You can double-click a view to focus on it, eliminating its superviews
from the display. Double-click outside the view to exit focus mode.
— You can switch to wireframe mode.
— You can display constraints for the currently selected view.
On the right, the Object inspector and the Size inspector tell you details
about the currently selected object (view or constraint).

When a view is selected in the Debug navigator or in the canvas, the Size
inspector lists its bounds and all the constraints that determine those
bounds. This, along with the layered graphical display of your views and
constraints in the canvas, can help you ferret out the cause of any
constraint-related difficulties.

Previewing Your Interface
When you’re displaying the nib editor in Xcode, show the assistant pane. Its
Tracking menu (the first component in its jump bar) includes the Preview
option. Choose it to see a preview of the currently selected view controller’s
view (or, in a .xib file, the top-level view).
At the lower left, the Plus button lets you add previews for different devices
and device sizes; you can thus compare your interface on different devices
simultaneously. At the bottom of each preview, a Rotate button lets you
toggle its orientation. The previews take account of constraints and
conditional interface.

At the lower right, a language pop-up menu lets you switch your app’s text
(buttons and labels) to another language for which you have localized your
app, or to an artificial “double-length” language.

Designable Views and Inspectable Properties
Your custom view can be drawn correctly in the nib editor canvas and
preview even if it is configured in code. To take advantage of this feature,
you need a UIView subclass declared @IBDesignable.
If an instance of this UIView subclass appears in the nib editor, then its self-
configuration methods, such as willMove(toSuperview:), will be
compiled and run as the nib editor prepares to portray your view. In
addition, your view can implement the special method prepareForInterfa
ceBuilder to perform visual configurations aimed specifically at how it
will be portrayed in the nib editor. In this way, you can even portray in the
nib editor a feature that your view will adopt later in the life of the app. For
example, if your view contains a UILabel that is created and configured
empty but will eventually contain text, you could implement prepareForIn
terfaceBuilder to give the label some sample text to be displayed in the
nib editor.
In Figure 1-22, I refactor a familiar example. Our view subclass gives itself
a magenta background, along with two subviews, one across the top and the
other at the lower right — all designed in code. The nib contains an instance
of this view subclass. When the app runs, willMove(toSuperview:) will
be called, the code will run, and the subviews will be present. But because w
illMove(toSuperview:) is also called by the nib editor, the subviews are
displayed in the nib editor as well:

Figure 1-22. A designable view

@IBDesignable class MyView: UIView {

 func configure() {

 self.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)

 let v2 = UIView()

 v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

 let v3 = UIView()

 v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)

 v2.translatesAutoresizingMaskIntoConstraints = false

 v3.translatesAutoresizingMaskIntoConstraints = false

 self.addSubview(v2)

 self.addSubview(v3)

 NSLayoutConstraint.activate([

 v2.leftAnchor.constraint(equalTo:self.leftAnchor),

 v2.rightAnchor.constraint(equalTo:self.rightAnchor),

 v2.topAnchor.constraint(equalTo:self.topAnchor),

 v2.heightAnchor.constraint(equalToConstant:20),

 v3.widthAnchor.constraint(equalToConstant:20),

 v3.heightAnchor.constraint(equalTo:v3.widthAnchor),

 v3.rightAnchor.constraint(equalTo:self.rightAnchor),

 v3.bottomAnchor.constraint(equalTo:self.bottomAnchor),

])

 }

 override func willMove(toSuperview newSuperview: UIView!) {

 self.configure()

 }

}

In addition, you can configure custom view properties directly in the nib
editor. If your UIView subclass has a property whose value type is
understood by the nib editor, and if this property is declared @IBInspectab
le, then if an instance of this UIView subclass appears in the nib, that
property will get a field of its own at the top of the view’s Attributes
inspector. Thus, when a custom UIView subclass is to be instantiated from
the nib, its custom properties can be set in the nib editor rather than having
to be set in code. (This feature is actually a convenient equivalent of setting
a nib object’s User Defined Runtime Attributes in the Identity inspector.)
Inspectable property types are: Bool, number, String, CGRect, CGPoint,
CGSize, NSRange, UIColor, or UIImage. For classes (UIColor and
UIImage), the property type can be an Optional. You can assign a default
value in code; the Attributes inspector won’t portray this value as the
default, but you can tell it to use the default by leaving the field empty (or,
if you’ve entered a value, by deleting that value).

@IBDesignable and @IBInspectable are unrelated, but the former is
aware of the latter. Thus, you can use an inspectable property to change the
nib editor’s display of your interface.

In this example, we use @IBDesignable and @IBInspectable to work
around an annoying limitation of the nib editor. A UIView can draw its own
border automatically, by setting its layer’s borderWidth (Chapter 3). But
this can be configured only in code. There’s nothing in a view’s Attributes
inspector that lets you set a layer’s borderWidth, and special layer

configurations are not normally portrayed in the canvas. @IBDesignable
and @IBInspectable to the rescue:

@IBDesignable class MyButton : UIButton {

 @IBInspectable var borderWidth : Int {

 set {

 self.layer.borderWidth = CGFloat(newValue)

 }

 get {

 return Int(self.layer.borderWidth)

 }

 }

}

The result is that, in nib editor, our button’s Attributes inspector has a
Border Width custom property, and when we change the Border Width
property setting, the button is redrawn with that border width (Figure 1-23).
Moreover, we are setting this property in the nib, so when the app runs and
the nib loads, the button really does have that border width in the running
app.

Figure 1-23. A designable view with an inspectable property

WARNING
A view’s @IBInspectable property won’t be displayed in the Attributes inspector unless its type
is declared explicitly.

Layout Events
This section summarizes the chief UIView events related to layout. These
are events that you can receive and respond to by overriding them in your
UIView subclass. You might want to do this in situations where layout is

complex — for example, when you need to supplement autoresizing or
autolayout with manual layout in code, or when your layout configuration
needs to change in response to changing conditions.

NOTE
These UIView events are not the same as the layout-related events you can receive and respond to
in a UIViewController. I’ll discuss those in Chapter 6.

updateConstraints

If your interface involves autolayout and constraints, then updateConst
raints is propagated up the hierarchy, starting at the deepest subview,
when the runtime thinks your code might need an opportunity to
configure your constraints. For example, this happens at launch time. It
also happens the first time the app rotates, but only for the view at the
top of the hierarchy (if the constraints of other views have not changed).

You might override updateConstraints in a UIView subclass if your
subclass is capable of altering its own constraints and you need a signal
that now is the time to do so. You must finish up by calling super or the
app will crash (with a helpful error message).

You should never call updateConstraints directly. To trigger an
immediate call to updateConstraints, send a view the updateConstr
aintsIfNeeded message. To force updateConstraints to be sent to a
particular view, send it the setNeedsUpdateConstraints message.

If a view isn’t involved with constraints, updateConstraints may not
be called for it. Thus, if you wanted to add constraints to this view in its
updateConstraints at launch time, you are thwarted. To get updateCo
nstraints to be called for this view at launch time, override the class
method requiresConstraintBasedLayout to return true.

traitCollectionDidChange(_:)

At launch time, and if the environment’s trait collection changes
thereafter, the traitCollectionDidChange(_:) message is propagated
down the hierarchy of UITraitEnvironments. The incoming parameter is
the old trait collection; to get the new trait collection, ask for self.trai
tCollection.
Thus, if your interface needs to respond to a change in the trait
collection — by changing constraints, adding or removing subviews, or
what have you — an override of traitCollectionDidChange is the
place to do it. For example, earlier in this chapter I showed some code
for swapping a view into or out of the interface together with the entire
set of constraints laying out that interface. But I left open the matter of
the conditions under which we wanted such swapping to occur; traitC
ollectionDidChange might be an appropriate moment. A typical
implementation would examine the new trait collection and respond
depending on its horizontal or vertical size class.

layoutSubviews

The layoutSubviews message is the moment when layout itself takes
place. It is propagated down the hierarchy, starting at the top (typically
the root view) and working down to the deepest subview. Layout can be
triggered even if the trait collection didn’t change; for example, perhaps
a constraint was changed, or the text of a label was changed, or a
superview’s size changed.

You can override layoutSubviews in a UIView subclass in order to
take a hand in the layout process. If you’re not using autolayout, layout
Subviews does nothing by default; layoutSubviews is your
opportunity to perform manual layout after autoresizing has taken place.
If you are using autolayout, you must call super or the app will crash
(with a helpful error message).

You should never call layoutSubviews directly; to trigger an
immediate call to layoutSubviews, send a view the layoutIfNeeded
message (which may cause layout of the entire view tree, not only

below but also above this view), or send setNeedsLayout to trigger a
call to layoutSubviews later on, after your code finishes running, when
layout would normally take place.

When you’re using autolayout, what happens in layoutSubviews? The
runtime examines all the constraints affecting this view’s subviews, works
out values for their center and bounds, and assigns those views those center
and bounds values. In other words, layoutSubviews performs manual
layout! The constraints are merely instructions attached to the views; layou
tSubviews reads them and responds accordingly, sizing and positioning
views in the good old-fashioned way, by setting their frames, bounds, and
centers.

Knowing this, you might override layoutSubviews when you’re using
autolayout, in order to tweak the outcome. A typical structure is: first you
call super, causing all the subviews to adopt their new frames; then you
examine those frames; if you don’t like the outcome, you can change
things; and finally you call super again, to get a new layout outcome. As I
mentioned earlier, setting a view’s frame (or bounds or center) explicitly in
layoutSubviews is perfectly fine, even if this view uses autolayout; that,
after all, is what the autolayout engine itself is doing. Keep in mind,
however, that you must cooperate with the autolayout engine. Do not call s
etNeedsUpdateConstraints — that moment has passed — and do not
stray beyond the subviews of this view. (Disobeying those rules can cause
your app to hang.)
A change to the safe area or to a view’s layout margins can trigger layout.
In that case, layoutMarginsDidChange and safeAreaInsetsDidChange
are generally called before layoutSubviews, but you probably should not
be doing anything in those methods that relies on things happening in any
particular order.
It is possible to simulate layout of a view in accordance with its constraints
and those of its subviews. This is useful for discovering ahead of time what
a view’s size would be if layout were performed at this moment. Send the
view the systemLayoutSizeFitting(_:) message. The system will

attempt to reach or at least approach the size you specify, at a very low
priority; mostly likely you’ll specify either UILayoutFittingCompressedS
ize or UILayoutFittingExpandedSize, depending on whether what
you’re after is the smallest or largest size the view can legally attain. I’ll
show an example in Chapter 7.

Chapter 2. Drawing

The views illustrated in Chapter 1 were mostly colored rectangles; they had
a backgroundColor and no more. But that’s not what a real iOS program
looks like. Everything the user sees is a UIView, and what the user sees is a
lot more than a bunch of colored rectangles. That’s because the views that
the user sees have content. They contain drawing.
Many UIView subclasses, such as a UIButton or a UILabel, know how to
draw themselves. Sooner or later, you’re also going to want to do some
drawing of your own. You can prepare your drawing as an image file
beforehand. You can draw an image as your app runs, in code. You can
display an image in a UIView subclass that knows how to show an image,
such as a UIImageView or a UIButton. A pure UIView is all about drawing,
and it leaves that drawing largely up to you; your code determines what the
view draws, and hence what it looks like in your interface.
This chapter discusses the mechanics of drawing. Don’t be afraid to write
drawing code of your own! It isn’t difficult, and it’s often the best way to
make your app look the way you want it to. (For how to draw text, see
Chapter 10.)

Images and Image Views
The basic general UIKit image class is UIImage. UIImage can read a stored
file, so if an image does not need to be created dynamically, but has already
been created before your app runs, then drawing may be as simple as
providing an image file as a resource in your app’s bundle. The system
knows how to work with many standard image file types, such as TIFF,
JPEG, GIF, and PNG; when an image file is to be included in your app
bundle, iOS has a special affinity for PNG files, and you should prefer them
whenever possible. You can also obtain image data in some other way, such
as by downloading it, and transform this into a UIImage.

(The converse operation, saving image data as an image file, is discussed in
Chapter 22.)

NOTE
Starting in iOS 11, users with appropriate hardware will capture photos in the new HEIC format.
Naturally, the system knows how to work with this format as well.

Image Files
A pre-existing image file in your app’s bundle can be obtained through the
UIImage initializer init(named:), which takes a string and returns a
UIImage wrapped in an Optional, in case the image doesn’t exist. This
method looks in two places for the image:

Asset catalog
We look in the asset catalog for an image set with the supplied name.
The name is case-sensitive.

Top level of app bundle
We look at the top level of the app’s bundle for an image file with the
supplied name. The name is case-sensitive and should include the file
extension; if it doesn’t include a file extension, .png is assumed.

When calling init(named:), an asset catalog is searched before the top
level of the app’s bundle. If there are multiple asset catalogs, they are all
searched, but the search order is indeterminate, so avoid multiple image sets
with the same name.

A nice thing about init(named:) is that the image data may be cached in
memory, and if you ask for the same image by calling init(named:) again
later, the cached data may be supplied immediately. Alternatively, you can
read an image file from anywhere in your app’s bundle directly and without
caching, using init(contentsOfFile:), which expects a pathname string;
you can get a reference to your app’s bundle with Bundle.main, and

Bundle then provides instance methods for getting the pathname of a file
within the bundle, such as path(forResource:ofType:).

TIP
Typing a literal string image name into your code is an invitation to make a mistake. Xcode has a
solution. In a context where a UIImage is expected, start typing the image’s name (not in quotes)
and ask for code completion; known image names will appear. Choose one, and a thumbnail of the
image appears in your code. Under the hood, this is a call to #imageLiteral(resourceName:),
which behaves like init(named:); it takes a literal string, but the compiler supplies the string and
won’t make a mistake. Moreover, the result isn’t an Optional, so there’s no need to unwrap it.

Methods that specify a resource in the app bundle, such as init(named:)
and path(forResource:ofType:), respond to special suffixes in the name
of an actual resource file:

High-resolution variants
On a device with a double-resolution screen, when an image is obtained
by name from the app bundle, a file with the same name extended by @2
x, if there is one, will be used automatically, with the resulting UIImage
marked as double-resolution by assigning it a scale property value of
2.0. Similarly, if there is a file with the same name extended by @3x, it
will be used on the triple-resolution screen of the iPhone 6/7/8 Plus or
iPhone X, with a scale property value of 3.0.
In this way, your app can contain different versions of an image file for
different resolutions. Thanks to the scale property, a high-resolution
version of an image has the same dimensions as the single-resolution
image. Thus, on a high-resolution screen, your code continues to work
without change, but your images look sharper.

Device type variants

A file with the same name extended by ~ipad will automatically be
used if the app is running natively on an iPad. You can use this in a
universal app to supply different images automatically depending on

whether the app runs on an iPhone (or iPod touch), on the one hand, or
on an iPad, on the other. (This is true not just for images but for any
resource obtained by name from the bundle. See Apple’s Resource
Programming Guide.)

One of the great benefits of an asset catalog, though, is that you can forget
all about those name suffix conventions! An asset catalog knows when to
use an alternate image within an image set, not from its name, but from its
place in the catalog. Put the single-, double-, and triple-resolution
alternatives into the slots marked “1x,” “2x,” and “3x” respectively. For a
distinct iPad version of an image, check iPhone and iPad in the Attributes
inspector for the image set; separate slots for those device types will appear
in the asset catalog.
Alternatively, your image in the asset catalog can be a vector PDF. Switch
the Scales pop-up menu to Single Scale and put the image into the single
slot. It will be resized automatically for all three resolutions, and because
it’s a vector image, the resizing will be sharp. (New in Xcode 9 and iOS 11,
you can check Preserve Vector Data for this image; when you do, it will be
resized sharply for any size, both when scaled automatically by a
UIImageView or other interface item, and when your code redraws the
image at a different size.)
An asset catalog can also distinguish between versions of an image intended
for different size class situations. (See the discussion of size classes and
trait collections in Chapter 1.) In the Attributes inspector for your image set,
use the Width Class and Height Class pop-up menus to specify which size
class possibilities you want slots for. Thus, for example, if we’re on an
iPhone with the app rotated to landscape orientation, and if there’s both an
Any Height and a Compact Height alternative in the image set, the Compact
Height version is used. These features are live as the app runs; if the app
rotates from landscape to portrait, and there’s both an Any height and a
Compact height alternative in the image set, the Compact Height version is
replaced with the Any Height version in your interface, there and then,
automatically.

How does an asset catalog perform this magic? When an image is obtained
from an asset catalog through init(named:), its imageAsset property is a
UIImageAsset that effectively points back into the asset catalog at the
image set that it came from. Each image in the image set has a trait
collection associated with it (its traitCollection). By calling image(wit
h:) and supplying a trait collection, you can ask an image’s imageAsset
for the image from the same image set appropriate to that trait collection. A
built-in interface object that displays an image is automatically trait
collection–aware; it receives the traitCollectionDidChange(_:)
message and responds accordingly.
To demonstrate how this works under the hood, we can build a custom
UIView with an image property that behaves the same way:

class MyView: UIView {

 var image : UIImage!

 override func traitCollectionDidChange(_: UITraitCollection?) {

 self.setNeedsDisplay() // causes draw(_:) to be called

 }

 override func draw(_ rect: CGRect) {

 if var im = self.image {

 if let asset = self.image.imageAsset {

 im = asset.image(with:self.traitCollection)

 }

 im.draw(at:.zero)

 }

 }

}

It is also possible to associate images as trait-based alternatives for one
another without using an asset catalog. You might do this, for example,
because you have constructed the images themselves in code, or obtained
them over the network while the app is running. The technique is to
instantiate a UIImageAsset and then associate each image with a different
trait collection by registering it with this same UIImageAsset. For example:

let tcreg = UITraitCollection(verticalSizeClass: .regular)

let tccom = UITraitCollection(verticalSizeClass: .compact)

let moods = UIImageAsset()

let frowney = UIImage(named:"frowney")!

let smiley = UIImage(named:"smiley")!

moods.register(frowney, with: tcreg)

moods.register(smiley, with: tccom)

The amazing thing is that if we now display either frowney or smiley in a
UIImageView, we automatically see the image associated with the
environment’s current vertical size class, and it automatically switches to
the other image when the app changes orientation on an iPhone. Moreover,
this works even though I didn’t keep any persistent reference to frowney, s
miley, or the UIImageAsset! (The reason is that the images are cached by
the system and they maintain a strong reference to the UIImageAsset with
which they are registered.)

TIP
An image set in an asset catalog can make numerous further distinctions based on a device’s
processor type, wide color capabilities, and more. Moreover, these distinctions are used not only
by the runtime when the app runs, but also by the App Store when thinning your app for a specific
target device. For this and other reasons, asset catalogs should be regarded as preferable over
keeping your images at the top level of the app bundle.

Image Views
Many built-in Cocoa interface objects will accept a UIImage as part of how
they draw themselves; for example, a UIButton can display an image, and a
UINavigationBar or a UITabBar can have a background image. I’ll discuss
those in Chapter 12. But when you simply want an image to appear in your
interface, you’ll probably hand it to an image view — a UIImageView —
which has the most knowledge and flexibility with regard to displaying
images and is intended for this purpose.
The nib editor supplies some shortcuts in this regard: the Attributes
inspector of an interface object that can have an image will have a pop-up
menu listing known images in your project, and such images are also listed
in the Media library (Command-Option-Control-4). Media library images
can often be dragged onto an interface object such as a button in the canvas

to assign them; and if you drag a Media library image into a plain view, the
image is transformed into a UIImageView displaying that image.

A UIImageView can actually have two images, one assigned to its image
property and the other assigned to its highlightedImage property; the
value of the UIImageView’s isHighlighted property dictates which of the
two is displayed at any given moment. A UIImageView does not
automatically highlight itself merely because the user taps it, the way a
button does. However, there are certain situations where a UIImageView
will respond to the highlighting of its surroundings; for example, within a
table view cell, a UIImageView will show its highlighted image when the
cell is highlighted (Chapter 8).
A UIImageView is a UIView, so it can have a background color in addition
to its image, it can have an alpha (transparency) value, and so forth (see
Chapter 1). An image may have areas that are transparent, and a
UIImageView will respect this; thus an image of any shape can appear. A
UIImageView without a background color is invisible except for its image,
so the image simply appears in the interface, without the user being aware
that it resides in a rectangular host. A UIImageView without an image and
without a background color is invisible, so you could start with an empty
UIImageView in the place where you will later need an image and
subsequently assign the image in code. You can assign a new image to
substitute one image for another, or set the image view’s image property to
nil to remove it.

How a UIImageView draws its image depends upon the setting of its conte
ntMode property (UIViewContentMode). (This property is inherited from
UIView; I’ll discuss its more general purpose later in this chapter.) For
example, .scaleToFill means the image’s width and height are set to the
width and height of the view, thus filling the view completely even if this
alters the image’s aspect ratio; .center means the image is drawn centered
in the view without altering its size. The best way to get a feel for the
meanings of the various contentMode settings is to assign a UIImageView

a small image in the nib editor and then, in the Attributes inspector, change
the Mode pop-up menu, and see where and how the image draws itself.

You should also pay attention to a UIImageView’s clipsToBounds
property; if it is false, its image, even if it is larger than the image view
and even if it is not scaled down by the contentMode, may be displayed in
its entirety, extending beyond the image view itself.

WARNING
By default, the clipsToBounds of a UIImageView created in the nib editor is false. This is
unlikely to be what you want!

When creating a UIImageView in code, you can take advantage of a
convenience initializer, init(image:). The default contentMode is .scal
eToFill, but the image is not initially scaled; rather, the view itself is sized
to match the image. You will still probably need to position the
UIImageView correctly in its superview. In this example, I’ll put a picture
of the planet Mars in the center of the app’s interface (Figure 2-1; for the
CGRect center property, see Appendix B):

let iv = UIImageView(image:UIImage(named:"Mars"))

self.view.addSubview(iv)

iv.center = iv.superview!.bounds.center

iv.frame = iv.frame.integral

Figure 2-1. Mars appears in my interface

What happens to the size of an existing UIImageView when you assign an
image to it depends on whether the image view is using autolayout. If it
isn’t, the image view’s size doesn’t change. But under autolayout, the size
of the new image becomes the image view’s new intrinsicContentSize,
so the image view will adopt the image’s size unless other constraints
prevent.

TIP
New in iOS 11, if an image view’s adjustsImageSizeForAccessibilityContentSizeCategor
y is true, the image view will scale itself up from the image’s intrinsic content size if the user
switches to an accessibility text size (see Chapter 10). You can set this property in the nib editor
(Adjusts Image Size in the Attributes inspector).

An image view automatically acquires its alignmentRectInsets from its
image’s alignmentRectInsets. Thus, if you’re going to be aligning the
image view to some other object using autolayout, you can attach
appropriate alignmentRectInsets to the image that the image view will
display, and the image view will do the right thing. To do so, derive a new
image by calling the original image’s withAlignmentRectInsets(_:)
method. You can also set an image’s alignmentRectInsets in the asset
catalog (use the four Alignment fields).

Resizable Images
Certain places in the interface require an image that can be coherently
resized to any desired proportions. For example, a custom image that serves
as the track of a slider or progress view (Chapter 12) must be able to fill a
space of any length. And there can frequently be other situations where you
want to fill a background by tiling or stretching an existing image. Such an
image is called a resizable image.

To make a resizable image, start with a normal image and call its resizabl
eImage(withCapInsets:resizingMode:) method. The capInsets:

argument is a UIEdgeInsets, whose components represent distances inward
from the edges of the image. In a context larger than the image, a resizable
image can behave in one of two ways, depending on the resizingMode:
value (UIImageResizingMode):

.tile

The interior rectangle of the inset area is tiled (repeated) in the interior;
each edge is formed by tiling the corresponding edge rectangle outside
the inset area. The four corner rectangles outside the inset area are
drawn unchanged.

.stretch

The interior rectangle of the inset area is stretched once to fill the
interior; each edge is formed by stretching the corresponding edge
rectangle outside the inset area once. The four corner rectangles outside
the inset area are drawn unchanged.

In these examples, assume that self.iv is a UIImageView with absolute
height and width (so that it won’t adopt the size of its image) and with a con
tentMode of .scaleToFill (so that the image will exhibit resizing
behavior). First, I’ll illustrate tiling an entire image (Figure 2-2); note that
the capInsets: is UIEdgeInsets.zero:

let mars = UIImage(named:"Mars")!

let marsTiled = mars.resizableImage(withCapInsets:.zero, resizingMode: .tile)

self.iv.image = marsTiled

Figure 2-2. Tiling the entire image of Mars

Now we’ll tile the interior of the image, changing the capInsets:
argument from the previous code (Figure 2-3):

let marsTiled = mars.resizableImage(withCapInsets:

 UIEdgeInsetsMake(

 mars.size.height / 4.0,

 mars.size.width / 4.0,

 mars.size.height / 4.0,

 mars.size.width / 4.0

), resizingMode: .tile)

Figure 2-3. Tiling the interior of Mars

Next, I’ll illustrate stretching. We’ll start by changing just the resizingMod
e: from the previous code (Figure 2-4):

let marsTiled = mars.resizableImage(withCapInsets:

 UIEdgeInsetsMake(

 mars.size.height / 4.0,

 mars.size.width / 4.0,

 mars.size.height / 4.0,

 mars.size.width / 4.0

), resizingMode: .stretch)

Figure 2-4. Stretching the interior of Mars

A common stretching strategy is to make almost half the original image
serve as a cap inset, leaving just a tiny rectangle in the center that must
stretch to fill the entire interior of the resulting image (Figure 2-5):

let marsTiled = mars.resizableImage(withCapInsets:

 UIEdgeInsetsMake(

 mars.size.height / 2.0 - 1,

 mars.size.width / 2.0 - 1,

 mars.size.height / 2.0 - 1,

 mars.size.width / 2.0 - 1

), resizingMode: .stretch)

Figure 2-5. Stretching a few pixels at the interior of Mars

You should also experiment with different scaling contentMode settings. In
the preceding example, if the image view’s contentMode is .scaleAspect
Fill, and if the image view’s clipsToBounds is true, we get a sort of
gradient effect, because the top and bottom of the stretched image are
outside the image view and aren’t drawn (Figure 2-6).

Figure 2-6. Mars, stretched and clipped

Alternatively, you can configure a resizable image without code, in the
project’s asset catalog. It is often the case that a particular image will be
used in your app chiefly as a resizable image, and always with the same cap

Insets: and resizingMode:, so it makes sense to configure this image
once rather than having to repeat the same code.
To configure an image in an asset catalog as a resizable image, select the
image and, in the Slicing section of the Attributes inspector, change the
Slices pop-up menu to Horizontal, Vertical, or Horizontal and Vertical.
When you do this, additional interface appears. You can specify the resizi
ngMode with the Center pop-up menu. You can work numerically, or click
Show Slicing at the lower right of the canvas and work graphically. The
graphical editor is zoomable, so zoom in to work comfortably.

This feature is actually even more powerful than resizableImage(withCa
pInsets:resizingMode:). It lets you specify the end caps separately from
the tiled or stretched region, with the rest of the image being sliced out. In
Figure 2-7, for example, the dark areas at the top left, top right, bottom left,
and bottom right will be drawn as is. The narrow bands will be stretched,
and the small rectangle at the top center will be stretched to fill most of the
interior. But the rest of the image, the large central area covered by a sort of
gauze curtain, will be omitted entirely. The result is shown in Figure 2-8.

Figure 2-7. Mars, sliced in the asset catalog

Figure 2-8. Mars, sliced and stretched

Transparency Masks
Several places in an iOS app’s interface want to treat an image as a
transparency mask, also known as a template. This means that the image
color values are ignored, and only the transparency (alpha) values of each
pixel matter. The image shown on the screen is formed by combining the
image’s transparency values with a single tint color. Such, for example, is
the default behavior of a tab bar item’s image.

The way an image will be treated is a property of the image, its renderingM
ode. This property is read-only; to change it, start with an image and
generate a new image with a different rendering mode, by calling its withR
enderingMode(_:) method. The rendering mode values
(UIImageRenderingMode) are:

.automatic

.alwaysOriginal

.alwaysTemplate

The default is .automatic, which means that the image is drawn normally
everywhere except in certain limited contexts, where it is used as a
transparency mask. With the other two rendering mode values, you can
force an image to be drawn normally, even in a context that would usually
treat it as a transparency mask, or you can force an image to be treated as a
transparency mask, even in a context that would otherwise treat it normally.

To accompany this feature, iOS gives every UIView a tintColor, which
will be used to tint any template images it contains. Moreover, this tintCol

or by default is inherited down the view hierarchy, and indeed throughout
the entire app, starting with the window (Chapter 1). Thus, assigning your
app’s main window a tint color is probably one of the few changes you’ll
make to the window; otherwise, your app adopts the system’s blue tint
color. (Alternatively, if you’re using a main storyboard, set the Global Tint
color in its File inspector.) Individual views can be assigned their own tint
color, which is inherited by their subviews. Figure 2-9 shows two buttons
displaying the same background image, one in normal rendering mode, the
other in template rendering mode, in an app whose window tint color is red.
(I’ll say more about template images and tintColor in Chapter 12.)

Figure 2-9. One image in two rendering modes

An asset catalog can assign an image a rendering mode. Select the image
set in the asset catalog, and use the Render As pop-up menu in the
Attributes inspector to set the rendering mode to Default (.automatic),
Original Image (.alwaysOriginal), or Template Image (.alwaysTemplat
e). This is an excellent approach whenever you have an image that you will
use primarily in a specific rendering mode, because it saves you from
having to remember to set that rendering mode in code every time you fetch
the image. Instead, any time you call init(named:), this image arrives
with the rendering mode already set.

Reversible Images
Starting in iOS 9, the entire interface is automatically reversed when your
app runs on a system for which your app is localized if the system language
is right-to-left. In general, this probably won’t affect your images. The
runtime assumes that you don’t want images to be reversed when the
interface is reversed, so its default behavior is to leave them alone.

Nevertheless, you might want an image reversed when the interface is
reversed. For example, suppose you’ve drawn an arrow pointing in the
direction from which new interface will arrive when the user taps a button.
If the button pushes a view controller onto a navigation interface, that
direction is from the right on a left-to-right system, but from the left on a
right-to-left system. This image has directional meaning within the app’s
own interface; it needs to flip horizontally when the interface is reversed.

To make this possible, call the image’s imageFlippedForRightToLeftLay
outDirection method and use the resulting image in your interface. On a
left-to-right system, the normal image will be used; on a right-to-left
system, a reversed version of the image will be created and used
automatically. You can override this behavior, even if the image is
reversible, for a particular UIView displaying the image, such as a
UIImageView, by setting that view’s semanticContentAttribute to
prevent mirroring.
You can make the same determination for an image in the asset catalog
using the Direction pop-up menu (choose one of the Mirrors options).
Moreover, the layout direction (as I mentioned in Chapter 1) is a trait. This
means that, just as you can have pairs of images to be used on iPhone or
iPad, or triples of images to be used on single-, double-, or triple-resolution
screens, you can have pairs of images to be used under left-to-right or right-
to-left layout. The easy way to configure such pairs is to choose Both in the
asset catalog’s Direction pop-up menu; now there are left-to-right and right-
to-left image slots where you can place your images. Alternatively, you can
register the paired images with a UIImageAsset in code, as I demonstrated
earlier in this chapter.
You can also force an image to be flipped horizontally without regard to
layout direction or semantic content attribute by calling its withHorizonta
llyFlippedOrientation method.

Graphics Contexts

Instead of plopping an existing image file directly into your interface, you
may want to create some drawing yourself, in code. To do so, you will need
a graphics context.
A graphics context is basically a place you can draw. Conversely, you can’t
draw in code unless you’ve got a graphics context. There are several ways
in which you might obtain a graphics context; these are the most common:

You create an image context

In iOS 9 and before, this was done by calling UIGraphicsBeginImageC
ontextWithOptions. Starting in iOS 10, you should use a
UIGraphicsImageRenderer. I’ll go into detail later.

Cocoa creates the graphics context

You subclass UIView and implement draw(_:). At the time your draw
(_:) implementation is called, Cocoa has already created a graphics
context and is asking you to draw into it, right now; whatever you draw
is what the UIView will display.

Cocoa passes you a graphics context

You subclass CALayer and implement draw(in:), or else you give a
CALayer a delegate and implement the delegate’s draw(_:in:). The i
n: parameter is a graphics context. (Layers are discussed in Chapter 3.)

Moreover, at any given moment there either is or is not a current graphics
context:

When you create an image context, that image context automatically
becomes the current graphics context.

When UIView’s draw(_:) is called, the UIView’s drawing context is
already the current graphics context.

When CALayer’s draw(in:) or its delegate’s draw(_:in:) is called,
the in: parameter is a graphics context, but it is not the current context.
It’s up to you to make it current if you need to.

What beginners find most confusing about drawing is that there are two sets
of tools for drawing, which take different attitudes toward the context in
which they will draw. One set needs a current context; the other just needs a
context:

UIKit
Various Cocoa classes know how to draw themselves; these include
UIImage, NSString (for drawing text), UIBezierPath (for drawing
shapes), and UIColor. Some of these classes provide convenience
methods with limited abilities; others are extremely powerful. In many
cases, UIKit will be all you’ll need.
With UIKit, you can draw only into the current context. If there’s
already a current context, you just draw. But with CALayer, where you
are handed a context as a parameter, if you want to use the UIKit
convenience methods, you’ll have to make that context the current
context; you do this by calling UIGraphicsPushContext (and be sure
to restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz,
or Quartz 2D, is the drawing system that underlies all iOS drawing;
UIKit drawing is built on top of it. It is low-level and consists of C
functions (though in Swift these are mostly “renamified” to look like
method calls). There are a lot of them! This chapter will familiarize you
with the fundamentals; for complete information, you’ll want to study
Apple’s Quartz 2D Programming Guide.
With Core Graphics, you must specify a graphics context (a
CGContext) to draw into, explicitly, for each bit of your drawing. With
CALayer, you are handed the context as a parameter, and that’s the
graphics context you want to draw into. But if there is already a current
context, you have no reference to a context; to use Core Graphics, you
need to get such a reference. You call UIGraphicsGetCurrentContext
to obtain it.

TIP
You don’t have to use UIKit or Core Graphics exclusively. On the contrary, you can intermingle
UIKit calls and Core Graphics calls in the same chunk of code to operate on the same graphics
context. They merely represent two different ways of telling a graphics context what to do.

So we have two sets of tools and three ways in which a context might be
supplied; that makes six ways of drawing. I’ll now demonstrate all six of
them! Without worrying just yet about the actual drawing commands, focus
your attention on how the context is specified and on whether we’re using
UIKit or Core Graphics. First, I’ll draw a blue circle by implementing a
UIView subclass’s draw(_:), using UIKit to draw into the current context,
which Cocoa has already prepared for me:

override func draw(_ rect: CGRect) {

 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))

 UIColor.blue.setFill()

 p.fill()

}

Now I’ll do the same thing with Core Graphics; this will require that I first
get a reference to the current context:

override func draw(_ rect: CGRect) {

 let con = UIGraphicsGetCurrentContext()!

 con.addEllipse(in:CGRect(0,0,100,100))

 con.setFillColor(UIColor.blue.cgColor)

 con.fillPath()

}

Next, I’ll implement a CALayer delegate’s draw(_:in:). In this case,
we’re handed a reference to a context, but it isn’t the current context. So I
have to make it the current context in order to use UIKit (and I must
remember to stop making it the current context when I’m done drawing):

override func draw(_ layer: CALayer, in con: CGContext) {

 UIGraphicsPushContext(con)

 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))

 UIColor.blue.setFill()

 p.fill()

 UIGraphicsPopContext()

}

To use Core Graphics in a CALayer delegate’s draw(_:in:), I simply keep
referring to the context I was handed:

override func draw(_ layer: CALayer, in con: CGContext) {

 con.addEllipse(in:CGRect(0,0,100,100))

 con.setFillColor(UIColor.blue.cgColor)

 con.fillPath()

}

Finally, I’ll make a UIImage of a blue circle. We can do this at any time (we
don’t need to wait for some particular method to be called) and in any class
(we don’t need to be in a UIView subclass). The old way of doing this, in
iOS 9 and before, was as follows:

1. You call UIGraphicsBeginImageContextWithOptions. It creates an
image context and makes it the current context.

2. You draw, thus generating the image.

3. You call UIGraphicsGetImageFromCurrentImageContext to extract
an actual UIImage from the image context.

4. You call UIGraphicsEndImageContext to dismiss the context.
The desired image is the result of step 3, and now you can display it in your
interface, draw it into some other graphics context, save it as a file, or
whatever you like.

Starting in iOS 10, UIGraphicsBeginImageContextWithOptions is
superseded by UIGraphicsImageRenderer (though you can still use the old
way if you want to). The reason for this change is that the old way assumed
you wanted an sRGB image with 8-bit color pixels, whereas the
introduction of the iPad Pro 9.7-inch and iPhone 7 makes that assumption
wrong: they can display “wide color,” meaning that you probably want a P3
image with 16-bit color pixels. UIGraphicsImageRenderer knows how to

make such an image, and will do so by default if we’re running on a “wide
color” device.

Another nice thing about UIGraphicsImageRenderer is that its image
method takes a function containing your drawing commands and returns the
image. Thus there is no need for the step-by-step imperative style of
programming required by UIGraphicsBeginImageContextWithOptions,
where after drawing you had to remember to fetch the image and dismiss
the context yourself. Moreover, UIGraphicsImageRenderer doesn’t have to
be torn down after use; if you know that you’re going to be drawing
multiple images with the same size and format, you can keep a reference to
the renderer and call its image method again.
So now, I’ll draw my image using UIKit:

let r = UIGraphicsImageRenderer(size:CGSize(100,100))

let im = r.image { _ in

 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))

 UIColor.blue.setFill()

 p.fill()

}

// im is the blue circle image, do something with it here ...

And here’s the same thing using Core Graphics:

let r = UIGraphicsImageRenderer(size:CGSize(100,100))

let im = r.image { _ in

 let con = UIGraphicsGetCurrentContext()!

 con.addEllipse(in:CGRect(0,0,100,100))

 con.setFillColor(UIColor.blue.cgColor)

 con.fillPath()

}

// im is the blue circle image, do something with it here ...

(Instead of calling image, you can call UIGraphicsImageRenderer methods
that generate JPEG or PNG image data, suitable for saving as an image
file.)

In those examples, we’re calling UIGraphicsImageRenderer’s init(size:)
and accepting its default configuration, which is usually what’s wanted. To

configure its image context further, call the
UIGraphicsImageRendererFormat class method default, configure the
format through its properties, and pass it to UIGraphicsImageRenderer’s in
it(size:format:). Those properties are:

opaque

By default, false; the image context is transparent. If true, the image
context is opaque and has a black background, and the resulting image
has no transparency.

scale

By default, the same as the scale of the main screen, UIScreen.main.s
cale. This means that the resolution of the resulting image will be
correct for the device we’re running on.

prefersExtendedRange

By default, true only if we’re running on a device that supports “wide
color.”

TIP
New in iOS 11, you can call a UIGraphicsImageRendererFormat initializer, init(for:), which
takes a UITraitCollection; typically, this will be self.traitCollection, and the scale and pref
ersExtendedRange properties of the renderer will be set from the current environment.

You may also be wondering about the parameter that arrives into the
UIGraphicsImageRenderer’s image function (which is ignored in the
preceding examples). It’s a UIGraphicsImageRendererContext. This
provides access to the configuring UIGraphicsImageRendererFormat (its fo
rmat). It also lets you obtain the graphics context (its cgContext); you can
alternatively get this by calling UIGraphicsGetCurrentContext, and the
preceding code does so, for consistency with the other ways of drawing. In
addition, the UIGraphicsImageRendererContext can hand you a copy of the

image as drawn up to this point (its currentImage); also, it implements a
few basic drawing commands of its own.

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We
know how to obtain a UIImage, and we know how to obtain a graphics
context and make it the current context, so we can experiment with these
methods.
Here, I’ll make a UIImage consisting of two pictures of Mars side by side
(Figure 2-10):

let mars = UIImage(named:"Mars")!

let sz = mars.size

let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height))

let im = r.image { _ in

 mars.draw(at:CGPoint(0,0))

 mars.draw(at:CGPoint(sz.width,0))

}

Figure 2-10. Two images of Mars combined side by side

Observe that image scaling works perfectly in that example. If we have
multiple resolution versions of our original Mars image, the correct one for
the current device is used, and is assigned the correct scale value. The
image context that we are drawing into also has the correct scale by
default. And the resulting image has the correct scale as well. Thus, this
same code produces an image that looks correct on the current device,
whatever its screen resolution may be.

Additional UIImage methods let you scale an image into a desired rectangle
as you draw, and specify the compositing (blend) mode whereby the image
should combine with whatever is already present. To illustrate, I’ll create an
image showing Mars centered in another image of Mars that’s twice as
large, using the .multiply blend mode (Figure 2-11):

let mars = UIImage(named:"Mars")!

let sz = mars.size

let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height*2))

let im = r.image { _ in

 mars.draw(in:CGRect(0,0,sz.width*2,sz.height*2))

 mars.draw(in:CGRect(sz.width/2.0, sz.height/2.0, sz.width, sz.height),

 blendMode: .multiply, alpha: 1.0)

}

TIP
New in Xcode 9 and iOS 11, a PDF vector image in the asset catalog for which you have checked
Preserve Vector Data will scale sharply when you call draw(in:).

Figure 2-11. Two images of Mars in different sizes, composited

Sometimes, you may want to extract a smaller region of the original image
— effectively cropping the image as you draw it. Unfortunately, there is no
UIImage drawing method for specifying the source rectangle. You can work
around this by creating a smaller graphics context and positioning the image

drawing so that the desired region falls into it. For example, to obtain an
image of the right half of Mars, you can make a graphics context half the
width of the mars image, and then draw mars shifted left, so that only its
right half intersects the graphics context. There is no harm in doing this, and
it’s a perfectly standard strategy; the left half of mars simply isn’t drawn
(Figure 2-12):

let mars = UIImage(named:"Mars")!

let sz = mars.size

let r = UIGraphicsImageRenderer(size:CGSize(sz.width/2.0, sz.height))

let im = r.image { _ in

 mars.draw(at:CGPoint(-sz.width/2.0,0))

}

Figure 2-12. Half the original image of Mars

CGImage Drawing
The Core Graphics version of UIImage is CGImage. In essence, a UIImage
is (usually) a wrapper for a CGImage: the UIImage is bitmap image data
plus scale, orientation, and other information, whereas the CGImage is the
bare bitmap image data alone. The two are easily converted to one another:
a UIImage has a cgImage property that accesses its Quartz image data, and
you can make a UIImage from a CGImage using init(cgImage:) or its
more configurable sibling, init(cgImage:scale:orientation:).
A CGImage lets you create a new image cropped from a rectangular region
of the original image, which you can’t do with UIImage. (A CGImage has
other powers a UIImage doesn’t have; for example, you can apply an image

mask to a CGImage.) I’ll demonstrate by splitting the image of Mars in half
and drawing the two halves separately (Figure 2-13):

let mars = UIImage(named:"Mars")!

// extract each half as CGImage

let marsCG = mars.cgImage!

let sz = mars.size

let marsLeft = marsCG.cropping(to:

 CGRect(0,0,sz.width/2.0,sz.height))!

let marsRight = marsCG.cropping(to:

 CGRect(sz.width/2.0,0,sz.width/2.0,sz.height))!

let r = UIGraphicsImageRenderer(size: CGSize(sz.width*1.5, sz.height))

let im = r.image { ctx in

 let con = ctx.cgContext

 con.draw(marsLeft, in:

 CGRect(0,0,sz.width/2.0,sz.height))

 con.draw(marsRight, in:

 CGRect(sz.width,0,sz.width/2.0,sz.height))

}

Figure 2-13. Image of Mars split in half (and flipped)

But there’s a problem with that example: the drawing is upside-down! It
isn’t rotated; it’s mirrored top to bottom, or, to use the technical term,
flipped. This phenomenon can arise when you create a CGImage and then
draw it, and is due to a mismatch in the native coordinate systems of the
source and target contexts.
There are various ways of compensating for this mismatch between the
coordinate systems. One is to draw the CGImage into an intermediate
UIImage and extract another CGImage from that. Example 2-1 presents a
utility function for doing this.

Example 2-1. Utility for flipping an image drawing

func flip (_ im: CGImage) -> CGImage {

 let sz = CGSize(CGFloat(im.width), CGFloat(im.height))

 let r = UIGraphicsImageRenderer(size:sz)

 return r.image { ctx in

 ctx.cgContext.draw(im, in: CGRect(0, 0, sz.width, sz.height))

 }.cgImage!

}

Armed with the utility function from Example 2-1, we can fix our CGImage
drawing calls in the previous example so that they draw the halves of Mars
the right way up:

con.draw(flip(marsLeft!), in:

 CGRect(0,0,sz.width/2.0,sz.height))

con.draw(flip(marsRight!), in:

 CGRect(sz.width,0,sz.width/2.0,sz.height))

However, we’ve still got a problem: on a high-resolution device, if there is a
high-resolution variant of our image file, the drawing comes out all wrong.
The reason is that we are obtaining our initial Mars image using UIImage’s
init(named:), which returns a UIImage that compensates for the increased
size of a high-resolution image by setting its own scale property to match.
But a CGImage doesn’t have a scale property, and knows nothing of the
fact that the image dimensions are increased! Therefore, on a high-
resolution device, the CGImage that we extract from our Mars UIImage as
mars.cgImage is larger (in each dimension) than mars.size, and all our
calculations after that are wrong.
It would be best, therefore, is to wrap each CGImage in a UIImage and
draw the UIImage instead of the CGImage. The UIImage can be formed in
such a way as to compensate for scale: call init(cgImage:scale:orienta
tion:). Moreover, by drawing a UIImage instead of a CGImage, we avoid
the flipping problem! So here’s an approach that deals with both flipping
and scale, with no need for the flip utility:

let mars = UIImage(named:"Mars")!

let sz = mars.size

let marsCG = mars.cgImage!

let szCG = CGSize(CGFloat(marsCG.width), CGFloat(marsCG.height))

let marsLeft =

 marsCG.cropping(to:

 CGRect(0,0,szCG.width/2.0,szCG.height))

let marsRight =

 marsCG.cropping(to:

 CGRect(szCG.width/2.0,0,szCG.width/2.0,szCG.height))

let r = UIGraphicsImageRenderer(size:CGSize(sz.width*1.5, sz.height))

let im = r.image { _ in

 UIImage(cgImage: marsLeft!,

 scale: mars.scale,

 orientation: mars.imageOrientation).draw(at:CGPoint(0,0))

 UIImage(cgImage: marsRight!,

 scale: mars.scale,

 orientation: mars.imageOrientation).draw(at:CGPoint(sz.width,0))

}

TIP
Yet another solution to flipping is to apply a transform to the graphics context before drawing the
CGImage, effectively flipping the context’s internal coordinate system. This is elegant, but can be
confusing if there are other transforms in play. I’ll talk more about graphics context transforms
later in this chapter.

WHY FLIPPING HAPPENS
The ultimate source of accidental flipping is that Core Graphics comes from the macOS world,
where the coordinate system’s origin is located by default at the bottom left and the positive y-
direction is upward, whereas on iOS the origin is located by default at the top left and the
positive y-direction is downward. In most drawing situations, no problem arises, because the
coordinate system of the graphics context is adjusted to compensate. Thus, the default
coordinate system for drawing in a Core Graphics context on iOS has the origin at the top left,
just as you expect. But creating and drawing a CGImage exposes the “impedance mismatch”
between the two worlds.

Snapshots
An entire view — anything from a single button to your whole interface,
complete with its contained hierarchy of views — can be drawn into the
current graphics context by calling the UIView instance method drawHiera
rchy(in:afterScreenUpdates:). (This method is much faster than the

CALayer method render(in:); nevertheless, the latter does still come in
handy, as I’ll show in Chapter 5.) The result is a snapshot of the original
view: it looks like the original view, but it’s basically just a bitmap image of
it, a lightweight visual duplicate.
An even faster way to obtain a snapshot of a view is to use the UIView (or
UIScreen) instance method snapshotView(afterScreenUpdates:). The
result is a UIView, not a UIImage; it’s rather like a UIImageView that
knows how to draw only one image, namely the snapshot. Such a snapshot
view will typically be used as is, but you can enlarge its bounds and the
snapshot image will stretch. If you want the stretched snapshot to behave
like a resizable image, call resizableSnapshotView(from:afterScreenU
pdates:withCapInsets:) instead. It is perfectly reasonable to make a
snapshot view from a snapshot view.
Snapshots are useful because of the dynamic nature of the iOS interface.
For example, you might place a snapshot of a view in your interface in front
of the real view to hide what’s happening, or use it during an animation to
present the illusion of a view moving when in fact it’s just a snapshot.

Here’s an example from one of my apps. It’s a card game, and its views
portray cards. I want to animate the removal of all those cards from the
board, flying away to an offscreen point. But I don’t want to animate the
views themselves! They need to stay put, to portray future cards. So I make
a snapshot view of each of the card views; I then make the card views
invisible, put the snapshot views in their place, and animate the snapshot
views. This code will mean more to you after you’ve read Chapter 4, but
the strategy is evident:

for v in views {

 let snapshot = v.snapshotView(afterScreenUpdates: false)!

 let snap = MySnapBehavior(item:snapshot, snapto:CGPoint(

 x: self.anim.referenceView!.bounds.midX,

 y: -self.anim.referenceView!.bounds.height)

)

 self.snaps.append(snapshot) // keep a list so we can remove them later

 snapshot.frame = v.frame

 v.isHidden = true

 self.anim.referenceView!.addSubview(snapshot)

(p)

 self.anim.addBehavior(snap)

}

CIFilter and CIImage
The “CI” in CIFilter and CIImage stands for Core Image, a technology for
transforming images through mathematical filters. Core Image started life
on the desktop (macOS), and when it was originally migrated into iOS 5,
some of the filters available on the desktop were not available in iOS
(presumably because they were too intensive mathematically for a mobile
device). Over the years, however, more and more macOS filters were added
to the iOS repertoire, and now the two have complete parity: all macOS
filters are available in iOS, and the two platforms have nearly identical
APIs.
A filter is a CIFilter. The 200 available filters fall naturally into several
broad categories:

Patterns and gradients
These filters create CIImages that can then be combined with other
CIImages, such as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend
modes familiar from image processing programs.

Color
These filters adjust or otherwise modify the colors of an image. Thus
you can alter an image’s saturation, hue, brightness, contrast, gamma
and white point, exposure, shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such
as scaling, rotation, and cropping.

Transformation

These filters distort, blur, or stylize an image.

Transition
These filters provide a frame of a transition between one image and
another; by asking for frames in sequence, you can animate the
transition (I’ll demonstrate in Chapter 4).

Special purpose
These filters perform highly specialized operations such as face
detection and generation of barcodes.

The basic use of a CIFilter is quite simple:
You specify what filter you want by supplying its string name; to learn
what these names are, consult Apple’s Core Image Filter Reference, or
call the CIFilter class method filterNames(inCategories:) with a ni
l argument.
Each filter has a small number of keys and values that determine its
behavior (as if a filter were a kind of dictionary). You can learn about
these keys entirely in code, but typically you’ll consult the
documentation. For each key that you’re interested in, you supply a key–
value pair. In supplying values, a number must be wrapped up as an
NSNumber (Swift will take care of this for you), and there are a few
supporting classes such as CIVector (like CGPoint and CGRect
combined) and CIColor, whose use is easy to grasp.

Among a CIFilter’s keys may be the input image or images on which the
filter is to operate; such an image must be a CIImage. You can obtain this
CIImage from a CGImage with init(cgImage:) or from a UIImage with i
nit(image:).

WARNING
Do not attempt, as a shortcut, to obtain a CIImage directly from a UIImage through the UIImage’s
ciImage property. This property does not transform a UIImage into a CIImage! It merely points to
the CIImage that already backs the UIImage, if the UIImage is backed by a CIImage; but your
images are not backed by a CIImage, but rather by a CGImage. I’ll explain where a CIImage-
backed UIImage comes from in just a moment.

Alternatively, you can obtain a CIImage as the output of a filter — which
means that filters can be chained together.
There are three ways to describe and use a filter:

Create the filter with CIFilter’s init(name:). Now append the keys and
values by calling setValue(_:forKey:) repeatedly, or by calling setVa
luesForKeys(_:) with a dictionary. Obtain the output CIImage as the
filter’s outputImage.
Create the filter and supply the keys and values in a single move, by
calling CIFilter’s init(name:withInputParameters:). Obtain the
output CIImage as the filter’s outputImage.
If a CIFilter requires an input image and you already have a CIImage to
fulfill this role, specify the filter and supply the keys and values, and
receive the output CIImage as a result, all in a single move, by calling
the CIImage instance method applyingFilter(_:parameters:).

As you build a chain of filters, nothing actually happens. The only
calculation-intensive move comes at the very end, when you transform the
final CIImage in the chain into a bitmap drawing. This is called rendering
the image. There are two main ways to do this:

With a CIContext

Create a CIContext by calling init() or init(options:), and then
call its createCGImage(_:from:), handing it the final CIImage as the
first argument. This renders the image. The only mildly tricky thing
here is that a CIImage doesn’t have a frame or bounds; it has an extent.

You will often use this as the second argument to createCGImage(_:fr
om:). The final output CGImage is ready for any purpose, such as for
display in your app, for transformation into a UIImage, or for use in
further drawing.

With a UIImage

Create a UIImage wrapping the final CIImage by calling init(ciImag
e:) or init(ciImage:scale:orientation:). You then draw the
UIImage into some graphics context. At the moment of drawing, the
image is rendered. (Apple claims that you can simply hand a UIImage
created by calling init(ciImage:) to a UIImageView, as its image,
and that the UIImageView will render the image. In my experience, this
is not true. You must draw the image explicitly in order to render it.)

WARNING
Rendering a CIImage in either of these ways is slow and expensive. With the first approach, the
expense comes at the moment when you create the CIContext; wherever possible, you should
create your CIContext once, beforehand — preferably, once per app — and reuse it each time you
render. With the second approach, the expense comes at the moment of drawing the UIImage.
Other ways of rendering a CIImage, involving things like GLKView or CAEAGLLayer, which are
not discussed in this book, have the advantage of being very fast and suitable for animated or
rapid rendering.

To illustrate, I’ll start with an ordinary photo of myself (it’s true I’m
wearing a motorcycle helmet, but it’s still ordinary) and create a circular
vignette effect (Figure 2-14). We derive from the image of me (moi) a
CIImage (moici). We use a CIFilter (grad) to form a radial gradient
between the default colors of white and black. Then we use a second
CIFilter that treats the radial gradient as a mask for blending between the
photo of me and a default clear background: where the radial gradient is
white (everything inside the gradient’s inner radius) we see just me, and
where the radial gradient is black (everything outside the gradient’s outer
radius) we see just the clear color, with a gradation in between, so that the

image fades away in the circular band between the gradient’s radii. The
code illustrates two different ways of configuring a CIFilter:

let moi = UIImage(named:"Moi")!

let moici = CIImage(image:moi)!

let moiextent = moici.extent

let center = CIVector(x: moiextent.width/2.0, y: moiextent.height/2.0)

let smallerDimension = min(moiextent.width, moiextent.height)

let largerDimension = max(moiextent.width, moiextent.height)

// first filter

let grad = CIFilter(name: "CIRadialGradient")!

grad.setValue(center, forKey:"inputCenter")

grad.setValue(smallerDimension/2.0 * 0.85, forKey:"inputRadius0")

grad.setValue(largerDimension/2.0, forKey:"inputRadius1")

let gradimage = grad.outputImage!

// second filter

let blendimage = moici.applyingFilter("CIBlendWithMask",

 parameters: ["inputMaskImage":gradimage])

Figure 2-14. A photo of me, vignetted

We now have the final CIImage in the chain (blendimage); remember, the
processor has not yet performed any rendering. Now, however, we want to
generate the final bitmap and display it. Let’s say we’re going to display it
as the image of a UIImageView self.iv. We can do it in two different
ways. We can create a CGImage by passing the CIImage through a
CIContext; in this code, I have prepared this CIContext beforehand as a
property, self.context, by calling CIContext():

let moicg = self.context.createCGImage(blendimage, from: moiextent)!

self.iv.image = UIImage(cgImage: moicg)

Alternatively, we can capture our final CIImage as a UIImage and then
draw with it in order to generate the bitmap output of the filter chain:

let r = UIGraphicsImageRenderer(size:moiextent.size)

self.iv.image = r.image { _ in

 UIImage(ciImage: blendimage).draw(in:moiextent)

}

A filter chain can be encapsulated into a single custom filter by subclassing
CIFilter. Your subclass just needs to override the outputImage property
(and possibly other methods such as setDefaults), with additional
properties to make it key–value coding compliant for any input keys. Here’s
our vignette filter as a simple CIFilter subclass with two input keys; inputI
mage is the image to be vignetted, and inputPercentage is a percentage
(between 0 and 1) adjusting the gradient’s inner radius:

class MyVignetteFilter : CIFilter {

 @objc var inputImage : CIImage?

 @objc var inputPercentage : NSNumber? = 1.0

 override var outputImage : CIImage? {

 return self.makeOutputImage()

 }

 private func makeOutputImage () -> CIImage? {

 guard let inputImage = self.inputImage else {return nil}

 guard let inputPercentage = self.inputPercentage else {return nil}

 let extent = inputImage.extent

 let grad = CIFilter(name: "CIRadialGradient")!

 let center = CIVector(x: extent.width/2.0, y: extent.height/2.0)

 let smallerDimension = min(extent.width, extent.height)

 let largerDimension = max(extent.width, extent.height)

 grad.setValue(center, forKey:"inputCenter")

 grad.setValue(smallerDimension/2.0 * (inputPercentage as! CGFloat),

 forKey:"inputRadius0")

 grad.setValue(largerDimension/2.0, forKey:"inputRadius1")

 let blend = CIFilter(name: "CIBlendWithMask")!

 blend.setValue(inputImage, forKey: "inputImage")

 blend.setValue(grad.outputImage, forKey: "inputMaskImage")

 return blend.outputImage

 }

}

And here’s how to use our CIFilter subclass and display its output in a
UIImageView:

let vig = MyVignetteFilter()

let moici = CIImage(image: UIImage(named:"Moi")!)!

vig.setValuesForKeys([

 "inputImage":moici,

 "inputPercentage":0.7

])

let outim = vig.outputImage!

let outimcg = self.context.createCGImage(outim, from: outim.extent)!

self.iv.image = UIImage(cgImage: outimcg)

Blur and Vibrancy Views
Certain views on iOS, such as navigation bars and the control center, are
translucent and display a blurred rendition of what’s behind them. To help
you imitate this effect, iOS provides the UIVisualEffectView class. You can
place other views in front of a UIVisualEffectView, but any subviews
should be placed inside its contentView. To tint what’s seen through a
UIVisualEffectView, set the backgroundColor of its contentView.

To use a UIVisualEffectView, create it with init(effect:); the effect:
argument will be an instance of a UIVisualEffect subclass:

UIBlurEffect

To initialize a UIBlurEffect, call init(style:); the styles
(UIBlurEffectStyle) are .dark, .light, and .extraLight. (.extraLig
ht is suitable particularly for pieces of interface that function like a
navigation bar or toolbar.) For example:

let fuzzy = UIVisualEffectView(effect:(UIBlurEffect(style:.light)))

UIVibrancyEffect

To initialize a UIVibrancyEffect, call init(blurEffect:). Vibrancy
tints a view so as to make it harmonize with the blurred colors
underneath it. The intention here is that the vibrancy effect view should
sit in front of a blur effect view, typically in its contentView, adding
vibrancy to a single UIView that’s inside its own contentView; you tell
the vibrancy effect what the underlying blur effect is, so that they
harmonize. You can fetch a visual effect view’s blur effect as its effect
property, but that’s a UIVisualEffect — the superclass — so you’ll have
to cast down to a UIBlurEffect in order to hand it to init(blurEffec
t:).

Here’s an example of a blur effect view covering and blurring the interface
(self.view), and containing a UILabel wrapped in a vibrancy effect view
(Figure 2-15):

let blur = UIVisualEffectView(effect: UIBlurEffect(style: .extraLight))

blur.frame = self.view.bounds

blur.autoresizingMask = [.flexibleWidth, .flexibleHeight]

let vib = UIVisualEffectView(effect: UIVibrancyEffect(

 blurEffect: blur.effect as! UIBlurEffect))

let lab = UILabel()

lab.text = "Hello, world!"

lab.sizeToFit()

vib.frame = lab.frame

vib.contentView.addSubview(lab)

vib.center = CGPoint(blur.bounds.midX, blur.bounds.midY)

vib.autoresizingMask = [.flexibleTopMargin, .flexibleBottomMargin,

 .flexibleLeftMargin, .flexibleRightMargin]

blur.contentView.addSubview(vib)

self.view.addSubview(blur)

Figure 2-15. A blurred background and a vibrant label

Apple seems to think that vibrancy makes a view more legible in
conjunction with the underlying blur, but I’m not persuaded. The vibrant
view’s color is made to harmonize with the blurred color behind it, but
harmony implies similarity, which can make the vibrant view less legible.
You’ll have to experiment. With the particular interface I’m blurring, the
vibrant label in Figure 2-15 looks okay with a .dark or .extraLight blur
effect view, but is hard to see with a .light blur effect view.
There are a lot of useful additional notes, well worth consulting, in the
headers. For example, the UIVibrancyEffect.h header points out that an
image displayed in an image view needs to be a template image in order to
receive the benefit of a vibrancy effect view.
Observe that both a blur effect view and a blur effect view with an
embedded vibrancy effect view are available as built-in objects in the nib
editor.

Drawing a UIView
The examples of drawing so far in this chapter have mostly produced
UIImage objects, suitable for display by a UIImageView or any other
interface object that knows how to display an image. But, as I’ve already
explained, a UIView itself provides a graphics context; whatever you draw
into that graphics context will appear directly in that view. The technique
here is to subclass UIView and implement the subclass’s draw(_:) method.
So, for example, let’s say we have a UIView subclass called MyView. You
would then instantiate this class and get the instance into the view
hierarchy. One way to do this would be to drag a UIView into a view in the
nib editor and set its class to MyView in the Identity inspector; another
would be to run code that creates the MyView instance and puts it into the
interface.

The result is that, from time to time, or whenever you send it the setNeeds
Display message, MyView’s draw(_:) will be called. This is your
subclass, so you get to write the code that runs at that moment. Whatever

you draw will appear inside the MyView instance. There will usually be no
need to call super, since UIView’s own implementation of draw(_:) does
nothing. At the time that draw(_:) is called, the current graphics context
has already been set to the view’s own graphics context. You can use Core
Graphics functions or UIKit convenience methods to draw into that context.
I gave some basic examples earlier in this chapter (“Graphics Contexts”).
The need to draw in real time, on demand, surprises some beginners, who
worry that drawing may be a time-consuming operation. This can indeed be
a reasonable consideration, and where the same drawing will be used in
many places in your interface, it may well make sense to construct a
UIImage instead, once, and then reuse that UIImage by drawing it in a
view’s draw(_:). In general, however, you should not optimize
prematurely. The code for a drawing operation may appear verbose and yet
be extremely fast. Moreover, the iOS drawing system is efficient; it doesn’t
call draw(_:) unless it has to (or is told to, through a call to setNeedsDisp
lay), and once a view has drawn itself, the result is cached so that the
cached drawing can be reused instead of repeating the drawing operation
from scratch. (Apple refers to this cached drawing as the view’s bitmap
backing store.) You can readily satisfy yourself of this fact with some
caveman debugging, logging in your draw(_:) implementation; you may
be amazed to discover that your custom UIView’s draw(_:) code is called
only once in the entire lifetime of the app! In fact, moving code to draw
(_:) is commonly a way to increase efficiency. This is because it is more
efficient for the drawing engine to render directly onto the screen than for it
to render offscreen and then copy those pixels onto the screen.

Here are three important caveats with regard to UIView’s draw(_:)
method:

Don’t call draw(_:) yourself. If a view needs updating and you want its
draw(_:) called, send the view the setNeedsDisplay message. This
will cause draw(_:) to be called at the next proper moment.

Don’t override draw(_:) unless you are assured that this is legal. For
example, it is not legal to override draw(_:) in a subclass of

UIImageView; you cannot combine your drawing with that of the
UIImageView.

Don’t do anything in draw(_:) except draw. That sort of thing is a
common beginner mistake. Other configuration, such as setting the
view’s background color, or giving it subviews or sublayers, should be
performed elsewhere, such as its initializer override.

Where drawing is extensive and can be compartmentalized into sections,
you may be able to gain some additional efficiency by paying attention to
the parameter passed into draw(_:). This parameter is a CGRect
designating the region of the view’s bounds that needs refreshing.
Normally, this is the view’s entire bounds; but if you call setNeedsDisplay
(_:), which takes a CGRect parameter, it will be the CGRect that you
passed in as argument. You could respond by drawing only what goes into
those bounds; but even if you don’t, your drawing will be clipped to those
bounds, so, while you may not spend less time drawing, the system will
draw more efficiently.

When a custom UIView subclass has a draw(_:) implementation and you
create an instance of this subclass in code, you may be surprised (and
annoyed) to find that the view has a black background! This is a source of
considerable confusion among beginners. The black background arises
when two things are true:

The view’s backgroundColor is nil.

The view’s isOpaque is true.
Unfortunately, when creating a UIView in code, both those things are true
by default! So if you don’t want the black background, you must do
something about at least one of them. If this view isn’t going to be opaque,
then, this being your own UIView subclass, you might implement its init
(frame:) (the designated initializer) to have the view set its own isOpaque
to false:

class MyView : UIView {

 override init(frame: CGRect) {

 super.init(frame:frame)

 self.isOpaque = false

 }

 // ...

}

With a UIView created in the nib, on the other hand, the black background
problem doesn’t arise. This is because such a UIView’s backgroundColor
is not nil. The nib assigns it some actual background color, even if that
color is UIColor.clear.

Graphics Context Commands
Whenever you draw, you are giving commands to the graphics context into
which you are drawing. This is true regardless of whether you use UIKit
methods or Core Graphics functions. Thus, learning to draw is really a
matter of understanding how a graphics context works. That’s what this
section is about.
Under the hood, Core Graphics commands to a graphics context are global
C functions with names like CGContextSetFillColor; but Swift
“renamification” recasts them as if a CGContext were a genuine object
representing the graphics context. The Core Graphics functions thus appear
as methods sent to the CGContext. Moreover, thanks to Swift overloading,
multiple functions are collapsed into a single command. Thus, for example,
CGContextSetFillColor and CGContextSetFillColorWithColor and CG
ContextSetRGBFillColor and CGContextSetGrayFillColor all become
setFillColor.

Graphics Context Settings
As you draw in a graphics context, the drawing obeys the context’s current
settings. Thus, the procedure is always to configure the context’s settings
first, and then draw. For example, to draw a red line followed by a blue line,
you would first set the context’s line color to red, and then draw the first
line; then you’d set the context’s line color to blue, and then draw the

second line. To the eye, it appears that the redness and blueness are
properties of the individual lines, but in fact, at the time you draw each line,
line color is a feature of the entire graphics context.
A graphics context thus has, at every moment, a state, which is the sum
total of all its settings; the way a piece of drawing looks is the result of what
the graphics context’s state was at the moment that piece of drawing was
performed. To help you manipulate entire states, the graphics context
provides a stack for holding states. Every time you call saveGState, the
context pushes the entire current state onto the stack; every time you call re
storeGState, the context retrieves the state from the top of the stack (the
state that was most recently pushed) and sets itself to that state.
Thus, a common pattern is:

1. Call saveGState.
2. Manipulate the context’s settings, thus changing its state.
3. Draw.

4. Call restoreGState to restore the state and the settings to what they
were before you manipulated them.

You do not have to do this before every manipulation of a context’s settings,
however, because settings don’t necessarily conflict with one another or
with past settings. You can set the context’s line color to red and then later
to blue without any difficulty. But in certain situations you do want your
manipulation of settings to be undoable, and I’ll point out several such
situations later in this chapter.
Many of the settings that constitute a graphics context’s state, and that
determine the behavior and appearance of drawing performed at that
moment, are similar to those of any drawing application. Here are some of
them, along with some of the commands that determine them (and some
UIKit properties and methods that call them):

Line thickness and dash style

setLineWidth(_:), setLineDash(phase:lengths:) (and
UIBezierPath lineWidth, setLineDash(_:count:phase:))

Line end-cap style and join style

setLineCap(_:), setLineJoin(_:), setMiterLimit(_:) (and
UIBezierPath lineCapStyle, lineJoinStyle, miterLimit)

Line color or pattern

setStrokeColor(_:), setStrokePattern(_:colorComponents:)
(and UIColor setStroke)

Fill color or pattern

setFillColor(_:), setFillPattern(_:colorComponents:) (and
UIColor setFill)

Shadow

setShadow(offset:blur:color:)

Overall transparency and compositing

setAlpha(_:), setBlendMode(_:)

Anti-aliasing

setShouldAntialias(_:)

Additional settings include:

Clipping area
Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands
are mapped onto the physical space of the canvas.

Many of these settings will be illustrated by examples later in this chapter.

Paths and Shapes

By issuing a series of instructions for moving an imaginary pen, you
construct a path, tracing it out from point to point. You must first tell the
pen where to position itself, setting the current point; after that, you issue a
series of commands telling it how to trace out each subsequent piece of the
path. Each additional piece of the path starts at the current point; its end
becomes the new current point.
Note that a path, in and of itself, does not constitute drawing! First you
provide a path; then you draw. Drawing can mean stroking the path or
filling the path, or both. Again, this should be a familiar notion from certain
drawing applications.
Here are some path-drawing commands you’re likely to give:

Position the current point

move(to:)

Trace a line

addLine(to:), addLines(between:)

Trace a rectangle

addRect(_:), addRects(_:)

Trace an ellipse or circle

addEllipse(in:)

Trace an arc

addArc(tangent1End:tangent2End:radius:)

Trace a Bezier curve with one or two control points

addQuadCurve(to:control:), addCurveTo(to:control1:control
2:)

Close the current path

closePath. This appends a line from the last point of the path to the
first point. There’s no need to do this if you’re about to fill the path,

since it’s done for you.

Stroke or fill the current path

strokePath, fillPath(using:), drawPath. Stroking or filling the
current path clears the path. Use drawPath if you want both to fill and
to stroke the path in a single command, because if you merely stroke it
first with strokePath, the path is cleared and you can no longer fill it.
There are also some convenience functions that create a path from a
CGRect or similar and stroke or fill it all in a single move:

stroke(_:), strokeLineSegments(between:)

fill(_:)

strokeEllipse(in:)

fillEllipse(in:)

A path can be compound, meaning that it consists of multiple independent
pieces. For example, a single path might consist of two separate closed
shapes: a rectangle and a circle. When you call move(to:) in the middle of
constructing a path (that is, after tracing out a path and without clearing it
by filling or stroking it), you pick up the imaginary pen and move it to a
new location without tracing a segment, thus preparing to start an
independent piece of the same path. If you’re worried, as you begin to trace
out a path, that there might be an existing path and that your new path
might be seen as a compound part of that existing path, you can call beginP
ath to specify that this is a different path; many of Apple’s examples do
this, but in practice I usually do not find it necessary.
To illustrate the typical use of path-drawing commands, I’ll generate the up-
pointing arrow shown in Figure 2-16. This might not be the best way to
create the arrow, and I’m deliberately avoiding use of the convenience
functions, but it’s clear and shows a nice basic variety of typical commands:

// obtain the current graphics context

let con = UIGraphicsGetCurrentContext()!

// draw a black (by default) vertical line, the shaft of the arrow

con.move(to:CGPoint(100, 100))

con.addLine(to:CGPoint(100, 19))

con.setLineWidth(20)

con.strokePath()

// draw a red triangle, the point of the arrow

con.setFillColor(UIColor.red.cgColor)

con.move(to:CGPoint(80, 25))

con.addLine(to:CGPoint(100, 0))

con.addLine(to:CGPoint(120, 25))

con.fillPath()

// snip a triangle out of the shaft by drawing in Clear blend mode

con.move(to:CGPoint(90, 101))

con.addLine(to:CGPoint(100, 90))

con.addLine(to:CGPoint(110, 101))

con.setBlendMode(.clear)

con.fillPath()

Figure 2-16. A simple path drawing

If a path needs to be reused or shared, you can encapsulate it as a CGPath.
Like CGContext, CGPath and its mutable partner CGMutablePath are
treated as class types under “renamification,” and the global C functions
that manipulate them are treated as methods. You can copy the graphics
context’s current path using the CGContext path method, or you can create
a new CGMutablePath and construct the path using various functions, such
as move(to:transform:) and addLine(to:transform:), that parallel the
CGContext path-construction functions. Also, there are ways to create a
path based on simple geometry or on an existing path:

init(rect:transform:)

init(ellipseIn:transform:)

init(roundedRect:cornerWidth:cornerHeight:transform:)

init(strokingWithWidth:lineCap:lineJoin:miterLimit:transfo

rm:)

copy(dashingWithPhase:lengths:transform:)

copy(using:) (takes a pointer to a CGAffineTransform)
The UIKit class UIBezierPath is actually a wrapper for CGPath; the
wrapped path is its cgPath property. It provides methods parallel to the
CGContext and CGPath functions for constructing a path, such as:

init(rect:)

init(ovalIn:)

init(roundedRect:cornerRadius:)

move(to:)

addLine(to:)

addArc(withCenter:radius:startAngle:endAngle:clockwise:)

addQuadCurve(to:controlPoint:)

addCurve(to:controlPoint1:controlPoint2:)

close

When you call the UIBezierPath instance methods fill or stroke or fill
(with:alpha:) or stroke(with:alpha:), the current graphics context
settings are saved, the wrapped CGPath is made the current graphics
context’s path and stroked or filled, and the current graphics context
settings are restored.
Thus, using UIBezierPath together with UIColor, we could rewrite our
arrow-drawing routine entirely with UIKit methods:

let p = UIBezierPath()

// shaft

p.move(to:CGPoint(100,100))

p.addLine(to:CGPoint(100, 19))

p.lineWidth = 20

p.stroke()

// point

UIColor.red.set()

p.removeAllPoints()

p.move(to:CGPoint(80,25))

p.addLine(to:CGPoint(100, 0))

p.addLine(to:CGPoint(120, 25))

p.fill()

// snip

p.removeAllPoints()

p.move(to:CGPoint(90,101))

p.addLine(to:CGPoint(100, 90))

p.addLine(to:CGPoint(110, 101))

p.fill(with:.clear, alpha:1.0)

There’s no savings of code here over calling Core Graphics functions, so
your choice of Core Graphics or UIKit is a matter of taste.

Clipping
A path can be used to mask out areas, protecting them from future drawing.
This is called clipping. By default, a graphics context’s clipping region is
the entire graphics context: you can draw anywhere within the context.
The clipping area is a feature of the context as a whole, and any new
clipping area is applied by intersecting it with the existing clipping area. To
restore your clipping area to the default, call resetClip.
To illustrate, I’ll rewrite the code that generated our original arrow
(Figure 2-16) to use clipping instead of a blend mode to “punch out” the
triangular notch in the tail of the arrow. This is a little tricky, because what
we want to clip to is not the region inside the triangle but the region outside
it. To express this, we’ll use a compound path consisting of more than one
closed area — the triangle, and the drawing area as a whole (which we can
obtain as the context’s boundingBoxOfClipPath).
Both when filling a compound path and when using it to express a clipping
region, the system follows one of two rules:

Winding rule

The fill or clipping area is denoted by an alternation in the direction
(clockwise or counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths
demarcating each region.

Our situation is extremely simple, so it’s easier to use the even-odd rule:

// obtain the current graphics context

let con = UIGraphicsGetCurrentContext()!

// punch triangular hole in context clipping region

con.move(to:CGPoint(90, 100))

con.addLine(to:CGPoint(100, 90))

con.addLine(to:CGPoint(110, 100))

con.closePath()

con.addRect(con.boundingBoxOfClipPath)

con.clip(using:.evenOdd)

// draw the vertical line

con.move(to:CGPoint(100, 100))

con.addLine(to:CGPoint(100, 19))

con.setLineWidth(20)

con.strokePath()

// draw the red triangle, the point of the arrow

con.setFillColor(UIColor.red.cgColor)

con.move(to:CGPoint(80, 25))

con.addLine(to:CGPoint(100, 0))

con.addLine(to:CGPoint(120, 25))

con.fillPath()

The UIBezierPath clipping commands are usesEvenOddFillRule and addC
lip.

HOW BIG IS MY CONTEXT?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically, this
doesn’t matter, because either you created the graphics context or it’s the graphics context of
some object whose size you know, such as a UIView. But in fact, because the default clipping
region of a graphics context is the entire context, you can use boundingBoxOfClipPath to learn
the context’s “bounds.”

Gradients
Gradients can range from the simple to the complex. A simple gradient
(which is all I’ll describe here) is determined by a color at one endpoint
along with a color at the other endpoint, plus (optionally) colors at
intermediate points; the gradient is then painted either linearly between two
points or radially between two circles. You can’t use a gradient as a path’s
fill color, but you can restrict a gradient to a path’s shape by clipping, which
will sometimes be good enough.
To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of
the arrow (Figure 2-17):

// obtain the current graphics context

let con = UIGraphicsGetCurrentContext()!

// punch triangular hole in context clipping region

con.move(to:CGPoint(10, 100))

con.addLine(to:CGPoint(20, 90))

con.addLine(to:CGPoint(30, 100))

con.closePath()

con.addRect(con.boundingBoxOfClipPath)

con.clip(using: .evenOdd)

// draw the vertical line, add its shape to the clipping region

con.move(to:CGPoint(20, 100))

con.addLine(to:CGPoint(20, 19))

con.setLineWidth(20)

con.replacePathWithStrokedPath()

con.clip()

// draw the gradient

let locs : [CGFloat] = [0.0, 0.5, 1.0]

let colors : [CGFloat] = [

 0.8, 0.4, // starting color, transparent light gray

 0.1, 0.5, // intermediate color, darker less transparent gray

 0.8, 0.4, // ending color, transparent light gray

]

let sp = CGColorSpaceCreateDeviceGray()

let grad = CGGradient(

 colorSpace:sp, colorComponents: colors, locations: locs, count: 3)!

con.drawLinearGradient(grad,

 start: CGPoint(89,0), end: CGPoint(111,0), options:[])

con.resetClip() // done clipping

// draw the red triangle, the point of the arrow

con.setFillColor(UIColor.red.cgColor)

con.move(to:CGPoint(80, 25))

con.addLine(to:CGPoint(100, 0))

con.addLine(to:CGPoint(120, 25))

con.fillPath()

Figure 2-17. Drawing with a gradient

The call to replacePathWithStrokedPath pretends to stroke the current
path, using the current line width and other line-related context state
settings, but then creates a new path representing the outside of that stroked
path. Thus, instead of a thick line we have a rectangular region that we can
use as the clip region.
We then create the gradient and paint it. The procedure is verbose but
simple; everything is boilerplate. We describe the gradient as an array of
locations on the continuum between one endpoint (0.0) and the other
endpoint (1.0), along with the color components of the colors
corresponding to each location; in this case, I want the gradient to be lighter
at the edges and darker in the middle, so I use three locations, with the dark
one at 0.5. We must also supply a color space; this will tell the gradient
how to interpret our color components. Finally, we create the gradient and
paint it into place.
(There are also gradient CIFilters, as I demonstrated earlier in this chapter;
for yet another way to create a simple gradient, see the discussion of
CAGradientLayer in the next chapter.)

Colors and Patterns
A color is a CGColor. CGColor is not difficult to work with, and can be
converted to and from a UIColor through UIColor’s init(cgColor:) and

its cgColor property.
A pattern is also a kind of color. You can create a pattern color and stroke or
fill with it. The simplest way is to draw a minimal tile of the pattern into a
UIImage and create the color by calling UIColor’s init(patternImage:).
To illustrate, I’ll create a pattern of horizontal stripes and use it to paint the
point of the arrow instead of a solid red color (Figure 2-18):

// create the pattern image tile

let r = UIGraphicsImageRenderer(size:CGSize(4,4))

let stripes = r.image { ctx in

 let imcon = ctx.cgContext

 imcon.setFillColor(UIColor.red.cgColor)

 imcon.fill(CGRect(0,0,4,4))

 imcon.setFillColor(UIColor.blue.cgColor)

 imcon.fill(CGRect(0,0,4,2))

}

// paint the point of the arrow with it

let stripesPattern = UIColor(patternImage:stripes)

stripesPattern.setFill()

let p = UIBezierPath()

p.move(to:CGPoint(80,25))

p.addLine(to:CGPoint(100,0))

p.addLine(to:CGPoint(120,25))

p.fill()

Figure 2-18. A patterned fill

The Core Graphics equivalent, CGPattern, is considerably more powerful,
but also much more elaborate:

con.saveGState()

let sp2 = CGColorSpace(patternBaseSpace:nil)!

con.setFillColorSpace(sp2)

let drawStripes : CGPatternDrawPatternCallback = { _, con in

 con.setFillColor(UIColor.red.cgColor)

 con.fill(CGRect(0,0,4,4))

 con.setFillColor(UIColor.blue.cgColor)

 con.fill(CGRect(0,0,4,2))

}

var callbacks = CGPatternCallbacks(

 version: 0, drawPattern: drawStripes, releaseInfo: nil)

let patt = CGPattern(info:nil, bounds: CGRect(0,0,4,4),

 matrix: .identity,

 xStep: 4, yStep: 4,

 tiling: .constantSpacingMinimalDistortion,

 isColored: true, callbacks: &callbacks)!

var alph : CGFloat = 1.0

con.setFillPattern(patt, colorComponents: &alph)

con.move(to:CGPoint(80, 25))

con.addLine(to:CGPoint(100, 0))

con.addLine(to:CGPoint(120, 25))

con.fillPath()

con.restoreGState()

To understand that code, it helps to read it backward. Everything revolves
around the creation of patt using the CGPattern initializer. A pattern is a
drawing in a rectangular “cell”; we have to state both the size of the cell (bo
unds:) and the spacing between origin points of cells (xStep:, yStep:). In
this case, the cell is 4×4, and every cell exactly touches its neighbors both
horizontally and vertically. We have to supply a transform to be applied to
the cell (matrix:); in this case, we’re not doing anything with this
transform, so we supply the identity transform. We supply a tiling rule (til
ing:). We have to state whether this is a color pattern or a stencil pattern;
it’s a color pattern, so isColored: is true. And we have to supply a
pointer to a callback function that actually draws the pattern into its cell (ca
llbacks:).

Except that that’s not what we have to supply as the callbacks: argument.
What we actually have to supply here is a pointer to a CGPatternCallbacks
struct. This struct consists of a version: whose value is fixed at 0, along
with pointers to two functions, the drawPattern: to draw the pattern into
its cell, and the releaseInfo: called when the pattern is released. We’re

not specifying the second function, however; it is for memory management,
and we don’t need it in this simple example.

As you can see, the actual pattern-drawing function (drawStripes) is very
simple. The only tricky issue is that it must agree with the CGPattern as to
the size of a cell, or the pattern won’t come out the way you expect. We
know in this case that the cell is 4×4. So we fill it with red, and then fill its
lower half with blue. When these cells are tiled touching each other
horizontally and vertically, we get the stripes that you see in Figure 2-18.

Having generated the CGPattern, we call the context’s setFillPattern;
instead of setting a fill color, we’re setting a fill pattern, to be used the next
time we fill a path (in this case, the triangular arrowhead). The colorCompo
nents: parameter is a pointer to a CGFloat, so we have to set up the
CGFloat itself beforehand.
The only thing left to explain is the first three lines of that code. It turns out
that before you can call setFillPattern with a colored pattern, you have
to set the context’s fill color space to a pattern color space. If you neglect to
do this, you’ll get an error when you call setFillPattern. This means that
the code as presented has left the graphics context in an undesirable state,
with its fill color space set to a pattern color space. This would cause
trouble if we were later to try to set the fill color to a normal color. The
solution is to wrap the code in calls to saveGState and restoreGState.
You may have observed in Figure 2-18 that the stripes do not fit neatly
inside the triangle of the arrowhead: the bottommost stripe is something like
half a blue stripe. This is because a pattern is positioned not with respect to
the shape you are filling (or stroking), but with respect to the graphics
context as a whole. We could shift the pattern position by calling setPatte
rnPhase before drawing.

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However,
applying a transform to a graphics context has no effect on the drawing

that’s already in it; like other graphics context settings, it affects only the
drawing that takes place after it is applied, altering the way the coordinates
you provide are mapped onto the graphics context’s area. A graphics
context’s transform is called its CTM, for “current transform matrix.”
It is quite usual to take full advantage of a graphics context’s CTM to save
yourself from performing even simple calculations. You can multiply the
current transform by any CGAffineTransform using concatCTM; there are
also convenience functions for applying a translate, scale, or rotate
transform to the current transform.
The base transform for a graphics context is already set for you when you
obtain the context; that’s how the system is able to map context drawing
coordinates onto screen coordinates. Whatever transforms you apply are
applied to the current transform, so the base transform remains in effect and
drawing continues to work. You can return to the base transform after
applying your own transforms by wrapping your code in calls to saveGStat
e and restoreGState.
For example, we have hitherto been drawing our upward-pointing arrow
with code that knows how to place that arrow at only one location: the top
left of its rectangle is hard-coded at (80,0). This is silly. It makes the code
hard to understand, as well as inflexible and difficult to reuse. Surely the
sensible thing would be to draw the arrow at (0,0), by subtracting 80 from
all the x-values in our existing code. Now it is easy to draw the arrow at any
position, simply by applying a translate transform beforehand, mapping (0,
0) to the desired top-left corner of the arrow. So, to draw it at (80,0), we
would say:

con.translateBy(x:80, y:0)

// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated
orientation without any nasty trigonometry. However, it’s a bit tricky
because the point around which the rotation takes place is the origin. This is
rarely what you want, so you have to apply a translate transform first, to

map the origin to the point around which you really want to rotate. But
then, after rotating, in order to figure out where to draw, you will probably
have to reverse your translate transform.
To illustrate, here’s code to draw our arrow repeatedly at several angles,
pivoting around the end of its tail (Figure 2-19). Since the arrow will be
drawn multiple times, I’ll start by encapsulating the drawing of the arrow as
a UIImage. This is not merely to reduce repetition and make drawing more
efficient; it’s also because we want the entire arrow to pivot, including the
pattern stripes, and this is the simplest way to achieve that:

lazy var arrow : UIImage = {

 let r = UIGraphicsImageRenderer(size:CGSize(40,100))

 return r.image { _ in

 self.arrowImage()

 }

}()

func arrowImage () {

 // obtain the current graphics context

 let con = UIGraphicsGetCurrentContext()!

 // draw the arrow into the graphics context

 // draw it at (0,0)! adjust all x-values by subtracting 80

 // ... actual code omitted ...

}

In our draw(_:) implementation, we draw the arrow image multiple times:

override func draw(_ rect: CGRect) {

 let con = UIGraphicsGetCurrentContext()!

 self.arrow.draw(at:CGPoint(0,0))

 for _ in 0..<3 {

 con.translateBy(x: 20, y: 100)

 con.rotate(by: 30 * .pi/180.0)

 con.translateBy(x: -20, y: -100)

 self.arrow.draw(at:CGPoint(0,0))

 }

}

Figure 2-19. Drawing rotated

Shadows
To add a shadow to a drawing, give the context a shadow value before
drawing. The shadow position is expressed as a CGSize, where the positive
direction for both values indicates down and to the right. The blur value is
an open-ended positive number; Apple doesn’t explain how the scale
works, but experimentation shows that 12 is nice and blurry, 99 is so blurry
as to be shapeless, and higher values become problematic.
Figure 2-20 shows the result of the same code that generated Figure 2-19,
except that before we start drawing the arrow repeatedly, we give the
context a shadow:

let con = UIGraphicsGetCurrentContext()!

con.setShadow(offset: CGSize(7, 7), blur: 12)

self.arrow.draw(at:CGPoint(0,0))

// ... and so on

Figure 2-20. Drawing with a shadow

It may not be evident from Figure 2-20, but we are adding a shadow each
time we draw. Thus the arrows are able to cast shadows on one another.
Suppose, however, that we want all the arrows to cast a single shadow
collectively. The way to achieve this is with a transparency layer; this is
basically a subcontext that accumulates all drawing and then adds the
shadow. Our code for drawing the shadowed arrows now looks like this:

let con = UIGraphicsGetCurrentContext()!

con.setShadow(offset: CGSize(7, 7), blur: 12)

con.beginTransparencyLayer(auxiliaryInfo: nil)

self.arrow.draw(at:CGPoint(0,0))

for _ in 0..<3 {

 con.translateBy(x: 20, y: 100)

 con.rotate(by: 30 * .pi/180.0)

 con.translateBy(x: -20, y: -100)

 self.arrow.draw(at:CGPoint(0,0))

}

con.endTransparencyLayer()

Erasing
The CGContext clear(_:) function erases all existing drawing in a
CGRect; combined with clipping, it can erase an area of any shape. The
result can “punch a hole” through all existing drawing.

The behavior of clear(_:) depends on whether the context is transparent
or opaque. This is particularly obvious and intuitive when drawing into an
image context. If the image context is transparent, clear(_:) erases to
transparent; otherwise it erases to black.

When drawing directly into a view, if the view’s background color is nil or
a color with even a tiny bit of transparency, the result of clear(_:) will
appear to be transparent, punching a hole right through the view including
its background color; if the background color is completely opaque, the
result of clear(_:) will be black. This is because the view’s background
color determines whether the view’s graphics context is transparent or
opaque; thus, this is essentially the same behavior that I described in the
preceding paragraph.

Figure 2-21 illustrates; the blue square on the left has been partly cut away
to black, while the blue square on the right has been partly cut away to
transparency. Yet these are instances of the same UIView subclass, drawn
with exactly the same code! The UIView subclass’s draw(_:) looks like
this:

let con = UIGraphicsGetCurrentContext()!

con.setFillColor(UIColor.blue.cgColor)

con.fill(rect)

con.clear(CGRect(0,0,30,30))

Figure 2-21. The very strange behavior of the clear function

The difference between the views in Figure 2-21 is that the backgroundCol
or of the first view is solid red with an alpha of 1, while the backgroundCo
lor of the second view is solid red with an alpha of 0.99. This difference is
imperceptible to the eye (not to mention that the red color never appears, as
it is covered with a blue fill), but it completely changes the effect of clear
(_:).

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-
coordinate. When you draw in a graphics context, you specify the points at
which to draw, and this works regardless of the device’s resolution, because
Core Graphics maps your drawing nicely onto the physical output using the
base CTM and anti-aliasing. Therefore, throughout this chapter I’ve
concerned myself with graphics context points, disregarding their
relationship to screen pixels.

However, pixels do exist. A pixel is a physical, integral, dimensioned unit
of display in the real world. Whole-numbered points effectively lie between
pixels, and this can matter if you’re fussy, especially on a single-resolution
device. For example, if a vertical path with whole-number coordinates is
stroked with a line width of 1, half the line falls on each side of the path,
and the drawn line on the screen of a single-resolution device will seem to
be 2 pixels wide (because the device can’t illuminate half a pixel).
You may sometimes encounter the suggestion that if this effect is
objectionable, you should try shifting the line’s position by 0.5, to center it
in its pixels. This advice may appear to work, but it makes some
simpleminded assumptions. A more sophisticated approach is to obtain the
UIView’s contentScaleFactor property. You can divide by this value to
convert from pixels to points. Consider also that the most accurate way to
draw a vertical or horizontal line is not to stroke a path but to fill a
rectangle. So this UIView subclass code will draw a perfect 1-pixel-wide
vertical line on any device (con is the current graphics context):

con.fill(CGRect(100,0,1.0/self.contentScaleFactor,100))

Content Mode
A view that draws something within itself, as opposed to merely having a
background color and subviews (as in the previous chapter), has content.
This means that its contentMode property becomes important whenever the
view is resized. As I mentioned earlier, the drawing system will avoid
asking a view to redraw itself from scratch if possible; instead, it will use
the cached result of the previous drawing operation (the bitmap backing
store). So, if the view is resized, the system may simply stretch or shrink or
reposition the cached drawing, if your contentMode setting instructs it to
do so.
It’s a little tricky to illustrate this point when the view’s content is coming
from draw(_:), because I have to arrange for the view to obtain its content
(from draw(_:)) and then cause it to be resized without also causing it to

be redrawn (that is, without draw(_:) being called again). As the app starts
up, I’ll create an instance of a UIView subclass, MyView, that knows how
to draw our arrow; then I’ll use delayed performance to resize the instance
after the window has shown and the interface has been initially displayed
(for my delay function, see Appendix B):

delay(0.1) {

 mv.bounds.size.height *= 2 // mv is the MyView instance

}

We double the height of the view without causing draw(_:) to be called.
The result is that the view’s drawing appears at double its correct height.
For example, if our view’s draw(_:) code is the same as the code that
generated Figure 2-17, we get Figure 2-22.

Figure 2-22. Automatic stretching of content

Sooner or later, however, draw(_:) will be called, and the drawing will be
refreshed in accordance with our code. Our code doesn’t say to draw the
arrow at a height that is relative to the height of the view’s bounds; it draws
the arrow at a fixed height. Thus, the arrow will snap back to its original
size.

A view’s contentMode property should therefore usually be in agreement
with how the view draws itself. Our draw(_:) code dictates the size and

position of the arrow relative to the view’s bounds origin, its top left; so we
could set its contentMode to .topLeft. Alternatively, we could set it to .r
edraw; this will cause automatic scaling of the cached content to be turned
off — instead, when the view is resized, its setNeedsDisplay method will
be called, ultimately triggering draw(_:) to redraw the content.

Chapter 3. Layers

The tale told in Chapters 1 and 2 of how a UIView works and how it draws
itself is only half the story. A UIView has a partner called its layer, a
CALayer. A UIView does not actually draw itself onto the screen; it draws
itself into its layer, and it is the layer that is portrayed on the screen. As I’ve
already mentioned, a view is not redrawn frequently; instead, its drawing is
cached, and the cached version of the drawing (the bitmap backing store) is
used where possible. The cached version is, in fact, the layer. What I spoke
of in Chapter 2 as the view’s graphics context is actually the layer’s
graphics context.
This might seem to be a mere implementation detail, but layers are
important and interesting. To understand layers is to understand views more
deeply; layers extend the power of views. In particular:

Layers have properties that affect drawing
Layers have drawing-related properties beyond those of a UIView.
Because a layer is the recipient and presenter of a view’s drawing, you
can modify how a view is drawn on the screen by accessing the layer’s
properties. In other words, by reaching down to the level of its layer,
you can make a view do things you can’t do through UIView methods
alone.

Layers can be combined within a single view
A UIView’s partner layer can contain additional layers. Since the
purpose of layers is to draw, portraying visible material on the screen,
this allows a UIView’s drawing to be composited of multiple distinct
pieces. This can make drawing easier, with the constituents of a drawing
being treated as objects.

Layers are the basis of animation

Animation allows you to add clarity, emphasis, and just plain coolness
to your interface. Layers are made to be animated; the “CA” in
“CALayer” stands for “Core Animation.” Animation is the subject of
Chapter 4.

Figure 3-1. A compass, composed of layers

For example, suppose we want to add a compass indicator to our app’s
interface. Figure 3-1 portrays a simple version of such a compass. It takes
advantage of the arrow that we figured out how to draw in Chapter 2; the
arrow is drawn into a layer of its own. The other parts of the compass are
layers too: the circle is a layer, and each of the cardinal point letters is a
layer. The drawing is thus easy to composite in code (and later in this
chapter, that’s exactly what we’ll do); even more intriguing, the pieces can
be repositioned and animated separately, so it’s easy to rotate the arrow
without moving the circle (and in Chapter 4, that’s exactly what we’ll do).
The documentation discusses layers chiefly in connection with animation
(in particular, in the Core Animation Programming Guide). This
categorization gives the impression that layers are of interest only if you
intend to animate. That’s misleading. Layers are the basis of animation, but
they are also the basis of view drawing, and are useful and important even if
you don’t use them for animation.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as
the view’s layer property. This layer has a special status: it is partnered
with this view to embody all of the view’s drawing. The layer has no
corresponding view property, but the view is the layer’s delegate
(adopting CALayerDelegate). The documentation sometimes speaks of this
layer as the view’s underlying layer.
By default, when a UIView is instantiated, its layer is an instance of
CALayer. If you subclass UIView and you want your subclass’s underlying
layer to be an instance of a CALayer subclass (built-in or your own),
implement the UIView subclass’s layerClass class property to return that
CALayer subclass.
That, for example, is how the compass in Figure 3-1 is created. We have a
UIView subclass, CompassView, and a CALayer subclass, CompassLayer.
Here is CompassView’s implementation:

class CompassView : UIView {

 override class var layerClass : AnyClass {

 return CompassLayer.self

 }

}

Thus, when CompassView is instantiated, its underlying layer is a
CompassLayer. In this example, there is no drawing in CompassView; its
job — in this case, its only job — is to give CompassLayer a place in the
visible interface, because a layer cannot appear without a view.
Because every view has an underlying layer, there is a tight integration
between the two. The layer portrays all the view’s drawing; if the view
draws, it does so by contributing to the layer’s drawing. The view is the
layer’s delegate. And the view’s properties are often merely a convenience
for accessing the layer’s properties. For example, when you set the view’s b
ackgroundColor, you are really setting the layer’s backgroundColor, and
if you set the layer’s backgroundColor directly, the view’s backgroundCol

or is set to match. Similarly, the view’s frame is really the layer’s frame
and vice versa.

WARNING
A CALayer’s delegate property is settable (to an instance of any class adopting
CALayerDelegate), but a UIView and its underlying layer have a special relationship. A UIView
must be the delegate of its underlying layer; moreover, it must not be the delegate of any other
layer. Don’t do anything to mess this up. If you do, drawing will stop working correctly.

The view draws into its layer, and the layer caches that drawing; the layer
can then be manipulated, changing the view’s appearance, without
necessarily asking the view to redraw itself. This is a source of great
efficiency in the drawing system. It also explains such phenomena as the
content stretching that we encountered in the last section of Chapter 2:
when the view’s bounds size changes, the drawing system, by default,
simply stretches or repositions the cached layer image, until such time as
the view is told to draw freshly, replacing the layer’s content.

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus
there is a tree of layers. This is similar and parallel to the tree of views
(Chapter 1). In fact, so tight is the integration between a view and its
underlying layer that these hierarchies are effectively the same hierarchy.
Given a view and its underlying layer, that layer’s superlayer is the view’s
superview’s underlying layer, and that layer has as sublayers all the
underlying layers of all the view’s subviews. Indeed, because the layers are
how the views actually get drawn, one might say that the view hierarchy
really is a layer hierarchy (Figure 3-2).

Figure 3-2. A hierarchy of views and the hierarchy of layers underlying it

At the same time, the layer hierarchy can go beyond the view hierarchy. A
view has exactly one underlying layer, but a layer can have sublayers that
are not the underlying layers of any view. So the hierarchy of layers that
underlie views exactly matches the hierarchy of views, but the total layer
tree may be a superset of that hierarchy. In Figure 3-3, we see the same
view-and-layer hierarchy as in Figure 3-2, but two of the layers have
additional sublayers that are theirs alone (that is, sublayers that are not any
view’s underlying layers).

Figure 3-3. Layers that have sublayers of their own

From a visual standpoint, there may be nothing to distinguish a hierarchy of
views from a hierarchy of layers. For example, in Chapter 1 we drew three
overlapping rectangles using a hierarchy of views (Figure 1-1). This code
gives exactly the same visible display by manipulating layers (Figure 3-4):

let lay1 = CALayer()

lay1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1).cgColor

lay1.frame = CGRect(113, 111, 132, 194)

self.view.layer.addSublayer(lay1)

let lay2 = CALayer()

lay2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1).cgColor

lay2.frame = CGRect(41, 56, 132, 194)

lay1.addSublayer(lay2)

let lay3 = CALayer()

lay3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1).cgColor

lay3.frame = CGRect(43, 197, 160, 230)

self.view.layer.addSublayer(lay3)

Figure 3-4. Overlapping layers

A view’s subview’s underlying layer is a sublayer of that view’s underlying
layer, just like any other sublayers of that view’s underlying layer.
Therefore, it can be positioned anywhere among them in the drawing order.

The fact that a view can be interspersed among the sublayers of its
superview’s underlying layer is surprising to beginners. For example, let’s
construct Figure 3-4 again, but between adding lay2 and lay3 to the
interface, we’ll add a subview:

// ...

lay1.addSublayer(lay2)

let iv = UIImageView(image:UIImage(named:"smiley"))

self.view.addSubview(iv)

iv.frame.origin = CGPoint(180,180)

let lay3 = CALayer() // the red rectangle

// ...

The result is Figure 3-5. The smiley face was added to the interface before
the red (left and frontmost) rectangle, so it appears behind that rectangle.
By reversing the order in which the red rectangle (lay3) and the smiley face
(iv) are added to the interface, the smiley face can be made to appear in
front of that rectangle. The smiley face is a view, whereas the rectangle is
just a layer; so they are not siblings as views, since the rectangle is not a
view. But the smiley face is both a view and its layer; as layers, the smiley
face and the rectangle are siblings, since they have the same superlayer, so
either one can be made to appear in front of the other.

Figure 3-5. Overlapping layers and a view

Whether a layer displays regions of its sublayers that lie outside that layer’s
own bounds depends upon the value of its masksToBounds property. This is
parallel to a view’s clipsToBounds property, and indeed, for a layer that is
its view’s underlying layer, they are the same thing. In Figures 3-4 and 3-5,
the layers all have clipsToBounds set to false (the default); that’s why the
right layer is visible beyond the bounds of the middle layer, which is its
superlayer.

Like a UIView, a CALayer has an isHidden property that can be set to take
it and its sublayers out of the visible interface without actually removing it
from its superlayer.

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the
layer hierarchy, parallel to the methods for reading and manipulating the
view hierarchy. A layer has a superlayer property and a sublayers
property, along with these methods:

addSublayer(_:)

insertSublayer(_:at:)

insertSublayer(_:below:), insertSublayer(_:above:)

replaceSublayer(_:with:)

removeFromSuperlayer

Unlike a view’s subviews property, a layer’s sublayers property is
writable; thus, you can give a layer multiple sublayers in a single move, by
assigning to its sublayers property. To remove all of a layer’s sublayers,
set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers
order and regulated with the methods I’ve just mentioned, this is not
necessarily the same as their back-to-front drawing order. By default, it is,
but a layer also has a zPosition property, a CGFloat, and this also
determines drawing order. The rule is that all sublayers with the same zPos
ition are drawn in the order they are listed among their sublayers
siblings, but lower zPosition siblings are drawn before higher zPosition
siblings. (The default zPosition is 0.0.)

Sometimes, the zPosition property is a more convenient way of dictating
drawing order than sibling order is. For example, if layers represent playing
cards laid out in a solitaire game, it will likely be a lot easier and more
flexible to determine how the cards overlap by setting their zPosition than
by rearranging their sibling order.
Moreover, a subview’s layer is itself just a layer, so you can rearrange the
drawing order of subviews by setting the zPosition of their underlying
layers! In our code constructing Figure 3-5, if we assign the image view’s
underlying layer a zPosition of 1, it is drawn in front of the red (left)
rectangle:

self.view.addSubview(iv)

iv.layer.zPosition = 1

Methods are also provided for converting between the coordinate systems
of layers within the same layer hierarchy; the first parameter can be a
CGPoint or a CGRect:

convert(_:from:)

convert(_:to:)

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A
layer’s own internal coordinate system is expressed by its bounds, just like
a view; its size is its bounds size, and its bounds origin is the internal
coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its c
enter, like a view; a layer does not have a center. Instead, a sublayer’s
position within its superlayer is defined by a combination of two properties:

position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is located, with respect to the layer’s own
bounds. It is a CGPoint describing a fraction (or multiple) of the layer’s
own bounds width and bounds height. Thus, for example, (0.0,0.0) is
the top left of the layer’s bounds, and (1.0,1.0) is the bottom right of
the layer’s bounds.

Here’s an analogy; I didn’t make it up, but it’s pretty apt. Think of the
sublayer as pinned to its superlayer; then you have to say both where the
pin passes through the sublayer (the anchorPoint) and where it passes
through the superlayer (the position).

If the anchorPoint is (0.5,0.5) (the default), the position property
works like a view’s center property. A view’s center is thus a special case
of a layer’s position. This is quite typical of the relationship between view

properties and layer properties; the view properties are often a simpler —
but less powerful — version of the layer properties.

A layer’s position and anchorPoint are orthogonal (independent);
changing one does not change the other. Therefore, changing either of them
without changing the other changes where the layer is drawn within its
superlayer.
For example, in Figure 3-1, the most important point in the circle is its
center; all the other objects need to be positioned with respect to it.
Therefore, they all have the same position: the center of the circle. But
they differ in their anchorPoint. For example, the arrow’s anchorPoint is
(0.5,0.8), the middle of the shaft, near the tail. On the other hand, the anc
horPoint of a cardinal point letter is (0.5,3.0), well outside the letter’s
bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is
calculated from the bounds size along with the position and
anchorPoint. When you set the frame, you set the bounds size and positi
on. In general, you should regard the frame as a convenient façade and no
more. Nevertheless, it is convenient! For example, to position a sublayer so
that it exactly overlaps its superlayer, you can just set the sublayer’s frame
to the superlayer’s bounds.

TIP
A layer created in code (as opposed to a view’s underlying layer) has a frame and bounds of CGRe
ct.zero and will not be visible on the screen even when you add it to a superlayer that is on the
screen. Be sure to give your layer a nonzero width and height if you want to be able to see it!
Creating a layer and adding it to a superlayer and then wondering why it isn’t appearing in the
interface is a common beginner error.

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of
repositioning its sublayers en masse, you might like to make the layer a

CAScrollLayer, a CALayer subclass that provides convenience methods for
this sort of thing. (Despite the name, a CAScrollLayer provides no scrolling
interface; the user can’t scroll it by dragging, for example.) By default, a
CAScrollLayer’s masksToBounds property is true; thus, the
CAScrollLayer acts like a window through which you see can only what is
within its bounds. (You can set its masksToBounds to false, but this would
be an odd thing to do, as it somewhat defeats the purpose.)
To move the CAScrollLayer’s bounds, you can talk either to it or to a
sublayer (at any depth):

Talking to the CAScrollLayer

scroll(to:)

Takes a CGPoint or a CGRect. If a CGPoint, changes the
CAScrollLayer’s bounds origin to that point. If a CGRect, changes
the CAScrollLayer’s bounds origin minimally so that the given
portion of the bounds rect is visible.

Talking to a sublayer

scroll(_:)

Changes the CAScrollLayer’s bounds origin so that the given point
of the sublayer is at the top left of the CAScrollLayer.

scrollRectToVisible(_:)

Changes the CAScrollLayer’s bounds origin so that the given rect of
the sublayer’s bounds is within the CAScrollLayer’s bounds area.
You can also ask the sublayer for its visibleRect, the part of this
sublayer now within the CAScrollLayer’s bounds.

Layout of Sublayers
The view hierarchy is actually a layer hierarchy (Figure 3-2). The
positioning of a view within its superview is actually the positioning of its
layer within its superlayer (the superview’s layer). A view can be
repositioned and resized automatically in accordance with its autoresizin

gMask or through autolayout based on its constraints. Thus, there is
automatic layout for layers if they are the underlying layers of views.
Otherwise, there is no automatic layout for layers in iOS. The only option
for layout of layers that are not the underlying layers of views is manual
layout that you perform in code.
When a layer needs layout, either because its bounds have changed or
because you called setNeedsLayout, you can respond in either of two
ways:

The layer’s layoutSublayers method is called; to respond, override la
youtSublayers in your CALayer subclass.

Alternatively, implement layoutSublayers(of:) in the layer’s
delegate. (Remember, if the layer is a view’s underlying layer, the view
is its delegate.)

For your layer to do effective manual layout of its sublayers, you’ll
probably need a way to identify or refer to the sublayers. There is no layer
equivalent of viewWithTag(_:), so such identification and reference is
entirely up to you. A CALayer does have a name property that you might
misuse for your own purposes. Key–value coding can also be helpful here;
layers implement key–value coding in a special way, discussed at the end of
this chapter.

For a view’s underlying layer, layoutSublayers or layoutSublayers(o
f:) is called after the view’s layoutSubviews. Under autolayout, you must
call super or else autolayout will break. Moreover, these methods may be
called more than once during the course of autolayout; if you’re looking for
an automatically generated signal that it’s time to do manual layout of
sublayers, a view layout event might be a better choice (see “Layout
Events”).

Drawing in a Layer

The simplest way to make something appear in a layer is through its conten
ts property. This is parallel to the image in a UIImageView (Chapter 2). It
is expected to be a CGImage (or nil, signifying no image). So, for
example, here’s how we might modify the code that generated Figure 3-5 in
such a way as to generate the smiley face as a layer rather than a view:

let lay4 = CALayer()

let im = UIImage(named:"smiley")!

lay4.frame = CGRect(origin:CGPoint(180,180), size:im.size)

lay4.contents = im.cgImage

self.view.layer.addSublayer(lay4)

WARNING
Unfortunately, the CALayer contents property is typed as Any (wrapped in an Optional). That
means you can assign anything to it. Setting a layer’s contents to a UIImage, rather than a
CGImage, will fail silently — the image doesn’t appear, but there is no error either. This is
absolutely maddening, and I wish I had a nickel for every time I’ve done it and then wasted hours
figuring out why my layer isn’t appearing.

There are also four methods that can be implemented to provide or draw a
layer’s content on demand, similar to a UIView’s draw(_:). A layer is very
conservative about calling these methods (and you must not call any of
them directly). When a layer does call these methods, I will say that the
layer redisplays itself. Here is how a layer can be caused to redisplay itself:

If the layer’s needsDisplayOnBoundsChange property is false (the
default), then the only way to cause the layer to redisplay itself is by
calling setNeedsDisplay (or setNeedsDisplay(_:), specifying a
CGRect). Even this might not cause the layer to redisplay itself right
away; if that’s crucial, then you will also call displayIfNeeded.

If the layer’s needsDisplayOnBoundsChange property is true, then the
layer will also redisplay itself when the layer’s bounds change (rather
like a view’s .redraw content mode).

Here are the four methods that can be called when a layer redisplays itself;
pick one to implement (don’t try to combine them, you’ll just confuse
things):

display in a subclass

Your CALayer subclass can override display. There’s no graphics
context at this point, so display is pretty much limited to setting the co
ntents image.

display(_:) in the delegate

You can set the CALayer’s delegate property and implement display
(_:) in the delegate. As with CALayer’s display, there’s no graphics
context, so you’ll just be setting the contents image.

draw(in:) in a subclass

Your CALayer subclass can override draw(in:). The parameter is a
graphics context into which you can draw directly; it is not
automatically made the current context.

draw(_:in:) in the delegate

You can set the CALayer’s delegate property and implement draw(_:
in:). The second parameter is a graphics context into which you can
draw directly; it is not automatically made the current context.

Assigning a layer a contents image and drawing directly into the layer are,
in effect, mutually exclusive. So:

If a layer’s contents is assigned an image, this image is shown
immediately and replaces whatever drawing may have been displayed in
the layer.

If a layer redisplays itself and draw(in:) or draw(_:in:) draws into
the layer, the drawing replaces whatever image may have been displayed
in the layer.

If a layer redisplays itself and none of the four methods provides any
content, the layer will be empty.

If a layer is a view’s underlying layer, you usually won’t use any of the four
methods to draw into the layer: you’ll use the view’s draw(_:). However,
you can use these methods if you really want to. In that case, you will
probably want to implement draw(_:) anyway, leaving that
implementation empty. The reason is that this causes the layer to redisplay
itself at appropriate moments. When a view is sent setNeedsDisplay —
including when the view first appears — the view’s underlying layer is also
sent setNeedsDisplay, unless the view has no draw(_:) implementation
(because in that case, it is assumed that the view never needs redrawing).
So, if you’re drawing a view entirely by drawing to its underlying layer
directly, and if you want the underlying layer to be redisplayed
automatically when the view is told to redraw itself, you should implement
draw(_:) to do nothing. (This technique has no effect on sublayers of the
underlying layer.)
Thus, these are legitimate (but unusual) techniques for drawing into a view:

The view subclass implements an empty draw(_:), along with either di
splayLayer: or draw(_:in:).

The view subclass implements an empty draw(_:) plus layerClass, to
give the view a custom layer subclass — and the custom layer subclass
implements either display or draw(in:).

Remember, you must not set the delegate property of a view’s underlying
layer! The view is its delegate and must remain its delegate. A useful
architecture for drawing into a layer through a delegate of your choosing is
to treat a view as a layer-hosting view: the view and its underlying layer do
nothing except to serve as a host to a sublayer of the view’s underlying
layer, which is where the drawing occurs (Figure 3-6).

Figure 3-6. A view and a layer delegate that draws into it

Drawing-Related Layer Properties
A layer has a scale, its contentsScale, which maps point distances in the
layer’s graphics context to pixel distances on the device. A layer that’s
managed by Cocoa, if it has contents, will adjust its contentsScale
automatically as needed; for example, if a view implements draw(_:), then
on a device with a double-resolution screen its underlying layer is assigned
a contentsScale of 2. A layer that you are creating and managing
yourself, however, has no such automatic behavior; it’s up to you, if you
plan to draw into the layer, to set its contentsScale appropriately. Content
drawn into a layer with a contentsScale of 1 may appear pixellated or
fuzzy on a high-resolution screen. And when you’re starting with a
UIImage and assigning its CGImage as a layer’s contents, if there’s a
mismatch between the UIImage’s scale and the layer’s contentsScale,
then the image may be displayed at the wrong size.
Three further layer properties strongly affect what the layer displays:

backgroundColor

Equivalent to a view’s backgroundColor (and if this layer is a view’s
underlying layer, it is the view’s backgroundColor). Changing the bac
kgroundColor takes effect immediately. Think of the backgroundColo

r as separate from the layer’s own drawing, and as painted behind the
layer’s own drawing.

opacity

Affects the overall apparent transparency of the layer. It is equivalent to
a view’s alpha (and if this layer is a view’s underlying layer, it is the
view’s alpha). It affects the apparent transparency of the layer’s
sublayers as well. It affects the apparent transparency of the background
color and the apparent transparency of the layer’s content separately
(just as with a view’s alpha). Changing the opacity property takes
effect immediately.

isOpaque

Determines whether the layer’s graphics context is opaque. An opaque
graphics context is black; you can draw on top of that blackness, but the
blackness is still there. A nonopaque graphics context is clear; where no
drawing is, it is completely transparent. Changing the isOpaque
property has no effect until the layer redisplays itself. A view’s
underlying layer’s isOpaque property is independent of the view’s isOp
aque property; they are unrelated and do entirely different things.

If a layer is the underlying layer of a view that implements draw(_:), then
setting the view’s backgroundColor changes the layer’s isOpaque: the
latter becomes true if the new background color is opaque (alpha
component of 1), and false otherwise. That’s the reason behind the strange
behavior of CGContext’s clear(_:) method, described in Chapter 2.

WARNING
When drawing directly into a layer, the behavior of clear(_:) differs from what was described in
Chapter 2 for drawing into a view: instead of punching a hole through the background color, it
effectively paints with the layer’s background color. This can have curious side effects, and I
regard it as deeply weird.

Content Resizing and Positioning
A layer’s content is stored (cached) as a bitmap which is then treated like an
image:

If the content came from setting the layer’s contents property to an
image, the cached content is that image; its size is the point size of the
CGImage we started with.
If the content came from drawing directly into the layer’s graphics
context (draw(in:), draw(_:in:)), the cached content is the layer’s
entire graphics context; its size is the point size of the layer itself at the
time the drawing was performed.

The layer’s content is then drawn in relation to the layer’s bounds in
accordance with various layer properties, which cause the cached content to
be resized, repositioned, cropped, and so on, as it is displayed. The
properties are:

contentsGravity

This property, a string, is parallel to a UIView’s contentMode property,
and describes how the content should be positioned or stretched in
relation to the bounds. For example, kCAGravityCenter means the
content is centered in the bounds without resizing; kCAGravityResize
(the default) means the content is sized to fit the bounds, even if this
means distorting its aspect; and so forth.

WARNING
For historical reasons, the terms bottom and top in the names of the contentsGravity settings
have the opposite of their expected meanings.

contentsRect

A CGRect expressing the proportion of the content that is to be
displayed. The default is (0.0,0.0,1.0,1.0), meaning the entire

content is displayed. The specified part of the content is sized and
positioned in relation to the bounds in accordance with the contentsGr
avity. Thus, for example, by setting the contentsRect, you can scale
up part of the content to fill the bounds, or slide part of a larger image
into view without redrawing or changing the contents image.

You can also use the contentsRect to scale down the content, by
specifying a larger contentsRect such as (-0.5,-0.5,1.5,1.5); but
any content pixels that touch the edge of the contentsRect will then be
extended outward to the edge of the layer (to prevent this, make sure
that the outermost pixels of the content are all empty).

contentsCenter

A CGRect, structured like contentsRect, expressing the central region
of nine rectangular regions of the contentsRect that are variously
allowed to stretch if the contentsGravity calls for stretching. The
central region (the actual value of the contentsCenter) stretches in
both directions. Of the other eight regions (inferred from the value you
provide), the four corner regions don’t stretch, and the four side regions
stretch in one direction. (This should remind you of how a resizable
image stretches! See Chapter 2.)

If a layer’s content comes from drawing directly into its graphics context,
then the layer’s contentsGravity, of itself, has no effect, because the size
of the graphics context, by definition, fits the size of the layer exactly; there
is nothing to stretch or reposition. But the contentsGravity will have an
effect on such a layer if its contentsRect is not (0.0,0.0,1.0,1.0),
because now we’re specifying a rectangle of some other size; the contents
Gravity describes how to fit that rectangle into the layer.
Again, if a layer’s content comes from drawing directly into its graphics
context, then when the layer is resized, if the layer is asked to display itself
again, the drawing is performed again, and once more the layer’s content
fits the size of the layer exactly. But if the layer’s bounds are resized when n
eedsDisplayOnBoundsChange is false, then the layer does not redisplay

itself, so its cached content no longer fits the layer, and the contentsGravi
ty matters.
By a judicious combination of settings, you can get the layer to perform
some clever drawing for you that might be difficult to perform directly. For
example, Figure 3-7 shows the result of the following settings:

arrow.needsDisplayOnBoundsChange = false

arrow.contentsCenter = CGRect(0.0, 0.4, 1.0, 0.6)

arrow.contentsGravity = kCAGravityResizeAspect

arrow.bounds = arrow.bounds.insetBy(dx: -20, dy: -20)

Because needsDisplayOnBoundsChange is false, the content is not
redisplayed when the arrow’s bounds are increased; instead, the cached
content is used. The contentsGravity setting tells us to resize
proportionally; therefore, the arrow is both longer and wider than in
Figure 3-1, but not in such a way as to distort its proportions. However,
notice that although the triangular arrowhead is wider, it is not longer; the
increase in length is due entirely to the stretching of the arrow’s shaft.
That’s because the contentsCenter region is within the shaft.

Figure 3-7. One way of resizing the compass arrow

A layer’s masksToBounds property has the same effect on its content that it
has on its sublayers. If it is false, the whole content is displayed, even if

that content (after taking account of the contentsGravity and contentsRe
ct) is larger then the layer. If it is true, only the part of the content within
the layer’s bounds will be displayed.

TIP
The value of a layer’s bounds origin does not affect where its content is drawn. It affects only
where its sublayers are drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but helpful self-
drawing ability:

CATextLayer

A CATextLayer has a string property, which can be an NSString or
NSAttributedString, along with other text formatting properties,
somewhat like a simplified UILabel; it draws its string. The default
text color, the foregroundColor property, is white, which is unlikely to
be what you want. The text is different from the contents and is
mutually exclusive with it: either the contents image or the text will be
drawn, but not both, so in general you should not give a CATextLayer
any contents image. In Figures 3-1 and 3-7, the cardinal point letters are
CATextLayer instances.

CAShapeLayer

A CAShapeLayer has a path property, which is a CGPath. It fills or
strokes this path, or both, depending on its fillColor and strokeColo
r values, and displays the result; the default is a fillColor of black
and no strokeColor. It has properties for line thickness, dash style,
end-cap style, and join style, similar to a graphics context; it also has the
remarkable ability to draw only part of its path (strokeStart and stro
keEnd), making it very easy, for example, to draw an arc of an ellipse. A
CAShapeLayer may also have contents; the shape is displayed on top

of the contents image, but there is no property permitting you to specify
a compositing mode. In Figures 3-1 and 3-7, the background circle is a
CAShapeLayer instance, stroked with gray and filled with a lighter,
slightly transparent gray.

CAGradientLayer
A CAGradientLayer covers its background with a simple linear
gradient; thus, it’s an easy way to draw a gradient in your interface (and
if you need something more elaborate you can always draw with Core
Graphics instead). The gradient is defined much as in the Core Graphics
gradient example in Chapter 2, an array of locations and an array of
corresponding colors, along with a start and end point. To clip the
gradient’s shape, you can add a mask to the CAGradientLayer (masks
are discussed later in this chapter). A CAGradientLayer’s contents are
not displayed.

Figure 3-8 shows our compass drawn with an extra CAGradientLayer
behind it.

Figure 3-8. A gradient drawn behind the compass

Transforms

The way a layer is drawn on the screen can be modified though a transform.
This is not surprising, because a view can have a transform (see Chapter 1),
and a view is drawn on the screen by its layer. But a layer’s transform is
more powerful than a view’s transform; you can use it to accomplish things
that you can’t accomplish with a view’s transform alone.

Affine Transforms
In the simplest case, when a transform is two-dimensional, you can access a
layer’s transform through the affineTransform method (and the
corresponding setter, setAffineTransform(_:)). The value is a
CGAffineTransform, familiar from Chapters 1 and 2. The transform is
applied around the anchorPoint. (Thus, the anchorPoint has a second
purpose that I didn’t tell you about when discussing it earlier.)
You now know everything needed to understand the code that generated
Figure 3-8, so here it is. In this code, self is the CompassLayer; it does no
drawing of its own, but merely assembles and configures its sublayers. The
four cardinal point letters are each drawn by a CATextLayer; they are drawn
at the same coordinates, but they have different rotation transforms, and are
anchored so that their rotation is centered at the center of the circle. To
generate the arrow, CompassLayer adopts CALayerDelegate, makes itself
the arrow layer’s delegate, and calls setNeedsDisplay on the arrow layer;
this causes draw(_:in:) to be called in CompassLayer (that code is just the
same code we developed for drawing the arrow in Chapter 2, and is not
repeated here). The arrow layer is positioned by an anchorPoint pinning
its tail to the center of the circle, and rotated around that pin by a transform:

// the gradient

let g = CAGradientLayer()

g.contentsScale = UIScreen.main.scale

g.frame = self.bounds

g.colors = [

 UIColor.black.cgColor,

 UIColor.red.cgColor

]

g.locations = [0.0,1.0]

self.addSublayer(g)

// the circle

let circle = CAShapeLayer()

circle.contentsScale = UIScreen.main.scale

circle.lineWidth = 2.0

circle.fillColor = UIColor(red:0.9, green:0.95, blue:0.93, alpha:0.9).cgColor

circle.strokeColor = UIColor.gray.cgColor

let p = CGMutablePath()

p.addEllipse(in: self.bounds.insetBy(dx: 3, dy: 3))

circle.path = p

self.addSublayer(circle)

circle.bounds = self.bounds

circle.position = self.bounds.center

// the four cardinal points

let pts = "NESW"

for (ix,c) in pts.characters.enumerated() {

 let t = CATextLayer()

 t.contentsScale = UIScreen.main.scale

 t.string = String(c)

 t.bounds = CGRect(0,0,40,40)

 t.position = circle.bounds.center

 let vert = circle.bounds.midY / t.bounds.height

 t.anchorPoint = CGPoint(0.5, vert)

 t.alignmentMode = kCAAlignmentCenter

 t.foregroundColor = UIColor.black.cgColor

 t.setAffineTransform(

 CGAffineTransform(rotationAngle:CGFloat(ix) * .pi/2.0))

 circle.addSublayer(t)

}

// the arrow

let arrow = CALayer()

arrow.contentsScale = UIScreen.main.scale

arrow.bounds = CGRect(0, 0, 40, 100)

arrow.position = self.bounds.center

arrow.anchorPoint = CGPoint(0.5, 0.8)

arrow.delegate = self // we will draw the arrow in the delegate method

arrow.setAffineTransform(CGAffineTransform(rotationAngle:.pi/5.0))

self.addSublayer(arrow)

arrow.setNeedsDisplay() // draw, please

3D Transforms
A full-fledged layer transform, the value of the transform property, takes
place in three-dimensional space; its description includes a z-axis,
perpendicular to both the x-axis and y-axis. (By default, the positive z-axis

points out of the screen, toward the viewer’s face.) Layers do not magically
give you realistic three-dimensional rendering — for that you would use
OpenGL, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity.
Nevertheless, they do operate in three dimensions, quite sufficiently to give
a cartoonish but effective sense of reality, especially when performing an
animation. We’ve all seen the screen image flip like turning over a piece of
paper to reveal what’s on the back; that’s a rotation in three dimensions.
A three-dimensional transform takes place around a three-dimensional
extension of the anchorPoint, whose z-component is supplied by the anch
orPointZ property. Thus, in the reduced default case where anchorPointZ
is 0.0, the anchorPoint is sufficient, as we’ve already seen in using
CGAffineTransform.
The transform itself is described mathematically by a struct called a
CATransform3D. The Quartz Core Core Animation Functions reference
page lists the functions for working with these transforms. They are a lot
like the CGAffineTransform functions, except they’ve got a third
dimension. For example, a 2D scale transform depends upon two values,
the scale on the x-axis and the y-axis; for a 3D scale transform, there’s also
a z-axis so you have to supply a third parameter.
The rotation 3D transform is a little more complicated. In addition to the
angle, you also have to supply three coordinates describing the vector
around which the rotation is to take place. Perhaps you’ve forgotten from
your high-school math what a vector is, or perhaps trying to visualize three
dimensions boggles your mind, so here’s another way to think of it.

Pretend for purposes of discussion that the anchor point is the origin, (0.0,
0.0,0.0). Now imagine an arrow emanating from the anchor point; its
other end, the pointy end, is described by the three coordinates you provide.
Now imagine a plane that intersects the anchor point, perpendicular to the
arrow. That is the plane in which the rotation will take place; a positive
angle is a clockwise rotation, as seen from the side of the plane with the
arrow (Figure 3-9). In effect, the three coordinates you supply describe

(relative to the anchor point) where your eye would have to be to see this
rotation as an old-fashioned two-dimensional rotation.
A vector specifies a direction, not a point. Thus it makes no difference on
what scale you give the coordinates: (1.0,1.0,1.0) means the same thing
as (10.0,10.0,10.0), so you might as well say (1.0,1.0,1.0), sticking
to the unit scale; that’s called a normalized vector.

If the three normalized values are (0.0,0.0,1.0), with all other things
being equal, the case is collapsed to a simple CGAffineTransform, because
the rotational plane is the screen. If the three normalized values are (0.0,
0.0,-1.0), it’s a backward CGAffineTransform, so that a positive angle
looks counterclockwise (because we are looking at the “back side” of the
rotational plane).

Figure 3-9. An anchor point plus a vector defines a rotation plane

A layer can itself be rotated in such a way that its “back” is showing. For
example, the following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

By default, the layer is considered double-sided, so when it is flipped to
show its “back,” what’s drawn is an appropriately reversed version of the
content of the layer (along with its sublayers, which by default are still
drawn in front of the layer, but reversed and positioned in accordance with
the layer’s transformed coordinate system). But if the layer’s isDoubleSid
ed property is false, then when it is flipped to show its “back,” the layer
disappears (along with its sublayers); its “back” is transparent and empty.

Depth
There are two ways to place layers at different nominal depths with respect
to their siblings. One is through the z-component of their position, which
is the zPosition property. (Thus the zPosition, too, has a second purpose
that I didn’t tell you about earlier.) The other is to apply a transform that
translates the layer’s position in the z-direction. These two values, the z-
component of a layer’s position and the z-component of its translation
transform, are related; in some sense, the zPosition is a shorthand for a
translation transform in the z-direction. (If you provide both a zPosition
and a z-direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear
larger or smaller, as it is positioned closer or further away; but this, by
default, is not the case in the world of layer drawing. There is no attempt to
portray perspective; the layer planes are drawn at their actual size and
flattened onto one another, with no illusion of distance. (This is called
orthographic projection, and is the way blueprints are often drawn to
display an object from one side.)
If we want to portray a visual sense of depth using layers, then, we’re going
to need some additional techniques.

Sublayer transform
Here’s a widely used trick for introducing a quality of perspective into the
way layers are drawn: make them sublayers of a layer whose sublayerTra
nsform property maps all points onto a “distant” plane. (This is probably

just about the only thing the sublayerTransform property is ever used for.)
Combined with orthographic projection, the effect is to apply one-point
perspective to the drawing, so that things do get perceptibly smaller in the
negative z-direction.
For example, let’s try applying a sort of “page-turn” rotation to our
compass: we’ll anchor it at its right side and then rotate it around the y-axis.
Here, the sublayer we’re rotating (accessed through a property, rotationLa
yer) is the gradient layer, and the circle and arrow are its sublayers so that
they rotate with it:

self.rotationLayer.anchorPoint = CGPoint(1,0.5)

self.rotationLayer.position = CGPoint(self.bounds.maxX, self.bounds.midY)

self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)

Figure 3-10. A disappointing page-turn rotation

The results are disappointing (Figure 3-10); the compass looks more
squashed than rotated. Now, however, we’ll also apply the distance-
mapping transform. The superlayer here is self:

var transform = CATransform3DIdentity

transform.m34 = -1.0/1000.0

self.sublayerTransform = transform

Figure 3-11. A dramatic page-turn rotation

The results (shown in Figure 3-11) are better, and you can experiment with
values to replace 1000.0; for example, 500.0 gives an even more
exaggerated effect. Also, the zPosition of the rotationLayer will now
affect how large it is.

Transform layers
Another way to draw layers with depth is to use CATransformLayer. This
CALayer subclass doesn’t do any drawing of its own; it is intended solely
as a host for other layers. It has the remarkable feature that you can apply a
transform to it and it will maintain the depth relationships among its own
sublayers. In this example, lay1 is a layer that might be a
CATransformLayer:

let lay2 = CALayer()

lay2.frame = f // some CGRect

lay2.backgroundColor = UIColor.blue.cgColor

lay1.addSublayer(lay2)

let lay3 = CALayer()

lay3.frame = f.offsetBy(dx: 20, dy: 30)

lay3.backgroundColor = UIColor.green.cgColor

lay3.zPosition = 10

lay1.addSublayer(lay3)

lay1.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

In that code, the superlayer lay1 has two sublayers, lay2 and lay3. The
sublayers are added in that order, so lay3 is drawn in front of lay2. Then l
ay1 is flipped like a page being turned by setting its transform. If lay1 is a
normal CALayer, the sublayer drawing order doesn’t change; lay3 is still
drawn in front of lay2, even after the transform is applied. But if lay1 is a
CATransformLayer, lay3 is drawn behind lay2 after the transform; they
are both sublayers of lay1, so their depth relationship is maintained.

Figure 3-12 shows our page-turn rotation yet again, still with the sublayer
Transform applied to self, but this time the only sublayer of self is a
CATransformLayer:

var transform = CATransform3DIdentity

transform.m34 = -1.0/1000.0

self.sublayerTransform = transform

let master = CATransformLayer()

master.frame = self.bounds

self.addSublayer(master)

self.rotationLayer = master

The CATransformLayer, to which the page-turn transform is applied, holds
the gradient layer, the circle layer, and the arrow layer. Those three layers
are at different depths (using different zPosition settings), and I’ve tried to
emphasize the arrow’s separation from the circle by adding a shadow
(discussed in the next section):

circle.zPosition = 10

arrow.shadowOpacity = 1.0

arrow.shadowRadius = 10

arrow.zPosition = 20

You can see from its apparent offset that the circle layer floats in front of
the gradient layer, but I wish you could see this page-turn as an animation,
which makes the circle jump right out from the gradient as the rotation
proceeds.

Figure 3-12. Page-turn rotation applied to a CATransformLayer

Even more remarkable, I’ve added a little white peg sticking through the
arrow and running into the circle! It is a CAShapeLayer, rotated to be
perpendicular to the CATransformLayer (I’ll explain the rotation code later
in this chapter):

let peg = CAShapeLayer()

peg.contentsScale = UIScreen.main.scale

peg.bounds = CGRect(0,0,3.5,50)

let p2 = CGMutablePath()

p2.addRect(peg.bounds)

peg.path = p2

peg.fillColor = UIColor(red:1.0, green:0.95, blue:1.0, alpha:0.95).cgColor

peg.anchorPoint = CGPoint(0.5,0.5)

peg.position = master.bounds.center

master.addSublayer(peg)

peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.x")

peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.z")

peg.zPosition = 15

In that code, the peg runs straight out of the circle toward the viewer, so it is
initially seen end-on, and because a layer has no thickness, it is invisible.
But as the CATransformLayer pivots in our page-turn rotation, the peg

maintains its orientation relative to the circle, and comes into view. In
effect, the drawing portrays a 3D model constructed entirely out of layers.

There is, I think, a slight additional gain in realism if the same sublayerTr
ansform is applied also to the CATransformLayer, but I have not done so
here.

Further Layer Features
A CALayer has many additional properties that affect details of how it is
drawn. Since these drawing details can be applied to a UIView’s underlying
layer, they are effectively view features as well.

Shadows
A CALayer can have a shadow, defined by its shadowColor, shadowOpaci
ty, shadowRadius, and shadowOffset properties. To make the layer draw
a shadow, set the shadowOpacity to a nonzero value. The shadow is
normally based on the shape of the layer’s nontransparent region, but
deriving this shape can be calculation-intensive (so much so that in early
versions of iOS, layer shadows weren’t implemented). You can vastly
improve performance by defining the shape yourself and assigning this
shape as a CGPath to the shadowPath property.

WARNING
If a layer’s masksToBounds is true, no part of its shadow lying outside its bounds is drawn. (This
includes the underlying layer of a view whose clipsToBounds is true.) Wondering why the
shadow isn’t appearing for a layer that masks to its bounds is a common beginner mistake.

Borders and Rounded Corners
A CALayer can have a border (borderWidth, borderColor); the borderWi
dth is drawn inward from the bounds, potentially covering some of the

content unless you compensate.
A CALayer’s corners can be rounded, effectively bounding the layer with a
rounded rectangle, by giving it a cornerRadius greater than zero. If the
layer has a border, the border has rounded corners too. If the layer has a bac
kgroundColor, that background is clipped to the shape of the rounded
rectangle. If the layer’s masksToBounds is true, the layer’s content and its
sublayers are clipped by the rounded corners.
New in iOS 11, you can round individual corners of a CALayer rather than
having to round all four corners at once. To do so, set the layer’s maskedCor
ners property to a CACornerMask, a bitmask whose values have these
simply dreadful names:

layerMinXMinYCorner

layerMaxXMinYCorner

layerMinXMaxYCorner

layerMaxXMaxYCorner

Even if you set the maskedCorners, you won’t see any corner rounding
unless you also set the cornerRadius to a nonzero number.

Masks
A CALayer can have a mask. This is itself a layer, whose content must be
provided somehow. The transparency of the mask’s content in a particular
spot becomes (all other things being equal) the transparency of the layer at
that spot. The mask’s colors (hues) are irrelevant; only transparency
matters. To position the mask, pretend it’s a sublayer.
For example, Figure 3-13 shows our arrow layer, with the gray circle layer
behind it, and a mask applied to the arrow layer. The mask is silly, but it
illustrates very well how masks work: it’s an ellipse, with an opaque fill and
a thick, semitransparent stroke. Here’s the code that generates and applies
the mask:

let mask = CAShapeLayer()

mask.frame = arrow.bounds

let path = CGMutablePath()

path.addEllipse(in: mask.bounds.insetBy(dx: 10, dy: 10))

mask.strokeColor = UIColor(white:0.0, alpha:0.5).cgColor

mask.lineWidth = 20

mask.path = path

arrow.mask = mask

Figure 3-13. A layer with a mask

Using a mask, we can do more generally what the cornerRadius and mask
sToBounds properties do. For example, here’s a utility method that
generates a CALayer suitable for use as a rounded rectangle mask:

func mask(size sz:CGSize, roundingCorners rad:CGFloat) -> CALayer {

 let rect = CGRect(origin:.zero, size:sz)

 let r = UIGraphicsImageRenderer(bounds:rect)

 let im = r.image { ctx in

 let con = ctx.cgContext

 con.setFillColor(UIColor(white:0, alpha:0).cgColor)

 con.fill(rect)

 con.setFillColor(UIColor(white:0, alpha:1).cgColor)

 let p = UIBezierPath(roundedRect:rect, cornerRadius:rad)

 p.fill()

 }

 let mask = CALayer()

 mask.frame = rect

 mask.contents = im.cgImage

 return mask

}

The CALayer returned from that method can be placed as a mask anywhere
in a layer by adjusting its frame origin and assigning it as the layer’s mask.
The result is that all of that layer’s content drawing and its sublayers
(including, if this layer is a view’s underlying layer, the view’s subviews)

are clipped to the rounded rectangle shape; everything outside that shape is
not drawn.
A mask can have values between opaque and transparent, and it can be any
shape. The transparent region doesn’t have to be on the outside of the mask;
you can use a mask that’s opaque on the outside and transparent on the
inside to “punch a hole” in a layer (or a view).
Alternatively, you can apply a mask as a view directly to another view
through its mask property, rather than having to drop down to the level of
layers. This may be a notational convenience, but it is not functionally
distinct from applying the mask view’s layer to the view’s layer; under the
hood, in fact, it is applying the mask view’s layer to the view’s layer.
A mask is like a sublayer, in that there is no built-in mechanism for
automatically resizing the mask as the layer is resized. If you don’t resize
the mask when the layer is resized, the mask won’t be resized. A common
beginner mistake is to apply a mask to a view’s underlying layer before the
view has been fully laid out; when the view is laid out, its size changes, but
the mask’s size doesn’t, and now the mask doesn’t “fit.”
Using a mask view (as opposed to a mask layer) does nothing to help with
this problem; a mask view isn’t a subview, so it is not subject to
autoresizing or autolayout. On the other hand, if you resize a mask view
manually, you can do so using view properties. That’s very convenient if
you’re already resizing the view itself manually (for example, using view
property animation, as discussed in the next chapter).

Layer Efficiency
By now, you’re probably envisioning all sorts of compositing fun, with
layers masking sublayers and laid semitransparently over other layers.
There’s nothing wrong with that, but when an iOS device is asked to shift
its drawing from place to place, the movement may stutter because the
device lacks the necessary computing power to composite repeatedly and
rapidly. This sort of issue is likely to emerge particularly when your code

performs an animation (Chapter 4) or when the user is able to animate
drawing through touch, as when scrolling a table view (Chapter 8). You
may be able to detect these problems by eye, and you can quantify them on
a device by using the Core Animation template in Instruments, which
shows the frame rate achieved during animation. Also, both the Core
Animation template and the Simulator’s Debug menu let you summon
colored overlays that provide clues as to possible sources of inefficient
drawing which can lead to such problems.
Tricks like shadows and rounded corners and masks are easy and fun; but in
general, opaque drawing is most efficient. (Nonopaque drawing is what
Instruments marks in red as “blended layers.”) You may think that for some
particular use case you have to do nonopaque drawing, but think again,
because you might be wrong about that. If a layer will always be shown
over a background consisting of a single color, you can give the layer its
own background of that same color; when additional layer content is
supplied, the visual effect will be the same as if that additional layer content
were composited over a transparent background. For example, instead of an
image masked to a rounded rectangle (with a layer’s cornerRadius or mask
property), you could use Core Graphics to clip the drawing of that image to
a rounded rectangle shape within the graphics context of an opaque layer
whose background color is the same as that of the destination in front of
which the drawing will be shown.
Another way to gain some efficiency is by “freezing” the entirety of the
layer’s drawing as a bitmap. In effect, you’re drawing everything in the
layer to a secondary cache and using the cache to draw to the screen.
Copying from a cache is less efficient than drawing directly to the screen,
but this inefficiency may be compensated for, if there’s a deep or complex
layer tree, by not having to composite that tree every time we render. To do
this, set the layer’s shouldRasterize to true and its rasterizationScal
e to some sensible value (probably UIScreen.main.scale). You can
always turn rasterization off again by setting shouldRasterize to false,
so it’s easy to rasterize just before some massive or sluggish rearrangement
of the screen and then unrasterize afterward.

In addition, there’s a layer property drawsAsynchronously. The default is
false. If set to true, the layer’s graphics context accumulates drawing
commands and obeys them later on a background thread. Thus, your
drawing commands run very quickly, because they are not in fact being
obeyed at the time you issue them. I haven’t had occasion to use this, but
presumably there could be situations where it keeps your app responsive
when drawing would otherwise be time-consuming.

Layers and Key–Value Coding
All of a layer’s properties are accessible through Cocoa key–value coding
by way of keys with the same name as the property. Thus, to apply a mask
to a layer, instead of saying this:

layer.mask = mask

we could have said:

layer.setValue(mask, forKey: "mask")

In addition, CATransform3D and CGAffineTransform values can be
expressed through key–value coding and key paths. For example, instead of
writing this:

self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)

we can write this:

self.rotationLayer.setValue(.pi/4.0, forKeyPath:"transform.rotation.y")

This notation is possible because CATransform3D is key–value coding
compliant for a repertoire of keys and key paths. These are not properties,
however; a CATransform3D doesn’t have a rotation property. It doesn’t
have any properties, because it isn’t even an object. You cannot say:

self.rotationLayer.transform.rotation.y = //... no, sorry

The transform key paths you’ll use most often are:

"rotation.x", "rotation.y", "rotation.z"

"rotation" (same as "rotation.z")

"scale.x", "scale.y", "scale.z"

"translation.x", "translation.y", "translation.z"

"translation" (two-dimensional, a CGSize)
The Quartz Core framework also injects key–value coding compliance into
CGPoint, CGSize, and CGRect, allowing you to use keys and key paths
matching their struct component names. For a complete list of KVC
compliant classes related to CALayer, along with the keys and key paths
they implement, plus rules for how to wrap nonobject values as objects, see
“Core Animation Extensions to Key-Value Coding” in Apple’s Core
Animation Programming Guide.
Moreover, you can treat a CALayer as a kind of dictionary, and get and set
the value for any key. This means you can attach arbitrary information to an
individual layer instance and retrieve it later. For example, earlier I
mentioned that to apply manual layout to a layer’s sublayers, you will need
a way of identifying those sublayers. This feature could provide a way of
doing that. For example:

myLayer1.setValue("manny", forKey:"pepboy")

myLayer2.setValue("moe", forKey:"pepboy")

A layer doesn’t have a pepboy property; the "pepboy" key is something
I’m attaching to these layers arbitrarily. Now I can identify these layers later
by getting the value of their respective "pepboy" keys.

Also, CALayer has a defaultValue(forKey:) class method; to implement
it, you’ll need to subclass and override. In the case of keys whose value you
want to provide a default for, return that value; otherwise, return the value

that comes from calling super. Thus, even if a value for a particular key
has never been explicitly provided, it can have a non-nil value.
The truth is that this feature, though delightful (and I often wish that all
classes behaved like this), is not put there solely for your convenience and
enjoyment. It’s there to serve as the basis for animation, which is the subject
of the next chapter.

Chapter 4. Animation

Animation is an attribute changing over time. In general, this will usually
be a visible attribute of something in the interface. The changing attribute
might be positional: something moves or changes size, not jumping
abruptly, but sliding smoothly. Other kinds of attribute can animate as well.
A view’s background color might change from red to green, not switching
colors abruptly, but fading from one to the other. A view might change from
opaque to transparent, not vanishing abruptly, but fading away.
Without help, most of us would find animation beyond our reach. There are
just too many complications — complications of calculation, of timing, of
screen refresh, of threading, and many more. Fortunately, help is provided.
You don’t perform an animation yourself; you describe it, you order it, and
it is performed for you. You get animation on demand.
Asking for an animation can be as simple as setting a property value; under
some circumstances, a single line of code will result in animation:

myLayer.backgroundColor = UIColor.red.cgColor // animate to red

Animation is easy because Apple wants to facilitate your use of it.
Animation isn’t just cool and fun; it clarifies that something is changing or
responding. It is crucial to the character of the iOS interface.
For example, one of my first apps was based on a macOS game in which
the user clicks cards to select them. In the macOS version, a card was
highlighted to show it was selected, and the computer would beep to
indicate a click on an ineligible card. On iOS, these indications were
insufficient: the highlighting felt weak, and you can’t use a sound warning
in an environment where the user might have the volume turned off or be
listening to music. So in the iOS version, animation is the indicator for card
selection (a selected card waggles eagerly) and for tapping on an ineligible
card (the whole interface shudders, as if to shrug off the tap).

Drawing, Animation, and Threading
Animation is based on an interesting fact about how iOS draws to the
screen: drawing doesn’t actually take place at the time you give your
drawing commands. When you give a command that requires a view to be
redrawn, the system remembers your command and marks the view as
needing to be redrawn. Later, when all your code has run to completion and
the system has, as it were, a free moment, then it redraws all views that
need redrawing. Let’s call this the redraw moment. (I’ll explain what the
redraw moment really is later in this chapter.)
Animation works the same way, and is part of the same process. When you
ask for an animation to be performed, the animation doesn’t start happening
on the screen until the next redraw moment. (You can force an animation to
start immediately, but this is unusual.) Like a movie (especially an old-
fashioned animated cartoon), an animation has “frames.” An animated
value does not change smoothly and continuously; it changes in small,
individual increments that give the illusion of smooth, continuous change.
This illusion works because the device itself undergoes a periodic, rapid,
more or less regular screen refresh — a constant succession of redraw
moments — and the incremental changes are made to fall between these
refreshes. Apple calls the system component responsible for this the
animation server.
Think of the “animation movie” as being interposed between the user and
the “real” screen. While the animation lasts, this movie is superimposed
onto the screen. When the animation is finished, the movie is removed,
revealing the state of the “real” screen behind it. The user is unaware of all
this, because (if you’ve done things correctly) at the time that it starts, the
movie’s first frame looks just like the state of the “real” screen at that
moment, and at the time that it ends, the movie’s last frame looks just like
the state of the “real” screen at that moment.
So, when you animate a view’s movement from position 1 to position 2,
you can envision a typical sequence of events like this:

1. You reposition the view. The view is now set to position 2, but there
has been no redraw moment, so it is still portrayed at position 1.

2. You order an animation of the view from position 1 to position 2.
3. The rest of your code runs to completion.
4. The redraw moment arrives. If there were no animation, the view

would now suddenly be portrayed at position 2. But there is an
animation, and so the “animation movie” appears. It starts with the
view portrayed at position 1, so that is still what the user sees.

5. The animation proceeds, each “frame” portraying the view at
intermediate positions between position 1 and position 2. (The
documentation describes the animation as now in-flight.)

6. The animation ends, portraying the view ending up at position 2.
7. The “animation movie” is removed, revealing the view indeed at

position 2 — where you put it in the first step.
Realizing that the “animation movie” is different from what happens to the
real view is key to configuring an animation correctly. A frequent
complaint of beginners is that a position animation is performed as
expected, but then, at the end, the view “jumps” to some other position.
This happens because you set up the animation but failed to move the view
to match its final position in the “animation movie”; when the “movie” is
whipped away at the end of the animation, the real situation that’s revealed
doesn’t match the last frame of the “movie,” so the view appears to jump.
There isn’t really an “animation movie” in front of the screen — but it’s a
good analogy, and the effect is much the same. In reality, it is not a layer
itself that is portrayed on the screen; it’s a derived layer called the
presentation layer. Thus, when you animate the change of a view’s position
or a layer’s position from position 1 to position 2, its nominal position
changes immediately; meanwhile, the presentation layer’s position remains
unchanged until the redraw moment, and then changes over time, and
because that’s what’s actually drawn on the screen, that’s what the user
sees.

(A layer’s presentation layer can be accessed through its presentation
method — and the layer itself may be accessed through the presentation
layer’s model method. I’ll give examples, in this chapter and the next, of
situations where accessing the presentation layer is a useful thing to do.)
The animation server operates on an independent thread. You don’t have to
worry about the details (thank heavens, because multithreading is generally
rather tricky and complicated), but you can’t ignore it either. Your code runs
independently of and possibly simultaneously with the animation — that’s
what multithreading means — so communication between the animation
and your code can require some planning.
Arranging for your code to be notified when an animation ends is a
common need. Most of the animation APIs provide a way to set up such a
notification. One use of an “animation ended” notification might be to chain
animations together: one animation ends and then another begins, in
sequence. Another use is to perform some sort of cleanup. A very frequent
kind of cleanup has to do with handling of touches: while an animation is
in-flight, if your code is not running, the interface by default is responsive
to the user’s touches, which might cause all kinds of havoc as your views
try to respond while the animation is still happening and the screen
presentation doesn’t match reality. To take care of this, you might turn off
your app’s responsiveness to touches as you set up an animation and then
turn it back on when you’re notified that the animation is over.
Since your code can run even after you’ve set up an animation, or might
start running while an animation is in-flight, you need to be careful about
setting up conflicting animations. Multiple animations can be set up (and
performed) simultaneously, but trying to animate or change a property that’s
already in the middle of being animated may be an incoherency. You’ll
want to take care not to let your animations step on each other’s feet
accidentally.
Outside forces can interrupt your animations. The user might click the
Home button to send your app to the background, or an incoming phone
call might arrive while an animation is in-flight. The system deals
coherently with this situation by simply canceling all in-flight animations

when an app is backgrounded; you’ve already arranged before the
animation for your views to assume the final states they will have after the
animation, so no harm is done — when your app resumes, everything is in
that final state you arranged beforehand. But if you wanted your app to
resume an animation in the middle, where it left off when it was interrupted,
that would require some canny coding on your part.

Image View and Image Animation
UIImageView provides a form of animation so simple as to be scarcely
deserving of the name; still, sometimes it might be all you need. You supply
the UIImageView with an array of UIImages, as the value of its animation
Images or highlightedAnimationImages property. This array represents
the “frames” of a simple cartoon; when you send the startAnimating
message, the images are displayed in turn, at a frame rate determined by the
animationDuration property, repeating as many times as specified by the
animationRepeatCount property (the default is 0, meaning to repeat
forever), or until the stopAnimating message is received. Before and after
the animation, the image view continues displaying its image (or highligh
tedImage).
For example, suppose we want an image of Mars to appear out of nowhere
and flash three times on the screen. This might seem to require some sort of
Timer-based solution, but it’s far simpler to use an animating
UIImageView:

let mars = UIImage(named: "Mars")!

let empty = UIGraphicsImageRenderer(size:mars.size).image {_ in}

let arr = [mars, empty, mars, empty, mars]

let iv = UIImageView(image:empty)

iv.frame.origin = CGPoint(100,100)

self.view.addSubview(iv)

iv.animationImages = arr

iv.animationDuration = 2

iv.animationRepeatCount = 1

iv.startAnimating()

You can combine UIImageView animation with other kinds of animation.
For example, you could flash the image of Mars while at the same time
sliding the UIImageView rightward, using view animation as described in
the next section.
UIImage supplies a form of animation parallel to that of UIImageView: an
image can itself be an animated image. Just as with UIImageView, this
means that you’ve prepared multiple images that form a sequence serving
as the “frames” of a simple cartoon. You can create an animated image with
one of these UIImage class methods:

animatedImage(with:duration:)

As with UIImageView’s animationImages, you supply an array of
UIImages. You also supply the duration for the whole animation.

animatedImageNamed(_:duration:)

You supply the name of a single image file, as with init(named:), with
no file extension. The runtime appends "0" (or, if that fails, "1") to the
name you supply and makes that image file the first image in the
animation sequence. Then it increments the appended number, gathering
images and adding them to the sequence (until there are no more, or we
reach "1024").

animatedResizableImageNamed(_:capInsets:resizingMode:duratio

n:)

Combines an animated image with a resizable image (Chapter 2).
You do not tell an animated image to start animating, nor are you able to tell
it how long you want the animation to repeat. Rather, an animated image is
always animating, repeating its sequence once every duration seconds, so
long as it appears in your interface; to control the animation, add the image
to your interface or remove it from the interface, possibly exchanging it for
a similar image that isn’t animated.
An animated image can appear in the interface anywhere a UIImage can
appear as a property of some interface object. In this example, I construct a

sequence of red circles of different sizes, in code, and build an animated
image which I then display in a UIButton:

var arr = [UIImage]()

let w : CGFloat = 18

for i in 0 ..< 6 {

 let r = UIGraphicsImageRenderer(size:CGSize(w,w))

 arr += [r.image { ctx in

 let con = ctx.cgContext

 con.setFillColor(UIColor.red.cgColor)

 let ii = CGFloat(i)

 con.addEllipse(in:CGRect(0+ii,0+ii,w-ii*2,w-ii*2))

 con.fillPath()

 }]

}

let im = UIImage.animatedImage(with:arr, duration:0.5)

b.setImage(im, for:.normal) // b is a button in the interface

New in iOS 11, the system understands animated GIF images.
Unfortunately, it does not understand them so well as to animate them for
you! If you want to display an animated GIF in a UIImageView or as an
animated UIImage, it is up to you to decompose it into its individual
frames. Apple’s sample code (“Using Photos framework”) supplies an
AnimatedImage class that can extract each frame’s image data, along with
other information such as the animation duration. Using this, you could
configure a UIImageView’s animationImages and animationDuration,
or display the animation with Apple’s AnimatedImageView class from the
same sample code.

View Animation
All animation is ultimately layer animation, which I’ll discuss later in this
chapter. However, for a limited range of properties, you can animate a
UIView directly: these are its alpha, bounds, center, frame, transform,
and (if the view doesn’t implement draw(_:)) its backgroundColor. The
UIVisualEffectView effect property is animatable between nil and a
UIBlurEffect. New in iOS 11, a view’s underlying layer’s cornerRadius is

animatable under view animation as well. You can also animate a UIView’s
change of contents. This list of animatable features, despite its brevity, will
often prove quite sufficient.

A Brief History of View Animation
The view animation API has evolved historically by way of three distinct
major stages. Older stages have not been deprecated or removed; all three
stages are present simultaneously:

Begin and commit
Way back at the dawn of iOS time, a view animation was constructed
imperatively using a sequence of UIView class methods. To use this
API, you call beginAnimations, configure the animation, set an
animatable property, and commit the animation by calling commitAnima
tions. For example:

UIView.beginAnimations(nil, context: nil)

UIView.setAnimationDuration(1)

self.v.backgroundColor = .red

UIView.commitAnimations()

Block-based animation
When Objective-C blocks were introduced, the entire operation of
configuring a view animation was reduced to a single UIView class
method, to which you pass a block in which you set the animatable
property. In Swift, an Objective-C block is a function — usually an
anonymous function:

UIView.animate(withDuration:1) {

 self.v.backgroundColor = .red

}

Property animator

iOS 10 introduced a new object — a property animator
(UIViewPropertyAnimator). It, too, receives a function:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.backgroundColor = .red

}

anim.startAnimation()

Although begin-and-commit animation still exists, you’re unlikely to use it.
Block-based animation completely supersedes it — except in one special
situation where you want an animation that repeats a specific number of
times (I’ll demonstrate later in this chapter).
The property animator does not supersede block-based animation; rather, it
supplements and expands it. There are certain kinds of animation (repeating
animation, autoreversing animation, transition animation) where a property
animator can’t help you, and you’ll go on using block-based animation. But
for the bulk of basic view animations, the property animator brings some
valuable advantages — a full range of timing curves, multiple completion
functions, and the ability to pause, resume, reverse, and interact by touch
with a view animation.

Property Animator Basics
The UIViewPropertyAnimator class derives its methods and properties not
only from itself but also from its protocol inheritance. It adopts the
UIViewImplicitlyAnimating protocol, which itself adopts the
UIViewAnimating protocol. (The reason for this division of powers won’t
arise in this chapter; it has to do with custom view controller transition
animations, discussed in Chapter 6.) Here’s an overview of
UIViewPropertyAnimator’s inheritance:

UIViewAnimating protocol
As a UIViewAnimating protocol adopter, UIViewPropertyAnimator can
have its animation started with startAnimation, paused with pauseAn
imation, and stopped with stopAnimation(_:) plus finishAnimatio

n(at:). Its state property reflects its current state
(UIViewAnimatingState) — .inactive, .active, or .stopped — and
its isRunning property distinguishes whether it is .active but paused.
UIViewAnimating also provides two settable properties:

The fractionComplete property is essentially the current “frame”
of the animation.

The isReversed property dictates whether the animation is running
forward or backward.

UIViewImplicitlyAnimating protocol
As a UIViewImplicitlyAnimating protocol adopter,
UIViewPropertyAnimator can be given completion functions to be
executed when the animation finishes, with addCompletion(_:). It can
also be given additional animation functions, with addAnimations(_:)
or addAnimations(_:delayFactor:); animations defined by multiple
animation functions are combined additively (I’ll explain later what that
means). UIViewImplicitlyAnimating also provides a continueAnimati
on(withTimingParameters:durationFactor:) method that allows a
paused animation to be resumed with altered timing and duration; the du
rationFactor is the desired fraction of the animation’s original
duration, or zero to mean whatever remains of the original duration.

UIViewPropertyAnimator
UIViewPropertyAnimator’s own methods consist solely of initializers;
I’ll explain how to initialize a property animator later, when I talk about
timing curves. It has some read-only properties describing how it was
configured and started (for example, reporting its animation’s
duration). UIViewPropertyAnimator also provides five settable
properties:

If isInterruptible is true (the default), the animator can be
paused or stopped.

If isUserInteractionEnabled is true (the default), animated
views can be tapped midflight.

If scrubsLinearly is true (the default), then when the animator is
paused, the animator’s animation curve is temporarily replaced with
a linear curve. This property is new in iOS 11.

If isManualHitTestingEnabled is true, hit-testing is up to you;
the default is false, meaning that the animator performs hit-testing
on your behalf, which is usually what you want. (See Chapter 5 for
more about hit-testing animated views.)

If pausesOnCompletion is true, then when the animation finishes,
it does not revert to .inactive; the default is false. This property
is new in iOS 11.

As you can see, a property animator comes packed with power for
controlling the animation after it starts. You can pause the animation in mid-
flight, allow the user to manipulate the animation gesturally, resume the
animation, reverse the animation, and much more. I’ll illustrate all those
features in this and subsequent chapters. In the simplest case, however,
you’ll just launch the animation and stand back, as I demonstrated earlier:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.backgroundColor = .red

}

anim.startAnimation()

In that code, the UIViewPropertyAnimator object anim is instantiated as a
local variable, and we are not retaining it in a persistent property; yet the
animation works because the animation server retains it. We can keep a
persistent reference to the property animator if we’re going to need it
elsewhere, and I’ll give examples later showing how that can be a useful
thing to do; but the animation will still work even if we don’t.
It will be useful to have a sense for how a property animator’s states work.
At the moment the property animator is started with startAnimation, it
transitions through state changes, as follows:

1. The animator starts life in the .inactive state.

2. When startAnimation is called, the animator immediately enters the
.active state with isRunning set to false (paused).

3. The animator then immediately transitions again to the .active state
with isRunning set to true.

Nevertheless, the “animation movie” doesn’t start running until the next
redraw moment. Once the animation is set in motion, it continues to its
finish and then runs through those same states in reverse:

1. The running animator was in the .active state with isRunning set to
true.

2. When the animation finishes, the animator switches to .active with i
sRunning set to true (paused).

3. The animator then immediately transitions back to the .inactive
state.

When the animator finishes and reverts to the .inactive state, it jettisons
its animations. This means that the animator, if you’ve retained it, is
reusable after finishing only if you supply new animations. New in iOS 11,
however, you can overcome that difficulty by setting the animator’s pauses
OnCompletion to true; in that case, the third step is omitted — the
animation comes to an end without the animator transitioning back to the .i
nactive state. Ultimately stopping the animation is then up to you.

To stop an animator, send it the stopAnimation(_:) message. The
animator then enters the special .stopped state. Typically, you will then
call finishAnimation(at:), after which the animator returns to .inactiv
e. The stopAnimation(_:) parameter is a Bool signifying whether you
want to dispense with finishAnimation(at:) and let the runtime clean up
for you.

WARNING
New in iOS 11, it is a runtime error to let an animator go out of existence while paused (.active
but isRunning is false) or stopped (.stopped). Your app will crash unceremoniously if you
allow that to happen. If you pause an animator, you must call stopAnimation(true), or else call
stopAnimation(false) followed by finishAnimation(at:), thus bringing it back to the .inac
tive state in good order, before the animator goes out of existence.

View Animation Basics
A function in which you order a view animation by setting animatable
properties is an animations function. Any animatable change made within
an animations function will be animated, so we can, for example, animate a
change both in the view’s color and in its position simultaneously:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.backgroundColor = .red

 self.v.center.y += 100

}

anim.startAnimation()

You can add an animations function to a property animator after
instantiating it; indeed, the init(duration:timingParameters:)
initializer actually requires that you do this, as it lacks an animations:
parameter. Thus a property animator can end up with multiple animations
functions:

let anim = UIViewPropertyAnimator(duration: 1,

 timingParameters: UICubicTimingParameters(animationCurve:.linear))

anim.addAnimations {

 self.v.backgroundColor = .red

}

anim.addAnimations {

 self.v.center.y += 100

}

anim.startAnimation()

A completion function, which can be added to a property animator with the
addCompletion(_:) method, lets us specify what should happen after the
animation ends. As with the animation functions, a property animator can
be assigned more than one completion function; the completion functions
are executed in the order in which they were added:

var anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.backgroundColor = .red

 self.v.center.y += 100

}

anim.addCompletion {_ in

 print("hey")

}

anim.addCompletion {_ in

 print("ho")

}

anim.startAnimation() // animates, finishes, then prints "hey" and "ho"

Changes not only to multiple properties but even to multiple views can be
combined into a single animations function. In this way, elaborate effects
can be combined into a single animation. For example, suppose we want to
make one view dissolve into another. We start with the second view present
in the view hierarchy, with the same frame as the first view, but with an alp
ha of 0, so that it is invisible. Then we animate the change of the first
view’s alpha to 0 and the second view’s alpha to 1. Indeed, we can place
the second view in the view hierarchy just before the animation starts
(invisibly, because its alpha starts at 0) and remove the first view just after
the animation ends (invisibly, because its alpha ends at 0):

let v2 = UIView()

v2.backgroundColor = .black

v2.alpha = 0

v2.frame = self.v.frame

self.v.superview!.addSubview(v2)

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.alpha = 0

 v2.alpha = 1

}

anim.addCompletion { _ in

 self.v.removeFromSuperview()

}

anim.startAnimation()

TIP
Another way to remove a view from the view hierarchy with animation is to call the UIView class
method perform(_:on:options:animations:completion:) with .delete as its first argument
(this is, in fact, the only possible first argument). This causes the view to blur, shrink, and fade,
and sends it removeFromSuperview() afterward.

Code that isn’t about animatable view properties can appear in an
animations function with no problem, and will in fact run immediately
when startAnimation is called. But we must be careful to keep any
changes to animatable properties that we do not want animated out of the
animations function. In the preceding example, in setting v2.alpha to 0, I
just want to set it right now, instantly; I don’t want that change to be
animated. So I’ve put that line outside the animations function (and in
particular, before it).
Sometimes, though, that’s not so easy; perhaps, within the animations
function, we must call a method that might perform animatable changes.
The UIView class method performWithoutAnimation(_:) solves the
problem; it goes inside an animations function, but whatever happens in its
function is not animated. In this rather artificial example, the view jumps to
its new position and then slowly turns red:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 self.v.backgroundColor = .red

 UIView.performWithoutAnimation {

 self.v.center.y += 100

 }

}

anim.startAnimation()

The material inside an animations function (but not inside a performWitho
utAnimation function) orders the animation — that is, it gives instructions
for what the animation will be when the redraw moment comes. If you

change an animatable view property as part of the animation, you should
not change that property again afterward; the results can be confusing,
because there’s a conflict with the animation you’ve already ordered. This
code, for example, is essentially incoherent:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {

 self.v.center.y += 100

}

self.v.center.y += 300

anim.startAnimation()

What actually happens is that the view jumps 300 points down and then
animates 100 points further down. That’s probably not what you intended.
After you’ve ordered an animatable view property to be animated inside an
animations function, don’t change that view property’s value again until
after the animation is over.
On the other hand, this code, while somewhat odd, nevertheless does a
smooth single animation to a position 400 points further down:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {

 self.v.center.y += 100

 self.v.center.y += 300

}

anim.startAnimation()

That’s because basic positional view animations are additive by default.
This means that the second animation is run simultaneously with the first,
and is blended with it.

View Animation Configuration
The details of how you configure a view animation differ depending on
whether you’re using a property animator or calling a UIView class method.
With a property animator, as my examples have already shown, you can
construct the animator in several steps before telling it to start animating.
With a UIView class method, on the other hand, everything has to be

supplied in a single command. The full form of the chief UIView class
method for performing view animation is:

animate(withDuration:delay:options:animations:completion:)

There are shortened versions of the same command; for example, you can
omit the delay: and options: parameters, and even the completion:
parameter. But it’s still the same command, and the configuration of the
animation is complete at this point.

Animations function
The animations function contains the commands setting animatable view
properties. With a block-based UIView class method, this is the animation
s: parameter. With a property animator, the animations function is usually
provided as the animations: argument when the property animator is
instantiated. However, a property animator can have one or more
animations functions added after instantiation, by calling addAnimations
(_:), as we saw earlier.

Completion function
A completion function contains commands to be executed when the
animation finishes. With a UIView class method, the completion function is
the completion: parameter. It takes one parameter, a Bool reporting
whether the animation finished.
A property animator can have multiple completion functions, provided by
calling addCompletion(_:). The completion function takes one parameter,
a UIViewAnimatingPosition reporting where the animation ended up: .end,
.start, or .current. (I’ll talk later about what those values mean.) A
property animator that is told to stop its animation with stopAnimation
(_:) does not execute its completion functions until it is subsequently told
to finish with finishAnimation(at:). The stopAnimation(_:)
parameter comes into play here:

If you call stopAnimation(false) followed by finishAnimation(a
t:), the animator’s completion functions are then executed.

If you call stopAnimation(true), or if you call stopAnimation(fals
e) but omit to call finishAnimation(at:), the animator’s completion
functions are not executed.

Animation duration
The duration of an animation represents how long it takes (in seconds) to
run from start to finish. You can also think of this as the animation’s speed.
Obviously, if two views are told to move different distances in the same
time, the one that must move further must move faster.

Interestingly, a duration of 0 doesn’t really mean 0. It means “use the
default duration.” This fact will be of interest later when we talk about
nesting animations. Outside of a nested animation, the default is two-tenths
of a second.

With a block-based UIView class method, the animation duration is the dur
ation: parameter. With a property animator, it is supplied as the duratio
n: parameter when the property animator is initialized.

Animation delay
It is permitted to order the animation along with a delay before the
animation goes into action. The default is no delay. A delay is not the same
as applying the animation using delayed performance; the animation is
applied immediately, but when it starts running it spins its wheels, with no
visible change, until the delay time has elapsed.

With a block-based UIView class method, this is the delay: parameter. To
apply a delay to an animation with a property animator, call startAnimati
on(afterDelay:) instead of startAnimation.

Animation timing
An animation has a timing curve that maps interpolated values to time. For
example, the notion of moving a view downward by 100 points in the

course of 1 second can have many meanings. Should we move at a constant
rate the whole time? Should we move slowly at first and more quickly
later? There are a lot of possibilities.
With a UIView class method, you get a choice of just four timing curves
(supplied as part of the options: argument, as I’ll explain in a moment).
But a property animator gives you very broad powers to configure the
timing curve the way you want. This is such an important topic that I’ll deal
with it in a separate section later.

Animation options
In a UIView class method, the options: argument is a bitmask combining
additional options. Here are some of the chief options: values
(UIViewAnimationOptions) that you might wish to use:

Timing curve
When supplied in this way, only four built-in timing curves are
available. The term “ease” means that there is a gradual acceleration or
deceleration between the animation’s central speed and the zero speed at
its start or end. Specify one at most:

.curveEaseInOut (the default)

.curveEaseIn

.curveEaseOut

.curveLinear (constant speed throughout)

.repeat

If included, the animation will repeat indefinitely. There is no way, as
part of this command, to specify a certain number of repetitions; you
ask either to repeat forever or not at all. This feels like a serious
oversight in the design of the block-based animation API; I’ll suggest a
workaround in a moment.

.autoreverse

If included, the animation will run from start to finish (in the given
duration time), and will then run from finish to start (also in the given
duration time). The documentation’s claim that you can autoreverse
only if you also repeat is incorrect; you can use either or both (or
neither).

When using .autoreverse, you will want to clean up at the end so that the
view is back in its original position when the animation is over. To see what
I mean, consider this code:

let opts : UIViewAnimationOptions = .autoreverse

let xorig = self.v.center.x

UIView.animate(withDuration:1, delay: 0, options: opts, animations: {

 self.v.center.x += 100

 }, completion: nil

)

The view animates 100 points to the right and then animates 100 points
back to its original position — and then jumps 100 points back to the right.
The reason is that the last actual value we assigned to the view’s center x is
100 points to the right, so when the animation is over and the “animation
movie” is whipped away, the view is revealed still sitting 100 points to the
right. The solution is to move the view back to its original position in the co
mpletion: function:

let opts : UIViewAnimationOptions = .autoreverse

let xorig = self.v.center.x

UIView.animate(withDuration:1, delay: 0, options: opts, animations: {

 self.v.center.x += 100

 }, completion: { _ in

 self.v.center.x = xorig

})

Working around the inability to specify a finite number of repetitions is
tricky. The simplest solution is to resort to a command from the first
generation of animation methods:

let opts : UIViewAnimationOptions = .autoreverse

let xorig = self.v.center.x

UIView.animate(withDuration:1, delay: 0, options: opts, animations: {

 UIView.setAnimationRepeatCount(3) // *

 self.v.center.x += 100

 }, completion: { _ in

 self.v.center.x = xorig

})

There are also some options saying what should happen if another
animation is already ordered or in-flight (so that we are effectively nesting
animations):

.overrideInheritedDuration

Prevents inheriting the duration from a surrounding or in-flight
animation (the default is to inherit it).

.overrideInheritedCurve

Prevents inheriting the timing curve from a surrounding or in-flight
animation (the default is to inherit it).

.beginFromCurrentState

If this animation animates a property already being animated by an
animation that is previously ordered or in-flight, then instead of
canceling the previous animation (completing the requested change
instantly), if that is what would normally happen, this animation will
use the presentation layer to decide where to start, and, if possible, will
“blend” its animation with the previous animation.

There is little need for .beginFromCurrentState in iOS 8 and later,
because simple view animations are additive by default. To illustrate what it
means for animations to be additive, let’s take advantage of the fact that a
property animator allows us to add a second animation that doesn’t take
effect until some amount of the first animation has elapsed:

let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {

 self.v.center.y += 100

}

anim.addAnimations({

 self.v.center.x += 100

 }, delayFactor: 0.5)

anim.startAnimation()

The delayFactor: of 0.5 means that the second animation will start
halfway through the duration. So the animated view heads straight
downward for 1 second and then smoothly swoops off to the right while
continuing down for another second, ending up 100 points down and 100
points to the right of where it started. The two animations might appear to
conflict — they are both changing the center of our view, and they have
different durations and therefore different speeds — but instead they blend
together seamlessly.
An even stronger example is what happens when the two animations
directly oppose one another:

let yorig = self.v.center.y

let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {

 self.v.center.y += 100

}

anim.addAnimations({

 self.v.center.y = yorig

 }, delayFactor: 0.5)

anim.startAnimation()

That’s a smooth autoreversing animation. The animated view starts
marching toward a point 100 points down from its original position, but at
about the halfway point it smoothly — not abruptly or sharply — slows and
reverses itself and returns to its original position.

Timing Curves
A timing curve maps the fraction of the animation’s time that has elapsed
(the x-axis) against the fraction of the animation’s change that has occurred
(the y-axis); its endpoints are therefore at (0.0,0.0) and (1.0,1.0),
because at the beginning of the animation there has been no elapsed time
and no change, and at the end of the animation all the time has elapsed and
all the change has occurred. There are two kinds of timing curve: cubic
Bézier curves and springing curves.

Cubic timing curves
A cubic Bézier curve is defined by its endpoints, where each endpoint needs
only one Bézier control point to define the tangent to the curve. Because the
curve’s endpoints are known, defining the two control points is sufficient to
describe the entire curve. That is, in fact, how it is expressed.
So, for example, the built-in ease-in-out timing function is defined by the
two points (0.42, 0.0) and (0.58, 1.0) — this is, it’s a Bézier curve
with one endpoint at (0.0,0.0), whose control point is (0.42,0.0), and
the other endpoint at (1.0,1.0), whose control point is (0.58,1.0)
(Figure 4-1).

Figure 4-1. An ease-in-out Bézier curve

With a UIView class method, you have a choice of four built-in timing
curves; you specify one of them through the options: argument, as I’ve

already explained.
With a property animator, you’ll specify a timing curve as part of
initialization. That’s why, earlier, I postponed telling you how to initialize a
property animator — until now! Here are three property animator
initializers and how the timing curve is expressed when you call them:

init(duration:curve:animations:)

The curve: is a built-in timing curve, specified as a
UIViewAnimationCurve enum. These are the same built-in timing
curves as for a UIView class method:

.easeInOut

.easeIn

.easeOut

.linear

init(duration:controlPoint1:controlPoint2:animations:)

The curve is supplied as the two control points that define it.

init(duration:timingParameters:)

This is most general form of initializer; the other two are convenience
initializers that call it. There’s no animations: parameter, so you’ll
have to call addAnimations later to supply the animations function.
The timingParameters: is an object adopting the
UITimingCurveProvider protocol, which can be a
UICubicTimingParameters instance or a UISpringTimingParameters
instance (I’ll talk about springing timing curves in a moment). The
UICubicTimingParameters initializers are:

init(animationCurve:)

The value is one of the four built-in timing curves that I already
mentioned, specified as a UIViewAnimationCurve enum.

init()

Provides a fifth built-in timing curve, used as the default for many
built-in behaviors.

init(controlPoint1:controlPoint2:)

Defines the curve by its control points.
For example, here’s a cubic timing curve that eases in very slowly and
finishes up all in a rush, whipping quickly into place after about two-thirds
of the time has elapsed. I call this the “clunk” timing function:

anim = UIViewPropertyAnimator(

 duration: 1, timingParameters:

 UICubicTimingParameters(

 controlPoint1:CGPoint(0.9,0.1),

 controlPoint2:CGPoint(0.7,0.9)))

Springing timing curves
A springing timing curve is the solution to a physics problem whose initial
conditions describe a mass attached to a stretched spring. The animation
mimics releasing the spring and letting it rush toward and settle down at the
destination value.
Springing timing curves are much more useful and widespread than you
might suppose. A springing animation doesn’t have to animate a view from
place to place, and doesn’t have to look particularly springy to be effective.
A small initial spring velocity and a high damping gives a normal animation
that wouldn’t particularly remind anyone of a spring, but that does have a
pleasingly rapid beginning and slow ending; many of Apple’s own system
animations are actually spring animations of that type (consider, for
example, the way folders open in the home screen).
To use a springing timing curve with UIView block-based animation, you
call a different class method:

animate(withDuration:delay:usingSpringWithDamping:initialS

pringVelocity:options:animations:completion:)

You’re supplying two parameters that vary the nature of the initial
conditions, and hence the behavior of the animation over time:

Damping ratio

The damping: parameter is a number between 0.0 and 1.0 that
describes the amount of final oscillation. A value of 1.0 is critically
damped and settles directly into place; lower values are underdamped.
A value of 0.8 just barely overshoots and snaps back to the final value.
A value of 0.1 waggles around the final value for a while before
settling down.

Initial velocity
Higher values cause greater overshoot, depending on the damping ratio.
For example, with a damping ratio of 0.3, an initial velocity value of 1
overshoots a little and bounces about twice before settling into place, a
value of 10 overshoots a bit further, and a value of 100 overshoots by
more than twice the distance.
Normally, you’ll probably leave the initial velocity at zero. It is useful
particularly when converting from a gesture to an animation — that is,
where the user is moving a view and releases it, and you want a
springing animation to take over from there, starting out at the same
velocity that the user was applying at the moment of release.

With a property animator, once again, you’ll supply the timing curve as part
of initialization:

init(duration:dampingRatio:animations:)

The dampingRatio: argument is the same as the damping: in the
UIView class method I just described. The initial velocity is zero.

init(duration:timingParameters:)

This is the same initializer I discussed in connection with cubic timing
curves. Recall that the timingParameters: is a
UITimingCurveProvider; this can be a UISpringTimingParameters
object, whose initializers are:

init(dampingRatio:)

You supply a damping ratio, and the initial velocity is zero.

init(dampingRatio:initialVelocity:)

The initialVelocity: is similar to the initialSpringVelocity:
in the UIView class method I described a moment ago, except that it
is a CGVector. Normally, only the x-component matters, in which
case they are effectively the same thing; the y-component is
considered only if what’s being animated follows a two-dimensional
path — for example, if you’re changing both components of a
view’s center.

init(mass:stiffness:damping:initialVelocity:)

A slightly different way of looking at the initial conditions. The
overall duration: value is ignored; the actual duration will be
calculated from the other parameters (and this calculated duration
can be discovered by reading the resulting property animator’s dura
tion). The first three parameters are in proportion to one another. A
high mass: can cause a vast overshoot. A low stiffness: or a low
damping: can result in a long settle-down time. Thus, the mass is
usually quite small, while the stiffness and damping are usually
quite large.

init()

The default spring animation; it is quite heavily damped, and settles
into place in about half a second. The overall duration: value is
ignored. In terms of the previous initializer, the mass: is 3, the stif
fness: is 1000, the damping: is 500, and the initialVelocity: is
(0,0).

Canceling a View Animation
Once a view animation is in-flight, how can you cancel it? And what should
“cancel” mean in the first place? This is one of the key areas where a
property animator shows off its special powers.

Canceling a block-based animation
To illustrate the problem, I’ll first show what you would have had to do
before property animators were invented. Imagine a simple unidirectional
positional animation, with a long duration so that we can interrupt it in
midflight. To facilitate the explanation, I’ll conserve both the view’s
original position and its final position in properties:

self.pOrig = self.v.center

self.pFinal = self.v.center

self.pFinal.x += 100

UIView.animateWithDuration(4, animations: {

 self.v.center = self.pFinal

})

Now imagine that we have a button that we can tap during that animation,
and that this button is supposed to cancel the animation. How can we do
that?

One possibility is to reach down to the CALayer level and call removeAllA
nimations:

self.v.layer.removeAllAnimations()

That has the advantage of simplicity, but the effect is jarring: the “animation
movie” is whipped away instantly, “jumping” the view to its final position,
effectively doing what the system does automatically when the app goes
into the background.
So let’s try to devise a more subtle form of cancellation: the view should
hurry to its final position. This is a case where the additive nature of
animations actually gets in our way. We cannot merely impose another
animation that moves the view to its final position with a short duration,
because this doesn’t cancel the existing animation. Therefore, we must
remove the first animation manually. We already know how to do that: call
removeAllAnimations. But we also know that if we do that, the view will
jump to its final position; we want it to remain, for the moment, at its

current position — meaning the animation’s current position. But where on
earth is that?
To find out, we have to ask the view’s presentation layer where it currently
is. We reposition the view at the location of its presentation layer, and then
remove the animation, and then perform the final “hurry home” animation:

self.v.layer.position = self.v.layer.presentation()!.position

self.v.layer.removeAllAnimations()

UIView.animate(withDuration:0.1) {

 self.v.center = self.pFinal

}

Another alternative is that cancellation means returning the view to its
original position. In that case, animate the view’s center to its original
position instead of its destination position:

self.v.layer.position = self.v.layer.presentation()!.position

self.v.layer.removeAllAnimations()

UIView.animate(withDuration:0.1) {

 self.v.center = self.pOrig

}

Yet another possibility is that cancellation means just stopping wherever we
happen to be. In that case, omit the final animation:

self.v.layer.position = self.v.layer.presentation()!.position

self.v.layer.removeAllAnimations()

Canceling a property animator’s animation
Now I’ll show how do those things with a property animator. We don’t have
to reach down to the level of the layer. We don’t call removeAllAnimation
s. We don’t query the presentation layer. We don’t have to memorize the
start position or the end position. The property animator does all of that for
us!
For the sake of ease and generality, let’s hold the animator in an instance
property where all of our code can see it. Here’s how it is configured:

self.anim = UIViewPropertyAnimator(

 duration: 4, timingParameters: UICubicTimingParameters())

self.anim.addAnimations {

 self.v.center.x += 100

}

self.anim.startAnimation()

Here’s how to cancel the animation by hurrying home to its end:

self.anim.pauseAnimation()

self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

We first pause the animation, because otherwise we can’t make changes to
it. But the animation does not visibly pause, because we resume at once
with a modification of the original animation, which is smoothly blended
into the existing animation. The short durationFactor: is the “hurry up”
part; we want a much shorter duration than the original duration. We don’t
have to tell the animator where to animate to; in the absence of any other
commands, it animates to its original destination. The nil value for the tim
ingParameters: tells the animation to use the existing timing curve.
What about canceling the animation by hurrying home to its beginning? It’s
exactly the same, except that we reverse the animation:

self.anim.scrubsLinearly = false

self.anim.pauseAnimation()

self.anim.isReversed = true

self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

Again, we don’t have to tell the animator where to animate to; it knows
where we started, and reversing means to go there. Setting the animator’s s
crubsLinearly to false prevents a jump to the right before the reversed
animation starts. (I regard the need for this in iOS 11 as a bug, because iOS
10 has no such property and no such jump.) The reason is that pausing the
animation when scrubsLinearly is true (the default) causes the timing
curve to change to .linear, meaning that the view is located further to the
right for the amount of already elapsed time.

Using the same technique, we could interrupt the animation and hurry to
anywhere we like — by adding another animation function before
continuing. Here, for example, cancellation causes us to rush right off the
screen:

self.anim.pauseAnimation()

self.anim.addAnimations {

 self.v.center = CGPoint(-200,-200)

}

self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

What about canceling the animation by stopping wherever we are? Just stop
the animation:

self.anim.stopAnimation(false)

self.anim.finishAnimation(at: .current)

Recall that the false argument means: “Please allow me to call finishAni
mation(at:).” We want to call finishAnimation(at:) in order to specify
where the view should end up when the “animation movie” is removed. By
passing in .current, we state that we want the animated view to end up
right where it is now. If we were to pass in .start or .end, the view would
jump to that position (if it weren’t there already).
We can now understand the incoming parameter in the completion function!
It is the position where we ended up. If the animation finished by
proceeding to its end, that parameter is .end. If we reversed the animation
and it finished by proceeding back to its start, as in our second cancellation
example, that parameter is .start. If we called finishAnimation(at:), it
is the at: argument we specified in the call.

Canceling a repeating animation
Finally, suppose that the animation we want to cancel is an infinitely
repeating autoreversing animation. It will have to be created with the
UIView class method:

self.pOrig = self.v.center

let opts : UIViewAnimationOptions = [.autoreverse, .repeat]

UIView.animate(withDuration:1, delay: 0, options: opts, animations: {

 self.v.center.x += 100

})

Let’s say our idea of cancellation is to have the animated view hurry back to
its original position; that is why we have saved the original position as an
instance property. This is a situation where the .beginFromCurrentState
option is useful! That’s because a repeating animation is not additive with a
further animation. It is therefore sufficient simply to impose the “hurry
home” animation on top of the existing repeating animation, because it does
contradict the repeating animation and therefore also cancels it. The .begin
FromCurrentState option prevents the view from jumping momentarily to
the “final” position, 100 points to the right, to which we set it when we
initiated the repeating animation:

let opts : UIViewAnimationOptions = .beginFromCurrentState

UIView.animate(withDuration:0.1, delay:0, options:opts, animations: {

 self.v.center = self.pOrig

})

(In that example, I’m storing the view’s original position as a view
controller property. If you find that objectionable because it’s not a very
encapsulated approach, then consider storing it instead in the view’s layer,
using key–value coding. The implementation is left as an exercise for the
reader.)

Frozen View Animation
Another important feature of a property animator is that its animation can
be frozen. We already know that the animation can be paused — or never
even started. A frozen animation is simply left in this state. It can be started
or resumed at any time subsequently. Alternatively, instead of starting it, we
can keep the animation frozen, but move it to a different “frame” of the
animation by setting its fractionComplete; in this way, we can control the
frozen animation manually.

In this simple example, we have in the interface a slider (a UISlider) and a
small red square view. As the user slides the slider from left to right, the red
view follows along — and gradually turns green, depending how far the
user slides the slider. If the user slides the slider all the way to the right, the
view is at the right and is fully green. If the user slides the slider all the way
back to the left, the view is at the left and is fully red.
To accomplish this, the property animator is configured with an animation
moving it all the way to right and turning it all the way green. But the
animation is never started:

self.anim = UIViewPropertyAnimator(duration: 1, curve: .easeInOut) {

 self.v.center.x = self.pTarget.x

 self.v.backgroundColor = .green()

}

The slider, whenever the user moves it, simply changes the animator’s frac
tionComplete to match its own percentage:

self.anim.fractionComplete = CGFloat(slider.value)

Apple refers to this technique of manually moving a frozen animation back
and forth from frame to frame as scrubbing. A common use case is that the
user will touch and move the animated view itself. This will come in handy
in connection with interactive view controller transitions in Chapter 6.

In that example, I deliberately set the timing curve to .easeInOut in order
to illustrate the real purpose of the scrubsLinearly property, which is new
in iOS 11. You would think that a nonlinear timing curve would affect the
relationship between the position of the slider and the position of the view:
with an .easeInOut timing curve, for example, the view would arrive at
the far right before the slider does. But that doesn’t happen, because a
nonrunning animation switches its timing curve to .linear automatically
for as long as it is nonrunning. The purpose of the scrubsLinearly
property, whose default property is true, is to allow you to turn off that

behavior by setting it to false on the rare occasions when this might be
desirable.

Custom Animatable View Properties
You can define your own custom view property that can be animated by
changing it in an animations function, provided the custom view property
itself changes an animatable view property.

For example, imagine a UIView subclass, MyView, which has a Bool swing
property. All this does is reposition the view: when swing is set to true, the
view’s center x-coordinate is increased by 100; when swing is set to fals
e, it is decreased by 100. A view’s center is animatable, so the swing
property itself can be animatable.
The trick (suggested by an Apple WWDC 2014 video) is to implement
MyView’s swing setter with a zero-duration animation:

class MyView : UIView {

 var swing : Bool = false {

 didSet {

 var p = self.center

 p.x = self.swing ? p.x + 100 : p.x - 100

 UIView.animate(withDuration:0) {

 self.center = p

 }

 }

 }

}

If we now change a MyView’s swing directly, the view jumps to its new
position; there is no animation. But if an animations function changes the s
wing property, the swing setter’s animation inherits the duration of the
surrounding animations function — because such inheritance is, as I
mentioned earlier, the default. Thus the change in position is animated, with
the specified duration:

let anim = UIViewPropertyAnimator(duration: 1, curve: .easeInOut) {

 self.v.swing = !self.v.swing

}

anim.startAnimation()

Keyframe View Animation
A view animation can be described as a set of keyframes. This means that,
instead of a simple beginning and end point, you specify multiple stages in
the animation and those stages are joined together for you. This can be
useful as a way of chaining animations together, or as a way of defining a
complex animation that can’t be described as a single change of value.
To create a keyframe animation, you call this UIView class method:

animateKeyframes(withDuration:delay:options:animations:com

pletion:)

It takes an animations function, and inside that function you call this
UIView class method multiple times to specify each stage:

addKeyframe(withRelativeStartTime:relativeDuration:animati

ons:)

Each keyframe’s start time and duration is between 0 and 1, relative to the
animation as a whole. (Giving a keyframe’s start time and duration in
seconds is a common beginner mistake.)
For example, here I’ll waggle a view back and forth horizontally while
moving it down the screen vertically:

var p = self.v.center

let dur = 0.25

var start = 0.0

let dx : CGFloat = 100

let dy : CGFloat = 50

var dir : CGFloat = 1

UIView.animateKeyframes(withDuration:4, delay: 0, animations: {

 UIView.addKeyframe(withRelativeStartTime:start,

 relativeDuration: dur) {

 p.x += dx*dir; p.y += dy

 self.v.center = p

 }

 start += dur; dir *= -1

 UIView.addKeyframe(withRelativeStartTime:start,

 relativeDuration: dur) {

 p.x += dx*dir; p.y += dy

 self.v.center = p

 }

 start += dur; dir *= -1

 UIView.addKeyframe(withRelativeStartTime:start,

 relativeDuration: dur) {

 p.x += dx*dir; p.y += dy

 self.v.center = p

 }

 start += dur; dir *= -1

 UIView.addKeyframe(withRelativeStartTime:start,

 relativeDuration: dur) {

 p.x += dx*dir; p.y += dy

 self.v.center = p

 }

})

In that code, there are four keyframes, evenly spaced: each is 0.25 in
duration (one-fourth of the whole animation) and each starts 0.25 later than
the previous one (as soon as the previous one ends). In each keyframe, the
view’s center x-coordinate increases or decreases by 100, alternately,
while its center y-coordinate keeps increasing by 50.
The keyframe values are points in space and time; the actual animation
interpolates between them. How this interpolation is done depends upon the
options: parameter (omitted in the preceding code). Several
UIKeyframeAnimationOptions values have names that start with calculat
ionMode; pick one. The default is .calculationModeLinear. In our
example, this means that the path followed by the view is a sharp zig-zag,
the view seeming to bounce off invisible walls at the right and left. But if
our choice is .calculationModeCubic, our view describes a smooth S-
curve, starting at the view’s initial position and ending at the last keyframe
point, and passing through the three other keyframe points like the maxima
and minima of a sine wave.
Because my keyframes are perfectly even, I could achieve the same effects
by using .calculationModePaced or .calculationModeCubicPaced,
respectively. The paced options ignore the relative start time and relative

duration values of the keyframes; you might as well pass 0 for all of them.
Instead, they divide up the times and durations evenly, exactly as my code
has done.

Finally, .calculationModeDiscrete means that the changed animatable
properties don’t animate: the animation jumps to each keyframe.
The outer animations function can contain other changes to animatable
view properties, as long as they don’t conflict with the addKeyframe
animations; these are animated over the total duration. For example:

UIView.animateKeyframes(withDuration:4, delay: 0, animations: {

 self.v.alpha = 0

 // ...

The result is that as the view zigzags back and forth down the screen, it also
gradually fades away.

It is also legal and meaningful to supply a timing curve as part of the optio
ns: argument. Unfortunately, the documentation fails to make this clear;
and Swift’s obsessive-compulsive attitude toward data types resists folding
a UIViewAnimationOptions timing curve directly into a value typed as a
UIViewKeyframeAnimationOptions. Yet if you don’t do it, the default is .c
urveEaseInOut, which may not be what you want. Here’s how to combine
.calculationModeLinear with .curveLinear:

var opts : UIViewKeyframeAnimationOptions = .calculationModeLinear

let opt2 : UIViewAnimationOptions = .curveLinear

opts.insert(UIViewKeyframeAnimationOptions(rawValue:opt2.rawValue))

That’s two different senses of linear! The first means that the path
described by the moving view is a sequence of straight lines. The second
means that the moving view’s speed along that path is steady.
You might want to pause or reverse a keyframe view animation by way of a
property animator. To do so, nest your call to UIView.animateKeyframe
s... inside the property animator’s animations function. The property

animator’s duration and timing curve are then inherited, so this is another
way to dictate the keyframe animation’s timing.
The power of keyframe animations often goes unappreciated by beginners.
Keyframes do not have to be sequential, nor do they all have to involve the
same property. Thus, they can be used to coordinate different animations. In
this example, our view animates slowly to the right, and changes color
suddenly in the middle of its movement:

let anim = UIViewPropertyAnimator(

 duration: 4, timingParameters: UICubicTimingParameters())

anim.addAnimations {

 UIView.animateKeyframes(withDuration: 0, delay: 0, animations: {

 UIView.addKeyframe(withRelativeStartTime: 0,

 relativeDuration: 1) {

 self.v.center.x += 100

 }

 UIView.addKeyframe(withRelativeStartTime: 0.5,

 relativeDuration: 0.25) {

 self.v.backgroundColor = .red

 }

 })

}

anim.startAnimation()

There are other ways to arrange the same outward effect, to be sure; but this
way, the entire animation is placed under the control of a single property
animator, and is thus easy to pause, scrub, reverse, and so on.

Transitions
A transition is an animation that emphasizes a view’s change of content.
Transitions are ordered using one of two UIView class methods:

transition(with:duration:options:animations:completion:)

transition(from:to:duration:options:completion:)

The transition animation types are expressed as part of the options:
bitmask:

.transitionFlipFromLeft, .transitionFlipFromRight

.transitionCurlUp, .transitionCurlDown

.transitionFlipFromBottom, .transitionFlipFromTop

.transitionCrossDissolve

Transitioning one view
transition(with:...) takes one UIView parameter, and performs the
transition animation on that view. In this example, a UIImageView
containing an image of Mars flips over as its image changes to a smiley
face; it looks as if the image view were two-sided, with Mars on one side
and the smiley face on the other:

let opts : UIViewAnimationOptions = .transitionFlipFromLeft

UIView.transition(with:self.iv, duration: 0.8, options: opts, animations: {

 self.iv.image = UIImage(named:"Smiley")

})

In that example, I’ve put the content change inside the animations function.
That’s conventional but misleading; the truth is that if all that’s changing is
the content, nothing needs to go into the animations function. The change of
content can be anywhere, before or even after this entire line of code. It’s
the flip that’s being animated. You might use the animations function here
to order additional animations, such as a change in a view’s center.
You can do the same sort of thing with a custom view that does its own
drawing. Let’s say that I have a UIView subclass, MyView, that draws
either a rectangle or an ellipse depending on the value of its Bool reverse
property:

class MyView : UIView {

 var reverse = false

 override func draw(_ rect: CGRect) {

 let f = self.bounds.insetBy(dx: 10, dy: 10)

 let con = UIGraphicsGetCurrentContext()!

 if self.reverse {

 con.strokeEllipse(in:f)

 }

 else {

 con.stroke(f)

 }

 }

}

This code flips a MyView instance while changing its drawing from a
rectangle to an ellipse or vice versa:

let opts : UIViewAnimationOptions = .transitionFlipFromLeft

self.v.reverse = !self.v.reverse

UIView.transition(with:self.v, duration: 1, options: opts, animations: {

 self.v.setNeedsDisplay()

})

By default, if a view has subviews whose layout changes as part of a
transition animation, that change in layout is not animated: the layout
changes directly to its final appearance when the transition ends. If you
want to display a subview of the transitioning view being animated as it
assumes its final state, use .allowAnimatedContent in the options:
bitmask.

Transitioning two views and their superview
transition(from:to:...) takes two UIView parameters; the first view is
replaced by the second, while their superview undergoes the transition
animation. There are two possible configurations, depending on the option
s: you provide:

Remove one subview, add the other

If .showHideTransitionViews is not one of the options:, then the
second subview is not in the view hierarchy when we start; the
transition removes the first subview from its superview and adds the
second subview to that same superview.

Hide one subview, show the other

If .showHideTransitionViews is one of the options:, then both
subviews are in the view hierarchy when we start; the isHidden of the

first is false, the isHidden of the second is true, and the transition
reverses those values.

In this example, a label self.lab is already in the interface. The animation
causes the superview of self.lab to flip over, while at the same time a
different label, lab2, is substituted for the existing label:

let lab2 = UILabel(frame:self.lab.frame)

lab2.text = self.lab.text == "Hello" ? "Howdy" : "Hello"

lab2.sizeToFit()

UIView.transition(from:self.lab, to: lab2,

 duration: 0.8, options: .transitionFlipFromLeft) { _ in

 self.lab = lab2

}

It’s up to you to make sure beforehand that the second view has the desired
position, so that it will appear in the right place in its superview.

Implicit Layer Animation
Animating a layer can be as simple as setting a property. A change in what
the documentation calls an animatable property is automatically interpreted
as a request to animate that change. In other words, animation of layer
property changes is the default! Multiple property changes are considered
part of the same animation. This mechanism is called implicit animation.
You may be wondering: if implicit animation is the default, why didn’t we
notice it happening in any of the layer examples in Chapter 3? It’s because
there are two common situations where implicit layer animation doesn’t
happen:

Implicit layer animation doesn’t operate on a UIView’s underlying layer.
You can animate a UIView’s underlying layer directly, but you must use
explicit layer animation (discussed later in this chapter).
Implicit layer animation doesn’t affect a layer as it is being created,
configured, and added to the interface. Implicit animation comes into

play when you change an animatable property of a layer that is already
present in the interface.

In Chapter 3 we constructed a compass out of layers. The compass itself is a
CompassView that does no drawing of its own; its underlying layer is a
CompassLayer that also does no drawing, serving only as a superlayer for
the layers that constitute the drawing. None of the layers that constitute the
actual drawing is the underlying layer of a view, so a property change to
any of them, once they are established in the interface, is animated
automatically.
So, presume that we have established all our compass layers in the
interface. And suppose we have a reference to the arrow layer (arrow). If
we rotate the arrow layer simply by changing its transform property, the
arrow rotation is animated:

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

CALayer properties listed in the documentation as animatable in this way
are anchorPoint and anchorPointZ, backgroundColor, borderColor, bo
rderWidth, bounds, contents, contentsCenter, contentsRect, cornerR
adius, isDoubleSided, isHidden, masksToBounds, opacity, position
and zPosition, rasterizationScale and shouldRasterize, shadowCol
or, shadowOffset, shadowOpacity, shadowRadius, and sublayerTransf
orm and transform.

In addition, a CAShapeLayer’s path, strokeStart, strokeEnd, fillColo
r, strokeColor, lineWidth, lineDashPhase, and miterLimit are
animatable; so are a CATextLayer’s fontSize and foregroundColor, and
a CAGradientLayer’s colors, locations, and endPoint.
Basically, a property is animatable because there’s some sensible way to
interpolate the intermediate values between one value and another. The
nature of the animation attached to each property is therefore generally just
what you would intuitively expect. When you change a layer’s isHidden

property, it fades out of view (or into view). When you change a layer’s con
tents, the old contents are dissolved into the new contents. And so forth.

WARNING
A layer’s cornerRadius is animatable by explicit layer animation, or by view animation, but not
by implicit layer animation.

Animation Transactions
Animation operates with respect to a transaction (a CATransaction), which
collects all animation requests and hands them over to the animation server
in a single batch. Every animation request takes place in the context of
some transaction. You can make this explicit by wrapping your animation
requests in calls to the CATransaction class methods begin and commit; the
result is a transaction block. Additionally, there is always an implicit
transaction surrounding your code, and you can operate on this implicit
transaction without any begin and commit.
To modify the characteristics of an implicit animation, you modify the
transaction that surrounds it. Typically, you’ll use these CATransaction class
methods:

setAnimationDuration(_:)

The duration of the animation.

setAnimationTimingFunction(_:)

A CAMediaTimingFunction; layer timing functions are discussed in the
next section.

setDisableActions(_:)

Toggles implicit animations for this transaction.

setCompletionBlock(_:)

A function (taking no parameters) to be called when the animation ends;
it is called even if no animation is triggered during this transaction.

CATransaction also implements key–value coding to allow you to set and
retrieve a value for an arbitrary key, similar to CALayer.
By nesting transaction blocks, you can apply different animation
characteristics to different elements of an animation. You can also use
transaction commands outside of any transaction block to modify the
implicit transaction. So, in our previous example, we could slow down the
animation of the arrow like this:

CATransaction.setAnimationDuration(0.8)

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

An important use of transactions is to turn implicit animation off. This is
valuable because implicit animation is the default, and can be unwanted
(and a performance drag). To turn off implicit animation, call setDisableA
ctions(true). There are other ways to turn off implicit animation
(discussed later in this chapter), but this is the simplest.

setCompletionBlock(_:) is an extraordinarily useful and probably
underutilized tool. The transaction’s completion function signals the end,
not only of the implicit layer property animations you yourself have ordered
as part of this transaction, but of all animations ordered during this
transaction, including Cocoa’s own animations. Thus, it’s a way to be
notified when any and all animations come to an end.
The “redraw moment” that I’ve spoken of in connection with drawing,
layout, layer property settings, and animation is actually the end of the
current transaction. Thus, for example:

You set a view’s background color; the displayed color of the
background is changed when the transaction ends.

You call setNeedsDisplay; draw(_:) is called when the transaction
ends.

You call setNeedsLayout; layout happens when the transaction ends.

You order an animation; the animation starts when the transaction ends.
What’s really happening is this. Your code runs within an implicit
transaction. Your code comes to an end, and the transaction commits itself.
It is then, as part of the transaction commit procedure, that the screen is
updated: first layout, then drawing, then obedience to layer property
changes, then the start of any animations. The animation server then
continues operating on a background thread; it has kept a reference to the
transaction, and calls its completion function, if any, when the animations
are over.

WARNING
An explicit transaction block that orders an animation to a layer, if the block is not preceded by
any other changes to the layer, can cause animation to begin immediately when the
CATransaction class method commit is called, without waiting for the redraw moment, while your
code continues running. In my experience, this can cause trouble (animation delegate messages
cannot arrive, and the presentation layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction(_:)
takes as its parameter a media timing function (CAMediaTimingFunction).
This is the Core Animation way of describing the same cubic Bézier timing
curves I discussed earlier.
To specify a built-in timing curve, call the CAMediaTimingFunction
initializer init(name:) with one of these parameters:

kCAMediaTimingFunctionLinear

kCAMediaTimingFunctionEaseIn

kCAMediaTimingFunctionEaseOut

kCAMediaTimingFunctionEaseInEaseOut

kCAMediaTimingFunctionDefault

To define your own timing curve, supply the coordinates of the two Bézier
control points by calling init(controlPoints:). Here we define the
“clunk” timing curve and apply it to the rotation of the compass arrow:

let clunk = CAMediaTimingFunction(controlPoints: 0.9, 0.1, 0.7, 0.9)

CATransaction.setAnimationTimingFunction(clunk)

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

Core Animation
Core Animation is the fundamental underlying iOS animation technology.
Core Animation is explicit layer animation, and revolves primarily around
the CAAnimation class and its subclasses, which allow you the fullest
possible freedom in specifying animations. Among other things:

Core Animation works even on a view’s underlying layer. Thus, Core
Animation is the only way to apply full-on layer property animation to a
view.
Core Animation allows animations to be grouped into complex
combinations.
Core Animation provides transition animation effects that aren’t
available otherwise, such as new content “pushing” the previous content
out of a layer.

View animation and implicit layer animation are merely convenient façades
for Core Animation. Conceivably, you might never program at the level of
Core Animation; view animation and implicit layer animation could give
you everything you need. Still, you should read this section anyway, if only
to learn how animation really works.

WARNING
Animating a view’s underlying layer with Core Animation is layer animation, not view animation
— so you don’t get any automatic layout of that view’s subviews. This can be a reason for
preferring view animation.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a
CABasicAnimation object. CABasicAnimation derives much of its power
through its inheritance, so I’ll describe that inheritance along with
CABasicAnimation itself. You will readily see that all the property
animation features we have met already are embodied in a
CABasicAnimation instance.

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a
subclass of it. Some of CAAnimation’s powers come from its
implementation of the CAMediaTiming protocol.

delegate

An adopter of the CAAnimationDelegate protocol. The delegate
messages are:

animationDidStart(_:)

animationDidStop(_:finished:)

A CAAnimation instance retains its delegate; this is very unusual
behavior and can cause trouble if you’re not conscious of it (I’m
speaking from experience). Alternatively, don’t set a delegate; to
make your code run after the animation ends, call the CATransaction
class method setCompletionBlock(_:) before configuring the
animation.

duration, timingFunction
The length of the animation, and its timing function (a
CAMediaTimingFunction). A duration of 0 (the default) means 0.2
5 seconds unless overridden by the transaction.

autoreverses, repeatCount, repeatDuration

For an infinite repeatCount, use Float.infinity. The repeatDur
ation property is a different way to govern repetition, specifying

how long the repetition should continue rather than how many
repetitions should occur; don’t specify both a repeatCount and a re
peatDuration.

beginTime

The delay before the animation starts. To delay an animation with
respect to now, call CACurrentMediaTime and add the desired delay
in seconds. The delay does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way,
specifies the starting frame of the “animation movie,” which is
treated as a loop. For example, consider an animation with a
duration of 8 and a time offset of 4: it plays its second half followed
by its first half.

CAAnimation, along with all its subclasses, implements key–value coding
to allow you to set and retrieve a value for an arbitrary key, similar to
CALayer (Chapter 3) and CATransaction.

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract,
and adds the following:

keyPath

The all-important string specifying the CALayer key that is to be
animated. Recall from Chapter 3 that CALayer properties are
accessible through KVC keys; now we are using those keys! The
convenience initializer init(keyPath:) creates the instance and
assigns it a keyPath.

isAdditive

If true, the values supplied by the animation are added to the
current presentation layer value.

isCumulative

If true, a repeating animation starts each repetition where the
previous repetition ended rather than jumping back to the start
value.

valueFunction

Converts a simple scalar value that you supply into a transform.

WARNING
There is no animatable CALayer key called "frame". To animate a layer’s frame using explicit
layer animation, if both its position and bounds are to change, you must animate both. Similarly,
you cannot use explicit layer animation to animate a layer’s affineTransform property, because
affineTransform is not a property (it’s a pair of convenience methods); you must animate its tra
nsform instead. Attempting to form an animation with a key path of "frame" or "affineTransfo
rm" is a common beginner error.

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of
CAPropertyAnimation. It adds the following:

fromValue, toValue
The starting and ending values for the animation. These values must
be Objective-C objects, so numbers and structs will have to be
wrapped accordingly, using NSNumber and NSValue; fortunately,
Swift will automatically take care of this for you. If neither fromVal
ue nor toValue is provided, the former and current values of the
property are used. If just one of them is provided, the other uses the
current value of the property.

byValue

Expresses one of the endpoint values as a difference from the other
rather than in absolute terms. So you would supply a byValue
instead of a fromValue or instead of a toValue, and the actual from
Value or toValue would be calculated for you by subtraction or

addition with respect to the other value. If you supply only a byValu
e, the fromValue is the property’s current value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you
order it to be performed is to add it to a layer. This is done with the
CALayer instance method add(_:forKey:). (I’ll discuss the purpose of the
forKey: parameter later; it’s fine to ignore it and use nil, as I do in the
examples that follow.)
However, there’s a slight twist. A CAAnimation is merely an animation; all
it does is describe the hoops that the presentation layer is to jump through,
the “animation movie” that is to be presented. It has no effect on the layer
itself. Thus, if you naïvely create a CABasicAnimation and add it to a layer
with add(_:forKey:), the animation happens and then the “animation
movie” is whipped away to reveal the layer sitting there in exactly the same
state as before. It is up to you to change the layer to match what the
animation will ultimately portray. The converse, of course, is that you don’t
have to change the layer if it doesn’t change as a result of the animation.
To ensure good results, start by taking a plodding, formulaic approach to the
use of CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to
change, because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisableAc
tions(true) if necessary to prevent implicit animation.

3. Construct the explicit animation, using the start and end values you
captured earlier, and with its keyPath corresponding to the layer
property you just changed.

4. Add the explicit animation to the layer.
An explicit animation is copied when it is added to a layer. That’s why the
animation must be configured first and added to the layer later. The copy
added to the layer is immutable after that.

Here’s how you’d use this approach to animate our compass arrow rotation:

// capture the start and end values

let startValue = arrow.transform

let endValue = CATransform3DRotate(startValue, .pi/4.0, 0, 0, 1)

// change the layer, without implicit animation

CATransaction.setDisableActions(true)

arrow.transform = endValue

// construct the explicit animation

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim.duration = 0.8

let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)

anim.timingFunction = clunk

anim.fromValue = startValue

anim.toValue = endValue

// ask for the explicit animation

arrow.add(anim, forKey:nil)

Once you’re comfortable with the full form, you will find that in many
cases it can be condensed. For example, when the fromValue and toValue
are not set, the former and current values of the property are used
automatically. (This magic is possible because, at the time the
CABasicAnimation is added to the layer, the presentation layer still has the
former value of the property, while the layer itself has the new value; thus,
the CABasicAnimation is able to retrieve them.) In our example, therefore,
there is no need to set the fromValue and toValue, and no need to capture
the start and end values beforehand. Here’s the condensed version:

CATransaction.setDisableActions(true)

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim.duration = 0.8

let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)

anim.timingFunction = clunk

arrow.add(anim, forKey:nil)

As I mentioned earlier, you will omit changing the layer if it doesn’t change
as a result of the animation. For example, let’s make the compass arrow
appear to vibrate rapidly, without ultimately changing its current
orientation. To do this, we’ll waggle it back and forth, using a repeated

animation, between slightly clockwise from its current position and slightly
counterclockwise from its current position. The “animation movie” neither
starts nor stops at the current position of the arrow, but for this animation it
doesn’t matter, because it all happens so quickly as to appear natural:

// capture the start and end values

let nowValue = arrow.transform

let startValue = CATransform3DRotate(nowValue, .pi/40.0, 0, 0, 1)

let endValue = CATransform3DRotate(nowValue, -.pi/40.0, 0, 0, 1)

// construct the explicit animation

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim.duration = 0.05

anim.timingFunction =

 CAMediaTimingFunction(name:kCAMediaTimingFunctionLinear)

anim.repeatCount = 3

anim.autoreverses = true

anim.fromValue = startValue

anim.toValue = endValue

// ask for the explicit animation

arrow.add(anim, forKey:nil)

That code, too, can be shortened considerably from its full form. We can
eliminate the need to calculate the new rotation values based on the arrow’s
current transform by setting our animation’s isAdditive property to true;
this means that the animation’s property values are added to the existing
property value for us, so that they are relative, not absolute. For a transform,
“added” means “matrix-multiplied,” so we can describe the waggle without
any reference to the arrow’s current rotation. Moreover, because our
rotation is so simple (around a cardinal axis), we can take advantage of
CAPropertyAnimation’s valueFunction; the animation’s property values
can then be simple scalars (in this case, angles), because the valueFunctio
n tells the animation to interpret these as rotations around the z-axis:

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim.duration = 0.05

anim.timingFunction =

 CAMediaTimingFunction(name:kCAMediaTimingFunctionLinear)

anim.repeatCount = 3

anim.autoreverses = true

anim.isAdditive = true

anim.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

anim.fromValue = Float.pi/40

anim.toValue = -Float.pi/40

arrow.add(anim, forKey:nil)

WARNING
Instead of using a valueFunction, we could have set the animation’s key path to "transform.ro
tation.z" to achieve the same effect. However, Apple advises against this, as it can result in
mathematical trouble when there is more than one rotation.

Let’s return once more to our arrow “clunk” rotation for one final
alternative implementation using the isAdditive and valueFunction
properties. We set the arrow layer to its final transform at the outset, so
when the time comes to configure the animation, its toValue, in isAdditiv
e terms, will be 0; the fromValue will be its current value expressed
negatively, like this:

let rot = CGFloat.pi/4.0

CATransaction.setDisableActions(true)

arrow.transform = CATransform3DRotate(arrow.transform, rot, 0, 0, 1)

// construct animation additively

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim.duration = 0.8

let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)

anim.timingFunction = clunk

anim.fromValue = -rot

anim.toValue = 0

anim.isAdditive = true

anim.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

arrow.add(anim, forKey:nil)

That is an interesting way of describing the animation; in effect, it expresses
the animation in reverse, regarding the final position as correct and the
current position as an aberration to be corrected. It also happens to be how
additive view animations are rewritten behind the scenes, and explains their
behavior.

TIP
Interesting effects can be achieved by using explicit layer animation, such as a
CABasicAnimation, on a CAReplicatorLayer. I’ll give an example in Chapter 12.

Springing Animation
Starting in iOS 9, springing animation is exposed at the Core Animation
level, through the CASpringAnimation class (a CABasicAnimation
subclass). Its properties are the same as the parameters of the fullest form of
the UISpringTimingParameters initializer, except that its initialVelocity
is a CGFloat, not a CGVector. The duration is ignored, but don’t omit it.
The actual duration calculated from your specifications can be extracted as
the settlingDuration property. For example:

CATransaction.setDisableActions(true)

self.v.layer.position.y += 100

let anim = CASpringAnimation(keyPath: #keyPath(CALayer.position))

anim.damping = 0.7

anim.initialVelocity = 20

anim.mass = 0.04

anim.stiffness = 4

anim.duration = 1 // ignored, but you need to supply something

self.v.layer.add(anim, forKey: nil)

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic
animation (CABasicAnimation); they are both subclasses of
CAPropertyAnimation, and they are used in similar ways. The difference is
that you need to tell the keyframe animation what the keyframes are. In
these simplest case, you can just set its values array. This tells the
animation its starting value, its ending value, and some specific values
through which it should pass on the way between them.
Here’s a new version of our animation for waggling the compass arrow,
expressing it as a keyframe animation. The stages include the start and end

states and eight alternating waggles in between, with the degree of waggle
becoming progressively smaller:

var values = [0.0]

let directions = sequence(first:1) {$0 * -1}

let bases = stride(from: 20, to: 60, by: 5)

for (base, dir) in zip(bases, directions) {

 values.append(Double(dir) * .pi / Double(base))

}

values.append(0.0)

let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))

anim.values = values

anim.isAdditive = true

anim.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)

arrow.add(anim, forKey:nil)

Here are some CAKeyframeAnimation properties:

values

The array of values that the animation is to adopt, including the starting
and ending value.

timingFunctions

An array of timing functions, one for each stage of the animation (so
that this array will be one element shorter than the values array).

keyTimes

An array of times to accompany the array of values, defining when each
value should be reached. The times start at 0 and are expressed as
increasing fractions of 1, ending at 1.

calculationMode

Describes how the values are treated to create all the values through
which the animation must pass:

The default is kCAAnimationLinear, a simple straight-line
interpolation from value to value.

kCAAnimationCubic constructs a single smooth curve passing
through all the values (and additional advanced properties, tensionV
alues, continuityValues, and biasValues, allow you to refine the
curve).

kCAAnimationPaced and kCAAnimationCubicPaced means the
timing functions and key times are ignored, and the velocity is made
constant through the whole animation.

kCAAnimationDiscrete means no interpolation: we jump directly to
each value at the corresponding key time.

path

When you’re animating a property whose values are pairs of floats
(CGPoints), this is an alternative way of describing the values; instead
of a values array, which must be interpolated to arrive at the
intermediate values along the way, you supply the entire interpolation as
a single CGPath. The points used to define the path are the keyframe
values, so you can still apply timing functions and key times. If you’re
animating a position, the rotationMode property lets you ask the
animated object to rotate so as to remain perpendicular to the path.

In this example, the values array is a sequence of five images (self.image
s) to be presented successively and repeatedly in a layer’s contents, like
the frames in a movie; the effect is similar to image animation, discussed
earlier in this chapter:

let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.contents))

anim.values = self.images.map {$0.cgImage!}

anim.keyTimes = [0.0, 0.25, 0.5, 0.75, 1.0]

anim.calculationMode = kCAAnimationDiscrete

anim.duration = 1.5

anim.repeatCount = .infinity

self.sprite.add(anim, forKey:nil) // sprite is a CALayer

Making a Property Animatable

So far, we’ve been animating built-in animatable properties. If you define
your own property on a CALayer subclass, you can easily make that
property animatable through a CAPropertyAnimation. For example, here
we animate the increase or decrease in a CALayer subclass property called
thickness, using essentially the pattern for explicit animation that we’ve
already developed:

let lay = self.v.layer as! MyLayer

let cur = lay.thickness

let val : CGFloat = cur == 10 ? 0 : 10

lay.thickness = val

let ba = CABasicAnimation(keyPath:#keyPath(MyLayer.thickness))

ba.fromValue = cur

lay.add(ba, forKey:nil)

To make our layer responsive to such a command, it needs a thickness
property (obviously), and it must return true from the class method needsD
isplay(forKey:) for this property:

class MyLayer : CALayer {

 @objc var thickness : CGFloat = 0

 override class func needsDisplay(forKey key: String) -> Bool {

 if key == #keyPath(thickness) {

 return true

 }

 return super.needsDisplay(forKey:key)

 }

}

Returning true from needsDisplay(forKey:) causes this layer to be
redisplayed repeatedly as the thickness property changes. So if we want to
see the animation, this layer also needs to draw itself in some way that
depends on the thickness property. Here, I’ll implement the layer’s draw
(in:) to make thickness the thickness of the black border around a red
rectangle:

override func draw(in con: CGContext) {

 let r = self.bounds.insetBy(dx:20, dy:20)

 con.setFillColor(UIColor.red.cgColor)

 con.fill(r)

 con.setLineWidth(self.thickness)

 con.stroke(r)

}

At every frame of the animation, draw(in:) is called, and because the thic
kness value differs at each step, it appears animated.

We have made MyLayer’s thickness property animatable when using
explicit layer animation, but it would be even cooler to make it animatable
when using implicit layer animation (that is, when setting lay.thickness
directly). Later in this chapter, I’ll show how to do that.

TIP
No law says that you have to draw in response to animated changes in a layer property. Consider
layer animation more abstractly as a way of getting the runtime to calculate and send you timed
interpolated value changes! The possibilities are limitless.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations
into one, by means of its animations property (an array of animations). By
delaying and timing the various component animations, complex effects can
be achieved.
A CAAnimationGroup is itself an animation; it is a CAAnimation subclass,
so it has a duration and other animation features. Think of the
CAAnimationGroup as the parent, and its animations as its children. Then
the children inherit default property values from their parent. Thus, for
example, if you don’t set a child’s duration explicitly, it will inherit the
parent’s duration.
Let’s use a grouped animation to construct a sequence where the compass
arrow rotates and then waggles. This requires very little modification of
code we’ve already written. We express the first animation in its full form,
with explicit fromValue and toValue. We postpone the second animation

using its beginTime property; notice that we express this in relative terms,
as a number of seconds into the parent’s duration, not with respect to CACur
rentMediaTime. Finally, we set the overall parent duration to the sum of
the child durations, so that it can embrace both of them (failing to do this,
and then wondering why some child animations never occur, is a common
beginner error):

// capture current value, set final value

let rot = .pi/4.0

CATransaction.setDisableActions(true)

let current = arrow.value(forKeyPath:"transform.rotation.z") as! Double

arrow.setValue(current + rot, forKeyPath:"transform.rotation.z")

// first animation (rotate and clunk)

let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

anim1.duration = 0.8

let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)

anim1.timingFunction = clunk

anim1.fromValue = current

anim1.toValue = current + rot

anim1.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

// second animation (waggle)

var values = [0.0]

let directions = sequence(first:1) {$0 * -1}

let bases = stride(from: 20, to: 60, by: 5)

for (base, dir) in zip(bases, directions) {

 values.append(Double(dir) * .pi / Double(base))

}

values.append(0.0)

let anim2 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))

anim2.values = values

anim2.duration = 0.25

anim2.isAdditive = true

anim2.beginTime = anim1.duration - 0.1

anim2.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)

// group

let group = CAAnimationGroup()

group.animations = [anim1, anim2]

group.duration = anim1.duration + anim2.duration

arrow.add(group, forKey:nil)

In that example, I grouped two animations that animated the same property
sequentially. Now let’s go to the other extreme and group some animations
that animate different properties simultaneously. I have a small view (self.

v), located near the top-right corner of the screen, whose layer contents are
a picture of a sailboat facing to the left. I’ll “sail” the boat in a curving path,
both down the screen and left and right across the screen, like an extended
letter “S” (Figure 4-2). Each time the boat comes to a vertex of the curve,
changing direction across the screen, I’ll flip the boat so that it faces the
way it’s about to move. At the same time, I’ll constantly rock the boat, so
that it always appears to be pitching a little on the waves.

Figure 4-2. A boat and the course she’ll sail

Here’s the first animation, the movement of the boat along its curving path.
It illustrates the use of a CAKeyframeAnimation with a CGPath; the calcu
lationMode of kCAAnimationPaced ensures an even speed over the whole
path. We don’t set an explicit duration because we want to adopt the
duration of the group:

let h : CGFloat = 200

let v : CGFloat = 75

let path = CGMutablePath()

var leftright : CGFloat = 1

var next : CGPoint = self.v.layer.position

var pos : CGPoint

path.move(to:CGPoint(next.x, next.y))

for _ in 0 ..< 4 {

 pos = next

 leftright *= -1

 next = CGPoint(pos.x+h*leftright, pos.y+v)

 path.addCurve(to:CGPoint(next.x, next.y),

 control1: CGPoint(pos.x, pos.y+30),

 control2: CGPoint(next.x, next.y-30))

}

let anim1 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.position))

anim1.path = path

anim1.calculationMode = kCAAnimationPaced

Here’s the second animation, the reversal of the direction the boat is facing.
This is simply a rotation around the y-axis. It’s another
CAKeyframeAnimation, but we make no attempt at visually animating this
reversal: the calculationMode is kCAAnimationDiscrete, so that the boat
image reversal is a sudden change, as in our earlier “sprite” example. There
is one less value than the number of points in our first animation’s path, and
the first animation has an even speed, so the reversals take place at each
curve apex with no further effort on our part. (If the pacing were more
complicated, we could give both the first and the second animation identical
keyTimes arrays, to coordinate them.) Once again, we don’t set an explicit
duration:

let revs = [0.0, .pi, 0.0, .pi]

let anim2 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))

anim2.values = revs

anim2.valueFunction = CAValueFunction(name:kCAValueFunctionRotateY)

anim2.calculationMode = kCAAnimationDiscrete

Here’s the third animation, the rocking of the boat. It has a short duration,
and repeats indefinitely:

let pitches = [0.0, .pi/60.0, 0.0, -.pi/60.0, 0.0]

let anim3 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))

anim3.values = pitches

anim3.repeatCount = .infinity

anim3.duration = 0.5

anim3.isAdditive = true

anim3.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

Finally, we combine the three animations, assigning the group an explicit
duration that will be adopted by the first two animations. As we hand the
animation over to the layer displaying the boat, we also change the layer’s
position to match the final position from the first animation, so that the boat
won’t jump back to its original position afterward:

let group = CAAnimationGroup()

group.animations = [anim1, anim2, anim3]

group.duration = 8

self.v.layer.add(group, forKey:nil)

CATransaction.setDisableActions(true)

self.v.layer.position = next

Here are some further CAAnimation properties (from the CAMediaTiming
protocol) that come into play especially when animations are grouped:

speed

The ratio between a child’s timescale and the parent’s timescale. For
example, if a parent and child have the same duration, but the child’s sp
eed is 1.5, its animation runs one-and-a-half times as fast as the parent.

fillMode

Suppose the child animation begins after the parent animation, or ends
before the parent animation, or both. What should happen to the
appearance of the property being animated, outside the child
animation’s boundaries? The answer depends on the child’s fillMode:

kCAFillModeRemoved means the child animation is removed,
revealing the layer property at its actual current value whenever the
child is not running.

kCAFillModeForwards means the final presentation layer value of
the child animation remains afterward.

kCAFillModeBackwards means the initial presentation layer value of
the child animation appears right from the start.

kCAFillModeBoth combines the previous two.

Freezing an Animation
An animation can be frozen at the level of the layer, with an effect similar
to what we did with a property animator earlier. CALayer adopts the
CAMediaTiming protocol. Thus, a layer can have a speed. This will affect
any animation attached to it. A CALayer with a speed of 2 will play a 10-
second animation in 5 seconds. A CALayer with a speed of 0 effectively
freezes any animation attached to the layer.

A layer can also have a timeOffset. You can thus change the timeOffset
to display any single frame of the layer’s animation.
To illustrate freezing an animation at the CALayer level, let’s explore the
animatable path property of a CAShapeLayer. Consider a layer that can
display a rectangle or an ellipse or any of the intermediate shapes between
them. I can’t imagine what the notion of an intermediate shape between a
rectangle or an ellipse may mean, let alone how to draw such an
intermediate shape; but thanks to frozen animations, I don’t have to. Here,
I’ll construct the CAShapeLayer, add it to the interface, give it an animation
from a rectangle to an ellipse, and keep a reference to it as a property:

let shape = CAShapeLayer()

shape.frame = v.bounds

v.layer.addSublayer(shape)

shape.fillColor = UIColor.clear.cgColor

shape.strokeColor = UIColor.red.cgColor

let path = CGPath(rect:shape.bounds, transform:nil)

shape.path = path

let path2 = CGPath(ellipseIn:shape.bounds, transform:nil)

let ba = CABasicAnimation(keyPath:#keyPath(CAShapeLayer.path))

ba.duration = 1

ba.fromValue = path

ba.toValue = path2

shape.speed = 0

shape.timeOffset = 0

shape.add(ba, forKey: nil)

self.shape = shape

I’ve added the animation to the layer, but because the layer’s speed is 0, no
animation takes place; the rectangle is displayed and that’s all. As in my
earlier example, there’s a UISlider in the interface. I’ll respond to the user
changing the value of the slider by setting the frame of the animation:

self.shape.timeOffset = Double(slider.value)

Transitions
A layer transition is an animation involving two “copies” of a single layer,
in which the second “copy” appears to replace the first. It is described by an
instance of CATransition (a CAAnimation subclass), which has these chief
properties specifying the animation:

type

Your choices are:

kCATransitionFade

kCATransitionMoveIn

kCATransitionPush

kCATransitionReveal

subtype

If the type is not kCATransitionFade, your choices are:

kCATransitionFromRight

kCATransitionFromLeft

kCATransitionFromTop

kCATransitionFromBottom

WARNING
For historical reasons, the terms bottom and top in the names of the subtype settings have the
opposite of their expected meanings.

To understand a layer transition, first implement one without changing
anything else about the layer:

let t = CATransition()

t.type = kCATransitionPush

t.subtype = kCATransitionFromBottom

t.duration = 2

lay.add(t, forKey: nil)

The entire layer exits moving down from its original place while fading
away, and another copy of the very same layer enters moving down from
above while fading in. If, at the same time, we change something about the
layer’s contents, then the old contents will appear to exit downward while
the new contents appear to enter from above:

// ... configure the transition as before ...

CATransaction.setDisableActions(true)

lay.contents = UIImage(named: "Smiley")!.cgImage

lay.add(t, forKey: nil)

A common device is for the layer that is to be transitioned to be inside a
superlayer that is exactly the same size and whose masksToBounds is true.
This confines the visible transition to the bounds of the layer itself.
Otherwise, the entering and exiting versions of the layer are visible outside
the layer. In Figure 4-3, which shows a smiley face pushing an image of
Mars out of the layer, I’ve emphasized this arrangement by giving the
superlayer a border as well.

Figure 4-3. A push transition

A transition on a superlayer can happen simultaneously with animation of a
sublayer. The animation will be seen to occur on the second “copy” of the
layer as it moves into position. This is analogous to the .allowAnimatedCo
ntent option for a view animation.

Animations List
The method that asks for an explicit animation to happen is CALayer’s add
(_:forKey:). To understand how this method actually works (and what the
“key” is), you need to know about a layer’s animations list.
An animation is an object (a CAAnimation) that modifies how a layer is
drawn. It does this merely by being attached to the layer; the layer’s
drawing mechanism does the rest. A layer maintains a list of animations
that are currently in force. To add an animation to this list, you call add(_:f
orKey:). When the time comes to draw itself, the layer looks through its
animations list and draws itself in accordance with whatever animations it
finds there. (The list of things the layer must do in order to draw itself is
sometimes referred to by the documentation as the render tree.) The order
in which animations were added to the list is the order in which they are
applied.
The animations list is maintained in a curious way. The list is not exactly a
dictionary, but it behaves somewhat like a dictionary. An animation has a
key — the forKey: parameter in add(_:forKey:). If an animation with a
certain key is added to the list, and an animation with that key is already in
the list, the one that is already in the list is removed. Thus a rule is
maintained that only one animation with a given key can be in the list at a

time — the exclusivity rule. This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two
animations had the same key, so the first one was removed. (Additive view
animations affecting the same property work around this limitation by
giving the additional animations a different key name — for example, "posi
tion" and "position-2".)

It is also possible to add an animation with no key (the key is nil); it is then
not subject to the exclusivity rule (that is, there can be more than one
animation in the list with no key).

The forKey: parameter in add(_:forKey:) is thus not a property name. It
could be a property name, but it can be any arbitrary value. Its purpose is to
enforce the exclusivity rule. It does not have any meaning with regard to
what property a CAPropertyAnimation animates; that is the job of the
animation’s keyPath. (Apple’s use of the term “key” in add(_:forKey:) is
thus unfortunate and misleading; I wish they had named this method add
(_:identifier:) or something like that.)

However, there is a relationship between the “key” in add(_:forKey:) and
a CAPropertyAnimation’s keyPath. If a CAPropertyAnimation’s keyPath
is nil at the time that it is added to a layer with add(_:forKey:), that key
Path is set to the forKey: value. Thus, you can misuse the forKey:
parameter in add(_:forKey:) as a way of specifying what keyPath an
animation animates. (Implicit layer animation crucially depends on this
fact.)

WARNING
I have seen many prominent but misleading examples that use this technique, apparently in the
mistaken belief that the “key” in add(_:forKey:) is the way you are supposed to specify what
property to animate. This is wrong. Set the animation’s keyPath explicitly (as do all my
examples); that’s what it’s for.

You can use the exclusivity rule to your own advantage, to keep your code
from stepping on its own feet. Some code of yours might add an animation
to the list using a certain key; then later, some other code might come along
and correct this, removing that animation and replacing it with another. By
using the same key, the second code is easily able to override the first: “You
may have been given some other animation with this key, but throw it
away; play this one instead.”
In some cases, the key you supply is ignored and a different key is
substituted. In particular, the key with which a CATransition is added to the
list is always kCATransition (which happens to be "transition"); thus
there can be only one transition animation in the list.
You can think of an animation in a layer’s animations list as being the
“animation movie” I spoke of at the start of this chapter. As long as an
animation is in the list, the movie is present, either waiting to be played or
actually playing. An animation that has finished playing is, in general,
pointless; the animation should now be removed from the list, as its
presence serves no purpose and it imposes an extra burden on the render
tree. Therefore, an animation has an isRemovedOnCompletion property,
which defaults to true: when the “movie” is over, the animation removes
itself from the list.

WARNING
You may encounter examples that set isRemovedOnCompletion to false and set the animation’s
fillMode to kCAFillModeForwards or kCAFillModeBoth, as a way of causing the layer to keep
the appearance of the last frame of the “animation movie” even after the animation is over, and
preventing a property from apparently jumping back to its initial value when the animation ends.
This is wrong. The correct approach, as I have explained, is to change the property value to match
the final frame of the animation. The proper use of kCAFillModeForwards is in connection with a
child animation within a grouped animation.

You can’t access the entire animations list directly. You can access the key
names of the animations in the list, with animationKeys; and you can
obtain or remove an animation with a certain key, with animation(forKe

y:) and removeAnimation(forKey:); but animations with a nil key are
inaccessible. You can, however, remove all animations, including
animations with a nil key, using removeAllAnimations. When your app is
suspended, removeAllAnimations is called on all layers for you; that is
why it is possible to suspend an app coherently in the middle of an
animation.
If an animation is in-flight when you remove it from the animations list
manually, by calling removeAllAnimations or removeAnimation(forKe
y:), it will stop; however, that doesn’t happen until the next redraw
moment. You might be able to work around this, if you need an animation
to be removed immediately, by wrapping the call in an explicit transaction
block.

Actions
For the sake of completeness, I will now explain how implicit animation
really works — that is, how implicit animation is turned into explicit
animation behind the scenes. The basis of implicit animation is the action
mechanism. Feel free to skip this section if you don’t want to get into the
under-the-hood nitty-gritty of implicit animation.

What an Action Is
An action is an object that adopts the CAAction protocol. This means
simply that it implements run(forKey:object:arguments:). The action
object could do anything in response to this message. The notion of an
action is completely general. The only built-in class that adopts the
CAAction protocol is CAAnimation, but in fact the action object doesn’t
have to be an animation — it doesn’t even have to perform an animation.

You would never send run(forKey:object:arguments:) to an object
directly. Rather, this message is sent to an action object for you, as the basis
of implicit animation. The key is the property that was set, and the object
is the layer whose property was set.

What an animation does when it receives run(forKey:object:argument
s:) is to assume that the object: is a layer, and to add itself to that layer’s
animations list. Thus, for an animation, receiving the run(forKey:object:
arguments:) message is like being told: “Play yourself!”
This is where the rule comes into play, which I mentioned earlier, that if an
animation’s keyPath is nil, the key by which the animation is assigned to a
layer’s animations list is used as the keyPath. When an animation is sent ru
n(forKey:object:arguments:), it calls add(_:forKey:) to add itself to
the layer’s animation’s list, using the name of the property as the key. The
animation’s keyPath for an implicit layer animation is usually nil, so the
animation’s keyPath winds up being set to the same key! That is how the
property that you set ends up being the property that is animated.

Action Search
When you set a property of a layer, you trigger the action search: the layer
searches for an action object (a CAAction) to which it can send the run(fo
rKey:object:arguments:) message. The procedure by which the layer
searches for this object is quite elaborate.
The search for an action object begins when something causes the layer to
be sent the action(forKey:) message. Three sorts of event can cause this
to happen:

A CALayer property is set — by calling the setter method explicitly, by
setting the property itself, or by means of setValue(_:forKey:). All
animatable properties, and indeed most (or all) other built-in CALayer
properties, will call action(forKey:) in response to being set.

(Setting a layer’s frame property sets its position and bounds and calls
action(forKey:) for the "position" and "bounds" keys. Calling a
layer’s setAffineTransform(_:) method sets its transform and calls
action(forKey:) for the "transform" key. You can configure a
custom property to call action(forKey:) by designating it as @NSManag
ed, as I’ll demonstrate later in this chapter.)

The layer is sent setValue(_:forKey:) with a key that is not a
property. This is because CALayer’s setValue(_:forUndefinedKey:),
by default, calls action(forKey:).
Various other miscellaneous types of event take place, such as the layer
being added to the interface. I’ll give some examples later in this
chapter.

TIP
CATransaction’s setDisableActions(_:), with an argument of true, prevents the action(forK
ey:) message from being sent. That’s how it actually works behind the scenes.

At each stage of the action search, the following rules are obeyed regarding
what is returned from that stage of the search:

An action object
If an action object is produced, that is the end of the search. The action
mechanism sends that action object the run(forKey:object:argument
s:) message; if this an animation, the animation responds by adding
itself to the layer’s animations list.

NSNull()

If NSNull() is produced, that is the end of the search. There will be no
implicit animation; NSNull() means, “Do nothing and stop searching.”

nil

If nil is produced, the search continues to the next stage.
The action search proceeds by stages, as follows:

1. The layer’s action(forKey:) might terminate the search before it
even starts. The layer will do this if it is the underlying layer of a
view, or if the layer is not part of a window’s layer hierarchy. In such a
case, there should be no implicit animation, so the whole mechanism

is nipped in the bud. (This stage is special in that a returned value of n
il ends the search and no animation takes place.)

2. If the layer has a delegate that implements action(for:forKey:),
that message is sent to the delegate, with this layer as the first
parameter and the property name as the key. If an action object or NSN
ull() is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If
there is an entry in this dictionary with the given key, that value is
used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is
an entry in this dictionary with the key actions, it is assumed to be a
dictionary; if this actions dictionary has an entry with the given key,
that value is used, and the search ends. Otherwise, if there is an entry
in the style dictionary called style, the same search is performed
within it, and so on recursively until either an actions entry with the
given key is found (the search ends) or there are no more style
entries (the search continues).

(If the style dictionary sounds profoundly weird, that’s because it is
profoundly weird. It is actually a special case of a larger, separate
mechanism, which is also profoundly weird, having to do not with
actions, but with a CALayer’s implementation of KVC. When you
call value(forKey:) on a layer, if the key is undefined by the layer
itself, the style dictionary is consulted. I have never written or seen
code that uses this mechanism for anything.)

5. The layer’s class is sent defaultAction(forKey:), with the property
name as the key. If an action object or NSNull() is returned, the
search ends.

6. If the search reaches this last stage, a default animation is supplied, as
appropriate. For a property animation, this is a plain vanilla
CABasicAnimation.

Hooking Into the Action Search
You can affect the action search at any of its various stages to modify what
happens when the search is triggered. This is where the fun begins.
For example, you can turn off implicit animation for some particular
property. One way would be to return nil from action(forKey:) itself, in
a CALayer subclass. Here’s the code from a CALayer subclass that doesn’t
animate its position property (but does animate its other properties
normally):

override func action(forKey key: String) -> CAAction? {

 if key == #keyPath(position) {

 return nil

 }

 return super.action(forKey:key)

}

For more flexibility, we can take advantage of the fact that a CALayer acts
like a dictionary, allowing us to set an arbitrary key’s value. We’ll embed a
switch in our CALayer subclass that we can use to turn implicit position
animation on and off at will:

override func action(forKey key: String) -> CAAction? {

 if key == #keyPath(position) {

 if self.value(forKey:"suppressPositionAnimation") != nil {

 return nil

 }

 }

 return super.action(forKey:key)

}

To turn off implicit position animation for an instance of this layer, we set
its "suppressPositionAnimation" key to a non-nil value:

layer.setValue(true, forKey:"suppressPositionAnimation")

Another possibility is to cause some stage of the search to produce an action
object of your own. You would then be affecting how implicit animation

behaves.

Let’s say we want a certain layer’s duration for an implicit position
animation to be 5 seconds. We can achieve this with a minimally configured
animation, like this:

let ba = CABasicAnimation()

ba.duration = 5

The idea now is to situate this animation where it will be produced by the
action search for the "position" key. We could, for instance, put it into the
layer’s actions dictionary:

layer.actions = ["position": ba]

The only property of this animation that we have set is its duration; that
setting, however, is final. Although animation properties that you don’t set
can be set through CATransaction, in the usual manner for implicit property
animation, animation properties that you do set can not be overridden
through CATransaction. Thus, when we set this layer’s position, if an
implicit animation results, its duration is 5 seconds, even if we try to change
it through CATransaction:

CATransaction.setAnimationDuration(1.5) // won't work

layer.position = CGPoint(100,100) // animated, takes 5 seconds

Storing an animation in the actions dictionary, however, is a somewhat
inflexible way to hook into the action search. If we have to write our
animation beforehand, we know nothing about the layer’s starting and
ending values for the changed property. A much more powerful approach is
to make our action object a custom CAAction object — because in that
case, it will be sent run(forKey:...), and we can construct and run an
animation now, when we are in direct contact with the layer to be animated.
Here’s a barebones version of such an object:

class MyAction : NSObject, CAAction {

 func run(forKey event: String, object anObject: Any,

 arguments dict: [AnyHashable : Any]?) {

 let anim = CABasicAnimation(keyPath: event)

 anim.duration = 5

 let lay = anObject as! CALayer

 let newP = lay.value(forKey:event)

 let oldP = lay.presentation()!.value(forKey:event)

 lay.add(anim, forKey:nil)

 }

}

The idea is that a MyAction instance would then be the action object that
we store in the actions dictionary:

layer.actions = ["position": MyAction()]

Our custom CAAction object, MyAction, doesn’t do anything very
interesting — but it could. That’s the point. As the code demonstrates, we
have access to the name of the animated property (event), the old value of
that property (from the layer’s presentation layer), and the new value of that
property (from the layer itself). We are thus free to configure the animation
in all sorts of ways. In fact, we can add more than one animation to the
layer, or a group animation. We don’t even have to add an animation to the
layer! We are free to interpret the setting of this property in any way we
like.
Here’s a modification of our MyAction object that creates and runs a
keyframe animation that “waggles” as it goes from the start value to the end
value:

class MyWagglePositionAction : NSObject, CAAction {

 func run(forKey event: String, object anObject: Any,

 arguments dict: [AnyHashable : Any]?) {

 let lay = anObject as! CALayer

 let newP = lay.value(forKey:event) as! CGPoint

 let oldP = lay.presentation()!.value(forKey:event) as! CGPoint

 let d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2))

 let r = Double(d/3.0)

 let theta = Double(atan2(newP.y - oldP.y, newP.x - oldP.x))

 let wag = 10 * .pi/180.0

 let p1 = CGPoint(

 oldP.x + CGFloat(r*cos(theta+wag)),

 oldP.y + CGFloat(r*sin(theta+wag)))

 let p2 = CGPoint(

 oldP.x + CGFloat(r*2*cos(theta-wag)),

 oldP.y + CGFloat(r*2*sin(theta-wag)))

 let anim = CAKeyframeAnimation(keyPath: event)

 anim.values = [oldP,p1,p2,newP]

 anim.calculationMode = kCAAnimationCubic

 lay.add(anim, forKey:nil)

 }

}

By adding this CAAction object to a layer’s actions dictionary under the
"position" key, we have created a CALayer that waggles when its positi
on property is set. Our CAAction doesn’t set the animation’s duration, so
our own call to CATransaction’s setAnimationDuration(_:) works. The
power of this mechanism is simply staggering. We can modify any layer in
this way — even one that doesn’t belong to us.

Instead of modifying the layer’s actions dictionary, we could hook into the
action search by setting the layer’s delegate to an instance that responds to a
ction(for:forKey:). This has the advantage of serving as a single locus
that can do different things depending on what the layer is and what the key
is. Here’s an implementation that does exactly what the actions dictionary
did — it returns an instance of our custom CAAction object, so that setting
the layer’s position waggles it into place:

func action(for layer: CALayer, forKey key: String) -> CAAction? {

 if key == #keyPath(CALayer.position) {

 return MyWagglePositionAction()

 }

}

Finally, I’ll demonstrate overriding defaultAction(forKey:). This code
would go into a CALayer subclass; setting this layer’s contents will
automatically trigger a push transition from the left:

override class func defaultAction(forKey key: String) -> CAAction? {

 if key == #keyPath(contents) {

 let tr = CATransition()

 tr.type = kCATransitionPush

 tr.subtype = kCATransitionFromLeft

 return tr

 }

 return super.defaultAction(forKey:key)

}

TIP
Both the delegate’s action(for:forKey:) and the subclass’s defaultAction(forKey:) are
declared as returning a CAAction. Therefore, to return NSNull() from your implemention of one
of these methods, you’ll need to typecast it to CAAction to quiet the compiler; you’re lying
(NSNull does not adopt the CAAction protocol), but it doesn’t matter.

Making a Custom Property Implicitly Animatable
Earlier in this chapter, we made a custom layer’s thickness property
animatable through explicit layer animation. Now that we know how
implicit layer animation works, we can make our layer’s thickness
property animatable through implicit animation as well. Thus, we will be
able to animate our layer’s thickness with code like this:

let lay = self.v.layer as! MyLayer

let cur = lay.thickness

let val : CGFloat = cur == 10 ? 0 : 10

lay.thickness = val // implicit animation

We have already implemented needsDisplay(forKey:) to return true for
the "thickness" key, and we have provided an appropriate draw(in:)
implementation. Now we’ll add two further pieces of the puzzle. As we
now know, to make our MyLayer class respond to direct setting of a
property, we need to hook into the action search and return a CAAction.
The obvious place to do this is in the layer itself, at the very start of the
action search, in an action(forKey:) implementation:

override func action(forKey key: String) -> CAAction? {

 if key == #keyPath(thickness) {

 let ba = CABasicAnimation(keyPath: key)

 ba.fromValue = self.presentation()!.value(forKey:key)

 return ba

 }

 return super.action(forKey:key)

}

Finally, we must declare MyLayer’s thickness property @NSManaged.
Otherwise, action(forKey:) won’t be called in the first place and the
action search will never happen:

class MyLayer : CALayer {

 @NSManaged var thickness : CGFloat

 // ...

}

TIP
The @NSManaged declaration invites Cocoa to generate and dynamically inject getter and setter
accessors into our layer class; it is the equivalent of Objective-C’s @dynamic (and is completely
different from Swift’s dynamic).

Nonproperty Actions
An action search is also triggered when a layer is added to a superlayer (key
kCAOnOrderIn) and when a layer’s sublayers are changed by adding or
removing a sublayer (key "sublayers").

WARNING
These triggers and their keys are incorrectly described in Apple’s documentation (and headers).

In this example, we use our layer’s delegate so that when our layer is added
to a superlayer, it will “pop” into view:

let layer = CALayer()

// ... configure layer here ...

layer.delegate = self

self.view.layer.addSublayer(layer)

In the layer’s delegate (self), we implement the actual animation as a
group animation, fading the layer quickly in from an opacity of 0 and at the
same time scaling its transform to make it momentarily appear a little
larger:

func action(for layer: CALayer, forKey key: String) -> CAAction? {

 if key == kCAOnOrderIn {

 let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.opacity))

 anim1.fromValue = 0.0

 anim1.toValue = layer.opacity

 let anim2 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

 anim2.toValue = CATransform3DScale(layer.transform, 1.2, 1.2, 1.0)

 anim2.autoreverses = true

 anim2.duration = 0.1

 let group = CAAnimationGroup()

 group.animations = [anim1, anim2]

 group.duration = 0.2

 return group

 }

}

The documentation says that when a layer is removed from a superlayer, an
action is sought under the key kCAOnOrderOut. This is true but useless,
because by the time the action is sought, the layer has already been
removed from the superlayer, so returning an animation has no visible
effect. A possible workaround is to trigger the animation in some other way
(and remove the layer afterward, if desired).
Recall, for example, that an action search is triggered when an arbitrary key
is set on a layer. Let’s implement the key "farewell" so that it shrinks and
fades the layer and then removes it from its superlayer:

layer.delegate = self

layer.setValue("", forKey:"farewell")

The supplier of the action object — in this case, the layer’s delegate —
returns the shrink-and-fade animation; it also sets itself as that animation’s
delegate, and removes the layer when the animation ends:

func action(for layer: CALayer, forKey key: String) -> CAAction? {

 if key == "farewell" {

 let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.opacity))

 anim1.fromValue = layer.opacity

 anim1.toValue = 0.0

 let anim2 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))

 anim2.toValue = CATransform3DScale(layer.transform, 0.1, 0.1, 1.0)

 let group = CAAnimationGroup()

 group.animations = [anim1, anim2]

 group.duration = 0.2

 group.delegate = self

 group.setValue(layer, forKey:"remove")

 layer.opacity = 0

 return group

 }

}

func animationDidStop(_ anim: CAAnimation, finished flag: Bool) {

 if let layer = anim.value(forKey:"remove") as? CALayer {

 layer.removeFromSuperlayer()

 }

}

Emitter Layers
Emitter layers (CAEmitterLayer) are, to some extent, on a par with
animated images: once you’ve set up an emitter layer, it just sits there
animating all by itself. The nature of this animation is rather narrow: an
emitter layer emits particles, which are CAEmitterCell instances. However,
by clever setting of the properties of an emitter layer and its emitter cells,
you can achieve some astonishing effects. Moreover, the animation is itself
animatable using Core Animation.
Here are some useful basic properties of a CAEmitterCell:

contents, contentsRect
These are modeled after the eponymous CALayer properties, although
CAEmitterCell is not a CALayer subclass; so, respectively, an image (a

CGImage) and a CGRect specifying a region of that image. They define
the image that a cell will portray.

birthrate, lifetime
How many cells per second should be emitted, and how many seconds
each cell should live before vanishing, respectively.

velocity

The speed at which a cell moves. The unit of measurement is not
documented; perhaps it’s points per second.

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation
from the perpendicular. Longitude is an angle within the plane; latitude
is an angle out of the plane.

So, here’s code to create a very elementary emitter cell:

// make a gray circle image

let r = UIGraphicsImageRenderer(size:CGSize(10,10))

let im = r.image {

 ctx in let con = ctx.cgContext

 con.addEllipse(in:CGRect(0,0,10,10))

 con.setFillColor(UIColor.gray.cgColor)

 con.fillPath()

}

// make a cell with that image

let cell = CAEmitterCell()

cell.contentsScale = UIScreen.main.scale

cell.birthRate = 5

cell.lifetime = 1

cell.velocity = 100

cell.contents = im.cgImage

The result is that little gray circles should be emitted slowly and steadily,
five per second, each one vanishing in one second. Now we need an emitter
layer from which these circles are to be emitted. Here are some basic
CAEmitterLayer properties (beyond those it inherits from CALayer); these

define an imaginary object, an emitter, that will be producing the emitter
cells:

emitterPosition

The point at which the emitter should be located, in superlayer
coordinates. You can optionally add a third dimension to this point, emi
tterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the
emitter’s size; the cuboid shape depends also on a third size dimension,
emitterDepth. Your choices are:

kCAEmitterLayerPoint

kCAEmitterLayerLine

kCAEmitterLayerRectangle

kCAEmitterLayerCuboid

kCAEmitterLayerCircle

kCAEmitterLayerSphere

emitterMode

The region of the shape from which cells should be emitted. Your
choices are:

kCAEmitterLayerPoints

kCAEmitterLayerOutline

kCAEmitterLayerSurface

kCAEmitterLayerVolume

Let’s start with the simplest possible case, a single point emitter:

let emit = CAEmitterLayer()

emit.emitterPosition = CGPoint(30,100)

emit.emitterShape = kCAEmitterLayerPoint

emit.emitterMode = kCAEmitterLayerPoints

We tell the emitter what types of cell to emit by assigning those cells to its e
mitterCells property (an array of CAEmitterCell). We then add the
emitter to our interface, and presto, it starts emitting:

emit.emitterCells = [cell]

self.view.layer.addSublayer(emit)

The result is a constant stream of gray circles emitted from the point (30.
0,100.0), each circle marching steadily to the right and vanishing after one
second (Figure 4-4).

Figure 4-4. A really boring emitter layer

Now that we’ve succeeded in creating a boring emitter layer, we can start to
vary some parameters. The emissionRange defines a cone in which cells
will be emitted; if we increase the birthRate and widen the emissionRang
e, we get something that looks like a stream shooting from a water hose:

cell.birthRate = 100

cell.lifetime = 1.5

cell.velocity = 100

cell.emissionRange = .pi/5.0

In addition, as the cell moves, it can be made to accelerate (or decelerate) in
each dimension, using its xAcceleration, yAcceleration, and zAcceler
ation properties. Here, we turn the stream into a falling cascade, like a
waterfall coming from the left:

cell.xAcceleration = -40

cell.yAcceleration = 200

All aspects of cell behavior can be made to vary randomly, using the
following CAEmitterCell properties:

lifetimeRange, velocityRange
How much the lifetime and velocity values are allowed to vary
randomly for different cells.

scale

scaleRange, scaleSpeed
The scale alters the size of the cell; the range and speed determine how
far and how rapidly this size alteration is allowed to change over the
lifetime of each cell.

color

redRange, greenRange, blueRange, alphaRange

redSpeed, greenSpeed, blueSpeed, alphaSpeed
The color is painted in accordance with the opacity of the cell’s contents
image; it combines with the image’s color, so if we want the color stated
here to appear in full purity, our contents image should use only white.
The range and speed determine how far and how rapidly each color
component is to change.

spin

spinRange

The spin is a rotational speed (in radians per second); its range
determines how far this speed is allowed to change over the lifetime of
each cell.

Here we add some variation so that the circles behave a little more
independently of one another. Some live longer than others, some come out

of the emitter faster than others. And they all start out a shade of blue, but
change to a shade of green about halfway through the stream (Figure 4-5):

cell.lifetimeRange = 0.4

cell.velocityRange = 20

cell.scaleRange = 0.2

cell.scaleSpeed = 0.2

cell.color = UIColor.blue.cgColor

cell.greenRange = 0.5

cell.greenSpeed = 0.75

Figure 4-5. An emitter layer that makes a sort of waterfall

Once the emitter layer is in place and animating, you can change its
parameters and the parameters of its emitter cells through key–value coding
on the emitter layer. You can access the emitter cells through the emitter
layer’s "emitterCells" key path; to specify a cell type, use its name
property (which you’ll have to have assigned earlier) as the next piece of
the key path. For example, suppose we’ve set cell.name to "circle"; now

we’ll change the cell’s greenSpeed so that each cell changes from blue to
green much earlier in its lifetime:

emit.setValue(3.0, forKeyPath:"emitterCells.circle.greenSpeed")

The significance of this is that such changes can themselves be animated!
Here, we’ll attach to the emitter layer a repeating animation that causes our
cell’s greenSpeed to move slowly back and forth between two values. The
result is that the stream varies, over time, between being mostly blue and
mostly green:

let key = "emitterCells.circle.greenSpeed"

let ba = CABasicAnimation(keyPath:key)

ba.fromValue = -1.0

ba.toValue = 3.0

ba.duration = 4

ba.autoreverses = true

ba.repeatCount = .infinity

emit.add(ba, forKey:nil)

A CAEmitterCell can itself function as an emitter — that is, it can have
cells of its own. Both CAEmitterLayer and CAEmitterCell conform to the
CAMediaTiming protocol, and their beginTime and duration properties
can be used to govern their times of operation, much as in a grouped
animation. For example, this code causes our existing waterfall to spray tiny
droplets in the region of the “nozzle” (the emitter):

let cell2 = CAEmitterCell()

cell.emitterCells = [cell2]

cell2.contents = im.cgImage

cell2.emissionRange = .pi

cell2.birthRate = 200

cell2.lifetime = 0.4

cell2.velocity = 200

cell2.scale = 0.2

cell2.beginTime = 0.04

cell2.duration = 0.2

But if we change the beginTime to be larger (hence later), the tiny droplets
happen near the bottom of the cascade. We must also increase the
duration, or stop setting it altogether, since if the duration is less than the
beginTime, no emission takes place at all (Figure 4-6):

cell2.beginTime = 1.4

cell2.duration = 0.4

Figure 4-6. The waterfall makes a kind of splash

We can also alter the picture by changing the behavior of the emitter itself.
This change turns the emitter into a line, so that our cascade becomes
broader (more like Niagara Falls):

emit.emitterPosition = CGPoint(100,25)

emit.emitterSize = CGSize(100,100)

emit.emitterShape = kCAEmitterLayerLine

emit.emitterMode = kCAEmitterLayerOutline

cell.emissionLongitude = 3 * .pi/4

There’s more to know about emitter layers and emitter cells, but at this
point you know enough to understand Apple’s sample code simulating such
things as fire and smoke and pyrotechnics, and you can explore further on
your own.

CIFilter Transitions
Core Image filters (Chapter 2) include transitions. You supply two images
and a frame time between 0 and 1; the filter supplies the corresponding
frame of a one-second animation transitioning from the first image to the
second. For example, Figure 4-7 shows the frame at frame time 0.75 for a
starburst transition from a solid red image to a photo of me. (You don’t see
the photo of me, because this transition, by default, “explodes” the first
image to white first, and then quickly fades to the second image.)

Figure 4-7. Midway through a starburst transition

Animating a Core Image transition filter is up to you. Thus we need a way
of rapidly calling the same method repeatedly; in that method, we’ll request
and draw each frame of the transition. This could be a job for a Timer, but a
better way is to use a display link (CADisplayLink), a form of timer that’s
highly efficient, especially when repeated drawing is involved, because it is
linked directly to the refreshing of the display (hence the name). The

display refresh rate is hardware-dependent, but is typically every sixtieth of
a second or faster; UIScreen.maximumFramesPerSecond will tell you the
nominal value, and the nominal time between refreshes is the display link’s
duration.
Like a timer, the display link calls a designated method of ours every time it
fires. We can slow the rate of calls by setting the display link’s preferredF
ramesPerSecond. We can learn the exact time when the display link last
fired by querying its timestamp, and that’s the best way to decide what
frame needs displaying now.
In this example, I’ll display the animation in a view’s layer. We initialize
ahead of time, in properties, everything we’ll need later to obtain an output
image for a given frame of the transition — the CIFilter, the image’s exten
t, and the CIContext. We also have a timestamp property, which we
initialize as well:

let moi = CIImage(image:UIImage(named:"moi")!)!

self.moiextent = moi.extent

let col = CIFilter(name:"CIConstantColorGenerator")!

let cicol = CIColor(color:.red)

col.setValue(cicol, forKey:"inputColor")

let colorimage = col.value(forKey:"outputImage") as! CIImage

let tran = CIFilter(name:"CIFlashTransition")!

tran.setValue(colorimage, forKey:"inputImage")

tran.setValue(moi, forKey:"inputTargetImage")

let center = CIVector(x:self.moiextent.width/2.0, y:self.moiextent.height/2.0)

tran.setValue(center, forKey:"inputCenter")

self.tran = tran

self.timestamp = 0.0 // signal that we are starting

self.context = CIContext()

We create the display link, setting it to call into our nextFrame method, and
set it going by adding it to the main run loop, which retains it:

let link = CADisplayLink(target:self, selector:#selector(self.nextFrame))

link.add(to:.main, forMode:.defaultRunLoopMode)

Our nextFrame(_:) method is called with the display link as parameter (se
nder). We store the initial timestamp in our property, and use the
difference between that and each successive timestamp value to calculate
our desired frame. We ask the filter for the corresponding image and display
it. When the frame value exceeds 1, the animation is over and we invalidate
the display link (just like a repeating timer), which releases it from the run
loop:

let SCALE = 1.0

@objc func nextFrame(_ sender:CADisplayLink) {

 if self.timestamp < 0.01 { // pick up and store first timestamp

 self.timestamp = sender.timestamp

 self.frame = 0.0

 } else { // calculate frame

 self.frame = (sender.timestamp - self.timestamp) * SCALE

 }

 sender.isPaused = true // defend against frame loss

 self.tran.setValue(self.frame, forKey:"inputTime")

 let moi = self.context.createCGImage(

 tran.outputImage!, from:self.moiextent)

 CATransaction.setDisableActions(true)

 self.v.layer.contents = moi

 if self.frame > 1.0 {

 sender.invalidate()

 }

 sender.isPaused = false

}

I have surrounded the time-consuming calculation and drawing of the
image with calls to the display link’s isPaused property, in case the
calculation time exceeds the time between screen refreshes; perhaps this
isn’t necessary, but it can’t hurt. Our animation occupies one second;
changing that value is merely a matter of multiplying by a different scale
value when we set our frame property.

TIP
If you experiment with this code, run on a device, as display links do not work well in the
Simulator (or, in the Simulator, try an artificially slow scale such as 0.2).

UIKit Dynamics
The term UIKit dynamics refers to a suite of classes supplying a convenient
API for animating views in a manner reminiscent of real-world physical
behavior. For example, views can be subjected to gravity, collisions,
bouncing, and momentary forces, with effects that would otherwise be
difficult to achieve.
UIKit dynamics should not be treated as a game engine. It is deliberately
quite cartoony and simple, animating only the position (center) and
rotation transform of views within a flat two-dimensional space. UIKit
dynamics relies on CADisplayLink, and the calculation of each frame takes
place on the main thread (not on the animation server’s background thread).
There’s no “animation movie” and no distinct presentation layer; the views
really are being repositioned in real time. Thus, UIKit Dynamics is not
intended for extended use; it is a way of momentarily emphasizing or
clarifying functional transformations of your interface.

The Dynamics Stack
Implementing UIKit dynamics involves configuring a “stack” of three
things:

A dynamic animator
A dynamic animator, a UIDynamicAnimator instance, is the ruler of the
physics world you are creating. It has a reference view, whose bounds
define the coordinate system of the animator’s world. A view to be
animated must be a subview of the reference view (though it does not
have to be within the reference view’s bounds). Retaining the animator
is up to you, typically with an instance property. It’s fine for an animator
to sit empty until you need it; an animator whose world is empty (or at
rest) is not running, and occupies no processor time.

A behavior
A UIDynamicBehavior is a rule describing how a view should behave.
You’ll typically use a built-in subclass, such as UIGravityBehavior or

UICollisionBehavior. You configure the behavior and add it to the
animator; an animator has methods and properties for managing its
behaviors, such as addBehavior(_:), behaviors, removeBehavior
(_:), and removeAllBehaviors. A behavior’s configuration can be
changed, and behaviors can be added to and removed from an animator,
even while an animation is in progress.

An item
An item is any object that implements the UIDynamicItem protocol. A
UIView is such an object! You add a UIView (one that’s a subview of
your animator’s reference view) to a behavior (one that belongs to that
animator) — and at that moment, the view comes under the influence of
that behavior. If this behavior is one that causes motion, and if no other
behaviors prevent, the view will now move (the animator is running).
Some behaviors can accept multiple items, and have methods and
properties such as addItem(_:), items, and removeItem(_:). Others
can have just one or two items and must be initialized with these from
the outset.
A UIDynamicItemGroup is a way of combining multiple items to form
a single item. Its only property is its items. You apply behaviors to the
resulting grouped item, not to the subitems that it comprises. Those
subitems maintain their physical relationship to one another. For
purposes of collisions, the boundaries of the individual subitems are
respected.

That’s sufficient to get started, so let’s try it! I’ll start by creating my
animator and storing it in a property:

self.anim = UIDynamicAnimator(referenceView: self.view)

Now I’ll cause an existing subview of self.view (a UIImageView, self.i
v) to drop off the screen, under the influence of gravity. I create a
UIGravityBehavior, add it to the animator, and add self.iv to it:

let grav = UIGravityBehavior()

self.anim.addBehavior(grav)

grav.addItem(self.iv)

As a result, self.iv comes under the influence of gravity and is now
animated downward off the screen. (A UIGravityBehavior object has
properties configuring the strength and direction of gravity, but I’ve left
them here at their defaults.)
An immediate concern is that our view falls forever. This is a serious waste
of memory and processing power. If we no longer need the view after it has
left the screen, we should take it out of the influence of UIKit dynamics by
removing it from any behaviors to which it belongs (and we can also
remove it from its superview). One way to do this is by removing from the
animator any behaviors that are no longer needed. In our simple example,
where the animator’s entire world contains just this one item, it will be
sufficient to call removeAllBehaviors.
But how will we know when the view is off the screen? A
UIDynamicBehavior can be assigned an action function, which is called
repeatedly as the animator drives the animation. I’ll configure our gravity
behavior’s action function to check whether self.iv is still within the
bounds of the reference view, by calling the animator’s items(in:)
method. Actually, items(in:) returns an array of UIDynamicItem, but I
want an array of UIView, so I like to have on hand a UIDynamicAnimator
extension that will cast down safely:

extension UIDynamicAnimator {

 func views(in rect: CGRect) -> [UIView] {

 let nsitems = self.items(in: rect) as NSArray

 return nsitems.flatMap{$0 as? UIView}

 }

}

Here’s my first attempt:

grav.action = {

 let items = self.anim.views(in:self.view.bounds)

 let ix = items.index(of:self.iv)

 if ix == nil {

 self.anim.removeAllBehaviors()

 self.iv.removeFromSuperview()

 }

}

This works in the sense that, after the image view leaves the screen, the
image view is removed from the window and the animation stops.
Unfortunately, there is also a memory leak: neither the image view nor the
gravity behavior has been released. One solution is, in grav.action, to set
self.anim (the animator property) to nil, thus breaking the retain cycle.
This is a perfectly appropriate solution if, as here, we no longer need the
animator for anything; a UIDynamicAnimator is a lightweight object and
can very reasonably come into existence only for as long as we need to run
an animation. Another possibility is to use delayed performance; even a
delay of 0 solves the problem, presumably because the behavior’s action
function is no longer running at the time we remove the behavior:

grav.action = {

 let items = self.anim.views(in:self.view.bounds)

 let ix = items.index(of:self.iv)

 if ix == nil {

 delay(0) {

 self.anim.removeAllBehaviors()

 self.iv.removeFromSuperview()

 }

 }

}

Now let’s add some further behaviors. If falling straight down is too boring,
we can add a UIPushBehavior to create a slight rightward impulse to be
applied to the view as it begins to fall:

let push = UIPushBehavior(items:[self.iv], mode:.instantaneous)

push.pushDirection = CGVector(1,0)

self.anim.addBehavior(push)

The view now falls in a parabola to the right. Next, let’s add a
UICollisionBehavior to make our view strike the “floor” of the screen:

let coll = UICollisionBehavior()

coll.collisionMode = .boundaries

coll.collisionDelegate = self

coll.addBoundary(withIdentifier:"floor" as NSString,

 from: CGPoint(0, self.view.bounds.maxY),

 to:CGPoint(self.view.bounds.maxX, self.view.bounds.maxY))

self.anim.addBehavior(coll)

coll.addItem(self.iv)

The view now falls in a parabola onto the floor of the screen, bounces a tiny
bit, and comes to rest. It would be nice if the view bounced a bit more.
Characteristics internal to a dynamic item’s physics, such as bounciness (el
asticity), are configured by assigning it to a UIDynamicItemBehavior:

let bounce = UIDynamicItemBehavior()

bounce.elasticity = 0.8

self.anim.addBehavior(bounce)

bounce.addItem(self.iv)

Our view now bounces higher; nevertheless, when it hits the floor, it stops
moving to the right, so it just bounces repeatedly, less and less, and ends up
at rest on the floor. I’d prefer that, after it bounces, it should roll to the right,
so that it eventually leaves the screen. Part of the problem here is that, in the
mind of the physics engine, our view is not round. We can change that
(starting in iOS 9). We’ll have to subclass our view class (UIImageView),
and make sure our view is an instance of this subclass:

class MyImageView : UIImageView {

 override var collisionBoundsType: UIDynamicItemCollisionBoundsType {

 return .ellipse

 }

}

Our image view now has the ability to roll. If the image view is portraying a
circular image, the effect is quite realistic: the image itself appears to roll to
the right after it bounces. However, it isn’t rolling very fast (because we

didn’t initially push it very hard). To remedy that, I’ll add some rotational
velocity as part of the first bounce. A UICollisionBehavior has a delegate to
which it sends messages when a collision occurs. I’ll make self the
collision behavior’s delegate, and when the delegate message arrives, I’ll
add rotational velocity to the existing dynamic item bounce behavior, so
that our view starts spinning clockwise:

func collisionBehavior(_ behavior: UICollisionBehavior,

 beganContactFor item: UIDynamicItem,

 withBoundaryIdentifier identifier: NSCopying?,

 at p: CGPoint) {

 // look for the dynamic item behavior

 let b = self.anim.behaviors

 if let ix = b.index(where:{$0 is UIDynamicItemBehavior}) {

 let bounce = b[ix] as! UIDynamicItemBehavior

 let v = bounce.angularVelocity(for:item)

 if v <= 6 {

 bounce.addAngularVelocity(6, for:item)

 }

 }

}

The view now falls in a parabola to the right, strikes the floor, spins
clockwise, and bounces off the floor and continues bouncing its way off the
right side of the screen.

Custom Behaviors
You will commonly find yourself composing a complex behavior out of a
combination of several built-in UIDynamicBehavior subclass instances. For
neatness, clarity, maintainability, and reusability, it might make sense to
express that combination as a single custom UIDynamicBehavior subclass.
To illustrate, I’ll turn the behavior from the previous section into a custom
subclass of UIDynamicBehavior. Let’s call it
MyDropBounceAndRollBehavior. Now we can apply this behavior to our
view, self.iv, very simply:

self.anim.addBehavior(MyDropBounceAndRollBehavior(view:self.iv))

All the work is now done by the MyDropBounceAndRollBehavior instance.
I’ve designed it to affect just one view, so its initializer looks like this:

let v : UIView

init(view v:UIView) {

 self.v = v

 super.init()

}

A UIDynamicBehavior receives a reference to its dynamic animator just
before being added to it, by implementing willMove(to:), and can refer to
it subsequently as self.dynamicAnimator. To incorporate actual behaviors
into itself, our custom UIDynamicBehavior subclass creates and configures
them, and calls addChildBehavior(_:); it can refer to the array of its child
behaviors as self.childBehaviors. When our custom behavior is added
to or removed from the dynamic animator, the effect is the same as if its
child behaviors themselves were added or removed.
Here is the rest of MyDropBounceAndRollBehavior. Our precautions in the
gravity behavior’s action block not to cause a retain cycle are simpler than
before; it suffices to designate self as an unowned reference and remove s
elf from the animator explicitly:

override func willMove(to anim: UIDynamicAnimator?) {

 guard let anim = anim else { return }

 let sup = self.v.superview!

 let grav = UIGravityBehavior()

 grav.action = { [unowned self] in

 let items = anim.views(in: sup.bounds)

 if items.index(of:self.v) == nil {

 anim.removeBehavior(self)

 self.v.removeFromSuperview()

 }

 }

 self.addChildBehavior(grav)

 grav.addItem(self.v)

 let push = UIPushBehavior(items:[self.v], mode:.instantaneous)

 push.pushDirection = CGVector(1,0)

 self.addChildBehavior(push)

 let coll = UICollisionBehavior()

 coll.collisionMode = .boundaries

 coll.collisionDelegate = self

 coll.addBoundary(withIdentifier:"floor" as NSString,

 from: CGPoint(0, sup.bounds.maxY),

 to:CGPoint(sup.bounds.maxX, sup.bounds.maxY))

 self.addChildBehavior(coll)

 coll.addItem(self.v)

 let bounce = UIDynamicItemBehavior()

 bounce.elasticity = 0.8

 self.addChildBehavior(bounce)

 bounce.addItem(self.v)

}

func collisionBehavior(_ behavior: UICollisionBehavior,

 beganContactFor item: UIDynamicItem,

 withBoundaryIdentifier identifier: NSCopying?,

 at p: CGPoint) {

 // look for the dynamic item behavior

 let b = self.childBehaviors

 if let ix = b.index(where:{$0 is UIDynamicItemBehavior}) {

 let bounce = b[ix] as! UIDynamicItemBehavior

 let v = bounce.angularVelocity(for:item)

 if v <= 6 {

 bounce.addAngularVelocity(6, for:item)

 }

 }

}

Animator and Behaviors
Here are some further UIDynamicAnimator methods and properties:

delegate

The delegate (UIDynamicAnimatorDelegate) is sent messages dynamic
AnimatorDidPause(_:) and dynamicAnimatorWillResume(_:). The
animator is paused when it has nothing to do: it has no dynamic items,
or all its dynamic items are at rest.

isRunning

If true, the animator is not paused; some dynamic item is being
animated.

elapsedTime

The total time during which this animator has been running since it first
started running. The elapsedTime does not increase while the animator
is paused, nor is it reset. You might use this in a delegate method or act
ion method to decide that the animation is over.

updateItem(usingCurrentState:)

Once a dynamic item has come under the influence of the animator, the
animator is responsible for positioning that dynamic item. If your code
manually changes the dynamic item’s position or other relevant
attributes, call this method so that the animator can take account of
those changes.

TIP
Starting in iOS 9, you can turn on a display that reveals visually what the animator is doing,
showing its attachment lines and so forth; assuming that self.anim refers to the dynamic
animator, you would say:

self.anim.perform(Selector(("setDebugEnabled:")), with:true)

The rest of this section surveys the various built-in UIDynamicBehavior
subclasses.

UIDynamicItemBehavior
A UIDynamicItemBehavior doesn’t apply any force or velocity; instead, it
is a way of endowing items with internal physical characteristics that will
affect how they respond to other dynamic behaviors. Here are some of
them:

density

Changes the impulse-resisting mass in relation to size. In other words,
when we speak of an item’s mass, we mean a combination of its size
and its density.

elasticity

The item’s tendency to bounce on collision.

friction

The item’s tendency to be slowed by sliding past another item.

isAnchored

An anchored item is not affected by forces that would make an item
move; thus it remains stationary. This can give you something with
friction and elasticity off of which you can bounce and slide other items.

resistance, angularResistance, allowsRotation

The item’s tendency to come to rest unless forces are actively applied. a
llowsRotation can prevent the item from acquiring any angular
velocity at all.

charge

Meaningful only with respect to magnetic and electric fields, which I’ll
get to in a moment.

addLinearVelocity(_:for:), linearVelocity(for:)

addAngularVelocity(_:for:), angularVelocity(for:)
Methods for tweaking linear and angular velocity.

UIGravityBehavior
UIGravityBehavior imposes an acceleration on its dynamic items. By
default, this acceleration is downward with a magnitude of 1 (arbitrarily
defined as 1000 points per second per second). You can customize gravity
by changing its gravityDirection (a CGVector) or its angle and magnitu
de.

UIFieldBehavior

UIFieldBehavior is a generalization of UIGravityBehavior. A field affects
any of its items for as long as they are within its area of influence, as
described by these properties:

position

The center of the field’s effective area of influence, in reference view
coordinates. The default position is CGPoint.zero, the reference
view’s top left corner.

region

The shape of the field’s effective area of influence; a UIRegion. The
default is that the region is infinite, but you can limit it to a circle by its
radius or to a rectangle by its size. More complex region shapes can be
achieved by taking the union, intersection, or difference of two regions,
or the inverse of a region.

strength

The magnitude of the field. It can be negative to reverse the
directionality of the field’s forces.

falloff

Defines a change in strength proportional to the distance from the
center.

minimumRadius

Specifies a central circle within which there is no field effect.

direction, smoothness, animationSpeed
Applicable only to those built-in field types that define them.

The built-in field types are obtained by calling a class factory method:

linearGravityField(direction:)

Like UIGravityBehavior. Accelerates the item in the direction of a
vector that you supply, proportionally to its mass, the length of the

vector, and the strength of the field. The vector is the field’s directio
n, and can be changed.

velocityField(direction:)

Like UIGravityBehavior, but it doesn’t apply an acceleration (a force)
— instead, it applies a constant velocity.

radialGravityField(position:)

Like a point-oriented version of UIGravityBehavior. Accelerates the
item toward, or pushes it away from, the field’s designated central point
(its position).

springField

Behaves as if there were a spring stretching from the item to the center,
so that the item oscillates back and forth across the center until it settles
there.

electricField

Behaves like an electric field emanating from the center. The default st
rength and falloff are both 1. If you set the falloff to 0, then a
negatively charged item, all other things being equal, will oscillate
endlessly across the center.

magneticField

Behaves like a magnetic field emanating from the center. A moving
charged item’s path is bent away from the center.

vortexField

Accelerates the item sideways with respect to the center.

dragField

Reduces the item’s speed.

noiseField(smoothness:animationSpeed:)

Adds random disturbance to the position of the item. The smoothness
is between 0 (noisy) and 1 (smooth). The animationSpeed is how
many times per second the field should change randomly. Both can be
changed in real time.

turbulenceField(smoothness:animationSpeed:)

Like a noise field, but takes the item’s velocity into account.
Think of a field as an infinite grid of CGVectors, with the potential to affect
the speed and direction (that is, the velocity) of an item within its borders;
these CGVectors are interactive, in the sense that at every instant of time the
vector applicable to a particular item can be recalculated. You can write a
custom field by calling the UIFieldBehavior class method field(evaluati
onBlock:) with a function that takes the item’s position, velocity, mass,
and charge, along with the animator’s elapsed time, and returns a CGVector.
In this (silly) example, we create a delayed drag field: for the first quarter
second it does nothing, but then it suddenly switches on and applies the
brakes to its items, bringing them to a standstill if they don’t already have
enough velocity to escape the region’s boundaries:

let b = UIFieldBehavior.field {

 (beh, pt, v, m, c, t) -> CGVector in

 if t > 0.25 {

 return CGVector(-v.dx, -v.dy)

 }

 return CGVector(0,0)

}

The evaluation function receives the behavior itself as a parameter, so it can
consult the behavior’s properties in real time. You can define your own
properties by subclassing UIFieldBehavior. If you’re going to do that, you
might as well also define your own class factory function to configure and
return the custom field. To illustrate, I’ll turn the hard-coded 0.25 delay
from the previous example into an instance property:

class MyDelayedFieldBehavior : UIFieldBehavior {

 var delay = 0.0

 class func dragField(delay del:Double) -> Self {

 let f = self.field {

 (beh, pt, v, m, c, t) -> CGVector in

 if t > (beh as! MyDelayedFieldBehavior).delay {

 return CGVector(-v.dx, -v.dy)

 }

 return CGVector(0,0)

 }

 f.delay = del

 return f

 }

}

Here’s an example of creating and configuring our delayed drag field:

let b = MyDelayedFieldBehavior.dragField(delay:0.95)

b.region = UIRegion(size: self.view.bounds.size)

b.position = CGPoint(self.view.bounds.midX, self.view.bounds.midY)

b.addItem(v)

self.anim.addBehavior(b)

UIPushBehavior
UIPushBehavior applies a force either instantaneously or continuously (mod
e), the latter constituting an acceleration. How this force affects an object
depends in part upon the object’s mass. The effect of a push behavior can be
toggled with the active property; an instantaneous push is repeated each
time the active property is set to true.

To configure a push behavior, set its pushDirection or its angle and magn
itude. In addition, a push may be applied at an offset from the center of an
item. This will apply an additional angular acceleration. Thus, in my earlier
example, I could have started the view spinning clockwise by means of its
initial push, like this:

push.setTargetOffsetFromCenter(UIOffsetMake(0,-200), for: self.iv)

UICollisionBehavior
UICollisionBehavior watches for collisions either between items belonging
to this same behavior or between an item and a boundary (mode). One

collision behavior can have multiple items and multiple boundaries. A
boundary may be described as a line between two points or as a
UIBezierPath, or you can turn the reference view’s bounds into boundaries
(setTranslatesReferenceBoundsIntoBoundary(with:)). Boundaries
that you create can have an identifier. The collisionDelegate
(UICollisionBehaviorDelegate) is called when a collision begins and again
when it ends.
How a given collision affects the item(s) involved depends on the physical
characteristics of the item(s), which may be configured through a
UIDynamicItemBehavior.
Starting in iOS 9, a dynamic item, such as a UIView, can have a customized
collision boundary, rather than its collision boundary being merely the
edges of its frame. You can have a rectangle dictated by the frame, an
ellipse dictated by the frame, or a custom shape — a convex
counterclockwise simple closed UIBezierPath. The relevant properties, col
lisionBoundsType and (for a custom shape) collisionBoundingPath,
are read-only, so you will have to subclass, as I did in my earlier example.

UISnapBehavior
UISnapBehavior causes one item to snap to one point as if pulled by a
spring. Its damping describes how much the item should oscillate as its
settles into that point. This is a very simple behavior: the snap occurs
immediately when the behavior is added to the animator, and there’s no
notification when it’s over.

Starting in iOS 9, the snap behavior’s snapPoint is a settable property.
Thus, having performed a snap, you can subsequently change the snapPoin
t and cause another snap to take place.

UIAttachmentBehavior
UIAttachmentBehavior attaches an item to another item or to a point in the
reference view, depending on how you initialize it:

init(item:attachedTo:)

init(item:attachedToAnchor:)

The attachment point is, by default, the item’s center; to change that, there’s
a different pair of initializers:

init(item:offsetFromCenter:attachedTo:offsetFromCenter:)

init(item:offsetFromCenter:attachedToAnchor:)

The attaching medium’s physics are governed by the behavior’s length, fr
equency, and damping. If the frequency is 0 (the default), the attachment
is like a bar; otherwise, and especially if the damping is very small, it is like
a spring.
If the attachment is to another item, that item might move. If the attachment
is to an anchor, you can move the anchorPoint. When that happens, this
item moves too, in accordance with the physics of the attaching medium.
An anchorPoint is particularly useful for implementing a draggable view
within an animator world, as I’ll demonstrate in the next chapter.
Starting in iOS 9, there are several more varieties of attachment:

Limit attachment
A limit attachment is created with this class method:

limitAttachment(with:offsetFromCenter:attachedTo:offset

FromCenter:)

It’s like a rope running between two items. Each item can move freely
and independently until the length is reached, at which point the
moving item drags the other item along.

Fixed attachment
A fixed attachment is created with this class method:

fixedAttachment(with:attachedTo:attachmentAnchor:)

It’s as if there are two rods; each rod has an item at one end, with the
other ends of the rods being welded together at the anchor point. If one
item moves, it must remain at a fixed distance from the anchor, and will

tend to rotate around it while pulling it along, at the same time making
the other item rotate around the anchor.

Pin attachment
A pin attachment is created with this class method:

pinAttachment(with:attachedTo:attachmentAnchor:)

A pin attachment is like a fixed attachment, but instead of the rods
being welded together, they are hinged together. Each item is thus free
to rotate around the anchor point, at a fixed distance from it,
independently, subject to the pin attachment’s frictionTorque which
injects resistance into the hinge.

Sliding attachment
A sliding attachment can involve one or two items, and is created with
one of these class methods:

slidingAttachment(with:attachmentAnchor:axisOfTranslati

on:)

slidingAttachment(with:attachedTo:attachmentAnchor:axis

OfTranslation:)

Imagine a channel running through the anchor point, its direction
defined by the axis of translation (a CGVector). Then an item is attached
to a rod whose other end slots into that channel and is free to slide up
and down it, but whose angle relative to the channel is fixed by its
initial definition (given the item’s position, the anchor’s position, and
the channel axis) and cannot change.
The channel is infinite by default, but you can add end caps that define
the limits of sliding. To do so, you specify the attachment’s attachment
Range; this is a UIFloatRange, which has a minimum and a maximum.
The anchor point is 0, and you are defining the minimum and maximum
with respect to that; thus, a float range (-100.0,100.0) provides
freedom of movement up to 100 points away from the initial anchor

point. It can take some experimentation to discover whether the end cap
along a given direction of the channel is the minimum or the maximum.
If there is one item, the anchor is fixed. If there are two items, they can
slide independently, and the anchor is free to follow along if one of the
items pulls it.

Here’s an example of a sliding attachment. We start with a black square and
a red square, sitting on the same horizontal, and attached to an anchor
midway between them:

// first view

let v = UIView(frame:CGRect(0,0,50,50))

v.backgroundColor = .black

self.view.addSubview(v)

// second view

let v2 = UIView(frame:CGRect(200,0,50,50))

v2.backgroundColor = .red

self.view.addSubview(v2)

// sliding attachment

let a = UIAttachmentBehavior.slidingAttachment(with:v,

 attachedTo: v2, attachmentAnchor: CGPoint(125,25),

 axisOfTranslation: CGVector(0,1))

a.attachmentRange = UIFloatRangeMake(-200,200)

self.anim.addBehavior(a)

The axis through the anchor point is vertical, and we have permitted a maxi
mum of 200. We now apply a slight vertical downward push to the black
square:

let p = UIPushBehavior(items: [v], mode: .continuous)

p.pushDirection = CGVector(0,0.05)

self.anim.addBehavior(p)

The black square moves slowly downward, absolutely vertical, with its rod
sliding down the channel, until its rod hits the maximum end cap at 200. At
that point, the anchor breaks free and begins to move, dragging the red
square with it, the two of them continuing downward and slowly rotating
round their connection of two rods and the channel (Figure 4-8).

Figure 4-8. A sliding attachment

Motion Effects
A view can respond in real time to the way the user tilts the device.
Typically, the view’s response will be to shift its position slightly. This is
used in various parts of the interface, to give a sense of the interface’s being
layered (parallax). When an alert is present, for example, if the user tilts the
device, the alert shifts its position; the effect is subtle, but sufficient to
suggest subconsciously that the alert is floating slightly in front of
everything else on the screen.
Your own views can behave in the same way. A view will respond to shifts
in the position of the device if it has one or more motion effects
(UIMotionEffect), provided the user has not turned off motion effects in the
device’s Accessibility settings. A view’s motion effects are managed with
methods addMotionEffect(_:) and removeMotionEffect(_:), and the m
otionEffects property.

The UIMotionEffect class is abstract. The chief subclass provided is
UIInterpolatingMotionEffect. Every UIInterpolatingMotionEffect has a
single key path, which uses key–value coding to specify the property of its
view that it affects. It also has a type, specifying which axis of the device’s
tilting (horizontal tilt or vertical tilt) is to affect this property. Finally, it has
a maximum and minimum relative value, the furthest distance that the
affected property of the view is to be permitted to wander from its actual
value as the user tilts the device.
Related motion effects should be combined into a UIMotionEffectGroup (a
UIMotionEffect subclass), and the group added to the view. So, for
example:

let m1 = UIInterpolatingMotionEffect(

 keyPath:"center.x", type:.tiltAlongHorizontalAxis)

m1.maximumRelativeValue = 10.0

m1.minimumRelativeValue = -10.0

let m2 = UIInterpolatingMotionEffect(

 keyPath:"center.y", type:.tiltAlongVerticalAxis)

m2.maximumRelativeValue = 10.0

m2.minimumRelativeValue = -10.0

let g = UIMotionEffectGroup()

g.motionEffects = [m1,m2]

v.addMotionEffect(g)

You can write your own UIMotionEffect subclass by implementing a single
method, keyPathsAndRelativeValues(forViewerOffset:), but this will
rarely be necessary.

Animation and Autolayout
The interplay between animation and autolayout can be tricky. As part of an
animation, you may be changing a view’s frame (or bounds, or center).
You’re really not supposed to do that when you’re using autolayout. If you
do, an animation may not work correctly. Or, it may appear to work
perfectly, because no layout has happened; however, it is entirely possible
that layout will happen, and that it will be accompanied by undesirable
effects. As I explained in Chapter 1, when layout takes place under

autolayout, what matters are a view’s constraints. If the constraints affecting
a view don’t resolve to the size and position that the view has at the
moment of layout, the view will jump as the constraints are obeyed. This is
almost certainly not what you want.
To persuade yourself that this can be a problem, just animate a view’s
position and then ask for immediate layout, like this:

UIView.animateWithDuration(1, animations:{

 self.v.center.x += 100

 }, completion: { _ in

 self.v.superview!.setNeedsLayout()

 self.v.superview!.layoutIfNeeded()

})

If we’re using autolayout, the view slides to the right and then jumps back
to the left. This is bad. It’s up to us to keep the constraints synchronized
with the reality, so that when layout comes along in the natural course of
things, our views don’t jump into undesirable states.
One option is to revise the violated constraints to match the new reality. If
we’ve planned far ahead, we may have armed ourselves in advance with a
reference to those constraints; in that case, our code can now remove and
replace them — or, if the only thing that needs changing is the constant
value of a constraint, we can change that value in place. Otherwise,
discovering what constraints are now violated, and getting a reference to
them, is not at all easy.
Alternatively, instead of performing the animation first and then revising
the constraints, we can change the constraints first and then animate the act
of layout. Again, this assumes that we have a reference to the constraints in
question. For example, if we are animating a view (v) 100 points rightward,
and if we have a reference (con) to the constraint whose constant
positions that view horizontally, we would say this:

con.constant += 100

UIView.animate(withDuration:1) {

 v.superview!.layoutIfNeeded()

}

This technique is not limited to a simple change of constant. You can
overhaul the constraints quite dramatically and still animate the resulting
change of layout. In this example, I animate a view (v) from one side of its
superview (self.view) to the other by removing its leading constraint and
replacing it with a trailing constraint:

let c = self.oldConstraint.constant

NSLayoutConstraint.deactivate([self.oldConstraint])

let newConstraint = v.trailingAnchor.constraint(

 equalTo:self.view.layoutMarginsGuide.trailingAnchor, constant:-c)

NSLayoutConstraint.activate([newConstraint])

UIView.animate(withDuration:0.4) {

 v.superview!.layoutIfNeeded()

}

Another possibility is to use a snapshot of the original view (Chapter 1).
Add the snapshot temporarily to the interface — without using autolayout,
and perhaps hiding the original view — and animate the snapshot:

let snap = self.v.snapshotView(afterScreenUpdates:false)!

snap.frame = self.v.frame

self.v.superview!.addSubview(snap)

self.v.isHidden = true

UIView.animate(withDuration:1) {

 snap.center.x += 100

}

That works because the snapshot view is not under the influence of
autolayout, so it stays where we put it even if layout takes place. If,
however, we need to remove the snapshot view and reveal the real view,
then the real view’s constraints will probably still have to be revised.

Still another approach is to animate the view’s transform instead of the
view itself. Back in iOS 6, this triggered spurious layout and caused issues,
but that’s no longer the case:

UIView.animate(withDuration:1) {

 self.v.transform = CGAffineTransform(translationX: 100, y: 0)

}

That’s extremely robust, but of course it works only if the animation can be
expressed as a transform, and it leaves open the question of how long we
want a transformed view to remain lying around in our interface.

Chapter 5. Touches

[Winifred the Woebegone illustrates hit-testing:] Hey nonny nonny, is it
you? — Hey nonny nonny nonny no! — Hey nonny nonny, is it you? —
Hey nonny nonny nonny no!
Marshall Barer, Once Upon a Mattress

A touch is an instance of the user putting a finger on the screen. The system
and the hardware, working together, know when a finger contacts the screen
and where it is. A finger is fat, but its location is cleverly reduced to a single
point.
A UIResponder is a potential recipient of touches. A UIView is a
UIResponder, and is thus the visible recipient of touches. There are other
UIResponder subclasses, but none of them is visible on the screen. The user
sees a view by virtue of its underlying layer; the user touches a view by
virtue of the fact that it is a UIResponder.
A touch is represented as an object (a UITouch instance) which is bundled
up in an envelope (a UIEvent) which the system delivers to your app. It is
then up to your app to deliver the envelope to the appropriate UIView. In
the vast majority of cases, this will happen automatically the way you
expect, and you will respond to a touch by way of the view in which the
touch occurred.
In fact, usually you won’t concern yourself with UIEvents and UITouches
at all. Most built-in interface views deal with these low-level touch reports
themselves, and notify your code at a higher level — you hear about
functionality and intention rather than raw touches. When a UIButton emits
an action message to report a Touch Up Inside control event, it has already
performed a reduction of a complex sequence of touches; but what the
button reports to you is simply that it was tapped. Similarly, a UITextField
reports touches on the keyboard as changes in its own text. A UITableView

reports that the user selected a cell. A UIScrollView, when dragged, reports
that it scrolled; when pinched outward, it reports that it zoomed.
Nevertheless, it is useful to know how to respond to touches directly, so that
you can implement your own touchable views, and so that you understand
what Cocoa’s built-in views are actually doing. In this chapter, I’ll start by
discussing touch detection and response by views (and other UIResponders)
at their lowest level, along with a higher-level, more practical mechanism,
gesture recognizers, that categorizes touches into gesture types for you.
Then I’ll deconstruct the touch-delivery architecture by which touches are
reported to your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-
free.” Now the user touches the screen with one or more fingers. From that
moment until the time the screen is once again finger-free, all touches and
finger movements together constitute what Apple calls a single multitouch
sequence.
The system reports to your app, during a given multitouch sequence, every
change in finger configuration, so that your app can figure out what the user
is doing. Every such report is a UIEvent. In fact, every report having to do
with the same multitouch sequence is the same UIEvent instance, arriving
repeatedly, each time there’s a change in finger configuration.
Every UIEvent reporting a change in the user’s finger configuration
contains one or more UITouch objects. Each UITouch object corresponds to
a single finger; conversely, every finger touching the screen is represented
in the UIEvent by a UITouch object. Once a UITouch instance has been
created to represent a finger that has touched the screen, the same UITouch
instance is used to represent that finger throughout this multitouch sequence
until the finger leaves the screen.
Now, it might sound as if the system, during a multitouch sequence,
constantly has to bombard the app with huge numbers of reports. But that’s
not really true. The system needs to report only changes in the finger

configuration. For a given UITouch object (representing, remember, a
specific finger), only four things can happen. These are called touch phases,
and are described by a UITouch instance’s phase property (UITouchPhase):

.began

The finger touched the screen for the first time; this UITouch instance
has just been created. This is always the first phase, and arrives only
once.

.moved

The finger moved upon the screen.

.stationary

The finger remained on the screen without moving. Why is it necessary
to report this? Well, remember, once a UITouch instance has been
created, it must be present every time the UIEvent for this multitouch
sequence arrives. So if the UIEvent arrives because something else
happened (e.g., a new finger touched the screen), we must report what
this finger has been doing, even if it has been doing nothing.

.ended

The finger left the screen. Like .began, this phase arrives only once.
The UITouch instance will now be destroyed and will no longer appear
in UIEvents for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do.
Actually, there is one more possible phase:

.cancelled

The system has aborted this multitouch sequence because something
interrupted it. What might interrupt a multitouch sequence? There are
many possibilities. Perhaps the user clicked the Home button or the
screen lock button in the middle of the sequence. A local notification
alert may have appeared (Chapter 13); on an iPhone, a call may have
come in. And as we shall see, a gesture recognizer recognizing its
gesture may also trigger touch cancellation. The point is, if you’re

dealing with touches yourself, you cannot afford to ignore touch
cancellations; they are your opportunity to get things into a coherent
state when the sequence is interrupted.

When a UITouch first appears (.began), your app works out which UIView
it is associated with. (I’ll give full details, later in this chapter, as to how it
does that.) This view is then set as the touch’s view property, and remains
so; from then on, this UITouch is always associated with this view (until
that finger leaves the screen).
The UITouches that constitute a UIEvent might be associated with different
views. Accordingly, one and the same UIEvent is distributed to all the
views of all the UITouches it contains. Conversely, if a view is sent a
UIEvent, it’s because that UIEvent contains at least one UITouch whose vi
ew is this view.
If every UITouch in a UIEvent associated with a certain UIView has the
phase .stationary, that UIEvent is not sent to that UIView. There’s no
point, because as far as that view is concerned, nothing happened.

WARNING
Do not retain a reference to a UITouch or UIEvent object over time; it is mutable and doesn’t
belong to you. If you want to save touch information, extract and save the information, not the
touch itself.

Receiving Touches
A UIResponder, and therefore a UIView, has four methods corresponding to
the four UITouch phases that require UIEvent delivery. A UIEvent is
delivered to a view by calling one of the four touch methods. Here they are:

touchesBegan(_:with:)

A finger touched the screen, creating a UITouch.

touchesMoved(_:with:)

A finger previously reported to this view with touchesBegan(_:wit
h:) has moved. (On a device with 3D touch, “moved” might mean a
change of pressure rather than location.)

touchesEnded(_:with:)

A finger previously reported to this view with touchesBegan(_:wit
h:) has left the screen.

touchesCancelled(_:with:)

We are bailing out on a finger previously reported to this view with tou
chesBegan(_:with:).

The touch methods’ parameters are:

The relevant touches
These are the event’s touches whose phase corresponds to the name of
the method and (normally) whose view is this view. They arrive as a
Set. If there is only one touch in the set, or if any touch in the set will
do, you can retrieve it with first (a set is unordered, so which element
is first is arbitrary).

The event
This is the UIEvent instance. It contains its touches as a Set, which you
can retrieve with the allTouches message. This means all the event’s
touches, including but not necessarily limited to those in the first
parameter; there might be touches in a different phase or intended for
some other view. You can call touches(for:) to ask for the set of
touches associated with a particular view or window.

So, when we say that a certain view is receiving a touch, that is a shorthand
expression meaning that it is being sent a UIEvent containing this UITouch,
over and over, by calling one of its touch methods, corresponding to the
phase this touch is in, from the time the touch is created until the time it is
destroyed.
A UITouch has some useful methods and properties:

location(in:), previousLocation(in:)
The current and previous location of this touch with respect to the
coordinate system of a given view. The view you’ll be interested in will
often be self or self.superview; supply nil to get the location with
respect to the window. The previous location will be of interest only if
the phase is .moved.

timestamp

When the touch last changed. A touch is timestamped when it is created
(.began) and each time it moves (.moved). There can be a delay
between the occurrence of a physical touch and the delivery of the
corresponding UITouch, so to learn about the timing of touches, consult
the timestamp, not the clock.

tapCount

If two touches are in roughly the same place in quick succession, and
the first one is brief, the second one may be characterized as a repeat of
the first. They are different touch objects, but the second will be
assigned a tapCount one larger than the previous one. The default is 1,
so if (for example) a touch’s tapCount is 3, then this is the third tap in
quick succession in roughly the same spot.

view

The view with which this touch is associated.

majorRadius, majorRadiusTolerance
Respectively, the radius of the touch (approximately half its size) and
the uncertainty of that measurement, in points.

A UITouch carries some additional information that may be useful if the
touch arrived through an Apple Pencil rather than a finger; for example, it
describes how the pencil is oriented.
Here are some additional UIEvent properties:

type

This will be UIEventType.touches. There are other event types, but
you’re not going to receive any of them this way.

timestamp

When the event occurred.
Starting in iOS 9, you can reduce the latency between the user’s touches
and your app’s rendering to the screen. On certain devices, the touch
detection rate is doubled or even quadrupled, and you can ask for the extra
touches. On all devices, a few future touches may be predicted, and you can
ask for these. Such features would be useful, for example, in a drawing app.

Restricting Touches
Touch events can be turned off entirely at the application level with
UIApplication’s beginIgnoringInteractionEvents. It is quite common
to do this during animations and other lengthy operations during which
responding to a touch could cause undesirable results. This call should be
balanced by endIgnoringInteractionEvents. Pairs can be nested, in
which case interactivity won’t be restored until the outermost endIgnoring
InteractionEvents has been reached.
A number of UIView properties also restrict the delivery of touches to
particular views:

isUserInteractionEnabled

If set to false, this view (along with its subviews) is excluded from
receiving touches. Touches on this view or one of its subviews “fall
through” to a view behind it.

alpha

If set to 0.0 (or extremely close to it), this view (along with its
subviews) is excluded from receiving touches. Touches on this view or
one of its subviews “fall through” to a view behind it.

isHidden

If set to true, this view (along with its subviews) is excluded from
receiving touches. This makes sense, since from the user’s standpoint,
the view and its subviews are not even present.

isMultipleTouchEnabled

If set to false, this view never receives more than one touch
simultaneously; once it receives a touch, it doesn’t receive any other
touches until that first touch has ended.

isExclusiveTouch

An isExclusiveTouch view receives a touch only if no other views in
the same window have touches associated with them; once an isExclus
iveTouch view has received a touch, then while that touch exists no
other view in the same window receives any touches. (This is the only
one of these properties that can’t be set in the nib editor.)

Interpreting Touches
Thanks to gesture recognizers (discussed later in this chapter), in most cases
you won’t have to interpret touches at all; you’ll let a gesture recognizer do
most of that work. Even so, it is beneficial to be conversant with the nature
of touch interpretation; this will help you use, subclass, and create gesture
recognizers. Furthermore, not every touch sequence can be codified through
a gesture recognizer; sometimes, directly interpreting touches is the best
approach.
To figure out what’s going on as touches are received by a view, your code
must essentially function as a kind of state machine. You’ll receive various
touch method calls, and your response will partly depend upon what
happened previously, so you’ll have to record somehow, such as in instance
properties, the information that you’ll need in order to decide what to do
when the next touch method is called. Such an architecture can make
writing and maintaining touch-analysis code quite tricky.

To illustrate the business of interpreting touches, we’ll start with a view that
can be dragged with the user’s finger. For simplicity, I’ll assume that this
view receives only a single touch at a time. (This assumption is easy to
enforce by setting the view’s isMultipleTouchEnabled to false, which is
the default.)
The trick to making a view follow the user’s finger is to realize that a view
is positioned by its center, which is in superview coordinates, but the
user’s finger might not be at the center of the view. So at every stage of the
drag we must change the view’s center by the change in the user’s finger
position in superview coordinates:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {

 let t = touches.first!

 let loc = t.location(in:self.superview)

 let oldP = t.previousLocation(in:self.superview)

 let deltaX = loc.x - oldP.x

 let deltaY = loc.y - oldP.y

 var c = self.center

 c.x += deltaX

 c.y += deltaY

 self.center = c

}

Next, let’s add a restriction that the view can be dragged only vertically or
horizontally. All we have to do is hold one coordinate steady; but which
coordinate? Everything seems to depend on what the user does initially. So
we’ll do a one-time test the first time we receive touchesMoved(_:with:).
Now we’re maintaining two Bool state properties, self.decided and sel
f.horiz:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {

 self.decided = false

}

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {

 let t = touches.first!

 if !self.decided {

 self.decided = true

 let then = t.previousLocation(in:self)

 let now = t.location(in:self)

 let deltaX = abs(then.x - now.x)

 let deltaY = abs(then.y - now.y)

 self.horiz = deltaX >= deltaY

 }

 let loc = t.location(in:self.superview)

 let oldP = t.previousLocation(in:self.superview)

 let deltaX = loc.x - oldP.x

 let deltaY = loc.y - oldP.y

 var c = self.center

 if self.horiz {

 c.x += deltaX

 } else {

 c.y += deltaY

 }

 self.center = c

}

Look at how things are trending. We are maintaining multiple state
properties, which we are managing across multiple methods, and we are
subdividing a touch method implementation into tests depending on the
state of our state machine. Our state machine is very simple, but already our
code is becoming difficult to read and to maintain — and things will only
become more messy as we try to make our view’s behavior more
sophisticated.
Another area in which manual touch handling can rapidly prove
overwhelming is when it comes to distinguishing between different gestures
that the user is to be permitted to perform on a view. Imagine, for example,
a view that distinguishes between a finger tapping briefly and a finger
remaining down for a longer time. We can’t know how long a tap is until
it’s over, so we must wait until then before deciding; once again, this
requires maintaining state in a property (self.time):

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {

 self.time = touches.first!.timestamp

}

override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {

 let diff = e!.timestamp - self.time

 if (diff < 0.4) {

 print("short")

 } else {

 print("long")

 }

}

A similar challenge is distinguishing between a single tap and a double tap.
The UITouch tapCount property already makes this distinction, but that, by
itself, is not enough to help us react differently to the two. What we must
do, having received a tap whose tapCount is 1, is to use delayed
performance in responding to it, so that we wait long enough to give a
second tap a chance to arrive. This is unfortunate, because it means that if
the user intends a single tap, some time will elapse before anything happens
in response to it; however, there’s nothing we can readily do about that.
Distributing our various tasks correctly is tricky. We know when we have a
double tap as early as touchesBegan(_:with:), but we respond to the
double tap in touchesEnded(_:with:). Therefore, we use a property (sel
f.single) to communicate between the two. We don’t start our delayed
response to a single tap until touchesEnded(_:with:), because what
matters is the time between the taps as a whole, not between the starts of the
taps:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {

 let ct = touches.first!.tapCount

 switch ct {

 case 2:

 self.single = false

 default: break

 }

}

override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {

 let ct = touches.first!.tapCount

 switch ct {

 case 1:

 self.single = true

 delay(0.3) {

 if self.single { // no second tap intervened

 print("single tap")

 }

 }

 case 2:

 print("double tap")

 default: break

 }

}

As if that code weren’t confusing enough, let’s now consider combining our
detection for a single or double tap with our earlier code for dragging a
view horizontally or vertically. This is to be a view that can detect four
kinds of gesture: a single tap, a double tap, a horizontal drag, and a vertical
drag. We must include the code for all possibilities and make sure they
don’t interfere with each other. The result is horrifying — a forced join
between two already complicated sets of code, along with an additional pair
of state properties (self.drag, self.decidedTapOrDrag) to track the
decision between the tap gestures on the one hand and the drag gestures on
the other:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {

 // be undecided

 self.decidedTapOrDrag = false

 // prepare for a tap

 let ct = touches.first!.tapCount

 switch ct {

 case 2:

 self.single = false

 self.decidedTapOrDrag = true

 self.drag = false

 return

 default: break

 }

 // prepare for a drag

 self.decidedDirection = false

}

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {

 if self.decidedTapOrDrag && !self.drag {return}

 self.superview!.bringSubview(toFront:self)

 let t = touches.first!

 self.decidedTapOrDrag = true

 self.drag = true

 if !self.decidedDirection {

 self.decidedDirection = true

 let then = t.previousLocation(in:self)

 let now = t.location(in:self)

 let deltaX = abs(then.x - now.x)

 let deltaY = abs(then.y - now.y)

 self.horiz = deltaX >= deltaY

 }

 let loc = t.location(in:self.superview)

 let oldP = t.previousLocation(in:self.superview)

 let deltaX = loc.x - oldP.x

 let deltaY = loc.y - oldP.y

 var c = self.center

 if self.horiz {

 c.x += deltaX

 } else {

 c.y += deltaY

 }

 self.center = c

}

override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {

 if !self.decidedTapOrDrag || !self.drag {

 // end for a tap

 let ct = touches.first!.tapCount

 switch ct {

 case 1:

 self.single = true

 delay(0.3) {

 if self.single {

 print("single tap")

 }

 }

 case 2:

 print("double tap")

 default: break

 }

 }

}

That code seems to work, but it’s hard to say whether it covers all
possibilities coherently; it’s barely legible and the logic borders on the
mysterious. This is the kind of situation for which gesture recognizers were
devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a
combination of three or four touch methods is hard enough when a view
confines itself to expecting only one kind of gesture, such as dragging. It
becomes even more involved when a view wants to accept and respond

differently to different kinds of gesture. Furthermore, many types of gesture
are conventional and standard; it seems insane to require developers to
implement independently what is, in effect, a universal vocabulary.
The solution is gesture recognizers, which standardize common gestures
and allow the code for different gestures to be separated and encapsulated
into different objects. Thanks to gesture recognizers, it is unnecessary to
subclass UIView merely in order to implement touch analysis.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object
whose job is to detect that a multitouch sequence equates to one particular
type of gesture. It is attached to a UIView, which has for this purpose
methods addGestureRecognizer(_:) and removeGestureRecognizer
(_:), and a gestureRecognizers property.
A UIGestureRecognizer implements the four touch methods, but it is not a
responder (a UIResponder), so it does not participate in the responder chain.
If, however, a new touch is going to be delivered to a view, it is also
associated with and delivered to that view’s gesture recognizers if it has
any, and to that view’s superview’s gesture recognizers if it has any, and so
on up the view hierarchy. Thus, the place of a gesture recognizer in the view
hierarchy matters, even though it isn’t part of the responder chain.
UITouch and UIEvent provide complementary ways of learning how
touches and gesture recognizers are associated. UITouch’s gestureRecogni
zers lists the gesture recognizers that are currently handling this touch.
UIEvent’s touches(for:) can take a gesture recognizer parameter; it then
lists the touches that are currently being handled by that gesture recognizer.
Each gesture recognizer maintains its own state as touch events arrive,
building up evidence as to what kind of gesture this is. When one of them
decides that it has recognized its own particular type of gesture, it emits
either a single message (to indicate, for example, that a finger has tapped)
or a series of messages (to indicate, for example, that a finger is moving);
the distinction here is between a discrete and a continuous gesture.

What message a gesture recognizer emits, and to what object it sends it, is
set through a target–action dispatch table attached to the gesture recognizer;
a gesture recognizer is rather like a UIControl in this regard. Indeed, one
might say that a gesture recognizer simplifies the touch handling of any
view to be like that of a control. The difference is that one control may
report several different control events, whereas each gesture recognizer
reports only one gesture type, with different gestures being reported by
different gesture recognizers.
UIGestureRecognizer itself is abstract, providing methods and properties to
its subclasses. Among these are:

init(target:action:)

The designated initializer. Each message emitted by a
UIGestureRecognizer is a matter of sending the action message to the
target. Further target–action pairs may be added with addTarget(_:act
ion:) and removed with removeTarget(_:action:).

Two forms of action: selector are possible: either there is no
parameter, or there is a single parameter which will be the gesture
recognizer. Most commonly, you’ll use the second form, so that the
target can identify, query, and communicate with the gesture recognizer.

location(ofTouch:in:)

The second parameter is the view whose coordinate system you want to
use. The touch is specified by an index number. The numberOfTouches
property provides a count of current touches; the touches themselves are
inaccessible by way of the gesture recognizer.

isEnabled

A convenient way to turn a gesture recognizer off without having to
remove it from its view.

state, view

I’ll discuss state later on. The view is the view to which this gesture
recognizer is attached.

Built-in UIGestureRecognizer subclasses are provided for six common
gesture types: tap, pinch (inward or outward), pan (drag), swipe, rotate, and
long press. Each embodies properties and methods likely to be needed for
each type of gesture, either in order to configure the gesture recognizer
beforehand or in order to query it as to the state of an ongoing gesture:

UITapGestureRecognizer (discrete)

Configuration: numberOfTapsRequired, numberOfTouchesRequired
(“touches” means simultaneous fingers).

UIPinchGestureRecognizer (continuous)

Two fingers moving toward or away from each other. State: scale, vel
ocity.

UIRotationGestureRecognizer (continuous)

Two fingers moving round a common center. State: rotation, velocit
y.

UISwipeGestureRecognizer (discrete)
A straight-line movement in one of the four cardinal directions.
Configuration: direction (meaning permitted directions, a bitmask), n
umberOfTouchesRequired.

UIPanGestureRecognizer (continuous)

Dragging. Configuration: minimumNumberOfTouches, maximumNumberO
fTouches. State: translation(in:), setTranslation(_:in:), veloc
ity(in:); the coordinate system of the specified view is used.

UIScreenEdgePanGestureRecognizer
A UIPanGestureRecognizer subclass. It recognizes a pan gesture
that starts at an edge of the screen. It adds a configuration property,
edges, a UIRectEdge; despite the name (and the documentation),
this must be set to a single edge.

UILongPressGestureRecognizer (continuous)

Configuration: numberOfTapsRequired, numberOfTouchesRequired,
minimumPressDuration, allowableMovement. The numberOfTapsReq
uired is the count of taps before the tap that stays down, so it can be 0
(the default). The allowableMovement setting lets you compensate for
the fact that the user’s finger is unlikely to remain steady during an
extended press; thus we need to provide some limit before deciding that
this gesture is, say, a drag, and not a long press after all. On the other
hand, once the long press is recognized, the finger is permitted to drag
as part of the long press gesture.

UIGestureRecognizer also provides a location(in:) method. This is a
single point, even if there are multiple touches. The subclasses implement
this variously. For example, for UIPanGestureRecognizer, the location is
where the touch is if there’s a single touch, but it’s a sort of midpoint
(“centroid”) if there are multiple touches.
We already know enough to implement, using a gesture recognizer, a view
that responds to a single tap, or a view that responds to a double tap. Here’s
code (probably from our view controller’s viewDidLoad) that implements a
view (self.v) that responds to a single tap by calling our singleTap
method:

let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))

self.v.addGestureRecognizer(t1)

And here’s code that implements a view (self.v) that responds to a double
tap by calling our doubleTap method:

let t2 = UITapGestureRecognizer(target:self, action:#selector(doubleTap))

t2.numberOfTapsRequired = 2

self.v.addGestureRecognizer(t2)

For a continuous gesture like dragging, we need to know both when the
gesture is in progress and when the gesture ends. This brings us to the
subject of a gesture recognizer’s state.

A gesture recognizer implements a notion of states (the state property,
UIGestureRecognizerState); it passes through these states in a definite
progression. The gesture recognizer remains in the .possible state until it
can make a decision one way or the other as to whether this is in fact the
correct gesture. The documentation neatly lays out the possible
progressions:

Wrong gesture

.possible → .failed. No action message is sent.

Discrete gesture (like a tap), recognized

.possible → .ended. One action message is sent, when the state
changes to .ended.

Continuous gesture (like a drag), recognized

.possible → .began → .changed (repeatedly) → .ended. Action
messages are sent once for .began, as many times as necessary for .cha
nged, and once for .ended.

Continuous gesture, recognized but later cancelled

.possible → .began → .changed (repeatedly) → .cancelled.
Action messages are sent once for .began, as many times as necessary
for .changed, and once for .cancelled.

The same action message arrives at the same target every time, so the action
method must differentiate by asking about the gesture recognizer’s state.
The usual implementation involves a switch statement.
To illustrate, we will implement, using a gesture recognizer, a view that lets
itself be dragged around in any direction by a single finger. Our
maintenance of state is greatly simplified, because a
UIPanGestureRecognizer maintains a delta (translation) for us. This delta,
available using translation(in:), is reckoned from the touch’s initial
position. We don’t even need to record the view’s original center, because

we can reset the UIPanGestureRecognizer’s delta, using setTranslation
(_:in:):

func viewDidLoad {

 super.viewDidLoad()

 let p = UIPanGestureRecognizer(target:self, action:#selector(dragging))

 self.v.addGestureRecognizer(p)

}

@objc func dragging(_ p : UIPanGestureRecognizer) {

 let v = p.view!

 switch p.state {

 case .began, .changed:

 let delta = p.translation(in:v.superview)

 var c = v.center

 c.x += delta.x; c.y += delta.y

 v.center = c

 p.setTranslation(.zero, in: v.superview)

 default: break

 }

}

To illustrate the use of a UIPanGestureRecognizer’s velocity(in:), let’s
imagine a view that the user can drag, but which then springs back to where
it was. We can express “springs back” with a spring animation (Chapter 4).
All we have to do is add an .ended case to our dragging(_:) method (des
t is the original center of our view v):

case .ended, .cancelled:

 let anim = UIViewPropertyAnimator(

 duration: 0.4,

 timingParameters: UISpringTimingParameters(

 dampingRatio: 0.6,

 initialVelocity: .zero))

 anim.addAnimations {

 v.center = dest

 }

 anim.startAnimation()

That’s good, but it would be more realistic if the view had some momentum
at the moment the user lets go of it. If the user drags the view quickly away
from its home and releases it, the view should keep moving a little in the

same direction before springing back into place. That’s what the spring
animation’s initialVelocity: parameter is for! We can easily find out
what the view’s velocity is, at the moment the user releases it, by asking the
gesture recognizer:

let vel = p.velocity(in: v.superview!)

Unfortunately, we cannot use this value directly as the spring animation’s i
nitialVelocity; there’s a type impedance mismatch. The view’s velocity
is expressed as a CGPoint measured in points per second. But the spring’s i
nitialVelocity is expressed as a CGVector measured as a proportion of
the distance to be travelled over the course of the animation. Fortunately,
the conversion is easy:

case .ended, .cancelled:

 let vel = p.velocity(in: v.superview!)

 let c = v.center

 let distx = abs(c.x - dest.x)

 let disty = abs(c.y - dest.y)

 let anim = UIViewPropertyAnimator(

 duration: 0.4,

 timingParameters: UISpringTimingParameters(

 dampingRatio: 0.6,

 initialVelocity: CGVector(vel.x/distx, vel.y/disty)))

 anim.addAnimations {

 v.center = dest

 }

 anim.startAnimation()

A pan gesture recognizer can be used also to make a view draggable under
the influence of a UIDynamicAnimator (Chapter 4). The strategy here is
that the view is attached to one or more anchor points through a
UIAttachmentBehavior; as the user drags, we move the anchor point(s), and
the view follows. In this example, I set up the whole UIKit dynamics
“stack” of objects as the gesture begins, anchoring the view at the point
where the touch is; then I move the anchor point to stay with the touch.
Instance properties self.anim and self.att store the

UIDynamicAnimator and the UIAttachmentBehavior, respectively; self.v
iew is our view’s superview, and is the animator’s reference view:

@IBAction func dragging(_ p: UIPanGestureRecognizer) {

 switch p.state {

 case .began:

 self.anim = UIDynamicAnimator(referenceView:self.view)

 let loc = p.location(ofTouch:0, in:p.view)

 let cen = CGPoint(p.view!.bounds.midX, p.view!.bounds.midY)

 let off = UIOffsetMake(loc.x-cen.x, loc.y-cen.y)

 let anchor = p.location(ofTouch:0, in:self.view)

 let att = UIAttachmentBehavior(item:p.view!,

 offsetFromCenter:off, attachedToAnchor:anchor)

 self.anim.addBehavior(att)

 self.att = att

 case .changed:

 self.att.anchorPoint = p.location(ofTouch:0, in: self.view)

 default:

 self.anim = nil

 }

}

The outcome is that the view both moves and rotates in response to
dragging, like a plate being pulled about on a table by a single finger.
By adding behaviors to the dynamic animator, we can limit further what the
view is permitted to do as it is being dragged by its anchor. For example,
imagine a view that can be lifted vertically and dropped, but cannot be
moved horizontally. As I demonstrated earlier, you can prevent horizontal
dragging through the implementation of your response to touch events (and
later in this chapter, I’ll show how to do this by subclassing
UIPanGestureRecognizer). But the same sort of limitation can imposed by
way of the underlying physics of the world in which the view exists — with
a sliding attachment, for example.

Gesture Recognizer Conflicts
A view can have more than one gesture recognizer associated with it. This
isn’t a matter merely of multiple recognizers attached to a single view; as I
have said, if a view is touched, not only its own gesture recognizers but also

any gesture recognizers attached to views further up the view hierarchy are
in play simultaneously. I like to think of a view as surrounded by a swarm
of gesture recognizers — its own, and those of its superview, and so on. (In
reality, it is a touch that has a swarm of gesture recognizers; that’s why a
UITouch has a gestureRecognizers property, in the plural.)
The superview gesture recognizer swarm comes as a surprise to beginners,
but it makes sense, because without it, certain gestures would be
impossible. Imagine, for example, a pair of views, each of which the user
can tap individually, but which the user can also touch simultaneously (one
finger on each view) to rotate them together around their mutual centroid.
Neither view can detect the rotation qua rotation, because neither view
receives both touches; only the superview can detect it, so the fact that the
views themselves respond to touches must not prevent the superview’s
gesture recognizer from operating.
The question naturally arises, then, of what happens when multiple gesture
recognizers are in play. There is a natural competition between these gesture
recognizers, each trying to recognizing the current multitouch sequence as
its own appropriate gesture. This is a conflict between gesture recognizers.
How will it be resolved?
The rule is simple. In general, by default, once a gesture recognizer
succeeds in recognizing its gesture, any other gesture recognizers
associated with its touches are forced into the .failed state, and whatever
touches were associated with those gesture recognizers are no longer sent to
them; in effect, the first gesture recognizer in a swarm that recognizes its
gesture owns the gesture (and its touches) from then on.
In many cases, this “first past the post” behavior, on its own, will correctly
eliminate conflicts. For example, we can add both our
UITapGestureRecognizer for a single tap and our UIPanGestureRecognizer
to a view and everything will just work; dragging works, and single tap
works. Thus, “first past the post” is exactly the desired behavior:

let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))

self.v.addGestureRecognizer(t1)

let p = UIPanGestureRecognizer(target: self, action: #selector(dragging))

self.v.addGestureRecognizer(p)

However, you can take a hand in how conflicts are resolved, and sometimes
you will need to do so. What happens, for example, if we add a double tap
gesture recognizer and a single tap gesture recognizer to the same view?
Double tap works, but without preventing the single tap from working: on a
double tap, both the single tap action method and the double tap action
method are called.
If that isn’t what we want, we don’t have to use delayed performance, as we
did earlier. Instead, we can create a dependency between one gesture
recognizer and another, telling the first to suspend judgement until the
second has decided whether this is its gesture. We can do this by sending
the first gesture recognizer the require(toFail:) message. This method is
rather badly named; it doesn’t mean “force this other recognizer to fail,” but
rather, “you can’t succeed unless this other recognizer has failed.” For
example:

let t2 = UITapGestureRecognizer(target:self, action:#selector(doubleTap))

t2.numberOfTapsRequired = 2

self.v.addGestureRecognizer(t2)

let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))

t1.require(toFail:t2) // *

self.v.addGestureRecognizer(t1)

Another conflict that can arise is between a gesture recognizer and a view
that already knows how to respond to the same gesture, such as a
UIControl. This problem pops up particularly when the gesture recognizer
belongs to the UIControl’s superview. The UIControl’s mere presence does
not “block” the superview’s gesture recognizer from recognizing a gesture
on the UIControl, even if it is a UIControl that responds autonomously to
touches. For example, your window’s root view might have a
UITapGestureRecognizer attached to it (perhaps because you want to be
able to recognize taps on the background); if there is also a UIButton within
that view, how is that gesture recognizer to ignore a tap on the button?

The UIView instance method gestureRecognizerShouldBegin(_:)
solves the problem. It is called automatically; to modify its behavior, use a
custom UIView subclass and override it. Its parameter is a gesture
recognizer belonging to this view or to a view further up the view hierarchy.
That gesture recognizer has recognized its gesture as taking place in this
view; but by returning false, the view can tell the gesture recognizer to
bow out and do nothing, not sending any action messages, and permitting
this view to respond to the touch as if the gesture recognizer weren’t there.

Thus, for example, a UIButton could return false for a single tap
UITapGestureRecognizer; a single tap on the button would then trigger the
button’s action message and not the gesture recognizer’s action message.
And in fact a UIButton, by default, does return false for a single tap
UITapGestureRecognizer whose view is not the UIButton itself.

Other built-in controls may also implement gestureRecognizerShouldBe
gin(_:) in such a way as to prevent accidental interaction with a gesture
recognizer; the documentation says that a UISlider implements it in such a
way that a UISwipeGestureRecognizer won’t prevent the user from sliding
the “thumb,” and there may be other cases that aren’t documented
explicitly. Naturally, you can take advantage of this feature in your own
UIView subclasses as well.
Yet another way of resolving possible gesture recognizer conflicts is
through the gesture recognizer’s delegate, or with a gesture recognizer
subclass. I’ll discuss those in a moment.

Subclassing Gesture Recognizers
To subclass UIGestureRecognizer or a built-in gesture recognizer subclass,
you must do the following things:

Import UIKit.UIGestureRecognizerSubclass. This allows you to set
a gesture recognizer’s state property (which is otherwise read-only),
and exposes declarations for the methods you may need to override.

Override any touch methods you need to (as if the gesture recognizer
were a UIResponder); if you’re subclassing a built-in gesture recognizer
subclass, you will almost certainly call super so as to take advantage of
the built-in behavior. In overriding a touch method, you need to think
like a gesture recognizer. As these methods are called, a gesture
recognizer is setting its state; you must participate coherently in that
process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement
a view that can be moved only horizontally or vertically. Our strategy will
be to make two UIPanGestureRecognizer subclasses — one that allows
only horizontal movement, and another that allows only vertical movement.
They will make their recognition decisions in a mutually exclusive manner,
so we can attach an instance of each to our view. This encapsulates the
decision-making logic in a gorgeously object-oriented way — a far cry
from the spaghetti code we wrote earlier to do this same task.
I will show only the code for the horizontal drag gesture recognizer,
because the vertical recognizer is symmetrically identical. We maintain just
one property, self.origLoc, which we will use once to determine whether
the user’s initial movement is horizontal. We override touchesBegan(_:wi
th:) to set our property with the first touch’s location:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent) {

 self.origLoc = touches.first!.location(in:self.view!.superview)

 super.touchesBegan(touches, with:e)

}

We then override touchesMoved(_:with:); all the recognition logic is
here. This method will be called for the first time with the state still at .pos
sible. At that moment, we look to see if the user’s movement is more
horizontal than vertical. If it isn’t, we set the state to .failed. But if it is,
we just step back and let the superclass do its thing:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent) {

 if self.state == .possible {

 let loc = touches.first!.location(in:self.view!.superview)

 let deltaX = abs(loc.x - self.origLoc.x)

 let deltaY = abs(loc.y - self.origLoc.y)

 if deltaY >= deltaX {

 self.state = .failed

 }

 }

 super.touchesMoved(touches, with:e)

}

We now have a view that moves only if the user’s initial gesture is
horizontal. But that isn’t the entirety of what we want; we want a view that,
itself, moves horizontally only. To implement this, we’ll simply lie to our
client about where the user’s finger is, by overriding translation(in:):

override func translation(in view: UIView?) -> CGPoint {

 var proposedTranslation = super.translation(in:view)

 proposedTranslation.y = 0

 return proposedTranslation

}

That example was simple, because we subclassed a fully functional built-in
UIGestureRecognizer subclass. If you were to write your own
UIGestureRecognizer subclass entirely from scratch, there would be more
work to do:

You should definitely implement all four touch methods. Their job, at a
minimum, is to advance the gesture recognizer through the canonical
progression of its states. When the first touch arrives at a gesture
recognizer, its state will be .possible; you never explicitly set the
recognizer’s state to .possible yourself. As soon as you know this
can’t be our gesture, you set the state to .failed. (Apple says that a
gesture recognizer should “fail early, fail often.”) If the gesture gets past
all the failure tests, you set the state instead either to .ended (for a
discrete gesture) or to .began (for a continuous gesture); if .began, then
you might set it to .changed, and ultimately you must set it to .ended.
Don’t concern yourself with the sending of action messages; they will be
sent automatically at the appropriate moments.

You should probably implement reset. This is called after you reach the
end of the progression of states to notify you that the gesture
recognizer’s state is about to be set back to .possible; it is your chance
to return your state machine to its starting configuration (resetting
properties, for example).

Keep in mind that your gesture recognizer might stop receiving touches
without notice. Just because it gets a touchesBegan(_:with:) call for a
particular touch doesn’t mean it will ever get touchesEnded(_:with:) for
that touch. If your gesture recognizer fails to recognize its gesture, either
because it declares failure or because it is still in the .possible state when
another gesture recognizer recognizes, it won’t get any more touch method
calls for any of the touches that were being sent to it. This is why reset is
so important; it’s the one reliable signal that it’s time to clean up and get
ready to receive the beginning of another possible gesture.

Gesture Recognizer Delegate
A gesture recognizer can have a delegate (UIGestureRecognizerDelegate),
which can perform two types of task.
These delegate methods can block a gesture recognizer’s operation:

gestureRecognizerShouldBegin(_:)

Sent to the delegate before the gesture recognizer passes out of the .pos
sible state; return false to force the gesture recognizer to proceed to
the .failed state. (This happens after gestureRecognizerShouldBeg
in(_:) has been sent to the view in which the touch took place. That
view must not have returned false, or we wouldn’t have reached this
stage.)

gestureRecognizer(_:shouldReceive:)

Sent to the delegate before a touch is sent to the gesture recognizer’s to
uchesBegan(_:with:) method; return false to prevent that touch
from ever being sent to the gesture recognizer.

These delegate methods can mediate gesture recognition conflict:

gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:)

Sent when a gesture recognizer recognizes its gesture, if this will force
the failure of another gesture recognizer, to the delegates of both gesture
recognizers. Return true to prevent that failure, thus allowing both
gesture recognizers to operate simultaneously. For example, a view
could respond to both a two-fingered pinch and a two-fingered pan, the
one applying a scale transform, the other changing the view’s center.

gestureRecognizer(_:shouldRequireFailureOf:)

gestureRecognizer(_:shouldBeRequiredToFailBy:)

Sent very early in the life of a gesture, when all gesture recognizers in a
view’s swarm are still in the .possible state, to the delegates of all of
them, pairing the gesture recognizer whose delegate this is with each of
the other gesture recognizers in the swarm. Return true to prioritize
between this pair of gesture recognizers, saying that one cannot succeed
until the other has first failed. In essence, these delegate methods turn
the decision made once and permanently in require(toFail:) into a
live decision that can be made freshly every time a gesture occurs.

As an example, we will use delegate messages to combine a
UILongPressGestureRecognizer and a UIPanGestureRecognizer, as
follows: the user must perform a tap-and-a-half (tap, then tap and hold) to
“get the view’s attention,” which we will indicate by a pulsing animation on
the view; then (and only then) the user can drag the view.
The UIPanGestureRecognizer’s action method will take care of the drag, as
shown earlier in this chapter. The UILongPressGestureRecognizer’s action
method will take care of starting and stopping the animation:

@objc func longPress(_ lp:UILongPressGestureRecognizer) {

 switch lp.state {

 case .began:

 let anim = CABasicAnimation(keyPath: #keyPath(CALayer.transform))

 anim.toValue = CATransform3DMakeScale(1.1, 1.1, 1)

 anim.fromValue = CATransform3DIdentity

 anim.repeatCount = .infinity

 anim.autoreverses = true

 lp.view!.layer.add(anim, forKey:nil)

 case .ended, .cancelled:

 lp.view!.layer.removeAllAnimations()

 default: break

 }

}

As we created our gesture recognizers, we kept a reference to the
UILongPressGestureRecognizer (self.longPresser), and we made
ourself the UIPanGestureRecognizer’s delegate. So we will receive delegate
messages. If the UIPanGestureRecognizer tries to declare success while the
UILongPressGestureRecognizer’s state is .failed or still at .possible,
we prevent it. If the UILongPressGestureRecognizer succeeds, we permit
the UIPanGestureRecognizer to operate as well:

func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {

 switch self.longPresser.state {

 case .possible, .failed:

 return false

 default:

 return true

 }

}

func gestureRecognizer(_ g: UIGestureRecognizer,

 shouldRecognizeSimultaneouslyWith g2: UIGestureRecognizer) -> Bool {

 return true

}

The result is that the view can be dragged only while it is pulsing; in effect,
what we’ve done is to compensate, using delegate methods, for the fact that
UIGestureRecognizer has no require(toSucceed:) method.
If you are subclassing a gesture recognizer class, you can incorporate
delegate-like behavior into the subclass, by overriding the following
methods:

canPrevent(_:)

canBePrevented(by:)

shouldRequireFailure(of:)

shouldBeRequiredToFail(by:)

The prevent methods are similar to the delegate shouldBegin method, and
the fail methods are similar to the delegate fail methods. In this way, you
can mediate gesture recognizer conflict at the class level. The built-in
gesture recognizer subclasses already do this; that is why, for example, a
single tap UITapGestureRecognizer does not, by recognizing its gesture,
cause the failure of a double tap UITapGestureRecognizer.

You can also, in a gesture recognizer subclass, send ignore(_:for:)
directly to a gesture recognizer (typically, to self) to ignore a specific
touch of a specific event. This has the same effect as the delegate method g
estureRecognizer(_:shouldReceive:) returning false, blocking all
future delivery of that touch to the gesture recognizer. For example, if
you’re in the middle of an already recognized gesture and a new touch
arrives, you might elect to ignore it.

Gesture Recognizers in the Nib
Instead of instantiating a gesture recognizer in code, you can create and
configure it in a .xib or .storyboard file. In the nib editor, drag a gesture
recognizer from the Object library onto a view; the gesture recognizer
becomes a top-level nib object, and the view’s gestureRecognizers outlet
is connected to the gesture recognizer. (You can add more than one gesture
recognizer to a view in the nib: the view’s gestureRecognizers property
is an array, and its gestureRecognizers outlet is an outlet collection.) The
gesture recognizer’s properties are configurable in the Attributes inspector,
and the gesture recognizer has a delegate outlet. The gesture recognizer is
a full-fledged nib object, so you can make an outlet to it.
To configure a gesture recognizer’s target–action pair in the nib editor, treat
it like a UIControl’s control event. The action method’s signature should be
marked @IBAction, and it should take a single parameter, which will be a
reference to the gesture recognizer. You can form the action in any of the

same ways as for a control action, including Control-dragging from the
gesture recognizer to your code to create an action method stub. (A gesture
recognizer can have multiple target–action pairs, but only one target–action
pair can be configured for a gesture recognizer using the nib editor.) A view
retains its gesture recognizers, so there will usually be no need for
additional memory management on a gesture recognizer instantiated from a
nib.

3D Touch Press Gesture
On a device with 3D touch, you can treat pressing as kind of gesture. It isn’t
formally a gesture; there is, unfortunately, no 3D touch press gesture
recognizer. Nevertheless, your code can detect a 3D touch press, responding
dynamically to the degree of force being applied.
The simplest way approach is to use the UIPreviewInteraction class. You
initialize a UIPreviewInteraction object with the view in which pressing is
to be detected, retain the UIPreviewInteraction object, and assign it a
delegate (adopting the UIPreviewInteractionDelegate protocol). The
delegate is sent these messages, starting when the user begins to apply force
within the view:

previewInteractionShouldBegin(_:)

Optional. Return false to ignore this press gesture. Among other
things, this method might query the UIPreviewInteraction’s view and lo
cation(in:) to decide how to proceed.

previewInteraction(_:didUpdatePreviewTransition:ended:)

The amount of applied force has changed. The amount of force is
reported (in the second parameter) as a value between 0 and 1. When 1
is reached, ended: is also true, and the device vibrates.

previewInteraction(_:didUpdateCommitTransition:ended:)

Optional. Behaves exactly like the previous method. If implemented,
the gesture has two stages, increasing from 0 to 1 and reported by didUp

datePreview, and then increasing from 0 to 1 and reported by didUpda
teCommit.

previewInteractionDidCancel(_:)

The user has backed off the gesture completely, before reaching ended:
(or the touch was cancelled for some other reason).

To illustrate, imagine a sort of Whack-a-Mole game where the user is to
remove views by pressing each one. (In real life, there would also need to
be a way to play the game on a device that lacks 3D touch.) As the user
presses, we’ll apply a scale transform to the view, increasing its apparent
size in proportion to the amount of force, while at the same time fading the
view away by decreasing its opacity; if the user reaches a full press, we’ll
remove the view completely.
We’ll implement this in the simplest possible way. The code will all go into
the pressable view itself. When the view is added to its superview, it creates
and configures the UIPreviewInteraction object, storing it in an instance
property (self.prev):

override func didMoveToSuperview() {

 self.prev = UIPreviewInteraction(view: self)

 self.prev.delegate = self

}

As force reports arrive, we’ll increase the view’s scale transform and
decrease its opacity accordingly:

func previewInteraction(_ : UIPreviewInteraction,

 didUpdatePreviewTransition prog: CGFloat,

 ended: Bool) {

 let scale = prog + 1

 self.transform = CGAffineTransform(scaleX: scale, y: scale)

 let alph = ((1-prog)*0.6) + 0.3

 self.alpha = alph

 if ended { // device vibrates

 self.removeFromSuperview()

 }

}

The view now expands and explodes off the screen with a satisfying pop
(“haptic feedback”) as the user presses on it. If the user backs off the
gesture completely, we’ll remove the transform and restore our opacity:

func previewInteractionDidCancel(_ : UIPreviewInteraction) {

 self.transform = .identity

 self.alpha = 1

}

Instead of applying the transform ourselves, directly, we might use a
property animator, taking advantage of its ability to manage a “frozen”
animation (“Frozen View Animation”). Here’s a rewrite in which a property
animator is used (held in an instance property, self.anim):

func makeAnimator() {

 self.anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {

 [unowned self] in

 self.alpha = 0.3

 self.transform = CGAffineTransform(scaleX: 2, y: 2)

 }

}

override func didMoveToSuperview() {

 self.prev = UIPreviewInteraction(view: self)

 self.prev.delegate = self

 self.makeAnimator()

}

func previewInteractionDidCancel(_ : UIPreviewInteraction) {

 self.anim.pauseAnimation()

 self.anim.isReversed = true

 self.anim.addCompletion { _ in self.makeAnimator() }

 self.anim.continueAnimation(

 withTimingParameters: nil, durationFactor: 0.01)

}

func previewInteraction(_ : UIPreviewInteraction,

 didUpdatePreviewTransition prog: CGFloat,

 ended: Bool) {

 self.anim.fractionComplete = min(max(prog, 0.05), 0.95)

 if ended {

 self.anim.stopAnimation(false)

 self.anim.finishAnimation(at: .end)

 self.removeFromSuperview()

 }

}

Touch Delivery
Here’s the full standard procedure by which a touch is delivered to views
and gesture recognizers:

Whenever a new touch appears, the application performs hit-testing to
determine the view that was touched. This view will be permanently
associated with this touch, and is called, appropriately, the hit-test view.
The logic of ignoring a view (denying it the ability to become the hit-test
view) in response to its isUserInteractionEnabled, isHidden, and al
pha properties is implemented at this stage.

Each time the touch situation changes, the application calls its own send
Event(_:), which in turn calls the window’s sendEvent(_:). The
window delivers each of an event’s touches by calling the appropriate
touch method(s), as follows:

— As a touch first appears, the logic of obedience to isMultipleTouch
Enabled and isExclusiveTouch is considered. If permitted by that
logic:

The touch is delivered to the hit-test view’s swarm of gesture
recognizers.
The touch is delivered to the hit-test view itself.

— If a gesture is recognized by a gesture recognizer, then for any touch
associated with this gesture recognizer:

touchesCancelled(_:for:) is sent to the touch’s view, and the
touch is no longer delivered to its view.
If the touch was associated with any other gesture recognizer, that
gesture recognizer is forced to fail.

— If a gesture recognizer fails, either because it declares failure or
because it is forced to fail, its touches are no longer delivered to it, but
(except as already specified) they continue to be delivered to their view.

The rest of this chapter discusses the details of touch delivery. As you’ll
see, nearly every bit of the standard procedure can be customized to some

extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-
testing uses the UIView instance method hitTest(_:with:), whose first
parameter is the CGPoint of interest. It returns either a view (the hit-test
view) or nil. The idea is to find the frontmost view containing the touch
point. This method uses an elegant recursive algorithm, as follows:

1. A view’s hitTest(_:with:) first calls the same method on its own
subviews, if it has any, because a subview is considered to be in front
of its superview. The subviews are queried in front-to-back order
(Chapter 1): thus, if two sibling views overlap, the one in front reports
the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by
returning a view, it stops querying its subviews and immediately
returns the view that was returned to it. Thus, the very first view to
declare itself the hit-test view percolates all the way to the top of the
call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews
return nil (indicating that neither they nor their subviews was hit),
then the view calls point(inside:with:) on itself. If this call
reveals that the touch was inside this view, the view returns itself,
declaring itself the hit-test view; otherwise it returns nil.

(No problem arises if a view has a transform, because point(inside:
with:) takes the transform into account. That’s why a rotated button
continues to work correctly.)

It is also up to hitTest(_:with:) to implement the logic of touch
restrictions exclusive to a view. If a view’s isUserInteractionEnabled is
false, or its isHidden is true, or its alpha is close to 0.0, it returns nil
without hit-testing any of its subviews and without calling point(inside:w

ith:). Thus these restrictions do not, of themselves, exclude a view from
being hit-tested; on the contrary, they operate precisely by affecting a
view’s hit-test result.

However, hit-testing knows nothing about isMultipleTouchEnabled
(which involves multiple touches) or isExclusiveTouch (which involves
multiple views). The logic of obedience to these properties is implemented
at a later stage of the story.

Performing Hit-Testing
You can perform hit-testing yourself at any moment where it might prove
useful. In calling hitTest(_:with:), supply a point in the coordinates of
the view to which the message is sent. The second parameter is supposed to
be a UIEvent, but it can be nil if you have no event.
For example, suppose we have a superview with two UIImageView
subviews. We want to detect a tap in either UIImageView, but we want to
handle this at the level of the superview. We can attach a
UITapGestureRecognizer to the superview, but then the gesture recognizer’s
view is the superview, so how will we know which subview, if any, the tap
was in?

First, ensure that isUserInteractionEnabled is true for both
UIImageViews. UIImageView is one of the few built-in view classes where
this property is false by default, and a view whose isUserInteractionEn
abled is false won’t normally be the result of a call to
hitTest(_:with:). Then, when our gesture recognizer’s action method is
called, we can perform hit-testing to determine where the tap was:

// g is the gesture recognizer

let p = g.location(ofTouch:0, in: g.view)

let v = g.view?.hitTest(p, with: nil)

if let v = v as? UIImageView { // ...

Hit-Test Munging

You can override hitTest(_:with:) in a view subclass, to alter its results
during touch delivery, thus customizing the touch delivery mechanism. I
call this hit-test munging. Hit-test munging can be used selectively as a way
of turning user interaction on or off in an area of the interface. In this way,
some unusual effects can be produced.
An important use of hit-test munging is to permit the touching of subviews
outside the bounds of their superview. If a view’s clipsToBounds is false,
a paradox arises: the user can see the regions of its subviews that are
outside its bounds, but can’t touch them. This can be confusing and seems
wrong. The solution is for the view to override hitTest(_:with:) as
follows:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {

 if let result = super.hitTest(point, with:e) {

 return result

 }

 for sub in self.subviews.reversed() {

 let pt = self.convert(point, to:sub)

 if let result = sub.hitTest(pt, with:e) {

 return result

 }

 }

 return nil

}

In this next example, we implement a pass-through view. The idea is that
only one object in our interface should be touchable; everything else should
behave as if isUserInteractionEnabled were false. In a complex
interface, actually cycling through all our subviews and toggling isUserIn
teractionEnabled is too much trouble. Instead, we place an invisible view
in front of the entire interface and use hit-test munging so that only one
view behind it (self.passthruView) is touchable:

class MyView: UIView {

 weak var passthruView : UIView?

 override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {

 if let pv = self.passthruView {

 let pt = pv.convert(point, from: self)

 if pv.point(inside: pt, with: e) {

 return nil

 }

 }

 return super.hitTest(point, with: e)

 }

}

Hit-Testing For Layers
Layers do not receive touches. A touch is reported to a view, not a layer. A
layer, except insofar as it is a view’s underlying layer and gets touch
reporting because of its view, is completely untouchable; from the point of
view of touches and touch reporting, it’s as if the layer weren’t on the
screen at all. No matter where a layer may appear to be, a touch falls
through the layer, to whatever view is behind it.
Nevertheless, hit-testing for layers is possible. It doesn’t happen
automatically, as part of sendEvent(_:) or anything else; it’s up to you.
It’s just a convenient way of finding out which layer would receive a touch
at a point, if layers did receive touches. To hit-test layers, call hitTest(_:)
on a layer, with a point in superlayer coordinates.
In the case of a layer that is a view’s underlying layer, you don’t need hit-
testing. It is the view’s drawing; where it appears is where the view is. So a
touch in that layer is equivalent to a touch in its view. Indeed, one might say
(and it is often said) that this is what views are actually for: to provide
layers with touchability.
The only layers on which you’d need special hit-testing, then, would
presumably be layers that are not themselves any view’s underlying layer,
because those are the only ones you don’t find out about by normal view
hit-testing. However, all layers, including a layer that is its view’s
underlying layer, are part of the layer hierarchy, and can participate in layer
hit-testing. So the most comprehensive way to hit-test layers is to start with
the topmost layer, the window’s layer. In this example, we subclass
UIWindow (see Chapter 1) and override its hitTest(_:with:) so as to get
layer hit-testing every time there is view hit-testing:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {

 let lay = self.layer.hitTest(point)

 // ... possibly do something with that information

 return super.hitTest(point, with:e)

}

In that example, self is the window, which is a special case. In general,
you’ll have to convert to superlayer coordinates. In this next example, we
return to the CompassView developed in Chapter 3, in which all the parts of
the compass are layers; we want to know whether the user tapped on the
arrow layer, and if so, we’ll rotate the arrow. For simplicity, we’ve given the
CompassView a UITapGestureRecognizer, and this is its action method, in
the CompassView itself. We convert to our superview’s coordinates,
because these are also our layer’s superlayer coordinates:

@IBAction func tapped(_ t:UITapGestureRecognizer) {

 let p = t.location(ofTouch:0, in: self.superview)

 let hitLayer = self.layer.hitTest(p)

 let arrow = (self.layer as! CompassLayer).arrow!

 if hitLayer == arrow { // respond to touch

 arrow.transform = CATransform3DRotate(

 arrow.transform, .pi/4.0, 0, 0, 1)

 }

}

Layer hit-testing knows nothing of the restrictions on touch delivery; it just
reports on every sublayer, even (for example) one whose view has isUserI
nteractionEnabled set to false.

Hit-Testing For Drawings
The preceding example (letting the user tap on the compass arrow) does
work, but we might complain that it is reporting a hit on the arrow layer
even if the hit misses the drawing of the arrow. That’s true for view hit-
testing as well. A hit is reported if we are within the view or layer as a
whole; hit-testing knows nothing of drawing, transparent areas, and so
forth.

If you know how the region is drawn and can reproduce the edge of that
drawing as a CGPath, you can call contains(_:using:transform:) to
test whether a point is inside it. So, in our compass layer, we could override
hitTest(_:) along these lines:

override func hitTest(_ p: CGPoint) -> CALayer? {

 var lay = super.hitTest(p)

 if lay == self.arrow {

 let pt = self.arrow.convert(p, from:self.superlayer)

 let path = CGMutablePath()

 path.addRect(CGRect(10,20,20,80))

 path.move(to:CGPoint(0, 25))

 path.addLine(to:CGPoint(20, 0))

 path.addLine(to:CGPoint(40, 25))

 path.closeSubpath()

 if !path.contains(pt, using: .winding) {

 lay = nil

 }

 }

 return lay

}

Alternatively, it might be the case that if a pixel of the drawing is
transparent, it’s outside the drawn region, so that it suffices to detect
whether the pixel tapped is transparent. Unfortunately, there’s no built-in
way to ask a drawing (or a view, or a layer) for the color of a pixel. Instead,
you have to make a bitmap graphics context and copy the drawing into it,
and then ask the bitmap for the color of a pixel. If you can reproduce the
content as an image, and all you care about is transparency, you can make a
one-pixel alpha-only bitmap, draw the image in such a way that the pixel
you want to test is the pixel drawn into the bitmap, and examine the
transparency of the resulting pixel. In this example, im is our UIImage and
point is the coordinates of the pixel we want to test:

let info = CGImageAlphaInfo.alphaOnly.rawValue

let pixel = UnsafeMutablePointer<UInt8>.allocate(capacity:1)

defer {

 pixel.deinitialize(count: 1)

 pixel.deallocate(capacity:1)

}

pixel[0] = 0

let sp = CGColorSpaceCreateDeviceGray()

let context = CGContext(data: pixel,

 width: 1, height: 1, bitsPerComponent: 8, bytesPerRow: 1,

 space: sp, bitmapInfo: info)!

UIGraphicsPushContext(context)

im.draw(at:CGPoint(-point.x, -point.y))

UIGraphicsPopContext()

let p = pixel[0]

let alpha = Double(p)/255.0

let transparent = alpha < 0.01

There may not be a one-to-one relationship between the pixels of the
underlying drawing and the points of the drawing as portrayed on the screen
— because the drawing is stretched, for example. In many cases, the
CALayer method render(in:) can be helpful here. This method allows
you to copy a layer’s actual drawing into a graphics context of your choice.
If that context is an image context (Chapter 2), you can use the resulting
image as im in the preceding code.

Hit-Testing During Animation
Making a view user-touchable while it is being animated is a tricky
business, because the view may not be located where the user sees it. Recall
(from Chapter 4) that the animation is just an “animation movie” — what
the user sees is the presentation layer. The view itself, which the user is
trying to touch, is at the location of the model layer. If user interaction is
allowed during an animation that moves a view from one place to another,
and if the user taps where the animated view appears to be, the tap might
mysteriously fail because the actual view is elsewhere; conversely, the user
might accidentally tap where the view actually is, and the tap will hit the
animated view even though it appears to be elsewhere.
For this reason, view animation ordered through a UIView class method, by
default, turns off touchability of a view while it is being animated — though
you can override that with .allowUserInteraction in the options:
argument. Indeed, it is not uncommon to turn off your entire interface’s

touchability during animation with UIApplication’s beginIgnoringIntera
ctionEvents, as I mentioned earlier in this chapter.
Before the advent of the property animator in iOS 10, you could make an
animated view touchable if you really wanted to, but it took some work. In
particular, you had to hit-test the presentation layer. In this simple example,
we implement hit-test munging in the view being animated:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {

 let pres = self.layer.presentation()!

 let suppt = self.convert(point, to: self.superview!)

 let prespt = self.superview!.layer.convert(suppt, to: pres)

 return super.hitTest(prespt, with: e)

}

That works, but the animated view, as Apple puts it in the WWDC 2011
videos, “swallows the touch.” For example, suppose the view in motion is a
button. Although our hit-test munging makes it possible for the user to tap
the button as it is being animated, and although the user sees the button
highlight in response, the button’s action message is not sent in response to
this highlighting if the animation is in-flight when the tap takes place. This
behavior seems unfortunate, but it’s generally possible to work around it —
for instance, with a gesture recognizer.
A property animator makes things far simpler. By default, a property
animator’s isUserInteractionEnabled is true. That means the animated
view is touchable. As long as you don’t also set the property animator’s isM
anualHitTestingEnabled to true, the property animator will hit-test the
animated view’s presentation layer for you, so that you don’t have to. (If
you do set isManualHitTestingEnabled to true, the job of hit-testing is
turned back over to you; you might want to do this in complicated situations
where the property animator’s hit-test munging isn’t sufficient.) Moreover,
the animated view doesn’t “swallow the touch.” To animate a button that
remains tappable while the animation is in-flight, just animate the button:

let anim = UIViewPropertyAnimator(duration: 10, curve: .linear) {

 self.button.center = goal

}

anim.startAnimation()

By combining the power of a property animator to make its animated view
touchable with its power to make its animation interruptible, we can make a
view alternate between being animated and being manipulated by the user.
To illustrate, I’ll extend the preceding example. The view is slowly
animating its way toward the goal position. But at any time, the user can
grab it and drag it around (during which time, the animation is interrupted).
As soon as the user releases the view, the animation resumes: the view
continues on its way toward the goal position.
In order to be draggable, the view has a UIPanGestureRecognizer. The
property animator is now retained in an instance property (self.anim) so
that the action method can access it; we have a method that creates the
property animator (you’ll see in a moment what the factor: parameter is
for):

func configAnimator(factor:Double = 1) {

 self.anim = UIViewPropertyAnimator(

 duration: 10 * factor, curve: .linear) {

 self.button.center = self.goal

 }

}

All the work takes place in the gesture recognizer’s action method; as usual,
we have a switch statement that tests the gesture recognizer’s state. In the
.began case, we interrupt the animation so that dragging can happen:

case .began:

 if self.anim.state == .active {

 self.anim.stopAnimation(true)

 }

 fallthrough

The .changed case is our usual code for making a view draggable:

case .changed:

 let delta = p.translation(in:v.superview)

 var c = v.center

 c.x += delta.x; c.y += delta.y

 v.center = c

 p.setTranslation(.zero, in: v.superview)

The .ended case is the really interesting part. Our aim is to resume
animating the view from wherever it now is toward the goal. In my
opinion, this feels most natural if the speed at which the view moves
remains the same. Thus, the ratio between durations is the ratio between the
distance of the view’s original position from the goal and its current
distance from the goal:

case .ended:

 // how far are we from the goal relative to original distance?

 func pyth(_ pt1:CGPoint, _ pt2:CGPoint) -> CGFloat {

 let x = pt1.x - pt2.x

 let y = pt1.y - pt2.y

 return sqrt(x*x + y*y)

 }

 let origd = pyth(self.oldButtonCenter, self.goal)

 let curd = pyth(v.center, self.goal)

 let factor = curd/origd

 self.configAnimator(factor:Double(factor))

 self.anim.startAnimation()

Initial Touch Event Delivery
When the touch situation changes, an event containing all touches is handed
to the UIApplication instance by calling its sendEvent(_:), and the
UIApplication in turn hands it to the UIWindow by calling its sendEvent
(_:). The UIWindow then performs the complicated logic of examining,
for every touch, the hit-test view and its superviews and their gesture
recognizers, and deciding which of them should be sent a touch method
call.

You can override sendEvent(_:) in a subclass of UIWindow or
UIApplication. These are delicate and crucial maneuvers, however, and you

wouldn’t want to lame your application by interfering with them. Moreover,
it is unlikely, nowadays, that you would need to resort to such measures. A
typical use case before the advent of gesture recognizers was that you
needed to detect touches directed to an object of some built-in interface
class in a way that subclassing wouldn’t permit.
For example, suppose you want to know when the user swipes a
UIWebView; you’re not allowed to subclass UIWebView, and in any case it
eats the touch. The solution used to be to subclass UIWindow and override
sendEvent(_:); you would then work out whether this was a swipe on the
UIWebView and respond accordingly, or else call super. Now, however,
you can attach a UISwipeGestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also
delivered to its hit-test view, the same touch method being called on both.
This is the most reasonable approach, as it means that touch interpretation
by a view isn’t jettisoned just because gesture recognizers are in the picture.
Later on in the multitouch sequence, if all the gesture recognizers in a
view’s swarm declare failure to recognize their gesture, that view’s internal
touch interpretation continues as if gesture recognizers had never been
invented. Moreover, touches and gestures are two different things;
sometimes you want to respond to both. In one of my apps, where the user
can tap cards, each card has a single tap gesture recognizer and a double tap
gesture recognizer, but it also responds directly to touchesBegan(_:wit
h:) by reducing its own opacity, and to touchesEnded(_:with:) and touc
hesCancelled(_:with:) by restoring its opacity. The result is that the user
always sees feedback when touching a card, instantly, regardless of what
the gesture turns out to be.
Later, if a gesture recognizer in a view’s swarm recognizes its gesture, that
view is sent touchesCancelled(_:with:) for any touches that went to
that gesture recognizer and were hit-tested to that view, and subsequently

the view no longer receives those touches. This behavior can be changed by
setting a gesture recognizer’s cancelsTouchesInView property to false; if
you were to do that for every gesture recognizer in a view’s swarm, the
view would receive touch events more or less as if no gesture recognizers
were in the picture.
If a gesture recognizer happens to be ignoring a touch — because, for
example, it was told to do so with ignore(_:for:) — then touchesCance
lled(_:with:) won’t be sent to the view for that touch when that gesture
recognizer recognizes its gesture. Thus, a gesture recognizer’s ignoring a
touch is the same as simply letting it fall through to the view, as if the
gesture recognizer weren’t there.
Gesture recognizers can also delay the delivery of touches to a view, and by
default they do. The UIGestureRecognizer property delaysTouchesEnded
is true by default, meaning that when a touch reaches .ended and the
gesture recognizer’s touchesEnded(_:with:) is called, if the gesture
recognizer is still allowing touches to be delivered to the view because its
state is still .possible, it doesn’t deliver this touch until it has resolved the
gesture. When it does, either it will recognize the gesture, in which case the
view will have touchesCancelled(_:with:) called instead (as already
explained), or it will declare failure and now the view will have touchesEn
ded(_:with:) called.
The reason for this behavior is most obvious with a gesture where multiple
taps are required. The first tap ends, but this is insufficient for the gesture
recognizer to declare success or failure, so it withholds that touch from the
view. In this way, the gesture recognizer gets the proper priority. In
particular, if there is a second tap, the gesture recognizer should succeed
and send touchesCancelled(_:with:) to the view — but it can’t do that
if the view has already been sent touchesEnded(_:with:).
It is also possible to delay the entire suite of touch methods from being
called on a view, by setting a gesture recognizer’s delaysTouchesBegan
property to true. Again, this delay would be until the gesture recognizer
can resolve the gesture: either it will recognize it, in which case the view

will have touchesCancelled(_:with:) called, or it will declare failure, in
which case the view will receive touchesBegan(_:with:) plus any further
touch method calls that were withheld — except that it will receive at most
one touchesMoved(_:with:) call, the last one, because if a lot of these
were withheld, to queue them all up and send them all at once now would
be simply insane.
When touches are delayed and then delivered, what’s delivered is the
original touch with the original event, which still have their original
timestamps. Because of the delay, these timestamps may differ significantly
from now. As I’ve already said, analysis that is concerned with timing of
touches should consult the timestamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent(_:) to implement the logic of isMul
tipleTouchEnabled and isExclusiveTouch:

isMultipleTouchEnabled

If a new touch is hit-tested to a view whose isMultipleTouchEnabled
is false and which already has an existing touch hit-tested to it, then se
ndEvent(_:) never delivers the new touch to that view. However, that
touch is delivered to the view’s swarm of gesture recognizers; in other
words, gesture recognizers are not affected by the existence of the isMu
ltipleTouchEnabled property.

isExclusiveTouch

If there’s an isExclusiveTouch view in the window, then sendEvent
(_:) must decide whether a particular touch should be delivered, in
accordance with the meaning of isExclusiveTouch, which I described
earlier. If a touch is not delivered to a view because of isExclusiveTou
ch restrictions, it is not delivered to its swarm of gesture recognizers
either; in other words, gesture recognizers are affected by the existence
of the isExclusiveTouch property.

For example, suppose you have two views with touch handling, and
their common superview has a pinch gesture recognizer. Normally, if
you touch both views simultanously and pinch, the pinch gesture
recognizer recognizes. But if both views are marked isExclusiveTouc
h, the pinch gesture recognizer does not recognize.

Gesture Recognition Logic
When a gesture recognizer recognizes its gesture, everything changes. As
we’ve already seen, the touches for this gesture recognizer are sent to their
hit-test views as a touchesCancelled(_:with:) message, and then no
longer arrive at those views (unless the gesture recognizer’s cancelsTouch
esInView is false). Moreover, all other gesture recognizers pending with
regard to these touches are made to fail, and then are no longer sent the
touches they were receiving either.
If the very same event would cause more than one gesture recognizer to
recognize, there’s an algorithm for picking the one that will succeed and
make the others fail: a gesture recognizer lower down the view hierarchy
(closer to the hit-test view) prevails over one higher up the hierarchy, and a
gesture recognizer more recently added to its view prevails over one less
recently added.
There are various means for modifying this “first past the post” behavior:

Dependency order
Certain methods institute a dependency order, causing a gesture
recognizer to be put on hold when it tries to transition from the .possib
le state to the .began (continuous) or .ended (discrete) state: only if a
certain other gesture recognizer fails is this one permitted to perform
that transition. Apple says that in a dependency like this, the gesture
recognizer that fails first is not sent reset (and won’t receive any
touches) until the second finishes its state sequence and is sent reset,
so that they resume recognizing together. The methods are:

require(toFail:) sent to a gesture recognizer

shouldRequireFailure(of:) in a subclass

shouldBeRequiredToFail(by:) in a subclass

gestureRecognizer(_:shouldRequireFailureOf:) in the
delegate

gestureRecognizer(_:shouldBeRequiredToFailBy:) in the
delegate

The first of those methods sets up a permanent relationship between two
gesture recognizers, and cannot be undone; but the others are sent every
time a gesture starts in a view whose swarm includes both gesture
recognizers, and the result is applied only on this occasion.
The delegate methods work together as follows. For each pair of gesture
recognizers in the hit-test view’s swarm, the members of that pair are
arranged in a fixed order (as I’ve already described). The first of the
pair is sent shouldRequire and then shouldBeRequired, and then the
second of the pair is sent shouldRequire and then shouldBeRequired.
But if any of those four methods returns true, the relationship between
that pair is settled and we proceed immediately to the next pair.

Success into failure

Certain methods, by returning false, turn success into failure; at the
moment when the gesture recognizer is about to declare that it
recognizes its gesture, transitioning from the .possible state to the .be
gan (continuous) or .ended (discrete) state, it is forced to fail instead:

UIView’s gestureRecognizerShouldBegin(_:)

The delegate’s gestureRecognizerShouldBegin(_:)

Simultaneous recognition
A gesture recognizer succeeds, but some other gesture recognizer is not
forced to fail, in accordance with these methods:

gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:)
in the delegate

canPrevent(_:)
in a subclass

canBePrevented(by:)
in a subclass

In the subclass methods, prevent means “by succeeding, you force
failure upon this other,” and bePrevented means “by succeeding, this
other forces failure on you.” They work together as follows. canPreven
t is called first; if it returns false, that’s the end of the story for that
gesture recognizer, and canPrevent is called on the other gesture
recognizer. But if canPrevent returns true when it is first called, the
other gesture recognizer is sent canBePrevented. If it returns true,
that’s the end of the story; if it returns false, the process starts over the
other way around, sending canPrevent to the second gesture
recognizer, and so forth. In this way, conflicting answers are resolved
without the device exploding: prevention is regarded as exceptional
(even though it is in fact the norm) and will happen only if it is
acquiesced to by everyone involved.

Part II. Interface

This part of the book describes view controllers, the major building blocks
of an app’s interface and functionality, along with the views provided by the
Cocoa framework.

Chapter 6 is about view controllers, the basis of an iOS app’s
architecture. View controllers manage interface and respond to user
actions. Most of your app’s code will be in a view controller.
Chapter 7 is about scroll views, which let the user slide and zoom the
interface.
Chapter 8 explains table views and collection views, which are scroll
views for navigating through data.
Chapter 9 is about popovers, split views, iPad multitasking, and drag and
drop.
Chapter 10 describes how text is presented in an iOS app’s interface.
Chapter 11 explains how to put a web browser inside your app.
Chapter 12 describes all the remaining built-in UIKit interface objects.
Chapter 13 is about various forms of modal dialog that can appear in
front of an app’s interface.

Chapter 6. View Controllers

An iOS app’s interface is dynamic, and with good reason. The entire
interface needs to fit into a single display consisting of a single window,
which in the case of the iPhone can be almost forbiddingly tiny. The
solution is to introduce, at will, completely new interface — a new view,
possibly with an elaborate hierarchy of subviews — replacing or covering
the previous interface.
For this to work, regions of interface material — often the entire contents of
the screen — must come and go in an agile fashion that is understandable to
the user. There will typically be a logical, structural, and functional
relationship between the view that was present and the view that replaces or
covers it, and this relationship will need to be maintained behind the scenes,
in your code, as well as being indicated to the user: multiple views may be
pure alternatives or siblings of one another, or one view may be a temporary
replacement for another, or views may be like successive pages of a book.
Animation is often used to emphasize and clarify these relationships as one
view is superseded by another. Navigational interface and a vivid,
suggestive gestural vocabulary give the user an ability to control what’s
seen and an understanding of the possible options: a tab bar whose buttons
summon alternate views, a back button or a swipe gesture for returning to a
previously visited view, a tap on an interface element to dive deeper into a
conceptual world, a Done or Cancel button to escape from a settings screen,
and so forth.
In iOS, the management of this dynamic interface is performed through
view controllers. A view controller is an instance of UIViewController.
Actually, a view controller is most likely to be an instance of a
UIViewController subclass; the UIViewController class is designed to be
subclassed, and you are very unlikely to use a plain vanilla
UIViewController object without subclassing it. You might write your own
UIViewController subclass; you might use a built-in UIViewController

subclass such as UINavigationController or UITabBarController; or you
might subclass a built-in UIViewController subclass such as
UITableViewController (Chapter 8).
A view controller manages a single view (which can, of course, have
subviews); its view property points to the view it manages. This is the view
controller’s main view, or simply its view. A view controller’s main view
has no explicit pointer to the view controller that manages it, but a view
controller is a UIResponder and is in the responder chain just above its
view, so it is the view’s next responder.

View Controller Responsibilities
A view controller’s most important responsibility is its view. A view
controller must have a view; it is useless without one. If that view is to be
useful, it must somehow get into the interface, and hence onto the screen; a
view controller is usually responsible for seeing to that, too, but typically
not the view controller whose view this is; rather, this will be taken care of
by some view controller whose view is already in the interface. In many
cases, this will happen automatically (I’ll talk more about that in the next
section), but you can participate in the process, and for some view
controllers you may have to do the work yourself. A view that comes may
also eventually go, and the view controller responsible for putting a view
into the interface will then be responsible also for removing it.
A view controller will typically provide animation of the interface as a view
comes or goes. Built-in view controller subclasses and built-in ways of
summoning or removing a view controller and its view come with built-in
animations. We are all familiar, for example, with tapping something to
make new interface slide in from the side of the screen, and then later
tapping a back button to make that interface slide back out again. In cases
where you are responsible for getting a view controller’s view onto the
screen, you are also responsible for providing the animation. And you can
take complete charge of the animation even for built-in view controllers.

View controllers, working together, can save and restore state
automatically. This feature helps you ensure that if your app is terminated in
the background and subsequently relaunched, it will quickly resume
displaying the same interface that was showing when the user last saw it.
The most powerful view controller is the top-level view controller. This
might be a fullscreen presented view controller, as I’ll explain later in this
chapter; but most of the time it will be your app’s root view controller. This
is the view controller managing the root view, the view that sits at the top of
the view hierarchy, as the one and only direct subview of the main window,
acting as the superview for the rest of the app’s interface. I described in
Chapter 1 how this view controller attains its lofty position: it is assigned to
the window’s rootViewController property. The window then takes that
view controller’s main view, gives it the correct frame (resizing it if
necessary), and makes it its own subview.
The top-level view controller bears ultimate responsibility for some
important decisions about the behavior of your app:

Rotation of the interface
The user can rotate the device, and you might like the interface to rotate
in response, to compensate. The runtime consults the top-level view
controller about whether to permit such rotation.

Manipulation of the status bar
The status bar is actually a secondary window belonging to the runtime.
The runtime consults the top-level view controller as to whether the
status bar should be present and, if so, whether its text should be light or
dark.

Above and beyond all this, view controllers are typically the heart of any
app, by virtue of their role in the model–view–controller architecture: view
controllers are controllers (hence the name). Views give the user something
to tap, and display data for the user to see; they are view. The data itself is
model. But the logic of determining, at any given moment, what views are
shown, what data those views display, and what the response to the user’s
gestures should be, is controller logic. Typically, that means view controller

logic. In any app, view controllers will be the most important controllers —
frequently, in fact, the only controllers. View controllers are where you’ll
put the bulk of the code that actually makes your app do what your app
does.

View Controller Hierarchy
There is always one root view controller, along with its view, the root view.
There may also be other view controllers, each of which has its own main
view. Such view controllers are subordinate to the root view controller. In
iOS, there are two subordination relationships between view controllers:

Parentage (containment)
A view controller can contain another view controller. The containing
view controller is the parent of the contained view controller; the
contained view controller is a child of the containing view controller. A
containment relationship between two view controllers is reflected in
their views: the child view controller’s view, if it is in the interface at
all, is a subview (at some depth) of the parent view controller’s view.
The parent view controller is responsible for getting a child view
controller’s view into the interface, by making it a subview of its own
view, and (if necessary) for removing it later. Introduction of a view,
removal of a view, and replacement of one view with another often
involve a parent view controller managing its children and their views.
A familiar example is the navigation interface: the user taps something
and new interface slides in from the side, replacing the current interface.
Figure 6-1 shows the TidBITS News app displaying a typical iPhone
interface, consisting of a list of story headlines and summaries. This
interface is managed by a parent view controller (a
UINavigationController) with a child view controller whose view is the
list of headlines and summaries. If the user taps an entry in the list, the
whole list will slide away to one side and the text of that story will slide
in from the other side; the parent view controller has acquired an
additional child view controller, and has manipulated the views of its

children to bring about this animated change of the interface. The parent
view controller itself, meanwhile, stays put — and so does its own view,
which functions as a stable superview of the child view controllers’
views.

Figure 6-1. The TidBITS News app

Presentation (modal views)
A view controller can present another view controller. The first view
controller is the presenting view controller (not the parent) of the
second; the second view controller is the presented view controller (not
a child) of the first. The second view controller’s view replaces or
covers, completely or partially, the first view controller’s view.

The name of this mechanism, and of the relationship between the view
controllers involved, has changed over time. In iOS 4 and before, the
presented view controller was called a modal view controller, and its
view was a modal view; there is an analogy here to the desktop, where a
window is modal if it sits in front of, and denies the user access to, the
rest of the interface until it is explicitly dismissed. The terms presented
view controller and presented view are more recent and more general,
but the historical term “modal” still appears in the documentation and in
the API.
A presented view controller’s view does indeed sometimes look rather
like a desktop modal view; for example, it might have a button such as
Done or Save for dismissing the view, the implication being that this is
a place where the user must make a decision and can do nothing else
until the decision is made. However, as I’ll explain later, that isn’t the
only use of a presented view controller.

There is thus a hierarchy of view controllers. In a properly constructed iOS
app, there should be exactly one root view controller, and it is the only
nonsubordinate view controller — it has neither a parent view controller nor
a presenting view controller. Any other view controller, if its view appears
in the interface, must be either a child view controller of some parent view
controller or a presented view controller of some presenting view controller.
Moreover, there is a clear relationship between the view hierarchy and the
view controller hierarchy. Recall that, for a parent view controller and child
view controller, the child’s view, if present in the interface, must be a
subview of the parent’s view. Similarly, for a presenting view controller and
presented view controller, the presented view controller’s view completely
replaces, or is coherently interposed in front of, the presenting view
controller’s view. In this way, the actual views of the interface form a
hierarchy dictated by and parallel to some portion of the view controller
hierarchy: every view visible in the interface owes its presence to a view
controller’s view, either because it is a view controller’s view, or because
it’s a subview of a view controller’s view.

Automatic Child View Placement
The place of a view controller’s view in the view hierarchy will often be
automatic. You might never need to put a UIViewController’s view into the
view hierarchy manually. You’ll manipulate view controllers; their
hierarchy and their built-in functionality will construct and manage the
view hierarchy for you.
For example, in Figure 6-1, we see two interface elements:

The navigation bar, containing the TidBITS logo.
The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the
view controller hierarchy and the view hierarchy (Figure 6-2):

The app’s root view controller is a UINavigationController; the
UINavigationController’s view is the window’s sole immediate subview
(the root view). The navigation bar is a subview of that view.
The UINavigationController contains a second UIViewController — a
parent–child relationship. The child is a custom UIViewController
subclass (called MasterViewController); its view is what occupies the
rest of the window, as another subview of the UINavigationController’s
view. That view is the UITableView. This architecture means that when
the user taps a story listing in the UITableView, the whole table will
slide out, to be replaced by the view of a different UIViewController,
while the navigation bar stays.

Figure 6-2. The TidBITS News app’s initial view controller and view hierarchy

In Figure 6-2, notice the word “automatic” in the two large right-pointing
arrows associating a view controller with its view. This is intended to tell
you how the view controller’s view became part of the view hierarchy. The
UINavigationController’s view became the window’s subview
automatically, by virtue of the UINavigationController being the window’s
rootViewController. The MasterViewController’s view became the
UINavigationController’s view’s subview automatically, by virtue of the
MasterViewController being the UINavigationController’s child.

Manual Child View Placement

Sometimes, you’ll write your own parent view controller class. In that case,
you will be doing the kind of work that the UINavigationController was
doing in that example, so you will need to put a child view controller’s view
into the interface manually, as a subview (at some depth) of the parent view
controller’s view.
I’ll illustrate with another app of mine (Figure 6-3). The interface displays a
flashcard containing information about a Latin word, along with a toolbar
(the dark area at the bottom) where the user can tap an icon to choose
additional functionality.

Figure 6-3. A Latin flashcard app

Figure 6-4. The Latin flashcard app’s initial view controller and view hierarchy

Again, I will describe how the interface shown in Figure 6-3 comes to
appear on the screen through the view controller hierarchy and the view
hierarchy (Figure 6-4). The app actually contains over a thousand of these
Latin words, and I want the user to be able to navigate between flashcards
to see the next or previous word; there is an excellent built-in view
controller for this purpose, the UIPageViewController. However, that’s just
for the card; the toolbar at the bottom stays there, so the toolbar can’t be
inside the UIPageViewController’s view. Therefore:

The app’s root view controller is my own UIViewController subclass
(called RootViewController); its view contains the toolbar, and is also to
contain the UIPageViewController’s view. My RootViewController’s
view becomes the window’s subview (the root view) automatically, by

virtue of the RootViewController’s being the window’s rootViewContr
oller.
In order for the UIPageViewController’s view to appear in the interface,
since it is not the root view controller, it must be some view controller’s
child. There is only one possible parent — my RootViewController. My
RootViewController must function as a custom parent view controller,
with the UIPageViewController as its child. So I have made that happen,
and I have therefore also had to put the UIPageViewController’s view
manually into my RootViewController’s view.
I hand the UIPageViewController an instance of another custom
UIViewController subclass (called CardController) as its child, and the
UIPageViewController displays the CardController’s view
automatically.

Presentation View Placement
Here’s an example of a presented view controller. My Latin flashcard app
has a second mode, where the user is drilled on a subset of the cards in
random order; the interface looks very much like the first mode’s interface
(Figure 6-5), but it behaves completely differently.

Figure 6-5. The Latin flashcard app, in drill mode

Figure 6-6. The Latin flashcard app’s drill mode view controller and view hierarchy

To implement this, I have another UIViewController subclass (called
DrillViewController); it is structured very much like RootViewController.
When the user is in drill mode, a DrillViewController is being presented by
the RootViewController, meaning that the DrillViewController’s interface
takes over the screen automatically: the DrillViewController’s view, with its
whole subview hierarchy, including the views of the DrillViewController’s
children in the view controller hierarchy, replaces the RootViewController’s
view and its whole subview hierarchy (Figure 6-6). The

RootViewController is still the window’s rootViewController, and its
hierarchy of child view controllers remains in place, but the corresponding
view hierarchy is not in the interface; it will be returned to the interface
automatically when we leave drill mode (because the presented
DrillViewController is dismissed), and the situation will look like Figure 6-
4 once again.

Ensuring a Coherent Hierarchy
For any app that you write, for every moment in the lifetime of that app,
you should be able to construct a diagram showing the hierarchy of view
controllers and charting how each view controller’s view fits into the view
hierarchy. The diagram should be similar to mine! The view hierarchy
should run in neat parallel with the view controller hierarchy; there should
be no crossed wires or orphan views. And every view controller’s view
should be placed automatically into the view hierarchy, except in the
following two situations:

The view controller is the child of your custom parent view controller.
There is a complicated parent–child dance you have to do. See
“Container View Controllers”.
You’re doing a custom transition animation. See “Custom Transition”.

TIP
What you’re really doing by following those rules is ensuring a coherent responder chain. The
view controller hierarchy is, in fact, a subset of the responder chain.

New in Xcode 9, you can actually see the view controller hierarchy as part
of the view debugger’s display. Figure 6-7 displays the view debugger’s
outline for the same interface shown in Figure 6-3, and the analysis accords
with mine. The window’s root view controller is my RootViewController,
which has a child UIPageViewController, which has a child CardController;
the window contains the root view controller’s view, the root view

controller’s view contains the toolbar and the UIPageViewController’s
view, and the page view controller’s view contains the CardController’s
view.

Figure 6-7. The view debugger displays the view controller hierarchy

View Controller Creation
A view controller is an instance like any other instance, and it is created like
any other instance — by instantiating its class. You might perform this
instantiation in code; in that case, you will of course have to initialize the
instance properly as you create it. Here’s an example from one of my own
apps:

let llc = LessonListController(terms: self.terms)

let nav = UINavigationController(rootViewController: llc)

In that example, LessonListController is my own UIViewController
subclass, so I have called its designated initializer, which I myself have
defined; UINavigationController is a built-in UIViewController subclass,
and I have used one of its convenience initializers.
Alternatively, a view controller instance might come into existence through
the loading of a nib. To make it possible to get a view controller into the nib
in the first place, view controllers are included among the object types
available through the Object library in the nib editor. For example, a scene

in a storyboard contains a view controller; in the built app, that view
controller will be stored in a nib, and when the app runs, if that view
controller is needed, that nib will be loaded to obtain that view controller
instance.
Once a view controller comes into existence, it must be retained so that it
will persist. This will happen automatically when the view controller is
assigned a place in the view controller hierarchy that I described in the
previous section. A view controller assigned as a window’s rootViewContr
oller is retained by the window. A view controller assigned as another
view controller’s child is retained by the parent view controller. A presented
view controller is retained by the presenting view controller. The parent
view controller or presenting view controller then takes ownership, and will
release the other view controller in good order when it is no longer needed.
Here’s an example, from one of my apps, of view controllers being
instantiated and then being retained by being placed into the view controller
hierarchy:

let llc = LessonListController(terms: self.terms)

let nav = UINavigationController(rootViewController: llc)

self.present(nav, animated: true)

That’s the same code I showed a moment ago, extended by one line. It
comes from a view controller class called RootViewController. Here’s how
view controller creation and memory management works in those three
lines:

I instantiate LessonListController.
I instantiate UINavigationController, and I assign the
LessonListController instance to the UINavigationController instance as
its child; the navigation controller retains the LessonListController
instance and takes ownership of it.
I present the UINavigationController instance on self, a
RootViewController instance; the RootViewController instance is the
presenting view controller, and it retains and takes ownership of the
UINavigationController instance as its presented view controller. The

RootViewController instance itself is already the window’s rootViewCo
ntroller, and is retained by the window — and so the view controller
hierarchy is safely established.

All of this sounds straightforward, but it is worth dwelling on, because
things can go wrong. It is quite possible, if things are mismanaged, for a
view controller’s view to get into the interface while the view controller
itself is allowed to go out of existence. This must not be permitted. If such a
thing happens, at the very least the view will apparently misbehave, failing
to perform its intended functionality, because that functionality is embodied
by the view controller, which no longer exists. (I’ve made this mistake, so I
speak from experience here.) If you instantiate a view controller in code,
you should immediately ask yourself who will be retaining this view
controller.

How a View Controller Obtains Its View
Initially, when it first comes into existence, a view controller has no view. A
view controller is a small, lightweight object; a view is a relatively
heavyweight object, involving interface elements that can occupy a
significant amount of memory. Therefore, a view controller postpones
obtaining its view until it has to do so, namely, when it is asked for the
value of its view property. At that moment, if its view property is nil, the
view controller sets about obtaining its view. (We say that a view controller
loads its view lazily.) Typically, this happens because the time has come to
put the view controller’s view into the interface.
In working with a newly instantiated view controller, be careful not to refer
to its view property if you don’t need to, since this can trigger the view
controller’s obtaining its view prematurely. (As usual, I speak from
experience here.) To learn whether a view controller has a view without
causing it to load its view, consult its isViewLoaded property. You can refer
to a view controller’s view safely, without loading it, as its viewIfLoaded
(an Optional); you can also cause the view controller to load its view

explicitly, rather than as a side effect of mentioning its view, by calling loa
dViewIfNeeded.

As soon as a view controller has its view, its viewDidLoad method is called.
If this view controller is an instance of your own UIViewController
subclass, viewDidLoad is your opportunity to modify the contents of this
view — to populate it with subviews, to tweak the subviews it already has,
and so forth — as well as to perform other initializations of the view
controller consonant with its acquisition of a view. The view property is
now pointing to the view, so it is safe to refer to self.view. Bear in mind,
however, that the view may not yet be part of the interface! In fact, it almost
certainly is not. (To confirm this, check whether self.view.window is
nil.) Thus, for example, you cannot necessarily rely on the dimensions of
the view at this point to be the dimensions that the view will assume when it
becomes visible in the interface. Performing dimension-dependent
customizations prematurely in viewDidLoad is a common beginner
mistake.

Before viewDidLoad is called, the view controller must obtain its view. The
question of where and how the view controller will get its view is often
crucial. In some cases, to be sure, you won’t care about this; in particular,
when a view controller is an instance of a built-in UIViewController
subclass such as UINavigationController or UITabBarController, its view is
out of your hands — you might never even have cause to refer to this view
over the entire course of your app’s lifetime — and you simply trust that the
view controller will somehow generate its view. But when the view
controller is an instance of your own subclass of UIViewController, and
when you yourself will design or modify its view, it becomes essential to
understand the process whereby a view controller gets its view.
This process is not difficult to understand, but it is rather elaborate, because
there are multiple possibilities. Most important, this process is not magic.
Yet it quite possibly causes more confusion to beginners than any other
matter connected with iOS programming. Therefore, I will explain it in
detail. The more you know about the details of how a view controller gets

its view, the deeper and clearer will be your understanding of the entire
workings of your app, its view controllers, its .storyboard and .xib files, and
so on.
The main alternatives are as follows:

The view may be instantiated in the view controller’s own code,
manually.
The view may be created as an empty generic view, automatically.
The view may be loaded from a nib file.

In the rest of this section, I’ll demonstrate each of these three ways in which
a view controller can obtain its view. For purposes of the demonstration,
we’ll need a view controller that we instantiate manually (as opposed to a
view controller that comes automatically from a storyboard, as explained in
the next section). Since I haven’t yet described how to do anything with a
view controller other than make it the window’s rootViewController, this
view controller will be the window’s rootViewController. If you want to
follow along with hands-on experimentation, you can start with a clean
project created from the Single View app template. The template includes a
storyboard and a UIViewController subclass called ViewController, but
we’re going to ignore both of those, behaving as if the storyboard didn’t
exist: we’ll create our own UIViewController subclass instance — which
I’ll call RootViewController — and make it the root view controller (as
described in Chapter 1 and Appendix B). When you launch the project,
you’ll see RootViewController’s view, thus proving that the view controller
has successfully obtained its view.

Manual View
To supply a UIViewController’s view manually, in code, override its loadV
iew method. Your job here is to obtain an instance of UIView (or a subclass
of UIView) — typically by instantiating it directly — and assign it to self.
view. You must not call super (for reasons that I’ll make clear later on).
Let’s try it:

1. We need a UIViewController subclass, so choose File → New → File;
specify iOS → Source → Cocoa Touch Class. Click Next.

2. Name the class RootViewController, and specify that it is to be a
UIViewController subclass. Uncheck “Also create XIB file” (if it
happens to be checked). Click Next.

3. Confirm that we’re saving into the appropriate folder and group, and
that these files will be part of the app target. Click Create.

We now have a RootViewController class, and we proceed to edit its code.
In RootViewController.swift, we’ll implement loadView. To convince
ourselves that the example is working correctly, we’ll give the view that we
create manually an identifiable color, and we’ll put some interface inside it,
namely a “Hello, World” label:

override func loadView() {

 let v = UIView()

 v.backgroundColor = .green

 self.view = v // *

 let label = UILabel()

 v.addSubview(label)

 label.text = "Hello, World!"

 label.autoresizingMask = [

 .flexibleTopMargin,

 .flexibleLeftMargin,

 .flexibleBottomMargin,

 .flexibleRightMargin]

 label.sizeToFit()

 label.center = CGPoint(v.bounds.midX, v.bounds.midY)

 label.frame = label.frame.integral

}

The starred line is the key: we made a view and we assigned it to self.vie
w. In order to see that that code works, we need to instantiate
RootViewController and place that instance into our view controller
hierarchy. As I explained a moment ago, we’ll do that by making
RootViewController the app’s root view controller. Edit AppDelegate.swift
to look like this:

import UIKit

@UIApplicationMain

class AppDelegate : UIResponder, UIApplicationDelegate {

 var window : UIWindow?

 func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 self.window = self.window ?? UIWindow()

 let theRVC = RootViewController() // *

 self.window!.rootViewController = theRVC // *

 self.window!.backgroundColor = .white

 self.window!.makeKeyAndVisible()

 return true

 }

}

Again, the starred lines are the key: we instantiate RootViewController and
make that instance the app’s root view controller. Build and run the app.
Sure enough, there’s our green background and our “Hello, world” label!

When we created our view controller’s view (self.view), we never gave it
a reasonable frame. This is because we are relying on someone else to
frame the view appropriately. In this case, the “someone else” is the
window, which responds to having its rootViewController property set to
a view controller by framing the view controller’s view appropriately as the
root view before putting it into the window as a subview. In general, it is the
responsibility of whoever puts a view controller’s view into the interface to
give the view the correct frame — and this will never be the view controller
itself (although under some circumstances the view controller can express a
preference in this regard). Indeed, the size of a view controller’s view may
be changed as it is placed into the interface, and you must keep in mind, as
you design your view controller’s view and its subviews, that this can
happen. (That’s why, in the preceding code, I used autoresizing to keep the
label centered in the view, no matter how the view may be resized.)

Generic Automatic View
We should distinguish between creating a view and populating it. The
preceding example fails to draw this distinction. The lines that create our

RootViewController’s view are merely these:

let v = UIView()

self.view = v

Everything else configures and populates the view, turning it green and
putting a label into it. A more appropriate place to populate a view
controller’s view is its viewDidLoad implementation, which, as I’ve already
mentioned, is called after the view exists and can be referred to as self.vi
ew. We could therefore rewrite the preceding example like this (just for fun,
I’ll use autolayout this time):

override func loadView() {

 let v = UIView()

 self.view = v

}

override func viewDidLoad() {

 super.viewDidLoad()

 let v = self.view!

 v.backgroundColor = .green

 let label = UILabel()

 v.addSubview(label)

 label.text = "Hello, World!"

 label.translatesAutoresizingMaskIntoConstraints = false

 NSLayoutConstraint.activate([

 label.centerXAnchor.constraint(equalTo:v.centerXAnchor),

 label.centerYAnchor.constraint(equalTo:v.centerYAnchor)

])

}

But if we’re going to do that, we can go even further and remove our
implementation of loadView entirely! It turns out that if you don’t
implement loadView, and if no view is supplied in any other way, then
UIViewController’s default implementation of loadView will do exactly
what we are doing: it creates a generic UIView object and assigns it to sel
f.view.
If we needed our view controller’s view to be a particular UIView subclass,
that wouldn’t be acceptable; but in this case, our view controller’s view is a

generic UIView object, so it is acceptable. Comment out or delete the entire
loadView implementation from the preceding code, and build and run the
app; our example still works!

View in a Separate Nib
In the preceding examples, we supplied and designed our view controller’s
view in code. That works, but of course we’re missing out on the
convenience of configuring and populating the view by designing it
graphically in Xcode’s nib editor. So now let’s see how a view controller
can obtain its view, ready-made, from a nib file.
To make this work, the nib file must be properly configured in accordance
with the demands of the nib-loading mechanism. The view controller
instance will already have been created. It will load the nib, setting itself as
the nib’s owner. The nib itself must be prepared to match this situation. In
the nib, the owner object must have same class as the view controller, and
its view outlet must point to the view object in the nib. The result is that
when the view controller loads the nib, the view instantiated from the nib is
assigned to the view controller’s view property automatically.
Suppose the nib is a .xib file. (Storyboards are discussed in the next
section.) In a .xib file, the owner object is the File’s Owner proxy object.
Therefore, in a .xib file that is to serve as the source of a view controller’s
view, the following two things must be true:

The File’s Owner proxy object’s class must correspond to the class of the
view controller whose view this will be. This will also cause the File’s
Owner to have a view outlet.

The File’s Owner proxy object’s view outlet must be connected to the
view.

Let’s try it. We can use the example we’ve already developed, with our
RootViewController class. Delete the implementation of loadView (if you
haven’t already) and viewDidLoad from RootViewController.swift, because

we want the view to come from a nib and we’re going to populate it in the
nib. Then:

1. Choose File → New → File and specify iOS → User Interface →
View. This will be a .xib file containing a UIView object. Click Next.

2. Name the file MyNib (meaning MyNib.xib). Confirm the appropriate
folder and group, and make sure that the file will be part of the app
target. Click Create.

3. Edit MyNib.xib. Prepare it in the way I described a moment ago:
a. Select the File’s Owner object; in the Identity inspector, set its

class to RootViewController.

b. Connect the File’s Owner view outlet to the View object.
4. Design the view. To make it clear that this is not the same view we

were creating previously, perhaps you should give the view a red
background color (in the Attributes inspector). Drag a UILabel into
the middle of the view and give it some text, such as “Hello, World!”

When our RootViewController instance wants its view, we want it to load
the MyNib nib. To make it do that, we must associate this nib with our
RootViewController instance. Recall these two lines from application(_:
didFinishLaunchingWithOptions:) in AppDelegate.swift:

let theRVC = RootViewController()

self.window!.rootViewController = theRVC

We’re going to change the first of those two lines. A UIViewController has
a nibName property that tells it what nib, if any, it should load to obtain its
view. However, we are not allowed to set the nibName property of theRVC
(it is read-only). Instead, as we instantiate the view controller, we use the
designated initializer, init(nibName:bundle:), like this:

let theRVC = RootViewController(nibName:"MyNib", bundle:nil)

self.window!.rootViewController = theRVC

(The nil argument to the bundle: parameter specifies the main bundle,
which is almost always what you want.)
To prove that this works, build and run. The red background appears! Our
view controller’s view is being obtained by loading it from the nib.
Now I’m going to describe a shortcut, based on the name of the nib. It turns
out that if the nib name passed to init(nibName:bundle:) is nil, a nib
will be sought automatically with the same name as the view controller’s
class. Moreover, UIViewController’s init() turns out to be a convenience
initializer: it actually calls init(nibName:bundle:), passing nil for both
arguments. This means, in effect, that we can return to using init() to
initialize the view controller, provided that the nib file’s name matches the
name of the view controller class.
Let’s try it:

1. Rename MyNib.xib to RootViewController.xib.
2. Change the code that instantiates and initializes our

RootViewController back to what it was before:

let theRVC = RootViewController()

self.window!.rootViewController = theRVC

Build and run. It works!
There’s an additional aspect to this shortcut based on the name of the nib. It
seems ridiculous that we should end up with a nib that has “Controller” in
its name merely because our view controller, as is so often the case, has
“Controller” in its name. A nib, after all, is not a controller. It turns out that
the runtime, in looking for a view controller’s corresponding nib, will in
fact try stripping “Controller” off the end of the view controller class’s
name. Thus, we can name our nib file RootView.xib instead of
RootViewController.xib, and it will still be properly associated with our
RootViewController instance.
When we created our UIViewController subclass, RootViewController, we
saw in the Xcode dialog a checkbox offering to create an eponymous .xib

file at the same time: “Also create XIB file.” We deliberately unchecked it.
Suppose we had checked it; what would have happened? In that case,
Xcode would have created RootViewController.swift and
RootViewController.xib. Moreover, it would have configured
RootViewController.xib for us: the File’s Owner’s class would already be set
to the view controller’s class, RootViewController, and its view outlet
would already be hooked up to the view. Thus, this view controller and .xib
file are ready for use together: you instantiate the view controller with a nil
nib name, and it gets its view from the eponymous nib.
(The .xib file created by Xcode in response to checking “Also create XIB
file” does not have “Controller” stripped off the end of its name. But you
can rename it manually later if the default name bothers you.)
Another convention involving the nib name has to do with the rules for
loading resources by name generally. The same naming rule that I
mentioned in Chapter 2 for an image file extended by the suffix ~ipad
applies to nib files. A nib file named RootViewController~ipad.xib will be
loaded on an iPad when a nib named "RootViewController" is sought.
This principle can simplify your life when you’re writing a universal app, as
you can easily use one nib on iPhone and another nib on iPad — though
you might not need to do that, since conditional interface design, described
in Chapter 1, may permit you to construct an interface differing on iPad and
iPhone in a single nib.

Summary
We are now in a position to summarize the sequence whereby a view
controller’s view is obtained. It turns out that the entire process is driven by
loadView:

1. When the view controller first decides that it needs its view, loadView
is always called:

If we override loadView, we supply and set the view in code, and
we do not call super. Therefore, the process of seeking a view
comes to an end.

If we don’t override loadView, UIViewController’s built-in default
implementation of loadView takes over, and performs the rest of
the process.

2. UIViewController’s default implementation of loadView looks for a
nib:

If the view controller was instantiated with an explicit nibName:, a
nib with that name is sought, and the process comes to an end. (If
there is no such nib, the app will crash at launch.)

If the view controller was instantiated with a nil nibName:, then:
a. An eponymous nib is sought. If it is found, it is loaded and

the process comes to an end.
b. If the view controller’s name ends in “Controller,” an

eponymous nib without the “Controller” is sought. If it is
found, it is loaded and the process comes to an end.

3. If we reach this point, UIViewController’s default implementation of
loadView creates a generic UIView.

How Storyboards Work
By default, a storyboard uses the third approach to supply a view controller
with its view: the view is loaded from a nib. To understand how this works,
distinguish between what you see in a storyboard and what really happens.
A scene in a storyboard looks like a view controller’s view. Actually, if you
look more closely at what the scene represents, it is a view controller and its
view. When the app is built and the storyboard is compiled into a .storybo
ardc bundle, the scene is split into two nibs:

View controller nib
The first nib contains just the view controller.

View nib

The second nib contains the view, its subviews, and any other top-level
objects such as gesture recognizers. The view nib has a special name,
such as 01J-lp-oVM-view-Ze5-6b-2t3.nib. It is correctly configured: its
File’s Owner class is the view controller’s class, with its view outlet
hooked to the view.

We can thus divide the tale of how storyboards work into two phases,
corresponding to how each of those nibs gets loaded.

How a View Controller Nib is Loaded
To instantiate a view controller from a storyboard’s view controller nib, we
have only to load that nib. The view controller is the nib’s sole top-level
object. Loading a nib provides a reference to the instances that come from
the nib’s top-level objects, so now we have a reference to the view
controller instance.
Loading a view controller nib from a storyboard starts with a reference to
the storyboard. You can get a reference to a storyboard either by calling the
UIStoryboard initializer init(name:bundle:) or through the storyboard
property of a view controller that has already been instantiated from that
storyboard.
When a view controller instance stored in a storyboard nib is needed, the
nib can be loaded and the view controller instantiated in one of four main
ways:

Initial view controller
At most one view controller in the storyboard is designated the
storyboard’s initial view controller (also called its entry point). To
instantiate that view controller, call the UIStoryboard instance method i
nstantiateInitialViewController. The view controller instance is
returned.
For an app with main storyboard, that happens automatically at launch
time. The main storyboard is designated the app’s main storyboard by
the Info.plist key “Main storyboard file base name” (UIMainStoryboar

dFile). As the app launches, UIApplicationMain gets a reference to
this storyboard by calling the UIStoryboard initializer init(name:bund
le:), instantiates its initial view controller by calling instantiateIni
tialViewController, and makes that instance the window’s rootView
Controller.

By identifier
A view controller in a storyboard can be assigned an arbitrary string
identifier; this is its Storyboard ID in the Identity inspector. To
instantiate that view controller, call the UIStoryboard instance method i
nstantiateViewController(withIdentifier:). The view controller
instance is returned.

By relationship
A parent view controller in a storyboard may have immediate children,
such as a UINavigationController and its initial child view controller.
The nib editor will show a relationship connection between them. When
the parent is instantiated (the source of the relationship), the initial
children (the destination of the relationship) are instantiated
automatically at the same time.

By triggered segue
A view controller in a storyboard may be the source of a segue whose
destination is a future child view controller or a future presented view
controller. When the segue is triggered and performed, it instantiates the
destination view controller.

Thus, you can set up your app in such a way that a storyboard is the source
of every view controller that your app will ever instantiate. Indeed, by
starting with a main storyboard and by configuring relationships and
triggered segues in the storyboard, you can arrange that every view
controller your app will ever need will be instantiated automatically.
I’ll go into greater detail about storyboards and segues later in this chapter.

How a View Nib is Loaded
Let’s say that, way or another, a view controller has just been instantiated
from its storyboard nib — but its view has not. Views are loaded lazily, as
we know. Sooner or later, the view controller will probably want its view
(typically because it is time to put that view into the interface). How will it
get it?
The view nib, as I already mentioned, has been assigned a special name,
such as 01J-lp-oVM-view-Ze5-6b-2t3.nib. It turns out that the view
controller, in its nib, was handed that same special name, such that when it
was instantiated from its own nib, its nibName property was set to the name
of the view nib. Thus, when the view controller wants its view, it loads it in
the normal way! It has a non-nil nibName, so it looks for a nib by that
name — and finds it. The nib is loaded and the view becomes the view
controller’s view.
That’s true for every scene. A storyboard consists ultimately of pairs of nib
files, a view controller’s nib and its corresponding view nib. As a result, a
storyboard has all the memory management advantages of nib files: none of
these nib files are loaded until the instances that they contain are needed,
and they can be loaded multiple times to give additional instances of the
same nib objects. At the same time, you get the convenience of being able
to see and edit a lot of your app’s interface simultaneously in one place.
The default scene structure is that a view controller in a storyboard scene
contains its view — but you don’t have to use that structure. You can select
the view inside a view controller in a storyboard and delete it! If you do
that, then that view controller won’t have a corresponding view nib; instead
the view controller will have to obtain its view in one of the other ways
we’ve already discussed: by an implementation of loadView in the code of
that view controller class, or by loading an eponymous nib file (which you
supply as a .xib file) — or even, if all of that fails, by creating a generic
UIView.

View Resizing
There are several very common ways in which a view controller’s view is
likely to be resized:

When it is put into the interface
When the app rotates
When the surrounding interface changes; for example, when a
navigation bar gets taller or shorter, appears or disappears

As I explained in Chapter 1, if you’re designing your view controller’s
view’s interface in the nib editor, you’ll almost certainly use layout — most
probably, autolayout — possibly along with conditional interface (see
“Conditional Interface Design”), to help your app cope with all this
resizing, regardless of the view’s size and orientation. If your code also
needs to take a hand in responding to a change in the view controller’s view
size, that code will likely go into the view controller itself. A view
controller has properties and receives events connected to the resizing of its
view, so that it can respond when such resizing takes place, and can even
help dictate the arrangement of the interface if needed. I’ll talk later about
where you’re likely to slot your layout-related code into your view
controller.

View Size in the Nib Editor
When you design your interface in the nib editor, every view controller’s
view has to be displayed at some definite size. That size is up to you. In the
nib editor, you can display the view at the size of any actual device. You
can also specify an orientation. Using the Simulated Metrics pop-up menus
in the Attributes inspector, you can adjust for the presence or absence of
interface elements that can affect layout (status bar, top bar, bottom bar).
But no single device size, orientation, or metrics can reflect all the possible
sizes the view may assume when the app runs on different devices, in
different orientations, and with different surroundings. If you design the
interface only for the size you see in the nib editor, you can get a rude

surprise when you actually run the app and the view appears at some other
size! Failing to take account of this possibility is a common beginner
mistake.
Be sure to design your app’s interface to be coherent at any size it may
actually assume. You can get a pretty good idea of whether you’re doing
that successfully, without running on your code on every device type,
thanks to the nib editor’s ability to switch between displaying different
device sizes (using the View As button at the lower left of the canvas), as
well as the Preview display in the assistant pane (“Previewing Your
Interface”). If your code also takes a hand in layout, you’ll need to run in
the Simulator with at least a few different device sizes to see your code at
work.

Bars and Underlapping
A view controller’s view will often have to adapt to the presence of bars at
the top and bottom of the screen:

The status bar is underlapped
The status bar is transparent, so that the region of a view behind it is
visible through it. The root view, and any other fullscreen view, must
occupy the entire window, including the status bar area, the top of the
view being visible behind the transparent status bar. You’ll want to
design your view so that its top doesn’t contain any interface objects
that will be overlapped by the status bar.

Top and bottom bars may be underlapped
The top and bottom bars displayed by a navigation controller
(navigation bar, toolbar) or tab bar controller (tab bar) can be
translucent. When they are, your view controller’s view is, by default,
extended behind the translucent bar, underlapping it. Again, you’ll want
to design your view so that this underlapping doesn’t conceal any of
your view’s important interface.

The status bar may be present or absent. Top and bottom bars may be
present or absent, and, if present, their height can change. How will your
interface cope with such changes? The primary coping mechanism is the
view controller’s safe area (see Chapter 1). The top and bottom of the safe
area move automatically at runtime to reflect the view’s environment:

Safe area top
The safe area’s top is positioned as follows:

If there is a status bar and no top bar, at the bottom of the status bar.
If there is a top bar, at the bottom of the top bar.
If there is no top bar and no status bar, at the top of the view.

Safe area bottom
The safe area’s bottom is positioned as follows:

If there is a bottom bar, at the top of the bottom bar.
If there is no bottom bar, at the bottom of the view.

The easiest way to involve the safe area in your view layout is through
autolayout and constraints. A view vends the safe area as its safeAreaLayo
utGuide. By constraining a view to the topAnchor or bottomAnchor of the
safeAreaLayoutGuide, you guarantee that the view will move when the
layout guide changes. Typically, the view whose safeAreaLayoutGuide
you’ll be interested in is the view controller’s main view. Such constraints
are easy to form in the nib editor — they are the default. A view controller’s
main view will automatically display the safe area, and when you form a
constraint from a subview to the main view, the nib editor will offer to
configure it with respect to the main view’s safe area. (If you need any other
view to display its safe area, check Safe Area Layout Guide in the view’s
Size inspector.)
If you need actual numbers in order to perform layout-related calculations,
the distances between the safe area boundaries and the view’s edges are
reported as the view’s safeAreaInsets.

The safe area, although it is reported by views, is imposed by the view
controller. You wouldn’t want to interfere with the workings of the safe
area, but you are allowed to augment it. Set your view controller’s additio
nalSafeAreaInsets to increase the effective distance between one or more
safe area boundaries and view’s corresponding edge. In this way you can
continue to constrain your views to the safe area while inserting a consistent
extra distance between your subviews and the edges of the main view.

Status bar
The default behavior of the status bar is that it is present, except in
landscape orientation on an iPhone, where it is absent. The top-level view
controller — which is usually the root view controller — gets a say in this
behavior; it also determines the look of the status bar when present. Your
UIViewController subclass, if the view controller instance is the top-level
view controller, can exercise this power by overriding these properties:

preferredStatusBarStyle

Your choices (UIStatusBarStyle) are .default and .lightContent,
meaning dark text and light text, respectively. Use light text for
legibility if the view content underlapping the status bar is dark.

prefersStatusBarHidden

A value of true makes the status bar invisible; a value of false makes
the status bar visible, even in landscape orientation on an iPhone.

Your override will be a computed variable with a getter function; your
getter can return the result of a call to super to get the default behavior.
Even if your view controller is not the top-level view controller, those
properties might still be consulted be obeyed, if your view controller is the
child of a parent that is the top-level view controller and delegates the
decision-making power to its child, through an override of these properties:

childViewControllerForStatusBarStyle

childViewControllerForStatusBarHidden

Used to delegate the decision on the status bar style or visibility to a
child view controller’s preferredStatusBarStyle or prefersStatus
BarHidden. For example, a tab bar controller implements these
properties to allow your view controller to decide the status bar style
and visibility when your view controller’s view occupies the tab bar
controller’s view. Thus, your view controller gets to make the decisions
even though the tab bar controller is the top-level view controller.

You are not in charge of when these properties are consulted, but you can
provide a nudge: if the situation has changed and one of these properties
would now give a different answer, call setNeedsStatusBarAppearanceU
pdate on your view controller. If this call is inside an animations function,
the change in the look of the status bar will be animated with the specified
duration. The character of the animation from visible to invisible (and vice
versa) is set by your view controller’s override of preferredStatusBarUp
dateAnimation; the value you return (UIStatusBarAnimation) can be .fad
e, .slide, or .none.
When you toggle the visibility of the status bar, if there is no other top bar,
the top of the safe area will move up or down by 20 points. If your main
view has subviews with constraints to the safe area’s top anchor, those
subviews will move. If this happens when the main view is visible, the user
will see this movement as a jump. That is probably not what you want. To
prevent it, call layoutIfNeeded on your view in the same animations
function in which you call setNeedsStatusBarAppearanceUpdate; your
layout update will then be animated together with the change in status bar
visibility. In this example, a button’s action method toggles the visibility of
the status bar with smooth animation:

var hide = false

override var prefersStatusBarHidden : Bool {

 return self.hide

}

@IBAction func doButton(_ sender: Any) {

 self.hide = !self.hide

 UIView.animate(withDuration:0.4) {

 self.setNeedsStatusBarAppearanceUpdate()

 self.view.layoutIfNeeded()

 }

}

Extended layout
If your UIViewController’s parent is a navigation controller or tab bar
controller, you can govern whether its view underlaps a top bar (navigation
bar) or bottom bar (toolbar, tab bar) with these UIViewController
properties:

edgesForExtendedLayout

A UIRectEdge. The default is .all, meaning that this view controller’s
view will underlap a translucent top bar or a translucent bottom bar. The
other extreme is .none, meaning that this view controller’s view won’t
underlap top and bottom bars. Other possibilities are .top (underlap
translucent top bars only) and .bottom (underlap translucent bottom
bars only).

extendedLayoutIncludesOpaqueBars

If true, then if edgesForExtendedLayout permits underlapping of
bars, those bars will be underlapped even if they are opaque. The default
is false, meaning that only translucent bars are underlapped.

Resizing Events
A UIViewController receives events that notify it of pending view size
changes (and compare the discussion of related view topics in Chapter 1).
The following events are associated primarily with rotation of the interface
(as well as with iPad multitasking; see Chapter 9); UIViewController
receives them by virtue of adopting the appropriate protocol:

viewWillTransition(to:with:) (UIContentContainer protocol)
Sent when the app is about to undergo rotation (even if the rotation
turns out to be 180 degrees and the size won’t actually change) or an
iPad multitasking size change. The first parameter is the new size (a

CGSize). The old size is still available as self.view.bounds.size.
This event is not sent on launch or when your view controller’s view is
first embedded into the interface. If you override this method, call supe
r.

willTransition(to:with:) (UIContentContainer protocol)
Sent when the app is about to undergo a change in the trait collection
(because the size classes will change). The first parameter is the new
trait collection (a UITraitCollection). The old trait collection is still
available as self.traitCollection. Common examples are rotation
of 90 degrees on an iPhone, or a change between fullscreen and
splitscreen on an iPad. This event is not sent on launch or when your
view controller’s view is first embedded into the interface. If you
override this method, call super.

traitCollectionDidChange(_:) (UITraitEnvironment protocol)
Sent after the trait collection changes. The parameter is the old trait
collection; the new trait collection is available as self.traitCollecti
on. Sent after the trait collection changes, including on launch or when
the trait collection is set for the first time (in which case the old trait
collection will be nil).

(The with: parameter in the first two methods is a transition coordinator;
I’ll describe its use later in this chapter.)
In addition, a UIViewController receives these events related to the layout
of its view:

updateViewConstraints

The view is about to be told to update its constraints (updateConstrain
ts), including at application launch. If you override this method, call su
per.

viewWillLayoutSubviews

viewDidLayoutSubviews

These events surround the moment when the view is sent layoutSubvi
ews, including at application launch.

In a situation where all these events are sent, the order is:

1. willTransition(to:with:) (the trait collection)

2. viewWillTransition(to:with:) (the size)

3. updateViewConstraints

4. traitCollectionDidChange(_:)

5. viewWillLayoutSubviews

6. viewDidLayoutSubviews
There is no guarantee that any of these events, if sent, will be sent exactly
once. Your code should take some care to do nothing if nothing relevant has
changed.

WARNING
There are many circumstances, such as the showing and hiding of a navigation bar that isn’t
underlapped, under which your view can be resized without viewWillTransition(to:with:)
being sent. Thus, to detect these changes, you’ll have to fall back on layout events such as viewWi
llLayoutSubviews. I regard this as a flaw in the iOS view controller event architecture.

Rotation
Your app can rotate, moving its top to correspond to a different edge of the
device’s screen. Rotation expresses itself in two ways:

The status bar orientation changes
You can hear about this by way of these app delegate events and
notifications:

application(_:willChangeStatusBarOrientation:duration:)

.UIApplicationWillChangeStatusBarOrientation notification

application(_:didChangeStatusBarOrientation:)

.UIApplicationDidChangeStatusBarOrientation notification
The current orientation (which is also the app’s current orientation) is
available from the UIApplication as its statusBarOrientation; the
app delegate methods provide the other orientation (the one we are
changing to or from, respectively) as the second parameter, and the
notifications provide it in the userInfo under the UIApplicationStat
usBarOrientationUserInfoKey. Possible values
(UIInterfaceOrientation) are:

.portrait

.portraitUpsideDown

.landscapeLeft

.landscapeRight

Two global convenience functions, UIInterfaceOrientationIsLands
cape and UIInterfaceOrientationIsPortrait, take a
UIInterfaceOrientation and return a Bool.

The view controller’s view is resized
The view controller receives events related to resizing, described in the
preceding section. As I mentioned there, the size needn’t be actually
about to change; for example, we may be rotating from one landscape
orientation to the other.

On the whole, you will probably never concern yourself with the status bar
orientation; the resizing events are preferable. The most general way to
learn that rotation is taking place is by detecting the size change, through
your implementation of viewWillTransition(to:with:). In real life,
however, you are quite likely to care only about a 90 degree rotation on an
iPhone; in that case, detection of the trait collection change, through willTr
ansition(to:with:), may be sufficient.
There are two complementary uses for rotation:

Compensatory rotation
The app rotates to compensate for the orientation of the device, so that
the app appears right way up with respect to how the user is holding the
device.

Forced rotation
The app rotates when a particular view appears in the interface, or when
the app launches, to indicate that the user needs to rotate the device in
order to view the app the right way up. This is typically because the
interface has been specifically designed, in view of the fact that the
screen is not square, to appear in just one orientation (portrait or
landscape).

In the case of the iPhone, no law says that your app has to perform
compensatory rotation. Most of my iPhone apps do not do so; indeed, I
have no compunction about doing just the opposite, namely forced rotation.
My view controller views often look best in just one orientation (either just
portrait or just landscape), and they stubbornly stay there regardless of how
the user holds the device. A single app may contain view controller views
that work best in different orientations; thus, my app forces the user to
rotate the device differently depending on what view is being displayed.
This is reasonable, because the iPhone is small and easily reoriented with a
twist of the user’s wrist, and it has a natural right way up. Even iPhone apps
that do perform compensatory rotation do not generally rotate to an upside-
down orientation, because the user is unlikely to hold the device that way.
On the other hand, Apple thinks of an iPad as having no natural top, and
would prefer iPad apps to rotate to at least two opposed orientations (such
as portrait with the button on the bottom and portrait with the button on the
top), and preferably to all four possible orientations, so that the user isn’t
restricted in how the device is held.
It’s trivial to let your app rotate to two opposed orientations, because once
the app is set up to work in one of them, it can work with no change in the
other. But allowing a single interface to rotate between two orientations that
are 90 degrees apart is trickier, because its dimensions must change —

roughly speaking, its height and width are transposed — and this may
require a change of layout and might even call for more substantial
alterations, such as removal or addition of part of the interface. A good
example is the behavior of Apple’s Mail app on the iPad: in landscape, the
master pane and the detail pane appear side by side, but in portrait, the
master pane is removed and must be summoned as a temporary overlay on
top of the detail pane (explained in Chapter 9).

Permitting compensatory rotation
By default, when you create an Xcode project, the resulting app will
perform compensatory rotation in response to the user’s rotation of the
device. For an iPhone app, this means that the app can appear with its top at
the top of the device or either of the two sides of the device. For an iPad
app, this means that the app can assume any orientation.
If the default behavior isn’t what you want, it is up to you to change it.
There are three levels at which you can make changes:

The app itself, in its Info.plist, may declare once and for all every
orientation the interface will ever be permitted to assume. It does this
under the “Supported interface orientations” key, UISupportedInterfa
ceOrientations (supplemented, for a universal app, by “Supported
interface orientations (iPad),” UISupportedInterfaceOrientations~i
pad). These keys can be set through checkboxes when you edit the app
target, in the General tab.

The app delegate may implement the application(_:supportedInter
faceOrientationsFor:) method, returning a bitmask listing every
orientation the interface is permitted to assume. This list overrides the
Info.plist settings. Thus, the app delegate can do dynamically what the
Info.plist can do only statically. application(_:supportedInterface
OrientationsFor:) is called at least once every time the device rotates.
The top-level view controller — that is, the root view controller, or a
view controller presented fullscreen — may override the supportedInt
erfaceOrientations property, returning a bitmask listing a set of

orientations that intersects the set of orientations permitted by the app or
the app delegate. The resulting intersection will then be the set of
orientations permitted at that moment. This intersection must not be
empty; if it is, your app will crash (with a useful message: “Supported
orientations has no common orientation with the application”). support
edInterfaceOrientations is consulted at least once every time the
device rotates.

The top-level view controller can also override shouldAutorotate.
This is a Bool, and the default is true. shouldAutorotate is consulted
at least once every time the device rotates; if it returns false, the
interface will not rotate to compensate at this moment, and supportedIn
terfaceOrientations is not consulted.

WARNING
Built-in parent view controllers, when they are the top-level view controller, do not automatically
consult their children about rotation. If your view controller is a child view controller of a
UITabBarController or a UINavigationController, it has no direct say in how the app rotates.
Those parent view controllers, however, do consult their delegates about rotation, as I’ll explain
later.

You can call the UIViewController class method attemptRotationToDevi
ceOrientation to prompt the runtime to do immediately what it would do
if the user were to rotate the device, namely to walk the three levels I’ve
just described and, if the results permit rotation of the interface to match the
current device orientation, to rotate the interface. This would be useful if,
say, your view controller had previously returned false from shouldAutor
otate, but is now for some reason prepared to return true and wants to be
asked again, immediately.

The bitmask you return from application(_:supportedInterfaceOrien
tationsFor:) or supportedInterfaceOrientations is a
UIInterfaceOrientationMask. It may be one of these values, or multiple
values combined:

.portrait

.landscapeLeft

.landscapeRight

.portraitUpsideDown

.landscape (a combination of .left and .right)

.all (a combination of .portrait, .upsideDown, .left, and .right)

.allButUpsideDown (a combination of .portrait, .left, and .right)
For example:

override var supportedInterfaceOrientations : UIInterfaceOrientationMask {

 return .portrait

}

An iPhone would prefer not to permit an app to rotate to .portraitUpside
Down. Therefore, if you include .portraitUpsideDown under “Supported
interface orientations” in the Info.plist, it will be ignored. You can work
around this, if you really want to, by also including .portraitUpsideDown
in the top-level view controller’s supportedInterfaceOrientations.

NOTE
On iPad, if your app permits all four orientations, and if it doesn’t opt out of iPad multitasking (by
setting UIRequiresFullScreen in its Info.plist), then supportedInterfaceOrientations and s
houldAutorotate are never consulted, presumably because the answer is known in advance.

If your code needs to know the current physical orientation of the device (as
opposed to the current orientation of the app), it can ask the device:

let orientation = UIDevice.current.orientation

Possible results (UIDeviceOrientation) are .unknown, .portrait, and so
on. Global convenience functions UIDeviceOrientationIsPortrait and

UIDeviceOrientationIsLandscape take a UIDeviceOrientation and
return a Bool.

Initial orientation
I’ve talked about how to determine what orientations your app can support
in the course of its lifetime; but what about its initial orientation, the very
first orientation your app will assume when it launches?
In general, an app will launch directly into whatever permitted orientation is
closest to the device’s current orientation at launch time. This behavior,
while always the case on iPad, is new in iOS 11 for iPhone apps, and will
come as a welcome relief to programmers.
There can be a complication, however, when the orientation in which the
device is held would have been legal, but the initial root view controller
rules it out. For example, suppose the device is held in portrait, and the
Info.plist permits all orientations, but the root view controller’s supportedI
nterfaceOrientations is set to return .landscape. Then the app starts to
launch into portrait, realizes its mistake, and finishes launching in
landscape. On the iPhone, this entails a kind of semirotation: willTransit
ion(to:with:) is sent to report a trait collection change, but there is no
size change. I regard this behavior as incoherent.
To work around that problem, here’s a trick that I use. Let’s say that my app
needs eventually to be able to rotate to portrait, so I need to permit all
orientations, but its initial root view controller must appear only in
landscape — its supportedInterfaceOrientations return .landscape.
In my Info.plist, I permit only landscape; that way, my app launches directly
into landscape, no matter how the device is oriented. But in my app
delegate’s application(_:supportedInterfaceOrientationsFor:), I
return .all; that way, my app can rotate subsequently to portrait if it needs
to.

View Controller Manual Layout

A view controller governs its main view, and may well take charge of
populating it with subviews and configuring those subviews. What if that
involves participating manually in the layout of those subviews? As we
have seen, a view controller’s view can be resized, both as the view is first
put into the interface and later as the app runs and is rotated. Where should
your view controller’s layout code be placed in order to behave coherently
in the face of these potential size changes?

Initial Manual Layout
Let’s start with the problem of initial layout. There is a natural temptation
to perform initial layout-related tasks in viewDidLoad. This method is
extraordinarily convenient. It is guaranteed to be called exactly once in the
life of the view controller; that moment is as early as possible in the life of
the view controller; and at that time, the view controller has its view, and if
it got that view from a nib, properties connected to outlets from that nib
have been set. So this seems like the perfect place for initializations. And so
it is — but initialization and layout are not the same thing.

Remember, at the time viewDidLoad is called, the view controller’s view
has been loaded, but it has not yet been inserted into the interface! The view
has not yet been fully resized for the first time, and initial layout has not yet
taken place. Thus, you cannot do anything here that depends upon knowing
the dimensions of the view controller’s view or any other nib-loaded view
— for the simple reason that you do not know them.
Here’s an elementary (and artificial) example. Suppose we wish, in code, to
create a small black square subview and place it at the top of our view
controller’s main view, centered horizontally. A naïve attempt might look
like this:

override func viewDidLoad() {

 super.viewDidLoad()

 let v = UIView(frame:CGRect(0,0,10,10))

 v.backgroundColor = .black

 v.center = CGPoint(self.view.bounds.width/2,5) // bad idea!

 self.view.addSubview(v)

}

That code assumes that self.view.bounds.width at the time viewDidLoa
d is called is the width that our main view will have after it is resized and
the user sees it. That might be true, but then again it might not. That code is
asking for trouble. You should not be doing layout in viewDidLoad. It’s too
soon. It is a capital mistake to assume that bounds and frame values are
valid and final in viewDidLoad, and beginners often make this mistake.

However, you can certainly create and insert this black subview in viewDid
Load and configure it for future layout. For example, it is perfectly fine to
insert a view and give it autolayout constraints in viewDidLoad:

let v = UIView()

v.translatesAutoresizingMaskIntoConstraints = false

v.backgroundColor = .black

self.view.addSubview(v)

NSLayoutConstraint.activate([

 v.widthAnchor.constraint(equalToConstant: 10),

 v.heightAnchor.constraint(equalToConstant: 10),

 v.topAnchor.constraint(equalTo: self.view.topAnchor),

 v.centerXAnchor.constraint(equalTo: self.view.centerXAnchor)

])

That is not a case of doing manual layout in viewDidLoad. The constraints
are not layout; they are instructions as to how this view should be sized and
positioned by the runtime when layout does happen, as I explained in
Chapter 1. Autoresizing would work fine here too; if you center the black
subview horizontally and give it an autoresizing mask that keeps it centered
regardless of future changes in the main view’s size, all will be well.
But let’s say that, for some reason, you can’t do that or you don’t want to.
Let’s say you want to govern this view’s layout actively and entirely in view
controller code. Where should that code go?
Let’s start again, with the question of where to put code that positions the
black square subview initially. We know that the answer isn’t
viewDidLoad, so what is it? The primary layout-related messages we are
guaranteed to get in our view controller as the app launches are traitColl
ectionDidChange(_:) and viewWillLayoutSubviews. Of these, I prefer v

iewWillLayoutSubviews; after all, its very name means that we are about
to perform layout on our subviews, meaning that our main view itself has
achieved its initial size.

However, we then face the problem that viewWillLayoutSubviews may be
called many times over the life of our view controller. Moreover, when it is
called, layout is about to happen; we mustn’t impinge on that process or do
more work than we absolutely have to. A sensible implementation is to use
a property flag to make sure we initialize only once; here I’ll set an
Optional, which will serve both as a flag and as a future reference to this
view:

weak var blackSquare : UIView?

override func viewWillLayoutSubviews() {

 if self.blackSquare == nil { // both reference and flag

 let v = UIView(frame:CGRect(0,0,10,10))

 v.backgroundColor = .black

 v.center = CGPoint(self.view.bounds.width/2,5)

 self.view.addSubview(v)

 self.blackSquare = v

 }

}

Bipartite Manual Layout
Thanks to our implementation of viewWillLayoutSubviews in the
previous section, the black square will now be horizontally centered at
launch time. This brings us to a second problem — how to deal with
subsequent rotation. Presume that we want to keep the black subview
horizontally centered in response to further changes in our main view’s size.

For that, we have a choice of two primary events — willTransition(to:
with:) (the trait collection) and viewWillTransition(to:with:) (the
size). How to choose between the two methods? The question here is, do
you want to respond to rotation on iPhone only, or on both iPhone and
iPad? The trouble with the trait collection is that it doesn’t change when the
iPad rotates. Therefore, if you want to learn about iPad rotation, you will
need to be notified of the size change. Let’s say this is a universal app, and

we want to do layout during rotation on iPad as well as iPhone. So we’re
going to implement viewWillTransition(to:with:). I call this approach
bipartite manual layout, because we are implementing viewWillLayoutSu
bviews plus one rotation event.

In viewWillTransition(to:with:), we should not assume, just because
we are called, that the size is actually changing; this method is called even
on rotations of 180 degrees. So we’re going to want to check to make sure
that the size is changing, and reposition the black subview only if it is.
But here comes another challenge: we should not reposition the black
subview immediately, in part because the size change hasn’t happened yet,
and in part because the subview will then jump to its new position, whereas
we want to animate the change as part of the rotation animation. With
constraint-based layout, the repositioning is part of the rotation animation,
because layout performed during an animation is itself animated. We want
our manual layout to behave like that.

The solution lies in the second parameter of viewWillTransition(to:wit
h:). This is a UIViewControllerTransitionCoordinator, whose job is to
perform the rotation animation and to attach to it any animations we care to
supply. To supply those animations, we call this method of the coordinator:

animate(alongsideTransition:completion:)

The first parameter is an animations function; the second is an optional
completion function to be executed when the rotation is over.

Here’s our implementation, making use of the transition coordinator to
animate our subview’s position change:

override func viewWillTransition(to sz: CGSize,

 with coordinator: UIViewControllerTransitionCoordinator) {

 super.viewWillTransition(to:sz, with:coordinator)

 if sz != self.view.bounds.size {

 coordinator.animate(alongsideTransition:{ _ in

 self.blackSquare?.center = CGPoint(sz.width/2,5)

 })

 }

}

Tripartite Manual Layout
In that example, our manual layout was distributed over two events, viewWi
llLayoutSubviews and viewWillTransition(to:with:) (the size).
Sometimes, it is necessary to involve three events, implementing willTran
sition(to:with:) (the trait collection) as well. I call this tripartite
manual layout.
In this next example, I have a large green rectangle that should occupy the
left one-third of the interface, but only when we are in landscape orientation
(the main view’s width is larger than its height) and only when we are in a .
regular horizontal size class (we might be on an iPad or an iPhone 6/7/8
Plus but not on any other kind of iPhone). This rectangle should come and
go in a smooth animated fashion, of course; let’s decide to have it appear
from, or vanish off to, the left of the interface.

Clearly we have to implement viewWillTransition(to:with:) (the size),
in order to hear about rotation on an iPad. But we will also need to
implement willTransition(to:with:) (the trait collection), in order to
know in advance what our horizontal size class is about to be. If there is
going to be change of size class, we will hear about the trait collection
transition before we hear about the size transition, so we’ll store the trait
collection information in a property where the size transition method can
learn about it.
We’re going to have three properties: a lazy UIView property to ensure that
we have a green view when we first need one (in real life, this would
construct whatever this interface element really is); a Bool flag so that we
don’t run our initial viewWillLayoutSubviews code more than once; and
the upcoming trait collection. And I’ll factor my test for whether the green
view should appear into a utility function:

lazy var greenView : UIView = {

 let v = UIView()

 v.backgroundColor = .green

 return v

}()

var firstTime = true

var nextTraitCollection = UITraitCollection()

func greenViewShouldAppear(size sz: CGSize) -> Bool {

 let tc = self.nextTraitCollection

 if tc.horizontalSizeClass == .regular {

 if sz.width > sz.height {

 return true

 }

 }

 return false

}

Our implementation of willTransition(to:with:) merely keeps self.n
extTraitCollection updated:

override func willTransition(to newCollection: UITraitCollection,

 with coordinator: UIViewControllerTransitionCoordinator) {

 super.willTransition(to:newCollection, with:coordinator)

 self.nextTraitCollection = newCollection

}

Now for our actual manual layout. We need to decide about the green view
at launch time, so we implement viewWillLayoutSubviews, using our flag
to make sure we decide only once. The implementation is simple: either we
place the green view into the interface or we don’t:

override func viewWillLayoutSubviews() {

 if self.firstTime {

 self.firstTime = false

 self.nextTraitCollection = self.traitCollection

 let sz = self.view.bounds.size

 if self.greenViewShouldAppear(size:sz) {

 let v = self.greenView

 v.frame = CGRect(0,0,sz.width/3, sz.height)

 self.view.addSubview(v)

 }

 }

}

The implementation of viewWillTransition(to:with:) is more
complicated. We want to participate in the animation rotation, so the work
must be done in a call to animate(alongsideTransition:completion:).

Moreover, there are two distinct cases: either we insert the green view off to
the left of the interface and animate it rightward onto the scene, or we
animate the existing green view leftward off the scene and (in the
completion function) remove it from the interface:

override func viewWillTransition(to sz: CGSize,

 with coordinator: UIViewControllerTransitionCoordinator) {

 super.viewWillTransition(to:sz, with:coordinator)

 if sz != self.view.bounds.size {

 if self.greenView.window != nil {

 if !self.greenViewShouldAppear(size:sz) {

 coordinator.animate(alongsideTransition: { _ in

 let f = self.greenView.frame

 self.greenView.frame =

 CGRect(-f.width,0,f.width,f.height)

 }) { _ in

 self.greenView.removeFromSuperview()

 }

 }

 } else {

 if self.greenViewShouldAppear(size:sz) {

 self.greenView.frame =

 CGRect(-sz.width/3,0,sz.width/3,sz.height)

 self.view.addSubview(self.greenView)

 coordinator.animate(alongsideTransition: { _ in

 self.greenView.frame.origin = CGPoint.zero

 })

 }

 }

 }

}

This tripartite implementation is complicated, but unfortunately I see no
way around it. Things were much simpler in iOS 7 and before, where your
view controller received rotation events with rotate in their names. In iOS
8, those events were replaced by the willTransition events, and there’s
no change of trait collection when an iPad rotates, so you have to bend over
backward to handle all the possibilities coherently.

Presented View Controller

Back when the only iOS device was an iPhone, a presented view controller
was called a modal view controller. When a modal view controller was
presented, the root view controller remained in place, but its view was taken
out of the interface and the modal view controller’s view was used instead.
Thus, this was the simplest way to replace the entire interface with a
different interface.
You can see why this configuration is characterized as “modal.” The
presented view controller’s view has, in a sense, blocked access to the
“real” view, the root view controller’s view. The user is forced to work in
the presented view controller’s view, until the modal view controller is
dismissed — its view is removed and the “real” view is visible again —
similar to a modal dialog in a desktop application, where the user can’t do
anything else but work in the dialog as long as it is present. A presented
view controller’s view often reinforces this analogy with obvious dismissal
buttons with titles like Save, Done, or Cancel.
The color picker view in my Zotz! app is a good example (Figure 6-8); this
is an interface that says, “You are now configuring a color, and that’s all
you can do; change the color or cancel, or you’ll be stuck here forever.” The
user can’t get out of this view without tapping Cancel or Done, and the
view that the user was previously using is visible as a blur behind this view,
waiting for the user to return to it.

Figure 6-8. A modal view

Figure 6-5, from my Latin flashcard app, is another example of a presented
view. It has a Cancel button, and the user is in a special “mode,” performing
a drill exercise rather than scrolling through flashcards.
Nevertheless, the “modal” characterization is not always apt. A presented
view controller might be no more than a technique that you, the
programmer, have used to alter the interface; it might not feel “modal” at
all. A presented view controller’s view may have a complex interface; it
may have child view controllers; it may present yet another view controller;
it may take over the interface permanently, with the user never returning to
the interface that it replaced. Furthermore, the range of ways in which a
presented view controller’s view can be displayed now goes far beyond
merely replacing the root view controller’s view. For example:

Instead of replacing the entire interface, a presented view controller’s
view can replace a subview within the existing interface.
A presented view controller’s view may cover the existing interface only
partially, while the existing interface is never removed.

Presentation and Dismissal
The two key methods for presenting and dismissing a view controller are:

present(_:animated:completion:)

To make a view controller present another view controller, you send the
first view controller this message, handing it the second view controller,
which you will probably instantiate for this very purpose. The first view
controller is very typically self.
We now have two view controllers that stand in the relationship of being
one another’s presentingViewController and presentedViewContr
oller respectively. The presented view controller is retained, and its
view effectively replaces or covers the presenting view controller’s view
in the interface. (I’ll talk later about ways to refine that arrangement.)

dismiss(animated:completion:)

The “presented” state of affairs described in the previous paragraph
persists until the presenting view controller is sent this message. The
presented view controller’s view is then removed from the interface, the
original interface is restored, and the presented view controller is
released; it will thereupon typically go out of existence, together with its
view, its child view controllers and their views, and so on.

As the view of the presented view controller appears, and again when it is
dismissed, there’s an option for animation to be performed as the transition
takes place (the animated: argument, a Bool). The completion:
parameter, which can be nil, lets you supply a function to be run after the
transition (including the animation) has occurred. I’ll talk later about how to
govern the nature of the animation.

View controller relationships during presentation
The presenting view controller (the presented view controller’s presenting
ViewController) is not necessarily the same view controller to which you
sent present(_:animated:completion:). It will help if we distinguish
three roles that view controllers can play in presenting a view controller:

Presented view controller

The first argument to present(_:animated:completion:).

Original presenter

The view controller to which present(_:animated:completion:)
was sent. Apple sometimes refers to this view controller as the source;
“original presenter” is my own term.

The presented view controller is set as the original presenter’s presente
dViewController.

Presenting view controller
The view controller whose view is replaced or covered by the presented
view controller’s view. By default, it is the view controller that was the
top-level view controller prior to the presentation. It might not be the
same as the original presenter.

This view controller is set as the presented view controller’s presentin
gViewController. The presented view controller is set as the
presenting view controller’s presentedViewController. (Thus, the
presented view controller might be the presentedViewController of
two different view controllers.)

The receiver of dismiss(animated:completion:) may be any of those
three objects; the runtime will use the linkages between them to transmit the
necessary messages up the chain on your behalf to the presentingViewCon
troller.

You can test whether a view controller’s presentedViewController or pr
esentingViewController is nil to learn whether presentation is

occurring. For example, a view controller whose presentingViewControl
ler is nil is not a presented view controller at this moment.

A view controller can have at most one presentedViewController. If you
send present(_:animated:completion:) to a view controller whose pre
sentedViewController isn’t nil, nothing will happen and the completion
function is not called (and you’ll get a warning from the runtime). However,
a presented view controller can itself present a view controller, so there can
be a chain of presented view controllers.

If you send dismiss(animated:completion:) to a view controller in the
middle of a presentation chain — a view controller that has both a present
ingViewController and a presentedViewController — then its presen
tedViewController is dismissed.

If you send dismiss(animated:completion:) to a view controller whose
presentedViewController is nil and that has no presentingViewContr
oller, nothing will happen (not even a warning in the console), and the
completion function is not called.

Manual view controller presentation
Let’s make one view controller present another. We could do this simply by
connecting one view controller to another in a storyboard with a modal
segue, but I don’t want you to do that: a modal segue calls present(_:anim
ated:completion:) for you, whereas I want you to call it yourself.
So start with an iPhone project made from the Single View app template.
This contains one view controller class, called ViewController. Our first
move must be to add a second view controller class, an instance of which
will function as the presented view controller:

1. Choose File → New → File and specify iOS → Source → Cocoa
Touch Class. Click Next.

2. Name the class SecondViewController, make sure it is a subclass of
UIViewController, and check the XIB checkbox so that we can design

this view controller’s view quickly and easily in the nib editor. Click
Next.

3. Confirm the folder, group, and app target membership, and click
Create.

4. Edit SecondViewController.xib, and do something there to make the
view distinctive, so that you’ll recognize it when it appears; for
example, give it a red background color.

5. In ViewController.swift, give ViewController an action method that
instantiates SecondViewController and presents it:

@IBAction func doPresent(_ sender: Any?) {

 let svc = SecondViewController(nibName: nil, bundle: nil)

 self.present(svc, animated:true)

}

6. Edit Main.storyboard and add a button to the ViewController’s main
view. Connect that button to ViewController’s doPresent.

Run the project. In ViewController’s view, tap the button.
SecondViewController’s view slides into place over ViewController’s view.
In our lust for instant gratification, we have neglected to provide a way to
dismiss the presented view controller. If you’d like to do that:

1. In SecondViewController.swift, give SecondViewController an action
method that dismisses SecondViewController:

@IBAction func doDismiss(_ sender: Any?) {

 self.presentingViewController?.dismiss(animated:true)

}

2. Edit SecondViewController.xib and add a button to
SecondViewController’s view. Connect that button to
SecondViewController’s doDismiss.

Run the project. You can now alternate between ViewController’s view and
SecondViewController’s view, presenting and dismissing in turn. Go ahead
and play for a while with your exciting new app; I’ll wait.

Configuring a Presentation
This section describes some configurable aspects of how a view controller’s
view behaves as the view controller is presented.

Transition style
When a view controller is presented and later when it is dismissed, a simple
animation of its view can be performed, according to whether the animate
d: parameter of the corresponding method is true. There are a few
different built-in animation types (modal transition styles) to choose from.

NOTE
Instead of choosing a simple built-in modal transition style, you can supply your own animation,
as I’ll explain later in the chapter.

To choose a built-in animation, set the presented view controller’s modalTr
ansitionStyle property prior to the presentation. This value can be set in
code or in the nib editor. Your choices (UIModalTransitionStyle) are:

.coverVertical (the default)
The view slides up from the bottom to cover the presenting view
controller’s view on presentation and down to reveal it on dismissal.
The definition of “bottom” depends on the orientation of the device and
the orientations the view controllers support.

.flipHorizontal

The view flips on the vertical axis as if the two views were the front and
back of a piece of paper. The “vertical axis” is the device’s long axis,
regardless of the app’s orientation.
This transition style provides one of those rare occasions where the user
may directly glimpse the window behind the transitioning views. You
may want to set the window’s background color appropriately.

.crossDissolve

The views remain stationary, and one fades into the other.

.partialCurl

The presenting view controller’s view curls up like a page in a notepad
to reveal the presented view controller’s view. In iOS 7 and before, a
drawing of a curl covers the top left of the presented view; tapping it
dismisses the presented view controller. In iOS 8 and later, the curl
drawing is missing, but tapping where it should be dismisses the
presented view controller anyway! I regard that as a bug; a simple
workaround is to avoid .partialCurl entirely.

Presentation style
By default, the presented view controller’s view occupies the entire screen,
completely replacing that of the presenting view controller. But you can
choose from some other built-in options expressing how the presented view
controller’s view should cover the screen (modal presentation styles).

NOTE
Instead of choosing a simple built-in modal presentation style, you can customize the presentation
to place the presented view controller’s view anywhere you like, as I’ll explain later in this
chapter.

To choose a presentation style, set the presented view controller’s modalPre
sentationStyle property prior to the presentation. This value can be set in
code or in the nib editor. Your choices (UIModalPresentationStyle) are:

.fullScreen

The default. The presenting view controller is the top-level view
controller, and its view — meaning the entire interface — is replaced.

.overFullScreen

Similar to .fullScreen, but the presenting view controller’s view is
not replaced; instead, it stays where it is, possibly being visible during
the transition, and remaining visible behind the presented view
controller’s view if the latter has some transparency.

.pageSheet

Similar to .fullScreen, but in portrait orientation on the iPad it’s a
little shorter (leaving a gap behind the status bar), and in landscape
orientation on the iPad and the iPhone 6/7/8 Plus it’s also narrower, with
the presenting view controller’s view remaining partially visible (and
dimmed) behind it. Treated as .fullScreen on the iPhone (including
the iPhone 6/7/8 Plus in portrait).

.formSheet

Similar to .pageSheet, but on the iPad it’s even smaller, allowing the
user to see more of the presenting view controller’s view behind it. As
the name implies, this is intended to allow the user to fill out a form
(Apple describes this as “gathering structured information from the
user”). On the iPhone 6/7/8 Plus in landscape, indistinguishable from .p
ageSheet. Treated as .fullScreen on the iPhone (including the iPhone
6/7/8 Plus in portrait).

A .formSheet presented view controller, even on an iPad, has a .compa
ct horizontal size class.

.currentContext

The presenting view controller can be any view controller, such as a
child view controller. The presented view controller’s view replaces the
presenting view controller’s view, which may have been occupying only
a portion of the screen. I’ll explain in a moment how to specify the
presenting view controller.

.overCurrentContext

Like .currentContext, but the presented view controller’s view covers
the presenting view controller’s view rather than replacing it. Again,

this may mean that the presented view controller’s view now covers
only a portion of the screen. .overCurrentContext will often be a
better choice than .currentContext, because some subviews don’t
behave well when automatically removed from their superview and
restored later.

Current context presentation
When the presented view controller’s modalPresentationStyle is .curre
ntContext or .overCurrentContext, a decision has to be made by the
runtime as to what view controller should be the presenting view controller.
This will determine what view will be replaced or covered by the presented
view controller’s view. The decision involves another UIViewController
property, definesPresentationContext (a Bool), and possibly still
another UIViewController property, providesPresentationContextTran
sitionStyle. Here’s how the decision operates:

1. Starting with the original presenter (the view controller to which pres
ent(_:animated:completion:) was sent), we walk up the chain of
parent view controllers, looking for one whose definesPresentatio
nContext property is true. If we find one, that’s the one; it will be
the presentingViewController, and its view will be replaced or
covered by the presented view controller’s view.
(If we don’t find one, things work as if the presented view controller’s
modalPresentationStyle had been .fullScreen.)

2. If, during the search just described, we find a view controller whose d
efinesPresentationContext property is true, we look to see if that
view controller’s providesPresentationContextTransitionStyle
property is also true. If so, that view controller’s modalTransitionS
tyle is used for this transition animation, rather than the presented
view controller’s modalTransitionStyle.

To illustrate, I need a parent–child view controller arrangement to work
with. This chapter hasn’t yet discussed any parent view controllers in detail,

but the simplest is UITabBarController, which I discuss in the next section,
and it’s easy to create a working app with a UITabBarController-based
interface, so that’s the example I’ll use:

1. Start with the Tabbed app template. It provides three view controllers
— the UITabBarController and two children, FirstViewController and
SecondViewController.

2. As in the previous example, I want us to create and present the
presented view controller manually, rather than letting the storyboard
do it automatically; so make a new view controller class with an
accompanying .xib file, to use as a presented view controller — call it
ExtraViewController.

3. In ExtraViewController.xib, give the view a distinctive background
color, so you’ll recognize it when it appears.

4. In the storyboard, put a button in the First View Controller view (First
Scene), and connect it to an action method in
FirstViewController.swift that summons the new view controller as a
presented view controller:

@IBAction func doPresent(_ sender: Any?) {

 let vc = ExtraViewController(nibName: nil, bundle: nil)

 vc.modalTransitionStyle = .flipHorizontal

 self.present(vc, animated: true)

}

Run the project and tap the button. Observe that the presented view
controller’s view occupies the entire interface, covering even the tab bar; it
replaces the root view, because the presentation style is .fullScreen. The
presenting view controller is the root view controller, which is the
UITabBarController.
Now change the code to look like this:

@IBAction func doPresent(_ sender: Any?) {

 let vc = ExtraViewController(nibName: nil, bundle: nil)

 vc.modalTransitionStyle = .flipHorizontal

 self.definesPresentationContext = true // *

 vc.modalPresentationStyle = .currentContext // *

 self.present(vc, animated: true)

}

Run the project and tap the button. The presented view controller’s view
replaces only the first view controller’s view; the tab bar remains visible.
That’s because the presented view controller’s modalPresentationStyle
is .currentContext, and definesPresentationContext is true in
FirstViewController. Thus the search for a context stops in
FirstViewController, which becomes the presenting view controller —
meaning that the presented view replaces FirstViewController’s view
instead of the root view.
We can also override the presented view controller’s transition animation
through the modalTransitionStyle property of the presenting view
controller:

@IBAction func doPresent(_ sender: Any?) {

 let vc = ExtraViewController(nibName: nil, bundle: nil)

 vc.modalTransitionStyle = .flipHorizontal

 self.definesPresentationContext = true

 self.providesPresentationContextTransitionStyle = true // *

 self.modalTransitionStyle = .coverVertical // *

 vc.modalPresentationStyle = .currentContext

 self.present(vc, animated: true)

}

Because the presenting view controller’s providesPresentationContextT
ransitionStyle is true, the transition uses the .coverVertical
animation belonging to the presenting view controller, rather than the .flip
Horizontal animation of the presented view controller.

Configuration in the nib editor
Most of what I’ve described so far can be configured in a .storyboard or
.xib file. A view controller’s Attributes inspector lets you set its transition
style and presentation style, as well as definesPresentationContext and
providesPresentationContextTransitionStyle.

If you’re using a storyboard, you can configure one view controller to
present another view controller by connecting them with a Present Modally
segue; to do the presentation, you trigger the segue (or give the user a way
to trigger it) instead of calling present(_:animated:completion:). The
segue’s Attributes inspector lets you set the presentation style and transition
style (and whether there is to be animation). Dismissal is a little more
involved; either you must dismiss the presented view controller in code, by
calling dismiss(animated:completion:), or you must use an unwind
segue. I’ll discuss triggered segues and unwind segues in detail later in this
chapter.

Communication with a Presented View Controller
In real life, it is highly probable that the original presenter will have
additional information to impart to the presented view controller as the
latter is created and presented, and that the presented view controller will
want to pass information back to the original presenter as it is dismissed.
Knowing how to arrange this exchange of information is very important.
Passing information from the original presenter to the presented view
controller is usually easy, because the original presenter typically has a
reference to the presented view controller before the latter’s view appears in
the interface. For example, suppose the presented view controller has a
public data property. Then the original presenter can easily set this
property, especially if the original presenter is the one instantiating the
presented view controller in the first place:

@IBAction func doPresent(_ sender: Any?) {

 let svc = SecondViewController(nibName: nil, bundle: nil)

 svc.data = "This is very important data!" // *

 self.present(svc, animated:true)

}

Indeed, if you’re instantiating the presented view controller in code, as we
are here, you might even give its class a designated initializer that accepts
— and thus requires — this data. In my Latin vocabulary app, for example,

I’ve given DrillViewController a designated initializer init(terms:)
precisely so that whoever creates it must pass it the data it will need to do
its job while it exists.
Passing information back from the presented view controller to the original
presenter is a more interesting problem. The presented view controller will
need to know who the original presenter is, but it doesn’t automatically
have a reference to it (the original presenter, remember, is not necessarily
the same as the presentingViewController). Moreover, the presented
view controller will need to know the signature of some method,
implemented by the original presenter, which it can call in order to hand
over the information — and this needs to work regardless of the original
presenter’s class.
The standard solution is to use delegation, as follows:

1. The presented view controller defines a protocol declaring a method
that the presented view controller wants to call before it is dismissed.

2. The original presenter conforms to this protocol: it declares adoption
of the protocol, and it implements the required method.

3. The presented view controller provides a means whereby it can be
handed a reference to an object conforming to this protocol. Think of
that reference as the presented view controller’s delegate. Very often,
this will be a property — perhaps called delegate — typed as the
protocol. (Such a property should probably be weak, since an object
usually has no business retaining its delegate.)

4. As the original presenter creates and configures the presented view
controller, it hands the presented view controller a reference to itself,
in its role as adopter of the protocol, by assigning itself as the
presented view controller’s delegate.

This sounds elaborate, but with practice you’ll find yourself able to
implement it very quickly. And you can see why it works: because its
delegate is typed as the protocol, the presented view controller is
guaranteed that this delegate, if it has one, implements the method declared

in the protocol. Thus, the desired communication from the presented view
controller to whoever configured and created it is assured.
To illustrate this architecture, suppose that (as in our earlier example) the
root view controller, ViewController, presents SecondViewController. Then
our code in SecondViewController.swift would look like this:

protocol SecondViewControllerDelegate : class {

 func accept(data:Any!)

}

class SecondViewController : UIViewController {

 var data : Any?

 weak var delegate : SecondViewControllerDelegate?

 @IBAction func doDismiss(_ sender: Any?) {

 self.delegate?.accept(data:"Even more important data!")

 }

}

It is now ViewController’s job to adopt the SecondViewControllerDelegate
protocol, and to set itself as the SecondViewController’s delegate. If it does
so, then when the delegate method is called, ViewController will be handed
the data, and it should then dismiss the SecondViewController:

class ViewController : UIViewController, SecondViewControllerDelegate {

 @IBAction func doPresent(_ sender: Any?) {

 let svc = SecondViewController(nibName: nil, bundle: nil)

 svc.data = "This is very important data!"

 svc.delegate = self // *

 self.present(svc, animated:true)

 }

 func accept(data:Any!) {

 // do something with data here

 self.dismiss(animated:true)

 }

}

That is a perfectly satisfactory implementation, and we could stop at this
point. For completeness, I’ll just show a variation that I consider slightly
better. One might object that too much responsibility rests upon the original
presenter (the delegate): it is sent the data and then it must also dismiss the
presented view controller. Perhaps the presented view controller should

hand back any data and should then dismiss itself (as it did in my earlier
example). Even better, the presented view controller should hand back any
data automatically, regardless of how it is dismissed.
We can arrange that by putting all the responsibility on the presented view
controller. In the preceding example, we delete the self.dismiss call from
ViewController’s accept(data:); in SecondViewController, we will
implement both the task of dismissal and the task of handing back the data,
separately.
To make the latter task automatic, SecondViewController can arrange to
hear about its own dismissal by implementing viewWillDisappear
(discussed later in this chapter), which will then call accept(data:) to
ensure that the data is handed across. There is more than one reason why vi
ewWillDisappear might be called; we can ensure that this really is the
moment of our own dismissal by consulting isBeingDismissed. Here’s
how SecondViewController would look now:

protocol SecondViewControllerDelegate : class {

 func accept(data:Any!)

}

class SecondViewController : UIViewController {

 var data : Any?

 weak var delegate : SecondViewControllerDelegate?

 @IBAction func doDismiss(_ sender: Any?) {

 self.presentingViewController?.dismiss(animated:true)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 if self.isBeingDismissed {

 self.delegate?.accept(data:"Even more important data!")

 }

 }

}

If you’re using a storyboard and a Present Modally segue, things are a bit
different. You don’t have access to the presented view controller at the
moment of creation, and the storyboard will not automatically call a custom
initializer on the presented view controller. Instead, in the original presenter

(the source of the segue) you typically implement prepare(for:sender:)
as a moment when the original presenter and the presented view controller
will meet, and the former can hand across any needed data, set itself as
delegate, and so forth. If you dismiss the presented view controller
automatically by way of an unwind segue, the same is true in reverse: the
presented view controller also implements prepare(for:sender:), and
this is called on dismissal — so that’s when the presented view controller
calls the delegate method. I’ll give more details later in this chapter.

Adaptive Presentation
When a view controller with a modalPresentationStyle of .pageSheet
or .formSheet is about to appear, you get a second opportunity to change
its effective modalPresentationStyle, and even to substitute a different
view controller, based on the current trait collection environment. This is
called adaptive presentation. The idea is that your presented view controller
might appear one way for certain trait collections and another way for
others — for example, on an iPad as opposed to an iPhone.
To implement adaptive presentation, you use a view controller’s
presentation controller (presentationController, a
UIPresentationController). Before presenting a view controller, you set its
presentation controller’s delegate to an object adopting the
UIAdaptivePresentationControllerDelegate protocol. Before the presented
view controller’s view appears, the delegate is sent these messages:

adaptivePresentationStyle(for:traitCollection:)

The first parameter is the presentation controller, and its presentation
Style is the modalPresentationStyle it proposes to use. Return a
different modal presentation style to use instead (or .none if you don’t
want to change the presentation style).

presentationController(_:willPresentWithAdaptiveStyle:transit

ionCoordinator:)

Called just before the presentation takes place. If the adaptiveStyle:
is .none, adaptive presentation is not going to take place.

presentationController(_:viewControllerForAdaptivePresentatio

nStyle:)

Called only if adaptive presentation is going to take place. The first
parameter is the presentation controller, and its presentedViewControl
ler is the view controller it proposes to present. Return a different view
controller to present instead (or nil to keep the current presented view
controller).

What adaptations are you permitted to perform? First, as I’ve already said,
the original modalPresentationStyle should be .pageSheet or .formShe
et. It isn’t illegal to try to adapt from other presentation styles, but it isn’t
going to work either. Then the possibilities are as follows:

Adapt sheet to full screen

You can adapt .pageSheet or .formSheet to .fullScreen or .overFu
llScreen.

Adapt page sheet to form sheet

You can adapt .pageSheet to .formSheet. On an iPad, the difference
is clearly visible, but on an iPhone 6/7/8 Plus in landscape, the two
sheet types are indistinguishable. On an iPhone (including an iPhone
6/7/8 Plus in portrait), the result is something a little unusual and
unexpected. It’s similar to .pageSheet on the iPad in portrait
orientation: it is full width, but a little shorter than full height, leaving a
gap behind the status bar. (You can also obtain this configuration by
adapting .pageSheet or .formSheet to .none.)

For example, here’s how to present a view controller as a .pageSheet on
iPad but as .overFullScreen on iPhone:

extension ViewController : UIAdaptivePresentationControllerDelegate {

 @IBAction func doPresent(_ sender: Any?) {

 let svc = SecondViewController(nibName: nil, bundle: nil)

 svc.modalPresentationStyle = .pageSheet

 svc.presentationController!.delegate = self // *

 self.present(svc, animated:true)

 }

 func adaptivePresentationStyle(for controller: UIPresentationController,

 traitCollection: UITraitCollection) -> UIModalPresentationStyle {

 if traitCollection.horizontalSizeClass == .compact {

 return .overFullScreen

 }

 return .none // don't adapt

 }

}

Now let’s extend that example by presenting one view controller on iPad
but a different view controller on iPhone; this method won’t be called when
adaptivePresentationStyle returns .none, so it affects iPhone only:

extension ViewController : UIAdaptivePresentationControllerDelegate {

 func presentationController(_ controller: UIPresentationController,

 viewControllerForAdaptivePresentationStyle: UIModalPresentationStyle)

 -> UIViewController? {

 let newvc = ThirdViewController(nibName: nil, bundle: nil)

 return newvc

 }

}

In real life, of course, when substituting a different view controller, you
might need to prepare it before returning it (for example, giving it data and
setting its delegate). A common scenario is to return the same view
controller wrapped in a navigation controller; I’ll illustrate in Chapter 9.

Presentation, Rotation, and the Status Bar
A fullscreen presented view controller effectively replaces your app’s entire
interface. Thus, even though it is not the root view controller, it is the top-
level view controller, and acquires the same mighty powers as if it were the
root view controller. In particular:

Its supportedInterfaceOrientations and shouldAutorotate are
consulted and honored; this view controller gets to limit your app’s legal
orientations.

Its prefersStatusBarHidden and preferredStatusBarStyle are
consulted and honored; this view controller gets to dictate the
appearance of the status bar.

If a fullscreen presented view controller’s supportedInterfaceOrientati
ons do not intersect with the app’s current orientation, the app’s orientation
will rotate, as the presented view appears, to an orientation that the
presented view controller supports — and the same thing will be true in
reverse when the presented view controller is dismissed.
Thus, a presented view controller allows you to force the interface to rotate.
In fact, a presented view controller is the only officially sanctioned way to
force the interface to rotate.
Forced rotation is a perfectly reasonable thing to do, especially on the
iPhone, where the user can easily rotate the device to compensate for the
new orientation of the interface. Some views work better in portrait than
landscape, or better in landscape than portrait (especially on the small
screen). Forced rotation lets you ensure that each view appears only in the
orientation in which it works best.
(On an iPad, forced rotation is unlikely. In fact, if your iPad app permits all
four orientations and does not opt out of iPad multitasking, its view
controllers’ supportedInterfaceOrientations are not even consulted, so
forced rotation doesn’t work.)

The presented view controller’s supportedInterfaceOrientations
bitmask might permit multiple possible orientations. The view controller
may then also wish to specify which of those multiple orientations it should
have initially when it is presented. To do so, override preferredInterface
OrientationForPresentation; this property is consulted before support
edInterfaceOrientations, and its value is a single
UIInterfaceOrientation (not a bitmask).

WARNING
Do not attempt to implement forced rotation in a presented view controller whose presentation
style is not .fullScreen. Such a configuration is not supported, and very weird things may
happen.

When a view controller is presented, if its presentation style is not .fullSc
reen, a question arises of whether its status bar properties (prefersStatus
BarHidden and preferredStatusBarStyle) should be consulted. By
default, the answer is no, because this view controller is not the top-level
view controller. To make the answer be yes, set this view controller’s modal
PresentationCapturesStatusBarAppearance to true.

Tab Bar Controller
A tab bar (UITabBar, see also Chapter 12) is a horizontal bar containing
items. Each item is a UITabBarItem; it displays, by default, an image and a
title. New in iOS 11, a tab bar item is usually displayed with the title beside
the image, rather than below it as in previous systems; however, on an
iPhone in portrait orientation, the title appears below the image. At all
times, exactly one of a tab bar’s items is selected (highlighted); when the
user taps an item, it becomes the selected item.
If there are too many items to fit on a tab bar, the excess items are
automatically subsumed into a final More item. When the user taps the
More item, a list of the excess items appears, and the user can select one;
the user can also be permitted to edit the tab bar, determining which items
appear in the tab bar itself and which ones spill over into the More list.
A tab bar is an independent interface object, but it is most commonly used
in conjunction with a tab bar controller (UITabBarController, a subclass of
UIViewController) to form a tab bar interface. The tab bar controller
displays the tab bar at the bottom of its own view. From the user’s
standpoint, the tab bar items correspond to views; when the user selects a
tab bar item, the corresponding view appears, filling the remainder of the

space. The user is thus employing the tab bar to choose an entire area of
your app’s functionality. In reality, the UITabBarController is a parent view
controller; you give it child view controllers, which the tab bar controller
then contains, and the views summoned by tapping the tab bar items are the
views of those child view controllers.
Familiar examples of a tab bar interface on the iPhone are Apple’s Clock
app and Music app.
New in iOS 11, a tab bar interface can automatically change the height of its
tab bar. By default, the tab bar height is 49 points, as in previous systems.
But when the vertical size class is .compact (an iPhone in landscape
orientation, except for a 6/7/8 Plus), the tab bar height is reduced to 32, to
provide more room to display the main interface.

You can get a reference to the tab bar controller’s tab bar through its tabBa
r property. In general, you won’t need this. When using a tab bar interface
by way of a UITabBarController, you do not interact (as a programmer)
with the tab bar itself; you don’t create it or set its delegate. You provide the
UITabBarController with children, and it does the rest; when the
UITabBarController’s view is displayed, there’s the tab bar along with the
view of the selected item. You can, however, customize the look of the tab
bar (see Chapter 12 for details).
If a tab bar controller is the top-level view controller, it determines your
app’s compensatory rotation behavior. To take a hand in that determination
without having to subclass UITabBarController, make one of your objects
the tab bar controller’s delegate (UITabBarControllerDelegate) and
implement these methods, as needed:

tabBarControllerSupportedInterfaceOrientations(_:)

tabBarControllerPreferredInterfaceOrientationForPresentati

on(_:)

A top-level tab bar controller also determines your app’s status bar
appearance. However, a tab bar controller implements childViewControll
erForStatusBarStyle and childViewControllerForStatusBarHidden

so that the actual decision is relegated to the child view controller whose
view is currently being displayed: your preferredStatusBarStyle and pr
efersStatusBarHidden are consulted and obeyed.

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’re
going to need a tab bar item, which will appear as its representative in the
tab bar. This tab bar item will be your child view controller’s tabBarItem.
A tab bar item is a UITabBarItem; this is a subclass of UIBarItem, an
abstract class that provides some of its most important properties, such as t
itle, image, and isEnabled.
There are two ways to make a tab bar item:

By borrowing it from the system

Instantiate UITabBarItem using init(tabBarSystemItem:tag:), and
assign the instance to your child view controller’s tabBarItem. Consult
the documentation for the list of available system items. Unfortunately,
you can’t customize a system tab bar item’s title; you must accept the
title the system hands you. (You can’t work around this restriction by
somehow copying a system tab bar item’s image.)

By making your own

Instantiate UITabBarItem using init(title:image:tag:) and assign
the instance to your child view controller’s tabBarItem. Alternatively,
use the view controller’s existing tabBarItem and set its image and tit
le. Instead of setting the title of the tabBarItem, you can set the tit
le property of the view controller itself; doing this automatically sets
the title of its current tabBarItem (unless the tab bar item is a system
tab bar item), though the converse is not true.

You can add a separate selectedImage later, or possibly by initializing
with init(title:image:selectedImage:). The selectedImage will

be displayed in place of the normal image when this tab bar item is
selected in the tab bar.

The image (and selectedImage) for a tab bar item should be a 30×30
PNG. By default, this image will be treated as a transparency mask (a
template): the hue of its pixels will be ignored, and the transparency of its
pixels will be combined with the tab bar’s tintColor, which may be
inherited from higher up the view hierarchy. However, you can instead
display the image as is, and not as a transparency mask, by deriving an
image whose rendering mode is .alwaysOriginal (see Chapter 2).
New in iOS 11, you have to cope with the possibility that the tab bar item
will be displayed within a tab bar whose height has been reduced. The
solution is to set its landscapeImagePhone, which will be used when the
vertical size class is .compact — exactly the circumstances under which
the tab bar’s height is reduced. This image should be a 20×20 PNG.
(Apple recommends that, if possible, you use a PDF vector image instead of
a PNG. The reason is that the image will then be automatically resized, with
no loss of sharpness, and you won’t have to supply a separate landscapeIm
agePhone.)

WARNING
As of this writing, the tab bar item’s selectedImage is not used in a .compact vertical size class
environment if it also has a separate landscapeImagePhone. I regard this as a major bug.

You can also give a tab bar item a badge (see the documentation on the bad
geValue property). Other ways in which you can customize the look of a
tab bar item are discussed in Chapter 12. For example, you can control the
font and style of the title, or you can give it an empty title and offset the
image.

Configuring a Tab Bar Controller

Basic configuration of a tab bar controller is very simple: just hand it the
view controllers that will be its children. To do so, collect those view
controllers into an array and set the UITabBarController’s viewController
s property to that array. The view controllers in the array are now the tab
bar controller’s child view controllers; the tab bar controller is the parent
of the view controllers in the array. The tab bar controller is also the tabBar
Controller of the view controllers in the array and of all their children;
thus a child view controller at any depth can learn that it is contained by a
tab bar controller and can get a reference to that tab bar controller. The tab
bar controller retains the array, and the array retains the child view
controllers.
Here’s a simple example from one of my apps, in which I construct and
display a tab bar interface in code:

func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 self.window = self.window ?? UIWindow()

 let vc1 = GameBoardController()

 let sc = SettingsController()

 let vc2 = UINavigationController(rootViewController:sc)

 let tabBarController = UITabBarController()

 tabBarController.viewControllers = [vc1, vc2]

 tabBarController.selectedIndex = 0

 tabBarController.delegate = self

 self.window!.rootViewController = tabBarController

 self.window!.makeKeyAndVisible()

 return true

}

The tab bar controller’s tab bar will automatically display the tabBarItem
of each child view controller. The order of the tab bar items is the order of
the view controllers in the tab bar controller’s viewControllers array.
Thus, a child view controller will probably want to configure its tabBarIte
m property early in its lifetime, so that the tabBarItem is ready by the time
the view controller is handed as a child to the tab bar controller. Observe
that viewDidLoad is not early enough! That’s because the view controllers

(other than the initially selected view controller) have no view when the tab
bar controller initially appears. Thus it is common to implement an
initializer for this purpose.
Here’s an example from the same app as the previous code (in the
GameBoardController class):

init() {

 super.init(nibName:nil, bundle:nil)

 // tab bar configuration

 self.tabBarItem.image = UIImage(named: "game")

 self.title = "Game"

}

If you change the tab bar controller’s view controllers array later in its
lifetime and you want the corresponding change in the tab bar’s display of
its items to be animated, call setViewControllers(_:animated:).
Initially, by default, the first child view controller’s tab bar item is selected
and its view is displayed. To ask the tab bar controller which tab bar item
the user has selected, you can couch your query in terms of the child view
controller (selectedViewController) or by index number in the array (se
lectedIndex). You can also set these properties to switch between
displayed child view controllers programmatically. (In fact, it is legal to set
a tab bar controller’s tab bar’s isHidden to true and take charge of
switching between children yourself — though if that’s your desired
architecture, a UIPageViewController might be more appropriate.)

NOTE
You can supply a view animation when a tab bar controller’s selected tab item changes and one
child view controller’s view is replaced by another, as I’ll explain later in the chapter.

You can also set the UITabBarController’s delegate (adopting
UITabBarControllerDelegate). The delegate gets messages allowing it to
prevent a given tab bar item from being selected, and notifying it when a

tab bar item is selected and when the user is customizing the tab bar from
the More item.
If the tab bar contains few enough items that it doesn’t need a More item,
there won’t be one, and the tab bar won’t be user-customizable. If there is a
More item, you can exclude some tab bar items from being customizable by
setting the customizableViewControllers property to an array that lacks
them; setting this property to nil means that the user can see the More list
but can’t rearrange the items. Setting the viewControllers property sets
the customizableViewControllers property to the same value, so if
you’re going to set the customizableViewControllers property, do it
after setting the viewControllers property. The moreNavigationControl
ler property can be compared with the selectedViewController
property to learn whether the user is currently viewing the More list; apart
from this, the More interface is mostly out of your control, but I’ll discuss
some sneaky ways of customizing it in Chapter 12.
(If you allow the user to rearrange items, you would presumably want to
save the new arrangement and restore it the next time the app runs. You
might use UserDefaults for this, or you might take advantage of the built-in
automatic state saving and restoration facilities, discussed later in this
chapter.)
You can configure a UITabBarController in a storyboard. The
UITabBarController’s contained view controllers can be set directly —
there will be a “view controllers” relationship between the tab bar controller
and each of its children — and the contained view controllers will be
instantiated together with the tab bar controller. Moreover, each contained
view controller has a Tab Bar Item; you can select this and set many aspects
of the tabBarItem, such as its system item or its title, image, selected
image, and tag, directly in the nib editor. (If a view controller in a nib
doesn’t have a Tab Bar Item and you want to configure this view controller
for use in a tab bar interface, drag a Tab Bar Item from the Object library
onto the view controller.)

To start a project with a main storyboard that has a UITabBarController as
its initial view controller, begin with the Tabbed app template.

Navigation Controller
A navigation bar (UINavigationBar, see also Chapter 12) is a horizontal bar
displaying a center title and a right button. When the user taps the right
button, the navigation bar animates, sliding its interface out to the left and
replacing it with a new interface that enters from the right. The new
interface displays a back button at the left side, and a new center title —
and possibly a new right button. The user can tap the back button to go back
to the first interface, which slides in from the left; or, if there’s a right
button in the second interface, the user can tap it to go further forward to a
third interface, which slides in from the right.
The successive interfaces of a navigation bar thus behave like a stack. In
fact, a navigation bar does represent an actual stack — an internal stack of
navigation items (UINavigationItem). It starts out with one navigation item:
the root or bottom item of the stack. Since there is initially just one
navigation item, it is also initially the top item of the stack (the navigation
bar’s topItem). The navigation bar’s interface is always representing
whatever its top item is at that moment. When the user taps a right button, a
new navigation item is pushed onto the stack; it becomes the top item, and
its interface is seen. When the user taps a back button, the top item is
popped off the stack, and what was previously the next item beneath it in
the stack — the back item (the navigation bar’s backItem) — becomes the
top item, and its interface is seen.
The state of the stack is thus reflected in the navigation bar’s interface. The
navigation bar’s center title comes automatically from the top item, and its
back button comes from the back item. (See Chapter 12 for a complete
description.) Thus, the title tells the user what item is current, and the left
side is a button telling the user what item we would return to if the user
were to tap that button. The animations reinforce this notion of
directionality, giving the user a sense of position within a chain of items.

A navigation bar is an independent interface object, but it is most
commonly used in conjunction with a navigation controller
(UINavigationController, a subclass of UIViewController) to form a
navigation interface. Just as there is a stack of navigation items in the
navigation bar, there is a stack of view controllers in the navigation
controller. These view controllers are the navigation controller’s children,
and each navigation item belongs to a view controller — it is a view
controller’s navigationItem.
The navigation controller performs automatic coordination of the
navigation bar and the overall interface. Whenever a view controller comes
to the top of the navigation controller’s stack, its view is displayed in the
interface. At the same time, its navigationItem is automatically pushed
onto the top of the navigation bar’s stack — and is thus displayed in the
navigation bar as its top item. Moreover, the animation in the navigation bar
is reinforced by animation of the interface as a whole: by default, a view
controller’s view slides into the main interface from the side just as its
navigation item slides into the navigation bar from the same side.

NOTE
You can supply a different view animation when a view controller is pushed onto or popped off of
a navigation controller’s stack, as I’ll explain later in the chapter.

Your code can control the overall navigation, so in real life, the user might
push a new view controller not by tapping the right button in the navigation
bar, but by tapping something inside the main interface, such as a listing in
a table view. (Figure 6-1 is a navigation interface that works this way.) In
this situation, your app is deciding in real time, in response to the user’s tap,
what the next view controller should be; typically, you won’t even create
the next view controller until the user asks to navigate to it. The navigation
interface thus becomes a master–detail interface.
Conversely, you might put a view controller inside a navigation controller
just to get the convenience of the navigation bar, with its title and buttons,

even when no actual navigation is going to take place.
You can get a reference to the navigation controller’s navigation bar
through its navigationBar property. In general, you won’t need this. When
using a navigation interface by way of a UINavigationController, you do
not interact (as a programmer) with the navigation bar itself; you don’t
create it or set its delegate. You provide the UINavigationController with
children, and it does the rest, handing each child view controller’s navigat
ionItem to the navigation bar for display and showing the child view
controller’s view each time navigation occurs. You can, however, customize
the look of the navigation bar (see Chapter 12 for details).
A navigation interface may also optionally display a toolbar at the bottom.
A toolbar (UIToolbar) is a horizontal view displaying a row of items. As in
a navigation bar, a toolbar item may provide information, or it may be
something the user can tap. A tapped item is not selected, as in a tab bar;
rather, it represents the initiation of an action, like a button. You can get a
reference to a UINavigationController’s toolbar through its toolbar
property. The look of the toolbar can be customized (Chapter 12). In a
navigation interface, however, the contents of the toolbar are determined
automatically by the view controller that is currently the top item in the
stack: they are its toolbarItems.

NOTE
A UIToolbar can also be used independently, and often is. It then typically appears at the bottom
on an iPhone — Figure 6-3 has a toolbar at the bottom — but often appears at the top on an iPad,
where it plays something of the role that the menu bar plays on the desktop. When a toolbar is
displayed by a navigation controller, though, it always appears at the bottom.

A familiar example of a navigation interface is Apple’s Settings app on the
iPhone. The Mail app on the iPhone is a navigation interface that includes a
toolbar.
If a navigation controller is the top-level view controller, it determines your
app’s compensatory rotation behavior. To take a hand in that determination

without having to subclass UINavigationController, make one of your
objects the navigation controller’s delegate
(UINavigationControllerDelegate) and implement these methods, as
needed:

navigationControllerSupportedInterfaceOrientations(_:)

navigationControllerPreferredInterfaceOrientationForPresen

tation(_:)

A top-level navigation controller also determines your app’s status bar
appearance. However, a navigation controller implements childViewContr
ollerForStatusBarHidden so that the actual decision is relegated to the
child view controller whose view is currently being displayed: your prefer
sStatusBarHidden is consulted and obeyed.

But preferredStatusBarStyle is a special case. Your child view
controllers can implement preferredStatusBarStyle, and the navigation
controller’s childViewControllerForStatusBarStyle defers to its top
child view controller — but only if the navigation bar is hidden. If the
navigation bar is showing, the navigation controller sets the status bar style
based on the navigation bar’s barStyle — to .default if the bar style is .
default, and to .lightContent if the bar style is .black. So the way for
your view controller to set the status bar style, when the navigation bar is
showing, is to set the navigation controller’s navigation bar style.

Bar Button Items
The items in a UIToolbar or a UINavigationBar are bar button items —
UIBarButtonItem, a subclass of UIBarItem. A bar button item comes in one
of two broadly different flavors:

Basic bar button item
The bar button item behaves like a simple button.

Custom view

The bar button item has no inherent behavior, but has (and displays) a c
ustomView.

UIBarItem is not a UIView subclass. A basic bar button item is button-like,
but it has no frame, no UIView touch handling, and so forth. A
UIBarButtonItem’s customView, however, is a UIView — indeed, it can be
any kind of UIView. Thus, a bar button item with a customView can display
any sort of view in a toolbar or navigation bar, and that view can have
subviews, can implement touch handling, and so on.
Let’s start with the basic bar button item (no custom view). A bar button
item, like a tab bar item, inherits from UIBarItem the title, image, and is
Enabled properties. The title text color, by default, comes from the bar
button item’s tintColor, which may be inherited from the bar itself or
from higher up the view hierarchy. Assigning an image removes the title.
The image should usually be quite small; Apple recommends 22×22. By
default, it will be treated as a transparency mask (a template): the hue of its
pixels will be ignored, and the transparency of its pixels will be combined
with the bar button item’s tintColor. However, you can instead display the
image as is, and not as a transparency mask, by deriving an image whose
rendering mode is .alwaysOriginal (see Chapter 2).

A basic bar button item has a style property (UIBarButtonItemStyle); this
will usually be .plain. The alternative, .done, causes the title to be bold.
You can further refine the title font and style. In addition, a bar button item
can have a background image; this will typically be a small, resizable
image, and can be used to provide a border. Full details appear in
Chapter 12.

A bar button item also has target and action properties. These contribute
to its button-like behavior: tapping a bar button item can trigger an action
method elsewhere.
There are three ways to make a bar button item:

By borrowing it from the system

Make a UIBarButtonItem with init(barButtonSystemItem:target:
action:). Consult the documentation for the list of available system
items; they are not the same as for a tab bar item. You can’t assign a title
or change the image. (But you can change the tint color or assign a
background image.)

By making your own basic bar button item

Make a UIBarButtonItem with init(title:style:target:action:)
or with init(image:style:target:action:).

An additional initializer, init(image:landscapeImagePhone:style:t
arget: action:), lets you specify a second image for use when the
vertical size class is .compact, because the bar’s height might be
smaller in this situation.

By making a custom view bar button item

Make a UIBarButtonItem with init(customView:), supplying a
UIView that the bar button item is to display. The bar button item has no
action and target; the UIView itself must somehow implement button
behavior if that’s what you want. For example, the customView might
be a UISegmentedControl, but then it is the UISegmentedControl’s
target and action that give it button behavior.
New in iOS 11, your custom view can use autolayout internally. Just
make sure that you provide sufficient constraints to size the view from
the inside out; the runtime will take care of positioning it.

Bar button items in a toolbar are horizontally positioned automatically by
the system. You can provide hints to help with this positioning. For
example, you can supply an absolute width. Also, you can incorporate
spacers into the toolbar; these are created with init(barButtonSystemIte
m:target:action:), but they have no visible appearance, and cannot be
tapped. Place .flexibleSpace system items between the visible items to
distribute the visible items equally across the width of the toolbar. There is

also a .fixedSpace system item whose width lets you insert a space of
defined size.

Navigation Items and Toolbar Items
What appears in a navigation bar (UINavigationBar) depends upon the
navigation items (UINavigationItem) in its stack. In a navigation interface,
the navigation controller will manage the navigation bar’s stack for you;
your job is to configure each navigation item by setting properties of the na
vigationItem of each child view controller. The UINavigationItem
properties are as follows (see also Chapter 12):

title

titleView

The title is a string. Setting a view controller’s title property sets
the title of its navigationItem automatically, and is usually the best
approach.

The titleView can be any kind of UIView, and can implement further
UIView functionality such as touchability. New in iOS 11, the titleVi
ew can use autolayout internally; just be sure to supply sufficient
constraints to size the view from the inside out.

In iOS 10 and before, the title or the titleView is displayed in the
center of the navigation bar when this navigation item is at the top of
the stack; if there is a titleView, it is shown instead of the title. New
in iOS 11, the title can be shown at the bottom of the navigation bar,
in which case both the title and the titleView can appear; I’ll
explain more about that in a moment.

prompt

An optional string to appear centered above everything else in the
navigation bar. The navigation bar’s height will be increased to
accommodate it.

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear
at the right side of the navigation bar; the first item in the array will be
rightmost.

backBarButtonItem

When a view controller is pushed on top of this view controller, the
navigation bar will display at its left a button pointing to the left, whose
title is this view controller’s title. That button is this view controller’s
navigation item’s backBarButtonItem. That’s right: the back button
displayed in the navigation bar belongs, not to the top item (the naviga
tionItem of the current view controller), but to the back item (the navi
gationItem of the view controller that is one level down in the stack).
The vast majority of the time, the default behavior is the behavior you’ll
want, and you’ll leave the back button alone. If you wish, though, you
can customize the back button by setting a view controller’s navigatio
nItem.backBarButtonItem so that it contains an image, or a title
differing from the view controller’s title. The best technique is to
provide a new UIBarButtonItem whose target and action are nil; the
runtime will add a correct target and action, so as to create a working
back button. Here’s how to create a back button with a custom image
instead of a title:

let b = UIBarButtonItem(

 image:UIImage(named:"files"), style:.plain, target:nil, action:nil)

self.navigationItem.backBarButtonItem = b

A Bool property, hidesBackButton, allows the top navigation item to
suppress display of the back item’s back bar button item. If you set this
to true, you’ll probably want to provide some other means of letting
the user navigate back.
The visible indication that the back button is a back button is a left-
pointing chevron (the back indicator) that’s separate from the button

itself. This chevron can also be customized, but it’s a feature of the
navigation bar, not the bar button item: set the navigation bar’s backInd
icatorImage and backIndicatorTransitionMask. (I’ll give an
example in Chapter 12.) But if the back button is assigned a background
image — not an internal image, as in the example I just gave, but a
background image, by calling setBackButtonBackgroundImage —
then the back indicator is removed; it is up to the background image to
point left, if desired.

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear
at the left side of the navigation bar; the first item in the array will be
leftmost. The leftItemsSupplementBackButton property, if set to tru
e, allows both the back button and one or more left bar button items to
appear.

New in iOS 11, a navigation bar can adopt an increased height in order to
display the top item’s title in a large font below the bar button items. This
configuration has two great advantages: it very strongly identifies the top
item, and it leaves more room in the upper part of the navigation bar to
display bar button items (and even a titleView, which is no longer
displaced by the title). This is a navigation bar feature, its prefersLarge
Titles property. In order to accomodate the possibility that different view
controllers will have different preferences in this regard, a navigation item
has a largeTitleDisplayMode, which may be one of the following:

.always

The navigation item’s title is displayed large if the navigation bar’s pr
efersLargeTitles is true.

.never

The navigation item’s title is not displayed large.

.automatic

The navigation item’s title display is the same as the title display of
the back item — that is, of the navigation item preceding this one in the
navigation bar’s stack. This is the default. The idea is that all navigation
items pushed onto a navigation bar will display their titles in the same
way, until a pushed navigation item declares .always or .never.

The navigation controller may grow or shrink its navigation bar to display
or hide the large title as the contents of its view are scrolled — yet another
reason why a nimble interface based on autolayout and the safe area is
crucial.
A view controller’s navigation item can have its properties set at any time
while being displayed in the navigation bar. This (and not direct
manipulation of the navigation bar) is the way to change the navigation
bar’s contents dynamically. For example, in one of my apps, we play music
from the user’s library using interface in the navigation bar. The titleView
is a progress view (UIProgressView, Chapter 12) that needs updating every
second to reflect the playback position in the current song, and the right bar
button should be either the system Play button or the system Pause button,
depending on whether we are paused or playing. So I have a timer that
periodically checks the state of the music player (self.mp); observe how
we access the progress view and the right bar button by way of self.navig
ationItem:

// change the progress view

let prog = self.navigationItem.titleView!.subviews[0] as! UIProgressView

if let item = self.nowPlayingItem {

 let current = self.mp.currentPlaybackTime

 let total = item.playbackDuration

 prog.progress = Float(current / total)

} else {

 prog.progress = 0

}

// change the bar button

let whichButton : UIBarButtonSystemItem? = {

 switch self.mp.currentPlaybackRate {

 case 0..<0.1:

 return .play

 case 0.1...1.0:

 return .pause

 default:

 return nil

 }

}()

if let which = whichButton {

 let bb = UIBarButtonItem(barButtonSystemItem: which,

 target: self, action: #selector(doPlayPause))

 self.navigationItem.rightBarButtonItem = bb

}

Each view controller to be pushed onto the navigation controller’s stack is
responsible also for supplying the items to appear in the navigation
interface’s toolbar, if there is one. To configure this, set the view
controller’s toolbarItems property to an array of UIBarButtonItem
instances. You can change the toolbar items even while the view
controller’s view and current toolbarItems are showing, optionally with
animation, by sending setToolbarItems(_:animated:) to the view
controller.

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view
controllers. This stack is the navigation controller’s viewControllers
array property, though you will rarely need to manipulate that property
directly.

The view controllers in a navigation controller’s viewControllers array
are the navigation controller’s child view controllers; the navigation
controller is the parent of the view controllers in the array. The navigation
controller is also the navigationController of the view controllers in the
array and of all their children; thus a child view controller at any depth can
learn that it is contained by a navigation controller and can get a reference
to that navigation controller. The navigation controller retains the array, and
the array retains the child view controllers.
The normal way to manipulate a navigation controller’s stack is by pushing
or popping one view controller at a time. When the navigation controller is

instantiated, it is usually initialized with init(rootViewController:);
this is a convenience method that assigns the navigation controller a single
initial child view controller, the root view controller that goes at the bottom
of the stack:

let fvc = FirstViewController()

let nav = UINavigationController(rootViewController:fvc)

Instead of init(rootViewController:), you might choose to create the
navigation controller with init(navigationBarClass:toolbarClass:),
in order to set a custom subclass of UINavigationBar or UIToolbar.
Typically, this will be in order to customize the appearance of the
navigation bar and toolbar; sometimes you’ll create, say, a UIToolbar
subclass for no other reason than to mark this kind of toolbar as needing a
certain appearance. I’ll explain about that in Chapter 12. If you use this
initializer, you’ll have to set the navigation controller’s root view controller
separately.
You can also set the UINavigationController’s delegate (adopting
UINavigationControllerDelegate). The delegate receives messages before
and after a child view controller’s view is shown.
A navigation controller will typically appear on the screen initially
containing just its root view controller, and displaying its root view
controller’s view. There will be no back button, because there is no back
item; there is nowhere to go back to. Subsequently, when the user asks to
navigate to a new view, you (typically meaning code in the current view
controller) obtain the next view controller (typically by creating it) and push
it onto the stack by calling pushViewController(_:animated:) on the
navigation controller. The navigation controller performs the animation, and
displays the new view controller’s view:

let svc = SecondViewController(nibName: nil, bundle: nil)

self.navigationController!.pushViewController(svc, animated: true)

The command for going back is popViewController(animated:), but you
might never need to call it yourself, as the runtime will call it for you when
the user taps the back button to navigate back. When a view controller is
popped from the stack, the viewControllers array removes and releases
the view controller, which is usually permitted to go out of existence at that
point.
Alternatively, there’s a second way to push a view controller onto the
navigation controller’s stack, without referring to the navigation controller:
show(_:sender:). This UIViewController method lets the caller be
agnostic about the current interface situation: it pushes the view controller
onto a navigation controller if the view controller to which it is sent is in a
navigation interface, but presents it otherwise. I’ll talk more about this
method in Chapter 9; meanwhile, I’ll continue using pushViewController
(_:animated:) in my examples.
Instead of tapping the back button, the user can go back by dragging a
pushed view controller’s view from the left edge of the screen. This is
actually a way of calling popViewController(animated:), with the
difference that the animation is interactive. (Interactive view controller
transition animation is the subject of the next section.) The
UINavigationController uses a UIScreenEdgePanGestureRecognizer to
detect and track the user’s gesture. You can obtain a reference to this
gesture recognizer as the navigation controller’s interactivePopGestureR
ecognizer; thus you can disable the gesture recognizer and prevent this
way of going back, or you can mediate between your own gesture
recognizers and this one (see Chapter 5).

You can manipulate the stack more directly if you wish. You can call popVi
ewController(animated:) explicitly; to pop multiple items so as to leave
a particular view controller at the top of the stack, call popToViewControll
er(_:animated:), or to pop all the items down to the root view controller,
call popToRootViewController(animated:). All of these methods return
the popped view controller (or view controllers, as an array), in case you
want to do something with them.

To set the entire stack at once, call setViewControllers(_:animated:).
You can access the stack through the viewControllers property.
Manipulating the stack directly is the only way, for instance, to delete or
insert a view controller in the middle of the stack.

The view controller at the top of the stack is the topViewController; the
view controller whose view is displayed is the visibleViewController.
Those will normally be the same, but they needn’t be, as the topViewContr
oller might present a view controller, in which case the presented view
controller will be the visibleViewController. Other view controllers can
be accessed through the viewControllers array by index number. The root
view controller is at index 0; if the array’s count is c, the back view
controller (the one whose navigationItem.backBarButtonItem is
currently displayed in the navigation bar) is at index c-2.

The topViewController may need to communicate with the next view
controller as the latter is pushed onto the stack, or with the back view
controller as it itself is popped off the stack. The problem is parallel to that
of communication between an original presenter and a presented view
controller, which I discussed earlier in this chapter (“Communication with a
Presented View Controller”), so I won’t say more about it here.

A child view controller will probably want to configure its navigationIte
m early in its lifetime, so as to be ready for display in the navigation bar by
the time the view controller is handed as a child to the navigation controller.
Apple warns (in the UIViewController class reference, under navigationI
tem) that loadView and viewDidLoad are not appropriate places to do this,
because the circumstances under which the view is needed are not related to
the circumstances under which the navigation item is needed. Apple’s own
code examples routinely violate this warning, but it is probably best to
override a view controller initializer for this purpose.

A navigation controller’s navigation bar is accessible as its navigationBar,
and can be hidden and shown with setNavigationBarHidden(_:animate
d:). (It is possible, though not common, to maintain and manipulate a

navigation stack through a navigation controller whose navigation bar never
appears.) Its toolbar is accessible as its toolbar, and can be hidden and
shown with setToolbarHidden(_:animated:).
A view controller also has the power to specify that its ancestor’s bottom
bar (a navigation controller’s toolbar, or a tab bar controller’s tab bar)
should be hidden as this view controller is pushed onto a navigation
controller’s stack. To do so, set the view controller’s hidesBottomBarWhen
Pushed property to true. The trick is that you must do this very early,
before the view loads; the view controller’s initializer is a good place. The
bottom bar remains hidden from the time this view controller is pushed to
the time it is popped, even if other view controllers are pushed and popped
on top of it in the meantime.
A navigation controller can perform automatic hiding and showing of its
navigation bar (and, if normally shown, its toolbar) in response to various
situations, as configured by properties:

When tapped

If the navigation controller’s hidesBarsOnTap is true, a tap that falls
through the top view controller’s view is taken as a signal to toggle bar
visibility. The relevant gesture recognizer is the navigation controller’s
barHideOnTapGestureRecognizer.

When swiped

If the navigation controller’s hidesBarsOnSwipe is true, an upward or
downward swipe respectively hides or shows the bars. The relevant
gesture recognizer is the navigation controller’s barHideOnSwipeGestu
reRecognizer.

In landscape

If the navigation controller’s hidesBarsWhenVerticallyCompact is tr
ue, bars are automatically hidden when the app rotates to landscape on
the iPhone (and hidesBarsOnTap is treated as true, so the bars can be
shown again by tapping).

When the user is typing

If the navigation controller’s hidesBarsWhenKeyboardAppears is
true, bars are automatically hidden when the onscreen keyboard
appears (see Chapter 10).

You can configure a UINavigationController, or any view controller that is
to serve in a navigation interface, in the nib editor. In the Attributes
inspector, use a navigation controller’s Bar Visibility and Hide Bars
checkboxes to determine the presence of the navigation bar and toolbar. The
navigation bar and toolbar are themselves subviews of the navigation
controller, and you can configure them with the Attributes inspector as well.
New in iOS 11, a navigation bar has a Prefers Large Titles checkbox. A
navigation controller’s root view controller can be specified; in a
storyboard, there will be a “root view controller” relationship between the
navigation controller and its root view controller. The root view controller
is automatically instantiated together with the navigation controller.
A view controller in the nib editor has a Navigation Item where you can
specify its title, its prompt, and the text of its back button. New in iOS 11, a
navigation item has a Large Title pop-up menu, where you can set its large
TitleDisplayMode. You can drag Bar Button Items into a view controller’s
navigation bar in the canvas to set the left buttons and right buttons of its na
vigationItem. Moreover, the Navigation Item has outlets, one of which
permits you to set its titleView. Similarly, you can give a view controller
Bar Button Items that will appear in the toolbar. (If a view controller in a
nib doesn’t have a Navigation Item and you want to configure this view
controller for use in a navigation interface, drag a Navigation Item from the
Object library onto the view controller.)
To start an iPhone project with a main storyboard that has a
UINavigationController as its initial view controller, begin with the Master–
Detail app template. Alternatively, start with the Single View app template,
remove the existing view controller from the storyboard, and add a
Navigation Controller in its place. Unfortunately, the nib editor assumes
that the navigation controller’s root view controller should be a

UITableViewController. If that’s not the case, here’s a better way: start with
the Single View app template, select the existing view controller, and
choose Editor → Embed In → Navigation Controller. A view controller to
be subsequently pushed onto the navigation stack can be configured in the
storyboard as the destination of a push segue; I’ll talk more about that later
in the chapter.

Custom Transition
You can customize certain built-in transitions between view controller
views:

Tab bar controller
When a tab bar controller changes which of its child view controllers is
selected, by default there is no view animation; you can add a custom
animation.

Navigation controller
When a navigation controller pushes or pops a child view controller, by
default there is a sideways sliding view animation; you can replace this
with a custom animation.

Presented view controller
When a view controller is presented or dismissed, there is a limited set
of built-in view animations; you can supply a custom animation.
Moreover, you can customize the ultimate size and position of the
presented view, and how the presenting view is seen behind it; you can
also provide ancillary views that remain during the presentation.

Given the extensive animation resources of iOS (see Chapter 4), this is an
excellent chance for you to provide your app with variety and distinction.
The view of a child view controller pushed onto a navigation controller’s
stack needn’t arrive sliding from the side; it can expand by zooming from
the middle of the screen, drop from above and fall into place with a bounce,
snap into place like a spring, or whatever else you can dream up. A familiar

example is Apple’s Calendar app, which transitions from a year to a month,
in a navigation controller, by zooming in.
A custom transition animation can optionally be interactive — meaning that
it is driven in real time by the user’s gesture. The user does not merely tap
and cause an animation to take place; the user performs an extended gesture
and gradually summons the new view to supersede the old one. The user
can thus participate in the progress of the transition. A familiar example is
the Photos app, which lets the user pinch a photo, in a navigation controller,
to pop to the album containing it.
A custom transition animation can optionally be interruptible. You can
provide a way for the user to pause the animation, possibly interact with the
animated view by means of a gesture, and then resume (or cancel) the
animation.

Noninteractive Custom Transition Animation
In the base case, you provide a custom animation that is not interactive.
Configuring your custom animation requires three steps:

1. Before the transition begins, you must have given the view controller
in charge of the transition a delegate.

2. As the transition begins, the delegate will be asked for an animation
controller. You will supply a reference to some object adopting the
UIViewControllerAnimatedTransitioning protocol (or nil to specify
that the default animation, if any, should be used).

3. The animation controller will be sent these messages:

transitionDuration(using:)

The animation controller must return the duration of the custom
animation.

animateTransition(using:)

The animation controller should perform the animation.

interruptibleAnimator(using:)

Optional; if implemented, the animation controller should return
an object adopting the UIViewImplicitlyAnimating protocol,
which may be a property animator.

animationEnded(_:)

Optional; if implemented, the animation controller may perform
cleanup following the animation.

I like to use a property animator to govern the animation; it will need to be
accessible from multiple methods, so it must live in an instance property.
I’ll type this instance property as an Optional wrapping a
UIViewImplicitlyAnimating object:

var anim : UIViewImplicitlyAnimating?

I then implement all four animation controller methods:

transitionDuration(using:)

We’ll return a constant.

animateTransition(using:)

We’ll call interruptibleAnimator(using:) to obtain the property
animator, and we’ll tell the property animator to start animating.

interruptibleAnimator(using:)

This is where all the real work happens. We’re being asked for the
property animator. There is a danger that we will be called multiple
times during the animation. So if the property animator already exists in
our instance property, we simply return it. If it doesn’t exist, we create
and configure it and assign it to our instance property, and then return it.

animationEnded(_:)

We’ll clean up any instance properties; at a minimum, we’ll set our
property animator instance property to nil.

Now let’s get down to the nitty-gritty of what interruptibleAnimator(us
ing:) actually does to configure the property animator and its animation. In
general, a custom transition animation works as follows:

1. The using: parameter is an object called the transition context
(adopting the UIViewControllerContextTransitioning protocol). By
querying the transition context, you can obtain:

The container view, an already existing view within which all the
action is to take place.
The outgoing and incoming view controllers.
The outgoing and incoming views. These are probably the main
views of the outgoing and incoming view controllers, but you
should obtain the views directly from the transition context, just in
case they aren’t. The outgoing view is already inside the container
view.

The initial frame of the outgoing view, and the ultimate frame
where the incoming view must end up.

2. Having gathered this information, your mission is to put the incoming
view into the container view and animate it in such a way as to end up
at its correct ultimate frame. You may also animate the outgoing view
if you wish.

3. When the animation ends, your completion function must call the
transition context’s completeTransition to tell it that the animation
is over. In response, the outgoing view is removed automatically, and
the animation comes to an end (and our animationEnded will be
called).

As a simple example, I’ll use the transition between two child view
controllers of a tab bar controller, when the user taps a different tab bar
item. By default, this transition isn’t animated; one view just replaces the
other. Let’s animate the transition.
A possible custom animation is that the new view controller’s view should
slide in from one side while the old view controller’s view should slide out

the other side. The direction of the slide should depend on whether the
index of the new view controller is greater or less than that of the old view
controller. Let’s implement that.
Assume that the tab bar controller is our app’s root view controller. In that
case, all the work can be done in the AppDelegate implementation. The tab
bar controller is in charge of the transition, so the first step is to give it a
delegate. I’ll do that in code, in the app delegate’s application(_:didFin
ishLaunchingWithOptions:), making the tab bar controller’s delegate be
the app delegate itself:

(self.window!.rootViewController as! UITabBarController).delegate = self

The app delegate, in its role as UITabBarControllerDelegate, will be sent a
message whenever the tab bar controller is about to change view
controllers. That message is:

tabBarController(_:animationControllerForTransitionFrom:t

o:)

The second step is to implement that method. We must return an animation
controller, namely, some object implementing
UIViewControllerAnimatedTransitioning. I’ll return self:

extension AppDelegate : UITabBarControllerDelegate {

 func tabBarController(_ tabBarController: UITabBarController,

 animationControllerForTransitionFrom fromVC: UIViewController,

 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {

 return self

 }

}

(There is no particular reason why the animation controller should be self;
I’m just using self to keep things simple. The animation controller can be
any object — even a dedicated lightweight object instantiated just to govern
this transition. There is also no particular reason why the animation
controller should be the same object every time this method is called;
depending on the circumstances, we could readily provide a different

animation controller, or we could return nil to use the default transition —
meaning, in this case, no animation.)
The third step is to implement the animation controller
(UIViewControllerAnimatedTransitioning). I’ll start with stubs for the four
methods we’re going to write:

extension AppDelegate : UIViewControllerAnimatedTransitioning {

 func transitionDuration(using ctx: UIViewControllerContextTransitioning?)

 -> TimeInterval {

 // ...

 }

 func animateTransition(using ctx: UIViewControllerContextTransitioning) {

 // ...

 }

 func interruptibleAnimator(using ctx: UIViewControllerContextTransitionin

g)

 -> UIViewImplicitlyAnimating {

 // ...

 }

 func animationEnded(_ transitionCompleted: Bool) {

 // ...

 }

}

Our transitionDuration must reveal in advance the duration of our
animation:

func transitionDuration(using ctx: UIViewControllerContextTransitioning?)

 -> TimeInterval {

 return 0.4

}

(Again, the value returned needn’t be a constant; we could decide on the
duration based on the circumstances. But the value returned here must be
the same as the duration of the animation we’ll actually be constructing in i
nterruptibleAnimator.)

Our animateTransition simply calls interruptibleAnimator to obtain
the property animator, and tells it to animate:

func animateTransition(using ctx: UIViewControllerContextTransitioning) {

 let anim = self.interruptibleAnimator(using: ctx)

 anim.startAnimation()

}

The workhorse is interruptibleAnimator. If the property animator
already exists, we unwrap it and return it, and that’s all:

func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)

 -> UIViewImplicitlyAnimating {

 if self.anim != nil {

 return self.anim!

 }

 // ...

}

If we haven’t returned, we need to form the property animator. First, we
thoroughly query the transition context ctx to learn all about the parameters
of this animation:

let vc1 = ctx.viewController(forKey:.from)!

let vc2 = ctx.viewController(forKey:.to)!

let con = ctx.containerView

let r1start = ctx.initialFrame(for:vc1)

let r2end = ctx.finalFrame(for:vc2)

let v1 = ctx.view(forKey:.from)!

let v2 = ctx.view(forKey:.to)!

Now we can prepare for our intended animation. In this case, we are sliding
the views, so we need to decide the final frame of the outgoing view and the
initial frame of the incoming view. We are sliding the views sideways, so
those frames should be positioned sideways from the initial frame of the
outgoing view and the final frame of the incoming view, which the
transition context has just given us. Which side they go on depends upon the
relative place of these view controllers among the children of the tab bar
controller — is this to be a leftward slide or a rightward slide? Since the
animation controller is the app delegate, we can get a reference to the tab
bar controller the same way we did before:

let tbc = self.window!.rootViewController as! UITabBarController

let ix1 = tbc.viewControllers!.index(of:vc1)!

let ix2 = tbc.viewControllers!.index(of:vc2)!

let dir : CGFloat = ix1 < ix2 ? 1 : -1

var r1end = r1start

r1end.origin.x -= r1end.size.width * dir

var r2start = r2end

r2start.origin.x += r2start.size.width * dir

Now we’re ready to animate! We put the second view controller’s view into
the container view at its initial frame, and animate our views:

v2.frame = r2start

con.addSubview(v2)

let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {

 v1.frame = r1end

 v2.frame = r2end

}

We must not neglect to supply the completion function that calls completeT
ransition:

anim.addCompletion { _ in

 ctx.completeTransition(true)

}

Our property animator is now formed. We retain it in our self.anim
property, and we also return it:

self.anim = anim

return anim

That completes interruptibleAnimator. Finally, our animationEnded
cleans up by destroying the property animator:

func animationEnded(_ transitionCompleted: Bool) {

 self.anim = nil

}

That’s all there is to it. Our example animation wasn’t very complex, but an
animation needn’t be complex to be interesting, significant, and helpful to
the user; I use this exact same animation in my own apps, and I think it
enlivens and clarifies the transition. And even a more complex animation
would be implemented along the same basic lines.
One possibility that I didn’t illustrate in my example is that you are free to
introduce additional views temporarily into the container view during the
course of the animation; you’ll probably want to remove them in the
completion function. For example, you might make some interface object
appear to migrate from one view controller’s view into the other (in reality
you’d probably use a snapshot view; see Chapter 1).

Interactive Custom Transition Animation
With an interactive custom transition animation, the idea is that we track
something the user is doing, typically by means of a gesture recognizer (see
Chapter 5), and perform the “frames” of the transition in response.
To make a custom transition animation interactive, you supply, in addition
to the animation controller, an interaction controller. This is an object
adopting the UIViewControllerInteractiveTransitioning protocol. (This
object needn’t be the same as the animation controller, but it often is, and in
my examples it will be.) The runtime then calls the interaction controller’s s
tartInteractiveTransition(_:) instead of the animation controller’s an
imateTransition(using:).
Configuring your custom animation requires the following steps:

1. Before the transition begins, you must have given the view controller
in charge of the transition a delegate.

2. You’ll have a gesture recognizer that tracks the interactive gesture.
When the gesture recognizer recognizes, it triggers the transition to
the new view controller.

3. As the transition begins, the delegate will be asked for an animation
controller. You will return a UIViewControllerAnimatedTransitioning

object.
4. The delegate will also be asked for an interaction controller. You will

return a UIViewControllerInteractiveTransitioning object (or nil to
prevent the transition from being interactive). This object implements
startInteractiveTransition(_:).

5. The gesture recognizer continues by constantly calling updateIntera
ctiveTransition(_:) on the transition context, as well as managing
the frames of the animation.

6. Sooner or later the gesture will end. At this point, we must decide
whether to declare the transition completed or cancelled. A typical
approach is to say that if the user performed more than half the full
gesture, that constitutes completion; otherwise, it constitutes
cancellation. We finish the animation accordingly.

7. The animation is now completed, and its completion function is
called. We must call the transition context’s finishInteractiveTran
sition or cancelInteractiveTransition, and then call its comple
teTransition(_:) with an argument stating whether the transition
was finished or cancelled.

8. Our animationEnded is called, and we clean up.
(You may be asking: why must we keep talking to our transition context
throughout the process, calling updateInteractiveTransition
throughout the progress of the gesture, and finishInteractiveTransitio
n or cancelInteractiveTransition at the end? The reason is that the
animation might have a component separate from what you’re doing — for
example, in the case of a navigation controller push or pop transition, the
change in the appearance of the navigation bar. The transition context needs
to coordinate that animation with the interactive gesture and with your
animation. So you need to keep telling it where things are in the course of
the interaction.)
As an example, I’ll describe how to make an interactive version of the tab
bar controller transition animation that we developed in the previous

section. The user will be able to drag from the edge of the screen to bring
the tab bar controller’s adjacent view controller in from the right or from
the left.
In the previous section, I cleverly planned ahead for this section. Almost all
the code from the previous section can be left as is! I’ll build on that code,
in such a way that the same custom transition animation can be either
noninteractive (the user taps a tab bar item) or interactive (the user drags
from one edge).

I’m going to need two more instance properties, in addition to self.anim:

var anim : UIViewImplicitlyAnimating?

var interacting = false

var context : UIViewControllerContextTransitioning?

The self.interacting property will be used as a signal that our transition
is to be interactive. The self.context property is needed because the
gesture recognizer’s action method is going to need access to the transition
context. (Sharing the transition context through a property may seem ugly,
but the elegant alternatives would make the example more complicated, so
we’ll just do it this way.)
To track the user’s gesture, I’ll put a pair of
UIScreenEdgePanGestureRecognizers into the interface. The gesture
recognizers are attached to the tab bar controller’s view (tbc.view), as this
will remain constant while the views of its view controllers are sliding
across the screen. As in the previous section, all the code will go into the
app delegate. In application(_:didFinishLaunchingWithOptions:),
when I make the app delegate the tab bar controller’s delegate, I create the
gesture recognizers and make the app delegate their delegate as well, so I
can dictate which gesture recognizer is applicable to the current situation:

let tbc = self.window!.rootViewController as! UITabBarController

tbc.delegate = self

let sep = UIScreenEdgePanGestureRecognizer(target:self, action:#selector(pan))

sep.edges = UIRectEdge.right

tbc.view.addGestureRecognizer(sep)

sep.delegate = self

let sep2 = UIScreenEdgePanGestureRecognizer(target:self, action:#selector(pa

n))

sep2.edges = UIRectEdge.left

tbc.view.addGestureRecognizer(sep2)

sep2.delegate = self

Acting as the delegate of the two gesture recognizers, we prevent either pan
gesture recognizer from operating unless there is another child of the tab
bar controller available on that side of the current child:

extension AppDelegate : UIGestureRecognizerDelegate {

 func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {

 let tbc = self.window!.rootViewController as! UITabBarController

 var result = false

 if (g as! UIScreenEdgePanGestureRecognizer).edges == .right {

 result = (tbc.selectedIndex < tbc.viewControllers!.count - 1)

 }

 else {

 result = (tbc.selectedIndex > 0)

 }

 return result

 }

}

If the gesture recognizer action method pan is called, our interactive
transition animation is to take place. I’ll break down the discussion
according to the gesture recognizer’s states. In .began, I raise the self.int
eracting flag and trigger the transition by setting the tab bar controller’s s
electedIndex:

@objc func pan(_ g:UIScreenEdgePanGestureRecognizer) {

 switch g.state {

 case .began:

 self.interacting = true

 let tbc = self.window!.rootViewController as! UITabBarController

 if g.edges == .right {

 tbc.selectedIndex = tbc.selectedIndex + 1

 } else {

 tbc.selectedIndex = tbc.selectedIndex - 1

 }

 // ...

 }

}

The transition begins. We are asked for our animation controller and our
transition controller; we will supply a transition controller only if the self.
interacting flag was raised; if the self.interacting flag is not raised,
the user tapped a tab bar item and we are back in the preceding example:

extension AppDelegate: UITabBarControllerDelegate {

 func tabBarController(_ tabBarController: UITabBarController,

 animationControllerForTransitionFrom fromVC: UIViewController,

 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {

 return self

 }

 func tabBarController(_ tabBarController: UITabBarController,

 interactionControllerFor ac: UIViewControllerAnimatedTransitioning)

 -> UIViewControllerInteractiveTransitioning? {

 return self.interacting ? self : nil

 }

}

As a UIViewControllerInteractiveTransitioning adopter, our startInterac
tiveTransition(_:) is called instead of animateTransition(using:).
However, our animateTransition(using:) is still in place, and still does
the same job it did in the previous section. So we call it to obtain the
property animator, and set the property animator instance property. But we
do not tell the property animator to animate! We are interactive; that means
we intend to manage the “frames” of the animation ourselves. We also set
the UIViewControllerContextTransitioning property, so that the gesture
recognizer’s action method can access it:

extension AppDelegate : UIViewControllerInteractiveTransitioning {

 func startInteractiveTransition(_ ctx:UIViewControllerContextTransitionin

g){

 self.anim = self.interruptibleAnimator(using: ctx)

 self.context = ctx

 }

}

The user’s gesture proceeds, and we are now back in the gesture
recognizer’s action method, in the .changed state. We calculate the
completed percentage of the gesture, and update both the property
animator’s “frame” and the transition context:

case .changed:

 let v = g.view!

 let delta = g.translation(in:v)

 let percent = abs(delta.x/v.bounds.size.width)

 self.anim?.fractionComplete = percent

 self.context?.updateInteractiveTransition(percent)

Ultimately, the user’s gesture ends. Our goal now is to “hurry home” to the
start of the animation or the end of the animation, depending on how far the
user got through the gesture. With a property animator, that’s really easy
(see “Canceling a View Animation”):

case .ended:

 let anim = self.anim as! UIViewPropertyAnimator

 anim.pauseAnimation()

 if anim.fractionComplete < 0.5 {

 anim.isReversed = true

 }

 anim.continueAnimation(

 withTimingParameters:

 UICubicTimingParameters(animationCurve:.linear),

 durationFactor: 0.2)

The animation comes to an end, and the completion function that we gave
our property animator in interruptibleAnimator is called. This is the one
place in our interruptibleAnimator that needs to be a little different
from the preceding example; we must send different messages to the
transition context, depending on whether we finished to the end or reversed
to the start:

anim.addCompletion { finish in

 if finish == .end {

 ctx.finishInteractiveTransition()

 ctx.completeTransition(true)

 } else {

 ctx.cancelInteractiveTransition()

 ctx.completeTransition(false)

 }

}

Finally, our animationEnded is called, and we clean up our instance
properties:

func animationEnded(_ transitionCompleted: Bool) {

 self.interacting = false

 self.context = nil

 self.anim = nil

}

Another variation would be to make the custom transition animation
interruptible. Again, this is straightforward thanks to the existence of
property animators. While a view is in the middle of being animated, the
property animator implements touchability of the animated view, and
allows you to pause the animation. Thus, the user can be permitted (for
example) to grab the animated view in the middle of the animation and
move it around with the animation paused, and the animation can then
resume when the user lets go of the view (as I demonstrated in “Hit-Testing
During Animation”). You could equally incorporate these features into a
custom transition animation.

TIP
You can use a UIPreviewInteraction (“3D Touch Press Gesture”) to drive a view controller custom
transition animation through 3D touch. In that case, the user’s press is the gesture, and what
advances the interactive custom transition animation is the UIPreviewInteraction and its delegate
methods rather than a gesture recognizer and its action method.

Custom Presented View Controller Transition
With a presented view controller transition, you can customize not only the
animation but also the final position of the presented view. Moreover, you
can introduce ancillary views which remain in the scene while the presented

view is presented, and are not removed until after dismissal is complete; for
example, if the presented view is smaller than the presenting view and
covers it only partially, you might add a dimming view between them, to
darken the presenting view (just as a .formSheet presentation does).
There is no existing view to serve as the container view; therefore, when the
presentation starts, the runtime constructs the container view and inserts it
into the interface, leaving it there for only as long as the view remains
presented. In the case of a .fullScreen presentation, the runtime also rips
the presenting view out of the interface and inserts it into the container
view, because you might want the presenting view to participate in the
animation. For other styles of presentation, the container view is in front of
the presenting view, which can’t be animated and is left in place as the
presentation proceeds.
The work of customizing a presentation is distributed between two objects:
the animation controller (or interaction controller) on the one hand, and a
custom presentation controller on the other:

The animation controller
The animation controller should be responsible for only the animation,
the movement of the presented view into its final position.

The custom presentation controller
The determination of the presented view’s final position is the job of the
presentation controller. The presentation controller is also responsible
for inserting any extra views, such as a dimming view, into the
container view; Apple says that the animation controller animates the
content, while the presentation controller animates the “chrome.”

This distribution of responsibilities may sound rather elaborate, but in fact
the opposite is true: it greatly simplifies things, because if you don’t need
one kind of customization you can simply omit it. If you supply an
animation controller and no custom presentation controller, you dictate the
animation, but the presented view will end up wherever the modal
presentation style puts it. If you supply a custom presentation controller and

no animation controller, a default transition style animation will be
performed, but the presented view will end up at the position your custom
presentation controller dictates.

Customizing the animation
I’ll start with a situation where we don’t need to use the presentation
controller: all we want to do is customize the animation part of a built-in
presentation style. The steps are almost completely parallel to how we
customized a tab bar controller animation:

1. Give the presented view controller a delegate. This means that we set
the presented view controller’s transitioningDelegate property to
an object adopting the UIViewControllerTransitioningDelegate
protocol.

2. The delegate will be asked for an animation controller, and will return
an object adopting the UIViewControllerAnimatedTransitioning
protocol. Unlike a tab bar controller or navigation controller, a
presented view controller’s view undergoes two animations — the
presentation and the dismissal — and therefore the delegate is asked
separately for controllers:

animationController(forPresented:presenting:source:)

interactionControllerForPresentation(using:)

animationController(forDismissed:)

interactionControllerForDismissal(using:)

You are free to customize just one animation, leaving the other at the
default by not providing a controller for it.

3. The animation controller will implement its four methods as usual —
transitionDuration, animateTransition, interruptibleAnimat
or, and animationEnded.

To illustrate, let’s say we’re running on an iPad, and we want to present a
view using the .formSheet presentation style. But instead of using any of

the built-in animation types (transition styles), we’ll have the presented
view appear to grow from the middle of the screen.

The only mildly tricky step is the first one. The problem is that the transit
ioningDelegate must be set very early in the presented view controller’s
life — before the presentation begins. But the presented view controller
doesn’t exist before the presentation begins. The most reliable approach,
therefore, is for the presented view controller to assign its own delegate in
its own initializer:

required init?(coder aDecoder: NSCoder) {

 super.init(coder:aDecoder)

 self.transitioningDelegate = self

}

The presentation begins, and we’re on to the second step. The transitioning
delegate (UIViewControllerTransitioningDelegate) is asked for an
animation controller; here, I’ll have it supply self once again, and I’ll do
this only for the presentation, leaving the dismissal to use the default
animation (and I’m not making this example interactive, so I don’t
implement the interactionController methods):

func animationController(forPresented presented: UIViewController,

 presenting: UIViewController, source: UIViewController)

 -> UIViewControllerAnimatedTransitioning? {

 return self

}

The third step is that the animation controller
(UIViewControllerAnimatedTransitioning) is called upon to implement the
animation. Our implementations of transitionDuration, animateTransi
tion, and animationEnded are the usual boilerplate, so I’ll show only inte
rruptibleAnimator, which configures the property animator; observe that
we don’t care about the .from view controller, which remains in place
during the presentation (indeed, its view isn’t even in the container view):

func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)

 -> UIViewImplicitlyAnimating {

 if self.anim != nil {

 return self.anim!

 }

 let vc2 = ctx.viewController(forKey:.to)

 let con = ctx.containerView

 let r2end = ctx.finalFrame(for:vc2!)

 let v2 = ctx.view(forKey:.to)!

 v2.frame = r2end

 v2.transform = CGAffineTransform(scaleX: 0.1, y: 0.1)

 v2.alpha = 0

 con.addSubview(v2)

 let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {

 v2.alpha = 1

 v2.transform = .identity

 }

 anim.addCompletion { _ in

 ctx.completeTransition(true)

 }

 self.anim = anim

 return anim

}

If we wish to customize both animation and dismissal using the same
animation controller, there is a complication: the roles of the view
controllers are reversed in the mind of the transition context. On
presentation, the presented view controller is the .to view controller, but on
dismissal, it is the .from view controller. For a presentation that isn’t .full
Screen, the unused view is nil, so you can distinguish the cases by
structuring your code like this:

let v1 = ctx.view(forKey:.from)

let v2 = ctx.view(forKey:.to)

if let v2 = v2 { // presenting

 // ...

} else if let v1 = v1 { // dismissing

 // ...

}

Customizing the presentation

Now let’s involve the presentation controller: we will customize the final
frame of the presented view controller’s view, and we’ll even add some
“chrome” to the presentation. This will require some additional steps:

1. In addition to setting a transitioningDelegate, we must set the
presented view controller’s modalPresentationStyle to .custom.

2. The result of the preceding step is that the delegate (our adopter of
UIViewControllerTransitioningDelegate) is sent an additional
message:

presentationController(forPresented:presenting:sourc

e:)

(The source: parameter is what I have termed the “original
presenter.”) Your mission is to return an instance of a custom
UIPresentationController subclass. This will then be the presented
view controller’s presentation controller during the course of this
presentation, from the time presentation begins to the time dismissal
ends. You must create this instance by calling (directly or indirectly)
the designated initializer:

init(presentedViewController:presenting:)

3. By means of appropriate overrides in your UIPresentationController
subclass, you participate in the presentation, dictating the presented
view’s final position (frameOfPresentedViewInContainerView) and
adding “chrome” to the presentation as desired.

The UIPresentationController has properties pointing to the presentingVi
ewController as well the presentedViewController and the presented
View, plus the presentationStyle set by the presented view controller. It
also obtains the containerView, which it subsequently communicates to
the animation controller’s transition context. It has some methods and
properties that you can override in your subclass; you only need to override
the ones that require customization for your particular implementation:

frameOfPresentedViewInContainerView

The final position of the presented view. If there is an animation
controller, it will receive this from the transition context’s finalFrame
(for:) method.

presentationTransitionWillBegin

presentationTransitionDidEnd

dismissalTransitionWillBegin

dismissalTransitionDidEnd

Use these events as signals to add or remove “chrome” (extra views) to
the container view.

containerViewWillLayoutSubviews

containerViewDidLayoutSubviews

Use these layout events as signals to update the “chrome” views if
needed.

shouldRemovePresentersView

The default is false, except that of course it is true for a standard .ful
lScreen presentation, meaning that the presenting view is ripped out of
the interface at the end of the presentation transition. You can return tru
e for a custom presentation, but it would be rare to do this; even if the
presented view completely covers the presenting view, there is no harm
in leaving the presenting view in place.

A presentation controller is not a view controller, but
UIPresentationController adopts some protocols that UIViewController
adopts, and thus gets the same resizing-related messages that a
UIViewController gets, as I described earlier in this chapter. It adopts
UITraitEnvironment, meaning that it has a traitCollection and
participates in the trait collection inheritance hierarchy, and receives the tra
itCollectionDidChange(_:) message. It also adopts
UIContentContainer, meaning that it receives willTransition(to:with:)
and viewWillTransition(to:with:).

To illustrate the use of a custom presentation controller, I’ll expand the
preceding example to implement a custom presentation style that looks like
a .formSheet even on an iPhone. The first step is to set the presentation
style to .custom at the same time that we set the transitioning delegate:

required init?(coder aDecoder: NSCoder) {

 super.init(coder:aDecoder)

 self.transitioningDelegate = self

 self.modalPresentationStyle = .custom // *

}

The result (step two) is that this extra
UIViewControllerTransitioningDelegate method is called so that we can
provide a custom presentation controller:

func presentationController(forPresented presented: UIViewController,

 presenting: UIViewController?, source: UIViewController)

 -> UIPresentationController? {

 let pc = MyPresentationController(

 presentedViewController: presented, presenting: presenting)

 return pc

}

Everything else happens in our implementation of our
UIPresentationController subclass (named MyPresentationController). To
make the presentation look like a .formSheet, we inset the presented
view’s frame:

override var frameOfPresentedViewInContainerView : CGRect {

 return super.frameOfPresentedViewInContainerView.insetBy(dx:40, dy:40)

}

We could actually stop at this point! The presented view now appears in the
correct position. However, the presenting view is appearing undimmed
behind it. Let’s add dimming, by inserting a translucent dimming view into
the container view. Note that we are careful to deal with the possibility of
subsequent rotation:

override func presentationTransitionWillBegin() {

 let con = self.containerView!

 let shadow = UIView(frame:con.bounds)

 shadow.backgroundColor = UIColor(white:0, alpha:0.4)

 con.insertSubview(shadow, at: 0)

 shadow.autoresizingMask = [.flexibleWidth, .flexibleHeight]

}

Again, this works perfectly, but now I don’t like what happens when the
presented view is dismissed: the dimming view vanishes suddenly at the
end of the dismissal. I’d rather have the dimming view fade out, and I’d like
it to fade out in coordination with the dismissal animation. The way to
arrange that is through the object vended by the presented view controller’s
transitionCoordinator property. This object is just like the transition
coordinator I’ve already discussed earlier in this chapter in connection with
resizing events and rotation: in particular, we can call its animate(alongsi
deTransition:completion:) method to add our own animation:

override func dismissalTransitionWillBegin() {

 let con = self.containerView!

 let shadow = con.subviews[0]

 let tc = self.presentedViewController.transitionCoordinator!

 tc.animate(alongsideTransition: { _ in

 shadow.alpha = 0

 })

}

Once again, we could stop at this point. But I’d like to add a further
refinement. A .formSheet view has rounded corners. I’d like to make our
presented view look the same way:

override var presentedView : UIView? {

 let v = super.presentedView!

 v.layer.cornerRadius = 6

 v.layer.masksToBounds = true

 return v

}

Finally, for completeness, it would be nice, during presentation, to dim the
appearance of any button titles and other tinted interface elements visible

through the dimming view, to emphasize that they are disabled:

override func presentationTransitionDidEnd(_ completed: Bool) {

 let vc = self.presentingViewController

 let v = vc.view

 v?.tintAdjustmentMode = .dimmed

}

override func dismissalTransitionDidEnd(_ completed: Bool) {

 let vc = self.presentingViewController

 let v = vc.view

 v?.tintAdjustmentMode = .automatic

}

Transition Coordinator
Earlier in this chapter, we encountered resizing-related methods such as vie
wWillTransition(to:with:), whose second parameter is a
UIViewControllerTransitionCoordinator. As I suggested at that time, you
can use this transition coordinator to add your own animation to the
runtime’s animation when the app rotates. It turns out that the view
controller itself can obtain its transition coordinator during a view controller
transition, through its own transitionCoordinator property.
The transition coordinator adopts the
UIViewControllerTransitionCoordinatorContext protocol, just like the
transition context; indeed, it is a kind of wrapper around the transition
context. View controllers can therefore use their transitionCoordinator
to find out about the transition they are currently involved in. Moreover, in
addition to the methods that it implements by virtue of adopting the
UIViewControllerTransitionCoordinatorContext protocol, a transition
coordinator implements the following methods:

animate(alongsideTransition:completion:)

Takes an animations function and a completion function. The animation
you supply is incorporated into the transition coordinator’s animation.
Returns a Bool, informing you in case your commands couldn’t be
animated. Both functions receive the transition context as a parameter.

(See also “View Controller Manual Layout”, where I discussed this
method in connection with rotation.)
A view controller’s use of this method will typically be to add
animation of its view’s internal interface as part of a transition
animation. This works equally for a custom animation or a built-in
animation; in fact, the point is that the view controller can behave
agnostically with regard to how its own view is being animated. In this
example, a presented view controller animates part of its interface into
place as the animation proceeds (whatever that animation may be):

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 if let tc = self.transitionCoordinator {

 tc.animate(alongsideTransition:{ _ in

 self.buttonTopConstraint.constant += 200

 self.view.layoutIfNeeded()

 })

 }

}

notifyWhenInteractionChanges(_:)

The parameter is a function to be called; the transition context is the
function’s parameter. Your function is called whenever the transition
changes between being interactive and being noninteractive; this might
be because the interactive transition was cancelled. In this example, a
navigation controller has pushed a view controller, and now the user is
popping it interactively (using the default drag-from-the-left-edge
gesture). If the user cancels, the back view controller can hear about it,
like this:

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 let tc = self.transitionCoordinator

 tc?.notifyWhenInteractionChanges { ctx in

 if ctx.isCancelled {

 // ...

 }

 }

}

WARNING
I have not found any occasion when the child of a tab bar controller has a non-nil transition
coordinator — even though you may have given the tab bar controller’s transition a custom
animation. I regard this as a bug.

Page View Controller
A page view controller (UIPageViewController) is like a book that can be
viewed only one page at a time. The user, by a gesture, can navigate in one
direction or the other to see the next or the previous page, successively —
like turning the pages of a book.
Actually, a page view controller only seems to have multiple pages. In
effect, it has at any given moment only the one page that the user sees. That
page is its child view controller’s view. The page view controller navigates
to another page by releasing its existing child view controller and replacing
it with another. This is a very efficient architecture: it makes no difference
whether the page view controller lets the user page through three pages or
ten thousand pages, because each page is created in real time, on demand,
and exists only as long as the user is looking at it.

The page view controller’s children are its viewControllers. In general,
there will always be at most one of them (though there is a rarely used
configuration in which a page view controller can have two pages at a time,
as I’ll explain in a moment). The page view controller is its current child’s p
arent.

Preparing a Page View Controller
To create a UIPageViewController in code, use its designated initializer:

init(transitionStyle:navigationOrientation:options:)

Here’s what the parameters mean:

transitionStyle:

The animation type during navigation
(UIPageViewControllerTransitionStyle). Your choices are:

.pageCurl

.scroll (sliding)

navigationOrientation:

The direction of navigation
(UIPageViewControllerNavigationOrientation). Your choices are:

.horizontal

.vertical

options:

A dictionary. Possible keys are:

UIPageViewControllerOptionSpineLocationKey

If you’re using the .pageCurl transition style, this is the position of
the pivot line around which those page curl transitions rotate. The
value (UIPageViewControllerSpineLocation) is one of the
following:

.min (left or top)

.mid (middle; in this configuration there are two children, and
two pages are shown at once)

.max (right or bottom)

UIPageViewControllerOptionInterPageSpacingKey

If you’re using the .scroll transition style, this is the spacing
between successive pages, visible as a gap during the transition (the
default is 0).

You configure the page view controller’s initial content by handing it its
initial child view controller(s). You do that by calling this method:

setViewControllers(_:direction:animated:completion:)

Here’s what the parameters mean:

viewControllers:

An array of one view controller — unless you’re using the .pageCurl
transition style and the .mid spine location, in which case it’s an array
of two view controllers.

direction:

The animation direction (UIPageViewControllerNavigationDirection).
This probably won’t matter when you’re assigning the page view
controller its initial content, as you are not likely to want any animation.
Possible values are:

.forward

.backward

animated:, completion:
A Bool and a completion function.

To allow the user to page through the page view controller, and to supply
the page view controller with a new page at that time, you also assign the
page view controller a dataSource, which should conform to the
UIPageViewControllerDataSource protocol. The dataSource is told
whenever the user starts to change pages, and should respond by
immediately providing another view controller whose view will constitute
the new page. Typically, the data source will create this view controller on
the spot.
Here’s a minimal example. Each page in the page view controller is to
portray an image of a named Pep Boy. The first question is where the pages
will come from. My data model consists of an array (self.pep) of the
string names of the three Pep Boys:

let pep : [String] = ["Manny", "Moe", "Jack"]

To match these, I have three eponymous image files (manny, moe, and
jack), portraying each Pep Boy. I’ve also got a UIViewController subclass
called Pep, capable of displaying a Pep Boy’s image in an image view. I
initialize a Pep object with Pep’s designated initializer init(pepBoy:),
supplying the name of a Pep Boy from the array; the Pep object sets its own
boy property:

init(pepBoy boy:String) {

 self.boy = boy

 super.init(nibName: nil, bundle: nil)

}

Pep’s viewDidLoad then fetches the corresponding image and assigns it as
the image of a UIImageView within its own view:

override func viewDidLoad() {

 super.viewDidLoad()

 self.pic.image = UIImage(named:self.boy.lowercased())

}

At any given moment, then, our page view controller will have one Pep
instance as its child, and thus will portray a Pep Boy. Here’s how I create
the page view controller itself (in my app delegate):

// make a page view controller

let pvc = UIPageViewController(

 transitionStyle: .scroll, navigationOrientation: .horizontal)

// give it an initial page

let page = Pep(pepBoy: self.pep[0])

pvc.setViewControllers([page], direction: .forward, animated: false)

// give it a data source

pvc.dataSource = self

// put its view into the interface

self.window!.rootViewController = pvc

The page view controller is a UIViewController, and its view must get into
the interface by standard means. You can make the page view controller the

window’s rootViewController, as I do here; you can make it a presented
view controller; you can make it a child view controller of a tab bar
controller or a navigation controller. If you want the page view controller’s
view to be a subview of a custom view controller’s view, that view
controller must be a custom container view controller, as I’ll describe later.

Page View Controller Navigation
We now have a page view controller’s view in our interface, itself
containing and displaying the view of one Pep view controller that is its
child. In theory, we have three pages, because we have three Pep Boys and
their images — but the page view controller knows about only one of them.
Just as with a navigation controller, you don’t supply (or even create)
another page until the moment comes to navigate to it. When that happens,
one of these data source methods will be called:

pageViewController(_:viewControllerAfter:)

pageViewController(_:viewControllerBefore:)

The job of those methods is to return the requested successive view
controller — or nil, to signify that there is no further page in this direction.
Your strategy for doing that will depend on how your model maintains the
data. My data is an array of unique strings, so all I have to do is find the
previous name or the next name in the array:

func pageViewController(_ pvc: UIPageViewController,

 viewControllerAfter vc: UIViewController) -> UIViewController? {

 let boy = (vc as! Pep).boy

 let ix = self.pep.index(of:boy)! + 1

 if ix >= self.pep.count {

 return nil

 }

 return Pep(pepBoy: self.pep[ix])

}

func pageViewController(_ pvc: UIPageViewController,

 viewControllerBefore vc: UIViewController) -> UIViewController? {

 let boy = (vc as! Pep).boy

 let ix = self.pep.index(of:boy)! - 1

 if ix < 0 {

 return nil

 }

 return Pep(pepBoy: self.pep[ix])

}

We now have a working page view controller! The user, with a sliding
gesture, can page through it, one page at a time. When the user reaches the
first page or the last page, it is impossible to go further in that direction.

TIP
A .scroll style page view controller may cache its view controllers in advance. Thus, you should
make no assumptions about when these data source methods will be called. If you need to be
notified when the user is actually turning the page, use the delegate (which I’ll describe later), not
the data source.

You can also, at any time, call setViewControllers to change
programmatically what page is being displayed, possibly with animation. In
this way, you can “jump” to a page other than a successive page (something
that the user cannot do with a gesture).

Page indicator
If you’re using the .scroll transition style, the page view controller can
optionally display a page indicator (a UIPageControl, see Chapter 12). The
user can look at this to get a sense of what page we’re on, and can tap to the
left or right of it to navigate. To get the page indicator, you must implement
two more data source methods; they are consulted in response to setViewC
ontrollers. We called that method initially to configure the page view
controller; if we never call it again (because the user simply keeps
navigating to the next or previous page), these data source methods won’t
be called again either, because they don’t need to be: the page view
controller will thenceforth keep track of the current index on its own. Here’s
my implementation for the Pep Boy example:

func presentationCount(for pvc: UIPageViewController) -> Int {

 return self.pep.count

}

func presentationIndex(for pvc: UIPageViewController) -> Int {

 let page = pvc.viewControllers![0] as! Pep

 let boy = page.boy

 return self.pep.index(of:boy)!

}

Unfortunately, the page view controller’s page indicator by default has
white dots and a clear background, so it is invisible in front of a white
background. You’ll want to customize it to change that. There is no direct
access to it, so it’s simplest to use the appearance proxy (Chapter 12). For
example:

let proxy = UIPageControl.appearance()

proxy.pageIndicatorTintColor = UIColor.red.withAlphaComponent(0.6)

proxy.currentPageIndicatorTintColor = .red

proxy.backgroundColor = .yellow

Navigation gestures
If you’ve assigned the page view controller the .pageCurl transition style,
the user can navigate by tapping at either edge of the view or by dragging
across the view. These gestures are detected through two gesture
recognizers, which you can access through the page view controller’s gestu
reRecognizers property. The documentation suggests that you might
change where the user can tap or drag by attaching them to a different view,
and other customizations are possible as well. In this code, I change the
behavior of a .pageCurl page view controller (pvc) so that the user must
double tap to request navigation:

for g in pvc.gestureRecognizers {

 if let g = g as? UITapGestureRecognizer {

 g.numberOfTapsRequired = 2

 }

}

Of course you are also free to add to the user’s stock of gestures for
requesting navigation. You can supply any controls or gesture recognizers
that make sense for your app, and respond by calling
setViewControllers. For example, if you’re using the .scroll transition
style, there’s no tap gesture recognizer, so the user can’t tap at either edge
of the page view controller’s view to request navigation. Let’s change that.
I’ve added invisible views at either edge of my Pep view controller’s view,
with tap gesture recognizers attached. When the user taps, the tap gesture
recognizer fires, and the action method posts a notification whose object is
the tap gesture recognizer:

@IBAction func tap (_ sender: UIGestureRecognizer?) {

 NotificationCenter.default.post(name:.tap, object: sender)

}

In the app delegate, I have registered to receive this notification. When it
arrives, I use the tap gesture recognizer’s view’s tag to learn which view
was tapped; I then navigate accordingly (pvc is the page view controller):

NotificationCenter.default.addObserver(

 forName:.tap, object: nil, queue: .main) { n in

 let g = n.object as! UIGestureRecognizer

 let which = g.view!.tag

 let vc0 = pvc.viewControllers![0]

 guard let vc = (which == 0 ?

 self.pageViewController(pvc, viewControllerBefore: vc0) :

 self.pageViewController(pvc, viewControllerAfter: vc0))

 else {return}

 let dir : UIPageViewControllerNavigationDirection =

 which == 0 ? .reverse : .forward

 UIApplication.shared.beginIgnoringInteractionEvents()

 pvc.setViewControllers([vc], direction: dir, animated: true) {

 _ in

 UIApplication.shared.endIgnoringInteractionEvents()

 }

 }

}

In that code, I turn off user interaction when the page animation starts and
turn it back on when the animation ends. The reason is that otherwise we

can crash (or get into an incoherent state) if the user taps during the
animation.

Other Page View Controller Configurations
It is possible to assign a page view controller a delegate
(UIPageViewControllerDelegate), which gets an event when the user starts
turning the page and when the user finishes turning the page, and can
change the spine location dynamically in response to a change in device
orientation. As with a tab bar controller’s delegate or a navigation
controller’s delegate, a page view controller’s delegate also gets messages
allowing it to specify the page view controller’s app rotation policy, so
there’s no need to subclass UIPageViewController solely for that purpose.

One further bit of configuration applicable to a .pageCurl page view
controller is the isDoubleSided property. If it is true, the next page
occupies the back of the previous page. The default is false, unless the
spine is in the middle, in which case it’s true and can’t be changed. Your
only option here, therefore, is to set it to true when the spine isn’t in the
middle, and in that case the back of each page would be a sort of
throwaway page, glimpsed by the user during the page curl animation.
A page view controller in a storyboard lets you configure its transition style,
navigation orientation, page spacing, spine location, and isDoubleSided
property. (It also has delegate and data source outlets, but you’re not
allowed to connect them to other view controllers, because you can’t draw
an outlet from one scene to another in a storyboard.) It has no child view
controller relationship, so you can’t set the page view controller’s initial
child view controller in the storyboard; you’ll have to complete the page
view controller’s initial configuration in code.

Container View Controllers
UITabBarController, UINavigationController, and UIPageViewController
are all built-in parent view controllers: you hand them a child view

controller and they do all the work, retaining that child view controller and
putting its view into the interface inside their own view. What if you wanted
your own view controller to do the same sort of thing?
You can create your own parent view controller, which can legally manage
child view controllers and put their views into the interface. A custom
parent view controller of this sort is called a container view controller. Your
own view controller, behaving as a container view controller, becomes like
one of the built-in parent view controllers, except that you get to define
what it does — what it means for a view controller to be a child of this kind
of parent view controller, how many children it has, which of its children’s
views appear in the interface and where they appear, and so on. A container
view controller can also participate actively in the business of trait
collection inheritance and view resizing.
An example appears in Figure 6-3 — and the construction of that interface
is charted in Figure 6-4. We have a page view controller, but it is not the
root view controller, and its view does not occupy the entire interface. How
is that achieved?
It’s achieved by following certain rules. We must not simply rip out the
page view controller’s view and plop it into the interface. We have to
behave coherently. Some other view controller (in this case, my
RootViewController) must act as a well-behaved container view controller.
The page view controller must be made its child, and RootViewController
is then permitted — as long it follows the rules — to put the page view
controller’s view into the interface, as a subview of its own view.

Adding and Removing Children
A view controller has a childViewControllers array; that’s what gives it
the power to be a parent. You must not, however, just wantonly populate
this array. A child view controller needs to receive certain definite events at
particular moments:

As it becomes a child view controller
As its view is added to and removed from the interface

As it ceases to be a child view controller
Therefore, to act as a parent view controller, your UIViewController
subclass must fulfill certain responsibilities:

Adding a child
When a view controller is to become your view controller’s child, your
view controller must do these things, in this order:

1. Send addChildViewController(_:) to itself, with the child as
argument. The child is automatically added to your childViewCon
trollers array and is retained.

2. Get the child view controller’s view into the interface (as a
subview of your view controller’s view), if that’s what adding a
child view controller means.

3. Send didMove(toParentViewController:) to the child with
your view controller as its argument.

Removing a child
When a view controller is to cease being your view controller’s child,
your view controller must do these things, in this order:

1. Send willMove(toParentViewController:) to the child with a
nil argument.

2. Remove the child view controller’s view from your interface.

3. Send removeFromParentViewController to the child. The child
is automatically removed from your childViewControllers
array and is released.

This is a clumsy and rather confusing dance. The underlying reason for it is
that a child view controller must always receive willMove(toParentViewC
ontroller:) followed by didMove(toParentViewController:) (and
your own child view controllers can take advantage of these events however
you like). But it turns out that you don’t always send both these messages
explicitly, because:

addChildViewController(_:) sends willMove(toParentViewContro
ller:) for you automatically.

removeFromParentViewController sends didMove(toParentViewCon
troller:) for you automatically.

Thus, in each case you must send manually the other message, the one that
adding or removing a child view controller doesn’t send for you — and of
course you must send it so that everything happens in the correct order, as
dictated by the rules I just listed.
When you do this dance correctly, the proper parent–child relationship
results: the container view controller can refer to its children as its childVi
ewControllers, and any child has a reference to the parent as its parent.
If you don’t do it correctly, all sorts of bad things can happen; in a worst-
case scenario, the child view controller won’t even survive, and its view
won’t work correctly, because the view controller was never properly
retained as part of the view controller hierarchy (see “View Controller
Hierarchy”). So do the dance correctly!

The initial child view controller
Example 6-1 provides a schematic approach for how to obtain an initial
child view controller and put its view into the interface, where no child
view controller’s view was previously. (Alternatively, a storyboard can do
this work for you, with no code, as I’ll explain later in this chapter.)

Example 6-1. Adding an initial child view controller
let vc = // whatever; this is the initial child view controller

self.addChildViewController(vc) // "will" called for us

// insert view into interface between "will" and "did"

self.view.addSubview(vc.view)

vc.view.frame = // whatever, or use constraints

// when we call add, we must call "did" afterward

vc.didMove(toParentViewController: self)

In many cases, what I’ve just described is all you’ll need. You have a parent
view controller and a child view controller, and they are paired
permanently, for the lifetime of the parent. That’s how Figure 6-3 behaves:

RootViewController has a page view controller as its child, and the page
view controller’s view as its own view’s subview, for the entire lifetime of
the app.
To illustrate, I’ll use the same page view controller that I used in my earlier
examples, the one that displays Pep Boys; but this time, its view won’t
occupy the entire interface. My root view controller will be called
RootViewController. I’ll create and configure my page view controller as a
child of RootViewController, in RootViewController’s viewDidLoad; note
how carefully and correctly I perform the dance:

let pep : [String] = ["Manny", "Moe", "Jack"]

override func viewDidLoad() {

 super.viewDidLoad()

 let pvc = UIPageViewController(

 transitionStyle: .scroll, navigationOrientation: .horizontal)

 pvc.dataSource = self

 self.addChildViewController(pvc) // step 1

 self.view.addSubview(pvc.view) // step 2

 // ... configure frame or constraints here ...

 pvc.didMove(toParentViewController: self) // step 3

 let page = Pep(pepBoy: self.pep[0])

 pvc.setViewControllers([page], direction: .forward, animated: false)

}

Replacing a child view controller
It is also possible to replace one child view controller’s view in the
interface with another (comparable to how UITabBarController behaves
when a different tab bar item is selected). The simplest, most convenient
way to do that is with this parent view controller instance method:

transition(from:to:duration:options:animations:completio

n:)

That method manages the stages in good order, adding the view of one child
view controller (to:) to the interface before the transition and removing the
view of the other child view controller (from:) from the interface after the
transition, and seeing to it that the child view controllers receive lifetime

events (such as viewWillAppear(_:)) at the right moment. Here’s what the
last three arguments are for:

options:

A bitmask (UIViewAnimationOptions) comprising the same possible
options that apply to any view transition (see “Transitions”).

animations:

An animations function. This may be used for animating views other
than the two views being managed by the transition animation specified
in the options: argument; alternatively, if none of the built-in
transition animations is suitable, you can animate the transitioning
views yourself here (they are both in the interface during this function).

completion:

This function will be important if the transition involves the removal or
addition of a child view controller. At the time when transition is
called, both view controllers must be children of the parent view
controller; so if you’re going to remove one of the view controllers as a
child, you’ll do it in the completion function. Similarly, if you owe a
new child view controller a didMove(toParentViewController:)
call, you’ll use the completion function to fulfill that debt.

Here’s an example. To keep things simple, suppose that our view controller
has just one child view controller at a time, and displays the view of that
child view controller within its own view. So let’s say that when our view
controller is handed a new child view controller, it substitutes that new child
view controller for the old child view controller and replaces the old child
view controller’s view with the new child view controller’s view. Here’s
code that does that correctly; the view controllers are fromvc and tovc:

// we have already been handed the new view controller

// set up the new view controller's view's frame

tovc.view.frame = // ... whatever

// must have both as children before we can transition between them

self.addChildViewController(tovc) // "will" called for us

// when we call remove, we must call "will" (with nil) beforehand

fromvc.willMove(toParentViewController: nil)

// then perform the transition

self.transition(

 from:fromvc, to:tovc,

 duration:0.4, options:.transitionFlipFromLeft,

 animations:nil) { _ in

 // when we call add, we must call "did" afterward

 tovc.didMove(toParentViewController: self)

 fromvc.removeFromParentViewController() // "did" called for us

}

If we’re using constraints to position the new child view controller’s view,
where will we set up those constraints? Before transition is too soon, as
the new child view controller’s view is not yet in the interface. The
completion function is too late: if the view is added with no constraints, it
will have no initial size or position, so the animation will be performed and
then the view will suddenly seem to pop into existence as we provide its
constraints. The animations function turns out to be a very good place:

// must have both as children before we can transition between them

self.addChildViewController(tovc) // "will" called for us

// when we call remove, we must call "will" (with nil) beforehand

fromvc.willMove(toParentViewController: nil)

// then perform the transition

self.transition(

 from:fromvc, to:tovc,

 duration:0.4, options:.transitionFlipFromLeft,

 animations: {

 tovc.view.translatesAutoresizingMaskIntoConstraints = false

 // ... configure tovc.view constraints here ...

 }) { _ in

 // when we call add, we must call "did" afterward

 tovc.didMove(toParentViewController: self)

 fromvc.removeFromParentViewController() // "did" called for us

}

If the built-in transition animations are unsuitable, you can omit the option
s: argument and provide your own animation in the animations function, at
which time both views are in the interface. In this example, I animate a
substitute view (an image view showing a snapshot of tovc.view) to grow

from the top left corner; then I configure the real view’s constraints and
remove the substitute:

// tovc.view.frame is already set

let r = UIGraphicsImageRenderer(size:tovc.view.bounds.size)

let im = r.image { ctx in

 tovc.view.layer.render(in:ctx.cgContext)

}

let iv = UIImageView(image:im)

iv.frame = .zero

self.view.addSubview(iv)

tovc.view.alpha = 0 // hide the real view

// must have both as children before we can transition between them

self.addChildViewController(tovc) // "will" called for us

// when we call remove, we must call "will" (with nil) beforehand

fromvc.willMove(toParentViewController: nil)

// then perform the transition

self.transition(

 from:fromvc, to:tovc,

 duration:0.4, // no options:

 animations: {

 iv.frame = tovc.view.frame // animate bounds change

 // ... configure tovc.view constraints here ...

 }) { _ in

 tovc.view.alpha = 1

 iv.removeFromSuperview()

 // when we call add, we must call "did" afterward

 tovc.didMove(toParentViewController: self)

 fromvc.removeFromParentViewController() // "did" called for us

}

Status Bar, Traits, and Resizing
As I’ve already mentioned, a parent view controller, instead of dictating the
status bar appearance through its own implementation of preferredStatus
BarStyle or prefersStatusBarHidden, can defer the responsibility to one
of its children, by overriding these properties:

childViewControllerForStatusBarStyle

childViewControllerForStatusBarHidden

That’s what a UITabBarController does, for example. Your custom parent
view controller can do the same thing.

A container view controller also participates in trait collection inheritance.
In fact, you might insert a container view controller into your view
controller hierarchy for no other purpose than to engage in such
participation. A parent view controller has the amazing ability to lie to a
child view controller about the environment, thanks to this method:

setOverrideTraitCollection(_:forChildViewController:)

The first parameter is a UITraitCollection that will be combined with the
inherited trait collection and communicated to the specified child. This is a
UIViewController instance method, so only view controllers have this
mighty power. Moreover, you have to specify a child view controller, so
only parent view controllers have this mighty power.
(UIPresentationController has a similar power, through its overrideTraitC
ollection property, allowing it to lie to its presented view controller about
the inherited trait collection.)
Why would you want to lie to a child view controller about its
environment? Well, imagine that we’re writing an iPad app, and we have a
view controller whose view can appear either fullscreen or as a small
subview of a parent view controller’s main view. The view’s interface might
need to be different when it appears in the smaller size. You could configure
that difference using size classes (conditional constraints) in the nib editor,
with one interface for a .regular horizontal size class (iPad) and another
interface for a .compact horizontal size class (iPhone). Then, when the
view is to appear in its smaller size, we lie to its view controller and tell it
that this is an iPhone:

let vc = // the view controller we're going to use as a child

self.addChildViewController(vc) // "will" called for us

let tc = UITraitCollection(horizontalSizeClass: .compact)

self.setOverrideTraitCollection(tc, forChildViewController: vc) // heh heh

vc.view.frame = // whatever

self.view.addSubview(vc.view)

vc.didMove(toParentViewController: self)

A parent view controller sets the size of a child view controller’s view. A
child view controller, however, can express a preference as to what size it

would like its view to be, by setting its own preferredContentSize
property. The chief purpose of this property is to be consulted by a parent
view controller when this view controller is its child. This property is a
preference and no more; no law says that the parent must consult the child,
or that the parent must obey the child’s preference.

If a view controller’s preferredContentSize is set while it is a child view
controller, the runtime automatically communicates this fact to the parent
view controller, by calling this UIContentContainer method:

preferredContentSizeDidChange(forChildContentContainer:)

The parent view controller may implement this method to consult the
child’s preferredContentSize, and may change the child’s view’s size in
response if it so chooses.
A parent view controller, as an adopter of the UIContentContainer protocol
(along with UIPresentationController), is also responsible for
communicating to its children that their sizes are changing and what their
new sizes will be. It is the parent view controller’s duty to implement this
method:

size(forChildContentContainer:withParentContainerSize:)

Should be implemented to return each child view controller’s correct
size at any moment. Failure to implement this method will cause the
child view controller to be handed the wrong size in its implementation
of viewWillTransition(to:with:) — it will be given the parent’s
new size rather than its own new size!

If your parent view controller implements viewWillTransition(to:wit
h:), it should call super so that viewWillTransition(to:with:) will be
passed down to its children. This works even if your implementation is
explicitly changing the size of a child view controller, provided you have
implemented size(forChildContentContainer:withParentContainerS
ize:) to return the new size.

Peek and Pop
On a device with 3D touch, if the user can trigger a transition to a new view
controller, you can permit the user to do a partial press to preview the new
view controller’s view from within the current view controller’s view,
without actually performing the transition. The user can then either back off
the press completely, in which case the preview vanishes, or do a full press,
in which case the transition is performed. Apple calls this peek and pop.
Apple’s own apps use peek and pop extensively. For example, in the Mail
app, viewing a mailbox’s list of messages, the user can peek at a message’s
content; in the Calendar app, viewing a month, the user can peek at a day’s
events; and so on.
The preview during peek and pop is only a preview; the user can’t interact
with it. In effect, the preview is just a snapshot. However, to give the
preview itself some additional functionality, it can be accompanied by menu
items, similar to an action sheet (see Chapter 13). The user slides the
preview upward to reveal the menu items. The user can then tap a menu
item to perform its action, or tap the preview to back out and return to the
original view controller.
To implement peek and pop, your source view controller (the one that the
user would transition from if the full transition were performed) must
register by calling this method:

registerForPreviewing(with:sourceView:)

The first parameter is an object adopting the
UIViewControllerPreviewingDelegate protocol (typically self). The
second parameter is a touchable view within which you want the user to
be able to press in order to summon a preview. You can call this method
multiple times to register multiple source views.
This method also returns a value, a system-supplied context manager
conforming to the UIViewControllerPreviewing protocol. However, for
straightforward peek and pop you won’t need to capture this object; it
will be supplied again in the delegate method calls.

Let’s say the user now uses 3D touch to press somewhere on the screen. In
order for your UIViewControllerPreviewingDelegate adopter to be called,
this press must be within a registered touchable view; if it is within a
subview of the registered view, the subview must itself be touchable
(because otherwise hit-testing would fail to report the press in the first
place). This means it’s time to peek. The first delegate method is called:

previewingContext(_:viewControllerForLocation:)

The first parameter is the context manager I mentioned a moment ago.
The second parameter, the location:, is the point where the user is
pressing, in sourceView coordinates; you can examine this to decide
whether the press is within an area corresponding to an element for
which you want to trigger peek and pop. To prevent peeking, return nil.
Otherwise:

Optionally, set the context manager’s sourceRect to the region,
expressed in source view coordinates, that will stay sharp while the
rest of the interface blurs to indicate that peeking is about to take
place. If you don’t do this, the source view itself will be used.
Instantiate an appropriate destination view controller and return it.
The runtime will snapshot the view controller’s view and present that
snapshot as the preview.

Now let’s say the user, while previewing, continues to press harder and
reaches full force. This means it’s time to pop. The second delegate method
is called:

previewingContext(_:commit:)

The first parameter is the context manager; the second parameter is the
view controller you provided in the previous delegate method. Your job
is now to perform the actual transition.
In all likelihood, you will transition to the view controller that arrives as
the second parameter. Still, no law requires this; you might implement
peek by displaying a subview or simplified interface, using another
view controller, and then pop to the real view controller.

Alternatively, you can configure peek and pop in a storyboard, without
code. In the nib editor, select a triggered segue emanating from a tappable
interface object (an action segue) and check the Peek & Pop checkbox in
the Attributes inspector. If you need to add code, similar to the delegate
methods, use the pop-up menus to provide custom segues (I’ll explain later
what custom segues are).
In this artificial example, I have a view controller with three buttons:
Manny, Moe, and Jack. My view controller is a container view controller;
when the user taps a button, I create the corresponding Pep view controller
(whose view contains that Pep boy’s image) and make it my view
controller’s child, displaying its view in my view controller’s view:

@IBAction func doShowBoy(_ sender : UIButton) {

 let title = sender.title(for: .normal)!

 let pep = Pep(pepBoy: title)

 self.transitionContainerTo(pep)

}

func transitionContainerTo(_ pep:Pep) {

 let oldvc = self.childViewControllers[0]

 pep.view.frame = self.container.bounds

 self.addChildViewController(pep)

 oldvc.willMove(toParentViewController: nil)

 self.transition(

 from: oldvc, to: pep,

 duration: 0.2, options: .transitionCrossDissolve,

 animations: nil) { _ in

 pep.didMove(toParentViewController: self)

 oldvc.removeFromParentViewController()

 }

}

Now I want to implement peek and pop for those three buttons. The buttons
are subviews of a common superview, self.buttonSuperview. I’ll register
that superview for previewing in my container view controller’s viewDidLo
ad:

override func viewDidLoad() {

 super.viewDidLoad()

 self.registerForPreviewing(with: self, sourceView: self.buttonSuperview)

}

In the first delegate method, I hit-test the press location; if the user is
pressing on a button, I set the context manager’s sourceRect, instantiate
the corresponding Pep view controller, and return it:

func previewingContext(_ ctx: UIViewControllerPreviewing,

 viewControllerForLocation loc: CGPoint) -> UIViewController? {

 let sv = ctx.sourceView

 guard let button =

 sv.hitTest(loc, with: nil) as? UIButton else {return nil}

 let title = button.title(for: .normal)!

 let pep = Pep(pepBoy: title)

 ctx.sourceRect = button.convert(button.bounds, to:sv)

 return pep

}

In the second delegate method, I perform the transition, exactly as if the
user had tapped a button:

func previewingContext(_ ctx: UIViewControllerPreviewing,

 commit vc: UIViewController) {

 if let pep = vc as? Pep {

 self.transitionContainerTo(pep)

 }

}

Creating menu items to accompany the preview is the job of the destination
view controller. All it has to do is override the previewActionItems
property to supply an array of UIPreviewActionItems. A
UIPreviewActionItem can be a UIPreviewAction, which is basically a
simple tappable menu item. Alternatively, it can be a
UIPreviewActionGroup, consisting of an array of UIPreviewActions; this
looks like a menu item, but when the user taps it the menu items vanish and
are replaced by the group’s menu items, giving in effect a second level of
menu hierarchy. A UIPreviewActionItem can have a style: .default, .sel
ected (the menu item has a checkmark), or .destructive (the menu item
has a warning red color).
I’ll extend the preceding example to demonstrate the use of a
UIPreviewActionGroup and the .selected style. My Pep view controller

overrides previewActionItems. The user can tap a Colorize menu item to
see a secondary menu of three possible colors; tapping one of those will
presumably somehow colorize this Pep Boy. The user can also tap a
Favorite menu item to make this Pep Boy the favorite (implemented
through UserDefaults); if this Pep Boy is already the favorite, this menu
item has a checkmark:

override var previewActionItems: [UIPreviewActionItem] {

 // example of submenu (group)

 let col1 = UIPreviewAction(title:"Blue", style: .default) {

 action, vc in // ...

 }

 let col2 = UIPreviewAction(title:"Green", style: .default) {

 action, vc in // ...

 }

 let col3 = UIPreviewAction(title:"Red", style: .default) {

 action, vc in // ...

 }

 let group = UIPreviewActionGroup(

 title: "Colorize", style: .default, actions: [col1, col2, col3])

 // example of selected style

 let favKey = "favoritePepBoy"

 let style : UIPreviewActionStyle =

 self.boy == UserDefaults.standard.string(forKey:favKey) ?

 .selected : .default

 let fav = UIPreviewAction(title: "Favorite", style: style) {

 action, vc in

 if let pep = vc as? Pep {

 UserDefaults.standard.set(pep.boy, forKey:favKey)

 }

 }

 return [group, fav]

}

The function passed to the UIPreviewAction initializer receives as
parameters the UIPreviewAction and the view controller instance (so that
you can refer to the view controller without causing a retain cycle). I take
advantage of this in the Favorite menu item implementation, pulling out the
boy instance property string to use as the value saved into user defaults,
thus identifying which Pep Boy is now the favorite.

Storyboards
A storyboard is a way of performing automatically the kind of view
controller management I’ve described throughout this chapter, such as
creating a view controller and transitioning to it. A storyboard doesn’t
always reduce the amount of code you’ll have to write, but it does clarify
the relationships between your view controllers over the course of your
app’s lifetime. Instead of having to hunt around in each of your classes to
see which class creates which view controller and when, you can view and
manage the chain of view controller creation graphically in the nib editor.
Figure 6-9 shows the storyboard of a small test app.

Figure 6-9. The storyboard of an app

A storyboard is a collection of view controller nibs, which are displayed as
its scenes. Each view controller is instantiated from its own nib, as needed,
and will then obtain its view, as needed — typically from a view nib that

you’ve configured in the same scene by editing the view controller’s view. I
described this process in detail in “How Storyboards Work”. As I explained
there, a view controller can be instantiated from a storyboard in various
ways:

Manual instantiation
Your code can instantiate a view controller manually from a storyboard,
by calling one of these methods:

instantiateInitialViewController

instantiateViewController(withIdentifier:)

Initial view controller
If your app has a main storyboard, as specified by its Info.plist, that
storyboard’s initial view controller will be instantiated and assigned as
the window’s rootViewController automatically as the app launches.
To specify that a view controller is a storyboard’s initial view controller,
check the “Is Initial View Controller” checkbox in its Attributes
inspector. This will cause any existing initial view controller to lose its
initial view controller status. The initial view controller is distinguished
graphically in the canvas by an arrow pointing to it from the left, and in
the document outline by the presence of the Storyboard Entry Point.

Relationship
Two built-in parent view controllers can specify their children directly
in the storyboard, setting their viewControllers array:

UITabBarController can specify multiple children (its “view
controllers”).
UINavigationController can specify its single initial child (its “root
view controller”).

To add a view controller as a viewControllers child to one of those
parent view controller types, Control-drag from the parent view
controller to the child view controller; in the little HUD that appears,
choose the appropriate listing under Relationship Segue. The result is a

relationship whose source is the parent and whose destination is the
child. The destination view controller will be instantiated automatically
when the source view controller is instantiated, and will be assigned
into its viewControllers array, thus making it a child and retaining it.

Triggered segue
A triggered segue configures a future situation, when the segue will be
triggered. At that time, one view controller that already exists will cause
the instantiation of another, bringing the latter into existence
automatically. Two types of triggered segue are particularly common
(their names in the nib editor depend on whether the “Use Trait
Variations” checkbox is checked in the File inspector):

Show (formerly Push)
The future view controller will be pushed onto the stack of the
navigation controller of which the existing view controller is already
a child.

The name Show comes from the show(_:sender:) method, which
pushes a view controller onto the parent navigation controller if
there is one, but behaves adaptively if there is not (I’ll talk more
about that in Chapter 9). A Show segue from a view controller that
is not a navigation controller’s child will present the future view
controller rather than pushing it, as there is no navigation stack to
push onto. Setting up a Show segue without a navigation controller
and then wondering why there is no push is a common beginner
mistake.

Present Modally (formerly Modal)
The future view controller will be a presented view controller (and
the existing view controller will be its original presenter).

Unlike a relationship, a triggered segue does not have to emanate from a
view controller (a manual segue). It can emanate from certain kinds of
gesture recognizer, or from a tappable view, such as a button or a table
view cell, in the first view controller’s view; this is a graphical

shorthand signifying that the segue should be triggered, bringing the
second view controller into existence, when a tap or other gesture
occurs (an action segue).
To create a triggered segue, Control-drag from the tappable object in the
first view controller, or from the first view controller itself, to the
second view controller. In the little HUD that appears, choose the type
of segue you want. If you dragged from the view controller, this will be
a manual segue; if you dragged from a tappable object, it will be an
action segue.

Triggered Segues
A triggered segue is a true segue (as opposed to relationships, which are not
really segues at all). The most common types are Show (Push) and Present
Modally (Modal). A segue is a full-fledged object, an instance of
UIStoryboardSegue, and it can be configured in the nib editor through its
Attributes inspector. However, it is not instantiated by the loading of a nib,
and it cannot be pointed to by an outlet. Rather, it will be instantiated when
the segue is triggered, at which time its designated initializer will be called,
namely init(identifier:source:destination:).

A segue’s source and destination are the two view controllers between
which it runs. The segue is directional, so the source and destination are
clearly distinguished. The source view controller is the one that will exist
already, before the segue is triggered; the destination view controller will be
instantiated together with the segue itself, when the segue is triggered.

A segue’s identifier is a string. You can set this string for a segue in a
storyboard through its Attributes inspector; this can be useful when you
want to trigger the segue manually in code (you’ll specify it by means of its
identifier), or when you have code that can receive a segue as parameter
and you need to distinguish which segue this is.

Triggered segue behavior

The default behavior of a segue, when it is triggered, is exactly the behavior
of the corresponding manual transition described earlier in this chapter:

Show (Push)

The segue is going to call pushViewController(_:animated:) (if we
are in a navigation interface). To set animated: to false, uncheck the
Animates checkbox in the Attributes inspector.

Present Modally (Modal)

The segue is going to call present(_:animated:completion:). To set
animated: to false, uncheck the Animates checkbox in the Attributes
inspector. Other presentation options, such as the modal presentation
style and the modal transition style, can be set in the destination view
controller’s Attributes inspector or in the segue’s Attributes inspector
(the segue settings will override the destination view controller
settings).

You can further customize a triggered segue’s behavior by providing your
own UIStoryboardSegue subclass. The key thing is that you must
implement your custom segue’s perform method, which will be called after
the segue is triggered and instantiated, in order to do the actual transition
from one view controller to another. You can do this even for a push segue
or a modal segue: in the Attributes inspector for the segue, you specify your
UIStoryboardSegue subclass, and in that subclass, you call super in your p
erform implementation.
Let’s say, for example, that you want to add a custom transition animation
to a modal segue. You can do this by writing a segue class that makes itself
the destination controller’s transitioning delegate in its perform
implementation before calling super:

class MyCoolSegue: UIStoryboardSegue {

 override func perform() {

 let dest = self.destination

 dest.modalPresentationStyle = .custom

 dest.transitioningDelegate = self

 super.perform()

 }

}

extension MyCoolSegue: UIViewControllerTransitioningDelegate {

 func animationController(forPresented presented: UIViewController,

 presenting: UIViewController,

 source: UIViewController) -> UIViewControllerAnimatedTransitioning? {

 return self

 }

 // ...

}

extension MyCoolSegue: UIViewControllerAnimatedTransitioning {

 func transitionDuration(using ctx: UIViewControllerContextTransitioning?)

 -> TimeInterval {

 return 0.8

 }

 // ...

}

The rest is then exactly as in “Custom Presented View Controller
Transition”. MyCoolSegue is the UIViewControllerTransitioningDelegate,
so its animationController(forPresented:...) will be called.
MyCoolSegue is the UIViewControllerAnimatedTransitioning object, so its
transitionDuration and so forth will be called. In short, we are now off
to the races with a custom presented view controller transition, with all the
code living inside MyCoolSegue — a pleasant encapsulation of
functionality.
You can also create a completely custom segue. To do so, in the HUD when
you Control-drag to create the segue, ask for a Custom segue, and then, in
the Attributes inspector, specify your UIStoryboardSegue subclass. Again,
you must override perform, but now you don’t call super — the whole
transition is completely up to you! Your perform implementation can
access the segue’s identifier, source, and destination properties. The
destination view controller has already been instantiated, but that’s all; it
is entirely up to your code make this view controller a child view controller
or presented view controller and cause its view to appear in the interface.

How a segue is triggered
A triggered segue will be triggered in one of two ways:

Through a user gesture
If a segue emanates from a gesture recognizer or from a tappable view,
it becomes an action segue, meaning that it will be triggered
automatically when the tap or other gesture occurs.
Your source view controller class can prevent an action segue from
being triggered. To do so, override this method:

shouldPerformSegue(withIdentifier:sender:)

Sent when an action segue is about to be triggered. Returns a Bool
(and the default is true), so if you don’t want this segue triggered
on this occasion, return false.

In code
If a segue emanates from a view controller as a whole, it is a manual
segue, and triggering it is up to your code. Send this message to the
source view controller:

performSegue(withIdentifier:sender:)

Triggers a segue whose source is this view controller. The segue will
need an identifier in the storyboard so that you can specify it here! s
houldPerformSegue(withIdentifier:sender:) will not be
called, because if you didn’t want the segue triggered, you wouldn’t
have called performSegue in the first place.

An action segue with an identifier can be treated as a manual segue: that
is, you can trigger it by calling performSegue, thus doing in code what
the user could have done by tapping.

View controller communication
When a segue is triggered, the destination view controller is instantiated
automatically; your code does not instantiate it. This raises a crucial
question: how are you going to communicate between the source view
controller and the destination view controller? This, you’ll remember, was

the subject of an earlier section of this chapter (“Communication with a
Presented View Controller”), where I used this code as an example:

let svc = SecondViewController(nibName: nil, bundle: nil)

svc.data = "This is very important data!"

svc.delegate = self

self.present(svc, animated:true)

In that code, the first view controller creates the second view controller, and
therefore has a reference to it at that moment. Thus, it has an opportunity to
communicate with it, passing along some data to it, and setting itself as its
delegate, before presenting it. With a modal segue, however, the second
view controller is instantiated for you, and the segue itself is going to call p
resent(_:animated:completion:). So when and how will the first view
controller be able to set svc.data and set itself as svc’s delegate?
The answer is that, after a segue has instantiated the destination view
controller but before the segue is actually performed, the source view
controller is sent prepare(for:sender:). The first parameter is the segue,
and the segue has a reference to the destination view controller — so this is
the moment when the source view controller and the destination view
controller meet! The source view controller can thus perform configurations
on the destination view controller, hand it data, and so forth. The source
view controller can work out which segue is being triggered by examining
the segue’s identifier and destination properties, and the sender is the
interface object that was tapped to trigger the segue (or, if performSegue(w
ithIdentifier:sender:) was called in code, whatever object was
supplied as the sender: argument).
So, for example:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 if segue.identifier == "second" {

 let svc = segue.destination as! SecondViewController

 svc.data = "This is very important data!"

 svc.delegate = self

 }

}

This solves the communication problem. Unfortunately, it solves it in a
clumsy way; prepare(for:sender:) feels like a blunt instrument. The de
stination arrives typed as a generic UIViewController, and it is up to your
code to know its actual type, cast it, and configure it. If more than one
segue emanates from a view controller, they are all bottlenecked through
the same prepare(for:sender:) implementation, which devolves into an
ugly collection of conditions to distinguish them. I regard this aspect of the
storyboard architecture as flawed.

Container Views and Embed Segues
The only parent view controllers for which you can create relationship
segues specifying their children in a storyboard are the built-in
UITabBarController and UINavigationController. That’s because the nib
editor understands how they work. If you write your own custom container
view controller (“Container View Controllers”), the nib editor doesn’t even
know that your view controller is a container view controller, so it can’t be
the source of a relationship segue.
Nevertheless, you can perform some initial parent–child configuration of
your custom container view controller in a storyboard, if your situation
conforms to these assumptions:

Your parent view controller will have one initial child view controller.
You want the child view controller’s view placed somewhere in the
parent view controller’s view.

To configure your parent view controller in a storyboard, drag a Container
View object from the Object library into the parent view controller’s view
in the canvas. The result is a view, together with an embed segue leading
from it to an additional child view controller. You can then specify the child
view controller’s correct class in its Identity inspector. Alternatively, delete
the child view controller, replace it with a different view controller, and
Control-drag from the container view to this view controller and, in the
HUD, specify an Embed segue.

When an embed segue is triggered, the destination view controller is
instantiated and made the source view controller’s child, and its view is
placed exactly inside the container view as its subview. Thus, the container
view is not only a way of generating the embed segue, but also a way of
specifying where you want the child view controller’s view to go. The
entire child-addition dance is performed correctly and automatically for
you: addChildViewController(_:) is called, the child’s view is put into
the interface, and didMove(toParentViewController:) is called.
An embed segue is a triggered segue. It can have an identifier, and the
standard messages are sent to the source view controller when the segue is
triggered. At the same time, it has this similarity to a relationship: when the
source (parent) view controller is instantiated, the runtime wants to trigger
the segue automatically, instantiating the child view controller and
embedding its view in the container view now. If that isn’t what you want,
override shouldPerformSegue(withIdentifier:sender:) in the parent
view controller to return false for this segue, and call performSegue(with
Identifier:sender:) later when you do want the child view controller
instantiated.

The parent view controller is sent prepare(for:sender:) before the
child’s view loads. At this time, the child has not yet been added to the
parent’s childViewControllers array. If you allow the segue to be
triggered when the parent view controller is instantiated, then by the time
the parent’s viewDidLoad is called, the child’s viewDidLoad has already
been called, the child has already been added to the parent’s childViewCon
trollers, and the child’s view is already inside the parent’s view.
If you subsequently want to replace the child view controller’s view with
another child view controller’s view in the interface, you will do so in code,
probably by calling transition(from:to:duration:options:animation
s:completion:) as I described earlier in this chapter. If you really want to,
you can configure this through a storyboard by using a custom segue.

Storyboard References

When you create a segue in the storyboard (a triggered segue or a
relationship), you don’t have to Control-drag to a view controller as the
destination; instead, you can Control-drag to a storyboard reference which
you have previously added to the canvas of this storyboard. A storyboard
reference is a placeholder for a specific view controller. Thus, instead of a
large and complicated network of segues running all over your storyboard,
possibly crisscrossing in confusing ways, you can effectively jump through
the storyboard reference to the actual destination view controller.
To specify what view controller a storyboard reference stands for, you need
to perform two steps:

1. Select the view controller and, in the Identity inspector, give it a
Storyboard ID.

2. Select the storyboard reference and, in the Attributes inspector, enter
that same Storyboard ID as its Referenced ID.

But wait — there’s more! The referenced view controller doesn’t even have
to be in the same storyboard as the storyboard reference. You can use a
storyboard reference to jump to a view controller in a different storyboard.
With a storyboard reference that leads into a different storyboard, that
storyboard is loaded automatically when needed. This allows you to
organize your app’s interface into multiple storyboards.
To configure a storyboard reference to refer to a view controller in a
different storyboard, use the Storyboard pop-up menu in its Attributes
inspector. The rule is that if you specify the Storyboard but not the
Referenced ID, the storyboard reference stands for the target storyboard’s
initial view controller (the one marked as the Storyboard Entry Point in that
storyboard’s document outline). If you do specify the Referenced ID, then
of course the storyboard reference stands for the view controller with that
Storyboard ID in the target storyboard. (I find, as a practical matter, that
things work best if you always specify both the storyboard reference’s
Storyboard and its Referenced ID.)

Unwind Segues

Here’s an interesting puzzle: Storyboards and segues would appear to be
useful only half the time, because segues are asymmetrical. There is a push
segue but no pop segue. There is a present modally segue but no dismiss
segue.
The reason, in a nutshell, is that a triggered segue cannot “go back.” A
triggered segue instantiates the destination view controller; it creates a new
view controller instance. But when dismissing a presented view controller
or popping a pushed view controller, we don’t need any new view controller
instances. We want to return, somehow, to an existing instance of a view
controller.

WARNING
Beginners often fail to understand this. They make a triggered segue from view controller A to
view controller B, and then try to express the notion “go back” by making another triggered segue
from view controller B to view controller A. The result is a vicious cycle of segues, with
presentation piled on presentation, or push piled on push, one view controller instantiated on top
of another on top of another. Do not construct a cycle of segues. (Unfortunately, the nib editor
doesn’t alert you to this mistake.)

The solution is an unwind segue. An unwind segue does let you express the
notion “go back” in a storyboard. Basically, it lets you jump to any view
controller that is already instantiated further up your view controller
hierarchy, destroying the source view controller and any intervening view
controllers in good order.

Creating an unwind segue
Before you can create an unwind segue, you must implement an unwind
method in the class of some view controller represented in the storyboard.
This should be a method marked @IBAction as a hint to the storyboard
editor, and taking a single parameter, a UIStoryboardSegue. You can call it
unwind if you like, but the name doesn’t really matter:

@IBAction func unwind(_ seg: UIStoryboardSegue) {

 // ...

}

Think of this method as a marker, specifying that the view controller in
which it appears can be the destination for an unwind segue. It is, in fact, a
little more than a marker: it will also be called when the unwind segue is
triggered. But its marker functionality is much more important — so much
so that, in many cases, you won’t give this method any code at all. Its
presence, and its name, are what matters.
Now you can create an unwind segue. Doing so involves the use of the Exit
proxy object that appears in every scene of a storyboard. Control-drag from
the view controller you want to go back from, or from something like a
button in that view controller’s view, connecting it to the Exit proxy object
in the same scene (Figure 6-10). A little HUD appears, listing all the known
unwind methods (similar to how action methods are listed in the HUD
when you connect a button to its target). Click the name of the unwind
method you want. You have now made an unwind segue, bound to that
unwind method.

Figure 6-10. Creating an unwind segue

How an unwind segue works
When the unwind segue is triggered, the following steps are performed:

1. If this is an action segue, the source view controller’s shouldPerform
Segue(withIdentifier:sender:) is called — just as for a normal
segue. This is your chance to stop the whole process dead at this point
by returning false.

2. The name of the unwind method to which the unwind segue is bound
is only a name. The unwind segue’s actual destination view controller

is unknown! Therefore, the runtime now starts walking up the view
controller hierarchy looking for a destination view controller. Put
simply, the first view controller it finds that implements the unwind
method will, by default, be the destination view controller.

Assume that the destination view controller has been found. (I’ll explain
how it is found in a moment.) Then we proceed to perform the segue, as
follows:

1. The source view controller’s prepare(for:sender:) is called with
the segue as the first parameter — just as for a normal segue. The two
view controllers are now in contact (because the other view controller
is the segue’s destination). This is an opportunity for the source
view controller to hand information to the destination view controller
before being destroyed! (Thus, an unwind segue is an alternative to
delegation as a way of putting one view controller into
communication with another: see “Communication with a Presented
View Controller”.)

2. The destination view controller’s unwind method is called. Its
parameter is the segue. The two view controllers are now in contact
again (because the other view controller is the segue’s source). It is
perfectly reasonable, as I’ve already said, for the unwind method body
to be empty; the unwind method’s real purpose is to mark this view
controller as the destination view controller.

3. The segue is actually performed, destroying the source controller and
any intervening view controllers up to (but not including) the
destination view controller, in good order.

Now I’ll go back and explain in detail how the destination view controller is
found, and how the segue is actually performed. This is partly out of sheer
interest — they are both devilishly clever — and partly in case you need to
customize the process. You can skip the discussion if the technical details
aren’t of interest to you.

WARNING
Unwind segues are differently implemented in every version of iOS; they can be quite
complicated; and they are sometimes buggy. They are a great time-saver in simple situations, but
for anything beyond that, I don’t recommend using them; you may be better off popping and
dismissing in code.

How the destination view controller is found
The process of locating the destination view controller starts by walking up
the view controller hierarchy. What do I mean by “up” the hierarchy? Well,
every view controller has either a parent or a presentingViewControlle
r, so the next view controller up the hierarchy is that view controller.
However, it might also be necessary to walk back down the hierarchy, to a
child (at some depth) of one of the parents we encounter.
Here’s how the walk proceeds:

1. At each step up the view controller hierarchy, the runtime sends this
view controller the following event:

allowedChildViewControllersForUnwinding(from:)

This view controller’s job is to supply an array of its own direct
children. The array can be empty, but it must be an array. To help form
this array, the view controller calls this method:

childViewControllerContaining(_:)

This tells the view controller which of its own children is, or is the
ultimate parent of, the source view controller. We don’t want to go
down that branch of the view hierarchy; that’s the branch we just
came up. So this view controller subtracts that view controller from
the array of its own child view controllers, and returns the resulting
array.

2. There are two possible kinds of result from the previous step (the
value returned from allowedChildViewControllers...):

There are children

If the previous step yielded an array with one or more child view
controllers in it, the runtime performs step 1 on all of them
(stopping if it finds the destination), thus going down the view
hierarchy.

There are no children
If, on the other hand, the previous step yielded an empty array, the
runtime asks this same view controller the following question:

canPerformUnwindSegueAction(_:from:withSender:)

The default implementation of this method is simply to call respo
nds(to:) on self, asking whether this view controller contains
an implementation of the unwind method we’re looking for. The
result is a Bool. If it is true, we stop. This is the destination view
controller. If it is false, we continue with the search up the view
controller hierarchy, finding the next view controller and
performing step 1 again.

A moment’s thought will reveal that the recursive application of this
algorithm will eventually arrive at an existing view controller instance with
an implementation of the unwind method if there is one. Okay, maybe a
moment’s thought didn’t reveal that to you, so here’s an actual example. I’ll
use the app whose storyboard is pictured in Figure 6-9. Its root view
controller is a UITabBarController with two children:

The first tab bar controller child is a UINavigationController with a root
view controller called FirstViewController, which has a push segue to
another view controller called PushedViewController.
The second tab bar controller child is called SecondViewController,
which has a modal segue to another view controller called
PresentedViewController.

Assume that the user starts in the tab bar controller’s first view controller,
where she triggers the push segue, thus showing PushedViewController.
She then switches to the tab bar controller’s second view controller, where

she triggers the modal segue, thus showing PresentedViewController. All
the view controllers pictured in Figure 6-9 now exist simultaneously.

The unwind method is in FirstViewController, and is called iAmFirst(_:).
The corresponding unwind segue, whose action is "iAmFirst:", is
triggered from a button in PresentedViewController. The user taps the
button in PresentedViewController and thus triggers the "iAmFirst:"
unwind segue. What will happen?

To begin with, PresentedViewController is sent shouldPerformSegue(wit
hIdentifier:sender:) and returns true, permitting the segue to go
forward. The runtime now needs to walk the view controller hierarchy and
locate the iAmFirst(_:) method. Here’s how it does that:

1. We start by walking up the view hierarchy. We thus arrive at the
original presenter from which PresentedViewController was
presented, namely SecondViewController.

The runtime sends allowedChildViewControllersForUnwinding(f
rom:) to SecondViewController; SecondViewController has no
children, so it returns an empty array.

So the runtime also asks SecondViewController canPerformUnwindS
egueAction to find out whether this is the destination — but
SecondViewController returns false, so we know this is not the
destination.

2. We therefore proceed up the view hierarchy to
SecondViewController’s parent, the UITabBarController. The runtime
sends the UITabBarController allowedChildViewControllersForU
nwinding(from:).
The UITabBarController has two child view controllers, namely the
UINavigationController and SecondViewController — but one of
them, SecondViewController, contains the source (as it discovers by
calling childViewControllerContaining(_:)). Therefore, the
UITabBarController returns an array containing the other child view
controller, namely the UINavigationController.

3. The runtime has received an array with a child in it; it therefore
proceeds down the view hierarchy to that child, the
UINavigationController, and asks it the same question: allowedChild
ViewControllersForUnwinding(from:).
The navigation controller has two children, namely
FirstViewController and PushedViewController, and neither of them is
or contains the source, so it returns an array containing both of them.

4. The runtime has received an array with two children in it. It therefore
notes down that it now has two hierarchy branches to explore, and
proceeds down the hierarchy to explore them:

a. The runtime starts with PushedViewController, asking it allowe
dChildViewControllersForUnwinding(from:).
PushedViewController has no children, so the reply is an empty
array.

So the runtime asks PushedViewController canPerformUnwindS
egueAction to find out whether this is the destination — but
PushedViewController replies false, so we know this is not the
destination.

b. So much for that branch of the UINavigationController’s
children; we’ve reached a dead end. So the runtime proceeds to
the other branch, namely FirstViewController. The runtime asks
FirstViewController allowedChildViewControllersForUnwin
ding(from:). FirstViewController has no children, so the reply
is an empty array.

So the runtime asks canPerformUnwindSegueAction to find out
whether this is the destination — and FirstViewController
replies true. We’ve found the destination view controller!

The destination having been found, the runtime now sends prepare(for:s
ender:) to the source, and then calls the destination’s unwind method, iAm
First(_:). We are now ready to perform the segue.

How an unwind segue is performed
The way an unwind segue is performed is just as ingenious as how the
destination is found. During the walk in search of the destination view
controller, the runtime remembers the walk. Thus, it knows where all the
presented view controllers are, and it knows where all the parent view
controllers are. Thus we have a path of presenting view controllers and
parent view controllers between the source and the destination. The runtime
then proceeds as follows:

For any presented view controllers on the path, the runtime itself calls di
smiss(animated:completion:) on the presenting view controller.
For any parent view controllers on the path, the runtime tells each of
them, in turn, to unwind(for:towardsViewController:).

The second parameter of unwind(for:towardsViewController:) is the
direct child of this parent view controller leading down the branch where
the destination lives. This child might or might not be the destination, but
that’s no concern of this parent view controller. Its job is merely to get us
onto that branch, whatever that may mean for this kind of parent view
controller. A moment’s thought will reveal (don’t you wish I’d stop saying
that?) that if each parent view controller along the path of parent view
controllers does this correctly, we will in fact end up at the destination,
releasing in good order all intervening view controllers that need to be
released. This procedure is called incremental unwind.
Let’s try it! The unwind procedure for our example runs as follows:

1. The runtime sends dismiss(animated:completion:) to the root
view controller, namely the UITabBarController. Thus,
PresentedViewController is destroyed in good order.

2. The runtime sends unwind(for:towardsViewController:) to the
UITabBarController. The second parameter is the tab bar controller’s
first child, the UINavigationController. The UITabBarController
therefore changes its selectedViewController to be the
UINavigationController.

3. The runtime sends unwind(for:towardsViewController:) to the
UINavigationController. The second parameter is the
FirstViewController. The navigation controller therefore pops its stack
down to the FirstViewController. Thus, PushedViewController is
destroyed in good order, and we are back at the FirstViewController
— which is exactly what was supposed to happen.

Unwind segue customization
Knowing how an unwind segue works, you can see how to intervene in and
customize the process:

In a custom view controller that contains an implementation of the
unwind method, you might implement canPerformUnwindSegueAction
(_:from:withSender:) to return false instead of true so that it
doesn’t become the destination on this occasion.

In a custom parent view controller, you might implement allowedChild
ViewControllersForUnwinding(from:). In all probability, your
implementation will consist simply of listing your childViewControlle
rs, calling childViewControllerContaining(_:) to find out which of
your children is or contains the source, subtracting that child from the
array, and returning the array — just as the built-in parent view
controllers do.

In a custom parent view controller, you might implement unwind(for:t
owardsViewController:). The second parameter is one of your current
children; you will do whatever it means for this parent view controller to
make this the currently displayed child.

In allowedChildViewControllersForUnwinding(from:) and childView
ControllerContaining(_:), the parameter is not a UIStoryboardSegue.
It’s an instance of a special value class called a
UIStoryboardUnwindSegueSource, which has no other job than to
communicate, in these two methods, the essential information about the
unwind segue needed to make a decision. It has a source, a sender, and an
unwindAction (the Selector specified when forming the unwind segue).

WARNING
Do not override childViewControllerContaining(_:). It knows more than you do; you
wouldn’t want to interfere with its operation.

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the
user, events arrive that give your view controller the opportunity to respond
to the various stages of its own existence and the management of its view.
By overriding these methods, your UIViewController subclass can perform
appropriate tasks at appropriate moments. Here’s a list:

viewDidLoad

The view controller has obtained its view (as explained earlier in this
chapter); if that involved loading a nib, outlets have been hooked up.
This does not mean that the view is in the interface or that it has been
given its correct size. You should call super in your implementation,
just in case a superclass has work to do in its implementation.

willTransition(to:with:)

viewWillTransition(to:with:)

traitCollectionDidChange(_:)

The view controller’s view is being resized or the trait environment is
changing, or both (as explained earlier in this chapter). Your
implementation of the first two methods should call super.

updateViewConstraints

viewWillLayoutSubviews

viewDidLayoutSubviews

The view is receiving updateConstraints and layoutSubviews
events (as explained in Chapter 1). Your implementation of updateView

Constraints should call super.

willMove(toParentViewController:)

didMove(toParentViewController:)

The view controller is being added or removed as a child of another
view controller (as explained earlier in this chapter).

viewWillAppear(_:)

viewDidAppear(_:)

viewWillDisappear(_:)

viewDidDisappear(_:)

The view is being added to or removed from the interface. This includes
being supplanted by another view controller’s view or being restored
through the removal of another view controller’s view. A view that has
appeared is in the window; it is part of your app’s active view hierarchy.
A view that has disappeared is not in the window; its window is nil.
You should call super in your override of any of these four methods; if
you forget to do so, things may go wrong in subtle ways.
To distinguish more precisely why your view is appearing or
disappearing, consult any of these properties of the view controller:

isBeingPresented

isBeingDismissed

isMovingToParentViewController

isMovingFromParentViewController

To get a sense for when these events are useful, it helps to examine some
situations in which they normally occur. Take, for example, a
UIViewController being pushed onto the stack of a navigation controller. It
receives, in this order, the following messages:

1. willMove(toParentViewController:)

2. viewWillAppear(_:)

3. updateViewConstraints

4. traitCollectionDidChange(_:)

5. viewWillLayoutSubviews

6. viewDidLayoutSubviews

7. viewDidAppear(_:)

8. didMove(toParentViewController:)
When this same UIViewController is popped off the stack of the navigation
controller, it receives, in this order, the following messages:

1. willMove(toParentViewController:) (with parameter nil)

2. viewWillDisappear(_:)

3. viewDidDisappear(_:)

4. didMove(toParentViewController:) (with parameter nil)
Disappearance, as I mentioned a moment ago, can happen because another
view controller’s view supplants this view controller’s view. For example,
consider a UIViewController functioning as the top (and visible) view
controller of a navigation controller. When another view controller is
pushed on top of it, the first view controller gets these messages:

1. viewWillDisappear(_:)

2. viewDidDisappear(_:)

3. didMove(toParentViewController:)
The converse is also true. For example, when a view controller is popped
from a navigation controller, the view controller that was below it in the
stack (the back view controller) receives these messages:

1. viewWillAppear(_:)

2. viewDidAppear

3. didMove(toParentViewController:)

Incoherencies in View Controller Events
Unfortunately, the exact sequence of events and the number of times they
will be called for any given view controller transition situation sometimes
seems nondeterministic or incoherent. For example:

Sometimes didMove(toParentViewController:) arrives without a
corresponding willMove(toParentViewController:).

Sometimes didMove(toParentViewController:) arrives even though
this view controller was previously the child of this parent and remains
the child of this parent.
Sometimes the layout events arrive more than once for the same view
controller for the same transition.

Sometimes viewWillAppear(_:) arrives without a corresponding view
DidAppear(_:); similarly, sometimes viewWillDisappear(_:) arrives
without a corresponding viewDidDisappear(_:). A case in point is
when an interactive transition animation begins and is cancelled.

I regard all such behaviors as bugs, but Apple clearly does not. The best
advice I can offer is that you should try to structure your code in such a way
that incoherencies of this sort don’t matter.

Appear and Disappear Events
The appear and disappear events are particularly appropriate for making
sure that a view reflects the model or some form of saved state each time it
appears. (A common beginner mistake is to use viewDidLoad instead,
forgetting that viewDidLoad is called only once in the view controller’s
lifetime.)

Changes to the interface performed in viewDidAppear(_:) or viewWillDi
sappear(_:) may be visible to the user as they occur! If that’s not what
you want, use the other member of the pair. For example, in a certain view
containing a long scrollable text, I want the scroll position to be the same
when the user returns to this view as it was when the user left it, so I save

the scroll position in viewWillDisappear(_:) and restore it in viewWillA
ppear(_:) — not viewDidAppear(_:), where the user might see the scroll
position jump.
These methods are useful also when something must be true exactly so long
as a view is in the interface. For example, a repeating Timer that must be
running while a view is present can be started in the view controller’s view
DidAppear(_:) and stopped in its viewWillDisappear(_:). (This
architecture also allows you to avoid the retain cycle that could result if you
waited to invalidate the timer in a deinit that might otherwise never
arrive.)

The appear events are not layout events! Don’t make any assumptions
about whether your views have achieved their correct size just because the
view is appearing — even if those assumptions seem to be correct. To
respond when layout is taking place, implement layout events.
A view does not disappear if a presented view controller’s view merely
covers it rather than supplanting it. For example, a view controller that
presents another view controller using the .formSheet presentation style
gets no lifetime events during presentation and dismissal.
A view does not disappear merely because the app is backgrounded and
suspended. Once suspended, your app might be killed. So you cannot rely
on viewWillDisappear(_:) or viewDidDisappear(_:) alone for saving
data that the app will need the next time it launches. If you are to cover
every case, you may need to ensure that your data-saving code also runs in
response to an application lifetime event such as applicationWillResign
Active or applicationDidEnterBackground (see Appendix A).

Event Forwarding to a Child View Controller
A custom container view controller must effectively send willMove(toPar
entViewController:) and didMove(toParentViewController:) to its
children manually, and it will do this correctly if you do the dance correctly

when your view controller acquires or loses a child view controller (see
“Container View Controllers”).
A custom container view controller must forward resizing events to its
children. This will happen automatically if you call super in your
implementation of the willTransition methods. Conversely, if you
implement these methods, failure to call super may prevent them from
being forwarded correctly to the child view controller.

The appear and disappear events are normally passed along
automatically. However, you can take charge by overriding this property:

shouldAutomaticallyForwardAppearanceMethods

If you override this property to return false, you are responsible for
seeing that the four appear and disappear methods are called on your
view controller’s children. You do not do this by calling these methods
directly. The reason is that you have no access to the correct moment for
sending them. Instead, you call these two methods on your child view
controller:

beginAppearanceTransition(_:animated:); the first parameter is
a Bool saying whether this view controller’s view is about to appear
(true) or disappear (false)

endAppearanceTransition

Here’s what to do if you’ve implemented shouldAutomaticallyForwardA
ppearanceMethods to return false. There are two main occasions on
which your custom container view controller must forward appear and dis
appear events to a child.
First, what happens when your custom container view controller’s own
view itself appears or disappears? If it has a child view controller’s view
within its own view, it must implement and forward all four appear and di
sappear events to that child. You’ll need an implementation along these
lines, for each of the four events:

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 let child = // whatever

 if child.isViewLoaded && child.view.superview != nil {

 child.beginAppearanceTransition(true, animated: true)

 }

}

override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 let child = // whatever

 if child.isViewLoaded && child.view.superview != nil {

 child.endAppearanceTransition()

 }

}

(The implementations for viewDidAppear(_:) and viewDidDisappear
(_:) are similar, except that the first argument for beginAppearanceTrans
ition is false.)
Second, what happens when you swap one view controller’s child for
another in your interface? Apple warns that you should not call the
UIViewController method transition(from:...); instead, you perform
the transition animation directly, calling beginAppearanceTransition(_:
animated:) and endAppearanceTransition yourself.

A minimal correct implementation might involve the UIView transition
class method (see Chapter 4). Here’s an example of a parent view controller
swapping one child view controller and its view for another, while taking
charge of notifying the child view controllers of the appearance and
disappearance of their views. I’ve put asterisks to call attention to the
additional method calls that forward the appear and disappear events to
the children (fromvc and tovc):

self.addChildViewController(tovc) // "will" called for us

fromvc.willMove(toParentViewController: nil)

fromvc.beginAppearanceTransition(false, animated:true) // *

tovc.beginAppearanceTransition(true, animated:true) // *

UIView.transition(

 from:fromvc.view, to:tovc.view,

 duration:0.4, options:.transitionFlipFromLeft) {_ in

 tovc.endAppearanceTransition() // *

 fromvc.endAppearanceTransition() // *

 tovc.didMove(toParentViewController: self)

 fromvc.removeFromParentViewController()

}

View Controller Memory Management
Memory is at a premium on a mobile device. Thus you want to minimize
your app’s use of memory. Your motivations are partly altruistic and partly
selfish. While your app is running, other apps are suspended in the
background; you want to keep your memory usage as low as possible so
that those other apps have room to remain suspended and the user can
readily switch to them from your app. You also want to prevent your own
app from being terminated! If your app is backgrounded and suspended
while using a lot of memory, it may be terminated in the background when
memory runs short. If your app uses an inordinate amount of memory while
in the foreground, it may be summarily killed before the user’s very eyes.
One strategy for avoiding using too much memory is to release any
memory-hogging objects you’re retaining if they are not needed at this
moment. Because a view controller is the basis of so much of your
application’s architecture, it is likely to be a place where you’ll concern
yourself with releasing unneeded memory.
One of your view controller’s most memory-intensive objects is its view.
Fortunately, the iOS runtime manages a view controller’s view’s memory
for you. If a view controller’s view is not in the interface, it can be
temporarily dispensed with. In such a situation, if memory is getting tight,
then even though the view controller itself persists, and even though it
retains its actual view, the runtime may release its view’s backing store (the
cached bitmap representing the view’s drawn contents). The view will then
be redrawn when and if it is to be shown again later.
In addition, if memory runs low, your view controller may be sent this
message:

didReceiveMemoryWarning

Sent to a view controller to advise it of a low-memory situation. It is
preceded by a call to the app delegate’s applicationDidReceiveMemor
yWarning, together with a .UIApplicationDidReceiveMemoryWarnin
g notification posted to any registered objects. You are invited to
respond by releasing any data that you can do without. Do not release
data that you can’t readily and quickly recreate! The documentation
advises that you should call super.

Lazy Loading
If you’re going to release data in didReceiveMemoryWarning, you must
concern yourself with how you’re going to get it back. A simple and
reliable mechanism is lazy loading — a getter that reconstructs or fetches
the data if it is nil.

For example, suppose we have a property myBigData which might be a big
piece of data. We make this a calculated property, storing the real data in a
private property (I’ll call it _myBigData). Our calculated property’s setter
simply writes through to the private property. In didReceiveMemoryWarnin
g, we write myBigData out as a file (Chapter 22) and set myBigData to nil
— thus setting _myBigData to nil as well, and releasing the big data from
memory. The getter for myBigData implements lazy loading: if we try to get
myBigData when _myBigData is nil, we attempt to fetch the data from the
file — and if we succeed, we delete the file (to prevent stale data):

private let fnam = "myBigData"

private var _myBigData : Data! = nil

var myBigData : Data! {

 set (newdata) { self._myBigData = newdata }

 get {

 if _myBigData == nil {

 let fm = FileManager.default

 let f = fm.temporaryDirectory.appendingPathComponent(self.fnam)

 if let d = try? Data(contentsOf:f) {

 self._myBigData = d

 do {

 try fm.removeItem(at:f)

 } catch {

 print("Couldn't remove temp file")

 }

 }

 }

 return self._myBigData

 }

}

func saveAndReleaseMyBigData() {

 if let myBigData = self.myBigData {

 let fm = FileManager.default

 let f = fm.temporaryDirectory.appendingPathComponent(self.fnam)

 if let _ = try? myBigData.write(to:f) {

 self.myBigData = nil

 }

 }

}

override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 self.saveAndReleaseMyBigData()

}

NSCache, NSPurgeableData, and Memory-Mapping
When your big data can be reconstructed from scratch on demand, you can
take advantage of the built-in NSCache class, which is like a dictionary
with the ability to clear out its own entries automatically under memory
pressure. As in the previous example, a calculated property can be used as a
façade:

private let _cache = NSCache<NSString, NSData>()

var cachedData : Data {

 let key = "somekey" as NSString

 if let olddata = self._cache.object(forKey:key) {

 return olddata as Data

 }

 let newdata = // recreated data

 self._cache.setObject(newdata as NSData, forKey: key)

 return newdata

}

Another built-in class that knows how to clear itself out is
NSPurgeableData. It is a subclass of NSMutableData. To signal that the
data should be discarded, send your object discardContentIfPossible.

Wrap any access to data in calls to beginContentAccess and endContentA
ccess; the former returns a Bool to indicate whether the data was
accessible. The tricky part is getting those access calls right; when you
create an NSPurgeableData, you must send it an unbalanced endContentAc
cess to make its content discardable:

private var _purgeable = NSPurgeableData()

var purgeabledata : Data {

 if self._purgeable.beginContentAccess() && self._purgeable.length > 0 {

 let result = self._purgeable.copy() as! Data

 self._purgeable.endContentAccess()

 return result

 } else {

 let data = // ... recreate data ...

 self._purgeable = NSPurgeableData(data:data)

 self._purgeable.endContentAccess()

 return data

 }

}

(For more about NSCache and NSPurgeableData, see the “Caching and
Purgeable Memory” chapter of Apple’s Memory Usage Performance
Guidelines.)
At an even lower level, you can store your data as a file (in some reasonable
location such the Caches directory) and read it using the Data initializer ini
t(contentsOfURL:options:) with an options: argument .alwaysMappe
d. This creates a memory-mapped data object, which has the remarkable
feature that it isn’t considered to belong to your memory at all; the system
has no hesitation in clearing it from RAM, because it is backed through the
virtual memory system by the file, and will be read back into memory
automatically when you next access it. This is suitable only for large
immutable data, because small data runs the risk of fragmenting a virtual
memory page.

Background Memory Usage

You will also wish to concern yourself with releasing memory when your
app is about to be suspended. If your app has been backgrounded and
suspended and the system later discovers it is running short of memory, it
will go hunting through the suspended apps, looking for memory hogs that
it can kill in order to free up that memory. If the system decides that your
suspended app is a memory hog, it isn’t politely going to wake your app
and send it a memory warning; it’s just going to terminate your app in its
sleep. The time to be concerned about releasing memory, therefore, is
before the app is suspended. You’ll probably want your view controller to
be registered with the shared application to receive .UIApplicationDidEn
terBackground. The arrival of this notification is an opportunity to release
any easily restored memory-hogging objects, such as myBigData in the
previous example:

override func viewDidLoad() {

 super.viewDidLoad()

 NotificationCenter.default.addObserver(self,

 selector: #selector(backgrounding),

 name: .UIApplicationDidEnterBackground,

 object: nil)

}

func backgrounding(_ n:Notification) {

 self.saveAndReleaseMyBigData()

}

TIP
A very nice feature of NSCache is that it evicts its objects automatically when your app goes into
the background.

Testing Memory Usage
To test low-memory circumstances artificially, run your app in the
Simulator and choose Hardware → Simulate Memory Warning. I don’t
believe this has any actual effect on memory, but a memory warning of
sufficient severity is sent to your app, so you can see the results of
triggering your low-memory response code, including the app delegate’s ap

plicationDidReceiveMemoryWarning and your view controller’s didRec
eiveMemoryWarning.
Another approach, which works also on a device, is to call an
undocumented method. First, define a dummy protocol to make the selector
legal:

@objc protocol Dummy {

 func _performMemoryWarning()

}

Now you can send that selector to the shared application:

UIApplication.shared.perform(#selector(Dummy._performMemoryWarning))

(Be sure to remove that code when it is no longer needed for testing, as the
App Store won’t accept it.)
Testing how your app’s memory behaves in the background isn’t easy. In a
WWDC 2011 video, an interesting technique is demonstrated. The app is
run under Instruments on a device, using the virtual memory instrument,
and is then backgrounded by pressing the Home button, thus revealing how
much memory it voluntarily relinquishes at that time. Then a special
memory-hogging app is launched on the device: it loads a very large image
and displays it in a UIImageView. Even though your app is backgrounded
and suspended, the virtual memory instrument continues to track its
memory usage, and you can see whether further memory is reclaimed under
pressure from the demands of the memory-hogging app in the foreground.

State Restoration
When the user leaves your app and then later returns to it, one of two things
might have happened in the meantime:

Your app was suspended
Your app was suspended in the background, and remained suspended
while the user did something else. When the user returns to your app,

the system simply unfreezes your app, and there it is, looking just as it
did when the user left it.

Your app was terminated
Your app was suspended in the background, and then, as the user
worked with other apps, a moment came where the system decided it
needed the resources (such as memory) being held by your suspended
app. Therefore, it terminated your app. When the user returns to your
app, the app launches from scratch.

The user, however, doesn’t know the difference between those two things,
so why should the app behave differently some of the time? Ideally, your
app, when it comes to the foreground, should always appear looking as it
did when the user left it, even if in fact it was terminated while suspended
in the background. Otherwise, as the WWDC 2013 video on this topic puts
it, the user will feel that the app has “lost my place.”
That’s where state restoration comes in. Your app has a state at every
moment: some view controller’s view is occupying the screen, and views
within it are displaying certain values (for example, a certain switch is set to
On, or a certain table view is scrolled to a certain position). The idea of
state restoration is to save that information when the app goes into the
background, and use it to make all those things true again if the app is
subsequently launched from scratch.
iOS provides a general solution to the problem of state restoration. This
solution is centered around view controllers, which makes sense, since view
controllers are the heart of the problem. What is the user’s “place” in the
app, which we don’t want to “lose”? It’s the chain of view controllers that
got us to where we were when the app was backgrounded, along with the
configuration of each one. The goal of state restoration must therefore be to
reconstruct all existing view controllers, initializing each one into the state
it previously had.
Note that state, in this sense, is neither user defaults nor data. If something
is a preference, store it in UserDefaults. If something is data, keep it in a
file (Chapter 22). Don’t misuse the state saving and restoration mechanism

for such things. The reason for this is not only conceptual; it’s also because
saved state can be lost. (For example, saved state is deleted if the user flicks
your app’s snapshot out of the app switcher, or if your app crashes.) You
don’t want to commit anything to the state restoration mechanism if it
would be a disaster to have lost it the next time the app launches.

How to Test State Restoration
To test whether your app is saving and restoring state as you expect:

1. Run the app from Xcode as usual, in the Simulator or on a device.
2. At some point, in the Simulator or on the device, click the Home

button (Hardware → Home in the Simulator). This causes the app to
be suspended in good order, and state is saved.

3. Now, back in Xcode, stop the running project and run it again. If there
is saved state, it is restored.

(To test the app’s behavior from a truly cold start, delete it from the
Simulator or device. You might need to do this, for example, after you’ve
changed something about the underlying save-and-restore model.)

Apple also provides some debugging tools (search for “restorationArchi
veTool for iOS” at https://developer.apple.com/download/more/):

restorationArchiveTool

A command-line tool letting you examine a saved state archive in
textual format. The archive is in a folder called Saved Application State
in your app’s sandboxed Library. See Chapter 22 for more about the
app’s sandbox, and how to copy it to your computer from a device.

StateRestorationDebugLogging.mobileconfig
A configuration profile. When installed on a device, it causes the
console to dump information as state saving and restoration proceeds.

StateRestorationDeveloperMode.mobileconfig

https://developer.apple.com/download/more/

A configuration profile. When installed on a device, it prevents the state
archive from being jettisoned after unexpected termination of the app (a
crash, or manual termination through the app switcher interface). This
can allow you to test state restoration a bit more conveniently.

To install a .mobileconfig file on a device, the simplest approach is to email
it to yourself on the device and tap the file in the Mail message. You can
subsequently delete the file, if desired, through the Settings app.

Participating in State Restoration
Built-in state restoration is an opt-in technology: it operates only if you
explicitly tell the system that you want to participate in it. To do so, you do
three things:

Implement app delegate methods

The app delegate must implement these methods to return true:

application(_:shouldSaveApplicationState:)

application(_:shouldRestoreApplicationState:)

(Naturally, your code can instead return false to prevent state from
being saved or restored on some particular occasion.)

Implement application(_:willFinishLaunchingWithOptions:)

Although it is very early, application(_:didFinishLaunchingWithO
ptions:) is too late for state restoration. Your app needs its basic
interface before state restoration begins. The solution is to use a
different app delegate method, application(_:willFinishLaunching
WithOptions:).

Your implementation must call makeKeyAndVisible explicitly on the
window! Otherwise, the interface doesn’t come into existence soon
enough for restoration to happen during launch. Apart from that, you
can typically just reuse your existing application(_:didFinishLaunc

hingWithOptions:) implementation, by changing did to will in its
name.

Provide restoration IDs

Both UIViewController and UIView have a restorationIdentifier
property, which is a string. Setting this string to a non-nil value is your
signal to the system that you want this view controller (or view) to
participate in state restoration. If a view controller’s restorationIdent
ifier is nil, neither it nor any subsequent view controllers down the
chain will be saved or restored. (A nice feature of this architecture is
that it lets you participate partially in state restoration, omitting some
view controllers by not assigning them a restoration identifier.)

You can set the restorationIdentifier manually, in code; typically
you’ll do that early in a view controller’s lifetime. If a view controller or
view is instantiated from a nib, you’ll want to set the restoration
identifier in the nib editor; the Identity inspector has a Restoration ID
field for this purpose. If you’re using a storyboard, it’s a good idea, in
general, to make a view controller’s restoration ID in the storyboard the
same as its storyboard ID — such a good idea, in fact, that the
storyboard editor provides a checkbox, “Use Storyboard ID,” that
equates the two values automatically.

(In your application(_:willFinishLaunchingWithOptions:)
implementation, before calling makeKeyAndVisible, it may also be
useful to assign the window itself a restoration identifier. This might not
make any detectable difference, but in some cases it can help restore
size class information.)

In the case of a simple storyboard-based app, where each needed view
controller instance can be reconstructed directly from the storyboard, those
steps alone can be sufficient to bring state restoration to life, operating
correctly at the view controller level. Let’s test it! Start with a storyboard-
based app with the following architecture (Figure 6-11):

A navigation controller.

Its root view controller, connected by a relationship from the navigation
controller. Call its class RootViewController.
— A presented view controller, connected by a modal segue from a
Present button in RootViewController’s view. Call its class
PresentedViewController. Its view contains a Dismiss button.
A second view controller, connected by a push segue from a Push button
in RootViewController’s view. Call its class SecondViewController.
— The very same presented view controller (PresentedViewController),
also connected by a modal segue from a Present button in the second
view controller’s view.

Figure 6-11. Architecture of an app for testing state restoration

This storyboard-based app runs perfectly with just about no code at all; all
we need is an empty implementation of an unwind method in
RootViewController and SecondViewController so that we can create an
unwind segue from the PresentedViewController’s Dismiss button.
We will now make this app implement state restoration:

1. In the app delegate, change the name of application(_:didFinishL
aunchingWithOptions:) to application(_:willFinishLaunching
WithOptions:), and insert this line of code:

self.window?.makeKeyAndVisible()

2. In the app delegate, implement these two methods to return true:

application(_:shouldSaveApplicationState:)

application(_:shouldRestoreApplicationState:)

3. In the storyboard, give restoration IDs to all four view controller
instances: let’s call them "nav", "root", "second", and
"presented".

The app now saves and restores state! When we run the app, navigate to any
view controller, quit, and later relaunch, the app appears in the same view
controller it was in when we quit.

Restoration ID, Identifier Path, and Restoration Class
Having everything done for us by the storyboard reveals nothing about
what’s really happening. To learn more, let’s rewrite the example without
using the storyboard. Suppose we implement the same architecture using
code alone:

// AppDelegate.swift:

func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 self.window = self.window ?? UIWindow()

 let rvc = RootViewController()

 let nav = UINavigationController(rootViewController:rvc)

 self.window!.rootViewController = nav

 self.window!.backgroundColor = .white

 self.window!.makeKeyAndVisible()

 return true

}

// RootViewController.swift:

override func viewDidLoad() {

 super.viewDidLoad()

 // ... color view background, create buttons ...

}

func doPresent(_ sender: Any?) {

 let pvc = PresentedViewController()

 self.present(pvc, animated:true)

}

func doPush(_ sender: Any?) {

 let svc = SecondViewController()

 self.navigationController!.pushViewController(svc, animated:true)

}

// SecondViewController.swift:

override func viewDidLoad() {

 super.viewDidLoad()

 // ... color view background, create button ...

}

func doPresent(_ sender: Any?) {

 let pvc = PresentedViewController()

 self.present(pvc, animated:true)

}

// PresentedViewController.m:

override func viewDidLoad() {

 super.viewDidLoad()

 // ... color view background, create button ...

}

func doDismiss(_ sender: Any?) {

 self.presentingViewController?.dismiss(animated:true)

}

That’s a working app. Now let’s start adding state restoration, just as before:

1. In the app delegate, change the name of application(_:didFinishL
aunchingWithOptions:) to application(_:willFinishLaunching
WithOptions:).

2. In the app delegate, implement these two methods to return true:

application(_:shouldSaveApplicationState:)

application(_:shouldRestoreApplicationState:)

3. Give all four view controller instances restoration IDs in code. Again,
let’s call them "nav", "root", "second", and "presented". We’re

creating each view controller instance manually, so we may as well
assign its restorationIdentifier in the next line, like this:

let rvc = RootViewController()

rvc.restorationIdentifier = "root"

let nav = UINavigationController(rootViewController:rvc)

nav.restorationIdentifier = "nav"

And so on.
Run the app. Oops! We are not getting state restoration. Why not?

The reason is that the restorationIdentifier alone is not sufficient to
tell the state restoration mechanism what to do as the app launches. The
restoration mechanism knows the chain of view controller classes that
needs to be generated, but it is up to us to generate the instances of those
classes. Our storyboard-based example didn’t exhibit this problem, because
the storyboard itself was the source of the instances. To make our code-
based example work, we need to know about the identifier path and the
restoration class.

Identifier path
Any particular view controller instance, given its position in the view
controller hierarchy, is uniquely identified by the sequence of restoration
Identifier values of all the view controllers (including itself) in the chain
that leads to it. Those restorationIdentifier values, taken together in
sequence, constitute the identifier path for any given view controller
instance. A view controller’s identifier path is like a trail of breadcrumbs
that you left behind as you created it while the app was running, and that
will now be used to identify it again as the app launches.
There’s nothing mysterious about an identifier path; it’s just an array of
strings. For example, if we launch the app and press the Push button and
then the Present button, then all four view controllers have been
instantiated; those instances are identified as:

The navigation controller: ["nav"]

The RootViewController: ["nav", "root"]

The SecondViewController: ["nav", "second"]

The PresentedViewController: ["nav", "presented"] (because the
navigation controller is the actual presenting view controller)

Observe that a view controller’s identifier path is not a record of the full
story of how we got here. It’s just an identifier! The state-saving mechanism
uses those identifiers to save a relational tree, which does tell the full story.
For example, if the app is suspended in the current situation, then the state-
saving mechanism will record the true state of affairs, namely that the root
view controller (["nav"]) has two children (["nav", "root"] and ["na
v", "second"]) and a presented view controller (["nav",
"presented"]).
Now consider what the state restoration mechanism needs to do when the
app has been suspended and killed, and comes back to life, from the
situation I just described. We need to restore four view controllers; we
know their identifiers and mutual relationships. State restoration doesn’t
start until after application(_:willFinishLaunchingWithOptions:).
So when the state restoration mechanism starts examining the situation, it
discovers that the ["nav"] and ["nav", "root"] view controller instances
have already been created! However, the view controller instances for ["na
v", "second"] and ["nav", "presented"] must also be created now.
The state restoration mechanism doesn’t know how to do that — so it’s
going to ask your code for the instances.

Restoration class
The state restoration mechanism needs to ask your code for the view
controller instances that haven’t been created already. But what code should
it ask? There are two ways to specify this. One way is for you to provide a
restoration class for each view controller instance that is not restored by the
time application(_:willFinishLaunchingWithOptions:) returns.
Here’s how you do that:

1. Give the view controller a restorationClass. Typically, this will be
the view controller’s own class, or the class of the view controller
responsible for creating this view controller instance. You will need to
specify formally that a class to be designated as a restorationClass
adopts the UIViewControllerRestoration protocol.

2. Implement the class method viewController(withRestorationIde
ntifierPath:coder:) on the class named by each view controller’s
restorationClass property, returning a view controller instance as
specified by the identifier path. Very often, the implementation will be
to instantiate the view controller directly and return that instance.

Let’s make our PresentedViewController and SecondViewController
instances restorable. I’ll start with PresentedViewController. Our app can
have two PresentedViewController instances (though not simultaneously)
— the one created by RootViewController, and the one created by
SecondViewController. Let’s start with the one created by
RootViewController.
Since RootViewController creates and configures a
PresentedViewController instance, it can reasonably act also as the
restoration class for that instance. In its implementation of viewControlle
r(withRestorationIdentifierPath:coder:), RootViewController
should then create and configure a PresentedViewController instance
exactly as it was doing before we added state restoration to our app —
except for putting it into the view controller hierarchy! The state restoration
mechanism itself, remember, is responsible for assembling the view
controller hierarchy; our job is merely to supply any needed view controller
instances.
So RootViewController now must adopt UIViewControllerRestoration, and
will contain this code:

func doPresent(_ sender: Any?) {

 let pvc = PresentedViewController()

 pvc.restorationIdentifier = "presented"

 pvc.restorationClass = type(of:self) // *

 self.present(pvc, animated:true)

}

class func viewController(withRestorationIdentifierPath ip: [Any],

 coder: NSCoder) -> UIViewController? {

 var vc : UIViewController? = nil

 let last = ip.last as! String

 switch last {

 case "presented":

 let pvc = PresentedViewController()

 pvc.restorationIdentifier = "presented"

 pvc.restorationClass = self

 vc = pvc

 default: break

 }

 return vc

}

You can see what I mean when I say that the restoration class must do
exactly what it was doing before state restoration was added. Clearly this
situation has led to some annoying code duplication, so let’s factor out the
common code. In doing so, we must bear in mind that doPresent is an
instance method, whereas viewController(withRestorationIdentifie
rPath:coder:) is a class method; our factored-out code must therefore be
a class method, so that they can both call it:

class func makePresentedViewController () -> UIViewController {

 let pvc = PresentedViewController()

 pvc.restorationIdentifier = "presented"

 pvc.restorationClass = self

 return pvc

}

func doPresent(_ sender: Any?) {

 let pvc = type(of:self).makePresentedViewController()

 self.present(pvc, animated:true)

}

class func viewController(withRestorationIdentifierPath ip: [Any],

 coder: NSCoder) -> UIViewController? {

 var vc : UIViewController? = nil

 let last = ip.last as! String

 switch last {

 case "presented":

 vc = self.makePresentedViewController()

 default: break

 }

 return vc

}

The structure of our viewController(withRestorationIdentifierPat
h:coder:) is typical. We test the identifier path — usually, it’s sufficient to
examine its last element — and return the corresponding view controller;
ultimately, we are also prepared to return nil, in case we are called with an
identifier path we can’t interpret. We can also return nil deliberately, to tell
the restoration mechanism, “Go no further; don’t restore the view controller
you’re asking for here, or any view controller further down the same path.”
Continuing in the same vein, we expand RootViewController still further to
make it also the restoration class for SecondViewController, and
SecondViewController can make itself the restoration class for the
PresentedViewController instance that it creates. There’s no conflict in the
notion that both RootViewController and SecondViewController can fulfill
the role of PresentedViewController restoration class, as we’re talking
about two different PresentedViewController instances. (The details are left
as an exercise for the reader.)
The app now performs state saving and restoration correctly!

App delegate instead of restoration class
I said earlier that the state restoration mechanism can ask your code for
needed instances in two ways. The second way is that you implement this
method in your app delegate:

application(_:viewControllerWithRestorationIdentifierPath:

coder:)

If you implement that method, it will be called for every view controller
that doesn’t have a restoration class. Your job is to create the requested
view controller based on its path and return it, or return nil to prevent
restoration of that view controller. Be prepared to receive identifier paths
for an existing view controller! If that happens, don’t make a new one and
don’t return nil — return the existing view controller.

TIP
The same method works in a storyboard-based app as well, and thus gives you a chance to
intervene and prevent the restoration of a particular view controller on a particular occasion by
returning nil.

Restoring View Controller State
I have explained how the state restoration mechanism creates a view
controller and places it into the view controller hierarchy. But at that point,
the work of restoration is only half done. What about the state of that view
controller?
A newly restored view controller probably won’t have the data and property
values it was holding at the time the app was terminated. The history of the
configuration of this view controller throughout the time the app was
previously running is not magically recapitulated during restoration. It is up
to each view controller to restore its own state when it itself is restored.
And in order to do that, it must previously save its own state when the app
is backgrounded.
The state saving and restoration mechanism provides a way of helping your
view controllers do this, through the use of a coder (an NSCoder object).
Think of the coder as a box in which the view controller is invited to place
its valuables for safekeeping, and from which it can retrieve them later.
Each of these valuables needs to be identified, so it is tagged with a key (an
arbitrary string) when it is placed into the box, and is then later retrieved by
using the same key, much as in a dictionary.
Anyone who has anything to save at the time it is handed a coder can do so
by calling encode(_:forKey:), provided the object to be encoded
conforms to NSCoding. (I’ll talk in Chapter 22 about how to encode other
sorts of object.) Views and view controllers can be safely encoded, because
they are treated as references. Whatever was saved in the coder can later be
extracted using the same key. You can call decodeObject(forKey:) and

cast down as needed, or you can call a specialized method corresponding to
the expected type, such as decodeFloat(forKey:).
The keys do not have to be unique across the entire app; they only need to
be unique for a particular view controller. Each object that is handed a
coder is handed its own personal coder. It is handed this coder at state
saving time, and it is handed the same coder (that is, a coder with the same
archived objects and keys) at state restoration time.
Here’s the sequence of events involving coders:

Saving state
When it’s time to save state (as the app is about to be backgrounded),
the state saving mechanism provides coders as follows:

1. The app delegate is sent application(_:shouldSaveApplicati
onState:). The coder is the second parameter.

2. The app delegate is sent application(_:willEncodeRestorabl
eStateWith:). The coder is the second parameter, and is the same
coder as in the previous step.

3. Each view controller down the chain, starting at the root view
controller, is sent encodeRestorableState(with:). The coder is
the parameter. The implementation should call super. Each view
controller gets its own coder.

Restoring state
When it’s time to restore state (as the app is launched), the state
restoration mechanism provides coders as follows:

1. The app delegate is sent application(_:shouldRestoreApplic
ationState:). The coder is the second parameter.

2. As each view controller down the chain is to be created, one of
these methods is called (as I’ve already explained); the coder is
the one appropriate to the view controller that’s to be created:

The restoration class’s viewController(withRestorationId
entifierPath:coder:), if the view controller has a
restoration class.

Otherwise, the app delegate’s application(_:viewControlle
rWithRestorationIdentifierPath:coder:).

3. Each view controller down the chain, starting at the root view
controller, is sent decodeRestorableState(with:). The coder
appropriate to that view controller is the parameter. The
implementation should call super.

4. The app delegate is sent application(_:didDecodeRestorable
StateWith:). The coder is the second parameter, and is the same
one as in the first step.

The UIStateRestoration.h header file describes five built-in keys that are
available from every coder during restoration:

UIStateRestorationViewControllerStoryboardKey

A reference to the storyboard from which this view controller came, if
any.

UIApplicationStateRestorationBundleVersionKey

Your Info.plist CFBundleVersion string at the time of state saving.

UIApplicationStateRestorationUserInterfaceIdiomKey

An NSNumber wrapping a UIUserInterfaceIdiom value, either .phone
or .pad, telling what kind of device we were running on when state
saving happened. You can extract this information as follows:

let key = UIApplicationStateRestorationUserInterfaceIdiomKey

if let idiomraw = coder.decodeObject(forKey: key) as? Int {

 if let idiom = UIUserInterfaceIdiom(rawValue:idiomraw) {

 if idiom == .phone {

 // ...

 }

 }

}

UIApplicationStateRestorationTimestampKey

A Date telling when state saving happened.

UIApplicationStateRestorationSystemVersionKey

A string telling the system version under which state saving happened.
One purpose of these keys is to allow your app to opt out of state
restoration, wholly or in part, because the archive is too old, was saved on
the wrong kind of device (and presumably migrated to this one by backup
and restore), and so forth.

A typical implementation of encodeRestorableState(with:) and decode
RestorableState(with:) will concern itself with properties and interface
views. decodeRestorableState(with:) is guaranteed to be called after v
iewDidLoad, so you know that viewDidLoad won’t overwrite any direct
changes to the interface performed in decodeRestorableState(with:).
To illustrate, I’ll add state saving and restoration to my earlier
UIPageViewController example, the one that displays a Pep Boy on each
page. Recall how that example is architected. The project has no
storyboard. The code defines just two classes, the app delegate and the Pep
view controller. The app delegate creates a UIPageViewController and
makes it the window’s root view controller, and makes itself the page view
controller’s data source; its self.pep instance property holds the data
model, which is just an array of string Pep Boy names. The page view
controller’s data source methods, pageViewController(_:viewControlle
rAfter:) and pageViewController(_:viewControllerBefore:), create
and supply an appropriate Pep instance whenever an adjacent page is
needed for the page view controller, based on the index of the current Pep
page’s boy property in self.pep.
The challenge is to restore the Pep object displayed in the page view
controller as the app launches. One solution involves recognizing that a Pep
object is completely configured once created, and it is created just by
handing it the name of a Pep Boy in its designated initializer, which

becomes its boy property. Thus we can mediate between a Pep object and a
mere string, and all we really need to save and restore is that string.
All the additional work, therefore, can be performed in the app delegate. We
save and restore the current Pep Boy name in the app delegate’s encode and
decode methods:

func application(_ application: UIApplication,

 willEncodeRestorableStateWith coder: NSCoder) {

 let pvc = self.window!.rootViewController as! UIPageViewController

 let boy = (pvc.viewControllers![0] as! Pep).boy

 coder.encode(boy, forKey:"boy")

}

func application(_ application: UIApplication,

 didDecodeRestorableStateWith coder: NSCoder) {

 let boyMaybe = coder.decodeObject(forKey:"boy")

 guard let boy = boyMaybe as? String else {return}

 let pvc = self.window!.rootViewController as! UIPageViewController

 let pep = Pep(pepBoy: boy)

 pvc.setViewControllers([pep], direction: .forward, animated: false)

}

A second, more general solution is to make our Pep view controller class
itself capable of saving and restoration. This means that every view
controller down the chain from the root view controller to our Pep view
controller must have a restoration identifier. In our simple app, there’s just
one such view controller, the UIPageViewController; the app delegate can
assign it a restoration ID when it creates it:

let pvc = UIPageViewController(

 transitionStyle: .scroll, navigationOrientation: .horizontal)

pvc.restorationIdentifier = "pvc" // *

We’ll have a Pep object assign itself a restoration ID in its own designated
initializer. The Pep object will also need a restoration class; as I said earlier,
this can perfectly well be the Pep class itself, and that seems most
appropriate here:

required init(pepBoy boy:String) { // *

 self.boy = boy

 super.init(nibName: nil, bundle: nil)

 self.restorationIdentifier = "pep" // *

 self.restorationClass = type(of:self) // *

}

The only state that a Pep object needs to save is its boy string, so we
implement encodeRestorableState to do that. We don’t need to
implement decodeRestorableState, because the coder that will come
back to us in viewController(withRestorationIdentifierPath:code
r:) contains the boy string, and once we use it to create the Pep instance,
the Pep instance is completely configured. This is a class method, and it
can’t call an initializer on self unless that initializer is marked as
required; we did mark it required (in the previous code):

override func encodeRestorableState(with coder: NSCoder) {

 super.encodeRestorableState(with:coder)

 coder.encode(self.boy, forKey:"boy")

}

class func viewController(withRestorationIdentifierPath ip: [Any],

 coder: NSCoder) -> UIViewController? {

 let boy = coder.decodeObject(forKey:"boy") as! String

 return self.init(pepBoy: boy)

}

Now comes a surprise. We run the app and test it, and we find that we’re
not getting saving and restoration of our Pep object. It isn’t being archived;
its encodeRestorableState(with:) isn’t even being called! The reason is
that the state saving mechanism doesn’t work automatically for a
UIPageViewController and its children (or for a custom container view
controller and its children, for that matter). It is up to us to see to it that the
current Pep object is archived.
To do so, we can archive and unarchive the current Pep object in an
implementation of encodeRestorableState(with:) and decodeRestora
bleState(with:) that is being called. For our app, that would have to be
in the app delegate. The code we’ve written so far has all been necessary to
make the current Pep object archivable and restorable; now the app delegate
will make sure that it is archived and restored:

func application(_ application: UIApplication,

 willEncodeRestorableStateWith coder: NSCoder) {

 let pvc = self.window!.rootViewController as! UIPageViewController

 let pep = pvc.viewControllers![0] as! Pep

 coder.encode(pep, forKey:"pep")

}

func application(_ application: UIApplication,

 didDecodeRestorableStateWith coder: NSCoder) {

 let pepMaybe = coder.decodeObject(forKey:"pep")

 guard let pep = pepMaybe as? Pep else {return}

 let pvc = self.window!.rootViewController as! UIPageViewController

 pvc.setViewControllers([pep], direction: .forward, animated: false)

}

This solution may seem rather heavyweight, but it isn’t. We’re not really
archiving an entire Pep instance; it’s just a reference. The Pep instance that
arrives in application(_:didDecodeRestorableStateWith:) was never
in the archive; it’s just a pointer to the instance created by Pep’s
implementation of viewController(withRestorationIdentifierPath:
coder:).

Restoration Order of Operations
When you implement state saving and restoration for a view controller, the
view controller ends up with two different ways of being configured. One
way involves the view controller lifetime events I discussed earlier (“View
Controller Lifetime Events”). The other involves the state restoration events
I’ve been discussing here. You want your view controller to be correctly
configured regardless of whether this view controller is undergoing state
restoration or not.
To help you with this, there’s another view controller event I haven’t
mentioned yet: applicationFinishedRestoringState. If you implement
this method in a view controller subclass, it will be called if and only if
we’re doing state restoration, at a time when all view controllers have
already been sent decodeRestorableState(with:).
Thus, the known order of events during state restoration is like this:

1. application(_:shouldRestoreApplicationState:)

2. application(_:viewControllerWithRestorationIdentifierPat
h:coder:)

3. viewController(withRestorationIdentifierPath:coder:), in
order down the chain

4. viewDidLoad, in order down the chain, possibly interleaved with the
foregoing

5. decodeRestorableState(with:), in order down the chain

6. application(_:didDecodeRestorableStateWith:)

7. applicationFinishedRestoringState, in order down the chain

Observe that I’ve said nothing about when viewWillAppear(_:) and view
DidAppear(_:) will arrive. You can’t be sure about this, or even whether v
iewDidAppear(_:) will arrive at all. That’s another of those view
controller lifetime event incoherencies I complained about earlier. But in ap
plicationFinishedRestoringState you can reliably finish configuring
your view controller and your interface.
A typical situation is that you will want to update your interface after all
properties have been set. So you’ll factor out your interface-updating code
into a single method. Now there are two possibilities, and they are both
handled coherently:

We’re not restoring state
Properties will be set through initialization and configuration, and then
you’ll call your interface-updating method. All this could happen as
soon as the end of viewDidLoad.

We are restoring state

Properties will be set by decodeRestorableState(with:), and then a
pplicationFinishedRestoringState calls your interface-updating
method.

There is still some indeterminacy as to what’s going to happen, but the
interface-updating method can mediate that indeterminacy by checking for

two things that can go wrong:

It is called too soon
The interface-updating method should check to see that the properties
have in fact been set; if not, it should just return. It will be called again
when the properties have been set.

It is called unnecessarily
The interface-updating method might run twice in quick succession with
the same set of properties. This is not a disaster, but if you don’t like it,
you can prevent it by comparing the properties to the interface and
return if the interface has already been configured with these properties.

In this simple example, our view controller has a boy property, and its
interface configuration consists of displaying the corresponding Pep boy’s
image in an image view. So we factor out the construction of the initial
interface into a method, finishInterface, which starts by checking
whether boy has been set:

var boy : String?

func finishInterface() {

 if let boy = self.boy {

 let im = UIImageView(image: UIImage(named:boy.lowercased()))

 self.view.addSubview(im)

 // ...

 }

}

If we are launched without state restoration, boy is set by whoever creates
this view controller, before viewDidLoad. Thus, when we call finishInter
face from viewDidLoad, self.boy has been set and the image view is
created:

override func viewDidLoad() {

 super.viewDidLoad()

 self.finishInterface()

}

But if we are launched with state restoration, boy is not set when viewDidL
oad runs, and the call to finishInterface does nothing, because self.bo
y is nil. Now restoration continues:

override func decodeRestorableState(with coder: NSCoder) {

 if let boy = coder.decodeObject(forKey: "boy") as? String {

 self.boy = boy

 }

}

override func encodeRestorableState(with coder: NSCoder) {

 coder.encode(self.boy, forKey: "boy")

}

override func applicationFinishedRestoringState() {

 self.finishInterface()

}

Our applicationFinishedRestoringState implementation calls finish
Interface again. But this time, decodeRestorableState has been called,
and self.boy has been set — so now finishInterface finishes the
interface by creating the image view. In this way, the image view is added
to the interface just once, no matter what.
If your app has additional state restoration work to do on a background
thread (Chapter 24), the documentation says you should call
UIApplication’s extendStateRestoration as you begin and completeSta
teRestoration when you’ve finished. The idea is that if you don’t call com
pleteStateRestoration, the system can assume that something has gone
wrong and will throw away the saved state information in case it is faulty.

Restoration of Other Objects
A view will participate in automatic saving and restoration of state if its
view controller does, and if it itself has a restoration identifier. Some built-
in UIView subclasses have built-in restoration abilities. For example, a
scroll view that participates in state saving and restoration will
automatically return to the point to which it was scrolled previously. You
should consult the documentation on each UIView subclass to see whether

it participates usefully in state saving and restoration, and I’ll mention a few
significant cases when we come to discuss those views in later chapters.
In addition, an arbitrary object can be made to participate in automatic
saving and restoration of state. There are three requirements for such an
object:

The object’s class must be an NSObject subclass adopting the
UIStateRestoring protocol. This protocol declares three optional
methods:

— encodeRestorableState(with:)

— decodeRestorableState(with:)

— applicationFinishedRestoringState
When the object is created, someone must register it with the runtime by
calling this UIApplication class method:

— registerObject(forStateRestoration:restorationIdentifie
r:)

Someone who participates in state saving and restoration, such as a view
controller, must make the archive aware of this object by storing a
reference to it in the archive (typically in encodeRestorableState(wit
h:)) — much as we did with the Pep object earlier.

So, for example, here’s an NSObject subclass Thing with a word property,
that participates in state saving and restoration:

class Thing : NSObject, UIStateRestoring {

 var word = ""

 func encodeRestorableState(with coder: NSCoder) {

 coder.encode(self.word, forKey:"word")

 }

 func decodeRestorableState(with coder: NSCoder) {

 self.word = coder.decodeObject(forKey:"word") as! String

 }

 func applicationFinishedRestoringState() {

 // not used

 }

}

And here’s a view controller with an Optional Thing property
(self.thing):

class func makeThing () -> Thing {

 let thing = Thing()

 UIApplication.registerObject(

 forStateRestoration: thing, restorationIdentifier: "thing")

 return thing

}

override func awakeFromNib() {

 super.awakeFromNib()

 self.thing = type(of:self).makeThing()

}

override func encodeRestorableState(with coder: NSCoder) {

 super.encodeRestorableState(with:coder)

 coder.encode(self.thing, forKey: "mything") // *

}

The starred line is crucial; it introduces our Thing object to the archive and
brings its UIStateRestoring methods to life. The result is that if we
background the app while an instance of this view controller exists, and if
state restoration is performed on the next launch, the view controller’s
Thing has the same word that it had before; the Thing has participated in
state saving and restoration along with the view controller that owns it.

There is an optional objectRestorationClass property of the restorable
object, and an object(withRestorationIdentifierPath:coder:) class
method that the designated class must implement. The class in question
should formally adopt UIObjectRestoration. Its object(withRestoration
IdentifierPath:coder:) should return the restorable object, by creating
it or pointing to it; alternatively, it can return nil to prevent restoration. If
you want to assign an objectRestorationClass, you’ll have to declare
the property:

var objectRestorationClass: UIObjectRestoration.Type?

However, our Thing object was restorable even without an objectRestora
tionClass; presumably, just calling registerObject sufficiently

identifies this object to the runtime.

Another optional property of the restorable object is restorationParent.
Again, if you want to assign to it, you’ll have to declare it:

var restorationParent: UIStateRestoring?

The purpose of the restoration parent is to give the restorable object an
identifier path. For example, if we have a chain of view controllers with a
path ["nav", "second"], then if that last view controller is the restorati
onParent of our Thing object, the Thing object’s identifier path in object
(withRestorationIdentifierPath:coder:) will be ["nav", "secon
d", "thing"], rather than simply ["thing"]. This is useful if we are
worried that ["thing"] alone will not uniquely identify this object.

Chapter 7. Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its
bounds. To reveal a desired area, the user can scroll the content by
dragging, or you can reposition the content in code.
A scroll view isn’t magic; it takes advantage of ordinary UIView features
(Chapter 1). The content is simply the scroll view’s subviews. When the
scroll view scrolls, what’s really changing is the scroll view’s own bounds
origin; the subviews are positioned with respect to the bounds origin, so
they move with it. The scroll view’s clipsToBounds is usually true, so
any content positioned within the scroll view is visible and any content
positioned outside it is not. A scroll view thus functions as a limited
window on a larger world of content.
A scroll view has the following specialized abilities:

It knows how to shift its bounds origin in response to the user’s gestures.
It provides scroll indicators whose size and position give the user a clue
as to the content’s size and position.
It can enforce paging, whereby the user can scroll only by a fixed
amount.
It supports zooming, so that the user can resize the content with a pinch
gesture.
It provides a plethora of delegate methods, so that your code knows
exactly how the user is scrolling and zooming.

Content Size
How far should a scroll view scroll? Clearly, that depends on how much
content it has.

The scroll view already knows how far it should be allowed to slide its
subviews downward and rightward — in general, the limit is reached when
the scroll view’s bounds origin is CGPoint.zero. What the scroll view
needs to know is how far it should be allowed to slide its subviews upward
and leftward. That is the scroll view’s content size — its contentSize
property.

The scroll view uses its contentSize, in combination with its own bounds
size, to set the limits on how large its bounds origin can become. It may be
helpful to think of the scroll view’s scrollable content as the rectangle
defined by CGRect(origin:.zero, size:contentSize); this is the
rectangle that the user can inspect by scrolling.

If a dimension of the contentSize isn’t larger than the same dimension of
the scroll view’s own bounds, the content won’t be scrollable in that
dimension: there is nothing to scroll, as the entire scrollable content is
already showing. The default is that the contentSize is .zero — meaning
that the scroll view isn’t scrollable. To get a working scroll view, therefore,
it will be crucial to set its contentSize correctly. You can do this directly,
in code; or, if you’re using autolayout (Chapter 1), the contentSize can be
calculated for you based on the constraints of the scroll view’s subviews.
I’ll demonstrate both approaches.

Creating a Scroll View in Code
I’ll start by creating a scroll view, providing it with subviews, and making
those subviews viewable by scrolling, entirely in code.

Manual Content Size
In the first instance, let’s not use autolayout. Our project is based on the
Single View app template, with a single view controller class,
ViewController. In ViewController’s viewDidLoad, I’ll create the scroll
view to fill the main view, and populate it with a vertical column of 30

UILabels whose text contains a sequential number so that we can see where
we are when we scroll:

let sv = UIScrollView(frame: self.view.bounds)

sv.autoresizingMask = [.flexibleWidth, .flexibleHeight]

self.view.addSubview(sv)

sv.backgroundColor = .white

var y : CGFloat = 10

for i in 0 ..< 30 {

 let lab = UILabel()

 lab.text = "This is label \(i+1)"

 lab.sizeToFit()

 lab.frame.origin = CGPoint(10,y)

 sv.addSubview(lab)

 y += lab.bounds.size.height + 10

}

var sz = sv.bounds.size

sz.height = y

sv.contentSize = sz // *

The crucial move is the last line, where we tell the scroll view how large its
content is to be. If we omit this step, the scroll view won’t be scrollable; the
window will appear to consist of a static column of labels.
There is no rule about the order in which you perform the two operations of
setting the contentSize and populating the scroll view with subviews. In
that example, we set the contentSize afterward because it is more
convenient to track the heights of the subviews as we add them than to
calculate their total height in advance. You can alter a scroll view’s content
(subviews) or contentSize, or both, dynamically as the app runs.

The contentSize does not change just because the scroll view’s bounds
change; if you want the contentSize to change in response to rotation, you
will need to change it manually, in code. Conversely, resizing the contentS
ize has no effect on the size of the scroll view’s subviews; it merely
determines the scrolling limit.

Automatic Content Size with Autolayout

With autolayout, things are different. Under autolayout, a scroll view
interprets the constraints of its immediate subviews in a special way.
Constraints between a scroll view and its direct subviews are not a way of
positioning the subviews relative to the scroll view (as they would be if the
superview were an ordinary UIView). Rather, they are a way of describing
the scroll view’s contentSize from the inside out.
To see this, let’s rewrite the preceding example to use autolayout. The scroll
view and its subviews have their translatesAutoresizingMaskIntoCons
traints set to false, and we’re giving them explicit constraints:

let sv = UIScrollView()

sv.backgroundColor = .white

sv.translatesAutoresizingMaskIntoConstraints = false

self.view.addSubview(sv)

NSLayoutConstraint.activate([

 sv.topAnchor.constraint(equalTo:self.view.topAnchor),

 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),

 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),

])

var previousLab : UILabel? = nil

for i in 0 ..< 30 {

 let lab = UILabel()

 // lab.backgroundColor = .red

 lab.translatesAutoresizingMaskIntoConstraints = false

 lab.text = "This is label \(i+1)"

 sv.addSubview(lab)

 lab.leadingAnchor.constraint(

 equalTo: sv.leadingAnchor, constant: 10).isActive = true

 lab.topAnchor.constraint(

 // first one, pin to top; all others, pin to previous

 equalTo: previousLab?.bottomAnchor ?? sv.topAnchor,

 constant: 10).isActive = true

 previousLab = lab

}

The labels are correctly positioned relative to one another, but the scroll
view isn’t scrollable. Moreover, setting the contentSize manually doesn’t
help; it has no effect!

Why is that? It’s because we’re using autolayout, so we must generate the c
ontentSize by means of constraints between the scroll view and its
immediate subviews. We’ve almost done that, but not quite. We are missing
a constraint. We have to add one more constraint, showing the scroll view
what the height of its contentSize should be:

sv.bottomAnchor.constraint(

 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true

The constraints of the scroll view’s subviews now describe the contentSiz
e height: the top label is pinned to the top of the scroll view, the next one is
pinned to the one above it, and so on — and the bottom one is pinned to the
bottom of the scroll view. Consequently, the runtime calculates the content
Size height from the inside out, as it were, as the sum of all the vertical
constraints (including the intrinsic heights of the labels), and the scroll view
is vertically scrollable to show all the labels.

We should also provide a contentSize width; here, I’ll add a trailing
constraint from the bottom label, which will surely be narrower than the
scroll view, so we won’t actually scroll horizontally:

previousLab!.trailingAnchor.constraint(

 equalTo:sv.trailingAnchor).isActive = true

Scroll View Layout Guides
New in iOS 11, there’s another way to do everything we did in the previous
example. A UIScrollView in iOS 11 has a contentLayoutGuide that we
can pin its immediate subviews to, instead of pinning them to the scroll
view itself, in order to determine the contentSize from the inside out. I’ll
rewrite the entire previous example to use the contentLayoutGuide:

let sv = UIScrollView()

sv.backgroundColor = .white

sv.translatesAutoresizingMaskIntoConstraints = false

self.view.addSubview(sv)

NSLayoutConstraint.activate([

 sv.topAnchor.constraint(equalTo:self.view.topAnchor),

 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),

 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),

])

let svclg = sv.contentLayoutGuide

var previousLab : UILabel? = nil

for i in 0 ..< 30 {

 let lab = UILabel()

 // lab.backgroundColor = .red

 lab.translatesAutoresizingMaskIntoConstraints = false

 lab.text = "This is label \(i+1)"

 sv.addSubview(lab)

 lab.leadingAnchor.constraint(

 equalTo: svclg.leadingAnchor,

 constant: 10).isActive = true

 lab.topAnchor.constraint(

 // first one, pin to top; all others, pin to previous

 equalTo: previousLab?.bottomAnchor ?? svclg.topAnchor,

 constant: 10).isActive = true

 previousLab = lab

}

svclg.bottomAnchor.constraint(

 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true

svclg.widthAnchor.constraint(equalToConstant:0).isActive = true // *

The last line of that example demonstrates one advantage of using the
content layout guide: we can set its height or width constraint directly to
determine that dimension of the content size. Thus, I’m able to set the
content size width directly to zero, which states precisely what I mean:
don’t scroll horizontally.

Also new in iOS 11 is a second UIScrollView property, its frameLayoutGu
ide, which is pinned to the scroll view’s frame. This gives us another way
to state that the scroll view should not scroll horizontally, by making the
content layout guide width the same as the frame layout guide width:

let svflg = sv.frameLayoutGuide

svclg.widthAnchor.constraint(equalTo:svflg.widthAnchor).isActive = true

Using a Content View

A commonly used arrangement is to give a scroll view just one immediate
subview; all other views inside the scroll view are subviews of this single
immediate subview of the scroll view, which is often called the content
view. The content view is usually a generic UIView; the user won’t even
know it’s there. It has no purpose other than to contain the other subviews
— and to help determine the scroll view’s content size.
If we’re using a content view, then, under autolayout, we have two choices
for setting the scroll view’s contentSize:

Set the content view’s translatesAutoresizingMaskIntoConstraint
s to true, and set the scroll view’s contentSize manually to the size of
the content view.

Set the content view’s translatesAutoresizingMaskIntoConstraint
s to false, set its size with constraints, and pin its edges with
constraints to the scroll view (or, under iOS 11, to the scroll view’s
content layout guide). Usually, all four of those edge constraints will
have a constant of 0, thus making the scroll view’s contentSize the
same as the size of the content view.

A convenient consequence of this arrangement is that it works
independently of whether the content view’s own subviews are positioned
explicitly by their frames or using constraints. There are thus four possible
combinations:

No constraints
The content view is sized by its frame, its contents are positioned by
their frames, and the scroll view’s contentSize is set explicitly.

Content view constraints
The content view is sized by its own height and width constraints, and
its edges are pinned to the scroll view (or its content layout guide) to set
the scroll view’s content size.

Content view and content constraints

The content view is sized from the inside out by the constraints of its
subviews, and its edges are pinned to the scroll view (or its content
layout guide) to set the scroll view’s content size.

Content constraints only

The content view is sized by its frame, and the scroll view’s contentSi
ze is set explicitly; but the content view’s subviews are positioned using
constraints.

I’ll illustrate by rewriting the previous example to use a content view in
each of those ways. All four possible combinations start the same way:

let sv = UIScrollView()

sv.backgroundColor = .white

sv.translatesAutoresizingMaskIntoConstraints = false

self.view.addSubview(sv)

NSLayoutConstraint.activate([

 sv.topAnchor.constraint(equalTo:self.view.topAnchor),

 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),

 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),

])

let v = UIView() // content view

sv.addSubview(v)

The differences lie in what happens next. The first combination is that no
constraints are used, and the scroll view’s content size is set explicitly. It’s
very like the first example in the chapter, except that the labels are added to
the content view, not to the scroll view. The content view’s height is a little
taller than the bottom of the lowest label; its width is a little wider than the
widest label. Thus, it neatly contains all the labels:

var y : CGFloat = 10

var maxw : CGFloat = 0

for i in 0 ..< 30 {

 let lab = UILabel()

 lab.text = "This is label \(i+1)"

 lab.sizeToFit()

 lab.frame.origin = CGPoint(10,y)

 v.addSubview(lab)

 y += lab.bounds.size.height + 10

 maxw = max(maxw, lab.frame.maxX + 10)

}

// set content view frame and content size explicitly

v.frame = CGRect(0,0,maxw,y)

sv.contentSize = v.frame.size

The second combination is that the content view is sized by width and
height constraints and its edges are pinned by constraints to the scroll
view’s content layout guide to give the scroll view a content size. It’s just
like the preceding code, except that we set the content view’s constraints
rather than the scroll view’s content size:

var y : CGFloat = 10

var maxw : CGFloat = 0

for i in 0 ..< 30 {

 let lab = UILabel()

 lab.text = "This is label \(i+1)"

 lab.sizeToFit()

 lab.frame.origin = CGPoint(10,y)

 v.addSubview(lab)

 y += lab.bounds.size.height + 10

 maxw = max(maxw, lab.frame.maxX + 10)

}

// set content view width, height, and edge constraints

// content size is calculated for us

v.translatesAutoresizingMaskIntoConstraints = false

let svclg = sv.contentLayoutGuide

NSLayoutConstraint.activate([

 v.widthAnchor.constraint(equalToConstant:maxw),

 v.heightAnchor.constraint(equalToConstant:y),

 svclg.topAnchor.constraint(equalTo:v.topAnchor),

 svclg.bottomAnchor.constraint(equalTo:v.bottomAnchor),

 svclg.leadingAnchor.constraint(equalTo:v.leadingAnchor),

 svclg.trailingAnchor.constraint(equalTo:v.trailingAnchor),

])

The third combination is that explicit constraints are used throughout. The
labels are positioned within the content view by constraints; the content
view’s edges are pinned by constraints to the scroll view. In a very real
sense, the scroll view gets its content size from the labels. This is similar to
the second example in the chapter, except that the labels are added to the
content view:

var previousLab : UILabel? = nil

for i in 0 ..< 30 {

 let lab = UILabel()

 // lab.backgroundColor = .red

 lab.translatesAutoresizingMaskIntoConstraints = false

 lab.text = "This is label \(i+1)"

 v.addSubview(lab)

 lab.leadingAnchor.constraint(

 equalTo: v.leadingAnchor,

 constant: 10).isActive = true

 lab.topAnchor.constraint(

 // first one, pin to top; all others, pin to previous

 equalTo: previousLab?.bottomAnchor ?? v.topAnchor,

 constant: 10).isActive = true

 previousLab = lab

}

// last one, pin to bottom, this dictates content size height

v.bottomAnchor.constraint(

 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true

// need to do something about width

v.trailingAnchor.constraint(

 equalTo: previousLab!.trailingAnchor, constant: 10).isActive = true

// pin content view to scroll view, sized by its subview constraints

// content size is calculated for us

v.translatesAutoresizingMaskIntoConstraints = false

let svclg = sv.contentLayoutGuide

NSLayoutConstraint.activate([

 svclg.topAnchor.constraint(equalTo:v.topAnchor),

 svclg.bottomAnchor.constraint(equalTo:v.bottomAnchor),

 svclg.leadingAnchor.constraint(equalTo:v.leadingAnchor),

 svclg.trailingAnchor.constraint(equalTo:v.trailingAnchor),

])

The fourth combination is that the content view’s subviews are positioned
using constraints, but we set the content view’s frame and the scroll view’s
content size explicitly. But how can we find out the final content view size
based on its subviews’ constraints? Fortunately, systemLayoutSizeFittin
g(_:) tells us:

var previousLab : UILabel? = nil

for i in 0 ..< 30 {

 let lab = UILabel()

 // lab.backgroundColor = .red

 lab.translatesAutoresizingMaskIntoConstraints = false

 lab.text = "This is label \(i+1)"

 v.addSubview(lab)

 lab.leadingAnchor.constraint(

 equalTo: v.leadingAnchor,

 constant: 10).isActive = true

 lab.topAnchor.constraint(

 // first one, pin to top; all others, pin to previous

 equalTo: previousLab?.bottomAnchor ?? v.topAnchor,

 constant: 10).isActive = true

 previousLab = lab

}

// last one, pin to bottom, this dictates content size height!

v.bottomAnchor.constraint(

 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true

// need to do something about width

v.trailingAnchor.constraint(

 equalTo: previousLab!.trailingAnchor, constant: 10).isActive = true

// autolayout helps us learn the consequences of those constraints

let minsz = v.systemLayoutSizeFitting(UILayoutFittingCompressedSize)

// set content view frame and content size explicitly

v.frame = CGRect(origin:.zero, size:minsz)

sv.contentSize = minsz

Scroll View in a Nib
A UIScrollView object is available in the nib editor’s Object library, so you
can drag it into a view in the canvas and give it subviews. Alternatively,
you can wrap existing views in the canvas in a UIScrollView as an
afterthought: to do so, select the views and choose Editor → Embed In →
Scroll View.
The scroll view can’t be scrolled in the nib editor, so to design its subviews,
you make the scroll view large enough to accommodate them; if this makes
the scroll view too large, you can resize the actual scroll view instance later,
in code or by means of autolayout, after the nib loads. You may have to
make the view controller’s main view too large as well, in order to see and
work with the full scroll view and its contents (Figure 7-1). To do so, set the
view controller’s Simulated Size pop-up menu in its Size inspector to
Freeform; now you can change the main view’s size.

Figure 7-1. A scroll view in the nib editor

No Internal Autolayout
If you’re not using autolayout inside the scroll view, judicious use of
autoresizing settings in the nib editor can be a big help. In Figure 7-1, the

scroll view is pinned to its superview, the view controller’s main view.
Thus, when the app runs and the main view is resized (as I discussed in
Chapter 6), the scroll view will be resized too, to fit the main view. The
content view, on the other hand, doesn’t use autolayout. It must not be
resized vertically, so its height is not flexible (it’s a strut, not a spring).
Horizontally, it has structs externally and a spring internally, to keep it
centered within the scroll view.
But although everything is correctly sized at runtime, the scroll view
doesn’t scroll. That’s because we have failed to set the scroll view’s conten
tSize. Unfortunately, the nib editor provides no way to do that! Thus, we’ll
have to do it in code.
But what should the content size be? It should be the size of the content
view! The content view is the correct size in the nib, and it won’t be resized
through autoresizing, so at runtime, when the nib loads, its size will be the
desired contentSize. I have an outlet to the scroll view (self.sv) and an
outlet to the content view (self.cv), and I set the scroll view’s contentSiz
e to the content view’s size in viewDidLayoutSubviews:

var didSetup = false

override func viewDidLayoutSubviews() {

 if !self.didSetup {

 self.didSetup = true

 self.sv.contentSize = self.cv.bounds.size

 }

}

Internal Autolayout
If you’re using autolayout inside the scroll view, there is no need for any
code to set the scroll view’s contentSize (and such code wouldn’t work in
any case). The content view’s edges are pinned to those of its superview, the
scroll view. If the constant of each edge constraint between the content
view and the scroll view is 0, then that tells the scroll view: “Your content
Size is the size of the content view.”

The question is how you’d like to dictate the content view’s size. You have
two choices, corresponding to the second and third combinations in the
preceding section: you can set the content view’s width and height
constraints explicitly, or you can let the content view’s width and height be
completely determined by the constraints of its subviews. Do whichever
feels suitable. The nib editor understands this aspect of scroll view
configuration, and will alert you with a warning (about the “scrollable
content size”) until you’ve provided enough constraints to determine
unambiguously the scroll view’s contentSize.

Content Inset
The content inset of a scroll view is a margin space around its content. In
effect, it changes where the content stops when it is scrolled all the way to
its extreme limit.
To see why this is important, consider the app with 30 labels that we created
at the start of this chapter. The scroll view occupies the entirety of the view
controller’s main view. But the view controller’s main view underlaps the
status bar. And that means that the top of the scroll view underlaps the
status bar. And that means that at launch time, and whenever the scroll
view’s content is scrolled all the way down, the first label, which is now as
far down as it can go, is still partly hidden by the text of the status bar.
One solution, obviously, would be to pin the top of the scroll view to the
bottom of the status bar, instead of to the top of the main view. But that isn’t
necessarily what we want. When we scroll the scroll view’s content upward,
we may want the content to be visible passing behind the status bar. So
what we want to adjust is not where the top of the scroll view is, but where
the top of its content is considered to be. When the content is being moved
upward, it’s fine for it to pass behind the status bar; therefore, the top of the
scroll view has to be at the top of the status bar. But when the content is
moved downward as far as it can go, it shouldn’t stop at the top of the scroll
view; the stopping point should be further down, at the bottom of the status
bar.

In iOS 10 and earlier, the stopping point was set by setting the scroll view’s
contentInset property. This is a UIEdgeInsets struct consisting of four
CGFloats — top, left, bottom, and right — specifying an extra distance
inward from the edge of the scroll view, where the content is to reach its
extreme limit. So we would have code like this (or we could make the same
specification in the nib editor):

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)

To set the contentInset alone is rare; typically, the scroll view’s scrollIn
dicatorInsets property would be changed to match it. This, too, is a
UIEdgeInsets struct; it specifies a shift in the position of the scroll
indicators. Consider again the scroll view whose contentInset we have
just set. When the content is scrolled all the way down, there is now a nice
gap between the bottom of the status bar and the top of the first label; but
the top of the scroll indicator is still up behind the status bar. This would be
prevented by setting the scrollIndicatorInsets to the same value as the
contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)

sv.scrollIndicatorInsets = sv.contentInset

However, there’s an obvious problem with this entire approach: the status
bar can come and go. If we’re going to set the contentInset and the scrol
lIndicatorInsets to have a top of 20 when there’s a status bar, as on an
iPhone in portrait orientation, then, if the app is permitted to perform
compensatory rotation, we’re going to have to set them both to have a top
of 0 when there’s no status bar, as on an iPhone in landscape orientation.
Moreover, the status bar isn’t the only kind of top bar; there’s also the
navigation bar, which can change its height. And there are bottom bars,
which can change their heights. As I mentioned in Chapter 6, top bars and
bottom bars are likely to be translucent, and the runtime would like to make
your view underlap them. With a scroll view, this looks cool, because the
scroll view’s contents are visible in a blurry way through the translucent

bar; but clearly the content inset and the scroll indicator insets need to be
adjusted so that the scrolling limits stay between the top bar and the bottom
bar, even as these can come and go and change their heights.
The obvious solution in iOS 10 and before was to implement some
appropriate event, such as viewWillLayoutSubviews, to adjust the scroll
view’s content inset; but this was a lot of work, and it wasn’t always easy to
get right. To help out, a UIViewController had a property of its own, autom
aticallyAdjustsScrollViewInsets; if true, the view controller would
adjust a scroll view’s content insets automatically as the top and bottom
bars changed. The problem with that was that it worked inconsistently: it
was difficult to know whether it would apply to any particular scroll view
and, if so, whether it would do the right thing.

In iOS 11, there’s a completely new solution to the whole problem. automa
ticallyAdjustsScrollViewInsets is deprecated; contentInset and scr
ollIndicatorInsets still exist, but you probably won’t need to set them.
Instead, the power of responding to the position of the top and bottom bars
is vested in each individual scroll view. The scroll view knows where the
top and bottom bars are because of the safe area, which propagates down
the entire view hierarchy. The only thing you’ll have to do is tell the scroll
view whether you want it to adjust its content inset to respond to the safe
area. To do that, you set its contentInsetAdjustmentBehavior property
to one of the following (UIScrollViewContentInsetAdjustmentBehavior):

.always

The content is inset to match the safe area.

.never

The content is not inset to match the safe area.

.scrollableAxes

The content is inset to match the safe area only for a dimension in
which the scroll view is scrollable.

.automatic

Similar to scrollableAxes, but can also respond to the view
controller’s automaticallyAdjustsScrollViewInsets, for backward
compatibility. This is the default.

In iOS 11, the contentInset and scrollIndicatorInsets are unaffected
by this automatic adjustment. Instead, what changes is a new property, the
scroll view’s adjustedContentInset. Thus, for example, suppose we’re in
a navigation interface without a large title in the navigation bar, and
suppose that the scroll view coincides with the view controller’s main view
and underlaps the top bars. The status bar and the navigation bar add 64
points to the top of the safe area, so if the scroll view’s content inset
adjustment behavior is .always, its contentInset and scrollIndicatorI
nsets are both .zero, but its adjustedContentInset is {64,0,0,0}.

If you do set the contentInset for some reason, that value is applied
additively to increase the adjustedContentInset. For example, in the
navigation interface scenario from the preceding paragraph, if we also set
the scroll view’s contentInset to UIEdgeInsetsMake(30,0,0,0), then
the adjustedContentInset will have a top value of 94 (and there will be
an additional 30-point gap between the top of the content and the bottom of
the navigation bar when the content is scrolled all the way down).

WARNING
When your scroll view first appears, it might not be scrolled all the way down in accordance with
the adjustedContentInset. For example, in our navigation interface scenario, the scroll view
might appear initially with the top of its content behind the navigation bar. I regard this as a bug.
A possible workaround is to set the scroll view’s alwaysBounceVertical property to true; this
probably gives the runtime an earlier hint that we consider ourselves vertically scrollable.

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll.
Here are some scroll view properties that affect the user experience with
regard to scrolling:

isScrollEnabled

If false, the user can’t scroll, but you can still scroll in code (as
explained later in this section). You could put a UIScrollView to various
creative purposes other than letting the user scroll; for example,
scrolling in code to a different region of the content might be a way of
replacing one piece of interface by another, possibly with animation.

scrollsToTop

If true (the default), and assuming scrolling is enabled, the user can tap
on the status bar as a way of making the scroll view scroll its content to
the top (that is, the content moves all the way down). You can override
this setting dynamically through the scroll view’s delegate, discussed
later in this chapter.

bounces

If true (the default), then when the user scrolls to a limit of the content,
it is possible to scroll somewhat further (possibly revealing the scroll
view’s backgroundColor behind the content, if a subview was covering
it); the content then snaps back into place when the user releases it.
Otherwise, the user experiences the limit as a sudden inability to scroll
further in that direction.

alwaysBounceVertical

alwaysBounceHorizontal

If true, and assuming that bounces is true, then even if the contentSi
ze in the given dimension isn’t larger than the scroll view (so that no
scrolling is actually possible in that dimension), this axis is treated as
scrollable: the user can scroll somewhat and the content then snaps back
into place when the user releases it. Otherwise, the user experiences a
simple inability to scroll in this dimension.

isDirectionalLockEnabled

If true, and if scrolling is possible in both dimensions (even if only
because the appropriate alwaysBounce... is true), then the user,
having begun to scroll in one dimension, can’t scroll in the other
dimension without ending the gesture and starting over. In other words,
the user is constrained to scroll vertically or horizontally but not both at
once.

decelerationRate

The rate at which scrolling is damped out, and the content comes to a
stop, after the user’s gesture ends. As convenient examples, standard
constants are provided:

UIScrollViewDecelerationRateNormal (0.998)

UIScrollViewDecelerationRateFast (0.99)
Lower values mean faster damping; experimentation suggests that
values lower than 0.5 are viable but barely distinguishable from one
another. You can effectively override this value dynamically through the
scroll view’s delegate, discussed later in this chapter.

showsHorizontalScrollIndicator

showsVerticalScrollIndicator

The scroll indicators are bars that appear only while the user is scrolling
in a scrollable dimension (where the content is larger than the scroll
view), and serve to indicate both the size of the content in that
dimension relative to the scroll view and the user’s position within it.
The default is true for both.
Because the user cannot see the scroll indicators except when actively
scrolling, there is normally no indication that the view is scrollable. I
regard this as somewhat unfortunate, because it makes the possibility of
scrolling less discoverable; I’d prefer an option to make the scroll
indicators constantly visible. Apple suggests that you call flashScroll
Indicators when the scroll view appears, to make the scroll indicators
visible momentarily.

indicatorStyle

The way the scroll indicators are drawn. Your choices
(UIScrollViewIndicatorStyle) are .black, .white, and .default
(black with a white border).

TIP
The scroll indicators are subviews of the scroll view (they are actually UIImageViews). Do not
assume that the subviews you add to a UIScrollView are its only subviews!

You can scroll in code, and you can do so even if the user can’t scroll. The
content moves to the position you specify, with no bouncing and no
exposure of the scroll indicators. You can specify the new position in two
ways:

contentOffset

The point (CGPoint) of the content that is located at the scroll view’s
top left (effectively the same thing as the scroll view’s bounds origin).
You can get this property to learn the current scroll position, and set it to
change the current scroll position. The values normally go up from (0.
0,0.0) until the limit dictated by the contentSize and the scroll
view’s own bounds size is reached. Call setContentOffset(_:animat
ed:) to set the contentOffset with animation.

scrollRectToVisible(_:animated:)

Adjusts the content so that the specified CGRect of the content is within
the scroll view’s bounds. This is less precise than setting the contentOf
fset, because you’re not saying exactly what the resulting scroll
position will be, but sometimes guaranteeing the visibility of a certain
portion of the content is exactly what you’re after.

The adjustedContentInset (discussed in the previous section) can affect
the meaning of the contentOffset. For example, recall the scenario where

the scroll view underlaps the status bar and a navigation bar and acquires an
adjustedContentInset with a top of 64. Then when the scroll view is
scrolled all the way to the top — that is, the content is scrolled all the way
down — the contentOffset is not (0.0,0.0) but (0.0,-64.0). The (0.
0,0.0) point is the top of the content rect, which is located at the bottom of
the navigation bar; the point at the top left of the scroll view itself is 64
points above that.

If a scroll view participates in state restoration (Chapter 6), its contentOff
set is saved and restored, so when the app is relaunched, the scroll view
will reappear scrolled to the same position as before.

Paging
If its isPagingEnabled property is true, the scroll view doesn’t let the
user scroll freely; instead, the content is considered to consist of equal-sized
sections. The user can scroll only in such a way as to move to a different
section. The size of a section is set automatically to the size of the scroll
view’s bounds. The sections are the scroll view’s pages.
When the user stops dragging, a paging scroll view gently snaps
automatically to the nearest whole page. For example, let’s say that the
scroll view scrolls only horizontally, and that its subviews are image views
showing photos, sized to match the scroll view’s bounds. If the user drags
horizontally to the left to a point where less than half of the next photo to
the right is visible, and raises the dragging finger, the paging scroll view
snaps its content back to the right until the entire first photo is visible again.
If the user drags horizontally to the left to a point where more than half of
the next photo to the right is visible, and raises the dragging finger, the
paging scroll view snaps its content further to the left until the entire second
photo is visible.
The usual arrangement is that a paging scroll view is as large, or nearly as
large, in its scrollable dimension, as the screen. Under this arrangement, it is
impossible for the user to move the content more than a single page in any
direction with a single gesture; the size of the page is the size of the scroll

view’s bounds, so the user will run out of surface area to drag on before
being able to move the content the distance of a page and a half, which is
what would be needed to make the scroll view snap to a page not adjacent
to the page we started on.
Sometimes, indeed, the paging scroll view will be slightly larger than the
window in its scrollable dimension. This allows each page’s content to fill
the scroll view while also providing gaps between the pages, visible when
the user starts to scroll. The user is still able to move from page to page,
because it is still possible to drag more than half a new page into view (and
the scroll view will then snap the rest of the way when the user raises the
dragging finger).
When the user raises the dragging finger, the scroll view’s action in
adjusting its content is considered to be decelerating, and the scroll view’s
delegate (discussed in more detail later in this chapter) will receive scrollV
iewWillBeginDecelerating(_:), followed by scrollViewDidEndDecel
erating(_:) when the scroll view’s content has stopped moving and a full
page is showing. Thus, these messages can be used to detect efficiently that
the page may have changed.
You can take advantage of this, for example, to coordinate a paging scroll
view with a UIPageControl (Chapter 12). In this example, a page control (s
elf.pager) is updated whenever the user causes a horizontally scrollable
scroll view (self.sv) to display a different page:

func scrollViewDidEndDecelerating(_ scrollView: UIScrollView) {

 let x = self.sv.contentOffset.x

 let w = self.sv.bounds.size.width

 self.pager.currentPage = Int(x/w)

}

Conversely, we can scroll the scroll view to a new page manually when the
user taps the page control; we have to calculate the page boundaries
ourselves:

@IBAction func userDidPage(_ sender: Any?) {

 let p = self.pager.currentPage

 let w = self.sv.bounds.size.width

 self.sv.setContentOffset(CGPoint(CGFloat(p)*w,0), animated:true)

}

A useful interface is a paging scroll view where you supply pages
dynamically as the user scrolls. In this way, you can display a huge number
of pages without having to put them all into the scroll view at once. In fact,
a scrolling UIPageViewController (Chapter 6) implements exactly that
interface! Its UIPageViewControllerOptionInterPageSpacingKey even
provides the gap between pages that I mentioned earlier.
A compromise between a UIPageViewController and a completely
preconfigured paging scroll view is a scroll view whose contentSize can
accommodate all pages, but whose actual page content is supplied lazily.
The only pages that have to be present at all times are the page visible to the
user and the two pages adjacent to it on either side, so that there is no delay
in displaying a new page’s content when the user starts to scroll. (This
approach is exemplified by Apple’s PageControl sample code;
unfortunately, that example does not also remove page content that is no
longer needed, so there is ultimately no conservation of memory.)
There are times when a scroll view, even one requiring a good deal of
dynamic configuration, is better than a scrolling UIPageViewController,
because the scroll view provides full information to its delegate about the
user’s scrolling activity (as described later in this chapter). For example, if
you wanted to respond to the user’s scrolling one area of the interface by
programmatically scrolling another area of the interface in a coordinated
fashion, you might want what the user is scrolling to be a scroll view,
because it tells you what the user is up to at every moment.

Tiling
Suppose we have some finite but really big content that we want to display
in a scroll view, such as a very large image that the user can inspect,
piecemeal, by scrolling. To hold the entire image in memory may be
onerous or impossible.

Tiling is one solution to this kind of problem. It takes advantage of the
insight that there’s really no need to hold the entire image in memory; all
we need at any given moment is the part of the image visible to the user
right now. Mentally, divide the content rectangle into a matrix of rectangles;
these rectangles are the tiles. In reality, divide the huge image into
corresponding rectangles. Then whenever the user scrolls, we look to see
whether part of any empty tile has become visible, and if so, we supply its
content. At the same time, we can release the content of all tiles that are
completely offscreen. Thus, at any given moment, only the tiles that are
showing have content. There is some latency associated with this approach
(the user scrolls, then any newly visible empty tiles are filled in), but we
will have to live with that.
There is actually a built-in CALayer subclass for helping us implement
tiling — CATiledLayer. Its tileSize property sets the dimensions of a tile.
The usual approach to using CATiledLayer is to implement draw(_:) in a
UIView whose underlying layer is the CATiledLayer; under that
arrangement, the host view’s draw(_:) is called every time a new tile is
needed, and its parameter is the rect of the tile we are to draw.

The tileSize may need to be adjusted for the screen resolution. On a
double-resolution device, for example, the CATiledLayer’s contentsScale
will be doubled, and the tiles will be half the size that we ask for. If that
isn’t acceptable, we can double the tileSize dimensions.
To illustrate, I’ll use as my tiles a few of the “CuriousFrog” images already
created for us as part of Apple’s own PhotoScroller sample code. The
images all have names of the form CuriousFrog_500_x_y.png, where x and
y are integers corresponding to the picture’s position within the matrix. The
images are 256×256 pixels (except for the ones on the extreme right and
bottom edges of the matrix, which are shorter in one dimension, but I won’t
be using those in this example); I’ve selected a 3×3 matrix of images.

We will give our scroll view (self.sv) one subview, a TiledView, a
UIView subclass that exists purely to give our CATiledLayer a place to live.
TILESIZE is defined as 256, to match the image dimensions:

override func viewDidLoad() {

 let f = CGRect(0,0,3*TILESIZE,3*TILESIZE)

 let content = TiledView(frame:f)

 let tsz = TILESIZE * content.layer.contentsScale

 (content.layer as! CATiledLayer).tileSize = CGSize(tsz, tsz)

 self.sv.addSubview(content)

 self.sv.contentSize = f.size

 self.content = content

}

Here’s the code for TiledView. As Apple’s sample code points out, we must
fetch images with init(contentsOfFile:) in order to avoid the automatic
caching behavior of init(named:) — after all, we’re going to all this
trouble exactly to avoid using more memory than we have to:

override class var layerClass : AnyClass {

 return CATiledLayer.self

}

override func draw(_ r: CGRect) {

 let tile = r

 let x = Int(tile.origin.x/TILESIZE)

 let y = Int(tile.origin.y/TILESIZE)

 let tileName = String(format:"CuriousFrog_500_\(x+3)_\(y)")

 let path = Bundle.main.path(forResource: tileName, ofType:"png")!

 let image = UIImage(contentsOfFile:path)!

 image.draw(at:CGPoint(CGFloat(x)*TILESIZE,CGFloat(y)*TILESIZE))

}

In this configuration, our TiledView’s drawRect is called on a background
thread. This is unusual, but it shouldn’t cause any trouble as long as you
confine yourself to standard thread-safe activities. Fortunately, fetching the
image and drawing it are thread-safe.

WARNING
You may encounter a nasty issue where a CATiledLayer’s host view’s draw(_:) is called
simultaneously on multiple background threads. It isn’t clear to me whether this problem is
confined to the Simulator or whether it can also occur on a device. The workaround is to wrap the
whole interior of draw(_:) in a call to a serial DispatchQueue’s sync (see Chapter 24).

There is no special call for invalidating an offscreen tile. You can call setN
eedsDisplay on the TiledView, but this doesn’t erase offscreen tiles.
You’re just supposed to trust that the CATiledLayer will eventually clear
offscreen tiles if needed to conserve memory.

CATiledLayer has a class method fadeDuration that dictates the duration
of the animation that fades a new tile into view. You can create a
CATiledLayer subclass and override this method to return a value different
from the default (0.25), but this is probably not worth doing, as the default
value is a good one. Returning a smaller value won’t make tiles appear
faster; it just replaces the nice fade-in with an annoying flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s m
inimumZoomScale and maximumZoomScale so that at least one of them isn’t
1 (the default). You also implement viewForZooming(in:) in the scroll
view’s delegate to tell the scroll view which of its subviews is to be the
scalable view. The scroll view then zooms by applying a scale transform
(Chapter 1) to this subview. The amount of that transform is the scroll
view’s zoomScale property.
Typically, you’ll want the scroll view’s entire content to be scalable, so
you’ll have one direct subview of the scroll view that acts as the scalable
view, and anything else inside the scroll view will be a subview of the
scalable view, so as to be scaled together with it. This is another reason for
arranging your scroll view’s subviews inside a single content view, as I
suggested earlier.
To illustrate, we can start with any of the four content view–based versions
of our scroll view containing 30 labels from earlier in this chapter (“Using a
Content View”). I called the content view v. Now we add these lines:

v.tag = 999

sv.minimumZoomScale = 1.0

sv.maximumZoomScale = 2.0

sv.delegate = self

We have assigned a tag to the view that is to be scaled, so that we can refer
to it later. We have set the scale limits for the scroll view. And we have
made ourselves the scroll view’s delegate. Now all we have to do is
implement viewForZooming(in:) to return the scalable view:

func viewForZooming(in scrollView: UIScrollView) -> UIView? {

 return scrollView.viewWithTag(999)

}

This works: the scroll view now responds to pinch gestures by scaling
appropriately! Recall that in our 30 labels example, the scroll view is not
scrollable horizontally. Nevertheless, in this scenario, the width of the
content view matters, because when it is scaled up, including while
zooming, the user will be able to scroll to see any part of it. Thus the
content view should embrace its content quite tightly.
The user can actually scale considerably beyond the limits we set in both
directions; in that case, when the gesture ends, the scale snaps back to the
limit value. If we wish to confine scaling strictly to our defined limits, we
can set the scroll view’s bouncesZoom to false; when the user reaches a
limit, scaling will simply stop.

The actual amount of zoom is reflected as the scroll view’s current zoomSca
le. If a scroll view participates in state restoration, its zoomScale is saved
and restored, so when the app is relaunched, the scroll view will reappear
zoomed by the same amount as before.

If the minimumZoomScale is less than 1, then when the scalable view
becomes smaller than the scroll view, it is pinned to the scroll view’s top
left. If you don’t like this, you can change it by subclassing UIScrollView
and overriding layoutSubviews, or by implementing the scroll view
delegate method scrollViewDidZoom(_:). Here’s a simple example
(drawn from a WWDC 2010 video) demonstrating an override of layoutSu

bviews that keeps the scalable view centered in either dimension whenever
it is smaller than the scroll view in that dimension:

override func layoutSubviews() {

 super.layoutSubviews()

 if let v = self.delegate?.viewForZooming?(in:self) {

 let svw = self.bounds.width

 let svh = self.bounds.height

 let vw = v.frame.width

 let vh = v.frame.height

 var f = v.frame

 if vw < svw {

 f.origin.x = (svw - vw) / 2.0

 } else {

 f.origin.x = 0

 }

 if vh < svh {

 f.origin.y = (svh - vh) / 2.0

 } else {

 f.origin.y = 0

 }

 v.frame = f

 }

}

WARNING
One of the WWDC 2017 videos claims that the problem of zooming while keeping the scalable
view centered can be solved by pinning it to the center of the contentLayoutGuide, but my
experimentation does not confirm that claim.

Earlier, I said that the scroll view zooms by applying a scale transform to
the scalable view. This has two important secondary consequences that can
surprise you if you’re unprepared:

The frame of the scalable view is scaled to match the current zoomScale.
This follows as a natural consequence of applying a scale transform to
the scalable view.
The scroll view is concerned to make scrolling continue to work
correctly: the limits as the user scrolls should continue to match the

limits of the content, and commands like scrollRectToVisible(_:ani
mated:) should continue to work the same way for the same values.
Therefore, the scroll view automatically scales its own contentSize to
match the current zoomScale.

Zooming Programmatically
To zoom programmatically, you have two choices:

setZoomScale(_:animated:)

Zooms in terms of scale value. The contentOffset is automatically
adjusted to keep the current center centered and the content occupying
the entire scroll view.

zoomTo(_:animated:)

Zooms so that the given rectangle of the content occupies as much as
possible of the scroll view’s bounds. The contentOffset is
automatically adjusted to keep the content occupying the entire scroll
view.

In this example, I implement double tapping as a zoom gesture. In my
action method for the double tap UITapGestureRecognizer attached to the
scalable view, a double tap means to zoom to maximum scale, minimum
scale, or actual size, depending on the current scale value:

@IBAction func tapped(_ tap : UIGestureRecognizer) {

 let v = tap.view!

 let sv = v.superview as! UIScrollView

 if sv.zoomScale < 1 {

 sv.setZoomScale(1, animated:true)

 let pt = CGPoint((v.bounds.width - sv.bounds.width)/2.0,0)

 sv.setContentOffset(pt, animated:false)

 }

 else if sv.zoomScale < sv.maximumZoomScale {

 sv.setZoomScale(sv.maximumZoomScale, animated:true)

 }

 else {

 sv.setZoomScale(sv.minimumZoomScale, animated:true)

 }

}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to
the scaled view. The scaled view’s drawing is cached beforehand into its
layer, so when we zoom in, the bits of the resulting bitmap are drawn larger.
This means that a zoomed-in scroll view’s content may be fuzzy
(pixellated). In some cases this might be acceptable, but in others you might
like the content to be redrawn more sharply at its new size.
(On a high-resolution device, this might not be such an issue. For example,
if the user is allowed to zoom only up to double scale, you can draw at
double scale right from the start; the results will look good at single scale,
because the screen has high resolution, as well as at double scale, because
that’s the scale you drew at.)
One solution is to take advantage of a CATiledLayer feature that I didn’t
mention earlier. It turns out that CATiledLayer is aware not only of
scrolling but also of scaling: you can configure it to ask for tiles to be drawn
when the layer is scaled to a new order of magnitude. When your drawing
routine is called, the graphics context itself has already been scaled
appropriately by a transform.
In the case of an image into which the user is to be permitted to zoom
deeply, you would be forearmed with multiple tile sets constituting the
image, each set having double the tile size of the previous set (as in Apple’s
PhotoScroller example). In other cases, you may not need tiles at all; you’ll
just draw again, at the new resolution.

Besides its tileSize, you’ll need to set two additional CATiledLayer
properties:

levelsOfDetail

The number of different resolutions at which you want to redraw, where
each level has twice the resolution of the previous level. So, for

example, with two levels of detail we can ask to redraw when zooming
to double size (2x) and when zooming back to single size (1x).

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x). For
example, if levelsOfDetail is 2, then if we want to redraw when
zooming to 2x and when zooming back to 1x, the levelsOfDetailBias
needs to be 1, because one of those levels is larger than 1x. (If we were
to leave levelsOfDetailBias at 0, the default, we would be saying we
want to redraw when zooming to 0.5x and back to 1x — we have two
levels of detail but neither is larger than 1x, so one must be smaller than
1x.)

The CATiledLayer will ask for a redraw at a higher resolution as soon as the
view’s size becomes larger than the previous resolution. In other words, if
there are two levels of detail with a bias of 1, the layer will be redrawn at 2x
as soon as it is zoomed even a little bit larger than 1x. This is an excellent
approach, because although a level of detail would look blurry if scaled up,
it looks pretty good scaled down.
For example, let’s say I have a TiledView that hosts a CATiledLayer, in
which I intend to draw an image. I haven’t broken the image into tiles,
because the maximum size at which the user can view it isn’t prohibitively
large; the original image happens to be 838×958, and can be held in
memory easily. Rather, I’m using a CATiledLayer in order to take
advantage of its ability to change resolutions automatically. The image will
be displayed initially at less than quarter-size (namely 208×238), and if the
user never zooms in to view it larger, we will be saving memory by drawing
only a quarter-size version of the image.
The CATiledLayer is configured like this:

let scale = lay.contentsScale

lay.tileSize = CGSize(208*scale,238*scale)

lay.levelsOfDetail = 3

lay.levelsOfDetailBias = 2

The tileSize has been adjusted for screen resolution, so the result is as
follows:

As originally displayed at 208×238, there is one tile and we can draw
our image at quarter size.
If the user zooms in, to show the image larger than its originally
displayed size, there will be 4 tiles and we can draw our image at half
size.
If the user zooms in still further, to show the image larger than double its
originally displayed size (416×476), there will be 16 tiles and we can
draw our image at full size, which will continue to look good as the user
zooms all the way in to the full size of the original image.

We don’t need to draw each tile individually. Each time we’re called upon
to draw a tile, we’ll draw the entire image into the TiledView’s bounds;
whatever falls outside the requested tile will be clipped out and won’t be
drawn.

Here’s my TiledView’s draw(_:) implementation. I have an Optional
UIImage property currentImage, initialized to nil, and a CGSize property
currentSize initialized to .zero. Each time draw(_:) is called, I compare
the tile size (the incoming rect parameter’s size) to currentSize. If it’s
different, I know that we’ve changed by one level of detail and we need a
new version of currentImage, so I create the new version of currentImag
e at a scale appropriate to this level of detail. Finally, I draw currentImage
into the TiledView’s bounds:

override func drawRect(rect: CGRect) {

 let (lay, bounds) = DispatchQueue.main.sync {

 return (self.layer as! CATiledLayer, self.bounds)

 }

 let oldSize = self.currentSize

 if !oldSize.equalTo(rect.size) {

 // make a new size

 self.currentSize = rect.size

 // make a new image

 let tr = UIGraphicsGetCurrentContext()!.ctm

 let sc = tr.a/lay.contentsScale

 let scale = sc/4.0

 let path = Bundle.main.path(

 forResource: "earthFromSaturn", ofType:"png")!

 let im = UIImage(contentsOfFile:path)!

 let sz = CGSize(im.size.width * scale, im.size.height * scale)

 let f = UIGraphicsImageRendererFormat.default()

 f.opaque = true; f.scale = 1 // *

 let r = UIGraphicsImageRenderer(size: sz, format: f)

 self.currentImage = r.image { _ in

 im.draw(in:CGRect(origin:.zero, size:sz))

 }

 }

 self.currentImage?.draw(in:bounds)

}

(The DispatchQueue.main.sync call at the start initializes my local
variables lay and bounds on the main thread, even though drawRect is
called on a background thread; see Chapter 24.)
An alternative and much simpler approach (from a WWDC 2011 video) is
to make yourself the scroll view’s delegate so that you get an event when
the zoom ends, and then change the scalable view’s contentScaleFactor
to match the current zoom scale, compensating for the high-resolution
screen at the same time:

func scrollViewDidEndZooming(_ scrollView: UIScrollView,

 with view: UIView?, atScale scale: CGFloat) {

 scrollView.bounces = self.oldBounces

 view.contentScaleFactor = scale * UIScreen.main.scale // *

 }

}

In response, the scalable view’s draw(_:) will be called, and its rect
parameter will be the CGRect to draw into. Thus, the view may appear
fuzzy for a while as the user zooms in, but when the user stops zooming, the
view is redrawn sharply. That approach comes with a caveat, however: you
mustn’t overdo it. If the zoom scale, screen resolution, and scalable view
size are high, you will be asking for a very large graphics context, which
could cause your app to use too much memory.

For more about displaying a large image in a zoomable scroll view, see
Apple’s Large Image Downsizing example.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol)
receives lots of messages that can help you track, in great detail, just what
the scroll view is up to:

scrollViewDidScroll(_:)

If you scroll in code without animation, you will receive this message
once afterward. If the user scrolls, either by dragging or with the scroll-
to-top feature, or if you scroll in code with animation, you will receive
this message repeatedly throughout the scroll, including during the time
the scroll view is decelerating after the user’s finger has lifted; there are
other delegate messages that tell you, in those cases, when the scroll has
finally ended.

scrollViewDidEndScrollingAnimation(_:)

If you scroll in code with animation, you will receive this message
afterward, when the animation ends.

scrollViewWillBeginDragging(_:)

scrollViewWillEndDragging(_:withVelocity:targetContentOffse

t:)

scrollViewDidEndDragging(_:willDecelerate:)

If the user scrolls by dragging, you will receive these messages at the
start and end of the user’s finger movement. If the user brings the scroll
view to a stop before lifting the finger, willDecelerate is false and
the scroll is over. If the user lets go of the scroll view while the finger is
moving, or when paging is turned on, willDecelerate is true and we
proceed to the delegate messages reporting deceleration.

The purpose of scrollViewWillEndDragging is to let you customize
the outcome of the content’s deceleration. The third argument is a
pointer to a CGPoint; you can use it to set a different CGPoint,
specifying the contentOffset value the scroll view should have when
the deceleration is over. By taking the velocity: into account, you can
allow the user to “fling” the scroll view with momentum before it
comes to a halt.

scrollViewWillBeginDecelerating(_:)

scrollViewDidEndDecelerating(_:)

Sent once each after scrollViewDidEndDragging(_:willDecelerat
e:) arrives with a value of true. When scrollViewDidEndDecelerat
ing(_:) arrives, the scroll is over.

scrollViewShouldScrollToTop(_:)

scrollViewDidScrollToTop(_:)

These have to do with the feature where the user can tap the status bar
to scroll the scroll view’s content to its top. You won’t get either of them
if scrollsToTop is false, because the scroll-to-top feature is turned off
in that case. The first lets you prevent the user from scrolling to the top
on this occasion even if scrollsToTop is true. The second tells you
that the user has employed this feature and the scroll is over.

So, if you wanted to do something after a scroll ends completely regardless
of how the scroll was performed, you’d need to implement multiple
delegate methods:

scrollViewDidEndDragging(_:willDecelerate:) in case the user
drags and stops (willDecelerate is false).

scrollViewDidEndDecelerating(_:) in case the user drags and the
scroll continues afterward.

scrollViewDidScrollToTop(_:) in case the user uses the scroll-to-top
feature.

scrollViewDidEndScrollingAnimation(_:) in case you scroll with
animation.

(You don’t need a delegate method to tell you when the scroll is over after
you scroll in code without animation: it’s over immediately, so if you have
work to do after the scroll ends, you can do it in the next line of code.)
In addition, the scroll view has read-only properties reporting its state:

isTracking

The user has touched the scroll view, but the scroll view hasn’t decided
whether this is a scroll or some kind of tap.

isDragging

The user is dragging to scroll.

isDecelerating

The user has scrolled and has lifted the finger, and the scroll is
continuing.

There are also three delegate messages that report zooming:

scrollViewWillBeginZooming(_:with:)

If the user zooms or you zoom in code, you will receive this message as
the zoom begins.

scrollViewDidZoom(_:)

If you zoom in code, even with animation, you will receive this message
once. If the user zooms, you will receive this message repeatedly as the
zoom proceeds. (You will probably also receive scrollViewDidScroll
(_:), possibly many times, as the zoom proceeds.)

scrollViewDidEndZooming(_:with:atScale:)

If the user zooms or you zoom in code, you will receive this message
after the last scrollViewDidZoom(_:).

In addition, the scroll view has read-only properties reporting its state
during a zoom:

isZooming

The scroll view is zooming. It is possible for isDragging to be true at
the same time.

isZoomBouncing

The scroll view is returning automatically from having been zoomed
outside its minimum or maximum limit. As far as I can tell, you’ll get
only one scrollViewDidZoom(_:) while the scroll view is in this state.

New in iOS 11, the delegate also receives scrollViewDidChangeAdjusted
ContentInset(_:) when the adjusted content inset changes. This is
matched by a method adjustedContentInsetDidChange that can be
overridden in a UIScrollView subclass.

Scroll View Touches
Since the early days of iOS, improvements in UIScrollView’s internal
implementation have eliminated most of the worry once associated with
scroll view touches. A scroll view will interpret a drag or a pinch as a
command to scroll or zoom, and any other gesture will fall through to the
subviews; thus buttons and similar interface objects inside a scroll view
work just fine.
You can even put a scroll view inside a scroll view, and this can be quite a
useful thing to do, in contexts where you might not think of it at first.
Apple’s PhotoScroller example, based on principles discussed in a
delightful WWDC 2010 video, is an app where a single photo fills the
screen: you can page-scroll from one photo to the next, and you can zoom
into the current photo with a pinch gesture. This is implemented as a scroll
view inside a scroll view: the outer scroll view is for paging between
images, and the inner scroll view contains the current image and is for
zooming (and for scrolling to different parts of the zoomed-in image).
Similarly, a WWDC 2013 video deconstructs the iOS 7 lock screen in terms
of scroll views embedded in scroll views.

Gesture recognizers (Chapter 5) have also greatly simplified the task of
adding custom gestures to a scroll view. For instance, some older code in
Apple’s documentation, showing how to implement a double tap to zoom in
and a two-finger tap to zoom out, uses old-fashioned touch handling, but
this is no longer necessary. Simply attach to your scroll view’s scalable
subview any gesture recognizers for these sorts of gesture, and they will
mediate automatically among the possibilities.
In the past, making something inside a scroll view draggable required
setting the scroll view’s canCancelContentTouches property to false.
(The reason for the name is that the scroll view, when it realizes that a
gesture is a drag or pinch gesture, normally sends touchesCancelled(_:w
ith:) to a subview tracking touches, so that the scroll view and not the
subview will be affected.) However, unless you’re implementing old-
fashioned direct touch handling, you probably won’t have to concern
yourself with this. Regardless of how canCancelContentTouches is set, a
draggable control, such as a UISlider, remains draggable inside a scroll
view.
Here’s an example of a draggable object inside a scroll view implemented
through a gesture recognizer. Suppose we have an image of a map, larger
than the screen, and we want the user to be able to scroll it in the normal
way to see any part of the map, but we also want the user to be able to drag
a flag into a new location on the map. We’ll put the map image in an image
view and wrap the image view in a scroll view, with the scroll view’s conte
ntSize the same as the map image view’s size. The flag is a small image
view; it’s another subview of the scroll view, and it has a
UIPanGestureRecognizer. The gesture recognizer’s action method allows
the flag to be dragged, exactly as described in Chapter 5:

@IBAction func dragging (_ p: UIPanGestureRecognizer) {

 let v = p.view!

 switch p.state {

 case .began, .changed:

 let delta = p.translation(in:v.superview!)

 v.center.x += delta.x

 v.center.y += delta.y

 p.setTranslation(.zero, in: v.superview)

 default: break

 }

}

The user can now drag the map or the flag (Figure 7-2). Dragging the map
brings the flag along with it, but dragging the flag doesn’t move the map.

Figure 7-2. A scrollable map with a draggable flag

An interesting addition to that example would be to implement
autoscrolling, meaning that the scroll view scrolls itself when the user drags
the flag close to its edge. This, too, is greatly simplified by gesture
recognizers; in fact, we can add autoscrolling code directly to the dragging
(_:) action method:

@IBAction func dragging (_ p: UIPanGestureRecognizer) {

 let v = p.view!

 switch p.state {

 case .began, .changed:

 let delta = p.translation(in:v.superview!)

 v.center.x += delta.x

 v.center.y += delta.y

 p.setTranslation(.zero, in: v.superview)

 // autoscroll

 let sv = self.sv!

 let loc = p.location(in:sv)

 let f = sv.bounds

 var off = sv.contentOffset

 let sz = sv.contentSize

 var c = v.center

 // to the right

 if loc.x > f.maxX - 30 {

 let margin = sz.width - sv.bounds.maxX

 if margin > 6 {

 off.x += 5

 sv.contentOffset = off

 c.x += 5

 v.center = c

 self.keepDragging(p)

 }

 }

 // to the left

 if loc.x < f.origin.x + 30 {

 let margin = off.x

 if margin > 6 {

 // ...

 }

 }

 // to the bottom

 if loc.y > f.maxY - 30 {

 let margin = sz.height - sv.bounds.maxY

 if margin > 6 {

 // ...

 }

 }

 // to the top

 if loc.y < f.origin.y + 30 {

 let margin = off.y

 if margin > 6 {

 // ...

 }

 }

 default: break

 }

}

func keepDragging (_ p: UIPanGestureRecognizer) {

 let del = 0.1

 delay(del) {

 self.dragging(p)

 }

}

The delay in keepDragging (see Appendix B), combined with the change
in offset, determines the speed of autoscrolling. The material omitted in the
second, third, and fourth cases is obviously parallel to the first case, and is
left as an exercise for the reader.
A scroll view’s touch handling is itself based on gesture recognizers
attached to the scroll view, and these are available to your code through the
scroll view’s panGestureRecognizer and pinchGestureRecognizer
properties. This means that if you want to customize a scroll view’s touch
handling, it’s easy to add more gesture recognizers and have them interact
with those already attached to the scroll view.
To illustrate, I’ll build on the previous example. Suppose we want the flag
to start out offscreen, and we’d like the user to be able to summon it with a
rightward swipe. We can attach a UISwipeGestureRecognizer to our scroll
view, but it will never recognize its gesture because the scroll view’s own
pan gesture recognizer will recognize first. But we have access to the scroll
view’s pan gesture recognizer, so we can compel it to yield to our swipe
gesture recognizer by sending it require(toFail:):

self.sv.panGestureRecognizer.require(toFail:self.swipe)

The UISwipeGestureRecognizer can now recognize a rightward swipe. The
flag has been waiting invisibly offscreen; in the gesture recognizer’s action
method, we position the flag just off to the top left of the scroll view’s
visible content and animate it onto the screen:

@IBAction func swiped (_ g: UISwipeGestureRecognizer) {

 let sv = self.sv!

 let p = sv.contentOffset

 self.flag.frame.origin = p

 self.flag.frame.origin.x -= self.flag.bounds.width

 self.flag.isHidden = false

 UIView.animate(withDuration:0.25) {

 self.flag.frame.origin.x = p.x

 // thanks for the flag, now stop operating altogether

 g.isEnabled = false

 }

}

Floating Scroll View Subviews
A scroll view’s subview will appear to “float” over the scroll view if it
remains stationary while the rest of the scroll view’s content is being
scrolled.
Before autolayout, this sort of thing was rather tricky to arrange; you had to
use a delegate event to respond to every change in the scroll view’s bounds
origin by shifting the “floating” view’s position to compensate, so as to
appear to remain fixed. With autolayout, in iOS 10 and before, the solution
was to set up constraints pinning the subview to something outside the
scroll view.
New in iOS 11, there’s an even better solution. Recall that the scroll view
itself provides a frameLayoutGuide; pin a subview to it to make that
subview stand still while the scroll view scrolls. Here’s an example:

let iv = UIImageView(image:UIImage(named:"smiley"))

iv.translatesAutoresizingMaskIntoConstraints = false

self.sv.addSubview(iv)

let svflg = self.sv.frameLayoutGuide

NSLayoutConstraint.activate([

 iv.rightAnchor.constraint(equalTo:svflg.rightAnchor, constant: -5),

 iv.topAnchor.constraint(equalTo:svflg.topAnchor, constant: 25)

])

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems
and ways to increase drawing efficiency. Nowhere are you so likely to need

these as in connection with a scroll view. As a scroll view scrolls, views
must be drawn very rapidly as they appear on the screen. If the drawing
system can’t keep up with the speed of the scroll, the scrolling will visibly
stutter.
Performance testing and optimization is a big subject, so I can’t tell you
exactly what to do if you encounter stuttering while scrolling. But certain
general suggestions, mostly extracted from a really great WWDC 2010
video, should come in handy (and see also “Layer Efficiency”, some of
which I’m repeating here):

Everything that can be opaque should be opaque: don’t force the
drawing system to composite transparency, and remember to tell it that
an opaque view or layer is opaque by setting its isOpaque property to tr
ue. If you really must composite transparency, keep the size of the
nonopaque regions to a minimum; for example, if a large layer is
transparent at its edges, break it into five layers — the large central
layer, which is opaque, and the four edges, which are not.
If you’re drawing shadows, don’t make the drawing system calculate the
shadow shape for a layer: supply a shadowPath, or use Core Graphics to
create the shadow with a drawing. Similarly, avoid making the drawing
system composite the shadow as a transparency against another layer;
for example, if the background layer is white, your opaque drawing can
itself include a shadow already drawn on a white background.
Don’t make the drawing system scale images for you; supply the images
at the target size for the correct resolution.
In a pinch, you can just eliminate massive swatches of the rendering
operation by setting a layer’s shouldRasterize to true. You could, for
example, do this when scrolling starts and then set it back to false when
scrolling ends.

Apple’s documentation also says that setting a view’s clearsContextBefo
reDrawing to false may make a difference. I can’t confirm or deny this; it
may be true, but I haven’t encountered a case that positively proves it.

Xcode provides tools that will help you detect inefficiencies in the drawing
system. In the Simulator, the Debug menu shows you blended layers (where
transparency is being composited) and images that are being copied,
misaligned, or rendered offscreen. On a device, the Core Animation module
of Instruments provides the same functionality, plus it tracks the frame rate
for you, allowing you to scroll and measure performance objectively.

Chapter 8. Table Views and
Collection Views

I’m gonna ask you the three big questions. — Go ahead. — Who made
you? — You did. — Who owns the biggest piece of you? — You do. —
What would happen if I dropped you? — I’d go right down the drain.
Dialogue by Garson Kanin and Ruth Gordon, Pat and Mike

A table view (UITableView) is a vertically scrolling UIScrollView
(Chapter 7) containing a single column of rectangular cells. Each cell is a
UITableViewCell, a UIView subclass. A table view has three main
purposes:

Information
The cells constitute a list, which will often be text. The cells are usually
quite small, in order to maximize the quantity appearing on the screen at
once, so the information may be condensed, truncated, or summarized.

Choice
The cells may represent choices. The user chooses by tapping a cell,
which selects the cell; the app responds appropriately to that choice.

Navigation
The response to the user’s choosing a cell might be navigation to
another interface.

An extremely common configuration is a master–detail interface, a
navigation interface where the master view is a table view (Chapter 6): the
user taps a table view cell to navigate to the details about that cell. This is
one reason why the information in a table view cell can be a summary: to
see the full information, the user can ask for the detail view.

In addition to its column of cells, a table view can have a number of other
features:

A table can include a header view at the top and a footer view at the
bottom.
The cells can be clumped into sections. Each section can have a header
and a footer, which explain the section and tell the user where we are
within the table.
If the table has sections, a section index can also be provided as an
overlay column of abbreviated section titles, which the user can tap or
drag to jump to the start of a section; this makes a long table tractable.
Tables can be editable: the user can be permitted to insert, delete, and
reorder cells, and to edit information within a cell.
Cells can have actions: the user can swipe a cell sideways to reveal
buttons that act in relation to that cell.
Cells can have menus: the user can long press a cell to pop up a menu
with tappable menu items.
A table can have a grouped format, where the cells are embedded into a
common background that includes the section header and footer
information. This format is often used for clumping small numbers of
related cells, with explanations provided by the headers and footers.

Table view cells themselves can be extremely flexible. Some basic cell
formats are provided, such as a text label along with a small image view,
but you are free to design your own cell as you would any other view. There
are also some standard interface items that are commonly used in a cell,
such as a checkmark to indicate selection, or a right-pointing chevron to
indicate that tapping the cell navigates to a detail view.
Figure 8-1 shows a familiar table view: Apple’s Music app. Each table cell
displays a song’s name and artist, in truncated form; the user can tap to play
the song. The table is divided into sections; as the user scrolls, the current
section header stays pinned to the top of the table view, and the table can
also be navigated using the section index at the right.

Figure 8-1. A familiar table view

Figure 8-2 shows a familiar grouped table: Apple’s Settings app. It’s a
master–detail interface. The master view has sections, but they aren’t
labeled: they merely clump related topics. The detail view sometimes has
just a single cell per section, using section headers and footers to explain
what that cell does.

Figure 8-2. A familiar grouped table

It would be difficult to overstate the importance of table views. An iOS app
without a table view somewhere in its interface would be a rare thing,
especially on the small iPhone screen. Indeed, table views are key to the
small screen’s viability. I’ve written apps consisting almost entirely of table
views.
It is not uncommon to use a table view even in situations that have nothing
particularly table-like about them, simply because it is so convenient. For
example, in one of my apps I want the user to be able to choose between
three levels of difficulty and two sets of images. In a desktop application I’d
probably use radio buttons; but there are no radio buttons among the
standard iOS interface objects. Instead, I use a grouped table view so small

that it doesn’t even scroll. This gives me section headers, tappable cells, and
a checkmark indicating the current choice (Figure 8-3).

Figure 8-3. A grouped table view as an interface for choosing options

Table View Controller
In the examples throughout this chapter, I’ll use a table view controller in
conjunction with a table view. This is a built-in view controller subclass,
UITableViewController, whose main view is a table view. You’re not
obliged to use a UITableViewController with every table view — it doesn’t
do anything that you couldn’t do yourself by other means — but it is
certainly convenient. Here are some features of a table view controller:

UITableViewController’s init(style:) initializer creates the table
view with a plain or grouped format.
Every table view needs a data source and a delegate (as I’ll explain
later); a table view controller is its table view’s data source and delegate

by default.

The table view is the table view controller’s tableView. It is also the
table view controller’s view, but the tableView property is typed as a
UITableView, so you can send table view messages to it without casting.
A table view controller lets you configure the layout and content of an
entire table in a storyboard (a static table).
A table view controller provides interface for automatic toggling of its
table view’s edit mode.

A table view controller is so convenient, in fact, that if a table view is to be
a small subview of some view controller’s main view, it is often best to
make the view controller a custom container view controller with a table
view controller as its child (“Container View Controllers”), rather than
trying to implement a “loose” table view.

Table View Cells
A table view’s structure and contents are generally not configured in
advance. Rather, you supply the table view with a data source and a
delegate (which will often be the same object), and the table view turns to
these in real time, as the app runs, whenever it needs a piece of information
about its own structure and contents.
This architecture may be surprising, especially to beginners, but in fact it is
part of a brilliant strategy to conserve resources. Imagine a long table
consisting of thousands of rows. It must appear to consist of thousands of
cells as the user scrolls. But a cell is a UIView and is memory-intensive; to
maintain thousands of cells internally would put a terrible strain on
memory. Therefore, the table typically maintains only as many cells as are
showing simultaneously at any one moment (about twelve, let’s say). As the
user scrolls to reveal new cells, those cells are created on the spot;
meanwhile, the cells that have been scrolled out of view are permitted to
die.

That’s ingenious, but wouldn’t it be even cleverer if, instead of letting a cell
die as it scrolls out of view, we whisked it around to the other end and
reused it as one of the cells being scrolled into view? Yes, and in fact that’s
exactly what you’re supposed to do. You do it by assigning each cell a reuse
identifier.
As cells with a given reuse identifier are scrolled out of view, the table view
maintains a bunch of them in a pile. As a cell is about to be scrolled into
view, you ask the table view for a cell from that pile, specifying the pile by
means of the reuse identifier. The table view hands an old used cell back to
you, and now you can configure it as the cell that is about to be scrolled into
view. Cells are thus reused to minimize not only the number of actual cells
in existence at any one moment, but the number of actual cells ever created.
A table of 1000 rows might very well never need to create more than about
a dozen cells over the entire lifetime of the app!
To facilitate this architecture, your code must be prepared, on demand, to
supply the table with pieces of requested data. Of these, the most important
is the cell to be slotted into a given position. A position in the table is
specified by means of an index path (IndexPath), used here to combine a
section number with a row number; it is often referred to as a row of the
table. Your data source object may at any moment be sent the message tabl
eView(_:cellForRowAt:), and you must respond by returning the
UITableViewCell to be displayed at that row of the table. And you must
return it fast: the user is scrolling now, so the table needs that cell now.
In this section, I’ll discuss what you’re going to be supplying — the table
view cell. After that, I’ll talk about how you supply it.

Built-In Cell Styles
The simplest way to obtain a table view cell is to start with one of the four
built-in table view cell styles. To create a cell using a built-in style, call ini
t(style:reuseIdentifier:). The reuseIdentifier: is what allows
cells previously assigned to rows that are no longer showing to be reused

for cells that are; it will usually be the same for all cells in a table. Your
choices of cell style (UITableViewCellStyle) are:

.default

The cell has a UILabel (its textLabel), with an optional UIImageView
(its imageView) at the left. If there is no image, the label occupies the
entire width of the cell.

.value1

The cell has two UILabels (its textLabel and its detailTextLabel)
side by side, with an optional UIImageView (its imageView) at the left.
The first label is left-aligned; the second label is right-aligned. If the
first label’s text is too long, the second label won’t appear.

.value2

The cell has two UILabels (its textLabel and its detailTextLabel)
side by side. No UIImageView will appear. The first label is right-
aligned; the second label is left-aligned. The label sizes are fixed, and
the text of either will be truncated if it’s too long.

.subtitle

The cell has two UILabels (its textLabel and its detailTextLabel),
one above the other, with an optional UIImageView (its imageView) at
the left.

To experiment with the built-in cell styles, do this:
1. Start with the Single View app template.
2. We’re going to ignore the storyboard (as in the examples at the start of

Chapter 6). So we need a class to serve as our root view controller.
Choose File → New → File and specify iOS → Source → Cocoa
Touch Class. Click Next.

3. Make this class a UITableViewController subclass called
RootViewController. The XIB checkbox should be checked; Xcode
will create an eponymous .xib file containing a table view, correctly

configured with its File’s Owner as our RootViewController class.
Click Next.

4. Make sure you’re saving into the correct folder and group, and that
the app target is checked. Click Create.

5. Rewrite AppDelegate’s application(_:didFinishLaunchingWithO
ptions:) to make our RootViewController the window’s rootViewC
ontroller:

self.window = self.window ?? UIWindow()

self.window!.rootViewController = RootViewController() // *

self.window!.backgroundColor = .white

self.window!.makeKeyAndVisible()

return true

6. Now modify the RootViewController class (which comes with a lot of
templated code), as in Example 8-1.

Run the app to see the world’s simplest table (Figure 8-4).

Figure 8-4. The world’s simplest table

Example 8-1. Basic table data source schema
let cellID = "Cell"

override func numberOfSections(in tableView: UITableView) {

 -> Int {

 return 1

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return 20

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 var cell : UITableViewCell! = tableView.dequeueReusableCell(

 withIdentifier: self.cellID)

 if cell == nil {

 cell = UITableViewCell(style:.default,

 reuseIdentifier: self.cellID)

 cell.textLabel!.textColor = .red

 }

 cell.textLabel!.text = "Hello there! \(indexPath.row)"

 return cell

}

The key parts of the code are:
Our table will have one section.
Our table will consist of 20 rows. Having multiple rows will give us a
sense of how our cell looks when placed next to other cells.
In tableView(_:cellForRowAt:), you should always start by asking
the table view for a reusable cell. Here, we will receive either an already
existing reused cell or nil; in the latter case, we must create the cell
from scratch, ourselves.
If we did receive nil, we do create the cell. This is where you specify
the built-in table view cell style you want to experiment with.
At this point in the code you can modify characteristics of the cell
(cell) that are to be the same for every cell of the table. For the
moment, I’ve symbolized this by assuming that every cell’s text is to be
the same color.
We now have the cell to be used for this row of the table, so at this point
in the code you can modify features of the cell (cell) that are unique to
this row. I’ve symbolized this by appending the row number to the text
of each row. (Of course, in real life the different cells would reflect
meaningful data. I’ll talk about that later in this chapter.)

Now you can experiment with your cell’s appearance by tweaking the code
and running the app. Feel free to try different built-in cell styles in the place
where we are now specifying .default. Further flexibility within each

built-in style comes from the flexibility of a UILabel. Not everything can be
customized, because after you return the cell some further configuration
takes place, which may override your settings; for example, the size and
position of the cell’s subviews are not up to you. (I’ll explain, a little later,
how to get around that.) But you get a remarkable degree of freedom. Here
are a few basic UILabel properties for you to play with now (by
customizing cell.textLabel), and I’ll talk much more about UILabels in
Chapter 10:

text

The string shown in the label.

textColor, highlightedTextColor

The color of the text. The highlightedTextColor applies when the
cell is highlighted or selected (tap on a cell to select it).

textAlignment

How the text is aligned; some possible choices (NSTextAlignment) are
.left, .center, and .right.

numberOfLines

The maximum number of lines of text to appear in the label. Text that is
long but permitted to wrap, or that contains explicit linefeed characters,
can appear completely in the label if the label is tall enough and the
number of permitted lines is sufficient. 0 means there’s no maximum;
the default is 1.

font

The label’s font. You could reduce the font size as a way of fitting more
text into the label. A font name includes its style. For example:

cell.textLabel!.font = UIFont(name:"Helvetica-Bold", size:12.0)

shadowColor, shadowOffset

The text shadow. Adding a little shadow can increase clarity and
emphasis for large text.

You can also assign the image view (cell.imageView) an image. The
frame of the image view can’t be changed, but you can inset its apparent
size by supplying a smaller image and setting the image view’s contentMod
e to .center. It’s probably a good idea in any case, for performance
reasons, to supply images at their drawn size and resolution rather than
making the drawing system scale them down for you (see the last section of
Chapter 7). For example:

let im = UIImage(named:"moi")!

let r = UIGraphicsImageRenderer(size:CGSize(36,36))

let im2 = r.image { _ in

 im.draw(in:CGRect(0,0,36,36))

}

cell.imageView!.image = im2

cell.imageView!.contentMode = .center

The cell itself also has some properties you can play with:

accessoryType

A built-in type (UITableViewCellAccessoryType) of accessory view,
which appears at the cell’s right end. For example:

cell.accessoryType = .disclosureIndicator

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the
accessoryType). For example:

let b = UIButton(type:.system)

b.setTitle("Tap Me", for:.normal)

b.sizeToFit()

// ... add action and target here ...

cell.accessoryView = b

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a
hierarchy among cells. You can also set a cell’s indentation level in real
time, with respect to the table row into which it is slotted, by
implementing the delegate’s tableView(_:indentationLevelForRowA
t:) method.

separatorInset

A UIEdgeInsets. Only the left and right insets matter. The default is a
left inset of 15, but the built-in table view cell styles may shift it to
match the left layout margin of the root view (so, 16 or 20). This
property affects both the drawing of the separator between cells and the
indentation of content of the built-in cell styles. If you don’t like the
default, you can take control of the inset by setting the separatorInset
yourself. (New in iOS 11, this actually works as expected; I’ll talk more
about it in a moment, in connection with the table view’s separatorIns
et property.)

selectionStyle

How the background looks when the cell is selected
(UITableViewCellSelectionStyle). The default is solid gray (.default),
or you can choose .none.

backgroundColor

backgroundView

selectedBackgroundView

What’s behind everything else drawn in the cell. The selectedBackgro
undView is drawn in front of the backgroundView (if any) when the cell
is selected, and will appear instead of whatever the selectionStyle
dictates. The backgroundColor is behind the backgroundView. There
is no need to set the frame of the backgroundView and selectedBackg
roundView; they will be resized automatically to fit the cell.

multipleSelectionBackgroundView

If defined (not nil), and if the table’s allowsMultipleSelection (or,
if editing, allowsMultipleSelectionDuringEditing) is true, used
instead of the selectedBackgroundView when the cell is selected.

In this example, we set the cell’s backgroundView to display an image with
some transparency at the outside edges, so that the backgroundColor
shows behind it, and we set the selectedBackgroundView to an almost
transparent blue rectangle, to darken that image when the cell is selected
(Figure 8-5):

cell.textLabel!.textColor = .white

let v = UIImageView() // no need to set frame

v.contentMode = .scaleToFill

v.image = UIImage(named:"linen")

cell.backgroundView = v

let v2 = UIView() // no need to set frame

v2.backgroundColor = UIColor.blue.withAlphaComponent(0.2)

cell.selectedBackgroundView = v2

cell.backgroundColor = .red

If those features are to be true of every cell ever displayed in the table, then
that code should go in the spot numbered 5 in Example 8-1; it would be
wasteful to do the same thing all over again when an existing cell is reused.

Figure 8-5. A cell with an image background

Finally, here are a few properties of the table view itself worth playing with:

rowHeight

The height of every cell. Taller cells may accommodate more
information. You can also change this value in the nib editor; the table
view’s row height appears in the Size inspector. With a built-in cell
style, the cell’s subviews have their autoresizing set so as to compensate
correctly. You can also set a cell’s height in real time by implementing
the delegate’s tableView(_:heightForRowAt:) method; thus a table’s
cells may differ from one another in height (more about that later in this
chapter).

separatorStyle, separatorColor
These can also be set in the nib. Separator styles
(UITableViewCellSeparatorStyle) are .none and .singleLine.

separatorInset, separatorInsetReference

These can also be set in the nib. The table view’s separatorInset is
adopted by individual cells that don’t have their own explicit separato
rInset; to put it another way, the table view’s separatorInset is the
default, but a cell can override it.

The separatorInsetReference is new in iOS 11; it determines how
the separator inset is understood, either .fromCellEdges or .fromAuto
maticReference (meaning from the margins). This puts an end to a
long-standing problem in iOS 10 and before, where it used to be
difficult to get the separator to adopt a zero left inset, because it wanted
to interpret that as meaning zero relative to the margin; in iOS 11, the
default is .fromCellEdges and zero means zero.

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells
have transparency, or if the user scrolls the cells beyond their limit. The
backgroundView is drawn on top of the backgroundColor.

tableHeaderView, tableFooterView

Views to be shown before the first row and after the last row,
respectively, as part of the table’s scrolling content. Their background
color is, by default, the background color of the table, but you can
change that. You must dictate their heights explicitly, by setting their
frame or bounds height; their widths will be dynamically resized to fit
the table. You can allow the user to interact with these views (and their
subviews); for example, a view can be (or can contain) a UIButton.
You can alter a table header or footer view dynamically during the
lifetime of the app; if you change its height, you must set the
corresponding table view property afresh to notify the table view of
what has happened.

insetsContentViewsToSafeArea

New in iOS 11; can also be set in the nib. The cell’s contents, such as its
textLabel, are inside an unseen view called the contentView; those
contents are thus positioned with respect to the content view’s bounds.
If this property is true (the default), the safe area insets will inset the
frame of the content view; that’s significant on an iPhone without a
bezel, such as the iPhone X.

cellLayoutMarginsFollowReadableWidth

If this property is true and the separatorInsetReference is .fromAu
tomaticReference, the content view margins will be inset on a wide
screen (such as an iPad in landscape) to prevent text content from
becoming overly wide.

Registering a Cell Class
In Example 8-1, I used this method to obtain the reusable cell:

dequeueReusableCell(withIdentifier:)

However, there’s another way:

dequeueReusableCell(withIdentifier:for:)

The outward difference is that the second method has a second parameter
— an IndexPath. This should in fact always be the index path you received
to begin with as the last parameter of tableView(_:cellForRowAt:). The
functional difference is very dramatic. The second method has three
advantages:

The result is never nil

Unlike dequeueReusableCell(withIdentifier:), the value returned
by dequeueReusableCell(withIdentifier:for:) is never nil (in
Swift, it isn’t an Optional). If there is a free reusable cell with the given
identifier, it is returned. If there isn’t, a new one is created for you,
automatically. Step 4 of Example 8-1 can thus be eliminated!

The cell size is known earlier

Unlike dequeueReusableCell(withIdentifier:), the cell returned
by dequeueReusableCell(withIdentifier:for:) has its final
bounds. That’s possible because you’ve passed the index path as an
argument, so the runtime knows this cell’s ultimate destination within
the table, and has already consulted the table’s rowHeight or the
delegate’s tableView(_:heightForRowAt:). This can make laying out
the cell’s contents much easier.

The identifier is consistent

A danger with dequeueReusableCell(withIdentifier:) is that you
may accidentally pass an incorrect reuse identifier, and end up not
reusing cells. With dequeueReusableCell(withIdentifier:for:),
that can’t happen (for reasons that I will now explain).

Let’s go back to the first advantage of dequeueReusableCell(withIdenti
fier:for:) — if there isn’t a reusable cell with the given identifier, the
table view will create the cell for you, so that you never have to instantiate
the cell yourself. How does it know how to do that? You have to tell it,
associating the reuse identifier with the correct means of instantiation.
There are three possibilities:

Provide a class
You register a class with the table view, associating that class with the
reuse identifier. The table view will instantiate that class.

Provide a nib
You register a .xib file with the table view, associating that nib with the
reuse identifier. The table view will load the nib to instantiate the cell.

Provide a storyboard
If you’re getting the cell from a storyboard, you enter the reuse
identifier as the Identifier for the cell in the storyboard. The table view
will instantiate that cell from the storyboard.

In my examples so far, we’re not using a storyboard (I’ll discuss that
approach later). So let’s use the first approach: we’ll register a class with
the table view. To do so, before we call dequeueReusableCell(withIdent
ifier:for:) for the first time, we call register(_:forCellReuseIdenti
fier:), where the first parameter is UITableViewCell or a subclass thereof.
That will associate this class with our reuse identifier. It will also add a
measure of safety, because henceforth if we pass a bad identifier into deque
ueReusableCell(withIdentifier:for:), the app will crash (with a
helpful log message); we are forcing ourselves to reuse cells properly.
This is a very elegant mechanism. It also raises some new questions:

When should I register with the table view?

Do it early, before the table view starts generating cells; viewDidLoad is
a good place:

override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.register(

 UITableViewCell.self, forCellReuseIdentifier: self.cellID)

}

How do I specify a built-in table view cell style?

We are no longer calling init(style:reuseIdentifier:), so where
do we make our choice of built-in cell style? The default cell style is .d
efault, so if that’s what you wanted, the problem is solved. Otherwise,
subclass UITableViewCell and register the subclass; in the subclass,
override init(style:reuseIdentifier:) to substitute the cell style
you’re after (passing along the reuse identifier you were handed).

For example, suppose we want the .subtitle style. Let’s call our
UITableViewCell subclass MyCell. So we now specify MyCell.self in
our call to register(_:forCellReuseIdentifier:). MyCell’s
initializer looks like this:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {

 super.init(style:.subtitle, reuseIdentifier: reuseIdentifier)

}

How do I know whether the returned cell is new or reused?

Good question! dequeueReusableCell(withIdentifier:for:) never
returns nil, so we need some other way to distinguish between
configurations that are to apply once and for all to a new cell (step 5 of
Example 8-1) and configurations that differ for each row (step 6). It’s
now up to you, when performing one-time configuration on a cell, to
give that cell some distinguishing mark that you can look for later to
determine whether a cell requires one-time configuration.
For example, if every cell is to have a two-line text label, there is no
point configuring the text label of every cell returned by dequeueReusa
bleCell(withIdentifier:for:); the reused cells have already been
configured. But how will we know which cells need their text label to
be configured? It’s easy: they are the ones whose text label hasn’t been
configured:

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath) as! MyCell

 if cell.textLabel!.numberOfLines != 2 { // cell not configured!

 cell.textLabel!.numberOfLines = 2

 // other one-time configurations here ...

 }

 cell.textLabel!.text = // ...

 // other individual configurations here ...

 return cell

}

Based on our new understanding of dequeueReusableCell(withIdentifi
er:for:), let’s rewrite Example 8-1 to use it. The result is Example 8-2,
which represents the schema that I use in real life (and that I’ll be using
throughout the rest of this book).

Example 8-2. Basic table data source schema, revised
let cellID = "Cell"

override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.register(

 UITableViewCell.self, forCellReuseIdentifier: self.cellID)

}

override func numberOfSections(in tableView: UITableView) {

 -> Int {

 return 1

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return 20

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 if cell.textLabel!.numberOfLines != 2 {

 cell.textLabel!.numberOfLines = 2

 // ... other universal configurations here ...

 }

 cell.textLabel!.text = "Hello there! \(indexPath.row)"

 // ... other individual configurations here ...

 return cell

}

Register the cell identifier with the table view. No law requires that this
be done in viewDidLoad, but it’s a good place because it’s called once,

early. But this step must be omitted if the cell is to come from a
storyboard, as I’ll explain later.
Give the number of sections our table is to have.
Give the number of rows each section is to have.
Call dequeueReusableCell(withIdentifier:for:) to obtain a cell
for this reuse identifier, passing along the incoming index path. (If the
registered cell class is a UITableViewCell subclass, you’ll probably
need to cast down here.)
If there are configurations to be performed that are the same for every
cell, look to see whether this cell has already been configured. If not,
configure it.
Modify features of the cell that are unique to this row, and return the
cell.

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with
table views, but there is nothing sacred about them, and soon you’ll
probably want to transcend them, putting yourself in charge of how a table’s
cells look and what subviews they contain. You are perfectly free to do this.
The thing to remember is that the cell has a contentView property, which is
one of its subviews; things like the accessoryView are outside the content
View. All your custom subviews must be subviews of the contentView;
this allows the cell to continue working correctly.
I’ll illustrate four possible approaches to customizing the contents of a cell:

Start with a built-in cell style, but supply a UITableViewCell subclass
and override layoutSubviews to alter the frames of the built-in
subviews.

In tableView(_:cellForRowAt:), add subviews to each cell’s content
View as the cell is created.

Design the cell in a nib, and load that nib in tableView(_:cellForRowA
t:) each time a cell needs to be created.

Design the cell in a storyboard.

TIP
As long as you never speak of the cell’s textLabel, detailTextLabel, or imageView, they are
never created or inserted into the cell. Thus, you don’t need to remove them if you don’t want to
use them.

Overriding a cell’s subview layout
You can’t directly change the frame of a built-in cell style subview in table
View(_:cellForRowAt:), because the cell’s layoutSubviews comes along
later and overrides your changes. The workaround is to override the cell’s l
ayoutSubviews! This is a straightforward solution if your main objection
to a built-in style is the frame of an existing subview.

To illustrate, let’s modify a .default cell so that the image is at the right
end instead of the left end (Figure 8-6). We’ll make a UITableViewCell
subclass; here is MyCell’s layoutSubviews:

override func layoutSubviews() {

 super.layoutSubviews()

 let cvb = self.contentView.bounds

 let imf = self.imageView!.frame

 self.imageView!.frame.origin.x = cvb.size.width - imf.size.width - 15

 self.textLabel!.frame.origin.x = 15

}

Figure 8-6. A cell with its label and image view swapped

We must also make sure to use MyCell as our cell type. For example:

self.tableView.register(MyCell.self, forCellReuseIdentifier: self.cellID)

Adding subviews in code
Instead of modifying the existing default subviews, you can add completely
new views to each UITableViewCell’s content view. The best place to do
this in code is tableView(_:cellForRowAt:). Here are some things to
keep in mind:

The new views must be added when we configure a brand new cell —
but not when we reuse a cell, because a reused cell already has them.
(Adding multiple copies of the same subview repeatedly, as the cell is
reused, is a common beginner mistake.)

We must never send addSubview(_:) to the cell itself — only to its con
tentView (or some subview thereof).

We should assign the new views an appropriate autoresizingMask or
constraints, because the cell’s content view might be resized.
Each new view needs a way to be identified and referred to elsewhere. A
tag is a simple solution.

I’ll rewrite the previous example (Figure 8-6) to use this technique. We
don’t need a UITableViewCell subclass; the registered cell class can be
UITableViewCell itself. If this is a new cell, we add the subviews, position
them with autolayout, and assign them tags. If this is a reused cell, we don’t
add the subviews — the cell already has them! Either way, we then use the
tags to refer to the subviews:

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 if cell.viewWithTag(1) == nil { // no subviews! add them

 let iv = UIImageView(); iv.tag = 1

 cell.contentView.addSubview(iv)

 let lab = UILabel(); lab.tag = 2

 cell.contentView.addSubview(lab)

 // autolayout

 let d = ["iv":iv, "lab":lab]

 iv.translatesAutoresizingMaskIntoConstraints = false

 lab.translatesAutoresizingMaskIntoConstraints = false

 var con = [NSLayoutConstraint]()

 con.append(iv.centerYAnchor.constraint(

 equalTo:cell.contentView.centerYAnchor))

 con.append(iv.widthAnchor.constraint(

 equalTo:iv.heightAnchor))

 con.append(contentsOf:

 NSLayoutConstraint.constraints(

 withVisualFormat:"V:|[lab]|",

 metrics:nil, views:d))

 // horizontal margins

 con.append(contentsOf:

 NSLayoutConstraint.constraints(

 withVisualFormat:"H:|-15-[lab]-15-[iv]-15-|",

 metrics:nil, views:d))

 NSLayoutConstraint.activate(con)

 // ...

 }

 // can refer to subviews by their tags

 let lab = cell.viewWithTag(2) as! UILabel

 let iv = cell.viewWithTag(1) as! UIImageView

 // ...

 return cell

}

Designing a cell in a nib
We can avoid the verbosity of the previous code by designing the cell in a
nib. We start by creating a .xib file that will consist, in effect, solely of this
one cell; then we design the cell:

1. In Xcode, create the .xib file by specifying iOS → User Interface →
View. Let’s call it MyCell.xib.

2. Edit MyCell.xib. In the nib editor, delete the existing View and replace
it with a Table View Cell from the Object library.
The cell’s design window shows a standard-sized cell; you can resize
it as desired, but the actual size of the cell in the interface will be
dictated by the table view’s width and its rowHeight (or the delegate’s
response to tableView(_:heightForRowAt:)). The cell already has
a contentView, and any subviews you add will be inside that; do not
subvert that arrangement.

3. You can choose a built-in table view cell style in the Style pop-up
menu of the Attributes inspector, and this gives you the default
subviews, locked in their standard positions; for example, if you
choose Basic, the textLabel appears, and if you specify an image,
the imageView appears. If you set the Style pop-up menu to Custom,
you start with a blank slate. Let’s do that.

4. Design the cell! For example, let’s implement, from scratch, the same
subviews we’ve already implemented in the preceding two examples:
a UILabel on the left side of the cell, and a UIImageView on the right
side. Just as when adding subviews in code, we should set each
subview’s autoresizing behavior or constraints, and give each subview
a tag, so that later, in tableView(_:cellForRowAt:), we’ll be able
to refer to the label and the image view using viewWithTag(_:),
exactly as in the previous example.

The only remaining question is how to load the cell from the nib. It’s
simple! When we register with the table view, which we’re currently doing
in viewDidLoad, when we call register(_:forCellReuseIdentifier:),
we supply a nib instead of a class. To specify the nib, call UINib’s initializer
init(nibName:bundle:), like this:

self.tableView.register(

 UINib(nibName:"MyCell", bundle:nil), forCellReuseIdentifier:self.cellID)

That’s all there is to it. In tableView(_:cellForRowAt:), when we call de
queueReusableCell(withIdentifier:for:), if the table has no free
reusable cell already in existence, the nib will automatically be loaded and
the cell will be instantiated from it and returned to us.
You may wonder how that’s possible, when we haven’t specified a File’s
Owner class or added an outlet from the File’s Owner to the cell in the nib.
The answer is that the nib conforms to a specific format. The UINib
instance method instantiate(withOwner:options:) can load a nib with
a nil owner, and it returns an array of the nib’s instantiated top-level
objects. A nib registered with the table view is expected to have exactly one

top-level object, and that top-level object is expected to be a
UITableViewCell; that being so, the cell can easily be extracted from the
resulting array, as it is the array’s only element. Our nib meets those
expectations!

WARNING
The nib must conform to this format: it must have exactly one top-level object, a
UITableViewCell. Unfortunately, this means that some configurations are difficult or impossible
in the nib. For example, a cell’s backgroundView cannot be configured in the nib, because this
would require the presence of a second top-level nib object. The simplest workaround is to add the
backgroundView in code.

The advantages of this approach should be immediately obvious. The
subviews can now be designed in the nib editor, and code that was creating
and configuring each subview can be deleted. All the autolayout code from
the previous example can be removed; we can specify the constraints in the
nib editor. If we were configuring the label — assigning it a font, a line
break mode, a numberOfLines — all of that code can be removed; we can
specify those things in the nib editor.

But we can go further. In tableView(_:cellForRowAt:), we are still
referring to the cell’s subviews by way of viewWithTag(_:). There’s
nothing wrong with that, but perhaps you’d prefer to use names. Now that
we’re designing the cell in a nib, that’s easy. Provide a UITableViewCell
subclass with outlet properties, and configure the nib file accordingly:

1. Create a UITableViewCell subclass — let’s call it MyCell — and
declare two outlet properties:

class MyCell : UITableViewCell {

 @IBOutlet var theLabel : UILabel!

 @IBOutlet var theImageView : UIImageView!

}

That is the entirety of MyCell’s code; it exists solely so that we can
create these outlets.

2. Edit the table view cell nib MyCell.xib. Change the class of the cell (in
the Identity inspector) to MyCell, and connect the outlets from the cell
to the respective subviews.

The result is that in our implementation of tableView(_:cellForRowAt:),
once we’ve typed the cell as a MyCell, the compiler will let us use the
property names to access the subviews:

let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath) as! MyCell // *

let lab = cell.theLabel! // *

let iv = cell.theImageView! // *

// ... configure lab and iv ...

Designing a cell in a storyboard
If your table view is instantiated from a storyboard, then, in addition to all
the ways of obtaining and designing its cells that I’ve already described,
there is an additional option. You can have the table view obtain its cells
from the storyboard itself. This means you can also design the cell in the
storyboard.
Let’s experiment with this way of obtaining and designing a cell:

1. Start with a project based on the Single View app template.
2. In the storyboard, delete the View Controller scene.
3. In the project, create a file for a UITableViewController subclass

called RootViewController, without a corresponding .xib file.
4. In the storyboard, drag a Table View Controller into the empty canvas,

and set its class to RootViewController. Make sure it’s the initial view
controller.

5. The table view controller in the storyboard comes with a table view.
In the storyboard, select that table view, and, in the Attributes
inspector, set the Content pop-up menu to Dynamic Prototypes, and
set the number of Prototype Cells to 1 (these are the defaults).

The table view in the storyboard now contains a single table view cell with
a content view. You can do in this cell exactly what we were doing before
when designing a table view cell in a .xib file! So, let’s do that. I like being
able to refer to my custom cell subviews with property names. Our
procedure is just like what we did in the previous example:

1. In code, declare a UITableViewCell subclass — let’s call it MyCell —
with two outlet properties:

class MyCell : UITableViewCell {

 @IBOutlet var theLabel : UILabel!

 @IBOutlet var theImageView : UIImageView!

}

2. In the storyboard, select the table view’s prototype cell and change its
class in the Identity inspector to MyCell.

3. Drag a label and an image view into the prototype cell, position and
configure them as desired, and connect the cell’s outlets to them
appropriately.

So far, so good; but there is one crucial question I have not yet answered:
how will your code tell the table view to get its cells from the storyboard?
The answer is: by not calling register(_:forCellReuseIdentifier:)!
Instead, when you call dequeueReusableCell(withIdentifier:for:),
you supply an identifier that matches the prototype cell’s identifier in the
storyboard. So:

1. If you are calling register(_:forCellReuseIdentifier:) in
RootViewController’s code, delete that line.

2. In the storyboard, select the prototype cell. In the Attributes inspector,
enter Cell (the string value of self.cellID) in the Identifier field.

Now RootViewController’s tableView(_:cellForRowAt:) works exactly
as it did in the previous example; our cellID is "Cell", and this matches
the Cell we entered as the prototype cell’s Identifier in the storyboard:

let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath) as! MyCell

let lab = cell.theLabel!

let iv = cell.theImageView!

When your UITableViewController is to get its cells from the
UITableViewController scene in the storyboard, there are several ways to
go wrong. These are all common beginner mistakes:

Wrong view controller class
In the storyboard, make sure that your UITableViewController’s class,
in the Identity inspector, matches the class of your
UITableViewController subclass in code. If you get this wrong, none of
your table view controller code will run.

Wrong cell identifier
In the storyboard, make sure that the prototype cell identifier matches
the reuse identifier in your code’s dequeueReusableCell(withIdenti
fier:for:) call. If you get this wrong, your app will crash (with a
helpful message in the console).

Wrong cell class
In the storyboard, make sure that your prototype cell’s class, in the
Identity inspector, is the class you expect to receive from dequeueReus
ableCell(withIdentifier:for:). If you get this wrong, your app
will crash when the cell can’t be cast down.

Wrong registration

In your table view controller code, make sure you do not call register
(_:forCellReuseIdentifier:). If you do call it, you will be telling
the runtime not to get the cell from the storyboard. If you get this wrong
by registering a nib, then (if you’re lucky) your app will crash (with a
helpful message in the console). If you get it wrong by registering a
class, your cell might be blank, or your app might crash in some other
way (for example, when you access outlets that have never been
connected).

Table View Data
The structure and content of the actual data portrayed in a table view comes
from the data source, an object pointed to by the table view’s dataSource
property and adopting the UITableViewDataSource protocol. The data
source is thus the heart and soul of the table. What surprises beginners is
that the data source operates not by setting the table view’s structure and
content, but by responding on demand. The data source, qua data source,
consists of a set of methods that the table view will call when it needs
information; in effect, the table view will ask your data source some
questions. This architecture has important consequences for how you write
your code, which can be summarized by these simple guidelines:

Be ready
Your data source cannot know when or how often any of these methods
will be called, so it must be prepared to answer any question at any
time.

Be fast
The table view is asking for data in real time; the user is probably
scrolling through the table right now. So you mustn’t gum up the works;
you must be ready to supply responses just as fast as you possibly can.
(If you can’t supply a piece of data fast enough, you may have to skip it,
supply a placeholder, and insert the data into the table later. This may
involve you in threading issues that I don’t want to get into here. I’ll
give an example in Chapter 23.)

Be consistent
There are multiple data source methods, and you cannot know which
one will be called at a given moment. So you must make sure your
responses are mutually consistent at any moment. For example, a
common beginner error is forgetting to take into account, in your data
source methods, the possibility that the data might not yet be ready.

This may sound daunting, but you’ll be fine as long as you maintain an
unswerving adherence to the principles of model–view–controller. How and

when you accumulate the actual data, and how that data is structured, is a
model concern. Acting as a data source is a controller concern. So you can
acquire and arrange your data whenever and however you like, just so long
as, when the table view actually turns to you and asks what to do, you can
lay your hands on the relevant data rapidly and consistently. You’ll want to
design the model in such a way that the controller can access any desired
piece of data more or less instantly.
Another source of confusion for beginners is that methods are rather oddly
distributed between the data source and the delegate, an object pointed to
by the table view’s delegate property and adopting the
UITableViewDelegate protocol; in some cases, one may seem to be doing
the job of the other. This is not usually a cause of any real difficulty,
because the object serving as data source will probably also be the object
serving as delegate. Nevertheless, it is rather inconvenient when you’re
consulting the documentation; you’ll probably want to keep the data source
and delegate documentation pages open simultaneously as you work.

TIP
When you’re using a table view controller with a corresponding table view in the storyboard (or in
a .xib file created at the same time), the table view controller comes to you already configured as
both the table view’s data source and the table view’s delegate. Creating a table view in some
other way, and then forgetting to set its dataSource and delegate, is a common beginner
mistake.

The Three Big Questions
Pretend now that you are the data source. Like Katherine Hepburn in Pat
and Mike, the basis of your success is your ability, at any time, to answer
the Three Big Questions. The questions the table view will ask you are a
little different from the questions Mike asks Pat, but the principle is the
same: know the answers, and be able to recite them at any moment. Here
they are:

How many sections does this table have?

The table will call numberOfSections(in:); respond with an integer.
In theory you can sometimes omit this method, as the default response
is 1, which is often correct. However, I never omit it; for one thing,
returning 0 is a good way to say that you’ve no data yet, and will
prevent the table view from asking any other questions.

How many rows does this section have?

The table will call tableView(_:numberOfRowsInSection:). The
table supplies a section number — the first section is numbered 0 —
and you respond with an integer. In a table with only one section, of
course, there is probably no need to examine the incoming section
number.

What cell goes in this row of this section?

The table will call tableView(_:cellForRowAt:). The index path is
expressed as an IndexPath; UITableView extends IndexPath to add two
read-only properties — section and row. Using these, you extract the
requested section number and row number, and return a fully configured
UITableViewCell, ready for display in the table view. The first row of a
section is numbered 0. I have already explained how to obtain the cell in
the first place, by calling dequeueReusableCell(withIdentifier:fo
r:) (see Example 8-2).

I have nothing particular to say about precisely how you’re going to fulfill
these obligations. It all depends on your data model and what your table is
trying to portray. The important thing is to remember that you’re going to
be receiving an IndexPath specifying a section and a row, and you need to
be able to lay your hands on the data corresponding to that slot now and
configure the cell now. So construct your model, and your algorithm for
consulting it in the Three Big Questions, and your way of configuring the
cell, in accordance with that necessity.
For example, suppose our table is to list the names of the Pep Boys. Our
data model might be an array of string names (self.pep). Our table has

only one section. We’re using a UITableViewController, and it is the table
view’s data source. So our code might look like this:

let pep = ["Manny", "Moe", "Jack"]

override func numberOfSections(in tableView: UITableView) -> Int {

 return 1

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return self.pep.count

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 cell.textLabel!.text = pep[indexPath.row]

 return cell

}

At this point you may be feeling some exasperation. You want to object:
“But that’s trivial!” Exactly so! Your access to the data model should be
trivial. That’s the sign of a data model that’s well designed for access by
your table view’s data source. Your implementation of tableView(_:cellF
orRowAt:) might have some interesting work to do in order to configure
the form of the cell, but accessing the actual data should be simple and
boring.

NOTE
If a table view’s contents are known beforehand, you can alternatively design the entire table,
including the contents of individual cells, in a storyboard as a static table. I’ll give an example
later in this chapter.

Reusing Cells
Another important goal of tableView(_:cellForRowAt:) should be to
conserve resources by reusing cells. As I’ve already explained, once a cell’s
row is no longer visible on the screen, that cell can be slotted into a row that

is visible — with its portrayed data appropriately modified, of course! — so
that only a few more than the number of simultaneously visible cells will
ever need to be instantiated.
A table view is ready to implement this strategy for you; all you have to do
is call dequeueReusableCell(withIdentifier:for:). For any given
identifier, you’ll be handed either a newly minted cell or a reused cell that
previously appeared in the table view but is now no longer needed because
it has scrolled out of view.
The table view can maintain more than one cache of reusable cells; this
could be useful if your table view contains more than one type of cell
(where the meaning of the concept “type of cell” is pretty much up to you).
This is why you must name each cache, by attaching an identifier string to
any cell that can be reused. All the examples in this chapter (and in this
book, and in fact in every UITableView I’ve ever created) use just one
cache and just one identifier, but there can be more than one. If you’re using
a storyboard as a source of cells, there would then need to be more than one
prototype cell.
To prove to yourself the efficiency of the cell-caching architecture, do
something to differentiate newly instantiated cells from reused cells, and
count the newly instantiated cells, like this:

override func numberOfSections(in tableView: UITableView) -> Int {

 return 1

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return 1000 // make a lot of rows this time!

}

var cells = 0

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath) as! MyCell

 let lab = cell.theLabel!

 lab.text = "Row \(indexPath.row) of section \(indexPath.section)"

 if lab.tag != 999 {

 lab.tag = 999

 self.cells += 1; print("New cell \(self.cells)")

 }

 return cell

}

When we run this code and scroll through the table, every cell is numbered
correctly, so there appear to be 1000 cells. But the console messages show
that only about a dozen distinct cells are ever actually created.
Be certain that your table view code passes that test, and that you are truly
reusing cells! Fortunately, one of the benefits of calling dequeueReusableC
ell(withIdentifier:for:) is that it forces you to use a valid reuse
identifier.

WARNING
A common beginner error is to obtain a cell in some other way, such as instantiating it directly
every time tableView(_:cellForRowAt:) is called. I have even seen beginners call dequeueReu
sableCell(withIdentifier:for:), only to instantiate a fresh cell manually in the next line.
Don’t do that. Don’t subvert the architecture of cell reuse!

When your tableView(_:cellForRowAt:) implementation configures
individual cells (step 6 in Example 8-2), the cell might be new or reused; at
this point in your code, you don’t know or care which. Therefore, you
should always configure everything about the cell that might need
configuring. If you fail to do this, and if the cell is reused, you might be
surprised when some aspect of the cell is left over from its previous use;
similarly, if you fail to do this, and if the cell is new, you might be surprised
when some aspect of the cell isn’t configured at all.
As usual, I learned that lesson the hard way. In the TidBITS News app,
there is a little loudspeaker icon that should appear in a given cell in the
master view’s table view only if there is a recording associated with this
article. So I initially wrote this code:

if item.enclosures != nil && item.enclosures.count > 0 {

 cell.speaker.isHidden = false

}

That turned out to be a mistake, because the cell might be reused. Every
reused cell always had a visible loudspeaker icon if, in a previous usage,
that cell had ever had a visible loudspeaker icon! The solution was to
rewrite the logic to cover all possibilities completely, like this:

cell.speaker.isHidden =

 !(item.enclosures != nil && item.enclosures.count > 0)

You do get a sort of second bite of the cherry: there’s a delegate method, ta
bleView(_:willDisplay:forRowAt:), that is called for every cell just
before it appears in the table. This is absolutely the last minute to configure
a cell. But don’t misuse this method. You’re functioning as the delegate
here, not the data source; you may set the final details of the cell’s
appearance, but you shouldn’t be consulting the data model at this point. It
is of great importance that you not do anything even slightly time-
consuming in tableView(_:willDisplay:forRowAt:); the cell is literally
just milliseconds away from appearing in the interface.

An additional delegate method is tableView(_:didEndDisplaying:forRo
wAt:). This tells you that the cell no longer appears in the interface and has
become free for reuse. You could take advantage of this to tear down any
resource-heavy customization of the cell or simply to prepare it somehow
for subsequent future reuse.

Table View Sections
Your table data may be clumped into sections. You might clump your data
into sections for various reasons (and doubtless there are other reasons
beyond these):

You want to clump the table cells into sections in the table view.
You want to supply section headers (or footers, or both) in the table
view.
You want to make navigation of the table view easier by supplying an
index down the right side. You can’t have an index without sections.

You want to facilitate programmatic rearrangement of the table view’s
contents. For example, it’s possible to hide or move an entire section at
once, optionally with animation.

Section Headers and Footers
A section header or footer appears between the cells, before the first row of
a section or after the last row of a section, respectively. In a nongrouped
table, a section header or footer detaches itself while the user scrolls the
table, pinning itself to the top or bottom of the table view and floating over
the scrolled rows, giving the user a clue, at every moment, as to where we
are within the table. Also, a section header or footer can contain custom
views, so it’s a place where you might put additional information, or even
functional interface, such as a button the user can tap.

TIP
Don’t confuse the section headers and footers with the header and footer of the table as a whole.
The latter are properties of the table view itself, its tableHeaderView and tableFooterView,
discussed earlier in this chapter. The table header view appears only when the table is scrolled all
the way down; the table footer view appears only when the table is scrolled all the way up.

The number of sections is determined by your reply to the first Big
Question, numberOfSections(in:). For each section, the table view will
consult your data source and delegate to learn whether this section has a
header or a footer, or both, or neither (the default).
A section header or footer in the table view will usually be a
UITableViewHeaderFooterView. This is a UIView subclass intended
specifically for this purpose; much like a table view cell, it is reusable. It
has the following properties:

textLabel

A label (UILabel) for displaying the text of the header or footer.

detailTextLabel

This label, if you set its text, appears only in a grouped style table.

contentView

A subview of the header or footer, to which you can add custom
subviews.

backgroundView

Any view you want to assign. The contentView is in front of the backg
roundView. The contentView has a clear background by default, so the
backgroundView shows through. An opaque contentView.backgroun
dColor would completely obscure the backgroundView.

If the backgroundView is nil (the default), the header or footer view
will supply its own background view whose backgroundColor is
derived (in some unspecified way) from the table’s backgroundColor.

WARNING
Don’t set a UITableViewHeaderFooterView’s backgroundColor; instead, give it a backgroundVi
ew and set that view’s backgroundColor.

There are two ways in which you can supply a header or footer. You can use
both, but it will be less confusing if you pick just one:

Header or footer title string

You implement the data source method tableView(_:titleForHeader
InSection:) or tableView(_:titleForFooterInSection:) (or
both). Return nil to indicate that the given section has no header (or
footer). The header or footer view itself is a
UITableViewHeaderFooterView, and is reused automatically. The string
you supply becomes the view’s textLabel.text.
(In a grouped style table, the string’s capitalization may be changed. To
avoid that, use the second way of supplying the header or footer.)

Header or footer view

You implement the delegate method tableView(_:viewForHeaderInS
ection:) or tableView(_:viewForFooterInSection:) (or both).
The view you supply is used as the entire header or footer and is
automatically resized to the table’s width and the section header or
footer height (I’ll discuss how the height is determined in a moment).
You are not required to return a UITableViewHeaderFooterView, but
you should do so. The procedure is much like making a cell reusable.
You register beforehand with the table view by calling register(_:for
HeaderFooterViewReuseIdentifier:) with the
UITableViewHeaderFooterView class or a subclass. To obtain the
reusable view, call dequeueReusableHeaderFooterView(withIdenti
fier:) on the table view; the result will be either a newly instantiated
view or a reused view.
You can then configure this view as desired. For example, you can set
its textLabel.text, or you can give its contentView custom
subviews. In the latter case, use autoresizing or constraints to ensure
that the subviews will be positioned and sized appropriately when the
view itself is resized.

WARNING
The documentation says that you can call register(_:forHeaderFooterViewReuseIdentifie
r:) to register a nib instead of a class. But the nib editor’s Object library doesn’t include a
UITableViewHeaderFooterView! So this approach is useless.

In addition, these delegate methods permit you to perform final
configurations on your header or footer views:

tableView(_:willDisplayHeaderView:forSection:)

tableView(_:willDisplayFooterView:forSection:)

You can perform further configurations here, if desired. A useful
possibility is to generate the default UITableViewHeaderFooterView by

implementing titleFor... and then tweak its form slightly here.
These delegate methods are matched by didEndDisplaying methods.

The runtime resizes your header or footer before displaying it. Its width will
be the table view’s width; its height will be the table view’s sectionHeader
Height or sectionFooterHeight unless you implement one of these
delegate methods to say otherwise:

tableView(_:heightForHeaderInSection:)

tableView(_:heightForFooterInSection:)

Returning 0 (or failing to dictate the height at all) hides the header or
footer. Returning UITableViewAutomaticDimension means 0 if title
For... returns nil or the empty string (or isn’t implemented);
otherwise, it means the table view’s sectionHeaderHeight or section
FooterHeight.

TIP
New in iOS 11, you can size a section header or footer from the inside out, using autolayout
constraints. I’ll talk about that later in the chapter.

A header or footer view in a nongrouped table is in front of the table’s cells,
and you can take advantage of this to create some nice effects. For example,
a header with transparency, when pinned to the top of the table view, shows
the cells as they scroll behind it; a header with a shadow casts that shadow
on the adjacent cell.
When a header or footer view is not pinned to the top or bottom of the table
view, there is a transparent gap behind it. If the header or footer view has
some transparency, the table view’s background is visible through this gap.
You’ll want to take this into account when planning your color scheme.

Section Data
A table that is to have sections may require some planning in the
construction and architecture of its data model. The row data must
somehow be clumped into sections, because you’re going to be asked for a
row with respect to its section. And, just as with a cell, a section title must
be readily available so that it can be supplied quickly in real time.
A minimal solution is a custom struct that does no more than pair the
section title with the row data:

struct Section {

 var sectionName : String

 var rowData : [/* ... */]

}

The data model itself will then be an array of our custom struct. The type of
the rowData array elements will depend on the nature of the data; it might
be another custom struct.
To illustrate, suppose we intend to display the names of all 50 U.S. states in
alphabetical order as the rows of a table view, and that we wish to divide
the table into sections according to the first letter of each state’s name. Let’s
say I have the alphabetized list as a text file, which starts like this:

Alabama

Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

...

If the only thing we intend to display in our table view cells is the name of
the state, the row data for each cell is a String:

struct Section {

 var sectionName : String

 var rowData : [String]

}

var sections : [Section]! // data model

I’ll prepare the data model by loading the text file and parsing it into a
Section array:

override func viewDidLoad() {

 super.viewDidLoad()

 let s = try! String(

 contentsOfFile: Bundle.main.path(

 forResource: "states", ofType: "txt")!)

 let states = s.components(separatedBy:"\n")

 let d = Dictionary(grouping: states) {String($0.prefix(1))}

 self.sections = Array(d).sorted{$0.key < $1.key}.map {

 Section(sectionName: $0.key, rowData: $0.value)

 }

 // ...

}

The value of this preparatory dance is evident when we are bombarded with
questions from the table view about cells and headers; supplying the
answers is trivial, just as it should be:

override func numberOfSections(in tableView: UITableView) -> Int {

 return self.sections.count

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return self.sections[section].rowData.count

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 let s = self.sections[indexPath.section].rowData[indexPath.row]

 cell.textLabel!.text = s

 return cell

}

override func tableView(_ tableView: UITableView,

 titleForHeaderInSection section: Int) -> String? {

 return self.sections[section].sectionName

}

Let’s modify that example to illustrate customization of a header view. I
register my header identifier in viewDidLoad:

let headerID = "Header"

override func viewDidLoad() {

 super.viewDidLoad()

 // ...

 self.tableView.register(UITableViewHeaderFooterView.self,

 forHeaderFooterViewReuseIdentifier: self.headerID)

}

I’ll implement tableView(_:viewForHeaderInSection:), because it’s
more interesting than tableView(_:titleForHeaderInSection:). For
completely new views, I’ll place my own label inside the contentView and
give it some basic configuration; then I’ll perform individual configuration
on all views, new or reused:

override func tableView(_ tableView: UITableView,

 viewForHeaderInSection section: Int) -> UIView? {

 let h = tableView.dequeueReusableHeaderFooterView(

 withIdentifier: self.headerID)!

 if h.viewWithTag(1) == nil {

 h.backgroundView = UIView()

 h.backgroundView?.backgroundColor = .black

 let lab = UILabel()

 lab.tag = 1

 lab.font = UIFont(name:"Georgia-Bold", size:22)

 lab.textColor = .green

 lab.backgroundColor = .clear

 h.contentView.addSubview(lab)

 // ... add constraints ...

 }

 let lab = h.contentView.viewWithTag(1) as! UILabel

 lab.text = self.sections[section].sectionName

 return h

}

Section Index
If your table view has the plain style, you can add an index down the right
side of the table, where the user can tap or drag to jump to the start of a
section — helpful for navigating long tables. To generate the index,
implement the data source method sectionIndexTitles(for:), returning
an array of string titles to appear as entries in the index. For our list of state
names, that’s trivial once again, just as it should be:

override func sectionIndexTitles(for tv: UITableView) -> [String]? {

 return self.sections.map{$0.sectionName}

}

The index can appear even if there are no section headers. It will appear
only if the number of rows exceeds the table view’s sectionIndexMinimum
DisplayRowCount property value; the default is 0, so the index is always
displayed by default. You will want the index entries to be short —
preferably just one character — because each cell’s content view will shrink
to compensate, so you’re sacrificing some cell real estate.
You can modify three properties that affect the index’s appearance:

sectionIndexColor

The index text color.

sectionIndexBackgroundColor

The index background color. I advise giving the index some background
color, even if it is clearColor, because otherwise the index distorts the
colors of what’s behind it in a distracting way.

sectionIndexTrackingBackgroundColor

The index background color while the user’s finger is sliding over it. By
default, it’s the same as the sectionIndexBackgroundColor.

Normally, there will be a one-to-one correspondence between the index
entries and the sections; when the user taps an index entry, the table jumps

to the start of the corresponding section. However, under certain
circumstances you may want to customize this correspondence.
For example, suppose there are 100 sections, but there isn’t room to display
100 index entries comfortably on the iPhone. The index will automatically
curtail itself, omitting some index entries and inserting bullets to suggest
the omission, but you might prefer to take charge of the situation.

To do so, supply a shorter index, and implement the data source method tab
leView(_:sectionForSectionIndexTitle:at:), returning the number of
the section to jump to. You are told both the title and the index number of
the section index listing that the user chose, so you can use whichever is
convenient.

WARNING
If the table view has a section index, its scroll indicators will never appear.

Refreshing a Table View
A table view has no direct connection to its underlying data. If you want the
table view display to change because the underlying data have changed, you
have to cause the table view to refresh itself; basically, you’re requesting
that the Big Questions be asked all over again. At first blush, this seems
inefficient (“regenerate all the data?”); but it isn’t. Remember, in a table
that caches reusable cells, there are no cells of interest other than those
actually showing in the table at this moment. Thus, having worked out the
layout of the table through the section header and footer heights and row
heights, the table has to regenerate only those cells that are actually visible.
You can cause the table data to be refreshed using any of several methods:

reloadData

The table view will ask the Three Big Questions all over again,
including heights of rows and section headers and footers, and the

index, exactly as it does when the table view first appears.

reloadRows(at:with:)

The table view will ask the Three Big Questions all over again,
including heights, but not index entries. Cells are requested only for
visible cells among those you specify. The first parameter is an array of
index paths; to form an index path, use the initializer init(row:sectio
n:).

reloadSections(_:with:)

The table view will ask the Three Big Questions all over again,
including heights of rows and section headers and footers, and the
index. Cells, headers, and footers are requested only for visible elements
of the sections you specify. The first parameter is an IndexSet.

The latter two methods can perform animations that cue the user as to
what’s changing. For the with: argument, you’ll specify what animation
you want by passing one of the following (UITableViewRowAnimation):

.fade

The old fades into the new.

.right, .left, .top, .bottom
The old slides out in the stated direction, and is replaced from the
opposite direction.

.middle

Hard to describe; it’s a sort of venetian blind effect on each cell
individually.

.automatic

The table view just “does the right thing.” This is especially useful for
grouped style tables, because if you pick the wrong animation, the
display can look very funny as it proceeds.

.none

No animation.

If all you need is to refresh the index, call reloadSectionIndexTitles;
this calls the data source’s sectionIndexTitles(for:).

Direct Access to Cells
It is also possible to access and alter a table’s individual cells directly. This
can be a lightweight approach to refreshing the table, plus you can supply
your own animation within the cell as it alters its appearance. It is important
to bear in mind, however, that the cells are not the data (view is not model).
If you change the content of a cell manually, make sure that you have also
changed the model corresponding to it, so that the row will appear correctly
if its data is reloaded later.

WARNING
Do not change the display of a table cell directly without also changing the underlying data! It’s
your job to design your data model and your implementation of tableView(_:cellForRowAt:)
to accommodate any real-time changes you’ll need to make.

When accessing a cell directly, you’ll probably want to make sure the cell is
visible within the table view’s bounds; nonvisible cells don’t really exist
(except as potential cells waiting in the reuse cache), and there’s no point
changing them manually, as they’ll be changed when they are scrolled into
view, through the usual call to tableView(_:cellForRowAt:).
Here are some UITableView properties and methods that mediate between
cells, rows, and visibility:

visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

cellForRow(at:)

Returns a UITableViewCell if the table is maintaining a cell for the
given row (typically because this is a visible row); otherwise, returns ni
l.

indexPath(for:)

Given a cell obtained from the table view, returns the row into which it
is slotted.

By the same token, you can get access to the views constituting headers and
footers, by calling headerView(forSection:) or footerView(forSectio
n:). Thus you could modify a view directly. You should assume that if a
section is returned by indexPathsForVisibleRows, its header or footer
might be visible.

Refresh Control
If you want to grant the user some interface for requesting that a table view
be refreshed, you might like to use a UIRefreshControl. You aren’t required
to use this; it’s just Apple’s attempt to provide a standard interface.
To give a table view a refresh control, assign a UIRefreshControl to the
table view’s refreshControl property; this property is actually inherited
from UIScrollView. You can also configure this in the nib editor through a
table view controller’s Refreshing pop-up menu.
To request a refresh, the user scrolls the table view downward to display the
refresh control and holds long enough to indicate that this scrolling is
deliberate. The refresh control then acknowledges visually that it is
refreshing, and remains visible until refreshing is complete.
The refresh control is normally displayed at the top of the scrolling part of
the table view. New in iOS 11, however, if we’re in a navigation interface
(UINavigationController) with a navigation bar that displays large titles, the
refresh control appears in the navigation bar, which stretches to

accommodate it when visible; for this to work, it is crucial that the table
view should underlap the navigation bar.
A refresh control is a control (UIControl, Chapter 12), and you will want to
hook its Value Changed event to an action method; you can do that in the
nib editor by making an action connection, or you can do it in code. Here’s
an example of creating and configuring a refresh control entirely in code:

self.tableView!.refreshControl = UIRefreshControl()

self.tableView!.refreshControl!.addTarget(

 self, action: #selector(doRefresh), for: .valueChanged)

Once a refresh control’s action message has fired, the control remains
visible and indicates by animation (similar to an activity indicator) that it is
refreshing, until you send it the endRefreshing message:

@IBAction func doRefresh(_ sender: Any) {

 // ...

 (sender as! UIRefreshControl).endRefreshing()

}

You can initiate a refresh animation in code with beginRefreshing, but
this does not fire the action message. It also doesn’t display the refresh
control; to display it, scroll the table view:

self.refreshControl!.sizeToFit()

let top = self.tableView.adjustedContentInset.top

let y = self.refreshControl!.frame.maxY + top

self.tableView.setContentOffset(CGPoint(0, -y), animated:true)

self.refreshControl!.beginRefreshing()

self.doRefresh(self.refreshControl!)

A refresh control also has these properties:

isRefreshing (read-only)
Whether the refresh control is refreshing.

tintColor

The refresh control’s color. It is not inherited from the view hierarchy (I
regard this as a bug).

attributedTitle

Styled text displayed below the refresh control’s activity indicator. On
attributed strings, see Chapter 10.

backgroundColor (inherited from UIView)

If you give a table view controller’s refreshControl a background
color, that color completely covers the table view’s own background
color when the refresh control is revealed. For some reason, I find the
drawing of the attributedTitle more reliable if the refresh control
has a background color.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s
rowHeight. However, it’s possible for different rows to have different
heights. You can see an example in the TidBITS News app (Figure 6-1).
Back when I first wrote my TidBITS News and Albumen apps for iOS 4,
variable row heights were possible but virtually unheard-of; I knew of no
other app that was using them, and Apple provided no guidance, so I had to
invent my own technique by trial and error. There were three main
challenges:

Measurement
What should the height of a given row be?

Timing
When should the determination of each row’s height be made?

Layout
How should the subviews of each cell be configured for its individual
height?

Over the years since then, implementing variable row heights has become
considerably easier. In iOS 6, with the advent of autolayout, both
measurement and layout became much simpler. In iOS 7, new table view
properties made it possible to improve the timing. Then iOS 8 permitted
variable row heights to be implemented automatically, without your having
to worry about any of these problems. New in iOS 11, section header and
footer heights can be implemented automatically as well.
I will briefly describe, in historical order, four different techniques that I
have used over the years in my own apps. Perhaps you won’t use any of the
first three, because the automatic variable row heights feature makes them
unnecessary; nevertheless, a basic understanding of them will give you an
appreciation of what the fourth approach is doing for you. Besides, in my
experience, the automatic variable row heights feature can be slow; for
efficiency and speed, you might want to revert to one of the earlier
techniques.

Manual Row Height Measurement
In its earliest incarnation, my variable row heights technique depends on the
delegate’s tableView(_:heightForRowAt:). Whatever height I return for
a given row, that’s the height that the cell at that row will be given.
The timing is interesting. It turns out that the runtime wants to know the
heights of everything in the table at the outset, before it starts asking for any
cells. Thus, before our tableView(_:cellForRowAt:) is called for even
one row, we are sent tableView(_:heightForRowAt:) for every row.
In preparation for this situation, I start with an array of Optional CGFloats
stored in a property, self.rowHeights. (Assume, for simplicity, that the
table has just one section; the row number can thus serve directly as an
index into the array.) Initially, all the values in the array are nil. Once the
real values have been filled in, the array can be used to supply a requested
height instantly.

To calculate the cell heights, I have a utility method, setUpCell(_:for:),
that lays out a cell for a given row, using the actual data for that row. It

takes a cell and an index path, lays out the cell, and returns the cell’s
resulting height as a CGFloat. Before the days of autolayout, doing the
actual work of measurement in setUpCell(_:for:) is laborious; I have to
lay out the cell manually, assigning a frame to each subview, one by one.
The main challenge is dealing with labels whose text, and therefore height,
could vary from row to row.

The strategy is now clear. When the delegate’s tableView(_:heightForRo
wAt:) is called, either this is the very first time it’s been called or it isn’t.
Thus, either we’ve already constructed self.rowHeights or we haven’t. If
we haven’t, we construct it now, by immediately calling the setUpCell(_:
for:) utility method for every row and storing each resulting height in sel
f.rowHeights. The cell that I’m passing to setUpCell(_:for:) isn’t
going into the table; it’s just a dummy copy of the cell, to give me
something to configure and work out the resulting cell height.

For now on, I’m ready to answer tableView(_:heightForRowAt:) for any
row, immediately — all I have to do is return the appropriate value from the
self.rowHeights array! At this point, calls to tableView(_:cellForRowA
t:) start to come in; I simply call my setUpCell(_:for:) utility method
again — but this time, I’m laying out the real cell (and ignoring the
returned height value).

Measurement and Layout with Constraints
With autolayout in the picture, constraints are of great assistance. They
obviously perform layout of each cell for us, because that’s what constraints
do. But they can also perform measurement of the height of each cell. If
constraints ultimately pin every subview to the contentView in such a way
as to size the contentView height unambiguously from the inside out, then
we simply call systemLayoutSizeFitting(_:) to learn the resulting
height of the cell.

My setUpCell(_:for:) thus no longer needs to return a value; I hand it a
reference to a cell, it puts the data into the cell, and now I can do whatever I

like with that cell. If this is the model cell being used for measurement in ta
bleView(_:heightForRowAt:), I call systemLayoutSizeFitting(_:) to
get the height; if it’s the real cell generated by dequeuing in tableView(_:
cellForRowAt:), I return it.
The overall strategy is similar to the previous approach. My implemention
of tableView(_:heightForRowAt:): is called repeatedly before the table
is displayed; the first time it is called, I calculate all the row height values
and store them in self.rowHeights (this is actual code from my Albumen
app):

override func tableView(_ tableView: UITableView,

 heightForRowAt indexPath: IndexPath) -> CGFloat {

 let ix = indexPath.row

 if self.rowHeights[ix] == nil {

 let objects = UINib(nibName: "TrackCell2", bundle: nil)

 .instantiate(withOwner: nil)

 let cell = objects.first as! UITableViewCell

 for ix in 0..<self.rowHeights.count {

 let indexPath = IndexPath(row: ix, section: 0)

 self.setUpCell(cell, for: indexPath)

 let v = cell.contentView

 let sz = v.systemLayoutSizeFitting(

 UILayoutFittingCompressedSize)

 self.rowHeights[ix] = sz.height

 }

 }

 return self.rowHeights[ix]!

}

My tableView(_:cellForRowAt:) implementation is trivial, because set
UpCell(_:for:) does all the real work of putting the data into the cell:

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: "TrackCell", for: indexPath)

 self.setUpCell(cell, for:indexPath)

 return cell

}

The one danger to watch out for here is that a .singleLine separator eats
into the cell height. This can cause the height of the cell in the table to differ
very slightly from its height as calculated by systemLayoutSizeFitting
(_:). If you’ve overdetermined the cell’s subview constraints, this can
result in a conflict among constraints. Careful use of lowered constraint
priorities can solve this problem nicely if it arises (though it is simpler, in
practice, to set the cell separator to .none).

Estimated Height
In iOS 7, three new table view properties were introduced:

estimatedRowHeight

estimatedSectionHeaderHeight

estimatedSectionFooterHeight

To accompany those, there are also three table view delegate methods:

tableView(_:estimatedHeightForRowAt:)

tableView(_:estimatedHeightForHeaderInSection:)

tableView(_:estimatedHeightForFooterInSection:)

The idea here is to reduce the amount of time spent calculating row heights
at the outset. If you supply an estimated row height, then when tableView
(_:heightForRowAt:) is called repeatedly before the table is displayed, it
is called only for the visible cells of the table; for the remaining cells, the
estimated height is used. The runtime thus obtains enough information to
lay out the entire table very quickly: the only real heights you have to
provide up front are those of the initially visible rows. The downside is that
this layout is only an approximation, and will have to be corrected later: as
new rows are scrolled into view, tableView(_:heightForRowAt:) will be
called for those new rows, and the layout of the whole table will be revised
accordingly.

To illustrate, I’ll revise the previous example to use estimated heights. The
estimated height is set in viewDidLoad (it can alternatively be set in the nib
editor):

self.tableView.estimatedRowHeight = 75

Now in my tableView(_:heightForRowAt:) implementation, when I find
that a requested height value in self.rowHeights is nil, I don’t fill in all
the values of self.rowHeights — I fill in just that one height. It’s simply a
matter of removing the for loop:

override func tableView(_ tableView: UITableView,

 heightForRowAt indexPath: IndexPath) -> CGFloat {

 let ix = indexPath.row

 if self.rowHeights[ix] == nil {

 let objects = UINib(nibName: "TrackCell2", bundle: nil)

 .instantiate(withOwner: nil)

 let cell = objects.first as! UITableViewCell

 let indexPath = IndexPath(row: ix, section: 0)

 self.setUpCell(cell, for: indexPath)

 let v = cell.contentView

 let sz = v.systemLayoutSizeFitting(

 UILayoutFittingCompressedSize)

 self.rowHeights[ix] = sz.height

 }

 return self.rowHeights[ix]!

}

Automatic Row Height
In iOS 8, a completely automatic calculation of variable row heights was
introduced. This, in effect, does behind the scenes what I’m doing in table
View(_:heightForRowAt:) in the preceding code: it relies upon
autolayout for the calculation of each row’s height, and it calculates and
caches a row’s height the first time it is needed, as it is about to appear on
the screen.
To use this mechanism, first configure your cell using autolayout to
determine the size of the contentView from the inside out. Now all you

have to do is to set the table view’s estimatedRowHeight — and don’t
implement tableView(_:heightForRowAt:) at all! In some cases, it may
be necessary to set the table view’s row height to UITableViewAutomaticD
imension as well (again, this can be configured in the nib editor instead):

self.tableView.rowHeight = UITableViewAutomaticDimension

self.tableView.estimatedRowHeight = 75

Once I’ve done that, all I have to do in order to adopt this approach in my
app is to delete my tableView(_:heightForRowAt:) implementation
entirely.

New in iOS 11, you don’t even have to supply an estimatedRowHeight; it
can be UITableViewAutomaticDimension as well:

self.tableView.rowHeight = UITableViewAutomaticDimension

self.tableView.estimatedRowHeight = UITableViewAutomaticDimension

Basically, the rule in iOS 11 is this: if the rowHeight is UITableViewAutom
aticDimension, then as long as the estimatedRowHeight isn’t 0, you’ll
get variable row heights, with determination of the contentView height
using autolayout constraints from the inside out.
Also new in iOS 11, section headers and footers participate in the same
variable height mechanism. For example, if the table view’s sectionHeade
rHeight and estimatedSectionHeaderHeight are both UITableViewAut
omaticDimension, the headers will have their heights determined by
autolayout from the inside out.

Keep in mind that, whatever your table view’s height settings may be, you
can override it for individual rows, headers, or footers by implementing a h
eight delegate method. For example:

If tableView(_:heightForRowAt:) returns UITableViewAutomaticDi
mension, you’ll get automatic determination of row heights, even if the
table view’s rowHeight is absolute.

If tableView(_:heightForRowAt:) returns an absolute height, that
height will be used, even if the table view’s rowHeight is UITableViewA
utomaticDimension.

WARNING
In iOS 11, you still have to provide an absolute height for the table view’s tableHeaderView and
tableFooterView, by setting its bounds or frame height; its height cannot be determined by
internal constraints alone. I regard this as a bug.

The automatic row height mechanism is particularly well suited to cells
containing UILabels whose height will depend upon their text contents,
because the label provides that height in its intrinsicContentSize. If you
want to use the automatic row height mechanism in conjunction with a
custom UIView subclass whose height you intend to set in tableView(_:c
ellForRowAt:), you should make your view behave like a label. Don’t set
your view’s height constraint directly; instead, have your UIView subclass
override intrinsicContentSize, and set some property on which that
override depends. For example:

class MyView : UIView {

 var h : CGFloat = 200 {

 didSet {

 self.invalidateIntrinsicContentSize()

 }

 }

 override var intrinsicContentSize: CGSize {

 return CGSize(width:300, height:self.h)

 }

}

Obviously, taking advantage of the automatic row height mechanism is very
easy: but easy does not necessarily mean best. There is also a question of
performance. The four techniques I’ve outlined here run not only from
oldest to newest but also from fastest to slowest. Manual layout is faster
than calling systemLayoutSizeFitting(_:), and calculating the heights

of all rows up front, though it may cause a longer pause initially, makes
scrolling faster for the user because no row heights have to be calculated
while scrolling. You will have to measure and decide which approach is
most suitable.
And there’s one more thing to watch out for. I said earlier that the cell
returned to you from dequeueReusableCell(withIdentifier:for:) in
your implementation of tableView(_:cellForRowAt:) already has its
final size. But if you use automatic variable row heights, that’s not true,
because automatic calculation of a cell’s height can’t take place until after
the cell exists! Any code that relies on the cell having its final size in table
View(_:cellForRowAt:) will break when you switch to automatic variable
row heights. You can probably work around this by moving that code to tab
leView(_:willDisplay:forRowAt:), where the final cell size has
definitely been achieved.

Table View Cell Selection
A table view cell has a normal state, a highlighted state (according to its is
Highlighted property), and a selected state (according to its isSelected
property). It is possible to change these states directly, optionally with
animation, by calling setHighlighted(_:animated:) or setSelected
(_:animated:) on the cell. But you don’t want to act behind the table’s
back, so you are more likely to manage selection through the table view,
letting the table view manage and track the state of its cells.
Selection implies highlighting. When a cell is selected, it propagates the
highlighted state down through its subviews by setting each subview’s isHi
ghlighted property if it has one. That is why a UILabel’s highlightedTex
tColor applies when the cell is selected. Similarly, a UIImageView (such
as the cell’s imageView) can have a highlightedImage that is shown when
the cell is selected, and a UIControl (such as a UIButton) takes on its .high
lighted state when the cell is selected.

One of the chief purposes of your table view is likely to be to let the user
select a cell. This will be possible, provided you have not set the value of
the table view’s allowsSelection property to false. The user taps a cell,
and the cell switches to its selected state. You can also permit the user to
select multiple cells simultaneously; to do so, set the table view’s allowsMu
ltipleSelection property to true. If the user taps an already selected
cell, by default it stays selected if the table doesn’t allow multiple selection,
but it is deselected if the table does allow multiple selection.
By default, being selected will mean that the cell is redrawn with a gray
background view, but you can change this at the individual cell level, as
I’ve already explained: you can change the cell’s selectionStyle or, for
full customization, set its selectedBackgroundView (or multipleSelecti
onBackgroundView).

Managing Cell Selection
Your code can learn and manage the selection through these UITableView
properties and instance methods:

indexPathForSelectedRow

indexPathsForSelectedRows

These read-only properties report the currently selected row(s), or nil if
there is no selection.
Don’t accidentally examine the wrong property! For example, asking
for indexPathForSelectedRow when the table view allows multiple
selection gives a result that will have you scratching your head in
confusion. (As usual, I speak from experience.)

selectRow(at:animated:scrollPosition:)

The animation involves fading in the selection, but the user may not see
this unless the selected row is already visible.
The last parameter dictates whether and how the table view should
scroll to reveal the newly selected row; your choices

(UITableViewScrollPosition) are .top, .middle, .bottom, and .none.
For the first three options, the table view scrolls (with animation, if the
second parameter is true) so that the selected row is at the specified
position among the visible cells. For .none, the table view does not
scroll; if the selected row is not already visible, it does not become
visible.

deselectRow(at:animated:)

Deselects the given row (if it is selected); the optional animation
involves fading out the selection. No automatic scrolling takes place.

To deselect all currently selected rows, call selectRow(at:...) with a
nil index path.

Selection is preserved when a selected cell is scrolled off the screen; the
row is still reported as selected, and the cell will still appear selected when
it is scrolled back on screen. Calling a reload method, however, deselects
any affected cells; calling reloadData deselects all selected cells. (Calling
reloadData, and then calling indexPathForSelectedRow and wondering
what happened to the selection, is a common beginner mistake.)

Responding to Cell Selection
Response to user selection is through the table view’s delegate:

tableView(_:shouldHighlightRowAt:)

tableView(_:didHighlightRowAt:)

tableView(_:didUnhighlightRowAt:)

tableView(_:willSelectRowAt:)

tableView(_:didSelectRowAt:)

tableView(_:willDeselectRowAt:)

tableView(_:didDeselectRowAt:)

Despite their names, the two will methods are actually should methods
and expect a return value:

Return nil to prevent the selection (or deselection) from taking place.
Return the index path handed in as argument to permit the selection (or
deselection), or a different index path to cause a different cell to be
selected (or deselected).

The highlight methods are more sensibly named, and they arrive first, so
you can return false from tableView(_:shouldHighlightRowAt:) to
prevent a cell from being selected.
Let’s focus in more detail on the relationship between a cell’s highlighted
state and its selected state. They are, in fact, two different states. When the
user touches a cell, the cell passes through a complete highlight cycle.
Then, if the touch turns out to be the beginning of a scroll motion, the cell is
unhighlighted immediately, and the cell is not selected. Otherwise, the cell
is unhighlighted and selected.
But the user doesn’t know the difference between these two states: whether
the cell is highlighted or selected, the cell’s subviews are highlighted, and
the selectedBackgroundView appears. Here’s what actually happens and
what the user sees:

The user touches and scrolls

The cell is highlighted; the user sees the flash of the selectedBackgrou
ndView and the highlighted subviews, until the table begins to scroll and
the cell returns to normal.

The user touches and lifts the finger

The cell is highlighted, then selected; the user sees the selectedBackgr
oundView and highlighted subviews appear and remain. There is
actually a moment in the sequence where the cell has been highlighted
and then unhighlighted and not yet selected, but the user doesn’t see any
momentary unhighlighting of the cell, because no redraw moment
occurs (see Chapter 4).

Here’s the sequence in detail:

1. The user’s finger goes down. If shouldHighlight permits, the cell
highlights, which propagates to its subviews. Then didHighlight
arrives.

2. There is a redraw moment. Thus, the user will see the cell as
highlighted (including the appearance of the selectedBackgroundVi
ew), regardless of what happens next.

3. The user either starts scrolling or lifts the finger. The cell
unhighlights, which also propagates to its subviews, and didUnhighli
ght arrives.

If the user starts scrolling, there is a redraw moment, so the user
now sees the cell unhighlighted. The sequence ends.
If the user merely lifts the finger, there is no redraw moment, so the
cell keeps its highlighted appearance. The sequence continues.

4. If willSelect permits, the cell is selected, and didSelect arrives.
The cell is not highlighted, but highlighting is propagated to its
subviews.

5. There’s another redraw moment. The user still sees the cell as
highlighted (including the appearance of the selectedBackgroundVi
ew).

When willSelect is called because the user taps a cell, and if this table
view permits only single cell selection, willDeselect will be called
subsequently for any previously selected cells.

Here’s an example of implementing tableView(_:willSelectRowAt:).
When allowsSelection is true and allowsMultipleSelection is not, the
default behavior is that if the user taps an already selected row, the selection
does not change. We can alter this so that tapping a selected row deselects
it:

override func tableView(_ tableView: UITableView,

 willSelectRowAt indexPath: IndexPath) -> IndexPath? {

 if tableView.indexPathForSelectedRow == indexPath {

 tableView.deselectRow(at:indexPath, animated:false)

 return nil

 }

 return indexPath

}

Navigation from a Table View
An extremely common response to user selection is navigation. A master–
detail architecture is typical: the table view lists things the user can see in
more detail, and a tap displays the detailed view of the tapped thing. On the
iPhone, very often the table view will be in a navigation interface, and you
will respond to user selection by creating the detail view and pushing it onto
the navigation controller’s stack.
For example, here’s the code from my Albumen app that navigates from the
list of albums to the list of songs in the album that the user has tapped:

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 let t = TracksViewController(

 mediaItemCollection: self.albums[indexPath.row])

 self.navigationController!.pushViewController(t, animated: true)

}

In a storyboard, when you draw a segue from a UITableViewCell, you are
given a choice of two segue triggers: Selection Segue and Accessory
Action. If you create a Selection Segue, the segue will be triggered when
the user selects a cell. Thus you can readily push or present another view
controller in response to cell selection.
If you’re using a UITableViewController, then by default, whenever the
table view appears, the selection is cleared automatically in viewWillAppea
r(_:), and the scroll indicators are flashed in viewDidAppear(_:). You
can prevent the automatic clearing of the selection by setting the table view
controller’s clearsSelectionOnViewWillAppear to false. If you do that,
and implement deselection in viewDidAppear(_:) instead, the effect is that

when the user returns to the table, the row remains momentarily selected
before it deselects itself.
By convention, if selecting a table view cell causes navigation, the cell
should be given an accessoryType (UITableViewCellAccessory) of .disc
losureIndicator. This is a plain gray right-pointing chevron at the right
end of the cell. The chevron itself doesn’t respond to user interaction; it is
not a button, but just a visual cue that the user can tap the cell to learn more.

Two additional accessoryType settings are buttons:

.detailButton

Drawn as a letter “i” in a circle.

.detailDisclosureButton

Drawn like .detailButton, along with a disclosure indicator chevron
to its right.

To respond to the tapping of an accessory button, implement the table view
delegate’s tableView(_:accessoryButtonTappedForRowWith:). In a
storyboard, you can Control-drag a connection from a cell and choose an
Accessory Action segue.
A common convention is that selecting the cell as a whole does one thing
and tapping the detail button does something else. For example, in Apple’s
Phone app, tapping a contact’s listing in the Recents table places a call to
that contact, but tapping the detail button navigates to that contact’s detail
view.

Cell Choice and Static Tables
Another use of cell selection is to implement a choice among cells, where a
section of a table effectively functions as an iOS alternative to macOS radio
buttons. The table view usually has the grouped format. An accessoryType
of .checkmark is typically used to indicate the current choice.
Implementing radio button behavior is up to you.

As an example, I’ll implement the interface shown in Figure 8-3. The table
view has the grouped style, with two sections. The first section, with a
“Size” header, has three mutually exclusive choices: “Easy,” “Normal,” or
“Hard.” The second section, with a “Style” header, has two choices:
“Animals” or “Snacks.”
This is a static table; its contents are known beforehand and won’t change.
In a case like this, if we’re using a UITableViewController subclass
instantiated from a storyboard, the nib editor lets us design the entire table,
including the headers and the cells and their content, directly in the
storyboard. Select the table and set its Content pop-up menu in the
Attributes inspector to Static Cells to make the table editable in this way
(Figure 8-7).

Figure 8-7. Designing a static table in the storyboard editor

When you’re using a static table, you are still free to implement table view
data source and delegate methods, provided you cooperate with what the
static table is already doing for you. This is useful when you’ll have
relevant information at runtime that you don’t have while designing the
storyboard. For example, you can implement tableView(_:cellForRowA
t:), but your implementation must not dequeue a cell explicitly; instead,
obtain the cell by calling super. Now you can add your own modifications
to the cell.

To illustrate, I’ll add the checkmarks to our static table by implementing ta
bleView(_:cellForRowAt:) to set the cell’s accessoryType. Note the
call to super, as well as the call to tableView(_:titleForHeaderInSect
ion:) to learn the title of the current section. The user defaults will store
the current choice in each of the two categories; in both cases, the key is the
section title and the value is the label text of the chosen cell:

override func tableView(_ tv: UITableView,

 cellForRowAt ix: IndexPath) -> UITableViewCell {

 let cell = super.tableView(tv, cellForRowAt:ix)

 let ud = UserDefaults.standard

 cell.accessoryType = .none

 if let title = self.tableView(

 tv, titleForHeaderInSection:ix.section) {

 if let label = ud.object(forKey:title) as? String {

 if label == cell.textLabel!.text {

 cell.accessoryType = .checkmark

 }

 }

 }

 return cell

}

When the user taps a cell, the cell is selected. I want the user to see that
selection momentarily, as feedback, but then I want to deselect, adjusting
the checkmarks so that that cell is the only one checked in its section. In ta
bleView(_:didSelectRowAt:), I set the user defaults, and then I reload
the table view’s data. This removes the selection and causes tableView(_:
cellForRowAt:) to be called to adjust the checkmarks:

override func tableView(_ tv: UITableView, didSelectRowAt ix: IndexPath) {

 let ud = UserDefaults.standard

 let setting = tv.cellForRow(at:ix)!.textLabel!.text

 let header = self.tableView(tv, titleForHeaderInSection:ix.section)!

 ud.setValue(setting, forKey:header)

 tv.reloadData()

}

Table View Scrolling and Layout

A UITableView is a UIScrollView, so everything you already know about
scroll views is applicable (Chapter 7). In addition, a table view supplies two
convenience methods for scrolling in code:

scrollToRow(at:at:animated:)

scrollToNearestSelectedRow(at:animated:)

One of the parameters is a scroll position, like the scrollPosition
parameter for selectRow, discussed earlier in this chapter.
The following UITableView methods mediate between the table’s bounds
coordinates on the one hand and table structure on the other:

indexPathForRow(at:)

indexPathsForRows(in:)

rect(forSection:)

rectForRow(at:)

rectForFooter(inSection:)

rectForHeader(inSection:)

The table view’s own header view and footer view are its direct subviews,
so their positions within the table’s bounds are given by their frames.

Table View State Restoration
If a UITableView participates in state saving and restoration (Chapter 6),
the restoration mechanism would like to restore the selection and the scroll
position. This behavior is automatic; the restoration mechanism knows both
what cells should be visible and what cells should be selected, in terms of
their index paths. If that’s satisfactory, you’ve no further work to do.
In some apps, however, there is a possibility that when the app is
relaunched, the underlying data may have been rearranged somehow.
Perhaps what’s meaningful in dictating what the user should see in such a
case is not the previous rows but the previous data. The state saving and

restoration mechanism doesn’t know anything about the relationship
between the cells and the underlying data. If you’d like to tell it, adopt the
UIDataSourceModelAssociation protocol and implement two methods:

modelIdentifierForElement(at:in:)

Based on an index path, you return some string that you will later be
able to use to identify uniquely this bit of model data.

indexPathForElement(withModelIdentifier:in:)

Based on the unique identifier you provided earlier, you return the index
path at which this bit of model data is displayed in the table now.

Devising a system of unique identification and incorporating it into your
data model is up to you.

Table View Searching
A common need is to make a table view searchable, typically through a
search field (a UISearchBar; see Chapter 12). A typical interface for listing
the results of such a search is itself a table view. The interface should
respond to what the user types in the search field by changing what appears
in the list of results. Such an interface is managed through a
UIViewController subclass, UISearchController.
UISearchController has nothing to do, per se, with table views!
UISearchController itself is completely agnostic about what is being
searched and about the form in which the results are presented. However,
using a table view to present the results of searching a table view is a
common interface. So this is a good place to introduce UISearchController.

Configuring a Search Controller
A UISearchController is a view controller; it provides an interface
containing a search bar and the results of the search. The search controller
vends its search bar, and you’ll put that search bar into your initial interface.
When the user taps in the search bar to begin searching, the search

controller will take over the screen. And that’s basically all the search
controller does. It knows nothing about doing any actual searching or about
showing the user the results of the search. All of that is up to you. You
provide two things:

Search results controller
The search results controller is your view controller that shows the user
the results of the search. The UISearchController will display the search
results controller’s view, but what happens in that view is completely up
to you.

Search results updater
The search results updater is the search controller’s conduit to you;
basically, it’s a kind of delegate. The search results controller will be
repeatedly informing you that the user has edited the text in the search
field; in response, you’ll perform the actual search and update the
results.

Here’s what’s going to happen:
When the time comes to display search results (because the user has
tapped inside the search bar in your initial interface), the search
controller will present itself as a presented view controller, displaying
the same search bar, with the search results controller’s view embedded
inside its own view.
When the user edits in the search bar, the search controller will notify the
search results updater.
When the user taps the search bar’s Cancel button, the search controller
will dismiss itself.

The minimalistic nature of the search controller’s behavior is exactly the
source of its power and flexibility, because it leaves you free to manage the
details: what searching means, and what displaying search results means, is
up to you.
Here are the general steps for configuring a UISearchController (and I’ll
talk about exceptions in subsequent sections):

1. Instantiate a view controller whose job will be to display the results of
the search. This is the search results controller. (In this discussion, the
search results controller will be a UITableViewController, but as I’ve
just said, no law requires this.)

2. Instantiate UISearchController, calling the designated initializer, init
(searchResultsController:), with the search results controller as
argument. Retain the search controller. The search controller will
retain the search results controller as a child view controller.

3. Assign to the search controller’s searchResultsUpdater an object to
be notified when the search results change. This is the search results
updater. It must be an object adopting the UISearchResultsUpdating
protocol, which means that it implements one method: updateSearch
Results(for:). Typically, the search results updater will be the
search results controller, but no law requires this.

4. Acquire the search controller’s searchBar and put it into the
interface.

A UISearchController has just a few other properties you might want to
configure:

obscuresBackgroundDuringPresentation

Whether a “dimming view” should appear behind the search controller’s
own view. Defaults to true, but I’ll give an example later where it
needs to be set to false.

hidesNavigationBarDuringPresentation

Whether a navigation bar, if present, should be hidden. Defaults to
true, but I’ll give an example later where it needs to be set to false.

A UISearchController can also be assigned a real delegate
(UISearchControllerDelegate), which is notified before and after
presentation and dismissal. The delegate works in one of two ways:

presentSearchController(_:)

If you implement this method, then you are expected to present the
search controller yourself, by calling present(_:animated:completio
n:). In that case, the other delegate methods are not called.

willPresentSearchController(_:)

didPresentSearchController(_:)

willDismissSearchController(_:)

didDismissSearchController(_:)

Called only if you didn’t implement presentSearchController(_:).

Using a Search Controller
I’ll demonstrate several variations on the theme of using a search controller
to make a table view searchable. In these examples, the searchable table
view will be the list of U.S. states, with sections and an index, developed
earlier in this chapter. Searching will mean finding the search text within
the text of the single label displayed in the table view’s cells — that is, we
will search the state names.

Minimal search results table
Let’s start with the simplest possible case. We will have two table view
controllers — one managing the original table view, the other managing the
search results table view. I propose to make the search results table view as
minimal as possible, a rock-bottom table view with .default style cells,
where each search result will be the text of a cell’s textLabel (Figure 8-
8).

Figure 8-8. Searching a table

In the original table’s UITableViewController, I configure the
UISearchController as I described earlier. I have a property, self.searche
r, waiting to retain the search controller. I also have a second
UITableViewController subclass, boringly named SearchResultsController,
whose job will be to obtain and present the search results. In viewDidLoad,
I instantiate SearchResultsController, create the UISearchController, and
put the search controller’s search bar into the interface as the table view’s
header view (and scroll to hide that search bar initially, a common
convention):

let src = SearchResultsController(data: self.sections)

let searcher = UISearchController(searchResultsController: src)

self.searcher = searcher

searcher.searchResultsUpdater = src

let b = searcher.searchBar

b.sizeToFit() // crucial, trust me on this one

b.autocapitalizationType = .none

self.tableView.tableHeaderView = b

self.tableView.reloadData()

self.tableView.scrollToRow(

 at:IndexPath(row: 0, section: 0), at:.top, animated:false)

WARNING
Adding the search bar as the table view’s header view has an odd side effect: it causes the table
view’s background color to be covered by an ugly gray color, visible above the search bar when
the user scrolls down. The official workaround is to assign the table view a backgroundView with
the desired color.

Now we turn to SearchResultsController. As a table view controller, it is
completely simple. I’m not using sections in the SearchResultsController’s
table, so as I receive the searchable data, I flatten it to a simple array:

var originalData : [String]

var filteredData = [String]()

init(data:[RootViewController.Section]) {

 self.originalData = data.map{$0.rowData}.flatMap{$0}

 super.init(nibName: nil, bundle: nil)

}

required init(coder: NSCoder) {

 fatalError("NSCoding not supported")

}

What I display in the table view is not self.originalData but a different
array, self.filteredData. This is initially empty, because there are no
search results until the user starts typing in the search field. The table
display code is trivial boilerplate:

let cellID = "Cell"

override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.register(UITableViewCell.self,

 forCellReuseIdentifier: self.cellID)

}

override func numberOfSections(in tableView: UITableView) -> Int {

 return 1

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return self.filteredData.count

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 cell.textLabel!.text = self.filteredData[indexPath.row]

 return cell

}

But how does our search results table go from being empty to displaying
any search results? SearchResultsController is the searchResultsUpdater
of our UISearchController. It adopts UISearchResultsUpdating, so it
implements updateSearchResults(for:), which will be called each time
the user changes the text of the search bar. This method simply uses the
current text of the search controller’s searchBar to filter self.originalDa
ta into self.filteredData, and reloads the table view:

func updateSearchResults(for searchController: UISearchController) {

 let sb = searchController.searchBar

 let target = sb.text!

 self.filteredData = self.originalData.filter { s in

 let found = s.range(of:target, options: .caseInsensitive)

 return (found != nil)

 }

 self.tableView.reloadData()

}

That’s all! Of course, it’s an artificially simple example; in real life you
would presumably want to allow the user to do something with the search
results, perhaps by tapping on a cell in the search results table.
When the user taps in the search field and the UISearchController interface
appears, the results view is not visible; it appears only after the user enters
at least one character in the search field, and vanishes again if the user
empties the search field. I find that interface ugly and annoying.
Fortunately, there’s an easy trick to make the results view appear all the
time in the UISearchController interface:

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 self.view.isHidden = false // *

}

func updateSearchResults(for searchController: UISearchController) {

 self.view.isHidden = false // *

 // ...

}

Scope buttons
A search bar can have scope buttons, but it’s hard to make a search bar with
scope buttons work properly in a UISearchController interface. A simple
workaround is to use a UISegmentedControl elsewhere in the interface.
That’s how Apple’s Mail app behaves in iOS 11: in the UISearchController
interface, the results table view has a UISegmentedControl in its tableHead
erView.
Let’s extend the preceding example to behave like that. Our segmented
control will allow the user to distinguish between a Contains search and a
Starts With search.
We’re going to need access to the search bar from inside the search results
controller, so we’ll give it a weak searchBar instance property which must
be set when the search controller and search results controller are initially
configured in the main view controller’s viewDidLoad:

let src = SearchResultsController(data: self.sections)

let searcher = UISearchController(searchResultsController: src)

self.searcher = searcher

searcher.searchResultsUpdater = src

let b = searcher.searchBar

src.searchBar = b // *

// ...

In SearchResultsController, we create the segmented control and put it into
the table view:

lazy var seg : UISegmentedControl = {

 let seg = UISegmentedControl(items: ["Contains", "Starts With"])

 seg.sizeToFit()

 seg.selectedSegmentIndex = 0

 seg.addTarget(self, action: #selector(scopeChanged),

 for: .primaryActionTriggered)

 return seg

}()

override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.register(UITableViewCell.self,

 forCellReuseIdentifier: self.cellID)

 self.tableView.tableHeaderView = self.seg // *

}

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 self.view.isHidden = false

}

We need to revise the results table view not only whenever the user edits in
the search bar but also when the user changes the segmented control’s
selection. Therefore, the segmented control’s action method shares its
functionality with our updateSearchResults(for:) method. We use the
current text of the search bar to filter self.originalData into self.filte
redData, as before, but we take into account the segmented control’s
selection:

func doUpdate() {

 let target = self.searchBar.text!

 self.filteredData = self.originalData.filter { s in

 var options = String.CompareOptions.caseInsensitive

 if self.seg.selectedSegmentIndex == 1 {

 options.insert(.anchored)

 }

 let found = s.range(of:target, options: options)

 return (found != nil)

 }

 self.tableView.reloadData()

}

func updateSearchResults(for searchController: UISearchController) {

 self.view.isHidden = false

 self.doUpdate()

}

@objc func scopeChanged(_ sender : UISegmentedControl) {

 self.doUpdate()

}

Search bar in navigation bar
In a navigation interface, you can put the UISearchController’s search bar
into the navigation bar. In iOS 11, that interface seems to be preferred over

putting it into the table view’s header view, and a new iOS 11 property
facilitates it: instead of trying to find a place for the search bar in the
navigation bar yourself — as its titleView, for instance — you use the na
vigationItem of your view controller, setting its searchController
directly to your UISearchController instance. This means that you do not
need to retain the search controller; the navigation item will retain it for
you. It is also crucial to set the search controller’s hidesNavigationBarDu
ringPresentation to true:

let src = SearchResultsController(data: self.sections)

let searcher = MySearchController(searchResultsController: src)

searcher.searchResultsUpdater = src

self.navigationItem.searchController = searcher // *

searcher.hidesNavigationBarDuringPresentation = true // *

Nothing else needs to change; our search results controller just keeps right
on working.
The consequences of this arrangement are simply stunning:

The navigation bar stretches to accommodate the search bar, which
appears below everything else; thus the search bar makes no inroads on
the space used by the title and the bar button items.

If the navigation bar’s prefersLargeTitles is true, the interface still
works just fine, with the search bar displayed below the large title if
there is one.

If the navigation item’s hidesSearchBarWhenScrolling property (also
new in iOS 11) is true, the navigation bar expands and contracts to
reveal or hide the search bar as the user scrolls down or up.

The search bar can have scope buttons! Set the search bar’s scopeButto
nTitles as desired, and set its showsScopeBar to false; the scope
buttons will appear in the navigation bar when the search controller
presents its view.

No search results controller

You can also use a search controller without a search results controller.
Instead, you can present the search results in the original table view.

To configure our search controller, we pass nil as its searchResultsContr
oller and set the original table view controller as the searchResultsUpda
ter. We must also set the search controller’s obscuresBackgroundDuring
Presentation to false; this allows the original table view to remain
visible and touchable behind the search controller’s view:

let searcher = UISearchController(searchResultsController:nil)

self.searcher = searcher

searcher.obscuresBackgroundDuringPresentation = false

searcher.searchResultsUpdater = self

searcher.delegate = self

Observe that we have also made ourselves the search controller’s delegate.
That’s because we might need to distinguish whether we’re in the middle of
a search or not. We have a Bool property, self.searching, that acts as a
flag; we raise and lower the flag when searching begins and ends. We also
create a copy of our data model whenever we’re about to start searching;
the reason for that will be clear in a moment:

func willPresentSearchController(_ searchController: UISearchController) {

 self.originalSections = self.sections // keep copy of the original data

 self.searching = true

}

func willDismissSearchController(_ searchController: UISearchController) {

 self.searching = false

}

Our table view data source and delegate methods don’t need to change
unless there’s a difference in the interface depending on whether or not
we’re searching. For example, let’s say we want to remove the index while
searching is in progress:

override func sectionIndexTitlesForTableView(tableView: UITableView)

 -> [String]? {

 return self.searching ? nil : self.sections.map{$0.sectionName}

}

All that remains is to implement updateSearchResults(for:). Just as in
our search results controller, whenever we’re doing a search we’re going to
filter self.originalSections into self.sections based on the search
bar text:

func updateSearchResults(for searchController: UISearchController) {

 let sb = searchController.searchBar

 let target = sb.text!

 if target == "" {

 self.sections = self.originalSections

 } else {

 self.sections = self.originalSections.reduce(into:[]) {acc, sec in

 let rowData = sec.rowData.filter {

 $0.range(of:target, options: .caseInsensitive) != nil

 }

 if rowData.count > 0 {

 acc.append(Section(

 sectionName: sec.sectionName, rowData: rowData))

 }

 }

 }

 self.tableView.reloadData()

}

Table View Editing
A table view cell has a normal state and an editing state, according to its is
Editing property. The editing state (or edit mode) is typically indicated
visually by one or more of the following:

Editing controls
At least one editing control will usually appear, such as a Minus button
(for deletion) at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing
control. If there is no editing control, you can prevent a cell shifting its
left end rightward in edit mode with the delegate’s tableView(_:shoul
dIndentWhileEditingRowAt:).

Changing accessory view
The cell’s accessory view will change automatically in accordance with
its editingAccessoryType or editingAccessoryView. If you assign
neither, so that they are nil, the cell’s existing accessory view will
vanish when in edit mode.

As with selection, you could set a cell’s isEditing property directly, but
you are more likely to let the table view manage editability. Table view
editability is controlled through the table view’s isEditing property,
usually by sending the table the setEditing(_:animated:) message. The
table responds by changing the edit mode of its cells.

A cell in edit mode can be selected by the user if the table view’s allowsSe
lectionDuringEditing or allowsMultipleSelectionDuringEditing is
true. The default is false.
Putting the table into edit mode is usually left up to the user. A typical
interface would be an Edit button that the user can tap. In a navigation
interface, we might have our view controller supply the button as a bar
button item in the navigation bar:

let b = UIBarButtonItem(barButtonSystemItem: .edit,

 target: self, action: #selector(doEdit))

self.navigationItem.rightBarButtonItem = b

Our action method will be responsible for putting the table into edit mode,
so in its simplest form it might look like this:

@objc func doEdit(_ sender: Any?) {

 self.tableView.setEditing(true, animated:true)

}

But now we face the problem of getting out of edit mode. The standard
interface is that the Edit button replaces itself with a Done button:

@objc func doEdit(_ sender: Any?) {

 var which : UIBarButtonSystemItem

 if !self.tableView.isEditing {

 self.tableView.setEditing(true, animated:true)

 which = .done

 } else {

 self.tableView.setEditing(false, animated:true)

 which = .edit

 }

 let b = UIBarButtonItem(barButtonSystemItem: which,

 target: self, action: #selector(doEdit))

 self.navigationItem.rightBarButtonItem = b

}

However, it turns out that all of that is completely unnecessary; if we want
standard behavior, it’s already implemented for us! A UIViewController has
an editButtonItem property, which vends a bar button item that does
precisely what we need:

It calls the UIViewController’s setEditing(_:animated:) when
tapped.

It tracks the UIViewController’s isEditing property, and changes its
own title accordingly (Edit or Done).

Moreover, UITableViewController’s implementation of setEditing(_:ani
mated:) is to call setEditing(_:animated:) on its table view. Thus, if
we’re using a UITableViewController, we get all of the desired behavior for
free, just by retrieving the editButtonItem and inserting the resulting
button into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem

When the table view enters edit mode, it consults its data source and
delegate about the editability of individual rows:

tableView(_:canEditRowAt:) to the data source

The default is true. The data source can return false to prevent the
given row from entering edit mode.

tableView(_:editingStyleForRowAt:) to the delegate

Each standard editing style corresponds to a control that will appear in
the cell. The choices (UITableViewCellEditingStyle) are:

.delete

The cell shows a Minus button at its left end. The user can tap this
to summon a Delete button, which the user can then tap to confirm
the deletion. This is the default.

.insert

The cell shows a Plus button at its left end; this is usually taken to
be an insert button.

.none

No editing control appears.
If the user taps an insert button (the Plus button) or a delete button (the
Delete button that appears after the user taps the Minus button), the data
source is sent the tableView(_:commit:forRowAt:) message. This is
where the actual insertion or deletion needs to happen. In addition to
altering the data model, you will probably want to alter the structure of the
table, and UITableView methods for doing this are provided:

insertRows(at:with:)

deleteRows(at:with:)

insertSections(_:with:)

deleteSections(_:with:)

moveSection(_:toSection:)

moveRow(at:to:)

The with: parameters are row animations that are effectively the same ones
discussed earlier in connection with refreshing table data; .left for an
insertion means to slide in from the left, and for a deletion it means to slide
out to the left, and so on. The two “move” methods provide animation with
no provision for customizing it.

If you’re issuing more than one of these commands, you can express them
as a single batch operation, combining not only the animations but also the
structural changes. For example, if you were to delete row 1 of a certain
section and then row 2 of the same section, you might reasonably worry
that the notion “row 2” would have changed its meaning after row 1 is
removed, so that you might need to delete row 1 twice, or change the order
of your deletions. But with a batch operation, you just say what you mean,
in any order: you delete row 1 and row 2 as part of the same batch,
expressing yourself in terms of the state of the table before the deletions,
and the right thing happens. If you perform insertions and deletions together
in one batch, the deletions are performed first, regardless of the order of
your commands, and the insertion commands refer to the state of the table
after the deletions.
In iOS 10 and before, a batch operation is expressed by surrounding your
commands with beginUpdates and endUpdates. New in iOS 11, this
imperative mode of expression is superseded by a new command, performB
atchUpdates(_:completion:), which takes two functions (similar to an
animation).

TIP
A batch operation can include reloadRows and reloadSections commands — but not reloadDa
ta.

If you rearrange the table with these commands, you must also change the
data model beforehand, so that when the table rearrangements are over, the
table can coherently refresh itself from the data model. For example, if you
delete a row, you must remove from the model the datum that it represents,
and you must do it before you delete the row. The runtime will try to help
you with error messages if you forget to do this.

Deleting Cells

Deletion of cells is the default, so it’s easy to implement. If you don’t
implement tableView(_:editingStyleForRowAt:), the default for all
rows is .delete. If you don’t implement tableView(_:canEditRowAt:),
the default for all rows is that they are editable. Therefore, you get two
features automatically:

Minus button and Delete button
If the table view is placed in edit mode, all editable cells get a Minus
button at the left end; if the user taps it, the cell displays a Delete button
at the right end. If the user taps the Delete button, tableView(_:commi
t:forRowAt:) is called with the .delete action.

Swipe-to-delete

If you have implemented tableView(_:commit:forRowAt:), all
editable cells permit swipe-to-delete. The user can swipe left on a cell
and the Delete button appears; if the user taps the Delete button, or if
the user keeps swiping left, tableView(_:commit:forRowAt:) is
called with the .delete action.

You can customize the Delete button’s title with the table view delegate
method tableView(_:titleForDeleteConfirmationButtonForRowAt:).
Let’s modify our table of state names so that the user can delete any cell.
All we have to do is implement tableView(_:commit:forRowAt:) to get
swipe-to-delete. In that implementation, we proceed in two stages. First, we
remove the deleted row — from the data and then from the table. Second, if
the deletion of that row emptied a section, we remove the deleted section —
from the data and then from the table:

override func tableView(_ tableView: UITableView,

 commit editingStyle: UITableViewCellEditingStyle,

 forRowAt ip: IndexPath) {

 switch editingStyle {

 case .delete:

 self.sections[ip.section].rowData.remove(at:ip.row)

 tableView.performBatchUpdates({

 tableView.deleteRows(at:[ip], with: .automatic)

 }) {_ in

 if self.sections[ip.section].rowData.count == 0 {

 self.sections.remove(at:ip.section)

 tableView.performBatchUpdates ({

 tableView.deleteSections(

 IndexSet(integer: ip.section), with:.fade)

 })

 }

 }

 default: break

 }

}

We can also allow the user to delete a row when the table view is in edit
mode. All we have to do is provide the user with a way to get the table view
into edit mode! But we already solved that problem in the preceding
section. When the table view is managed by a table view controller in a
navigation interface, we can simply say this:

self.navigationItem.rightBarButtonItem = self.editButtonItem

The user can now put the table view into edit mode, tap a row’s Minus
button to reveal the Delete button, and tap the Delete button to delete the
row.
An interesting problem is how to turn swipe-to-delete off while still
allowing the user to delete rows when the table view is in edit mode. We get
swipe-to-delete “for free” by virtue of our having supplied an
implementation of tableView(_:commit:forRowAt:), and we cannot
remove that implementation — we need it so that when the user taps the
Minus button and the Delete button in edit mode, deletion actually occurs.
One solution is to make all rows noneditable unless the table view is
already in edit mode:

override func tableView(_ tableView: UITableView,

 editingStyleForRowAt indexPath: IndexPath)

 -> UITableViewCellEditingStyle {

 return tableView.isEditing ? .delete : .none

}

Custom Action Buttons
Instead of disabling swipe-to-delete, you might choose to extend it,
introducing additional buttons that the user can reveal by swiping a cell
sideways. That’s how Apple’s Mail app works: the user can swipe a
message listing left to reveal three buttons, or right to reveal one button, and
can tap a button to take action on that message.
In iOS 10 and before, a version of this functionality was implemented
through the delegate method tableView(_:editActionsForRowAt:). But
its powers were very limited in comparison to the behavior of the Mail app:
the user could swipe left but not right; a button could have only a title, not
an image; the buttons couldn’t stretch to allow the user to perform an action
by swiping alone.
New in iOS 11, Apple provides an API that allows your app to have the
same kind of interface as the Mail app. You provide a cell with swipe
actions; these are buttons that can appear at the right or left (leading or
trailing) end of the cell when the user swipes sideways, and so there are two
delegate methods you can implement:

tableView(_:leadingSwipeActionsConfigurationForRowAt:)

tableView(_:trailingSwipeActionsConfigurationForRowAt:)

Your job here is to return a UISwipeActionsConfiguration object (or nil),
which wraps an array of UIContextualAction objects; a
UIContextualAction is a button, initialized with a style (.normal or .destr
uctive), a title, and an action function that will be called when the action is
to be executed. The title can be nil, because you might set the
UIContextualAction’s image instead. Here’s a simple example, where we
implement a Delete button with a trash-can icon, along with a blue Mark
button; the user can swipe left to see them:

override func tableView(_ tableView: UITableView,

 trailingSwipeActionsConfigurationForRowAt ip: IndexPath)

 -> UISwipeActionsConfiguration? {

 let d = UIContextualAction(style: .destructive, title: nil) {

 action, view, completion in

 // ... exactly as before ...

 completion(true)

 }

 d.image = UIGraphicsImageRenderer(size:CGSize(30,30)).image { _ in

 UIImage(named:"trash")?.draw(in: CGRect(0,0,30,30))

 }

 let m = UIContextualAction(style: .normal, title: "Mark") {

 action, view, completion in

 print("Mark") // in real life, do something here

 completion(true)

 }

 m.backgroundColor = .blue

 let config = UISwipeActionsConfiguration(actions: [d,m])

 return config

}

The omitted code (where my comment says “exactly as before”) comes
directly from the .delete case of the tableView(_:commit:forRowAt:)
implementation developed in the preceding section; indeed, it is quite
possible that if you use swipe actions, you won’t implement tableView(_:
commit:forRowAt:) at all. The index path of the affected row was handed
to us as the second parameter of tableView(_:trailingSwipeActionsCo
nfigurationForRowAt:).
The action function receives as its parameters the UIContextualAction
itself, the view (which you probably won’t need), and a completion
function. You must call this completion function, with a Bool argument, to
signal that the action is over and the swiped cell should slide back into
place.

The actions for the UISwipeActionsConfiguration object are supplied in
order, starting at the far end of the cell. A UISwipeActionsConfiguration
object has one additional property, a Bool called performsFirstActionWi
thFullSwipe. If this is true, the user can keep swiping to perform the first
action; if false, the user must swipe to reveal the button and then tap the
button. The default is true for trailing actions, false for leading actions.

Editable Content in Cells

A cell might have content that the user can edit directly, such as a UISwitch
that the user can switch on or off (Chapter 12), or a UITextField where the
user can change the text (Chapter 10). This situation is effectively the
inverse of our implementation of row deletion: the user is making changes
in the view, and you must update the model accordingly. The challenge, in
general, is twofold:

You need to hear that the user has made a change in the view.
You need to determine what row the user has changed.

Imagine an app that maintains a list of names and phone numbers. The data
are displayed as a grouped style table, and they become editable when the
user taps the Edit button (Figure 8-9).

Figure 8-9. A simple phone directory app

The table displays just one name but can display multiple phone numbers,
so my data model looks like this:

var name = ""

var numbers = [String]()

We don’t need a button at the left end of the cell when it’s being edited:

override func tableView(_ tableView: UITableView,

 editingStyleForRowAt indexPath: IndexPath)

 -> UITableViewCellEditingStyle {

 return .none

}

A UITextField is editable if its isEnabled is true. To tie this to the cell’s i
sEditing state, I’ll use a custom UITableViewCell class called MyCell
with a single UITextField connected to an outlet property called
textField:

class MyCell : UITableViewCell {

 @IBOutlet weak var textField : UITextField!

 override func didTransition(to state: UITableViewCellStateMask) {

 self.textField.isEnabled = state.contains(.showingEditControlMask)

 super.didTransition(to:state)

 }

}

Now we’re ready to face the two challenges I mentioned a moment ago.
How will we hear that the user is editing a text field? One obvious way is to
be the text field’s delegate. We can conveniently set that up when we
configure the cell:

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath) as! MyCell

 switch indexPath.section {

 case 0:

 cell.textField.text = self.name

 case 1:

 cell.textField.text = self.numbers[indexPath.row]

 cell.textField.keyboardType = .numbersAndPunctuation

 default: break

 }

 cell.textField.delegate = self // *

 return cell

}

Acting as the text field’s delegate, we are responsible for implementing the
Return button in the keyboard to dismiss the keyboard; we can do that by

implementing textFieldShouldReturn(_:) (I’ll talk more about this in
Chapter 10):

func textFieldShouldReturn(_ textField: UITextField) -> Bool {

 textField.endEditing(true)

 return false

}

Still acting as the text field’s delegate, we can hear that the user has
changed the text field’s text, by implementing textFieldDidEndEditing
(_:). And here comes the second challenge — working out which row the
edited text field belongs to. I like to do that by walking up the view
hierarchy until I come to the table view cell and asking the table view for
the index path of the row that it occupies. It is then trivial to update the
model:

func textFieldDidEndEditing(_ textField: UITextField) {

 // some cell's text field has finished editing; which cell?

 var v : UIView = textField

 repeat { v = v.superview! } while !(v is UITableViewCell)

 let cell = v as! MyCell

 // what row is that?

 let ip = self.tableView.indexPath(for:cell)!

 // update data model to match

 if ip.section == 1 {

 self.numbers[ip.row] = cell.textField.text!

 } else if ip.section == 0 {

 self.name = cell.textField.text!

 }

}

Inserting Cells
I’ll continue with the name-and-phone-number example from the previous
section, to illustrate insertion of cells. We’ll let the user switch the table into
edit mode to reveal a Plus (insert) button at the left of a phone number cell.
You are unlikely to attach a Plus button to every row. More likely, every
row will have a Minus button except the last row, which has a Plus button;

this shows the user that a new row can be appended at the end of the list
(Figure 8-10).

Figure 8-10. Phone directory app in edit mode

It’s easy to make the buttons accord with that specification:

override func tableView(_ tableView: UITableView,

 editingStyleForRowAt indexPath: IndexPath)

 -> UITableViewCellEditingStyle {

 if indexPath.section == 1 {

 let ct = self.tableView(

 tableView, numberOfRowsInSection:indexPath.section)

 if ct-1 == indexPath.row {

 return .insert

 }

 return .delete;

 }

 return .none

}

The person’s name has no editing control (a person must have exactly one
name), so we’ll also prevent it from indenting in edit mode:

override func tableView(_ tableView: UITableView,

 shouldIndentWhileEditingRowAt indexPath: IndexPath) -> Bool {

 if indexPath.section == 1 {

 return true

 }

 return false

}

Now we’re ready to implement a response to the editing control button:

override func tableView(_ tv: UITableView,

 commit editingStyle: UITableViewCellEditingStyle,

 forRowAt ip: IndexPath) {

 tv.endEditing(true)

 // so we must force saving to the model

 if editingStyle == .insert {

 self.numbers += [""]

 let ct = self.numbers.count

 tv.performBatchUpdates({

 tv.insertRows(at:

 [IndexPath(row:ct-1, section:1)], with:.automatic)

 tv.reloadRows(at:

 [IndexPath(row:ct-2, section:1)], with:.automatic)

 }) { _ in

 let cell = self.tableView.cellForRow(at:

 IndexPath(row:ct-1, section:1))

 (cell as! MyCell).textField.becomeFirstResponder()

 }

 }

 if editingStyle == .delete {

 self.numbers.remove(at:ip.row)

 tv.performBatchUpdates({

 tv.deleteRows(at:[ip], with:.automatic)

 tv.reloadSections(IndexSet(integer:1), with:.automatic)

 })

 }

}

First, we force our text fields to cease editing. This is effectively a way
of causing our textFieldDidEndEditing to be called; the user may
have tapped the button while editing, and we want our model to contain
the very latest changes.
When the tapped control is an insert button, the new row will be empty,
and it will be at the end of the table, so we append an empty string to
the self.numbers model array.
We also insert a corresponding row at the end of the table view.

Now two successive rows have a Plus button; the way to fix that is to
reload the first of those rows.
Finally, we show the keyboard for the new empty phone number, so that
the user can start editing it immediately.
We already know what to do when the tapped control is a delete button,
so let’s consider that a previously solved problem.

Rearranging Cells
You can permit the user to rearrange rows of a table. If the data source
implements tableView(_:moveRowAt:to:), the table displays a reordering
control at the right end of each row in edit mode (Figure 8-10), and the user
can drag it to rearrange cells. The reordering control can be suppressed for
individual cells by implementing tableView(_:canMoveRowAt:).
The user is free to move rows that display a reordering control, but the
delegate can limit where a row can be moved to by implementing tableVie
w(_:targetIndexPathForMoveFromRowAt:toProposedIndexPath:).
To illustrate, we’ll add to our name-and-phone-number app the ability to
rearrange phone numbers. There must be multiple phone numbers to
rearrange:

override func tableView(_ tableView: UITableView,

 canMoveRowAt indexPath: IndexPath) -> Bool {

 if indexPath.section == 1 && self.numbers.count > 1 {

 return true

 }

 return false

}

A phone number must not be moved out of its section, so we implement the
delegate method to prevent this. We also take this opportunity to dismiss the
keyboard if it is showing:

override func tableView(_ tableView: UITableView,

 targetIndexPathForMoveFromRowAt sourceIndexPath: IndexPath,

 toProposedIndexPath proposedDestinationIndexPath: IndexPath)

 -> IndexPath {

 tableView.endEditing(true)

 if proposedDestinationIndexPath.section == 0 {

 return IndexPath(row:0, section:1)

 }

 return proposedDestinationIndexPath

}

After the user moves an item, tableView(_:moveRowAt:to:) is called,
and we trivially update the model to match. We also reload the table, to fix
the editing controls:

override func tableView(_ tableView: UITableView,

 moveRowAt fromIndexPath: IndexPath,

 to toIndexPath: IndexPath) {

 let s = self.numbers[fromIndexPath.row]

 self.numbers.remove(at:fromIndexPath.row)

 self.numbers.insert(s, at:toIndexPath.row)

 tableView.reloadData()

}

Dynamic Cells
By rearranging a table in code, you can obtain some very effective dynamic
interfaces. For example, let’s permit the user to double tap on a section
header as a way of collapsing or expanding the section. (This idea is
shamelessly stolen from a WWDC 2010 video.)
In reality, we’ll suppress or permit the display of the rows of the section,
with a nice animation as the change takes place. We’ll use our table of U.S.
states, whose data model is self.sections, an array of Section. We’ll also
maintain a Set (of Int), self.hiddenSections, listing the sections that
aren’t displaying their rows. A section is to show all of its rows or none of
them, depending on whether it’s included in self.hiddenSections:

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 if self.hiddenSections.contains(section) { // *

 return 0

 }

 return self.sections[section].rowData.count

}

Curiously, UITableView provides no correspondence between a section
header and the number of its section. My solution is to subclass
UITableViewHeaderFooterView and give my subclass a section property:

class MyHeaderView : UITableViewHeaderFooterView {

 var section = 0

}

Whenever tableView(_:viewForHeaderInSection:) is called, I make
sure the header has a double tap gesture recognizer, and I set the header
view’s section property:

override func tableView(_ tableView: UITableView,

 viewForHeaderInSection section: Int) -> UIView? {

 let h = tableView.dequeueReusableHeaderFooterView(

 withIdentifier: self.headerID) as! MyHeaderView

 if h.gestureRecognizers == nil {

 let tap = UITapGestureRecognizer(

 target: self, action: #selector(tapped))

 tap.numberOfTapsRequired = 2

 h.addGestureRecognizer(tap) // *

 // ...

 }

 // ...

 h.section = section // *

 return h

}

When the user double taps a section header, we learn from the header what
section this is, we find out from the model how many rows this section has,
and we derive the index paths of the rows we’re about to insert or remove.
Now we look for the section number in our hiddenSections set. If it’s
there, we’re about to display the rows, so we remove that section number
from hiddenSections, and we insert the rows. If it’s not there, we’re about
to hide the rows, so we insert that section number into hiddenSections,
and we delete the rows:

@objc func tapped (_ g : UIGestureRecognizer) {

 let v = g.view as! MyHeaderView

 let sec = v.section

 let ct = self.sections[sec].rowData.count

 let arr = (0..<ct).map {IndexPath(row:$0, section:sec)}

 if self.hiddenSections.contains(sec) {

 self.hiddenSections.remove(sec)

 self.tableView.performBatchUpdates({

 self.tableView.insertRows(at:arr, with:.automatic)

 }) { _ in

 self.tableView.scrollToRow(at:arr[0], at:.none, animated:true)

 }

 } else {

 self.hiddenSections.insert(sec)

 self.tableView.performBatchUpdates({

 self.tableView.deleteRows(at:arr, with:.automatic)

 }) { _ in

 let rect = self.tableView.rect(forSection: sec)

 self.tableView.scrollRectToVisible(rect, animated: true)

 }

 }

}

Another useful device is to animate a change in the height of one or more
cells. The trick here is to use an empty batch operation:

self.tableView.performBatchUpdates(nil)

This causes the section and row structure of the table to be asked for, along
with calculation of all heights, but no cells, headers or footers are requested;
the table view is laid out freshly without reloading any cells. If any heights
have changed since the last time the table view was laid out, the change in
height is animated.
Apple’s Calendar app is an example. When you’re editing an event and you
tap on the Starts or Ends date, a space opens up just below that row of the
table, revealing a date picker. In reality, the date picker is in its own table
view cell. It was there all along, but you couldn’t see it because the cell had
zero height and its clipsToBounds is true. When you tap on the Starts or
Ends date, performBatchUpdates is called. This causes tableView(_:hei

ghtForRowAt:) to be called, and a different answer is given for the height
of this cell. The cell thus opens up to reveal the date picker.
We can get the same effect using code along these lines:

var showDatePicker = false

func toggleDatePickerCell() {

 self.showDatePicker = !self.showDatePicker

 self.tableView.performBatchUpdates(nil)

}

func tableView(_ tableView: UITableView,

 heightForRowAt indexPath: IndexPath) -> CGFloat {

 if indexPath == datePickerPath {

 return self.showDatePicker ? 200 : 0

 }

 return tableView.rowHeight

}

Table View Menus
A menu, in iOS, is a sort of balloon containing tappable menu items such as
Copy, Cut, and Paste. You can permit the user to summon a menu by
performing a long press on a table view cell. The long press followed by
display of the menu gives the cell a selected appearance, which goes away
when the menu is dismissed.
To allow the user to summon a menu from a table view’s cells, you
implement three delegate methods:

tableView(_:shouldShowMenuForRowAt:)

Return true if the user is to be permitted to summon a menu by
performing a long press on this cell.

tableView(_:canPerformAction:forRowAt:withSender:)

You’ll be called repeatedly with selectors for various actions that the
system knows about. Returning true, regardless, causes the Copy, Cut,
and Paste menu items to appear in the menu, corresponding to the
UIResponderStandardEditActions copy, cut, and paste; return false
to prevent the menu item for an action from appearing. The menu itself

will appear unless you return false to all three actions. The sender is
the shared UIMenuController.

tableView(_:performAction:forRowAt:withSender:)

The user has tapped one of the menu items; your job is to respond to it
somehow.

Here’s an example where the user can summon a Copy menu from any cell
(Figure 8-11):

let copy = #selector(UIResponderStandardEditActions.copy)

override func tableView(_ tableView: UITableView,

 shouldShowMenuForRowAt indexPath: IndexPath) -> Bool {

 return true

}

override func tableView(_ tableView: UITableView,

 canPerformAction action: Selector,

 forRowAt indexPath: IndexPath,

 withSender sender: Any?) -> Bool {

 return action == copy

}

override func tableView(_ tableView: UITableView,

 performAction action: Selector,

 forRowAt indexPath: IndexPath,

 withSender sender: Any?) {

 if action == copy {

 // ... do whatever copying consists of ...

 }

}

Figure 8-11. A table view cell with a menu

To add a custom menu item to the menu is a little more work. Using our
table of U.S. states, imagine that one can copy a state’s two-letter
abbreviation to the clipboard. We want to give the menu an additional menu
item whose title is Abbrev. The trick is that this menu item’s action must
correspond to a method in the cell. We will therefore need our table to use a
custom UITableViewCell subclass; we’ll call it MyCell:

class MyCell : UITableViewCell {

 @objc func abbrev(_ sender: Any?) {

 // ...

 }

}

We must tell the shared UIMenuController to append the menu item to the
global menu; the tableView(_:shouldShowMenuForRowAt:) delegate
method is a good place to do this:

let copy = #selector(UIResponderStandardEditActions.copy)

let abbrev = #selector(MyCell.abbrev)

override func tableView(_ tableView: UITableView,

 shouldShowMenuForRowAt indexPath: IndexPath) -> Bool {

 let mi = UIMenuItem(title: "Abbrev", action: abbrev)

 UIMenuController.shared.menuItems = [mi]

 return true

}

If we want this menu item to appear in the menu, and if we want to respond
to it when the user taps it, we must add its action selector to the two perfor
mAction: delegate methods:

override func tableView(_ tableView: UITableView,

 canPerformAction action: Selector,

 forRowAt indexPath: IndexPath,

 withSender sender: Any?) -> Bool {

 return action == copy || action == abbrev

}

override func tableView(_ tableView: UITableView,

 performAction action: Selector,

 forRowAt indexPath: IndexPath,

 withSender sender: Any?) {

 if action == copy {

 // ... do whatever copying consists of ...

 }

 if action == abbrev {

 // ... do whatever abbreviating consists of ...

 }

}

The Abbrev menu item now appears when the user long presses a cell of
our table, and the cell’s abbrev method is called when the user taps that
menu item. Now we’ll implement that method. We could make the cell
itself respond to the tap by doing whatever abbreviating consists of; but we
have already configured the table view delegate to respond to the abbrev
action, so it makes more sense to forward the message to the table view
delegate. We simply have to work out what row this is and who the table
view’s delegate is; once we get a reference to the containing table view, it
will tell us both of those things:

func abbrev(_ sender: Any?) {

 // find my table view

 var v : UIView = self

 repeat {v = v.superview!} while !(v is UITableView)

 let tv = v as! UITableView

 // ask it what index path we are

 let ip = tv.indexPath(for: self)!

 // talk to its delegate

 tv.delegate?.tableView?(tv,

 performAction:#selector(abbrev), forRowAt:ip, withSender:sender)

}

Collection Views
A collection view (UICollectionView) is a UIScrollView that generalizes
the notion of a table view. Indeed, knowing about table views, you know a
great deal about collection views already. Where a table view has rows, a
collection view has items. (UICollectionView extends IndexPath so that you
can refer to its item property instead of its row property, though in fact they
are interchangeable.) Otherwise, collection views and table views are
extremely similar; here are some facts about collection views:

The items are portrayed by reusable cells. These are
UICollectionViewCell instances. If the collection view is instantiated
from a storyboard, you can get reusable cells from the storyboard;
otherwise, you’ll register a class or nib with the collection view.
A collection view can clump its items into sections, identified by section
number.
A collection view has a data source (UICollectionViewDataSource) and
a delegate (UICollectionViewDelegate), and it’s going to ask the data
source Three Big Questions:

— numberOfSections(in:)

— collectionView(_:numberOfItemsInSection:)

— collectionView(_:cellForItemAt:)
To answer the third Big Question, your data source will obtain a reusable
cell by calling:

— dequeueReusableCell(withReuseIdentifier:for:)
A collection view allows the user to select a cell, or multiple cells. The
delegate is notified of highlighting and selection.
Your code can rearrange the cells, inserting, moving, and deleting cells
or entire sections, with animation.
If the delegate permits, the user can long press a cell to produce a menu,
or rearrange the cells by dragging.
A collection view can have a refresh control.
You can manage your UICollectionView through a
UICollectionViewController.

A collection view section can have a header and footer, but the collection
view itself does not call them that; instead, it generalizes its subview types
into cells, on the one hand, and supplementary views, on the other. A
supplementary view is just a UICollectionReusableView, which is
UICollectionViewCell’s superclass. A supplementary view is associated
with a kind, which is just a string identifying its type; thus you can have a

header as one kind, a footer as another kind, and anything else you can
imagine. A supplementary view in a collection view is then similar to a
section header or footer view in a table view:

Supplementary views are reusable.
The data source method where you are asked for a supplementary view
will be:

— collectionView(_:viewForSupplementaryElementOfKind:at:)
In that method, your data source will obtain a reusable supplementary
view by calling:

— dequeueReusableSupplementaryView(ofKind:withReuseIdentif
ier:for:)

Here are some small differences between a table view and a collection
view:

A collection view has no edit mode (nor has a collection view cell).
A collection view has no section index.

The big difference between a table view and a collection view is how the
collection view lays out its elements (cells and supplementary views). A
table view lays out its cells in just one way: a vertically scrolling column,
where the cells’ widths are the width of the table view, their heights are
dictated by the table view or the delegate, and the cells are touching one
another. A collection view has no such rules. In fact, a collection view
doesn’t lay out its elements at all! That job is left to another object, a
collection view layout.
A collection view layout is an instance of a UICollectionViewLayout
subclass. It is responsible for the overall layout of the collection view that
owns it. It does this by answering some Big Questions of its own, posed by
the collection view; the most important are these:

collectionViewContentSize

How big is the entire content? The collection view needs to know this,
because it is a scroll view (Chapter 7), and this will be the content size

of the scrollable material that it will display.

layoutAttributesForElements(in:)

Where are the elements to be positioned within the content rectangle?
The layout attributes, as I’ll explain in more detail in a moment, are
bundles of positional information.

To answer these questions, the collection view layout needs to ask the
collection view some questions as well. It will want to know the collection
view’s bounds; also, it will probably call such methods as numberOfSectio
ns and numberOfItems(inSection:), and the collection view, in turn, will
get the answers to those questions from its data source.
The collection view layout can thus assign the elements any positions it
likes, and the collection view will faithfully draw them in those positions
within its content rectangle. That seems very open-ended, and indeed it is.
To get you started, there’s one built-in UICollectionViewLayout subclass —
UICollectionViewFlowLayout.
UICollectionViewFlowLayout arranges its cells in something like a grid.
The grid can be scrolled either horizontally or vertically, but not both, so it’s
a series of rows or columns. Through properties and a delegate protocol of
its own (UICollectionViewDelegateFlowLayout), the
UICollectionViewFlowLayout instance lets you provide instructions about
how big the cells are and how they should be spaced. It defines two
supplementary view types to let you give each section a header and a footer.
Figure 8-12 shows a collection view, laid out with a flow layout, from my
Latin flashcard app. This interface lists the chapters and lessons into which
the flashcards themselves are divided, and allows the user to jump to a
desired lesson by tapping it. Previously, I was using a table view to present
this list; when collection views were introduced (in iOS 6), I adopted one
for this interface, and you can see why. Instead of a lesson item like “1a”
occupying an entire row that stretches the whole width of a table, it’s just a
little rectangle; in landscape orientation, the flow layout fits five of these
rectangles onto a line for me (and on a bigger phone, it might be seven or

eight). So a collection view is a much more compact and appropriate way to
present this interface than a table view.

Figure 8-12. A collection view in my Latin flashcard app

If UICollectionViewFlowLayout doesn’t quite meet your needs, you can
subclass it, or you can subclass UICollectionViewLayout itself. (I’ll talk
more about that later on.) A familiar example of a collection view interface
is Apple’s Photos app; it probably uses a UICollectionViewFlowLayout
subclass.

Collection View Classes
Here are the main classes associated with UICollectionView. This is just a
conceptual overview; I don’t recite all the properties and methods of each
class, which you can gather from the documentation:

UICollectionViewController
A UIViewController subclass. Like a table view controller,
UICollectionViewController is convenient if a UICollectionView is to
be a view controller’s view, but using it is not required. It is the delegate

and data source of its collectionView by default. The designated
initializer requires you to supply a collection view layout instance,
which will be its collectionViewLayout. In the nib editor, there is a
Collection View Controller nib object, which comes with a collection
view.

UICollectionView
A UIScrollView subclass. Its capabilities are parallel to those of a
UITableView, as I outlined in the preceding section. It has a backgroun
dColor (because it’s a view) and optionally a backgroundView in front
of that. Its designated initializer requires you to supply a collection view
layout instance, which will be its collectionViewLayout. In the nib
editor, there is a Collection View nib object, which comes with a
Collection View Flow Layout by default; you can change the collection
view layout class with the Layout pop-up menu in the Attributes
inspector.

UICollectionViewLayoutAttributes

A value class (a bunch of properties), tying together an element’s index
Path with the specifications for how and where it should be drawn.
These specifications are reminiscent of view or layer properties, with
names like frame, center, size, transform, and so forth. Layout
attributes objects function as the mediators between the collection view
layout and the collection view; they are what the collection view layout
passes to the collection view to tell it where all the elements of the view
should go.

UICollectionViewCell

An extremely minimal view class. It has an isHighlighted property
and an isSelected property. It has a contentView, a selectedBackgr
oundView, a backgroundView, and of course (since it’s a view) a backg
roundColor, layered in that order, just like a table view cell; everything
else is up to you. If you start with a collection view in a storyboard, you

get prototype cells, which you obtain by dequeuing. Otherwise, you
obtain cells through registration and dequeuing.

UICollectionReusableView
The superclass of UICollectionViewCell — so it is even more minimal!
This is the class of supplementary views such as headers and footers. If
you’re using a flow layout in a storyboard, you are given header and
footer prototype views, which you obtain by dequeuing; otherwise, you
obtain reusable views through registration and dequeuing.

UICollectionViewLayout
The layout workhorse class for a collection view. A collection view
cannot exist without a collection view layout instance! As I’ve already
said, the collection view layout knows how much room all the subviews
occupy, and supplies the collectionViewContentSize that sets the co
ntentSize of the collection view, qua scroll view. In addition, the
collection view layout must answer questions from the collection view,
by supplying a UICollectionViewLayoutAttributes object, or an array of
such objects, saying where and how elements should be drawn. These
questions come in two categories:

Static attributes
The collection view wants to know the layout attributes of an item
or supplementary view, specified by index path, or of all elements
within a given rect.

Dynamic attributes
The collection view is inserting or removing elements. It asks for
the layout attributes that an element, specified by index path, should
have as insertion begins or removal ends. The collection view can
animate between the element’s static attributes and these dynamic
attributes. For example, if an element’s layout attributes alpha is 0
as removal ends, the element will appear to fade away as it is
removed.

The collection view also notifies the collection view layout of pending
changes through some methods whose names start with prepare and fi
nalize. This is another way for the collection view layout to participate
in animations, or to perform other kinds of preparation and cleanup.
UICollectionViewLayout is an abstract class; to use it, you must
subclass it, or start with the built-in subclass,
UICollectionViewFlowLayout.

UICollectionViewFlowLayout
A concrete subclass of UICollectionViewLayout; you can use it as is, or
you can subclass it. It lays out items in a grid that can be scrolled either
horizontally or vertically, and it defines two supplementary element
types to serve as the header and footer of a section. A collection view in
the nib editor has a Layout pop-up menu that lets you choose a Flow
layout, and you can configure the flow layout in the Size inspector; in a
storyboard, you can even add and design a header and a footer.
A flow layout has the following configurable properties:

scrollDirection, either .vertical or .horizontal

sectionInset (the margins for a section); new in iOS 11, the secti
onInsetReference property lets you specify the reference for this
inset (.fromContentInset, .fromLayoutMargins, or .fromSafeAr
ea)

itemSize, along with a minimumInteritemSpacing and minimumLi
neSpacing

headerReferenceSize and footerReferenceSize

sectionHeadersPinToVisibleBounds and sectionFootersPinTo
VisibleBounds; if true, they cause the headers and footers to
behave like table view section headers and footers when the user
scrolls

At a minimum, if you want to see any section headers, you must assign
the flow layout a headerReferenceSize, because the default is .zero.

Otherwise, you get initial defaults that will at least allow you to see
something immediately, such as an itemSize of (50.0,50.0) along
with reasonable default spacing between items and rows (or columns).
UICollectionViewFlowLayout also defines a delegate protocol of its
own, UICollectionViewDelegateFlowLayout. The flow layout
automatically treats the collection view’s delegate as its own delegate.
The section margins, item size, item spacing, line spacing, and header
and footer size can be set for individual sections, cells, and
supplementary views through this delegate.

Using a Collection View
Here’s how the view shown in Figure 8-12 is created. I have a
UICollectionViewController subclass, LessonListController. Every
collection view must have a collection view layout, so
LessonListController’s designated initializer initializes itself with a
UICollectionViewFlowLayout:

init(terms data:[Term]) {

 // ... other self-initializations here ...

 let layout = UICollectionViewFlowLayout()

 super.init(collectionViewLayout:layout)

}

In viewDidLoad, we give the flow layout its hints about the sizes of the
margins, cells, and headers, as well as registering for cell and header
reusability:

let headerID = "LessonHeader"

let cellID = "LessonCell"

override func viewDidLoad() {

 super.viewDidLoad()

 let layout = self.collectionView!.collectionViewLayout

 as! UICollectionViewFlowLayout

 layout.sectionInset = UIEdgeInsetsMake(10,20,10,20)

 layout.headerReferenceSize = CGSize(0,40)

 layout.itemSize = CGSize(70,45)

 self.collectionView!.register(

 UINib(nibName: self.cellID, bundle: nil),

 forCellWithReuseIdentifier: self.cellID)

 self.collectionView!.register(

 UICollectionReusableView.self,

 forSupplementaryViewOfKind: UICollectionElementKindSectionHeader,

 withReuseIdentifier: self.headerID)

 self.collectionView!.backgroundColor = .myGolden

}

My data model is just like the model for the table of U.S. states I’ve been
using throughout this chapter. (What are the chances of that?) The
difference is that my rowData, instead of being an array of Strings, is an
array of Terms. (Term is basically a custom value class.) The first two of the
Three Big Questions to the data source are extremely familiar:

override func numberOfSections(

 in collectionView: UICollectionView) -> Int {

 return self.sections.count

}

override func collectionView(_ collectionView: UICollectionView,

 numberOfItemsInSection section: Int) -> Int {

 return self.sections[section].rowData.count

}

The third of the Three Big Questions to the data source creates and
configures the cells. In a .xib file, I’ve designed the cell with a single
subview, a UILabel with tag 1; if the text of that label is still "Label", the
cell has come freshly minted from the nib and needs further initial
configuration. Among other things, I assign each new cell a selectedBack
groundView and give the label a highlightedTextColor, to get an
automatic indication of selection:

override func collectionView(_ collectionView: UICollectionView,

 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 let cell = collectionView.dequeueReusableCell(

 withReuseIdentifier: self.cellID, for: indexPath)

 let lab = cell.viewWithTag(1) as! UILabel

 if lab.text == "Label" {

 lab.highlightedTextColor = .white

 cell.backgroundColor = .myPaler

 cell.layer.borderColor = UIColor.brown.cgColor

 cell.layer.borderWidth = 5

 cell.layer.cornerRadius = 5

 let v = UIView()

 v.backgroundColor = UIColor.blue.withAlphaComponent(0.8)

 cell.selectedBackgroundView = v

 }

 let term = self.sections[indexPath.section].rowData[indexPath.item]

 lab.text = term.lesson + term.sectionFirstWord

 return cell

}

The data source is also asked for the supplementary element views; in my
case, these are the section headers. I configure the header entirely in code.
Again I distinguish between newly minted views and reused views; the
latter will already have a single subview, a UILabel:

override func collectionView(_ collectionView: UICollectionView,

 viewForSupplementaryElementOfKind kind: String,

 at indexPath: IndexPath) -> UICollectionReusableView {

 let v = collectionView.dequeueReusableSupplementaryView(

 ofKind: UICollectionElementKindSectionHeader,

 withReuseIdentifier: self.headerID, for: indexPath)

 if v.subviews.count == 0 {

 let lab = UILabel(frame:CGRect(10,0,100,40))

 lab.font = UIFont(name:"GillSans-Bold", size:20)

 lab.backgroundColor = .clear

 v.addSubview(lab)

 v.backgroundColor = .black

 lab.textColor = .myPaler

 }

 let lab = v.subviews[0] as! UILabel

 lab.text = self.sections[indexPath.section].sectionName

 return v

}

As you can see from Figure 8-12, the first section is treated specially — it
has no header, and its cell is wider. I take care of that with two
UICollectionViewDelegateFlowLayout methods:

func collectionView(_ collectionView: UICollectionView,

 layout lay: UICollectionViewLayout,

 sizeForItemAt indexPath: IndexPath) -> CGSize {

 var sz = (lay as! UICollectionViewFlowLayout).itemSize

 if indexPath.section == 0 {

 sz.width = 150

 }

 return sz

}

func collectionView(_ collectionView: UICollectionView,

 layout lay: UICollectionViewLayout,

 referenceSizeForHeaderInSection section: Int) -> CGSize {

 var sz = (lay as! UICollectionViewFlowLayout).headerReferenceSize

 if section == 0 {

 sz.height = 0

 }

 return sz

}

When the user taps a cell, I hear about it through the delegate method colle
ctionView(_:didSelectItemAt:) and respond accordingly. And that’s
the entire code for managing this collection view!

Deleting Cells
Unlike table views, collection views don’t provide any standard interface
for allowing the user to delete cells. You are free to display a
UICollectionViewController’s editButtonItem, and when the user taps it,
the collection view controller’s setEditing(_:animated:) is called; but
the interface does not automatically change in response, and neither a
collection view nor a collection view cell has an isEditing property.
Providing interface that lets the user express a desire to delete a cell, such as
a Delete button that appears in every cell when the view controller’s isEdit
ing is true, is left completely up to you.
Actually deleting cells is straightforward. Here’s an example. Assume that
the cells to be deleted have been selected, with multiple selection being
possible. The user now taps a button asking to delete the selected cells. If
there are selected cells, I obtain them as an array of IndexPaths. My data
model is once again the usual Section array. I delete each rowData entry (in
reverse order), keeping track of any sections that end up empty; then I
delete the corresponding items from the collection view. Finally, I do the

same for the sections, deleting first the empty Section objects from my
model, then the corresponding sections from the collection view (for the re
move(at:) utility, see Appendix B):

@IBAction func doDelete(_ sender: Any) { // button, delete selected cells

 guard var arr =

 self.collectionView!.indexPathsForSelectedItems,

 arr.count > 0 else {return}

 arr.sort()

 var empties : Set<Int> = []

 for ip in arr.reversed() {

 self.sections[ip.section].rowData.remove(at:ip.item)

 if self.sections[ip.section].rowData.count == 0 {

 empties.insert(ip.section)

 }

 }

 self.collectionView!.performBatchUpdates({

 self.collectionView!.deleteItems(at:arr)

 if empties.count > 0 {

 self.sections.remove(at:empties)

 self.collectionView!.deleteSections(IndexSet(empties))

 }

 })

}

Rearranging Cells
You can permit the user to rearrange cells by dragging them. If you’re using
a collection view controller, it supplies a gesture recognizer ready to
respond to the user’s long press gesture followed by a drag.
To permit the drag to proceed, you implement two data source methods:

collectionView(_:canMoveItemAt:)

Return true to allow this item to be moved.

collectionView(_:moveItemAt:to:)

The item has been moved to a new index path. Update the data model,
and reload cells as needed.

You can also limit where the user can drag with this delegate method:

collectionView(_:targetIndexPathForMoveFromItemAt:toProposedI

ndexPath:)

Return either the proposed index path or some other index path. To
prevent the drag entirely, return the original index path (the second
parameter).

To illustrate, I’ll continue with my example where the data model consists
of an array of Sections. Things get very complex very fast if dragging
beyond the current section is permitted, so I’ll forbid that with the delegate
method:

override func collectionView(_ collectionView: UICollectionView,

 canMoveItemAt indexPath: IndexPath) -> Bool {

 return true // allow dragging

}

override func collectionView(_ collectionView: UICollectionView,

 targetIndexPathForMoveFromItemAt orig: IndexPath,

 toProposedIndexPath prop: IndexPath) -> IndexPath {

 if orig.section != prop.section {

 return orig // prevent dragging outside section

 }

 return prop

}

override func collectionView(_ cv: UICollectionView,

 moveItemAt source: IndexPath, to dest: IndexPath) {

 // drag is over; rearrange model

 if source.section == dest.section { // exclusive access!

 self.sections[source.section].rowData.swapAt(

 source.item, dest.item)

 } else {

 swap(

 &self.sections[source.section].rowData[source.item],

 &self.sections[dest.section].rowData[dest.item]

)

 }

 // reload

 cv.reloadSections(IndexSet(integer:source.section))

}

If you prefer to provide your own gesture recognizer, then if you’re using a
collection view controller, set its installsStandardGestureForInteract
iveMovement to false. Your gesture recognizer action method will need to

call these collection view methods to keep the collection view apprised of
what’s happening (and the data source and delegate methods will then be
called appropriately):

beginInteractiveMovementForItem(at:)

updateInteractiveMovementTargetPosition(_:)

endInteractiveMovement

cancelInteractiveMovement

Custom Collection View Layouts
A UICollectionViewFlowLayout is a great way to get started with
UICollectionView, and will probably meet your basic needs at the outset.
To unlock the real power of collection views, however, you’ll write your
own layout class. The topic is a very large one, but getting started is not
difficult; this section explores the basics.

Flow Layout Subclass
UICollectionViewFlowLayout is a powerful starting point, so let’s
introduce a simple modification of it. By default, the flow layout wants to
full-justify every row of cells horizontally, spacing the cells evenly between
the left and right margins, except for the last row, which is left-aligned.
Let’s say that this isn’t what you want — you’d rather that every row be
left-aligned, with every cell as far to the left as possible given the size of the
preceding cell and the minimum spacing between cells.
To achieve this, we can subclass UICollectionViewFlowLayout and
override two methods, layoutAttributesForElements(in:) and layout
AttributesForItem(at:). The default implementations almost give the
desired answer, so we can call super and make modifications as necessary.

The really important method here is layoutAttributesForItem(at:),
which takes an index path and returns a single
UICollectionViewLayoutAttributes object. If the index path’s item is 0, we

have a degenerate case: the answer we got from super is right.
Alternatively, if this cell is at the start of a row — we can find this out by
asking whether the left edge of its frame is close to the margin — we have
another degenerate case: the answer we got from super is right. Otherwise,
where this cell goes depends on where the previous cell goes, so we obtain
the frame of the previous cell recursively. We wish to position our left edge
a minimal spacing amount from the right edge of the previous cell. We do
that by copying the layout attributes object that we got from super; we
change the frame of that copy and return it:

override func layoutAttributesForItem(at indexPath: IndexPath)

 -> UICollectionViewLayoutAttributes? {

 var atts = super.layoutAttributesForItem(at:indexPath)!

 if indexPath.item == 0 {

 return atts // degenerate case 1

 }

 if atts.frame.origin.x - 1 <= self.sectionInset.left {

 return atts // degenerate case 2

 }

 let ipPv =

 IndexPath(item:indexPath.row-1, section:indexPath.section)

 let fPv =

 self.layoutAttributesForItem(at:ipPv)!.frame

 let rightPv =

 fPv.origin.x + fPv.size.width + self.minimumInteritemSpacing

 atts = atts.copy() as! UICollectionViewLayoutAttributes

 atts.frame.origin.x = rightPv

 return atts

}

The other method, layoutAttributesForElements(in:), takes a CGRect
and returns an array of UICollectionViewLayoutAttributes objects for all
the cells and supplementary views in that rect. Again we call super and
modify the resulting array so that if an element is a cell, its
UICollectionViewLayoutAttributes is the result of our layoutAttributesF
orItem(at:):

override func layoutAttributesForElements(in rect: CGRect)

 -> [UICollectionViewLayoutAttributes]? {

 let arr = super.layoutAttributesForElements(in: rect)!

 return arr.map { atts in

 var atts = atts

 if atts.representedElementCategory == .cell {

 let ip = atts.indexPath

 atts = self.layoutAttributesForItem(at:ip)!

 }

 return atts

 }

}

Apple supplies some further interesting examples of subclassing
UICollectionViewFlowLayout. For instance, the LineLayout example,
accompanying the WWDC 2012 videos, implements a single row of
horizontally scrolling cells, where a cell grows as it approaches the center
of the screen and shrinks as it moves away (sometimes called a carousel).
To do this, it first of all overrides a UICollectionViewLayout method I
didn’t mention earlier, shouldInvalidateLayout(forBoundsChange:);
this causes layout to happen repeatedly while the collection view is
scrolled. It then overrides layoutAttributesForElements(in:) to do the
same sort of thing I did a moment ago: it calls super and then modifies, as
needed, the transform3D property of the
UICollectionViewLayoutAttributes for the onscreen cells.

Collection View Layout Subclass
For total freedom, you can subclass UICollectionViewLayout itself. The
WWDC 2012 videos demonstrate a UICollectionViewLayout subclass that
arranges its cells in a circle; the WWDC 2013 videos demonstrate a
UICollectionViewLayout subclass that piles its cells into a single stack in
the center of the collection view, like a deck of cards seen from above. For
my example, I’ll write a simple collection view layout that ignores sections
and presents all cells as a plain grid of squares.
In my UICollectionViewLayout subclass, called MyLayout, the really big
questions I need to answer are collectionViewContentSize and layoutA
ttributesForElements(in:). To answer them, I’ll calculate the entire
layout of my grid beforehand. The prepareLayout method is the perfect

place to do this; it is called every time something about the collection view
or its data changes. I’ll calculate the grid of cells and express their positions
as an array of UICollectionViewLayoutAttributes objects; I’ll store that
information in a property self.atts, which is a dictionary keyed by index
path so that I can retrieve a given layout attributes object by its index path
quickly. I’ll also store the size of the grid in a property self.sz:

override func prepare() {

 let sections = self.collectionView!.numberOfSections

 // work out cell size based on bounds size

 let sz = self.collectionView!.bounds.size

 let width = sz.width

 let shortside = (width/50.0).rounded(.down)

 let side = width/shortside

 // generate attributes for all cells

 var (x,y) = (0,0)

 var atts = [UICollectionViewLayoutAttributes]()

 for i in 0 ..< sections {

 let jj = self.collectionView!.numberOfItems(inSection:i)

 for j in 0 ..< jj {

 let att = UICollectionViewLayoutAttributes(

 forCellWith: IndexPath(item:j, section:i))

 att.frame = CGRect(CGFloat(x)*side,CGFloat(y)*side,side,side)

 atts += [att]

 x += 1

 if CGFloat(x) >= shortside {

 x = 0; y += 1

 }

 }

 }

 for att in atts {

 self.atts[att.indexPath] = att

 }

 let fluff = (x == 0) ? 0 : 1

 self.sz = CGSize(width, CGFloat(y+fluff) * side)

}

It is now trivial to implement collectionViewContentSize, layoutAttri
butesForElements(in:), and layoutAttributesForItem(at:). I’ll just
fetch the requested information from the sz or atts property:

override var collectionViewContentSize : CGSize {

 return self.sz

}

override func layoutAttributesForElements(in rect: CGRect)

 -> [UICollectionViewLayoutAttributes]? {

 return Array(self.atts.values)

}

override func layoutAttributesForItem(at indexPath: IndexPath)

 -> UICollectionViewLayoutAttributes? {

 return self.atts[indexPath]

}

Finally, I want to implement shouldInvalidateLayout(forBoundsChang
e:) to return true, so that if the interface is rotated, my prepareLayout
will be called again to recalculate the grid. There’s a potential source of
inefficiency here, though: the user scrolling the collection view counts as a
bounds change as well. Therefore, I return false unless the bounds width
has changed:

override func shouldInvalidateLayout(forBoundsChange newBounds: CGRect)

 -> Bool {

 return newBounds.size.width != self.sz.width

}

Decoration Views
A decoration view is a third type of collection view item, on a par with cells
and supplementary views. The difference is that it is implemented entirely
by the collection view layout. A collection view will faithfully draw a
decoration view imposed by the collection view layout, but none of the
methods and properties of a collection view, its data source, or its delegate
involve decoration views; for example, there is no support for letting the
user select a decoration view or reposition a decoration view, or even for
finding out what decoration views exist or where they are located. To
supply any decoration views, you will need to write your own
UICollectionViewLayout subclass; you are free to define any desired
mechanism for allowing a user of this collection view layout to customize
your decoration views.

To illustrate, I’ll subclass UICollectionViewFlowLayout to impose a title
label at the top of the collection view’s content rectangle — the collection
view equivalent of a table view’s tableHeaderView. For simplicity, I’ll
start by hard-coding the whole thing, giving the client no ability to
customize any aspect of this view. Then I’ll show how to add that ability.
There are four steps to implementing a decoration view in a
UICollectionViewLayout subclass:

1. Define a UICollectionReusableView subclass.
2. Register the UICollectionReusableView subclass with the collection

view layout (not the collection view), by calling register(_:forDec
orationViewOfKind:). The collection view layout’s initializer is a
good place to do this.

3. Implement layoutAttributesForDecorationView(ofKind:at:) to
return layout attributes that position the UICollectionReusableView.
To construct the layout attributes, call init(forDecorationViewOfK
ind:with:) and configure the attributes.

4. Override layoutAttributesForElements(in:) so that the result of
layoutAttributesForDecorationView(ofKind:at:) is included in
the returned array.

The last step is what causes the decoration view to appear in the collection
view. When the collection view calls layoutAttributesForElements(i
n:), it finds that the resulting array includes layout attributes for a
decoration view of a specified kind. The collection view knows nothing
about decoration views, so it comes back to the collection view layout,
asking for an actual instance of this kind of decoration view. You’ve
registered this kind of decoration view to correspond to your
UICollectionReusableView subclass, so your UICollectionReusableView
subclass is instantiated and that instance is returned, and the collection view
positions it in accordance with the layout attributes.
So let’s follow the steps. Define the UICollectionReusableView subclass,
named MyTitleView:

class MyTitleView : UICollectionReusableView {

 weak var lab : UILabel!

 override init(frame: CGRect) {

 super.init(frame:frame)

 let lab = UILabel(frame:self.bounds)

 self.addSubview(lab)

 lab.autoresizingMask = [.flexibleWidth, .flexibleHeight]

 lab.font = UIFont(name: "GillSans-Bold", size: 40)

 lab.text = "Testing"

 self.lab = lab

 }

 required init?(coder aDecoder: NSCoder) {

 fatalError("init(coder:) has not been implemented")

 }

}

Now we turn to our UICollectionViewLayout subclass, which I’ll call
MyFlowLayout (because it’s a UICollectionViewFlowLayout subclass). We
register MyTitleView in the collection view layout’s initializer; I’ve also
defined some private properties that I’ll need for the remaining steps:

private let titleKind = "title"

private let titleHeight : CGFloat = 50

private var titleRect : CGRect {

 return CGRect(10,0,200,self.titleHeight)

}

override init() {

 super.init()

 self.register(MyTitleView.self, forDecorationViewOfKind:self.titleKind)

}

Implement layoutAttributesForDecorationView(ofKind:at:):

override func layoutAttributesForDecorationView(

 ofKind elementKind: String, at indexPath: IndexPath)

 -> UICollectionViewLayoutAttributes? {

 if elementKind == self.titleKind {

 let atts = UICollectionViewLayoutAttributes(

 forDecorationViewOfKind:self.titleKind, with:indexPath)

 atts.frame = self.titleRect

 return atts

 }

 return nil

}

Override layoutAttributesForElements(in:); the index path here is
arbitrary (I ignored it in the preceding code):

override func layoutAttributesForElements(in rect: CGRect)

 -> [UICollectionViewLayoutAttributes]? {

 var arr = super.layoutAttributesForElements(in: rect)!

 if let decatts = self.layoutAttributesForDecorationView(

 ofKind:self.titleKind, at: IndexPath(item: 0, section: 0)) {

 if rect.contains(decatts.frame) {

 arr.append(decatts)

 }

 }

 return arr

}

This works! A title label reading “Testing” appears at the top of the
collection view.
Now I’ll show how to make the label customizable. Instead of hard-coding
the title “Testing,” we’ll allow the client to set a property that determines
the title. I’ll give my collection view layout a public title property:

class MyFlowLayout : UICollectionViewFlowLayout {

 var title = ""

 // ...

}

Whoever uses this collection view layout should set this property. For
example, suppose this collection view is displaying the 50 U.S. states:

func setUpFlowLayout(_ flow:UICollectionViewFlowLayout) {

 flow.headerReferenceSize = CGSize(50,50)

 flow.sectionInset = UIEdgeInsetsMake(0, 10, 10, 10)

 (flow as? MyFlowLayout)?.title = "States" // *

}

We now come to a curious puzzle. Our collection view layout has a title
property, the value of which needs to be communicated somehow to our
MyTitleView instance. But when can that possibly happen? We are not in
charge of instantiating MyTitleView; it happens automatically, when the

collection view asks for the instance behind the scenes. There is no moment
when the MyFlowLayout instance and the MyTitleView instance meet.
The solution is to use the layout attributes as a messenger. MyFlowLayout
never meets MyTitleView, but it does create the layout attributes object that
gets passed to the collection view to configure MyFlowLayout. So the
layout attributes object is like an envelope. By subclassing
UICollectionViewLayoutAttributes, we can include in that envelope any
information we like — such as a title:

class MyTitleViewLayoutAttributes : UICollectionViewLayoutAttributes {

 var title = ""

}

There’s our envelope! Now we rewrite our implementation of layoutAttri
butesForDecorationView. When we instantiate the layout attributes
object, we instantiate our subclass and set its title property:

override func layoutAttributesForDecorationView(

 ofKind elementKind: String, at indexPath: IndexPath) ->

 UICollectionViewLayoutAttributes? {

 if elementKind == self.titleKind {

 let atts = MyTitleViewLayoutAttributes(// *

 forDecorationViewOfKind:self.titleKind, with:indexPath)

 atts.title = self.title // *

 atts.frame = self.titleRect

 return atts

 }

 return nil

}

Finally, in MyTitleView, we implement the apply(_:) method. This will be
called when the collection view configures the decoration view — with the
layout attributes object as its parameter! So we pull out the title and use it
as the text of our label:

class MyTitleView : UICollectionReusableView {

 weak var lab : UILabel!

 // ... the rest as before ...

 override func apply(_ atts: UICollectionViewLayoutAttributes) {

 if let atts = atts as? MyTitleViewLayoutAttributes {

 self.lab.text = atts.title

 }

 }

}

It’s easy to see how you might extend the example to make such label
features as font and height customizable. Since we are subclassing
UICollectionViewFlowLayout, some further modifications might also be
needed to make room for the decoration view by pushing down the other
elements. All of that is left as an exercise for the reader.

Switching Layouts
An astonishing feature of a collection view is that its collection view layout
object can be swapped out on the fly. You can substitute one collection view
layout for another, by calling setCollectionViewLayout(_:animated:co
mpletion:). The data hasn’t changed, and the collection view can identify
each element uniquely and persistently, so it responds by moving every
element from its position according to the old layout to its position
according to the new layout — and, if the animated: argument is true, it
does this with animation! Thus the elements are seen to rearrange
themselves, as if by magic.
This animated change of layout can even be driven interactively (in
response, for example, to a user gesture; compare Chapter 6 on interactive
transitions). You call startInteractiveTransition(to:completion:)
on the collection view, and a special layout object is returned — a
UICollectionViewTransitionLayout instance (or a subclass thereof; to make
it a subclass, you need to have implemented collectionView(_:transiti
onLayoutForOldLayout:newLayout:) in your collection view delegate).
This transition layout is temporarily made the collection view’s layout, and
your job is then to keep it apprised of the transition’s progress (through its t
ransitionProgress property) and ultimately to call finishInteractiveT
ransition or cancelInteractiveTransition on the collection view.

Furthermore, when one collection view controller is pushed on top of
another in a navigation interface, the runtime will do exactly the same thing
for you, as a custom view controller transition. To arrange this, the first
collection view controller’s useLayoutToLayoutNavigationTransitions
property must be false and the second collection view controller’s useLay
outToLayoutNavigationTransitions property must be true. The result
is that when the second collection view controller is pushed onto the
navigation controller, the collection view remains in place, and the
collection view layout specified by the second collection view controller is
substituted for the collection view’s existing collection view layout, with
animation of the elements as they adopt their new positions.
During the transition, as the second collection view controller is pushed
onto the navigation stack, the two collection view controllers share the
same collection view, and the collection view’s data source and delegate
remain the first view controller. After the transition is complete, however,
the collection view’s delegate becomes the second view controller, even
though its data source is still the first view controller. I find this profoundly
weird; why does the runtime change who the delegate is, and why would I
want the delegate to be different from the data source? I solve the problem
by resetting the delegate in the second view controller, like this:

override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 let oldDelegate = self.collectionView!.delegate

 DispatchQueue.main.async {

 self.collectionView!.delegate = oldDelegate

 }

}

Collection Views and UIKit Dynamics
The UICollectionViewLayoutAttributes class adopts the UIDynamicItem
protocol (see Chapter 4). Thus, collection view elements can be animated
under UIKit dynamics. The world of the animator here is not a superview
but the collection view layout itself; instead of init(referenceView:),

you’ll create the UIDynamicAnimator by calling init(collectionViewLa
yout:). The collection view layout’s collectionViewContentSize
determines the bounds of this world.
To see any animation, you’ll need a custom collection view layout subclass.
On every frame of its animation, the UIDynamicAnimator is going to
change the layout attributes of some items, but the collection view knows
nothing of that; it is still going to draw those items in accordance with the
collection view layout’s layoutAttributesForElements(in:). The
simplest solution, therefore, is to override layoutAttributesForElements
(in:) so as to obtain those layout attributes from the UIDynamicAnimator.
(This cooperation will be easiest if the collection view layout itself owns
and configures the animator.) There are UIDynamicAnimator convenience
methods to help you:

layoutAttributesForCell(at:)

layoutAttributesForSupplementaryView(ofKind:at:)

The layout attributes for the requested item, in accordance with where
the animator wants to put them — or nil if the specified item is not
being animated.

In this example, we’re in a UICollectionViewLayout subclass, setting up
the animation. We have a property to hold the animator, as well as a Bool
property to signal when an animation is in progress:

let visworld = self.collectionView!.bounds

let anim = MyDynamicAnimator(collectionViewLayout:self)

self.animator = anim

self.animating = true

// ... configure rest of animation

Our implementation of layoutAttributesForElements(in:), if we are
animating, substitutes the layout attributes that come from the animator for
those we would normally return. In this particular example, both cells and
supplementary items can be animated, so the two cases have to be
distinguished:

override func layoutAttributesForElements(in rect: CGRect)

 -> [UICollectionViewLayoutAttributes]? {

 let arr = super.layoutAttributesForElements(in: rect)!

 if self.animating {

 return arr.map { atts in

 let path = atts.indexPath

 switch atts.representedElementCategory {

 case .cell:

 if let atts2 = self.animator?

 .layoutAttributesForCell(at: path) {

 return atts2

 }

 case .supplementaryView:

 if let kind = atts.representedElementKind {

 if let atts2 = self.animator?

 .layoutAttributesForSupplementaryView(

 ofKind: kind, at:path) {

 return atts2

 }

 }

 default: break

 }

 return atts

 }

 }

 return arr

}

Chapter 9. iPad Interface

This chapter discusses some iOS interface features that differ between the
iPad and the iPhone:

Popovers and split views
Popovers and split views are forms of interface designed originally for
the iPad alone. Starting in iOS 8, both became available also on the
iPhone, where they typically adapt, appearing in an altered form more
appropriate to the smaller screen.

iPad multitasking
iPad multitasking, introduced in iOS 9, is an interface confined to a
subset of iPad models, where two apps can occupy the screen
simultaneously.

Drag and drop
Drag and drop was introduced in iOS 11 primarily to allow the user to
drag from one app to another — for example, in an iPad multitasking
interface. It can also be used within a single app, even on the iPhone.

Popovers
A popover is a temporary view layered in front of the main interface. It is
usually associated, through a sort of arrow, with a view in the main
interface, such as the button that the user tapped to summon the popover. It
might be effectively modal, preventing the user from working in the rest of
the interface; alternatively, it might vanish if the user taps outside it.
Popovers bring to the larger iPad the smaller, more lightweight flavor of the
iPhone. For example, in my LinkSame app, both the settings view (where
the user configures the game) and the help view (which describes how to
play the game) are popovers (Figure 9-1). On the iPhone, such a view

would occupy the entire screen; we’d navigate to it, and the user would
later have to navigate back to the main interface. But with the larger iPad
screen, neither view is large enough, or important enough, to occupy the
entire screen exclusively. A popover is the perfect solution. Our view is
small and secondary; the user summons it temporarily, works with it, and
then dismisses it, while the main interface continues to occupy the rest of
the screen.

Figure 9-1. Two popovers

A popover is actually a form of presented view controller — a presented
view controller with a modalPresentationStyle of .popover (which I
didn’t tell you about in Chapter 6). There’s a guideline that a maximum of

one popover at a time should be shown; a view controller can’t have more
than one presented view controller at a time, so the guideline is enforced
automatically.

Like a .formSheet presented view controller, a popover can adapt,
depending on the size class environment. The default adaptation is that a .p
opover presented view controller is treated as .fullScreen on the iPhone.
But you don’t have to accept the default; it is legal for a popover to appear
on the iPhone as a popover, and I’ll explain later how to make it do that.

TIP
A view controller presented as a popover has a .compact horizontal size class, even on an iPad.

To display a popover, you’re going to present a view controller. Before that
presentation takes place, you’ll turn this into a popover presentation by
setting the view controller’s modalPresentationStyle to .popover:

let vc = MyViewController()

vc.modalPresentationStyle = .popover

self.present(vc, animated: true)

It turns out, however, that that code is insufficient. In fact, it will crash at
runtime when the popover is presented! The reason is that some further
configuration of the popover is required before it appears.
To configure a popover, you’ll talk to its presentation controller. Setting the
view controller’s modalPresentationStyle to .popover, as in the
preceding code, causes its presentationController to become a
UIPopoverPresentationController (a UIPresentationController subclass);
that is the object you need to talk to. The popover view controller’s popove
rPresentationController property points to that
UIPopoverPresentationController (or to nil).

In general, it is permissible to perform your configurations just after telling
your view controller to present the popover, because even though you have
ordered the presentation, it hasn’t actually started yet. This is a common
pattern:

let vc = MyViewController()

vc.modalPresentationStyle = .popover

self.present(vc, animated: true)

if let pop = vc.popoverPresentationController {

 // ... configure pop here ...

}

I’ll talk next about some of the configurations you’ll perform on the
popover presentation controller.

Arrow Source and Direction
At a minimum, the popover presentation controller needs to know where its
arrow should point. You’ll specify this by setting one of the following:

barButtonItem

A bar button item in the interface, with which the popover should be
associated. The popover’s arrow will point to this bar button item.
Typically, this will be the bar button item that was tapped in order to
summon the popover (as in Figure 9-1).

sourceView, sourceRect
A UIView in the interface, along with a CGRect in that view’s
coordinate system, with which the popover should be associated. The
popover’s arrow will point to this rect. Typically, the sourceView will
be the view that was tapped in order to summon the popover, and the so
urceRect will be its bounds.

Here’s a minimal popover presentation that works without crashing; the
popover is summoned by tapping a UIButton in the interface, and this is
that button’s action method:

@IBAction func doButton(_ sender: Any) {

 let vc = MyViewController()

 vc.modalPresentationStyle = .popover

 self.present(vc, animated: true)

 if let pop = vc.popoverPresentationController {

 let v = sender as! UIView

 pop.sourceView = v

 pop.sourceRect = v.bounds

 }

}

In addition to the arrow source, you can set the desired arrow direction, as
the popover presentation controller’s permittedArrowDirections. This is
a bitmask with possible values .up, .down, .left, and .right. The default
is .any, comprising all four bitmask values; this will usually be what you
want.

Popover Size
You can specify the desired size of the popover view. This information is
provided through the presented view controller’s preferredContentSize.
Recall (from Chapter 6) that a view controller can use its preferredConten
tSize to communicate to its container view controller the size that it would
like to be. The popover presentation controller is a presentation controller
(UIPresentationController), which is also a UIContentContainer; it will
consult the presented view controller’s preferredContentSize and will
try, within limits, to respect it.
The presentation of the popover won’t fail if you don’t supply a size for the
popover, but you probably will want to supply one, as the default is unlikely
to be desirable.

Who will set the presented view controller’s preferredContentSize, and
when? It’s up to you. The presented view controller might set its own prefe
rredContentSize; its viewDidLoad is a reasonable place, or, if the view
controller is instantiated from a nib, the nib editor provides Content Size
fields in the Attributes inspector. Alternatively, you can set the presented

view controller’s preferredContentSize when you configure the popover
presentation controller:

if let pop = vc.popoverPresentationController {

 let v = sender as! UIView

 pop.sourceView = v

 pop.sourceRect = v.bounds

 vc.preferredContentSize = CGSize(200,500)

}

It is possible to change the presented view controller’s preferredContentS
ize while the popover is showing. The popover presentation controller will
hear about this (through the preferredContentSizeDidChange
mechanism discussed in Chapter 6), and may respond by changing the
popover’s size, with animation.
If the popover is a navigation controller, the navigation controller will look
at its current view controller’s preferredContentSize, adjust for the
presence of the navigation bar, and set its own preferredContentSize
appropriately. Subsequently pushing or popping a view controller with a
different preferredContentSize may not work as you expect — to be
precise, the popover’s width will change to match the new preferred width,
but the popover’s height will change only if the new preferred height is
taller. I regard this as a bug; it is possible to work around it by nudging the
navigation controller’s preferredContentSize in a navigation controller
delegate method:

extension ViewController : UINavigationControllerDelegate {

 func navigationController(_ nc: UINavigationController,

 didShow vc: UIViewController, animated: Bool) {

 nc.preferredContentSize = vc.preferredContentSize

 }

}

The popover presentation controller’s canOverlapSourceViewRect can be
set to true to permit the popover to cover the source view if space becomes

tight while attempting to comply with the preferredContentSize. The
default is false.

WARNING
The documentation claims that you can set the popover presentation controller’s popoverLayoutM
argins as a way of encouraging the popover to keep a certain distance from the edges of the
presenting view controller’s view. But my experience is that this setting is ignored.

Popover Appearance
By default, a popover presentation controller takes charge of the
background color of the presented view controller’s view, including the
arrow. If the resulting color isn’t to your taste, you can set the popover
presentation controller’s backgroundColor; this sets the arrow color as
well.
For more control, you can customize the entire outside of the popover —
that is, the “frame” surrounding the content, including the arrow. To do so,
you set the UIPopoverPresentationController’s popoverBackgroundViewCl
ass to your own subclass of UIPopoverBackgroundView (a UIView
subclass). You then implement the UIPopoverBackgroundView’s draw(_:)
method to draw the arrow and the frame. The size of the arrow is dictated
by your implementation of the arrowHeight property. The thickness of the
frame is dictated by your implementation of the contentViewInsets
property.

Figure 9-2. A very silly popover

A very silly example is shown in Figure 9-2. Here’s how that result was
achieved. I start by implementing five inherited members that we are
required to override, along with our initializer:

class MyPopoverBackgroundView : UIPopoverBackgroundView {

 override class func arrowBase() -> CGFloat { return 20 }

 override class func arrowHeight() -> CGFloat { return 20 }

 override class func contentViewInsets() -> UIEdgeInsets {

 return UIEdgeInsetsMake(20,20,20,20)

 }

 // we are required to implement these, even trivially

 var arrOff : CGFloat

 var arrDir : UIPopoverArrowDirection

 override var arrowDirection : UIPopoverArrowDirection {

 get { return self.arrDir }

 set { self.arrDir = newValue }

 }

 override var arrowOffset : CGFloat {

 get { return self.arrOff }

 set { self.arrOff = newValue }

 }

 override init(frame:CGRect) {

 self.arrOff = 0

 self.arrDir = .any

 super.init(frame:frame)

 self.isOpaque = false

 }

 // ...

}

Now I’ll implement draw(_:). Its job is to draw the frame and the arrow.
This can be a bit tricky, because we need to draw differently depending on
the arrow direction (which we can learn from the
UIPopoverBackgroundView’s arrowDirection property). I’ll simplify by
assuming that the arrow direction will always be .up.
I’ll start with the frame. I divide the view’s overall rect into two areas, the
arrow area on top and the frame area on the bottom, and I draw the frame
into the bottom area as a resizable image (Chapter 2):

override func draw(_ rect: CGRect) {

 let linOrig = UIImage(named: "linen.png")!

 let capw = linOrig.size.width / 2.0 - 1

 let caph = linOrig.size.height / 2.0 - 1

 let lin = linOrig.resizableImage(

 withCapInsets:UIEdgeInsetsMake(caph, capw, caph, capw),

 resizingMode:.tile)

 let klass = type(of:self)

 let arrowHeight = klass.arrowHeight()

 let arrowBase = klass.arrowBase()

 // ... draw arrow here ...

 let (_,body) = rect.divided(atDistance: arrowHeight, from: .minYEdge)

 lin.draw(in:body)

}

Our next task is to fill in the blank left by the “draw arrow here” comment
in the preceding code. We don’t actually have to do that; we could quite
legally stop at this point. Our popover would then have no arrow, but that’s
no disaster; many developers dislike the arrow and seek a way to remove it,
and this constitutes a legal way. However, let’s continue by drawing the
arrow.

My arrow will consist simply of a texture-filled isosceles triangle, with an
excess base rectangle joining it to the frame. The runtime has set the arrow
Offset property to tell us where to draw the arrow: this offset measures the
positive distance between the center of the view’s edge and the center of the
arrow. However, the runtime will have no hesitation in setting the arrowOff
set all the way at the edge of the view, or even beyond its bounds (in which
case it won’t be drawn); to prevent this, I provide a maximum offset limit:

let con = UIGraphicsGetCurrentContext()!

con.saveGState()

// clamp offset

var propX = self.arrowOffset

let limit : CGFloat = 22.0

let maxX = rect.size.width/2.0 - limit

propX = min(max(propX, limit), maxX)

// draw!

con.translateBy(x: rect.size.width/2.0 + propX - arrowBase/2.0, y: 0)

con.move(to:CGPoint(0, arrowHeight))

con.addLine(to:CGPoint(arrowBase / 2.0, 0))

con.addLine(to:CGPoint(arrowBase, arrowHeight))

con.closePath()

con.addRect(CGRect(0,arrowHeight,arrowBase,15))

con.clip()

lin.draw(at:CGPoint(-40,-40))

con.restoreGState()

Passthrough Views
When you’re configuring your popover, you’ll want to plan ahead for how
the popover is to be dismissed. The default is that the user can tap anywhere
outside the popover to dismiss it, and this will often be what you want. You
can, however, modify this behavior in two ways:

UIPopoverPresentationController’s passthroughViews property
An array of views in the interface behind the popover; the user can
interact normally with these views while the popover is showing, and
the popover will not be dismissed.

UIViewController’s isModalInPopover property

If this is true for the presented view controller (or for its current child
view controller, as in a tab bar interface or navigation interface), then if
the user taps outside the popover, the popover is not dismissed. The
default is false.

WARNING
The claim made by the documentation that isModalInPopover prevents all user interaction
outside a popover is wrong. The user can still interact with a view listed in the passthroughView
s, even if isModalInPopover is true.

If you’ve set the presented view controller’s isModalInPopover to true,
you’ve removed the user’s ability to dismiss the popover by tapping outside
it. You would then presumably provide some other way of letting the user
dismiss the popover — typically, a button inside the popover which the user
can tap in order to call dismiss(animated:completion:).
Surprisingly, if a popover is summoned by the user tapping a UIBarButton
item in a toolbar, other UIBarButtonItems in that toolbar are automatically
turned into passthrough views! This means that, while the popover is
showing, the user can tap any other button in the toolbar. Preventing this
unwanted behavior is remarkably difficult. If you set the popover
presentation controller’s passthroughViews too soon, your setting is
overridden by the runtime. The best place is the presentation’s completion
function:

self.present(vc, animated: true) {

 vc.popoverPresentationController?.passthroughViews = nil

}

Popover Presentation, Dismissal, and Delegate
A popover is a form of presented view controller. To show a popover, you’ll
call present(_:animated:completion:). If you want to dismiss a

popover in code, rather than letting the user dismiss it by tapping outside it,
you’ll call dismiss(animated:completion:).
Messages to the popover presentation controller’s delegate
(UIPopoverPresentationControllerDelegate) provide further information
and control. Typically, you’ll set the delegate in the same place you’re
performing the other configurations:

if let pop = vc.popoverPresentationController {

 // ... other configurations go here ...

 pop.delegate = self

}

The three most commonly used delegate methods are:

prepareForPopoverPresentation(_:)

The popover is being presented. This is another opportunity to perform
initial configurations, such as what interface object the arrow points to.
(But this method is still called too early for you to work around the pas
sthroughViews issue I discussed a moment ago.)

popoverPresentationControllerShouldDismissPopover(_:)

The user is dismissing the popover by tapping outside it. Return false
to prevent dismissal. Not called when you dismiss the popover in code.

popoverPresentationControllerDidDismissPopover(_:)

The user has dismissed the popover by tapping outside it. The popover
is gone from the screen and dismissal is complete, even though the
popover presentation controller still exists. Not called when you dismiss
the popover in code.

popoverPresentationController(_:willRepositionPopoverTo:in:)

The popover’s sourceView is involved in new layout activity. This
might be because the interface is rotating. The to: and in: parameters
are mutable pointers to the popover’s sourceRect and sourceView

respectively, so you can change them through their pointee properties,
thus changing the attachment of the arrow.

The delegate methods provide the popover presentation controller as
parameter, and if necessary you can use it to identify the popover more
precisely; for example, you can learn what view controller is being
presented by examining the popover presentation controller’s presentedVi
ewController. The delegate dismiss methods make up for the fact that,
when the user dismisses the popover, you don’t have the sort of direct
information and control that you would get if you had dismissed the
popover by calling dismiss(animated:completion:) with a completion
function.
If the user can dismiss the popover either by tapping outside the popover or
by tapping an interface item that calls dismiss(animated:completion:),
you may have to duplicate some code in order to cover all cases. For
example, consider the first popover shown in Figure 9-1. It has a Done
button and a Cancel button; the idea here is that the user sets up a desired
game configuration and then, while dismissing the popover, either saves it
(Done) or doesn’t (Cancel). But what if the user taps outside the popover? I
interpret that as cancellation. Thus, if the Cancel button’s action function
does any work besides dismissing the popover, my popoverPresentation
ControllerDidDismissPopover(_:) implementation will have to do the
same thing.

Adaptive Popovers
A popover is a presented view controller, so it’s adaptive. By default, in a
horizontally compact environment (such as an iPhone), the .popover
modal presentation style will adapt as .fullScreen; what appears as a
popover on the iPad will appear as a fullscreen presented view on the
iPhone, completely replacing the interface. Thus, with no extra code, you’ll
get something eminently sensible on both types of device.
Sometimes, however, the default is not quite what you want. A case in point
appears in Figure 9-1. The popover on the right, containing our help info,

has no internal button for dismissal. It doesn’t need one on the iPad,
because the user can dismiss the popover by tapping outside it. But this is a
universal app. Unless we take precautions, the same help info will appear
on the iPhone as a fullscreen presented view, and the user will have no way
to dismiss it. Clearly, we need a Done button that appears inside the
presented view controller’s view — but only on the iPhone.
To achieve this, we can take advantage of UIPresentationController
delegate methods. A UIPopoverPresentationController is also a
UIPresentationController, and you can set its delegate
(UIAdaptivePresentationControllerDelegate). The adaptive presentation
delegate methods thus spring to life, allowing you to tweak how the
popover adapts (see “Adaptive Presentation”). The trick is that you must set
the presentation controller’s delegate before calling present(_:animated:
completion:); otherwise, the adaptive presentation delegate methods
won’t be called:

let vc = MyViewController()

vc.modalPresentationStyle = .popover

if let pop = vc.popoverPresentationController {

 pop.delegate = self // *

}

self.present(vc, animated: true)

We’ll implement the delegate method presentationController(_:viewC
ontrollerForAdaptivePresentationStyle:) to substitute a different
view controller. The substitute view controller can be the old view
controller wrapped in a UINavigationController! If we also give our old
view controller a navigationItem with a working Done button, the
problem is solved:

func presentationController(_ controller: UIPresentationController,

 viewControllerForAdaptivePresentationStyle

 style: UIModalPresentationStyle) -> UIViewController? {

 if style != .popover {

 let vc = controller.presentedViewController

 let nav = UINavigationController(rootViewController: vc)

 let b = UIBarButtonItem(barButtonSystemItem: .done,

 target: self, action: #selector(dismissHelp))

 vc.navigationItem.rightBarButtonItem = b

 return nav

 }

 return nil

}

@objc func dismissHelp(_ sender: Any) {

 self.dismiss(animated:true)

}

The outcome is that in a .regular horizontal size class environment we get
a popover that can be dismissed by tapping outside it; otherwise, we get a
fullscreen presented view controller that can be dismissed with a Done
button in a navigation bar at the top of the interface.

You can also implement the delegate method adaptivePresentationStyl
e(for:traitCollection:) to return something other than .fullScreen
in a .compact horizontal size class environment. One possibility is to return
.none, in which case the presented view controller will be a popover even
on iPhone:

func adaptivePresentationStyle(for controller: UIPresentationController,

 traitCollection: UITraitCollection) -> UIModalPresentationStyle {

 return .none

}

Popover Segues
If you’re using a storyboard with Use Trait Variations checked, you can
configure a popover presentation with little or no code. Draw (Control-
drag) a segue from a button or view controller that is to summon the
popover to a view controller that is to be the popover, and specify Present
As Popover as the segue type. The result is a popover segue.
The segue, as it is triggered, configures the presentation just as you would
configure it in code. It instantiates and initializes the presented view
controller, sets its modal presentation style to .popover, and presents it.
There is no need to set the sourceView, barButtonItem, or permittedArr
owDirections in code; those properties can be set in the nib editor, in the

segue’s Attributes inspector. You can also set the passthrough views in the
nib editor — but not in such a way as to override the unwanted default bar
button item behavior I discussed earlier.

To perform additional configurations in code, implement prepare(for:sen
der:):. Here you can obtain the segue’s destination, get a reference to its
popoverPresentationController, and configure it. At the time prepare
(for:sender:) is called, the presentation has not yet begun, so you can
successfully set the popover presentation controller’s delegate here if
desired:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 if segue.identifier == "MyPopover" {

 let dest = segue.destination

 if let pop = dest.popoverPresentationController {

 pop.delegate = self

 }

 }

}

The popover version of an unwind segue is dismissal of the popover. Thus,
both presentation and dismissal can be managed through the storyboard. A
further possibility is to specify a custom segue class (as I explained in
Chapter 6).

WARNING
A popover triggered through a popover segue doesn’t point its arrow correctly at its source view. I
regard this as a major bug. I recommend avoiding popover segues altogether.

Popover Presenting a View Controller
A popover can present a view controller internally; you’ll specify a modalP
resentationStyle of .currentContext or .overCurrentContext,
because otherwise the presented view will be fullscreen by default (see
Chapter 6).

What happens when the user taps outside a popover that is currently
presenting a view controller’s view internally? Unfortunately, different
systems behave differently. Here’s a sample:

iOS 7 and before

Nothing happens; isModalInPopover is true.

iOS 8.1
The entire popover, including the internal presented view controller, is
dismissed.

iOS 8.3
The internal presented view controller is dismissed, while the popover
remains.

iOS 9 and later
Like iOS 8.1.

In my opinion, the iOS 7 behavior was correct. Presented view controllers
are supposed to be modal. They don’t spontaneously dismiss themselves
because the user taps elsewhere; there has to be some internal interface,
such as a Done button or a Cancel button, that the user must tap in order to
dismiss the view controller and proceed. You can restore the iOS 7 behavior
by implementing the delegate method popoverPresentationControllerS
houldDismissPopover(_:) to prevent dismissal if the popover is itself
presenting a view controller:

func popoverPresentationControllerShouldDismissPopover(

 _ pop: UIPopoverPresentationController) -> Bool {

 return pop.presentedViewController.presentedViewController == nil

}

Split Views
A split view involves two views belonging to two view controllers. The
view controllers are the children of a parent view controller, a split view

controller (UISplitViewController). The child view controllers are the split
view controller’s viewControllers. A UIViewController that is a child, at
any depth, of a UISplitViewController has a reference to the
UISplitViewController through its splitViewController property.
The chief purpose of a split view controller is to implement a master–detail
architecture. The first view is the master view, and is typically a list — that
is, a table view. The user taps an item of that list to specify what should
appear in the second view, which is the detail view. We may thus speak of
the two children of the split view controller as the master view controller
and the detail view controller. Officially, they are the primary and
secondary view controllers.
The split view controller is adaptive, meaning that, by default, the
implementation appears differently depending on whether we’re running on
an iPad or an iPhone:

Split view on the iPhone
The master–detail architecture is expressed as a navigation interface.
The user sees one view at a time. The master view occupies the screen;
the user taps an item in the master view; the detail view replaces the
master view.

Split view on the iPad
Both views are displayed simultaneously. Usually, the master view is
narrower, roughly the width of a typical iPhone. The user taps an item in
the master view; the detail view responds by changing its contents.
In landscape orientation, the master view and the detail view appear
side by side. In portrait orientation, there are two possible arrangements:

Side by side
The two views appear side by side, just as in landscape orientation.
Apple’s Settings app is an example.

Overlay

The detail view appears alone, with an option to summon the master
view from the side as an overlay, either by tapping a bar button item
or by swiping from the edge of the screen. Apple’s Mail app is an
example (Figure 9-3).

Figure 9-3. A familiar split view interface

If a split view controller is the top-level view controller, it determines your
app’s compensatory rotation behavior. To take a hand in that determination
without having to subclass UISplitViewController, make one of your
objects the split view controller’s delegate (UISplitViewControllerDelegate)
and implement these methods, as needed:

splitViewControllerSupportedInterfaceOrientations(_:)

splitViewControllerPreferredInterfaceOrientationForPresent

ation(_:)

A split view controller does not relegate decisions about the status bar
appearance to its children. To hide the status bar when a split view
controller is the root view controller, you might have to subclass
UISplitViewController; alternatively, you could wrap the split view

controller in a custom container view controller, as I describe later in this
chapter.
Xcode’s Master–Detail app template will give you an adaptive
UISplitViewController instantiated from the storyboard, with no work on
your part. For pedagogical purposes, however, I’ll begin by constructing
and configuring a split view controller entirely in code. We’ll get it working
on the iPad before proceeding to the iPhone version. Then we’ll return to
the Master–Detail app template and examine how it works.

Expanded Split View Controller (iPad)
For reasons that will be clear later, a split view controller on the iPad is
called an expanded split view controller. An expanded split view controller
has two child view controllers simultaneously.
In this example, our master view (owned by MasterViewController) will be
a table view listing the names of the three Pep Boys. Our detail view
(owned by DetailViewController) will contain a single label displaying the
name of the Pep Boy selected in the master view.
Our first cut at writing MasterViewController simply displays the table
view:

class MasterViewController: UITableViewController {

 let model = ["Manny", "Moe", "Jack"]

 let cellID = "Cell"

 override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.register(UITableViewCell.self,

 forCellReuseIdentifier: self.cellID)

 }

 override func numberOfSections(in tableView: UITableView) -> Int {

 return 1

 }

 override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return model.count

 }

 override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 cell.textLabel!.text = model[indexPath.row]

 return cell

 }

}

DetailViewController, in its viewDidLoad implementation, puts the label (s
elf.lab) into the interface; it also has a public boy string property whose
value appears in the label. We are deliberately agnostic about the order of
events; our interface works correctly regardless of whether boy is set before
or after viewDidLoad is called:

class DetailViewController: UIViewController {

 var lab : UILabel!

 var boy : String = "" {

 didSet {

 if self.lab != nil {

 self.lab.text = self.boy

 }

 }

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 self.view.backgroundColor = .white

 let lab = UILabel()

 lab.translatesAutoresizingMaskIntoConstraints = false

 self.view.addSubview(lab)

 NSLayoutConstraint.activate([

 lab.topAnchor.constraint(

 equalTo: self.view.safeAreaLayoutGuide.topAnchor,

 constant: 100),

 lab.centerXAnchor.constraint(

 equalTo: self.view.centerXAnchor)

])

 self.lab = lab

 self.lab.text = self.boy

 }

}

Our app delegate constructs the interface by creating a
UISplitViewController, giving it its two initial children, and putting its view
into the window:

func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 self.window = self.window ?? UIWindow()

 let svc = UISplitViewController()

 svc.viewControllers =

 [MasterViewController(style:.plain), DetailViewController()]

 self.window!.rootViewController = svc

 self.window!.backgroundColor = .white

 self.window!.makeKeyAndVisible()

 return true

}

The result certainly looks like a split view interface. In landscape
orientation, the two views appear side by side; in portrait orientation, the
detail view appears alone, but the master view can be summoned by
swiping from the edge of the screen, and it can be dismissed by tapping
outside it.
However, the app doesn’t do anything! In particular, when we tap on a Pep
Boy’s name in the master view, the detail view doesn’t change. Let’s add
that code (to MasterViewController):

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 let detail = DetailViewController()

 detail.boy = model[indexPath.row]

 self.showDetailViewController(detail, sender: self) // *

}

The starred line is the key to the entire implementation of the master–detail
architecture. Despite being sent to self, the call to showDetailViewContr
oller(_:sender:) actually walks up the view controller hierarchy until it
arrives at the split view controller. (The mechanism of this walk is quite
interesting of itself; I’ll discuss it later.) The split view controller responds
by making the detail view controller its second child, replacing the
existing detail view and causing the selected Pep Boy’s name to appear in
the interface.

Things are going very well, but our app still doesn’t quite look like a
standard master–detail view interface. The usual thing is for both the master
view and the detail view to contain a navigation bar. The detail view in
portrait orientation can then display in its navigation bar a left button that
summons the master view, so that the user doesn’t have to know about the
swipe gesture. This button is vended by the UISplitViewController, through
its displayModeButtonItem property. Thus, to construct the interface
properly, we need to change our app delegate code as follows:

let svc = UISplitViewController()

let master = MasterViewController(style:.plain)

master.title = "Pep" // *

let nav1 = UINavigationController(rootViewController:master) // *

let detail = DetailViewController()

let nav2 = UINavigationController(rootViewController:detail) // *

svc.viewControllers = [nav1, nav2]

self.window!.rootViewController = svc

let b = svc.displayModeButtonItem // *

detail.navigationItem.leftBarButtonItem = b // *

detail.navigationItem.leftItemsSupplementBackButton = true // *

Having made that adjustment, we must also adjust our
MasterViewController code. Consider what will happen when the user taps
a Pep Boy name in the master view. At the moment, we are making a new
DetailViewController and making it the split view controller’s second child.
That is now wrong; we must make a new UINavigationController instead,
with a new DetailViewController as its child. And this new
DetailViewController doesn’t have the displayModeButtonItem as its lef
tBarButtonItem, so we have to set it:

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 let detail = DetailViewController()

 detail.boy = model[indexPath.row]

 let b = self.splitViewController?.displayModeButtonItem

 detail.navigationItem.leftBarButtonItem = b // *

 detail.navigationItem.leftItemsSupplementBackButton = true // *

 let nav = UINavigationController(rootViewController: detail) // *

 self.showDetailViewController(nav, sender: self)

}

When the app is in portrait orientation, showing just the detail view, the dis
playModeButtonItem summons the master view. When the app is in
landscape orientation with the two views displayed side by side, the displa
yModeButtonItem automatically hides itself. Our iPad split view
implementation is complete!

Collapsed Split View Controller (iPhone)
As I’ve already said, a split view controller is adaptive. We can see this if
we now launch our existing app on the iPhone: astoundingly, it works
almost perfectly. There’s a navigation interface. Tapping a Pep Boy’s name
in the master view pushes the new detail view controller onto the navigation
stack, with its view displaying that name. The detail view’s navigation bar
has a back button that pops the detail view controller and returns us to the
master view.
The only thing that isn’t quite right is that the app launches with the detail
view showing, rather than the master view. To fix that, we first add a line to
our app delegate’s application(_:didFinishLaunchingWithOptions:)
to assign a delegate to the UISplitViewController:

let svc = UISplitViewController()

svc.delegate = self // *

We then implement one delegate method:

extension AppDelegate : UISplitViewControllerDelegate {

 func splitViewController(_ svc: UISplitViewController,

 collapseSecondary vc2: UIViewController,

 onto vc1: UIViewController) -> Bool {

 return true

 }

}

That’s all; on the iPhone, the app now behaves correctly!
To understand what that delegate method does, you need to know more
about how the split view controller works. It adopts one of two states: it is

either collapsed or expanded, in accordance with its isCollapsed property.
This distinction corresponds to whether or not the environment’s trait
collection has a .compact horizontal size class: if so, the split view
controller collapses. Thus, the split view controller collapses as it launches
on an iPhone.
An expanded split view controller has two child view controllers
simultaneously. But a collapsed split view controller has only one child
view controller. Thus, as the app launches on the iPhone, and the split view
controller collapses, it must remove one child view controller. But which
one? To find out, the split view controller asks its delegate how to proceed.
In particular, it calls these delegate methods:

primaryViewController(forCollapsing:)

The collapsed split view controller will have only one child view
controller. What view controller should this be? By default, it will be the
current first view controller, but you can implement this method to
return a different answer.

splitViewController(_:collapseSecondary:onto:)

The collapsing split view controller is going to remove its second view
controller, leaving its first view controller as its only child view
controller. Return true to permit this to happen.

If this method returns false (the default), the split view controller
sends collapseSecondaryViewController(_:for:) to the first view
controller. What happens to the second view controller is now up to the
first view controller.

Our first view controller is a UINavigationController, which has a built-in
response to collapseSecondaryViewController(_:for:) — namely, it
pushes the specified secondary view controller onto its own stack. If it does
that, we end up launching with the detail view showing on the iPhone, as
we’ve already seen. Therefore, we implement splitViewController(_:c
ollapseSecondary:onto:) to return true. That permits the split view

controller to remove its second view controller, and we end up launching
with the master view showing on the iPhone.

As on the iPad, the call to showDetailViewController(_:sender:),
when the user taps a row of the master table view, is the heart of the
interface’s functionality. The key here is that the interface responds in two
different ways, depending on whether the split view controller is expanded
or collapsed. On the iPad (expanded), the new view controller becomes the
split view controller’s second (detail) view controller, and the detail view,
already visible in the interface, is replaced. On the iPhone (collapsed), there
is just one child view controller; it is a navigation controller, and the new
view controller is pushed onto its stack.

NOTE
In a standard split view controller architecture, the second view controller is a
UINavigationController. On an iPhone, therefore, we are pushing a UINavigationController onto a
UINavigationController’s stack. This is an odd thing to do, but thanks to some internal voodoo,
the parent UINavigationController will do the right thing: in displaying this child’s view, it turns
to the child UINavigationController’s topViewController and displays its view (and its navigat
ionItem), and the child UINavigationController’s navigation bar never gets into the interface. Do
not imitate this architecture in any other context!

Expanding Split View Controller (iPhone 6/7/8 Plus)
The iPhone 6/7/8 Plus is a hybrid: it’s horizontally compact in portrait
orientation, but not in landscape orientation. Thus, in effect, the split view
controller thinks it’s on an iPhone when the app is in portrait, but it thinks it
has been magically moved over to an iPad when the app rotates to
landscape. Thus, the split view controller alternates between isCollapsed
being true and false on a single device. In portrait, the split view displays
a single navigation interface, with the master view controller at its root, like
an iPhone. In landscape, the master and detail views are displayed side by
side, like an iPad.
When the app, running on the iPhone 6/7/8 Plus, rotates to portrait, or if it
launches into portrait, the split view controller collapses, going through the

very same procedure I just described for an iPhone. When it rotates to
landscape, it performs the opposite of collapsing — namely, expanding. As
the split view controller expands, it has the inverse of the problem it has
when it collapses. A collapsed split view controller has just one child view
controller, but an expanded split view controller has two child view
controllers. Where will this second child view controller come from, and
how should it be incorporated? To find out, the split view controller asks its
delegate how to proceed:

primaryViewController(forExpanding:)

The collapsed split view controller has just one child. The expanded
split view controller will have two children. What view controller
should be its first child view controller? By default, it will be the
current child view controller, but you can implement this method to
return a different answer.

splitViewController(_:separateSecondaryFrom:)

What view controller should be the expanded split view controller’s
second child view controller? Implement this method to return that view
controller.

If you don’t implement this method, or if you return nil, the split view
controller sends separateSecondaryViewController(for:) to the
first view controller. This method returns a view controller, or nil. If it
returns a view controller, the split view controller makes that view
controller its second view controller. The default response of a plain
vanilla UIViewController to separateSecondaryViewController(fo
r:) is to return nil. But a UINavigationController, if it has two
children (a root view controller and a pushed view controller), pops its t
opViewController off the navigation stack and returns the popped
view controller.

Thus, when our app is rotated from portrait to landscape, exactly the right
thing happens, with no further coding on our part: if the navigation
controller has pushed a DetailViewController onto its stack, it now pops it

and hands it to the split view controller, which displays its view as the detail
view!

On the iPhone 6/7/8 Plus in landscape, the displayModeButtonItem is
present (whereas it disappears automatically on an iPad in landscape).
Instead of appearing as a “back” chevron, it’s an “expand” symbol (two
arrows pointing away from each other). When the user taps it, the master
view is hidden and the detail view occupies the entire screen — and the dis
playModeButtonItem changes to a chevron. Tapping the chevron toggles
back the other way: the master view is shown again.
So, is our split view interface finished? Not quite! There is one remaining
problem. Suppose we’re in landscape (.regular horizontal size class) and
the user is looking at the detail view controller. Now the user rotates to
portrait (.compact horizontal size class). The split view controller
collapses. Without extra precautions, we’ll end up displaying the master
view controller — because we went to the trouble of arranging that, back
when we thought the only way to collapse was to launch into a .compact
horizontal size class:

func splitViewController(_ svc: UISplitViewController,

 collapseSecondary vc2: UIViewController,

 onto vc1: UIViewController) -> Bool {

 return true

}

The result is that the user’s place in the application has been lost. I think we
can solve this satisfactorily simply by having the split view controller’s
delegate keep track of whether the user has ever chosen a detail view. I’ll
use an instance property, self.didChooseDetail:

class AppDelegate : UIResponder, UIApplicationDelegate {

 var window : UIWindow?

 var didChooseDetail = false

 // ...

}

When the user taps a row of the master view list to navigate to the detail
view, we set that instance property to true:

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 // ... as before ...

 if let del = self.splitViewController?.delegate as? AppDelegate {

 del.didChooseDetail = true

 }

}

When the split view controller collapses, the split view controller’s delegate
uses that instance property to decide what to do — that is, whether to
display the master view controller or the detail view controller:

func splitViewController(_ svc: UISplitViewController,

 collapseSecondary vc2: UIViewController,

 onto vc1: UIViewController) -> Bool {

 if let nav = vc2 as? UINavigationController,

 nav.topViewController is DetailViewController,

 self.didChooseDetail {

 return false

 }

 return true

}

Customizing a Split View Controller
Here are some properties of a UISplitViewController that allow it to be
customized:

primaryEdge

New in iOS 11, you can determine which side the primary view appears
on. Your choices (UISplitViewControllerPrimaryEdge) are .leading
and .trailing.

presentsWithGesture

A Bool. If false, the screen edge swipe gesture that shows the master
view in portrait orientation on an iPad is disabled. The default is true.

preferredDisplayMode

The display mode describes how an expanded split view controller’s
primary view is displayed. Set this property to change the current
display mode of an expanded split view controller programmatically, or
set it to .automatic to allow the display mode to adopt its default
value. To learn the actual display mode being used, ask for the current d
isplayMode.
An expanded split view controller has three possible display modes
(UISplitViewControllerDisplayMode):

.allVisible

The two views are shown side by side.

.primaryHidden

The primary view is not present.

.primaryOverlay

The primary view is shown as a temporary overlay in front of the
secondary view.

The default automatic behaviors are:

iPad in landscape

The displayModeButtonItem is hidden, and the display mode is .a
llVisible.

iPad in portrait

The displayModeButtonItem is shown, and the display mode
toggles between .primaryHidden and .primaryOverlay.

iPhone 6/7/8 Plus in landscape

The displayModeButtonItem is shown, and the display mode
toggles between .primaryHidden and .allVisible.

preferredPrimaryColumnWidthFraction

Sets the master view width in .allVisible and .primaryOverlay
display modes, as a percentage of the whole split view (between 0 and
1). Your setting may have no effect unless you also constrain the width
limits absolutely through the minimumPrimaryColumnWidth and maxim
umPrimaryColumnWidth properties. To specify the default width, use U
ISplitViewControllerAutomaticDimension. To learn the actual
width being used, ask for the current primaryColumnWidth.

You can also track and govern the display mode with these delegate
methods:

splitViewController(_:willChangeTo:)

The displayMode of an expanded split view controller is about to
change, meaning that its first view controller’s view will be shown or
hidden. You might want to alter the interface somehow in response.

targetDisplayModeForAction(in:)

Called whenever something happens that might affect the display mode,
such as:

The split view controller is showing for the first time.
The interface is rotating.
The user summons or dismisses the primary view.

Return a display mode to specify what the user’s tapping the displayMo
deButtonItem should subsequently do (and, by extension, how the
button is portrayed), or .automatic to accept what the split view
controller would normally do.

After collapsing or expanding, a UISplitViewController emits the .UIViewC
ontrollerShowDetailTargetDidChange notification.

Split View Controller in a Storyboard
To see how to configure a split view controller in a storyboard, make a new
project from the Master–Detail app template and study the storyboard that it

provides. The storyboard starts with a split view controller, configured in
essentially the same way as the split view controller that I created in code
earlier (Figure 9-4):

The split view controller has two relationships, “master view controller”
and “detail view controller,” specifying its two children. Those two
children are both navigation controllers.
The first navigation controller has a “root view controller” relationship
to a MasterViewController, which is a UITableViewController.
The second navigation controller has a “root view controller”
relationship to a DetailViewController.
The prototype table view cell in the master table view has an action
segue — a Show Detail segue whose destination is the detail navigation
controller. A Show Detail segue, when triggered, calls showDetailView
Controller(_:sender:) — and you already know what that does.

Figure 9-4. How the storyboard configures a split view interface

Unfortunately, that’s not the end of the initial configuration required to get
this split view controller to work. The displayModeButtonItem has to be
added. That’s done in code, in the app delegate’s implementation of applic
ation(_:didFinishLaunchingWithOptions:). The code obtains a
reference to the split view controller and to the detail view controller, and
creates and configures the displayModeButtonItem:

let splitViewController =

 window!.rootViewController as! UISplitViewController

let navigationController =

 splitViewController

 .viewControllers[splitViewController.viewControllers.count-1]

 as! UINavigationController

navigationController.topViewController!.navigationItem.leftBarButtonItem =

 splitViewController.displayModeButtonItem

The displayModeButtonItem must also be managed when the Show Detail
segue is triggered. Again, that’s done in code, in the master view controller:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 if segue.identifier == "showDetail" {

 if let indexPath = tableView.indexPathForSelectedRow {

 let controller =

 (segue.destination as! UINavigationController)

 .topViewController as! DetailViewController

 controller.navigationItem.leftBarButtonItem =

 splitViewController?.displayModeButtonItem

 controller.navigationItem.leftItemsSupplementBackButton = true

 // ... also pass data to controller ...

 }

 }

}

In addition, the template code sets the app delegate as the split view
controller’s delegate, and implements splitViewController(_:collapse
Secondary:onto:), as we did earlier. Moreover, the split view controller in
the storyboard has no configurable properties in the Attributes inspector; if
you want to set its preferredPrimaryColumnWidthFraction, for
example, you must do that in code as well.
The upshot is that the Master–Detail app template, even though it
instantiates the view controllers from the storyboard, still ends up doing in
code almost everything we did when we created the view controllers in
code. One is therefore naturally led to ask what advantage there is to
instantiating the split view controller and its child view controllers from the
storyboard, as opposed to creating them in code. In my opinion, there is no
such advantage. In fact, the Master–Detail app template is arguably worse

than the code we wrote to start with; the template code is verbose and
opaque. That’s because the architecture has been constructed automatically,
behind the code’s back, and the code must now scramble just to get
references to the various view controllers.

Setting the Collapsed State
Suppose you want side-by-side display of the two child view controllers’
views in landscape even on an iPhone. How would you arrange that? The
problem here is that we need to control the value of the split view
controller’s isCollapsed property — but we can’t just set it directly,
because this property is read-only.
The solution is to realize that the split view controller decides its own
expanded or collapsed state depending on the environment — in particular,
on whether the current trait collection’s horizontal size class is .compact.
We need, therefore, to lie to the split view controller about its trait
collection environment, effectively making it believe that it’s on an iPad
even though it’s really on an iPhone.
We can do that by interposing our own custom container view controller
above the split view controller in the view controller hierarchy — typically,
as the split view controller’s direct parent. We can then send this container
view controller the setOverrideTraitCollection(_:forChildViewCont
roller:) message, causing it to pass the trait collection of our choosing
down the view controller hierarchy to the split view controller.
In this example, our container view controller is the app’s root view
controller; its child is a split view controller. The split view controller’s
view completely occupies the container view controller’s view. In other
words, the container’s own view is never seen independently; the container
view controller exists solely in order to manage the split view controller.
Early in the life of the app, the container view controller configures the split
view controller and lies to it about the environment:

var didInitialSetup = false

override func viewWillLayoutSubviews() {

 if !self.didInitialSetup {

 self.didInitialSetup = true

 let svc = self.childViewControllers[0] as! UISplitViewController

 svc.preferredDisplayMode = .allVisible

 svc.preferredPrimaryColumnWidthFraction = 0.5

 svc.maximumPrimaryColumnWidth = 500

 let traits = UITraitCollection(traitsFrom: [

 UITraitCollection(horizontalSizeClass: .regular)

])

 self.setOverrideTraitCollection(traits,

 forChildViewController: svc)

 }

}

The result is that the split view controller displays both its children’s views
side by side, both in portrait and landscape, like the Settings app on the
iPad, even on the iPhone.
Another use of this same trick, based on Apple’s AdaptivePhotos sample
code, is to make the iPhone behave more like an iPhone 6/7/8 Plus, with a .
regular horizontal size class in landscape (the split view controller
expands) but a .compact horizontal size class in portrait (the split view
controller collapses):

override func viewWillTransition(to size: CGSize,

 with coordinator: UIViewControllerTransitionCoordinator) {

 let svc = self.childViewControllers[0] as! UISplitViewController

 if size.width > size.height {

 let traits = UITraitCollection(traitsFrom: [

 UITraitCollection(horizontalSizeClass: .regular)

])

 self.setOverrideTraitCollection(traits,

 forChildViewController: svc)

 } else {

 self.setOverrideTraitCollection(nil,

 forChildViewController: svc)

 }

 super.viewWillTransition(to: size, with: coordinator)

}

View Controller Message Percolation

The showDetailViewController(_:sender:) method, which lies at the
heart of the split view controller master–detail architecture, works in an
interesting way. As I mentioned earlier, my code sends this message to self
(the master view controller), but it is actually the split view controller that
responds. How is that possible? The answer is that this message percolates
up the view controller hierarchy to the split view controller.
Just two built-in UIViewController methods are implemented to behave in
this way: show(_:sender:) and showDetailViewController(_:sende
r:). Underlying this behavior is a general architecture for percolating a
message up the view controller hierarchy, which I will now describe.

The heart of the message-percolation architecture is the method targetVie
wController(forAction:sender:), where the action: parameter is the
selector for the method we’re inquiring about. This method, using some
deep introspective voodoo, looks to see whether the view controller to
which the message was sent overrides the UIViewController
implementation of the method in question. If so, it returns self; if not, it
effectively recurses up the view controller hierarchy, returning the result of
calling the same method with the same parameters on its parent view
controller or presenting view controller — or nil if no view controller is
ultimately returned to it. (A view controller subclass that does override the
method in question but does not want to be the target view controller can
implement the UIResponder method canPerformAction(_:withSender:)
to return false.)

So show(_:sender:) and showDetailViewController(_:sender:) are
implemented to call targetViewController(forAction:sender:). If
this call returns a target, they send themselves to that target. If it doesn’t
return a target, they call present(_:animated:completion:) as a kind of
fallback.

Here’s what actually happens when the master view controller sends showD
etailViewController(_:sender:) to self:

1. The master view controller doesn’t implement any override of showDe
tailViewController(_:sender:); it inherits the UIViewController
implementation, which is called.

2. The showDetailViewController(_:sender:) implementation
inherited from UIViewController calls targetViewController(forA
ction:sender:) on self (here, the master view controller).

3. targetViewController(forAction:sender:) sees that the method
in question, namely showDetailViewController(_:sender:), is
not overridden by this view controller (the master view controller); so
it calls targetViewController(forAction:sender:) on the parent
view controller, which is a UINavigationController.

4. Now we’re looking at the UINavigationController. targetViewContr
oller(forAction:sender:) sees that the method in question,
namely showDetailViewController(_:sender:), is not overridden
by this view controller either. So it calls targetViewController(for
Action:sender:) on its parent view controller, which is a
UISplitViewController.

5. Now we’re looking at the UISplitViewController. It turns out that
UISplitViewController does override the UIViewController
implementation of showDetailViewController(_:sender:)!

Thus, targetViewController(forAction:sender:) in the split
view controller returns self, and all the nested calls to targetViewCo
ntroller(forAction:sender:) return, with the split view controller
as the result.

6. We are now back in showDetailViewController(_:sender:),
originally sent to the master view controller. From its call to targetVi
ewController(forAction:sender:), it has acquired a target — the
split view controller. So it finishes by sending showDetailViewContr
oller(_:sender:) to the split view controller.

The reason for the percolation architecture is that it allows show(_:sende
r:) and showDetailViewController(_:sender:) to work differently
depending on how the view controller to which they are originally sent is
situated in the view controller hierarchy. Two built-in UIViewController
subclasses, UINavigationController and UISplitViewController, override
one or both of these methods, and thus, if they are further up the view
controller hierarchy than the view controller on which these methods are
called, they will take charge of what happens:

UINavigationController show(_:sender:)

UINavigationController implements show(_:sender:) to call pushVie
wController(_:animated:). That explains the dual behavior of show
(_:sender:) — everything depends on whether or not we’re in a
navigation interface:

In a navigation interface

If you send show(_:sender:) to a view controller whose parent is a
UINavigationController, it is the navigation controller’s
implementation that will be called, meaning that the parameter view
controller is pushed onto the stack.

Not in a navigation interface

If you send show(_:sender:) to a view controller without a parent
that overrides this method, it can’t find a target, so it executes its
fallback, meaning that the parameter view controller is presented.

UISplitViewController showDetailViewController(_:sender:)

UISplitViewController implements showDetailViewController(_:se
nder:) as follows. First, it calls the delegate method splitViewContro
ller(_:showDetail:sender:); if the delegate returns true,
UISplitViewController does nothing (and in that case, you would be
responsible for getting the parameter view controller’s view into the
interface). Otherwise:

If the split view controller is expanded

The split view controller replaces its second child view controller
with the parameter view controller.

If the split view controller is collapsed
If the split view controller’s first (and only) child view controller is
a UINavigationController, it sends show(_:sender:) to it — and
the navigation controller responds by pushing the parameter view
controller onto its own stack.

If not, the split view controller calls present(_:animated:comple
tion:).

UISplitViewController show(_:sender:)

UISplitViewController implements show(_:sender:) as follows. First,
it calls the delegate method splitViewController(_:show:sender:);
if the delegate returns true, UISplitViewController does nothing (and
that case, you would be responsible for getting the parameter view
controller’s view into the interface). Otherwise:

If the split view controller is expanded

If the sender: is the split view controller’s first view controller, the
split view controller replaces the first view controller with the
parameter view controller.
If not, it replaces its second view controller with the parameter view
controller.

If the split view controller is collapsed

The split view controller calls present(_:animated:completio
n:).

Now that you understand the percolation mechanism, perhaps you’d like to
know whether your own custom methods can participate in it. They can!
Extend UIViewController to implement your method such that it calls targ
etViewController(forAction:sender:) on self and sends the action
method to the target if there is one. For example:

extension UIViewController {

 @objc func showHide(_ sender: Any?) {

 if let target = self.targetViewController(

 forAction:#selector(showHide), sender: sender) {

 target.showHide(self)

 }

 }

}

In that example, I don’t know what any particular UIViewController
subclass’s override of showHide(_:) may do, and I don’t care! What
matters is that if showHide(_:) is sent to a view controller that doesn’t
override it, it will percolate up the view controller hierarchy until we find a
view controller that does override it, and it is that override that will be
called.

iPad Multitasking
Starting in iOS 9, certain models of iPad can perform a kind of multitasking
where the windows of two different apps can appear simultaneously. There
are two multitasking modes (Figure 9-5):

Slideover
One app appears in a narrow format in front of the other, occupying
roughly one-third of the screen’s width. The rear app continues to
occupy the full width of the screen; in iOS 9 and 10 it is deactivated and
covered by a dimming view, but in iOS 11 it remains active.

Splitscreen
The two apps appear side by side; they are both active simultaneously.
In landscape orientation, the apps can divide the screen’s width equally,
or one of them can occupy roughly one-third of the screen’s width.
Splitscreen multitasking mode is available on a narrower range of iPad
models than slideover mode.

Figure 9-5. Slideover multitasking mode and splitscreen multitasking mode

Your iPad or Universal app, by default, will participate in iPad multitasking
if it is built against iOS 9 or later, permits all four orientations, and uses a
launch screen storyboard or .xib. If your app does all those things, but you
would like it to opt out of participation in iPad multitasking, set the
Info.plist key UIRequiresFullScreen to YES. An app that doesn’t
participate in iPad multitasking can occupy the screen while another app
appears in front of it in slideover mode, but it cannot itself appear as the
front app in slideover mode, and it cannot be involved in splitscreen mode
at all.
If your app participates in iPad multitasking, it can appear at a size that’s
different from the device’s screen size. This, in turn, may be accompanied
by a change in the trait collection. Your app, even though it’s on an iPad,
can be launched or summoned into a .compact horizontal size class
situation, and it can be toggled between a .compact horizontal size class
and a .regular horizontal size class. In particular, if your app appears in
narrow format (because it is occupying roughly one-third of the screen, in
slideover or splitscreen mode), it will have a .compact horizontal size

class; and if your app occupies half the screen in splitscreen mode, it might
have a .compact horizontal size class, depending on how large this iPad’s
screen is and what orientation the iPad is in.
When your app changes size because of multitasking, your view controller
will receive viewWillTransition(to:with:) to report the size change. It
may receive this event more than once, and it will receive it while the app is
inactive. If the size change also involves a transition from one horizontal
size class to another, then your view controller will also receive willTrans
ition(to:with:) and traitCollectionDidChange(_:) to report the
trait collection change, also while the app is inactive.
The good news is that, if your app is a universal app, it is probably prepared
already to respond coherently to these events, and might well be able to
participate in iPad multitasking with no significant change. You can’t
assume that a .compact horizontal size class means you’re on an iPhone,
but you probably weren’t thinking in those terms anyway — and even if
you were, you can still detect what kind of device you are really on, if you
have to, by looking at the trait collection’s userInterfaceIdiom.
If a view controller is a presented view controller, then if the size transition
involves a trait collection transition, the view controller will adapt. For
example, a .formSheet or .popover presented view controller will, by
default, turn into a .fullScreen presented view controller as the app
transitions from a .regular horizontal size class to .compact — and will
then change back again as the app transitions back to .regular. You can
take a hand in how the presented view controller adapts by functioning as
the presentation controller’s delegate.
Similarly, in a split view controller interface, the split view controller will
collapse and expand as the app transitions from a .regular horizontal size
class to .compact and back again. This is no different from the ability of a
split view controller to collapse and expand when an iPhone 6/7/8 Plus is
rotated, and the same precautions will take care of it satisfactorily.
The large variety of absolute sizes that your app’s interface might assume
under iPad multitasking is unlikely to be of much interest. Again, if this is a

universal app, then you are already taking care of a wide range of possible
sizes through size classes and autolayout, and you probably won’t have to
do anything new to cover these new sizes. More striking, and possibly more
daunting, is the possible range of ratios between the longer and shorter
dimensions of your app’s size. For example, on the large iPad Pro, your app
can go from a roughly square 1.04 height to width ratio all the way up to a
very tall and narrow 3.6. Designing an interface that looks decent and can
be operated correctly under such widely variable size ratios can be
something of a challenge.

TIP
What actually changes when your app’s size is changed is the size of its window. Thus, under iPad
multitasking, your app’s window bounds can be different from screen bounds. Moreover, if your
app appears on the right, its window origin is shifted to the right; this changes the relationship
between a view’s position in window coordinates and its position in screen coordinates. However,
it is unlikely that any of that will make a difference to your code.

Another major challenge introduced by iPad multitasking is the possibility
that your app will effectively be frontmost at the same time as some other
app. This means that the other app can be using both the processor
(especially the main thread) and memory at a time when your app is not
suspended. For this to work, all apps participating in iPad multitasking need
to be on their best behavior, adhering to best practices with regard to
threading (see Chapter 24) and memory usage (see “View Controller
Memory Management”).

Drag and Drop
Drag and drop, new in iOS 11, allows the user to drag something from one
app into another; it can also be used within a single app. What the user
appears to drag is a view, but what is actually communicated to the target
app is data. Thus, drag and drop is effectively a visual form of copy and
paste — with this important difference:

Copy and paste uses a clipboard
Typically, copy and paste starts by copying the actual data to be
communicated onto a clipboard. The data sits in the clipboard, ready to
paste anywhere. The data in the clipboard can be pasted multiple times
in multiple places.

Drag and drop uses a promise
With drag and drop between apps, no actual data is carried around
during the drag. The data might be large; it might take time to acquire.
What’s carried is effectively a promise to supply a certain type of data
on request; that promise isn’t fulfilled until the drop takes place. Only
the drop target can receive the data.

Drag and Drop Architecture
From an app’s point of view, drag and drop operates at the level of
individual views. The user performs a set sequence of actions:

1. The user long presses on a view; if this is a view from which dragging
is possible (a drag source), a visible avatar — a preview — appears
under the user’s finger.

2. The user may then start dragging the preview.
3. The user drags the preview over some other view, possibly in a

different app; if this is a view on which dropping is possible (a drop
destination), the preview is badged to indicate this.

4. If the user releases the preview over a drop destination, the preview
disappears, and the actual data is communicated from the source to the
destination. (If the user releases the preview when it is not badged, the
drag and drop is cancelled and no data is communicated.)

To prepare for drag and drop, therefore, your app will need either a drag
source view or a drop destination view (or both):

Configuring a drag source view

To configure a view so that dragging from it is possible, you create a
UIDragInteraction object and attach it to that view. You don’t subclass
UIDragInteraction; rather, you give it a delegate (adopting the
UIDragInteractionDelegate protocol). From your app’s standpoint, it is
this delegate that does all the work if the user actually tries to perform a
drag from the source view.

Configuring a drop destination view
To configure a view so that dropping onto it is possible, you create a
UIDropInteraction object and attach it to that view. You don’t subclass
UIDropInteraction; rather, you give it a delegate (adopting the
UIDropInteractionDelegate protocol). From your app’s standpoint, it is
this delegate that does all the work if the user actually tries to drop onto
the destination view.

Drag and drop needs to operate between apps and outside of any app; it is a
system-level technology. Between the start of the drag and the ultimate
drop, the user, moving the preview, is interacting with the runtime — not
the source app or the destination app. The preview being dragged doesn’t
belong to either app. In a sense, while dragging, the user isn’t “in” any app
at all; by the same token, while dragging, the user is not prevented from
interacting with your app.
The runtime sends messages to the drag interaction delegate or the drop
interaction delegate, as appropriate, at the start and end of the drag and
drop. In those messages, the runtime presents two different faces:

To the drag interaction delegate, it presents a UIDragSession object (a
UIDragDropSession subclass).
To the drop interaction delegate, it presents a UIDropSession object
(another UIDragDropSession subclass).

More than one piece of data can be supplied through a single drag and drop
session. The data itself is accessed through a nest of envelopes. Here’s how
the session is initially configured by the drag interaction delegate:

1. At the heart of each envelope is a single NSItemProvider representing
a single piece of data.

2. Each item provider is wrapped in a UIDragItem.
3. The drag items are attached to the drag session.

At the other end of the process, the drop interaction delegate reverses the
procedure:

1. The drop session contains drag items.
2. Each drag item contains a single NSItemProvider.
3. Each item provider is the conduit for fetching the corresponding piece

of data.

Basic Drag and Drop
You now know enough for an example! I’ll talk through a basic drag and
drop operation. In my example, the source view will be a simple color
swatch; it vends a color. The destination view will receive that color as the
session’s data. The source view and the destination view could be in two
different apps, but the architecture is completely general, so they could be
in the same app — it makes no difference.

The drag source view
The drag source view (which I’m calling dragView) can be configured like
this:

@IBOutlet weak var dragView: UIView!

override func viewDidLoad() {

 super.viewDidLoad()

 let dragger = UIDragInteraction(delegate: self)

 self.dragView.addInteraction(dragger)

}

The user long presses on the source view, and the UIDragInteraction detects
this. (If you think this makes a UIDragInteraction rather like a gesture
recognizer, you’re exactly right; in fact, adding a drag interaction to a view

installs four gesture recognizers on that view.) The drag interaction turns to
its delegate (UIDragInteractionDelegate) to find out what to do. A
UIDragInteractionDelegate has just one required method, and this is it:

func dragInteraction(_ interaction: UIDragInteraction,

 itemsForBeginning session: UIDragSession) -> [UIDragItem] {

 let ip = NSItemProvider(object:UIColor.red)

 let di = UIDragItem(itemProvider: ip)

 return [di]

}

The drag delegate’s dragInteraction(_:itemsForBeginning:) must
return an array of drag items. If the array is empty, that’s the end of the
story; there will be no drag. In our case, we want to permit the drag. Our
data is very simple, so we just package it up inside an item provider, pop
the item provider into a drag item, and return an array consisting of that
drag item.
The user now sees the preview and can drag it. The source effectively
retires from the story. So much for the source view!
You may be wondering: where did the preview come from? We didn’t
supply a custom preview, so the system takes a snapshot of the drag source
view, enlarges it a little, makes it slightly transparent, and uses that as the
draggable preview. For our color swatch example, that might be perfectly
acceptable.

The drop destination view
The drop destination view (which I’m calling dropView) can be configured
in a manner remarkably similar to how we configured the source view:

@IBOutlet weak var dropView: UIView!

override func viewDidLoad() {

 super.viewDidLoad()

 let dropper = UIDropInteraction(delegate: self)

 self.dropView.addInteraction(dropper)

}

A drop interaction delegate has no required methods, but nothing is going to
happen unless we implement this method:

func dropInteraction(_ interaction: UIDropInteraction,

 sessionDidUpdate session: UIDropSession) -> UIDropProposal {

 return UIDropProposal(operation: .copy)

}

In dropInteraction(_:sessionDidUpdate:), our job is to return a
UIDropProposal. This will be initialized with a UIDropOperation that will
usually be .cancel or .copy. If it’s .cancel, the user won’t see any
feedback while dragging over this view, and if the user drops onto this view,
nothing will happen (the entire operation will be cancelled). If it’s .copy,
the preview is badged with a Plus sign while the user is dragging over this
view, and if the user drops onto this view, we can be notified of this and can
proceed to ask for the data.

In our implementation of dropInteraction(_:sessionDidUpdate:), we
have expressed a willingness to accept a drop regardless of what sort of data
is associated with this session. Let’s refine that. If what we accept is a color,
we should base our response on whether any of the session’s item providers
promise us color data. We can query the item providers individually, or we
can ask the session itself:

func dropInteraction(_ interaction: UIDropInteraction,

 sessionDidUpdate session: UIDropSession) -> UIDropProposal {

 let op : UIDropOperation =

 session.canLoadObjects(ofClass: UIColor.self) ? .copy : .cancel

 return UIDropProposal(operation:op)

}

Finally, let’s say the drop actually occurs on the destination view. The drop
interaction delegate’s opportunity to obtain the data is its implementation of
dropInteraction(_:performDrop:). There are two ways to ask for the
data. The simple way is to ask the session itself:

func dropInteraction(_ interaction: UIDropInteraction,

 performDrop session: UIDropSession) {

 session.loadObjects(ofClass: UIColor.self) { colors in

 if let color = colors[0] as? UIColor {

 // do something with color here

 }

 }

}

The more elaborate way is to get a reference to an item provider and ask the
item provider to load the data:

func dropInteraction(_ interaction: UIDropInteraction,

 performDrop session: UIDropSession) {

 for item in session.items {

 let ip = item.itemProvider

 ip.loadObject(ofClass: UIColor.self) { (color, error) in

 if let color = color as? UIColor {

 // do something with color here

 }

 }

 }

}

There’s an important difference between those two approaches:

loadObjects(ofClass:)

When calling the session’s loadObjects(ofClass:), the completion
function is called on the main thread.

loadObject(ofClass:)

When calling an item provider’s loadObject(ofClass:), the
completion function is called on a background thread.

If you use the second way and you intend to update or otherwise
communicate with the interface, you’ll need to step out to the main thread
(see Chapter 24); I’ll show an example later in this chapter.

Item Providers
It’s no coincidence that my color swatch example in the preceding section
uses a UIColor as the data passed through the drag and drop session.

UIColor implements two key protocols, NSItemProviderWriting and
NSItemProviderReading. That’s why my code was able to make two
important method calls:

The drag source
At the drag source end of things, I was able to construct my item
provider by calling NSItemProvider’s initializer init(object:). That’s
because UIColor adopts the NSItemProviderWriting protocol; the class
of the parameter of init(object:) must be an NSItemProviderWriting
adopter.

The drop destination
At the drop destination end of things, I was able to get the data from my
item provider by calling loadObject(ofClass:). That’s because
UIColor adopts the NSItemProviderReading protocol; the parameter of
loadObject(ofClass:) must be an NSItemProviderReading adopter.

Other common classes that adopt these protocols include NSString,
UIImage, NSURL, MKMapItem, and CNContact. But what if your data’s
class isn’t one of those? Then adopt those protocols in your class!
To illustrate, I’ll create a Person class and then configure it so that Person
data can be passed through drag and drop. Here’s the basic Person class:

final class Person : NSObject, Codable {

 let firstName: String

 let lastName: String

 init(firstName:String, lastName:String) {

 self.firstName = firstName

 self.lastName = lastName

 super.init()

 }

 override var description : String {

 return self.firstName + " " + self.lastName

 }

 enum MyError : Error { case oops }

 static let personUTI = "neuburg.matt.person"

}

It turns out that the only kind of data that can actually pass through a drag
and drop session is a Data object. Therefore, I’m going to need a way to
serialize a Person as Data to pass it from the source to the destination.
That’s why my Person class adopts the Codable protocol, which makes
serialization trivial (Chapter 22). I also supply a simple Error type, to use as
a signal if things go wrong. Finally, there is no standard UTI (universal type
identifier) for my Person type, so I’ve made one up.

NSItemProviderWriting
Now I’ll make it possible to call NSItemProvider’s init(object:) when
the object: is a Person. To do so, I adopt NSItemProviderWriting, which
has two required members:

extension Person : NSItemProviderWriting {

 static var writableTypeIdentifiersForItemProvider = [personUTI]

 func loadData(withTypeIdentifier typeid: String,

 forItemProviderCompletionHandler

 ch: @escaping (Data?, Error?) -> Void) -> Progress? {

 switch typeid {

 case type(of:self).personUTI:

 do {

 ch(try PropertyListEncoder().encode(self), nil)

 } catch {

 ch(nil, error)

 }

 default: ch(nil, MyError.oops)

 }

 return nil

 }

}

The writableTypeIdentifiersForItemProvider property lists type
identifiers for the various representations in which we are willing to
supply our data. At the moment, I’m willing to supply a Person only as
a Person.
The loadData(withTypeIdentifier:forItemProviderCompletionH
andler:) method will be called when a drop destination asks for our
data. The drop has occurred, and our Person object, originally passed

into NSItemProvider’s init(object:), is going to package itself up as
a Data object. That’s easy, because Person is Codable. There are no
existing conventions for the format in which a Person is coded as Data,
so I use a property list. Whatever happens, I make sure to call the
completion function — either I pass in a Data object as the first
parameter, or I pass in an Error object as the second parameter. That’s
crucial!

Our data doesn’t take any time to generate, so I’m returning nil from the l
oadData method. If our data were time-consuming to supply, we might
wish to return a Progress object with the fetching of our data tied to the
updating of that object. I’ll talk more about the purpose of the Progress
object later.

NSItemProviderReading
Next I’ll make it possible to call NSItemProvider’s loadObject(ofClas
s:) when the class: is Person.self. To do so, I adopt
NSItemProviderReading, which has two required members:

extension Person : NSItemProviderReading {

 static var readableTypeIdentifiersForItemProvider = [personUTI]

 static func object(withItemProviderData data: Data,

 typeIdentifier typeid: String) throws -> Self {

 switch typeid {

 case personUTI:

 do {

 let p = try PropertyListDecoder().decode(self, from: data)

 return p

 } catch {

 throw error

 }

 default: throw MyError.oops

 }

 }

}

Everything I’m doing to implement NSItemProviderReading complements
what I did to implement NSItemProviderWriting:

The readableTypeIdentifiersForItemProvider property lists type
identifiers for any representations that we know how to transform into a
Person. At the moment, we do this only for an actual Person.
When object(withItemProviderData:typeIdentifier:) is called
with the Person type identifier, this means that a Person object is
arriving at the destination, packaged up as a Data object. Our job is to
extract it and return it. Well, we know how it must be encoded; it’s a
property list! So we decode it and return it. If anything goes wrong, we
throw an error instead.

The upshot is that drag and drop of a Person object now works perfectly
within our app, if we drop on a view whose UIDropInteractionDelegate
expects a Person object.

Vending additional representations
What if we want a Person to be draggable from our app to some other app?
It’s unlikely that another app will know about our Person class. Or what if
we want a Person to be draggable within our app to a view that expects
some other kind of data?

So far, our writableTypeIdentifiersForItemProvider property
declares just one UTI, signifying that we dispense a Person object. But we
can add other UTIs, signifying that we provide alternate representations of a
Person. For example, let’s decide to vend a Person as text:

static var writableTypeIdentifiersForItemProvider =

 [personUTI, kUTTypeUTF8PlainText as String]

(The constant kUTTypeUTF8PlainText, along with other UTI names, can
be found in the MobileCoreServices framework, which you’ll need to
import.)

Now we need to supplement our implementation of loadData(withTypeId
entifier:forItemProviderCompletionHandler:) to take account of the
possibility that we may be called by someone who is expecting a String
instead of a Person. What string shall we provide? How about a string

rendering of the Person’s name? It happens that our description property
is ready and willing to provide that. And there’s a simple standard way to
wrap a UTF8 string as Data: just call data(using: .utf8). So all we have
to do is add this case to our switch statement:

case kUTTypeUTF8PlainText as NSString as String:

 ch(self.description.data(using: .utf8)!, nil)

The result is that if a Person is dragged and dropped onto a view that
expects a string to be dropped on it, the Person’s name is provided as the
data. A text field is such a view; if a Person is dragged and dropped onto a
text field, the Person’s name is inserted into the text field!

Receiving additional representations
We can also extend our implementation of the NSItemProviderReading
protocol in a similar way. Here, our app contains a view that expects a
Person to be dropped onto it, and we want it to have the ability to accept
data of some other kind. For example, suppose the user drags a String and
drops it onto our view. A String is not a Person, but perhaps this String is in
fact a person’s name. We could make a Person from that String.

To make that possible, we add a UTI to our readableTypeIdentifiersFo
rItemProvider property, signifying that we can derive a Person from text:

static var readableTypeIdentifiersForItemProvider =

 [personUTI, kUTTypeUTF8PlainText as String]

To go with that, we add a case to the switch statement in our object(withI
temProviderData:typeIdentifier:) implementation. We pull the String
out of the Data object, parse it in a crude way into a first and last name, and
create a Person object:

case kUTTypeUTF8PlainText as NSString as String:

 if let s = String(data: data, encoding: .utf8) {

 let arr = s.split(separator:" ")

 let first = arr.dropLast().joined(separator: " ")

 let last = arr.last ?? ""

 return self.init(firstName: first, lastName: String(last))

 }

 throw MyError.oops

The result is that if the string "Matt Neuburg" is dragged onto a view that
expects a Person object, the drop is accepted, because our Person type has
signified that it knows how to turn a string into a Person, and the result of
the drop is a Person with first name "Matt" and last name "Neuburg".
Similarly, we might want to permit a drag of a vCard to be dropped where a
Person is expected. (For example, that’s what we might get if the user were
to drag a listing from the Contacts app onto our destination view.) Our read
ableTypeIdentifiersForItemProvider now needs yet another UTI:

static var readableTypeIdentifiersForItemProvider =

 [personUTI, kUTTypeVCard as String, kUTTypeUTF8PlainText as String]

We also add yet another case to our switch statement; the Contacts
framework (Chapter 18) provides a standard way to decode a vCard from
Data, along with straightforward extraction of the first and last names:

case kUTTypeVCard as NSString as String:

 do {

 let con = try CNContactVCardSerialization.contacts(with: data)[0]

 if con.givenName.isEmpty && con.familyName.isEmpty {

 throw MyError.oops

 }

 return self.init(firstName:con.givenName, lastName:con.familyName)

 } catch {

 throw MyError.oops

 }

(My implementation is not very sophisticated: if the vCard has no first or
last name, we just give up instead of trying to handle the situation
gracefully. But at least this way I won’t end up with a nameless Person.)

Slow Data Delivery

Pretend that you are the drop interaction delegate, and you are now asking
for the data in your implementation of dropInteraction(_:performDro
p:). Whether you call the session’s loadObjects(ofClass:) or an item
provider’s loadObject(ofClass:), your completion function is called
asynchronously when the data arrives. This could take some considerable
time, depending on the circumstances. (See Appendix C for more about
what “asynchronous” means.)
Therefore, by default, if things take too long, the runtime puts up a dialog
tracking the overall progress of data delivery and allowing the user to
cancel it. If you like, you can replace the runtime’s dialog with your own
progress interface. (If you intend to do that, set the drop session’s progress
IndicatorStyle to .none, to suppress the default dialog — and be sure
that your interface gives the user a way to cancel.)
You can stay informed about the supplying of the data through a Progress
object (Chapter 12). A Progress object has fractionCompleted and isFin
ished properties that you can track through key–value observing in order to
update your interface; you can also cancel the loading process by telling the
Progress object to cancel. There are two ways to get such an object:

The session vends an overall Progress object as its progress property.

An individual item provider’s loadObject method can return a Progress
object tracking the delivery of its own data.

Even if you rely on the runtime’s default progress dialog, there can be a
disconcerting effect of blankness when all the apparent action comes to an
end without any data to display. You can discover this situation by
implementing your drop interaction delegate’s dropInteraction(_:concl
udeDrop:) method. When that method is called, all visible activity in the
interface has stopped. If you discover here that the drop session’s progres
s.isFinished is false, then depending on the nature of your interface,
you might need to provide some sort of temporary view, to show the user
that something has happened, until the actual data arrives.

Additional Delegate Methods
Additional UIDragInteractionDelegate and UIDropInteractionDelegate
methods allow the delegate to dress up the drag or drop process in more
detail:

Drag interaction delegate
Drag interaction delegate methods let the delegate supply drag items,
provide a preview, restrict the type of drag permitted, animate along
with the start of the drag, and hear about each stage of the entire
session.

Drop interaction delegate
Drop interaction delegate methods let the delegate signify willingness to
accept the drop, track the user’s finger dragging over the view, and,
when an actual drop takes place, provide a preview, perform an
animation, and request the associated data.

Here are some examples; for full details, consult the documentation.

Custom drag preview
The drag interaction delegate can supply a preview to replace the snapshot
of its view. Let’s modify our earlier color swatch example to illustrate. Our
color swatch is red; it will create a label containing the word “RED” and
provide that as the preview.
The trick is that we have to say where this label should initially appear. To
do that, we create a UIDragPreviewTarget, which specifies a container view
in the interface to which our preview will be added as a subview, along with
a center for the preview in that view’s coordinate system. (The preview
view will be snapshotted by the runtime. It will be removed from the
container when the user either fails to initiate the drag or does in fact start
dragging; in the latter case, it will be replaced by the snapshot.) Then we
combine our preview with that target as a UITargetedDragPreview. In this
case, we want the center of the label under the user’s finger; we can find out
from the session where the user’s finger is:

func dragInteraction(_ interaction: UIDragInteraction,

 previewForLifting item: UIDragItem, session: UIDragSession)

 -> UITargetedDragPreview? {

 let lab = UILabel()

 lab.text = "RED"

 lab.textAlignment = .center

 lab.textColor = .red

 lab.layer.borderWidth = 1

 lab.layer.cornerRadius = 10

 lab.sizeToFit()

 lab.frame = lab.frame.insetBy(dx: -10, dy: -10)

 let v = interaction.view!

 let ptrLoc = session.location(in: v)

 let targ = UIDragPreviewTarget(container: v, center: ptrLoc)

 let params = UIDragPreviewParameters()

 params.backgroundColor = .white

 return UITargetedDragPreview(view: lab,

 parameters: params, target: targ)

}

In addition to a view and a target, a UITargetedDragPreview is initialized
with a UIDragPreviewParameters object. In the preceding code, I used the
UIDragPreviewParameters object to make the preview’s background white,
just to give it a role in the example. Another useful possibility is to set the
UIDragPreviewParameters visiblePath property, supplying a clipping
path; for example, you might want the preview to be a snapshot of a certain
subregion of the source view.
The drag interaction delegate can also change the preview in the course of
the drag. To do so, it will set the drag item’s previewProvider to a
function returning a UIDragPreview (which has no target, because it has no
relationship to the app’s interface). If the drag interaction delegate does this
in, say, dragInteraction(_:itemsForBeginning:), the previewProvide
r function won’t be called until the drag begins, so the user will see the
lifting preview first, and will see the previewProvider preview after the
drag starts. Another strategy is to implement dragInteraction(_:sessio
nDidMove:) and set the previewProvider there; the preview will change
at that moment. But dragInteraction(_:sessionDidMove:) is called

repeatedly, so be careful not to set the same drag item’s previewProvider
to the same function over and over.
In addition, the drag interaction delegate can set a cancelling preview, with
dragInteraction(_:previewForCancelling:withDefault:). This is
used if the user begins to drag the preview but then releases it while not
over a drop destination. A nice effect is to keep the existing drag preview
(accessible through the third parameter) but retarget it to say where it
should fall to as it vanishes; and in fact UITargetedDragPreview has a reta
rgetedPreview(with:) method for this very purpose. Furthermore, the
UIDragPreviewTarget initializer lets you supply a transform: parameter
that will be applied over the course of the animation as the preview falls.
The drop interaction delegate, too, can provide a preview to replace the
dragged preview when the drop animation occurs; it works just like the
cancelling preview.

Additional animation
Another drag interaction delegate possibility is to make the source view
perform some sort of animation along with the runtime’s initial animated
display of the preview. In this example, I’ll fade the color swatch slightly:

func dragInteraction(_ interaction: UIDragInteraction,

 willAnimateLiftWith anim: UIDragAnimating, session: UIDragSession) {

 if let v = interaction.view {

 anim.addAnimations {

 v.alpha = 0.5

 }

 }

}

I could have supplied a completion function by calling addCompletion, but
I didn’t, so the color swatch stays faded throughout the drag. Clearly, I
don’t want it to stay faded forever; when the drag ends, I’ll be called back
again, and I’ll restore the swatch’s alpha then:

func dragInteraction(_ interaction: UIDragInteraction,

 session: UIDragSession, willEndWith operation: UIDropOperation) {

 if let v = interaction.view {

 UIView.animate(withDuration:0.3) {

 v.alpha = 1

 }

 }

}

WARNING
The animations you pass with addAnimations are applied before the runtime takes its snapshot to
form the default preview. Therefore, the results of those animations appear in the default preview.
To avoid that, supply your own preview.

The drop interaction delegate gets a corresponding message, dropInteract
ion(_:item:willAnimateDropWith:). By retargeting the drop preview
and performing its own animations alongside the drop, the drop interaction
delegate can create some vivid effects.

Flocking
If a source view’s drag interaction delegate implements dragInteraction
(_:itemsForAddingTo:withTouchAt:), and if that implementation
returns a nonempty array of drag items, the user can tap on this source view
while already dragging a preview, as a way of adding more drag items to
the existing session. Apple calls this flocking.
If you permit flocking, be careful of unintended consequences. For
example, if the user can tap a source view to get flocking once during a
drag, the user can tap the same source view to get flocking again during
that drag. This will result in the session effectively carrying multiple copies
of the same data, which is probably not what you want. You can solve this
problem by examining the session’s current drag items to make sure you’re
not adding another drag item whose item provider refers to the same data.

Table Views and Collection Views

Table views and collection views get a special implementation of drag and
drop, focusing on their cells. There is no need to supply a
UIDragInteraction or UIDropInteraction; instead, simply give the table
view or collection view an appropriate delegate:

UITableViewDragDelegate
UITableViewDropDelegate
UICollectionViewDragDelegate
UICollectionViewDropDelegate

The methods of these delegates are generally analogous to, but simpler
than, those of UIDragInteractionDelegate and UIDropInteractionDelegate.
I’ll discuss some table view drag and drop delegate methods; collection
views work very similarly.
To illustrate dragging, let’s return to the table of U.S. states developed in
Chapter 8, and make it possible to drag a cell and drop it on a view that
expects text. Our text will be, appropriately enough, the name of the state.
The implementation is trivial. First, in some early event such as viewDidLo
ad, we give our table view a drag delegate:

self.tableView.dragDelegate = self

Then, acting as drag delegate, we implement the only required method, tab
leView(_:itemsForBeginning:at:). There’s nothing new or surprising
about our implementation:

func tableView(_ tableView: UITableView,

 itemsForBeginning session: UIDragSession,

 at indexPath: IndexPath) -> [UIDragItem] {

 let s = self.sections[indexPath.section].rowData[indexPath.row]

 let ip = NSItemProvider(object:s as NSString)

 let di = UIDragItem(itemProvider: ip)

 return [di]

}

That’s all we have to do! It is now possible to long press on a cell to get a
drag preview snapshotting the cell, and that preview can be dropped on any
drop target that expects text.
Now let’s do the converse: we’ll make it possible to drop on a table.
Imagine that I have a table of person names, whose underlying model is an
array containing a single Section whose rowData is an array of Person. I
want the user to be able to drop a Person onto the table view; in response,
I’ll insert that person into the data, and I’ll insert a cell representing that
person into the table. We give our table view a drop delegate:

self.tableView.dropDelegate = self

Acting as the drop delegate, I implement two delegate methods. First, I
implement tableView(_:dropSessionDidUpdate:withDestinationInde
xPath:) to determine, as the user’s finger passes over the table view,
whether the drop should be possible. The destination index path might be n
il, indicating that the user’s finger is not over a row of the table. Also, the
dragged data might not be something that can generate a Person. In either
case, I return the .cancel operation. Otherwise, I return the .copy
operation to badge the dragged preview and permit the drop:

func tableView(_ tableView: UITableView,

 dropSessionDidUpdate session: UIDropSession,

 withDestinationIndexPath ip: IndexPath?) -> UITableViewDropProposal {

 if ip == nil {

 return UITableViewDropProposal(operation: .cancel)

 }

 if !session.canLoadObjects(ofClass: Person.self) {

 return UITableViewDropProposal(operation: .cancel)

 }

 return UITableViewDropProposal(operation: .copy,

 intent: .insertAtDestinationIndexPath)

}

Note the use of the UITableViewDropProposal initializer init(operatio
n:intent:); the intent: argument (UITableViewDropIntent) tells the
table view how to animate as the user’s finger hovers over it:

.insertAtDestinationIndexPath

For when the drop would insert rows; the table view opens a gap
between rows under the user’s finger.

.insertIntoDestinationIndexPath

For when the drop would not insert rows; the row under the user’s
finger highlights, suggesting that the dropped material will be
incorporated into that row in some way.

.automatic

A combination of the previous two, depending on precisely where the
user’s finger is.

.unspecified

The table doesn’t respond while the user’s finger is over it.

Next, I implement the required tableView(_:performDropWith:)
method. The drop is now happening; we need to retrieve the incoming data
and update the table. The second parameter is a
UITableViewDropCoordinator; everything we need to know about what’s
happening, such as the index path and the session, is available through the
coordinator:

func tableView(_ tableView: UITableView,

 performDropWith coord: UITableViewDropCoordinator) {

 if let ip = coord.destinationIndexPath {

 coord.session.loadObjects(ofClass: Person.self) { persons in

 for person in (persons as! [Person]).reversed() {

 tableView.performBatchUpdates({

 self.sections[ip.section].rowData.insert(

 person, at: ip.row)

 tableView.insertRows(at: [ip], with: .none)

 })

 }

 }

 }

}

That works, but we are not updating the table until the data arrives. We are
thus skirting the issue of what will happen if the data takes time to arrive.
The drop happens, and we should insert a row right now — that is, before
asking for the data. But at that moment, we obviously don’t yet have the
data! So either we must freeze the interface while we wait for the data to
arrive, which sounds like very bad interface, or we must update the table
with data that we don’t yet have, which sounds like a metaphysical
impossibility.
The solution is to use a placeholder cell for each new row while we wait for
its data. The technique is best understood through an example. I’ll use the
item provider to fetch the data this time:

func tableView(_ tableView: UITableView,

 performDropWith coord: UITableViewDropCoordinator) {

 guard let ip = coord.destinationIndexPath else {return}

 for item in coord.items {

 let item = item.dragItem

 guard item.itemProvider.canLoadObject(ofClass: Person.self)

 else {continue}

 let ph = UITableViewDropPlaceholder(

 insertionIndexPath: ip,

 reuseIdentifier: self.cellID,

 rowHeight: self.tableView.rowHeight)

 ph.cellUpdateHandler = { cell in

 cell.textLabel?.text = ""

 }

 let con = coord.drop(item, to: ph)

 item.itemProvider.loadObject(ofClass: Person.self) { p, e in

 DispatchQueue.main.async {

 guard let p = p as? Person else {

 con.deletePlaceholder(); return

 }

 con.commitInsertion(dataSourceUpdates: {ip in

 tableView.performBatchUpdates({

 self.sections[ip.section].rowData.insert(

 p, at: ip.row)

 })

 })

 }

 }

 }

}

For each drag item capable of providing a Person object, this is what we do:
We make a UITableViewDropPlaceholder, supplying our cell’s reuseId
entifier so that the table view can dequeue a cell for us to use as a
placeholder cell.
We set the placeholder’s cellUpdateHandler to a function that will be
called to configure the placeholder cell. In my simple table, we’re using
a basic default cell with a textLabel that normally displays the full
name of a Person; for the placeholder cell, the textLabel should be
blank.
We call the coordinator’s drop(_:to:) with the placeholder, to perform
the drop animation and create the placeholder cell; a context object
(UITableViewDropPlaceholderContext) is returned. The placeholder
cell is now visible in the table. The important thing is, however, that the
table view knows that this is not a real cell! For purposes of all data
source and delegate methods, it will behave as if the cell didn’t exist. In
particular, it won’t call tableView(_:cellForRowAt:) for this cell; the
cell is static and is already completely configured by the cellUpdateHa
ndler function we supplied earlier.
Now, at long last, we call loadObject(ofClass:) to ask for the actual
data!
Eventually, we are called with the data on a background thread. We step
out to the main thread, because we’re about to talk to the interface.
If we didn’t get the expected data, the placeholder cell is no longer
needed, and we remove it by calling the context object’s deletePlaceh
older.
If we reach this point, we’ve got data! We call the context object’s comm
itInsertion(dataSourceUpdates:) with a function that updates the
model only. As a result, tableView(_:cellForRowAt:) is called to
supply the real cell, which quietly replaces the placeholder cell in good
order.

While your table view contains placeholders, the table view’s hasUncommit
tedUpdates is true. Use that property as a flag to prevent your other code
from calling reloadData on the table view, which would cause the
placeholders to be lost and the entire table view update process to get out of
whack.
In step 3 of the preceding example, we gave the
UITableViewDropCoordinator a drop animation command to create the
placeholder cell. This command must be given outside of the loadObject
completion function, because the drop is about to happen now, so the
animation must replace the default drop animation now, not at some
asynchronous future time. The drop coordinator obeys three additional drop
animation commands that work similarly:

drop(_:intoRowAt:rect:)

Animates the drop preview into the cell at the specified row, to the
frame specified in that cell’s bounds coordinates.

drop(_:to:)

Animates the drop preview anywhere. The second parameter is a
UIDragPreviewTarget combining a container and a center in the
container’s bounds coordinates.

drop(_:toRowAt:)

Snapshots the cell at the given row, replaces the drop preview with that
snapshot, and animates the snapshot to fit the cell. This is useful under a
very limited set of circumstances:

You want to give the impression that the drop replaces the contents
of a cell.
The drag and drop must be local (see later in this chapter), so that the
model can be updated with the new data and the row can be reloaded
before the snapshot is taken.

Spring Loading

Spring loading is an effect similar to what happens on an iOS device’s
home screen when the user goes into “jiggly mode” and then drags an app’s
icon over a folder: the folder highlights, then flashes several times, then
opens. In this way, the user can open the folder as part of the drag, and can
then continue the drag, dropping the icon inside the opened folder.
You can use spring loading in an analogous way. For example, suppose
there’s a button in your interface that the user can tap to transition to a
presented view controller. You can make that button be spring loaded, so
that the user, in the middle of a drag, can hover over that button to make it
perform that transition — and can then drop on something inside the newly
presented view.

To make a button be spring loaded, set its isSpringLoaded property to tru
e, and call its addInteraction(_:) method with a
UISpringLoadedInteraction object. That object’s initializer takes a function
to be performed when the spring loaded interaction actually fires. (The
button’s normal control event action function, which fires in response to the
button being tapped, does not fire as a result of spring loading, though of
course you can make the spring loaded interaction function fire it.) For
example:

self.button.isSpringLoaded = true

self.button.addInteraction(UISpringLoadedInteraction() { int, con in

 let vc = // some view controller

 // ... other preparations ...

 self.present(vc, animated: true)

})

In the spring loaded interaction function, the second parameter (con in the
preceding code) is a UISpringLoadedInteractionContext object providing
information about the interaction. For example, it reports the location of the
drag, and it has a state describing how the view is currently responding.
The first parameter (int) is the UISpringLoadedInteraction itself.
A fuller form of initializer lets you give the UISpringLoadedInteraction
object two further properties:

An interaction behavior
A UISpringLoadedInteractionBehavior, to which you can attach two
functions — one to be called when the interaction wants permission to
proceed, the other to be called when the interaction has finished.

An interaction effect
A UISpringLoadedInteractionEffect, to which you can attach a function
to be called every time the interaction’s state changes.

Spring loading is available for buttons and button-like interface objects
such as bar button items and tab bar items, as well as for UIAlertController
(Chapter 13), where the spring loading is applied to the alert’s buttons. It is
also supported by table views and collection views, where it applies to the
cells; if turned on, it can be turned off for individual cells by delegate
methods:

tableView(_:shouldSpringLoadRowAt:with:)

collectionView(_:shouldSpringLoadItemAt:with:)

iPhone and Local Drag and Drop
By default, a UIDragInteraction comes into existence with its isEnabled
property set to false on an iPhone. To bring dragging to life on an iPhone,
set that property to true. Similarly, table views and collection views have a
dragInteractionEnabled property that you’ll need to set explicitly to tru
e on an iPhone if you want dragging to work.
There’s no iPad multitasking interface on the iPhone, so the only drag and
drop your app will be capable of will be local drag and drop, within the app
itself.
On an iPad, local drag and drop is always possible, of course, but you can
also restrict a drag originating in your app to remain local to the app by
implementing the drag interaction delegate method dragInteraction(_:s
essionIsRestrictedToDraggingApplication:) to return true. That

situation can subsequently be detected by reading the session’s isRestrict
edToDraggingApplication property.
A drag that is dropped within the same app can provide the drop destination
with more information, and more directly, than the same drag can provide
to another app. We no longer have to pipe the data asynchronously through
the session by means of a Data object; instead (or in addition), we can use
these properties:

UIDragItem localObject
The drag item can carry actual data with it, or a reference to an object
that can provide the data, in its localObject property, and the drop
interaction delegate can read this value directly, in real time, on the
main thread — but only in the same app. If you try to read the localOb
ject in an app different from the one where the drag originated, it will
be nil.

UIDragSession localContext

The drag session can maintain state, in its localContext property, and
the drop interaction delegate can read this value directly, in real time, on
the main thread, by way of the drop session’s localDragSession —
but only in the same app. If you try to read the localDragSession in an
app different from the one where the drag originated, it will be nil.

Table and collection view sourceIndexPath
If drag and drop takes place within a table view or collection view, the
UITableViewDropItem or UICollectionViewDropItem has a sourceInd
exPath revealing where the drag started. If you try to read the sourceI
ndexPath in an app different from the one where the drag originated, it
will be nil.

Chapter 10. Text

Drawing text into your app’s interface is one of the most complex and
powerful things that iOS does for you. Fortunately, iOS also shields you
from much of that complexity. All you need is some text to draw, and
possibly an interface object to draw it for you.
Text to appear in your app’s interface will be an NSString (bridged from
Swift String) or an NSAttributedString. NSAttributedString adds text
styling to an NSString, including runs of different character styles, along
with paragraph-level features such as alignment, line spacing, and margins.
To make your NSString or NSAttributedString appear in the interface, you
can draw it into a graphics context, or hand it to an interface object that
knows how to draw it:

Self-drawing text
Both NSString and NSAttributedString have methods for drawing
themselves into any graphics context.

Text-drawing interface objects
Interface objects that know how to draw an NSString or
NSAttributedString are:

UILabel
Displays text, possibly consisting of multiple lines; neither
scrollable nor editable.

UITextField
Displays a single line of user-editable text; may have a border, a
background image, and overlay views at its right and left end.

UITextView
Displays scrollable multiline text, possibly user-editable.

Deep under the hood, all text drawing is performed through a low-level
technology with a C API called Core Text. At a higher level, iOS provides
Text Kit, a middle-level technology lying on top of Core Text. UITextView
is largely just a lightweight wrapper around Text Kit, and Text Kit can also
draw directly into a graphics context. By working with Text Kit, you can
readily do all sorts of useful text-drawing tricks without having to sweat
your way through Core Text.
(Another way of drawing text is to use a web view, a scrollable view
displaying rendered HTML. A web view can also display various additional
document types, such as PDF, RTF, and .doc. Web views draw their text
using a somewhat different technology, and are discussed in Chapter 11.)

Fonts and Font Descriptors
There are two ways of describing a font: as a UIFont (suitable for use with
an NSString or a UIKit interface object) or as a CTFont (suitable for Core
Text). Most font transformations can be performed through
UIFontDescriptor, and if you need to convert between UIFont and CTFont,
you can easily do so by passing through CTFontDescriptor, which is toll-
free bridged to UIFontDescriptor so that you can cast between them.

Fonts
A font (UIFont) is an extremely simple object. You specify a font by its
name and size by calling the UIFont initializer init(name:size:), and you
can also transform a font to the same font in a different size by calling the w
ithSize(_:) instance method. UIFont also provides some properties for
learning a font’s various metrics, such as its lineHeight and capHeight.
To ask for a font by name, you have to know the font’s name. Every font
variant (bold, italic, and so on) counts as a different font, and font variants
are clumped into families. UIFont has class methods that tell you the names
of the families and the names of the fonts within them. To learn, in the
console, the name of every installed font, you would say:

UIFont.familyNames.forEach {

 UIFont.fontNames(forFamilyName:$0).forEach {print($0)}}

When calling init(name:size:), you can specify a font by its family
name or by its font name (technically, its PostScript name). For example, "A
venir" is a family name; the plain font within that family is "Avenir-Boo
k". Either is legal as the name: argument. The initializer is failable, so
you’ll know if you’ve specified the font incorrectly — you’ll get nil.

System font
The system font (used, for example, by default in a UIButton) can be
obtained by calling systemFont(ofSize:weight:). A UIFont class
property such as buttonFontSize will give you the standard size. Possible
weights, expressed as constant names of CGFloats, in order from lightest to
heaviest, are:

UIFontWeightUltraLight

UIFontWeightThin

UIFontWeightLight

UIFontWeightRegular

UIFontWeightMedium

UIFontWeightSemibold

UIFontWeightBold

UIFontWeightHeavy

UIFontWeightBlack

Starting in iOS 9, the system font (which was formerly Helvetica) is San
Francisco, and comes in all of those weights, except at sizes smaller than 20
points, where the extreme ultralight, thin, and black are missing. A variety
of the system font whose digits are monospaced can be obtained by calling
monospacedDigitSystemFont(ofSize:weight:). I’ll talk later about how
to obtain additional variants.

Dynamic type
If you have text for the user to read or edit — in a UILabel, a UITextField,
or a UITextView (all discussed later in this chapter) — you are encouraged
to take advantage of dynamic type. If a font is linked to dynamic type, then:

TESTING DYNAMIC TYPE ON THE SIMULATOR
In the Simulator, there’s no need to keep switching to the Settings app in order to play the role
of the user adjusting the Text Size slider. Instead, choose Xcode → Open Developer Tool →
Accessibility Inspector and, in the inspector window, choose Simulator from the first pop-up
menu at the top left; now click the button at the top right (it looks like a gear). The “Font size”
slider corresponds to the accessibility text size slider; change it to change the Simulator’s
dynamic type size system setting.

Text size is up to the user
The user specifies a dynamic type size using a slider in the Settings app,
under Display & Brightness → Text Size. Additional sizes may be
enabled under General → Accessibility → Larger Text. Possible sizes
(UIContentSizeCategory) are:

.unspecified

.extraSmall

.small

.medium

.large

.extraLarge

.extraExtraLarge

.extraExtraExtraLarge

.accessibilityMedium

.accessibilityLarge

.accessibilityExtraLarge

.accessibilityExtraExtraLarge

.accessibilityExtraExtraExtraLarge

You specify a role
You specify a dynamic type font in terms of the role it is to play in your
layout. The size and weight are determined for you by the system, based
on the user’s text size preference. Possible roles that you can specify
(UIFontTextStyle) are:

.largeTitle

.title1

.title2

.title3

.headline

.subheadline

.body

.callout

.footnote

.caption1

.caption2

You’ll probably want to experiment with specifying various roles for
your individual pieces of text, to see which looks appropriate in context.
(In Figure 6-1, the headlines are .subheadline and the blurbs are .cap
tion1.)

One way to participate in dynamic type is to specify a dynamic type font
supplied by the system. You can do so in the nib editor or in code. In the nib
editor, set the font to one of the text styles. In code, call the UIFont class
method preferredFont(forTextStyle:). For example:

self.label.font = UIFont.preferredFont(forTextStyle: .headline)

The font, in that case, is effectively the system font in another guise. But
you might prefer to use some other font. New in iOS 11, there’s an easy
way to do that: instantiate a UIFontMetrics object by calling init(forText
Style: UIFontTextStyle) (or use the default class property, which
corresponds to the .body text style); then call scaledFont(for:) with
your base font. In this example, I convert an existing label to adopt a
dynamic type size:

let f = self.label2.font

self.label2.font = UIFontMetrics(forTextStyle: .caption1).scaledFont(for: f)

When dynamic type was first introduced, in iOS 7, it wasn’t actually
dynamic. The user could change the preferred text size, but responding to
that change, by refreshing the fonts of your interface objects, was
completely up to you. Starting in iOS 10, however, dynamic type can be
genuinely dynamic. Set the adjustsFontForContentSizeCategory
property of your UILabel, UITextField, or UITextView to true; if this
interface object uses dynamic type, then it will respond automatically if the
user changes the Text Size preference in the Settings app.

New in iOS 11, you can set the adjustsFontForContentSizeCategory
property in the nib editor: check Automatically Adjusts Font in the
Attributes inspector. What you can’t do in the nib editor is access
UIFontMetrics. For example, if your label’s font in the nib editor is
Georgia, checking Automatically Adjusts Font won’t make it dynamic; to
do that, you have to use UIFontMetrics in code (as in the preceding
example).
Adoption of dynamic type means that your interface must now respond to
the possibility that text will grow and shrink, with interface objects
changing size in response. Obviously, autolayout can be a big help here
(Chapter 1). New in iOS 11, a standard vertical spacing constraint between
labels, from the upper label’s last baseline to the lower label’s first baseline,
will respond to dynamic type size changes. You can configure this in the nib
editor, or in code with constraintEqualToSystemSpacingBelow(_:mult

iplier:). If the distance you want is not identically the standard system
spacing, adjust the constraint’s multiplier.
Sometimes, more radical adjustments of the overall layout may be needed,
especially when we get into the five very large .accessibility text sizes.
You’ll have to respond to text size changes in code in order to make those
adjustments. To do so, implement traitCollectionDidChange(_:). The
text size preference is reported through the trait collection’s preferredCon
tentSizeCategory. New in iOS 11, UIContentSizeCategory overloads the
comparison operators so that you can determine easily whether one size is
larger than another; also, the isAccessibilityCategory property tells you
whether this size is one of the .accessibility text sizes. To help you
scale actual numeric values, the UIFontMetrics instance method scaledVal
ue(for:) adjusts a CGFloat with respect to the user’s current text size
preferences.

Adding fonts
You are not limited to the fonts installed by default as part of the system.
There are two ways to obtain additional fonts:

Include a font in your app bundle
A font included at the top level of your app bundle will be loaded at
launch time if your Info.plist lists it under the “Fonts provided by
application” key (UIAppFonts).

Download a font in real time
All macOS fonts are available for download from Apple’s servers; you
can obtain and install one while your app is running.

Figure 10-1. Embedding a font in an app bundle

Figure 10-1 shows a font included in the app bundle, along with the
Info.plist entry that lists it. Observe that what you’re listing here is the name
of the font file.
To download a font in real time, you’ll have to specify the font as a font
descriptor (discussed in the next section) and drop down to the level of Core
Text (import CoreText) to call CTFontDescriptorMatchFontDescripto
rsWithProgressHandler. It takes a function which is called repeatedly at
every stage of the download process; it will be called on a background
thread, so if you want to use the downloaded font immediately in the
interface, you must step out to the main thread (see Chapter 24).
In this example, I’ll attempt to use Nanum Brush Script as my UILabel’s
font; if it isn’t installed, I’ll attempt to download it and then use it as my
UILabel’s font. I’ve inserted a lot of unnecessary logging to mark the stages
of the download process (using NSLog because print isn’t thread-safe):

let name = "NanumBrush"

let size : CGFloat = 24

let f : UIFont! = UIFont(name:name, size:size)

if f != nil {

 self.lab.font = f

 print("already installed")

 return

}

print("attempting to download font")

let desc = UIFontDescriptor(name:name, size:size)

CTFontDescriptorMatchFontDescriptorsWithProgressHandler(

 [desc] as CFArray, nil, { state, prog in

 switch state {

 case .didBegin:

 NSLog("%@", "matching did begin")

 case .willBeginDownloading:

 NSLog("%@", "downloading will begin")

 case .downloading:

 let d = prog as NSDictionary

 let key = kCTFontDescriptorMatchingPercentage

 let cur = d[key]

 if let cur = cur as? NSNumber {

 NSLog("progress: %@%%", cur)

 }

 case .didFinishDownloading:

 NSLog("%@", "downloading did finish")

 case .didFailWithError:

 NSLog("%@", "downloading failed")

 case .didFinish:

 NSLog("%@", "matching did finish")

 DispatchQueue.main.async {

 let f : UIFont! = UIFont(name:name, size:size)

 if f != nil {

 NSLog("%@", "got the font!")

 self.lab.font = f

 }

 }

 default:break

 }

 return true

})

Font Descriptors
A font descriptor (UIFontDescriptor, toll-free bridged to Core Text’s
CTFontDescriptor) describes a font in terms of its features. You can then
use those features to convert between font descriptors, and ultimately to
derive a new font. For example, given a font descriptor desc, you can ask
for a corresponding italic font descriptor like this:

let desc2 = desc.withSymbolicTraits(.traitItalic)

If desc was originally a descriptor for Avenir-Book 15, desc2 is now a
descriptor for Avenir-BookOblique 15. However, it is not the font Avenir-
BookOblique 15; a font descriptor is not a font.
The question, therefore, is how to get from a font to a corresponding font
descriptor, and vice versa:

To convert from a font to a font descriptor, ask for the font’s fontDescr
iptor property. Alternatively, you can obtain a font descriptor directly
just as you would obtain a font, by calling its initializer init(name:siz
e:) or its class method preferredFontDescriptor(withTextStyle:).

To convert from a font descriptor to a font, call the UIFont initializer ini
t(descriptor:size:), typically supplying a size of 0 to signify that
the size should not change.

Thus, this will be a common pattern in your code, as you convert from font
to font descriptor to perform some transformation, and then back to font:

let f = UIFont(name: "Avenir", size: 15)!

let desc = f.fontDescriptor

let desc2 = desc.withSymbolicTraits(.traitItalic)

let f2 = UIFont(descriptor: desc2!, size: 0) // Avenir-BookOblique 15

The same technique is useful for obtaining styled variants of the dynamic
type fonts. In this example, I prepare to form an NSAttributedString whose
font is mostly UIFontTextStyle.body, but with one italicized word
(Figure 10-2):

Figure 10-2. A dynamic type font with an italic variant

let body = UIFontDescriptor.preferredFontDescriptor(withTextStyle:.body)

let emphasis = body.withSymbolicTraits(.traitItalic)!

fbody = UIFont(descriptor: body, size: 0)

femphasis = UIFont(descriptor: emphasis, size: 0)

You can explore a font’s features by way of a UIFontDescriptor. Some
features are available directly as properties, such as postscriptName and s
ymbolicTraits. The symbolicTraits is expressed as a bitmask:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!

let d = f.fontDescriptor

let traits = d.symbolicTraits

y

let isItalic = traits.contains(.traitItalic) // true

let isBold = traits.contains(.traitBold) // true

For other types of information, start with the name of an attribute whose
value you want, as a UIFontDescriptor.AttributeName, and call object
(forKey:). For example:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!

let d = f.fontDescriptor

let vis = d.object(forKey:.visibleName)!

// Gill Sans Bold Italic

Another use of font descriptors is to access hidden built-in typographical
features of individual fonts. To do so, you construct a dictionary whose keys
(UIFontDescriptor.FeatureKey) specify two pieces of information: the
feature type (.featureIdentifier) and the feature selector (.typeIdenti
fer). In this example, I’ll obtain a variant of the Didot font that draws its
minuscules as small caps (Figure 10-3):

Figure 10-3. A small caps font variant

let desc = UIFontDescriptor(name:"Didot", size:18)

let d = [

 UIFontDescriptor.FeatureKey.featureIdentifier: kLowerCaseType,

 UIFontDescriptor.FeatureKey.typeIdentifier: kLowerCaseSmallCapsSelector

]

let desc2 = desc.addingAttributes([.featureSettings:[d]])

)

let f = UIFont(descriptor: desc2, size: 0)

The system (and dynamic type) font can also portray small caps; in fact, it
can do this in two different ways: in addition to kLowerCaseType and kLow
erCaseSmallCapsSelector, where lowercase characters are shown as

small caps, it implements kUpperCaseType and kUpperCaseSmallCapsSel
ector, where uppercase characters are shown as small caps.
Another system (and dynamic type) font feature is an alternative set of
glyph forms designed for legibility, with a type of kStylisticAlternativ
esType. If the selector is kStylisticAltOneOnSelector, the 6 and 9
glyphs have straight tails. If the selector is kStylisticAltSixOnSelector,
certain letters also have special distinguishing shapes; for example, the
lowercase “l” (ell) has a curved bottom, to distinguish it from capital “I”
which has a top and bottom bar.

Typographical feature identifier constants such as kLowerCaseSmallCapsS
elector come from the Core Text header SFNTLayoutTypes.h. What isn’t
so clear is how you’re supposed to discover what features a particular font
supports. The simple answer is that you have to drop down to the level of
Core Text. For example:

let desc = UIFontDescriptor(name: "Didot", size: 20) as CTFontDescriptor

let f = CTFontCreateWithFontDescriptor(desc,0,nil)

let arr = CTFontCopyFeatures(f)

The resulting array of dictionaries includes entries [CTFeatureTypeIdenti
fier:37], which is kLowerCaseType, and [CTFeatureSelectorIdentifi
er:1], which is kLowerCaseSmallCapsSelector. A more practical (and
fun) approach to exploring a font’s features is to obtain a copy of the font
on the desktop, install it, launch TextEdit, choose Format → Font → Show
Fonts, select the font, and open the Typography panel, thus exposing the
font’s various features. Now you can experiment on selected text.

Attributed Strings
Styled text — that is, text consisting of multiple style runs, with different
font, size, color, and other text features in different parts of the text — is
expressed as an attributed string (NSAttributedString and its mutable

subclass, NSMutableAttributedString). An NSAttributedString consists of
an NSString (its string) plus the attributes, applied in ranges.
For example, if the string “one red word” is blue except for the word “red”
which is red, and if these are the only changes over the course of the string,
then there are three distinct style runs — everything before the word “red,”
the word “red” itself, and everything after the word “red.” However, we can
apply the attributes in two steps, first making the whole string blue, and
then making the word “red” red, just as you would expect.

Attributed String Attributes
The attributes applied to a range of an attributed string are described in
dictionaries. Each possible attribute has a predefined name, used as a key in
these dictionaries; here are some of the most important attributes names
(NSAttributedStringKey) and their value types:

.font

A UIFont. The default is Helvetica 12 (not San Francisco, the system
font).

.foregroundColor

The text color, a UIColor.

.backgroundColor

The color behind the text, a UIColor. You could use this to highlight a
word, for example.

.ligature

An NSNumber wrapping 0 or 1, expressing whether or not you want
ligatures used. Some fonts, such as Didot, have ligatures that are on by
default.

.kern

An NSNumber wrapping the floating-point amount of kerning. A
negative value brings a glyph closer to the following glyph; a positive

value adds space between them.

.strikethroughStyle

.underlineStyle

An NSNumber wrapping one of these values (NSUnderlineStyle)
describing the line weight:

.styleNone

.styleSingle

.styleDouble

.styleThick

Optionally, you may include a specification of the line pattern, with
names like .patternDot, .patternDash, and so on.

Optionally, you may include .byWord; if you do not, then if the
underline or strikethrough range spans multiple words, the whitespace
between the words will be underlined or struck through.

WARNING
Unfortunately, Swift sees NSUnderlineStyle as an enum, not an option set, even though it is in fact
a bitmask. Therefore, to use it, you’ll have to take its raw value, and to specify multiple options,
you’ll have to use bitwise-or to combine their raw values. I regard this as a bug.

.strikethroughColor

.underlineColor

A UIColor. If not defined, the foreground color is used.

.strokeWidth

An NSNumber wrapping a Float. The stroke width is peculiarly coded.
If it’s positive, then the text glyphs are stroked but not filled, giving an
outline effect, and the foreground color is used unless a separate stroke

color is defined. If it’s negative, then its absolute value is the width of
the stroke, and the glyphs are both filled (with the foreground color) and
stroked (with the stroke color).

.strokeColor

The stroke color, a UIColor.

.shadow

An NSShadow object. An NSShadow is just a value class, combining a
shadowOffset, shadowColor, and shadowBlurRadius.

.textEffect

An NSAttributedString.TextEffectStyle. The only text effect style
you can specify is .letterpressStyle.

.attachment

An NSTextAttachment object. A text attachment is basically an inline
image. I’ll discuss text attachments later on.

.link

A URL. This may give the style range a default appearance, such as
color and underlining, but you can override this by adding attributes to
the same style range. In a noneditable, selectable UITextView, the link
is tappable to go to the URL (as I’ll explain later in this chapter).

.baselineOffset

.obliqueness

.expansion

An NSNumber wrapping a Float.

.paragraphStyle

An NSParagraphStyle object. This is basically just a value class,
assembling text features that apply properly to paragraphs as a whole,

not merely to characters, even if your string consists only of a single
paragraph. Here are its most important properties:

alignment (NSTextAlignment)

— .left

— .center

— .right

— .justified

— .natural (left-aligned or right-aligned depending on the writing
direction)

lineBreakMode (NSLineBreakMode)

— .byWordWrapping

— .byCharWrapping

— .byClipping

— .byTruncatingHead

— .byTruncatingTail

— .byTruncatingMiddle

firstLineHeadIndent, headIndent (left margin), tailIndent
(right margin)

lineHeightMultiple, maximumLineHeight, minimumLineHeight

lineSpacing

paragraphSpacing, paragraphSpacingBefore

hyphenationFactor (0 or 1)

defaultTabInterval, tabStops (the tab stops are an array of
NSTextTab objects; I’ll give an example in a moment)

allowsDefaultTighteningForTruncation (if true, permits some
negative kerning to be applied automatically to a truncating

paragraph if this would prevent truncation)

To construct an NSAttributedString, you can call init(string:attribute
s:) if the entire string has the same attributes; otherwise, you’ll use its
mutable subclass NSMutableAttributedString, which lets you set attributes
over a range.
To construct an NSParagraphStyle, you’ll use its mutable subclass
NSMutableParagraphStyle. It is sufficient to apply a paragraph style to the
first character of a paragraph; to put it another way, the paragraph style of
the first character of a paragraph dictates how the whole paragraph is
rendered.
Both NSAttributedString and NSParagraphStyle come with default values
for all attributes, so you only have to set the attributes you care about.
However, Apple says that supplying a font, foreground color, and paragraph
style makes attributed strings more efficient.

Making an Attributed String
We now know enough for an example! I’ll draw my attributed strings in a
disabled (noninteractive) UITextView; its background is white, but its
superview’s background is gray, so you can see the text view’s bounds
relative to the text. (Ignore the text’s vertical positioning, which is
configured independently as a feature of the text view itself.)
First, two words of my attributed string are made extra-bold by stroking in a
different color. I start by dictating the entire string and the overall style of
the text; then I apply the special style to the two stroked words (Figure 10-
4):

let s1 = """

 The Gettysburg Address, as delivered on a certain occasion \

 (namely Thursday, November 19, 1863) by A. Lincoln

 """

let content = NSMutableAttributedString(string:s1, attributes:[

 .font: UIFont(name:"Arial-BoldMT", size:15)!,

 .foregroundColor: UIColor(red:0.251, green:0.000, blue:0.502, alpha:1)

])

let r = (content.string as NSString).range(of:"Gettysburg Address")

content.addAttributes([

 .strokeColor: UIColor.red,

 .strokeWidth: -2.0

], range: r)

self.tv.attributedText = content

Figure 10-4. An attributed string

Carrying on from the previous example, I’ll also make the whole paragraph
centered and indented from the edges of the text view. To do so, I create a
paragraph style and apply it to the first character. Note how the margins are
dictated: the tailIndent is negative, to bring the right margin leftward,
and the firstLineHeadIndent must be set separately, as the headIndent
does not automatically apply to the first line (Figure 10-5):

let para = NSMutableParagraphStyle()

para.headIndent = 10

para.firstLineHeadIndent = 10

para.tailIndent = -10

para.lineBreakMode = .byWordWrapping

para.alignment = .center

para.paragraphSpacing = 15

content.addAttribute(

 .paragraphStyle,

 value:para, range:NSMakeRange(0,1))

self.tv.attributedText = content

Figure 10-5. An attributed string with a paragraph style

TIP
When working temporarily with a value class such as NSMutableParagraphStyle, it feels clunky
to be forced to instantiate the class and configure the instance before using it for the one and only
time. So I’ve written a little Swift generic function, lend (see Appendix B), that lets me do all that
in an anonymous function at the point where the value class is used.

In this next example, I’ll enlarge the first character of a paragraph. I assign
the first character a larger font size, I expand its width slightly, and I reduce
its kerning (Figure 10-6):

let s2 = """

 Fourscore and seven years ago, our fathers brought forth \

 upon this continent a new nation, conceived in liberty and \

 dedicated to the proposition that all men are created equal.

 """

content2 = NSMutableAttributedString(string:s2, attributes: [

 .font: UIFont(name:"HoeflerText-Black", size:16)!

])

content2.addAttributes([

 .font: UIFont(name:"HoeflerText-Black", size:24)!,

 .expansion: 0.3,

 .kern: -4

], range:NSMakeRange(0,1))

self.tv.attributedText = content2

Figure 10-6. An attributed string with an expanded first character

Carrying on from the previous example, I’ll once again construct a
paragraph style and add it to the first character. My paragraph style (applied
using the lend function from Appendix B) illustrates full justification and
automatic hyphenation (Figure 10-7):

content2.addAttribute(.paragraphStyle,

 value:lend { (para:NSMutableParagraphStyle) in

 para.headIndent = 10

 para.firstLineHeadIndent = 10

 para.tailIndent = -10

 para.lineBreakMode = .byWordWrapping

 para.alignment = .justified

 para.lineHeightMultiple = 1.2

 para.hyphenationFactor = 1.0

 }, range:NSMakeRange(0,1))

self.tv.attributedText = content2

Figure 10-7. An attributed string with justification and autohyphenation

Now we come to the Really Amazing Part. I can make a single attributed
string consisting of both paragraphs, and a single text view can portray it
(Figure 10-8):

let end = content.length

content.replaceCharacters(in:NSMakeRange(end, 0), with:"\n")

content.append(content2)

self.tv.attributedText = content

Figure 10-8. A single attributed string comprising differently styled paragraphs

Tab stops
A tab stop is an NSTextTab, a value class whose initializer lets you set its l
ocation (points from the left edge) and alignment.

The initializer also lets you include an options: dictionary whose key (NST
extTab.OptionKey) is .columnTerminators, as a way of setting the tab
stop’s column terminator characters. A common use is to create a decimal
tab stop, for aligning currency values at their decimal point. You can obtain
a value appropriate to a given locale by calling NSTextTab’s class method c
olumnTerminators(for:).
Here’s an example (Figure 10-9); I have deliberately omitted the last digit
from the second currency value, to prove that the tab stop really is aligning

the numbers at their decimal points:

let s = "Onions\t$2.34\nPeppers\t$15.2\n"

let mas = NSMutableAttributedString(string:s, attributes:[

 .font:UIFont(name:"GillSans", size:15)!,

 .paragraphStyle:lend { (p:NSMutableParagraphStyle) in

 let terms = NSTextTab.columnTerminators(for:Locale.current)

 let tab = NSTextTab(textAlignment:.right, location:170,

 options:[.columnTerminators:terms])

 p.tabStops = [tab]

 p.firstLineHeadIndent = 20

 }

])

self.tv.attributedText = mas

Figure 10-9. Tab stops in an attributed string

The tabStops array can also be modified by calling addTabStop(_:) or re
moveTabStop(_:) on the paragraph style. Note that a paragraph style
comes with default tab stops.

Text attachments
A text attachment is basically an inline image. To make one, you need an
instance of NSTextAttachment initialized with image data; the easiest way
is to start with a UIImage and assign it directly to the NSTextAttachment’s
image property. You must also give the NSTextAttachment a nonzero boun
ds; the image will be scaled to the size of the bounds you provide, and a .z
ero origin places the image on the text baseline.

A text attachment is attached to an NSAttributedString using the .attachm
ent key; the text attachment itself is the value. The range of the string that
has this attribute must be a special nonprinting character whose codepoint is
NSAttachmentCharacter (0xFFFC). The simplest way to arrange that is to
call the NSAttributedString initializer init(attachment:); you hand it an

NSTextAttachment and it hands you an attributed string consisting of the NS
AttachmentCharacter with the .attachment attribute set to that text
attachment. You can then insert this attributed string into your own
attributed string at the point where you want the image to appear.
To illustrate, I’ll add an image of onions and an image of peppers just after
the words “Onions” and “Peppers” in the attributed string (mas) that I
created in the previous example (Figure 10-10):

let onions = // ... get image ...

let peppers = // ... get image ...

let onionatt = NSTextAttachment()

onionatt.image = onions

onionatt.bounds = CGRect(0,-5,onions.size.width,onions.size.height)

let onionattchar = NSAttributedString(attachment:onionatt)

let pepperatt = NSTextAttachment()

pepperatt.image = peppers

pepperatt.bounds = CGRect(0,-1,peppers.size.width,peppers.size.height)

let pepperattchar = NSAttributedString(attachment:pepperatt)

let r = (mas.string as NSString).range(of:"Onions")

mas.insert(onionattchar, at:(r.location + r.length))

let r2 = (mas.string as NSString).range(of:"Peppers")

mas.insert(pepperattchar, at:(r2.location + r2.length))

self.tv.attributedText = mas

Figure 10-10. Text attachments in an attributed string

Other ways to create an attributed string
The nib editor provides an ingenious interface for letting you construct
attributed strings wherever built-in interface objects (such as UILabel or
UITextView) accept them as a property; it’s not perfect, however, and isn’t
suitable for lengthy or complex text.
It is possible to import an attributed string from text in some other standard
format, such as HTML or RTF. (There are also corresponding export

methods.) To import, get the target text into a Data object and call init(da
ta:options:documentAttributes:); alternatively, start with a file and
call init(url:options:documentAttributes:). The options: allow
you to specify the target text’s format. For example, here we read an RTF
file from the app bundle as an attributed string and show it in a UITextView
(self.tv):

let url = Bundle.main.url(forResource: "test", withExtension: "rtf")!

let opts : [NSAttributedString.DocumentReadingOptionKey : Any] =

 [.documentType : NSAttributedString.DocumentType.rtf]

var d : NSDictionary? = nil

let s = try! NSAttributedString(

 url: url, options: opts, documentAttributes: &d)

self.tv.attributedText = s

Modifying and Querying an Attributed String
We can coherently modify just the character content of a mutable attributed
string by calling replaceCharacters(in:with:), which takes an
NSRange and a substitute string. If the range has zero length, we’re
inserting characters; if the range has nonzero length, we’re replacing
characters. The question is then what attributes will be applied to the new
characters. The rule is:

If we replace characters, the replacement characters all take on the
attributes of the first replaced character.
If we insert characters, the inserted characters all take on the attributes
of the character preceding the insertion — except that, if we insert at the
start, there is no preceding character, so the inserted characters take on
the attributes of the character following the insertion.

You can query an attributed string about the attributes applied to a single
character, asking either about all attributes at once with attributes(at:ef
fectiveRange:), or about a particular attribute by name with attribute
(_:at:effectiveRange:). The effectiveRange: argument is a pointer to
an NSRange variable, which will be set by indirection to the range over
which the same attribute value, or set of attribute values, applies.

In this example, we ask about the last character of our content attributed
string:

var range : NSRange = NSMakeRange(0,0)

let d = content.attributes(at:content.length-1, effectiveRange:&range)

From that code we learn (in d), that the last character’s .font attribute is
Hoefler Text 16, and (in range) that that attribute is applied over a stretch
of 175 characters starting at character 111.

Because style runs are something of an artifice, the effectiveRange might
not be what you would think of as the entire style run. The methods with lo
ngestEffectiveRange: parameters do (at the cost of some efficiency)
work out the entire style run range for you; in practice, however, you
typically don’t need that, because you’re cycling through ranges, and speed,
even at the cost of more iterations, matters more than getting the longest
effective range on every iteration.

In this example, I start with the content attributed string and change all the
size 15 material to Arial Bold 20. I don’t care whether I’m handed longest
effective ranges (and my code explicitly says so); I just want to cycle
efficiently:

content.enumerateAttribute(.font,

 in:NSMakeRange(0,content.length),

 options:.longestEffectiveRangeNotRequired) { value, range, stop in

 let font = value as! UIFont

 if font.pointSize == 15 {

 content.addAttribute(.font,

 value:UIFont(name: "Arial-BoldMT", size:20)!,

 range:range)

 }

 }

Custom Attributes
You are permitted to apply your own custom attributes to a stretch of text in
an attributed string. Your attributes won’t directly affect how the string is
drawn, because the text engine doesn’t know what to make of them; but it

doesn’t object to them either. In this way, you can mark a stretch of text
invisibly for your own future use.
In this example, I have a UILabel whose text includes a date. Every so
often, I want to replace the date by the current date. The problem is that
when the moment comes to replace the date, I don’t know where it is: I
know neither its length nor the length of the text that precedes it. The
solution is to use an attributed string where the date part is marked with a
custom attribute.
My custom attribute is defined by extending NSAttributedStringKey:

extension NSAttributedStringKey {

 static let myDate = NSAttributedStringKey(rawValue:"myDate")

}

I’ve applied this attribute to the date part of my label’s attributed text, with
an arbitrary value of 1. Now I can readily find the date again later, because
the text engine will tell me where it is:

let mas = NSMutableAttributedString(

 attributedString: self.lab.attributedText!)

mas.enumerateAttribute(.myDate, in: NSMakeRange(0, mas.length)) {

 value, r, stop in

 if let value = value as? Int, value == 1 {

 mas.replaceCharacters(in: r, with: Date().description)

 stop.pointee = true

 }

}

self.lab.attributedText = mas

Drawing and Measuring an Attributed String
You can draw an attributed string yourself, rather than having a built-in text
display interface object do it for you; and sometimes this will prove to be
the most reliable approach. An NSString can be drawn into a rect with draw
(in:withAttributes:) and related methods; an NSAttributedString can
be drawn with draw(at:), draw(in:), and draw(with:options:contex
t:).

Here, I draw an attributed string (content) into an image graphics context
and extract the image, which might then be displayed by an image view:

let rect = CGRect(0,0,280,250)

let r = UIGraphicsImageRenderer(size:rect.size)

let im = r.image { ctx in

 UIColor.white.setFill()

 ctx.cgContext.fill(rect)

 content.draw(in:rect)

}

Similarly, you can draw an attributed string directly in a UIView’s draw
(_:) override. For example, imagine that we have a UIView subclass called
StringDrawer that has an attributedText property. The idea is that we
just assign an attributed string to that property and the StringDrawer
redraws itself:

self.drawer.attributedText = content

And here’s StringDrawer:

class StringDrawer : UIView {

 @NSCopying var attributedText : NSAttributedString! {

 didSet {

 self.setNeedsDisplay()

 }

 }

 override func draw(_ rect: CGRect) {

 let r = rect.offsetBy(dx: 0, dy: 2)

 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin

 self.attributedText.draw(with:r, options: opts, context: context)

 }

}

The .usesLineFragmentOrigin option is crucial here. Without it, the
string is drawn with its baseline at the rect origin (so that it appears above
that rect), and it doesn’t wrap. The rule is that .usesLineFragmentOrigin
is the implicit default for simple draw(in:), but with draw(with:option
s:context:) you must specify it explicitly.

NSAttributedString also provides methods to measure an attributed string,
such as boundingRect(with:options:context:). Again, the .usesLine
FragmentOrigin option is crucial; without it, the measured text doesn’t
wrap and the returned height will be very small. The documentation warns
that the returned height can be fractional and that you should round up to an
integer if the height of a view is going to depend on this result.

The context: parameter of methods such as draw(with:options:contex
t:) lets you attach an instance of NSStringDrawingContext, a simple value
class whose totalBounds property tells you where you just drew.

WARNING
Other features of NSStringDrawingContext, such as its minimumScaleFactor, appear to be
nonfunctional.

Labels
A label (UILabel) is a simple built-in interface object for displaying text. I
listed some of its chief properties in Chapter 8 (“Built-In Cell Styles”).

If you’re displaying a plain NSString in a label, by way of the label’s text
property, then you are likely also to set its font, textColor, and textAlig
nment properties, and possibly its shadowColor and shadowOffset
properties. The label’s text can have an alternate highlightedTextColor,
to be used when its isHighlighted property is true — as happens, for
example, when the label is in a selected cell of a table view.
On the other hand, if you’re using an NSAttributedString, then you’ll set
just the label’s attributedText property and let the attributes dictate
things like color, alignment, and shadow. In general, if your intention is to
display text in a single font, size, color, and alignment, you probably won’t
bother with attributedText; but if you do set the attributedText, you
should let it do all the work of dictating text style features. Those other
UILabel properties do mostly still work, but they’re going to change the

attributes of your entire attributed string, in ways that you might not intend.
Setting the text of a UILabel that has attributedText will effectively
override the attributes.

WARNING
The highlightedTextColor property affects the attributedText only if the latter is the same
color as the textColor.

Number of Lines
A UILabel’s numberOfLines property is extremely important. Together
with the label’s line breaking behavior and resizing behavior, it determines
how much of the text will appear. The default is 1 — a single line — which
can come as a surprise. To make a label display more than one line of text,
you must explicitly set its numberOfLines to a value greater than 1, or to 0
to indicate that there is to be no maximum.
Line break characters in a label’s text are honored. Thus, for example, in a
single-line label, you won’t see whatever follows the first line break
character.

Wrapping and Truncation
UILabel line breaking (wrapping) and truncation behavior, which applies to
both single-line and multiline labels, is determined by the lineBreakMode
(of the label or the attributed string). The options (NSLineBreakMode) are
those that I listed earlier in discussing NSParagraphStyle, but their behavior
within a label needs to be described:

.byClipping

Lines break at word-end, but the last line can continue past its
boundary, even if this leaves a character showing only partially.

.byWordWrapping

Lines break at word-end, but if this is a single-line label,
indistinguishable from .byClipping.

.byCharWrapping

Lines break in midword in order to maximize the number of characters
in each line.

.byTruncatingHead

.byTruncatingMiddle

.byTruncatingTail

Lines break at word-end; if the text is too long for the label, then the
last line displays an ellipsis at the start, middle, or end of the line
respectively, and text is omitted at the point of the ellipsis.

Starting in iOS 9, allowsDefaultTighteningForTruncation, if true,
permits some negative kerning to be applied automatically to a truncating
label if this would prevent truncation.
A UILabel’s line break behavior is not the same as what happens when an
NSAttributedString draws itself into a graphics context. The default line
break mode for a new label is .byTruncatingTail, but the default line
break mode for an NSAttributedString’s NSParagraphStyle is .byWordWrap
ping. More significantly, an NSAttributedString whose NSParagraphStyle’s
lineBreakMode doesn’t have wrapping in its name doesn’t wrap when it
draws itself (it consists of a single line), but a multiline UILabel always
wraps, regardless of its line break mode.

Resizing a Label to Fit Its Text
If a label is too small for its text, the entire text won’t show. If a label is too
big for its text, the text is vertically centered in the label, with space above
and below. Either of those might be undesirable; you might prefer the label
to fit its text.

If you’re not using autolayout, in most simple cases sizeToFit will do the
right thing; I believe that behind the scenes it is calling boundingRect(wit
h:options:context:).

If you’re using autolayout, a label will correctly configure its own intrins
icContentSize automatically, based on its contents — and therefore, all
other things being equal, will size itself to fit its contents with no code at
all. Every time you reconfigure the label in a way that affects its contents
(setting its text, changing its font, setting its attributed text, and so forth),
the label automatically invalidates and recalculates its intrinsic content size.
There are two general cases to consider:

Short single-line label
You might give the label no width or height constraints; you’ll constrain
its position, but you’ll let the label’s intrinsicContentSize provide
both the label’s width and its height.

Multiline label
Most likely, you’ll want to dictate the label’s width, while letting the
label’s height change automatically to accommodate its contents. There
are two ways to do this:

Set the label’s width constraint
This is appropriate particularly when the label’s width is to remain
fixed ever after.

Set the label’s preferredMaxLayoutWidth

This property is a hint to help the label’s calculation of its intrinsi
cContentSize. It is the width at which the label, as its contents
increase, will stop growing horizontally to accommodate those
contents, and start growing vertically instead.

Consider a label whose top, left, and right edges are pinned to its superview,
while its height is free to change based on its intrinsicContentSize.
Presume also that the superview’s width can change, possibly due to
rotation, thus changing the width of the label. Then the label’s height will

always perfectly fit its contents, provided that, after every such change, the
label’s preferredMaxLayoutWidth is adjusted to match its actual width.

To ensure that that happens, simply set the label’s preferredMaxLayoutWi
dth to 0. That’s a signal that the label should change its preferredMaxLayo
utWidth to match its width automatically whenever its width changes.
Moreover, that happens to be the default preferredMaxLayoutWidth
value! Thus, by default, such a label will always fit its contents, with no
effort on your part.
You can perform this same configuration in the nib editor: at the top of the
Size inspector, uncheck the Explicit checkbox (if it is checked). The
Preferred Width field says “Automatic,” meaning that the preferredMaxLa
youtWidth will change automatically to match the label’s actual width as
dictated by its constraints.
Instead of letting a label grow, you can permit its text font size to shrink if
this would allow more of the text to fit. How the text is repositioned when
the font size shrinks is determined by the label’s baselineAdjustment
property. For this feature to operate, all of the following conditions must be
the case:

The label’s adjustsFontSizeToFitWidth property must be true.

The label’s minimumScaleFactor must be less than 1.0.
The label’s size must be limited.

Either this must be a single-line label (numberOfLines is 1) or the line
break mode (of the label or the attributed string) must not have wrappin
g in its name.

Customized Label Drawing
Methods that you can override in a subclass to modify a label’s drawing are
drawText(in:) and textRect(forBounds:limitedToNumberOfLines:).
For example, this is the code for a UILabel subclass that outlines the label
with a black rectangle and puts a five-point margin around the label’s

contents:

class BoundedLabel: UILabel {

 override func awakeFromNib() {

 super.awakeFromNib()

 self.layer.borderWidth = 2.0

 self.layer.cornerRadius = 3.0

 }

 override func drawText(in rect: CGRect) {

 super.drawText(in: rect.insetBy(dx: 5, dy: 5).integral)

 }

}

TIP
A CATextLayer (Chapter 3) is like a lightweight, layer-level version of a UILabel. If the width of
the layer is insufficient to display the entire string, we can get truncation behavior with the trunca
tionMode property. If the isWrapped property is set to true, the string will wrap. We can also set
the alignment with the alignmentMode property. And its string property can be an
NSAttributedString.

Text Fields
A text field (UITextField) is for brief user text entry. It portrays just a single
line of text; any line break characters in its text are treated as spaces. It has
many of the same properties as a label. You can provide it with a plain
NSString, setting its text, font, textColor, and textAlignment, or
provide it with an attributed string, setting its attributedText.
You can learn (and set) a text field’s overall text attributes as an attributes
dictionary through its defaultTextAttributes property. However, this
dictionary takes String keys, not NSAttributedStringKey keys; I regard that
as a bug. (The String corresponding to an NSAttributedStringKey is its raw
Value.)
UITextField adopts the UITextInput protocol, which itself adopts the
UIKeyInput protocol. These protocols endow a text field with important
and often overlooked methods for such things as obtaining the text field’s

current selection and inserting text at the current selection. I’ll give
examples later in this section.

Under autolayout, a text field’s intrinsicContentSize will attempt to set
its width to fit its contents; if its width is fixed, you can set its adjustsFont
SizeToFitWidth and minimumFontSize properties to allow the text size to
shrink somewhat.
Text that is too long for the text field is displayed with an ellipsis at the end.
A text field has no lineBreakMode, but you can change the position of the
ellipsis by assigning the text field an attributed string with different
truncation behavior, such as .byTruncatingHead. When long text is being
edited, the ellipsis (if any) is removed, and the text shifts horizontally to
show the insertion point.
Regardless of whether you originally supplied a plain string or an attributed
string, if the text field’s allowsEditingTextAttributes property is true,
the user, when editing in the text field, can summon a menu toggling the
selected text’s bold, italics, or underline features.

A text field has a placeholder property, which is the text that appears
faded within the text field when it has no text (its text or attributedText
has been set to nil, or the user has removed all the text); the idea is that
you can use this to suggest to the user what the text field is for. It has a
styled text alternative, attributedPlaceholder.

If a text field’s clearsOnBeginEditing property is true, it automatically
deletes its existing text (and displays the placeholder) when editing begins
within it. If a text field’s clearsOnInsertion property is true, then when
editing begins within it, the text remains, but is invisibly selected, and will
be replaced by the user’s typing.

A text field’s border drawing is determined by its borderStyle property.
Your options (UITextFieldBorderStyle) are:

.none

No border.

.line

A plain black rectangle.

.bezel

A gray rectangle, where the top and left sides have a very slight, thin
shadow.

.roundedRect

A larger rectangle with slightly rounded corners and a flat, faded gray
color.

You can supply a background image (background); if you combine this
with a borderStyle of .none, or if the image has no transparency, you get
to supply your own border — unless the borderStyle is .roundedRect, in
which case the background is ignored. The image is automatically resized
as needed (and you will probably supply a resizable image). A second
image (disabledBackground) can be displayed when the text field’s isEna
bled property, inherited from UIControl, is false. The user can’t interact
with a disabled text field, but without a disabledBackground image, the
user may lack any visual clue to this fact (though a .line or .roundedRect
disabled text field is subtly different from an enabled one). You can’t set the
disabledBackground unless you have also set the background.

A text field may contain one or two ancillary overlay views, its leftView
and rightView, and possibly a Clear button (a gray circle with a white X).
The automatic visibility of each of these is determined by the leftViewMod
e, rightViewMode, and clearButtonMode, respectively. The view mode
values (UITextFieldViewMode) are:

.never

The view never appears.

.whileEditing

A Clear button appears if there is text in the field and the user is editing.
A left or right view appears if there is no text in the field and the user is
editing.

.unlessEditing

A Clear button appears if there is text in the field and the user is not
editing. A left or right view appears if the user is not editing, or if the
user is editing but there is no text in the field.

.always

A Clear button appears if there is text in the field. A left or right view
always appears.

Depending on what sort of view you use, your leftView and rightView
may have to be sized manually so as not to overwhelm the text view
contents. If a right view and a Clear button appear at the same time, the
right view may cover the Clear button unless you reposition it.
The positions and sizes of any of the components of the text field can be set
in relation to the text field’s bounds by overriding the appropriate method in
a subclass:

clearButtonRect(forBounds:)

leftViewRect(forBounds:)

rightViewRect(forBounds:)

borderRect(forBounds:)

textRect(forBounds:)

placeholderRect(forBounds:)

editingRect(forBounds:)

WARNING
You should make no assumptions about when or how frequently these methods will be called; the
same method might be called several times in quick succession. Also, these methods should all be
called with a parameter that is the bounds of the text field, but some are sometimes called with a
100×100 bounds; this feels like a bug.

You can also override in a subclass the methods drawText(in:) and drawP
laceholder(in:). You should either draw the specified text or call super
to draw it; if you do neither, the text won’t appear. Both these methods are
called with a parameter whose size is the dimensions of the text field’s text
area, but whose origin is .zero. In effect what you’ve got is a graphics
context for just the text area; any drawing you do outside the given
rectangle will be clipped.

Summoning and Dismissing the Keyboard
The presence or absence of the onscreen simulated keyboard is intimately
tied to a text field’s editing state. They both have to do with the text field’s
status as the first responder:

When a text field is first responder, it is being edited and the keyboard is
present.
When a text field is no longer first responder, it is no longer being
edited, and if no other text field (or text view) becomes first responder,
the keyboard is not present. The keyboard is not dismissed if one text
field takes over first responder status from another.

When the user taps in a text field, by default it is first responder, and so the
keyboard appears automatically if it was not already present. You can also
control the presence or absence of the keyboard in code, together with a text
field’s editing state, by way of the text field’s first responder status:

Becoming first responder
To make the insertion point appear within a text field and to cause the
keyboard to appear, you send becomeFirstResponder to that text field.

An example appeared in Chapter 8 (“Inserting Cells”).

Resigning first responder
To make a text field stop being edited and to cause the keyboard to
disappear, you send resignFirstResponder to that text field.
(Actually, resignFirstResponder returns a Bool, because a responder
might return false to indicate that for some reason it refuses to obey
this command.)

Alternatively, call the UIView endEditing(_:) method on the first
responder or any superview (including the window) to ask or compel
the first responder to resign first responder status.

The endEditing(_:) method is useful particularly because there may be
times when you want to dismiss the keyboard without knowing who the
first responder is. You can’t send resignFirstResponder if you don’t
know who to send it to. And, amazingly, there is no simple way to learn
what view is first responder!

TIP
In a view presented in the .formSheet modal presentation style on the iPad (Chapter 6), the
keyboard, by default, does not disappear when a text field resigns first responder status. This is
presumably because a form sheet is intended primarily for text input, so the keyboard is felt as
accompanying the form as a whole, not individual text fields. Optionally, you can prevent this
exceptional behavior: in your UIViewController subclass, override disablesAutomaticKeyboard
Dismissal to return false.

Once the user has tapped in a text field and the keyboard has automatically
appeared, how is the user supposed to get rid of it? On the iPad, the
keyboard may contain a button that dismisses the keyboard. Otherwise, this
is an oddly tricky issue. You would think that the Return key in the
keyboard would dismiss the keyboard, since you can’t enter a Return
character in a text field; but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field
delegate method, textFieldShouldReturn(_:). When the user taps the
Return key in the keyboard, we hear about it through this method, and we
receive a reference to the text field; we can respond by telling the text field
to resign its first responder status, which dismisses the keyboard:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {

 tf.resignFirstResponder()

 return true

}

Certain keyboards lack even a Return key. In that case, you’ll need some
other way to allow the user to dismiss the keyboard. I’ll be returning to this
issue in the course of the discussion.

Keyboard Covers Text Field
The keyboard, having appeared from offscreen, occupies a position
“docked” at the bottom of the screen. This may cover the text field in which
the user wants to type, even if it is first responder. You’ll typically want to
do something to reveal the text field.
To help with this, you can register for keyboard-related notifications:

.UIKeyboardWillShow

.UIKeyboardDidShow

.UIKeyboardWillHide

.UIKeyboardDidHide

Those notifications all have to do with the docked position of the keyboard.
On the iPhone, keyboard docking and keyboard visibility are equivalent: the
keyboard is visible if and only if it is docked. On the iPad, where the user
can undock the keyboard and slide it up and down the screen, the keyboard
is said to show if it is being docked, whether that’s because it is appearing
from offscreen or because the user is docking it, and it is said to hide if it is

being undocked, whether that’s because it is moving offscreen or because
the user is undocking it.
Two additional notifications are sent both when the keyboard enters and
leaves the screen and (on the iPad) when the user drags it, splits or unsplits
it, and docks or undocks it:

.UIKeyboardWillChangeFrame

.UIKeyboardDidChangeFrame

The most important situations to respond to are those corresponding to .UIK
eyboardWillShow and .UIKeyboardWillHide, when the keyboard is
attaining or leaving its docked position at the bottom of the screen. You
might think that it would be necessary to handle .UIKeyboardWillChangeF
rame too, in case the keyboard changes its height — as can happen, for
example, if user switches from the text keyboard to the emoji keyboard on
the iPhone. But in fact .UIKeyboardWillShow is sent in that situation as
well.

Each notification’s userInfo dictionary contains information describing
what the keyboard will do or has done, under these keys:

UIKeyboardFrameBeginUserInfoKey

UIKeyboardFrameEndUserInfoKey

UIKeyboardAnimationDurationUserInfoKey

UIKeyboardAnimationCurveUserInfoKey

In .UIKeyboardWillShow, by looking at the UIKeyboardFrameEndUserIn
foKey, you know what position the keyboard is moving to. It is an NSValue
wrapping a CGRect in screen coordinates. By converting the coordinate
system as appropriate, you can compare the keyboard’s new frame with the
frame of your interface items. For example, if the keyboard’s new frame
intersects a text field’s frame (in the same coordinates), the keyboard is
going to cover that text field.

A natural-looking response, in that case, is to slide the entire interface
upward as the keyboard appears, just enough to expose the text field being
edited above the top of the keyboard. The simplest way to do that is for the
entire interface to be inside a scroll view (Chapter 7), which is, after all, a
view that knows how to slide its contents.
This scroll view need not be ordinarily scrollable by the user, who may be
completely unaware of its existence. But after the keyboard appears, the
scroll view should be scrollable by the user, so that the user can inspect the
entire interface at will, even while the keyboard is covering part of it. We
can ensure that by adjusting the scroll view’s contentInset.
This behavior is in fact implemented automatically by a
UITableViewController. When a text field inside a table cell is first
responder, the table view controller adjusts the table view’s contentInset
and scrollIndicatorInsets to compensate for the keyboard. The result is
that the entire table view content is available within the space between the
top of the table view and the top of the keyboard.
Moreover, a scroll view has two additional bits of built-in behavior that will
help us:

It scrolls automatically to reveal the first responder. This will make it
easy for us to expose the text field being edited.

It has a keyboardDismissMode, governing what will happen to the
keyboard when the user scrolls. This can give us an additional way to
allow the user to dismiss the keyboard.

Let’s imitate UITableViewController’s behavior with a scroll view
containing text fields. In particular, our interface consists of a scroll view
containing a content view; the content view contains several text fields.

In viewDidLoad, we register for keyboard notifications:

NotificationCenter.default.addObserver(self,

 selector: #selector(keyboardShow),

 name: .UIKeyboardWillShow, object: nil)

NotificationCenter.default.addObserver(self,

 selector: #selector(keyboardHide),

 name: .UIKeyboardWillHide, object: nil)

We are the delegate of any text fields, so that we can hear about it when the
user taps the Return key in the keyboard. We use that as a signal to dismiss
the keyboard, as I suggested earlier:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {

 tf.resignFirstResponder()

 return true

}

To implement the notification methods keyboardShow and keyboardHide,
it will help to have on hand a utility function that works out the geometry
based on the notification’s userInfo dictionary and the bounds of the view
we’re concerned with (which will be the scroll view). If the keyboard
wasn’t within the view’s bounds and now it will be, it is entering; if it was
within the view’s bounds and now it won’t be, it is exiting. We return that
information, along with the keyboard’s frame in the view’s bounds
coordinates:

enum KeyboardState {

 case unknown

 case entering

 case exiting

}

func keyboardState(for d:[AnyHashable:Any], in v:UIView?)

 -> (KeyboardState, CGRect?) {

 var rold = d[UIKeyboardFrameBeginUserInfoKey] as! CGRect

 var rnew = d[UIKeyboardFrameEndUserInfoKey] as! CGRect

 var ks : KeyboardState = .unknown

 var newRect : CGRect? = nil

 if let v = v {

 let co = UIScreen.main.coordinateSpace

 rold = co.convert(rold, to:v)

 rnew = co.convert(rnew, to:v)

 newRect = rnew

 if !rold.intersects(v.bounds) && rnew.intersects(v.bounds) {

 ks = .entering

 }

 if rold.intersects(v.bounds) && !rnew.intersects(v.bounds) {

 ks = .exiting

 }

 }

 return (ks, newRect)

}

When the keyboard shows, we check whether it is initially appearing on the
screen; if so, we store the current content offset, content inset, and scroll
indicator insets. Then we alter the scroll view’s insets appropriately,
allowing the scroll view itself to scroll the first responder into view if
needed:

@objc func keyboardShow(_ n:Notification) {

 let d = n.userInfo!

 let (state, rnew) = keyboardState(for:d, in:self.scrollView)

 if state == .entering {

 self.oldContentInset = self.scrollView.contentInset

 self.oldIndicatorInset = self.scrollView.scrollIndicatorInsets

 self.oldOffset = self.scrollView.contentOffset

 }

 if let rnew = rnew {

 let h = rnew.intersection(self.scrollView.bounds).height

 self.scrollView.contentInset.bottom = h

 self.scrollView.scrollIndicatorInsets.bottom = h

 }

}

When the keyboard hides, we reverse the process, restoring the saved
values:

@objc func keyboardHide(_ n:Notification) {

 let d = n.userInfo!

 let (state, _) = keyboardState(for:d, in:self.scrollView)

 if state == .exiting {

 self.scrollView.contentOffset = self.oldOffset

 self.scrollView.scrollIndicatorInsets = self.oldIndicatorInset

 self.scrollView.contentInset = self.oldContentInset

 }

}

Behind the scenes, we are inside an animations function at the time that our
notifications arrive. This means that our changes to the scroll view’s offset

and insets are nicely animated in coordination with the keyboard appearing
and disappearing.

A UIScrollView’s keyboardDismissMode provides ways of letting the user
dismiss the keyboard. The options (UIScrollViewKeyboardDismissMode)
are:

.none

The default; if the keyboard doesn’t contain a button that lets the user
dismiss it, we must use code to dismiss it.

.interactive

The user can dismiss the keyboard by dragging it down. (This is the
option I like to use in this situation.)

.onDrag

The keyboard dismisses itself if the user scrolls the scroll view.

A scroll view with a keyboardDismissMode that isn’t .none also calls res
ignFirstResponder on the text field when it dismisses the keyboard.
Under iPad multitasking (Chapter 9), your app can receive keyboard show
and hide notifications if another app summons or dismisses the keyboard.
This makes sense because the keyboard is, after all, covering your app. You
can distinguish whether your app was responsible for summoning the
keyboard by examining the show notification userInfo dictionary’s UIKeyb
oardIsLocalUserInfoKey; but in general you won’t have to. If you were
handling keyboard notifications coherently before iPad multitasking came
along, you are probably still handling them coherently.

Keyboard and Input Configuration
There are various ways to configure the keyboard that appears when a text
field becomes first responder. This configuration is performed through
properties, not of the keyboard, but of the text field.

Text input traits

A UITextField adopts the UITextInputTraits protocol. This protocol’s
properties customize physical features and behaviors of the keyboard, as
well as the text field’s response to input. (These properties can also be set in
the nib editor.) For example:

Set the keyboardType to choose one of many alternate built-in keyboard
layouts. For example, set it to .phonePad to make the keyboard for this
text field consist of digits. (This does not prevent a user with a hardware
keyboard from entering nondigits in this text field. To do that, you’d use
a delegate method, as I’ll explain later.)

Set the returnKeyType to determine the text of the Return key (if the
keyboard is of a type that has one).

Give the keyboard a dark or light shade (keyboardAppearance).

Turn off autocapitalization or autocorrection (autocapitalizationTyp
e, autocorrectionType).
New in iOS 11, use or don’t use smart quotes, smart dashes, and smart
spaces during insertion and deletion (smartQuotesType, smartDashesT
ype, smartInsertDeleteType).

Make the Return key disable itself if the text field has no content (enabl
esReturnKeyAutomatically).

Make the text field a password field (secureTextEntry).

Set the textContentType to assist the system in making appropriate
spelling and autofill suggestions.

WARNING
Some alternate built-in keyboard layouts (keyboardType) have no Return key, so you can’t
misuse it as a way of letting the user dismiss the keyboard. You might use a Done button in an
accessory view instead (I’ll discuss accessory views in a moment). Alternatively, you might have
a Done button elsewhere in the interface. A scroll view’s keyboardDismissMode can help solve
the problem too.

Accessory view
You can attach an accessory view to the top of the keyboard by setting the
text field’s inputAccessoryView. For instance, an accessory view
containing a button can serve as a way to let the user dismiss keyboards
whose type has no Return key, such as .numberPad, .phonePad, and .deci
malPad.
In this example, the accessory view contains a button that lets the user
navigate to the next text field. My accessory view is retained in a property,
self.accessoryView; acting as the text field’s delegate, when editing
starts on the text field, I configure the keyboard and store a reference to the
current text field in a property (self.currentField):

func textFieldDidBeginEditing(_ tf: UITextField) {

 self.currentField = tf // keep track of first responder

 tf.inputAccessoryView = self.accessoryView

}

I also have an array property (self.textFields) populated with references
to all the text fields in the interface. The accessory view contains a Next
button; the button’s action method moves editing to the next text field:

@objc func doNextButton(_ sender: Any) {

 var ix = self.textFields.index(of:self.currentField)!

 ix = (ix + 1) % self.textFields.count

 let v = self.textFields[ix]

 v.becomeFirstResponder()

}

Input view
Going even further, you can replace the system keyboard entirely with a
view of your own creation. This is done by setting the text field’s inputVie
w. For best results, the custom view should be a UIInputView, and in
particular, for maximum power, it should be the inputView of a
UIInputViewController (which is also the input view controller’s view).
The input view controller needs to be retained, but not as a child view

controller in the view controller hierarchy; the keyboard is not one of your
app’s views, but is layered by the system in front of your app.
The input view’s contents might imitate a standard system keyboard, or
they may consist of any interface you like. To illustrate, I’ll implement the
standard beginner example: I’ll replace a text field’s keyboard with a
UIPickerView.

Here’s the input view controller, MyPickerViewController. Its viewDidLoad
puts the UIPickerView into the inputView and positions it with autolayout
constraints:

class MyPickerViewController : UIInputViewController {

 override func viewDidLoad() {

 let iv = self.inputView!

 iv.translatesAutoresizingMaskIntoConstraints = false

 let p = UIPickerView()

 p.delegate = self

 p.dataSource = self

 iv.addSubview(p)

 p.translatesAutoresizingMaskIntoConstraints = false

 NSLayoutConstraint.activate([

 p.topAnchor.constraint(equalTo: iv.topAnchor),

 p.bottomAnchor.constraint(equalTo: iv.bottomAnchor),

 p.leadingAnchor.constraint(equalTo: iv.leadingAnchor),

 p.trailingAnchor.constraint(equalTo: iv.trailingAnchor),

])

 }

}

extension MyPickerViewController : UIPickerViewDelegate,

 UIPickerViewDataSource {

 // ...

}

The text field itself is configured in our main view controller:

class ViewController: UIViewController {

 @IBOutlet weak var tf: UITextField!

 let pvc = MyPickerViewController()

 override func viewDidLoad() {

 super.viewDidLoad()

 self.tf.inputView = self.pvc.inputView

 }

}

The input view controller has indirect access to the text field being edited,
by way of its textDocumentProxy property. This is a
UITextDocumentProxy instance that provides a limited window on the text
field: basically, it forces you to see the text field as a keyboard would see it.
You can learn the selected text, as well as the text before and after the
selection; you can insert text; and you can backspace to delete text. But in
our example we are not limited in this way; the input view controller can be
put into communication with our main view controller, and our main view
controller can operate on the text field as a text field.

TIP
An input view controller, used in this way, is also the key to supplying other apps with a
keyboard. See the “Custom Keyboard” chapter of Apple’s App Extension Programming Guide.

It is also possible to use an input view controller to manage a text field’s in
putAccessoryView. To do that, you set the text field’s inputAccessoryVi
ewController instead of its inputAccessoryView. To do that, you have to
subclass UITextField to give it a writable inputAccessoryViewControlle
r (because this property, as inherited from UIResponder, is read-only):

class MyTextField : UITextField {

 var _iavc : UIInputViewController?

 override var inputAccessoryViewController: UIInputViewController? {

 get {

 return self._iavc

 }

 set {

 self._iavc = newValue

 }

 }

}

How, for example, are we going to dismiss the “keyboard” consisting
entirely of a UIPickerView? One way would be to attach a Done button as
the text field’s accessory input view. I’ll configure the button much as I
configured the picker view, by putting it into an input view controller’s inp
utView:

class MyDoneButtonViewController : UIInputViewController {

 override func viewDidLoad() {

 let iv = self.inputView!

 iv.translatesAutoresizingMaskIntoConstraints = false

 iv.allowsSelfSizing = true // crucial

 let b = UIButton(type: .system)

 b.tintColor = .black

 b.setTitle("Done", for: .normal)

 b.sizeToFit()

 b.addTarget(self, action: #selector(doDone), for: .touchUpInside)

 b.backgroundColor = UIColor.lightGray

 iv.addSubview(b)

 b.translatesAutoresizingMaskIntoConstraints = false

 NSLayoutConstraint.activate([

 b.topAnchor.constraint(equalTo: iv.topAnchor),

 b.bottomAnchor.constraint(equalTo: iv.bottomAnchor),

 b.leadingAnchor.constraint(equalTo: iv.leadingAnchor),

 b.trailingAnchor.constraint(equalTo: iv.trailingAnchor),

])

 }

}

Now our main view controller configures the text field like this:

class ViewController: UIViewController {

 @IBOutlet weak var tf: UITextField!

 let pvc = MyPickerViewController()

 let mdbvc = MyDoneButtonViewController()

 override func viewDidLoad() {

 super.viewDidLoad()

 self.tf.inputView = self.pvc.inputView

 (self.tf as! MyTextField).inputAccessoryViewController = self.mdbvc

 }

}

An important advantage of using an input view controller is that it is a view
controller. Despite not being part of the app’s view controller hierarchy, it is

sent standard view controller messages such as viewDidLayoutSubviews
and traitCollectionDidChange, allowing you to respond coherently to
rotation and other size changes.

Input view without a text field
With only a slight modification, you can use the techniques described in the
preceding section to present a custom input view to the user without the
user editing any text field. For example, suppose we have a label in our
interface; we can allow the user to tap a button to summon our custom input
view and use that input to change the text of the label (Figure 10-11).
The trick here is that the relevant UITextField properties and methods are
all inherited from UIResponder — and a UIViewController is a
UIResponder. All we have to do is override our view controller’s canBecom
eFirstResponder to return true, and then call its becomeFirstResponder
— just like a text field. If the view controller has overridden inputView,
our custom input view will appear as the onscreen keyboard. If the view
controller has overridden inputAccessoryView or inputAccessoryViewC
ontroller, the accessory view will be attached to that keyboard.
Here’s an implementation of that scenario. Normally, our view controller’s
canBecomeFirstResponder returns false, so that the input view won’t
appear. But when the user taps the button in our interface, we switch to
returning true and call becomeFirstResponder. Presto, the input view
appears along with the accessory view, because we’ve also overridden inpu
tView and inputAccessoryViewController. When the user taps the Done
button in the accessory view, we update the label and dismiss the keyboard:

Figure 10-11. Editing a label with a custom input view

class ViewController: UIViewController {

 @IBOutlet weak var lab: UILabel!

 let pvc = MyPickerViewController()

 let mdbvc = MyDoneButtonViewController()

 override func viewDidLoad() {

 super.viewDidLoad()

 self.mdbvc.delegate = self // for dismissal

 }

 var showKeyboard = false

 override var canBecomeFirstResponder: Bool {

 return showKeyboard

 }

 override var inputView: UIView? {

 return self.pvc.inputView

 }

 override var inputAccessoryViewController: UIInputViewController? {

 return self.mdbvc

 }

 @IBAction func doPickBoy(_ sender: Any) { // button in the interface

 self.showKeyboard = true

 self.becomeFirstResponder()

 }

 @objc func doDone() { // user tapped Done button in accessory view

 self.lab.text = pvc.currentPep // update label

 self.resignFirstResponder() // dismiss keyboard

 self.showKeyboard = false

 }

}

Shortcuts bar
On the iPad, the shortcuts bar appears along with spelling suggestions at the
top of the keyboard. You can customize it by adding bar button items.

The shortcuts bar is the text field’s inputAssistantItem (inherited from
UIResponder), and it has leadingBarButtonGroups and trailingBarBut
tonGroups. A button group is a UIBarButtonItemGroup, an array of
UIBarButtonItems along with an optional representativeItem to be
shown if there isn’t room for the whole array; if the representative item has
no target–action pair, tapping it will summon a popover containing the
actual group.
In this example, we add a Camera bar button item to the right (trailing) side
of the shortcuts bar for our text field (self.tf):

let bbi = UIBarButtonItem(

 barButtonSystemItem: .camera, target: self, action: #selector(doCamera))

let group = UIBarButtonItemGroup(

 barButtonItems: [bbi], representativeItem: nil)

let shortcuts = self.tf.inputAssistantItem

shortcuts.trailingBarButtonGroups.append(group)

Keyboard language
Suppose your app performs a Russian dictionary lookup. It would be nice to
be able to force the keyboard to appear as Russian in conjunction with your
text field. But you can’t. You can’t access the Russian keyboard unless the
user has explicitly enabled it; and even if the user has explicitly enabled it,
your text field can only express a preference as to the language in which the
keyboard initially appears. To do so, override your view controller’s textIn
putMode property along these lines:

override var textInputMode: UITextInputMode? {

 for tim in UITextInputMode.activeInputModes {

 if tim.primaryLanguage == "ru-RU" {

 return tim

 }

 }

 return super.textInputMode

}

Another keyboard language–related property is textInputContextIdenti
fier. You can use this to ensure that the runtime remembers the language
to which the keyboard was set the last time each text field was edited. To do
so, override textInputContextIdentifier in your view controller as a
computed variable whose getter fetches the value of a stored variable, and
set that stored variable to some appropriate unique value whenever the
editing context changes, whatever that may mean for your app.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, various messages are sent to
the text field’s delegate, adopting the UITextFieldDelegate protocol. Some
of these messages are also available as notifications. Using them, you can
customize the text field’s behavior during editing:

textFieldShouldBeginEditing(_:)

Return false to prevent the text field from becoming first responder.

textFieldDidBeginEditing(_:)

.UITextFieldTextDidBeginEditing

The text field has become first responder.

textFieldShouldClear(_:)

Return false to prevent the operation of the Clear button or of
automatic clearing on entry (clearsOnBeginEditing). This event is not
sent when the text is cleared because clearsOnInsertion is true,
because the user is not clearing the text but rather changing it.

textFieldShouldReturn(_:)

The user has tapped the Return button in the keyboard. We have already
seen that this can be misused as a signal to dismiss the keyboard.

textField(_:shouldChangeCharactersIn:replacementString:)

.UITextFieldTextDidChange

The notification is just a signal that the user has edited the text, but the
delegate method is your chance to interfere with the user’s editing
before it takes effect. You can return false to prevent the proposed
change; if you’re going to do that, you can replace the user’s edit with
your own by changing the text field’s text directly (there is no
circularity, as this delegate method is not called when you do that).

In this example, the user can enter only lowercase characters (the inser
tText method comes from the UIKeyInput protocol, which UITextField
adopts):

func textField(_ textField: UITextField,

 shouldChangeCharactersIn range: NSRange,

 replacementString string: String) -> Bool {

 // backspace

 if string.isEmpty {

 return true

 }

 let lc = string.lowercased()

 textField.insertText(lc)

 return false

}

As the example shows, you can distinguish whether the user is typing or
pasting, on the one hand, or backspacing or cutting, on the other; in the
latter case, the replacement string will be empty. You are not notified
when the user changes text styling through the Bold, Italics, or
Underline menu items.

textFieldShouldEndEditing(_:)

Return false to prevent the text field from resigning first responder
(even if you just sent resignFirstResponder to it). You might do this,

for example, because the text is invalid or unacceptable in some way.
The user will not know why the text field is refusing to end editing, so
the usual thing is to put up an alert (Chapter 13) explaining the problem.

textFieldDidEndEditing(_:)

.UITextFieldTextDidEndEditing

The text field has resigned first responder. See Chapter 8 (“Editable
Content in Cells”) for an example of using the delegate method to fetch
the text field’s current text and store it in the model.

A text field is also a control (UIControl; see also Chapter 12). That means
you can attach a target–action pair to any of the events that it reports in
order to receive a message when that event occurs. Of the various control
event messages emitted by a text field, the two most useful (in my
experience) are:

Editing Changed (.editingChanged)
Sent after the user performs any editing. If your goal is to respond to
changes, rather than to forestall them, this is a better way than the
delegate method textField(_:shouldChangeCharactersIn:replace
mentString:), because it arrives at the right moment, namely after the
change has occurred, and because it can detect attributes changes, which
the delegate method can’t do.

Did End on Exit (editingDidEndOnExit)
Provides a clean alternative way to dismiss the keyboard when the user
taps a text field keyboard’s Return button. If there is a Did End on Exit
target–action pair for this text field, then (assuming the text field’s
delegate does not return false from textFieldShouldReturn(_:))
the keyboard will be dismissed automatically when the user taps the
Return key.
For this trick to work, the action method for Did End on Exit doesn’t
actually have to do anything. In fact, it doesn’t even have to exist; the
action can be nil-targeted. There is no penalty for implementing a nil-

targeted action that walks up the responder chain without finding a
method that handles it.
In this example, I create a UITextField subclass that automatically
dismisses itself when the user taps Return:

@objc protocol Dummy {

 func dummy(_ sender: Any?)

}

class MyTextField: UITextField {

 required init?(coder aDecoder: NSCoder) {

 super.init(coder:aDecoder)

 self.addTarget(nil,

 action:#selector(Dummy.dummy), for:.editingDidEndOnExit)

 }

}

Alternatively, you can configure the same thing in the nib editor. Edit
the First Responder proxy object in the Attributes inspector, adding a
new First Responder Action; call it dummy:. Now hook the Did End on
Exit event of the text field to the dummy: action of the First Responder
proxy object.

Text Field Menu
When the user double taps or long presses in a text field, the menu appears.
It contains menu items such as Select, Select All, Paste, Copy, Cut, and
Replace; which menu items appear depends on the circumstances. Many of
the selectors for these standard menu items are listed in the
UIResponderStandardEditActions protocol. Commonly used standard
actions are:

cut(_:)

copy(_:)

select(_:)

selectAll(_:)

paste(_:)

delete(_:)

toggleBoldface(_:)

toggleItalics(_:)

toggleUnderline(_:)

Some other menu items are known only through their Objective-C
selectors:

_promptForReplace:

_define:

_showTextStyleOptions:

The menu can be customized; just as with a table view cell’s menus
(Chapter 8), this involves setting the shared UIMenuController object’s men
uItems property to an array of UIMenuItem instances representing the
menu items that may appear in addition to those that the system puts there.

Actions for menu items are nil-targeted, so they percolate up the responder
chain. You can thus implement a menu item’s action anywhere up the
responder chain; if you do this for a standard menu item at a point in the
responder chain before the system receives it, you can interfere with and
customize what it does. You govern the presence or absence of a menu item
by implementing the UIResponder method canPerformAction(_:withSen
der:) in the responder chain.
As an example, we’ll devise a text field whose menu includes our own
menu item, Expand. I’m imagining a text field where the user can select a
U.S. state two-letter abbreviation (such as “CA”) and can then summon the
menu and tap Expand to replace it with the state’s full name (such as
“California”).
I’ll implement this in a UITextField subclass called MyTextField, in order
to guarantee that the Expand menu item will be available when an instance
of this subclass is first responder, but at no other time.

At some moment before the user taps in an instance of MyTextField (such
as our view controller’s viewDidLoad), we modify the global menu:

let mi = UIMenuItem(title:"Expand", action:#selector(MyTextField.expand))

let mc = UIMenuController.shared

mc.menuItems = [mi]

Now we turn to the text field subclass. It has a property, self.list, which
has been set to a dictionary whose keys are state name abbreviations and
whose values are the corresponding state names. A utility function looks up
an abbreviation in the dictionary:

func state(for abbrev:String) -> String? {

 return self.list[abbrev.uppercased()]

}

We implement canPerformAction(_:withSender:) to govern the
contents of the menu. Let’s presume that we want our Expand menu item to
be present only if the selection consists of a two-letter state abbreviation.
UITextField itself provides no way to learn the selected text, but it
conforms to the UITextInput protocol, which does:

override func canPerformAction(_ action: Selector,

 withSender sender: Any?) -> Bool {

 if action == #selector(expand) {

 if let r = self.selectedTextRange, let s = self.text(in:r) {

 return (s.count == 2 && self.state(for:s) != nil)

 }

 }

 return super.canPerformAction(action, withSender:sender)

}

When the user chooses the Expand menu item, the expand message is sent
up the responder chain. We catch it in our UITextField subclass and obey it
by replacing the selected text with the corresponding state name:

@objc func expand(_ sender: Any?) {

 if let r = self.selectedTextRange, let s = self.text(in:r) {

 if let ss = self.state(for:s) {

 self.replace(r, withText:ss)

 }

 }

}

We can also implement the selector for, and thus modify the behavior of,
any of the standard menu items. For example, I’ll implement copy(_:) and
modify its behavior. First we call super to get standard copying behavior;
then we modify what’s now on the pasteboard:

override func copy(_ sender:Any?) {

 super.copy(sender)

 let pb = UIPasteboard.general

 if let s = pb.string {

 let ss = // ... alter s here ...

 pb.string = ss

 }

}

Drag and Drop
A text field implements drag and drop (Chapter 9) by way of the
UITextDraggable and UITextDroppable protocols. By default a text field’s
text is draggable on an iPad and not draggable on an iPhone, but you can set
the isEnabled property of its textDragInteraction to change that. If a
text field’s text is draggable, then by default its dragged text can be dropped
within the same text field.

To customize a text field’s drag and drop behavior, provide a textDragDel
egate (UITextDragDelegate) or textDropDelegate (UITextDropDelegate)
and implement any of their various methods. For example, you can change
the drag preview, change the drag items, and so forth. To turn a text field’s
droppability on or off depending on some condition, give it a textDropDel
egate and implement textDroppableView(_:proposalForDrop:) to
return an appropriate UITextDropProposal. Consult the documentation for
further details.

Text Views
A text view (UITextView) is a scroll view subclass (UIScrollView); it is not
a control. It displays multiline text, possibly scrollable, possibly user-
editable. Many of its properties are similar to those of a text field:

A text view has text, font, textColor, and textAlignment properties.

A text view has attributedText, allowsEditingTextAttributes,
and typingAttributes properties, as well as clearsOnInsertion.
An editable text view governs its keyboard just as a text field does: when
it is first responder, it is being edited and shows the keyboard, and it
adopts the UITextInput protocol and has inputView and inputAccesso
ryView properties.
A text view’s menu works the same way as a text field’s.
A text view implements drag and drop similarly to a text field.

A text view can be user-editable or not, according to its isEditable
property. You can do things with a noneditable text view that you can’t do
otherwise, as I’ll explain later. The user can still interact with a noneditable
text view’s text, provided its isSelectable property is true; for example,
in a selectable noneditable text view, the user can select text and copy it.
A text view is a scroll view, so everything you know about scroll views
applies (see Chapter 7). It can be user-scrollable or not. Its contentSize is
maintained for you automatically as the text changes, so as to contain the
text exactly; thus, if the text view is scrollable, the user can see any of its
text.
A text view provides information about, and control of, its selection: it has a
selectedRange property which you can get and set, along with a scrollRa
ngeToVisible(_:) method so that you can scroll in terms of a range of its
text.
A text view’s delegate messages (UITextViewDelegate protocol) and
notifications, too, are similar to those of a text field. The following delegate
methods and notifications should have a familiar ring:

textViewShouldBeginEditing(_:)

textViewDidBeginEditing(_:) and .UITextViewTextDidBeginEdit
ing

textViewShouldEndEditing(_:)

textViewDidEndEditing(_:) and .UITextViewTextDidEndEditing

textView(_:shouldChangeTextIn:replacementText:)

Some differences are:

textViewDidChange(_:)

.UITextViewTextDidChange

Sent when the user changes text or attributes. A text field has no
corresponding delegate method, though the Editing Changed control
event is similar.

textViewDidChangeSelection(_:)

Sent when the user changes the selection. In contrast, a text field is
officially uninformative about the selection (though you can learn about
and manipulate a UITextField’s selection by way of the UITextInput
protocol).

Links, Text Attachments, and Data
The default appearance of links in a text view is determined by the text
view’s linkTextAttributes. By default, this is a bluish color with no
underline, but you can change it. (The linkTextAttributes dictionary
keys are Strings, not NSAttributeStringKeys; I regard this as a bug.)
Alternatively, you can apply any desired attributes to the individual links in
the attributed string that you set as the text view’s attributedText; in that
case, set the linkTextAttributes to an empty dictionary to prevent it
from overriding the individual link attributes.
A text view’s delegate can decide how to respond when the user taps on a
text attachment or a link. The text view must have its isSelectable

property set to true, and its isEditable property set to false:

textView(_:shouldInteractWith:in:interaction:)

The third parameter is a range. The last parameter tells you what the
user is doing (UITextItemInteraction): .invokeDefaultAction means
tap, .presentActions means long press, .preview means 3D touch.
Comes in two forms:

The second parameter is a URL

The user is interacting with a link. The default is true. Default
responses are:

.invokeDefaultAction: the URL is opened in Safari.

.presentActions: an action sheet is presented, with menu items
Open, Add to Reading List, Copy, and Share.

.preview: a peek and pop preview of the web page is presented,
along with menu items Open Link, Add to Reading List, and
Copy.

The second parameter is an NSTextAttachment

The user is interacting with an inline image. The default is false.
Default responses are:

.invokeDefaultAction: nothing happens.

.presentActions: an action sheet is presented, with menu items
Copy Image and Save to Camera Roll.

.preview: nothing happens; my experience is that you should
return false or the app may crash.

Return true for the default response. By returning false, you can
substitute your own response, effectively treating the link or image as a
button.

A text view also has a dataDetectorTypes property; this, too, if the text
view is selectable but not editable, allows text of certain types, specified as

a bitmask (and presumably located using NSDataDetector), to be treated as
tappable links.

textView(_:shouldInteractWith:in:interaction:) will catch these
taps as well; the second parameter will be a URL, but it won’t necessarily
be much use to you. You can distinguish a phone number through the URL’s
scheme (it will be "tel"), and the rest of the URL is the phone number; but
other types will be more or less opaque (the scheme is "x-apple-data-det
ectors"). However, you have the range, so you can obtain the tapped text.
Again, you can return false and substitute your own response, or return tr
ue for the default responses.

In addition to .link, some common UIDataDetectorTypes are:

.phoneNumber

Default responses are:

.invokeDefaultAction: an alert is presented, with an option to call
the number.

.presentActions: an action sheet is presented, with menu items
Call, FaceTime, Send Message, Add to Contacts, and Copy.

.preview: a preview is presented, looking up the phone number in
the user’s Contacts database, along with menu items Call, Message,
Add to Existing Contact, and Create New Contact.

.address

Default responses are:

.invokeDefaultAction: the address is looked up in the Maps app.

.presentActions: an action sheet is presented, with menu items
Get Directions, Open in Maps, Add to Contacts, and Copy.

.preview: a preview is presented, combining the preceding two.

.calendarEvent

Default responses are:

.invokeDefaultAction: an action sheet is presented, with menu
items Create Event, Show in Calendar, and Copy.

.presentActions: same as the preceding.

.preview: a preview is presented, displaying the relevant time from
the user’s Calendar, along with the same menu items.

Starting in iOS 10, there are three more data detector types: shipmentTrac
kingNumber, flightNumber, and lookupSuggestion.

WARNING
In my tests, if the interaction type is .preview, then if the user cancels (releasing the press), the
delegate method is called again with interaction .presentActions. I regard this as a bug.

Self-Sizing Text View
On some occasions, you may want a self-sizing text view — that is, a text
view that adjusts its height automatically to embrace the amount of text it
contains.
The simplest approach, under autolayout, is to prevent the text view from
scrolling, by setting its isScrollEnabled to false. The text view now has
an intrinsic content size and will behave just like a label (“Resizing a Label
to Fit Its Text”). Pin the top and sides of the text view, and the bottom will
shift automatically to accomodate the content as the user types. In effect,
you’ve made a cross between a label (the height adjusts to fit the text) and a
text field (the user can edit).
To put a limit on how tall a self-sizing text view can grow, keep track of the
height of its contentSize and, if it gets too big, set the text view’s isScrol
lEnabled to true and constrain its height.

Text View and Keyboard

The fact that a text view is a scroll view comes in handy when the keyboard
partially covers a text view. The text view quite often dominates the screen,
and you can respond to the keyboard partially covering it by adjusting the
text view’s contentInset and scrollIndicatorInsets, exactly as we did
earlier in this chapter with a scroll view containing a text field (“Keyboard
Covers Text Field”). There is no need to worry about the text view’s conten
tOffset: the text view will scroll as needed to reveal the insertion point as
the keyboard shows, and will scroll itself correctly as the keyboard hides.
Now let’s talk about how the keyboard is to be dismissed. The Return key is
meaningful for character entry, so you won’t want to misuse it to dismiss
the keyboard. On the iPad, there is usually a separate button in the keyboard
that dismisses the keyboard, thus solving the problem. On the iPhone,
however, there might be no such button.
On the iPhone, the interface might well consist of a text view and the
keyboard, which is always showing: instead of dismissing the keyboard, the
user dismisses the entire interface. For example, in Apple’s Mail app on the
iPhone, when the user is composing a message, the keyboard is present; if
the user taps Cancel or Send, the mail composition interface is dismissed
and so is the keyboard.
Alternatively, you can provide interface for dismissing the keyboard
explicitly. For example, in Apple’s Notes app, when a note is being edited,
the keyboard is present and a Done button appears; the user taps the Done
button to dismiss the keyboard. If there’s no good place to put a Done
button in the interface, you could attach an accessory view to the keyboard
itself, as I did in an earlier example.

Finally, being a scroll view, a text view has a keyboardDismissMode. Thus,
by making text view’s keyboard dismiss mode .interactive, you can
permit the user to hide the keyboard by dragging it. Apple’s Notes app is a
case in point.

Text Kit

Text Kit comes originally from macOS, where you may already be more
familiar with it than you realize. (For example, much of the text-editing
“magic” of Xcode itself is due to Text Kit.) Text Kit comprises a small
group of classes that are responsible for drawing text; simply put, they turn
an NSAttributedString into graphics. You can take advantage of Text Kit to
modify text drawing in ways that were once possible only by dipping down
to the low-level C-based world of Core Text.
Text Kit has three chief classes: NSTextStorage, NSLayoutManager, and
NSTextContainer. Instances of these three classes join to form a “stack” of
objects that allow Text Kit to operate. In the minimal and most common
case, a text storage has a layout manager, and a layout manager has a text
container, thus forming the “stack.”
Here’s what the three chief Text Kit classes do:

NSTextStorage
A subclass of NSMutableAttributedString. It is, or holds, the underlying
text. It has one or more layout managers, and notifies them when the
text changes. By subclassing and delegation (NSTextStorageDelegate),
its behavior can be modified so that it applies attributes in a custom
fashion.

NSLayoutManager
This is the master text drawing class. It has one or more text containers,
and is owned by a text storage. It draws the text storage’s text into the
boundaries defined by the text container(s).
A layout manager can have a delegate (NSLayoutManagerDelegate),
and can be subclassed. This, as you may well imagine, is a powerful and
sophisticated class.

NSTextContainer
It is owned by a layout manager, and helps that layout manager by
defining the region in which the text is to be laid out. It does this in
three primary ways:

Size
The text container’s top left is the origin for the text layout
coordinate system, and the text will be laid out within the text
container’s rectangle.

Exclusion paths

The exclusionPaths property consists of UIBezierPath objects
within which no text is to be drawn.

Subclassing
By subclassing, you can place each chunk of text drawing anywhere
at all (except inside an exclusion path).

Text View and Text Kit
A UITextView provides direct access to the underlying Text Kit engine. It
has the following Text Kit–related properties:

textContainer

The text view’s text container (an NSTextContainer instance).
UITextView’s designated initializer is init(frame:textContainer:);
the textContainer: can be nil to get a default text container, or you
can supply your own custom text container.

textContainerInset

The margins of the text container, designating the area within the conte
ntSize rectangle in which the text as a whole is drawn. Changing this
value changes the margins immediately, causing the text to be freshly
laid out. The default is a top and bottom of 8.

layoutManager

The text view’s layout manager (an NSLayoutManager instance).

textStorage

The text view’s text storage (an NSTextStorage instance).
When you initialize a text view with a custom text container, you hand it the
entire “stack” of Text Kit instances, the stack is retained, and the text view
is operative. Thus, the simplest case might look like this:

let r = // ... frame for the new text view

let lm = NSLayoutManager()

let ts = NSTextStorage()

ts.addLayoutManager(lm)

let tc = NSTextContainer(size:CGSize(r.width, .greatestFiniteMagnitude))

lm.addTextContainer(tc)

let tv = UITextView(frame:r, textContainer:tc)

Text Container
An NSTextContainer has a size, within which the text will be drawn.
By default, a text view’s text container’s width is the width of the text view,
while its height is effectively infinite, allowing the drawing of the text to
grow vertically but not horizontally beyond the bounds of the text view, and
making it possible to scroll the text vertically.

NSTextContainer also has heightTracksTextView and widthTracksText
View properties, causing the text container to be resized to match changes in
the size of the text view — for example, if the text view is resized because
of interface rotation. By default, as you might expect, widthTracksTextVi
ew is true (the documentation is wrong about this), while heightTracksTe
xtView is false: the text fills the width of the text view, and is laid out
freshly if the text view’s width changes, but its height remains effectively
infinite. The text view itself configures its own contentSize so that the
user can scroll just to the bottom of the existing text.

When you change a text view’s textContainerInset, it modifies its text
container’s size as necessary. In the default configuration, this means that it
modifies the text container’s width; the top and bottom insets are
implemented through the text container’s position within the content rect.

Within the text container, additional side margins correspond to the text
container’s lineFragmentPadding; the default is 5, but you can change it.

If the text view’s isScrollEnabled is false, then by default its text
container’s heightTracksTextView and widthTracksTextView are both t
rue, and the text container size is adjusted so that the text fills the text view.
In that case, you can also set the text container’s lineBreakMode. This
works like the line break mode of a UILabel. For example, if the line break
mode is .byTruncatingTail, then the last line has an ellipsis at the end (if
the text is too long for the text view). You can also set the text container’s m
aximumNumberOfLines, which is like a UILabel’s numberOfLines. In
effect, you’ve turned the text view into a label!
But a nonscrolling text view isn’t just a label, because you’ve got access to
the Text Kit stack that backs it. For example, you can apply exclusion paths
to the text container. Figure 10-12 shows a case in point. The text wraps in
longer and longer lines, and then in shorter and shorter lines, because
there’s an exclusion path on the right side of the text container that’s a
rectangle with a large V-shaped indentation.

Figure 10-12. A text view with an exclusion path

In Figure 10-12, the text view (self.tv) is initially configured in the view
controller’s viewDidLoad:

self.tv.attributedText = // ...

self.tv.textContainerInset = UIEdgeInsetsMake(20, 20, 20, 0)

self.tv.isScrollEnabled = false

The exclusion path is then drawn and applied in viewDidLayoutSubviews:

override func viewDidLayoutSubviews() {

 let sz = self.tv.textContainer.size

 let p = UIBezierPath()

 p.move(to: CGPoint(sz.width/4.0,0))

 p.addLine(to: CGPoint(sz.width,0))

 p.addLine(to: CGPoint(sz.width,sz.height))

 p.addLine(to: CGPoint(sz.width/4.0,sz.height))

 p.addLine(to: CGPoint(sz.width,sz.height/2.0))

 p.close()

 self.tv.textContainer.exclusionPaths = [p]

}

Instead of (or in addition to) an exclusion path, you can subclass
NSTextContainer to modify the rectangle in which the layout manager
wants to position a piece of text. (Each piece of text is actually a line
fragment; I’ll explain in the next section what a line fragment is.) In
Figure 10-13, the text is inside a circle.

Figure 10-13. A text view with a subclassed text container

To achieve the layout shown in Figure 10-13, I set the attributed string’s
line break mode to .byCharWrapping (to bring the right edge of each line
as close as possible to the circular shape), and construct the Text Kit stack
by hand to include an instance of my NSTextContainer subclass:

let r = self.tv.frame

let lm = NSLayoutManager()

let ts = NSTextStorage()

ts.addLayoutManager(lm)

let tc = MyTextContainer(size:CGSize(r.width, r.height))

lm.addTextContainer(tc)

let tv = UITextView(frame:r, textContainer:tc)

Here’s my NSTextContainer subclass; it overrides just one property and one
method, to dictate the rect of each line fragment:

class MyTextContainer : NSTextContainer {

 override var isSimpleRectangularTextContainer : Bool { return false }

 override func lineFragmentRect(forProposedRect proposedRect: CGRect,

 at characterIndex: Int,

 writingDirection baseWritingDirection: NSWritingDirection,

 remaining remainingRect: UnsafeMutablePointer<CGRect>?) -> CGRect {

 var result = super.lineFragmentRect(

 forProposedRect:proposedRect, at:characterIndex,

 writingDirection:baseWritingDirection,

 remaining:remainingRect)

 let r = self.size.height / 2.0

 // convert initial y so that circle is centered at origin

 let y = r - result.origin.y

 let theta = asin(y/r)

 let x = r * cos(theta)

 // convert resulting x from circle centered at origin

 let offset = self.size.width / 2.0 - r

 result.origin.x = r-x+offset

 result.size.width = 2*x

 return result

 }

}

Alternative Text Kit Stack Architectures
The default Text Kit stack is one text storage, which has one layout
manager, which has one text container. But a text storage can have multiple
layout managers, and a layout manager can have multiple text containers.
What’s that all about?
If one layout manager has multiple text containers, the overflow from each
text container is drawn in the next one. For example, in Figure 10-14, there
are two text views; the text has filled the first text view, and has then
continued by flowing into and filling the second text view. As far as I can
tell, the text views can’t be made editable in this configuration; but clearly
this is a way to achieve a multicolumn or multipage layout, or you could
use text views of different sizes for a magazine-style layout.

Figure 10-14. A layout manager with two text containers

It is possible to achieve that arrangement by disconnecting the layout
managers of existing text views from their text containers and rebuilding
the stack from below. In this example, though, I’ll build the entire stack by
hand:

let r = // frame

let r2 = // frame

let mas = // content

let ts1 = NSTextStorage(attributedString:mas)

let lm1 = NSLayoutManager()

ts1.addLayoutManager(lm1)

let tc1 = NSTextContainer(size:r.size)

lm1.addTextContainer(tc1)

let tv = UITextView(frame:r, textContainer:tc1)

let tc2 = NSTextContainer(size:r2.size)

lm1.addTextContainer(tc2)

let tv2 = UITextView(frame:r2, textContainer:tc2)

If one text storage has multiple layout managers, then each layout manager
is laying out the same text. For example, in Figure 10-15, there are two text
views displaying the same text. The remarkable thing is that if you edit one
text view, the other changes to match. (That’s how Xcode lets you edit the
same code file in different windows, tabs, or panes.)

Figure 10-15. A text storage with two layout managers

Again, this arrangement is probably best achieved by building the entire
text stack by hand:

let r = // frame

let r2 = // frame

let mas = // content

let ts1 = NSTextStorage(attributedString:mas)

let lm1 = NSLayoutManager()

ts1.addLayoutManager(lm1)

let lm2 = NSLayoutManager()

ts1.addLayoutManager(lm2)

let tc1 = NSTextContainer(size:r.size)

let tc2 = NSTextContainer(size:r2.size)

lm1.addTextContainer(tc1)

lm2.addTextContainer(tc2)

let tv = UITextView(frame:r, textContainer:tc1)

let tv2 = UITextView(frame:r2, textContainer:tc2)

Layout Manager
The first thing to know about a layout manager is the geometry in which it
thinks. To envision a layout manager’s geometrical world, think in terms of
glyphs and line fragments:

Glyph

The drawn analog of a character. The layout manager’s primary job is to
get glyphs from a font and draw them.

Line fragment
A rectangle in which glyphs are drawn, one after another. (The reason
it’s a line fragment, and not just a line, is that a line might be interrupted
by the text container’s exclusion paths.)

A glyph has a location in terms of the line fragment into which it is drawn.
A line fragment’s coordinates are in terms of the text container. The layout
manager can convert between these coordinate systems, and between text
and glyphs. Given a range of text in the text storage, it knows where the
corresponding glyphs are drawn in the text container. Conversely, given a
location in the text container, it knows what glyph is drawn there and what
range of text in the text storage that glyph represents.
What’s missing from that geometry is what, if anything, the text container
corresponds to in the real world. A text container is not, itself, a real
rectangle in the real world; it’s just a class that tells the layout manager a
size to draw into. Making that rectangle meaningful for drawing purposes is
up to some other class outside the Text Kit stack. A UITextView, for
example, has a text container, which it shares with a layout manager. The
text view knows how its own content is scrolled and how the rectangle
represented by its text container is inset within that scrolling content. The
layout manager, however, doesn’t know anything about that; it sees the text
container as a purely theoretical rectangular boundary. Only when the
layout manager actually draws does it make contact with the real world of
some graphics context — and it must be told, on those occasions, how the
text container’s rectangle is offset within that graphics context.
To illustrate, consider a text view scrolled so as to place some word at the
top left of its visible bounds. I’ll use the layout manager to learn what word
it is.
I can ask the layout manager what character or glyph corresponds to a
certain point in the text container, but what point should I ask about?
Translating from the real world to text container coordinates is up to me; I

must take into account both the scroll position of the text view’s content and
the inset of the text container within that content:

let off = self.tv.contentOffset

let top = self.tv.textContainerInset.top

let left = self.tv.textContainerInset.left

var tctopleft = CGPoint(off.x - left, off.y - top)

Now I’m speaking in text container coordinates, which are layout manager
coordinates. One possibility is then to ask directly for the index (in the text
storage’s string) of the corresponding character:

let ixx = self.tv.layoutManager.characterIndex(for:tctopleft,

 in:self.tv.textContainer,

 fractionOfDistanceBetweenInsertionPoints:nil)

That, however, does not give quite the results one might intuitively expect.
If any of a word is poking down from above into the visible area of the text
view, that is the word whose first character is returned. I think we
intuitively expect, if a word isn’t fully visible, that the answer should be the
word that starts the next line, which is fully visible. So I’ll modify that code
in a simpleminded way. I’ll obtain the index of the glyph at my initial point;
from this, I can derive the rect of the line fragment containing it. If that line
fragment is not at least three-quarters visible, I’ll add one line fragment
height to the starting point and derive the glyph index again. Then I’ll
convert the glyph index to a character index:

var ix = self.tv.layoutManager.glyphIndex(for:tctopleft,

 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)

let frag = self.tv.layoutManager.lineFragmentRect(

 forGlyphAt:ix, effectiveRange:nil)

if tctopleft.y > frag.origin.y + 0.5*frag.size.height {

 tctopleft.y += frag.size.height

 ix = self.tv.layoutManager.glyphIndex(for:tctopleft,

 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)

}

let charRange = self.tv.layoutManager.characterRange(

 forGlyphRange: NSMakeRange(ix,0), actualGlyphRange:nil)

ix = charRange.location

Finally, I’ll use NSLinguisticTagger to get the range of the entire word to
which this character belongs:

let sch = NSLinguisticTagScheme.tokenType

let t = NSLinguisticTagger(tagSchemes:[sch], options:0)

t.string = self.tv.text

var r : NSRange = NSMakeRange(0,0)

let tag = t.tag(at:ix, scheme:sch, tokenRange:&r, sentenceRange:nil)

if tag == .word {

 if let s = self.tv.text {

 if let range = Range(r, in: s) {

 let word = s[range]

 print(word)

 }

 }

}

Clearly, the same sort of technique could be used to formulate a custom
response to a tap — answering the question, “What word did the user just
tap on?”
By subclassing NSLayoutManager (and by implementing its delegate),
many powerful effects can be achieved. As a simple example, I’ll carry on
from the preceding code by drawing a rectangular outline around the word
we just located. To make this possible, I have an NSLayoutManager
subclass, MyLayoutManager, an instance of which is built into the Text Kit
stack for this text view. MyLayoutManager has a public NSRange property,
wordRange. Having worked out what word I want to outline, I set the layout
manager’s wordRange and invalidate its drawing of that word, to force a
redraw:

let lm = self.tv.layoutManager as! MyLayoutManager

lm.wordRange = r

lm.invalidateDisplay(forCharacterRange:r)

In MyLayoutManager, I’ve overridden the method that draws the
background behind glyphs, drawBackground(forGlyphRange:at:). At
the moment this method is called, there is already a graphics context, so all
we have to do is draw.

First, I call super. Then, if the range of glyphs to be drawn includes the
glyphs for the range of characters in self.wordRange, I ask for the rect of
the bounding box of those glyphs, and stroke it to form the rectangle. As I
mentioned earlier, the bounding box is in text container coordinates, but
now we’re drawing in the real world, so I have to compensate by offsetting
the drawn rectangle by the same amount that the text container is supposed
to be offset in the real world; fortunately, the text view tells us (through the
origin: parameter) what that offset is:

override func drawBackground(forGlyphRange glyphsToShow: NSRange,

 at origin: CGPoint) {

 super.drawBackground(forGlyphRange:glyphsToShow, at:origin)

 if self.wordRange.length == 0 {

 return

 }

 var range = self.glyphRange(forCharacterRange:self.wordRange,

 actualCharacterRange:nil)

 range = NSIntersectionRange(glyphsToShow, range)

 if range.length == 0 {

 return

 }

 if let tc = self.textContainer(forGlyphAt:range.location,

 effectiveRange:nil, withoutAdditionalLayout:true) {

 var r = self.boundingRect(forGlyphRange:range, in:tc)

 r.origin.x += origin.x

 r.origin.y += origin.y

 let c = UIGraphicsGetCurrentContext()!

 c.saveGState()

 c.setStrokeColor(UIColor.black.cgColor)

 c.setLineWidth(1.0)

 c.stroke(r)

 c.restoreGState()

 }

}

Text Kit Without a Text View
UITextView is the only built-in iOS class that has a Text Kit stack to which
you are given programmatic access. But that doesn’t mean it’s the only
place where you can draw with Text Kit! You can draw with Text Kit
anywhere you can draw — that is, in any graphics context (Chapter 2).

When you do so, you should always call both drawBackground(forGlyphR
ange:at:) (the method I overrode in the previous example) and drawGlyp
hs(forGlyphRange:at:), in that order. The at: argument is the point
where you consider the text container’s origin to be within the current
graphics context.
To illustrate, I’ll change the implementation of the StringDrawer class that I
described earlier in this chapter. Previously, StringDrawer’s draw(_:)
implementation told the attributed string (self.attributedText) to draw
itself:

override func draw(_ rect: CGRect) {

 let r = rect.offsetBy(dx: 0, dy: 2)

 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin

 self.attributedText.draw(with:r, options: opts, context: context)

}

Instead, I’ll construct the Text Kit stack and tell its layout manager to draw
the text:

override func draw(_ rect: CGRect) {

 let lm = NSLayoutManager()

 let ts = NSTextStorage(attributedString:self.attributedText)

 ts.addLayoutManager(lm)

 let tc = NSTextContainer(size:rect.size)

 lm.addTextContainer(tc)

 tc.lineFragmentPadding = 0

 let r = lm.glyphRange(for:tc)

 lm.drawBackground(forGlyphRange:r, at:CGPoint(0,2))

 lm.drawGlyphs(forGlyphRange: r, at:CGPoint(0,2))

}

Building the entire Text Kit stack by hand may seem like overkill for that
simple example, but imagine what else I could do now that I have access to
the entire Text Kit stack! I can use properties, subclassing, delegation, and
alternative stack architectures to achieve customizations and effects that,
before Text Kit was migrated to iOS, were difficult or impossible to achieve
without dipping down to the level of Core Text.

For example, the two-column display of U.S. state names on the iPad
shown in Figure 10-16 was a Core Text example in early editions of this
book, requiring 50 or 60 lines of elaborate C code, complicated by the
necessity of flipping the context to prevent the text from being drawn
upside-down. Nowadays, it can be achieved easily through Text Kit —
effectively just by reusing code from earlier examples in this chapter.

Figure 10-16. Two-column text in small caps

Furthermore, the example from previous editions went on to describe how
to make the display of state names interactive, with the name of the tapped
state briefly outlined with a rectangle (Figure 10-17). With Core Text, this

was almost insanely difficult, not least because we had to keep track of all
the line fragment rectangles ourselves. But it’s easy with Text Kit, because
the layout manager knows all the answers.

Figure 10-17. The user has tapped on California

We have a UIView subclass, StyledText. In its layoutSubviews, it creates
the Text Kit stack — a layout manager with two text containers, to achieve
the two-column layout — and stores the whole stack, along with the rects at
which the two text containers are to be drawn, in properties:

override func layoutSubviews() {

 super.layoutSubviews()

 var r1 = self.bounds

 r1.origin.y += 2 // a little top space

 r1.size.width /= 2.0 // column 1

 var r2 = r1

 r2.origin.x += r2.size.width // column 2

 let lm = MyLayoutManager()

 let ts = NSTextStorage(attributedString:self.text)

 ts.addLayoutManager(lm)

 let tc = NSTextContainer(size:r1.size)

 lm.addTextContainer(tc)

 let tc2 = NSTextContainer(size:r2.size)

 lm.addTextContainer(tc2)

 self.lm = lm; self.ts = ts; self.tc = tc; self.tc2 = tc2

 self.r1 = r1; self.r2 = r2

}

Our draw(_:) is just like the previous example, except that we have two
text containers to draw:

override func draw(_ rect: CGRect) {

 let range1 = self.lm.glyphRange(for:self.tc)

 self.lm.drawBackground(forGlyphRange:range1, at: self.r1.origin)

 self.lm.drawGlyphs(forGlyphRange:range1, at: self.r1.origin)

 let range2 = self.lm.glyphRange(for:self.tc2)

 self.lm.drawBackground(forGlyphRange:range2, at: self.r2.origin)

 self.lm.drawGlyphs(forGlyphRange:range2, at: self.r2.origin)

}

So much for drawing the text! We now have Figure 10-16.
On to Figure 10-17. When the user taps on our view, a tap gesture
recognizer’s action method is called. We are using the same layout manager
subclass developed in the preceding section of this chapter: it draws a
rectangle around the glyphs corresponding to the characters of its wordRang
e property. Thus, all we have to do in order to make the flashing rectangle
around the tapped word is work out what that range is, set our layout
manager’s wordRange property and redraw ourselves, and then (after a
short delay) set the wordRange property back to a zero range and redraw
ourselves again to remove the rectangle.
We start by working out which column the user tapped in; this tells us
which text container it is, and what the tapped point is in text container
coordinates (g is the tap gesture recognizer):

var p = g.location(in:self)

var tc = self.tc!

if !self.r1.contains(p) {

 tc = self.tc2!

 p.x -= self.r1.size.width

}

Now we can ask the layout manager what glyph the user tapped on, and
hence the whole range of glyphs within the line fragment the user tapped in.
If the user tapped to the left of the first glyph or to the right of the last
glyph, no word was tapped, and we return:

var f : CGFloat = 0

let ix =

 self.lm.glyphIndex(for:p, in:tc, fractionOfDistanceThroughGlyph:&f)

var glyphRange : NSRange = NSMakeRange(0,0)

self.lm.lineFragmentRect(forGlyphAt:ix, effectiveRange:&glyphRange)

if ix == glyphRange.location && f == 0.0 {

 return

}

if ix == glyphRange.location + glyphRange.length - 1 && f == 1.0 {

 return

}

If the last glyph of the line fragment is a whitespace glyph, we don’t want to
include it in our rectangle, so we subtract it from the end of our range. Then
we’re ready to convert to a character range, and thus we can learn the name
of the state that the user tapped on:

func lastCharIsControl () -> Bool {

 let lastCharRange = glyphRange.location + glyphRange.length - 1

 let property = self.lm.propertyForGlyph(at:lastCharRange)

 let mask1 = property.rawValue

 let mask2 = NSLayoutManager.GlyphProperty.controlCharacter.rawValue

 return mask1 & mask2 != 0

}

while lastCharIsControl() {

 glyphRange.length -= 1

}

let characterRange =

 self.lm.characterRange(forGlyphRange:glyphRange, actualGlyphRange:nil)

let s = self.text.string

if let r = Range(characterRange, in:s) {

 let stateName = s[r]

 print("you tapped \(stateName)")

}

Finally, we flash the rectangle around the state name by setting and
resetting the wordRange property of the subclassed layout manager:

let lm = self.lm as! MyLayoutManager

lm.wordRange = characterRange

self.setNeedsDisplay()

delay(0.3) {

 lm.wordRange = NSMakeRange(0, 0)

 self.setNeedsDisplay()

}

Chapter 11. Web Views

A web view is a web browser, which is a powerful thing: it knows how to
fetch resources through the Internet, and it can render HTML and CSS, and
can respond to JavaScript. Thus it is a network communication device, as
well as an interactive layout, animation, and media display engine.
In a web view, links and other ancillary resources work automatically. If
your web view’s HTML refers to an image, the web view will fetch it and
display it. If the user taps on a link, the web view will fetch that content and
display it; if the link is to some sort of media (a sound or video file), the
web view will allow the user to play it.
A web view can also display some other types of content commonly
encountered as Internet resources. For example, it can display PDF files, as
well as documents in such formats as .rtf, Microsoft Word (.doc and .docx),
and Pages.

NOTE
A Pages file that is actually a bundle must be compressed to form a single .pages.zip resource. A
web view should also be able to display .rtfd files, but this feature is not working properly; Apple
suggests that you convert to an attributed string as I described in Chapter 10 (specifying a
document type of NSRTFDTextDocumentType), or use a QLPreviewController (Chapter 22).

The loading and rendering of a web view’s content takes time, and may
involve networking. Your app’s interface, however, is not blocked or frozen
while the content is loading. On the contrary, your interface remains
accessible and operative. The web view, in fetching and rendering a web
page and its linked components, is doing something quite complex,
involving both threading and network interaction — I’ll have a lot more to
say about this in Chapters 23 and 24 — but it shields you from this
complexity, and it operates asynchronously (in the background, off the main

thread). Your own interaction with the web view stays on the main thread
and is straightforward. You ask the web view to load some content; then
you sit back and let it worry about the details.
There are actually three web view objects:

UIWebView
UIWebView, a UIView subclass, has been around since the earliest days
of iOS. Apple would like you to move away from use of UIWebView,
though as far as I can tell it has not been formally deprecated.

WKWebView
WKWebView, a UIView subclass, appeared in iOS 8. The “WK” stands
for WebKit.

SFSafariViewController
SFSafariViewController, a UIViewController subclass, was introduced
in iOS 9, as part of the Safari Services framework. It is a full-fledged
browser, in effect embedding Mobile Safari in your app as a separate
process.

I’ll describe WKWebView and SFSafariViewController. For a discussion of
UIWebView, consult an earlier edition of this book.

WARNING
iOS 9 introduced App Transport Security. Your app, by default, cannot load external URLs that
are not secure (https:). You can turn off this restriction completely or in part in your Info.plist.
See Chapter 23 for details.

WKWebView
WKWebView is part of the WebKit framework; to use it, you’ll need to imp
ort WebKit. New in Xcode 9, the nib editor’s Object library contains a
WKWebView object that you can drag into your interface as you design it.

The designated initializer is init(frame:configuration:). The second
parameter, configuration:, is a WKWebViewConfiguration. You can
create a configuration beforehand:

let config = WKWebViewConfiguration()

// ... configure config here ...

let wv = WKWebView(frame: rect, configuration:config)

Alternatively, you can initialize your web view with init(frame:) to get a
default configuration and modify it through the web view’s configuration
property later:

let wv = WKWebView(frame: rect)

let config = wv.configuration

// ... configure config here ...

Either way, you’ll probably want to perform configurations before the web
view has a chance to load any content, because some settings will affect
how it loads or renders that content.
Here are some of the more important WKWebViewConfiguration
properties:

suppressesIncrementalRendering

If true, the web view’s visible content doesn’t change until all linked
renderable resources (such as images) have finished loading. The
default is false. Can be set in the nib editor.

allowsInlineMediaPlayback

If true, linked media are played inside the web page. The default is fal
se (the fullscreen player is used). Can be set in the nib editor.

mediaTypesRequiringUserActionForPlayback

Types of media that won’t start playing without a user gesture. A
bitmask (WKAudiovisualMediaTypes) with possible values .audio, .v
ideo, and .all. Can be set in the nib editor.

allowsPictureInPictureMediaPlayback

See Chapter 15 for a discussion of picture-in-picture playback. Can be
set in the nib editor.

dataDetectorTypes

Types of content that may be transformed automatically into tappable
links. Similar to a text view’s data detectors (Chapter 10). Can be set in
the nib editor.

websiteDataStore

A WKWebsiteDataStore. By supplying a data store, you get control
over stored resources. New in iOS 11, its httpCookieStore is a
WKHTTPCookieStore where you can examine, add, and remove
cookies.

preferences

A WKPreferences object. Can be configured in the nib editor. This is a
value class embodying three properties:

minimumFontSize

javaScriptEnabled

javaScriptCanOpenWindowsAutomatically

userContentController

A WKUserContentController object. This is how you can inject
JavaScript into a web page and communicate between your code and the
web page’s content. I’ll give an example later. Also, new in iOS 11, you
can give the userContentController a rule list (WKContentRuleList)
that filters the web view’s content.

A WKWebView is not a scroll view, but it has a scroll view (scrollView).
You can use this to scroll the web view’s content programatically; you can
also get references to its gesture recognizers, and add gesture recognizers of
your own (see Chapter 7).

New in iOS 11, you can take a snapshot of a web view’s content with takeS
napshot(with:completionHandler:). The snapshot image is passed into
the completion function as a UIImage.

Web View Content
You can supply a web view with content using one of four methods,
depending on the type of your content. All four methods return a
WKNavigation object, an opaque object that can be used to identify an
individual page-loading operation, but you will usually ignore it. The
content types and methods are:

A URLRequest

Form a URLRequest from a URL and call load(_:). The URLRequest
initializer is init(url:cachePolicy:timeoutInterval:), but the
second and third parameters are optional and will often be omitted.
Additional configuration includes such properties as allowsCellularA
ccess. For example:

let url = URL(string: "https://www.apple.com")!

let req = URLRequest(url: url)

self.wv.load(req)

A local file

Obtain a local file URL and call loadFileURL(_:allowingReadAcces
sTo:). The second parameter effectively sandboxes the web view into a
single file or directory. In this example from one of my apps, the HTML
refers to images in the same directory as itself:

let url = Bundle.main.url(

 forResource: "zotzhelp", withExtension: "html")!

view.loadFileURL(url, allowingReadAccessTo: url)

An HTML string

Prepare a string consisting of valid HTML, and call loadHTMLString
(_:baseURL:). The baseURL: specifies how partial URLs in your
HTML are to be resolved; for example, the HTML might refer to
resources in your app bundle.
Starting with an HTML string is useful particularly when you want to
construct your HTML programmatically or make changes to it before
handing it to the web view. In this example from the TidBITS News
app, my HTML consists of two strings: a wrapper with the usual <html
> tags, and the body content derived from an RSS feed. I assemble them
and hand the resulting string to my web view for display:

let templatepath = Bundle.main.path(

 forResource: "htmlTemplate", ofType:"txt")!

let base = URL(fileURLWithPath:templatepath)

var s = try! String(contentsOfFile:templatepath)

let ss = // actual body content for this page

s = s.replacingOccurrences(of:"<content>", with:ss)

self.wv.loadHTMLString(s, baseURL:base)

A Data object

Call load(_:MIMEType:characterEncodingName:baseURL:). This is
useful particularly when the content has itself arrived from the network,
as the parameters correspond to the properties of a URLResponse. This
example will be more meaningful to you after you’ve read Chapter 23:

let sess = URLSession.shared

let url = URL(string:"https://www.someplace.net/someImage.jpg")!

let task = sess.dataTask(with: url) { data, response, err in

 if let response = response,

 let mime = response.mimeType,

 let enc = response.textEncodingName,

 let data = data {

 self.wv.load(data, mimeType: mime,

 characterEncodingName: enc, baseURL: url)

 }

}

WARNING
In iOS 11, internal links (where the href value starts with "#") don’t work unless the web view
content was supplied as a URLRequest or a file URL. I regard this as a bug.

Tracking Changes in a Web View
A WKWebView has properties that can be tracked with key–value
observing, such as:

loading

estimatedProgress

url

title

You can observe these properties to be notified as a web page loads or
changes.
For example, as preparation to give the user feedback while a page is
loading, I’ll put an activity indicator (Chapter 12) in the center of my web
view and keep a reference to it:

let act = UIActivityIndicatorView(activityIndicatorStyle:.whiteLarge)

act.backgroundColor = UIColor(white:0.1, alpha:0.5)

self.wv.addSubview(act)

act.translatesAutoresizingMaskIntoConstraints = false

NSLayoutConstraint.activate([

 act.centerXAnchor.constraint(equalTo:wv.centerXAnchor),

 act.centerYAnchor.constraint(equalTo:wv.centerYAnchor)

])

self.activity = act

Now I observe the web view’s loading property (self.obs is a Set
instance property). When the web view starts loading or stops loading, I’m
notified, so I can show or hide the activity view:

obs.insert(self.wv.observe(\.loading, options:.new) {[unowned self] wv,ch in

 if let val = ch.newValue {

 if val {

 self.activity.startAnimating()

 } else {

 self.activity.stopAnimating()

 }

 }

})

Web View Navigation
A WKWebView maintains a back and forward list of the URLs to which the
user has navigated. The list is its backForwardList, a
WKBackForwardList, which is a collection of read-only properties (and
one method) such as:

currentItem

backItem

forwardItem

item(at:)

Each item in the list is a WKBackForwardItem, a simple value class
basically consisting of a url and a title.

The WKWebView itself responds to goBack, goForward and go(to:), so
you can tell it in code to navigate the list. Its properties canGoBack and can
GoForward are key–value observable; typically you would use that fact to
enable or disable a Back and Forward button in your interface in response
to the list changing.

A WKWebView also has a settable property, allowsBackForwardNavigat
ionGestures. The default is false; if true, the user can swipe sideways to
go back and forward in the list. This property can also be set in the nib
editor.
To prevent or reroute navigation that the user tries to perform by tapping
links, set yourself as the WKWebView’s navigationDelegate
(WKNavigationDelegate) and implement webView(_:decidePolicyFor:d
ecisionHandler:). You are handed a decisionHandler function which

you must call, handing it a WKNavigationActionPolicy — either .cancel
or .allow. The for: parameter is a WKNavigationAction that you can
examine to help make your decision; it has a request which is the
URLRequest we are proposing to perform — look at its url to see where
we are proposing to go — along with a navigationType, which will be one
of the following (WKNavigationType):

.linkActivated

.backForward

.reload

.formSubmitted

.formResubmitted

.other

In this example, I permit navigation in the most general case — otherwise
nothing would ever appear in my web view! — but if the user taps a link, I
forbid it and show that URL in Mobile Safari instead:

func webView(_ webView: WKWebView,

 decidePolicyFor navigationAction: WKNavigationAction,

 decisionHandler: @escaping (WKNavigationActionPolicy) -> Swift.Void) {

 if navigationAction.navigationType == .linkActivated {

 if let url = navigationAction.request.url {

 UIApplication.shared.open(url)

 decisionHandler(.cancel)

 return

 }

 }

 decisionHandler(.allow)

}

Several other WKNavigationDelegate methods can notify you as a page
loads (or fails to load). Under normal circumstances, you’ll receive them in
this order:

webView(_:didStartProvisionalNavigation:)

webView(_:didCommit:)

webView(_:didFinish:)

Those delegate methods, and all navigation commands, like the four ways
of loading your web view with initial content, supply a WKNavigation
object. This object is opaque, but you can use it in an equality comparison
to determine whether the navigations referred to in different methods are
the same navigation (roughly speaking, the same page-loading operation).

Communicating with a Web Page
Your code can pass JavaScript messages into and out of a WKWebView’s
web page, thus allowing you to change the page’s contents or respond to
changes within it, even while it is being displayed.

Communicating into a web page
To send a message into an already loaded WKWebView web page, call eva
luateJavaScript(_:completionHandler:). Your JavaScript runs within
the context of the web page.
In this example, the user is able to decrease the size of the text in the web
page. We have prepared some JavaScript that generates a <style> element
containing CSS that sets the font-size for the page’s <body> in
accordance with a property, self.fontsize:

var fontsize = 18

var cssrule : String {

 return """

 var s = document.createElement('style');

 s.textContent = 'body { font-size: \(self.fontsize)px; }';

 document.documentElement.appendChild(s);

 """

}

When the user taps a button, we decrement self.fontsize, construct that
JavaScript, and send it to the web page:

func doDecreaseSize (_ sender: Any) {

 self.fontsize -= 1

 if self.fontsize < 10 {

 self.fontsize = 20

 }

 let s = self.cssrule

 self.wv.evaluateJavaScript(s)

}

That’s clever, but we have not done anything about setting the web page’s
initial font-size. Let’s fix that.
A WKWebView allows us to inject JavaScript into the web page at the time
it is loaded. To do so, we use the userContentController of the
WKWebView’s configuration. We create a WKUserScript, specifying the
JavaScript it contains, along with an injectionTime which can be either
before (.documentStart) or after (.documentEnd) a page’s content has
loaded. In this case, we want it to be before; otherwise, the user will see the
font size change suddenly:

let script = WKUserScript(source: self.cssrule,

 injectionTime: .atDocumentStart, forMainFrameOnly: true)

let config = self.wv.configuration

config.userContentController.addUserScript(script)

Communicating out of a web page
To communicate out of a web page, you need first to install a message
handler to receive the communication. Again, this involves the userConten
tController. You call add(_:name:), where the first argument is an
object that must implement the WKScriptMessageHandler protocol, so that
its userContentController(_:didReceive:) method can be called later:

let config = self.wv.configuration

config.userContentController.add(self, name: "playbutton")

We have just installed a playbutton message handler. This means that the
DOM for our web page now contains an element, among its window.webki
t.messageHandlers, called playbutton. A message handler sends its
message when it receives a postMessage() function call. Thus, the

WKScriptMessageHandler (self in this example) will get a call to its user
ContentController(_:didReceive:) method if JavaScript inside the
web page sends postMessage() to the window.webkit.messageHandler
s.playbutton object.

To make that actually happen, I’ve put an tag into my web page’s
HTML, specifying an image that will act as a tappable button:

<img src=\"listen.png\"

 onclick=\"window.webkit.messageHandlers.playbutton.postMessage('play')\">

When the user taps that image, the message is posted, and so my code runs
and I can respond:

func userContentController(_ userContentController: WKUserContentController,

 didReceive message: WKScriptMessage) {

 if message.name == "playbutton" {

 if let body = message.body as? String {

 if body == "play" {

 // ... do stuff here ...

 }

 }

 }

}

There’s just one little problem: that code causes a retain cycle. The reason is
that a WKUserContentController leaks, and it retains the
WKScriptMessageHandler, which in this case is self — and so self will
never be deallocated. But self is the view controller, so that’s very bad.
My solution is to create an intermediate trampoline object that can be
harmlessly retained, and that has a weak reference to self:

class MyMessageHandler : NSObject, WKScriptMessageHandler {

 weak var delegate : WKScriptMessageHandler?

 init(delegate:WKScriptMessageHandler) {

 self.delegate = delegate

 super.init()

 }

 func userContentController(_ ucc: WKUserContentController,

 didReceive message: WKScriptMessage) {

 self.delegate?.userContentController(ucc, didReceive: message)

 }

}

Now when I add myself as a script message handler, I do it by way of the
trampoline object:

let config = self.wv.configuration

let handler = MyMessageHandler(delegate:self)

config.userContentController.add(handler, name: "playbutton")

Now that I’ve broken the retain cycle, my own deinit is called, and I can
release the offending objects:

deinit {

 let ucc = self.wv.configuration.userContentController

 ucc.removeAllUserScripts()

 ucc.removeScriptMessageHandler(forName:"playbutton")

}

JavaScript alerts
If a web page might put up a JavaScript alert, nothing will happen in your
app unless you assign the WKWebView a uiDelegate, an object adopting
the WKUIDelegate protocol, and implement these methods:

webView(_:runJavaScriptAlertPanelWithMessage:initiatedByFram

e:completionHandler:)

Called by JavaScript alert.

webView(_:runJavaScriptConfirmPanelWithMessage:initiatedByFra

me:completionHandler:)

Called by JavaScript confirm.

webView(_:runJavaScriptTextInputPanelWithPrompt:defaultText:i

nitiatedByFrame:completionHandler:)

Called by JavaScript prompt.

Your implementation should put up an appropriate alert (UIAlertController,
see Chapter 13) and call the completion function when it is dismissed.
Here’s a minimal implementation for the alert method:

func webView(_ webView: WKWebView,

 runJavaScriptAlertPanelWithMessage message: String,

 initiatedByFrame frame: WKFrameInfo,

 completionHandler: @escaping () -> Void) {

 let host = frame.request.url?.host

 let alert = UIAlertController(title: host, message: message,

 preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "OK", style: .default) { _ in

 completionHandler()

 })

 self.present(alert, animated:true)

}

Similarly, if a web page’s JavaScript might call window.open, implement
this method:

webView(_:createWebViewWith:for:windowFeatures:

Your implementation can return nil, or else create a new WKWebView, get
it into the interface, and return it.

Custom Schemes
New in iOS 11, you can pass custom data into a web page by implementing
a custom URL scheme. When the web page asks for the data by way of the
scheme, the WKWebView turns to your code to supply the data.

For example, let’s say I have an MP3 file called "theme" in my app’s asset
catalog, and I want the user to be able to play it through an <audio> tag in
my web page. I’ve invented a unique custom scheme that signals to my app
that we want this audio data, and my web page’s <source> tag asks for its
data using that scheme:

weak var wv: WKWebView!

let sch = "neuburg-custom-scheme-demo-audio"

override func viewDidLoad() {

 super.viewDidLoad()

 // ... configure the web view ...

 let s = """

 <!DOCTYPE html><html><head>

 <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />

 </head><body>

 <p>Here you go:</p>

 <audio controls>

 <source src="\(sch)://theme" />

 </audio>

 </body></html>

 """

 self.wv.loadHTMLString(s, baseURL: nil)

}

Now let’s fill in the missing code, where we configure the web view to
accept sch as a custom scheme. Unfortunately, this works only if we create
the web view ourselves, in code, using the init(frame:configuration:)
initializer, with the WKWebViewConfiguration object prepared beforehand
(I regard this limitation as a bug):

let config = WKWebViewConfiguration()

let sh = SchemeHandler()

sh.sch = self.sch

config.setURLSchemeHandler(sh, forURLScheme: self.sch)

let wv = WKWebView(frame: CGRect(30,30,200,300), configuration: config)

self.view.addSubview(wv)

The call to setURLSchemeHandler requires that we provide an object that
adopts the WKURLSchemeHandler protocol. That object cannot be self,
or we’ll get ourselves into a retain cycle (similar to the problem we had
with WKScriptMessageHandler earlier); so I’m configuring and passing a
custom SchemeHandler helper object instead.
The WKURLSchemeHandler protocol methods are where the action is.
When the web page wants data with our custom scheme, it calls our
SchemeHandler’s webView(_:start:) method. The second parameter is a
WKURLSchemeTask that operates as our gateway back to the web view. Its
request property contains the URLRequest from the web page. We must

call the WKURLSchemeTask’s methods, first supplying a URLResponse,
then handing it the data, then telling it that we’ve finished:

class SchemeHandler : NSObject, WKURLSchemeHandler {

 var sch : String?

 func webView(_ webView: WKWebView, start task: WKURLSchemeTask) {

 if let url = task.request.url,

 let sch = self.sch,

 url.scheme == sch,

 let host = url.host,

 let theme = NSDataAsset(name:host) {

 let data = theme.data

 let resp = URLResponse(url: url, mimeType: "audio/mpeg",

 expectedContentLength: data.count,

 textEncodingName: nil)

 task.didReceive(resp)

 task.didReceive(data)

 task.didFinish()

 } else {

 task.didFailWithError(NSError(domain: "oops", code: 0))

 }

 }

 func webView(_ webView: WKWebView, stop task: WKURLSchemeTask) {

 print("stop")

 }

}

The outcome is that the audio controls appear in our web page, and when
the user taps the Play button, what plays is the MP3 file from the app’s asset
catalog.

Web View Peek and Pop
If a WKWebView’s allowsLinkPreview property is true, the user can
employ 3D touch on a link to peek at the linked page. This property can be
set in the nib editor.
The default pop response, if the user peeks and then continues pressing
harder, is to open the link in Safari. This mechanism does not pass through
your navigation delegate’s implementation of webView(_:decidePolicyFo
r:decisionHandler:). Instead, if you wish to customize your app’s

response to the user previewing links, implement these methods in your
web view’s uiDelegate:

webView(_:shouldPreviewElement:)

Return false to suppress peek and pop on this link even if it is enabled
for the web view as a whole. The second parameter is a
WKPreviewElementInfo object whose linkURL you can examine.

webView(_:previewingViewControllerForElement:defaultActions:)

Your job is to supply a view controller that can display the preview.

webView(_:commitPreviewingViewController:)

Your job is to navigate to the view controller that can display the
preview.

The second and third methods are similar to
UIViewControllerPreviewingDelegate methods (see Chapter 6). I’ll give an
example later in this chapter.

Web View State Saving and Restoration
WKWebView, as far as I can tell, does not automatically participate in any
way in the iOS view controller state saving and restoration mechanism
(Chapter 6). This, if true, would be a major flaw in WKWebView.
A UIWebView, if it has an actual URL request as the source of its content at
the time the user leaves the app, has that URL request archived by the state
saving mechanism, along with the UIWebView’s Back and Forward lists
and the content offset of its scroll view. If state restoration takes place, the
UIWebView’s request property, and its Back and Forward lists, and its
scroll view’s content offset, including the offsets of all previously viewed
pages, are restored automatically; all you have to do is load the restored
request, which you can easily do in applicationFinishedRestoringStat
e, like this:

override func applicationFinishedRestoringState() {

 if self.wv.request != nil { // self.wv is a UIWebView

 self.wv.reload()

 }

}

But you can’t do anything like that with a WKWebView. It has no request
property. It has a url property, but that property is not saved and restored.
Moreover, a WKWebView’s backForwardList is not writable. Thus, it
appears that there is no way to save and restore a WKWebView’s state as a
web browser.

Safari View Controller
A Safari view controller (SFSafariViewController, introduced in iOS 9)
embeds the Mobile Safari interface in a separate process inside your app. It
provides the user with a browser interface familiar from Mobile Safari
itself. In a toolbar, which can be shown or hidden by scrolling, there are
Back and Forward buttons, a Share button including standard Safari
features such as Add Bookmark and Add to Reading List, and a Safari
button that lets the user load the same page in the real Safari app. In a
navigation bar, which can be shrunk or grown by scrolling, are a read-only
URL field with a Reader button (if this page has a Reader mode available)
and a Refresh button, and a Done button. The user has access to autofill and
to Safari cookies with no intervention by your app.
The idea, according to Apple, is that when you want to present internal
HTML content, such as an HTML string, you’ll use a WKWebView, but
when you really want to allow the user to access the web, you’ll use a
Safari view controller. In this way, you are saved from the trouble of trying
to build a full-fledged web browser yourself.

To use a Safari view controller, you’ll need to import SafariServices.
Create the SFSafariViewController, initialize it with a URL, and present it:

let svc = SFSafariViewController(url: url)

self.present(svc, animated: true)

In this example, we interfere (as a WKWebView’s navigationDelegate)
with the user tapping on a link in our web view, so that the linked page is
displayed in an SFSafariViewController within our app:

func webView(_ webView: WKWebView,

 decidePolicyFor navigationAction: WKNavigationAction,

 decisionHandler: @escaping (WKNavigationActionPolicy) -> Swift.Void) {

 if navigationAction.navigationType == .linkActivated {

 if let url = navigationAction.request.url {

 let svc = SFSafariViewController(url: url)

 self.present(svc, animated: true)

 decisionHandler(.cancel)

 return

 }

 }

 decisionHandler(.allow)

}

In this example, we interfere (as a WKWebView’s uiDelegate) with the
user using 3D touch to preview a link in our web view, so that popping
displays the linked page in an SFSafariViewController within our app:

func webView(_ webView: WKWebView,

 previewingViewControllerForElement elementInfo: WKPreviewElementInfo,

 defaultActions acts: [WKPreviewActionItem]) -> UIViewController? {

 if let url = elementInfo.linkURL {

 let sf = SFSafariViewController(url: url)

 return sf

 }

 return nil

}

func webView(_ webView: WKWebView,

 commitPreviewingViewController pvc: UIViewController) {

 self.present(pvc, animated:true)

}

When the user taps the Done button in the navigation bar, the Safari view
controller is dismissed. New in iOS 11, you can change the title of the Done
button. To do so, set the Safari view controller’s dismissButtonStyle to .
done, .close, or .cancel.

You can set the color of the Safari view controller’s navigation bar (prefer
redBarTintColor) and bar button items (preferredControlTintColor).
This allows the look of the view to harmonize with the rest of your app.

New in iOS 11, you can configure a Safari view controller by creating an SF
SafariViewController.Configuration object and passing it to the
Safari view controller through its initializer init(url:configuration:).
Using the configuration object, you can prevent the Safari view controller’s
top and bottom bars from collapsing when the user scrolls; to do so, set its b
arCollapsingEnabled property to false. You can set the entersReaderI
fAvailable property to make the Safari view controller switch to Reader
mode automatically, if possible, as it appears.
You can make yourself the Safari view controller’s delegate
(SFSafariViewControllerDelegate) and implement any of these methods:

safariViewController(_:didCompleteInitialLoad:)

safariViewControllerDidFinish(_:)

Called on presentation and dismissal of the Safari view controller,
respectively.

func safariViewController(_:initialLoadDidRedirectTo:)

Reports that the Safari view controller’s initial web page differs from
the URL you originally provided, because redirection occurred.

safariViewController(_:activityItemsFor:title:)

Allows you to supply your own Share button items; I’ll explain what
activity items are in Chapter 13.

safariViewController(_:excludedActivityTypesFor:title:)

New in iOS 11. In a sense, the converse of the preceding: allows you to
eliminate unwanted activity types from the Share button.

I have not found any way in which a Safari view controller participates in
view controller state saving and restoration. Needless to say, I regard this as
a bug.

Developing Web View Content
Before designing the HTML to be displayed in a web view, you might want
to read up on the brand of HTML native to the mobile WebKit rendering
engine. There are certain limitations; for example, mobile WebKit doesn’t
use plug-ins such as Flash, and it imposes limits on the size of resources
(such as images) that it can display. On the plus side, WebKit is in the
vanguard of the march toward HTML5 and CSS3, and has many special
capabilities suited for display on a mobile device. For documentation and
other resources, see Apple’s Safari Dev Center.
A good place to start is the Safari Web Content Guide. It contains links to
other relevant documentation, such as the Safari CSS Visual Effects Guide,
which describes some things you can do with WebKit’s implementation of
CSS3 (like animations), and the Safari HTML5 Audio and Video Guide,
which describes WebKit’s audio and video player support.
If nothing else, you’ll want to be aware of one important aspect of web page
content — the viewport. This is typically set through a <meta> tag in the <h
ead> area. For example:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

Without that line, or something similar, a web page may be laid out
incorrectly when it is rendered. Without a viewport, your content may
appear tiny (because it is being rendered as if the screen were large), or it
may be too wide for the view, forcing the user to scroll horizontally to read
it. See the Safari Web Content Guide for details. The viewport’s user-scal
able attribute can be treated as yes by setting the
WKWebViewConfiguration’s ignoresViewportScaleLimits to true.
Another important section of the Safari Web Content Guide describes how
you can use a media attribute in the <link> tag that loads your CSS to load
different CSS depending on what kind of device your app is running on. For
example, you might have one CSS file that lays out your web view’s
content on an iPhone, and another that lays it out on an iPad.

Inspecting, debugging, and experimenting with web view content is greatly
eased by the Web Inspector, built into Safari on the desktop. It can see a
web view in your app running on a device or the Simulator, and lets you
analyze every aspect of how it works. For example, in Figure 11-1, I’m
examining an image to understand how it is sized and scaled.

Figure 11-1. The Web Inspector inspects a running app

You can hover the mouse over a web page element in the Web Inspector to
highlight the rendering of that element in the running app. Moreover, the
Web Inspector lets you change your web view’s content in real time, with
many helpful features such as CSS autocompletion.
JavaScript and the document object model (DOM) are also extremely
powerful. Event listeners allow JavaScript code to respond directly to touch
and gesture events, so that the user can interact with elements of a web page
much as if they were iOS-native touchable views; it can also take advantage
of Core Location and Core Motion facilities to respond to where the user is
on earth and how the device is positioned (Chapter 21). Additional helpful

documentation includes Apple’s WebKit DOM Programming Topics and the
WebKit JS framework reference page.

Chapter 12. Controls and Other
Views

This chapter discusses all UIView subclasses provided by UIKit that
haven’t been discussed already. It’s remarkable how few of them there are;
UIKit exhibits a notable economy of means in this regard.
Additional UIView subclasses, as well as UIViewController subclasses that
create interface, are provided by other frameworks. There will be examples
in Part III.

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a
small wheel. You set the spokes spinning with startAnimating, giving the
user a sense that some time-consuming process is taking place. You stop the
spinning with stopAnimating. If the activity indicator’s hidesWhenStoppe
d is true (the default), it is visible only while spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle;
if it is created in code, you’ll set its style with init(activityIndicatorSt
yle:). Your choices (UIActivityIndicatorViewStyle) are:

.whiteLarge

.white

.gray

An activity indicator has a standard size, which depends on its style.
Changing its size in code changes the size of the view, but not the size of
the spokes. For bigger spokes, you can resort to a scale transform.

You can assign an activity indicator a color; this overrides the color of the
spokes assigned through the style. An activity indicator is a UIView, so you

can also set its backgroundColor; a nice effect is to give an activity
indicator a contrasting background color and to round its corners by way of
the view’s layer (Figure 12-1).

Figure 12-1. A large activity indicator

Here’s some code from a UITableViewCell subclass in one of my apps. In
this app, it takes some time, after the user taps a cell to select it, for me to
construct the next view and navigate to it; to cover the delay, I show a
spinning activity indicator in the center of the cell while it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {

 if selected {

 let v = UIActivityIndicatorView(activityIndicatorStyle:.whiteLarge)

 v.color = .yellow

 DispatchQueue.main.async {

 v.backgroundColor = UIColor(white:0.2, alpha:0.6)

 }

 v.layer.cornerRadius = 10

 v.frame = v.frame.insetBy(dx: -10, dy: -10)

 let cf = self.contentView.convert(self.bounds, from:self)

 v.center = CGPoint(cf.midX, cf.midY);

 v.tag = 1001

 self.contentView.addSubview(v)

 v.startAnimating()

 } else {

 if let v = self.viewWithTag(1001) {

 v.removeFromSuperview()

 }

 }

 super.setSelected(selected, animated: animated)

}

If activity involves the network, you might want to set the UIApplication’s
isNetworkActivityIndicatorVisible to true. This displays a small
spinning activity indicator in the status bar. The indicator is not reflecting

actual network activity; if it’s visible, it’s spinning. Be sure to set it back to
false when the activity is over.
An activity indicator is simple and standard, but you can’t change the way
it’s drawn. One obvious alternative would be a UIImageView with an
animated image, as described in Chapter 4. Another solution is a
CAReplicatorLayer, a layer that makes multiple copies of its sublayer; by
animating the sublayer, you animate the copies. This is a very common
approach (in fact, it wouldn’t surprise me to learn that
UIActivityIndicatorView is implemented using CAReplicatorLayer). For
example:

let lay = CAReplicatorLayer()

lay.frame = CGRect(0,0,100,20)

let bar = CALayer()

bar.frame = CGRect(0,0,10,20)

bar.backgroundColor = UIColor.red.cgColor

lay.addSublayer(bar)

lay.instanceCount = 5

lay.instanceTransform = CATransform3DMakeTranslation(20, 0, 0)

let anim = CABasicAnimation(keyPath: #keyPath(CALayer.opacity))

anim.fromValue = 1.0

anim.toValue = 0.2

anim.duration = 1

anim.repeatCount = .infinity

bar.add(anim, forKey: nil)

lay.instanceDelay = anim.duration / Double(lay.instanceCount)

self.view.layer.addSublayer(lay)

lay.position = CGPoint(

 self.view.layer.bounds.midX, self.view.layer.bounds.midY)

Our single red vertical bar (bar) is replicated to make five red vertical bars.
We repeatedly fade the bar from opaque to transparent, but because we’ve
set the replicator layer’s instanceDelay, the replicated bars fade in
sequence, so that the darkest bar appears to be marching repeatedly to the
right (Figure 12-2).

Figure 12-2. A custom activity indicator

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically
displaying a percentage. This may be a static percentage, or it might
represent a time-consuming process whose percentage of completion is
known (if the percentage of completion is unknown, you’re more likely to
use an activity indicator). In one of my apps I use a progress view to show
how many cards are left in the deck; in another app I use a progress view to
show the current position within the song being played by the built-in music
player.

A progress view comes in a style, its progressViewStyle; if the progress
view is created in code, you’ll set its style with init(progressViewStyl
e:). Your choices (UIProgressViewStyle) are:

.default

.bar

A .bar progress view is intended for use in a UIBarButtonItem, as the title
view of a navigation item, and so on. Both styles by default draw the
thermometer extremely thin — just 2 pixels and 3 pixels, respectively.
(Figure 12-3 shows a .default progress view.) Changing a progress view’s
frame height directly has no visible effect on how the thermometer is
drawn. Under autolayout, to make a thicker thermometer, supply a height
constraint with a larger value (thus overriding the intrinsic content height).
Alternatively, subclass UIProgressView and override sizeThatFits(_:).

Figure 12-3. A progress view

The fullness of the thermometer is the progress view’s progress property.
This is a value between 0 and 1, inclusive; you’ll usually need to do some
elementary arithmetic to convert from the actual value you’re reflecting to a
value within that range. (It is also a Float; in Swift, you may have to coerce
explicitly.) A change in progress value can be animated by calling setPro
gress(_:animated:). For example, to reflect the number of cards
remaining in a deck of 52 cards:

let r = self.deck.cards.count

self.prog.setProgress(Float(r)/52, animated: true)

The default color of the filled portion of a progress view is the tintColor
(which may be inherited from higher up the view hierarchy). The default
color for the unfilled portion is gray for a .default progress view and
transparent for a .bar progress view. You can customize the colors; set the
progress view’s progressTintColor and trackTintColor, respectively.
This can also be done in the nib editor.
Alternatively, you can customize the image used to draw the filled portion
of the progress view, its progressImage, along with the image used to
draw the unfilled portion, the trackImage. This can also be done in the nib
editor. Each image must be stretched to the length of the filled or unfilled
area, so you’ll want to use a resizable image.
Here’s a simple example from one of my apps (Figure 12-4):

Figure 12-4. A thicker progress view using a custom progress image

self.prog.trackTintColor = .black

let r = UIGraphicsImageRenderer(size:CGSize(10,10))

let im = r.image { ctx in

 let con = ctx.cgContext

 con.setFillColor(UIColor.yellow.cgColor)

 con.fill(CGRect(0, 0, 10, 10))

 let r = con.boundingBoxOfClipPath.insetBy(dx: 1,dy: 1)

 con.setLineWidth(2)

 con.setStrokeColor(UIColor.black.cgColor)

 con.stroke(r)

 con.strokeEllipse(in: r)

}.resizableImage(withCapInsets:UIEdgeInsetsMake(4, 4, 4, 4),

 resizingMode:.stretch)

self.prog.progressImage = im

Progress View Alternatives
For maximum flexibility, you can design your own UIView subclass that
draws something similar to a thermometer. Figure 12-5 shows a simple
custom thermometer view; it has a value property, and you set this to
something between 0 and 1 and call setNeedsDisplay to make the view
redraw itself. Here’s its draw(_:) code:

override func draw(_ rect: CGRect) {

 let c = UIGraphicsGetCurrentContext()!

 UIColor.white.set()

 let ins : CGFloat = 2

 let r = self.bounds.insetBy(dx: ins, dy: ins)

 let radius : CGFloat = r.size.height / 2

 let d90 = CGFloat.pi/2

 let path = CGMutablePath()

 path.move(to:CGPoint(r.maxX - radius, ins))

 path.addArc(center:CGPoint(radius+ins, radius+ins),

 radius: radius, startAngle: -d90, endAngle: d90, clockwise: true)

 path.addArc(center:CGPoint(r.maxX - radius, radius+ins),

 radius: radius, startAngle: d90, endAngle: -d90, clockwise: true)

 path.closeSubpath()

 c.addPath(path)

 c.setLineWidth(2)

 c.strokePath()

 c.addPath(path)

 c.clip()

 c.fill(CGRect(r.origin.x, r.origin.y, r.width * self.value, r.height))

}

Figure 12-5. A custom progress view

Your custom progress view doesn’t have to look like a thermometer. For
instance, Apple’s Music app, in some iOS versions, shows the current
playing position within an album’s song by drawing the arc of a circle
(Figure 12-6). This effect is easily achieved by setting the strokeEnd of a
CAShapeLayer with a circular path (and possibly a rotation transform, to
start the circle at the top).

Figure 12-6. A circular custom progress view

The Progress Class
A progress view has an observedProgress property which you can set to a
Progress object. Progress is a Foundation class that abstracts the notion of
task progress: it has a totalUnitCount property and a completedUnitCou
nt property, and their ratio generates its fractionCompleted, which is
read-only and observable with KVO. If you assign a Progress object to a
progress view’s observedProgress property and configure and update it,
the progress view will automatically use the changes in the Progress
object’s fractionCompleted to update its own progress. That’s useful
because you might already have a time-consuming process that maintains
and vends its own Progress object. (For a case in point, see “Slow Data
Delivery”.) Thus, you can use a progress view to reflect the time-
consuming process’s progress.

In extremely simple cases, you might set your progress view’s observedPr
ogress directly to the time-consuming process’s Progress object.
Alternatively, you can configure your progress view’s observedProgress
as the parent of the process’s Progress object. When Progress objects stand
in a parent–child relationship, the progress of an operation reported to the
child automatically forms an appropriate fraction of the progress reported
by the parent; this allows a single Progress object, acting as the ultimate
parent, to conglomerate the progress of numerous individual operations.
There are two ways to put two Progress objects into a parent–child
relationship:

Explicit parent

Call the parent’s addChild(_:withPendingUnitCount:) method.
Alternatively, create the child by initializing it with reference to the
parent, by calling init(totalUnitCount:parent:pendingUnitCoun
t:).

Implicit parent
This approach uses the notion of the current Progress object. The rule is
that while a Progress object is current, any new Progress objects will
become its child automatically. The whole procedure thus comes down
to doing things in the right order:

1. Tell the prospective parent Progress object to becomeCurrent(wi
thPendingUnitCount:).

2. Create the child Progress object without an explicit parent, by
calling init(totalUnitCount:). As if by magic, it becomes the
other Progress object’s child (because the other Progress object is
current).

3. Tell the parent to resignCurrent. This balances the earlier becom
eCurrent(withPendingUnitCount:) and completes the
configuration.

UIPickerView
A picker view (UIPickerView) displays selectable choices using a rotating
drum metaphor. Its default height is adaptive — 162 in an environment with
a .compact vertical size class (an iPhone in landscape orientation) and 216
otherwise — but you are free to set its height to something else. Its width is
generally up to you.
Each drum, or column, is called a component. Your code configures the
UIPickerView’s content through its data source (UIPickerViewDataSource)
and delegate (UIPickerViewDelegate), which are usually the same object.
Your data source and delegate must answer some Big Questions similar to
those posed by a UITableView (Chapter 8):

numberOfComponents(in:)

How many components (drums) does this picker view have?

pickerView(_:numberOfRowsInComponent:)

How many rows does this component have? The first component is
numbered 0.

pickerView(_:titleForRow:forComponent:)

pickerView(_:attributedTitleForRow:forComponent:)

pickerView(_:viewForRow:forComponent:reusing:)

What should this row of this component display? The first row is
numbered 0. You can supply a simple string, an attributed string
(Chapter 10), or an entire view such as a UILabel; but you should
supply every row of every component the same way.

The reusing: parameter, if not nil, is supposed to be a view that you
supplied for a row now no longer visible, giving you a chance to reuse
it, much as cells are reused in a table view. In actual fact, the reusing:
parameter is always nil. Views don’t leak — they go out of existence in
good order when they are no longer visible — but they aren’t reused. I
regard this as a bug.

Here’s the code for a UIPickerView (Figure 12-7) that displays the names
of the 50 U.S. states, stored in an array (self.states). We implement pick
erView(_:viewForRow:forComponent:reusing:) just because it’s the
most interesting case; as our views, we supply UILabel instances. The state
names appear centered because the labels are centered within the picker
view:

func numberOfComponents(in pickerView: UIPickerView) -> Int {

 return 1

}

func pickerView(_ pickerView: UIPickerView,

 numberOfRowsInComponent component: Int) -> Int {

 return self.states.count

}

func pickerView(_ pickerView: UIPickerView,

 viewForRow row: Int,

 forComponent component: Int,

 reusing view: UIView?) -> UIView {

 let lab = UILabel() // reusable view is always nil

 lab.text = self.states[row]

 lab.backgroundColor = .clear

 lab.sizeToFit()

 return lab

}

Figure 12-7. A picker view

The delegate may further configure the UIPickerView’s physical
appearance by means of these methods:

pickerView(_:rowHeightForComponent:)

pickerView(_:widthForComponent:)

The delegate may implement pickerView(_:didSelectRow:inComponen
t:), so as to be notified each time the user spins a drum to a new position.
You can also query the picker view directly by sending it selectedRow(inC
omponent:).

You can set the value to which any drum is turned using selectRow(_:inC
omponent:animated:). Other handy picker view methods allow you to
request that the data be reloaded, and there are properties and methods to
query the picker view’s structure:

reloadComponent(_:)

reloadAllComponents

numberOfComponents

numberOfRows(inComponent:)

view(forRow:forComponent:)

By implementing pickerView(_:didSelectRow:inComponent:) and
calling reloadComponent(_:), you can make a picker view where the
values displayed by one drum depend dynamically on what is selected in
another. For example, one can imagine extending our U.S. states example to
include a second drum listing major cities in each state; when the user
switches to a different state in the first drum, a different set of major cities
appears in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a wrapper for a text field; it has a
text field as one of its subviews, though there is no official access to it. It is
displayed by default as a rounded rectangle containing a magnifying glass
icon, where the user can enter text (Figure 12-8). It does not, of itself, do
any searching or display the results of a search; a common interface
involves displaying the results of a search in a table view, and the
UISearchController class makes this easy to do (see Chapter 8).

Figure 12-8. A search bar with a search results button

A search bar’s current text is its text property. It can have a placeholder,
which appears when there is no text. A prompt can be displayed above the
search bar to explain its purpose. Delegate methods (UISearchBarDelegate)
notify you of editing events; for their use, compare the text field and text
view delegate methods discussed in Chapter 10:

searchBarShouldBeginEditing(_:)

searchBarTextDidBeginEditing(_:)

searchBar(_:textDidChange:)

searchBar(_:shouldChangeTextIn:replacementText:)

searchBarShouldEndEditing(_:)

searchBarTextDidEndEditing(_:)

A search bar has a barStyle (UIBarStyle):

.default, a flat light gray background and a white search field

.black, a black background and a black search field

In addition, there’s a searchBarStyle property (UISearchBarStyle):

.default, as already described

.prominent, identical to .default

.minimal, transparent background and dark transparent search field

Alternatively, you can set a search bar’s barTintColor to change its
background color; if the bar style is .black, the barTintColor will also
tint the search field itself. The tintColor property, meanwhile, whose
value may be inherited from higher up the view hierarchy, governs the color

of search bar components such as the Cancel button title and the flashing
insertion cursor.

A search bar can also have a custom backgroundImage; this will be treated
as a resizable image. The full setter method is setBackgroundImage(_:fo
r:barMetrics:); I’ll talk later about what the parameters mean. The backg
roundImage overrides all other ways of determining the background, and
the search bar’s backgroundColor, if any, appears behind it — though
under some circumstances, if the search bar’s isTranslucent is false, the
barTintColor may appear behind it instead.
The search field area where the user enters text can be offset with respect to
its background, using the searchFieldBackgroundPositionAdjustment
property; you might do this, for example, if you had enlarged the search
bar’s height and wanted to position the search field within that height. The
text can be offset within the search field with the searchTextPositionAdj
ustment property.
You can also replace the image of the search field itself; this is the image
that is normally a rounded rectangle. To do so, call setSearchFieldBackgr
oundImage(_:for:); the second parameter is a UIControlState (even
though a search bar is not a control). According to the documentation, the
possible states are .normal and .disabled; but the API provides no way to
disable a search field, so what does Apple have in mind here? The only way
I’ve found is to cycle through the search bar’s subviews, find the text field,
and disable that:

for v in self.sb.subviews[0].subviews {

 if let tf = v as? UITextField {

 tf.isEnabled = false

 break

 }

}

The search field image will be drawn vertically centered in front of the
background and behind the contents of the search field (such as the text); its
width will be adjusted for you, but it is up to you choose an appropriate

height, and to ensure an appropriate background color so that the user can
read the text.
A search bar displays an internal cancel button automatically (normally an
X in a circle) if there is text in the search field. Internally, at its right end, a
search bar may display a search results button (showsSearchResultsButto
n), which may be selected or not (isSearchResultsButtonSelected), or a
bookmark button (showsBookmarkButton); if you ask to display both,
you’ll get the search results button. These buttons vanish if text is entered in
the search bar so that the cancel button can be displayed. There is also an
option to display a Cancel button externally (showsCancelButton, or call s
etShowsCancelButton(_:animated:)). The internal cancel button works
automatically to remove whatever text is in the field; the other buttons do
nothing, but delegate methods notify you when they are tapped:

searchBarResultsListButtonClicked(_:)

searchBarBookmarkButtonClicked(_:)

searchBarCancelButtonClicked(_:)

You can customize the images used for the search icon (a magnifying glass,
by default) and any of the internal right icons (the internal cancel button,
the search results button, and the bookmark button) with setImage(_:for:
state:). The images will be resized for you, except for the internal cancel
button, for which about 20×20 seems to be a good size. The icon in
question (the for: parameter) is specified as follows (UISearchBarIcon):

.search

.clear (the internal cancel button)

.bookmark

.resultsList

The documentation says that the possible state: values are .normal and .
disabled, but this is wrong; the choices are .normal and .highlighted.
The highlighted image appears while the user taps on the icon (except for
the search icon, which isn’t a button). If you don’t supply a normal image,

the default image is used; if you supply a normal image but no highlighted
image, the normal image is used for both. Setting isSearchResultsButton
Selected to true reverses the search results button’s behavior: it displays
the highlighted image, but when the user taps it, it displays the normal
image. To change an icon’s location, call setPositionAdjustment(_:fo
r:).
A search bar may also display scope buttons. These are intended to let the
user alter the meaning of the search; precisely how you use them is up to
you. To make the scope buttons appear, use the showsScopeBar property;
the button titles are the scopeButtonTitles property, and the currently
selected scope button is the selectedScopeButtonIndex property. The
delegate is notified when the user taps a different scope button:

searchBar(_:selectedScopeButtonIndexDidChange:)

The overall look of the scope bar can be heavily customized. Its background
is the scopeBarBackgroundImage, which will be stretched or tiled as
needed. To set the background of the smaller area constituting the actual
buttons, call setScopeBarButtonBackgroundImage(_:for:); the states
(the for: parameter) are .normal and .selected. If you don’t supply a
separate .selected image, a darkened version of the .normal image is
used. If you don’t supply a resizable image, the image will be made
resizable for you; the runtime decides what region of the image will be
stretched behind each button.
The dividers between the buttons are normally vertical lines, but you can
customize them as well: call setScopeBarButtonDividerImage(_:forLe
ftSegmentState:rightSegmentState:). A full complement of dividers
consists of three images, one when the buttons on both sides of the divider
are normal (unselected) and one each when a button on one side or the other
is selected; if you supply an image for just one state combination, it is used
for the other two state combinations. The height of the divider image is
adjusted for you, but the width is not; you’ll normally use an image just a
few pixels wide.

The text attributes of the titles of the scope buttons can customized by
calling setScopeBarButtonTitleTextAttributes(_:for:). The
attributes are specified like the attributes dictionary of an
NSAttributedString (Chapter 10), but the dictionary keys are typed as
String, not as NSAttributedStringKey (I regard that as a bug), so you have
to take their raw values.

TIP
It may appear that there is no way to customize the external Cancel button, but in fact, although
you’ve no official direct access to it through the search bar, the Cancel button is a
UIBarButtonItem and you can customize it using the UIBarButtonItem appearance proxy,
discussed later in this chapter.

By combining the various customization possibilities, a completely
unrecognizable search bar of inconceivable ugliness can easily be achieved
(Figure 12-9). Let’s be careful out there.

Figure 12-9. A horrible search bar

The problem of allowing the keyboard to appear without covering the
search bar is exactly as for a text field (Chapter 10). Text input properties of
the search bar configure its keyboard and typing behavior like a text field as
well.
When the user taps the Search key in the keyboard, the delegate is notified,
and it is then up to you to dismiss the keyboard (resignFirstResponder)
and perform the search:

searchBarSearchButtonClicked(_:)

A search bar can be embedded in a toolbar or navigation bar as a bar button
item’s custom view, or in a navigation bar as a titleView. See also the
discussion of the new iOS 11 UINavigationItem searchController
property in Chapter 8. When used in this way, you may encounter some
limitations on the extent to which the search bar’s appearance can be
customized. Alternatively, a UISearchBar can itself function as a top bar,
without being inside any other bar. If you use a search bar in this way,
you’ll want its height to be extended automatically under the status bar; I’ll
explain later in this chapter how to arrange that.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the
superclass of several further built-in classes (controls) and to endow them
with common behavior.
The most important thing that controls have in common is that they
automatically track and analyze touch events (Chapter 5) and report them to
your code as significant control events by way of action messages. Each
control implements some subset of the possible control events. The control
events (UIControlEvents) are:

.touchDown

.touchDownRepeat

.touchDragInside

.touchDragOutside

.touchDragEnter

.touchDragExit

.touchUpInside

.touchUpOutside

.touchCancel

.valueChanged

.editingDidBegin

.editingChanged

.editingDidEnd

.editingDidEndOnExit

.allTouchEvents

.allEditingEvents

.allEvents

The control events also have informal names that are visible in the
Connections inspector when you’re editing a nib. I’ll mostly use the
informal names in the next couple of paragraphs.
Control events fall roughly into three groups: the user has touched the
screen (Touch Down, Touch Drag Inside, Touch Up Inside, etc.), edited text
(Editing Did Begin, Editing Changed, etc.), or changed the control’s value
(Value Changed).
Apple’s documentation is rather coy about which controls normally emit
actions for which control events, so here’s a list obtained through
experimentation:

UIButton
All Touch events.

UIDatePicker
Value Changed.

UIPageControl
All Touch events, Value Changed.

UIRefreshControl
Value Changed.

UISegmentedControl

Value Changed.

UISlider
All Touch events, Value Changed.

UISwitch
All Touch events, Value Changed.

UIStepper
All Touch events, Value Changed.

UITextField
All Touch events except the Up events, and all Editing events (see
Chapter 10 for details).

UIControl (generic)
All Touch events.

A control also has a primary control event, a UIControlEvent called .prima
ryActionTriggered, presumably to save you from having to remember
what the primary control event is. The primary control event is Value
Changed for all controls except for UIButton, where it is Touch Up Inside,
and UITextField, where it is Did End On Exit.

TOUCH INSIDE AND TOUCH OUTSIDE
There is no explicit Touch Down Inside event, because any sequence of Touch events begins
with Touch Down, which must be inside the control. If it weren’t, this sequence of touches
would not belong to this control, and there would be no control events at all!

When the user taps within a control and starts dragging, the Inside events are triggered even
after the drag moves outside the control’s bounds. But after a certain distance from the control is
exceeded, an invisible boundary is crossed, Touch Drag Exit is triggered, and now Outside
events are reported until the drag crosses back within the invisible boundary, at which point
Touch Drag Enter is triggered and the Inside events are reported again. In the case of a
UIButton, the crossing of this invisible boundary is exactly when the button automatically
unhighlights (as the drag exits). Thus, to catch a legitimate button press, you probably want to
consider only Touch Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch will
unhighlight when a drag reaches a certain distance from it, but the touch is still considered
legitimate and can still change the UISwitch’s value; therefore, when the user’s finger leaves the
screen, the UISwitch reports a Touch Up Inside event, even while reporting Touch Drag Outside
events.

For each control event that you want to hear about, you attach to the control
one or more target–action pairs. You can do this in the nib editor or in code.
For any given control, each control event and its target–action pairs form a
dispatch table. The following methods and properties permit you to
manipulate and query the dispatch table:

addTarget(_:action:for:)

removeTarget(_:action:for:)

actions(forTarget:forControlEvent:)

allTargets

allControlEvents (a bitmask of control events with at least one target–
action pair attached)

An action method (the method that will be called on the target when the
control event occurs) may adopt any of three signatures, whose parameters
are:

The control and the UIEvent
The control only

No parameters
The second signature is by far the most common. It’s unlikely that you’d
want to dispense altogether with the parameter telling you which control
sent the control event. It’s equally unlikely that you’d want to examine the
original UIEvent that triggered this control event, since control events
deliberately shield you from dealing with the nitty-gritty of touches. (I
suppose you might, on rare occasions, have some reason to examine the
UIEvent’s timestamp.)
When a control event occurs, the control consults its dispatch table, finds all
the target–action pairs associated with that control event, and reports the
control event by sending each action message to the corresponding target.

NOTE
The action messaging mechanism is actually more complex than I’ve just stated. The UIControl
does not really send the action message directly; rather, it tells the shared application to send it.
When a control wants to send an action message reporting a control event, it calls its own sendAc
tion(_:to:for:) method. This in turn calls the shared application instance’s sendAction(_:to:
from:for:), which actually sends the specified action message to the specified target. In theory,
you could call or override either of these methods to customize this aspect of the message-sending
architecture, but it is extremely unlikely that you would do so.

To make a control emit its action message(s) corresponding to a particular
control event right now, in code, call its sendActions(for:) method
(which is never called automatically by the runtime). For example, suppose
you tell a UISwitch programmatically to change its setting from Off to On.
This doesn’t cause the switch to report a control event, as it would if the
user had slid the switch from Off to On; if you wanted it to do so, you could
use sendActions(for:), like this:

self.sw.setOn(true, animated: true)

self.sw.sendActions(for:.valueChanged)

You might also use sendActions(for:) in a subclass to customize the
circumstances under which a control reports control events. I’ll give an
example later in this chapter.

A control has isEnabled, isSelected, and isHighlighted properties;
any of these can be true or false independently of the others. Together,
they correspond to the control’s state, which is reported as a bitmask of
three possible values (UIControlState):

.highlighted

.disabled

.selected

A fourth state, .normal, corresponds to a zero state bitmask, and means
that isEnabled is true, and isSelected and isHighlighted are both fal
se.
A control that is not enabled does not respond to user interaction. Whether
the control also portrays itself differently, to cue the user to this fact,
depends upon the control. For example, a disabled UISwitch is faded; but a
rounded rect text field, by default, gives the user no cue that it is disabled.
The visual nature of control selection and highlighting, too, depends on the
control. Neither highlighting nor selection make any difference to the
appearance of a UISwitch, but a highlighted UIButton usually looks quite
different from a nonhighlighted UIButton.

A control has contentHorizontalAlignment and contentVerticalAlig
nment properties. These matter only if the control has content that can be
aligned. You are most likely to use them in connection with a UIButton to
position its title and internal image (I’ll say more about that later in this
chapter).
A text field (UITextField) is a control; see Chapter 10. A refresh control
(UIRefreshControl) is a control; see Chapter 8. The remaining controls are
covered here, and then I’ll give a simple example of writing your own
custom control.

UISwitch
A switch (UISwitch, Figure 12-10) portrays a Bool value: it looks like a
sliding switch, and its isOn property is either true or false. The user can
slide or tap to toggle the switch’s setting. When the user changes the
switch’s setting, the switch reports a Value Changed control event. To
change the isOn property’s value with accompanying animation, call setOn
(_:animated:).

Figure 12-10. A switch

A switch has only one size; any attempt to set its size will be ignored.
You can customize a switch’s appearance by setting these properties:

onTintColor

The color of the track when the switch is at the On setting.

thumbTintColor

The color of the slidable button.

tintColor

The color of the outline when the switch is at the Off setting.
A switch’s track when the switch is at the Off setting is transparent, and
can’t be customized. I regard this as a bug. (Changing the switch’s backgro
undColor is not a successful workaround, because the background color
shows outside the switch’s outline.)

WARNING
The UISwitch properties onImage and offImage, added in iOS 6 after much clamoring (and
hacking) by developers, have no effect in iOS 7 and later.

UIStepper
A stepper (UIStepper, Figure 12-11) lets the user increase or decrease a
numeric value: it looks like two buttons side by side, one labeled (by
default) with a minus sign, the other with a plus sign. The user can tap or
hold a button, and can slide a finger from one button to the other as part of
the same interaction with the stepper. It has only one size; any attempt to set
its size will be ignored. It maintains a numeric value, which is its value.
Each time the user increments or decrements the value, it changes by the
stepper’s stepValue. If the minimumValue or maximumValue is reached,
the user can go no further in that direction, and to show this, the
corresponding button is disabled — unless the stepper’s wraps property is t
rue, in which case the value goes beyond the maximum by starting again at
the minimum, and vice versa.

Figure 12-11. A stepper

As the user changes the stepper’s value, a Value Changed control event is
reported. Portraying the numeric value itself is up to you; you might, for
example, use a label or (as here) a progress view:

@IBAction func doStep(_ sender: Any) {

 let step = sender as! UIStepper

 self.prog.setProgress(

 Float(step.value / (step.maximumValue - step.minimumValue)),

 animated:true)

}

If a stepper’s isContinuous is true (the default), a long touch on one of
the buttons will update the value repeatedly; the updates start slowly and
get faster. If the stepper’s autorepeat is false, the updated value is not
reported as a Value Changed control event until the entire interaction with
the stepper ends; the default is true.

The appearance of a stepper can be customized. The color of the outline and
the button captions is the stepper’s tintColor, which may be inherited
from further up the view hierarchy. You can also dictate the images that
constitute the stepper’s structure with these methods:

setDecrementImage(_:for:)

setIncrementImage(_:for:)

setDividerImage(_:forLeftSegmentState:rightSegmentState:)

setBackgroundImage(_:for:)

The images work similarly to a search bar’s scope bar (described earlier in
this chapter). The background images should probably be resizable. They
are stretched behind both buttons, half the image being seen as the
background of each button. If the button is disabled (because we’ve reached
the value’s limit in that direction), it displays the .disabled background
image; otherwise, it displays the .normal background image, except that it
displays the .highlighted background image while the user is tapping it.
You’ll probably want to provide all three background images if you’re
going to provide any; the default is used if a state’s background image is ni
l. You’ll probably want to provide three divider images as well, to cover the
three combinations of one or neither segment being highlighted. The
increment and decrement images, replacing the default minus and plus
signs, are composited on top of the background image; they are treated as
template images, colored by the tintColor, unless you explicitly provide
an .alwaysOriginal image. If you provide only a .normal image, it will
be adjusted automatically for the other two states. Figure 12-11 shows a
customized stepper.

Figure 12-12. A customized stepper

UIPageControl

A page control (UIPageControl) is a row of dots; each dot is called a page,
because it is intended to be used in conjunction with some other interface
that portrays something analogous to pages, such as a UIScrollView with its
isPagingEnabled set to true. Coordinating the page control with this
other interface is usually up to you; see Chapter 7 for an example. A
UIPageViewController in scroll style can optionally display a page control
that’s automatically coordinated with its content (Chapter 6).

The number of dots is the page control’s numberOfPages. To learn the
minimum bounds size required to accommodate a given number of dots,
call size(forNumberOfPages:). You can make the page control wider
than the dots to increase the target region on which the user can tap. The
user can tap to one side or the other of the current page’s dot to increment
or decrement the current page; the page control then reports a Value
Changed control event.

The dot colors differentiate the current page, the page control’s currentPag
e, from the others; by default, the current page is portrayed as a solid dot,
while the others are slightly transparent. You can customize a page control’s
pageIndicatorTintColor (the color of the dots in general) and currentP
ageIndicatorTintColor (the color of the current page’s dot); you will
almost certainly want to do this, as the default dot color is white, which
under normal circumstances may be hard to see.

It is possible to set a page control’s backgroundColor; you might do this to
show the user the tappable area, or to make the dots more clearly visible by
contrast.

If a page control’s hidesForSinglePage is true, the page control becomes
invisible when its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is true, then when the
user taps to increment or decrement the page control’s value, the display of
the current page is not changed. A Value Changed control event is reported,
but it is up to your code to handle this action and call updateCurrentPageD
isplay. A case in point might be if the user’s changing the current page

triggers an animation, and you don’t want the current page dot to change
until the animation ends.

UIDatePicker
A date picker (UIDatePicker) looks like a UIPickerView (discussed earlier
in this chapter), but it is not a UIPickerView subclass; it uses a
UIPickerView to draw itself, but it provides no official access to that picker
view. Its purpose is to express the notion of a date and time, taking care of
the calendrical and numerical complexities so that you don’t have to. When
the user changes its setting, the date picker reports a Value Changed control
event.

A UIDatePicker has one of four modes (datePickerMode), determining
how it is drawn (UIDatePickerMode):

.time

The date picker displays a time; for example, it has an hour component
and a minutes component.

.date

The date picker displays a date; for example, it has a month component,
a day component, and a year component.

.dateAndTime

The date picker displays a date and time; for example, it has a
component showing day of the week, month, and day, plus an hour
component and a minutes component.

.countDownTimer

The date picker displays a number of hours and minutes; for example, it
has an hours component and a minutes component.

Exactly what components a date picker displays, and what values they
contain, depends by default upon the user’s preferences in the Settings app
(General → Language & Region → Region). For example, a U.S. time

displays an hour numbered 1 through 12 plus minutes and AM or PM, but a
British time displays an hour numbered 1 through 24 plus minutes. If the
user changes the region format in the Settings app, the date picker’s display
will change immediately.

A date picker has calendar and timeZone properties, respectively a
Calendar and a TimeZone; these are nil by default, meaning that the date
picker responds to the user’s system-level settings. You can also change
these values manually; for example, if you live in California and you set a
date picker’s timeZone to GMT, the displayed time is shifted forward by 8
hours, so that 11 AM is displayed as 7 PM (if it is winter).

WARNING
Don’t change the timeZone of a .countDownTimer date picker; if you do, the displayed value will
be shifted, and you will confuse the heck out of yourself (and your users).

The minutes component, if there is one, defaults to showing every minute,
but you can change this with the minuteInterval property. The maximum
value is 30, in which case the minutes component values are 0 and 30. An
attempt to set the minuteInterval to a value that doesn’t divide evenly
into 60 will be silently ignored.
The date represented by a date picker (unless its mode is
.countDownTimer) is its date property, a Date. The default date is now, at
the time the date picker is instantiated. For a .date date picker, the time by
default is 12 AM (midnight), local time; for a .time date picker, the date by
default is today. The internal value is reckoned in the local time zone, so it
may be different from the displayed value, if you have changed the date
picker’s timeZone.
The maximum and minimum values enabled in the date picker are
determined by its maximumDate and minimumDate properties. Values
outside this range may appear disabled. There isn’t really any practical limit
on the range that a date picker can display, because the “drums”

representing its components are not physical, and values are added
dynamically as the user spins them. In this example, we set the initial
minimum and maximum dates of a date picker (dp) to the beginning and
end of 1954. We also set the actual date, so that the date picker will be set
initially to a value within the minimum–maximum range:

dp.datePickerMode = .date

var dc = DateComponents(year:1954, month:1, day:1)

let c = Calendar(identifier:.gregorian)

let d1 = c.date(from: dc)!

dp.minimumDate = d1

dp.date = d1

dc.year = 1955

let d2 = c.date(from: dc)!

dp.maximumDate = d2

WARNING
Don’t set the maximumDate and minimumDate properties values for a .countDownTimer date
picker; if you do, you might cause a crash with an out-of-range exception.

To convert between a Date and a string, you’ll need a DateFormatter (see
Apple’s Date and Time Programming Guide):

@IBAction func dateChanged(_ sender: Any) {

 let dp = sender as! UIDatePicker

 let d = dp.date

 let df = DateFormatter()

 df.timeStyle = .full

 df.dateStyle = .full

 print(df.string(from: d))

 // Tuesday, August 10, 1954 at 3:16:00 AM GMT-07:00

}

The value displayed in a .countDownTimer date picker is its countDownDu
ration; this is a TimeInterval, which is a Double representing a number of
seconds, even though the minimum interval displayed is a minute. A .coun
tDownTimer date picker does not actually do any counting down! You are

expected to count down in some other way, and to use some other interface
to display the countdown. The Timer tab of Apple’s Clock app shows a
typical interface; the user configures a picker view to set the countDownDur
ation initially, but once the counting starts, the picker view is hidden and a
label displays the remaining time.

WARNING
A nasty bug makes the Value Changed event from a .countDownTimer date picker unreliable
(especially just after the app launches, and whenever the user has tried to set the timer to zero).
The workaround is not to rely on the Value Changed event; for example, provide a button in the
interface that the user can tap to make your code read the date picker’s countDownDuration.

UISlider
A slider (UISlider) is an expression of a continuously settable value (its val
ue, a Float) between some minimum and maximum (its minimumValue and
maximumValue; they are 0 and 1 by default). It is portrayed as an object, the
thumb, positioned along a track. As the user changes the thumb’s position,
the slider reports a Value Changed control event; it may do this
continuously as the user presses and drags the thumb (if the slider’s isCont
inuous is true, the default) or only when the user releases the thumb (if is
Continuous is false). While the user is pressing on the thumb, the slider is
in the .highlighted state. To change a slider’s value with animation of the
thumb, call setValue(_:animated:) in an animations function; I’ll show
an example in a moment.
A commonly expressed desire is to modify a slider’s behavior so that if the
user taps on its track, the slider moves to the spot where the user tapped.
Unfortunately, a slider does not, of itself, respond to taps on its track; no
control event is reported. However, with a gesture recognizer, most things
are possible; here’s the action method for a UITapGestureRecognizer
attached to a UISlider:

@objc func tapped(_ g:UIGestureRecognizer) {

 let s = g.view as! UISlider

 if s.isHighlighted {

 return // tap on thumb, let slider deal with it

 }

 let pt = g.location(in:s)

 let track = s.trackRect(forBounds: s.bounds)

 if !track.insetBy(dx: 0, dy: -10).contains(pt) {

 return // not on track, forget it

 }

 let percentage = pt.x / s.bounds.size.width

 let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

 let value = s.minimumValue + delta

 delay(0.1) {

 UIView.animate(withDuration: 0.15) {

 s.setValue(value, animated:true) // animate sliding the thumb

 }

 }

}

A slider’s tintColor (which may be inherited from further up the view
hierarchy) determines the color of the track to the left of the thumb. You can
change the color of the thumb with the thumbTintColor property. You can
change the color of the two parts of the track with the minimumTrackTintC
olor and maximumTrackTintColor properties.

The images at the ends of the track are the slider’s minimumValueImage and
maximumValueImage, and they are nil by default. If you set them to actual
images (which can also be done in the nib editor), the slider will attempt to
position them within its own bounds, shrinking the drawing of the track to
compensate. You can change that behavior by overriding these methods in a
subclass:

minimumValueImageRect(forBounds:)

maximumValueImageRect(forBounds:)

trackRect(forBounds:)

The bounds passed in are the slider’s bounds. In this example (Figure 12-
13), we expand the track width to the full width of the slider, and draw the
images outside the slider’s bounds. The images are still visible, because the

slider does not clip its subviews to its bounds. In the figure, I’ve given the
slider a background color so you can see how the track and images are
related to its bounds:

Figure 12-13. Repositioning a slider’s images and track

override func maximumValueImageRect(forBounds bounds: CGRect) -> CGRect {

 return super.maximumValueImageRect(

 forBounds:bounds).offsetBy(dx: 31, dy: 0)

}

override func minimumValueImageRect(forBounds bounds: CGRect) -> CGRect {

 return super.minimumValueImageRect(

 forBounds: bounds).offsetBy(dx: -31, dy: 0)

}

override func trackRect(forBounds bounds: CGRect) -> CGRect {

 var result = super.trackRect(forBounds: bounds)

 result.origin.x = 0

 result.size.width = bounds.size.width

 return result

}

The thumb is also an image, and you set it with setThumbImage(_:for:).
There are two chiefly relevant states, .normal and .highlighted. If you
supply images for both, the thumb will change automatically while the user
is dragging it. By default, the image will be centered in the track at the point
represented by the slider’s current value; you can shift this position by
overriding thumbRect(forBounds:trackRect:value:) in a subclass. In
this example, the image is repositioned slightly upward (Figure 12-14):

Figure 12-14. Replacing a slider’s thumb

override func thumbRect(forBounds bounds: CGRect,

 trackRect rect: CGRect, value: Float) -> CGRect {

 return super.thumbRect(forBounds: bounds,

 trackRect: rect, value: value).offsetBy(dx: 0, dy: -7)

}

Enlarging or offsetting a slider’s thumb can mislead the user as to the area
on which it can be touched to drag it. The slider, not the thumb, is the
touchable UIControl; only the part of the thumb that intersects the slider’s
bounds will be draggable. The user may try to drag the part of the thumb
that is drawn outside the slider’s bounds, and will fail (and be confused).
One solution is to increase the slider’s height; if you’re using autolayout,
you can add an explicit height constraint in the nib editor, or override intri
nsicContentSize in code (Chapter 1). Another solution is to subclass and
use hit-test munging (Chapter 5):

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {

 let tr = self.trackRect(forBounds: self.bounds)

 if tr.contains(point) { return self }

 let r = self.thumbRect(

 forBounds: self.bounds, trackRect: tr, value: self.value)

 if r.contains(point) { return self }

 return nil

}

The track is two images, one appearing to the left of the thumb, the other to
its right. They are set with setMinimumTrackImage(_:for:) and setMaxi
mumTrackImage(_:for:). If you supply images both for .normal state and
for .highlighted state, the images will change while the user is dragging
the thumb. The images should be resizable, because that’s how the slider
cleverly makes it look like the user is dragging the thumb along a single
static track. In reality, there are two images; as the user drags the thumb,
one image grows horizontally and the other shrinks horizontally. For the left
track image, the right end cap inset will be partially or entirely hidden under
the thumb; for the right track image, the left end cap inset will be partially
or entirely hidden under the thumb. Figure 12-15 shows a track derived
from a single 15×15 image of a circular object (a coin):

Figure 12-15. Replacing a slider’s track

let coinEnd = UIImage(named:"coin")!.resizableImage(withCapInsets:

 UIEdgeInsetsMake(0,7,0,7), resizingMode: .stretch)

self.setMinimumTrackImage(coinEnd, for:.normal)

self.setMaximumTrackImage(coinEnd, for:.normal)

UISegmentedControl
A segmented control (UISegmentedControl, Figure 12-16) is a row of
tappable segments; a segment is rather like a button. The user taps a
segment to choose among options. By default (isMomentary is false), the
most recently tapped segment remains selected. Alternatively (isMomentar
y is true), the tapped segment is shown as highlighted momentarily (by
default, highlighted is indistinguishable from selected, but you can change
that); afterward, no segment selection is displayed, though internally the
tapped segment remains the selected segment.

Figure 12-16. A segmented control

The selected segment can be set and retrieved with the selectedSegmentI
ndex property; when you set it in code, the selected segment remains
visibly selected, even for an isMomentary segmented control. A selectedS
egmentIndex value of UISegmentedControlNoSegment means no segment
is selected. When the user taps a segment that isn’t already visibly selected,
the segmented control reports a Value Changed event.
A segmented control’s change of selection is animatable; change the
selection in an animations function, like this:

UIView.animateWithDuration(0.4, animations: {

 self.seg.selectedSegmentIndex = 1

})

To animate the change more slowly when the user taps on a segment, set the
segmented control’s layer’s speed to a fractional value.

A segment can be separately enabled or disabled with setEnabled(_:forS
egmentAt:), and its enabled state can be retrieved with isEnabledForSegm
ent(at:). A disabled segment, by default, is drawn faded; the user can’t
tap it, but it can still be selected in code.

The color of a segmented control’s outline and selection are dictated by its t
intColor, which may be inherited from further up the view hierarchy.
A segment has either a title or an image; when one is set, the other becomes
nil. An image is treated as a template image, colored by the tintColor,
unless you explicitly provide an .alwaysOriginal image. The title is
colored by the tintColor unless you set its attributes to include a different
color (as I’ll explain later). The methods for setting and fetching the title
and image for existing segments are:

setTitle(_:forSegmentAt:), titleForSegment(at:)

setImage(_:forSegmentAt:), imageForSegment(at:)
If you’re creating the segmented control in code, configure the segments
with init(items:), which takes an array, each item being either a string or
an image:

let seg = UISegmentedControl(items:

 [UIImage(named:"one")!.withRenderingMode(.alwaysOriginal), "Two"])

seg.frame.origin = CGPoint(30,30)

self.view.addSubview(seg)

Methods for managing segments dynamically are:

insertSegment(withTitle:at:animated:)

insertSegment(with:at:animated:) (the parameter is a UIImage)

removeSegment(at:animated:)

removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegm
ents property.

If the segmented control’s apportionsSegmentWidthsByContent property
is false, segment sizes will be made equal to one another; if it is true,
each segment’s width will be sized individually to fit its content.
Alternatively, you can set a segment’s width explicitly with setWidth(_:fo
rSegmentAt:) (and retrieve it with widthForSegment(at:)); setting a
segment’s width to 0 means that this segment is to be sized automatically.
A segmented control has a standard height; if you’re using autolayout, you
can change the height through constraints or by overriding intrinsicCont
entSize — or by setting its background image, as I’ll describe in a
moment. A segmented control’s height does not automatically increase to
accommodate a segment image that’s too tall; instead, the image’s height is
squashed to fit the segmented control’s height.
To change the position of the content (title or image) within a segment, call
setContentOffset(_:forSegmentAt:) (and retrieve it with contentOffs
etForSegment(at:)).
Further methods for customizing a segmented control’s appearance are
parallel to those for setting the look of a stepper or the scope bar portion of
a search bar, both described earlier in this chapter. You can set the overall
background, the divider image, the text attributes for the segment titles, and
the position of segment contents:

setBackgroundImage(_:for:barMetrics:)

setDividerImage(_:forLeftSegmentState:rightSegmentState:ba

rMetrics:)

setTitleTextAttributes(_:for:)

setContentPositionAdjustment(_:forSegmentType:barMetrics:)

You don’t have to customize for every state, as the segmented control will
use the .normal state setting for the states you don’t specify. As I
mentioned a moment ago, setting a background image changes the
segmented control’s height. In the last method, the segmentType:
parameter is needed because, by default, the segments at the two extremes
have rounded ends (and, if a segment is the lone segment, both its ends are
rounded); the argument (UISegmentedControlSegment) allows you
distinguish between the various possibilities:

.any

.left

.center

.right

.alone

Figure 12-17 shows a heavily customized segmented control.

Figure 12-17. A segmented control, customized

UIButton
A button (UIButton) is a fundamental tappable control, which may contain
a title, an image, and a background image (and may have a backgroundCol
or). A button has a type, and the initializer is init(type:). The types
(UIButtonType) are:

.system

The title text appears in the button’s tintColor, which may be
inherited from further up the view hierarchy; when the button is tapped,
the title text color momentarily changes to a color derived from what’s

behind it (which might be the button’s backgroundColor). The image is
treated as a template image, colored by the tintColor, unless you
explicitly provide an .alwaysOriginal image; when the button is
tapped, the image (even if it isn’t a template image) is momentarily
tinted to a color derived from what’s behind it.

.detailDisclosure, .infoLight, .infoDark, .contactAdd

Basically, these are all .system buttons whose image is set
automatically to a standard image. The first three are an “i” in a circle,
and the last is a Plus in a circle; the two info types are identical, and
they differ from .detailDisclosure only in that their showsTouchWhe
nHighlighted is true by default.

.custom

There’s no automatic coloring of the title or image, and the image is a
normal image by default.

There is no built-in button type with an outline (border), comparable to the
Rounded Rect style of iOS 6 and before. You can provide an outline by
using a background color or a background image, along with some
manipulation of the button’s layer, as in Figure 12-20.
A button has a title, a title color, and a title shadow color — or you can
supply an attributed title, thus dictating these features and more in a single
value through an NSAttributedString (Chapter 10).
Distinguish a button’s image, which is an internal image, from its
background image. The background image, if any, is stretched, if necessary,
to fill the button’s bounds (technically, its backgroundRect(forBounds:)).
The internal image, on the other hand, if smaller than the button, is not
resized. The button can have both a title and an image, provided the image
is small enough, in which case the image is shown to the left of the title by
default; if the image is too large, the title won’t appear.
These six features — title, title color, title shadow color, attributed title,
image, and background image — can all be made to vary depending on the

button’s current state: .highlighted, .selected, .disabled, and .norma
l. The button can be in more than one state at once, except for .normal
which means “none of the other states.” A state change, whether automatic
(the button is highlighted while the user is tapping it) or programmatically
imposed, will thus in and of itself alter a button’s appearance. The methods
for setting these button features, therefore, all involve specifying a
corresponding state — or multiple states, using a bitmask:

setTitle(_:for:)

setTitleColor(_:for:)

setTitleShadowColor(_:for:)

setAttributedTitle(_:for:)

setImage(_:for:)

setBackgroundImage(_:for:)

Similarly, when getting these button features, you must either specify a
single state you’re interested in or ask about the feature as currently
displayed:

title(for:), currentTitle

titleColor(for:), currentTitleColor

titleShadowColor(for:), currentTitleShadowColor

attributedTitle(for:), currentAttributedTitle

image(for:), currentImage

backgroundImage(for:), currentBackgroundImage
If you don’t specify a feature for a particular state, or if the button adopts
more than one state at once, an internal heuristic is used to determine what
to display. I can’t describe all possible combinations, but here are some
general observations:

If you specify a feature for a particular state (highlighted, selected, or
disabled), and the button is in only that state, that feature will be used.

If you don’t specify a feature for a particular state (highlighted, selected,
or disabled), and the button is in only that state, the normal version of
that feature will be used as fallback. (That’s why many examples earlier
in this book have assigned a title for .normal only; that’s sufficient to
give the button a title in every state.)
Combinations of states often cause the button to fall back on the feature
for normal state. For example, if a button is both highlighted and
selected, the button will display its normal title, even if it has a
highlighted title, a selected title, or both.

A .system button with an attributed normal title will tint the title to the tin
tColor if you don’t give the attributed string a color, and will tint the title
while highlighted to the color derived from what’s behind the button if you
haven’t supplied a highlighted title with its own color. But a .custom
button will not do any of that; it leaves control of the title color for each
state completely up to you.
In addition, a UIButton has some properties determining how it draws itself
in various states, which can save you the trouble of specifying different
images for different states:

showsTouchWhenHighlighted

If true, then the button projects a circular white glow when highlighted.
If the button has an internal image, the glow is centered behind it. Thus,
this feature is suitable particularly if the button image is small and
circular; for example, it’s the default behavior for an .infoLight or .i
nfoDark button. If the button has no internal image, the glow is
centered at the button’s center. The glow is drawn on top of the
background image or color, if any.

adjustsImageWhenHighlighted

In a .custom button, if this property is true (the default), then if there
is no separate highlighted image (and if showsTouchWhenHighlighted
is false), the normal image is darkened when the button is highlighted.
This applies equally to the internal image and the background image. (A

.system button is already tinting its highlighted image, so this property
doesn’t apply.)

adjustsImageWhenDisabled

If true, then if there is no separate disabled image, the normal image is
shaded when the button is disabled. This applies equally to the internal
image and the background image. The default is true for a .custom
button and false for a .system button.

A button has a natural size in relation to its contents. If you’re using
autolayout, the button can adopt that size automatically as its intrinsicCo
ntentSize, and you can modify the way it does this by overriding intrins
icContentSize in a subclass or by applying explicit constraints. If you’re
not using autolayout and you create a button in code, send it sizeToFit or
give it an explicit size; otherwise, the button may have size .zero. Creating
a zero-size button and then wondering why the button isn’t visible in the
interface is a common beginner mistake.
The title is displayed in a UILabel (Chapter 10), and the label features of
the title can be accessed through the button’s titleLabel. For example,
beginners often wonder how to make a button’s title consist of more than
one line; the answer is obvious, once you remember that the title is
displayed in a label: set the button’s titleLabel.numberOfLines. In
general, the label’s properties may be set, provided they do not conflict with
existing UIButton features. For example, you can use the label to set the
title’s font and shadowOffset; but the title’s text, color, and shadow color
should be set using the appropriate button methods specifying a button
state. If the title is given a shadow in this way, then the button’s reversesT
itleShadowWhenHighlighted property also applies: if true, the shadowOf
fset values are replaced with their additive inverses when the button is
highlighted. The modern way, however, is to do that sort of thing through
the button’s attributed title.
The internal image is drawn by a UIImageView (Chapter 2), whose features
can be accessed through the button’s imageView. Thus, for example, you

can change the internal image view’s alpha to make the image more
transparent.
The internal position of the image and title as a whole are governed by the
button’s contentVerticalAlignment and contentHorizontalAlignment
(inherited from UIControl). You can also tweak the position of the image
and title, together or separately, by setting the button’s
contentEdgeInsets, titleEdgeInsets, or imageEdgeInsets. Increasing
an inset component increases that margin; thus, for example, a positive top
component makes the distance between that object and the top of the button
larger than normal (where “normal” is where the object would be according
to the alignment settings). The titleEdgeInsets or imageEdgeInsets
values are added to the overall contentEdgeInsets values. So, for
example, if you really wanted to, you could make the internal image appear
to the right of the title by decreasing the left titleEdgeInsets and
increasing the left imageEdgeInsets.
Four methods also provide access to the button’s positioning of its
elements:

titleRect(forContentRect:)

imageRect(forContentRect:)

contentRect(forBounds:)

backgroundRect(forBounds:)

These methods are called whenever the button is redrawn, including every
time it changes state. The content rect is the area in which the title and
image are placed. By default, the content rect and the background rect are
the same. You can override these methods in a subclass to change the way
the button’s elements are positioned.
Here’s an example of a customized button (Figure 12-18). In a UIButton
subclass, we increase the button’s intrinsicContentSize to give it larger
margins around its content, and we configure the background rect to shrink

the button slightly when highlighted as a way of providing feedback (for si
zeByDelta, see Appendix B):

override func backgroundRect(forBounds bounds: CGRect) -> CGRect {

 var result = super.backgroundRect(forBounds:bounds)

 if self.isHighlighted {

 result = result.insetBy(dx: 3, dy: 3)

 }

 return result

}

override var intrinsicContentSize : CGSize {

 return super.intrinsicContentSize.sizeByDelta(dw:25, dh: 20)

}

The button, which is a .custom button, is assigned an internal image and a
background image from the same resizable image, along with attributed
titles for the .normal and .highlighted states. The internal image glows
when highlighted, thanks to adjustsImageWhenHighlighted.

Figure 12-18. A custom button

Custom Controls
If you create your own UIControl subclass, you automatically get the built-
in Touch events; in addition, there are several methods that you can
override in order to customize touch tracking, along with properties that tell
you whether touch tracking is going on:

beginTracking(_:with:)

continueTracking(_:with:)

endTracking(_:with:)

cancelTracking(with:)

isTracking

isTouchInside

The main reason for using a custom UIControl subclass — rather than, say,
a UIView subclass and gesture recognizers — would probably be to obtain
the convenience of control events. Also, the touch-tracking methods,
though not as high-level as gesture recognizers, are at least a level up from
the UIResponder touch methods (Chapter 5): they track a single touch, and
both beginTracking and continueTracking return a Bool, giving you a
chance to stop tracking the current touch.
Here’s a simple example. We’ll build a simplified knob control (Figure 12-
19). The control starts life at its minimum position, with an internal angle
value of 0; it can be rotated clockwise with a single finger as far as its
maximum position, with an internal angle value of 5 (radians). To keep
things simple, the words “Min” and “Max” appearing in the interface are
actually labels; the control just draws the knob, and to rotate it we’ll apply a
rotation transform.

Figure 12-19. A custom control

Our control is a UIControl subclass, MyKnob. It has a public CGFloat angl
e property, and a private CGFloat property self.initialAngle that we’ll
use internally during rotation. Because a UIControl is a UIView, it can draw
itself, which it does with an image file included in our app bundle:

override func draw(_ rect: CGRect) {

 UIImage(named:"knob")!.draw(in: rect)

}

We’ll need a utility function for transforming a touch’s Cartesian
coordinates into polar coordinates, giving us the angle to be applied as a
rotation to the view:

func pToA (_ t:UITouch) -> CGFloat {

 let loc = t.location(in: self)

 let c = CGPoint(self.bounds.midX, self.bounds.midY)

 return atan2(loc.y - c.y, loc.x - c.x)

}

Now we’re ready to override the tracking methods. beginTracking simply
notes down the angle of the initial touch location. continueTracking uses
the difference between the current touch location’s angle and the initial
touch location’s angle to apply a transform to the view, and updates the ang
le property. endTracking triggers the Value Changed control event. So our
first draft looks like this:

override func beginTracking(_ t: UITouch, with _: UIEvent?) -> Bool {

 self.initialAngle = pToA(t)

 return true

}

override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {

 let ang = pToA(t) - self.initialAngle

 let absoluteAngle = self.angle + ang

 self.transform = self.transform.rotated(by: ang)

 self.angle = absoluteAngle

 return true

}

override func endTracking(_: UITouch?, with _: UIEvent?) {

 self.sendActions(for: .valueChanged)

}

This works: we can put a MyKnob into the interface and hook up its Value
Changed control event (this can be done in the nib editor), and sure enough,
when we run the app, we can rotate the knob and, when our finger lifts from
the knob, the Value Changed action method is called.

However, our class needs modification. When the angle is set
programmatically, we should respond by rotating the knob; at the same
time, we need to clamp the incoming value to the allowable minimum or
maximum:

var angle : CGFloat = 0 {

 didSet {

 self.angle = min(max(self.angle, 0), 5) // clamp

 self.transform = CGAffineTransform(rotationAngle: self.angle)

 }

}

Now we should revise continueTracking. We no longer need to perform
the rotation, since setting the angle will do that for us. On the other hand,
we do need to clamp the gesture when the minimum or maximum rotation
is exceeded. My solution is simply to stop tracking; in that case, endTracki
ng will never be called, so we also need to trigger the Value Changed
control event. Also, it might be nice to give the programmer the option to
have the Value Changed control event reported continuously as continueTr
acking is called repeatedly; so we’ll add a public isContinuous Bool
property and obey it:

override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {

 let ang = pToA(t) - self.initialAngle

 let absoluteAngle = self.angle + ang

 switch absoluteAngle {

 case -CGFloat.infinity...0:

 self.angle = 0

 self.sendActions(for: .valueChanged)

 return false

 case 5...CGFloat.infinity:

 self.angle = 5

 self.sendActions(for: .valueChanged)

 return false

 default:

 self.angle = absoluteAngle

 if self.isContinuous {

 self.sendActions(for: .valueChanged)

 }

 return true

 }

}

Bars
There are three bar types: navigation bar (UINavigationBar), toolbar
(UIToolbar), and tab bar (UITabBar). They can be used independently, but
are often used in conjunction with a built-in view controller (Chapter 6):

UINavigationBar
A navigation bar should appear only at the top of the screen. It is
usually used in conjunction with a UINavigationController.

UIToolbar
A toolbar may appear at the bottom or at the top of the screen, though
the bottom is more common. It is usually used in conjunction with a
UINavigationController, where it appears at the bottom.

UITabBar
A tab bar should appear only at the bottom of the screen. It is usually
used in conjunction with a UITabBarController.

This section summarizes the facts about the three bar types — along with
UISearchBar, which can act independently as a top bar — and about the
items that populate them.

Bar Position and Bar Metrics
If a bar is to occupy the top of the screen, its apparent height should be
increased to underlap the transparent status bar. This is taken care of for you
in the case of a UINavigationBar owned by a UINavigationController;
otherwise, it’s up to you. To make this possible, iOS provides the notion of
a bar position. The UIBarPositioning protocol, adopted by
UINavigationBar, UIToolbar, and UISearchBar (the bars that can go at the
top of the screen), defines one property, barPosition, whose possible
values (UIBarPosition) are:

.any

.bottom

.top

.topAttached

But barPosition is read-only, so how are you supposed to set it? Use the
bar’s delegate! The delegate protocols UINavigationBarDelegate,
UIToolbarDelegate, and UISearchBarDelegate all conform to
UIBarPositioningDelegate, which defines one method, position(for:).
This provides a way for a bar’s delegate to dictate the bar’s barPosition:

class ViewController: UIViewController, UINavigationBarDelegate {

 @IBOutlet weak var navbar: UINavigationBar!

 override func viewDidLoad() {

 super.viewDidLoad()

 self.navbar.delegate = self

 }

 func position(for bar: UIBarPositioning) -> UIBarPosition {

 return .topAttached

 }

}

The bar’s apparent height will be extended upward so as to underlap the
status bar if the bar’s delegate returns .topAttached from its
implementation of position(for:). To get the final position right, the
bar’s top should also have a zero-length constraint to the safe area layout
guide’s top.
By the same token, new in iOS 11, a toolbar or tab bar whose bottom has a
zero-length constraint to the safe area layout guide bottom will have its
apparent height extended downward behind the home indicator on the
iPhone X.

TIP
I say that a bar’s apparent height is extended, because in fact its height remains untouched. It is
drawn extended, and this drawing is visible because the bar’s clipsToBounds is false. For this
reason (and others), you should not set a bar’s clipsToBounds to true.

A bar’s height is reflected also by its bar metrics. This refers to a change in
the standard height of the bar in response to a change in the orientation of
the app. This change is not a behavior of the bar itself; rather, it is
performed automatically by a parent view controller in a .compact
horizontal size class environment:

UINavigationController
A UINavigationController adjusts the heights of its navigation bar and
toolbar to be 44 (.regular vertical size class) or 32 (.compact vertical
size class).

UITabBarController
New in iOS 11, a UITabBarController adjusts the height of its tab bar to
be 49 (.regular vertical size class) or 32 (.compact vertical size
class).

Possible bar metrics values are (UIBarMetrics):

.default

.compact

.defaultPrompt

.compactPrompt

The compact metrics apply in a .compact vertical size class environment.
The prompt metrics apply to a bar whose height is extended downward to
accommodate prompt text (and to a search bar whose scope buttons are
showing).

When you’re customizing a feature of a bar (or a bar button item), you may
find yourself calling a method that takes a bar metrics parameter, and
possibly a bar position parameter as well. The idea is that you can
customize that feature differently depending on the bar position and the bar
metrics. But you don’t have to set that value for every possible combination
of bar position and bar metrics; in general (though, unfortunately, the details
are a little inconsistent), UIBarPosition.any and UIBarMetrics.default
are treated as defaults that encompass any positions and metrics you don’t
specify.

Bar Appearance
A bar can be styled at three levels:

barStyle, isTranslucent

The barStyle options are (UIBarStyle):

.default (flat white)

.black (flat black)

The isTranslucent property turns on or off the characteristic blurry
translucency.

barTintColor

This property tints the bar with a solid color.

backgroundImage

The background image is set with setBackgroundImage(_:for:barMe
trics:). If the image is too large, it is sized down to fit; if it is too
small, it is tiled by default, but you can change that behavior by
supplying a resizable image. If a bar’s isTranslucent is false, then
the barTintColor may appear behind the background image, but if its
isTranslucent is true, the bar is transparent behind the image.

The degree of translucency and the interpretation of the bar tint color may
vary from system to system and even from device to device, so the color

you specify might not be quite the color you see. An opaque background
image, however, is a reliable way to color a bar.

A UINavigationController uses the navigation bar’s barStyle in its
implementation of preferredStatusBarStyle. A barStyle of .default
results in a status bar style of .default (dark text); a barStyle of .black
results in a status bar style of .lightContent (light text). Even if you are
setting the navigation bar’s appearance in some other way, you might want
to set its bar style as a way of setting the status bar’s text color.
If you assign a bar a background image, you can also customize its shadow,
which is cast from the bottom of the bar (if the bar is at the top) or the top
of the bar (if the bar is at the bottom) on whatever is behind it. To do so, set
the shadowImage property — except that a toolbar can be either at the top
or the bottom, so its setter is setShadowImage(_:forToolbarPosition:),
and the UIBarPosition determines whether the shadow should appear at the
top or the bottom of the toolbar.
You’ll want a shadow image to be very small and very transparent; the
image will be tiled horizontally. You won’t see the shadow if the bar’s clip
sToBounds is true. Here’s an example for a navigation bar:

do { // must set the background image if you want a shadow image

 let sz = CGSize(20,20)

 let r = UIGraphicsImageRenderer(size:sz)

 self.navbar.setBackgroundImage(r.image { ctx in

 UIColor(white:0.95, alpha:0.85).setFill()

 ctx.fill(CGRect(0,0,20,20))

 }, for:.any, barMetrics: .default)

}

do { // now we can set the shadow image

 let sz = CGSize(4,4)

 let r = UIGraphicsImageRenderer(size:sz)

 self.navbar.shadowImage = r.image { ctx in

 UIColor.gray.withAlphaComponent(0.3).setFill()

 ctx.fill(CGRect(0,0,4,2))

 UIColor.gray.withAlphaComponent(0.15).setFill()

 ctx.fill(CGRect(0,2,4,2))

 }

}

UIBarButtonItem
You don’t add subviews to a bar; instead, you populate the bar with bar
items. For a toolbar or navigation bar, these will be bar button items
(UIBarButtonItem, a subclass of UIBarItem). A bar button item is not a
UIView, but you can still put an arbitrary view into a bar, because a bar
button item can contain a custom view.
A bar button item may be instantiated with any of five methods:

init(barButtonSystemItem:target:action:)

init(title:style:target:action:)

init(image:style:target:action:)

init(image:landscapeImagePhone:style:target:action:)

init(customView:)

The style: options (UIBarButtonItemStyle) are .plain and .done; the
only difference is that .done title text is bold.
A bar button item’s image is treated by default as a template image, unless
you explicitly provide an .alwaysOriginal image.
Many aspects of a bar button item can be made dependent upon the bar
metrics of the containing bar. For example, you can initialize a bar button
item with both an image and a landscapeImagePhone, the latter to be used
when the bar metrics has compact in its name. A bar button item inherits
from UIBarItem the ability to adjust the image position with imageInsets
(and landscapeImagePhoneInsets), plus the isEnabled and tag
properties.

You can set a bar button item’s width property; new in iOS 11, if a bar
button item has a custom view, you can size the view from the inside out
using constraints.

A bar button item’s tintColor property tints the title text or template
image of the button; it is inherited from the tintColor of the bar, or you
can override it for an individual bar button item.

You can apply an attributes dictionary to a bar button item’s title, and you
can give a bar button item a background image:

setTitleTextAttributes(_:for:) (inherited from UIBarItem)

setTitlePositionAdjustment(_:for:)

setBackgroundImage(_:for:barMetrics:)

setBackgroundImage(_:for:style:barMetrics:)

setBackgroundVerticalPositionAdjustment(_:for:)

In addition, these methods apply only if the bar button item is being used as
a back button item in a navigation bar (as I’ll describe in the next section):

setBackButtonTitlePositionAdjustment(_:for:)

setBackButtonBackgroundImage(_:for:barMetrics:)

setBackButtonBackgroundVerticalPositionAdjustment(_:for:)

No bar button item style supplies an outline (border). (The .bordered style
is deprecated, and its appearance is identical to .plain.) If you want an
outline, you have to supply it yourself. For the left bar button item in the
settings view of my Zotz! app (Figure 12-20), I use a custom view that’s a
UIButton with a background image.

Figure 12-20. A bar button item with a border

UINavigationBar
A navigation bar (UINavigationBar) is populated by navigation items
(UINavigationItem). The UINavigationBar maintains a stack;
UINavigationItems are pushed onto and popped off of this stack. Whatever
UINavigationItem is currently topmost in the stack (the UINavigationBar’s
topItem), in combination with the UINavigationItem just beneath it in the

stack (the UINavigationBar’s backItem), determines what appears in the
navigation bar:

title, titleView

The title (string) or titleView (UIView) of the topItem appears in
the center of the navigation bar. New in iOS 11, you can size the titleV
iew from the inside out using constraints.

prefersLargeTitles

New in iOS 11, allows the title to appear by itself at the bottom of the
navigation bar, which will appear extended downward to accommodate
it. In that case, both the title and the titleView can appear
simultaneously. Whether the title will in fact be displayed in this way
depends upon the navigation item’s largeTitleDisplayMode — .alwa
ys, .never, or .automatic (inherited from further down the stack).

prompt

The prompt (string) appears at the top of the navigation bar, whose
height increases to accommodate it.

rightBarButtonItem, rightBarButtonItems

leftBarButtonItem, leftBarButtonItems

The rightBarButtonItem and leftBarButtonItem appear at the right
and left ends of the navigation bar. A UINavigationItem can have
multiple right bar button items and multiple left bar button items; its ri
ghtBarButtonItems and leftBarButtonItems properties are arrays
(of bar button items). The bar button items are displayed from the
outside in: that is, the first item in the leftBarButtonItems is leftmost,
while the first item in the rightBarButtonItems is rightmost. If there
are multiple buttons on a side, the rightBarButtonItem is the first
item of the rightBarButtonItems array, and the leftBarButtonItem
is the first item of the leftBarButtonItems array.

backBarButtonItem

The backBarButtonItem of the backItem appears at the left end of the
navigation bar. It is automatically configured so that, when tapped, the t
opItem is popped off the stack. If the backItem has no backBarButton
Item, then there is still a back button at the left end of the navigation
bar, taking its title from the title of the backItem. However, if the top
Item has its hidesBackButton set to true, the back button is
suppressed. Also, unless the topItem has its leftItemsSupplementBac
kButton set to true, the back button is suppressed if the topItem has a
leftBarButtonItem.

The indication that the back button is a back button is supplied by the
navigation bar’s backIndicatorImage, which by default is a left-pointing
chevron appearing to the left of the back button. You can customize this
image; the image that you supply is treated as a template image by default.
If you set the backIndicatorImage, you must also supply a backIndicato
rTransitionMaskImage. The purpose of the mask image is to indicate the
region where the back button should disappear as it slides out to the left
when a new navigation item is pushed onto the stack. For example, in
Figure 12-21, the back button title, which is sliding out to the left, is visible
to the right of the chevron but not to the left of the chevron; that’s because
on the left side of the chevron it is masked out.

Figure 12-21. A back button animating to the left

In this example, I replace the chevron with a vertical bar. The vertical bar is
not the entire image; the image is actually a wider rectangle, with the
vertical bar at its right side. The mask is the entire wider rectangle, and is
completely transparent; thus, the back button disappears as it passes behind
the bar and stays invisible as it continues on to the left:

let sz = CGSize(10,20)

self.navbar.backIndicatorImage =

 UIGraphicsImageRenderer(size:sz).image { ctx in

 ctx.fill(CGRect(6,0,4,20))

 }

self.navbar.backIndicatorTransitionMaskImage =

 UIGraphicsImageRenderer(size:sz).image {_ in}

Changes to the navigation bar’s buttons can be animated by sending its top
Item any of these messages:

setRightBarButton(_:animated:)

setLeftBarButton(_:animated:)

setRightBarButtonItems(_:animated:)

setLeftBarButtonItems(_:animated:)

setHidesBackButton(_:animated:)

UINavigationItems are pushed and popped with pushItem(_:animated:)
and popItemAnimated(_:), or you can call setItems(_:animated:) to
set all items on the stack at once.
You can determine the attributes dictionary for the title by setting the
navigation bar’s titleTextAttributes, and you can shift the title’s
vertical position by calling setTitleVerticalPositionAdjustment(fo
r:). New in iOS 11, you can determine the large title’s attributes dictionary
by setting the navigation bar’s largeTitleTextAttributes.
When you use a UINavigationBar implicitly as part of a
UINavigationController interface, the navigation controller is the
navigation bar’s delegate. If you were to use a UINavigationBar on its own,
you might want to supply your own delegate. The delegate methods are:

navigationBar(_:shouldPush:)

navigationBar(_:didPush:)

navigationBar(_:shouldPop:)

navigationBar(_:didPop:)

This simple (and silly) example of a standalone UINavigationBar
implements the legendary baseball combination trio of Tinker to Evers to
Chance; see the relevant Wikipedia article if you don’t know about them
(Figure 12-22, which also shows the custom back indicator and the custom
shadow I described earlier):

Figure 12-22. A navigation bar

override func viewDidLoad() {

 super.viewDidLoad()

 let ni = UINavigationItem(title: "Tinker")

 let b = UIBarButtonItem(title: "Evers", style: .plain,

 target: self, action: #selector(pushNext))

 ni.rightBarButtonItem = b

 self.navbar.items = [ni]

}

@objc func pushNext(_ sender: Any) {

 let oldb = sender as! UIBarButtonItem

 let s = oldb.title!

 let ni = UINavigationItem(title:s)

 if s == "Evers" {

 let b = UIBarButtonItem(title:"Chance", style: .plain,

 target:self, action:#selector(pushNext))

 ni.rightBarButtonItem = b

 }

 self.navbar.pushItem(ni, animated:true)

}

UIToolbar
A toolbar (UIToolbar, Figure 12-23) displays a row of UIBarButtonItems,
which are its items. The items are displayed from left to right in the order
in which they appear in the items array. You can set the items with
animation by calling setItems(_:animated:). The items within the
toolbar are positioned automatically; you can intervene in this positioning

by using the system bar button items .flexibleSpace and .fixedSpace,
along with the UIBarButtonItem width property.

Figure 12-23. A toolbar

UITabBar
A tab bar (UITabBar) displays tab bar items (UITabBarItem), its items,
each consisting of an image and a name. New in iOS 11, the title is
displayed next to the image, except on an iPhone in portrait orientation,
where it is displayed below the image. To change the items with animation,
call setItems(_:animated:).

The tab bar maintains a current selection among its items, its selectedIte
m, which is a UITabBarItem, not an index number; you can set it in code, or
the user can set it by tapping on a tab bar item. To hear about the user
changing the selection, implement tabBar(_:didSelect:) in the delegate
(UITabBarDelegate).
You get some control over how the tab bar items are laid out:

itemPositioning

There are three possible values (UITabBarItemPositioning):

.centered

The items are crowded together at the center.

.fill

The items are spaced out evenly.

.automatic

On the iPad, the same as .centered; on the iPhone, the same as .fi
ll.

itemSpacing

The space between items, if the positioning is .centered. For the
default space, specify 0.

itemWidth

The width of the items, if the positioning is .centered. For the default
width, specify 0.

You can set an image to be drawn behind the selected tab bar item to
indicate that it’s selected; it is the tab bar’s selectionIndicatorImage.
A UITabBarItem is created with one of these methods:

init(tabBarSystemItem:tag:)

init(title:image:tag:)

init(title:image:selectedImage:)

UITabBarItem is a subclass of UIBarItem, so in addition to its title and i
mage it inherits the ability to adjust the image position with imageInsets,
plus the isEnabled and tag properties. The UITabBarItem itself adds the s
electedImage property; this image replaces the image when this item is
selected.

New in iOS 11, you can assign a tab bar item an alternate landscapeImage
Phone (inherited from UIBarItem) to be used on the iPhone in landscape
orientation. However, doing so disables the selectedImage; I regard that
as a bug.
A tab bar item’s images are treated, by default, as template images. Its title
text and template image are tinted with the tab bar’s tintColor when
selected and with its unselectedItemTintColor otherwise. To get full
control of the title color (and other text attributes), call setTitleTextAttr
ibutes(_:for:), inherited from UIBarItem; if you set a color for .normal
and a color for .selected, the .normal color will be used when the item is
deselected (unless you have set the tab bar’s unselectedItemTintColor).

You can also adjust the title’s position with the titlePositionAdjustment
property. To get full control of the image’s color, supply an .alwaysOrigin
al image for both the image and selectedImage.
Figure 12-24 is an example of a customized tab bar; I’ve set the tab bar’s
selection indicator image (the checkmark) and tint color (golden) of the tab
bar, and the text attributes (including the green color, when selected) of the
tab bar items.

Figure 12-24. A tab bar

The user can be permitted to alter the contents of the tab bar, setting its tab
bar items from among a larger repertoire of tab bar items. To summon the
interface that lets the user do this, call beginCustomizingItems(_:),
passing an array of UITabBarItems that may or may not appear in the tab
bar. (To prevent the user from removing an item from the tab bar, include it
in the tab bar’s items and don’t include it in the argument passed to beginC
ustomizingItems(_:).) A presented view with a Done button appears,
behind the tab bar but in front of everything else, displaying the
customizable items. The user can then drag an item into the tab bar,
replacing an item that’s already there. To hear about the customizing view
appearing and disappearing, implement delegate methods:

tabBar(_:willBeginCustomizing:)

tabBar(_:didBeginCustomizing:)

tabBar(_:willEndCustomizing:changed:)

tabBar(_:didEndCustomizing:changed:)

When used in conjunction with a UITabBarController, the customization
interface is provided automatically, in an elaborate way. If there are a lot of
items, a More item is present as the last item in the tab bar; the user can tap
this to access the remaining items through a table view. In this table view,

the user can select any of the excess items, navigating to the corresponding
view; or the user can switch to the customization interface by tapping the
Edit button. Figure 12-25 shows how a More list looks by default.

Figure 12-25. Automatically generated More list

The way this works is that the automatically provided More item
corresponds to a UINavigationController with a root view controller
(UIMoreListController) whose view is a UITableView. Thus, a navigation
interface containing this UITableView appears through the tabbed interface
when the user taps the More button. When the user selects an item in the
table, the corresponding UIViewController is pushed onto the
UINavigationController’s stack.
You can access this UINavigationController: it is the UITabBarController’s
moreNavigationController. Through it, you can access the root view
controller: it is the first item in the UINavigationController’s viewControl
lers array. And through that, you can access the table view: it is the root
view controller’s view. This means you can customize what appears when
the user taps the More button! For example, let’s make the navigation bar
red with white button titles, and let’s remove the word More from its title:

let more = self.tabBarController.moreNavigationController

let list = more.viewControllers[0]

list.title = ""

let b = UIBarButtonItem()

b.title = "Back"

list.navigationItem.backBarButtonItem = b

more.navigationBar.barTintColor = .red

more.navigationBar.tintColor = .white

We can go even further by supplementing the table view’s data source with
a data source of our own and proceeding to customize the table itself. This
is tricky because we have no internal access to the actual data source, and
we mustn’t accidentally disable it from populating the table. Still, it can be
done. I’ll continue from the previous example by replacing the table view’s
data source with an instance of my own MyDataSource, initializing it with a
reference to the original data source object:

let tv = list.view as! UITableView

let mds = MyDataSource(originalDataSource: tv.dataSource!)

self.myDataSource = mds

tv.dataSource = mds

In MyDataSource, I’ll use message forwarding (see Apple’s Objective-C
Runtime Programming Guide) so that MyDataSource acts as a front end for
the original data source. MyDataSource will thus magically appear to
respond to any message that the original data source responds to, with any
message that that MyDataSource can’t handle being forwarded to the
original data source:

unowned let orig : UITableViewDataSource

init(originalDataSource:UITableViewDataSource) {

 self.orig = originalDataSource

}

override func forwardingTarget(for aSelector: Selector) -> Any? {

 if self.orig.responds(to:aSelector) {

 return self.orig

 }

 return super.forwardingTarget(for:aSelector)

}

Finally, we’ll implement the two Big Questions required by the
UITableViewDataSource protocol, to quiet the compiler. In both cases, we
first pass the message along to the original data source (analogous to calling

super); then we add our own customizations as desired. Here, as a proof of
concept, I’ll change each cell’s text font (Figure 12-26):

Figure 12-26. Customized More list

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {

 return self.orig.tableView(tv, numberOfRowsInSection: sec)

}

func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = self.orig.tableView(tableView, cellForRowAt: indexPath)

 cell.textLabel!.font = UIFont(name: "GillSans-Bold", size: 14)!

 return cell

}

Tint Color
Both UIView and UIBarButtonItem have a tintColor property. This
property has a remarkable built-in feature: its value, if not set explicitly (or
if set to nil), is inherited from its superview. (UIBarButtonItems don’t have
a superview, because they aren’t views; but for purposes of this feature,
pretend that they are views, and that the containing bar is their superview.)
The idea is to simplify the task of giving your app a consistent overall
appearance. Many built-in interface objects use the tintColor for some
aspect of their appearance, as I’ve already described. For example, if a .sys
tem button’s tintColor is red, either because you’ve set it directly or
because it has inherited that color from higher up the view hierarchy, it will
have red title text by default. If the highest superview in your view

hierarchy — the window — has a red tintColor, then unless you do
something to prevent it, all your buttons will have red title text.
The inheritance architecture works exactly the way you would expect:

Views and subviews

When you set the tintColor of a view, that value is inherited by all
subviews of that view. The ultimate superview is the window; thus, you
can set the tintColor of your UIWindow instance, and its value will be
inherited by every view that ever appears in your interface.

Overriding

The inherited tintColor can be overridden by setting a view’s tintCol
or explicitly. Thus, you can set the tintColor of a view partway down
the view hierarchy so that it and all its subviews have a different tintCo
lor from the rest of the interface. In this way, you might subtly suggest
that the user has entered a different world.

Propagation

If you change the tintColor of a view, the change immediately
propagates down the hierarchy of its subviews — except, of course, that
a view whose tintColor has been explicitly set to a color of its own is
unaffected, along with its subviews.

Whenever a view’s tintColor changes, including when its tintColor is
initially set at launch time, and including when you set it in code, this view
and all its affected subviews are sent the tintColorDidChange message. A
subview whose tintColor has been explicitly set to a color of its own is
not sent the tintColorDidChange message merely because its superview’s
tintColor changes; that’s because the subview’s own tintColor didn’t
change.

When you ask a view for its tintColor, what you get is the tintColor of
the view itself, if its own tintColor has been explicitly set to a color, or

else the tintColor inherited from higher up the view hierarchy. In this
way, you can always learn what the effective tint color of a view is.

A UIView also has a tintAdjustmentMode. Under certain circumstances,
such as the summoning of an alert (Chapter 13) or a popover (Chapter 9),
the system will set the tintAdjustmentMode of the view at the top of the
view hierarchy to .dimmed. This causes the tintColor to change to a
variety of gray. The idea is that the tinting of the background should
become monochrome, thus emphasizing the primacy of the view that
occupies the foreground (the alert or popover). See “Custom Presented
View Controller Transition” for an example of my own code making this
change.

By default, a change in the tintAdjustmentMode propagates all the way
down the view hierarchy, changing all tintAdjustmentMode values and all
tintColor values — and sending all subviews the tintColorDidChange
message. When the foreground view goes away, the system will set the
topmost view’s tintAdjustmentMode to .normal, and that change, too,
will propagate down the hierarchy.

This propagation behavior is governed by the tintAdjustmentMode of the
subviews. The default tintAdjustmentMode value is .automatic,
meaning that you want this view’s tintAdjustmentMode to adopt its
superview’s tintAdjustmentMode automatically. When you ask for such a
view’s tintAdjustmentMode, what you get is just like what you get for tin
tColor — you’re told the effective tint adjustment mode (.normal or .dim
med) inherited from up the view hierarchy.

If, on the other hand, you set a view’s tintAdjustmentMode explicitly to .n
ormal or .dimmed, this tells the system that you want to be left in charge of
the tintAdjustmentMode for this part of the hierarchy; the automatic
propagation of the tintAdjustmentMode down the view hierarchy is
prevented. To turn automatic propagation back on, set the tintAdjustment
Mode back to .automatic.

Appearance Proxy
When you want to customize the look of an interface object, instead of
sending a message to the object itself, you can send that message to an
appearance proxy for that object’s class. The appearance proxy then passes
that same message along to the actual future instances of that class. You’ll
usually configure your appearance proxies once very early in the lifetime of
the app, and never again. The app delegate’s application(_:didFinishLa
unchingWithOptions:), before the app’s window has been displayed, is
the obvious place to do this.

This architecture, like the tintColor that I discussed in the previous
section, helps you give your app a consistent appearance, as well as saving
you from having to write a lot of code. For example, instead of having to
send setTitleTextAttributes(_:for:) to every UITabBarItem your app
ever instantiates, you send it once to the appearance proxy, and it is sent to
all future UITabBarItems for you:

UITabBarItem.appearance().setTitleTextAttributes([

 .font:UIFont(name:"Avenir-Heavy", size:14)!

], for:.normal)

Also, the appearance proxy sometimes provides access to interface objects
that might otherwise be difficult to refer to. For example, you don’t get
direct access to a search bar’s external Cancel button, but it is a
UIBarButtonItem and you can customize it through the UIBarButtonItem
appearance proxy.
There are four class methods for obtaining an appearance proxy:

appearance

Returns a general appearance proxy for the receiver class. The method
you call on the appearance proxy will be applied generally to future
instances of this class.

appearance(for:)

The parameter is a trait collection. The method you call on the
appearance proxy will be applied to future instances of the receiver
class when the environment matches the specified trait collection.

appearance(whenContainedInInstancesOf:)

The argument is an array of classes, arranged in order of containment
from inner to outer. The method you call on the appearance proxy will
be applied only to instances of the receiver class that are actually
contained in the way you describe. The notion of what “contained”
means is deliberately left vague; basically, it works the way you
intuitively expect it to work.

appearance(for:whenContainedInInstancesOf:)

A combination of the preceding two.
When configuring appearance proxy objects, specificity trumps generality.
Thus, you could call appearance to say what should happen for most
instances of some class, and call the other methods to say what should
happen instead for certain instances of that class. Similarly, longer whenCon
tainedInInstancesOf: chains are more specific than shorter ones.

For example, here’s some code from my Latin flashcard app (myGolden and
myPaler are class properties defined by an extension on UIColor):

UIBarButtonItem.appearance().tintColor = .myGolden

UIBarButtonItem.appearance(

 whenContainedInInstancesOf: [UIToolbar.self])

 .tintColor = .myPaler

UIBarButtonItem.appearance(

 whenContainedInInstancesOf: [UIToolbar.self, DrillViewController.self])

 .tintColor = .myGolden

That means:
In general, bar button items should be tinted golden.
But bar button items in a toolbar are an exception: they should be tinted
paler.

But bar button items in a toolbar in DrillViewController’s view are an
exception to the exception: they should be tinted golden.

Sometimes, in order to express sufficient specificity, I find myself defining
subclasses for no other purpose than to refer to them when obtaining an
appearance proxy. For example, here’s some more code from my Latin
flashcard app:

UINavigationBar.appearance().setBackgroundImage(marble, for:.default)

// counteract the above for the black navigation bar

BlackNavigationBar.appearance().setBackgroundImage(nil, for:.default)

In that code, BlackNavigationBar is a UINavigationBar subclass that does
nothing whatever. Its sole purpose is to tag one navigation bar in my
interface so that I can refer to it in that code! Thus, I’m able to say, in effect,
“All navigation bars in this app should have marble as their background
image, unless they are instances of BlackNavigationBar.”
The ultimate in specificity is to customize the look of an instance directly.
Thus, for example, if you set one particular UIBarButtonItem’s tintColor
property, then setting the tint color by way of a UIBarButtonItem
appearance proxy will have no effect on that particular bar button item.
Not every message that can be sent to an instance of a class can be sent to
that class’s appearance proxy. Unfortunately, the compiler can’t help you
here; illegal code like this will compile, but will probably crash at runtime:

UIBarButtonItem.appearance().action = #selector(configureAppearance)

The problem is not that UIBarButtonItem has no action property; in the
contrary, that code compiles because it does have an action property! But
that property is not one that you can set by way of the appearance proxy,
and the mistake isn’t caught until that line executes and the runtime tries to
configure an actual UIBarButtonItem.
When in doubt, look at the class documentation; there should be a section
that lists the properties and methods applicable to the appearance proxy for
this class. For example, the UINavigationBar class documentation has a

section called “Customizing the Bar Appearance,” the UIBarButtonItem
class documentation has a section called “Customizing Appearance,” and so
forth.

TIP
To define your own appearance-compliant property, declare that property @objc dynamic in your
UIView subclass.

Chapter 13. Modal Dialogs

A modal dialog demands attention; while it is present, the user can do
nothing other than work within it or dismiss it. This chapter discusses
various forms of modal dialog:

Within your app, you might want to interrupt to give the user some
information or to ask the user how to proceed. For this purpose, iOS
provides two types of rudimentary modal dialog — alerts and action
sheets. An alert is basically a message, possibly with an opportunity for
text entry, and some buttons. An action sheet is effectively a column of
buttons.
You can provide a sort of action sheet even when your app is not
frontmost (or even running) by allowing the user to summon quick
actions — also known as shortcut items — by pressing with 3D touch on
your app’s icon in the home screen.
A local notification is an alert that the system presents on your app’s
behalf, even when your app isn’t frontmost.
A today widget is interface that appears in the screen that the user sees
by swiping sideways in the lock screen or home screen. Your app can
provide a today widget by means of a today extension. Your today
widget can also appear as a quick action.
An activity view is a modal dialog displaying icons representing
activities. Activities are possible courses of external and internal action,
such as handing off data to Mail or Messages, or processing it internally.
Your app can present an activity view; you can also provide your own
activities, either privately within your app or publicly to other apps as an
action extension or share extension.

Alerts and Action Sheets

Alerts and action sheets are both forms of presented view controller
(Chapter 6). They are managed through the UIAlertController class, a
UIViewController subclass. To show an alert or an action sheet is a three-
step process:

1. Instantiate UIAlertController with init(title:message:preferred
Style:). The title: and message: are large and small descriptive
text to appear at the top of the dialog. The preferredStyle:
argument (UIAlertControllerStyle) will be either .alert or .actionS
heet.

2. Configure the dialog by calling addAction(_:) on the
UIAlertController as many times as needed. An action is a
UIAlertAction, which basically means it’s a button to appear in the
dialog, along with a function to be executed when the button is
tapped; to create one, call init(title:style:handler:). Possible s
tyle: values are (UIAlertActionStyle):

.default

.cancel

.destructive

An alert may also have text fields (I’ll talk about that in a moment).

3. Call present(_:animated:completion:) to present the
UIAlertController.

The dialog is automatically dismissed when the user taps any button.

Alerts
An alert (UIAlertController style .alert) pops up unexpectedly in the
middle of the screen, with an elaborate animation, and may be thought of as
an attention-getting interruption. It contains a title, a message, and some
number of buttons, one of which may be the cancel button, meaning that it
does nothing but dismiss the alert. In addition, an alert may contain one or
two text fields.

Alerts are minimal, and intentionally so: they are meant for simple, quick
interactions or display of information. Often there is only a cancel button,
the primary purpose of the alert being to show the user the message (“You
won the game”); additional buttons may be used to give the user a choice of
how to proceed (“You won the game; would you like to play another?”
“Cancel,” “Play Another,” “Replay”).
Figure 13-1 shows a basic alert, illustrating the title, the message, and the
three button styles: .destructive, .default, and .cancel respectively.
Here’s the code that generated it:

let alert = UIAlertController(title: "Not So Fast!",

 message: """

 Do you really want to do this \

 tremendously destructive thing?

 """,

 preferredStyle: .alert)

func handler(_ act:UIAlertAction!) {

 print("User tapped \(act.title as Any)")

}

alert.addAction(UIAlertAction(title: "Cancel",

 style: .cancel, handler: handler))

alert.addAction(UIAlertAction(title: "Just Do It!",

 style: .destructive, handler: handler))

alert.addAction(UIAlertAction(title: "Maybe",

 style: .default, handler: handler))

self.present(alert, animated: true)

Figure 13-1. An alert

In Figure 13-1, observe that the .destructive button appears first and the
.cancel button appears last, without regard to the order in which they are
defined. The .default button order of definition, on the other hand, will be
the order of the buttons themselves. If no .cancel button is defined, the last
.default button will be displayed as a .cancel button.

You can also designate an action as the alert’s preferredAction. This
appears to boldify the title of that button. For example, suppose I append
this to the preceding code:

alert.preferredAction = alert.actions[2]

The order of the actions array is the order in which we added actions;
thus, the preferred action is now the Maybe button. The order isn’t changed
— the Maybe button still appears second — but the bold styling is removed
from the Cancel button and placed on the Maybe button instead.
As I’ve already mentioned, the dialog is dismissed automatically when the
user taps a button. If you don’t want to respond to the tap of a particular
button, you can supply nil as the handler: argument (or omit it
altogether). In the preceding code, I’ve provided a minimal handler:
function for each button, just to show what one looks like. As the example
demonstrates, the function receives the original UIAlertAction as a

parameter, and can examine it as desired. The function can also access the
alert controller itself, provided the alert controller is in scope at the point
where the handler: function is defined (which will usually be the case).
My example code assigns the same function to all three buttons, but more
often you’ll give each button its own individual handler: function,
probably as a trailing closure.
Now let’s talk about adding text fields to an alert. Because space is limited
on the smaller iPhone screen, especially when the keyboard is present, an
alert that is to contain a text field should probably should have at most two
buttons, with short titles such as “OK” and “Cancel,” and at most two text
fields. To add a text field to an alert, call addTextField(configurationHa
ndler:). The handler: function will receive the text field as a parameter;
it is called before the alert appears, and can be used to configure the text
field. Other handler: functions can access the text field through the alert’s
textFields property, which is an array. In this example, the user is invited
to enter a number in the text field; if the alert is dismissed with the OK
button, its handler: function reads the text from the text field:

let alert = UIAlertController(title: "Enter a number:",

 message: nil, preferredStyle: .alert)

alert.addTextField { tf in

 tf.keyboardType = .numberPad

}

func handler(_ act:UIAlertAction) {

 let tf = alert.textFields![0]

 // ... can read tf.text here ...

}

alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))

alert.addAction(UIAlertAction(title: "OK",

 style: .default, handler: handler))

self.present(alert, animated: true)

A puzzle arises as to how to prevent the user from dismissing the alert if the
text fields are not acceptably filled in. The alert will be dismissed if the user
taps a button, and no button handler: function can prevent this. The
solution is to disable the relevant buttons until the text fields are
satisfactory. A UIAlertAction has an isEnabled property for this very

purpose. I’ll modify the preceding example so that the OK button is
disabled initially:

alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))

alert.addAction(UIAlertAction(title: "OK",

 style: .default, handler: handler))

alert.actions[1].isEnabled = false

self.present(alert, animated: true)

But this raises a new puzzle: how will the OK button ever be enabled? The
text field can have a delegate or a control event target–action pair
(Chapter 10), and so we can hear about the user typing in it. I’ll modify the
example again so that I’m notified as the user edits in the text field:

alert.addTextField { tf in

 tf.keyboardType = .numberPad

 tf.addTarget(self,

 action: #selector(self.textChanged), for: .editingChanged)

}

Our textChanged method will now be called when the user edits, but this
raises one final puzzle: how will this method, which receives a reference to
the text field, get a reference to the OK button in the alert in order to enable
it? My approach is to work my way up the responder chain from the text
field to the alert controller. Here, I enable the OK button if and only if the
text field contains some text:

@objc func textChanged(_ sender: Any) {

 let tf = sender as! UITextField

 var resp : UIResponder! = tf

 while !(resp is UIAlertController) { resp = resp.next }

 let alert = resp as! UIAlertController

 alert.actions[1].isEnabled = (tf.text != "")

}

Action Sheets
An action sheet (UIAlertController style .actionSheet) may be considered
the iOS equivalent of a menu; it consists primarily of buttons. On the

iPhone, it slides up from the bottom of the screen; on the iPad, it appears as
a popover.
Where an alert is an interruption, an action sheet is a logical branching of
what the user is already doing: it typically divides a single piece of interface
into multiple possible courses of action. For example, in Apple’s Mail app,
a single Action button summons an action sheet that lets the user reply to
the current message, forward it, or print it (or cancel and do nothing).
Figure 13-2 shows a basic action sheet on the iPhone. Here’s the code that
constructed it:

let action = UIAlertController(

 title: "Choose New Layout", message: nil, preferredStyle: .actionSheet)

action.addAction(UIAlertAction(title: "Cancel", style: .cancel))

func handler(_ act:UIAlertAction) {

 // ... do something here with act.title ...

}

for s in ["3 by 3", "4 by 3", "4 by 4", "5 by 4", "5 by 5"] {

 action.addAction(UIAlertAction(title: s,

 style: .default, handler: handler))

}

self.present(action, animated: true)

Figure 13-2. An action sheet on the iPhone

On the iPad, an action sheet wants to be a popover. This means that a
UIPopoverPresentationController will take charge of it. It will thus be
incumbent upon you to provide something for the popover’s arrow to point
to (as explained in Chapter 9). Be sure to do that; otherwise, you’ll crash at
runtime. For example:

self.present(action, animated: true)

if let pop = action.popoverPresentationController {

 let v = sender as! UIView

 pop.sourceView = v

 pop.sourceRect = v.bounds

}

The cancel button for a popover action sheet on the iPad is suppressed,
because the user can dismiss the popover by tapping outside it. On the
iPhone, too, where the cancel button is displayed, the user can still dismiss
the action sheet by tapping outside it. When the user does that, the cancel

button’s handler: function will be called, just as if the user had tapped the
cancel button — even if the cancel button is not displayed.
An action sheet can also be presented inside a popover. In that case, the
containing popover is treated as an iPhone: the action sheet slides up from
the bottom of the popover, and the cancel button is not suppressed. The
action sheet’s modal presentation style defaults to .overCurrentContext,
which is exactly what we want, so there is no need to set it. You are then
presenting a view controller inside a popover; see “Popover Presenting a
View Controller” for the considerations that apply.

Dialog Alternatives
Alerts and action sheets are limited, inflexible, and inappropriate to any but
the simplest cases. Their interface can contain title text, buttons, and (for an
alert) one or two text fields, and that’s all. What if you wanted more
interface than that?
Some developers have hacked into their alerts or action sheets in an attempt
to force them to be more customizable. This is wrong, and in any case there
is no need for such extremes. These are just presented view controllers, and
if you don’t like what they contain, you can make your own presented view
controller with its own customized view. If you also want that view to look
and behave like an alert or an action sheet, then make it so!
As I have shown (“Custom Presented View Controller Transition”), it is
easy to create a small presented view that looks and behaves quite like an
alert or action sheet, floating in front of the main interface and darkening
everything behind it — the difference being that this is an ordinary view
controller’s view, belonging entirely to you, and capable of being populated
with any interface you like (Figure 13-3). You can even add a
UIMotionEffect to your presented view, giving it the same parallax as a real
alert.

Figure 13-3. A presented view behaving like an alert

Often, however, there will no need for such elaborate measures. Consider
some alternatives:

A popover
A popover is virtually a secondary window, and can be truly modal. The
popovers in Figure 9-1, for example, are effectively modal dialogs. A
popover can internally display a secondary presented view or even an
action sheet, as we’ve already seen.

A form sheet

A presented view can use the .formSheet presentation style, which is
effectively a dialog window smaller than the screen.

A fullscreen presented view controller
On the iPhone, any presented view is essentially a modal dialog. The
color picker in my Zotz! app (Figure 13-4) is a case in point. It occupies
the entire screen, and is modal for that very reason; and it has the same
lightweight, temporary quality that an alert offers.

Figure 13-4. A presented view functioning as a modal dialog

Quick Actions
Quick actions are essentially a column of buttons summoned outside of
your app when the user employs 3D touch on your app’s icon in the home
screen. (If the user’s device lacks 3D touch, quick actions won’t be
available.) They should represent convenient ways of accessing
functionality that the user could equally have performed from within your
app.
Quick actions are of two kinds:

Static quick actions

Static quick actions are described in your app’s Info.plist. The system
can present them even if your app isn’t running — indeed, even if your
app has never run — because it can read your app’s Info.plist.

Dynamic quick actions
Dynamic quick actions are configured in code. This means that they are
not available until your app’s code has actually run. Your code can alter
and remove dynamic quick actions, but it cannot affect your app’s static
quick actions.

When the user taps a quick action, your app is brought to the front
(launching it if necessary) and your app delegate’s application(_:perfor
mActionFor:completionHandler:) is called. The second parameter is a
UIApplicationShortcutItem describing the button the user tapped. You can
now respond as appropriate. You must then call the completionHandler,
passing a Bool to indicate success or failure (though in fact I see no
difference in behavior regardless of whether you pass true or false, or
even if you omit to call the completionHandler entirely).
A UIApplicationShortcutItem is just a value class, embodying five
properties describing the button that will appear in the interface. In order for
static quick actions to work, those five properties all have analogs in the
Info.plist. The Info.plist entry that generates your static quick actions is an
array called UIApplicationShortcutItems. This array’s items are
dictionaries, one for each quick action, containing the properties and values
you wish to set. The UIApplicationShortcutItem properties and
corresponding Info.plist keys are:

type

UIApplicationShortcutItemType

An arbitrary string. You’ll use this string in your implementation of app
lication(_:performActionFor:completionHandler:) to identify
the button that was tapped. Required.

localizedTitle

UIApplicationShortcutItemTitle

The button title; a string. Required.

localizedSubtitle

UIApplicationShortcutItemSubtitle

The button subtitle; a string. Optional.

icon

UIApplicationShortcutItemIconType

UIApplicationShortcutItemIconFile

An icon to appear in the button. Optional, but it’s good to supply some
icon, because if you don’t, you’ll get an ugly filled circle by default.
When forming a UIApplicationShortcutItem in code, you’ll supply a
UIApplicationShortcutIcon object as its icon property.
UIApplicationShortcutIcon has three initializers:

init(type:)

A UIApplicationShortcutIconType. This is an enum of about 30
cases, each representing a built-in standard image, such as .time (a
clock icon).

init(templateImageName:)

Works like UIImage’s init(named:). The image will be treated as
a template image. Apple says that the image should be 35x35,
though a larger image will be scaled down appropriately.

init(contact:)

A CNContact (see Chapter 18). The icon will be based on the
contact’s picture or initials.

In the Info.plist, you may use either the IconType key or the IconFile
key. The value for the IconType key is the Objective-C name of a
UIApplicationShortcutIconType case — for example, UIApplicationS

hortcutIconTypeTime. The value for the IconFile key is the name of
an image file in your app, suitable for use with UIImage(named:).

userInfo

UIApplicationShortcutItemUserInfo

An optional dictionary of additional information, whose usage in your a
pplication(_:performActionFor:completionHandler:) is
completely up to you.

Figure 13-5. Quick actions

Imagine, for example, that our app’s purpose is to remind the user
periodically to go get a cup of coffee. Figure 13-5 shows a quick actions
menu of three items generated when the user uses 3D touch to press our
app’s icon. The first two items are static items, generated by our settings in
the Info.plist, which is shown in Figure 13-6.

Figure 13-6. Static quick actions in the Info.plist

The third quick action item in Figure 13-5 is a dynamic item. The idea is
that the user, employing our app to configure a reminder, also gets to set a
time interval as a favorite default interval. We cannot know what this
favorite interval will be until the app runs and the user sets it; that’s why
this item is dynamic. Here’s the code that generates it; all we have to do is
set our shared UIApplication object’s shortcutItems property:

// ... assume we have worked out the subtitle and time ...

let item = UIApplicationShortcutItem(type: "coffee.schedule",

 localizedTitle: "Coffee Reminder", localizedSubtitle: subtitle,

 icon: UIApplicationShortcutIcon(templateImageName: "cup"),

 userInfo: ["time":time])

UIApplication.shared.shortcutItems = [item]

When the user taps a quick action button, our app delegate’s application
(_:performActionFor:completionHandler:) is called. Here you can see
my purpose in setting the userInfo (and UIApplicationShortcutItemUs
erInfo) of these shortcut items; to learn what time interval the user wants
to use for this reminder, we just look at the "time" key:

func application(_ application: UIApplication,

 performActionFor shortcutItem: UIApplicationShortcutItem,

 completionHandler: @escaping (Bool) -> ()) {

 if shortcutItem.type == "coffee.schedule" {

 if let d = shortcutItem.userInfo {

 if let time = d["time"] as? Int {

 // ... do something with time ...

 completionHandler(true)

 }

 }

 }

 completionHandler(false)

}

Local Notifications
A local notification is an alert to the user that can appear even if your app is
not running. Where it may appear depends upon the user’s preferences in
the Settings app, either under Notifications or under your app’s own listing:

On the lock screen
In the notification history; this is the interface that appears when the user
swipes down from the top screen edge (formerly called the notification
center)
As a banner at the top of the screen

In iOS 11, the Settings app distinguishes between a temporary banner,
which vanishes spontaneously after displaying itself briefly, and a persistent
banner, which remains until the user dismisses it. (In earlier systems, the
distinction was between a banner and an alert.)
Figure 13-7 shows a local notification alert appearing in the user’s
notification history.

Figure 13-7. A local notification alert

Your app does not present a local notification; the system does. You hand
the system instructions for when the local notification is to fire, and then
you just stand back and let the system deal with it. That’s why the local
notification can appear even if your app isn’t frontmost or isn’t even
running. Starting in iOS 10, the local notification alert can appear even
when your app is frontmost; but even then it is the system that is presenting
it on your behalf.
The user, in the Settings app, can veto any of the interface options for your
app’s local notifications, or turn them off entirely. Thus, your local
notifications can be effectively suppressed; in that case, you can still create
a local notification, but when it fires, only your app will hear about it, and
only if it is frontmost. Moreover, the system itself will suppress your app’s
local notifications entirely unless the user first explicitly approves; thus, the
user must deliberately opt in if your notifications are ever to appear in any
form. Figure 13-8 shows the alert that the system will show your user, once,
offering the initial opportunity to opt in to your local notifications.

Figure 13-8. The user will see this only once

A local notification alert is also a way for the user to summon your app,
bringing it to the front if it is backgrounded, and launching it if it isn’t
running. This response to the alert is the default action when the user taps
the alert.
You can add further custom actions, in the form of buttons. The user must
manipulate the alert in order to reveal the buttons. For example, on a device
with 3D touch, the user presses with force touch to summon the buttons; on
a device without 3D touch, the user drags downward on the alert, or slides
the alert sideways to reveal the View button and taps the View button. The
custom action buttons then appear. Let’s call this the alert’s secondary
interface. An action button can communicate with your app without
bringing it to the front — though it can alternatively be told to bring your
app to the front as well.
A local notification can carry an attachment, which may be an image, a
sound file, or a video. If it’s an image, the image is previewed with a small
thumbnail in the alert itself. But the real way the user gets to see the
attachment is in the alert’s secondary interface. If the attachment is an
image, the image is shown; if the attachment is audio or video, interface is
provided for playing it.
In Figure 13-7, the little image at the right of the alert is the thumbnail of an
image attachment. In Figure 13-9, the user has summoned the alert’s

secondary interface, displaying the image as well as two custom action
buttons.

Figure 13-9. Local notification secondary interface with custom actions

You can modify the secondary interface by writing a notification content
extension. Figure 13-10 shows an example; I’ve replaced the default title
and body with a caption in my own font, and I’ve shown the attachment
image in a smaller size.

Figure 13-10. Local notification with custom secondary interface

Use of a local notification involves several steps:
1. Your app must request authorization for notifications. This ensures

that the user has seen the opt-in dialog (Figure 13-8).
2. If your notification is to have custom actions or a custom secondary

interface, you must register a notification category, including the
custom actions.

3. Your app creates and schedules the local notification itself.
4. Your app is prepared to hear about the user responding to the

notification alert.
I’ll describe this sequence one step at a time, and then talk about writing a
notification content extension to customize the secondary interface.

You’ll need to import the User Notifications framework (import UserNoti
fications). Most of your activity will ultimately involve the user
notification center, a singleton UNUserNotificationCenter instance
available by calling UNUserNotificationCenter.current().

Authorizing for Local Notifications

The first step in requesting authorization for local notifications is to find out
whether we are already authorized. To do so, call getNotificationSettin
gs on the user notification center, which returns a UNNotificationSettings
object asynchronously. You’ll examine this property of the settings object:

authorizationStatus

A UNAuthorizationStatus: .authorized, .denied, or
.notDetermined.

If the status is .notDetermined, the user has never seen the authorization
request dialog, and you’ll present it by sending requestAuthorization(op
tions:) to the user notification center. A Bool is returned asynchronously,
telling you whether authorization was granted. The options:
(UNAuthorizationOptions) are modes in which you’d like to affect the user
interface:

.badge

You want to be allowed to badge your app’s icon with a number.
Apple’s Phone and Mail apps are familiar examples.

.sound

You want to play a sound when your notification fires.

.alert

You want to present a notification alert when your notification fires.

If the status is .authorized, there’s no point requesting authorization; you
already have it. If the status is .denied, there’s no point requesting
authorization, and there’s probably no point scheduling any local
notifications, as the user will likely never receive them.

The thing to watch out for is that both getNotificationSettings and req
uestAuthorization(options:) return their results asynchronously. This
means that you cannot simply follow a call to getNotificationSettings
with a call to requestAuthorization(options:); if you do, requestAut
horization(options:) will run before getNotificationSettings has a

chance to return its UNNotificationSettings object (see Appendix C).
Instead, you must nest the calls by means of their completion functions, like
this:

let center = UNUserNotificationCenter.current()

center.getNotificationSettings { settings in

 switch settings.authorizationStatus {

 case .notDetermined:

 center.requestAuthorization(options:[.alert, .sound]) { ok, err in

 if let err = err {

 print(err); return

 }

 if ok {

 // authorized; could proceed to schedule a notification

 }

 }

 case .denied: break

 case .authorized: break // or proceed to schedule a notification

 }

}

You might also wish to call getNotificationSettings again later,
perhaps just before configuring and scheduling a local notification. You can
obtain full information on how the user has configured the relevant settings
through the properties of the UNNotificationSettings object:

soundSetting

badgeSetting

alertSetting

notificationCenterSetting

lockScreenSetting

A UNNotificationSetting: .enabled, .disabled, or .notSupported.

alertStyle

A UNAlertStyle: .banner, .alert, or .none.

New in iOS 11, there is also a showPreviewsSetting; this is a
UNShowPreviewsSetting, .always, .whenAuthenticated, or .never, and

corresponds to the Show Previews setting in Settings → Notifications. I’ll
discuss the implications of this setting in a moment.

Notification Category
If your local notification alert is to have a secondary interface that displays
custom action buttons or a custom interface, you’ll need to register a
notification category. You do this before creating the notification. When you
create the notification itself, you match it with a previously registered
category by an arbitrary string identifier; that tells the user notification
center that this notification should be accompanied by this set of action
buttons.
An action button is a UNNotificationAction, a value class whose initializer
is:

init(identifier:title:options:)

The identifier is arbitrary; you’ll use it to identify the button when it is
tapped. The title is the text to appear in the button. The options: are a
UNNotificationActionOptions bitmask:

.foreground

Tapping this button summons your app to the foreground. If not present,
this button will call your app in the background; your app, if suspended,
will be awakened just long enough to respond.

.destructive

This button will be marked in the interface as dangerous (by being
displayed in red).

.authenticationRequired

If this option is present, and if this is not a .foreground button, then if
the user’s device requires a passcode to go beyond the lock screen,
tapping this button in the lock screen will also require a passcode. The
idea is to prevent performance of this action without authentication
directly from the lock screen.

An action, instead of being a button, can be a text field where the user can
type and then tap a button to send the text to your app. This is a
UNTextInputNotificationAction, and its initializer is:

init(identifier:title:options:textInputButtonTitle:textInp

utPlaceholder:)

To configure a category, create your UNNotificationActions and call the
UNNotificationCategory initializer:

init(identifier:actions:intentIdentifiers:options:)

This identifier is how a subsequent notification will be matched to this
category. The most important options: value
(UNNotificationCategoryOptions) is .customDismissAction; if you don’t
set this, your code won’t get any event if the user dismisses your
notification alert without tapping it to summon your app — the default
action — and without tapping a custom action button.

Having created all your categories, you then call setNotificationCatego
ries on the user notification center.
Here’s an example of the entire process:

let action1 = UNNotificationAction(identifier: "snooze", title: "Snooze")

let action2 = UNNotificationAction(identifier: "reconfigure",

 title: "Reconfigure", options: [.foreground])

let cat = UNNotificationCategory(identifier: self.categoryIdentifier,

 actions: [action1, action2], intentIdentifiers: [],

 options: [.customDismissAction])

let center = UNUserNotificationCenter.current()

center.setNotificationCategories([cat])

Scheduling a Local Notification
A local notification is scheduled to fire with respect to a trigger. The trigger
is how the system knows when it’s time to fire. This will be expressed as a
subclass of UNNotificationTrigger:

UNTimeIntervalNotificationTrigger

Fires starting a certain number of seconds from now, possibly repeating
every time that number of seconds elapses. The initializer is:

init(timeInterval:repeats:)

UNCalendarNotificationTrigger
Fires at a certain date-time, expressed using DateComponents, possibly
repeating when the same DateComponents occurs again. For example,
you might use the DateComponents to express nine o’clock in the
morning, without regard to date; the trigger, if repeating, would then be
nine o’clock every morning. The initializer is:

init(dateMatching:repeats:)

UNLocationNotificationTrigger
Fires when the user enters or leaves a certain geographical region. I’ll
discuss this further in Chapter 21.

The payload of the notification is expressed as a
UNMutableNotificationContent object. Its properties are:

title, subtitle, body
Text visible in the notification alert.

attachments

UNNotificationAttachment objects. In the simplest case, attachments
work best if there is just one, as the secondary interface may not give
the user a way to access them all; however, if you are supplying a
custom secondary interface, you might be able to retrieve and display
multiple attachments. Attachment objects must be fairly small, because
the system, in order to present them on your behalf whenever this
notification fires, is going to copy them off to a private secure area of its
own.

sound

A sound (UNNotificationSound) to be played when the notification
fires. You can specify a sound file in your app bundle by name, or call d
efault to specify the default sound.

badge

A number to appear on your app’s icon after this notification fires.
Specify 0 to remove an existing badge. (You can also set or remove
your app’s icon badge at any time by means of the shared application’s
applicationIconBadgeNumber.)

categoryIdentifier

The identifier string of a previously registered category. This is how
your local notification will be associated at presentation time with
custom action buttons or a custom secondary interface.

userInfo

An arbitrary dictionary, to carry extra information you’ll retrieve later.

threadIdentifier

A string; notification alerts with the same thread identifier are clumped
together physically.

launchImageName

Your app might be launched from scratch by the user tapping this
notification’s alert. Suppose that when this happens, you’re going to
configure your app so that it appears differently from how it normally
launches. You might want the momentary launch screen, shown while
your app starts up, to correspond to that different interface. This is how
you specify the alternative launch image to be used in that situation.

Having constructed your notification’s trigger and content, you package
them up with an arbitrary identifier into a UNNotificationRequest by
calling its initializer:

init(identifier:content:trigger:)

You then tell the user notification center to add this notification to its
internal list of scheduled notifications.
As an example, here’s the code that generated Figure 13-7:

let interval = // ... whatever ...

let trigger = UNTimeIntervalNotificationTrigger(

 timeInterval: interval, repeats: false)

let content = UNMutableNotificationContent()

content.title = "Caffeine!"

content.body = "Time for another cup of coffee!"

content.sound = UNNotificationSound.default()

content.categoryIdentifier = self.categoryIdentifier

let url = Bundle.main.url(forResource: "cup2", withExtension: "jpg")!

if let att = try? UNNotificationAttachment(

 identifier: "cup", url: url, options:nil) {

 content.attachments = [att]

}

let req = UNNotificationRequest(

 identifier: "coffeeNotification", content: content, trigger: trigger)

let center = UNUserNotificationCenter.current()

center.add(req)

Preview Suppression
New in iOS 11, the user has the option, in Settings, to turn off previews for
your app’s notifications. This means that, by default, a notification’s alerts
will have their title, subtitle, and body suppressed and replaced by
placeholder text, such as “Notification” (Figure 13-11). The idea is to allow
the user to prevent possibly sensitive details from popping up on the screen
spontaneously. (The secondary interface is unaffected.)

Figure 13-11. Local notification with preview suppressed

To cope with this possibility, you can supply your own placeholder. To do
so, when you register your notification category, call this

UNNotificationCategory initializer:

init(identifier:actions:intentIdentifiers:hiddenPreviewsBo

dyPlaceholder:options:)

The placeholder: is a format string to appear when previews are turned
off. You can also add options: values .hiddenPreviewsShowTitle and .
hiddenPreviewsShowSubtitle if your title and subtitle contain no
sensitive information, causing them to appear even if previews are turned
off.

Hearing About a Local Notification
In order to hear about your scheduled local notification after it fires, you
need to configure some object to be the user notification center’s delegate,
adopting the UNUserNotificationCenterDelegate protocol. You’ll want to
do this very early your app’s lifetime, because you might need to be sent a
delegate message immediately upon launching; thus, application(_:didF
inishLaunchingWithOptions:) is a good place:

func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 let center = UNUserNotificationCenter.current()

 center.delegate = self // or whatever

 return true

}

The UNUserNotificationCenterDelegate protocol consists of just two
optional methods:

userNotificationCenter(_:willPresent:withCompletionHandler:)

You can ask that the system present the local notification alert and play
the sound and badge the icon even if the notification fires when your
app is frontmost, and this is how you do so. (If your app is not frontmost
when the notification fires, this method won’t be called.)

The second parameter is a UNNotification object containing the fire dat
e and your original request (UNNotificationRequest). Thus, you can
identify the local notification if desired, and can respond accordingly;
you can also extract information from it, such as an attachment or the us
erInfo dictionary.
You are handed a completion function; you must call it with some
combination of (UNNotificationPresentationOptions) .alert, .sound,
and .badge — or nothing, if you want to suppress the alert completely.

userNotificationCenter(_:didReceive:withCompletionHandler:)

Called when the user interacts with your local notification alert. The
second parameter is a UNNotificationResponse, consisting of two
properties. One, the notification, is the same UNNotification object
that I described for the previous method; again, you can use it to
identify and extract information from this local notification. The other,
the actionIdentifier, is a string telling you what the user did. There
are three possibilities:

UNNotificationDefaultActionIdentifier

The user performed the default action, tapping the alert to summon
your app.

UNNotificationDismissActionIdentifier

The user dismissed the local notification alert. You won’t hear about
this (and this method won’t be called) unless you specified the .cus
tomDismissAction option for this notification’s category.

A custom action identifier string

The user tapped a custom action button, and this is its identifier.
You are handed a completion function, which you must call when
you’re done. You must be quick, because it may be that you are being
awakened momentarily in the background.

Here’s an example of implementing the first delegate method, telling the
runtime to present the local notification alert within our app:

func userNotificationCenter(_ center: UNUserNotificationCenter,

 willPresent notification: UNNotification,

 withCompletionHandler completionHandler:

 @escaping (UNNotificationPresentationOptions) -> ()) {

 completionHandler([.sound, .alert])

}

Here’s an example of implementing the second delegate method,
responding to the user tapping a custom action button; I use my delay
utility (Appendix B) so as to return immediately before proceeding to obey
the button:

func userNotificationCenter(_ center: UNUserNotificationCenter,

 didReceive response: UNNotificationResponse,

 withCompletionHandler completionHandler: @escaping () -> ()) {

 let id = response.actionIdentifier

 if id == "snooze" {

 delay(0.1) {

 self.rescheduleNotification(response.notification)

 }

 }

 // ... other tests might go here ...

 completionHandler()

}

If the custom action was a text input action, then this
UNNotificationResponse will be a subclass,
UNTextInputNotificationResponse, which has an additional userText
property. Thus, to learn whether this was a text input action, you simply test
its class with is or as?, and then retrieve its userText:

if let textresponse = response as? UNTextInputNotificationResponse {

 let text = textresponse.userText

 // ...

}

Managing Scheduled Notifications

The user notification center is introspectable. You can examine the list of
scheduled notifications; UNUserNotificationCenter methods for managing
scheduled notifications are:

getPendingNotificationRequests(completionHandler:)

removePendingNotificationRequests(withIdentifiers:)

removeAllPendingNotificationRequests

You can learn when each notification is scheduled to fire; if a notification
has an interval trigger or a calendar trigger, you can ask for its nextTrigge
rDate. You can remove a notification from the list, thus canceling it. You
can effectively reschedule a notification by removing it, copying it with any
desired alterations, and adding the resulting notification.
You can also examine the list of notifications that have already fired but
have not yet been removed from the user’s notification history;
UNUserNotificationCenter methods for managing delivered notifications
are:

getDeliveredNotifications(completionHandler:)

removeDeliveredNotifications(withIdentifiers:)

removeAllDeliveredNotifications

By judicious removal of notifications, you can keep the user’s notification
history trimmed; for example, you might prefer that only your most recently
delivered notification should appear in the notification history. You can
even modify the text of a delivered notification, so that the notification will
be up-to-date when the user gets around to dealing with it; to do so, you add
a notification whose identifier is the same as that of an existing notification.

WARNING
Canceling a repeating local notification is up to your code; if you don’t provide the user with a
way of doing that, then if the user wants to prevent the notification from recurring, the only
recourse may be to delete your app.

Notification Content Extensions
If your local notification has a category, you can customize what appears in
its secondary interface. To do so, you write a notification content extension.
This is a target, separate from your app target, because the system needs to
access it outside your app, and even if your app isn’t running.
To add a notification content extension to your app, create a new target and
specify iOS → Application Extension → Notification Content. The
template gives you a good start on your extension. You have a storyboard
with a single scene, and the code for a corresponding view controller that
imports both the User Notifications framework and the User Notifications
UI framework, as well as adopting the UNNotificationContentExtension
protocol.

The view controller code contains a stub implementation of the didReceiv
e(_:) method, which is the only required method. (Other methods are
optional and have mostly to do with playback of media attached to your
local notification.) The parameter is a UNNotification containing your
original UNNotificationRequest; you can examine this and extract
information from it. The idea is that you might use this information to
configure your interface. If you want to extract an attachment, you will
have to wrap your access in calls to the URL methods startAccessingSec
urityScopedResource and stopAccessingSecurityScopedResource.
The only other thing your view controller really needs to do is to set its own
preferredContentSize to the desired dimensions of the custom interface.
Alternatively, you can use autolayout to size the interface from the inside
out, like a table view cell (Chapter 8).
For example, here’s how the custom interface in Figure 13-10 was attained.
The interface consists of a label and an image view. The image view is to
contain the image attachment from the local notification, so I extract the
image from the attachment and set it as the image view’s image; I find that
the interface doesn’t reliably appear unless we also call setNeedsLayout at
the end:

override func viewDidLoad() {

 super.viewDidLoad()

 self.preferredContentSize = CGSize(320, 80)

}

func didReceive(_ notification: UNNotification) {

 let req = notification.request

 let content = req.content

 let atts = content.attachments

 if let att = atts.first, att.identifier == "cup" {

 if att.url.startAccessingSecurityScopedResource() {

 if let data = try? Data(contentsOf: att.url) {

 self.imageView.image = UIImage(data: data)

 }

 att.url.stopAccessingSecurityScopedResource()

 }

 }

 self.view.setNeedsLayout()

}

The template also includes an Info.plist for your extension. You will need to
modify it by configuring these keys:

UNNotificationExtensionCategory

A string corresponding to the categoryIdentifier of the local
notification(s) to which this custom secondary interface is to be applied.

UNNotificationExtensionInitialContentSizeRatio

A number representing the width of your custom interface divided by its
height. This doesn’t have to be perfect — and indeed it probably can’t
be, since you don’t know the actual width of the screen on which this
interface will be displayed — but the idea is to give the system a rough
idea of the size as it prepares to display the custom interface.

UNNotificationExtensionDefaultContentHidden

Optional. A Boolean. Set to YES if you want to eliminate the default
display of the local notification’s title, subtitle, and body from the
custom interface.

UNNotificationExtensionOverridesDefaultTitle

Optional. A Boolean. Set to YES if you want to replace the default
display of your app’s name at the top of the interface (where it says
“Coffee Time!” in Figure 13-10) with a title of your own choosing. To
determine that title, set your view controller’s title property in your di
dReceive(_:) implementation.

Figure 13-12 shows the relevant part of the Info.plist for my content
extension.

Figure 13-12. A content extension’s Info.plist

Your custom interface (the view controller’s main view) is not interactive.
There is no point putting a UIButton into the interface, for example, as the
user cannot tap it. But this is not quite as harsh a restriction as you might
suppose, because the interface has these features:

Play/pause button
If you like, the runtime can add a tappable play/pause button for you.
This is useful if your custom interface contains video or audio material.
Three UNNotificationContentExtension properties can be overridden to
dictate that the play/pause button should appear and where it should go,
and two methods can be implemented to hear when the user taps the
button.

Custom action buttons
The user can tap your custom action buttons. You can hear about such a
tap in your content extension’s view controller by implementing didRec
eive(_:completionHandler:).

Custom input view

As I described in Chapter 10 (“Input view without a text field”), your
view controller can summon a custom input view, to appear where the
keyboard would be. This is a custom view, so it can contain live
interface.

In your implementation of didReceive(_:completionHandler:), or in
your response to the user tapping in your custom input view, you can
change the interface. Thus your user feels that the interface is alive and
responsive, even though the main view itself is not interactive.

Here’s some more about didReceive(_:completionHandler:). By
implementing this method, you have effectively put yourself in front of
your user notification center delegate’s userNotificationCenter(_:didR
eceive:withCompletionHandler:); the user’s tap on a custom action
button will be routed initially to the content extension’s view controller
instead. The runtime now needs to know precisely how to proceed; you tell
it by calling the completion function with one of these responses
(UNNotificationContentExtensionResponseOption):

.doNotDismiss

The local notification alert remains in place, still displaying the custom
secondary interface.

.dismiss

The alert is dismissed.

.dismissAndForwardAction

The alert is dismissed and the action is passed along to your user
notification center delegate’s userNotificationCenter(_:didReceiv
e:withCompletionHandler:).

Even if you tell the completion function to dismiss the alert, you can still
modify the custom interface, delaying the call to the completion function so
that the user has time to see the change.

Today Extensions
The interface that appears when the user swipes sideways in the lock screen
or the home screen is the today list. Here, apps can contribute today widgets
— informative bits of interface. For example, Apple’s Weather app posts
the local temperature here, in a widget that the user can tap to open the
Weather app itself (Figure 13-13).

Figure 13-13. A built-in today extension

Your app, too, can provide a widget to appear here. To make that happen,
you give your app a today extension. Your app vends the extension, and the
user has the option of adding it to the today list (Figure 13-14).

Figure 13-14. A custom today extension

To add a today extension to your app, create a new target and specify iOS
→ Application Extension → Today Extension. The template gives you a
good start on your extension. You have a storyboard with a single scene,
and the code for a corresponding view controller that adopts the
NCWidgetProviding protocol. You might need to edit the extension’s

Info.plist to set the “Bundle display name” entry — this is the title that will
appear above your extension.

TIP
The today extension target will be explicitly linked to the Notification Center framework (import
NotificationCenter). Do not meddle with this linkage. This framework is crucial; without it,
your today extension target may compile, but the today extension itself will crash.

Design your extension’s interface in the storyboard provided. To size your
extension’s height, provide sufficient constraints to determine the full height
of the interface from the inside out, or set your view controller’s preferred
ContentSize.
Each time your today extension’s interface is about to appear, your code is
given an opportunity to update its interface, through its implementation of
the NCWidgetProviding method widgetPerformUpdate(completionHand
ler:). Be sure to finish up by calling the completionHandler, handing it
an NCUpdateResult, which will be .newData, .noData, or .failed. Time-
consuming work should be performed off the main thread (see Chapter 24):

func widgetPerformUpdate(completionHandler:

 @escaping (NCUpdateResult) -> ()) {

 // ... do stuff quickly ...

 completionHandler(.newData)

}

Communication back to your app can be a little tricky. In Figure 13-14, two
buttons invite the user to set up a reminder notification; I’ve implemented
these to open our CoffeeTime app by calling open(_:completionHandle
r:) — a method of the automatically provided extensionContext, not the
shared application, which is not available from here:

@IBAction func doButton(_ sender: Any) {

 let v = sender as! UIView

 var comp = URLComponents()

 comp.scheme = "coffeetime"

 comp.host = String(v.tag) // button's tag is number of minutes

 if let url = comp.url {

 self.extensionContext?.open(url)

 }

}

The CoffeeTime app receives this message because I’ve given it two things:

A custom URL scheme

The coffeetime scheme is declared in the app’s Info.plist (Figure 13-
15).

Figure 13-15. A custom URL declaration

An implementation of application(_:open:options:)

In the app delegate, I’ve implemented application(_:open:option
s:) to analyze the URL when it arrives. I’ve coded the original URL so
that the “host” is actually the number of minutes announced in the
tapped button; thus, I can respond appropriately (presumably by
scheduling a local notification for that number of minutes from now):

func application(_ app: UIApplication, open url: URL,

 options: [UIApplicationOpenURLOptionsKey : Any]) -> Bool {

 let scheme = url.scheme

 let host = url.host

 if scheme == "coffeetime" {

 if let host = host, let min = Int(host) {

 // ... do something here ...

 return true

 }

 }

 return false

}

A today extension’s widget interface can have two heights: compact and
expanded. If you take advantage of this feature, your widget will have a
Show More or Show Less button (similar to the Weather app’s widget). To
do so:

1. Run this code early in the life of your view controller, probably in its
viewDidLoad:

self.extensionContext?.widgetLargestAvailableDisplayMode = .expanded

2. Implement widgetActiveDisplayModeDidChange(_:withMaximumS
ize:). The first parameter is an NCWidgetDisplayMode, either .com
pact or .expanded. The idea is that you would respond by changing
your view controller’s preferredContentSize to the smaller or
larger size, respectively.

If your app has a today extension, the today extension widget is displayed
automatically when the user performs the 3D touch gesture that summons
quick actions. Since our widget is interactive, we actually don’t need the
static quick action buttons shown in Figure 13-5!

Activity Views
An activity view is the view belonging to a UIActivityViewController,
typically appearing when the user taps a Share button. To display it, you
start with one or more pieces of data, such as a string or an image, that you
want the user to have the option of sharing or working with. The activity
view, when it appears, will then contain an icon for every activity
(UIActivity) that can work with this type of data. The user may tap an icon
in the activity view, and is then perhaps shown additional interface,
belonging to the provider of the chosen activity. Figure 13-16 shows an
example, from Mobile Safari.

Figure 13-16. An activity view

In Figure 13-16, the top row of the activity view lists some applicable built-
in system-wide activities; the bottom row shows some activities provided
internally by Safari itself. When you present an activity view within your
app, your app can add to the lower row additional activities that are
available only within your app. Moreover, your app can provide system-
wide activities that are available when any app presents an activity view;
such system-wide activities come in two forms:

Share extensions
A share extension is shown in the upper row of an activity view. Share
extensions are for apps that can accept information into themselves,
either for storage, such as Notes and Reminders, or for sending out to a
server, such as Twitter and Facebook.

Action extensions
An action extension is shown in the lower row of an activity view.
Action extensions offer to perform some kind of manipulation on the

data provided by the host app, and can hand back the resulting data in
reply.

I’ll describe how to present an activity view and how to construct an
activity that’s private to your app. Then I’ll give an example of writing an
action extension, and finally an example of writing a share extension.

Presenting an Activity View
You will typically want to present an activity view in response to the user
tapping a Share button in your app. To do so:

1. Instantiate UIActivityViewController. The initializer you’ll be calling
is init(activityItems:applicationActivities:), where the first
argument is an array of objects to be shared or operated on, such as
string or image objects. Presumably these are objects associated
somehow with the interface the user is looking at right now.

2. Set the activity view controller’s completionWithItemsHandler
property to a function that will be called when the user’s interaction
with the activity interface ends.

3. Present the activity view controller, as a presented view controller; on
the iPad, it will be a popover, so you’ll also configure the popover
presentation controller. The presented view or popover will be
dismissed automatically when the user cancels or chooses an activity.

So, for example:

let url = Bundle.main.url(forResource:"sunglasses", withExtension:"png")!

let things : [Any] = ["This is a cool picture", url]

let avc = UIActivityViewController(

 activityItems:things, applicationActivities:nil)

avc.completionWithItemsHandler = { type, ok, items, err in

 // ...

}

self.present(avc, animated:true)

if let pop = avc.popoverPresentationController {

 let v = sender as! UIView

 pop.sourceView = v

 pop.sourceRect = v.bounds

}

There is no cancel button in the popover presentation of the activity view;
the user cancels by tapping outside the popover. Actually, the user can
cancel by tapping outside the activity view even on the iPhone.
The activity view is populated automatically with known system-wide
activities that can handle any of the types of data you provided as the activ
ityItems: argument. These activities represent UIActivity types, and are
designated by UIActivityType constants:

.postToFacebook

.postToTwitter

.postToWeibo

.message

.mail

.print

.copyToPasteboard

.assignToContact

.saveToCameraRoll

.addToReadingList

.postToFlickr

.postToVimeo

.postToTencentWeibo

.airDrop

.openInIBooks

.markupAsPDF

Consult the UIActivity class documentation to learn what types of activity
item each of these activities can handle. For example, the .mail activity
will accept a string, an image, or a file (such as an image file) designated by
a URL; it will present a mail composition interface with the activity item(s)
in the body. Figure 13-17 shows what appears if the user taps the Mail icon
in our activity view.

Figure 13-17. Mail accepts text and an image URL

Since the default is to include all the system-wide activities that can handle
the provided data, if you don’t want a certain system-wide activity included
in the activity view, you must exclude it explicitly. You do this by setting
the UIActivityViewController’s excludedActivityTypes property to an
array of activity type constants.

TIP
The Notes and Reminders activities have no corresponding UIActivity, because they are
implemented as share extensions; it is up to the user to exclude them if desired.

In the UIActivityViewController initializer init(activityItems:applica
tionActivities:), if you would prefer that an element of the activityIt
ems: array should be an object that will supply the data instead of the data
itself, make it an object that adopts the UIActivityItemSource protocol.
Typically, this object will be self (the view controller in charge of all this
code). Here’s a minimal, artificial example:

extension ViewController : UIActivityItemSource {

 func activityViewControllerPlaceholderItem(

 _ activityViewController: UIActivityViewController) -> Any {

 return ""

 }

 func activityViewController(

 _ activityViewController: UIActivityViewController,

 itemForActivityType activityType: UIActivityType?) -> Any? {

 return "Coolness"

 }

}

The first method provides a placeholder that exemplifies the type of data
that will be returned; the second method returns the actual data. The second
method can return different data depending on the activity type that the user
chose; for example, you could provide one string to Notes and another
string to Mail.
The UIActivitySource protocol also answers a commonly asked question
about how to get the Mail activity to populate the mail composition form
with a default subject:

extension ViewController : UIActivityItemSource {

 // ...

 func activityViewController(

 _ activityViewController: UIActivityViewController,

 subjectForActivityType activityType: UIActivityType?) -> String {

 return "This is cool"

 }

}

If your activityItems: data is time-consuming to provide, substitute an
instance of a UIActivityItemProvider subclass:

let avc = UIActivityViewController(

 activityItems:[MyProvider(placeholderItem: "")],

 applicationActivities:nil)

The placeholderItem: in the initializer signals the type of data that this
UIActivityItemProvider object will actually provide. Your
UIActivityItemProvider subclass should override the item property to
return the actual object. This property will be consulted on a background
thread, and UIActivityItemProvider is itself an Operation subclass (see
Chapter 24).

Custom Activities
The purpose of the applicationActivities: parameter of init(activit
yItems:applicationActivities:) is for you to list any additional
activities implemented internally by your own app. Their icons will then
appear as choices in the lower row when your app presents an activity view.
Each activity will be an instance of one of your own UIActivity subclasses.
To illustrate, I’ll create a minimal (and nonsensical) activity called Be Cool
that accepts string activity items. It is a UIActivity subclass called
MyCoolActivity. So, to include Be Cool among the choices presented to the
user by a UIActivityViewController, I’d say:

let things : [Any] = ["This is a cool picture", url]

let avc = UIActivityViewController(

 activityItems:things, applicationActivities:[MyCoolActivity()])

Now let’s implement MyCoolActivity. It has an array property called
items, for reasons that will be apparent in a moment. We need to arm

ourselves with an image to represent this activity in the activity view; this
will be treated as a template image. It should be no larger than 60×60
(76×76 on iPad); it can be smaller, and looks better if it is, because the
system will draw a rounded rectangle around it, and the image should be
somewhat inset from this. It needn’t be square, as it will be centered in the
rounded rectangle automatically.
Here’s the preparatory part of the implementation of MyCoolActivity:

var items : [Any]?

var image : UIImage

override init() {

 // ... construct self.image ...

 super.init()

}

override class var activityCategory : UIActivityCategory {

 return .action // the default

}

override var activityType : UIActivityType {

 return UIActivityType("com.neuburg.matt.coolActivity")

}

override var activityTitle : String? {

 return "Be Cool"

}

override var activityImage : UIImage? {

 return self.image

}

override func canPerform(withActivityItems activityItems: [Any]) -> Bool {

 for obj in activityItems {

 if obj is String {

 return true

 }

 }

 return false

}

override func prepare(withActivityItems activityItems: [Any]) {

 self.items = activityItems

}

If we return true from canPerform(withActivityItems:), then an icon
for this activity, labeled Be Cool and displaying our activityImage, will
appear in the activity view (Figure 13-18).

Figure 13-18. Our activity’s icon appears in our activity view

If the user taps our icon, prepare(withActivityItems:) will be called.
We retain the activityItems into our items property, because they won’t
be arriving again when we are actually told to perform the activity. The next
step is that we will be called upon to perform the activity. To do so, we
implement one of these:

perform method
We immediately perform the activity directly, using the activity items
we’ve already retained. If the activity is time-consuming, the activity
should be performed on a background thread (Chapter 24) so that we
can return immediately; the activity view interface will be taken down
and the user will be able to go on interacting with the app.

activityViewController property
We have further interface that we’d like to show the user as part of the
activity, so we provide an instance of a UIViewController subclass. The
activity view mechanism will present this view controller for us; it is
not our job to present or dismiss it. (We may, however, present or
dismiss dependent interface. For example, if our view controller is a
navigation controller with a custom root view controller, we might push
another view controller onto its stack while the user is interacting with
the activity.)

No matter which of these two methods we implement, we must eventually
call this activity instance’s activityDidFinish(_:). This is the signal to
the activity view mechanism that the activity is over. If the activity view
mechanism is still presenting any interface, it will be taken down, and the
argument we supply here, a Bool signifying whether the activity completed
successfully, will be passed into the function we supplied earlier as the
activity view controller’s completionWithItemsHandler. So, for example:

override func perform() {

 // ... do something with self.items here ...

 self.activityDidFinish(true)

}

If your UIActivity is providing a view controller as its activityViewContr
oller, it will want to hand that view controller a reference to self
beforehand, so that the view controller can call its activityDidFinish
(_:) when the time comes.
For example, suppose our activity involves letting the user draw a mustache
on a photo of someone. Our view controller will provide interface for doing
that, including some way of letting the user signal completion, such as a
Cancel button and a Done button. When the user taps either of those, we’ll
do whatever else is necessary (such as saving the altered photo somewhere
if the user tapped Done) and then call activityDidFinish(_:). Thus, we
could implement the activityViewController property like this:

override var activityViewController : UIViewController? {

 let mvc = MustacheViewController(activity: self, items: self.items!)

 return mvc

}

And then MustacheViewController would have code like this:

weak var activity : UIActivity?

var items: [Any]

init(activity:UIActivity, items:[Any]) {

 self.activity = activity

 self.items = items

 super.init(nibName: "MustacheViewController", bundle: nil)

}

// ... other stuff ...

@IBAction func doCancel(_ sender: Any) {

 self.activity?.activityDidFinish(false)

}

@IBAction func doDone(_ sender: Any) {

 self.activity?.activityDidFinish(true)

}

Note that MustacheViewController’s reference to the UIActivity (self.act
ivity) is weak; otherwise, a retain cycle ensues.

NOTE
The purpose of the SFSafariViewController delegate method safariViewController(_:activi
tyItemsFor:title:) (Chapter 11) is now clear. This view controller’s view appears inside your
app, but it isn’t your view controller, its Share button is not your button, and the activity view that
it presents is not your activity view. Therefore, you need some other way to add custom
UIActivity items to that activity view; to do so, implement this method.

Action Extensions
To provide a system-wide activity — one that appears when some other app
puts up an activity view — you can write a share extension (to appear in the
upper row) or an action extension (to appear in the lower row). Your app
can provide just one share extension, but can provide multiple action
extensions. I’ll describe first the basics of writing an action extension.
Start with the appropriate target template, iOS → Application Extension →
Action Extension. There are two kinds of action extension, with or without
an interface; you’ll make your choice in the second pane as you create the
target.
In the Info.plist, in addition to setting the bundle name, which will appear
below the activity’s icon in the activity view, you’ll need to specify what
types of data this activity accepts as its operands. In the NSExtensionActiv
ationRule dictionary, you’ll provide one or more keys, such as:

NSExtensionActivationSupportsFileWithMaxCount

NSExtensionActivationSupportsImageWithMaxCount

NSExtensionActivationSupportsMovieWithMaxCount

NSExtensionActivationSupportsText

NSExtensionActivationSupportsWebURLWithMaxCount

For the full list, see the “Action Extension Keys” section of Apple’s
Information Property List Key Reference. It is also possible to declare in a
more sophisticated way what types of data your activity accepts, by writing
an NSPredicate string as the value of the NSExtensionActivationRule
key. Figure 13-19 shows the relevant part of the Info.plist for an action
extension that accepts one text object.

Figure 13-19. An action extension Info.plist

When your action extension appears in an activity view within some other
app that provides the appropriate type(s) of data, it will be represented by
an icon which you need to specify in your action extension target. This icon
is the same size as an app icon, and can conveniently come from an asset
catalog; it will be treated as a template image.
There is one big difference between an action extension and a custom
UIActivity: an action extension can return data to the calling app. The
transport mechanism for this data involves the use of NSItemProviders,
already familiar from drag and drop (Chapter 9).

Action extension without an interface

I’ll start by giving an example of an action extension that has no interface.
Our code goes into the class provided by the template,
ActionRequestHandler, an NSObject subclass.
Our example extension takes a string object and returns a string. In
particular, it accepts a string that might be the two-letter abbreviation of one
of the U.S. states, and if it is, it returns the name of the actual state. To
prepare, we provide some properties:

var extensionContext: NSExtensionContext?

let desiredType = kUTTypePlainText as String

let list : [String:String] = { /* ... */ }()

self.extensionContext is a place to store the NSExtensionContext that
will be provided to us. self.desiredType is just a convenient constant
expressing the acceptable data type. In addition, we have a property self.l
ist which, as in Chapter 10, is a dictionary whose keys are state name
abbreviations and whose values are the corresponding state names.

There is just one entry point into our extension’s code — beginRequest(wi
th:). Here we must store a reference to the NSExtensionContext provided
as the parameter, retrieve the data, process the data, and return the result.
You will probably want to factor the processing of the data out into a
separate function; I’ve called mine process(item:). Here’s a sketch of my
beginRequest(with:) implementation; as it shows, my plan is to make
one of two possible calls to self.process(item:), either passing the
string retrieved from items, or else passing nil to signify that there was no
data:

func beginRequest(with context: NSExtensionContext) {

 self.extensionContext = context

 let items = self.extensionContext!.inputItems

 // ... if there is no data, call self.process(item:) with nil

 // ... if there is data, call self.process(item:) with the data

}

Now let’s implement the retrieval of the data. Think of this as a nest of
envelopes that we must examine and open:

What arrives from the NSExtensionContext’s inputItems is an array of
NSExtensionItem objects.

An NSExtensionItem has an attachments array of NSItemProvider
objects.
An NSItemProvider vends items, each of which represents the data in a
particular format. In particular:
— We can ask whether an NSItemProvider has an item of a particular
type, by calling hasItemConformingToTypeIdentifier(_:).

— We can retrieve the item of a particular type, by calling loadItem(fo
rTypeIdentifier:options:completionHandler:). The item may be
vended lazily, and can thus take time to prepare and provide; so we
proceed in the completionHandler: function to receive the item and do
something with it.

We are expecting only one item, so it will be provided by the first
NSItemProvider inside the first NSExtensionItem. Here, then, is the code
that I omitted from beginRequestWithExtensionContext:

guard let extensionItem = items[0] as? NSExtensionItem,

 let provider = extensionItem.attachments?[0] as? NSItemProvider,

 provider.hasItemConformingToTypeIdentifier(self.desiredType)

 else {

 self.process(item:nil)

 return

 }

provider.loadItem(forTypeIdentifier: self.desiredType) { item, err in

 DispatchQueue.main.async {

 self.process(item: item as? String)

 }

}

Now we have the data, and we’re ready to do something with it. In my
code, that happens in the method that I’ve named process(item:). This
method must do two things:

1. Call the NSExtensionContext’s completeRequest(returningItems:
completionHandler:) to hand back the data.

2. Release the NSExtensionContext by setting our retaining property to n
il.

I’ll start with the simplest case: we didn’t get any data. In that case, the
returned value is nil:

func process(item:String?) {

 var result : [NSExtensionItem]? = nil

 // ... what goes here? ...

 self.extensionContext?.completeRequest(returningItems: result)

 self.extensionContext = nil

}

That was easy, because we cleverly omitted the only case where we have
any work to do. Now let’s implement that case. We have received a string in
the item parameter. The first question is: is it the abbreviation of a state? To
answer that question, I’ve implemented a utility function:

func state(for abbrev:String) -> String? {

 return self.list[abbrev.uppercased()]

}

If we call that method with our item string and the answer comes back nil,
we simply proceed just as before — we return nil:

func process(item:String?) {

 var result : [NSExtensionItem]? = nil

 if let item = item,

 let state = self.state(for:item) {

 // ... what goes *here*? ...

 }

 self.extensionContext?.completeRequest(returningItems: result)

 self.extensionContext = nil

}

We come at last to the dreaded moment that I have been postponing all this
time: what if we get an abbreviation? In that case, we must reverse the

earlier process of opening envelopes: we must put envelopes within
envelopes and hand back an array of NSExtensionItems. We have only one
result, so this will be an array of one NSExtensionItem, whose attachment
s is an array of one NSItemProvider, whose item is the string and whose ty
peIdentifier is the type of that string. Confused? I’ve written a little
utility function that should clarify:

func stuffThatEnvelope(_ item:String) -> [NSExtensionItem] {

 let extensionItem = NSExtensionItem()

 let itemProvider = NSItemProvider(

 item: item as NSString, typeIdentifier: desiredType)

 extensionItem.attachments = [itemProvider]

 return [extensionItem]

}

We can now write the full implementation of process(item:), and our
action extension is finished:

func process(item:String?) {

 var result : [NSExtensionItem]? = nil

 if let item = item,

 let state = self.state(for:item) {

 result = self.stuffThatEnvelope(state)

 }

 self.extensionContext?.completeRequest(returningItems: result)

 self.extensionContext = nil

}

Action extension with an interface
If an action extension has an interface, then the template provides a
storyboard with one scene, along with the code for a corresponding
UIViewController class. The code is actually simpler, because:

A view controller already has an extensionContext property, and it is
automatically set for us.
There are no special entry points to our code. This is a
UIViewController, and everything happens just as you would expect.

So, in my implementation, I use viewDidLoad to open the data envelope
from self.extensionContext, get the abbreviation if there is one, get the
expansion if there is one (storing it in a property, self.expansion), and
stop. I’ve equipped my interface with a Done button and a Cancel button.
The action methods for those buttons are where I hand the result back to the
extensionContext:

@IBAction func cancel(_ sender: Any) {

 self.extensionContext?.completeRequest(returningItems: nil)

}

@IBAction func done(_ sender: Any) {

 self.extensionContext?.completeRequest(

 returningItems: self.stuffThatEnvelope(self.expansion!))

}

The runtime responds by dismissing the interface in good order.

Receiving data from an action extension
Now switch roles and pretend that your app is presenting a
UIActivityViewController. We now know that this activity view might
contain action extension icons. If the user taps one, how will your code
retrieve the result? In my earlier implementation, I avoided this issue by
pretending that action extensions didn’t exist. Here’s a more complete
sketch:

let avc = UIActivityViewController(

 activityItems:[things], applicationActivities:nil)

avc.completionWithItemsHandler = { type, ok, items, err in

 if ok {

 guard let items = items, items.count > 0 else { return }

 // ... open the envelopes! ...

 }

}

self.present(avc, animated:true)

If what the user interacted with in the activity view is one of the built-in
UIActivity types, no data has been returned. But if the user interacted with

an action extension, then there may be data inside the items envelopes, and
it is up to us to retrieve it.

The structure here is exactly the same as the items of an
NSExtensionContext: items is an array, each element of which is
presumably an NSExtensionItem, whose attachments is presumably an
array of NSItemProvider objects, each of which can be queried for its data.
In the case where we are prepared to receive a string, therefore, the code is
effectively just the same as the envelope-opening code we’ve already
written:

guard let items = items, items.count > 0 else { return }

guard let extensionItem = items[0] as? NSExtensionItem,

 let provider = extensionItem.attachments?[0] as? NSItemProvider,

 provider.hasItemConformingToTypeIdentifier(self.desiredType)

 else { return }

provider.loadItem(forTypeIdentifier: self.desiredType) { item, err in

 DispatchQueue.main.async {

 if let s = item as? String {

 // ... do something with s ...

 }

 }

}

Share Extensions
Your app can appear in the top row of an activity view if it provides a share
extension. A share extension is similar to an action extension, but simpler:
it accepts some data and returns nothing. The idea is that it will then do
something with that data, such as storing it or posting it to a server.
The user, after tapping an app’s icon in the activity view, is given an
opportunity to interact further with the data, possibly modifying it or
canceling the share operation. To make this possible, the Share Extension
template, when you create the target (iOS → Application Extension →
Share Extension), will give you a storyboard and a view controller. This
view controller can be one of two types:

An SLComposeServiceViewController

The SLComposeServiceViewController provides a standard interface
for displaying editable text in a UITextView along with a possible
preview, plus user-configurable option buttons, along with a Cancel
button and a Post button.

A plain view controller subclass
If you opt for a plain view controller subclass, then designing its
interface, including providing a way to dismiss it, will be up to you.

Whichever form of interface you elect to use, your way of dismissing it will
be this familiar-looking incantation:

self.extensionContext?.completeRequestReturningItems([])

A custom view controller is easy to implement, so I won’t bother to discuss
it. Instead, I’ll describe briefly some of the basics of working with an
SLComposeServiceViewController. Its view is displayed with a text view
already populated with the text passed along from the host app, so there’s
very little more for you to do; you can add a preview view and option
buttons, and that’s just about all. I’ll concentrate on option buttons.
An option button displays a title string and a value string. When tapped, it
will typically summon interface where the user can change the value string.
In Figure 13-20, I’ve created a single option button — a Size button, whose
value can be Large, Medium, or Small. (I have no idea what this choice is
supposed to signify for my app; it’s only an example!)

Figure 13-20. A share extension

To create the configuration option, I override the
SLComposeServiceViewController configurationItems method to return
an array of one SLComposeSheetConfigurationItem. Its title and value
are displayed in the button. Its tapHandler will be called when the button
is tapped. Typically, you’ll create a view controller and push it into the
interface with pushConfigurationViewController:

weak var config : SLComposeSheetConfigurationItem?

var selectedText = "Large" {

 didSet {

 self.config?.value = self.selectedText

 }

}

override func configurationItems() -> [Any]! {

 let c = SLComposeSheetConfigurationItem()!

 c.title = "Size"

 c.value = self.selectedText

 c.tapHandler = { [unowned self] in

 let tvc = TableViewController(style: .grouped)

 tvc.selectedSize = self.selectedText

 tvc.delegate = self

 self.pushConfigurationViewController(tvc)

 }

 self.config = c

 return [c]

}

My TableViewController is a UITableViewController subclass. Its table
view displays three rows whose cells are labeled Large, Medium, and
Small, along with a checkmark (compare the table view described in “Cell
Choice and Static Tables”). The tricky part is that I need a way to
communicate with this table view controller: I need to tell it what the
configuration item’s value is now, and I need to hear from it what the user
chooses in the table view. So I’ve given the table view controller a property
(selectedSize) where I can deposit the configuration item’s value, and
I’ve declared a delegate protocol so that the table view controller can set a
property of mine (selectedText). This is the relevant portion of my
TableViewController class:

protocol SizeDelegate : class {

 var selectedText : String {get set}

}

class TableViewController: UITableViewController {

 var selectedSize : String?

 weak var delegate : SizeDelegate?

 override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 let cell = tableView.cellForRow(at:indexPath)!

 let s = cell.textLabel!.text!

 self.selectedSize = s

 self.delegate?.selectedText = s

 tableView.reloadData()

 }

 // ...

}

The navigation interface is provided for me, so I don’t have to do anything
about popping the table view controller: the user will do that by tapping the
Back button after choosing a size. In my configurationItems
implementation, I cleverly kept a reference to my configuration item as sel
f.config. When the user chooses from the table view, its tableView(_:di
dSelectRowAt:) sets my selectedText, and my selectedText setter
observer promptly changes the value of the configuration item to whatever
the user chose.

The user, when finished interacting with the share extension interface, will
tap one of the provided buttons, either Cancel or Post. The Cancel button is
handled automatically: the interface is dismissed. The Post button is hooked
automatically to my didSelectPost implementation, where I fetch the text
from my own contentText property, do something with it, and dismiss the
interface:

override func didSelectPost() {

 let s = self.contentText

 // ... do something with it ...

 self.extensionContext?.completeRequest(returningItems:[])

}

If the material provided from the host app were more elaborate, I would
pull it out of self.extensionContext in the same way as for an action
extension. If there were networking to do at this point, I would initiate a
background URLSession (as explained in Chapter 23).
There is no official way, as far as I can tell, to change the title or appearance
of the Cancel and Post buttons. Apps that show different buttons, such as
Reminders and Notes, are either not using
SLComposeServiceViewController or are using a technique available only
to Apple. I was able to change my Post button to a Save button like this:

override func viewDidLayoutSubviews() {

 super.viewDidLayoutSubviews()

 self.navigationController?.navigationBar.topItem?

 .rightBarButtonItem?.title = "Save"

}

But whether that’s legal, and whether it will keep working on future
systems, is anybody’s guess.

HOW TO DEBUG AN EXTENSION
An extension doesn’t run in your process, so breakpoints and logging are ineffective. However,
there is a simple technique that solves the problem.

Your project contains multiple schemes — one for your host app, and one each for any
extensions it contains. Run the host app, to copy it onto the destination. Now switch the Scheme
pop-up menu in the Xcode window toolbar to your extension, and run that. A dialog appears
asking what app to run. Select your host app and click Run.

Your host app will run; proceed to summon your extension and exercise it. What you’re
debugging is the extension, and all debugging features will work as expected.

Part III. Some Frameworks

This part of the book gets you started on some of Cocoa’s specialized
frameworks.

Chapter 14 talks about playing sound.
Chapter 15 talks about playing video and introduces the powerful AV
Foundation framework.
Chapter 16 is about how to access the user’s music library.
Chapter 17 is about how to access the user’s photo library, and discusses
using the device’s camera.
Chapter 18 is about how to access the user’s contacts.
Chapter 19 is about how to access the user’s calendars and reminders.
Chapter 20 explains how to display and customize a map, how to show
the user’s current location, and how to convert between a location and an
address.
Chapter 21 is about the device sensors that tell your app where the
device is located and how it is oriented.

Chapter 14. Audio

iOS provides various technologies that allow your app to produce, record,
and process sound. The topic is a large one, so this chapter can only
introduce it; I’ll concentrate on basic sound production. You’ll want to read
Apple’s Media Playback Programming Guide and Core Audio Overview.
None of the classes discussed in this chapter provides any interface within
your app for allowing the user to stop and start playback of sound (transport
control). If you want transport interface, here are some options:

You can create your own interface.
You can associate the built-in “remote control” buttons with your
application, as I’ll explain in this chapter.

A web view (Chapter 11) supports the HTML5 <audio> tag; this can be
a simple, lightweight way to play audio and to allow the user to control
playback (including use of AirPlay).
You could treat the sound as a movie and use the interface-providing
classes that I’ll discuss in Chapter 15; this can also be a good way to
play a sound file located remotely over the Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of
the basic computer “beep.” This is implemented through System Sound
Services, part of the Audio Toolbox framework; you’ll need to import Aud
ioToolbox. The API for playing a system sound comes in two forms — the
old form and the new form (introduced in iOS 9). I’ll show you the old
form first (it still works, and has not yet been deprecated); then I’ll
demonstrate the new form.

The old form involves calling one of two C functions, which behave very
similarly to one another:

AudioServicesPlayAlertSound

On an iPhone, may also vibrate the device, depending on the user’s
settings.

AudioServicesPlaySystemSound

On an iPhone, there won’t be an accompanying vibration, but you can
specifically elect to have this “sound” be a device vibration (by passing
kSystemSoundID_Vibrate as the name of the “sound”).

The sound file to be played needs to be an uncompressed AIFF or WAV file
(or an Apple CAF file wrapping one of those). To hand the sound to these
functions, you’ll need a SystemSoundID, which you obtain by calling Audi
oServicesCreateSystemSoundID with a URL that points to a sound file.
In this example, the sound file is in our app bundle:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!

var snd : SystemSoundID = 0

AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

AudioServicesPlaySystemSound(snd)

That code works — we hear the sound — but there’s a problem: we have
failed to exercise proper memory management. We need to call AudioServ
icesDisposeSystemSoundID to release our SystemSoundID. But when
shall we do this? AudioServicesPlaySystemSound executes
asynchronously. So the solution can’t be to call AudioServicesDisposeSy
stemSoundID in the next line of the same snippet, because this would
release our sound just as it is about to start playing, resulting in silence.
The solution is to implement a sound completion function to be called when
the sound has finished playing. The sound completion function is specified
by calling AudioServicesAddSystemSoundCompletion. It must be
supplied as a C pointer-to-function, but Swift lets you pass a global or local

Swift function (including an anonymous function) where a C pointer-to-
function is expected. So our code now looks like this:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!

var snd : SystemSoundID = 0

AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

AudioServicesAddSystemSoundCompletion(snd, nil, nil, { sound, context in

 AudioServicesRemoveSystemSoundCompletion(sound)

 AudioServicesDisposeSystemSoundID(sound)

}, nil)

AudioServicesPlaySystemSound(snd)

Note that when we are about to release the sound, we first release the sound
completion function itself.
Now for the new form. The new calls take two parameters: a
SystemSoundID and a completion function. The completion function takes
no parameters; we can still refer to the SystemSoundID in order to dispose
of its memory, because it is in scope. Here, we’ll call AudioServicesPlayS
ystemSoundWithCompletion instead of
AudioServicesPlaySystemSound; we no longer need to call AudioServic
esRemoveSystemSoundCompletion, because we never called AudioServic
esAddSystemSoundCompletion:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!

var snd : SystemSoundID = 0

AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

AudioServicesPlaySystemSoundWithCompletion(snd) {

 AudioServicesDisposeSystemSoundID(snd)

}

Audio Session
Audio on the device — all audio belonging to all apps and processes — is
controlled and mediated by the media services daemon. This daemon must
juggle many demands; your app is just one of many clamoring for its
attention and cooperation. As a result, your app’s audio can be affected and
even overruled by other apps and external factors.

Your communication with the audio services daemon is conducted through
an audio session, which is a singleton AVAudioSession instance created
automatically as your app launches. This is part of the AV Foundation
framework; you’ll need to import AVFoundation. You’ll refer to your
app’s AVAudioSession by way of the class method sharedInstance.

Category
Your app, if it is going to be producing sound, needs to specify a policy
regarding that sound and tell the media services daemon about it. This
policy will answer such questions as:

Should your app’s sound be stopped when the screen is locked?
If other sound is being produced (for example, if the Music app is
playing a song in the background), should your app stop it or be layered
on top of it?

To declare your audio session’s policy, you’ll set its category by calling set
Category(_:mode:options:). I’ll explain later about the mode: and opti
ons:; if you have no mode or options, you can omit both parameters, and if
you have options but no mode, you can use a mode of AVAudioSessionMod
eDefault. Your app needn’t set just one category for all time; different
activities or moments in the lifetime of your app might require that the
category should change.
The basic policies for audio playback are:

Ambient (AVAudioSessionCategoryAmbient)
Your app’s audio plays even while another app is playing audio, and is
stopped by the phone’s Silent switch and screen locking.

Solo Ambient (AVAudioSessionCategorySoloAmbient, the default)
Your app stops any audio being played by other apps, and is stopped by
the phone’s Silent switch and screen locking.

Playback (AVAudioSessionCategoryPlayback)

Your app stops any audio being played by other apps, and is not stopped
by the Silent switch. It is stopped by screen locking, unless it is also
configured to play in the background (as explained later in this chapter).

Audio session category options (the options: parameter) allow you to
modify the playback policies (AVAudioSessionCategoryOptions). For
example:

Mixable audio (.mixWithOthers)
You can override the Playback policy so as to allow other apps to
continue playing audio. Your sound is then said to be mixable.
Mixability can also affect you in the other direction: another app’s
mixable audio can continue to play even when your app’s Playback
policy is not mixable.

Mixable except for speech (.interruptSpokenAudioAndMixWithOthers)

Similar to .mixWithOthers, but although you are willing to mix with
background music, you are electing to stop speech audio. An app’s
audio is marked as speech by setting the audio session mode to AVAudio
SessionModeSpokenAudio.

Ducking audio (.duckOthers)
You can override a policy that allows other audio to play, so as to duck
(diminish the volume of) that other audio. Ducking is thus a form of
mixing.

Activation and Deactivation
Your audio session policy is not in effect unless your audio session is also
active. By default, it isn’t. Thus, asserting your audio session policy is done
by a combination of configuring the audio session and activating the audio
session. To activate (or deactivate) your audio session, you call setActive
(true).

The question is when to call setActive(true). This depends on whether
you need your audio session to be active all the time, or only when you are

producing sound. In many cases, it will be best not to activate your audio
session until just before you really need it, that is, when you are starting to
produce sound. However, let’s take a very simple case where our sounds are
always occasional, intermittent, and nonessential. So we want sound from
other apps, such as the Music app, to be allowed to continue playing when
the user launches or switches to our app. That’s the Ambient policy. Our
policy will never vary, and it doesn’t stop other audio, so we might as well
set our app’s category and activate it at launch time:

func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 let sess = AVAudioSession.sharedInstance()

 try? sess.setCategory(AVAudioSessionCategoryAmbient)

 try? sess.setActive(true)

 return true

}

It is also possible to call setActive(false), thus deactivating your audio
session. There are various reasons why you might deactivate (and perhaps
reactivate) your audio session over the lifetime of your app.
One possible reason is that you want to change something about your audio
session policy. Certain changes in your audio session category and options
don’t take effect unless you deactivate the existing policy and activate the
new policy. Ducking is a good example; I’ll demonstrate in the next section.
Another reason for deactivating your audio session is that you have stopped
playing sound; you no longer need to hog the device’s audio, and you want
to yield to other apps that were stopped by your audio session policy, so that
they can resume playing. You can even send a message to other apps as you
do this:

let sess = AVAudioSession.sharedInstance()

try? sess.setActive(false, with: .notifyOthersOnDeactivation)

NOTE
Apple suggests that you might want to register for the .AVAudioSessionMediaServicesWereRes
et notification. If this notification arrives, the media services daemon was somehow hosed. In this
situation, you should basically start from scratch, configuring your category and activating your
audio session, as well as resetting and recreating any audio-related objects.

Ducking
As an example of deactivating and activating your audio session, I’ll
describe how to implement ducking.
Presume that we have configured and activated an Ambient category audio
session, as described in the preceding sections. This category permits other
audio to continue playing. Now let’s say we do sometimes play a sound, but
it’s brief and doesn’t require other sound to stop entirely — but we’d like
other audio to be quieter momentarily while we’re playing our sound.
That’s ducking!
Background sound is not ducked automatically just because we play a
sound of our own. It is up to us to duck the background sound as we start to
play our sound, and to stop ducking when our sound ends. We do this by
changing our Ambient category to use, or not to use, the .duckOthers
option. To make such a change, the most reliable approach is three steps:

1. Deactivate our audio session.
2. Reconfigure our audio session category with a changed set of options.
3. Activate our audio session.

So, just before we play our sound, we duck any other sound by adding .duc
kOthers to the options on our Ambient category:

let sess = AVAudioSession.sharedInstance()

try? sess.setActive(false)

let opts = sess.categoryOptions.union(.duckOthers)

try? sess.setCategory(sess.category, mode: sess.mode, options: opts)

try? sess.setActive(true)

When our sound finishes playing, we unduck any other sound by removing
.duckOthers from the options on our category:

let sess = AVAudioSession.sharedInstance()

try? sess.setActive(false)

let opts = sess.categoryOptions.subtracting(.duckOthers)

try? sess.setCategory(sess.category, mode: sess.mode, options:opts)

try? sess.setActive(true)

Interruptions
Management of your audio session is complicated by the fact that it can be
interrupted. For example, on an iPhone a phone call can arrive or an alarm
can go off. Or another app might assert its audio session over yours,
possibly because your app went into the background and the other app came
into the foreground. Under certain circumstances, merely going into the
background will interrupt your audio session.
When your audio session is interrupted, it is deactivated. That means you
need to know when the interruption ends, so that you can reactivate your
audio session. In order to know that, you will need to register for the .AVAu
dioSessionInterruption notification. You should do this as early as
possible, perhaps at launch time.

The .AVAudioSessionInterruption notification can arrive either because
an interruption begins or because it ends. To learn whether the interruption
began or ended, examine the AVAudioSessionInterruptionTypeKey entry
in the notification’s userInfo dictionary; this will be a UInt encoding an
AVAudioSessionInterruptionType, either .began or .ended. So, for
example:

NotificationCenter.default.addObserver(forName:

 .AVAudioSessionInterruption, object: nil, queue: nil) { n in

 let why = n.userInfo![AVAudioSessionInterruptionTypeKey] as! UInt

 let type = AVAudioSessionInterruptionType(rawValue: why)!

 switch type {

 case .began:

 // update interface if needed

 case .ended:

 try? AVAudioSession.sharedInstance().setActive(true)

 // update interface if needed

 // resume playback?

 }

}

When an interruption to your audio session begins, your audio has already
paused and your audio session has been deactivated. If your app contains
interface for playing and pausing, you might change a Pause button to a
Play button. But apart from this there’s no particular work for you to do.
When the interruption ends, on the other hand, activating your audio session
and possibly resuming playback of your audio might be up to you.
The notification telling you that the interruption is over can include a
message from some other app that interrupted you and has now deactivated
its audio session. The other app sends that message by deactivating its audio
session along with the .notifyOthersOnDeactivation option. You’ll
receive the message in the userInfo dictionary’s AVAudioSessionInterru
ptionOptionKey entry; its value will be a UInt encoding an
AVAudioSessionInterruptionOptions, which might be .shouldResume:

guard let opt = n.userInfo![AVAudioSessionInterruptionOptionKey] as? UInt

 else {return}

if AVAudioSessionInterruptionOptions(rawValue:opt).contains(.shouldResume) {

 // resume playback

}

Secondary Audio
When your app is frontmost and the user brings up the control center and
uses the Play button to resume, say, the current Music app song, there may
be no interruption of your audio session, because your app never went into
the background. Instead, what you might get, if you’ve registered for it, is a
notification of a different kind, namely .AVAudioSessionSilenceSeconda
ryAudioHint. You’ll receive this notification only while your app is in the
foreground.

This notification, corresponding to the AVAudioSession Bool property seco
ndaryAudioShouldBeSilencedHint, expresses a fine-grained distinction
between primary and secondary audio. Apple’s example is a game app,
where intermittent sound effects are the primary audio, while an ongoing
underlying soundtrack is the secondary audio. The idea is that the user
might start playing a song from the Music app, and that your app would
therefore pause its secondary audio while continuing to produce its primary
audio — because the user’s chosen Music track will do just as well as a
background soundtrack behind your game’s sound effects.

To respond to this notification, examine the AVAudioSessionSilenceSeco
ndaryAudioHintTypeKey entry in the notification’s userInfo dictionary;
this will be a UInt equating to an
AVAudioSessionSilenceSecondaryAudioHintType, either .begin or .end.
So, for example:

NotificationCenter.default.addObserver(forName:

 .AVAudioSessionSilenceSecondaryAudioHint, object: nil, queue: nil) { n in

 let why = n.userInfo![AVAudioSessionSilenceSecondaryAudioHintTypeKey]

 as! UInt

 let type = AVAudioSessionSilenceSecondaryAudioHintType(rawValue: why)!

 switch type {

 case .begin:

 // pause secondary audio

 case .end:

 // resume secondary audio

 }

}

Routing Changes
Your audio is routed through a particular output (and input). External
events, such a phone call arriving, can cause a change in audio routing, and
the user can also make changes in audio routing — for example, by
plugging headphones into the device, which causes sound to stop coming
out of the speaker and to come out of the headphones instead. You can and
should register for the .AVAudioSessionRouteChange notification to hear
about routing changes and respond to them.

The notification’s userInfo dictionary is chock full of useful information
about what just happened. Here’s the console log of the dictionary that
results when I detach headphones from the device:

AVAudioSessionRouteChangeReasonKey = 2;

AVAudioSessionRouteChangePreviousRouteKey =

 <AVAudioSessionRouteDescription: 0x174019ee0,

 inputs = (null);

 outputs = (

 <AVAudioSessionPortDescription: 0x174019f00,

 type = Headphones;

 name = Headphones;

 UID = Wired Headphones;

 selectedDataSource = (null)>

)>;

Upon receipt of this notification, I can find out what the audio route is now,
by calling AVAudioSession’s currentRoute method; here’s the result
logged to the console:

<AVAudioSessionRouteDescription: 0x174019fc0,

 inputs = (null);

 outputs = (

 <AVAudioSessionPortDescription: 0x17401a000,

 type = Speaker;

 name = Speaker;

 UID = Speaker;

 selectedDataSource = (null)>

)>

The classes mentioned here — AVAudioSessionRouteDescription and
AVAudioSessionPortDescription — are value classes. The AVAudioSessio
nRouteChangeReasonKey refers to an
AVAudioSessionRouteChangeReason; the value here, 2, is .oldDeviceUna
vailable — we stopped using the headphones and started using the
speaker, because there are no headphones any longer.
A routing change may not of itself interrupt your sound, but Apple suggests
that in this particular situation you might like to respond by stopping your

audio deliberately, because otherwise sound may now suddenly be coming
out of the speaker in a public place.

Audio Player
The easiest way to play sounds is to use an audio player (AVAudioPlayer).
AVAudioPlayer is part of the AV Foundation framework; you’ll need to imp
ort AVFoundation.
An audio player is initialized with its sound, using a local file URL or Data;
optionally, the initializer can also state the expected sound file format. A
wide range of sound types is acceptable, including MP3, AAC, and ALAC,
as well as AIFF and WAV. New in iOS 11, FLAC is an acceptable format,
as well as Opus (a lossy compression codec commonly used for streaming
and VoIP). A single audio player can possess and play only one sound; but
you can have multiple audio players, they can play separately or
simultaneously, and you can synchronize them. You can set a sound’s
volume and stereo pan features, loop a sound, change the playing rate, and
set playback to begin somewhere in the middle of a sound. You can even
execute a fade in or fade out over time.
Having created and initialized an audio player, you must retain it, typically
by assigning it to an instance property. Assigning an audio player to a local
variable and telling it to play, and hearing nothing — because the player has
gone out of existence immediately, before it has a chance even to start
playing — is a common beginner mistake.
To play the sound, first make sure your audio session is configured
correctly. Now tell the audio player to prepareToPlay, causing it to load
buffers and initialize hardware; then tell it to play. The audio player’s
delegate (AVAudioPlayerDelegate) is notified when the sound has finished
playing, through a call to audioPlayerDidFinishPlaying(_:successful
ly:); do not repeatedly check the audio player’s isPlaying property to
learn its state. Other useful methods include pause and stop; the chief
difference between them is that pause doesn’t release the buffers and

hardware set up by prepareToPlay, but stop does, so you’d want to call p
repareToPlay again before resuming play. Neither pause nor stop
changes the playhead position, the point in the sound where playback will
start if play is sent again; for that, use the currentTime property.
Devising a strategy for instantiating, retaining, and releasing your audio
players is up to you. In one of my apps, I define a class called Player, which
implements a playFile(atPath:) method expecting a string path to a
sound file. This method creates a new AVAudioPlayer, stores it as a
property, and tells it to play the sound file; it also sets itself as that audio
player’s delegate, and notifies its own delegate when the sound finishes
playing (by way of a PlayerDelegate protocol that I also define). In this
way, by maintaining a single Player instance, I can play different sounds in
succession:

protocol PlayerDelegate : class {

 func soundFinished(_ sender: Any)

}

class Player : NSObject, AVAudioPlayerDelegate {

 var player : AVAudioPlayer!

 weak var delegate : PlayerDelegate?

 func playFile(atPath path:String) {

 self.player?.delegate = nil

 self.player?.stop()

 let fileURL = URL(fileURLWithPath: path)

 guard let p = try? AVAudioPlayer(contentsOf:fileURL) else {return}

 self.player = p

 self.player.prepareToPlay()

 self.player.delegate = self

 self.player.play()

 }

 func audioPlayerDidFinishPlaying(_ player: AVAudioPlayer,

 successfully flag: Bool) {

 self.delegate?.soundFinished(self)

}

Here are some useful AVAudioPlayer properties:

pan, volume
Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; 0 (the
default) means it doesn’t repeat. A negative value causes the sound to
repeat indefinitely (until told to stop).

duration

The length of the sound (read-only).

currentTime

The playhead position within the sound. If the sound is paused or
stopped, play will start at the currentTime. You can set this property
in order to “seek” to a playback position within the sound.

enableRate, rate
These properties allow the sound to be played at anywhere from half
speed (0.5) to double speed (2.0). Set enableRate to true before
calling prepareToPlay; you are then free to set the rate.

isMeteringEnabled

If true (the default is false), you can call updateMeters followed by
averagePower(forChannel:) and/or peakPower(forChannel:)
periodically to track how loud the sound is. Presumably this would be
so you could provide some sort of graphical representation of this value
in your interface.

settings

A read-only dictionary describing features of the sound, such as its bit
rate (AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and
its data format (AVFormatIDKey). You can alternatively learn the
sound’s data format from the format property.

The playAtTime(_:) method allows playing to be scheduled to start at a
certain time. The time should be described in terms of the audio player’s de
viceCurrentTime property.

An audio player handles certain types of interruption seamlessly; in
particular, if your sound was forced to stop playing when your app was
moved to the background, then when your app comes to front, the audio
player reactivates your audio session and resumes playing — and you won’t
get any interruption notifications. But resumption of play is not automatic
for every kind of interruption, so you may still need to register for
interruption notifications.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote
control: for example, the user might be using earbuds with buttons. There is
also software remote control — the playback controls that you see in the
control center (Figure 14-1) and in the lock screen (Figure 14-2).

Figure 14-1. The software remote controls in the control center

Figure 14-2. The software remote controls on the lock screen

Your app can arrange to be targeted by remote control events reporting that
the user has tapped a remote control. Your sound-playing app can respond
to the remote play/pause button, for example, by playing or pausing its
sound. For this to work, your app’s audio session category must be Solo
Ambient or Playback, and your app must actually produce some sound; this
causes your app’s sound to become the device’s now playing sound. The
rule is that the running app that is capable of receiving remote control
events and that last actually produced sound is the target of remote control
events. The remote control event target defaults to the Music app if no other
app takes precedence by this rule.
To configure your app to receive remote control events, use the Media
Player framework (import MediaPlayer). You talk to the remote
command center, through the shared command center that you get from the
MPRemoteCommandCenter shared class method, and configure its
commands to send you messages, to which you then respond as appropriate.
There are two ways to perform such configuration: you can give a
command a target–action pair, or you can hand it a function directly (similar
to the two choices when you register with the NotificationCenter for a
Notification).

For example, let’s say that our app plays audio, and we want to respond to
remote commands to pause or resume this audio. We will need to configure
the play command and the pause command, because they are triggered by
the software play/pause button, as well as the play/pause commmand,
because it is triggered by an earbud button. I’ll demonstrate the target–
action style of configuration. This code could appear in our view
controller’s viewDidLoad:

let scc = MPRemoteCommandCenter.shared()

scc.playCommand.addTarget(self, action:#selector(doPlay))

scc.pauseCommand.addTarget(self, action:#selector(doPause))

scc.togglePlayPauseCommand.addTarget(self, action: #selector(doPlayPause))

Obviously, that code won’t compile unless we also have doPlay, doPause,
and doPlayPause methods. Each of these methods will be sent the
appropriate remote command event (MPRemoteCommandEvent).
Assuming that self.player is an AVAudioPlayer, our implementations
might look like this:

@objc func doPlayPause(_ event:MPRemoteCommandEvent) {

 let p = self.player

 if p.isPlaying { p.pause() } else { p.play() }

}

@objc func doPlay(_ event:MPRemoteCommandEvent) {

 let p = self.player

 p.play()

}

@objc func doPause(_ event:MPRemoteCommandEvent) {

 let p = self.player

 p.pause()

}

This works! Once our app is playing a sound, that sound can be paused and
resumed using the control center or an earbud switch. (It can also be paused
and resumed using the lock screen, but only if our app is capable of playing
sound in the background; I’ll explain in the next section how to arrange
that.)

However, we are not quite finished. Having registered a target with the
remote command center, we must remember to unregister when that target
is about to go out of existence; otherwise, there is a danger that the remote
command center will attempt to send a remote command event to a
nonexistent target, resulting in a crash. If we registered in our view
controller’s viewDidLoad, we can conveniently unregister in its deinit:

deinit {

 let scc = MPRemoteCommandCenter.shared()

 scc.togglePlayPauseCommand.removeTarget(self)

 scc.playCommand.removeTarget(self)

 scc.pauseCommand.removeTarget(self)

}

Having formed the connection between our app and the software remote
control interface, we can proceed to refine that interface. For example, we
can influence what information the user will see, in the remote control
interface, about what’s being played. For that, we use the
MPNowPlayingInfoCenter. Call the class method default and set the
resulting instance’s nowPlayingInfo property to a dictionary. The relevant
keys are listed in the class documentation; many of these are actually
MPMediaItem properties, and will make more sense after you’ve read
Chapter 16. For example, we can make the command center show the title
and artist of the sound file our app is playing:

let mpic = MPNowPlayingInfoCenter.default()

mpic.nowPlayingInfo = [

 MPMediaItemPropertyArtist: "Matt Neuburg",

 MPMediaItemPropertyTitle: "About Tiagol",

]

To make the progress view appear in the software remote control interface,
displaying our sound’s duration and the current play position within it, we
need to tell the MPNowPlayingInfoCenter what that duration is. If we also
tell it that we are actively playing, it will automatically increment its display
of the current play position as the time goes by. So, when we start playing,
we would say something like this:

let mpic = MPNowPlayingInfoCenter.default()

mpic.nowPlayingInfo = [

 MPMediaItemPropertyArtist: "Matt Neuburg",

 MPMediaItemPropertyTitle: "About Tiagol",

 MPMediaItemPropertyPlaybackDuration: self.player.duration,

 MPNowPlayingInfoPropertyElapsedPlaybackTime: 0,

 MPNowPlayingInfoPropertyPlaybackRate: 1

]

The MPNowPlayingInfoCenter is not actually watching our sound play; it
just blindly advances the current play position display. Therefore, if our
sound pauses or resumes, we need to keep the MPNowPlayingInfoCenter
updated. When the sound pauses, we need to tell it not only that we have
paused, but also what the current play position is; otherwise, it will assume
we have stopped and that the play position is zero:

let p = self.player

let mpic = MPNowPlayingInfoCenter.default()

if var d = mpic.nowPlayingInfo {

 d[MPNowPlayingInfoPropertyPlaybackRate] = 0

 d[MPNowPlayingInfoPropertyElapsedPlaybackTime] = p.currentTime

 mpic.nowPlayingInfo = d

}

If we don’t want the user to be able to slide the slider that would tell our
app to change the current play position, we must use the
MPRemoteCommandCenter to disable it:

let scc = MPRemoteCommandCenter.shared()

scc.changePlaybackPositionCommand.isEnabled = false

The MPRemoteCommandCenter offers many other commands you can
configure. When you do so, the appropriate software remote control
interface springs to life. For example, if you assign a target–action pair to
the likeCommand, a menu button appears in the control center; the user taps
this button to see an action sheet that includes your like command button.

Playing Sound in the Background

When the user switches away from your app to another app, by default,
your app is suspended and stops producing sound. But if the business of
your app is to play sound, you might like your app to continue playing
sound in the background. To play sound in the background, your app must
do these things:

In your Info.plist, you must include the “Required background modes”
key (UIBackgroundModes) with a value that includes “App plays audio
or streams audio/video using AirPlay” (audio). The simplest way to
arrange that is through the Background Modes checkbox in the
Capabilities tab of the target editor (Figure 14-3).
Your audio session’s policy must be active and must be Playback.

Figure 14-3. Using Capabilities to enable background audio

If those things are true, then the sound that your app is playing will go right
on playing when the user clicks the Home button and dismisses your app, or
when the user switches to another app, or when the screen is locked. Your
app is now running in the background for the purpose of playing sound.
Your app, playing in the background, may be interrupted by the foreground
app’s audio session policy. However, having registered for the .AVAudioSe
ssionInterruption notification, your app may receive this notification in
the background, and, if the AVAudioSessionInterruptionType is .ended,
may be able to resume playing — still in the background.
Remote control events continue to work when your app is in the
background. In fact, even if your app was not actively playing at the time it
was put into the background, it may nevertheless be the remote control
target (because it was playing sound earlier, as explained in the preceding
section). In that case, if the user causes a remote control event to be sent,

your app, if suspended in the background, will be woken up (still in the
background) in order to receive the remote control event, and can then
begin playing sound. Your app may also be able to start playing in the
background if it is mixable (.mixWithOthers, see earlier in this chapter),
even if it was not playing previously.
When your app is capable of playing sound in the background, there’s an
interesting byproduct: while it is playing sound, a Timer can fire in the
background. The timer must have been created and scheduled in the
foreground, but after that, it will fire even while your app is in the
background, unless your app is currently not playing any sound. This is
remarkable, because many other sorts of activity are forbidden when your
app is running in the background.
Another byproduct of your app playing sound in the background has to do
with app delegate events (see Appendix A). Typically, your app delegate
will probably never receive the applicationWillTerminate(_:)
message, because by the time the app terminates, it will already have been
suspended and incapable of receiving any events. However, an app that is
playing sound in the background is obviously not suspended, even though it
is in the background. If it is terminated while playing sound in the
background, it will receive applicationWillTerminate(_:).

AVAudioEngine
AVAudioEngine is modeled after a mixer board. You can construct and
manipulate a graph of sound-producing objects in real time, varying their
relative volumes and other attributes, mixing them down to a single sound.
This is a deep topic; I’ll just provide an introductory overview.
The key classes are:

AVAudioEngine
The overall engine object, representing the world in which everything
else happens. You’ll probably make and retain just one at a time; it is

perfectly reasonable to replace your engine with a new one, as a way of
starting over with a clean slate. Its chief jobs are:

To connect and disconnect nodes (AVAudioNode), analogous to
patch cords on a mixer board. The engine itself has three built-in
nodes — its inputNode, its mixerNode, and its outputNode — and
you can add others.
To start and stop the production of sound. The engine must be
running if any sound is to be produced.

AVAudioNode
An abstract class embracing the various types of object for producing,
processing, mixing, and receiving sound. An audio node is useful only
when it has been attached to the audio engine. An audio node has inputs
and outputs, and the audio engine can connect the output of one node to
the input of another. It is also possible to put a tap on a node, copying
the node’s sound data off into a buffer as it passes through the node, for
analysis or monitoring, or to save it off into a file. Some subclasses are:

AVAudioMixerNode
A node with an output volume; it mixes its inputs down to a single
output. The AVAudioEngine’s built-in mixerNode is an
AVAudioMixerNode.

AVAudioIONode
A node that patches through to the system’s (device’s) own input
(AVAudioInputNode) or output (AVAudioOutputNode). The
AVAudioEngine’s built-in inputNode and outputNode are
AVAudioIONodes.

AVAudioPlayerNode
A node that produces sound, analogous to an AVAudioPlayer. It can
play from a file or from a buffer.

AVAudioEnvironmentNode

Gives three-dimensional spatial control over sound sources (suitable
for games). With it, a bunch of additional AVAudioNode properties
spring to life.

AVAudioUnit
A node that processes its input with special effects before passing it
to the output. Built-in subclasses include:

AVAudioUnitTimePitch
Independently changes the pitch and rate of the input.

AVAudioUnitVarispeed
Changes the pitch and rate of the input together.

AVAudioUnitDelay
Adds to the input a delayed version of itself.

AVAudioUnitDistortion
Adds distortion to the input.

AVAudioUnitEQ
Constructs an equalizer, for processing different frequency
bands separately.

AVAudioUnitReverb
Adds a reverb effect to the input.

To give an idea of what working with AVAudioEngine looks like, I’ll start
by simply playing a file. Our AVAudioEngine has already been instantiated
and assigned to an instance property, self.engine, so that it will persist for
the duration of the exercise. We will need an AVAudioPlayerNode and an
AVAudioFile. We attach the AVAudioPlayerNode to the engine and patch it
to the engine’s built-in mixer node. (In this simple case, we could have
patched the player node to the engine’s output node; but the engine’s mixer
node is already patched to the output node, so it makes no difference.) We
associate the file with the player node, supplying a completion function that

stops the engine so as not to waste resources after the file finishes playing.
Finally, we start the engine running and tell the player node to play:

let player = AVAudioPlayerNode()

let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!

let f = try! AVAudioFile(forReading: url)

let mixer = self.engine.mainMixerNode

self.engine.attach(player)

self.engine.connect(player, to: mixer, format: f.processingFormat)

player.scheduleFile(f, at: nil) { [unowned self] in

 delay(0.1) {

 if self.engine.isRunning {

 self.engine.stop()

 }

 }

}

self.engine.prepare()

try! self.engine.start()

player.play()

TIP
New in iOS 11, instead of stopping the engine in our player node’s completion function, we can
configure the engine to stop automatically by setting its isAutoShutdownEnabled property to tru
e.

So far, we’ve done nothing that we couldn’t have done with an
AVAudioPlayer. But now let’s start patching some more nodes into the
graph. I’ll play two sounds simultaneously, the first one directly from a file,
the second one through a buffer — which will allow me to loop the second
sound. I’ll pass the first sound through a time-pitch effect node and then
through a reverb effect node. And I’ll set the volumes and pan positions of
the two sounds:

// first sound

let player = AVAudioPlayerNode()

let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!

let f = try! AVAudioFile(forReading: url)

self.engine.attach(player)

// add some effect nodes to the chain

let effect = AVAudioUnitTimePitch()

effect.rate = 0.9

effect.pitch = -300

self.engine.attach(effect)

self.engine.connect(player, to: effect, format: f.processingFormat)

let effect2 = AVAudioUnitReverb()

effect2.loadFactoryPreset(.cathedral)

effect2.wetDryMix = 40

self.engine.attach(effect2)

self.engine.connect(effect, to: effect2, format: f.processingFormat)

// patch last node into engine mixer and start playing first sound

let mixer = self.engine.mainMixerNode

self.engine.connect(effect2, to: mixer, format: f.processingFormat)

player.scheduleFile(f, at: nil) {

 delay(0.1) {

 if self.engine.isRunning {

 self.engine.stop()

 }

 }

}

self.engine.prepare()

try! self.engine.start()

player.play()

// second sound; loop it

let url2 = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!

let f2 = try! AVAudioFile(forReading: url2)

let buffer = AVAudioPCMBuffer(

 pcmFormat: f2.processingFormat, frameCapacity: UInt32(f2.length))

try! f2.read(into:buffer!)

let player2 = AVAudioPlayerNode()

self.engine.attach(player2)

self.engine.connect(player2, to: mixer, format: f2.processingFormat)

player2.scheduleBuffer(buffer!, at: nil, options: .loops)

// mix down a little, start playing second sound

player.pan = -0.5

player2.volume = 0.5

player2.pan = 0.5

player2.play()

You can split a node’s output between multiple nodes. Instead of calling con
nect(_:to:format:), you call connect(_:to:fromBus:format:), where
the second argument is an array of AVAudioConnectionPoint objects, each
of which is simply a node and a bus. In this example, I’ll split my player’s
output three ways: I’ll connect it simultaneously to a delay effect and a

reverb effect, both of which are connected to the output mixer, and I’ll
connect the player itself directly to the output mixer as well:

let effect = AVAudioUnitDelay()

effect.delayTime = 0.4

effect.feedback = 0

self.engine.attach(effect)

let effect2 = AVAudioUnitReverb()

effect2.loadFactoryPreset(.cathedral)

effect2.wetDryMix = 40

self.engine.attach(effect2)

let mixer = self.engine.mainMixerNode

// patch player node to _both_ effect nodes _and_ the mixer

let cons = [

 AVAudioConnectionPoint(node: effect, bus: 0),

 AVAudioConnectionPoint(node: effect2, bus: 0),

 AVAudioConnectionPoint(node: mixer, bus: 1),

]

self.engine.connect(player, to: cons,

 fromBus: 0, format: f.processingFormat)

// patch both effect nodes into the mixer

self.engine.connect(effect, to: mixer, format: f.processingFormat)

self.engine.connect(effect2, to: mixer, format: f.processingFormat)

Finally, I’ll demonstrate how to process sound into a file. When I first wrote
this example, I was hoping that the processing might be done rapidly in the
background, but that turned out to be impossible; you had to play the sound
in real time, by installing a tap on a node to collect its sound into a buffer
and writing the buffer into a file. New in iOS 11, however, rapid offline
rendering through AVAudioEngine is possible.
To demonstrate, I’ll pass a sound file through a reverb effect and save the
output into a new file. Initial configuration is much as you would expect:

let url = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!

let f = try! AVAudioFile(forReading: url)

let player = AVAudioPlayerNode()

self.engine.attach(player)

// patch the player into the effect

let effect = AVAudioUnitReverb()

effect.loadFactoryPreset(.cathedral)

effect.wetDryMix = 40

self.engine.attach(effect)

self.engine.connect(player, to: effect, format: f.processingFormat)

let mixer = self.engine.mainMixerNode

self.engine.connect(effect, to: mixer, format: f.processingFormat)

We create an output file with an appropriate format:

let fm = FileManager.default

let doc = try! fm.url(for:.documentDirectory, in: .userDomainMask,

 appropriateFor: nil, create: true)

let outurl = doc.appendingPathComponent("myfile.aac", isDirectory:false)

let outfile = try! AVAudioFile(forWriting: outurl, settings: [

 AVFormatIDKey : kAudioFormatMPEG4AAC,

 AVNumberOfChannelsKey : 1,

 AVSampleRateKey : 22050,

])

Now comes the interesting part. Before we start playing through the audio
engine, we configure it for offline rendering:

var done = false

player.scheduleFile(f, at: nil)

let sz : UInt32 = 4096

try! self.engine.enableManualRenderingMode(.offline,

 format: f.processingFormat, maximumFrameCount: sz)

self.engine.prepare()

try! self.engine.start()

player.play()

We have told the engine to start and the player to play, but nothing happens.
That’s because it’s up to us to pull the sound data through the engine into a
buffer one chunk at a time, and write the buffer into a file. I create the
buffer, and then loop repeatedly until all the sound data has been read:

let outbuf = AVAudioPCMBuffer(

 pcmFormat: f.processingFormat, frameCapacity: sz)!

var rest : Int64 { return f.length - self.engine.manualRenderingSampleTime }

while rest > 0 {

 let ct = min(outbuf.frameCapacity, UInt32(rest))

 let stat = try! self.engine.renderOffline(ct, to: outbuf)

 if stat == .success {

 try! outfile.write(from: outbuf)

 }

}

The result is that the input file is processed very quickly into the output file.
I have one quibble with the result: our reverb effect is not given a chance to
fade away at the end of the output, because we stop writing to the output
file as soon as the input file is exhausted. One solution might be to add a
couple of seconds arbitrarily onto the size of rest; another might be to
examine the contents of outbuf and keep looping after reading the input
file until the amplitude of the sound data falls below some threshold of
quiet.

MIDI Playback
iOS allows communication with MIDI devices through the CoreMIDI
framework, which I’m not going to discuss here. But playing a MIDI file is
another matter; it’s just as simple as playing an audio file. In this example,
I’m already armed with a MIDI file, which provides the music, and a
SoundFont file, which provides the instrument that will play it; self.playe
r will be an AVMIDIPlayer:

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!

let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!

self.player = try! AVMIDIPlayer(contentsOf: midurl, soundBankURL: sndurl)

self.player.prepareToPlay()

self.player.play()

Starting in iOS 9, a MIDI player can also act as a source in an
AVAudioEngine. In this case, you’ll want an AVAudioUnitSampler as your
starting AVAudioUnit. The MIDI file will be parsed by an
AVAudioSequencer; this is not part of the audio engine node structure, but
rather it has the audio engine as a property, so you’ll need to retain it in a
property (self.seq in this example):

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!

let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!

let unit = AVAudioUnitSampler()

self.engine.attach(unit)

let mixer = self.engine.outputNode

self.engine.connect(unit, to: mixer, format: mixer.outputFormat(forBus:0))

try! unit.loadInstrument(at:sndurl)

self.seq = AVAudioSequencer(audioEngine: self.engine)

try! self.seq.load(from:midurl)

self.engine.prepare()

try! engine.start()

try! self.seq.start()

That code is rather mysterious: where’s the connection between the
AVAudioSequencer and the AVAudioUnitSampler? The answer is that the
sequencer just finds the first AVAudioUnitSampler in the audio engine
graph and proceeds to drive it. If that isn’t what you want, get the
AVAudioSequencer’s tracks property, which is an array of AVMusicTrack;
now you can set each track’s destinationAudioUnit explicitly.

Text to Speech
Text can be transformed into synthesized speech using the
AVSpeechUtterance and AVSpeechSynthesizer classes. As with an
AVAudioPlayer, you’ll need to retain the AVSpeechSynthesizer (self.talk
er in my example); here, I also use the AVSpeechSynthesisVoice class to
make sure the device speaks the text in English, regardless of the user’s
language settings:

let utter = AVSpeechUtterance(string:"Polly, want a cracker?")

if let v = AVSpeechSynthesisVoice(language: "en-US") {

 utter.voice = v

 self.talker.delegate = self

 self.talker.speak(utter)

}

You can also set the utterance’s speech rate. The delegate
(AVSpeechSynthesizerDelegate) is told when the speech starts, when it
comes to a new range of text (usually a word), and when it finishes.

To get the user’s current language, call the AVSpeechSynthesisVoice class
method currentLanguageCode. Instead of specifying a voice by language,
you can use the system’s identifier. To get a list of all voices, call the
class method speechVoices.
If a word within your AVSpeechUtterance needs extra pronunciation
guidance, you can write it out using the International Phonetic Alphabet
(IPA; see https://www.internationalphoneticassociation.org/content/ipa-
chart). Form an NSMutableAttributedString from your overall phrase; then
call addAttribute(_:value:range:), where the first parameter is NSAttr
ibutedStringKey(rawValue: AVSpeechSynthesisIPANotationAttribu

te) and the second parameter is the IPA notation to be substituted at the
range of that word. Now form the speech utterance from the attributed
string with the initializer init(attributedString:).

Speech to Text
Your app can participate in the same speech recognition engine used by Siri
and by the Dictate button in the onscreen keyboard. In this way, you can
transcribe speech to text. To do so, you’ll use the Speech framework (impor
t Speech).
Use of the speech recognition engine requires authorization from the user.
You’ll need to have an entry in your Info.plist under the “Privacy — Speech
Recognition Usage Description” key (NSSpeechRecognitionUsageDescri
ption) explaining to the user why you want to do speech recognition. In
your code, check the value of SFSpeechRecognizer.authorizationStatu
s(). If it is .notDetermined, request authorization by calling SFSpeechRec
ognizer.requestAuthorization. The system will put up an alert
containing both its own explanation of what speech recognition entails and
your entry from the Info.plist (Figure 14-4). A user who denies your app
speech recognition authorization may grant it later in Settings. (In
Chapter 16, I’ll discuss in more detail the business of coherently getting

https://www.internationalphoneticassociation.org/content/ipa-chart

user authorization and proceeding only when you have it; see “Checking for
Authorization”.)

Figure 14-4. The user is asked to authorize speech recognition

Once you have authorization, the basic procedure is simple. You form a
speech recognition request and hand it off to an SFSpeechRecognizer.
Recognition can be performed in various languages, which are expressed as
locales; to learn what these are, call the supportedLocales class method.
The device’s current locale is used by default, or you can specify a locale
when you initialize the SFSpeechRecognizer.
There are two kinds of speech recognition: transcription of an existing file,
and transcription of live speech. For transcription of a file, your speech
recognition request will be an SFSpeechURLRecognitionRequest initialized
with the file URL. In this example, I have a recording of myself saying
“This is a test.” I speak American English, so just to be on the safe side, I
initialize my SFSpeechRecognizer with the "en-US" locale. Interestingly,
none of the objects needs to be retained in an instance property:

let f = Bundle.main.url(forResource: "test", withExtension: "aif")!

let req = SFSpeechURLRecognitionRequest(url: f)

let loc = Locale(identifier: "en-US")

guard let rec = SFSpeechRecognizer(locale:loc)

 else {return} // no recognizer

rec.recognitionTask(with: req) { result, err in

 if let result = result {

 let trans = result.bestTranscription

 let s = trans.formattedString

 print(s)

 if result.isFinal {

 print("finished!")

 }

 } else {

 print(err!)

 }

}

In that code, we’re calling recognitionTask(with:resultHandler:)
with an anonymous function. The function is called several times, passing
us an SFSpeechRecognitionResult containing possible transcriptions
(an array of SFTranscription). We ignore these, asking instead for the bestT
ranscription and extracting its formattedString. We know when we’ve
been called for the last time because the recognition result’s isFinal is tru
e. In real life, it might be sufficient to extract the transcription only on the
final pass, but for the purposes of this demonstration, I’ve logged every call
to the function; the resulting console log looks like this:

This

This is

This is

This is

This is a test

This is a test

finished!

For transcription of live speech, your app is going to be using the device’s
microphone. This requires an additional authorization from the user. You’ll
need to have an entry in your Info.plist under the “Privacy — Microphone
Usage Description” key (NSMicrophoneUsageDescription) explaining to
the user why you want to use the microphone. You don’t have to request
authorization explicitly; the system will put up the authorization request
dialog on your behalf as soon as you try to use microphone. If you do want

to request authorization explicitly, call your AVAudioSession’s recordPerm
ission to learn whether we have authorization, and call its requestRecord
Permission, if necessary, to request authorization.
Once you have authorization for both speech recognition and microphone
usage, the procedure is almost exactly the same as before — except that the
speech recognition request will be an
SFSpeechAudioBufferRecognitionRequest, and we need a way to pass the
microphone input to it. A buffer recognition request has an append method
whose parameter is an AVAudioPCMBuffer. To obtain an
AVAudioPCMBuffer, we can use AVAudioEngine and put a tap on a node.
Here, that node will be the audio engine’s inputNode, representing the
device’s microphone:

let engine = AVAudioEngine()

let req = SFSpeechAudioBufferRecognitionRequest()

func doLive() {

 let loc = Locale(identifier: "en-US")

 guard let rec = SFSpeechRecognizer(locale:loc)

 else {return} // no recognizer

 let input = self.engine.inputNode

 input.installTap(onBus: 0, bufferSize: 4096,

 format: input.outputFormat(forBus: 0)) { buffer, time in

 self.req.append(buffer)

 }

 self.engine.prepare()

 try! self.engine.start()

 // provide the user with "recording" feedback

 rec.recognitionTask(with: self.req) { result, err in

 // ... and the rest is as before ...

 }

}

You must provide the user with a clear indication in the interface that the
microphone is now live and the speech recognition engine is listening. You
must also provide a way for the user to stop recognition, signaling that the
speech is over (like the Done button in the dictation interface). That’s why
our buffer recognition request is an instance property (self.req): the
buffer recognition request has an endAudio instance method, which we

need to able to call when the user taps our Done button. I also stop the
audio engine and remove the tap from its input node, so as to be ready if the
user wants to do more speech recognition later:

@IBAction func endLive(_ sender: Any) {

 self.engine.stop()

 self.engine.inputNode.removeTap(onBus: 0)

 self.req.endAudio()

 // take down "recording" feedback

}

Instead of calling recognitionTask(with:resultHandler:), you can call
recognitionTask(with:delegate:), providing an adopter of the
SFSpeechRecognitionTaskDelegate protocol. Here you can implement any
of half a dozen optional methods, called at various stages of the recognition
process, to allow your response to be more fine-grained. You can also assist
the recognition request with hints, retrieve confidence levels and
alternatives from the segments of a transcription, and move the task
messages onto a background queue.
Speech recognition is a resource-heavy operation. It may require an Internet
connection, with the work being done by Apple’s servers; be prepared for
the connection to fail. Apple warns that recognized snippets must be short,
and that excessive use of the server may result in access being throttled.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-
related technologies are extensive. This is a big topic, and an entire book
could be written about it (in fact, such books do exist). I’ll talk in
Chapter 16 about accessing sound files in the user’s music library. Here are
some further topics that there is no room to discuss here:

Other audio session policies
If your app accepts sound input or does audio processing, you’ll want to
look into some audio session policies that I didn’t talk about earlier —

Record, Play and Record, and Audio Processing. In addition, if you’re
using Record or Play and Record, there are modes — voice chat, video
recording, and measurement (of the sound being input) — that optimize
how sound is routed (for example, what microphone is used) and how it
is modified. Note that your app must obtain the user’s permission to use
the microphone, as I explained in the previous section.

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session will
need to adopt a Record policy before recording begins.

Audio queues
Audio queues — Audio Queue Services, part of the Audio Toolbox
framework — implement sound playing and recording through a C API
with more granularity than the Objective-C AVAudioPlayer and
AVAudioRecorder (though it is still regarded as a high-level API),
giving you access to the buffers used to move chunks of sound data
between a storage format (a sound file) and sound hardware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in
connection with technologies such as audio queues.

Audio Converter Services
Originally, a C API for converting sound files between formats. Starting
in iOS 9, the AVAudioConverter class (along with
AVAudioCompressedBuffer) gives this API an object-oriented structure.

Streaming audio
Audio streamed in real time over the network, such as an Internet radio
station, can be played with Audio File Stream Services, in connection
with audio queues.

Audio units

Plug-ins that generate sound or modify sound as it passes through them.
Starting in iOS 9, the API was migrated from C into Objective-C and
given a modern object-oriented structure; audio units can vend interface
(AUViewController); and an audio unit from one app can be hosted
inside another (audio unit extensions).

Chapter 15. Video

Video playback is performed using classes such as AVPlayer provided by
the AV Foundation framework (import AVFoundation). An AVPlayer is
not a view; rather, an AVPlayer’s content is made visible through a
CALayer subclass, AVPlayerLayer, which can be added to your app’s
interface.
An AV Foundation video playback interface can be wrapped in a simple
view controller, AVPlayerViewController: you provide an AVPlayer, and
the AVPlayerViewController automatically hosts an associated
AVPlayerLayer in its own main view, providing standard playback transport
controls so that the user can start and stop play, seek to a different frame,
and so forth. AVPlayerViewController is provided by the AVKit
framework; you’ll need to import AVKit.
A simple interface for letting the user trim video (UIVideoEditorController)
is also supplied. Sophisticated video editing can be performed through the
AV Foundation framework, as I’ll demonstrate later in this chapter.
If an AVPlayer produces sound, you may need to concern yourself with
your application’s audio session; see Chapter 14. AVPlayer deals gracefully
with the app being sent into the background: it will pause when your app is
backgrounded and resume when your app returns to the foreground.
A movie file can be in a standard movie format, such as .mov or .mp4, but it
can also be a sound file. An AVPlayerViewController is thus an easy way to
play a sound file, including a sound file obtained in real time over the
Internet, along with standard controls for pausing the sound and moving the
playhead — unlike AVAudioPlayer, which, as I pointed out in Chapter 14,
lacks a user interface.

A web view (Chapter 11) supports the HTML5 <video> tag. This can be a
simple lightweight way to present video and to allow the user to control
playback. Both web view video and AVPlayer support AirPlay.

AVPlayerViewController
An AVPlayerViewController is a view controller whose view contains an
AVPlayerLayer and transport controls. It must be assigned a player, which
is an AVPlayer. An AVPlayer can be initialized directly from the URL of
the video it is to play, with init(url:). Thus, you’ll instantiate
AVPlayerViewController, create and set its AVPlayer, and get the
AVPlayerViewController into the view controller hierarchy. You can
instantiate an AVPlayerViewController in code or from a storyboard; look
for the AVKit Player View Controller object in the Object library.
The simplest approach is to use an AVPlayerViewController as a presented
view controller. In this example, I present a video from the app bundle:

let av = AVPlayerViewController()

let url = Bundle.main.url(forResource:"ElMirage", withExtension: "mp4")!

let player = AVPlayer(url: url)

av.player = player

self.present(av, animated: true)

The AVPlayerViewController knows that it’s being shown as a fullscreen
presented view controller, so it provides fullscreen video controls, including
a Done button which automatically dismisses the presented view controller.
Thus, there is literally no further work for you to do.
Figure 15-1 shows a fullscreen presented AVPlayerViewController. Exactly
what controls you’ll see depends on the circumstances; in my case, at the
top there’s the Done button (which appears as an X in iOS 11) and a volume
control, and at the bottom are transport controls including the current
playhead position slider. The user can hide or show the controls by tapping
the video.

Figure 15-1. A presented AVPlayerViewController

If the AVPlayer’s file is in fact a sound file, the central region is replaced by
a QuickTime symbol (Figure 15-2), and the controls can’t be hidden.

Figure 15-2. The QuickTime symbol

If you want the convenience and the control interface that come from using
an AVPlayerViewController, while displaying its view as a subview of your
own view controller’s view, make your view controller a parent view
controller with the AVPlayerViewController as its child, adding the

AVPlayerViewController’s view in good order (see “Container View
Controllers”):

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let player = AVPlayer(url:url)

let av = AVPlayerViewController()

av.player = player

av.view.frame = CGRect(10,10,300,200)

self.addChildViewController(av)

self.view.addSubview(av.view)

av.didMove(toParentViewController:self)

Once again, the AVPlayerViewController behaves intelligently, reducing its
controls to a minimum to adapt to the reduced size of its view. On my
device, at the given view size, there is room for a fullscreen button, a
volume button, a play button, a playhead position slider, and nothing else
(Figure 15-3). However, the user can enter fullscreen mode, either by
tapping the fullscreen button or by pinching outward on the video view, and
now the full complement of controls is present (exactly as in Figure 15-1).

Figure 15-3. An embedded AVPlayerViewController’s view

New in iOS 11, you can also configure the video view to switch to and from
fullscreen mode automatically when play begins and ends. To do so, set the
AVPlayerViewController properties entersFullScreenWhenPlaybackBeg
ins and exitsFullScreenWhenPlaybackEnds to true.

Other AVPlayerViewController Properties
An AVPlayerViewController has very few properties:

player

The view controller’s AVPlayer, whose AVPlayerLayer will be hosted
in the view controller’s view. You can set the player while the view is
visible, to change what video it displays (though you are more likely to
keep the player and tell it to change the video). It is legal to assign an
AVQueuePlayer, an AVPlayer subclass; an AVQueuePlayer has multiple
items, and the AVPlayerViewController will treat these as chapters of
the video. An AVPlayerLooper object can be used in conjunction with
an AVQueuePlayer to repeat play automatically. (I’ll give an
AVQueuePlayer example in Chapter 16, and an AVPlayerLooper
example in Chapter 17.)

showsPlaybackControls

If false, the controls are hidden. This could be useful, for example, if
you want to display a video for decorative purposes, or if you are
substituting your own controls.

contentOverlayView

A UIView to which you are free to add subviews. These subviews will
appear overlaid in front of the video but behind the playback controls.
This is a great way to cover that dreadful QuickTime symbol
(Figure 15-2). New in iOS 11, the content overlay is sized to fit its
contents, or you can give it constraints to size it as you prefer.

videoGravity

How the video should be positioned within the view. Possible values are
(AVLayerVideoGravity):

.resizeAspect (the default)

.resizeAspectFill

.resize (fills the view, possibly distorting the video)

Unfortunately, the AVPlayerViewController videoGravity property
itself is typed as a String, not as an AVLayerVideoGravity struct, so you
have to take the struct’s rawValue in order to assign it.

videoBounds

isReadyForDisplay

The video position within the view, and the ability of the video to
display its first frame and start playing, respectively. If the video is not
ready for display, we probably don’t yet know its bounds either. In any
case, isReadyForDisplay will initially be false and the videoBounds
will initially be reported as .zero. This is because, with video, things
take time to prepare. I’ll explain in detail later in this chapter.

updatesNowPlayingInfoCenter

If true (the default), the AVPlayerViewController keeps the
MPNowPlayingInfoCenter (Chapter 14) apprised of the movie’s
duration and current playhead position.

If false, it doesn’t do that, leaving your code in charge of managing the
MPNowPlayingInfoCenter.

Everything else there is to know about an AVPlayerViewController comes
from its player, an AVPlayer. I’ll discuss AVPlayer in more detail in a
moment.

Picture-in-Picture
An iPad that supports iPad multitasking (Chapter 9) also supports picture-
in-picture video playback (unless the user turns it off in the Settings app:
General → Multitasking & Dock → Persistent Video Overlay). This means
that the user can move your video into a small system window that floats in
front of everything else on the screen. This floating window persists if your
app is put into the background.
Your iPad app will support picture-in-picture if it supports background
audio, as I described in Chapter 14: you check the checkbox in the

Capabilities tab of the target editor (Figure 14-3), and your audio session’s
policy must be active and must be Playback. If you want to do those things
without having your app be forced to support picture-in-picture, set the
AVPlayerViewController’s allowsPictureInPicturePlayback to false.
If picture-in-picture is supported, an extra button appears among the upper
set of playback controls (Figure 15-4). When the user taps this button, the
video is moved into the system window (and the AVPlayerViewController’s
view displays a placeholder). The user is now free to leave your app while
continuing to see and hear the video. Moreover, if the video is being played
fullscreen when the user leaves your app, the video is moved into the
picture-in-picture system window automatically.

Figure 15-4. The picture-in-picture button appears

The user can move the system window to any corner. Buttons in the system
window, which can be shown or hidden by tapping, allow the user to play
and pause the video or to dismiss the system window. There’s also a button
to dismiss the system window plus return to your app; if the user taps it
while the video is playing, the video goes right on playing as it moves back
into place within your app.
If your AVPlayerViewController is being presented fullscreen when the
video is taken into picture-in-picture mode, then the presented view
controller, by default, is dismissed. If the user tries to return to your app
from the system picture-in-picture window, the video has no place to return
to. To handle this situation, give the AVPlayerViewController a delegate
(AVPlayerViewControllerDelegate) and deal with it in a delegate method.
You have two choices:

Don’t dismiss the presented view controller

Implement playerViewControllerShouldAutomaticallyDismissAt
PictureInPictureStart(_:) to return false. Now the presented
view controller remains, and the video has a place in your app to which
it can be restored.

Recreate the presented view controller

Implement playerViewController(_:restoreUserInterfaceForPi
ctureInPictureStopWithCompletionHandler:). Do what the name
tells you: restore the user interface! The first parameter is your original
AVPlayerViewController; all you have to do is get it back into the view
controller hierarchy. At the end of the process, call the completion
function.

I’ll demonstrate the second approach:

func playerViewController(_ pvc: AVPlayerViewController,

 restoreUserInterfaceForPictureInPictureStopWithCompletionHandler

 ch: @escaping (Bool) -> ()) {

 self.present(pvc, animated:true) {

 ch(true)

 }

}

Other delegate methods inform you of various stages as picture-in-picture
mode begins and ends. Thus you could respond by rearranging the
interface. One good reason for being conscious that you’ve entered picture-
in-picture mode is that at that point you are effectively a background app,
and you should reduce resources and activity so that playing the video is all
you’re doing until picture-in-picture mode ends.

Introducing AV Foundation
The video display performed by AVPlayerViewController is supplied by
classes from the AV Foundation framework. This is a big framework with a
lot of classes, but there’s a good reason for that: video has a lot of structure
and can be manipulated in many ways, and AV Foundation very carefully

and correctly draws all the distinctions needed for good object-oriented
encapsulation.
AV Foundation is very big, so I’ll merely introduce it here. I’ll point out
some of the principal classes, features, and techniques associated with
video. Further AV Foundation examples will appear in Chapters 16 and 17.

Some AV Foundation Classes
The heart of AV Foundation video playback is AVPlayer. AVPlayer is not a
UIView, but rather is the locus of video transport; the actual video, if
shown, appears in an AVPlayerLayer associated with the AVPlayer. For
example, AVPlayerViewController provides a play button, but what if you
wanted to start video playback in code? You’d tell the
AVPlayerViewController’s player (an AVPlayer) to play or set its rate to
1.

An AVPlayer’s video is its currentItem, an AVPlayerItem. In the
examples earlier in this chapter we initialized an AVPlayer directly from a
URL, with no reference to any AVPlayerItem; that, however, was just a
shortcut. AVPlayer’s real initializer is init(playerItem:); when we
called init(url:), the AVPlayerItem was created for us.

An AVPlayerItem, too, can be initialized from a URL with init(url:), but
again, this is just a shortcut. AVPlayerItem’s real initalizer is init(asse
t:), which takes an AVAsset. An AVAsset is an actual video resource, and
comes in one of two subclasses:

AVURLAsset

An asset specified through a URL.

AVComposition

An asset constructed by editing video in code. I’ll give an example later
in this chapter.

Thus, to configure an AVPlayer using the complete “stack” of objects that
constitute it, you could say something like this:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let asset = AVURLAsset(url:url)

let item = AVPlayerItem(asset:asset)

let player = AVPlayer(playerItem:item)

Once an AVPlayer exists and has an AVPlayerItem, that player item’s
tracks, as seen from the player’s perspective, are AVPlayerItemTrack
objects, which can be individually enabled or disabled. That’s different
from an AVAssetTrack, which is a fact about an AVAsset. This distinction is
a good example of what I said earlier about how AV Foundation
encapsulates its objects correctly: an AVAssetTrack is a hard and fast
reality, but an AVPlayerItemTrack lets a track be manipulated for purposes
of playback on a particular occasion.

Things Take Time
Working with video is time-consuming. Just because you give an AVPlayer
a command or set a property doesn’t mean that it obeys immediately. All
sorts of operations, from reading a video file and learning its metadata to
transcoding and saving a video file, take a significant amount of time. The
user interface must not freeze while a video task is in progress, so AV
Foundation relies heavily on threading (Chapter 24). In this way, AV
Foundation covers the complex and time-consuming nature of its
operations; but your code must cooperate. You’ll frequently use key–value
observing and callbacks to run your code at the right moment.
Here’s an example; it’s slightly artificial, but it illustrates the principles and
techniques you need to know about. There’s an elementary interface flaw
when we create an embedded AVPlayerViewController:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let asset = AVURLAsset(url:url)

let item = AVPlayerItem(asset:asset)

let player = AVPlayer(playerItem:item)

let av = AVPlayerViewController()

av.view.frame = CGRect(10,10,300,200)

av.player = player

self.addChildViewController(av)

self.view.addSubview(av.view)

av.didMove(toParentViewController: self)

There are two issues here:
The AVPlayerViewController’s view is initially appearing empty in the
interface, because the video is not yet ready for display. Then there’s a
visible flash when the video appears, because now it is ready for display.
The proposed frame of the AVPlayerViewController’s view doesn’t fit
the actual aspect ratio of the video, which results in the video being
letterboxed within that frame (visible in Figure 15-3).

To prevent the flash, we can start out with the AVPlayerViewController’s
view hidden, and not show it until isReadyForDisplay is true. But how
will we know when that is? Not by repeatedly polling the isReadyForDisp
lay property! That sort of behavior is absolutely wrong. Rather, we should
use KVO to register as an observer of this property. Sooner or later, isRead
yForDisplay will become true, and we’ll be notified. Now we can
unregister from KVO and show the AVPlayerViewController’s view:

av.view.isHidden = true

var ob : NSKeyValueObservation!

ob = av.observe(\.isReadyForDisplay, options: .new) { vc, ch in

 guard let ok = ch.newValue, ok else {return}

 self.obs.remove(ob)

 DispatchQueue.main.async {

 vc.view.isHidden = false

 }

}

self.obs.insert(ob) // obs is a Set<NSKeyValueObservation>

Note that, in that code, I make no assumptions about what thread KVO calls
me back on: I intend to operate on the interface, so I step out to the main
thread.

Next, let’s talk about setting the AVPlayerViewController’s view.frame in
accordance with the video’s aspect ratio. An AVAsset has tracks
(AVAssetTrack); in particular, an AVAsset representing a video has a video

track. A video track has a naturalSize, which will give me the aspect ratio
I need.
However, it turns out that, for the sake of efficiency, these properties, like
many AV Foundation object properties, are not even evaluated unless you
specifically ask for them — and evaluating them takes time. AV Foundation
objects that behave this way conform to the
AVAsynchronousKeyValueLoading protocol. You call loadValuesAsynchr
onously(forKeys:completionHandler:) ahead of time, for any
properties you’re going to be interested in. When your completion function
is called, you check the status of a key and, if its status is .loaded, you are
now free to access it.
In order to obtain the video’s aspect ratio, then, I’m going to need to do
that, first for the AVAsset’s tracks property in order to get the video track,
and then for the video track’s naturalSize property. Let’s go all the way
back to the beginning. I’ll start by creating the AVAsset and then stop,
waiting to hear in the completion function that the AVAsset’s tracks
property is ready:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let asset = AVURLAsset(url:url)

let track = #keyPath(AVURLAsset.tracks)

asset.loadValuesAsynchronously(forKeys:[track]) {

 let status = asset.statusOfValue(forKey:track, error: nil)

 if status == .loaded {

 DispatchQueue.main.async {

 self.getVideoTrack(asset)

 }

 }

}

When the tracks property is ready, my completion function is called, and I
call my getVideoTrack method. Here, I obtain the video track and then
stop once again, waiting to hear in the completion function that the video
track’s naturalSize property is ready:

func getVideoTrack(_ asset:AVAsset) {

 let visual = AVMediaCharacteristic.visual

 let vtrack = asset.tracks(withMediaCharacteristic: visual)[0]

 let size = #keyPath(AVAssetTrack.naturalSize)

 vtrack.loadValuesAsynchronously(forKeys: [size]) {

 let status = vtrack.statusOfValue(forKey: size, error: nil)

 if status == .loaded {

 DispatchQueue.main.async {

 self.getNaturalSize(vtrack, asset)

 }

 }

 }

}

When the video track’s naturalSize property is ready, my completion
function is called, and I call my getNaturalSize method. Here, I get the
natural size and use it to finish constructing the AVPlayer and to set
AVPlayerController’s frame:

func getNaturalSize(_ vtrack:AVAssetTrack, _ asset:AVAsset) {

 let sz = vtrack.naturalSize

 let item = AVPlayerItem(asset:asset)

 let player = AVPlayer(playerItem:item)

 let av = AVPlayerViewController()

 av.view.frame = AVMakeRect(

 aspectRatio: sz, insideRect: CGRect(10,10,300,200))

 av.player = player

 // ... and the rest is as before ...

}

AVPlayerItem provides another way of loading an asset’s properties:
initialize it with init(asset:automaticallyLoadedAssetKeys:) and
observe its status using KVO. When that status is .readyToPlay, you
are guaranteed that the player item’s asset has attempted to load those
keys, and you can query them just as you would in loadValuesAsynchrono
usly.

PLAYING A REMOTE ASSET
An AVURLAsset’s URL doesn’t have to be a local file URL; it can point to a resource located
across the Internet. Management of such an asset, however, is tricky, because now things really
take time: the asset has to arrive by way of the network, which may be slow, interrupted, or
missing in action. There’s a buffer, and if it isn’t sufficiently full of your AVAsset’s data,
playback will stutter or stop.

In the past, management of such an asset could be tricky. You had to use your AVPlayer’s
AVPlayerItem as the locus of information about the arrival and playback of your AVAsset from
across the network, keeping track of properties such as playbackLikelyToKeepUp and the acce
ssLog, along with notifications such as AVPlayerItemPlaybackStalled, to keep abreast of
any issues, pausing and resuming to optimize the user experience.

Starting in iOS 10, Apple has made this entire procedure much easier: just tell the AVPlayer to
play and stand back! Play won’t start until the buffer has filled to the point where the whole
video can play without stalling, and if it does stall, it will resume automatically. To learn what’s
happening, check the AVPlayer’s timeControlStatus; if it is .waitingToPlayAtSpecifiedR
ate, check the AVPlayer’s reasonForWaitingToPlay. To learn the actual current play rate, call
CMTimebaseGetRate on the AVPlayerItem’s timebase.

Time is Measured Oddly
Another peculiarity of AV Foundation is that time is measured in an
unfamiliar way. This is necessary because calculations using an ordinary
built-in numeric class such as CGFloat will always have slight rounding
errors that quickly begin to matter when you’re trying to specify a time
within a large piece of media.
Therefore, the Core Media framework provides the CMTime class, which
under the hood is a pair of integers; they are called the value and the times
cale, but they are simply the numerator and denominator of a rational
number. When you call the CMTime initializer init(value:timescale:)
(equivalent to C CMTimeMake), that’s what you’re providing. The
denominator represents the degree of granularity; a typical value is 600,
sufficient to specify individual frames in common video formats.

In the convenience initializer init(seconds:preferredTimescale:)
(equivalent to C CMTimeMakeWithSeconds), the two arguments are not the
numerator and denominator; they are the time’s equivalent in seconds and

the denominator. For example, CMTime(seconds:2.5, preferredTimesca
le:600) yields the CMTime (1500,600).

Constructing Media
AV Foundation allows you to construct your own media asset in code as an
AVComposition, an AVAsset subclass, using its subclass,
AVMutableComposition. An AVMutableComposition is an AVAsset, so
given an AVMutableComposition, we could make an AVPlayerItem from it
(by calling init(asset:)) and hand it over to an
AVPlayerViewController’s player; we will thus be creating and displaying
our own movie.

Let’s try it! In this example, I start with an AVAsset (asset1, a video file)
and assemble its first 5 seconds of video and its last 5 seconds of video into
an AVMutableComposition (comp):

let type = AVMediaType.video

let arr = asset1.tracks(withMediaType: type)

let track = arr.last!

let duration : CMTime = track.timeRange.duration

let comp = AVMutableComposition()

let comptrack = comp.addMutableTrack(withMediaType: type,

 preferredTrackID: Int32(kCMPersistentTrackID_Invalid))!

try! comptrack.insertTimeRange(CMTimeRange(

 start: CMTime(seconds:0, preferredTimescale:600),

 duration: CMTime(seconds:5, preferredTimescale:600)),

 of:track, at:CMTime(seconds:0, preferredTimescale:600))

try! comptrack.insertTimeRange(CMTimeRange(

 start: CMTimeSubtract(duration,

 CMTime(seconds:5, preferredTimescale:600)),

 duration: CMTime(seconds:5, preferredTimescale:600)),

 of:track, at:CMTime(seconds:5, preferredTimescale:600))

This works perfectly. We are not very good video editors, however, as we
have forgotten the corresponding soundtrack from asset1. Let’s go back
and get it and add it to our AVMutableComposition (comp):

let type2 = AVMediaType.audio

let arr2 = asset1.tracks(withMediaType: type2)

let track2 = arr2.last!

let comptrack2 = comp.addMutableTrack(withMediaType: type2,

 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))!

try! comptrack2.insertTimeRange(CMTimeRange(

 start: CMTime(seconds:0, preferredTimescale:600),

 duration: CMTime(seconds:5, preferredTimescale:600)),

 of:track2, at:CMTime(seconds:0, preferredTimescale:600))

try! comptrack2.insertTimeRange(CMTimeRange(

 start: CMTimeSubtract(duration,

 CMTime(seconds:5, preferredTimescale:600)),

 duration: CMTime(seconds:5, preferredTimescale:600)),

 of:track2, at:CMTime(seconds:5, preferredTimescale:600))

But wait! Now let’s overlay another audio track from another asset; this
might be, for example, some additional narration:

let type3 = AVMediaType.audio

let s = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!

let asset2 = AVURLAsset(url:s)

let arr3 = asset2.tracks(withMediaType: type3)

let track3 = arr3.last!

let comptrack3 = comp.addMutableTrack(withMediaType: type3,

 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))!

try! comptrack3.insertTimeRange(CMTimeRange(

 start: CMTime(seconds:0, preferredTimescale:600),

 duration: CMTime(seconds:10, preferredTimescale:600)),

 of:track3, at:CMTime(seconds:0, preferredTimescale:600))

You can also apply audio volume changes, and video opacity and transform
changes, to the playback of individual tracks. I’ll continue from the
previous example, applying a fadeout to the last three seconds of the
narration track (comptrack3) by creating an AVAudioMix:

let params = AVMutableAudioMixInputParameters(track:comptrack3)

params.setVolume(1, at:CMTime(seconds:0, preferredTimescale:600))

params.setVolumeRamp(fromStartVolume: 1, toEndVolume:0,

 timeRange:CMTimeRange(

 start: CMTime(seconds:7, preferredTimescale:600),

 duration: CMTime(seconds:3, preferredTimescale:600)))

let mix = AVMutableAudioMix()

mix.inputParameters = [params]

The audio mix must be applied to a playback milieu, such as an
AVPlayerItem. So when we make an AVPlayerItem out of our
AVComposition, we can set its audioMix property to mix:

let item = AVPlayerItem(asset:comp)

item.audioMix = mix

Similar to AVAudioMix, you can use AVVideoComposition to dictate how
video tracks are to be composited. You can even add a CIFilter (Chapter 2)
to be applied to your video.

Synchronizing Animation with Video
An intriguing feature of AV Foundation is AVSynchronizedLayer, a
CALayer subclass that effectively crosses the bridge between video time
(the CMTime within the progress of a movie) and Core Animation time (the
time within the progress of an animation). This means that you can
coordinate animation in your interface (Chapter 4) with the playback of a
movie. You attach an animation to a layer in more or less the usual way, but
the animation takes place in movie playback time: if the movie is stopped,
the animation is stopped; if the movie is run at double rate, the animation
runs at double rate; and the current “frame” of the animation always
corresponds to the current frame of the video within its overall duration.
The synchronization is performed with respect to an AVPlayer’s
AVPlayerItem. To demonstrate, I’ll draw a long thin gray rectangle
containing a little black square; the horizontal position of the black square
within the gray rectangle will be synchronized to the movie playhead
position:

let vc = self.childViewControllers[0] as! AVPlayerViewController

let p = vc.player!

// create synch layer, put it in the interface

let item = p.currentItem!

let syncLayer = AVSynchronizedLayer(playerItem:item)

syncLayer.frame = CGRect(10,220,300,10)

syncLayer.backgroundColor = UIColor.lightGray.cgColor

self.view.layer.addSublayer(syncLayer)

// give synch layer a sublayer

let subLayer = CALayer()

subLayer.backgroundColor = UIColor.black.cgColor

subLayer.frame = CGRect(0,0,10,10)

syncLayer.addSublayer(subLayer)

// animate the sublayer

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.position))

anim.fromValue = subLayer.position

anim.toValue = CGPoint(295,5)

anim.isRemovedOnCompletion = false

anim.beginTime = AVCoreAnimationBeginTimeAtZero // important trick

anim.duration = CMTimeGetSeconds(item.asset.duration)

subLayer.add(anim, forKey:nil)

Figure 15-5. The black square’s position is synchronized to the movie

The result is shown in Figure 15-5. The gray rectangle is the
AVSynchronizedLayer, tied to our movie. The little black square inside it is
its sublayer; when we animate the black square, that animation will be
synchronized to the movie, changing its position from the left end of the
gray rectangle to the right end, starting at the beginning of the movie and
with the same duration as the movie. Thus, although we attach this
animation to the black square layer in the usual way, that animation is
frozen: the black square doesn’t move until we start the movie playing.
Moreover, if we pause the movie, the black square stops. The black square
is thus automatically representing the current play position within the
movie. This may seem a silly example, but if you were to suppress the
video controls it could prove downright useful.

AVPlayerLayer
An AVPlayer is not an interface object. The corresponding interface object
— an AVPlayer made visible, as it were — is an AVPlayerLayer (a
CALayer subclass). It has no controls for letting the user play and pause a
movie and visualize its progress; it just shows the movie, acting as a bridge
between the AV Foundation world of media and the CALayer world of
things the user can see.
An AVPlayerViewController’s view hosts an AVPlayerLayer for you
automatically; otherwise you would not see any video in the
AVPlayerViewController’s view. But there may be situations where you
find AVPlayerViewController too heavyweight, where you don’t need the
standard transport controls, where you don’t want the video to be
expandable or to have a fullscreen mode — you just want the simple direct
power that can be obtained only by putting an AVPlayerLayer into the
interface yourself. And you are free to do so!
Here, I’ll display the same movie as before, but without an
AVPlayerViewController:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let asset = AVURLAsset(url:m)

let item = AVPlayerItem(asset:asset)

let p = AVPlayer(playerItem:item)

self.player = p // might need a reference later

let lay = AVPlayerLayer(player:p)

lay.frame = CGRect(10,10,300,200)

self.playerLayer = lay // might need a reference later

self.view.layer.addSublayer(lay)

As before, if we want to prevent a flash when the video becomes ready for
display, we can postpone adding the AVPlayerLayer to our interface until its
isReadyForDisplay property becomes true — which we can learn
through KVO.
In a WWDC 2016 video, Apple suggests an interesting twist on the
preceding code: create the AVPlayer without an AVPlayerItem, create the
AVPlayerLayer, and then assign the AVPlayerItem to AVPlayer, like this:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!

let asset = AVURLAsset(url:m)

let item = AVPlayerItem(asset:asset)

let p = AVPlayer() // *

self.player = p

let lay = AVPlayerLayer(player:p)

lay.frame = CGRect(10,10,300,200)

self.playerLayer = lay

p.replaceCurrentItem(with: item) // *

self.view.layer.addSublayer(lay)

Apparently, there is some increase in efficiency if you do things in that
order. The reason, it turns out, is that when an AVPlayerItem is assigned to
an AVPlayer that doesn’t have an associated AVPlayerLayer, the AVPlayer
assumes that only the audio track of the AVAsset is important — and then,
when an AVPlayerLayer is assigned to it, the AVPlayer must scramble to
pick up the video track as well.
The movie is now visible in the interface, but it isn’t doing anything. We
haven’t told our AVPlayer to play, and there are no transport controls, so the
user can’t tell the video to play either. That’s why I kept a reference to the
AVPlayer in a property! We can start play either by calling play or by
setting the AVPlayer’s rate. Here, I imagine that we’ve provided a simple
play/pause button that toggles the playing status of the movie by changing
its rate:

@IBAction func doButton (_ sender: Any) {

 let rate = self.player.rate

 self.player.rate = rate < 0.01 ? 1 : 0

}

Without trying to replicate the full transport controls, we might also like to
give the user a way to jump the playhead back to the start of the movie. The
playhead position is a feature of an AVPlayerItem:

@IBAction func restart (_ sender: Any) {

 let item = self.player.currentItem!

 item.seek(to:CMTime(seconds:0, preferredTimescale:600))

}

If we want our AVPlayerLayer to support picture-in-picture, then (in
addition to making the app itself support picture-in-picture, as I’ve already
described) we need to call upon AVKit to supply us with an
AVPictureInPictureController. This is not a view controller; it merely
endows our AVPlayerLayer with picture-in-picture behavior. You create the
AVPictureInPictureController (checking first to see whether the
environment supports picture-in-picture in the first place), initialize it with
the AVPlayerLayer, and retain it:

if AVPictureInPictureController.isPictureInPictureSupported() {

 let pic = AVPictureInPictureController(playerLayer: self.playerLayer)

 self.pic = pic

}

There are no transport controls, so there is no picture-in-picture button.
Supplying one is up to you. Don’t forget to hide the button if picture-in-
picture isn’t supported! When the button is tapped, tell the
AVPictureInPictureController to startPictureInPicture:

@IBAction func doPicInPic(_ sender: Any) {

 if self.pic.isPictureInPicturePossible {

 self.pic.startPictureInPicture()

 }

}

You might also want to set yourself as the AVPictureInPictureController’s d
elegate (AVPictureInPictureControllerDelegate). As with the
AVPlayerViewController delegate, you are informed of stages in the life of
the picture-in-picture window so that you can adjust your interface
accordingly. When the user taps the button that dismisses the system
window and returns to your app, then if the AVPlayerLayer is still sitting in
your interface, there may be no work to do. If you removed the
AVPlayerLayer from your interface, and you now want to restore it,
implement this delegate method:

picture(_:restoreUserInterfaceForPictureInPictureStopWithComp

letionHandler:)

Configure your interface so that the AVPlayerLayer is present. Make
sure that the AVPlayerLayer that you now put into your interface is the
same one that was removed earlier; in other words, your player layer
must continue to be the same as the AVPictureInPictureController’s pla
yerLayer.

Further Exploration of AV Foundation
Here are some other things you can do with AV Foundation:

Extract single images (“thumbnails”) from a movie
(AVAssetImageGenerator).
Export a movie in a different format (AVAssetExportSession), or
read/write raw uncompressed data through a buffer to or from a track
(AVAssetReader, AVAssetReaderOutput, AVAssetWriter,
AVAssetWriterInput, and so on).
Capture audio, video, and stills through the device’s hardware
(AVCaptureSession and so on). I’ll say more about that in Chapter 17.
Tap into video and audio being captured or played, including capturing
video frames as still images (AVPlayerItemVideoOutput,
AVCaptureVideoDataOutput, and so on; and see Apple’s Technical Q&A
QA1702).

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface
where the user can trim video. Its view and internal behavior are outside
your control, and you’re not supposed to subclass it. You are expected to
treat the view controller as a presented view controller on the iPhone or as a
popover on the iPad, and respond by way of its delegate.

WARNING
UIVideoEditorController is one of the creakiest pieces of interface in iOS. It dates back to iOS
3.1, and hasn’t been revised since its inception — and it looks and feels like it. It has never
worked properly on the iPad, and still doesn’t. I’m going to show how to use it, but I’m not going
to explore its bugginess or we’d be here all day.

Before summoning a UIVideoEditorController, be sure to call its class
method canEditVideo(atPath:). (This call can take some noticeable time
to return.) If it returns false, don’t instantiate UIVideoEditorController to
edit the given file. Not every video format is editable, and not every device
supports video editing. You must also set the UIVideoEditorController
instance’s delegate and videoPath before presenting it; the delegate
should adopt both UINavigationControllerDelegate and
UIVideoEditorControllerDelegate. You must manually set the video editor
controller’s modalPresentationStyle to .popover on the iPad (a good
instance of the creakiness I was just referring to):

let path = Bundle.main.path(forResource:"ElMirage", ofType: "mp4")!

let can = UIVideoEditorController.canEditVideo(atPath:path)

if !can {

 print("can't edit this video")

 return

}

let vc = UIVideoEditorController()

vc.delegate = self

vc.videoPath = path

if UIDevice.current.userInterfaceIdiom == .pad {

 vc.modalPresentationStyle = .popover

}

self.present(vc, animated: true)

if let pop = vc.popoverPresentationController {

 let v = sender as! UIView

 pop.sourceView = v

 pop.sourceRect = v.bounds

 pop.delegate = self

}

The view’s interface (on the iPhone) contains Cancel and Save buttons, a
trimming box displaying thumbnails from the movie, a play/pause button,
and the movie itself. The user slides the ends of the trimming box to set the
beginning and end of the saved movie. The Cancel and Save buttons do not
dismiss the presented view; you must do that in your implementation of the
delegate methods. There are three of them, and you should implement all
three and dismiss the presented view in all of them:

videoEditorController(_:didSaveEditedVideoToPath:)

videoEditorControllerDidCancel(_:)

videoEditorController(_:didFailWithError:)

Implementing the second two delegate methods is straightforward:

func videoEditorControllerDidCancel(_ editor: UIVideoEditorController) {

 self.dismiss(animated:true)

}

func videoEditorController(_ editor: UIVideoEditorController,

 didFailWithError error: Error) {

 self.dismiss(animated:true)

}

Saving the trimmed video is more involved. Like everything else about a
movie, it takes time. When the user taps Save, there’s a progress view while
the video is trimmed and compressed. By the time the delegate method vid
eoEditorController(_:didSaveEditedVideoToPath:) is called, the
trimmed video has already been saved to a file in your app’s temporary
directory.
Doing something useful with the saved file at this point is up to you; if you
merely leave it in the temporary directory, you can’t rely on it to persist. In
this example, I copy the edited movie into the Camera Roll album of the
user’s photo library, by calling UISaveVideoAtPathToSavedPhotosAlbum.
For this to work, our app’s Info.plist must have a “Privacy - Photo Library
Additions Usage Description” entry (NSPhotoLibraryAddUsageDescripti
on) so that the runtime can ask for the user’s permission on our behalf (that
requirement is new in iOS 11):

func videoEditorController(_ editor: UIVideoEditorController,

 didSaveEditedVideoToPath path: String) {

 self.dismiss(animated:true)

 if UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(path) {

 UISaveVideoAtPathToSavedPhotosAlbum(path, self,

 #selector(savedVideo), nil)

 } else {

 // can't save to photo album, try something else

 }

}

The function reference #selector(savedVideo) in that code refers to a
callback method that must take three parameters: a String (the path), an
Optional wrapping an Error, and an UnsafeMutableRawPointer. It’s
important to check for errors, because things can still go wrong. In
particular, the user could deny us access to the photo library (see Chapter 17
for more about that). If that’s the case, we’ll get an Error whose domain is A
LAssetsLibraryErrorDomain:

@objc func savedVideo(at path:String, withError error:Error?,

 ci:UnsafeMutableRawPointer) {

 if let error = error {

 print("error: \(error)")

 }

}

Chapter 16. Music Library

An iOS device can be used for the same purpose as the original iPod — to
hold and play music, podcasts, and audiobooks. These items constitute the
device’s music library. iOS provides the programmer with various forms of
access to the device’s music library; you can:

Explore the music library.
Play an item from the music library.
Control the Music app’s music player.
Present a standard interface where the user can select a music library
item.

These features are all provided by the Media Player framework; you’ll need
to import MediaPlayer.
This chapter assumes that the user’s music library consists of sound files
that are actually present on the device. However, the user might be using the
iCloud Music Library (iTunes Match); and, new in iOS 11, MusicKit allows
your app to interface on the user’s behalf with the cloud-based Apple Music
service. MusicKit is beyond the scope of this book; see the Apple Music
API Reference for information about it.

Music Library Authorization
Access to the music library requires authorization from the user. You’ll
need to include in your Info.plist an entry under the “Privacy — Media
Library Usage Description” key (NSAppleMusicUsageDescription)
justifying to the user your desire for access. This will be used in the alert
that will be presented to the user on your behalf by the system (Figure 16-
1).

Figure 16-1. The system prompts for music library access

The system will present the authorization alert once, automatically, the first
time your app attempts to access the music library. Instead of letting that
happen, you will probably want to take control by checking for
authorization yourself and requesting it if necessary. To learn whether you
already have authorization, call the MPMediaLibrary authorizationStatu
s class method. The result is an MPMediaLibraryAuthorizationStatus. Here
are the status cases and what they mean for how you might proceed:

.notDetermined

Authorization has never been requested. In that case, you’ll want to
request authorization, causing the system’s authorization alert to appear.

.authorized

We’re already authorized. Go ahead and access the music library.

.denied

We have been refused authorization. It is possible to do nothing, but if
your app depends upon music library access, it is also reasonable to put
up an alert begging for authorization. Your alert can even take the user
directly to the spot in the Settings app where the user can provide
authorization:

let url = URL(string:UIApplicationOpenSettingsURLString)!

UIApplication.shared.open(url)

.restricted

We have been refused authorization and the user may not have the
power to authorize us. There’s no point harassing the user about this, so
it is best to do nothing.

If the authorization status is .notDetermined, and you want to request
authorization, call the MPMediaLibrary class method requestAuthorizat
ion. This method executes asynchronously. To hear about the user’s
response to the alert, you pass a completion function as parameter; it will be
called, possibly on a background thread, when the user dismisses the alert,
with an MPMediaLibraryAuthorizationStatus parameter. If the status is now
.authorized, you can proceed to access the music library.

CHECKING FOR AUTHORIZATION
The user can switch to the Settings app and change your authorization status at any time. Thus
you’ll probably need to check for authorization whenever your app is activated. An even better
strategy might be to wait until just before performing any action that actually requires
authorization; if you have authorization, or can get it, you’ll proceed to perform that action.

Taking the MPMediaLibrary as an example, we can construct a general strategy for performing
an action if and only if we have or can obtain authorization. We must proceed to our action by
two different paths — either because we already have authorization, or because we request
authorization and receive it. On the one hand, learning our authorization status is immediate,
and if we are authorized, we can take our action directly; on the other hand, requesting
authorization proceeds asynchronously, meaning that the reply to our request arrives in the
completion function (see Appendix C).

Since the same “next action” appears in two places, we can encapsulate our strategy neatly into
a general authorization function that takes the “next action” as a function parameter:

func checkForMusicLibraryAccess(andThen f:(()->())? = nil) {

 let status = MPMediaLibrary.authorizationStatus()

 switch status {

 case .authorized: f?()

 case .notDetermined:

 MPMediaLibrary.requestAuthorization() { status in

 if status == .authorized {

 DispatchQueue.main.async {

 f?()

 }

 }

 }

 case .restricted: break // do nothing

 case .denied: break // do nothing, or beg for authorization in Setting

s

 }

}

I’ve made the function parameter an Optional in case there is no immediate “next action.” That
way, our utility is useful even if we just want to check for authorization in general.

To retest the system authorization request alert and other access-related behaviors, go to the
Settings app and choose General → Reset → Reset Location & Privacy.

Exploring the Music Library

Everything in the user’s music library, as seen by your code, is an
MPMediaEntity. This is an abstract class. It has two concrete subclasses:

MPMediaItem
An MPMediaItem is a single item (a “song”).

MPMediaCollection
An MPMediaCollection is an ordered list of MPMediaItems, rather like
an array; it has a count, and its items property is an array.

MPMediaEntity endows its subclasses with the ability to describe
themselves through key–value pairs called properties. The property keys
have names like MPMediaItemPropertyTitle. To fetch a property’s value,
call value(forProperty:) with its key. You can fetch multiple properties
with enumerateValues(forProperties:using:). As a convenience,
MPMediaEntity and its subclasses also have instance properties whose
names correspond to the property key names. Thus, for example, with an
MPMediaItem you can say either myItem.value(forProperty:MPMediaI
temPropertyTitle) or myItem.title, and in most cases you will surely
prefer the latter. But you’ll still need the full property key name if you’re
going to form an MPMediaPropertyPredicate, as I’ll demonstrate later.

An MPMediaItem has a type (mediaType, or MPMediaItemPropertyMedia
Type); it might, for example, be music, a podcast, or an audiobook.
Different types of item have slightly different properties; these will be
intuitively familiar from your use of iTunes. For example, a song (music)
has a title, an album title, a track number, an artist, a composer, and so on; a
podcast, in addition to its normal title, has a podcast title.
A playlist is an MPMediaPlaylist, a subclass of MPMediaCollection. Its
properties include a title, a flag indicating whether it is a “smart” playlist,
and so on.
An item’s artwork image is available through an instance of the
MPMediaItemArtwork class. From this, you are supposed to be able to get
the image itself scaled to a specified size by calling image(at:). My
experience, however, is that in reality you’ll receive an image of any old

size the system cares to give you, so you may have to scale it further
yourself.

Querying the Music Library
Obtaining actual information from the music library involves a query, an
MPMediaQuery. First, you form the query. There are three main ways to do
this:

Without limits

Create a simple MPMediaQuery by calling init (that is, MPMediaQuery
()). The result is an unlimited query; it asks for everything in the music
library.

With a convenience constructor
MPMediaQuery provides several class methods that form a query
asking the music library for a limited subset of its contents — all of its
songs, or all of its podcasts, and so on. Here’s the complete list:

songs

podcasts

audiobooks

playlists

albums

artists

composers

genres

compilations

With filter predicates
You can limit a query more precisely by attaching to it one or more
MPMediaPropertyPredicate instances. These predicates filter the music

library according to criteria you specify; to be included in the result, a
media item must successfully pass through all the filters (in other
words, the predicates are combined using logical-and). A predicate is a
simple comparison. It has three aspects:

A property
The key name of the property you want to compare against. Not
every property can be used in a filter predicate; the documentation
makes the distinction clear (and you can get additional help from an
MPMediaEntity class method, canFilter(byProperty:)).

A value
The value that the property must have in order to pass through the
filter.

A comparison type (optional)
An MPMediaPredicateComparison. In order to pass through the
filter, a media item’s property value can either match the value you
provide (.equalTo, the default) or contain the value you provide (.
contains).

The two ways of forming a limited query are actually the same; a
convenience constructor is just a quick way of obtaining a query already
endowed with a filter predicate.

A query also groups its results, according to its groupingType
(MPMediaGrouping). Your choices are:

.title

.album

.artist

.albumArtist

.composer

.genre

.playlist

.podcastTitle

The query convenience constructors all supply a groupingType in addition
to a filter predicate. Indeed, the grouping is often the salient aspect of the
query. For example, an albums query is in fact merely a songs query with
the added feature that its results are grouped by album.
After you form the query, you perform the query. You do this simply by
asking for the query’s properties. You can ask for its items, an array of
MPMediaItems, if you don’t care about the groups returned from the query.
Alternatively, you can ask for its collections, an array of
MPMediaItemCollections each of which represents one group.

An MPMediaItemCollection has a representativeItem property that can
come in handy when it is obtained from a grouped query. It gives you just
one item from the collection, and the reason you need it is that properties of
a group collection are often embodied in its items rather than in the
collection itself. For example, an album has no title; rather, its items have
album titles that are all the same. So to learn the title of an album, you ask
for the album title of a representative item.
Here, as an example, I’ll discover the titles of all the albums:

let query = MPMediaQuery.albums()

guard let result = query.collections else {return}

// prove we've performed the query, by logging the album titles

for album in result {

 print(album.representativeItem!.albumTitle!)

}

/*

Bach, CPE, Symphonies

Beethoven Canons

Beethoven Dances

Scarlatti Continuo

*/

Now let’s make our query more elaborate; we’ll get the titles of all the
albums whose name contains “Beethoven.” We simply add a filter predicate

to the previous query:

let query = MPMediaQuery.albums()

let hasBeethoven = MPMediaPropertyPredicate(value:"Beethoven",

 forProperty:MPMediaItemPropertyAlbumTitle,

 comparisonType:.contains)

query.addFilterPredicate(hasBeethoven)

guard let result = query.collections else {return}

for album in result {

 print(album.representativeItem!.albumTitle!)

}

/*

Beethoven Canons

Beethoven Dances

*/

Similarly, we can get the titles of all the albums containing any songs
whose name contains “Sonata.” This is like the previous example, but here
we are concerned with the song’s own title rather than its album title:

let query = MPMediaQuery.albums()

let hasSonata = MPMediaPropertyPredicate(value:"Sonata",

 forProperty:MPMediaItemPropertyTitle,

 comparisonType:.contains)

query.addFilterPredicate(hasSonata)

guard let result = query.collections else {return}

for album in result {

 print(album.representativeItem!.albumTitle!)

}

/*

Scarlatti Continuo

*/

An album is a collection of songs (MPMediaItems). Let’s modify the output
from our previous query to print the titles of all the matching songs in the
first album returned. We don’t have to change our query, so I’ll start at the
point where we perform it; result is the array of collections returned from
our query, so result[0] is an MPMediaItemCollection holding the filtered
songs of one album:

// ... same as before ...

let album = result[0]

for song in album.items {

 print(song.title!)

}

/*

Sonata in E minor Kk 81 - I Grave

Sonata in E minor Kk 81 - II Allegro

Sonata in E minor Kk 81 - III Grave

Sonata in E minor Kk 81 - IV Allegro

Sonata in G minor Kk 88 - I Grave

... and so on ...

*/

Persistence and Change in the Music Library
One of the properties of an MPMediaEntity is its persistentID, which
uniquely identifies it. All sorts of things have persistent IDs — entities in
general, songs (media items), albums, artists, composers, and more. Two
songs or two playlists can have the same title, but a persistent ID is unique.
It is also persistent: using the persistent ID, you can retrieve again at a later
time the same song or playlist you retrieved earlier, even across launches of
your app.
While you are maintaining the results of a search, the contents of the music
library may themselves change. For example, the user might connect the
device to a computer and add or delete music with iTunes. This can put
your results out of date. For this reason, the library’s own modified date is
available through the MPMediaLibrary class. Call the class method defaul
t to get the actual library instance; now you can ask for its lastModifiedD
ate.

You can also register to receive a notification, .MPMediaLibraryDidChang
e, when the music library is modified. This notification is not emitted
unless you first call the MPMediaLibrary instance method beginGenerati
ngLibraryChangeNotifications; you should eventually balance this with
endGeneratingLibraryChangeNotifications.

Music Player
The Media Player framework class for playing an MPMediaItem is
MPMusicPlayerController. It comes in two flavors, depending on which
class property you use to get an instance:

systemMusicPlayer

The very same player used by the Music app. This might already be
playing an item, or it might be paused with a current item, at any time
while your app runs; you can learn or change what item this is. The
system music player continues playing independently of the state of
your app; the user, by way of the Music app, can at any time alter what
it is doing.

applicationQueuePlayer

New in iOS 11; supersedes the applicationMusicPlayer. What you
do with this music player doesn’t affect, and is not affected by, what the
Music app does; the song it is playing can be different from the Music
app’s current song. Nevertheless, it isn’t really inside your app. For
example, it has its own audio session; telling the player to play
interrupts your audio session. If your app’s Info.plist includes the
“Required background modes” key with the audio mode (Chapter 14),
the player will keep playing when your app is backgrounded, even if
your app’s audio session category is not Playback.

The application queue player has no user interface; the remote playback
controls (Figure 14-1) do not automatically work on it (despite claims to the
contrary, both in the documentation and in a WWDC 2017 video), and if
you want the user to have controls for playing and stopping a song, you’ll
have to create them yourself. The system music player, on the other hand,
has a complete user interface — not only the remote playback controls, but
the entire Music app.
A music player doesn’t merely play an item; it plays from a queue of items.
This behavior is familiar from iTunes and the Music app. For example, in
the Music app, when you tap the first song of a playlist to start playing it,

when the end of that song is reached, we proceed by default to the next
song in the playlist. That’s because tapping the first song of a playlist
causes the queue to be the totality of songs in the playlist. The music player
behaves the same way: when it reaches the end of a song, it proceeds to the
next song in its queue.
Your methods for controlling playback also reflect this queue-based
orientation. In addition to the expected play, pause, and stop commands,
there’s a skipToNextItem and skipToPreviousItem command. Anyone
who has ever used iTunes or the Music app (or, for that matter, an old-
fashioned iPod) will have an intuitive grasp of this and everything else a
music player does. You can even set a music player’s repeatMode and shuf
fleMode, just as in iTunes.

You provide a music player with its queue by calling setQueue(_:), where
the parameter is one of the following:

A query

You hand the music player an MPMediaQuery. The query’s items are
the items of the queue.

A collection
You hand the music player an MPMediaItemCollection. This might be
obtained from a query you performed, but you can also assemble your
own collection of MPMediaItems in any way you like, putting them into
an array and calling MPMediaItemCollection’s init(items:).

My experience is that the player can behave in unexpected ways if you
don’t ask it to play, or at least prepareToPlay, immediately after setting
the queue. Apparently the queue does not actually take effect until you do
that. Stopping the player empties its queue; pausing it does not.
In this example, we collect all songs actually present in the library that are
shorter than 30 seconds, and set them playing in random order using the
application queue player. Observe that I explicitly stop the player before
setting its queue; I have found that this is the most reliable approach:

let query = MPMediaQuery.songs()

let isPresent = MPMediaPropertyPredicate(value:false,

 forProperty:MPMediaItemPropertyIsCloudItem,

 comparisonType:.equalTo)

query.addFilterPredicate(isPresent)

guard let items = query.items else {return}

let shorties = items.filter {

 let dur = $0.playbackDuration

 return dur < 30

}

guard shorties.count > 0 else {

 print("no songs that short!")

 return

}

let queue = MPMediaItemCollection(items:shorties)

let player = MPMusicPlayerController.applicationQueuePlayer

player.stop()

player.setQueue(with:queue)

player.shuffleMode = .songs

player.play()

You can ask a music player for its nowPlayingItem, and since this is an
MPMediaItem, you can learn all about it through its properties. You can ask
a music player which song within the queue is currently playing (indexOfN
owPlayingItem). Unfortunately, you can’t ask the system music player for
its actual queue. You can, however, obtain the application queue player’s
current queue, in rather a roundabout way — by calling perform(queueTra
nsaction:completionHandler:), whose real purpose I’ll discuss in a
moment.
Modification of the queue is new in iOS 11 (actually, it was quietly
introduced in iOS 10.3). There are two distinct approaches:

Play next and play later
For either the system music player or the application queue player, you
can call prepend(_:) or append(_:). Apple characterizes these as
equivalent to Play Next and Play Later functionality; prepend(_:)
inserts into the queue just after the currently playing item, while append
(_:) inserts at the end of the queue. The parameter is an

MPMusicPlayerQueueDescriptor, an abstract class whose subclasses
are:

MPMusicPlayerPlayParametersQueueDescriptor
MPMusicPlayerStoreQueueDescriptor
MPMusicPlayerMediaItemQueueDescriptor

The first two have to do with Apple Music. The third,
MPMusicPlayerMediaItemQueueDescriptor, allows you to supply a list
of MPMediaItems directly. It has two initializers, init(itemCollectio
n:) and init(query:) — but unfortunately, as of this writing, init(i
temCollection:) seems to be completely broken (a queue descriptor
formed with an MPMediaItemCollection has no effect on the behavior
of the music player), so you have to start with an MPMediaQuery and
call init(query:).

Insert and remove

For the application queue player, you can call perform(queueTransact
ion:completionHandler:) and, in the queueTransaction function,
call insert(_:after:) or remove(_:) on the
MPMusicPlayerControllerMutableQueue object that you get as the
parameter.

Like prepend(_:) and append(_:), you’ll need an
MPMusicPlayerQueueDescriptor in order to call insert(_:after:).
MPMusicPlayerControllerMutableQueue is a subclass of
MPMusicPlayerControllerQueue, which has an items property that you
can use to examine the queue. The completion function receives an
MPMusicPlayerControllerQueue and an Optional Error as parameters.

A music player has a playbackState that you can query to learn what it’s
doing (whether it is playing, paused, stopped, or seeking). It also emits
notifications informing you of changes in its state:

.MPMusicPlayerControllerPlaybackStateDidChange

.MPMusicPlayerControllerNowPlayingItemDidChange

.MPMusicPlayerControllerVolumeDidChange

These notifications are not emitted until you tell the music player to beginG
eneratingPlaybackNotifications. (You should eventually balance this
call with endGeneratingPlaybackNotifications.) This is an instance
method, so you can arrange to receive notifications from either of the two
music players. If you are receiving notifications from both, you can
distinguish them by examining the Notification’s object and comparing it
to each player.
To illustrate, I’ll extend the previous example to set the text of a UILabel in
our interface (self.label) every time a different song starts playing.
Before we start the player playing, we insert these lines to generate the
notifications:

player.beginGeneratingPlaybackNotifications()

NotificationCenter.default.addObserver(self,

 selector: #selector(self.changed),

 name: .MPMusicPlayerControllerNowPlayingItemDidChange,

 object: player)

And here’s how we respond to those notifications:

@objc func changed(_ n:Notification) {

 self.label.text = ""

 let player = MPMusicPlayerController.applicationQueuePlayer

 guard let obj = n.object, obj as AnyObject === player else { return }

 guard let title = player.nowPlayingItem?.title else {return}

 let ix = player.indexOfNowPlayingItem

 guard ix != NSNotFound else {return}

 player.perform(queueTransaction: { _ in }) { q,_ in

 self.label.text = "\(ix+1) of \(q.items.count): \(title)"

 }

}

There’s no periodic notification as a song plays and the current playhead
position advances. To get this information, you’ll have to resort to polling.
This is not objectionable as long as your polling interval is reasonably

sparse; your display may occasionally fall a little behind reality, but that
won’t usually matter. To illustrate, let’s add to our existing example a
UIProgressView (self.prog) showing the current percentage of the current
song being played by the music player. I’ll use a Timer to poll the state of
the player every second:

self.timer = Timer.scheduledTimer(timeInterval:1,

 target: self, selector: #selector(self.timerFired),

 userInfo: nil, repeats: true)

self.timer.tolerance = 0.1

When the timer fires, the progress view displays the state of the currently
playing item:

@objc func timerFired(_: Any) {

 let player = MPMusicPlayerController.applicationQueuePlayer

 guard let item = player.nowPlayingItem,

 player.playbackState != .stopped else {

 self.prog.isHidden = true

 return

 }

 self.prog.isHidden = false

 let current = player.currentPlaybackTime

 let total = item.playbackDuration

 self.prog.progress = Float(current / total)

}

MPVolumeView
The Media Player framework offers a slider for letting the user set the
system output volume, along with an AirPlay route button if appropriate;
this is an MPVolumeView. It is customizable similarly to a UISlider
(Chapter 12); you can set the images for the two halves of the track, the
thumb, and even the AirPlay route button, for both the normal and the
highlighted state (while the user is touching the thumb).

For further customization, you can subclass MPVolumeView and override v
olumeSliderRect(forBounds:). (An additional overridable method is
documented,

volumeThumbRect(forBounds:volumeSliderRect:value:), but in my
testing it is never called; I regard this as a bug.)
The MPVolumeView automatically updates itself to reflect changes in the
system output volume. You can also register for notifications when a
wireless route (Bluetooth or AirPlay) appears or disappears, and when a
wireless route becomes active or inactive:

.MPVolumeViewWirelessRoutesAvailableDidChange

.MPVolumeViewWirelessRouteActiveDidChange

Playing Songs with AV Foundation
MPMusicPlayerController is convenient and simple, but it’s also
simpleminded. Its audio session isn’t your audio session; the music player
doesn’t really belong to you. So what else can you use to play an
MPMediaItem? The answer lies in the fact that an MPMediaItem
representing a file in the user’s music library has an assetURL property
whose value is a file URL. Now you have a general reference to the music
file — and everything from Chapters 14 and 15 comes into play.
So, for example, having obtained an MPMediaItem’s asset URL, you could
use that URL to initialize an AVAudioPlayer, an AVAsset, or an AVPlayer.
Each of these ways of accessing an MPMediaItem has its advantages:

An AVAudioPlayer is easy to use, and lets you loop a sound, poll the
power value of its channels, and so forth.
An AVAsset gives you the full power of the AV Foundation framework,
letting you edit the sound, assemble multiple sounds, perform a fadeout
effect, and even attach the sound to a video (and then play it with an
AVPlayer).
An AVPlayer can be assigned to an AVPlayerViewController, which
gives you a built-in play/pause button and playhead slider. Another
major advantage of an AVPlayerViewController is that it automatically

manages the software remote control interface for you (unless you set its
updatesNowPlayingInfoCenter property to false).

In this example, I’ll use an AVQueuePlayer (an AVPlayer subclass) to play
a sequence of MPMediaItems, just as an MPMusicPlayerController does.
We might be tempted to treat the AVQueuePlayer as a playlist, handing it
the entire array of songs to be played:

let arr = // array of MPMediaItem

let items = arr.map {

 let url = $0.assetURL!

 let asset = AVAsset(url:url)

 return AVPlayerItem(asset: asset)

}

self.qp = AVQueuePlayer(items:items)

self.qp.play()

Instead of adding a whole batch of AVPlayerItems to an AVQueuePlayer all
at once, however, we should add just a few AVPlayerItems to start with, and
then append each additional AVPlayerItem when an item finishes playing.
So I’ll start out by adding just three AVPlayerItems, and use key–value
observing to watch for changes in the AVQueuePlayer’s currentItem:

let arr = // array of MPMediaItem

self.items = arr.map {

 let url = $0.assetURL!

 let asset = AVAsset(url:url)

 return AVPlayerItem(asset: asset)

}

let seed = min(3,self.items.count)

self.qp = AVQueuePlayer(items:Array(self.items.prefix(upTo:seed)))

self.items = Array(self.items.suffix(from:seed))

// use .initial option so that we get an observation for the first item

let ob = qp.observe(\.currentItem, options: .initial) { _,_ in

 self.changed()

}

self.obs.insert(ob)

self.qp.play()

In our changed method, we pull an AVPlayerItem off the front of our items
array and add it to the end of the AVQueuePlayer’s queue. The

AVQueuePlayer itself deletes an item from the start of its queue after
playing it, so in this way the queue never exceeds three items in length:

guard let item = self.qp.currentItem else {return}

guard self.items.count > 0 else {return}

let newItem = self.items.removeFirst()

self.qp.insert(newItem, after:nil) // means "at end"

Since we’re already being notified each time a new song starts playing, we
can insert some code to update a label’s text with the title of each
successive song. This will demonstrate how to extract metadata from an
AVAsset by way of an AVMetadataItem; here, we fetch the AVMetadata.co
mmonKeyTitle and get its value property:

var arr = item.asset.commonMetadata

arr = AVMetadataItem.metadataItems(from:arr,

 withKey:AVMetadataKey.commonKeyTitle,

 keySpace:.common)

let met = arr[0]

let value = #keyPath(AVMetadataItem.value)

met.loadValuesAsynchronously(forKeys:[value]) {

 if met.statusOfValue(forKey:value, error:nil) == .loaded {

 guard let title = met.value as? String else {return}

 DispatchQueue.main.async {

 self.label.text = "\(title)"

 }

 }

}

We can also update a progress view to reflect the current item’s current time
and duration. Unlike an MPMusicPlayerController, we don’t need to poll
with a Timer; we can install a time observer on our AVQueuePlayer:

self.timeObserver = self.qp.addPeriodicTimeObserver(

 forInterval: CMTime(seconds:0.5, preferredTimescale:600),

 queue: nil) { [unowned self] t in

 self.timerFired(time:t)

}

To get our AVPlayerItems to load their duration property, we’ll need to go
back and modify the code we used to initialize them:

let url = $0.assetURL!

let asset = AVAsset(url:url)

return AVPlayerItem(asset: asset,

 automaticallyLoadedAssetKeys: [#keyPath(AVAsset.duration)])

Our time observer now causes our timerFired method to be called
periodically, reporting the current time of the current player item; we obtain
the current item’s duration and configure our progress view (self.prog):

func timerFired(time:CMTime) {

 if let item = self.qp.currentItem {

 let asset = item.asset

 let dur = #keyPath(AVAsset.duration)

 if asset.statusOfValue(forKey:dur, error: nil) == .loaded {

 let dur = asset.duration

 self.prog.setProgress(Float(time.seconds/dur.seconds),

 animated: false)

 }

 }

}

Media Picker
The media picker (MPMediaPickerController), supplied by the Media
Player framework, is a view controller whose view is a self-contained
navigation interface in which the user can select a media item from the
music library, similar to the Music app. You are expected to treat the picker
as a presented view controller.
As with any access to the music library, the media picker requires user
authorization. If you present the media picker without authorization, there is
no penalty, but nothing will appear to happen (and the picker will report
that the user cancelled).

You can use the initializer, init(mediaTypes:), to limit the type of media
items displayed. You can make a prompt appear at the top of the navigation

bar (prompt). You can govern whether the user can choose multiple media
items or just one, with the allowsPickingMultipleItems property. You
can filter out items stored in the cloud by setting showsCloudItems to fals
e.

WARNING
Starting in iOS 9, the mediaTypes: values .podcast and .audioBook don’t work. I believe that
this is because podcasts are considered to be the purview of the Podcasts app, and audiobooks are
considered to be the purview of iBooks — not the Music app. You can see podcasts and
audiobooks as MPMediaEntity objects in the user’s music library, but not by way of an
MPMediaPickerController.

While the media picker controller’s view is showing, you learn what the
user is doing through two delegate methods
(MPMediaPickerControllerDelegate); the presented view controller is not
automatically dismissed, so it is up to you dismiss it in these delegate
methods:

mediaPicker(_:didPickMediaItems:)

mediaPickerDidCancel(_:)

The behavior of the delegate methods depends on the value of the
controller’s allowsPickingMultipleItems:

The controller’s allowsPickingMultipleItems is false (the default)

There’s a Cancel button. When the user taps a media item, your mediaP
icker(_:didPickMediaItems:) is called, handing you an
MPMediaItemCollection consisting of that item; you are likely to
dismiss the presented view controller at this point. When the user taps
Cancel, your mediaPickerDidCancel(_:) is called.

The controller’s allowsPickingMultipleItems is true
There’s a Done button. Every time the user taps a media item, it is
checked to indicate that it has been selected. When the user taps Done,

your mediaPicker(_:didPickMediaItems:) is called, handing you an
MPMediaItemCollection consisting of all items the user tapped —
unless the user tapped no items, in which case your mediaPickerDidCa
ncel(_:) is called.

In this example, we put up the media picker; we then play the user’s chosen
media item(s) with the application queue player. The example works
equally well whether allowsPickingMultipleItems is true or false:

func presentPicker (_ sender: Any) {

 checkForMusicLibraryAccess {

 let picker = MPMediaPickerController(mediaTypes:.music)

 picker.delegate = self

 self.present(picker, animated: true)

 }

}

func mediaPicker(_ mediaPicker: MPMediaPickerController,

 didPickMediaItems mediaItemCollection: MPMediaItemCollection) {

 let player = MPMusicPlayerController.applicationQueuePlayer

 player.setQueue(with:mediaItemCollection)

 player.play()

 self.dismiss(animated:true)

}

func mediaPickerDidCancel(_ mediaPicker: MPMediaPickerController) {

 self.dismiss(animated:true)

}

On the iPad, the media picker can be displayed as a fullscreen presented
view, but it also works reasonably well in a popover, especially if we
increase its preferredContentSize. This code presents as fullscreen on an
iPhone and as a reasonably-sized popover on an iPad:

let picker = MPMediaPickerController(mediaTypes:.music)

picker.delegate = self

picker.modalPresentationStyle = .popover

picker.preferredContentSize = CGSize(500,600)

self.present(picker, animated: true)

if let pop = picker.popoverPresentationController {

 if let b = sender as? UIBarButtonItem {

 pop.barButtonItem = b

 }

}

Chapter 17. Photo Library and
Camera

The stored photos and videos accessed by the user through the Photos app
constitute the device’s photo library.
Your app can give the user an interface for exploring the photo library
through the UIImagePickerController class. In addition, the Photos
framework, also known as PhotoKit, lets you access the photo library and
its contents programmatically — including the ability to modify a photo’s
image. You’ll need to import Photos.
The UIImagePickerController class can also be used to give the user an
interface similar to the Camera app, letting the user capture photos and
videos. Having allowed the user to capture an image, you can store it in the
photo library, just as the Camera app does.
At a deeper level, the AV Foundation framework (Chapter 15) provides
direct control over the camera hardware. You’ll need to import AVFoundat
ion.

Constants such as kUTTypeImage, referred to in this chapter, are provided
by the Mobile Core Services framework; you’ll need to import MobileCor
eServices.

Browsing with UIImagePickerController
UIImagePickerController is a view controller providing an interface in
which the user can choose an item from the photo library, similar to the
Photos app. You are expected to treat the UIImagePickerController as a
presented view controller. You can use a popover on the iPad, but it also
looks good as a fullscreen presented view. (The documentation claims that a
fullscreen presented view is forbidden on the iPad, but that is not true.)

Image Picker Controller Presentation
To let the user choose an item from the photo library, instantiate
UIImagePickerController and assign its sourceType one of these values
(UIImagePickerControllerSourceType):

.photoLibrary

The user is shown a table of all albums, and can navigate into any of
them.

.savedPhotosAlbum

In theory, the user is supposed to be confined to the contents of the
Camera Roll album. Instead, ever since iOS 8, the user sees the
Moments interface and all photos are shown; I regard this as a bug.

You should call the class method isSourceTypeAvailable(_:)
beforehand; if it doesn’t return true, don’t present the picker with that
source type.

You’ll probably want to specify an array of mediaTypes you’re interested
in. This array will usually contain kUTTypeImage, kUTTypeMovie, or both;
or you can specify all available types by calling the class method availabl
eMediaTypes(for:).

There is an additional type that you might want to include in the mediaType
s array — kUTTypeLivePhoto. This signifies your willingness to receive a
live photo as a live photo. The rule is that UIImagePickerController can
return a live photo as a live photo if the following two conditions are met:

The picker’s mediaTypes includes both kUTTypeLivePhoto and kUTTyp
eImage.

The picker’s allowsEditing property is false (the default).
I’ll talk later about how to display a live photo as a live photo. If you fail to
include kUTTypeLivePhoto in the mediaTypes array, then if the user
chooses a live photo, you’ll receive it as an ordinary still image.

WARNING
The results from availableMediaTypes(for:) do not include kUTTypeLivePhoto; you have to
add it explicitly.

New in iOS 11, the videoExportPreset property lets you set the
transcoding format to be used if the user chooses a video. Preset names are
listed at the end of the AVAssetExportSession class documentation page.

Optionally, you can set the picker’s allowsEditing property to true. In
the case of an image, the interface then allows the user to scale the image
up and to move it so as to be cropped by a preset rectangle; in the case of a
movie, the user can trim the movie as with a UIVideoEditorController
(Chapter 15).
After configuring the picker as desired, and having supplied a delegate
(adopting UIImagePickerControllerDelegate and
UINavigationControllerDelegate), present the picker:

let src = UIImagePickerControllerSourceType.photoLibrary

guard UIImagePickerController.isSourceTypeAvailable(src)

 else {return}

guard let arr UIImagePickerController.availableMediaTypes(for:src)

 else {return}

let picker = UIImagePickerController()

picker.sourceType = src

picker.mediaTypes = arr

picker.delegate = self

picker.videoExportPreset = AVAssetExportPreset640x480 // for example

self.present(picker, animated: true)

Image Picker Controller Delegate
When the user has finished working with the image picker controller, the
delegate will receive one of these messages:

imagePickerController(_:didFinishPickingMediaWithInfo:)

The user selected an item from the photo library. The info: parameter
describes it; I’ll give details in a moment.

imagePickerControllerDidCancel(_:)

The user tapped Cancel.
If a UIImagePickerControllerDelegate method is not implemented, the view
controller is dismissed automatically at the point where that method would
be called; but rather than relying on this, you should probably implement
both delegate methods and dismiss the view controller yourself in each.

The info in the first delegate method is a dictionary of information about
the chosen item. The keys in this dictionary depend on the media type:

An image

The UIImagePickerControllerMediaType key’s value will be kUTTyp
eImage. The other keys are:

UIImagePickerControllerPHAsset

A PHAsset representing the image in the photo library; I’ll discuss
how to access PHAsset information later in this chapter. (New in
iOS 11; supersedes the UIImagePickerControllerReferenceURL
key.)

UIImagePickerControllerOriginalImage

A UIImage.

UIImagePickerControllerImageURL

A file URL to a copy of the image data saved into a temporary
directory. (New in iOS 11.)

If the picker’s allowsEditing was true, these further keys may be
present:

UIImagePickerControllerCropRect

An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage

A UIImage. This becomes the image you are expected to use.

A live photo

The UIImagePickerControllerMediaType key’s value will be kUTTyp
eLivePhoto. In addition to the image keys, there’s a further key:

UIImagePickerControllerLivePhoto

A PHLivePhoto (a type supplied by the Photos framework).

A movie

The UIImagePickerControllerMediaType key’s value will be kUTTyp
eMovie. The other keys are:

UIImagePickerControllerPHAsset

A PHAsset representing the video in the photo library; I’ll discuss
how to access PHAsset information later in this chapter. (New in
iOS 11; supersedes the UIImagePickerControllerReferenceURL
key.)

UIImagePickerControllerMediaURL

A file URL to a copy of the movie data saved into a temporary
directory.

Here’s an implementation of the first delegate method that picks up all the
needed keys; the idea is that we immediately dismiss the picker and then
proceed to deal with the chosen item in the completion function:

func imagePickerController(_ picker: UIImagePickerController,

 didFinishPickingMediaWithInfo info: [String : Any]) {

 let asset = info[UIImagePickerControllerPHAsset] as? PHAsset

 let url = info[UIImagePickerControllerMediaURL] as? URL

 var im = info[UIImagePickerControllerOriginalImage] as? UIImage

 if let ed = info[UIImagePickerControllerEditedImage] as? UIImage {

 im = ed

 }

 let live = info[UIImagePickerControllerLivePhoto] as? PHLivePhoto

 let imurl = info[UIImagePickerControllerImageURL] as? URL

 self.dismiss(animated:true) {

 // do something with the chosen item here

 }

}

WARNING
Presenting an image picker controller does not require user authorization to access the photo
library, presumably because an image is just an image. But getting the full repertoire of
information in the delegate method does require user authorization; without it, you’ll get the
image and the media URL but that’s all. Obtaining user authorization to access the photo library is
discussed later in this chapter.

Dealing with Image Picker Controller Results
What should happen in the preceding code’s completion function? If you’re
going to display the user’s chosen item in your interface, you’ll want to deal
differently with each possible type that the user can choose.

You might suppose that the info dictionary’s UIImagePickerControllerM
ediaType would sufficiently distinguish the possible types — kUTTypeIma
ge, kUTTypeLivePhoto, or kUTTypeMovie. Indeed, that was true up through
iOS 10. But iOS 11 introduces two new possible image types that might be
present in the photo library, so the UIImagePickerControllerMediaType
turns out to be insufficiently fine-grained. Instead, use the PHAsset returned
by the UIImagePickerControllerPHAsset key, and examine its playback
Style. There are five possible values (PHAsset.PlaybackStyle):

.image

You have received (im) a UIImage, suitable for display in a
UIImageView. The image may be very large; to save memory, you
should redraw the image at the largest size and resolution needed for
actual display in the interface (see Chapter 2).

.imageAnimated

You have received an animated GIF. The ability to store an animated
GIF in the photo library is new in iOS 11. However, as I mentioned in
Chapter 4, iOS 11 doesn’t include any native ability to display an
animated GIF as animated in your interface. You can display as a still
image the UIImage you have already received (im), or you can use the

image URL (imurl) to load the GIF data and convert it yourself into a
sequence of images for display.

.livePhoto

You have received (live) a PHLivePhoto. To display it in your
interface, use a PHLivePhotoView (supplied by the Photos UI
framework; import PhotosUI). This view has many powerful
properties and delegate methods, but you don’t need any of them just to
display the live photo; the live photo is treated as a live photo
automatically, meaning that the user can use force touch on it (or long
press on a device without 3D touch) to show the accompanying movie.
The only properties you really need to set are the PHLivePhotoView’s f
rame and its contentMode (similar to a UIImageView).

.video

You have received (url) the file URL of the exported video in the
temporary directory, suitable for display with AVPlayer and other
AVFoundation and AVKit classes discussed in Chapter 15.

.videoLooping

You have received a live photo to which the Loop or Bounce effect has
been applied (new in iOS 11). It comes to you as a video file URL
(url), but implementing the looping is up to you. You can do this easily
using an AVPlayerLooper object (mentioned in Chapter 15). Start with
an AVQueuePlayer rather than an AVPlayer, configure the
AVPlayerLooper and retain it in an instance property, and use the
AVQueuePlayer to show the video. For example:

let av = AVPlayerViewController()

let player = AVQueuePlayer(url:url)

av.player = player

self.looper = AVPlayerLooper(

 player: player, templateItem: player.currentItem!)

// ... and so on ...

Still image metadata can be obtained from the image data stored at the UIIm
agePickerControllerImageURL, using the Image I/O framework to
extract the metadata as a dictionary (import ImageIO, and see Chapter 22):

guard let src = CGImageSourceCreateWithURL(imurl! as CFURL, nil)

 else {return}

let result = CGImageSourceCopyPropertiesAtIndex(src,0,nil)! as NSDictionary

Photos Framework
The Photos framework (import Photos), also known as PhotoKit, does for
the photo library roughly what the Media Player framework does for the
music library (Chapter 16), letting your code explore the library’s contents
— and then some. You can manipulate albums, add photos, and even
perform edits on the user’s photos.
The photo library itself is represented by the PHPhotoLibrary class, and by
its shared instance, which you can obtain through the shared method. You
do not need to retain the shared photo library instance. Then there are the
classes representing the kinds of things that inhabit the library (the photo
entities):

PHAsset
A single photo or video file.

PHCollection
An abstract class representing collections of all kinds. Its concrete
subclasses are:

PHAssetCollection
A collection of photos. For example, albums and moments are
PHAssetCollections.

PHCollectionList
A collection of asset collections. For example, a folder of albums is
a collection list; a year of moments is a collection list.

Finer typological distinctions are drawn, not through subclasses, but
through a system of types and subtypes, which are properties:

A PHAsset has mediaType and mediaSubtypes properties.

A PHAssetCollection has assetCollectionType and assetCollectio
nSubtype properties.

A PHCollectionList has collectionListType and collectionListSub
type properties.

For example, a PHAsset might have a type of .image and a subtype of .pho
toPanorama; a PHAssetCollection might have a type of .album and a
subtype of .albumRegular; and so on. Smart albums on the user’s device
help draw further distinctions for you; for example, a PHAssetCollection
with a type of .smartAlbum and a subtype of .smartAlbumPanoramas
contains all the user’s panorama photos.

New in iOS 11, a PHAsset’s playbackStyle (discussed earlier in this
chapter) draws the distinction between a true image and an animated GIF,
and between a video and a looped or bounced live photo.
The photo entity classes are actually all subclasses of PHObject, an abstract
class that endows them with a localIdentifier property that functions as
a persistent unique identifier.
Access to the photo library requires user authorization. You’ll use the
PHPhotoLibrary class for this. To learn what the current authorization status
is, call the class method authorizationStatus. To ask the system to put
up the authorization request alert if the status is .notDetermined, call the
class method requestAuthorization(_:). The Info.plist must contain
some text that the system authorization request alert can use to explain why
your app wants access. For the photo library, the relevant key is “Privacy —
Photo Library Usage Description” (NSPhotoLibraryUsageDescription).
See “Checking for Authorization” for detailed consideration of
authorization strategy and testing.

Querying the Photo Library
When you want to know what’s in the photo library, start with one of the
photo entity classes — the one that represents the type of entity you want to
know about. The photo entity class will supply class methods whose names
begin with fetch; you’ll pick the class method that expresses the kind of
criteria you’re starting with.

For example, to fetch one or more PHAssets, you’ll call a PHAsset fetch
method; you can fetch by local identifier, by media type, or by containing
asset collection. Similarly, you can fetch PHAssetCollections by identifier,
by type and subtype, by URL, or by whether they contain a given PHAsset.
You can fetch PHCollectionLists by identifier, or by whether they contain a
given PHAssetCollection. And so on.

In addition to the various fetch method parameters, you can supply a
PHFetchOptions object letting you refine the results even further. You can
set its predicate to limit your request results, and its sortDescriptors to
determine the results order. Its fetchLimit can limit the number of results
returned, and its includeAssetSourceTypes can specify where the results
should come from, such as eliminating cloud items.

What you get back from a fetch method query is not images or videos but
information. A fetch method returns a collection of PHObjects of the type
to which you sent the fetch method originally; these refer to entities in the
photo library, rather than handing you an entire file (which would be huge
and might take considerable time). The collection itself is expressed as a
PHFetchResult, which behaves very like an array: you can ask for its
count, obtain the object at a given index (possibly by subscripting), look
for an object within the collection, and enumerate the collection with an enu
merate method.

WARNING
You cannot enumerate a PHFetchResult with for...in in Swift, even though you can do so in
Objective-C. I regard this as a bug (caused by the fact that PHFetchResult is a generic).

For example, let’s say we want to know how moments are divided into
years. A clump of moments grouped by year is a PHCollectionList, so the
relevant class is PHCollectionList. This code is a fairly standard template
for fetching any sort of information from the photo library:

let opts = PHFetchOptions()

let desc = NSSortDescriptor(key: "startDate", ascending: true)

opts.sortDescriptors = [desc]

let result = PHCollectionList.fetchCollectionLists(with: .momentList,

 subtype: .momentListYear, options: opts)

for ix in 0..<result.count {

 let list = result[ix]

 let f = DateFormatter()

 f.dateFormat = "yyyy"

 print(f.string(from:list.startDate!))

}

/*

1987

1988

1989

1990

...

*/

Each resulting list object in the preceding code is a PHCollectionList
comprising a list of moments. Let’s dive into that object to see how those
moments are clumped into clusters. A cluster of moments is a
PHAssetCollection, so the relevant class is PHAssetCollection:

let result = PHAssetCollection.fetchMoments(inMomentList:list, options:nil)

for ix in 0 ..< result.count {

 let coll = result[ix]

 if ix == 0 {

 print("======= \(result.count) clusters")

 }

 f.dateFormat = ("yyyy-MM-dd")

 print("""

 starting \(f.string(from:coll.startDate!)): \

 \(coll.estimatedAssetCount)

 """)

}

/*

======= 12 clusters

starting 1987-05-15: 2

starting 1987-05-16: 6

starting 1987-05-17: 2

starting 1987-05-20: 4

....

*/

Observe that in that code we can learn how many moments are in each
cluster only as its estimatedAssetCount. This is probably the right
answer, but to obtain the real count, we’d have to dive one level deeper and
fetch the cluster’s actual moments.
Next, let’s list all albums that have been synced onto the device from
iPhoto. An album is a PHAssetCollection, so the relevant class is
PHAssetCollection:

let result = PHAssetCollection.fetchAssetCollections(with: .album,

 subtype: .albumSyncedAlbum, options: nil)

for ix in 0 ..< result.count {

 let album = result[ix]

 print("""

 \(album.localizedTitle as Any): \

 approximately \(album.estimatedAssetCount) photos

 """)

}

Again, let’s dive further: given an album, let’s list its contents. An album’s
contents are its assets (photos and videos), so the relevant class is PHAsset:

let result = PHAsset.fetchAssets(in:album, options: nil)

for ix in 0 ..< result.count {

 let asset = result[ix]

 print(asset.localIdentifier)

}

If the fetch method you need seems not to exist, don’t forget about
PHFetchOptions. For example, there is no PHAsset fetch method for
fetching from a certain collection all assets of a certain type — for example,
to specify that you want all photos (but no videos) from the user’s Camera
Roll. But you can perform such a fetch by forming an NSPredicate and
setting a PHFetchOptions object’s predicate property. In this example, I’ll
fetch ten photos (not videos) from the user’s Camera Roll — but no HDR
photos, please:

let recentAlbums = PHAssetCollection.fetchAssetCollections(with:

 .smartAlbum, subtype: .smartAlbumUserLibrary, options: nil)

guard let rec = recentAlbums.firstObject else {return}

let options = PHFetchOptions() // photos only, please, no HDRs

options.fetchLimit = 10 // let's not take all day about it

let pred = NSPredicate(

 format: "mediaType == %d && !((mediaSubtype & %d) == %d)",

 PHAssetMediaType.image.rawValue,

 PHAssetMediaSubtype.photoHDR.rawValue,

 PHAssetMediaSubtype.photoHDR.rawValue)

options.predicate = pred

self.photos = PHAsset.fetchAssets(in:rec, options: options)

Modifying the Library
Structural modifications to the photo library are performed through a
change request class corresponding to the class of photo entity we wish to
modify. The name of the change request class is the name of a photo entity
class followed by “ChangeRequest.” Thus, for PHAsset, there’s the
PHAssetChangeRequest class — and so on.

A change request is usable only by calling a performChanges method on
the shared photo library. Typically, the method you’ll call will be performC
hanges(_:completionHandler:), which takes two functions. The first
function, the changes function, is where you describe the changes you want
performed; the second function, the completion function, is called back after
the changes have been performed. The reason for this peculiar structure is
that the photo library is a live database. While we are working, the photo
library can change. Therefore, the changes function is used to batch our

desired changes and send them off as a single transaction to the photo
library, which responds by calling the completion function when the
outcome of the entire batch is known.
Each change request class comes with methods that ask for a change of
some particular type. Here are some examples:

PHAssetChangeRequest

Class methods include deleteAssets(_:), creationRequestForAsse
tFromImage(atFileURL:), and so on. By default, creating a PHAsset
puts it into the user’s Camera Roll album immediately. If you’re
creating an asset and what you’re starting with is raw data, use the
PHAssetCreationRequest class; it’s a subclass of
PHAssetChangeRequest that provides instance methods such as addRes
ource(with:data:options:).

PHAssetCollectionChangeRequest

Class methods include deleteAssetCollections(_:) and creationR
equestForAssetCollection(withTitle:). In addition, there are
initializers like init(for:), which takes an asset collection, along with
instance methods addAssets(_:), removeAssets(_:), and so on.

A creationRequest class method also returns an instance of the change
request class. You can throw this away if you don’t need it for anything. Its
value is that it lets you perform further changes as part of the same batch.
For example, once you have a PHAssetChangeRequest instance, you can
use its properties to set the asset’s features, such as its creation date or its
associated geographical location, which would be read-only if accessed
through the PHAsset.
To illustrate, let’s create an album called “Test Album.” An album is a
PHAssetCollection, so we start with the PHAssetCollectionChangeRequest
class and call its creationRequestForAssetCollection(withTitle:)
class method in the performChanges function. This method returns a
PHAssetCollectionChangeRequest instance, but we don’t need that instance
for anything, so we simply throw it away:

PHPhotoLibrary.shared().performChanges({

 let t = "TestAlbum"

 typealias Req = PHAssetCollectionChangeRequest

 Req.creationRequestForAssetCollection(withTitle:t)

})

(The class name PHAssetCollectionChangeRequest is very long, so purely
as a matter of style and presentation I’ve shortened it with a type alias.)
It may appear, in that code, that we didn’t actually do anything — we asked
for a creation request, but we didn’t tell it to do any creating. Nevertheless,
that code is sufficient; generating the creation request for a new asset
collection in the performChanges function constitutes an instruction to
create an asset collection.
That code, however, is rather silly. The album was created asynchronously,
so to use it, we need a completion function (see Appendix C). Moreover,
we’re left with no reference to the album we created. For that, we need a
PHObjectPlaceholder. This minimal PHObject subclass has just one
property — localIdentifier, which it inherits from PHObject. But this is
enough to permit a reference to the created object to survive into the
completion function, where we can do something useful with it, such as
saving it off to an instance property:

var ph : PHObjectPlaceholder?

PHPhotoLibrary.shared().performChanges({

 let t = "TestAlbum"

 typealias Req = PHAssetCollectionChangeRequest

 let cr = Req.creationRequestForAssetCollection(withTitle:t)

 ph = cr.placeholderForCreatedAssetCollection

}) { ok, err in

 if ok, let ph = ph {

 self.newAlbumId = ph.localIdentifier

 }

}

Now suppose we subsequently want to populate our newly created album.
For example, let’s say we want to make the first asset in the user’s Recently
Added smart album a member of our new album as well. No problem! First,
we need a reference to the Recently Added album; then we need a reference

to its first asset; and finally, we need a reference to our newly created album
(whose identifier we’ve already captured as self.newAlbumId). Those are
all basic fetch requests, which we can perform in succession — and we then
use their results to form the change request:

// find Recently Added smart album

let result = PHAssetCollection.fetchAssetCollections(with: .smartAlbum,

 subtype: .smartAlbumRecentlyAdded, options: nil)

guard let rec = result.firstObject else { return }

// find its first asset

let result2 = PHAsset.fetchAssets(in:rec, options: nil)

guard let asset1 = result2.firstObject else { return }

// find our newly created album by its local id

let result3 = PHAssetCollection.fetchAssetCollections(

 withLocalIdentifiers: [self.newAlbumId], options: nil)

guard let alb2 = result3.firstObject else { return }

// ready to perform the change request

PHPhotoLibrary.shared().performChanges({

 typealias Req = PHAssetCollectionChangeRequest

 let cr = Req(for: alb2)

 cr?.addAssets([asset1] as NSArray)

})

A PHObjectPlaceholder has a further use. To see what it is, think about this
problem: What if we created, say, an asset collection and wanted to add it to
something (presumably to a PHCollectionList), all in one batch request?
Requesting the creation of an asset collection gives us a
PHAssetCollectionChangeRequest instance; you can’t add that to a
collection. And the requested PHAssetCollection itself hasn’t been created
yet! The solution is to obtain a PHObjectPlaceholder. Because it is a
PHObject, it can be used as the argument of change request methods such
as addChildCollections(_:).

Being Notified of Changes
When the library is modified, whether by your code or by some other
means while your app is running, any information you’ve collected about
the library — information which you may even be displaying in your
interface at that very moment — may become out of date. To cope with this

possibility, you should, perhaps very early in the life of your app, register a
change observer (adopting the PHPhotoLibraryChangeObserver protocol)
with the photo library:

PHPhotoLibrary.shared().register(self)

The outcome is that, whenever the library changes, the observer’s photoLib
raryDidChange(_:) method is called, with a PHChange object
encapsulating a description of the change. The observer can then probe the
PHChange object by calling changeDetails(for:). The parameter can be
one of two types:

A PHObject
The parameter is a single PHAsset, PHAssetCollection, or
PHCollectionList you’re interested in. The result is a
PHObjectChangeDetails object, with properties like objectBeforeCha
nges, objectAfterChanges, and objectWasDeleted.

A PHFetchResult
The result is a PHFetchResultChangeDetails object, with properties like
fetchResultBeforeChanges, fetchResultAfterChanges, removedOb
jects, insertedObjects, and so on.

The idea is that if you’re hanging on to information in an instance property,
you can use what the PHChange object tells you to modify that information
(and possibly your interface).
For example, suppose my interface is displaying a list of album names,
which I obtained originally through a PHAssetCollection fetch request. And
suppose that, at the time that I performed the fetch request, I also retained
as an instance property (self.albums) the PHFetchResult that it returned.
Then if my photoLibraryDidChange(_:) method is called, I can update
the fetch result and change my interface accordingly:

func photoLibraryDidChange(_ changeInfo: PHChange) {

 if self.albums !== nil {

 let details = changeInfo.changeDetails(for:self.albums)

 if details !== nil {

 self.albums = details!.fetchResultAfterChanges

 // ... and adjust interface if needed ...

 }

 }

}

Fetching Images
Sooner or later, you’ll probably want to go beyond information about the
structure of the photo library and fetch an actual photo or video for display
in your app. This is surprisingly tricky, because the process of obtaining an
image can be time-consuming: not only may the image data may be large,
but also it may be stored in the cloud. Thus, you supply a completion
function which can be called back asynchronously with the data (see
Appendix C).
To obtain an image, you’ll need an image manager, which you’ll get by
calling the PHImageManager default class method. You then call a
method whose name starts with request, supplying a completion function.
For an image, you can ask for a UIImage or the original Data; for a video,
you can ask for an AVPlayerItem, an AVAsset, or an AVAssetExportSession
suitable for exporting the video file to a new location (see Chapter 15). The
result comes back to you as a parameter passed into your completion
function.
If you’re asking for a UIImage, information about the image may increase
in accuracy and detail in the course of time — with the curious consequence
that your completion function may be called multiple times. The idea is to
give you some image to display as fast as possible, with better versions of
the image arriving later. If you would rather receive just one version of the
image, you can specify that through a PHImageRequestOptions object (as
I’ll explain in a moment).

The various request methods take parameters letting you refine the details
of the data-retrieval process. For example, when asking for a UIImage, you
supply these parameters:

targetSize:

The size of the desired image. It is a waste of memory to ask for an
image larger than you need for actual display, and a larger image may
take longer to supply (and a photo, remember, is a very large image).
The image retrieval process performs the desired downsizing so that
you don’t have to. For the largest possible size, pass PHImageManagerM
aximumSize.

contentMode:

A PHImageContentMode, either .aspectFit or .aspectFill, with
respect to your targetSize. With .aspectFill, the image retrieval
process does any needed cropping so that you don’t have to.

options:

A PHImageRequestOptions object. This is a value class representing a
grab-bag of additional tweaks, such as:

Do you want the original image or the edited image?
Do you want one call to your completion function or many, and if
one, do you want a degraded thumbnail (which will arrive quickly)
or the best possible quality (which may take some considerable
time)?
Do you want custom cropping?
Do you want the image fetched over the network if necessary, and if
so, do you want to install a progress callback function?
Do you want the image fetched synchronously? If you do, you will
get only one call to your completion function — but then you must
make your call on a background thread, and the image will arrive on
that same background thread (see Chapter 24).

In this simple example, I have a view controller called DataViewController,
good for displaying one photo in an image view (self.iv). It has a
PHAsset property, self.asset, which is assumed to have been set when

this view controller instance was created. In viewDidLoad, I call my setUp
Interface utility method to populate the interface:

func setUpInterface() {

 guard let asset = self.asset else { return }

 PHImageManager.default().requestImage(for: asset,

 targetSize: CGSize(300,300), contentMode: .aspectFit,

 options: nil) { im, info in

 if let im = im {

 self.iv.image = im

 }

 }

}

This may result in the image view’s image being set multiple times as the
requested image is supplied repeated with its quality improving each time,
but there is nothing wrong with that. Using this technique with a
UIPageViewController, you can easily write an app that allows the user to
browse photos one at a time.
The second parameter in an image request’s completion function is a
dictionary whose elements may be useful in a variety of circumstances.
Among the keys are:

PHImageResultRequestIDKey

Uniquely identifies a single image request for which this result function
is being called multiple times. This value is also returned by the original
request method call (I didn’t bother to capture it in the previous
example). You can also use this identifier to call cancelImageRequest
(_:) if it turns out that you don’t need this image after all.

PHImageCancelledKey

Reports that an attempt to cancel an image request with cancelImageRe
quest(_:) succeeded.

PHImageResultIsInCloudKey

Warns that the image is in the cloud and that your request must be
resubmitted with the PHImageRequestOptions isNetworkAccessAllow
ed property set to true.

If you imagine that your interface is a table view or collection view, you can
see why the asynchronous, time-consuming nature of image fetching can be
significant. As the user scrolls, a cell comes into view and you request the
corresponding image. But as the user keeps scrolling, that cell goes out of
view, and now the requested image, if it hasn’t arrived, is no longer needed,
so you cancel the request. (I’ll tackle the same sort of problem with regard
to Internet-based images in a table view in Chapter 23.)
There is also a PHImageManager subclass, PHCachingImageManager, that
can help do the opposite: you can prefetch some images before the user
scrolls to view them, thus improving response time. For an example that
displays photos in a UICollectionView, look at Apple’s SamplePhotosApp
sample code (also called “Example app using Photos framework”). It uses
the PHImageManager class to fetch individual photos; but for the
UICollectionViewCell thumbnails, it uses PHCachingImageManager.

If a PHAsset represents a live photo, you can call the PHImageManager req
uestLivePhoto method, parallel to requestImage; what you get in the
completion function is a PHLivePhoto (and see earlier in this chapter on
how to display it in your interface).
Fetching a video resource is far simpler, and there’s little to say about it. In
this example, I fetch a reference to the first video in the user’s photo library
and display it in the interface (using an AVPlayerViewController); unlike an
image, I am not guaranteed that the result will arrive on the main thread, so
I must step out to the main thread before interacting with the app’s user
interface:

func fetchMovie() {

 let opts = PHFetchOptions()

 opts.fetchLimit = 1

 let result = PHAsset.fetchAssets(with: .video, options: opts)

 guard result.count > 0 else {return}

 let asset = result[0]

 PHImageManager.default().requestPlayerItem(

 forVideo: asset, options: nil) { item, info in

 if let item = item {

 DispatchQueue.main.async {

 self.display(item:item)

 }

 }

 }

}

func display(item:AVPlayerItem) {

 let player = AVPlayer(playerItem: item)

 let vc = AVPlayerViewController()

 vc.player = player

 vc.view.frame = self.v.bounds

 self.addChildViewController(vc)

 self.v.addSubview(vc.view)

 vc.didMove(toParentViewController: self)

}

You can also access an asset’s various kinds of data directly through the
PHAssetResourceManager class. The request method takes a
PHAssetResource object based on a PHAsset or PHLivePhoto. For
example, you can retrieve an image’s RAW and JPEG data separately. For a
list of the data types we’re talking about here, see the documentation on the
PHAssetResourceType enum.

Editing Images
Astonishingly, PhotoKit allows you to change an image in the user’s photo
library. Why is this even legal? There are two reasons:

The user will have to give permission every time your app proposes to
modify a photo in the library (and will be shown the proposed
modification).
Changes to library photos are undoable, because the original image
remains in the database along with the changed image that the user sees
(and the user can revert to that original at any time).

How to change a photo image
To change a photo image is a three-step process:

1. You send a PHAsset the requestContentEditingInput(with:comp
letionHandler:) message. Your completion function is called, and
is handed a PHContentEditingInput object. This object wraps some
image data which you can display to the user (displaySizeImage),
along with a pointer to the real image data as a file (fullSizeImageU
RL).

2. You create a PHContentEditingOutput object by calling init(conten
tEditingInput:), handing it the PHContentEditingInput object. This
PHContentEditingOutput object has a renderedContentURL property,
representing a file URL. Your mission is to write the edited photo
image data to that URL. Thus, what you’ll typically do is:

a. Fetch the image data from the PHContentEditingInput object’s f
ullSizeImageURL.

b. Process the image.
c. Write the resulting image data to the PHContentEditingOutput

object’s renderedContentURL.
3. You notify the photo library that it should pick up the edited version

of the photo. To do so, you call performChanges(_:completionHand
ler:) and, inside the changes function, create a
PHAssetChangeRequest and set its contentEditingOutput property
to the PHContentEditingOutput object. This is when the user will be
shown the alert requesting permission to modify this photo; your
completion function is then called, with a first parameter of false if
the user refuses (or if anything else goes wrong).

Handling the adjustment data
So far, so good. However, if you do only what I have just described, your
attempt to modify the photo will fail. The reason is that I have omitted
something: before the third step, you must set the PHContentEditingOutput
object’s adjustmentData property to a newly instantiated
PHAdjustmentData object. The initializer is init(formatIdentifier:for

matVersion:data:). What goes into these parameters is completely up to
you, but the goal is to store with the photo a message to your future self in
case you are called upon to edit the same photo again on some later
occasion. In that message, you describe to yourself how you edited the
photo on this occasion.
Your handling of the adjustment data works in three steps, interwoven with
the three steps I already outlined. As you start to edit the photo, first you
say whether you can read its existing PHAdjustmentData, and then you do
read its existing PHAdjustmentData and use it as part of your editing. When
you have finished editing the photo, you make a new PHAdjustmentData,
ready for the next time you edit this same photo. Here are the details:

1. When you call the requestContentEditingInput(with:completio
nHandler:) method, the with: argument should be a
PHContentEditingInputRequestOptions object. You are to create this
object and set its canHandleAdjustmentData property to a function
that takes a PHAdjustmentData and returns a Bool. This Bool will be
based mostly on whether you recognize this photo’s
PHAdjustmentData as yours — typically because you recognize its fo
rmatIdentifier. That determines what image you’ll get when you
receive your PHContentEditingInput object:

Your canHandleAdjustmentData function returns false
The image you’ll be editing is the edited image displayed in the
Photos app.

Your canHandleAdjustmentData function returns true
The image you’ll be editing is the original image, stripped of your
edits. This is because, by returning true, you are asserting that
you can reconstruct your edits based on what’s in the
PHAdjustmentData’s data.

2. When your completion function is called and you receive your
PHContentEditingInput object, it has (you guessed it) an adjustment
Data property, which is an Optional wrapping a PHAdjustmentData

object. If this isn’t nil, and if you edited this image previously, its da
ta is the data you put in the last time you edited this image, and you
are expected to extract it and use it to recreate the edited state of the
image.

3. After editing the image, when you prepare the
PHContentEditingOutput object, you give it a new PHAdjustmentData
object whose data summarizes the new edited state of the photo from
your point of view — and so the whole cycle can start again if the
same photo is to be edited again later.

Example: Before editing
An actual implementation is quite straightforward and almost pure
boilerplate. The details will vary only in regard to the actual editing of the
photo and the particular form of the data by which you’ll summarize that
editing — so, in constructing an example, I’ll keep that part very simple.
Recall, from Chapter 2 (“CIFilter and CIImage”), my example of a custom
“vignette” CIFilter called MyVignetteFilter. I’ll provide an interface
whereby the user can apply that filter to a photo. My interface will include a
slider that allows the user to set the degree of vignetting that should be
applied (MyVignetteFilter’s inputPercentage). Moreover, my interface
will include a button that lets the user remove all vignetting from the photo,
even if that vignetting was applied in a previous editing session.
First, I’ll plan the structure of the PHAdjustmentData:

formatIdentifier

This can be any unique string; I’ll use "com.neuburg.matt.PhotoKitI
mages.vignette", a constant that I’ll store in a property (self.myiden
tifier).

formatVersion

This is likewise arbitrary; I’ll use "1.0".

data

This will express the only thing about my editing that is adjustable —
the inputPercentage. The data will wrap an NSNumber which itself
wraps a Double whose value is the inputPercentage.

As editing begins, I construct the PHContentEditingInputRequestOptions
object that expresses whether a photo’s most recent editing belongs to me.
Then, starting with the photo that is to be edited (a PHAsset), I ask for the
PHContentEditingInput object:

let options = PHContentEditingInputRequestOptions()

options.canHandleAdjustmentData = { adjustmentData in

 return adjustmentData.formatIdentifier == self.myidentifier

}

var id : PHContentEditingInputRequestID = 0

id = self.asset.requestContentEditingInput(with: options) { input, info in

 // ...

}

In the completion function, I receive my PHContentEditingInput object as a
parameter (input). I’m going to need this object later when editing ends, so
I immediately store it in a property. I then unwrap its adjustmentData,
extract the data, and construct the editing interface; in this case, that
happens to be a presented view controller, but the details are irrelevant and
are omitted here:

guard let input = input else {

 self.asset.cancelContentEditingInputRequest(id)

 return

}

self.input = input

let im = input.displaySizeImage! // show this to user during editing

if let adj = input.adjustmentData,

 adj.formatIdentifier == self.myidentifier {

 if let vigAmount =

 NSKeyedUnarchiver.unarchiveObject(with: adj.data) as? Double {

 // ... store vigAmount ...

 }

}

// ... present editing interface, passing it the vigAmount ...

The important thing about that code is how we deal with the adjustmentDa
ta and its data. The question is whether we have data, and whether we
recognize this as our data from some previous edit on this image. This will
affect how our editing interface needs to behave. There are two
possibilities:

It’s our data

If we were able to extract a vigAmount from the adjustmentData, then
the displaySizeImage is the original, unvignetted image. Therefore,
our editing interface initially applies the vigAmount of vignetting to this
image — thus reconstructing the vignetted state of the photo as shown
in the Photos app, while allowing the user to change the amount of
vignetting, or even to remove all vignetting entirely.

It’s not our data

On the other hand, if we weren’t able to extract a vigAmount from the a
djustmentData, then there is nothing to reconstruct; the displaySizeI
mage is the actual photo image from the Photos app, and our editing
interface will apply vignetting to it directly.

Example: After editing
Let’s skip ahead now to the point where the user’s interaction with our
editing interface comes to an end. If the user cancelled, that’s all; the user
doesn’t want to modify the photo after all. Otherwise, the user either asked
to apply a certain amount of vignetting (vignette) or asked to remove all
vignetting; in the latter case, I use an arbitrary vignette value of -1 as a
signal.

Up to now, our editing interface has been using the displaySizeImage to
show the user a preview of what the edited photo would look like. Now,
however, the time has come to perform the vignetting that the user is asking
us to perform — that is, we must apply this amount of vignetting to the real
photo image, which has been sitting waiting for us all this time, untouched,
at the PHContentEditingInput’s fullSizeImageURL. This is a big image,

which will take significant time to load, to alter, and to save (which is why
we haven’t been working with it in the editing interface).

So, depending on the value of vignette requested by the user, I either pass
the input image from the fullSizeImageURL through my vignette filter or I
don’t; either way, I must write a JPEG to the PHContentEditingOutput’s re
nderedContentURL:

let inurl = self.input.fullSizeImageURL!

let inorient = self.input.fullSizeImageOrientation

let output = PHContentEditingOutput(contentEditingInput:self.input)

let outurl = output.renderedContentURL

var ci = CIImage(contentsOf:inurl)!.oriented(forExifOrientation:inorient)

let space = ci.colorSpace!

if vignette >= 0.0 {

 let vig = MyVignetteFilter()

 vig.setValue(ci, forKey: "inputImage")

 vig.setValue(vignette, forKey: "inputPercentage")

 ci = vig.outputImage!

}

try! CIContext().writeJPEGRepresentation(

 of: ci, to: outurl, colorSpace: space)

(The CIContext method called in the last line is time-consuming. The
preceding code should therefore probably be called on background thread,
with a UIActivityIndicatorView or similar to let the user know that work is
being done.)
We are still not quite done. Don’t forget about setting the
PHContentEditingOutput’s adjustmentData! My goal here is to send a
message to myself, in case I am asked later to edit this same image again,
stating what amount of vignetting is already applied to the image. That
amount is represented by vignette — so that’s the value I store in the adju
stmentData:

let data = NSKeyedArchiver.archivedData(withRootObject: vignette)

output.adjustmentData = PHAdjustmentData(

 formatIdentifier: self.myidentifier, formatVersion: "1.0", data: data)

We conclude by telling the photo library to retrieve the edited image. This
will cause the alert to appear, asking the user whether to allow us to modify
this photo. If the user taps Modify, the modification is made, and if we are
displaying the image, we should get onto the main thread and redisplay it:

PHPhotoLibrary.shared().performChanges({

 typealias Req = PHAssetChangeRequest

 let req = Req(for: self.asset)

 req.contentEditingOutput = output // triggers alert

}) { ok, err in

 if ok {

 // if we are displaying image, redisplay it — on main thread

 } else {

 // user refused to allow modification, do nothing

 }

}

You can also edit a live photo, using a PHLivePhotoEditingContext: you are
handed each frame of the video as a CIImage, making it easy, for example,
to apply a CIFilter. For a demonstration, see Apple’s Photo Edit sample app
(also known as Sample Photo Editing Extension).

Photo Editing Extension
A photo editing extension is photo-modifying code supplied by your app
that is effectively injected into the Photos app. When the user edits a photo
from within the Photos app, your extension appears as an option and can
modify the photo being edited.
To make a photo editing extension, create a new target in your app,
specifying iOS → Application Extension → Photo Editing Extension. The
template supplies a storyboard containing one scene, along with the code
file for a corresponding UIViewController subclass. This file imports not
only the Photos framework but also the Photos UI framework, which
supplies the PHContentEditingController protocol, to which the view
controller conforms. This protocol specifies the methods through which the
runtime will communicate with your extension’s code.

A photo editing extension works almost exactly the same way as modifying
photo library assets in general, as I described in the preceding section. The
chief differences are:

You don’t put a Done or a Cancel button into your editing interface. The
Photos app will wrap your editing interface in its own interface,
providing those buttons when it presents your view.
You must situate the pieces of your code so as to respond to the calls that
will come through the PHContentEditingController methods.

The PHContentEditingController methods are as follows:

canHandle(_:)

You will not be instantiating PHContentEditingInput; the runtime will
do it for you. Therefore, instead of configuring a
PHContentEditingInputRequestOptions object and setting its canHandl
eAdjustmentData, you implement this method; you’ll receive the
PHAdjustmentData and return a Bool.

startContentEditing(with:placeholderImage:)

The runtime has obtained the PHContentEditingInput object for you.
Now it supplies that object to you, along with a very temporary initial
version of the image to be displayed in your interface; you are expected
to replace this with the PHContentEditingInput object’s displaySizeIm
age. Just as in the previous section’s code, you should retain the
PHContentEditingInput object in a property, as you will need it again
later.

cancelContentEditing

The user tapped Cancel. You may well have nothing to do here.

finishContentEditing(completionHandler:)

The user tapped Done. In your implementation, you get onto a
background thread (the template configures this for you) and do exactly
the same thing you would do if this were not a photo editing extension

— get the PHContentEditingOutput object and set its adjustmentData;
get the photo from the PHContentEditingInput object’s fullSizeImage
URL, modify it, and save the modified image as a full-quality JPEG at
the PHContentEditingOutput object’s renderedContentURL. When
you’re done, don’t notify the PHPhotoLibrary; instead, call the complet
ionHandler that arrived as a parameter, handing it the
PHContentEditingOutput object.
During the time-consuming part of this method, the Photos app puts up
a UIActivityIndicatorView, just as I suggested you might want to do in
your own app. When you call the completionHandler, there is no alert
asking the user to confirm the modification of the photo; the user is
already in the Photos app and has explicitly asked to edit the photo, so
no confirmation is needed — and moreover, the user will have one more
chance to remove all changes made in the editing interface.

Using the Camera
Use of the camera requires user authorization. You’ll use the
AVCaptureDevice class for this (part of the AV Foundation framework; imp
ort AVFoundation). To learn what the current authorization status is, call
the class method authorizationStatus(forMediaType:). To ask the
system to put up the authorization request alert if the status is .notDetermi
ned, call the class method requestAccess(forMediaType:completionHa
ndler:). The media type (AVMediaType) will be .video; this embraces
both stills and movies. Your app’s Info.plist must contain some text that the
system authorization request alert can use to explain why your app wants
camera use; the relevant key is “Privacy — Camera Usage Description” (NS
CameraUsageDescription).
If your app will let the user capture movies (as opposed to stills), you will
also need to obtain permission from the user to access the microphone. The
same methods apply, but with argument .audio. Your app’s Info.plist must

contain some explanatory text under the “Privacy — Microphone Usage
Description” key (NSMicrophoneUsageDescription).
See “Checking for Authorization” for detailed consideration of
authorization strategy and testing.

WARNING
Use of the camera is greatly curtailed, and is interruptible, under iPad multitasking. Watch
WWDC 2015 video 211 for details.

Capture with UIImagePickerController
The simplest way to prompt the user to take a photo or video is to use the
same UIImagePickerController class discussed earlier in this chapter. It
provides an interface that is effectively a limited subset of the Camera app.
The procedure is similar to what you do when you use
UIImagePickerController to browse the photo library. First, check isSourc
eTypeAvailable(_:) for .camera; it will be false if the user’s device has
no camera or the camera is unavailable. If it is true, call availableMediaT
ypes(for:.camera) to learn whether the user can take a still photo (kUTTy
peImage), a video (kUTTypeMovie), or both. Now instantiate
UIImagePickerController, set its source type to .camera, and set its mediaT
ypes in accordance with which types you just learned are available; if your
setting is an array of both kUTTypeImage and kUTTypeMovie, the user will
see a Camera-like interface allowing a choice of either one. Finally, set a
delegate (adopting UINavigationControllerDelegate and
UIImagePickerControllerDelegate), and present the picker:

let src = UIImagePickerControllerSourceType.camera

guard UIImagePickerController.isSourceTypeAvailable(src)

 else {return}

guard = UIImagePickerController.availableMediaTypes(for:src) != nil

 else {return}

let picker = UIImagePickerController()

picker.sourceType = src

picker.mediaTypes = arr

picker.delegate = self

self.present(picker, animated: true)

For video, you can also specify the videoQuality and videoMaximumDura
tion. Moreover, these additional properties and class methods allow you to
discover the camera capabilities:

isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of
these values as argument (UIImagePickerControllerCameraDevice):

.front

.rear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModes(for:)

Checks whether the given camera can capture still images, video, or
both. You specify the front or rear camera; returns an array of integers.
Possible modes are (UIImagePickerControllerCameraCaptureMode):

.photo

.video

cameraCaptureMode

Lets you learn and set the capture mode (still or video).

isFlashAvailable(for:)

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED
“torch”). Your choices are
(UIImagePickerControllerCameraFlashMode):

.off

.auto

.on

When the view controller’s view appears, the user will see the interface for
taking a picture, familiar from the Camera app, possibly including flash
options, camera selection button, photo/video option (if your mediaTypes
setting allows both), and Cancel and shutter buttons. If the user takes a
picture, the presented view offers an opportunity to use the picture or to
retake it.

Allowing the user to edit the captured image or movie (allowsEditing),
and handling the outcome with the delegate messages, is the same as I
described earlier for dealing with an image or movie selected from the
photo library, with these additional points regarding the info dictionary
delivered to the delegate:

There won’t be any UIImagePickerControllerPHAsset key, because
the image isn’t in the photo library.

There won’t be any UIImagePickerControllerImageURL key; if the
user takes a still image, no copy is saved as a file.

There won’t be any UIImagePickerControllerLivePhoto key; the
user can’t capture a live photo with the UIImagePickerController camera
interface.

A still image might be accompanied by a UIImagePickerControllerMe
diaMetadata key containing the metadata for the photo.

The photo library was not involved in the process of media capture, so no
user permission to access the photo library is needed; of course, if you now
propose to save the media into the photo library, you will need permission.
Suppose, for example, that the user takes a still image, and you now want to
save it into the user’s Camera Roll album. Creating the PHAsset is
sufficient:

func imagePickerController(_ picker: UIImagePickerController,

 didFinishPickingMediaWithInfo info: [String : Any]) {

 var im = info[UIImagePickerControllerOriginalImage] as? UIImage

 if let ed = info[UIImagePickerControllerEditedImage] as? UIImage {

 im = ed

 }

 let m = info[UIImagePickerControllerMediaMetadata] as? NSDictionary

 self.dismiss(animated:true) {

 let mediatype = info[UIImagePickerControllerMediaType]

 guard let type = mediatype as? NSString else {return}

 switch type as CFString {

 case kUTTypeImage:

 if im != nil {

 let lib = PHPhotoLibrary.shared()

 lib.performChanges({

 typealias Req = PHAssetChangeRequest

 Req.creationRequestForAsset(from: im!)

 })

 }

 default:break

 }

 }

}

In that code, the metadata associated with the photo is received (m), but
nothing is done with it, and it is not folded into the PHAsset created from
the image (im). To attach the metadata to the photo, use the Image I/O
framework (import ImageIO) to make a copy of the image data along with
the metadata. Now you can use a PHAssetCreationRequest to make the
PHAsset from the data:

let jpeg = UIImageJPEGRepresentation(im!, 1)!

let src = CGImageSourceCreateWithData(jpeg as CFData, nil)!

let data = NSMutableData()

let uti = CGImageSourceGetType(src)!

let dest = CGImageDestinationCreateWithData(

 data as CFMutableData, uti, 1, nil)!

CGImageDestinationAddImageFromSource(dest, src, 0, m)

CGImageDestinationFinalize(dest)

let lib = PHPhotoLibrary.shared()

lib.performChanges({

 let req = PHAssetCreationRequest.forAsset()

 req.addResource(with: .photo, data: data as Data, options: nil)

})

You can customize the UIImagePickerController image capture interface. If
you need to do that, you should probably consider dispensing entirely with
UIImagePickerController and instead designing your own image capture
interface from scratch, based around AV Foundation and
AVCaptureSession, which I’ll introduce in the next section. Still, it may be
that a modified UIImagePickerController is all you need.
In the image capture interface, you can hide the standard controls by setting
showsCameraControls to false, replacing them with your own overlay
view, which you supply as the value of the cameraOverlayView. That
removes the shutter button, so you’re probably going to want to provide
some new means of allowing the user to take a picture! You can do that
through these methods:

takePicture

startVideoCapture

stopVideoCapture

The UIImagePickerController is a UINavigationController, so if you need
additional interface — for example, to let the user vet the captured picture
before dismissing the picker — you can push it onto the navigation
interface.

Capture with AV Foundation
Instead of using UIImagePickerController, you can control the camera and
capture images directly using the AV Foundation framework (Chapter 15).
You get no help with interface, but you get vastly more detailed control than
UIImagePickerController can give you. For example, for stills, you can
control focus and exposure directly and independently, and for video, you
can determine the quality, size, and frame rate of the resulting movie.
To understand how AV Foundation classes are used for image capture,
imagine how the Camera app works. When you are running the Camera
app, you have, at all times, a “window on the world” — the screen is
showing you what the camera sees. At some point, you might tap the button

to take a still image or start taking a video; now what the camera sees goes
into a file.
Think of all that as being controlled by an engine. This engine, the heart of
all AV Foundation capture operations, is an AVCaptureSession object. It has
inputs (such as a camera) and outputs (such as a file). It also has an
associated layer in your interface. When you start the engine running, by
calling startRunning, data flows from the input through the engine; that is
how you get your “window on the world,” displaying on the screen what
the camera sees.
As a rock-bottom example, let’s start by implementing just the “window on
the world” part of the engine. Our AVCaptureSession is retained in an
instance property (self.sess). We also need a special CALayer that will
display what the camera is seeing — namely, an
AVCaptureVideoPreviewLayer. This layer is not really an
AVCaptureSession output; rather, the layer receives its imagery by
association with the AVCaptureSession. Our capture session’s input is the
default camera. We have no intention, as yet, of capturing anything to a file,
so no output is needed:

self.sess = AVCaptureSession()

guard let cam = AVCaptureDevice.default(for: .video),

 let input = try? AVCaptureDeviceInput(device:cam)

 else {return}

self.sess.addInput(input)

let lay = AVCaptureVideoPreviewLayer(session:self.sess)

lay.frame = // ... some reasonable frame ...

self.view.layer.addSublayer(lay)

self.sess.startRunning()

Presto! Our interface now displays a “window on the world,” showing what
the camera sees.
Suppose now that our intention is that, while the engine is running and the
“window on the world” is showing, the user is to be allowed to tap a button
that will capture a still photo. Now we do need an output for our
AVCaptureSession. This will be an AVCapturePhotoOutput instance. We

should also configure the session with a preset (AVCaptureSession.Prese
t) to match our intended use of it; in this case, the preset will be .photo.
So let’s modify the preceding code to give the session an output and a
preset. We can do this directly before we start the session running. We can
also do it while the session is already running (and in general, if you want
to reconfigure a running session, doing so while it is running is far more
efficient than stopping the session and starting it again), but then we must
wrap our configuration changes in beginConfiguration and commitConfi
guration:

self.sess.beginConfiguration()

guard self.sess.canSetSessionPreset(self.sess.sessionPreset)

 else {return}

self.sess.sessionPreset = .photo

let output = AVCapturePhotoOutput()

guard self.sess.canAddOutput(output)

 else {return}

self.sess.addOutput(output)

self.sess.commitConfiguration()

The session is now running and is ready to capture a photo. The user taps
the button that asks to capture a photo, and we respond by telling the
session’s photo output to capturePhoto(with:delegate:). The first
parameter is an AVCapturePhotoSettings object. It happens that for a
standard JPEG photo a default instance will do, but to make things more
interesting I’ll specify explicitly that I want the camera to use automatic
flash and automatic image stabilization:

let settings = AVCapturePhotoSettings()

settings.flashMode = .auto

settings.isAutoStillImageStabilizationEnabled = true

If we intend to display the user’s captured photo in our interface, we should
request a preview image explicitly as part of our configuration of the
AVCapturePhotoSettings object. It’s a lot more efficient for AV Foundation
to create an uncompressed preview image of the correct size than for us to

try to display or downsize a huge photo image. Here’s how we might ask
for the preview image:

let pbpf = settings.availablePreviewPhotoPixelFormatTypes[0]

let len = // desired maximum dimension

settings.previewPhotoFormat = [

 kCVPixelBufferPixelFormatTypeKey as String : pbpf,

 kCVPixelBufferWidthKey as String : len,

 kCVPixelBufferHeightKey as String : len

]

Another good idea, when configuring the AVCapturePhotoSettings object,
is to ask for a thumbnail image (new in iOS 11). This is different from the
preview image: the preview image is for you to display in your interface,
but the thumbnail image is stored with the photo and is suitable for rapid
display by other applications. Here’s how to request a thumbnail image at a
standard size (160×120):

settings.embeddedThumbnailPhotoFormat = [

 AVVideoCodecKey : AVVideoCodecType.jpeg

]

When the AVCapturePhotoSettings object is fully configured, we’re ready
to call capturePhoto(with:delegate:), like this:

guard let output = self.sess.outputs[0] as? AVCapturePhotoOutput

 else {return}

output.capturePhoto(with: settings, delegate: self)

In that code, I specified self as the delegate (an
AVCapturePhotoCaptureDelegate adopter). Functioning as the delegate, we
will now receive a sequence of events. The exact sequence depends on what
sort of capture we’re doing; in this case, it will be:

1. photoOutput(_:willBeginCaptureFor:)

2. photoOutput(_:willCapturePhotoFor:)

3. photoOutput(_:didCapturePhotoFor:)

4. photoOutput(_:didFinishProcessingPhoto:error:)

5. photoOutput(_:didFinishCaptureFor:)

The for: parameter throughout is an AVCaptureResolvedSettings object,
embodying the settings actually used during the capture; for example, we
could use it to find out whether flash was actually used.

NOTE
The delegate method names are all new in iOS 11.

The delegate event of interest to our example is obviously the fourth one.
This is where we receive the photo! It will arrive in the second parameter as
an AVCapturePhoto object (new in iOS 11) containing a lot of information,
including the resolvedSettings, a pixelBuffer holding the image data,
and a previewPixelBuffer with data for the preview image if we
requested one in our AVCapturePhotoSettings.

We can extract the image data from the AVCapturePhoto by calling its file
DataRepresentation method. This is a powerful method that (among
other things) embeds into the data the capture metadata. (There is also a
longer form of the same method, allowing you do to do such things as
modify the metadata.)
In this example, we implement the fourth delegate method to save the actual
image as a PHAsset in the user’s photo library, while we also store the
preview image as a property, for subsequent display in our interface:

func photoOutput(_ output: AVCapturePhotoOutput,

 didFinishProcessingPhoto photo:

 AVCapturePhoto, error: Error?) {

 if let cgim =

 photo.previewCGImageRepresentation()?.takeUnretainedValue() {

 let orient = // work out desired UIImageOrientation

 self.previewImage = UIImage(

 cgImage: cgim, scale: 1, orientation: orient)

 }

 if let data = photo.fileDataRepresentation() {

 let lib = PHPhotoLibrary.shared()

 lib.performChanges({

 let req = PHAssetCreationRequest.forAsset()

 req.addResource(with: .photo, data: data, options: nil)

 })

 }

 }

Image capture with AV Foundation is a huge subject, and our example of a
simple photo capture has barely scratched the surface.
AVCaptureVideoPreviewLayer provides methods for converting between
layer coordinates and capture device coordinates; without such methods,
this can be a very difficult problem to solve. You can scan bar codes, shoot
video at 60 frames per second (on some devices), and more. You can turn
on the LED “torch” by setting the back camera’s torchMode to AVCaptureT
orchModeOn, even if no AVCaptureSession is running. You get direct
hardware-level control over the camera focus, manual exposure, and white
balance. You can capture bracketed images; starting in iOS 10, you can
capture live images on some devices, and you can capture RAW images on
some devices; and iOS 11 introduces yet another raft of new features such
as depth-based image capture. There are very good WWDC videos about all
this, stretching back over the past several years, and the AVCam-iOS and
AVCamManual sample code examples are absolutely superb, demonstrating
how to deal with tricky issues such as orientation that would otherwise be
very difficult to figure out.

Chapter 18. Contacts

The user’s contacts, which the user sees through the Contacts app,
constitute a database that your code can access programmatically through
the Contacts framework. You’ll need to import Contacts.
An interface for letting the user interact with the contacts database from
within your app is provided by the Contacts UI framework. You’ll need to i
mport ContactsUI.
Access to the contacts database requires user authorization. You’ll use the
CNContactStore class for this. To learn what the current authorization status
is, call the class method authorizationStatus(for:) with a
CNEntityType of .contacts. To ask the system to put up the authorization
request alert if the status is .notDetermined, call the instance method requ
estAccess(for:completionHandler:). The Info.plist must contain some
text that the system authorization request alert can use to explain why your
app wants access. The relevant key is “Privacy — Contacts Usage
Description” (NSContactsUsageDescription). See “Checking for
Authorization” for detailed consideration of authorization strategy and
testing.

Contact Classes
Here are the chief object types you’ll be concerned with when you work
with the user’s contacts:

CNContactStore
The user’s database of contacts is accessed through an instance of the
CNContactStore class. You do not need to keep a reference to an
instance of this class. When you want to fetch a contact from the
database, or when you want to save a created or modified contact into

the database, instantiate CNContactStore, do your fetching or saving,
and let the CNContactStore instance vanish.

TIP
CNContactStore instance methods for fetching and saving information can take time. Therefore,
they should be called on a background thread; for example, you might call DispatchQueue.globa
l(qos:.userInitiated).async. For details about what that means, see Chapter 24.

CNContact
An individual contact is an instance of the CNContact class. Its
properties correspond to the fields displayed in the Contacts app. In
addition, it has an identifier which is unique and persistent. A
CNContact that comes from the CNContactStore has no connection
with the database; it is safe to preserve it and to pass it around between
objects and between threads. It is also immutable by default (its
properties are read-only). To create your own CNContact, start with its
mutable subclass, CNMutableContact; to modify an existing
CNContact, call mutableCopy to make it a CNMutableContact.
The properties of a CNContact are matched by constant key names
designating those properties. For example, a CNContact has a familyNa
me property, and there is also a CNContactFamilyNameKey. This should
remind you of MPMediaItem (Chapter 16), and indeed the purpose is
similar: the key names allow you, when you fetch a CNContact from the
CNContactStore, to state which properties of the CNContact you want
populated. By limiting the properties to be fetched, you fetch more
efficiently and quickly.
Most properties of a CNContact have familiar types such as String or an
enum. However, the Contacts framework defines a number of
specialized types as well; for example, a phone number is a
CNPhoneNumber, and a postal address is a CNPostalAddress. Such
types tend to be wrapped up in a generic CNLabeledValue, whose

purpose I’ll explain later. Dates, such as a birthday, are not Date objects
but rather DateComponents; this is because they do not necessarily
require full date information (for example, I know when someone’s
birthday is without knowing the year they were born).

CNContactFormatter, CNPostalAddressFormatter
A formatter is an engine for displaying aspects of a CNContact as a
string. For example, a CNContactFormatter whose style is .fullName
assembles the name-related properties of a CNContact into a name
string. Moreover, a formatter will hand you the key names of the
properties that it needs in order to form its string, so that you can easily
include them among the contact properties that you fetch initially from
the store.

The user’s contacts database can change while your app is running. To
detect this, register for the .CNContactStoreDidChange notification. The
arrival of this notification means that any contacts-related objects that you
are retaining, such as CNContact instances, may be outdated.

Fetching Contact Information
You now know enough to get started! Let’s put it all together and fetch
some contacts. When we perform a fetch, there are two parameters to
provide in order to limit the information to be returned to us:

A predicate
An NSPredicate. CNContact provides class methods that will generate
the predicates you’re allowed to use; you are most likely to call predic
ateForContacts(matchingName:) or predicateForContacts(withI
dentifiers:).

Keys
An array of objects adopting the CNKeyDescriptor protocol; such an
object will be either a string key name such as CNContactFamilyNameK
ey or a descriptor provided by a formatter such as CNContactFormatter.

Fetching a Contact
I’ll start by finding the contact in my contacts database that represents me.
To do so, I’ll first fetch all contacts whose name is Matt. I’ll call the
CNContactStore instance method unifiedContacts(matching:keysToFe
tch:). To determine which resulting Matt is me, I don’t need more than the
first name and the last name of those contacts, so those are the keys I’ll ask
for. I’ll cycle through the resulting array of contacts in an attempt to find
one whose last name is Neuburg. There are some parts of the process that
I’m not bothering to show: we are using a CNContactStore fetch method, so
everything should be done on a background thread, and the fetch should be
wrapped in a do...catch construct because it can throw:

let pred = CNContact.predicateForContacts(matchingName: "Matt")

var matts = try CNContactStore().unifiedContacts(matching: pred,

 keysToFetch: [

 CNContactFamilyNameKey as CNKeyDescriptor,

 CNContactGivenNameKey as CNKeyDescriptor

])

matts = matts.filter{$0.familyName == "Neuburg"}

guard let moi = matts.first else {

 print("couldn't find myself")

 return

}

Alternatively, since I intend to cycle through the fetched contacts, I could
call enumerateContacts(with:usingBlock:), which hands me contacts
one at a time. The parameter is a CNContactFetchRequest, a simple value
class; in addition to keysToFetch and predicate, it has some powerful
properties allowing me to retrieve CNMutableContacts instead of
CNContacts, to dictate the sort order, and to suppress the unification of
linked contacts (I’ll talk later about what that means). Thus, one should
perhaps regard enumerateContacts(with:usingBlock:) as the primary
way to fetch contacts. I don’t need those extra features here, however.
Again, assume we’re in a background thread and inside a do...catch
construct:

let pred = CNContact.predicateForContacts(matchingName:"Matt")

let req = CNContactFetchRequest(

 keysToFetch: [

 CNContactFamilyNameKey as CNKeyDescriptor,

 CNContactGivenNameKey as CNKeyDescriptor

])

req.predicate = pred

var matt : CNContact? = nil

try CNContactStore().enumerateContacts(with:req) { con, stop in

 if con.familyName == "Neuburg" {

 matt = con

 stop.pointee = true

 }

}

guard let moi = matt else {

 print("couldn't find myself")

 return

}

TIP
A commonly asked question is: where’s the predicate for fetching information about all contacts?
There isn’t one. Simply call enumerateContacts(with:usingBlock:) without a predicate.

Repopulating a Contact
The contact that I fetched in the preceding examples is only partially
populated. That means I can’t use it to obtain any further contact property
information. To illustrate, let’s say that I now want to access my own email
addresses. If I were to carry on directly from the preceding code by reading
the emailAddresses property of moi, I’d crash because that property isn’t
populated:

let emails = moi.emailAddresses // crash

If I’m unsure what properties of a particular contact are populated, I can test
for safety beforehand with the isKeyAvailable(_:) method:

if moi.isKeyAvailable(CNContactEmailAddressesKey) {

 let emails = moi.emailAddresses

}

But even though I’m not crashing any more, I still want those email
addresses. One solution, obviously, would have been to plan ahead and
include CNContactEmailAddressesKey in the list of properties to be
fetched. Unfortunately, I failed to do that. Luckily, there’s another way; I
can go back to the store and repopulate this contact, based on its identifier:

let moi2 = try CNContactStore().unifiedContact(withIdentifier: moi.identifier,

 keysToFetch: [

 CNContactFamilyNameKey as CNKeyDescriptor,

 CNContactGivenNameKey as CNKeyDescriptor,

 CNContactEmailAddressesKey as CNKeyDescriptor

])

let emails = moi2.emailAddresses

Labeled Values
Now let’s talk about the structure of the thing I’ve just obtained — the
value of the emailAddresses property. It’s an array of CNLabeledValue
objects.

A CNLabeledValue has a label and a value (and an identifier). This
class handles the fact that some contact attributes can have more than one
value, each intended for a specific purpose (which is described by the
label). For example, I might have a home email address and a work email
address. These addresses are not keyed by their labels — we cannot, for
example, use a dictionary here — because I can have, say, two work email
addresses. Rather, the label is simply another piece of information
accompanying the value. You can make up your own labels, or you can use
the built-in labels; the latter are very strange-looking strings like "_$!<Work
>!$_", but there are also some constants that you can use instead, such as C
NLabelWork.
Carrying on from the previous example, I’ll look for all my work email
addresses:

let workemails = emails.filter{ $0.label == CNLabelWork }.map{ $0.value }

Postal addresses are similar, except that their value is a CNPostalAddress.
(Recall that there’s a CNPostalAddressFormatter, to be used when
presenting an address as a string.) Phone number values are
CNPhoneNumber objects. And so on.

Contact Formatters
To illustrate the point about formatters and keys, let’s say that now I want to
present the full name and work email of this contact to the user, as a string.
I should not assume either that the full name is to be constructed as givenN
ame followed by familyName nor that those are the only two pieces that
constitute it. Rather, I should rely on the intelligence of a
CNContactFormatter:

let full = CNContactFormatterStyle.fullName

let keys = CNContactFormatter.descriptorForRequiredKeys(for:full)

let moi3 = try CNContactStore().unifiedContact(withIdentifier: moi.identifier,

 keysToFetch: [

 keys,

 CNContactEmailAddressesKey as CNKeyDescriptor

])

if let name = CNContactFormatter.string(from: moi3, style: full) {

 print("\(name): \(workemails[0])") // Matt Neuburg: matt@tidbits.com

}

Saving Contact Information
All saving of information into the user’s contacts database involves a
CNSaveRequest object. You describe to this object your proposed changes
by calling instance methods such as add(_:toContainerWithIdentifie
r:), update(_:), and delete(_:). The CNSaveRequest object batches
those proposed changes. Then you hand the CNSaveRequest object over to
the CNContactStore with execute(_:), and the changes are performed in a
single transaction.
In this example, I’ll create a contact for Snidely Whiplash with a Home
email snidely@villains.com and add him to the contacts database. Yet

again, assume we’re in a background thread and inside a do...catch
construct:

let snidely = CNMutableContact()

snidely.givenName = "Snidely"

snidely.familyName = "Whiplash"

let email = CNLabeledValue(label: CNLabelHome,

 value: "snidely@villains.com" as NSString)

snidely.emailAddresses.append(email)

snidely.imageData = UIImagePNGRepresentation(UIImage(named:"snidely")!)

let save = CNSaveRequest()

save.add(snidely, toContainerWithIdentifier: nil)

try CNContactStore().execute(save)

Sure enough, if we then check the state of the database through the Contacts
app, our Snidely contact exists (Figure 18-1).

Figure 18-1. A contact created programmatically

Contact Sorting, Groups, and Containers
Contacts are naturally sorted either by family name or by given name, and
the user can choose between them (in the Settings app) in arranging the list

of contacts to be displayed by the Contacts app and other apps that display
the same list. The CNContact class provides a comparator, through the comp
arator(forNameSortOrder:) class method, suitable for use with NSArray
methods such as sortedArray(comparator:). To make sure your
CNContact is populated with the properties needed for sorting, call the class
method descriptorForAllComparatorKeys. Your sort order choices
(CNContactSortOrder) are:

.givenName

.familyName

.userDefault

Contacts can belong to groups, and the Contacts application in macOS
provides an interface for manipulating contact groups — though the
Contacts app on an iOS device does not. (The Contacts app on an iOS
device allows contacts to be filtered by group, but does not permit editing
of groups — creation of groups, addition of contacts to groups, and so on.
It’s a curious omission, and I don’t know the reason for it.) A group in the
Contacts framework is a CNGroup; its mutable subclass, CNMutableGroup,
allows you to create a group and set its name. All manipulation of contacts
and groups — creating, renaming, or deleting a group, adding a contact to a
group or removing a contact from a group — is performed through
CNSaveRequest instance methods.
Contacts come from sources. A contact or group might be on the device or
might come from an Exchange server or a CardDAV server. The source
really does, in a sense, own the group or contact; a contact can’t belong to
two sources. A complicating factor, however, is that the same real person
might be listed in two different sources as two different contacts; to deal
with this, it is possible for multiple contacts to be linked, indicating that
they are the same person. That’s why the methods that fetch contacts from
the database describe the resulting contacts as “unified” — the linkage
between linked contacts from different sources has already been used to
consolidate the information before you receive them as a single contact. In
the Contacts framework, a source is a CNContainer. When I called the

CNSaveRequest instance method add(_:toContainerWithIdentifier:)
earlier, I supplied a container identifier of nil, signifying the user’s default
container.

TIP
In the rare event that you don’t want unification of linked contacts across sources as you fetch
contacts, call enumerateContacts(with:usingBlock:) with a CNContactFetchRequest whose u
nifyResults property is false.

Contacts Interface
The Contacts UI framework endows your app with an interface, similar to
the Contacts app, that lets the user perform common tasks involving the
listing, display, and editing of contacts in the database. This is a great help,
because designing your own interface to do the same thing would be
tedious and involved. The framework provides two UIViewController
subclasses:

CNContactPickerViewController
Presents a navigation interface, effectively the same as the Contacts app
but without an Edit button: it lists the contacts in the database and
allows the user to pick one and view the details.

CNContactViewController
Presents an interface showing the properties of a specific contact. It
comes in three variants:

Existing contact
Displays the details, possibly editable, of an existing contact fetched
from the database.

New contact
Displays editable properties of a new contact, allowing the user to
save the edited contact into the database.

Unknown contact
Displays a proposed contact with a partial set of properties, for
editing and saving or merging into an existing contact in the
database.

Some of the Contacts UI framework view controllers allow the user to
select (tap) a property of a contact in the interface. Therefore, they need a
way to package up the information about that property so as to
communicate to your code what property this is — for example, Matt
Neuburg’s work email, whose value is matt@tidbits.com. For this
purpose, the Contacts framework provides the CNContactProperty class.
This a value class, consisting of a key (effectively the name of the
property), a value, a label (in case the property comes from a
CNLabeledValue), a contact, and an identifier. The contact arrives
fully populated, so we can access all its properties from here without
returning to the CNContactStore.

WARNING
You do not need user authorization to use these view controllers, and in the case of an editable
CNContactViewController you cannot prevent the user from saving the edited contact into the
database.

CNContactPickerViewController
A CNContactPickerViewController is a UINavigationController. With it,
the user can see a list of all contacts in the database, and can filter that list
by group.
To use CNContactPickerViewController, instantiate it, assign it a delegate
(CNContactPickerDelegate), and present it as a presented view controller:

let picker = CNContactPickerViewController()

picker.delegate = self

self.present(picker, animated:true)

That code works — the picker appears, and there’s a Cancel button so the
user can dismiss it. When the user taps a contact, that contact’s details are
pushed onto the navigation controller. And when the user taps a piece of
information among the details, some default action is performed: for a
postal address, it is displayed in the Maps app; for an email address, it
becomes the addressee of a new message in the Mail app; for a phone
number, the number is dialed; and so on.
However, we have so far provided no way for any information to travel
from the picker to our app. For that, we need to implement the delegate
method contactPicker(_:didSelect:). This method comes in two basic
forms:

The second parameter is a CNContact
When the user taps a contact name, the contact’s details are not pushed
onto the navigation controller. Instead, the delegate method is called, the
tapped contact is passed to us, and the picker is dismissed.

The second parameter is a CNContactProperty
When the user taps a contact name, the contact’s details are pushed onto
the navigation controller. If the user now taps a piece of information
among the details, the delegate method is called, the tapped property is
passed to us, and the picker is dismissed.

(If we implement both forms of this method, it is as if we had implemented
only the first form. However, it’s possible to change that, using the predica
teForSelectionOfContact property, as I’m about to explain.)
You can perform additional configuration of what information appears in
the picker and what happens when it is tapped, by setting properties of the
picker before you present it. These properties are all NSPredicates:

predicateForEnablingContact

The predicate describes the contact. A contact will be enabled in the
picker only if the predicate evaluates to true. A disabled contact cannot
be tapped, so it can’t be selected and its details can’t be displayed.

predicateForSelectionOfContact

The predicate describes the contact. If the predicate evaluates to true,
tapping the contact calls the first delegate method (the parameter is the
contact). Otherwise, tapping the contact displays the contact details.

predicateForSelectionOfProperty

The predicate describes the property (in the detail view). If the predicate
evaluates to true, tapping the property calls the second delegate method
(the parameter is a CNContactProperty). Otherwise, tapping the
property performs the default action.

You can also determine what properties appear in the detail view, by setting
the displayedPropertyKeys property.
For example, let’s say we want the user to pass us an email address, and
that’s the only reason we’re displaying the picker. Then a reasonable
configuration would be:

picker.displayedPropertyKeys =

 [CNContactEmailAddressesKey]

picker.predicateForEnablingContact =

 NSPredicate(format: "emailAddresses.@count > 0")

We would then implement only the second form of the delegate method (the
parameter is a CNContactProperty). Our code, in combination with the
delegate method implementation and the property defaults that we have not
set, effectively says: “Only enable contacts that have email addresses. When
the user taps an enabled contact, show the details. In the details view, show
only email addresses. When the user taps an email address, report it to the
delegate method and dismiss the picker.”
It is also possible to enable multiple selection. To do so, we implement a
different pair of delegate methods:

contactPicker(_:didSelect:)

The second parameter is an array of CNContact.

contactPicker(_:didSelectContactProperties:)

The second parameter is an array of CNContactProperty.
This causes a Done button to appear in the interface, and our delegate
method is called when the user taps it.

WARNING
The interface for letting the user select multiple properties, if incorrectly configured, can be
clumsy and confusing, and can even send your app into limbo. Experiment carefully before
deciding to use it.

CNContactViewController
A CNContactViewController is a UIViewController. It comes, as I’ve
already said, in three flavors, depending on how you instantiate it:

Existing contact: init(for:)

New contact: init(forNewContact:)

Unknown contact: init(forUnknownContact:)
The first and third flavors display a contact initially, with an option to show
a secondary editing interface. The second flavor consists solely of the
editing interface.
You can configure the initial display of the contact in the first and third
flavors, by means of these properties:

allowsActions

Refers to extra buttons that can appear in the interface if it is true —
things like Share Contact, Add to Favorites, and Share My Location.
Exactly what buttons appear depends on what categories of information
are displayed.

displayedPropertyKeys

Limits the properties shown for this contact.

message

A string displayed beneath the contact’s name.
There are two delegate methods (CNContactViewControllerDelegate):

contactViewController(_:shouldPerformDefaultActionFor:)

Used by the first and third flavors, in the initial display of the contact.
This is like a live version of the picker predicateForSelectionOfPro
perty, except that the meaning is reversed: returning true means that
the tapped property should proceed to trigger the Mail app or the Maps
app or whatever is appropriate. This includes the message and mail
buttons at the top of the interface. You are handed the
CNContactProperty, so you know what was tapped and can take action
yourself if you return false.

contactViewController(_:didCompleteWith:)

Used by all three flavors. Called when the user dismisses the editing
interface. If the user taps Done in the editing interface, you receive the
edited contact, which has already been saved into the database. (If the
user cancels out of the editing interface, then if this delegate method is
called, the received contact will be nil.)

Existing contact
To display an existing contact in a CNContactViewController, call init(fo
r:) with a CNContact that has already been populated with all the
information needed to display it in this view controller. For this purpose,
CNContactViewController supplies a class method descriptorForRequir
edKeys, and you will want to call it to set the keys when you fetch your
contact from the store, prior to using it with a CNContactViewController.
Here’s an example:

let pred = CNContact.predicateForContacts(matchingName: "Snidely")

let keys = CNContactViewController.descriptorForRequiredKeys()

let snides = try CNContactStore().unifiedContacts(matching: pred,

 keysToFetch: [keys])

guard let snide = snides.first else {

 print("no snidely")

 return

}

We now have a sufficiently populated contact, snide, and can use it in a
subsequent call to CNContactViewController’s init(for:).

WARNING
Handing an insufficiently populated contact to CNContactViewController’s init(for:) will
crash your app.

Having instantiated CNContactViewController, you set its delegate
(CNContactViewControllerDelegate) and push the view controller onto an
existing UINavigationController’s stack.
An Edit button appears at the top right, and the user can tap it to edit this
contact in a presented view controller — unless you have set the view
controller’s allowsEditing property to false, in which case the Edit
button is suppressed.
Here’s a minimal working example; I’ll display the Snidely Whiplash
contact that I obtained earlier. Note that, even if we were in a background
thread earlier when we fetched snide from the database, we need to be on
the main thread now:

let vc = CNContactViewController(for:snide)

vc.delegate = self

vc.message = "Nyah ah ahhh"

self.navigationController?.pushViewController(vc, animated: true)

New contact
To use a CNContactViewController to allow the user to create a new
contact, instantiate it with init(forNewContact:). The parameter can be n
il, or it can be a CNMutableContact that you’ve created and partially

populated; but your properties will be only suggestions, because the user is
going to be shown the contact editing interface and can change anything
you’ve put.
Having set the view controller’s delegate, you then do a little dance: you
instantiate a UINavigationController with the CNContactViewController as
its root view controller, and present the navigation controller. Thus, this is a
minimal implementation:

let con = CNMutableContact()

con.givenName = "Dudley"

con.familyName = "Doright"

let npvc = CNContactViewController(forNewContact: con)

npvc.delegate = self

self.present(UINavigationController(rootViewController: npvc),

 animated:true)

WARNING
You must dismiss the presented navigation controller yourself in your implementation of contact
ViewController(_:didCompleteWith:).

Unknown contact
To use a CNContactViewController to allow the user to edit an unknown
contact, instantiate it with init(forUnknownContact:). You must provide
a CNContact parameter, which you may have made up from scratch using a
CNMutableContact. You must set the view controller’s contactStore to a
CNContactStore instance; if you don’t, it’s not an error, but the view
controller is then useless. You then set a delegate and push the view
controller onto an existing navigation controller:

let con = CNMutableContact()

con.givenName = "Johnny"

con.familyName = "Appleseed"

con.phoneNumbers.append(CNLabeledValue(label: "woods",

 value: CNPhoneNumber(stringValue: "555-123-4567")))

let unkvc = CNContactViewController(forUnknownContact: con)

unkvc.message = "He knows his trees"

unkvc.contactStore = CNContactStore()

unkvc.delegate = self

unkvc.allowsActions = false

self.navigationController?.pushViewController(unkvc, animated: true)

The interface contains these two buttons (among others):

Create New Contact
The editing interface is presented, with a Cancel button and a Done
button.

Add to Existing Contact
The contact picker is presented. The user can tap Cancel or tap an
existing contact. If the user taps an existing contact, that contact is
presented for editing, with fields from the partial contact merged in,
along with a Cancel button and an Update button.

If the framework thinks that this partial contact is the same as an existing
contact, there will be a third button offering explicitly to update that
particular contact. The result is as if the user had tapped Add to Existing
Contact and picked this existing contact: the editing interface for that
contact appears, with the fields from the partial contact merged in, along
with Cancel and Update buttons.

In the editing interface, if the user taps Cancel, you’ll never hear about it; c
ontactViewController(_:didCompleteWith:) won’t even be called.

Chapter 19. Calendar

The user’s calendar information, which the user sees through the Calendar
app, is effectively a database of calendar events. The calendar database also
includes reminders, which the user sees through the Reminders app. This
database can be accessed directly through the EventKit framework. You’ll
need to import EventKit.
An interface for allowing the user to interact with the calendar from within
your app is also provided, through the EventKit UI framework. You’ll need
to import EventKitUI.
The calendar database is accessed as an instance of the EKEventStore class.
This instance is expensive to obtain but lightweight to maintain, so your
usual strategy will be to instantiate and retain one EKEventStore instance.
There is no harm in initializing a property or global as an EKEventStore
instance and keeping that reference for the rest of the app’s lifetime:

let database = EKEventStore()

In the examples in this chapter, my EKEventStore instance is called self.d
atabase throughout.
Access to the calendar database requires user authorization. You’ll use the
EKEventStore class for this. Although there is one database, access to
calendar events and access to reminders are considered two separate forms
of access and require separate authorizations. To learn what the current
authorization status is, call the class method authorizationStatus(for:)
with an EKEntityType, either .event (for access to calendar events) or .re
minder (for access to reminders). To ask the system to put up the
authorization request alert if the status is .notDetermined, call the instance
method requestAccess(to:completion:). The Info.plist must contain
some text that the system authorization request alert can use to explain why

your app wants access. The relevant key is either “Privacy — Calendars
Usage Description” (NSCalendarsUsageDescription) or “Privacy —
Reminders Usage Description” (NSRemindersUsageDescription). See
“Checking for Authorization” for detailed consideration of authorization
strategy and testing.

Calendar Database Contents
Starting with an EKEventStore instance, you can obtain two kinds of object
— a calendar or a calendar item.

Calendars
A calendar represents a named (title) collection of calendar items,
meaning events or reminders. It is an instance of EKCalendar. Curiously,
however, an EKCalendar instance doesn’t contain or link to its calendar
items; to obtain and create calendar items, you work directly with the
EKEventStore itself. A calendar’s allowedEntityTypes, despite the plural,
will probably return just one entity type; you can’t create a calendar that
allows both.

Calendars themselves come in various types (type, an EKCalendarType),
reflecting the nature of their origin: a calendar can be created and
maintained by the user locally (.local), but it might also live remotely on
the network (.calDAV, .exchange); the Birthday calendar (.birthday) is
generated automatically from information in the address book; and so on.

The type is supplemented and embraced by the calendar’s source, an
EKSource whose sourceType (EKSourceType) can be .local, .exchange,
.calDAV (which includes iCloud), and so forth; a source can also have a ti
tle, and it has a unique identifier (sourceIdentifier). You can get an
array of all sources known to the EKEventStore, or specify a source by its
identifier. You’ll probably use the source exclusively and ignore the
calendar’s type property.

There are three ways of requesting a calendar:

All calendars

Fetch all calendars permitting a particular calendar item type (.event or
.reminder), by calling calendars(for:). You can send this message
either to the EKEventStore or to an EKSource.

Particular calendar
Fetch an individual calendar from the EKEventStore by means of a
previously obtained calendarIdentifier, by calling calendar(withI
dentifier:).

Default calendar
Fetch the default calendar for a particular calendar item type, by asking
for the EKEventStore’s defaultCalendarForNewEvents or defaultCa
lendarForNewReminders; this is appropriate particularly if your
intention is to create a new calendar item.

You can also create a calendar, by means of the initializer init(for:event
Store:). At that point, you can specify the source to which the calendar
belongs. I’ll give an example later.
Depending on the source, a calendar will be modifiable in various ways.
The calendar’s isSubscribed might be true. If the calendar’s isImmutabl
e is true, you can’t delete the calendar or change its attributes; but its allo
wsContentModifications might still be true, in which case you can add,
remove, and alter its events.

Calendar Items
A calendar item (EKCalendarItem) is either a calendar event (EKEvent) or
a reminder (EKReminder). Think of it as a memorandum describing when
something happens. As I mentioned a moment ago, you don’t get calendar
items from a calendar; rather, a calendar item has a calendar, but you get it
from the EKEventStore as a whole. There are two chief ways of doing so:

By predicate
Fetch all events or reminders according to a predicate (NSPredicate):

events(matching:)

enumerateEvents(matching:using:)

fetchReminders(matching:completion:)

EKEventStore methods starting with predicateFor supply the needed
predicate.

By identifier

Fetch an individual calendar item by means of a previously obtained ca
lendarItemIdentifier, by calling calendarItem(withIdentifie
r:).

Calendar Database Changes
Changes to the database can be atomic. There are two prongs to the
implementation of this feature:

The EKEventStore methods for saving and removing calendar items and
calendars have a commit: parameter. If you pass false as the argument,
the changes that you’re ordering are batched without performing them;
later, you can call commit (or reset if you change your mind). If you
pass false and fail to call commit later, your changes will never happen.
An abstract class, EKObject, functions as the superclass for all the other
persistent object types, such as EKCalendar, EKCalendarItem,
EKSource, and so on. It endows those classes with methods refresh, ro
llback, and reset, along with read-only properties isNew and hasChan
ges.

A calendar can change while your app is running (the user might sync, or
the user might edit with the Calendar app), which can put your information
out of date. You can register for a single EKEventStore notification, .EKEve

ntStoreChanged; if you receive it, you should assume that any calendar-
related instances you’re holding are invalid. This situation is made
relatively painless by the fact that every calendar-related instance can be
refreshed with refresh. Keep in mind that refresh returns a Boolean; if it
returns false, this object is really invalid and you should stop working
with it entirely (it may have been deleted from the database).

Creating Calendars and Events
You now know enough for an example! Let’s start by creating an events
calendar. We need to assign a source type (EKSourceType); we’ll choose .l
ocal, meaning that the calendar will be created on the device itself. We
can’t ask the database for the local source directly, so we have to cycle
through all sources looking for it. When we find it, we make a new calendar
called “CoolCal” (saving into the database can fail, so assume we’re
running inside a do...catch construct):

let locals = self.database.sources.filter {$0.sourceType == .local}

guard let src = locals.first else {

 print("failed to find local source")

 return

}

let cal = EKCalendar(for:.event, eventStore:self.database)

cal.source = src

cal.title = "CoolCal"

try self.database.saveCalendar(cal, commit:true)

NOTE
On a device where the calendar is subscribed to a remote source (such as iCloud), .local
calendars are inaccessible. The examples in this chapter use a local calendar, because I don’t want
to risk damaging your online calendars; to test them, you’ll need to turn off iCloud for your
Calendar app temporarily.

Now let’s create an event. EKEvent is a subclass of EKCalendarItem, from
which it inherits some of its important properties. If you’ve ever used the

Calendar app in iOS or macOS, you already have a sense for how an
EKEvent can be configured. It has a title and optional notes. It is
associated with a calendar, as I’ve already said. It can have one or more
alarms and one or more recurrence rules; I’ll talk about each of those in a
moment.
All of that is inherited from EKCalendarItem. EKEvent itself adds the all-
important startDate and endDate properties; these are Dates and involve
both date and time. If the event’s isAllDay property is true, the time
aspect of its dates is ignored; the event is associated with a day or a stretch
of days as a whole. If the event’s isAllDay property is false, the time
aspect of its dates matters; an event will then typically be bounded by two
times on the same day.

Making an event is simple, if tedious. You must provide a startDate and
an endDate! The simplest way to construct dates, and to do the date math
that you’ll often need in order to derive one date from another, is with
DateComponents. I’ll create an event and add it to our new calendar. First, I
need a way to locate the new calendar. I’ll locate it by its title. I really
should be using the calendarIdentifier; the title isn’t reliable, since the
user might change it, and since multiple calendars can have the same title.
However, it’s only an example:

func calendar(name:String) -> EKCalendar? {

 let cals = self.database.calendars(for:.event)

 return cals.filter {$0.title == name}.first

}

Now I’ll create an event, configure it, and add it to our CoolCal calendar:

guard let cal = self.calendar(name:"CoolCal") else {

 print("failed to find calendar")

 return

}

// form the start and end dates

let greg = Calendar(identifier:.gregorian)

var comp = DateComponents(year:2017, month:8, day:10, hour:15)

let d1 = greg.date(from:comp)!

comp.hour = comp.hour! + 1

let d2 = greg.date(from:comp)!

// form the event

let ev = EKEvent(eventStore:self.database)

ev.title = "Take a nap"

ev.notes = "You deserve it!"

ev.calendar = cal

(ev.startDate, ev.endDate) = (d1,d2)

// save it

try self.database.save(ev, span:.thisEvent, commit:true)

An alarm is an EKAlarm, a very simple class; it can be set to fire either at
an absolute date or at a relative offset from the event time. On an iOS
device, an alarm fires through a local notification (Chapter 13). We could
easily have added an alarm to our event as we were configuring it:

let alarm = EKAlarm(relativeOffset:-3600) // one hour before

ev.addAlarm(alarm)

Switching to the Calendar app, it’s easy to see that our event has been
successfully created (Figure 19-1).

Figure 19-1. A programmatically created event

Recurrence
Recurrence is embodied in a recurrence rule (EKRecurrenceRule); a
calendar item can have multiple recurrence rules, which you manipulate
through its recurrenceRules property, along with methods addRecurrenc
eRule(_:) and removeRecurrenceRule(_:). A simple
EKRecurrenceRule is described by three properties:

Frequency
By day, by week, by month, or by year.

Interval

Fine-tunes the notion “by” in the frequency. A value of 1 means
“every.” A value of 2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an
EKRecurrenceEnd instance, describing the limit of the event’s
recurrence either as an end date or as a maximum number of
occurrences.

The options for describing a more complex EKRecurrenceRule are best
summarized by its initializer:

init(recurrenceWith type: EKRecurrenceFrequency,

 interval: Int,

 daysOfTheWeek: [EKRecurrenceDayOfWeek]?,

 daysOfTheMonth: [NSNumber]?,

 monthsOfTheYear: [NSNumber]?,

 weeksOfTheYear: [NSNumber]?,

 daysOfTheYear: [NSNumber]?,

 setPositions: [NSNumber]?,

 end: EKRecurrenceEnd?)

The meanings of all those parameters are mostly obvious from their names
and types. The EKRecurrenceDayOfWeek class allows specification of a
week number as well as a day number so that you can say things like “the
fourth Thursday of the month.” Many of the numeric values can be negative
to indicate counting backward from the last one. Numbers are all 1-based,
not 0-based. The setPositions: parameter is an array of numbers filtering
the occurrences defined by the rest of the specification against the interval;
for example, if daysOfTheWeek is Sunday, -1 means the final Sunday.

An EKRecurrenceRule is intended to embody the RRULE event component
in the iCalendar standard specification
(http://datatracker.ietf.org/doc/rfc5545); in fact, the documentation tells
you how each EKRecurrenceRule property corresponds to an RRULE
attribute, and if you log an EKRecurrenceRule, what you’re shown is the
underlying RRULE. RRULE can describe some amazingly sophisticated
recurrence rules, such as this one:

http://datatracker.ietf.org/doc/rfc5545

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means: “Every Sunday in January, every other year.” Let’s form this
rule. Observe that we should attach it to an event whose startDate and en
dDate actually obey the rule — that is, the event should fall on a Sunday in
January. Fortunately, DateComponents makes that easy:

let everySunday = EKRecurrenceDayOfWeek(.sunday)

let january = 1 as NSNumber

let recur = EKRecurrenceRule(

 recurrenceWith:.yearly, // every year

 interval:2, // no, every *two* years

 daysOfTheWeek:[everySunday],

 daysOfTheMonth:nil,

 monthsOfTheYear:[january],

 weeksOfTheYear:nil,

 daysOfTheYear:nil,

 setPositions: nil,

 end:nil)

let ev = EKEvent(eventStore:self.database)

ev.title = "Mysterious biennial Sunday-in-January morning ritual"

ev.addRecurrenceRule(recur)

ev.calendar = cal // assume we have our calendar

// need a start date and end date

let greg = Calendar(identifier:.gregorian)

var comp = DateComponents(year:2017, month:1, hour:10)

comp.weekday = 1 // Sunday

comp.weekdayOrdinal = 1 // *first* Sunday

ev.startDate = greg.date(from:comp)!

comp.hour = 11

ev.endDate = greg.date(from:comp)!

try self.database.save(ev, span:.futureEvents, commit:true)

In that code, the event we save into the database is a recurring event. When
we save or delete a recurring event, we must specify a span: argument
(EKSpan). This is either .thisEvent or .futureEvents, and corresponds
to the two buttons the user sees in the Calendar interface when saving or
deleting a recurring event (Figure 19-2). The buttons and the span types
reflect their meaning exactly: the change affects either this event alone, or
this event plus all future (not past) recurrences. This choice determines not

only how this and future recurrences of the event are affected now, but also
how they relate to one another from now on.

Figure 19-2. The user specifies a span

Fetching Events
Now let’s talk about how to extract an event from the database. One way, as
I mentioned earlier, is by its identifier (calendarItemIdentifier). Not
only is this identifier a fast and unique way to obtain an event, but also it’s
just a string, which means that it persists even if the EKEventStore
subsequently goes out of existence, whereas an actual EKEvent drawn from
the database loses its meaning and its usability if the EKEventStore instance
is destroyed.
You can also extract events from the database by matching a predicate
(NSPredicate). To form this predicate, you specify a start and end date and
an array of eligible calendars, and call this EKEventStore method:

predicateForEvents(withStart:end:calendars:)

That’s the only kind of predicate you can use, so any further filtering of
events is then up to you. In this example, I’ll look through the events of our
CoolCal calendar to find the nap event I created earlier; because I have to
specify a date range, I ask for events occurring over a two-year span.

Because enumerateEvents(matching:using:) can be time-consuming,
it’s best to run it on a background thread (Chapter 24):

let greg = Calendar(identifier:.gregorian)

let d = Date() // today

let d1 = greg.date(byAdding:DateComponents(year:-1), to:d)!

let d2 = greg.date(byAdding:DateComponents(year:2), to:d)!

let pred = self.database.predicateForEvents(withStart:

 d1, end:d2, calendars:[cal]) // assume we have our calendar

DispatchQueue.global(qos:.default).async {

 self.database.enumerateEvents(matching:pred) { ev, stop in

 if ev.title.range(of:"nap") != nil {

 self.napid = ev.calendarItemIdentifier

 stop.pointee = true

 }

 }

}

When you fetch events from the database, they are provided in no particular
order; the convenience method compareStartDate(with:) is provided as
a sort selector to put them in order by start date. For example:

events.sort { $0.compareStartDate(with:$1) == .orderedAscending }

When you extract events from the database, event recurrences are treated as
separate events. Recurrences of the same event will have different start and
end dates but the same calendarItemIdentifier. When you fetch an
event by identifier, you get the earliest event with that identifier. This
makes sense, because if you’re going to make a change affecting this and
future recurrences of the event, you need the option to start with the earliest
possible recurrence (so that “future” means “all”).

Reminders
A reminder (EKReminder) is very parallel to an event (EKEvent); the chief
difference is that EKReminder was invented some years after EKEvent and
so its API is a little more modern. They both inherit from EKCalendarItem,
so a reminder has a calendar (which the Reminders app refers to as a “list”),

a title, notes, alarms, and recurrence rules. Instead of a start date and an end
date, it has a start date, a due date, a completion date, and an isCompleted
property. The start date and due date are expressed directly as
DateComponents, so you can supply any desired degree of detail: if you
don’t include any time components, it’s an all-day reminder.
To illustrate, I’ll make an all-day reminder for today:

let cal = self.database.defaultCalendarForNewReminders()

let rem = EKReminder(eventStore:self.database)

rem.title = "Get bread"

rem.calendar = cal

let today = Date()

let greg = Calendar(identifier:.gregorian)

let comps : Set<Calendar.Component> = [.year, .month, .day]

rem.dueDateComponents = greg.dateComponents(comps, from:today)

try self.database.save(rem, commit:true)

When you call fetchReminders(matching:completion:), the possible
predicates let you fetch all reminders in given calendars, incomplete
reminders, or completed reminders. You don’t have to call it on a
background thread, because it calls your completion function
asynchronously.

Proximity Alarms
A proximity alarm is triggered by the user’s approaching or leaving a
certain location (also known as geofencing). This is appropriate particularly
for reminders: one might wish to be reminded of some task when
approaching the place where that task can be accomplished. To form the
location, you’ll need to use the CLLocation class (see Chapter 21). Here,
I’ll attach a proximity alarm to a reminder (rem); the alarm will fire when
I’m near my local Trader Joe’s:

let alarm = EKAlarm()

let loc = EKStructuredLocation(title:"Trader Joe's")

loc.geoLocation = CLLocation(latitude:34.271848, longitude:-119.247714)

loc.radius = 10*1000 // meters

alarm.structuredLocation = loc

alarm.proximity = .enter // "geofence": we alarm when *arriving*

rem.addAlarm(alarm)

Use of a proximity alarm requires Location Services authorization, but
that’s of no concern here, because the app that needs this authorization is
not our app but the Reminders app! Now that we’ve placed a reminder with
a proximity alarm into the database, the Reminders app will request
authorization, if needed, the next time the user brings it frontmost. If you
add a proximity alarm to the event database and the Reminders app can’t
perform background geofencing, the alarm will not fire (unless the
Reminders app is frontmost).

TIP
You can also construct a local notification based on geofencing without involving reminders or the
Reminders app. See Chapter 21.

Calendar Interface
The EventKit UI framework provides three view controller classes that
manage views for letting the user work with events and calendars:

EKEventViewController
Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKCalendarChooser
Allows the user to pick a calendar.

These view controllers automatically listen for changes in the database and,
if needed, will automatically call refresh on the information being edited,
updating their display to match. If a view controller is displaying an event

in the database and the event is deleted while the user is viewing it, the
delegate will get the same notification as if the user had deleted it.

EKEventViewController
EKEventViewController shows the event display, listing the event’s title,
date and time, calendar, alert, and notes, familiar from the Calendar app
(Figure 19-3; observe the resemblance to Figure 19-1). To use
EKEventViewController, instantiate it, give it an event from the database,
assign it a delegate (EKEventViewDelegate), and push it onto an existing
navigation controller:

let ev = self.database.calendarItem(withIdentifier:self.napid) as! EKEvent

let evc = EKEventViewController()

evc.event = ev

evc.delegate = self

self.navigationController?.pushViewController(evc, animated: true)

Figure 19-3. The event interface

WARNING
Do not use EKEventViewController for an event that isn’t in the database, or at a time when the
database isn’t open! It won’t function correctly if you do.

If allowsEditing is true, an Edit button appears in the navigation bar, and
by tapping this, the user can edit the various aspects of an event in the same
interface as the Calendar app, including the Delete button at the bottom. If
the user ultimately deletes the event, or edits it and taps Done, the change is
saved into the database.

If the user deletes the event, you will be notified in the delegate method, ev
entViewController(_:didCompleteWith:). The second parameter is an
EKEventViewAction, which will be .deleted; it is then up to you to pop
the navigation controller:

func eventViewController(_ controller: EKEventViewController,

 didCompleteWith action: EKEventViewAction) {

 if action == .deleted {

 self.navigationController?.popViewController(animated:true)

 }

}

WARNING
Even if allowsEditing is false (the default), the user can change what calendar this event
belongs to, can change an alert’s firing time if there is one, and can delete the event. I regard this
as a bug.

EKEventEditViewController
EKEventEditViewController (a UINavigationController) presents the
interface for editing an event. To use it, set its eventStore and editViewDe
legate (EKEventEditViewDelegate, not delegate), and optionally its eve
nt, and present it as a presented view controller (which looks best on the
iPad as a popover). The event can be nil for a completely empty new
event; it can be an event you’ve just created (and possibly partially
configured) and not stored in the database; or it can be an existing event
from the database.

The delegate method eventEditViewControllerDefaultCalendar(forN
ewEvents:) may be implemented to specify what calendar a completely
new event should be assigned to. If you’re partially constructing a new
event, you can assign it a calendar then, and of course an event from the
database already has a calendar.

You must implement the delegate method eventEditViewController(_:d
idCompleteWith:) so that you can dismiss the presented view controller.

The second parameter is an EKEventEditViewAction telling you what the
user did; possible actions are that the user cancelled (.canceled), saved the
edited event into the database (.saved), or deleted an already existing event
from the database (.deleted). You can get a reference to the edited event
as the view controller’s event.

EKCalendarChooser
EKCalendarChooser displays a list of calendars, choosable by tapping; a
chosen calendar displays a checkmark. To use it, instantiate it with init(se
lectionStyle:displayStyle:entityType:eventStore:), set a delega
te (adopting the EKCalendarChooserDelegate protocol), and then do a little
dance: make it the root view controller of a UINavigationController and
present the navigation controller as a presented view controller (which
looks best as a popover on the iPad). The selectionStyle dictates whether
the user can pick one or multiple calendars; the displayStyle states
whether all calendars or only writable calendars will be displayed.

Two properties, showsCancelButton and showsDoneButton, determine
whether these buttons will appear in the navigation bar. You can perform
additional customizations through the view controller’s navigationItem.
There are three delegate methods, the first two being required:

calendarChooserDidFinish(_:) (the user tapped Done)

calendarChooserDidCancel(_:)

calendarChooserSelectionDidChange(_:)

In the finish and cancel methods, you should dismiss the presented view
controller.
In this example, we offer to delete the selected calendar. Because this is
potentially destructive, we pass through an action sheet for confirmation:

@IBAction func deleteCalendar (_ sender: Any) {

 let choo = EKCalendarChooser(

 selectionStyle:.single, displayStyle:.allCalendars,

 entityType:.event, eventStore:self.database)

 choo.showsDoneButton = true

 choo.showsCancelButton = true

 choo.delegate = self

 choo.navigationItem.prompt = "Pick a calendar to delete:"

 let nav = UINavigationController(rootViewController: choo)

 self.present(nav, animated: true)

}

func calendarChooserDidCancel(_ choo: EKCalendarChooser) {

 self.dismiss(animated:true)

}

func calendarChooserDidFinish(_ choo: EKCalendarChooser) {

 let cals = choo.selectedCalendars

 guard cals.count > 0 else { self.dismiss(animated:true); return }

 let calsToDelete = cals.map {$0.calendarIdentifier}

 let alert = UIAlertController(title:"Delete selected calendar?",

 message:nil, preferredStyle:.actionSheet)

 alert.addAction(UIAlertAction(title:"Cancel", style:.cancel))

 alert.addAction(UIAlertAction(title:"Delete", style:.destructive) {_ in

 for id in calsToDelete {

 if let cal = self.database.calendar(withIdentifier:id) {

 try? self.database.removeCalendar(cal, commit: true)

 }

 }

 self.dismiss(animated:true) // dismiss *everything*

 })

 choo.present(alert, animated: true)

}

Chapter 20. Maps

Your app can imitate the Maps app, displaying a map interface and placing
annotations and overlays on the map. The relevant classes are provided by
the Map Kit framework. You’ll need to import MapKit. The classes used
to describe locations in terms of latitude and longitude, whose names start
with “CL,” come from the Core Location framework, but you won’t need to
import it explicitly if you’re already importing the Map Kit framework.

Displaying a Map
A map is displayed through a UIView subclass, an MKMapView. You can
instantiate an MKMapView from a nib or create one in code. A map has a t
ype, which is usually one of the following (MKMapType):

.standard

.satellite

.hybrid

(New in iOS 11, a further MKMapType, .mutedStandard, dims the map
elements so that your additions to the map view stand out.)

The area displayed on the map is its region, an MKCoordinateRegion. This
is a struct comprising two things:

center

A CLLocationCoordinate2D. The latitude and longitude of the point at
the center of the region.

span

An MKCoordinateSpan. The quantity of latitude and longitude
embraced by the region (and hence the scale of the map).

Convenience functions help you construct an MKCoordinateRegion.

In this example, I’ll initialize the display of an MKMapView (self.map) to
show a place where I like to go dirt biking (Figure 20-1):

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)

let span = MKCoordinateSpanMake(0.015, 0.015)

let reg = MKCoordinateRegionMake(loc, span)

self.map.region = reg

Figure 20-1. A map view showing a happy place

An MKCoordinateSpan is described in degrees of latitude and longitude. It
may be, however, that what you know is the region’s proposed dimensions
in meters. To convert, call MKCoordinateRegionMakeWithDistance. The
ability to perform this conversion is important, because an MKMapView
shows the world through a Mercator projection, where longitude lines are
parallel and equidistant, and scale increases at higher latitudes.
I happen to know that the area I want to display is about 1200 meters on a
side. Hence, this is yet another way of displaying roughly the same region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)

let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)

g g (, ,)

self.map.region = reg

Yet another way of describing a map region is with an MKMapRect, a
struct built up from MKMapPoint and MKMapSize. The earth has already
been projected onto the map for us, and now we are describing a rectangle
of that map, in terms of the units in which the map is drawn. The exact
relationship between an MKMapPoint and the corresponding location
coordinate is arbitrary and of no interest; what matters is that you can ask
for the conversion, along with the ratio of points to meters (which will vary
with latitude):

MKMapPointForCoordinate

MKCoordinateForMapPoint

MKMetersPerMapPointAtLatitude

MKMapPointsPerMeterAtLatitude

MKMetersBetweenMapPoints

To determine what the map view is showing in MKMapRect terms, use its v
isibleMapRect property. Thus, this is another way of displaying
approximately the same region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)

let pt = MKMapPointForCoordinate(loc)

let w = MKMapPointsPerMeterAtLatitude(loc.latitude) * 1200

self.map.visibleMapRect = MKMapRectMake(pt.x - w/2.0, pt.y - w/2.0, w, w)

In none of those examples did I bother with the question of the actual
dimensions of the map view itself. I simply threw a proposed region at the
map view, and it decided how best to portray the corresponding area. Values
you assign to the map views’s region and visibleMapRect are unlikely to
be the exact values it adopts, because the map view will optimize for
display without distorting the map’s scale. You can perform this same
optimization in code by calling these methods:

regionThatFits(_:)

mapRectThatFits(_:)

mapRectThatFits(_:edgePadding:)

By default, the user can zoom and scroll the map with the usual gestures;
you can turn this off by setting the map view’s isZoomEnabled and isScro
llEnabled to false. Usually you will set them both to true or both to fal
se. For further customization of an MKMapView’s response to touches, use
a UIGestureRecognizer (Chapter 5).
You can change programmatically the region displayed, optionally with
animation, by calling these methods:

setRegion(_:animated:)

setCenter(_:animated:)

setVisibleMapRect(_:animated:)

setVisibleMapRect(_:edgePadding:animated:)

The map view’s delegate (MKMapViewDelegate) is notified as the map
loads and as the region changes (including changes triggered
programmatically):

mapViewWillStartLoadingMap(_:)

mapViewDidFinishLoadingMap(_:)

mapViewDidFailLoadingMap(_:withError:)

mapView(_:regionWillChangeAnimated:)

mapView(_:regionDidChangeAnimated:)

An MKMapView has Bool properties such as showsCompass, showsScale,
and showsTraffic; set these to dictate whether the corresponding map
components should be displayed. New in iOS 11, the compass and the scale
legend can be displayed as independent views, an MKCompassButton and
an MKScaleView; if you use these, you’ll probably want to set the
corresponding Bool property to false so as not to get two compasses or
scales. Both views are initialized with the map view as parameter, so that

their display will reflect the rotation and zoom of the map. The
MKCompassButton, like the internal compass, is a button; if the user taps
it, the map is reoriented with north at the top. The visibility of these views
is governed by properties (compassVisibility and scaleVisibility)
whose value is one of these (MKFeatureVisibility):

.hidden

.visible

.adaptive

The .adaptive behavior (the default) is that the compass is visible only if
the map is rotated, and the scale legend is visible only if the map is zoomed.

TIP
There may be an annoying flash as the compass or scale view first appears. I regard this as a bug.
The workaround is to set the view’s isHidden to true before adding it as a subview to the
interface; the compassVisibility or scaleVisibility behavior will subsequently take over,
and the view will be shown correctly.

You can also enable 3D viewing of the map (pitchEnabled), and there’s a
large and powerful API putting control of 3D viewing in your hands.
Discussion of 3D map viewing is beyond the scope of this chapter; an
excellent WWDC 2013 video surveys the topic. Starting in iOS 9, there are
3D flyover map types .satelliteFlyover and .hybridFlyover; a
WWDC 2015 video explains about these.

Annotations
An annotation is a marker associated with a location on a map. To make an
annotation appear on a map, two objects are needed:

The object attached to the MKMapView

The annotation itself is attached to the MKMapView. It is an instance of
any class that adopts the MKAnnotation protocol, which specifies a coo
rdinate, a title, and a subtitle for the annotation. You might have
reason to define your own class to handle this task, or you can use the
simple built-in MKPointAnnotation class. The annotation’s coordinate
is crucial; it says where on earth the annotation should be drawn. The
title and subtitle are optional.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass.
This can be extremely simple. In fact, even a nil MKAnnotationView
might be perfectly satisfactory, because the runtime will then supply a
view for you. In iOS 10 and before, this was a realistic rendering of a
physical pin, red by default but configurable to any color, supplied by
the built-in MKPinAnnotationView class. New in iOS 11, it is an
MKMarkerAnnotationView, by default portraying a pin schematically in
a circular red “balloon.”

Not only does an annotation require two distinct objects, but in fact those
two objects do not initially exist together. An annotation object has no
pointer to the annotation view object that will draw it. Rather, it is up to you
to supply the annotation view object in real time, on demand. This
architecture may sound confusing, but in fact it’s a very clever way of
reducing the amount of resources needed at any given moment. An
annotation itself is merely a lightweight object that a map can always
possess; the corresponding annotation view is a heavyweight object that is
needed only so long as that annotation’s coordinates are within the visible
portion of the map.
Let’s add the simplest possible annotation to our map. The point where the
annotation is to go has been stored in an instance property (self.annloc):

let annloc = CLLocationCoordinate2DMake(34.923964,-120.219558)

We create the annotation, configure it, and add it to the MKMapView:

let ann = MKPointAnnotation()

ann.coordinate = self.annloc

ann.title = "Park here"

ann.subtitle = "Fun awaits down the road!"

self.map.addAnnotation(ann)

That code is sufficient to produce Figure 20-2. I didn’t take any steps to
supply an MKAnnotationView, so the MKAnnotationView is nil. But a ni
l MKAnnotationView, as I’ve already said, means an
MKMarkerAnnotationView that produces a drawing of a pin in a red
balloon.

Figure 20-2. A simple annotation

By default, an MKMarkerAnnotationView displays its title below the
annotation. This differs markedly from an MKPinAnnotationView, whose t
itle and subtitle are displayed in a separate callout view that appears
above the annotation view only when the annotation is selected (because the
user taps it, or because you set the MKAnnotationView’s isSelected to tr
ue). A selected MKMarkerAnnotationView is drawn larger and displays the
subtitle in addition to the title.

Customizing an MKMarkerAnnotationView
MKMarkerAnnotationView has many customizable properties affecting its
display. You can set the balloon color, as the view’s markerTintColor. You
can set the color used to tint the glyph portrayed inside the balloon, as the g
lyphTintColor.

You can also change the balloon contents, overriding the default drawing of
a pin. To do so, set either the glyphText (this should be at most one or two
characters) or the glyphImage; in the latter case, use a 40×40 image, which
will be sized down automatically to 20×20 when the view is not selected, or
supply both a larger and a smaller image, the selectedGlyphImage and gl
yphImage respectively. The image is treated as a template image; setting the
rendering mode to .alwaysOriginal has no effect.
In addition, you can govern the visibility of the title and subtitle, through
the titleVisibility and subtitleVisibility properties. These are
MKFeatureVisibility enums, where .adaptive is the default behavior that
I’ve already described.

WARNING
I find that the glyphTintColor has no effect on the default pin image, and that the subtitleVisi
bility has no effect unless you also set the titleVisibility. You may need to experiment to
get the best results.

Doubtless you are now thinking: that’s all very well, but what
MKMarkerAnnotationView are we talking about? No such view appears in
our code, so there is no object whose properties we can set! One way to
access the annotation view is to give the map view a delegate and
implement the MKMapViewDelegate method mapView(_:viewFor:). The
second parameter is the MKAnnotation for which we are to supply a view.
In our implementation of this method, we can dequeue an annotation view
from the map view, passing in a string reuse identifier, similar to dequeuing
a table cell from a table view (Chapter 8). As we have taken no steps to the
contrary, this will give us the default view, which in this case is an
MKMarkerAnnotationView.
The notion of view reuse here is similar to the reuse of table view cells. The
map may have a huge number of annotations, but it needs to display
annotation views for only those annotations that are within its current regio

n. Any extra annotation views that have been scrolled out of view can thus
be reused and are held for us by the map view in a cache for exactly this
purpose.

The key to writing a minimal implementation of mapView(_:viewFor:) is
to call this method:

dequeueReusableAnnotationView(withIdentifier:for:)

New in iOS 11. In the minimal case, pass as the identifier: the
constant MKMapViewDefaultAnnotationViewReuseIdentifier. The
second argument should be the annotation that arrived as the second
parameter of the delegate method. This method will return an
MKAnnotationView — the result is never nil as could happen in iOS
10 and before.

In this example, I check to see that my MKAnnotationView is indeed an
MKMarkerAnnotationView, as expected. I also attempt to distinguish this
particular annotation by looking at its title; that’s not a very good way to
distinguish annotation types, but I’ll postpone further discussion of the
matter until later:

func mapView(_ mapView: MKMapView,

 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 let id = MKMapViewDefaultAnnotationViewReuseIdentifier

 if let v = mapView.dequeueReusableAnnotationView(

 withIdentifier: id, for: annotation) as? MKMarkerAnnotationView {

 if let t = annotation.title, t == "Park here" {

 v.titleVisibility = .visible

 v.subtitleVisibility = .visible

 v.markerTintColor = .green

 v.glyphText = "!"

 v.glyphTintColor = .black

 return v

 }

 }

 return nil

}

The result is shown in Figure 20-3.

Figure 20-3. Customizing a marker annotation view

Changing the Annotation View Class
Instead of accepting the default MKMarkerAnnotationView as the class of
our annotation view, we can substitute a different MKAnnotationView
subclass. This might be our own MKMarkerAnnotationView subclass, or
some other MKAnnotationView subclass, or MKAnnotationView itself.
The way to do that in iOS 11 is to register our class with the map view,
associating it with the reuse identifier, by calling register(_:forAnnotat
ionViewWithReuseIdentifier:) beforehand.
To illustrate, I’ll use MKAnnotationView itself as our annotation view
class. We won’t get the default drawing of a balloon and a pin, because
we’re not using MKMarkerAnnotationView any longer; instead, I’ll set the
MKAnnotationView’s image property directly. We also won’t get the title
and subtitle drawn beneath the image; instead, I’ll set the annotation view’s
canShowCallout to true, and the title and subtitle will appear in the
callout when the annotation view is selected.
So, assume that I have an identifier declared as an instance property:

let bikeid = "bike"

And assume that I’ve registered MKAnnotationView as the class that goes
with that identifier:

self.map.register(MKAnnotationView.self,

 forAnnotationViewWithReuseIdentifier: self.bikeid)

Then my implementation of mapView(_:viewFor:) might look like this:

func mapView(_ mapView: MKMapView,

 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 let v = mapView.dequeueReusableAnnotationView(

 withIdentifier: self.bikeid, for: annotation)

 if let t = annotation.title, t == "Park here" {

 v.image = UIImage(named:"clipartdirtbike.gif")

 v.bounds.size.height /= 3.0

 v.bounds.size.width /= 3.0

 v.centerOffset = CGPoint(0,-20)

 v.canShowCallout = true

 return v

 }

 return nil

}

The dirt bike image is too large, so I shrink the view’s bounds before
returning it; I also move the view up a bit, so that the bottom of the image is
at the coordinates on the map. The result is shown in Figure 20-4.

Figure 20-4. A custom annotation image

Custom Annotation View Class
A better way to write the preceding example might be for us to create our
own MKAnnotationView subclass and endow it with the ability to draw
itself. This will allow us to move the code that configures the image and the
callout out of the delegate method and into the subclass itself, where it more
properly belongs.
A minimal implementation of an MKAnnotationView subclass should
override the annotation property with a setter observer, so that every time
the view is reused and a new annotation value is assigned, the view is
reconfigured. It might also override the designated initializer, init(annota
tion:reuseIdentifier:), and possibly declare some additional instance
variables; but for purposes of this example, I’ll simply move what I was
previously doing in the delegate method directly into my annotation setter
observer:

class MyBikeAnnotationView : MKAnnotationView {

 override var annotation: MKAnnotation? {

 willSet {

 self.image = UIImage(named:"clipartdirtbike.gif")

 self.bounds.size.height /= 3.0

 self.bounds.size.width /= 3.0

 self.centerOffset = CGPoint(0,-20)

 self.canShowCallout = true

 }

 }

}

We register our custom annotation view class to associate it with our
identifier:

self.map.register(MyBikeAnnotationView.self,

 forAnnotationViewWithReuseIdentifier: self.bikeid)

Our implementation of mapView(_:viewFor:) now has much less work to
do:

func mapView(_ mapView: MKMapView,

 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 let v = mapView.dequeueReusableAnnotationView(

 withIdentifier: self.bikeid, for: annotation)

 if let t = annotation.title, t == "Park here" {

 // nothing else to do!

 return v

 }

 return nil

}

If, in fact, MyBikeAnnotationView is the only annotation view type we will
ever use, we can go even further: we can register MyBikeAnnotationView
as the default:

self.map.register(MyBikeAnnotationView.self,

 forAnnotationViewWithReuseIdentifier:

 MKMapViewDefaultAnnotationViewReuseIdentifier)

At that point, we can delete our implementation of mapView(_:viewFor:)
entirely! It has no work to do, because it has no choices to make; our
MKBikeAnnotationView, which configures itself, will be the annotation
view class automatically.

Custom Annotation Class
Let’s suppose precisely the opposite of what I just said — namely, that our
implementation of mapView(_:viewFor:) does have choices to make.
Depending on the nature of the annotation, it must configure our annotation
view class differently, or even pick a different annotation view class. For
example, some annotations might show a dirt bike, but other annotations
might show a different image.
The difference in question will need to be expressed somehow as part of the
annotation itself. Different annotation types must therefore be somehow
distinguishable from one another. So far, I’ve been avoiding that issue
entirely by having my mapView(_:viewFor:) implementation examine the
incoming annotation’s title; but that is obviously a fragile and

inappropriate solution. The proper way is to use one or more custom
annotation classes that allow the desired distinction to be drawn.
A minimal custom annotation class will look like this:

class MyBikeAnnotation : NSObject, MKAnnotation {

 dynamic var coordinate : CLLocationCoordinate2D

 var title: String?

 var subtitle: String?

 init(location coord:CLLocationCoordinate2D) {

 self.coordinate = coord

 super.init()

 }

}

Now when we create our annotation and add it to the map, our code looks
like this:

let ann = MyBikeAnnotation(location:self.annloc)

ann.title = "Park here"

ann.subtitle = "Fun awaits down the road!"

self.map.addAnnotation(ann)

In mapView(_:viewFor:), we can now decide what to do just by looking at
the class of the incoming annotation:

if annotation is MyBikeAnnotation {

 let v = mapView.dequeueReusableAnnotationView(

 withIdentifier: self.bikeid, for: annotation)

 // ...

 return v

}

return nil

You can readily see how this architecture gives our implementation room to
grow. For example, at the moment, every MyBikeAnnotation is drawn the
same way, but we could now add another property to MyBikeAnnotation
that tells us what drawing to use. We could also give MyBikeAnnotation
further properties saying such things as which way the bike should face,
what angle it should be drawn at, and so on. Each MyBikeAnnotationView

instance will end up with a reference to the corresponding
MyBikeAnnotation instance (as its annotation property), so it will be able
to read those MyBikeAnnotation properties and configure the drawing of its
own image appropriately.

Annotation View Hiding and Clustering
Annotation views don’t change size as the map is zoomed in and out, so if
there are several annotations and they are brought close together by the user
zooming out, the display can become crowded. Moreover, if too many
annotation views are being drawn simultaneously in a map view, scroll and
zoom performance can degrade.
In the past, the only way to prevent this has been to respond to changes in
the map’s visible region — for example, in the delegate method mapView
(_:regionDidChangeAnimated:) — by removing and adding annotations
dynamically. MKMapView has extensive support for adding and removing
annotations, and its annotations(in:) method efficiently lists the
annotations within a given MKMapRect. Also, given a bunch of
annotations, you can ask your MKMapView to zoom in such a way that all
of them are showing (showAnnotations(_:animated:)). Nevertheless, the
problem has always been a tricky one; deciding which annotations to
eliminate or restore, and when, has always been up to you.
New in iOS 11, the entire problem is solved for you. Annotation views can
automatically show and hide themselves as the display becomes crowded.
And the built-in solution goes even further: if annotations are hidden, they
can be replaced by a special cluster annotation so that the user knows there
are hidden annotations. MKAnnotationView has properties that allow you
to customize what happens:

displayPriority

An MKFeatureDisplayPriority struct, which works rather like a layout
constraint priority: a value of .required, corresponding to 1000, means
that the view shouldn’t be hidden, and values defaultHigh and defaul
tLow, corresponding to 750 and 250, give some alternative priorities,

but you can set any value you like through the struct’s init(rawValu
e:) initializer. If all your annotation views have a displayPriority of
.required (the default), your map view will not participate at all in iOS
11’s automatic annotation view hiding feature.

clusteringIdentifier

A string. The idea is that birds of a feather should flock together: if two
annotation views have the same clustering identifier, then the same
cluster annotation can be used to represent them when they are hidden.
This will in fact happen only if the runtime judges that they are
sufficiently close to one another when they are hidden. If you don’t set
an annotation view’s clusteringIdentifier, it won’t participate in
clustering. Giving all annotation views the same clusteringIdentifi
er gives the runtime permission to cluster them however it sees fit.

collisionMode

An MKAnnotationViewCollisionMode. Two annotation views with the
same clusteringIdentifier will be replaced by a cluster annotation
if the map is zoomed out so far that they collide. But what constitutes a
collision between two annotation views? To know that, we need a
collision edge. It might be:

.rectangle

The edge is the view’s frame.

.circle

The edge is the largest circle inscribable in and centered within the
view’s frame.

If you need to offset or resize the boundary of the rectangle or circle that
describes the collision edge, use the annotation view’s alignmentRectI
nsets.

A minimal approach to make your annotation views opt in to both hiding
and clustering would thus be to set the displayPriority of all your

annotation views to .defaultHigh and the clusteringIdentifier of all
your annotation views to some single string.

A cluster annotation is a real annotation — an MKClusterAnnotation. Its me
mberAnnotations are the annotations whose views have been hidden and
subsumed into this cluster. It has a title and subtitle; by default, these
are based on the memberAnnotations, but you can customize them.

A cluster annotation’s view is a real annotation view. It has, itself, a displa
yPriority and a collisionMode. (The displayPriority is, by default,
the highest displayPriority among the annotation views it replaces.) If
an annotation view has been hidden and replaced by a cluster annotation
view, its cluster property points to the cluster annotation view. The default
cluster annotation view corresponds to a reuse identifier MKMapViewDefaul
tClusterAnnotationViewReuseIdentifier.
You can thus customize a cluster annotation view as you would any other
annotation view. You can substitute your own MKAnnotationView subclass
by registering or dequeuing it, exactly as in the earlier examples. Your mapV
iew(_:viewFor:) will know that this annotation is a cluster annotation
because it will be an MKClusterAnnotation. Or you can register your
custom cluster annotation view as the class for MKMapViewDefaultCluster
AnnotationViewReuseIdentifier, in which case you might not need an
implementation of mapView(_:viewFor:) at all.

Other Annotation Features
When an MKPinAnnotationView initially appears on the map, if its animat
esDrop property is true, it seems to drop into place from above. When an
MKMarkerAnnotationView initially appears on the map, if its animatesWh
enAdded property is true, it grows slightly into place.
In like fashion, we can add our own animation to an annotation view as it
initially appears on the map. To do so, we implement the map view delegate
method mapView(_:didAdd:), which hands us an array of
MKAnnotationViews. When this method is called, the annotation views

have been added but the redraw moment has not yet arrived (Chapter 4); so
if we animate a view, that animation will be performed as the view appears
onscreen. Here, I’ll animate the opacity of our annotation view so that it
fades in, while growing the view from a point to its full size; I identify the
view type through its reuseIdentifier:

func mapView(_ mapView: MKMapView, didAdd views: [MKAnnotationView]) {

 for aView in views {

 if aView.reuseIdentifier == self.bikeid {

 aView.transform = CGAffineTransform(scaleX: 0, y: 0)

 aView.alpha = 0

 UIView.animate(withDuration:0.8) {

 aView.alpha = 1

 aView.transform = .identity

 }

 }

 }

}

Certain annotation properties and annotation view properties are
automatically animatable through view animation, provided you’ve
implemented them in a KVO compliant way. In MyBikeAnnotation, for
example, the coordinate property is KVO compliant (because we declared
it dynamic); therefore, we are able to animate shifting the annotation’s
position:

UIView.animate(withDuration:0.25) {

 var loc = ann.coordinate

 loc.latitude = loc.latitude + 0.0005

 loc.longitude = loc.longitude + 0.001

 ann.coordinate = loc

}

MKMapView has methods allowing annotations to be selected or
deselected programmatically, doing in code the same thing that happens
when the user taps. The delegate has methods notifying you when the user
selects or deselects an annotation, and you are free to override your custom
MKAnnotationView’s setSelected(_:animated:) if you want to change
what happens when the user taps an annotation. For example, you could

show and hide a custom view instead of, or in addition to, the built-in
callout.
A callout can contain left and right accessory views; these are the
MKAnnotationView’s leftCalloutAccessoryView and rightCalloutAc
cessoryView. They are UIViews, and should be small (less than 32 pixels
in height). There is also a detailCalloutAccessoryView which replaces
the subtitle; for example, you could supply a multiline label with smaller
text. The map view’s tintColor (see Chapter 12) affects such accessory
view elements as template images and button titles. You can respond to taps
on these views as you would any view or control.

An MKAnnotationView can optionally be draggable by the user; set its dra
ggable property to true. If you’re using a custom annotation class, its coo
rdinate property must also be settable. In our custom annotation class,
MyBikeAnnotation, the coordinate property is settable; it is explicitly
declared as a read-write property (var), as opposed to the coordinate
property in the MKAnnotation protocol which is read-only. You can also
customize changes to the appearance of the view as it is dragged, by
implementing your annotation view class’s setDragState(_:animated:)
method.

Overlays
An overlay differs from an annotation in being drawn entirely with respect
to points on the surface of the earth. Thus, whereas an annotation’s size is
always the same, an overlay’s size is tied to the zoom of the map view.
Overlays are implemented much like annotations. You provide an object
that adopts the MKOverlay protocol (which itself conforms to the
MKAnnotation protocol) and add it to the map view. When the map view
delegate method mapView(_:rendererFor:) is called, you provide an
MKOverlayRenderer and hand it the overlay object; the overlay renderer
then draws the overlay on demand. As with annotations, this architecture
means that the overlay itself is a lightweight object, and the overlay is

drawn only if the part of the earth that the overlay covers is actually being
displayed in the map view. An MKOverlayRenderer has no reuse identifier;
it isn’t a view, but rather a drawing engine that draws into a CGContext
supplied by the map view.
Some built-in MKShape subclasses adopt the MKOverlay protocol:
MKCircle, MKPolygon, and MKPolyline. In parallel to those,
MKOverlayRenderer has built-in subclasses MKCircleRenderer,
MKPolygonRenderer, and MKPolylineRenderer, ready to draw the
corresponding shapes. Thus, as with annotations, you can base your overlay
entirely on the power of existing classes.
In this example, I’ll use MKPolygonRenderer to draw an overlay triangle
pointing up the road from the parking place annotated in our earlier
examples (Figure 20-5). We add the MKPolygon as an overlay to our map
view, and supply its corresponding MKPolygonRenderer in our
implementation of mapView(_:rendererFor:). First, the MKPolygon
overlay:

Figure 20-5. An overlay

let lat = self.annloc.latitude

let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)

var c = MKMapPointForCoordinate(self.annloc)

c.x += 150/metersPerPoint

c.y -= 50/metersPerPoint

var p1 = MKMapPointMake(c.x, c.y)

p1.y -= 100/metersPerPoint

var p2 = MKMapPointMake(c.x, c.y)

p2.x += 100/metersPerPoint

var p3 = MKMapPointMake(c.x, c.y)

p3.x += 300/metersPerPoint

p3.y -= 400/metersPerPoint

var points = [p1, p2, p3]

let tri = MKPolygon(points:&points, count:3)

self.map.add(tri)

Second, the delegate method, where we provide the MKPolygonRenderer:

func mapView(_ mapView: MKMapView,

 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {

 if let overlay = overlay as? MKPolygon {

 let r = MKPolygonRenderer(polygon:overlay)

 r.fillColor = UIColor.red.withAlphaComponent(0.1)

 r.strokeColor = UIColor.red.withAlphaComponent(0.8)

 r.lineWidth = 2

 return r

 }

 return MKOverlayRenderer()

}

Custom Overlay Class
The triangle in Figure 20-5 is rather crude; I could draw a better arrow
shape using a CGPath (Chapter 2). The built-in MKOverlayRenderer
subclass that lets me do that is MKOverlayPathRenderer. To structure
things similarly to the preceding example, I’d like to supply the CGPath
when I add the overlay instance to the map view. No built-in class lets me
do that, so I’ll use a custom class, MyPathOverlay, that adopts the
MKOverlay protocol.
A minimal overlay class looks like this:

class MyPathOverlay : NSObject, MKOverlay {

 var coordinate : CLLocationCoordinate2D {

 get {

 let pt = MKMapPointMake(

 MKMapRectGetMidX(self.boundingMapRect),

 MKMapRectGetMidY(self.boundingMapRect))

 return MKCoordinateForMapPoint(pt)

 }

 }

 var boundingMapRect : MKMapRect

 init(rect:MKMapRect) {

 self.boundingMapRect = rect

 super.init()

 }

}

Our actual MyPathOverlay class will also have a path property; this will be
a UIBezierPath that holds our CGPath and supplies it to the
MKOverlayPathRenderer.

Just as the coordinate property of an annotation tells the map view where
on earth the annotation is to be drawn, the boundingMapRect property of an
overlay tells the map view where on earth the overlay is to be drawn.
Whenever any part of the boundingMapRect is displayed within the map
view’s bounds, the map view will have to concern itself with drawing the
overlay. With MKPolygon, we supplied the points of the polygon in earth
coordinates and the boundingMapRect was calculated for us. With our
custom overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the b
oundingMapRect is an MKMapRect, whereas a CGPath is defined by
CGPoints. However, it turns out that these units are interchangeable: the
CGPoints of our CGPath will be translated for us directly into
MKMapPoints on the same scale — that is, the distance between any two
CGPoints will be the distance between the two corresponding
MKMapPoints. However, the origins are different: the CGPath must be
described relative to the top-left corner of the boundingMapRect. To put it
another way, the boundingMapRect is described in earth coordinates, but
the top-left corner of the boundingMapRect is .zero as far as the CGPath is
concerned. (You might think of this difference as analogous to the
difference between a UIView’s frame and its bounds.)
To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75
meters, because this turns out to be a good unit for positioning and laying
out this particular arrow. Thus, a line one unit long would in fact be 75

meters long if I were to arrive at this actual spot on the earth and discover
the overlay literally drawn on the ground. Having derived this chunk
(unit), I use it to lay out the boundingMapRect, four units on a side and
positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-
unit square, rotating it so that it points in roughly the same direction as the
road:

// start with our position and derive a nice unit for drawing

let lat = self.annloc.latitude

let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)

let c = MKMapPointForCoordinate(self.annloc)

let unit = CGFloat(75.0/metersPerPoint)

// size and position the overlay bounds on the earth

let sz = CGSize(4*unit, 4*unit)

let mr = MKMapRectMake(

 c.x + 2*Double(unit), c.y - 4.5*Double(unit),

 Double(sz.width), Double(sz.height))

// describe the arrow as a CGPath

let p = CGMutablePath()

let start = CGPoint(0, unit*1.5)

let p1 = CGPoint(start.x+2*unit, start.y)

let p2 = CGPoint(p1.x, p1.y-unit)

let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)

let p4 = CGPoint(p2.x, p2.y+unit*3)

let p5 = CGPoint(p4.x, p4.y-unit)

let p6 = CGPoint(p5.x-2*unit, p5.y)

let points = [start, p1, p2, p3, p4, p5, p6]

// rotate the arrow around its center

let t1 = CGAffineTransform(translationX: unit*2, y: unit*2)

let t2 = t1.rotated(by:-.pi/3.5)

let t3 = t2.translatedBy(x: -unit*2, y: -unit*2)

p.addLines(between: points, transform: t3)

p.closeSubpath()

// create the overlay and give it the path

let over = MyPathOverlay(rect:mr)

over.path = UIBezierPath(cgPath:p)

// add the overlay to the map

self.map.add(over)

The delegate method, where we provide the MKOverlayPathRenderer, is
simple. We pull the CGPath out of the MyPathOverlay instance and hand it

to the MKOverlayPathRenderer, also telling the MKOverlayPathRenderer
how to stroke and fill that path:

func mapView(_ mapView: MKMapView,

 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {

 if let overlay = overlay as? MyPathOverlay {

 let r = MKOverlayPathRenderer(overlay:overlay)

 r.path = overlay.path.cgPath

 r.fillColor = UIColor.red.withAlphaComponent(0.2)

 r.strokeColor = .black

 r.lineWidth = 2

 return r

 }

 return MKOverlayRenderer()

}

The result is a much nicer arrow (Figure 20-6), and of course this technique
can be generalized to draw an overlay from any CGPath we like.

Figure 20-6. A nicer overlay

Custom Overlay Renderer
For full generality, you could define your own MKOverlayRenderer
subclass; your subclass must override and implement draw(_:zoomScale:i
n:). The first parameter is an MKMapRect describing a tile of the visible
map (not the size and position of the overlay); the third parameter is the
CGContext into which you are to draw. Your implementation may be called
several times simultaneously on different background threads, one for each
tile, so be sure to draw in a thread-safe way. The overlay itself is available

through the inherited overlay property, and MKOverlayRenderer instance
methods such as rect(for:) are provided for converting between the
map’s MKMapRect coordinates and the overlay renderer’s graphics context
coordinates. The graphics context arrives already configured such that our
drawing will be clipped to the current tile. (All this should remind you of
CATiledLayer, Chapter 7.)
In our example, we can move the entire functionality for drawing the arrow
into an MKOverlayRenderer subclass, which I’ll call
MyPathOverlayRenderer. Its initializer takes an angle: parameter, with
which I’ll set its angle property; now our arrow can point in any direction.
Another nice benefit of this architectural change is that we can use the zoom
Scale: parameter to determine the stroke width. For simplicity, my
implementation of draw(_:zoomScale:in:) ignores the incoming
MKMapRect value and just draws the entire arrow every time it is called:

var angle : CGFloat = 0

init(overlay:MKOverlay, angle:CGFloat) {

 self.angle = angle

 super.init(overlay:overlay)

}

override func draw(_ mapRect: MKMapRect,

 zoomScale: MKZoomScale, in con: CGContext) {

 con.setStrokeColor(UIColor.black.cgColor)

 con.setFillColor(UIColor.red.withAlphaComponent(0.2).cgColor)

 con.setLineWidth(1.2/zoomScale)

 let unit =

 CGFloat(MKMapRectGetWidth(self.overlay.boundingMapRect)/4.0)

 let p = CGMutablePath()

 let start = CGPoint(0, unit*1.5)

 let p1 = CGPoint(start.x+2*unit, start.y)

 let p2 = CGPoint(p1.x, p1.y-unit)

 let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)

 let p4 = CGPoint(p2.x, p2.y+unit*3)

 let p5 = CGPoint(p4.x, p4.y-unit)

 let p6 = CGPoint(p5.x-2*unit, p5.y)

 let points = [start, p1, p2, p3, p4, p5, p6]

 let t1 = CGAffineTransform(translationX: unit*2, y: unit*2)

 let t2 = t1.rotated(by:self.angle)

 let t3 = t2.translatedBy(x: -unit*2, y: -unit*2)

 p.addLines(between: points, transform: t3)

 p.closeSubpath()

 con.addPath(p)

 con.drawPath(using: .fillStroke)

}

To add the overlay to our map, we still must determine its MKMapRect:

let lat = self.annloc.latitude

let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)

let c = MKMapPointForCoordinate(self.annloc)

let unit = 75.0/metersPerPoint

// size and position the overlay bounds on the earth

let sz = CGSize(4*CGFloat(unit), 4*CGFloat(unit))

let mr = MKMapRectMake(

 c.x + 2*unit, c.y - 4.5*unit,

 Double(sz.width), Double(sz.height))

let over = MyPathOverlay(rect:mr)

self.map.add(over, level:.aboveRoads)

The delegate method, providing the overlay renderer, now has very little
work to do; in our implementation, it merely supplies an angle for the
arrow:

func mapView(_ mapView: MKMapView,

 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {

 if overlay is MyPathOverlay {

 let r = MyPathOverlayRenderer(overlay:overlay, angle: -.pi/3.5)

 return r

 }

 return MKOverlayRenderer()

}

Other Overlay Features
Our MyPathOverlay class, adopting the MKOverlay protocol, also
implements the coordinate property by means of a getter method to return
the center of the boundingMapRect. This is crude, but it’s a good minimal
implementation. The purpose of this property is to specify the position
where you would add an annotation describing the overlay. For example:

// ... create overlay and assign it a path as before ...

self.map.add(over, level:.aboveRoads)

let annot = MKPointAnnotation()

annot.coordinate = over.coordinate

annot.title = "This way!"

self.map.addAnnotation(annot)

The MKOverlay protocol also lets you provide an implementation of inter
sects(_:) to refine your overlay’s definition of what constitutes an
intersection with itself; the default is to use the boundingMapRect, but if
your overlay is drawn in some nonrectangular shape, you might want to use
its actual shape as the basis for determining intersection.
Overlays are maintained by the map view as an array and are drawn from
back to front starting at the beginning of the array. MKMapView has
extensive support for adding and removing overlays, and for managing their
layering order. When you add the overlay to the map, you can say where
you want it drawn among the map view’s sublayers. This is also why
methods for adding and inserting overlays have a level: parameter. The
levels are (MKOverlayLevel):

.aboveRoads (and below labels)

.aboveLabels

The MKTileOverlay class, adopting the MKOverlay protocol, lets you
superimpose, or even substitute (canReplaceMapContent), a map view’s
drawing of the map itself. You provide a set of tiles at multiple sizes to
match multiple zoom levels, and the map view fetches and draws the tiles
needed for the current region and degree of zoom. In this way, for
example, you could integrate your own topo map into an MKMapView’s
display. It takes a lot of tiles to draw an area of any size, so MKTileOverlay
is initialized with a URL, which can be a remote URL for tiles to be fetched
across the Internet.

Map Kit and Current Location

A device may have sensors that can report its current location. Map Kit
provides simple integration with these facilities. Keep in mind that the user
can turn off these sensors or can refuse your app access to them (in the
Settings app, under Privacy → Location Services), so trying to use these
features may fail. Also, determining the device’s location can take time.
The real work here is being done by a CLLocationManager instance, which
needs to be created and retained; the usual thing is to initialize a view
controller instance property by assigning a new CLLocationManager
instance to it:

let locman = CLLocationManager()

Moreover, you must obtain user authorization, and your Info.plist must state
the reason why you want it (as I’ll explain in more detail in Chapter 21):

self.locman.requestWhenInUseAuthorization()

You can then ask an MKMapView in your app to display the device’s
location just by setting its showsUserLocation property to true; the map
will automatically put an annotation at that location. This will be an
MKUserLocation, adopting the MKAnnotation protocol. (The map view’s u
serLocation property will also point to this annotation.) If your map view
delegate’s implementation of mapView(_:viewFor:) returns nil for this
annotation, or if there is no such implementation, you’ll get the default user
location annotation view; you are free to substitute your own annotation
view.

An MKUserLocation has a location property, a CLLocation, whose coord
inate is a CLLocationCoordinate2D; if the map view’s showsUserLocati
on is true and the map view has actually worked out the user’s location,
the coordinate describes that location. It also has title and subtitle
properties, which appear in a callout if the annotation view is selected; plus
you can check whether it currently isUpdating.

MKMapViewDelegate methods keep you informed of the map’s attempts to
locate the user:

mapViewWillStartLocatingUser(_:)

mapViewDidStopLocatingUser(_:)

mapView(_:didUpdate:) (provides the new MKUserLocation)

mapView(_:didFailToLocateUserWithError:)

In this cheeky example, I use mapView(_:viewFor:) to substitute my own
title (though if that’s all I want to do, it might be simpler to implement mapV
iew(_:didUpdate:) instead):

func mapView(_ mapView: MKMapView,

 viewFor annotation: MKAnnotation) -> MKAnnotationView? {

 if let annotation = annotation as? MKUserLocation {

 annotation.title = "You are here, stupid!"

 return nil // or could substitute my own MKAnnotationView

 }

 return nil

}

You can ask the map view whether the user’s location, if known, is in the
visible region of the map (isUserLocationVisible). But what if it isn’t?
Displaying the appropriate region of the map — that is, actually showing
the part of the world where the user is located — is a separate task. The
simplest way is to take advantage of the MKMapView’s userTrackingMod
e property, which determines how the user’s real-world location should be
tracked automatically by the map display; your options are
(MKUserTrackingMode):

.none

If showsUserLocation is true, the map gets an annotation at the user’s
location, but that’s all; the map’s region is unchanged. You could set it
manually in mapView(_:didUpdate:).

.follow

Setting this mode sets showsUserLocation to true. The map
automatically centers the user’s location and scales appropriately. When
the map is in this mode, you should not set the map’s region manually,
as you’ll be struggling against the tracking mode’s attempts to do the
same thing.

.followWithHeading

Like .follow, but the map is also rotated so that the direction the user
is facing is up. In this case, the userLocation annotation also has a hea
ding property, a CLHeading; I’ll talk more about headings in
Chapter 21.

Thus, this code turns out to be sufficient to start displaying the user’s
location:

self.map.userTrackingMode = .follow

When the userTrackingMode is one of the .follow modes, if the user is
left free to zoom and scroll the map, the userTrackingMode may be
automatically changed back to .none (and the user location annotation may
be removed). You’ll probably want to provide a way to let the user turn
tracking back on again, or to toggle among the three tracking modes.
One way to do that is with an MKUserTrackingBarButtonItem, a
UIBarButtonItem subclass. You initialize MKUserTrackingBarButtonItem
with a map view, and its behavior is automatic from then on: when the user
taps it, it switches the map view to the next tracking mode, and its icon
reflects the current tracking mode. A map view delegate method tells you
when the MKUserTrackingMode changes:

mapView(_:didChange:animated:)

New in iOS 11, you can instead use an MKUserTrackingButton; like an
MKScaleView or MKCompassButton, it has the advantage that it can be
used anywhere (not just in a toolbar or navigation bar).

Communicating with the Maps App
Your app can communicate with the Maps app. For example, instead of
displaying a point of interest in a map view in our own app, we can ask the
Maps app to display it. The user could then bookmark or share the location.
The channel of communication between your app and the Maps app is the
MKMapItem class.
Here, I’ll ask the Maps app to display the same point marked by the
annotation in our earlier examples, on a standard map portraying the same
region of the earth that our map view is currently displaying (Figure 20-7):

Figure 20-7. The Maps app displays our point of interest

let p = MKPlacemark(coordinate:self.annloc, addressDictionary:nil)

let mi = MKMapItem(placemark: p)

mi.name = "A Great Place to Dirt Bike" // label to appear in Maps app

mi.openInMaps(launchOptions:[

 MKLaunchOptionsMapTypeKey: MKMapType.standard.rawValue,

 MKLaunchOptionsMapCenterKey: self.map.region.center,

 MKLaunchOptionsMapSpanKey: self.map.region.span

])

If you start with an MKMapItem returned by the class method mapItemFor
CurrentLocation, you’re asking the Maps app to display the device’s
current location. This call doesn’t attempt to determine the device’s
location, nor does it contain any location information; it merely generates
an MKMapItem which, when sent to the Maps app, will cause it to attempt
to determine (and display) the device’s location:

let mi = MKMapItem.forCurrentLocation()

mi.openInMaps(launchOptions:[

 MKLaunchOptionsMapTypeKey: MKMapType.standard.rawValue

])

Geocoding, Searching, and Directions
Map Kit provides your app with three services that involve performing
queries over the network. These services take time and might not succeed at
all, as they depend upon network and server availability; moreover, results
may be more or less uncertain. Therefore, they involve a completion
function that is called back asynchronously (see Appendix C) on the main
thread. The three services are:

Geocoding
Translation of a street address to a coordinate and vice versa. For
example, what address am I at right now? Or conversely, what are the
coordinates of my home address?

Searching
Lookup of possible matches for a natural language search. For example,
what are some Thai restaurants near me?

Directions
Lookup of turn-by-turn instructions and route mapping from a source
location to a destination location.

The completion function is called with a single response object plus an
Error, each wrapped in an Optional. If the response object is nil, the Error

tells you what the problem was.

Geocoding
Geocoding functionality is encapsulated in the CLGeocoder class. You call
geocodeAddressString(_:completionHandler:) or, new in iOS 11, geo
codePostalAddress(_:completionHandler:); the latter takes a
CNPostalAddress, from the Contacts framework, so you’ll need to import
Contacts (see Chapter 18). The response, if things went well, is an array of
CLPlacemark objects, a series of guesses from best to worst; if things went
really well, the array will contain exactly one CLPlacemark.
A CLPlacemark can be used to initialize an MKPlacemark, a CLPlacemark
subclass that adopts the MKAnnotation protocol, and is therefore suitable to
be handed directly over to an MKMapView for display.
Here is an (unbelievably simpleminded) example that allows the user to
enter an address in a UISearchBar (Chapter 12) to be displayed in an
MKMapView:

guard let s = searchBar.text else { return }

let geo = CLGeocoder()

geo.geocodeAddressString(s) { placemarks, error in

 guard let placemarks = placemarks else { return }

 let p = placemarks[0]

 let mp = MKPlacemark(placemark:p)

 self.map.addAnnotation(mp)

 self.map.setRegion(

 MKCoordinateRegionMakeWithDistance(mp.coordinate, 1000, 1000),

 animated: true)

}

By default, the resulting annotation’s callout title contains a nicely
formatted string describing the address.
The converse operation is reverse geocoding: you start with a coordinate —
actually a CLLocation, which you’ll obtain from elsewhere, or construct
from a coordinate using init(latitude:longitude:) — and then, in

order to obtain the corresponding address, you call reverseGeocodeLocati
on(_:completionHandler:).

The address is expressed through the CLPlacemark postalAddress
CNPostalAddress property (new in iOS 11; be sure to import Contacts).
You can then use a CNPostalAddressFormatter to format the address nicely.
Alternatively, you can consult directly such CLPlacemark properties as sub
thoroughfare (a house number), thoroughfare (a street name), locality
(a town), and administrativeArea (a state).
In this example of reverse geocoding, we have an MKMapView that is
already tracking the user, and so we have the user’s location as the map’s us
erLocation; we ask for the corresponding address:

guard let loc = self.map.userLocation.location else { return }

let geo = CLGeocoder()

geo.reverseGeocodeLocation(loc) { placemarks, error in

 guard let ps = placemarks, ps.count > 0 else {return}

 let p = ps[0]

 if let addy = p.postalAddress {

 let f = CNPostalAddressFormatter()

 print(f.string(from: addy))

 }

}

Searching
The MKLocalSearch class, along with MKLocalSearchRequest and
MKLocalSearchResponse, lets you ask the server to perform a natural
language search for you. This is less formal than forward geocoding,
described in the previous section; instead of searching for an address, you
can search for a point of interest by name or description. It can be useful,
for some types of search, to constrain the area of interest by setting the
MKLocalSearchRequest’s region.
In this example, I’ll do a natural language search for a Thai restaurant near
the user location currently displayed in the map, and I’ll display it with an
annotation in our map view:

guard let loc = self.map.userLocation.location else { return }

let req = MKLocalSearchRequest()

req.naturalLanguageQuery = "Thai restaurant"

req.region = MKCoordinateRegionMake(loc.coordinate, MKCoordinateSpanMake(1,1))

let search = MKLocalSearch(request:req)

search.start { response, error in

 guard let response = response else { print(error); return }

 self.map.showsUserLocation = false

 let mi = response.mapItems[0] // I'm feeling lucky

 let place = mi.placemark

 let loc = place.location!.coordinate

 let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)

 self.map.setRegion(reg, animated:true)

 let ann = MKPointAnnotation()

 ann.title = mi.name

 ann.subtitle = mi.phoneNumber

 ann.coordinate = loc

 self.map.addAnnotation(ann)

}

MKLocalSearchCompleter lets you use the MKLocalSearch remote
database to suggest completions as the user types a search query.

Directions
The MKDirections class, along with MKDirectionsRequest and
MKDirectionsResponse, looks up walking or driving directions between
two locations expressed as MKMapItem objects. The resulting
MKDirectionsResponse includes an array of MKRoute objects; each
MKRoute includes an MKPolyline suitable for display as an overlay in your
map, as well as an array of MKRouteStep objects, each of which provides
its own MKPolyline plus instructions and distances. The
MKDirectionsResponse also has its own source and destination
MKMapItems, which may be different from what we started with.
To illustrate, I’ll continue from the Thai food example in the previous
section, starting at the point where we obtained the Thai restaurant’s
MKMapItem:

// ... same as before up to this point ...

let mi = response.mapItems[0] // I'm still feeling lucky

let req = MKDirectionsRequest()

req.source = MKMapItem.forCurrentLocation()

req.destination = mi

let dir = MKDirections(request:req)

dir.calculate { response, error in

 guard let response = response else { print(error); return }

 let route = response.routes[0] // I'm feeling insanely lucky

 let poly = route.polyline

 self.map.add(poly)

 for step in route.steps {

 print("After \(step.distance) meters: \(step.instructions)")

 }

}

The step-by-step instructions appear in the console; in real life, of course,
we would presumably display these in our app’s interface. The route is
drawn in our map view, provided we have an appropriate implementation of
mapView(_:rendererFor:), such as this:

func mapView(_ mapView: MKMapView,

 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {

 if let overlay = overlay as? MKPolyline {

 let r = MKPolylineRenderer(polyline:overlay)

 r.strokeColor = UIColor.blue.withAlphaComponent(0.8)

 r.lineWidth = 2

 return r

 }

 return MKOverlayRenderer()

}

You can also ask MKDirections to estimate the time of arrival, by calling ca
lculateETA(completionHandler:), and iOS 9 introduced arrival time
estimation for some public transit systems (and you can tell the Maps app to
display a transit directions map).

TIP
Instead of your app providing geocoding, searching, or directions, you can ask the Maps app to
provide them: form a URL and call UIApplication’s open(_:options:completionHandler:).
For the structure of this URL, see the “Map Links” chapter of Apple’s Apple URL Scheme
Reference. You can also use this technique to ask the Maps app to display a point of interest, as
discussed in the previous section.

Chapter 21. Sensors

A device may contain hardware for sensing the world around itself —
where it is located, how it is oriented, how it is moving.
Information about the device’s current location and how that location is
changing over time, using its Wi-Fi, cellular networking, and GPS
capabilities, along with information about the device’s orientation relative
to north, using its magnetometer, is provided through the Core Location
framework.
Information about the device’s change in speed and attitude using its
accelerometer is provided through the UIEvent class (for device shake) and
the Core Motion framework, which provides increased accuracy by
incorporating the device’s gyroscope, if it has one, as well as the
magnetometer. In addition, the device may have an extra chip that analyzes
and records the user’s activity, such as walking or running, and even a
barometer that reports changes in altitude; the Core Motion framework
provides access to this information as well.
One of the major challenges associated with writing code that takes
advantage of the sensors is that different devices have different hardware. If
you don’t want to impose stringent restrictions on what devices your app
will run on in the first place (UIRequiredDeviceCapabilities in the
Info.plist), your code must be prepared to fail gracefully, perhaps providing
a subset of your app’s full capabilities, when it turns out that the current
device lacks certain features.
Moreover, certain sensors may experience momentary inadequacy; for
example, Core Location might not be able to get a fix on the device’s
position because it can’t see cell towers, GPS satellites, or both. And some
sensors take time to “warm up,” so that the values you’ll get from them
initially will be invalid. You’ll want to respond to such changes in the

external circumstances, in order to give the user a decent experience of your
application regardless.
One final consideration: all sensor usage means battery usage, to a lesser or
a greater degree — sometimes to a considerably greater degree. There’s a
compromise to be made here: you want to please the user with your app’s
convenience and usefulness, without disagreeably surprising and annoying
the user through rapid depletion of the device’s battery charge.

Core Location
The Core Location framework (import CoreLocation) provides facilities
for the device to determine and report its location (location services). It
takes advantage of three sensors:

Wi-Fi
The device, if Wi-Fi is turned on, may scan for nearby Wi-Fi networks
and compare these against an online database.

Cell
The device, if it has cell capabilities and they are not turned off, may
detect nearby telephone cell towers and compare them against an online
database.

GPS
The device’s GPS, if it has one, may be able to obtain a position fix
from GPS satellites. The GPS is obviously the most accurate location
sensor, but it takes the longest to get a fix, and in some situations it will
fail — indoors, for example, or in a city of tall buildings, where the
device can’t “see” enough of the sky.

Core Location will automatically use whatever facilities the device has
available; all you have to do is ask for the device’s location. Core Location
allows you to specify how accurate a position fix you want; more accurate
fixes may require more time.

To help you test code that depends on where the device is, Xcode lets you
pretend that the device is at a particular location on earth. The Simulator’s
Debug → Location menu lets you enter a location; the Scheme editor lets
you set a default location (under Options); and the Debug → Simulate
Location menu lets you switch among locations. You can set a built-in
location or supply a standard GPX file containing a waypoint. You can also
set the location to None; it’s important to test for what happens when no
location information is available.

Location Manager, Delegate, and Authorization
Use of Core Location requires a location manager object, an instance of
CLLocationManager. This object needs to be created on the main thread
and retained thereafter. A standard strategy is to pick an instance that
persists throughout the life of your app — your app delegate, or your root
view controller, for example — and initialize an instance property with a
location manager:

let locman = CLLocationManager()

Your location manager will generally be useless without a delegate
(CLLocationManagerDelegate). You don’t want to change a location
manager’s delegate, so you’ll want to set it once, early in the life of the
location manager. This delegate will need to be an instance that persists
together with the location manager. For example, if locman is a constant
property of our root view controller, then we can set the root view controller
as its delegate. It’s a good idea to do this as early as possible — for
example, in the root view controller’s initializer:

required init?(coder aDecoder: NSCoder) {

 super.init(coder:aDecoder)

 self.locman.delegate = self

}

You must also explicitly request authorization from the user when you first
start tracking the device’s location. There are two types of authorization:

When In Use
When In Use authorization allows your app to perform basic location
determination when the app is running.

Always
Always authorization gives your app use of all Core Location modes
and features, including those that operate even if the app is not running.
(I’ll describe later what these are.)

If you request Always authorization, you’re asking the user to enable extra
capabilities for which a compelling case needs to be made, especially
because granting such authorization implies that the user’s location may be
tracked, along with some depletion of the device’s battery, without the
user’s being aware of it. New in iOS 11, therefore, you cannot get Always
authorization without also letting the user opt for the lesser When In Use
authorization instead; an authorization request alert asking for Always
authorization also contains a button allowing the user to pick When In Use
authorization (Figure 21-1). An app that will want Always authorization
should therefore be prepared to operate satisfactorily with only When In
Use authorization.

Figure 21-1. The Weather app requests authorization

Keep in mind, too, that the user can change your app’s authorization at any
time. The Settings app lets the user turn on and off location access for your
app; new in iOS 11, if your app has ever requested Always authorization,
the user will have three choices — Never, While Using the App, and
Always — and can switch freely among them (Figure 21-2).

Figure 21-2. Settings choices for the Weather app

NOTE
If you’re going to request Always authorization, Apple would like you first to request When In
Use authorization separately; if the user grants you When In Use authorization and you
subsequently request Always authorization, a special “transition” authorization request alert will
be presented on your behalf. However, Apple’s own apps do not necessarily obey this protocol, as
Figure 21-1 shows.

A further complication is that the user can turn off location services as a
whole. If location services are off, and if you proceed to try to use Core
Location anyway, the system may put up an alert on your behalf offering to
switch to the Settings app so that the user can turn location services on. The
CLLocationManager class method locationServicesEnabled reports
whether location services as a whole are switched off. If so, a possible
strategy is to call startUpdatingLocation on your location manager
anyway. The attempt to learn the device’s location will fail, but this failure
may also cause the user to see the system alert:

if !CLLocationManager.locationServicesEnabled() {

 self.locman.startUpdatingLocation()

 return

}

Once location services are enabled, you’ll call the CLLocationManager
class method authorizationStatus to learn your app’s actual
authorization status. There are two types of authorization, so there are two
status cases reporting that you have authorization: .authorizedWhenInUse
and .authorizedAlways. If the status is .notDetermined, you can request
that the system put up the authorization request alert on your behalf by
calling one of two instance methods, either requestWhenInUseAuthorizat
ion or requestAlwaysAuthorization. You must also have a
corresponding entry in your app’s Info.plist providing the body of the
authorization request alert; in iOS 11, these are “Privacy — Location When
In Use Description” (NSLocationWhenInUseUsageDescription) and

“Privacy — Location Always and When In Use Usage Description” (NSLoc
ationAlwaysAndWhenInUseUsageDescription).

TIP
The pre–iOS 11 “Privacy — Location Always Usage Description” (NSLocationAlwaysUsageDes
cription) is not used in iOS 11, though you will need it if your app is to be backward-compatible
to iOS 10 or earlier.

Oddly, neither requestWhenInUseAuthorization nor requestAlwaysAut
horization takes a completion function. Your code just continues blithely
on. If you call requestWhenInUseAuthorization and then attempt to
track the device’s location by calling startUpdatingLocation, you might
succeed if the user grants authorization, but you might fail. The Core
Location API provides no simple way for you to proceed only when you
know the outcome of the authorization request.
On the other hand, whenever the user changes your authorization status —
either granting authorization in the authorization request alert, or switching
to the Settings app and providing authorization there — your location
manager delegate’s locationManager(_:didChangeAuthorization:) is
called. Thus, if you were to store whatever action you want to perform
before obtaining authorization, you could perform that action after
obtaining authorization.
Here’s a strategy for doing that. Instead of making our CLLocationManager
a property of the root view controller, we have a utility class,
ManagerHolder; it creates and retains the location manager, asks for
authorization if needed, and stores the function we want to call when we
have authorization:

class ManagerHolder {

 let locman = CLLocationManager()

 var doThisWhenAuthorized : (() -> ())?

 func checkForLocationAccess(always:Bool = false,

 andThen f: (()->())? = nil) {

 // no services? try to get alert

 guard CLLocationManager.locationServicesEnabled() else {

 self.locman.startUpdatingLocation()

 return

 }

 let status = CLLocationManager.authorizationStatus()

 switch status {

 case .authorizedWhenInUse:

 if always { // try to step up

 self.doThisWhenAuthorized = f

 self.locman.requestAlwaysAuthorization()

 } else {

 f?()

 }

 case .authorizedAlways:

 f?()

 case .notDetermined:

 self.doThisWhenAuthorized = f

 always ?

 self.locman.requestAlwaysAuthorization() :

 self.locman.requestWhenInUseAuthorization()

 case .restricted:

 // do nothing

 break

 case .denied:

 // do nothing, or beg the user to authorize us in Settings

 break

 }

 }

}

Our utility class encapsulates management and authorization of the location
manager. (For the structure of checkForLocationAccess, compare the
discussion under “Checking for Authorization”.) This gives us flexibility.
With my utility class, I can instantiate a location manager anywhere and it
will be managed correctly. My current plan is to attach a ManagerHolder
instance to the root view controller; but it would be trivial to attach a
ManagerHolder to the app delegate instead, or to both.
So now I do attach a ManagerHolder instance to the root view controller.
The root view controller initializes and stores a ManagerHolder instance as
an instance property, thus bringing the location manager to life as early as
possible. For convenience, I’ll still give our root view controller a locman

property, but this will be a computed property that bounces to the
ManagerHolder’s location manager instance:

class ViewController: UIViewController, CLLocationManagerDelegate {

 let managerHolder = ManagerHolder()

 var locman : CLLocationManager {

 return self.managerHolder.locman

 }

 required init?(coder aDecoder: NSCoder) {

 super.init(coder:aDecoder)

 self.locman.delegate = self

 }

 // ...

}

Acting as the location manager delegate, the root view controller can now
implement locationManager(_:didChangeAuthorizationStatus:) to
call the function stored in the ManagerHolder:

func locationManager(_ manager: CLLocationManager,

 didChangeAuthorization status: CLAuthorizationStatus) {

 switch status {

 case .authorizedAlways, .authorizedWhenInUse:

 self.managerHolder.doThisWhenAuthorized?()

 self.managerHolder.doThisWhenAuthorized = nil

 default: break

 }

}

If we now call our ManagerHolder’s checkForLocationAccess before
tracking location, everything will work correctly. If we pass a completion
function in our call to checkForLocationAccess, then if we already have
authorization, that function will be called immediately, but if our status is .
notDetermined and the authorization request alert is presented, that
function will be called as soon as the user grants us authorization.

Location Tracking
To use the location manager to track the user’s location, make sure the
location manager has a delegate, configure the location manager further as

needed (I’ll go into more detail in a moment), and then tell the location
manager to startUpdatingLocation. The location manager will begin
calling the delegate’s locationManager(_:didUpdateLocations:)
delegate method repeatedly. The delegate will deal with each such call as it
arrives. In this way, you will be kept more or less continuously informed of
where the device is. This will go on until you call stopUpdatingLocation;
don’t forget to call it when you no longer need location tracking!
The pattern here is common to virtually all uses of the location manager.
The location manager can do various kinds of tracking, but they all work
the same way: you’ll tell it to start, a corresponding delegate method will be
called repeatedly, and ultimately you’ll tell it to stop. Your delegate should
also implement locationManager(_:didFailWithError:) to receive
error messages.
Here are some location manager configuration properties that are useful to
set before you start location tracking:

desiredAccuracy

Your choices are:

kCLLocationAccuracyBestForNavigation

kCLLocationAccuracyBest

kCLLocationAccuracyNearestTenMeters

kCLLocationAccuracyHundredMeters

kCLLocationAccuracyKilometer

kCLLocationAccuracyThreeKilometers

It might be sufficient for your purposes to know very quickly but very
roughly the device’s location; in that case, use kCLLocationAccuracyK
ilometer or kCLLocationAccuracyThreeKilometers. At the other
end of the scale, highest accuracy may cause the highest battery drain;
indeed, kCLLocationAccuracyBestForNavigation is supposed to be
used only when the device is connected to external power. The accuracy

setting is not a filter: the location manager will send you whatever
location information it has, even if it isn’t as accurate as you asked for,
and checking a location’s horizontalAccuracy to see if it’s good
enough is then up to you.

distanceFilter

Perhaps you don’t need a location report unless the device has moved a
certain distance since the previous report. This property can help keep
you from being bombarded with events you don’t need. The distance is
measured in meters. To turn off the distance filter entirely, set this
property to kCLDistanceFilterNone (the default).

pausesLocationUpdatesAutomatically

A Bool. The default, true, means that your setting for the location
manager’s activityType is significant. Your activityType choices
are (CLActivityType):

.fitness

.automotiveNavigation

.otherNavigation

.other (the default)
Think of these as an autopause setting, based on the movement of the
device; if we don’t seem to be moving sufficiently to warrant updates
based on the activity type, updates can pause and we’ll conserve power.
The idea here is that the user may have stopped working out, driving, or
whatever, but has forgotten to turn off your app’s location tracking. A
paused location manager does not automatically resume updates; it’s up
to you to implement the delegate method locationManagerDidPauseL
ocationUpdates(_:) and configure updates to resume when
appropriate. Apple suggests that, as an alternative, you might save
power by setting pausesLocationUpdatesAutomatically to false
but accepting the broadest desiredAccuracy (namely kCLLocationAcc

uracyThreeKilometers), which will probably mean that the GPS isn’t
used.

Here’s a basic example, taking advantage of the authorization strategy
described in the previous section. Our goal here is quite extreme — we
want to get a very accurate location as soon as possible and keep tracking
the user’s location until we say to stop:

self.managerHolder.checkForLocationAccess {

 self.locman.desiredAccuracy = kCLLocationAccuracyBest

 self.locman.distanceFilter = kCLDistanceFilterNone

 self.locman.activityType = .other

 self.locman.pausesLocationUpdatesAutomatically = false

 self.locman.startUpdatingLocation()

}

We have a location manager, we are set as the location manager’s delegate,
we have requested authorization if needed, and if we have or can get
authorization, we have configured the location manager and started tracking
location. All we have to do now is sit back and wait for our implementation
of locationManager(_:didUpdateLocations:) to be called. The second
parameter is an array of CLLocation, a value class that encapsulates the
notion of a location. Its properties include:

coordinate

A CLLocationCoordinate2D, a struct consisting of two Doubles
representing latitude and longitude.

altitude

A CLLocationDistance, which is a Double representing a number of
meters.

speed

A CLLocationSpeed, which is a Double representing meters per second.

course

A CLLocationDirection, which is a Double representing degrees (not
radians) clockwise from north.

horizontalAccuracy

A CLLocationAccuracy, which is a Double representing meters.

timestamp

A Date.
In this situation, the array that we receive is likely to contain just one
CLLocation — and even if it contains more than one, the last CLLocation
in the array is guaranteed to be the newest. Thus, it is sufficient for our loc
ationManager(_:didUpdateLocations:) implementation to extract the
last element of the array:

let REQ_ACC : CLLocationAccuracy = 10

func locationManager(_ manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 let loc = locations.last!

 let acc = loc.horizontalAccuracy

 print(acc)

 if acc < 0 || acc > REQ_ACC {

 return // wait for the next one

 }

 let coord = loc.coordinate

 print("You are at \(coord.latitude) \(coord.longitude)")

}

It’s instructive to see, from the console logs, how the accuracy improves as
the sensors warm up and the GPS obtains a fix:

1285.19869645162

1285.19869645172

1285.19869645173

65.0

65.0

30.0

30.0

30.0

10.0

You are at ...

Where Am I?
A common desire is, rather than tracking location continuously, to get one
location once. To do that, a common beginner mistake is to call startUpda
tingLocation and implement locationManager(_:didUpdateLocation
s:) to stop updating as soon as it is called:

func locationManager(_ manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 let loc = locations.last!

 let coord = loc.coordinate

 print("You are at \(coord.latitude) \(coord.longitude)")

 manager.stopUpdatingLocation() // this won't work!

}

That’s unlikely to work. As I demonstrated in the preceding section, the
sensors take time to warm up, and many calls to locationManager(_:didU
pdateLocations:) may be made before a reasonably accurate CLLocation
arrives. The correct strategy would be to do just what I did in the preceding
section, and then call stopUpdatingLocation at the very end, when a
sufficiently accurate location has in fact been received. That’s a lot of work
to get just one reading, however — and there’s a simpler way. Instead of
calling startUpdatingLocation, you should call requestLocation:

self.locman.desiredAccuracy = kCLLocationAccuracyBest

self.locman.requestLocation()

Your locationManager(_:didUpdateLocations:) will be called once
with a good location, based on the desiredAccuracy you’ve already set:

func locationManager(manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 let loc = locations.last!

 let coord = loc.coordinate

 print("You are at \(coord.latitude) \(coord.longitude)")

}

Keep in mind, however, that calling requestLocation will not magically
cause an accurate location to arrive any faster! It’s a great convenience that
locationManager(_:didUpdateLocations:) will be called just once, but
some considerable time may elapse before that call arrives.

You do not have to call stopUpdatingLocation, though you can do so if
you change your mind and decide before the location arrives that it is no
longer needed.

NOTE
If you call requestLocation soon after calling it previously, you may get a cached value rather
than a new position fix.

Background Location
You can use Core Location when your app is not in the foreground. There
are two quite different ways to do this:

Continuous background location
This is an extension of basic location tracking. You tell the location
manager to startUpdatingLocation, and updates are permitted to
continue even if the app goes into the background. Your app runs in the
background in order to receive these updates.

Location monitoring
Your app does not run in the background! Rather, the system monitors
location for you. If a significant location event occurs, your app may be
awakened in the background (or launched in the background, if it is not
running) and notified.

Continuous background location
Use of Core Location to perform continuous background updates is parallel
to production of sound in the background (Chapter 14):

In your app’s Info.plist, the “Required background modes” key (UIBackg
roundModes) should include location; you can set this up easily by
checking “Location updates” under Background Modes in the
Capabilities tab when editing the target.

You must also set your location manager’s allowsBackgroundLocation
Updates to true. You should do this only at moments when you actually
need to start allowing background location updates, and set it back to fa
lse as soon as you no longer need to allow background updates.

The result is that if you have a location manager to which you have sent sta
rtUpdatingLocation and the user sends your app into the background,
your app is not suspended: the use of location services continues, and your
delegate keeps receiving location updates. You cannot start tracking
locations when your app is already in the background (well, you can try, but
in all probability your app will be suspended and location tracking will
cease).
What the user sees when you’re tracking location in the background
depends on what type of authorization you have:

When In Use
The device will make the user aware that your app is doing background
location tracking, through a blue double-height status bar. The user can
tap this to summon your app to the front. (If you see the blue bar
momentarily as your app goes into the background, that’s because you
didn’t do what I said a moment ago: set allowsBackgroundLocationU
pdates to true only when you really are going to track location in the
background.)

Always
When you track location in the background, the blue double-height
status bar doesn’t appear by default (and the system may present the
authorization dialog every few days). However, new in iOS 11, if you
set the location manager’s showsBackgroundLocationIndicator to tr
ue, the blue status bar does appear when your app tracks location in the

background. Apple suggests that you’ll want opt in to that behavior,
because the blue bar makes clearer to the user what’s happening,
increases the user’s trust in your app, and gives the user a quick way to
summon your app.

Background use of location services can cause a power drain, but if you
want your app to function as a positional data logger, it may be the only
way. You can help conserve power, however, by making judicious choices,
such as:

By setting a coarse distanceFilter value.
By not requiring overly high accuracy.

By being correct about the activityType and allowing updates to
pause.
By operating in deferred mode.

What is deferred mode? It’s an arrangement whereby your app, which is
already receiving updates because you’ve called startUpdatingLocation,
states that it doesn’t need to receive updates until the user has moved a
specified amount or until a fixed time interval has elapsed. This can make
sense if your app runs in the background; you don’t need to update your
interface constantly because there isn’t any interface to update. Instead,
you’re willing to accept updates in occasional batches and plot or record
them whenever they happen to arrive. In this way, you conserve the device’s
power, for two reasons: the device may be able to power down some of its
sensors temporarily, and your app can be suspended in the background
between updates.
Deferred mode is dependent on hardware capabilities; use it only if this
class method returns true:

deferredLocationUpdatesAvailable

For this feature to work, the location manager’s desiredAccuracy must be
kCLLocationAccuracyBest or kCLLocationAccuracyBestForNavigatio
n, and its distanceFilter must be kCLDistanceFilterNone; basically

you’re telling the GPS to run, but you’re also telling it to accumulate
readings rather than constantly reporting them to you.
To use deferred mode, call this method:

allowDeferredLocationUpdates(untilTraveled:timeout:)

It is reasonable to specify a very large distance or time; in fact, constants
are provided for this very purpose — CLLocationDistanceMax and CLTime
IntervalMax. The reason is that, when your app is brought to the
foreground, all accumulated updates are then delivered, so that your app can
update its interface.
You’ll need to implement these delegate methods:

locationManager(_:didFinishDeferredUpdatesWithError:)

When this method is called, deferred mode ends; if your app is still in
the background, and you want another round of deferred mode, call all
owDeferredLocationUpdates again.

(It is an error to call allowDeferredLocationUpdates after calling it
previously but before locationManager(_:didFinishDeferredUpdat
esWithError:) is called; that’s why you want to call it again in this
method.)

locationManager(_:didUpdateLocations:)

The locations: parameter in this situation may be an array containing
multiple locations; these will be the accumulated updates.

Location monitoring
Location monitoring is not something your app does; it’s something the
system does on your behalf. Thus, it doesn’t require your app to run
continuously in the background, and you do not have to set the UIBackgrou
ndModes of your Info.plist. Your app still requires a location manager with a
delegate, however, and it needs appropriate user authorization; in general,
this will be Always authorization.

Location monitoring is less battery-intensive than full-fledged location
tracking. That’s because it relies on cell tower positions to estimate the
device’s location. Since the cell is probably operating anyway — for
example, the device is a phone, so the cell is always on and is always
concerned with what cell towers are available — little or no additional
power is required. Apple says that the system will also take advantage of
other clues (requiring no extra battery drain) to decide that there may have
been a change in location: for example, the device may observe a change in
the available Wi-Fi networks, strongly suggesting that the device has
moved.
Nevertheless, location monitoring does use the battery, and over the course
of time the user will notice this. Therefore, you should use it only during
periods when you need it. Every startMonitoring method has a
corresponding stopMonitoring method. Don’t forget to call that method
when location monitoring is no longer needed! The system is performing
this work on your behalf, and it will continue to do so until you tell it not to.

WARNING
It is crucial that you remember to stop location monitoring. A failure to do this will drain the
battery significantly. The user can figure out, by looking at the Battery screen in Settings, that
your app is responsible, and if you have provided no other way to turn location monitoring off, the
user will have no choice but to delete your app.

If your app isn’t in the foreground at the time the system wants to send your
location manager delegate a location monitoring event, there are two
possible states in which your app might find itself:

Your app is suspended in the background
Your app is woken up (remaining in the background) long enough to
receive the delegate event and do something with it.

Your app is not running at all

Your app is relaunched (remaining in the background), and your app
delegate will be sent application(_:didFinishLaunchingWithOptio
ns:) with the options: dictionary containing UIApplicationLaunchO
ptionsLocationKey, thus allowing you to discern the special nature of
the situation.
At this point you probably have no location manager — your app has
just launched from scratch. You need one, and you need it to have a
delegate, so that you can receive the appropriate delegate events. This is
another reason why you should create a location manager and assign it a
delegate early in the lifetime of the app.

There are four distinct forms of location monitoring:

Significant location change monitoring
Check this class method:

significantLocationChangeMonitoringAvailable

If it returns true, you can call this method:

startMonitoringSignificantLocationChanges

Implement this delegate method:

locationManager(_:didUpdateLocations:)

Called whenever the device’s location has changed significantly.

Visit monitoring
By tracking significant changes in your location along with the pauses
between those changes, the system decides that the user is visiting a
spot. Visit monitoring is basically a form of significant location change
monitoring, but requires even less power and notifies you less often,
because locations that don’t involve pauses are filtered out.
Check this class method:

significantLocationChangeMonitoringAvailable

If it returns true, you can call this method:

startMonitoringVisits

Implement this delegate method:

locationManager(_:didVisit:)

Called whenever the user’s location pauses in a way that suggests a
visit is beginning, and again whenever a visit ends. The second
parameter is a CLVisit, a simple value class wrapping visit data; in
addition to coordinate and horizontalAccuracy, you get an arri
valDate and departureDate. If this is an arrival, the departureDa
te will be Date.distantFuture. If this is a departure and we were
not monitoring visits when the user arrived, the arrivalDate will
be Date.distantPast.

Region monitoring
Region monitoring depends upon your defining one more regions. A
region is a CLRegion, which basically expresses a geofence, an area that
triggers an event when the user enters or leaves it (or both). This class is
divided into two subclasses, CLBeaconRegion and CLCircularRegion.
CLBeaconRegion is used in connection with iBeacon monitoring; I’m
not going to discuss iBeacon in this book, so that leaves us with
CLCircularRegion. Its initializer is init(center:radius:identifie
r:); the center: parameter is a CLLocationCoordinate2D, and the ide
ntifier: serves as a unique key. The region’s notifyOnEntry and not
ifyOnExit properties are both true by default; set one to false if
you’re interested in only the other type of event.
Check this class method:

isMonitoringAvailable(for:)
with an argument of CLCircularRegion.self

If it returns true, then you can call this method:

startMonitoring(for:)

Call that method for each region in which you are interested. Regions
being monitored are maintained as a set, which is the location

manager’s monitoredRegions. A region’s identifier serves as a
unique key, so that if you start monitoring for a region whose identifier
matches that of a region already in the monitoredRegions set, the latter
will be ejected from the set. Implement these delegate methods:

locationManager(_:didEnterRegion:)

locationManager(_:didExitRegion:)

locationManager(_:monitoringDidFailFor:withError:)

Geofenced local notifications
This is a special case of region monitoring where everything is handled
through the local notification mechanism (Chapter 13); therefore, you
only need When In Use authorization, you don’t start monitoring or stop
monitoring, and you don’t implement any delegate methods.
You configure a local notification (UNNotification) using a request
whose trigger is a UNLocationNotificationTrigger initialized with init
(region:repeats:) — and thus you can supply a CLRegion. If repea
ts: is true, the notification won’t be unscheduled after it fires; rather,
it will fire again whenever the user crosses the region boundary in the
specified direction again (depending on the CLRegion’s notifyOnEntr
y and notifyOnExit settings).

Heading
For appropriately equipped devices, Core Location supports use of the
magnetometer to determine which way the device is facing (its heading).
Although this information is accessed through a location manager, you do
not need location services to be turned on merely to use the magnetometer
to report the device’s orientation with respect to magnetic north; you do
need location services to be turned on in order to report true north, as this
depends on the device’s location.

As with location, you’ll first check that the desired feature is available (hea
dingAvailable); then you’ll configure the location manager, and call star

tUpdatingHeading. The delegate will be sent locationManager(_:didUp
dateHeading:) repeatedly until you call stopUpdatingHeading (or else l
ocationManager(_:didFailWithError:) will be called).

A heading object is a CLHeading instance; its magneticHeading and true
Heading properties are CLLocationDirection values, which report degrees
(not radians) clockwise from the reference direction (magnetic or true north,
respectively). If the trueHeading is not available, it will be reported as -1.
The trueHeading will not be available unless both of the following are true
in the Settings app:

Location services are turned on (Privacy → Location Services).
Compass calibration is turned on (Privacy → Location Services →
System Services).

Beyond that, explicit user authorization is not needed in order to get the
device’s heading with respect to true north.

Implement the delegate method locationManagerShouldDisplayHeading
Calibration(_:) to return true if you want the system’s compass
calibration dialog to be permitted to appear if needed.

In this example, I’ll use the device as a compass. The headingFilter
setting is to prevent us from being bombarded constantly with readings. For
best results, the device should probably be held level (like a tabletop, or a
compass); we are setting the headingOrientation so that the reported
heading will be the direction in which the top of the device (the end away
from the Home button) is pointing:

guard CLLocationManager.headingAvailable() else {return} // no hardware

self.locman.headingFilter = 5

self.locman.headingOrientation = .portrait

self.locman.startUpdatingHeading()

In the delegate, I’ll display our heading as a rough cardinal direction in a
label in the interface (self.lab). If we have a trueHeading, I’ll use it;
otherwise I’ll use the magneticHeading:

func locationManager(_ manager: CLLocationManager,

 didUpdateHeading newHeading: CLHeading) {

 var h = newHeading.magneticHeading

 let h2 = newHeading.trueHeading // -1 if no location info

 if h2 >= 0 {

 h = h2

 }

 let cards = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]

 var dir = "N"

 for (ix, card) in cards.enumerated() {

 if h < 45.0/2.0 + 45.0*Double(ix) {

 dir = card

 break

 }

 }

 if self.lab.text != dir {

 self.lab.text = dir

 }

}

Heading is not the same as course. For example, a boat may be facing north
(its heading) but moving northeast (its course). There are times, however,
when what you are interested in really is course. For example, in a moving
automobile, how the user is holding the device is probably unimportant to
you: what you want to know when you ask for heading is probably which
way the car is moving. If the runtime concludes, from the nature of the
device’s motion, that when you ask for heading you probably want course,
it will provide the course as the heading. New in iOS 11, if that’s not what
you want, then instead of using Core Location to determine heading, you
can use Core Motion (discussed in the next section) to obtain the device’s
orientation in space as a CMDeviceMotion object’s heading property.

Acceleration, Attitude, and Activity
Acceleration results from the application of a force to the device, and is
detected through the device’s accelerometer, supplemented by the
gyroscope if the device has one. Gravity is a force, so the accelerometer
always has something to measure, even if the user isn’t consciously

applying a force to the device; thus the device can use acceleration
detection to report its attitude relative to the vertical.
Acceleration information can arrive in two ways:

As a prepackaged UIEvent
You can receive a UIEvent notifying you of a predefined gesture
performed by accelerating the device. At present, the only such gesture
is the user shaking the device.

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a
desired type. You can ask for accelerometer information, gyroscope
information, or device motion information (and you can also use Core
Motion to get magnetometer and heading information); device motion
combines the gyroscope data with data from the other sensors to give
you the best possible description of the device’s attitude in space.

Shake Events
A shake event is a UIEvent (Chapter 5). Receiving shake events involves
the notion of the first responder. To receive shake events, your app must
contain a UIResponder which:

Returns true from canBecomeFirstResponder
Is in fact first responder

This responder, or a UIResponder further up the responder chain, should
implement some or all of these methods:

motionBegan(_:with:)

Something has started to happen that might or might not turn out to be a
shake.

motionEnded(_:with:)

The motion reported in motionBegan is over and has turned out to be a
shake.

motionCancelled(_:with:)

The motion reported in motionBegan wasn’t a shake after all.

It might be sufficient to implement motionEnded(_:with:), because this
arrives if and only if the user performs a shake gesture. The first parameter
will be the event subtype, but at present this is guaranteed to be .motionSh
ake, so testing it is pointless.
The view controller in charge of the current view is a good candidate to
receive shake events. Thus, a minimal implementation might look like this:

override var canBecomeFirstResponder : Bool {

 return true

}

override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 self.becomeFirstResponder()

}

override func motionEnded(_ motion: UIEventSubtype, with e: UIEvent?) {

 print("hey, you shook me!")

}

By default, if some other object is first responder, and is of a type that
supports undo (such as a UITextField), and if motionBegan(_:with:) is
sent up the responder chain, and if you have not set the shared
UIApplication’s applicationSupportsShakeToEdit property to false, a
shake will be handled through an Undo or Redo alert. Your view controller
might not want to rob any responders in its view of this capability. A simple
way to avoid doing so is to test whether the view controller is itself the first
responder; if it isn’t, we call super to pass the event on up the responder
chain:

override func motionEnded(_ motion: UIEventSubtype, with e: UIEvent?) {

 if self.isFirstResponder {

 print("hey, you shook me!")

 } else {

 super.motionEnded(motion, with: e)

 }

}

Using Core Motion
The standard pattern for using the Core Motion framework (import CoreM
otion) to read the accelerometer, magnetometer, gyroscope, and combined
device motion is in some ways similar to how you use Core Location:

1. You start by instantiating CMMotionManager; retain the instance
somewhere, typically as an instance property. There is no reason not
to initialize the property directly:

let motman = CMMotionManager()

2. Confirm that the desired hardware is available by checking the
appropriate instance property, such as isAccelerometerAvailable.

3. Set the interval at which you wish the motion manager to update itself
with new sensor readings by setting the appropriate property, such as
accelerometerUpdateInterval.

4. Call the appropriate start method, such as startAccelerometerUpd
ates.

5. You probably expect me to say now that the motion manager will call
into a delegate. Surprise! A motion manager has no delegate. You
have two choices:

Pull
Poll the motion manager whenever you want data, asking for the
appropriate data property. The polling interval doesn’t have to be
the same as the motion manager’s update interval; when you poll,
you’ll obtain the motion manager’s current data — that is, the data
generated by its most recent update, whenever that was.

Push
If your purpose is to collect all the data, then instead of calling a
simple start method, you can call a related method that takes a
function that will be called back, preferably on a background
thread managed by an OperationQueue (Chapter 24). This method

will have the form start...Updates(to:withHandler:). For
example, for accelerometer updates, instead of startAccelerome
terUpdates, you would call startAccelerometerUpdates(to:w
ithHandler:).

6. Don’t forget to call the corresponding stop method, such as stopAcce
lerometerUpdates, when you no longer need data.

So there are two ways to get motion manager data — pull and push. Which
approach should you use? It depends on what you’re trying to accomplish.
Polling (pull) is a good way to learn the device’s instantaneous state at some
significant moment. A stream of callbacks (push) is a good way to detect a
gesture, typically by recording the most recent data into a circular buffer.
It’s perfectly possible to use both methods; having configured push, you can
perform an occasional pull.

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about
the forces being applied to it, but some compromises will be necessary. The
chief problem is that, even if the device is completely motionless, its
acceleration values will constitute a normalized vector pointing toward the
center of the earth, popularly known as gravity. The accelerometer is thus
constantly reporting a combination of gravity and user-induced
acceleration. This is good and bad. It’s good because it means that, with
certain restrictions, you can use the accelerometer to detect the device’s
attitude in space. It’s bad because gravity values and user-induced
acceleration values are mixed together. Fortunately, there are ways to
separate these values mathematically:

With a low-pass filter
A low-pass filter will damp out user acceleration so as to report gravity
only.

With a high-pass filter

A high-pass filter will damp out the effect of gravity so as to detect user
acceleration only, reporting a motionless device as having zero
acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-
pass filter, so as to learn both the gravity values and the user acceleration
values. A common additional technique is to run the output of the high-pass
filter itself through a low-pass filter to reduce noise and small twitches.
Apple provides some nice sample code for implementing a low-pass or a
high-pass filter; see especially the AccelerometerGraph example, which is
also very helpful for exploring how the accelerometer behaves.
The technique of applying filters to the accelerometer output has some
serious downsides, which are inevitable in a device that lacks a gyroscope:

It’s up to you to apply the filters; you have to implement boilerplate code
and hope that you don’t make a mistake.
Filters mean latency. Your response to the accelerometer values will lag
behind what the device is actually doing; this lag may be noticeable.

In this example, I will simply report whether the device is lying flat on its
back. I start by configuring my motion manager; then I launch a repeating
timer to trigger polling:

guard self.motman.isAccelerometerAvailable else { return }

self.motman.accelerometerUpdateInterval = 1.0 / 30.0

self.motman.startAccelerometerUpdates()

self.timer = Timer.scheduledTimer(

 timeInterval:self.motman.accelerometerUpdateInterval,

 target: self, selector: #selector(pollAccel),

 userInfo: nil, repeats: true)

My pollAccel method is now being called repeatedly. In it, I ask the
motion manager for its accelerometer data. This arrives as a
CMAccelerometerData object, which is a timestamp plus a
CMAcceleration; a CMAcceleration is simply a struct of three values, one
for each axis of the device, measured in Gs. The positive x-axis points to
the right of the device. The positive y-axis points toward the top of the

device, away from the Home button. The positive z-axis points out the front
of the screen.
The two axes orthogonal to gravity, which are the x- and y-axes when the
device is lying more or less on its back, are much more accurate and
sensitive to small variation than the axis pointing toward or away from
gravity. So our approach is to ask first whether the x and y values are close
to zero; only then do we use the z value to learn whether the device is on its
back or on its face. To keep from updating our interface constantly, we
implement a crude state machine; the state property (self.state) starts out
at .unknown, and then switches between .lyingDown (device on its back)
and .notLyingDown (device not on its back), and we update the interface
only when there is a state change:

guard let data = self.motman.accelerometerData else {return}

let acc = data.acceleration

let x = acc.x

let y = acc.y

let z = acc.z

let accu = 0.08

if abs(x) < accu && abs(y) < accu && z < -0.5 {

 if self.state == .unknown || self.state == .notLyingDown {

 self.state = .lyingDown

 self.label.text = "I'm lying on my back... ahhh..."

 }

} else {

 if self.state == .unknown || self.state == .lyingDown {

 self.state = .notLyingDown

 self.label.text = "Hey, put me back down on the table!"

 }

}

This works, but it’s sensitive to small motions of the device on the table. To
damp this sensitivity, we can run our input through a low-pass filter. The
low-pass filter code comes straight from Apple’s own examples, and
involves maintaining the previously filtered reading as a set of properties:

func add(acceleration accel:CMAcceleration) {

 let alpha = 0.1

 self.oldX = accel.x * alpha + self.oldX * (1.0 - alpha)

 self.oldY = accel.y * alpha + self.oldY * (1.0 - alpha)

 self.oldZ = accel.z * alpha + self.oldZ * (1.0 - alpha)

}

Our polling code now starts out by passing the data through the filter:

guard let data = self.motman.accelerometerData else {return}

self.add(acceleration: data.acceleration)

let x = self.oldX

let y = self.oldY

let z = self.oldZ

// ... and the rest is as before ...

As I mentioned earlier, instead of polling (pull), you can receive callbacks
to a function (push). This approach is useful particularly if your goal is to
collect updates or to receive updates on a background thread (or both). To
illustrate, I’ll rewrite the previous example to use this technique; to keep
things simple, I’ll ask for my callbacks on the main thread (the
documentation advises against this, but Apple’s own sample code does it).
We now start our accelerometer updates like this:

self.motman.startAccelerometerUpdates(to: .main) { data, err in

 guard let data = data else {

 print(err)

 self.stopAccelerometer()

 return

 }

 self.receive(acceleration:data)

}

receive(acceleration:) is just like our earlier pollAccel, except that
we already have the accelerometer data:

func receive(acceleration data:CMAccelerometerData) {

 self.add(acceleration: data.acceleration)

 let x = self.oldX

 let y = self.oldY

 let z = self.oldZ

 // ... and the rest is as before ...

}

In this next example, the user is allowed to slap the side of the device into
an open hand — perhaps as a way of telling it to go to the next or previous
image or whatever it is we’re displaying. We pass the acceleration input
through a high-pass filter to eliminate gravity (again, the filter code comes
straight from Apple’s examples):

func add(acceleration accel:CMAcceleration) {

 let alpha = 0.1

 self.oldX = accel.x - ((accel.x * alpha) + (self.oldX * (1.0 - alpha)))

 self.oldY = accel.y - ((accel.y * alpha) + (self.oldY * (1.0 - alpha)))

 self.oldZ = accel.z - ((accel.z * alpha) + (self.oldZ * (1.0 - alpha)))

}

What we’re looking for, in our polling routine, is a high positive or negative
x value. A single slap is likely to consist of several consecutive readings
above our threshold, but we want to report each slap only once, sο we take
advantage of the timestamp attached to a CMAccelerometerData,
maintaining the timestamp of our previous high reading as a property and
ignoring readings that are too close to one another in time. Another problem
is that a sudden jerk involves both an acceleration (as the user starts the
device moving) and a deceleration (as the device stops moving); thus a left
slap might be preceded by a high value in the opposite direction, which we
might interpret wrongly as a right slap. We can compensate crudely, at the
expense of some latency, with delayed performance:

@objc func pollAccel(_: Any) {

 guard let data = self.motman.accelerometerData else {return}

 self.add(acceleration: data.acceleration)

 let x = self.oldX

 let thresh = 1.0

 if x < -thresh {

 if data.timestamp - self.oldTime > 0.5 || self.lastSlap == .right {

 self.oldTime = data.timestamp

 self.lastSlap = .left

 self.canceltimer?.invalidate()

 self.canceltimer = .scheduledTimer(

 withTimeInterval:0.5, repeats: false) { _ in

 print("left")

 }

 }

 } else if x > thresh {

 if data.timestamp - self.oldTime > 0.5 || self.lastSlap == .left {

 self.oldTime = data.timestamp

 self.lastSlap = .right

 self.canceltimer?.invalidate()

 self.canceltimer = .scheduledTimer(

 withTimeInterval:0.5, repeats: false) { _ in

 print("right")

 }

 }

 }

}

The gesture we’re detecting is a little tricky to make: the user must slap the
device into an open hand and hold it there; if the device jumps out of the
open hand, that movement may be detected as the last in the series,
resulting in the wrong report (left instead of right, or vice versa). And the
latency of our gesture detection is very high.
Of course we might try tweaking some of the magic numbers in this code to
improve accuracy and performance, but a more sophisticated analysis
would probably involve storing a stream of all the most recent
CMAccelerometerData objects in a circular buffer and studying the buffer
contents to work out the overall trend.

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard
hardware in some devices makes a huge difference in the accuracy and
speed of gravity and attitude reporting. A gyroscope has the property that its
attitude in space remains constant; thus it can detect any change in the
attitude of the containing device. This has two important consequences for
accelerometer measurements:

The accelerometer can be supplemented by the gyroscope to detect
quickly the difference between gravity and user-induced acceleration.
The gyroscope can observe pure rotation, where little or no acceleration
is involved and so the accelerometer would not have been helpful. The
extreme case is constant attitudinal rotation around the gravity axis,

which the accelerometer alone would be completely unable to detect
(because there is no user-induced force, and gravity remains constant).

It is possible to track the raw gyroscope data: make sure the device has a
gyroscope (isGyroAvailable), and then call startGyroUpdates. What we
get from the motion manager is a CMGyroData object, which combines a
timestamp with a CMRotationRate that reports the rate of rotation around
each axis, measured in radians per second, where a positive value is
counterclockwise as seen by someone whose eye is pointed to by the
positive axis. (This is the opposite of the direction graphed in Figure 3-9.)
The problem, however, is that the gyroscope values are scaled and biased.
This means that the values are based on an arbitrary scale and are gradually
increasing (or decreasing) over time at a roughly constant rate. Thus there is
very little merit in the exercise of dealing with the raw gyroscope data.
What you are likely to be interested in is a combination of at least the
gyroscope and the accelerometer. The mathematics required to combine the
data from these sensors can be daunting. Fortunately, there’s no need to
know anything about that. Core Motion will happily package up the
calculated combination of data as a device motion instance
(CMDeviceMotion), with the effects of the sensors’ internal bias and
scaling already factored out.
CMDeviceMotion consists of the following properties, all of which provide
a triple of values corresponding to the device’s natural 3D frame (x
increasing to the right, y increasing to the top, z increasing out the front):

gravity

A CMAcceleration expressing a vector with value 1 pointing to the
center of the earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no
gravity component, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own
center. This is essentially the CMGyroData rotationRate with scale
and bias accounted for.

magneticField

A CMCalibratedMagneticField describing (in its field, a
CMMagneticField) the magnetic forces acting on the device, measured
in microteslas. The sensor’s internal bias has already been factored out.
The accuracy is one of the following
(CMMagneticFieldCalibrationAccuracy):

.uncalibrated

.low

.medium

.high

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in
space. The attitude is measured against a reference frame
(CMAttitudeReferenceFrame) which you specify when you ask the
motion manager to start generating updates, having first called the class
method availableAttitudeReferenceFrames to ascertain that the
desired reference frame is available on this device. In every case, the
negative z-axis points at the center of the earth; what varies between
reference frames is where the x-axis is (and the y-axis is then
orthogonal to the other two):

.xArbitraryZVertical

The x-axis could be pointing anywhere.

.xArbitraryCorrectedZVertical

The same as in the previous option, but the magnetometer is used to
maintain accuracy (preventing drift of the reference frame over
time).

.xMagneticNorthZVertical

The x-axis points toward magnetic north.

.xTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate
unless you are also using Core Location to obtain the device’s
location.

The attitude value’s numbers can be accessed through various
CMAttitude properties corresponding to three different systems, each
being convenient for a different purpose:

pitch, roll, yaw
The device’s angle of offset from the reference frame, in radians,
around the device’s natural x-axis, y-axis, and z-axis respectively
(also known as Euler angles).

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a
rotation in the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are
commonly used in OpenGL.)

heading

New in iOS 11; a Double giving the device’s orientation as a number of
degrees (not radians) clockwise from north, in accordance with the
reference frame which must be .xMagneticNorthZVertical or .xTrue
NorthZVertical (otherwise, you’ll get a value of -1). Unlike a Core
Location CLHeading, it is a pure orientation reading, without the course
folded into it. Not only the magnetometer but also the accelerometer
and gyroscope are used, thus helping to eliminate errors caused by local
magnetic anomalies.

In this example, we turn the device into a simple compass/clinometer,
merely by asking for its attitude with reference to magnetic north and
taking its pitch, roll, and yaw. We begin by making the usual
preparations; notice the use of the showsDeviceMovementDisplay
property, intended to allow the runtime to prompt the user if the
magnetometer needs calibration:

guard self.motman.isDeviceMotionAvailable else { return }

let r = CMAttitudeReferenceFrame.xMagneticNorthZVertical

guard CMMotionManager.availableAttitudeReferenceFrames().contains(r) else {

 return

}

self.motman.showsDeviceMovementDisplay = true

self.motman.deviceMotionUpdateInterval = 1.0 / 30.0

self.motman.startDeviceMotionUpdates(using: r)

let t = self.motman.deviceMotionUpdateInterval * 10

self.timer = Timer.scheduledTimer(timeInterval:t,

 target:self, selector:#selector(pollAttitude),

 userInfo:nil, repeats:true)

In pollAttitude, we wait until the magnetometer is ready, and then we
start taking attitude readings (converted to degrees):

guard let mot = self.motman.deviceMotion else {return}

let acc = mot.magneticField.accuracy.rawValue

if acc <= CMMagneticFieldCalibrationAccuracy.low.rawValue {

 return // not ready yet

}

let att = mot.attitude

let to_deg = 180.0 / .pi

print("\(att.pitch * to_deg), \(att.roll * to_deg), \(att.yaw * to_deg)")

The values are all close to zero when the device is level (flat on its back)
with its x-axis (right edge) pointing to magnetic north, and each value
increases as the device is rotated counterclockwise with respect to an eye
that has the corresponding positive axis pointing at it. So, for example, a
device held upright (top pointing at the sky) has a pitch approaching 90; a
device lying on its right edge has a roll approaching 90; and a device lying
on its back with its top pointing north has a yaw approaching -90.

There are some quirks in the way Euler angles operate mathematically:

roll and yaw increase with counterclockwise rotation from 0 to π (180
degrees) and then jump to -π (-180 degrees) and continue to increase to 0
as the rotation completes a circle; but pitch increases to π/2 (90
degrees) and then decreases to 0, then decreases to -π/2 (-90 degrees)
and increases to 0. This means that attitude alone, if we are exploring
it through pitch, roll, and yaw, is insufficient to describe the device’s
attitude, since a pitch value of, say, π/4 (45 degrees) could mean two
different things. To distinguish those two things, we can supplement att
itude with the z-component of gravity:

let g = mot.gravity

let whichway = g.z > 0 ? "forward" : "back"

print("pitch is tilted \(whichway)")

Values become inaccurate in certain orientations. In particular, when pit
ch approaches ±90 degrees (the device is upright or inverted), roll and
yaw become erratic. (You may see this effect referred to as “the
singularity” or as “gimbal lock.”) I believe that, depending on what you
are trying to accomplish, you can solve this by using a different
expression of the attitude, such as the rotationMatrix, which does not
suffer from this limitation.

This next (simple and very silly) example illustrates a use of CMAttitude’s
rotationMatrix property. Our goal is to make a CALayer rotate in
response to the current attitude of the device. We start as before, except that
our reference frame is .xArbitraryZVertical; we are interested in how
the device moves from its initial attitude, without reference to any particular
fixed external direction such as magnetic north. In pollAttitude, our first
step is to store the device’s current attitude in a CMAttitude property, self.
ref:

guard let mot = self.motman.deviceMotion else {return}

let att = mot.attitude

if self.ref == nil {

 self.ref = att

 return

}

That code works correctly because on the first few polls, as the attitude-
detection hardware warms up, att is nil, so we don’t get past the return
call until we have a valid initial attitude. Our next step is highly
characteristic of how CMAttitude is used: we call the CMAttitude instance
method multiply(byInverseOf:), which transforms our attitude so that it
is relative to the stored initial attitude:

att.multiply(byInverseOf: self.ref)

Finally, we apply the attitude’s rotation matrix directly to a layer in our
interface as a transform. Well, not quite directly: a rotation matrix is a 3×3
matrix, whereas a CATransform3D, which is what we need in order to set a
layer’s transform, is a 4×4 matrix. However, it happens that the top left
nine entries in a CATransform3D matrix constitute its rotation component,
so we start with an identity matrix and set those entries directly:

let r = att.rotationMatrix

var t = CATransform3DIdentity

t.m11 = CGFloat(r.m11)

t.m12 = CGFloat(r.m12)

t.m13 = CGFloat(r.m13)

t.m21 = CGFloat(r.m21)

t.m22 = CGFloat(r.m22)

t.m23 = CGFloat(r.m23)

t.m31 = CGFloat(r.m31)

t.m32 = CGFloat(r.m32)

t.m33 = CGFloat(r.m33)

let lay = // whatever

CATransaction.setAnimationDuration(1.0/10.0)

lay.transform = t

The result is that the layer apparently tries to hold itself still as the device
rotates. The example is rather crude because we aren’t using OpenGL to
draw a three-dimensional object, but it illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform
has a tendency to drift. Thus, even if we leave the device stationary, the
layer will gradually rotate. That is the sort of effect that .xArbitraryCorre
ctedZVertical is designed to help mitigate, at the expense of some CPU
and battery usage, by bringing the magnetometer into play.
Here are some additional considerations to be aware of when using Core
Motion:

Your app should create only one CMMotionManager instance.
Use of Core Motion is legal while your app is running in the
background. To take advantage of this, however, your app would need to
be running in the background for some other reason; there is no Core
Motion UIBackgroundModes setting in an Info.plist. For example, you
might run in the background because you’re using Core Location, and
take advantage of this to employ Core Motion as well.
Core Motion requires that various sensors be turned on, such as the
magnetometer and the gyroscope. This can result in some increased
battery drain, so try not to use any sensors you don’t have to, and
remember to stop generating updates as soon as you no longer need
them.
If your app will not be running in the background, then you should tell
the motion manager explicitly to stop generating updates when your app
goes into the background.

Other Core Motion Data
In addition to CMDeviceMotion, the Core Motion framework lets you
obtain four other types of data:

CMMotionActivityManager
Some devices have a motion coprocessor chip with the ability to detect,
analyze, and keep a record of device motion even while the device is
asleep and with very little drain on power. This is not, in and of itself, a
form of location determination; it is an analysis of the device’s physical

motion and attitude in order to draw conclusions about what the user
has been doing while carrying or wearing the device. You can learn that
the user is walking, or walked for an hour, but not where the user was
walking.
Start by maintaining a CMMotionActivityManager instance, typically
as an instance property. To find out whether the device has a motion
coprocessor, call the CMMotionActivityManager class method isActiv
ityAvailable. There are two ways to query the motion activity
manager:

Real-time updates
This is similar to getting motion manager updates with a callback
function. You call this method:

startActivityUpdates(to:withHandler:)

Your callback function is called periodically. When you no longer
need updates, call stopActivityUpdates.

Historical data
The motion coprocessor records about a week’s-worth of data. You
ask for a chunk of that recorded data by calling this method:

queryActivityStarting(from:to:to:withHandler:)

It’s fine to query the historical data while the motion activity
manager is already delivering updates.

CMPedometer
The pedometer is a step counter, deducing steps from the back and forth
motion of the device; it can also be used to receive events alerting you
to the fact that user has started or stopped activity. The pedometer may
work reliably under circumstances where Core Location doesn’t.
Start by maintaining a CMPedometer instance, typically as an instance
property. Before using the pedometer, check the isStepCountingAvail
able class method. Different devices add further capabilities. Some

devices can deduce the size of the user’s stride and compute distance (i
sDistanceAvailable); some devices can use barometric data to
estimate whether the user mounted a flight of stairs (isFloorCounting
Available). You can also ask for instantaneous cadence (isCadenceAv
ailable) and pace (isPaceAvailable).
Pedometer data is queried just like motion activity data:

Real-time updates
You can ask for constant updates with this method:

startUpdates(from:withHandler:)

Historical data
You can ask for the stored history with this method:

queryPedometerData(from:to:withHandler:)

Each bit of data arrives as a CMPedometerData object.

To be notified of changes in the user’s motion, call startEventUpdate
s(handler:); the handler: function receives a CMPedometerEvent
whose type (CMPedometerEventType) is .pause or .resume.

CMAltimeter
Some devices have an altimeter — in essence, a barometer. The idea
here is not so much to tell you the user’s absolute altitude, since
atmospheric pressure can very considerably at a fixed altitude, but to
alert you to changes in the user’s relative altitude during activity.
Start by maintaining a CMAltimeter instance, typically as an instance
property. Before using the altimeter, check the isRelativeAltitudeAv
ailable class method. Then call startRelativeAltitudeUpdates(t
o:withHandler:) to start delivery of CMAltitudeData objects; the key
metric is the relativeAltitude property, an NSNumber wrapping a
Double representing meters. It starts life at 0, and subsequent
CMAltitudeData objects provide a measurement relative to that initial
base.

CMSensorRecorder
Some devices can record the output of the accelerometer over time in
the background. Before using the recorder, check the isAccelerometer
RecordingAvailable. Then instantiate CMSensorRecorder (you do not
need to retain the instance) and call recordAccelerometer(forDurati
on:). Recording is done by the system, 50 times per second, on your
behalf, regardless of whether your app is in the foreground or even
whether it is running, and stops automatically when the duration is
over.

To retrieve the data, instantiate CMSensorRecorder again, and call acce
lerometerData(from:to:). You are given a CMSensorDataList,
which unfortunately is rather tricky to deal with. First, you’ll need to
make CMSensorDataList conform to Sequence by means of an
extension:

extension CMSensorDataList: Sequence {

 public typealias Iterator = NSFastEnumerationIterator

 public func makeIterator() -> NSFastEnumerationIterator {

 return NSFastEnumerationIterator(self)

 }

}

Now you can iterate over CMSensorDataList to obtain
CMRecordedAccelerometerData instances, each consisting of a timest
amp and an acceleration (a CMAcceleration, discussed earlier in this
chapter):

let rec = CMSensorRecorder() // and d1 and d2 are Dates

if let list = rec.accelerometerData(from: d1, to: d2) {

 for datum in list {

 if let accdatum = datum as? CMRecordedAccelerometerData {

 let accel = accdatum.acceleration

 let t = accdatum.timestamp

 // do something with data here

 }

 }

}

All four types of data have in common that you need user authorization to
obtain them (and even if you obtain such authorization, the user can later
use the Settings app to withdraw it). Your Info.plist must contain an entry
under the “Privacy - Motion Usage Description” key (NSMotionUsageDesc
ription) explaining your purpose. Oddly, there is no requestAuthorizat
ion method. In the past, there wasn’t even any easy way to learn in advance
whether we had authorization; the technique was to “tickle” the appropriate
class by trying to query it for data and see if you got an error. In this
example, I have a Bool property, self.authorized, which I set based on
the outcome of trying to query the motion activity manager:

guard CMMotionActivityManager.isActivityAvailable() else { return }

let now = Date()

self.actman.queryActivityStarting(from:now, to:now, to:.main) { arr, err in

 let notauth = Int(CMErrorMotionActivityNotAuthorized.rawValue)

 if err != nil && (err! as NSError).code == notauth {

 self.isAuthorized = false

 } else {

 self.isAuthorized = true

 }

}

On the first run of that code, the system puts up the authorization request
alert if necessary. The completion function is not called until the user deals
with the alert, so the outcome tells you what the user decided. On
subsequent runs, that same code reports the current authorization status.
New in iOS 11, however, there’s an easier way: you can simply ask the
class in question for its authorizationStatus. This returns a status enum
with the usual four cases. You still need to “tickle” the class to summon the
authorization dialog if the status is .notDetermined. This allows us to use
a strategy similar to the one devised earlier (“Checking for Authorization”).
I assume here that self.actman is a CMMotionActivityManager instance:

func checkAuthorization(andThen f:(()->())? = nil) {

 let status = CMMotionActivityManager.authorizationStatus()

 switch status {

 case .notDetermined: // bring up dialog

 let now = Date()

 self.actman.queryActivityStarting(from: now, to:now, to:.main) {

 _,err in

 print("asked for authorization")

 if err == nil {

 f?()

 }

 }

 case .authorized: f?()

 case .restricted: break // do nothing

 case .denied: break // could beg for authorization here

 }

}

As an example, I’ll illustrate querying for historical motion activity
manager data by fetching the data for the past 24 hours. I have prepared an
OperationQueue property, self.queue:

let now = Date()

let yester = now - (60*60*24)

self.actman.queryActivityStarting(

 from: yester, to: now, to: self.queue) { arr, err in

 guard var acts = arr else {return}

 // ...

}

We now have an array of CMMotionActivity objects representing every
change in the device’s activity status. This is a value class. It has a startDa
te, a confidence (a CMMotionActivityConfidence, .low, .medium, or .hi
gh) ranking the activity manager’s faith in its own categorization of what
the user was doing, and a bunch of Bool properties actually categorizing the
activity:

stationary

walking

running

automotive

cycling

unknown

A common first response to the flood of data is to pare it down (sometimes
referred to as smoothing or decimating). To help with this, I’ve extended
CMMotionActivity with a utility method that summarizes its Bool
properties as a string:

extension CMMotionActivity {

 private func tf(_ b:Bool) -> String {

 return b ? "t" : "f"

 }

 func overallAct() -> String {

 let s = tf(self.stationary)

 let w = tf(self.walking)

 let r = tf(self.running)

 let a = tf(self.automotive)

 let c = tf(self.cycling)

 let u = tf(self.unknown)

 return "\(s) \(w) \(r) \(a) \(c) \(u)"

 }

}

So, as a straightforward way of paring down the data, I remove every
CMMotionActivity with no definite activity, with a low degree of
confidence, or whose activity is the same as its predecessor. Then I set an
instance property with my data, ready for use:

let blank = "f f f f f f"

acts = acts.filter {act in act.overallAct() != blank}

acts = acts.filter {act in act.confidence == .high}

for i in (1..<acts.count).reversed() {

 if acts[i].overallAct() == acts[i-1].overallAct() {

 acts.remove(at:i)

 }

}

DispatchQueue.main.async {

 self.data = acts

}

Part IV. Final Topics

This part of the book is a miscellany of topics.
Chapter 22 is about files and how your app can store data persistently. It
also discusses sharing files with the user and with other apps, plus the
document architecture and iCloud, and surveys some common file
formats.
Chapter 23 introduces networking, with an emphasis on downloading of
data, along with some specialized forms of networking such as on-
demand resources and in-app purchases.
Chapter 24 is about making your code multithreaded.
Chapter 25 describes how to support undo in your app.
Appendix A discusses the lifetime event messages sent to your app
delegate.
Appendix B is a catalog of some useful Swift utility functions that I’ve
written.
Appendix C is an excursus on asynchronous code execution.

Chapter 22. Persistent Storage

Your app can save data into files that persist on the device when your app
isn’t running and even when the device is powered down. This chapter is
about how and where files are saved and retrieved. It also talks about some
of the additional ways in which files can be manipulated: for example, apps
can define document types in which they specialize and can hand such
documents to one another, and can share documents into the cloud (iCloud),
so that multiple copies of the same app can retrieve them on different
devices.
The chapter also explains how user preferences are maintained in
UserDefaults, and describes some specialized file formats and ways of
working with their data, such as XML, JSON, SQLite, Core Data, PDF, and
images.

The Sandbox
The device’s contents as a whole are not open to your app’s view. Instead, a
limited region of the device’s persistent storage is dedicated to your app
alone: this is your app’s sandbox. The idea is that every app, seeing only its
own sandbox, is hindered from spying or impinging on the files belonging
to other apps, and in turn is protected from having its own files spied or
impinged on by other apps. Your app’s sandbox is thus a safe place for you
to store your data. Your sandbox, and hence your data, will be deleted if the
user deletes your app; otherwise, it should reliably persist.

Standard Directories
The preferred way to refer to a file or directory is with a file URL. The other
possible way is with a file path, or pathname, which is a string; if necessary,
you can convert from a file URL to a file path as the URL’s path, or from a

pathname to a file URL with the URL initializer
init(fileURLWithPath:). But on the whole, you should try to stick with
URL objects.
The sandbox contains some standard directories, and there are built-in
methods for referring to them. You can obtain a URL for a standard
directory by starting with a FileManager instance, which will usually be Fi
leManager.default, and calling url(for:in:appropriateFor:creat
e:), like this:

do {

 let fm = FileManager.default

 let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

 // use docsurl here

} catch {

 // deal with error here

}

A question that will immediately occur to you is: where should I put files
and folders that I want to save now and read later? The Documents
directory can be a good place. But if your app supports file sharing
(discussed later in this chapter), the user can see and modify your app’s
Documents directory through iTunes, so you might not want to put things
there that the user isn’t supposed to see and change. A good alternative is
the Application Support directory. In iOS, each app gets a private
Application Support directory in its own sandbox, so you can safely put
files directly into it. This directory may not exist initially, but you can
obtain it and create it at the same time:

do {

 let fm = FileManager.default

 let suppurl = try fm.url(for:.applicationSupportDirectory,

 in: .userDomainMask, appropriateFor: nil, create: true)

 // use suppurl here

} catch {

 // deal with error here

}

Temporary files, whose loss you are willing to accept (because their
contents can be recreated), can be written into the Caches directory (.cache
sDirectory) or the Temporary directory (the FileManager’s temporaryDir
ectory). You can write temporary files into the Application Support folder,
but by default this means they can be backed up by the user through iTunes
or iCloud; to prevent that, exclude such a file from backup by way of its
attributes:

var myFileURL = // file URL

var rv = URLResourceValues()

rv.isExcludedFromBackup = true

try myFileURL.setResourceValues(rv)

Inspecting the Sandbox
The Simulator’s sandbox is a folder on your Mac that you can, with some
difficulty, inspect visually. In your user
~/Library/Developer/CoreSimulator/Devices folder, you’ll find
mysteriously named folders representing the different simulators. The
device.plist file inside each folder can help you identify which simulator a
folder represents; so can xcrun simctl list at the command line. Inside a
simulator’s data/Containers/Data/Application folder are some additional
mysteriously named folders representing apps on that simulator. I don’t
know how to identify the different apps, but one of them is the app you’re
interested in, and inside it is that app’s sandbox.
In Figure 22-1, I’ve drilled down from my user Library to an app that I’ve
run in the Simulator. My app’s Documents folder is visible, and I’ve opened
it to show a folder and a couple of files that I’ve created programmatically
(the code that created them will appear later in this chapter).

Figure 22-1. An app’s sandbox in the Simulator

You can also view the file structure of your app’s sandbox on a device.
When the device is connected, choose Window → Devices and Simulators,
and switch to the Devices tab. Select your device on the left; on the right,
under Installed Apps, select your app. Click the Gear icon and choose Show
Container to view your app’s sandbox hierarchy in a modal sheet
(Figure 22-2). Alternatively, choose Download Container to copy your
app’s sandbox to your computer; the sandbox arrives on your computer as
an .xcappdata package, and you can open it in the Finder with Show
Package Contents.

Figure 22-2. Summoning and displaying an app’s sandbox on a device

Basic File Operations
Let’s say we intend to create a folder MyFolder inside the Documents
directory. We already know how to use a FileManager instance to get a
URL pointing at the Documents directory. We can then generate a reference
to the MyFolder folder, from which we can ask our FileManager instance to
create the folder if it doesn’t exist already:

let foldername = "MyFolder"

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let myfolder = docsurl.appendingPathComponent(foldername)

try fm.createDirectory(at:myfolder, withIntermediateDirectories: true)

To learn what files and folders exist within a directory, you can ask for an
array of the directory’s contents:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let arr = try fm.contentsOfDirectory(at:docsurl,

 includingPropertiesForKeys: nil)

arr.forEach{ print($0.lastPathComponent) } // MyFolder

The array resulting from contentsOfDirectory lists full URLs of the
directory’s immediate contents; it is shallow. For a deep traversal of a
directory’s contents, you can enumerate it by means of a directory
enumerator (FileManager.DirectoryEnumerator); this is efficient with
regards to memory, because you are handed just one file reference at a time.
In this example, MyFolder is in the Documents directory, and I am looking
for two .txt files that I have saved into MyFolder (as explained in the next
section); I find them by doing a deep traversal of the Documents directory:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let dir = fm.enumerator(at:docsurl, includingPropertiesForKeys: nil)!

for case let f as URL in dir where f.pathExtension == "txt" {

 print(f.lastPathComponent) // file1.txt, file2.txt

}

A directory enumerator also permits you to decline to dive into a particular
subdirectory (skipDescendants), so you can make your traversal even
more efficient.
Consult the FileManager class documentation for more about what you can
do with files, and see also Apple’s File System Programming Guide.

DON’T STORE ABSOLUTE FILE URLS!
The absolute URLs of the sandbox directories, though they will persist during a single run of
your app, are volatile over the long term; they may be different during different runs of your
app. This means that you must not store your app’s absolute file URLs or path strings into any
form of persistent storage, as they will be incorrect the next time your app launches. (This is a
common beginner mistake.)

For example, suppose we are about to create a folder in the Documents directory. We have its
file URL as a variable myfolder:

let foldername = // whatever

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let myfolder = docsurl.appendingPathComponent(foldername)

After that code, do not store the URL myfolder into persistent storage! If you must store
information about files and folders, store their names (such as the value of foldername) or
relative URLs or partial paths, along with some knowledge of what sandbox directory they are
in, and reconstruct the URL every time you need it, by running the preceding code again.

Saving and Reading Files
Certain Cocoa classes endow their instances with the ability to write
themselves out as a file and read themselves back in again later. If you can
couch your data as an instance of one of these classes, persistent storage
and retrieval is straightforward. The classes are NSString, NSData,
NSArray, and NSDictionary. They provide methods write(to:) for
writing and init(contentsOf:) for reading:

NSString and NSData
NSString and NSData objects map directly between their own contents
and the contents of the file. Here, I’ll generate a text file in MyFolder
directly from a string:

try "howdy".write(to: myfolder.appendingPathComponent("file1.txt"),

 atomically: true, encoding:.utf8)

(You can also read and write an attributed string using a file in a
standard format, as I mentioned in Chapter 10.)

NSArray and NSDictionary
NSArray and NSDictionary files are actually property lists, and require
all the contents of the array or dictionary to be property list types. Those
types are NSString, NSData, NSDate, NSNumber, NSArray, and
NSDictionary. As long as you can reduce your data to an array or
dictionary containing only those types, you can write it out directly to a
file with write(to:). Here, I create an array of strings and write it out
as a property list file (the error-throwing version of write is new in iOS
11):

let arr = ["Manny", "Moe", "Jack"]

let temp = FileManager.default.temporaryDirectory

let f = temp.appendingPathComponent("pep.plist")

try (arr as NSArray).write(to: f)

So how do you save to a file an object of some other type? The strategy is
to serialize it to an NSData object (Swift Data) — which, as we already
know, can be saved directly to a file, or can be part of an array or dictionary
to be saved to a file, and so the problem is solved. Serializing means that we
describe the object in terms of the values of its properties. There are two
approaches to serializing an object as Data — the older Cocoa way
(NSCoding) and the new Swift way (Codable).

NSCoding
The Cocoa Foundation provides that if an object’s class adopts the
NSCoding protocol, you can convert it to an NSData and back again using
the NSCoder subclasses NSKeyedArchiver and NSKeyedUnarchiver.
Many built-in Cocoa classes adopt NSCoding — and you can make your
own class adopt NSCoding as well. This can become somewhat
complicated because an object can refer (through a property) to another
object, which may also adopt the NSCoding protocol, and thus you can end
up saving an entire graph of interconnected objects if you wish. However,

I’ll confine myself to illustrating a simple case (and you can read Apple’s
Archives and Serializations Programming Guide for more information).

Let’s say, then, that we have a simple Person class with a firstName
property and a lastName property. We’ll declare that it adopts the
NSCoding protocol:

class Person: NSObject, NSCoding {

 var firstName : String

 var lastName : String

 override var description : String {

 return self.firstName + " " + self.lastName

 }

 init(firstName:String, lastName:String) {

 self.firstName = firstName

 self.lastName = lastName

 super.init()

 }

 // ... does not yet conform to NSCoding ...

}

To make this class actually conform to NSCoding, we must implement enc
ode(with:) to archive the object, and init(coder:) to unarchive the
object.

In encode(with:), we must first call super if the superclass adopts
NSCoding — in this case, it doesn’t — and then call the encode method for
each property we want preserved:

func encode(with coder: NSCoder) {

 // do not call super in this case

 coder.encode(self.lastName, forKey: "last")

 coder.encode(self.firstName, forKey: "first")

}

In init(coder:), we call a decode method for each property stored earlier,
thus restoring the state of our object. We must also call super, using either
init(coder:) if the superclass adopts the NSCoding protocol or the
designated initializer if not:

required init(coder: NSCoder) {

 self.lastName = coder.decodeObject(forKey:"last") as! String

 self.firstName = coder.decodeObject(forKey:"first") as! String

 // do not call super init(coder:) in this case

 super.init()

}

We can test our code by creating, configuring, and saving a Person instance
as a file:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let moi = Person(firstName: "Matt", lastName: "Neuburg")

let moidata = NSKeyedArchiver.archivedData(withRootObject: moi)

let moifile = docsurl.appendingPathComponent("moi.txt")

try moidata.write(to: moifile, options: .atomic)

We can retrieve the saved Person at a later time:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let moifile = docsurl.appendingPathComponent("moi.txt")

let persondata = try Data(contentsOf: moifile)

let person = NSKeyedUnarchiver.unarchiveObject(with: persondata) as! Person

print(person) // "Matt Neuburg"

If the Data object is itself the entire content of the file, as here, then instead
of using archivedData(withRootObject:) and unarchiveObject(wit
h:), you can skip the intermediate Data object and use archiveRootObjec
t(_:toFile:) and unarchiveObject(withFile:).
Archiving a single Person may seem like overkill; why didn’t we just make
a text file consisting of the first and last names? But imagine that a Person
has a lot more properties, or that we have an array of hundreds of Persons,
or an array of hundreds of dictionaries where one value in each dictionary is
a Person; now the power of an archivable Person is evident.
Even though Person now adopts the NSCoding protocol, an NSArray
containing a Person object still cannot be written to a file using NSArray’s w

rite(to:), because Person is still not a property list type. But the array can
be archived with NSKeyedArchiver and the resulting Data object can be
written to a file with write(to:). That’s because NSArray conforms to
NSCoding and, if its elements are Person objects, all its elements conform
to NSCoding as well.

Codable
New in Swift 4, an object can be serialized (archived) as long as it conforms
to the Encodable protocol, and can be restored from serial form
(unarchived) as long as it conforms to the Decodable protocol. Most
commonly, an object will conform to both, and this will be expressed by
having it adopt the Codable protocol. There are three modes of
serialization:

Property list

Use PropertyListEncoder encode(_:) to encode and
PropertyListDecoder decode(_:from:) to decode.

JSON

Use JSONEncoder encode(_:) to encode and JSONDecoder decode
(_:from:) to decode.

NSCoder

Use NSKeyedArchiver encodeEncodable(_:forKey:) to encode and
NSKeyedUnarchiver decodeDecodable(_:forKey:) to decode.

You’ll probably prefer to use Swift Codable rather than Cocoa NSCoding
wherever possible. It has three broad advantages:

Not only a class instance but also a struct instance can be encoded; you
can even encode an enum instance, provided the enum is
RawRepresentable (that is, it has a raw value). Most built-in Swift types
are Codable right out of the box.
The result of decoding is strongly typed (as opposed to NSCoding which
yields an Any that has to be cast down).

In the vast majority of cases, your object type will be able to adopt
Codable without any further code. There are encode(to:) and init(fr
om:) methods, similar to NSCoding encode(with:) and
init(coder:), but you usually won’t need to implement them because
the default methods, inherited through a protocol extension, will be
sufficient.

To illustrate, I’ll rewrite my Person class to adopt Codable instead of
NSCoding:

class Person: NSObject, Codable {

 var firstName : String

 var lastName : String

 override var description : String {

 return self.firstName + " " + self.lastName

 }

 init(firstName:String, lastName:String) {

 self.firstName = firstName

 self.lastName = lastName

 super.init()

 }

}

That’s all! Person conforms to Codable with no further effort on our part.
The primary reason is that our properties are Strings, and String is itself
Codable. To save a Person to a file, we just have to pick an encoding
format. I recommend using a property list unless there is some reason not
to; it is simplest, and is closest to what NSKeyedArchiver does under the
hood:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let moi = Person(firstName: "Matt", lastName: "Neuburg")

let moidata = try PropertyListEncoder().encode(moi)

let moifile = docsurl.appendingPathComponent("moi.txt")

try moidata.write(to: moifile, options: .atomic)

And here’s how to retrieve our saved Person later:

let fm = FileManager.default

let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

let moifile = docsurl.appendingPathComponent("moi.txt")

let persondata = try Data(contentsOf: moifile)

let person = try PropertyListDecoder().decode(Person.self, from: persondata)

print(person) // "Matt Neuburg"

To save an array of Codable Person objects, do exactly the same thing:
Array conforms to Codable, so use PropertyListEncoder to encode the array
directly into a Data object and call write(to:options:), precisely as we
did for a single Person object. To retrieve the array, read the data from the
file as a Data object and use a PropertyListDecoder to call decode([Perso
n].self, from:data).
When your goal is to serialize your own object type to a file, there usually
won’t be any more to it than that. Your Codable implementation may be
more elaborate when the format of the encoded data is out of your hands,
such as when you are communicating with a server through a JSON API
dictated by the server. I’ll illustrate later in this chapter.
The existence of Codable does not mean that you’ll never need to use
NSCoding. Cocoa is written in Objective-C; its encodable object types
adopt NSCoding, not Codable. And the vast majority of your objects will be
Cocoa objects. For example, if you want to turn a UIColor into a Data
object, you’ll use an NSKeyedArchiver, not a PropertyListEncoder;
UIColor adopts NSCoding, not Codable.
You can, however, combine Swift Codable with Cocoa NSCoding, thanks
to the NSCoder subclass methods encodeEncodable(_:forKey:) and dec
odeDecodable(_:forKey:). For example, suppose you have a view
controller that is to participate in view controller state saving and
restoration (Chapter 6). You implement encodeRestorableState(with:)
to store your view controller’s property values in the coder:

class Pep: UIViewController {

 let boy : String

 // ...

 override func encodeRestorableState(with coder: NSCoder) {

 super.encodeRestorableState(with:coder)

 coder.encode(self.boy, forKey:"boy")

 }

}

That example works because self.boy is a String, String is bridged to
NSString, and NSString adopts NSCoding. But now suppose that our view
controller class, Pep, also has a property prop whose type is a struct
MyStruct. In the past you couldn’t have archived a MyStruct directly into
the coder, but with Swift 4 you can, because MyStruct can adopt Codable. c
oder is typed as an NSCoder, but in reality it is an NSKeyedArchiver; cast
it down and call encodeEncodable(_:forKey:), like this:

class Pep: UIViewController {

 let boy : String

 let prop : MyStruct // adopts Codable

 // ...

 override func encodeRestorableState(with coder: NSCoder) {

 super.encodeRestorableState(with:coder)

 coder.encode(self.boy, forKey: "boy")

 let arch = coder as! NSKeyedArchiver

 try! arch.encodeEncodable(self.prop, forKey: "prop")

 }

}

The complementary implementation of decodeRestorableState(with:)
is parallel: cast the coder down to an NSKeyedUnarchiver and call decodeD
ecodable(_:forKey:) to extract the encoded struct.

User Defaults
User defaults (UserDefaults) act as persistent storage of the user’s
preferences. They are little more, really, than a special case of an
NSDictionary property list file. You talk to the UserDefaults standard
object much as if it were a dictionary; it has keys and values.
Because user defaults is actually a property list file, the only legal values
that can be stored in it are property list values. Therefore, everything I said

in the preceding section about saving objects applies. If an object type is not
a property list type, you’ll have to archive it to a Data object if you want to
store it in user defaults. If the object type is a class that belongs to Cocoa
and adopts NSCoding, you’ll archive it through an NSKeyedArchiver. If the
object type belongs to you, you might prefer to make it adopt Codable and
archive it through a PropertyListEncoder.
The user defaults dictionary is saved for you automatically as a property list
file — but you don’t know where or when, and you don’t care. You simply
set or retrieve values from the dictionary by way of their keys, secure in the
knowledge that the file is being read into memory or saved as a file as
needed. Your chief concern is to make sure that you’ve written everything
needful into user defaults before your app terminates; this will usually mean
when the app delegate receives applicationDidEnterBackground(_:) at
the latest (see Appendix A). If you’re worried that your app might crash,
you can tell the standard object to synchronize as a way of forcing it to
save right now, but this is rarely necessary.
To provide the value for a key before the user has had a chance to do so —
the default default, as it were — use register(defaults:). What you’re
supplying here is a transient dictionary whose key–value pairs will be held
in memory but not saved; a pair will be used only if there is no pair with the
same key already stored in the user defaults dictionary. For example:

UserDefaults.standard.register(defaults: [

 Default.HazyStripy : HazyStripy.hazy.rawValue,

 Default.Color1 : NSKeyedArchiver.archivedData(

 withRootObject: UIColor.blue),

 Default.Color2 : NSKeyedArchiver.archivedData(

 withRootObject: UIColor.red),

 Default.Color3 : NSKeyedArchiver.archivedData(

 withRootObject: UIColor.green),

 Default.CardMatrixRows : 4,

 Default.CardMatrixColumns : 3,

])

The idea is that we call register(defaults:) extremely early as the app
launches. Either the app has run at some time previously and the user has

set these preferences, in which case this call has no effect and does no harm,
or not, in which case we now have initial values for these preferences with
which to get started. In the game app from which that code comes, we start
out with a 4×3 game layout, but the user can change this at any time.
You will probably want to offer your user a way to interact explicitly with
the defaults. One possibility is that your app provides some kind of
interface. For example, the game app from which the previous code comes
has a tab bar interface; in the second tab, the user explicitly sets the very
preferences whose default values are configured in that code (Figure 22-3).

Figure 22-3. An app’s preferences interface

Alternatively, you can provide a settings bundle, consisting mostly of one or
more property list files describing an interface and the corresponding user
default keys and their initial values; the Settings app is then responsible for
translating your instructions into an actual interface, and for presenting it to
the user. Writing a settings bundle is described in Apple’s Preferences and
Settings Programming Guide.

Using a settings bundle means that the user has to leave your app to access
preferences, and you don’t get the kind of control over the interface that you
have within your own app. Also, the user can set your preferences while
your app is backgrounded or not running; you’ll need to register for UserDe
faults.didChangeNotification in order to hear about this. Still, a
settings bundle has some clear advantages. Keeping the preferences
interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the
preferences interface with the user default values. And it may be
appropriate for the user to be able to set at least certain preferences for your
app when your app isn’t running. Moreover, you can transport your user
directly from your app to your app’s preferences in the Settings app, and a
Back button then appears in the status bar, making it easy for the user to
return from Settings to your app:

let url = URL(string:UIApplicationOpenSettingsURLString)!

UIApplication.shared.open(url)

It is common practice to misuse UserDefaults ever so slightly for various
purposes. For example, every method in your app can access the UserDefau
lts.standard object, so it often serves as a global “drop” where one
instance can deposit a piece of information for another instance to pick up
later, when those two instances might not have ready communication with
one another or might not even exist simultaneously.
UserDefaults is also a lightweight alternative to the built-in view
controller–based state saving and restoration mechanism discussed in
Chapter 6. My Zotz! app (Figure 22-3) is a case in point. In addition to
using the user defaults to store the user’s explicit preferences, it also
misuses them to store state information: it records the state of the game
board and the card deck into user defaults every time these change, so that
if the app is terminated and then launched again later, we can restore the
game as it was when the user left off. One might argue that the contents of
the card deck are not a user preference, so I am misusing the user defaults

to store data. However, while purists may grumble, it’s a very small amount
of data and I don’t think the distinction is terribly significant in this case.
Yet another use of UserDefaults is as a way to communicate data between
your app and an extension provided by your app. For example, let’s say
you’ve written a today extension (Chapter 13) whose interface details
depend upon some data belonging to your app. After configuring your
extension and your app to constitute an app group, both the extension and
the app can access the UserDefaults associated with the app group (call ini
t(suiteName:) instead of standard). For more information, see the
“Handling Common Scenarios” chapter of Apple’s App Extension
Programming Guide.

Simple Sharing and Previewing of Files
iOS provides some simple and safe passageways by which a file can pass in
and out of your sandbox. File sharing lets the user manipulate the contents
of your app’s Documents directory. UIDocumentInteractionController
allows the user to tell another app to hand your app a copy of a document,
or to tell your app to hand a copy of a document to another app.
UIDocumentInteractionController also permits previewing a document,
provided it is compatible with Quick Look.

File Sharing
File sharing means that an app’s Documents directory becomes accessible
to the user through iTunes (Figure 22-4). The user can add files to your
app’s Documents directory, and can save files and folders from your app’s
Documents directory to the computer, as well as renaming and deleting files
and folders. This could be appropriate, for example, if your app works with
common types of file that the user might obtain elsewhere, such as PDFs or
JPEGs.

Figure 22-4. The iTunes file sharing interface

To support file sharing, set the Info.plist key “Application supports iTunes
file sharing” (UIFileSharingEnabled) to YES.
Once your entire Documents directory is exposed to the user this way, you
are unlikely to use the Documents directory to store private files. As I
mentioned earlier, I like to use the Application Support directory instead.
Your app doesn’t get any automatic notification when the user has altered
the contents of the Documents directory. Noticing that the situation has
changed and responding appropriately is entirely up to you; Apple’s
DocInteraction sample code demonstrates one approach using the kernel-
level kqueue mechanism.

Document Types and Receiving a Document
Your app can declare itself willing to open documents of a certain type. In
this way, if another app obtains a document of this type, it can propose to
hand a copy of the document over to your app. For example, the user might
download the document with Mobile Safari, or receive it in a mail message
with the Mail app; now we need a way to get it from Safari or Mail to you.
To let the system know that your app is a candidate for receiving a certain
kind of document, you will configure the “Document types” (CFBundleDoc
umentTypes) key in your Info.plist. This is an array, where each entry will
be a dictionary specifying a document type by using keys such as
“Document Content Type UTIs” (LSItemContentTypes), “Document Type
Name” (CFBundleTypeName), CFBundleTypeIconFiles, and LSHandlerRa
nk.

The simplest method for configuring the Info.plist is through the interface
available in the Info tab when you edit the target. For example, suppose I
want to declare that my app opens PDFs and text files. In my target’s Info
tab in Xcode, I would edit the Document Types section to look like
Figure 22-5.

Figure 22-5. Creating a document type

Now suppose the user receives a PDF in an email message. The Mail app
can display this PDF, but the user can also bring up an activity view
offering, among other things, to copy the file to some other app. The
interface will resemble Figure 22-6; various apps that can deal with a PDF
are listed here, and my app (MyCoolApp) is among them.

Figure 22-6. The Mail app offers to hand off a PDF

So far, so good. But what if the user actually taps the button that sends the
PDF over to my app? Then my app delegate’s application(_:open:opti
ons:) is called. When that happens, my app has been brought to the front,
either by launching it from scratch or by reviving it from background
suspension; its job is now to handle the opening of the document whose
URL has arrived as the second parameter. The system has already copied
the document into an Inbox folder which it has created in my Documents
directory for exactly this purpose.

WARNING
If your app implements file sharing, the user can see the Inbox folder using iTunes; you may wish
to delete the Inbox folder, therefore, as soon as you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an
outlet to a web view where we will display any PDFs that arrive in this
fashion. So my app delegate contains this code:

func application(_ app: UIApplication, open url: URL,

 options: [UIApplicationOpenURLOptionsKey : Any]) -> Bool {

 let vc = self.window!.rootViewController as! ViewController

 vc.displayDoc(url: url)

 return true

}

And my view controller contains this code:

func displayDoc (url:URL) {

 let req = URLRequest(url: url)

 self.wv.loadRequest(req)

}

In real life, things might be more complicated. Our implementation of appl
ication(_:open:options:) might check to see whether this really is a
PDF, and return false if it isn’t. Also, our app might be in the middle of
something else, possibly displaying a completely different view controller’s
view; realizing that application(_:open:options:) can arrive at any
time, we may have to be prepared to drop whatever we were doing and
display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, applicatio
n(_:didFinishLaunchingWithOptions:) will be sent to our app delegate
as usual. The options: dictionary will contain the UIApplicationLaunchO
ptionsURLKey, and we can take into account, if we like, the fact that we are
being launched specifically to open a document. If we return true as usual,
application(_:open:options:) will arrive in good order after our
interface has been set up; but if we have dealt completely with the URL in a
pplication(_:didFinishLaunchingWithOptions:), we can return fals
e to prevent application(_:open:options:) from being called.
The example I’ve been discussing assumes that the UTI for the document
type is standard and well-known. It is also possible that your app will
operate on a new document type, that is, a type of document that the app
itself defines. In that case, you’ll also want to add this UTI to your app’s list
of Exported UTIs in the Info.plist. I’ll give an example later in this chapter.

Handing Over a Document
The converse of the situation discussed in the previous section is this: your
app has somehow acquired a document and wants to let the user hand over
a copy of it to some other app to deal with it. This is done through the
UIDocumentInteractionController class. This class operates
asynchronously, so retaining an instance of it is up to you; typically, you’ll
store it in a property, and there is no reason not to initialize this property
directly:

let dic = UIDocumentInteractionController()

For example, assuming we have a file URL url pointing to a stored
document file, presenting the interface for handing the document over to
some other application could be as simple as this (sender is a button that
the user has just tapped):

self.dic.url = url

let v = sender as! UIView

self.dic.presentOpenInMenu(from:v.bounds, in: v, animated: true)

Figure 22-7. The document Open In activity view

The interface is an activity view (Figure 22-7; see Chapter 13). There are
actually two activity views available, each of which is summoned by either
of two methods (the first method of each pair expects a CGRect and a
UIView, while the second expects a UIBarButtonItem):

presentOpenInMenu(from:in:animated:)

presentOpenInMenu(from:animated:)

Presents an activity view listing apps to which the document can be
copied.

presentOptionsMenu(from:in:animated:)

presentOptionsMenu(from:animated:)

Presents an activity view listing apps to which the document can be
copied, along with other possible actions, such as Message, Mail, Copy,
and Print.

Previewing a Document
A UIDocumentInteractionController can be used for an entirely different
purpose: it can present a preview of the document, if the document is of a
type for which preview is enabled, by calling presentPreview(animate
d:). You must give the UIDocumentInteractionController a delegate
(UIDocumentInteractionControllerDelegate), and the delegate must
implement documentInteractionControllerViewControllerForPrevie
w(_:), returning an existing view controller that will contain the preview’s
view controller. So, here we ask for the preview:

self.dic.url = url

self.dic.delegate = self

self.dic.presentPreview(animated:true)

In the delegate, we supply the view controller; it happens that, in my code,
this delegate is a view controller, so it simply returns self:

func documentInteractionControllerViewControllerForPreview(

 _ controller: UIDocumentInteractionController) -> UIViewController {

 return self

}

If the view controller returned were a UINavigationController, the
preview’s view controller would be pushed onto it; in this case it isn’t, so
the preview’s view controller is a presented view controller with a Done
button. The preview interface also contains a Share button that lets the user
summon the Options activity view (Figure 22-8).

Figure 22-8. The preview interface

TIP
There is another way for the user to reach this interface. If you call presentOptionsMenu on your
UIDocumentInteractionController, and if its delegate implements documentInteractionControl
lerViewControllerForPreview(_:), then the activity view will contain a Quick Look icon that
the user can tap to summon the preview interface.

Additional delegate methods allow you to track what’s happening in the
interface presented by the UIDocumentInteractionController. Probably most
important are those that inform you that key stages of the interaction are
ending:

documentInteractionControllerDidDismissOptionsMenu(_:)

documentInteractionControllerDidDismissOpenInMenu(_:)

documentInteractionControllerDidEndPreview(_:)

documentInteractionController(_:didEndSendingToApplicatio

n:)

Quick Look Previews
Previews are actually provided through the Quick Look framework. You
can skip the UIDocumentInteractionController and present the preview
yourself through a QLPreviewController; you’ll need to import QuickLoo
k. It’s a view controller, so to display the preview you show it as a
presented view controller or push it onto a navigation controller’s stack, just
as UIDocumentInteractionController would have done.
A nice feature of QLPreviewController is that you can give it more than one
document to preview; the user can move between these, within the preview,
by paging sideways or using a table of contents summoned by a button at
the bottom of the interface. Apart from this, the interface looks like the
interface presented by the UIDocumentInteractionController.
In this example, I may have somewhere in my Documents directory one or
more PDF or text documents. I acquire a list of their URLs and present a
preview for them (self.exts has been initialized to a set consisting of ["p
df", "txt"]):

self.docs = [URL]()

do {

 let fm = FileManager.default

 let docsurl = try fm.url(for:.documentDirectory,

 in: .userDomainMask, appropriateFor: nil, create: false)

 let dir = fm.enumerator(at: docsurl, includingPropertiesForKeys: nil)!

 for case let f as URL in dir {

 if self.exts.contains(f.pathExtension) {

 if QLPreviewController.canPreview(f as QLPreviewItem) {

 self.docs!.append(f)

 }

 }

 }

 guard self.docs!.count > 0 else { return }

 let preview = QLPreviewController()

 preview.dataSource = self

 preview.currentPreviewItemIndex = 0

 self.present(preview, animated: true)

} catch {

 print(error)

}

You’ll notice that I haven’t told the QLPreviewController what documents
to preview. That is the job of QLPreviewController’s data source. In my
code, I (self) am also the data source. I simply fetch the requested
information from the list of URLs, which I previously saved into self.doc
s:

func numberOfPreviewItems(in controller: QLPreviewController) -> Int {

 return self.docs!.count

}

func previewController(_ controller: QLPreviewController,

 previewItemAt index: Int) -> QLPreviewItem {

 return self.docs![index] as QLPreviewItem

}

The second data source method requires us to return an object that adopts
the QLPreviewItem protocol. By a wildly improbable coincidence, URL
does adopt this protocol, so the example works.

TIP
New in iOS 11, you can supply your own Quick Look preview for document types that you own.
I’ll discuss that later in this chapter.

Document Architecture
A document is a file of a specific type. If your app’s basic operation
depends on opening, saving, and maintaining documents of a type particular
to itself, you may want to take advantage of the document architecture. At
its simplest, this architecture revolves around the UIDocument class. Think

of a UIDocument instance as managing the relationship between your app’s
internal model data and a document file storing that data.
Interacting with a stored document file involves a number of pesky issues.
The good news is that UIDocument handles all of them seamlessly:

Reading or writing your data might take some time, so UIDocument
does those things on a background thread.
A document owned by your app may be exposed to reading and writing
by other apps, so your app must read and write to that document
coherently without interference from other apps. The solution is to use
an NSFileCoordinator. UIDocument does that for you.
Your document data needs to be synchronized to the document file.
UIDocument provides autosaving behavior, so that your data is written
out automatically whenever it changes.
Information about a document can become stale while the document is
open. To prevent this, the NSFilePresenter protocol notifies editors that a
document has changed. UIDocument participates in this system.
With iCloud, your app’s documents on one of the user’s devices can
automatically be mirrored onto another of the user’s devices.
UIDocument is the simplest gateway for allowing your documents to
participate in iCloud.

Getting started with UIDocument is not difficult. You’ll declare a
UIDocument subclass, and you’ll override two methods:

load(fromContents:ofType:)

Called when it’s time to open a document from its file. You are expected
to convert the contents value into a model object that your app can
use, and to store that model object, probably in an instance property.

contents(forType:)

Called when it’s time to save a document to its file. You are expected to
convert the app’s model object into a Data instance (or, if your
document is a package, a FileWrapper) and return it.

To instantiate a UIDocument, call its designated initializer, init(fileUR
L:). This sets the UIDocument’s fileURL property, and associates the
UIDocument with the file at this URL; typically, this association will
remain constant for the rest of the document’s lifetime. You will then
probably store the UIDocument instance in an instance property, and use it
to create (if necessary), open, save, and close the document file:

Make a new document

Having initialized the UIDocument with a fileURL: pointing to a
nonexistent file, send it save(to:for:completionHandler:); the first
argument will be the UIDocument’s own fileURL, and the second
argument (a UIDocumentSaveOperation) will be .forCreating.

This, in turn, causes contents(forType:) to be called, and the
contents of an empty document will saved out to a file. Your
UIDocument subclass will need to supply some default value
representing the model data when there is no data.

Open an existing document

Send the UIDocument instance open(completionHandler:).

This, in turn, causes load(fromContents:ofType:) to be called.

Save an existing document
There are two approaches to saving an existing document:

Autosave

Usually, you’ll simply mark the document as “dirty” by calling upda
teChangeCount(_:). From time to time, the UIDocument will
notice this situation and will save the document to its file for you,
calling contents(forType:) as it does so.

Manual save
On certain occasions, waiting for autosave won’t be appropriate.
We’ve already seen one such occasion — when the document file
needs to be created on the spot. Another case is that the app is going

into the background; we will want to preserve our document there
and then, in case the app is terminated. To force the document to be
saved right now, call save(to:for:completionHandler:); the
second argument will be .forOverwriting.
Alternatively, if you know you’re finished with the document
(perhaps the interface displaying the document is about to be torn
down), you can call close(completionHandler:).

The open, close, and save methods take a completionHandler: function.
This is UIDocument’s solution to the fact that reading and saving may take
time. The file operations themselves take place on a background thread;
your completion function is then called on the main thread.

A Basic Document Example
We now know enough for an example! I’ll reuse my Person class from
earlier in this chapter. Imagine a document effectively consisting of
multiple Person instances; I’ll call each such document a people group. Our
app, People Groups, will list all people group documents in the user’s
Documents folder; the user can then select any people group document and
our app will open that document and display its contents, allowing the user
to create a new Person and to edit any existing Person’s firstName or last
Name (Figure 22-9).

Figure 22-9. The People Groups interface

My first step is to edit my project and use the Info tab to define a custom
UTI in my app’s Info.plist, associating a file type com.neuburg.pplgrp
with a file extension "pplgrp"; I also define a document type
corresponding to this UTI (Figure 22-10).

Figure 22-10. Defining a custom UTI

Now let’s write our UIDocument subclass, which I’ll call PeopleDocument.
A document consists of multiple Persons, so a natural model
implementation is a Person array. PeopleDocument therefore has a public p
eople property, initialized to an empty Person array; this will not only hold
the model data when we have it, but will also give us something to save into
a new empty document. Since Person implements Codable, a Person array
can be archived directly into a Data object, and our implementation of the
loading and saving methods is straightforward:

class PeopleDocument: UIDocument {

 var people = [Person]()

 override func load(fromContents contents: Any,

 ofType typeName: String?) throws {

 if let contents = contents as? Data {

 if let arr = try? PropertyListDecoder().decode(

 [Person].self, from: contents) {

 self.people = arr

 return

 }

 }

 // if we get here, there was some kind of problem

 throw NSError(domain: "NoDataDomain", code: -1, userInfo: nil)

 }

 override func contents(forType typeName: String) throws -> Any {

 if let data = try? PropertyListEncoder().encode(self.people) {

 return data

 }

 // if we get here, there was some kind of problem

 throw NSError(domain: "NoDataDomain", code: -2, userInfo: nil)

 }

}

The first view controller, GroupLister, is a master table view (its view
appears on the left in Figure 22-9). It merely looks in the Documents
directory for people group documents and lists them by name; it also
provides an interface for letting the user ask to create a new people group.
None of that is challenging, so I won’t discuss it further.
The second view controller, PeopleLister, is the detail view; it is also a table
view (its view appears on the right in Figure 22-9). It displays the first and
last names of the people in the currently open people group document. This
is the only place where we actually work with PeopleDocument, so let’s
focus our attention on that.

PeopleLister’s designated initializer demands a fileURL: parameter
pointing to a people group document, and uses it to set the self.fileURL
property. From this, we instantiate a PeopleDocument, keeping a reference
to it in the self.doc property. PeopleLister’s own people property, acting
as the data model for its table view, is nothing but a pointer to this
PeopleDocument’s people property.

As PeopleLister comes into existence, the document file pointed to by sel
f.fileURL need not yet exist. If it doesn’t, we create it; if it does, we open

it. In both cases, our people data are now ready for display, so the
completion function reloads the table view:

let fileURL : URL

var doc : PeopleDocument!

var people : [Person] { // point to the document's model object

 get { return self.doc.people }

 set { self.doc.people = newValue }

}

init(fileURL:URL) {

 self.fileURL = fileURL

 super.init(nibName: "PeopleLister", bundle: nil)

}

required init(coder: NSCoder) {

 fatalError("NSCoding not supported")

}

override func viewDidLoad() {

 super.viewDidLoad()

 self.title = (self.fileURL.lastPathComponent as NSString)

 .deletingPathExtension

 // ... interface configuration goes here ...

 let fm = FileManager.default

 self.doc = PeopleDocument(fileURL:self.fileURL)

 func listPeople(_ success:Bool) {

 if success {

 self.tableView.reloadData()

 }

 }

 if let _ = try? self.fileURL.checkResourceIsReachable() {

 self.doc.open(completionHandler: listPeople)

 } else {

 self.doc.save(to:self.doc.fileURL,

 for: .forCreating, completionHandler: listPeople)

 }

}

Displaying people, creating a new person, and allowing the user to edit a
person’s first and last names, are all trivial uses of a table view (Chapter 8).
Let’s proceed to the only other aspect of PeopleLister that involves working
with PeopleDocument, namely saving.
When the user performs a significant editing maneuver, such as creating or
deleting a person or editing a person’s first or last name, PeopleLister tells

its PeopleDocument that the document is dirty, and allows autosaving to
take it from there:

self.doc.updateChangeCount(.done)

When the app is about to go into the background, or when PeopleLister’s
own view is disappearing, PeopleLister forces PeopleDocument to save
immediately:

func forceSave(_: Any?) {

 self.tableView.endEditing(true)

 self.doc.save(to:self.doc.fileURL, for:.forOverwriting)

}

That’s all it takes! Adding UIDocument support to your app is easy, because
UIDocument is merely acting as a supplier and preserver of your app’s data
model object. The UIDocument class documentation may give the
impression that this is a large and complex class, but that’s chiefly because
it is so heavily customizable both at high and low levels; for the most part,
you won’t need any such customization. You might work with your
UIDocument’s undo manager to give it a more sophisticated understanding
of what constitutes a significant change in your data; I’ll talk about undo
managers in Chapter 25. For further details, see Apple’s Document-based
App Programming Guide for iOS.
New in iOS 11, if your app supports iTunes file sharing, and if the Info.plist
key “Supports opening documents in place” (LSSupportsOpeningDocumen
tsInPlace) is also set to YES, files in your app’s Documents directory will
be visible in the Files app, and the user can tap one to call your app
delegate’s application(_:open:options:), as described earlier in this
chapter. That’s safe only if your document access uses NSFilePresenter and
NSFileCoordinator; but if you’re using UIDocument, it does.

iCloud

Once your app is operating through UIDocument, basic iCloud
compatibility effectively falls right into your lap. You have just two steps to
perform:

Obtain iCloud entitlements
Edit the target and, in the Capabilities tab, set the iCloud switch to On.
This causes a transaction to take place between Xcode and the Member
Center; automatically, your app gets a ubiquity container, and an
appropriately configured entitlements file is added to the project
(Figure 22-11).

Obtain an iCloud-compatible directory

Early in your app’s lifetime, call FileManager’s url(forUbiquityCont
ainerIdentifier:) (typically passing nil as the argument), on a
background thread, to obtain the URL of the cloud-shared directory.
Any documents your app puts here by way of your UIDocument
subclass will be automatically shared into the cloud.

Figure 22-11. Turning on iCloud support

Thus, having thrown the switch in the Capabilities tab, I can make my
People Groups example app iCloud-compatible with just two code changes.
In the app delegate, as my app launches, I step out to a background thread
(Chapter 24), obtain the cloud-shared directory’s URL, and then step back
to the main thread and retain the URL through a property, self.ubiq:

DispatchQueue.global(qos:.default).async {

 let fm = FileManager.default

 let ubiq = fm.url(forUbiquityContainerIdentifier:nil)

 DispatchQueue.main.async {

 self.ubiq = ubiq

 }

}

When I determine where to seek and save people groups, I specify ubiq —
unless it is nil, implying that iCloud is not enabled, in which case I specify
the user’s Documents folder:

var docsurl : URL {

 let del = UIApplication.shared.delegate

 if let ubiq = (del as! AppDelegate).ubiq {

 return ubiq

 } else {

 do {

 let fm = FileManager.default

 return try fm.url(for:.documentDirectory, in: .userDomainMask,

 appropriateFor: nil, create: false)

 } catch {

 print(error)

 }

 }

 return NSURL() as URL // shouldn't happen

}

To test, iCloud Drive must be turned on under iCloud in my device’s
Settings. I run the app and create a people group with some people in it. I
then switch to a different device and run the app there, and tap the Refresh
button. This is a very crude implementation, purely for testing purposes; it
looks through the docsurl directory, first for cloud items to download, and
then for pplgrp files:

do {

 let fm = FileManager.default

 self.files = try fm.contentsOfDirectory(at: self.docsurl,

 includingPropertiesForKeys: nil).filter {

 if fm.isUbiquitousItem(at:$0) {

 try fm.startDownloadingUbiquitousItem(at:$0)

 }

 return $0.pathExtension == "pplgrp"

 }

 self.tableView.reloadData()

} catch {

 print(error)

}

Presto, the app on this device now displays my people group documents
created on a different device! It’s quite thrilling.
My Refresh button approach, although it works (possibly after a couple of
tries), is decidedly crude. My UIDocument works with iCloud, but my app
is not a good iCloud citizen. The truth is that I should not be using
FileManager like this; instead, I should be running an NSMetadataQuery.
The usual strategy is:

1. Instantiate NSMetadataQuery and retain the instance.
2. Configure the search. This means giving the metadata query a search

scope of NSMetadataQueryUbiquitousDocumentsScope, and
supplying a serial queue (OperationQueue, see Chapter 24) for it to
run on.

3. Register for notifications such as .NSMetadataQueryDidFinishGath
ering and .NSMetadataQueryDidUpdate.

4. Start the search by calling start. The NSMetadataQuery instance
then remains in place, with the search continuing to run more or less
constantly, for the entire lifetime of the app.

5. When a notification arrives, check the NSMetadataQuery’s results.
These will be NSMetadataItem objects, whose value(forAttribut
e:NSMetadataItemURLKey) is the document file URL.

Similarly, in my earlier code I called checkResourceIsReachable, but for
a cloud item I should be calling checkPromisedItemIsReachable instead.
Further iCloud details are outside the scope of this discussion; see Apple’s
iCloud Design Guide. Getting started is easy; making your app a good
iCloud citizen, capable of dealing with the complexities that iCloud may
entail, is not. What if the currently open document changes because
someone edited it on another device? What if that change is in conflict with

changes I’ve made on this device? What if the availability of iCloud
changes while the app is open — for example, the user switches it on, or
switches it off? Apple’s sample code has a bad habit of skirting these knotty
issues.

Document Browser
An iOS device has no universal file browser interface parallel to the Mac
desktop’s Finder. So if your app maintains document files, it must also
implement the nitty-gritty details of file management, allowing the user not
only to see a list of the documents but also to delete them, rename them,
move them, and so forth. This is a heavy responsibility, and matters are not
helped by the fact that every app must provide its own independent
implementation of all this functionality.
New in iOS 11, the UIDocumentBrowserViewController class lifts that
responsibility from your app by providing a standard interface where the
user can manage your app’s documents — plus the documents of every
other app that maintains its documents in a compatible way. In effect, it puts
the Files app interface inside your app, along with all its file management
facilities, as well as exposing your app’s documents to the Files app itself.
If we incorporate UIDocumentBrowserViewController into our People
Groups app, we can eliminate the GroupLister view controller class that has
been acting as a master view controller to list our documents (left side in
Figure 22-9). We can also ignore everything I said in the preceding section
about how to make our app participate in iCloud; with
UIDocumentBrowserViewController, our app participates in iCloud
automatically, with no need for any code or entitlements.
Let’s try it. The easiest way to get started is from the template provided by
Apple; choose File → New → Project and choose iOS → Application →
Document Based App. The template provides three important features:

Info.plist configuration
The template gives us a start on the configuration of our Info.plist. In
particular, it includes the “Supports Document Browser” key (UISuppor

tsDocumentBrowser) with its value set to YES.

Classes and storyboard
The template provides a basic set of classes: in addition to a
UIDocumentBrowserViewController subclass
(DocumentBrowserViewController), it gives us a UIDocument subclass
called Document, along with a DocumentViewController intended for
display of documents of that class, parallel to our PeopleDocument and
PeopleLister, and puts instances of the two view controllers into the
storyboard.

Structure
The template makes the UIDocumentBrowserViewController instance
our app’s root view controller. This is absolutely essential. The entire
remainder of our app’s interface, such as when the user is viewing the
contents of a document, must be displayed through a fullscreen
presented view controller.

The first step is to complete the configuration of the Info.plist. As before,
we must declare and export our document type; I’ll give it a file type com.n
euburg.pplgrp2 with a file extension "pplgrp2", to distinguish it from the
document type owned by the previous example app. Apple says that our
UTI must also conform to public.data and public.content, and that our
document type must declare a role of Editor and a rank of Owner
(Figure 22-12).

Figure 22-12. Configuring a document browser app’s document type

Now we customize DocumentBrowserViewController. The template gets us
started, setting this class as its own delegate
(UIDocumentBrowserViewControllerDelegate) and allowing document
creation and single selection:

override func viewDidLoad() {

 super.viewDidLoad()

 self.delegate = self

 self.allowsDocumentCreation = true

 self.allowsPickingMultipleItems = false

}

The template also implements delegate methods for when the user selects
an existing document in our app’s ubiquity container or imports a document
into our app’s ubiquity container from elsewhere; both call a custom
method, presentDocument(at:), for which the template provides a stub
implementation:

func documentBrowser(_ controller: UIDocumentBrowserViewController,

 didPickDocumentURLs documentURLs: [URL]) {

 guard let sourceURL = documentURLs.first else { return }

 self.presentDocument(at: sourceURL)

}

func documentBrowser(_ controller: UIDocumentBrowserViewController,

 didImportDocumentAt sourceURL: URL,

 toDestinationURL destinationURL: URL) {

 self.presentDocument(at: destinationURL)

}

Providing a real implementation of presentDocument(at:) is up to us.
I’ve replaced the template’s Document and DocumentViewController
classes with PeopleDocument and PeopleLister from the previous People
Groups example. We are no longer in a master–detail navigation interface,
but PeopleLister expects one; so when I instantiate PeopleLister, I wrap it in
a navigation controller and present that navigation controller:

func presentDocument(at documentURL: URL) {

 let lister = PeopleLister(fileURL: documentURL)

 let nav = UINavigationController(rootViewController: lister)

 self.present(nav, animated: true)

}

Finally, we come to the really interesting case: the user asks the document
browser to create a People Groups document. This causes the delegate’s do
cumentBrowser(_:didRequestDocumentCreationWithHandler:) to be
called. Our job is to provide the URL of an existing empty document file
and call the handler: function with that URL. But where are we going to
get a document file? Well, we already know how to create an empty
document; we proved that in our earlier example. So I’ll create that
document in the Temporary directory and feed the handler: function its

URL. This is exactly the strategy advised by the documentation on this
delegate method, and my code is adapted directly from the example code
there.
I’m a little unclear about what we’re intended to do about the name of the
new file. In the past, Apple’s advice was not to worry about this; any unique
name would do. But that was before the user could see file names in a
standard interface. My solution is an adaptation of what I was already doing
in the People Groups app’s GroupLister when the user asked to create a new
people group: I present a UIAlertController where the user can enter the
new document’s name, and proceed to create the new document in its OK
button’s action function. Observe that I call the importHandler function
under every circumstance; if the user cancels or if something else goes
wrong, I call it with a nil URL:

func documentBrowser(_ controller: UIDocumentBrowserViewController,

 didRequestDocumentCreationWithHandler importHandler:

 @escaping (URL?, UIDocumentBrowserViewController.ImportMode) -> Void) {

 var docname = "People"

 let alert = UIAlertController(

 title: "Name for new people group:",

 message: nil, preferredStyle: .alert)

 alert.addTextField { tf in

 tf.autocapitalizationType = .words

 }

 alert.addAction(UIAlertAction(title: "Cancel", style: .cancel) {_ in

 importHandler(nil, .none)

 })

 alert.addAction(UIAlertAction(title: "OK", style: .default) {_ in

 if let proposal = alert.textFields?[0].text {

 if !proposal.trimmingCharacters(in: .whitespaces).isEmpty {

 docname = proposal

 }

 }

 let fm = FileManager.default

 let temp = fm.temporaryDirectory

 let fileURL = temp.appendingPathComponent(docname + ".pplgrp2")

 let newdoc = PeopleDocument(fileURL: fileURL)

 newdoc.save(to: fileURL, for: .forOverwriting) { ok in

 guard ok else { importHandler(nil, .none); return }

 newdoc.close() { ok in

 guard ok else { importHandler(nil, .none); return }

 importHandler(fileURL, .move)

 }

 }

 })

 self.present(alert, animated: true)

}

Exactly one path of execution calls importHandler with an actual file
URL. If that happens, our delegate method documentBrowser(_:didImpor
tDocumentAt:toDestinationURL:) is called — and so our PeopleLister
view controller is presented, displaying the new empty document.

Custom Thumbnails
Once the user can see our document files represented in the file browser,
both in the Files app and in any apps based around
UIDocumentBrowserViewController, we will probably want to give some
attention to their icons. New in iOS 11, we can use a thumbnail extension to
supply a custom thumbnail icon representing our document file. Let’s do
that.
Make a new target and choose iOS → Application Extension → Thumbnail
Extension. As usual, we must configure the Info.plist to specify the UTI for
the document type whose thumbnail we will be providing (Figure 22-13).

Figure 22-13. Configuring a thumbnail extension

Now we customize the ThumbnailProvider class given to us by the
template. In particular, we implement provideThumbnail(for:_:). Its
parameters are a QLFileThumbnailRequest and a completion function. Our
job is to examine the incoming QLFileThumbnailRequest, construct a

QLThumbnailReply, and call the completion function, handing it the
QLThumbnailReply.
There are three ways to make a QLThumbnailReply:

init(imageFileURL:)

We might use this initializer if our extension bundle contains an image
file that we always want to use as a document icon.

init(contextSize:currentContextDrawing:)

A graphics context is going to be prepared for us and made the current
context. We supply a function that draws the thumbnail in real time into
the current context.

init(contextSize:drawing:)

A graphics context is supplied as the second parameter. We supply a
function that draws into that context. But beware: this graphics context
is flipped with respect to the usual iOS coordinate system — its origin is
at the lower left and the y-axis increases upward. For this reason, you’ll
probably find it simpler to use the preceding initializer.

To illustrate, I’ll use the second initializer. My thumbnail will be extremely
silly; I’ll draw a smiley face from an image file, and write the name of the
file over it. Still, this is a good demonstration, because it proves that we are
supplying the thumbnail individually for each document file, and also
because it shows how to size the graphics context:

override func provideThumbnail(for request: QLFileThumbnailRequest,

 _ handler: @escaping (QLThumbnailReply?, Error?) -> Void) {

 let furl = request.fileURL

 let name = furl.deletingPathExtension().lastPathComponent

 let im = UIImage(named:"smiley.jpg")!

 let maxsz = request.maximumSize

 let r = AVMakeRect(aspectRatio: im.size,

 insideRect: CGRect(origin:.zero, size:maxsz))

 let att = NSAttributedString(string:name, attributes:[

 .font:UIFont(name:"Georgia", size:14)!

])

 let attsz = att.size()

 func draw() -> Bool {

 im.draw(in: CGRect(origin:.zero, size:r.size))

 att.draw(at: CGPoint(

 (r.width-attsz.width)/2, (r.height-attsz.height)/2))

 return true

 }

 let reply = QLThumbnailReply(

 contextSize: r.size, currentContextDrawing: draw)

 handler(reply, nil)

}

The result is that our app’s document browser and the Files app display our
files with their custom thumbnails (Figure 22-14).

Figure 22-14. Documents with custom thumbnails

Custom Previews
New in iOS 11, your app can supply a Quick Look preview for a custom
document type that it exports, suitable for display in a
UIDocumentInteractionController or QLPreviewController (discussed
earlier in this chapter). For example, suppose someone emails your user a
People Group document. In the mail app, the user opens the message, sees
the document icon, and presses it to preview its contents. That works for a
standard document type such as a PDF or text file, but not for our custom
People Group document type. Let’s fix that.
To do so, we’ll add a Quick Look preview extension to our People Groups
app. Add a target; choose iOS → Application Extension → Quick Look
Preview Extension. The template provides a view controller class,
PreviewViewController, and a storyboard containing a

PreviewViewController instance and its main view. When the user tries to
preview a document of our custom type, this view controller will be
instantiated and its main view will be displayed in the Quick Look preview
interface (just like the PDF displayed in Figure 22-8).
For this to work, our extension’s Info.plist must declare, in the
QLSupportedContentTypes array, the UTI of the document type for which it
provides a preview (Figure 22-15). I’ve also turned off the QLSupportsSea
rchableItems setting (it’s for Spotlight searches, with which we’re not
concerned here).

Figure 22-15. Defining a preview extension’s document type

We must now implement preparePreviewOfFile(at:completionHandle
r:) in our PreviewViewController. We are handed a file URL pointing to a
document file. Our job is to examine that file, configure our view controller
and its view, and call the completionHandler: function with a parameter
of nil (or with an Error object if there was an error).
I’ll configure PreviewViewController as a reduced version of PeopleLister.
Similar to the right side of Figure 22-9, it will be a UITableViewController
whose table shows the first and last names of the people in this group; but
the text fields will be disabled — we don’t want the user trying to edit in a
preview — and there is no need to implement document saving, or even to
maintain a reference to a PeopleDocument. Instead, we merely use a
PeopleDocument temporarily as a conduit to construct the people array
from the document file, storing the array in an instance property so that our
table view data source methods can access it. I tried to write this code by

calling UIDocument’s open method, but that failed, so I use an
NSFileCoordinator and call load(fromContents:ofType:) manually:

func preparePreviewOfFile(at url: URL,

 completionHandler handler: @escaping (Error?) -> Void) {

 let fc = NSFileCoordinator()

 let intent = NSFileAccessIntent.readingIntent(with: url)

 let queue = OperationQueue()

 fc.coordinate(with: [intent], queue: queue) { err in

 do {

 let data = try Data(contentsOf: intent.url)

 let doc = PeopleDocument(fileURL: url)

 try doc.load(fromContents: data, ofType: nil)

 self.people = doc.people

 DispatchQueue.main.async {

 self.tableView.register(

 UINib(nibName: "PersonCell", bundle: nil),

 forCellReuseIdentifier: "Person")

 self.tableView.reloadData()

 }

 handler(nil)

 } catch {

 handler(error)

 }

 }

}

XML
XML is a highly flexible and widely used general-purpose text file format
for storage and retrieval of structured data. You might use it yourself to
store data that you’ll need to retrieve later, or you could encounter it when
obtaining information from elsewhere, such as the Internet.
On macOS, Cocoa provides a set of classes (XMLDocument and so forth)
for reading, parsing, maintaining, searching, and modifying XML data in a
completely general way; but iOS does not include these. I think the reason
must be that their tree-based approach is too memory-intensive. Instead,
iOS provides XMLParser, a much simpler class that walks through an XML
document, sending delegate messages as it encounters elements. With this,
you can parse an XML document once, but what you do with the pieces as

you encounter them is up to you. The general assumption here is that you
know in advance the structure of the particular XML data you intend to read
and that you have provided classes for representation of the same data in
object form and for transforming the XML pieces into that representation.

To illustrate, let’s return once more to our Person class with a firstName
and a lastName property. Imagine that as our app starts up, we would like
to populate it with Person objects, and that we’ve stored the data describing
these objects as an XML file in our app bundle, like this:

<?xml version="1.0" encoding="utf-8"?>

<people>

 <person>

 <firstName>Matt</firstName>

 <lastName>Neuburg</lastName>

 </person>

 <person>

 <firstName>Snidely</firstName>

 <lastName>Whiplash</lastName>

 </person>

 <person>

 <firstName>Dudley</firstName>

 <lastName>Doright</lastName>

 </person>

</people>

This data could be mapped to an array of Person objects, each with its firs
tName and lastName properties appropriately set. (This is a deliberately
easy example, of course; not all XML is so readily expressed as objects.)
Let’s consider how we might do that.
Using XMLParser is not difficult in theory. You create the XMLParser,
handing it the URL of a local XML file (or a Data object, perhaps
downloaded from the Internet), set its delegate, and tell it to parse. The
delegate starts receiving delegate messages. For simple XML like ours,
there are only three delegate messages of interest:

parser(_:didStartElement:namespaceURI:qualifiedName:attribute

s:)

The parser has encountered an opening element tag. In our document,
this would be <people>, <person>, <firstName>, or <lastName>.

parser(_:didEndElement:namespaceURI:qualifiedName:)

The parser has encountered the corresponding closing element tag. In
our document this would be </people>, </person>, </firstName>, or
</lastName>.

parser(_:foundCharacters:)

The parser has encountered some text between the starting and closing
tags for the current element. In our document this would be, for
example, "Matt" or "Neuburg" and so on.

In practice, responding to these delegate messages poses challenges of
maintaining state. If there is just one delegate, it will have to bear in mind at
every moment what element it is currently encountering; this could make
for a lot of properties and a lot of if-statements in the implementation of the
delegate methods. To aggravate the issue, parser(_:foundCharacters:)
can arrive multiple times for a single stretch of text; that is, the text may
arrive in pieces, which we must accumulate into a property.
An elegant way to meet these challenges is by resetting the XMLParser’s
delegate to different objects at different stages of the parsing process. We
make each delegate responsible for parsing one type of element; when a
child of that element is encountered, we make a new object and make it the
delegate. The child element delegate is then responsible for making the
parent the delegate once again when it finishes parsing its own element.
This is slightly counterintuitive because it means parser(_:didStartElem
ent:...) and parser(_:didEndElement:...) for the same element are
arriving at two different objects.
To see what I mean, think about how we could implement this in our
example. We are going to need a PeopleParser that handles the <people>
element, and a PersonParser that handles the <person> elements. Now
imagine how PeopleParser will operate when it is the XMLParser’s
delegate:

1. When parser(_:didStartElement:...) arrives, the PeopleParser
looks to see if this is a <person>. If so, it creates a PersonParser,
handing to it (the PersonParser) a reference to itself (the PeopleParser)
— and makes the PersonParser the XMLParser’s delegate.

2. Delegate messages now arrive at this newly created PersonParser. We
can assume that <firstName> and <lastName> are simple enough
that the PersonParser can maintain state as it encounters them. When
text is encountered, parser(_:foundCharacters:) will be called,
and the text must be accumulated into an appropriate property.

3. Eventually, parser(_:didEndElement:...) arrives. The
PersonParser now uses its reference to make the PeopleParser the
XMLParser’s delegate once again. The PeopleParser, having received
from the PersonParser any data it may have collected, is now ready in
case another <person> element is encountered (and the old
PersonParser might now go quietly out of existence).

An obvious way to assemble the data is that the PersonParser should create
a fully configured Person object and hand it up to the PeopleParser. The
PeopleParser’s job is thus simply to accumulate such Person objects into an
array.
This approach may seem like a lot of work to configure, but in fact it is
neatly object-oriented, with classes corresponding to the elements of the
XML. Moreover, those classes have a great deal in common, which can be
readily factored out and encapsulated into a superclass.

JSON
JSON (http://www.json.org) is very often used as a universal lightweight
structured data format for server communication. In the past, parsing JSON
with the JSONSerialization class was not difficult, but it was rather
annoying because each piece of data arrived typed as Any and had to be
cast down — a clumsy and error-prone procedure. This is one of the main
problems solved by the Swift 4 Decodable protocol. You know in advance

http://www.json.org/

what the format of your JSON will be, so you devise a struct — possibly a
nest of structs — into which it can be parsed directly. The JSONDecoder
class comes with properties that allow you to specify how certain specially
formatted values should be handled, such as dates and floating-point
numbers. You are not in control of the JSON structure, however, so that
might not be enough; you may also have to implement the mapping
between the JSON structure and your struct explicitly, by supplying a
CodingKey adopter and an implementation of init(from:).
As an example, here’s a piece of real-life JSON:

[

 {

 "categoryName": "Trending",

 "Trending": [

 {

 "category": "Trending",

 "price": 20.5,

 "isFavourite": true,

 "isWatchlist": null

 }

]

 },

 {

 "categoryName": "Comedy",

 "Comedy": [

 {

 "category": "Comedy",

 "price": 24.32,

 "isFavourite": null,

 "isWatchlist": false

 }

]

 }

]

Suppose we have received that JSON over the Internet, wrapped up in a
Data object, and now we want to parse it. It’s an array of dictionaries, where
each dictionary has a "categoryName" key along with one other key,
whose name varies (in our example, it might be "Trending" or "Comedy")

but whose value is an array of dictionaries with four keys — "category",
"price", "isFavourite", and "isWatchlist".
Let’s start with the inner dictionary. That’s easy to parse; we can map it
directly to a struct, with no additional code:

struct Inner : Decodable {

 let category : String

 let price : Double

 let isFavourite : Bool?

 let isWatchlist : Bool?

}

The outer dictionary, however, is trickier. Clearly it has a "categoryName"
key, but the name of the second key won’t be known until we actually
encounter the JSON and read the "categoryName" key’s value. So I’ll call
the corresponding struct property unknown:

struct Outer : Decodable {

 let categoryName : String

 let unknown : [Inner]

 // ...

}

That won’t work without some further code, because the JSON won’t have
any "unknown" key. So what do we do? We’re going to have to write our
own implementation of init(from:), to explore the dictionary key by key:

init(from decoder: Decoder) throws {

 let con = try! decoder.container(keyedBy: /* ... */)

 // ...

}

Before we can get started with that, however, we need something to act as
the keyedBy: argument. This has to be a CodingKey adopter.
Now, the usual reason for supplying a CodingKey adopter is to rectify a
mismatch between the name of a key in the JSON and the name of the
corresponding property in your struct. Here’s a typical example:

struct Person: Decodable {

 var firstName: String

 var lastName: String

 enum CodingKeys: String, CodingKey {

 case firstName = "first_name"

 case lastName = "last_name"

 }

}

The idea here is that our JSON will have keys "first_name" and "last_n
ame", but we prefer our struct to use property names firstName and lastN
ame. The CodingKeys enum, which is a CodingKey adopter, solves that
problem. This Person struct is a complete Decodable implementation,
because the default implementation of init(from:) will automatically use
an enum called CodingKeys, if there is one, to tell it how to perform the
mapping.
That, however, is not the situation in which we find ourselves. We don’t
want to do any automatic mapping between keys and property names; we
want to perform the mapping manually, ourselves, in our init(from:)
implementation. Our CodingKey adopter thus needs to be nothing but a
bare minimum self-contained object that implements the four instance
members required by the CodingKey protocol:

var stringValue: String {get}

init?(stringValue: String)

var intValue: Int? {get}

init?(intValue: Int)

We don’t expect to encounter any Int values, so all we really have to do is
implement init?(stringValue:) to initialize stringValue, allowing ini
t?(intValue) to fail:

struct CK : CodingKey {

 var stringValue: String

 init?(stringValue: String) {

 self.stringValue = stringValue

 }

 var intValue: Int?

 init?(intValue: Int) {

() {

 return nil

 }

}

Now we’re ready to write init(from:), because we’ve got something to
pass as the keyedBy: argument in the first line:

init(from decoder: Decoder) throws {

 let con = try! decoder.container(keyedBy: CK.self)

 // ...

}

To complete our implementation, we simply fetch the two keys, one at a
time. First we fetch the "categoryName" key, and set our categoryName
property to its value. But that value is also the name of the second key! We
fetch the value of that key, and set our unknown property to its value:

init(from decoder: Decoder) throws {

 let con = try! decoder.container(keyedBy: CK.self)

 self.categoryName = try! con.decode(

 String.self, forKey:CK(stringValue:"categoryName")!)

 self.unknown = try! con.decode(

 [Inner].self, forKey: CK(stringValue:self.categoryName)!)

}

Now we’re ready to parse our JSON data! Here we go:

let myjson = try! JSONDecoder().decode([Outer].self, from: jsondata)

The outcome is that myjson is an array of Outer objects, each of which has
an unknown property whose value is an array of Inner objects — the exact
object-oriented analog of the original JSON data:

[

 Outer(categoryName: "Trending",

 unknown:

 [Inner(category: "Trending",

 price: 20.5,

 isFavourite: Optional(true),

 isWatchlist: nil)

]),

 Outer(categoryName: "Comedy",

 unknown:

 [Inner(category: "Comedy",

 price: 24.32,

 isFavourite: nil,

 isWatchlist: Optional(false))

])

]

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured
relational database that you can talk to using SQL, the universal language of
databases. This can be an appropriate storage format when your data comes
in rows and columns (records and fields) and needs to be rapidly
searchable. Also, the database as a whole is never loaded into memory; the
data is accessed only as needed. This is valuable in an environment like an
iOS device, where memory is at a premium.

To use SQLite, say import SQLite3. Talking to SQLite involves an
elaborate C interface which may prove annoying; there are, however, a
number of lightweight front ends. I like to use fmdb
(https://github.com/ccgus/fmdb); it’s Swift-friendly, but it’s written in
Objective-C, so we’ll need a bridging header in which we #import "FMDB.
h".

To illustrate, I’ll create a database and add a people table consisting of las
tname and firstname columns:

let db = FMDatabase(path:self.dbpath)

db.open()

do {

 db.beginTransaction()

 try db.executeUpdate(

 "create table people (lastname text, firstname text)",

 values:nil)

 try db.executeUpdate(

 "insert into people (firstname, lastname) values (?,?)",

 values:["Matt", "Neuburg"])

http://www.sqlite.org/docs.html
https://github.com/ccgus/fmdb

 try db.executeUpdate(

 "insert into people (firstname, lastname) values (?,?)",

 values:["Snidely", "Whiplash"])

 try db.executeUpdate(

 "insert into people (firstname, lastname) values (?,?)",

 values:["Dudley", "Doright"])

 db.commit()

} catch {

 db.rollback()

}

At some later time, I come along and read the data from that database:

let db = FMDatabase(path:self.dbpath)

db.open()

if let rs = try? db.executeQuery("select * from people", values:nil) {

 while rs.next() {

 if let firstname = rs["firstname"], let lastname = rs["lastname"] {

 print(firstname, lastname)

 }

 }

}

db.close()

/*

Matt Neuburg

Snidely Whiplash

Dudley Doright

*/

You can include a previously constructed SQLite file in your app bundle,
but you can’t write to it there; the solution is to copy it from your app
bundle into another location, such as the Documents directory, before you
start working with it.

Core Data
The Core Data framework (import CoreData) provides a generalized way
of expressing objects and properties that form a relational graph; moreover,
it has built-in facilities for maintaining those objects in persistent storage —
typically using SQLite as a file format — and reading them from storage
only when they are needed, thus making efficient use of memory. For

example, a person might have not only multiple addresses but also multiple
friends who are also persons; expressing persons and addresses as explicit
object types, working out how to link them and how to translate between
objects in memory and data in storage, and tracking the effects of changes,
such as when a person is deleted, can be tedious. Core Data can help.
It is important to stress, however, that Core Data is not a beginner-level
technology. It is difficult to use and extremely difficult to debug. It
expresses itself in a highly verbose, rigid, arcane way. It has its own
elaborate way of doing things — everything you already know about how
to create, access, alter, or delete an object within an object collection
becomes completely irrelevant! — and trying to bend it to your particular
needs can be tricky and can have unintended side effects. Nor should Core
Data be seen as a substitute for a true relational database.
A full explanation of Core Data would require an entire book; indeed, such
books exist, and if Core Data interests you, you should read some of them.
See also Apple’s Core Data Programming Guide and the other resources
referred to there. Here, I’ll just illustrate what it’s like to work with Core
Data.
I will rewrite the People Groups example from earlier in this chapter as a
Core Data app. This will still be a master–detail interface consisting of two
table view controllers, GroupLister and PeopleLister, just as in Figure 22-9.
But we will no longer have multiple documents, each representing a single
group of people; instead, we will now have a single document, maintained
for us by Core Data, containing all of our groups and all of their people.
To construct a Core Data project from scratch, it is simplest to specify the
Master–Detail app template (or the Single View app template) and check
Use Core Data in the second screen. Among other things, this gives you
template code in the app delegate class for constructing the Core Data
persistence stack, a set of objects that work together to fetch and save your
data; in most cases there will no reason to alter this template code
significantly.
The persistence stack consists of three objects:

A managed object model (NSManagedObjectModel) describing the
structure of the data
A managed object context (NSManagedObjectContext) for
communicating with the data
A persistent store coordinator (NSPersistentStoreCoordinator) for
dealing with actual storage of the data as a file

Starting in iOS 10, this entire stack is created for us by an
NSPersistentContainer object. The template code provides a lazy initializer
for this object:

lazy var persistentContainer: NSPersistentContainer = {

 let con = NSPersistentContainer(name: "PeopleGroupsCoreData")

 con.loadPersistentStores { desc, err in

 if let err = err {

 fatalError("Unresolved error \(err)")

 }

 }

 return con

}()

The managed object context is the persistent container’s viewContext. This
will be our point of contact with Core Data. The managed object context is
the world in which your data objects live and move and have their being: to
obtain an object, you fetch it from the managed object context; to create an
object, you insert it into the managed object context; to save your data, you
save the managed object context.
To provide the rest of the app with easy access to the managed object
context, our root view controller has a managedObjectContext property,
and the app delegate’s application(_:didFinishLaunchingWithOption
s:) configures it to point back at the persistent container’s viewContext:

let nav = self.window!.rootViewController as! UINavigationController

let tvc = nav.topViewController as! GroupLister

tvc.managedObjectContext = self.persistentContainer.viewContext

To describe the structure and relationships of the objects constituting your
data model (the managed object model), you design an object graph in a
data model document. Our object graph is very simple: a Group can have
multiple Persons (Figure 22-16). The attributes, analogous to object
properties, are all strings, except for the timestamps which are dates, and
the Group UUID which is a UUID. (The timestamps will be used for
determining the sort order in which groups and people will be displayed in
the interface.)

Figure 22-16. The Core Data model for the People Groups app

Group and Person are not classes; they are entity names. And their
attributes, such as name and firstName, are not properties. All Core Data
model objects are instances of NSManagedObject, which has no firstName
property and so on. Instead, Core Data model objects make themselves
dynamically KVC compliant for attribute names. For example, Core Data
knows, thanks to our object graph, that a Person entity is to have a firstNa
me attribute, so if an NSManagedObject represents a Person entity, you can
set its firstName attribute by calling setValue(_:forKey:) and retrieve
its firstName attribute by calling value(forKey:), using a key "firstNa
me".
Management of entities, and talking to them with KVC, is maddening, to
say the least. Fortunately, there’s a simple solution: you configure your
entities, in the Data Model inspector, to perform code generation of class
definitions (Figure 22-17). The result is that, when we compile our project,
class files will be created for our entities (here, Group and Person) as
NSManagedObject subclasses. These classes are endowed with properties
corresponding to the entity attributes. Thus, Person now is a class, and it

does have a firstName property. Code generation, in short, allows us to
treat entity types as classes, and managed objects as instances of those
classes.

Figure 22-17. Configuring code generation

Now let’s talk about the first view controller, GroupLister. Its job is to list
groups and to allow the user to create a new group (Figure 22-9). How will
GroupLister get a list of groups? The way you ask Core Data for a model
object is with a fetch request; and in iOS, where Core Data model objects
are often (as here) the model data for a UITableView, fetch requests are
conveniently managed through an NSFetchedResultsController. Once
again, the template sets us up just as we would wish. It provides a fetched
results controller stored in a property, ready to perform the fetch request and
to supply our table view’s data source with the actual data. My code
essentially copies the template code; the first two lines demonstrate not only
that Group is a class with a fetchRequest method, but also that both
NSFetchedResultsController and NSFetchRequest are generics:

lazy var frc: NSFetchedResultsController<Group> = {

 let req: NSFetchRequest<Group> = Group.fetchRequest()

 req.fetchBatchSize = 20

 let sortDescriptor = NSSortDescriptor(key:"timestamp", ascending:true)

 req.sortDescriptors = [sortDescriptor]

 let frc = NSFetchedResultsController(

 fetchRequest:req,

 managedObjectContext:self.managedObjectContext,

 sectionNameKeyPath:nil, cacheName:nil)

 frc.delegate = self

 do {

 try frc.performFetch()

 } catch {

 fatalError("Aborting with unresolved error")

 }

 return frc

}()

The table view’s data source treats self.frc, the
NSFetchedResultsController, as the model data, consisting of Group
objects; observe how, in the starred line, we are able to retrieve an actual
Group instance from the NSFetchedResultsController (because the latter is
a generic):

override func numberOfSections(in tableView: UITableView) -> Int {

 return self.frc.sections!.count

}

override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 let sectionInfo = self.frc.sections![section]

 return sectionInfo.numberOfObjects

}

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 cell.accessoryType = .disclosureIndicator

 let group = self.frc.object(at:indexPath) // *

 cell.textLabel!.text = group.name

 return cell

}

GroupLister’s table is initially empty because our app starts life with no
data. When the user asks to create a group, I put up an alert asking for the
name of the new group. In the handler: function for its OK button, I create
a new Group object, save it into the managed object context, and navigate
to the detail view, PeopleLister. Again, my code is drawn largely from the
template code:

let context = self.frc.managedObjectContext

let group = Group(context: context)

group.name = av.textFields![0].text!

group.uuid = UUID()

group.timestamp = Date()

do {

 try context.save()

} catch {

 return

}

let pl = PeopleLister(group: group)

self.navigationController!.pushViewController(pl, animated: true)

The detail view controller class is PeopleLister. It lists all the people in a
particular Group, so I don’t want PeopleLister to be instantiated without a
Group; therefore, its designated initializer is init(group:). As the
preceding code shows, when I want to navigate from the GroupLister view
to the PeopleLister view, I instantiate PeopleLister and push it onto the
navigation controller’s stack. I do the same sort of thing when the user taps
an existing Group name in the GroupLister table view:

override func tableView(_ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath) {

 let pl = PeopleLister(group: self.frc.object(at:indexPath))

 self.navigationController!.pushViewController(pl, animated: true)

}

PeopleLister, too, has an frc property that’s an
NSFetchedResultsController. However, a PeopleLister instance should list
only the People belonging to one particular group, which has been stored
as its group property. So PeopleLister’s implementation of the frc
initializer contains these lines (req is the fetch request we’re configuring):

let pred = NSPredicate(format:"group = %@", self.group)

req.predicate = pred

As shown in Figure 22-9, the PeopleLister interface consists of a table of
text fields. Populating the table is similar to what GroupLister did; in
particular, in my tableView(_:cellForRowAt:) implementation, self.fr

c.object(at:indexPath) is a Person object, so I can use its firstName
and lastName to set the text of the text fields.
When the user edits a text field to change the first or last name of a Person,
I hear about it as the text field’s delegate. I update the data model and save
the managed object context (the first part of this code should be familiar
from Chapter 8):

func textFieldDidEndEditing(_ textField: UITextField) {

 var v : UIView = textField

 repeat { v = v.superview! } while !(v is UITableViewCell)

 let cell = v as! UITableViewCell

 let ip = self.tableView.indexPath(for:cell)!

 let object = self.frc.object(at:ip)

 object.setValue(textField.text!, forKey: (

 (textField.tag == 1) ? "firstName" : "lastName"))

 do {

 try object.managedObjectContext!.save()

 } catch {

 return

 }

}

The trickiest part is what happens when the user asks to make a new Person.
It starts out analogously to making a new Group; I make a new Person
object, configure its attributes with an empty first name and last name, and
save it into the context:

@objc func doAdd(_:AnyObject) {

 self.tableView.endEditing(true)

 let context = self.frc.managedObjectContext

 let person = Person(context:context)

 person.group = self.group

 person.lastName = ""

 person.firstName = ""

 person.timestamp = NSDate()

 do {

 try context.save()

 } catch {

 return

 }

}

But we must also make this empty Person appear in the table! Once again,
the template code shows us the way. We act as the
NSFetchedResultsController’s delegate
(NSFetchedResultsControllerDelegate); the delegate methods are triggered
by the call to context.save() in the preceding code:

func controllerWillChangeContent(

 _ controller: NSFetchedResultsController<NSFetchRequestResult>) {

 self.tableView.beginUpdates()

}

func controllerDidChangeContent(

 _ controller: NSFetchedResultsController<NSFetchRequestResult>) {

 self.tableView.endUpdates()

}

func controller(

 _ controller: NSFetchedResultsController<NSFetchRequestResult>,

 didChange anObject: Any,

 at indexPath: IndexPath?,

 for type: NSFetchedResultsChangeType,

 newIndexPath: IndexPath?) {

 if type == .insert {

 self.tableView.insertRows(at:[newIndexPath!], with: .automatic)

 DispatchQueue.main.async {

 let cell = self.tableView.cellForRow(at:newIndexPath!)!

 let tf = cell.viewWithTag(1) as! UITextField

 tf.becomeFirstResponder()

 }

 }

}

Core Data files are not suitable for use as iCloud documents. If you want to
reflect structured data into the cloud, a better alternative is the CloudKit
framework. In effect, this allows you to maintain a database online, and to
synchronize changed data up to and down from that database. You might,
for example, use Core Data as a form of local storage, but use CloudKit to
communicate the data between the user’s devices. For more information,
see Apple’s CloudKit Quick Start guide.

PDFs

Earlier in this chapter, I displayed the contents of a PDF file by means of a
web view, or in a Quick Look preview. In the past, other ways of showing a
PDF existed, but they were complicated. New in iOS 11 is PDF Kit (impor
t PDFKit), brought over at long last from macOS. It provides a native
UIView subclass, PDFView, whose job is to display a PDF nicely.
Basic use of a PDFView is simple. Initialize a PDFDocument, either from
data or from a file URL, and assign it as the PDFView’s document:

let v = PDFView(frame:self.view.bounds)

self.view.addSubview(v)

let url = Bundle.main.url(forResource: "notes", withExtension: "pdf")!

let doc = PDFDocument(url: url)

v.document = doc

There are many other configurable aspects of a PDFView. A particularly
nice touch is that a PDFView can embed a UIPageViewController for
layout and navigation of the PDF’s individual pages:

v.usePageViewController(true)

A PDFDocument consists of pages, represented by PDFPage objects. You
can manipulate those pages — for example, you can add and remove pages
from the document. You can even draw a PDFPage’s contents yourself,
meaning that you can, in effect, create a PDF document from scratch.
Again, this was possible but complicated previously; in iOS 11, it’s easy.
As a demonstration, I’ll create a PDF document consisting of one page with
the words “Hello, world!” in the center. I start with a PDFPage subclass,
MyPage, where I override the draw(with:to:) method. The parameters
are a PDFDisplayBox that tells me the page size, along with a CGContext
to draw into. There’s just one thing to watch out for: a PDF graphics context
is flipped with respect to the normal iOS coordinate system. So I apply a
transform to the context before I draw into it:

override func draw(with box: PDFDisplayBox, to context: CGContext) {

 UIGraphicsPushContext(context)

 context.saveGState()

 let r = self.bounds(for: box)

 let s = NSAttributedString(string: "Hello, world!", attributes: [

 .font : UIFont(name: "Georgia", size: 80)!

])

 let sz = s.boundingRect(with: CGSize(10000,10000),

 options: .usesLineFragmentOrigin, context: nil)

 context.translateBy(x: 0, y: r.height)

 context.scaleBy(x: 1, y: -1)

 s.draw(at: CGPoint(

 (r.maxX - r.minX) / 2 - sz.width / 2,

 (r.maxY - r.minY) / 2 - sz.height / 2

))

 context.restoreGState()

 UIGraphicsPopContext()

}

To create and display my PDFPage in a PDFView (v) is simple:

let doc = PDFDocument()

v.document = doc

doc.insert(MyPage(), at: 0)

If my document consisted of more than one MyPage, they would all draw
the same thing. If that’s not what I want, my draw(with:to:) code can ask
what page of the document this is:

let pagenum = self.document?.index(for: self)

In addition, a host of ancillary PDF Kit classes allow you to manipulate
page thumbnails, selection, annotations, and more.

Image Files
The Image I/O framework provides a simple, unified way to open image
files, to save image files, to convert between image file formats, and to read
metadata from standard image file formats, including EXIF and GPS
information from a digital camera. You’ll need to import ImageIO. The
Image I/O API is written in C, not Objective-C, and it uses CFTypeRefs,
not objects. Unlike Core Graphics, there is no Swift “renamification”

overlay that represents the API as object-oriented; you have to call the
framework’s global C functions directly, casting between the CFTypeRefs
and their Foundation counterparts. However, that’s not hard to do.
Use of the Image I/O framework starts with the notion of an image source
(CGImageSource). This can be created from the URL of a file (actually
CFURL, to which URL is toll-free bridged) or from a Data object (actually
CFData, to which Data is toll-free bridged).
For example, here we obtain the metadata from a photo file in our app
bundle:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!

let src = CGImageSourceCreateWithURL(url as CFURL, nil)!

let result = CGImageSourceCopyPropertiesAtIndex(src,0,nil)!

let d = result as! [AnyHashable:Any]

Without having opened the image file as an image, we now have a
dictionary full of information about it, including its pixel dimensions (kCGI
magePropertyPixelWidth and kCGImagePropertyPixelHeight), its
resolution, its color model, its color depth, and its orientation — plus,
because this picture originally comes from a digital camera, the EXIF data
such as the aperture and exposure at which it was taken, plus the make and
model of the camera.

To obtain the image as a CGImage, we can call CGImageSourceCreateIma
geAtIndex. Alternatively, we can request a thumbnail of the image. This is
a very useful thing to do, and the name “thumbnail” doesn’t really do
justice to its importance and power. If your purpose in opening this image is
to display it in your interface, you don’t care about the original image data;
a thumbnail is precisely what you want, especially because you can specify
any size for this “thumbnail” all the way up to the original size of the
image! This is tremendously convenient, because to assign a large image to
a small image view wastes all the memory reflected by the size difference.
To generate a thumbnail at a given size, you start with a dictionary
specifying the size along with other instructions, and pass that, together
with the image source, to CGImageSourceCreateThumbnailAtIndex. The

only pitfall is that, because we are working with a CGImage and specifying
actual pixels, we must remember to take account of the scale of our device’s
screen. So, for example, let’s say we want to scale our image so that its
largest dimension is no larger than the width of the UIImageView
(self.iv) into which we intend to place it:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!

let src = CGImageSourceCreateWithURL(url as CFURL, nil)!

let scale = UIScreen.main.scale

let w = self.iv.bounds.width * scale

let d : [AnyHashable:Any] = [

 kCGImageSourceShouldAllowFloat : true ,

 kCGImageSourceCreateThumbnailWithTransform : true ,

 kCGImageSourceCreateThumbnailFromImageAlways : true ,

 kCGImageSourceThumbnailMaxPixelSize : w

]

let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d as CFDictionary)!

let im = UIImage(cgImage: imref, scale: scale, orientation: .up)

self.iv.image = im

To save an image using a specified file format, we need an image
destination. As a final example, I’ll show how to save our image as a TIFF.
We never open the image as an image! We save directly from the image
source to the image destination:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!

let src = CGImageSourceCreateWithURL(url as CFURL, nil)!

let fm = FileManager.default

let suppurl = try! fm.url(for:.applicationSupportDirectory,

 in: .userDomainMask, appropriateFor: nil, create: true)

let tiff = suppurl.appendingPathComponent("mytiff.tiff")

let dest =

 CGImageDestinationCreateWithURL(tiff as CFURL, kUTTypeTIFF, 1, nil)!

CGImageDestinationAddImageFromSource(dest, src, 0, nil)

let ok = CGImageDestinationFinalize(dest)

Chapter 23. Basic Networking

Networking is difficult and complicated, not least because it’s ultimately
out of your control. You can ask for a resource from across the network, but
at that point anything can happen: the resource might not be found, it might
take a while to arrive, it might never arrive, the server or the network might
be unavailable, or even worse, might vanish after the resource has partially
arrived. There are numerous technicalities to deal with, not to mention the
need for extensive background threading so that nothing interferes with the
operation of your app’s interface (Chapter 24).
iOS, however, handles all of that behind the scenes, and makes basic
networking extremely easy. To go further into networking than this chapter
takes you, start with Apple’s URL Session Programming Guide. Apple also
provides a generous amount of sample code.
Many earlier chapters have described interface and frameworks that
network for you automatically. Put a web view in your interface
(Chapter 11) and poof, you’re networking; the web view does all the grunt
work, and it does it a lot better than you’d be likely to do it from scratch.
The same is true of AVPlayer (Chapter 15), MKMapView (Chapter 20), and
so on.
Ever since iOS 9, App Transport Security has been enforced, meaning that
HTTP requests must be HTTPS requests and that the server must be using
TLS 1.2 or higher. To tweak the behavior of App Transport Security, you
must make an entry in your app’s Info.plist, in the “App Transport Security
Settings” dictionary (NSAppTransportSecurity). For example, to allow
HTTP requests in general, the dictionary’s “Allow Arbitrary Loads” key (NS
AllowsArbitraryLoads) must be YES. See the “App Transport Security”
section in Apple’s Information Property List Key Reference.

TIP
A device used for development has a Network Link Conditioner switch in Settings (under
Developer). Use it to impose different networking situations to stress-test your networking code.

HTTP Requests
An HTTP request is made through a URLSession object. A URLSession is
a kind of grand overarching environment in which network-related tasks are
to take place.

Obtaining a Session
There are three chief ways to obtain a URLSession:

The shared session
The URLSession class vends a singleton shared session object through
its shared class property. This object is supplied and configured by the
runtime, so it is good primarily for very simple, occasional use, where
you don’t need authentication, dedicated cookie storage, delegate
messages, and so forth.

Session without a delegate

You create the URLSession by calling init(configuration:). You’ll
hand the session a URLSessionConfiguration object describing the
desired environment. This means that you can configure the
URLSession, but you still can’t interact with it while it’s performing a
networking task for you, because you have no delegate. All you can do
is order some task to be performed and then stand back and wait for it to
finish.

Session with a delegate

You create the URLSession by calling init(configuration:delegat
e:delegateQueue:). Like the preceding initializer, you’ll hand the

session a URLSessionConfiguration object. But now you also have a
delegate, which can receive various callbacks during the course of a
networking task (and you even get to say whether those callbacks
should occur on the main thread or in the background). Clearly, this is
the most powerful approach; it is also more complicated than the others,
but that complexity can be worthwhile.

The shared session is owned by the runtime, so there’s no need to retain it;
you simply access it and tell it what you want it to do. But if you create a
URLSession by calling an initializer, you’ll probably want it to persist.
Your app will typically need to create only one URLSession object; it is
reasonable to store it in a global variable, or in an instance property of some
object that will persist throughout your app’s lifetime, such as the app
delegate or the root view controller.

Session Configuration
The URLSession initializers require a URLSessionConfiguration object
dictating various options to be applied to the session. Thus, to initialize a
URLSession, you’ll start by creating the URLSessionConfiguration and
setting its properties; then you’ll create the URLSession and hand it the
URLSessionConfiguration. A legitimate reason for creating multiple
URLSession objects might be that you need them to have different
configurations.
There are three URLSessionConfiguration class members that you can use
to obtain a URLSessionConfiguration instance:

default class property
A basic vanilla URLSessionConfiguration. This is what you’ll use most
of the time.

ephemeral class property
Configures a URLSession whose cookies and caches are maintained in
memory only; they are never saved. You can actually configure a defau

lt URLSessionConfiguration to give the same behavior, so this is
purely a convenience.

background(withIdentifier:) class method
Configures a URLSession that will proceed with its networking tasks
independently of your app at some future time. I’ll discuss background
sessions later.

Here are some of the basic URLSessionConfiguration properties:

allowsCellularAccess

Whether to permit cell data use or to require Wi-Fi.

waitsForConnectivity

New in iOS 11. Determines how to deal with reachability issues: if
true, the session will try again later if the network is unavailable
initially. Apple says that it is better to use this property, and let the
URLSession do the work, than to try to determine reachability for
yourself (using, for example, SCNetworkReachability).

httpMaximumConnectionsPerHost

The maximum number of simultaneous connections to the remote
server.

Timeout values
There are two of them:

timeoutIntervalForRequest

The maximum time you’re willing to wait between pieces of data.
The timer starts when the connection succeeds, and then again each
time a piece of data is received. For example, a download will time
out because things stalled for longer than this interval. If this is not a
background session, the timeout will trigger failure of the download.
The default is one minute.

timeoutIntervalForResource

The maximum time for the entire download to arrive. The timer
starts when the networking task is told to start, and just keeps
ticking until completion. This is appropriate for limiting the
request’s overall time-to-live. Failure to complete in the required
time will always trigger failure of the download. The default is
seven days.

There are also numerous cookie, caching, credential, proxy, and protocol
properties. Consult the class documentation.

Session Tasks
To use the URLSession object to perform a networking task, you need a
URLSessionTask object, representing one upload or download process. You
do not instantiate URLSessionTask yourself; rather, you ask the
URLSession for a task of the desired type.
The session task types are all subclasses:

URLSessionDataTask
A URLSessionTask subclass. With a data task, the data is provided
incrementally to your app as it arrives across the network. You should
not use a data task for a large hunk of data, because the data is
accumulating in memory throughout the download.

URLSessionDownloadTask
A URLSessionTask subclass. With a download task, the data never
passes through your app’s memory; instead, it is accumulated into a file,
and the saved file URL is handed to you at the end of the process. The
file is outside your sandbox and will be destroyed, so preserving it (or
its contents) is up to you.

URLSessionUploadTask
A URLSessionDataTask subclass. With an upload task, you can provide
a file to be uploaded and stand back, though you can also hear about the
upload progress if you wish.

URLSessionStreamTask
A URLSessionTask subclass. This type of task makes it possible to deal
conveniently with streams.

The URLSessionTask class itself is an abstract superclass, embodying
various properties common to all types of task, such as:

A taskDescription and taskIdentifier; the former is up to you,
while the latter is a unique identifier within the URLSession

The originalRequest and currentRequest (the request can change
because there might be a redirect)

The priority; a Float between 0 and 1, used as a hint to help rank the
relative importance of your tasks. For convenience, URLSessionTask
dispenses three constant class properties:

— URLSessionTask.lowPriority (0.25)

— URLSessionTask.defaultPriority (0.5)

— URLSessionTask.highPriority (0.75)

An initial response from the server

Various countOfBytes... properties allowing you to track progress

A progress property that vends a Progress object; this is new in iOS 11,
and is probably a better way to track progress than the countOfByte
s... properties

A state, which might be:

— .running

— .suspended

— .canceling

— .completed

An error if the task failed

You can tell a task to resume, suspend, or cancel. A task is born
suspended; it does not start until it is told to resume for the first time.
Typically you’ll obtain the task, configure it, and then tell it to resume to
start it. The Progress object vended by a task’s progress property is a
second gateway to these methods; telling the Progress object to resume, pa
use, or cancel is the same as telling the task to resume, suspend, or cance
l respectively.
Once you’ve obtained a new session task from the URLSession, the session
retains it; you can keep a reference to the task if you wish, but you don’t
have to. The session will provide you with a list of its tasks in progress; call
getAllTasks(completionHandler:) to receive the existing tasks in the
completion function. The session releases a task after the task is cancelled
or completed; thus, if a URLSession has no running or suspended tasks, it
has no tasks at all.
There are two ways to ask your URLSession for a new URLSessionTask.
Which one you use depends on how you obtained the URLSession; in turn,
they entail two different ways of working with the task (and later in this
chapter, I’ll demonstrate both):

With a completion function

This is the approach to use if you are using the shared session or a
session created without a delegate by calling init(configuration:).
You’ll call a convenience method that takes a completionHandler:
parameter, such as downloadTask(with:completionHandler:). You
supply a completion function, typically an anonymous function, to be
called when the task process ends. This approach is simple, but it
generates no delegate callbacks.

Without a completion function
This is the approach to use if you gave the URLSession a delegate when
you created it by calling init(configuration:delegate:delegateQu
eue:). You’ll call a method without a completionHandler: parameter,

such as downloadTask(with:). The delegate is called back at various
stages of the task’s progress.

For a data task or a download task, the with: parameter can be either a
URL or a URLRequest. A URL is simpler, but a URLRequest allows you
more power to perform additional configuration.

Session Delegate
If the session is created by calling init(configuration:delegate:deleg
ateQueue:), you’ll specify a delegate, as well as specifying the queue
(roughly, the thread — see Chapter 24) on which the delegate methods are
to be called. For each type of session task, there’s a delegate protocol,
which is itself often a composite of multiple protocols.
For example, for a data task, we would want a data delegate — an object
conforming to the URLSessionDataDelegate protocol, which itself
conforms to the URLSessionTaskDelegate protocol, which in turn conforms
to the URLSessionDelegate protocol, resulting in about a dozen delegate
methods we could implement, though only a few are crucial:

URLSession(_:dataTask:didReceive:)

Some data has arrived, as a Data object (the third parameter). The data
will arrive piecemeal, so this method may be called many times during
the download process, supplying new data each time. Our job is to
accumulate all those chunks of data; this involves maintaining state
between calls.

URLSession(_:task:didCompleteWithError:)

If there is an error, we’ll find out about it here. If there’s no error, this is
our signal that the download is over; we can now do something with the
accumulated data.

Similarly, for a download task, we need a download delegate, conforming
to the URLSessionDownloadDelegate protocol, which conforms to the
URLSessionTaskDelegate protocol, which conforms to the
URLSessionDelegate protocol. Here are some useful delegate methods:

URLSession(_:downloadTask:didResumeAtOffset:expectedTotalByte

s:)

This method is of interest only in the case of a resumable download that
has been paused and resumed.

URLSession(_:downloadTask:didWriteData:totalBytesWritten:tota

lBytesExpectedToWrite:)

Called periodically, to keep us apprised of the download’s progress. It
might be more convenient to keep a reference to the task’s Progress
object (new in iOS 11).

URLSession(_:downloadTask:didFinishDownloadingTo:)

Called at the end of the process. The last parameter is a file URL; we
must grab the downloaded file immediately from there, as it will be
destroyed. This is the only required delegate method.

URLSession(_:task:didCompleteWithError:)

Unlike with a data task, this delegate method is not crucial for a
download task. Still, if there was a communication problem, this is
where you’d hear about it.

Some delegate methods provide a completionHandler: parameter. These
are delegate methods that require a response from you. For example, in the
case of a data task, URLSession(_:dataTask:didReceive:completionHa
ndler:) arrives when we first connect to the server. The third parameter is
the response (URLResponse), and we could now check its status code. We
must also return a response of our own, saying whether or not to proceed
(or whether to convert the data task to a download task, which could
certainly come in handy). But because of the multithreaded, asynchronous
nature of networking (see Appendix C), we do this, not by returning a value
directly, but by calling the completion function and passing our response
into it.
New in iOS 11, the various delegate protocols also inherit this method from
the URLSessionTaskDelegate protocol:

urlSession(_:taskIsWaitingForConnectivity:)

Called only if the session configuration has its waitsForConnectivity
set to true. The task has tried to start and has failed; instead of giving
up with an error (as it would have done if waitsForConnectivity were
false), it will wait and try again later. You might respond by updating
your interface somehow.

HTTP Request with Task Completion Function
At long last, we are ready for some examples! I’ll start by illustrating the
utmost in simplicity. This is the absolute minimum approach to
downloading a file:

We use the shared URLSession, which requires (and accepts) no
configuration.
We obtain a download task, handing it a remote URL and a completion
function. When the download is complete, the completion function will
be called with a file URL; we retrieve the data from that URL and do
something with it.

Having obtained the session and the task, don’t forget to call resume to
start the download!

Our overall code looks like this:

let s = "https://www.someserver.com/somefolder/someimage.jpg"

let url = URL(string:s)!

let session = URLSession.shared

let task = session.downloadTask(with:url) { loc, resp, err in

 // ... completion function body goes here ...

}

task.resume()

All that remains for us is to write the body of the completion function. The
downloaded data (here, an image file) is stored temporarily; if we want to
do something with it, we must retrieve it right now. We must make no
assumptions about what thread the completion function will be called on;

indeed, unless we take steps to the contrary, it will be a background thread.
In this particular example, the URL is that of an image that I intend to
display in my interface; therefore, I step out to the main thread (Chapter 24)
in order to talk to the interface:

let task = session.downloadTask(with:url) { fileURL, resp, err in

 if let url = fileURL, let d = try? Data(contentsOf:url) {

 let im = UIImage(data:d)

 DispatchQueue.main.async {

 self.iv.image = im

 }

 }

}

That’s all there is to it! If there’s an error or a negative response from the
server (such as “File not found”), url will be nil and we’ll do nothing.
Optionally, you might like to have the completion function report those
conditions:

guard err == nil else { print(err); return }

let status = (resp as! HTTPURLResponse).statusCode

guard status == 200 else { print(status); return }

A data task is similar, except that the data itself arrives as the first parameter
of the completion function:

let task = session.dataTask(with:url) { data, resp, err in

 if let d = data {

 let im = UIImage(data:d) // ... and so on

New in iOS 11, a session task vends a Progress object. This means that we
can track the progress of our task without using a session delegate (as
described in the next section). If we have a UIProgressView (self.prog) in
our interface, displaying the task’s progress to the user could be as simple
as this:

self.prog.observedProgress = task.progress

Recall, too, that one Progress object can act as the parent of other Progress
objects (Chapter 12). If we are going to perform multiple tasks
simultaneously, our UIProgressView’s observedProgress can be
configured to show the overall progress of those tasks.

HTTP Request with Session Delegate
Now let’s go to the other extreme and be very formal and complete:

We’ll start by creating and configuring a URLSessionConfiguration
object.
We’ll create and retain our own URLSession.
We’ll give the session a delegate, implementing delegate methods to deal
with the session task as it proceeds.
When we request our session task, instead of a mere URL, we’ll start
with a URLRequest.

We are now creating our own URLSession, rather than borrowing the
system’s shared session. Since one URLSession can perform multiple
tasks, there will typically be just one URLSession; so I’ll make a lazy
initializer that creates and configures it, supplying a
URLSessionConfiguration and setting the delegate:

lazy var session : URLSession = {

 let config = URLSessionConfiguration.ephemeral

 config.allowsCellularAccess = false

 let session = URLSession(configuration: config, delegate: self,

 delegateQueue: .main)

 return session

}()

I’ve specified, for purposes of the example, that no caching is to take place
and that data downloading via cell is forbidden; you could configure things
much more heavily and meaningfully, of course. I have specified self as
the delegate, and I have requested delegate callbacks on the main thread.

When I ask for the session task, I’ll supply a URLRequest instead of a
URL:

let url = URL(string:s)!

let req = URLRequest(url:url)

// ask for the task

In my examples in this section, there is very little merit in using a
URLRequest instead of a URL to form our task. Still, a URLRequest can
come in handy, and an upload task requires one; this is where you configure
such things as the HTTP request method, body, and header fields.

WARNING
Do not use the URLRequest to configure properties of the request that are configurable through
the URLSessionConfiguration. Those properties are left over from the era before URLSession
existed. For example, there is no point setting the URLRequest’s timeoutInterval, as it is the
URLSessionConfiguration’s timeout properties that are significant.

Download task
Here is my recasting of the same image file download task as in the
previous example. I blank out the image view, to make the progress of the
task more obvious for test purposes, and I create and start the download
task:

self.iv.image = nil

let s = "https://www.someserver.com/somefolder/someimage.jpg"

let url = URL(string:s)!

let req = URLRequest(url:url)

let task = self.session.downloadTask(with:req)

task.resume()

Here are some delegate methods for responding to the download:

func urlSession(_ session: URLSession,

 downloadTask: URLSessionDownloadTask,

 didWriteData bytesWritten: Int64,

 totalBytesWritten writ: Int64,

 totalBytesExpectedToWrite exp: Int64) {

 print("downloaded \(100*writ/exp)%")

}

func urlSession(_ session: URLSession,

 task: URLSessionTask,

 didCompleteWithError error: Error?) {

 print("completed: error: \(error)")

}

func urlSession(_ session: URLSession,

 downloadTask: URLSessionDownloadTask,

 didFinishDownloadingTo fileURL: URL) {

 if let d = try? Data(contentsOf:fileURL) {

 let im = UIImage(data:d)

 DispatchQueue.main.async {

 self.iv.image = im

 }

 }

}

/*

downloaded 23%

downloaded 47%

downloaded 71%

downloaded 100%

completed: error: nil

*/

New in iOS 11, as I’ve already mentioned, we would probably forgo the use
of URLSession(_:downloadTask:didWriteData:totalBytesWritten:t
otalBytesExpectedToWrite:) and instead use the task’s progress object
to track its progress.

Data task
A data task leaves it up to you to accumulate the data as it arrives in chunks.
For this purpose, you’ll clearly want to keep a mutable Data object on hand;
I’ll use an instance property (self.data):

var data = Data()

To get started, I prepare self.data by giving it a zero count, and then I
create and start the data task:

self.iv.image = nil

self.data.count = 0 // *

let s = "https://www.someserver.com/somefolder/someimage.jpg"

let url = URL(string:s)!

let req = URLRequest(url:url)

let task = self.session.dataTask(with:req) // *

task.resume()

As the chunks of data arrive, I keep appending them to self.data. When
all the data has arrived, it is ready for use:

func urlSession(_ session: URLSession,

 dataTask: URLSessionDataTask,

 didReceive data: Data) {

 self.data.append(data)

 print("\(data.count) bytes of data; total \(self.data.count)")

}

func urlSession(_ session: URLSession,

 task: URLSessionTask,

 didCompleteWithError error: Error?) {

 if error == nil {

 DispatchQueue.main.async {

 self.iv.image = UIImage(data:self.data)

 }

 }

}

/*

received 16384 bytes of data; total 16384

received 16384 bytes of data; total 32768

received 16384 bytes of data; total 49152

received 16384 bytes of data; total 65536

received 2876 bytes of data; total 68412

*/

One Session, One Delegate
The URLSession delegate architecture dictates that the delegate belongs to
the session as a whole, not to each task individually. Because of this
architecture, the preceding data task code is broken. To see why, ask
yourself: What happens if our session is asked to perform another data task
while this data task is still in progress? Our one session delegate is
accumulating the chunks of data into a single Data property, self.data,

without regard to what data task this chunk of data comes from. Clearly this
is a potential train wreck: we’re going to interleave the data from two
different tasks, ending up with nonsense.
Let’s revise the data task code to fix the problem. We need a way to
separate the data streams belonging to the different tasks. Fortunately, a
session task has a unique identifier — its taskIdentifier, which is an Int.
So instead of a single Data property, we can maintain a dictionary keyed by
each data task’s taskIdentifier, where the corresponding value is a Data
object:

var data = [Int:Data]()

Our code for obtaining and starting a new data task now adds an entry to the
data dictionary, like this:

let task = self.session.dataTask(with:req)

self.data[task.taskIdentifier] = Data() // *

task.resume()

As a chunk of data arrives, we append it to the correct entry in the
dictionary:

func urlSession(_ session: URLSession,

 dataTask: URLSessionDataTask,

 didReceive data: Data) {

 self.data[dataTask.taskIdentifier]!.append(data)

}

When a task’s full data has arrived, we pluck it out of the dictionary and
remove that dictionary entry (so that data from stale tasks doesn’t
accumulate) before using the data:

func urlSession(_ session: URLSession,

 task: URLSessionTask,

 didCompleteWithError error: Error?) {

 let d = self.data[task.taskIdentifier]!

 self.data[task.taskIdentifier] = nil

 if error == nil {

 DispatchQueue.main.async {

 self.iv.image = UIImage(data:d)

 }

 }

}

Delegate Memory Management
A URLSession does an unusual thing: it retains its delegate. This is
understandable, as it would be disastrous if the delegate could simply
vanish in the middle of an asynchronous time-consuming process; but it
requires special measures on our part. In all the preceding delegate
examples, we have a retain cycle! That’s because we (the view controller)
have a URLSession instance property self.session, but that URLSession
is retaining us (self) as its delegate.
The way to break the cycle is to invalidate the URLSession at some
appropriate moment. There are two ways to do this:

finishTasksAndInvalidate

Allows any existing tasks to run to completion. Afterward, the
URLSession releases the delegate and cannot be used for anything
further.

invalidateAndCancel

Interrupts any existing tasks immediately. The URLSession releases the
delegate and cannot be used for anything further.

If the delegate caught in this retain cycle is a view controller, then viewWil
lDisappear(_:) could be a good place to invalidate the URLSession. (We
cannot use deinit, because deinit won’t be called until after we have
invalidated the URLSession; that’s what it means to have a retain cycle.)
So, for example:

override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 self.session.finishTasksAndInvalidate()

}

A more elaborate solution is to encapsulate:
Start with an instance of some separate class whose job is to hold the
URLSession in a property.
Make the URLSession’s delegate an instance of yet another class — an
instance that is not retained by any object other than the URLSession
(so, not a view controller).

Now our memory management problems are over. The URLSession retains
its delegate, so there is no need for any other object to retain the delegate.
The delegate does not retain the session or the instance that holds the
session, so there is no retain cycle. And there is no entanglement with the
memory management of a view controller. Our URLSession-holding
instance can live anywhere; if it is being retained by a view controller, then
it will go out of existence in good order if the view controller goes out of
existence.
To illustrate, I’ll design a class Downloader, which holds a URLSession and
creates its delegate. I imagine that our view controller will create and
maintain an instance of Downloader early in its lifetime, as an instance
property:

let downloader : Downloader = {

 // ...

 return Downloader(/* ... */)

}()

In that code, I omitted the initialization of Downloader. How should this
work? The Downloader object will create its own URLSession, but I think
the client should be allowed to configure the session. So let’s posit that
Downloader’s initializer takes a URLSessionConfiguration parameter:

let downloader : Downloader = {

 let config = URLSessionConfiguration.ephemeral

 config.allowsCellularAccess = false

 return Downloader(configuration:config)

}()

Now let’s design Downloader itself. It creates and retains the URLSession,
handing it as delegate an instance of a private class, DownloaderDelegate
— an instance which the URLSession itself will retain. Since there is no
retain cycle, Downloader can cancel its own session when it goes out of
existence:

class Downloader: NSObject {

 let config : URLSessionConfiguration

 lazy var session : URLSession = {

 return URLSession(configuration:self.config,

 delegate:DownloaderDelegate(), delegateQueue:.main)

 }()

 init(configuration config:URLSessionConfiguration) {

 self.config = config

 super.init()

 }

 // ...

 deinit {

 self.session.invalidateAndCancel()

 }

}

Next, let’s decide how a client will communicate with a Downloader object.
The client will presumably hand a URL to the Downloader instance; the
Downloader will obtain the URLSessionDownloadTask and start it. The
DownloaderDelegate will be told when the download is over. At that point,
the DownloaderDelegate has a file URL for the downloaded object, which
it needs to hand back to the client immediately.
The way to arrange this is that the client, when it hands the Downloader
object a URL to initiate a download, should also supply a completion
function (see Appendix C). In that way, we deal with the asynchronous
nature of networking, as well as keeping Downloader independent and
agnostic about who the caller is. To return the file URL at the end of a
download, the DownloaderDelegate calls the completion function, passing
it the file URL as a parameter. I can even define a type alias naming my
completion function type:

typealias DownloaderCH = (URL?) -> ()

From the client’s point of view, then, the process will look something like
this:

let s = "https://www.someserver.com/somefolder/someimage.jpg"

let url = URL(string:s)!

self.downloader.download(url:url) { url in

 if let url = url, let d = try? Data(contentsOf: url) {

 let im = UIImage(data:d)

 self.iv.image = im // assume we're called back on main thread

 }

}

Now let’s implement this architecture within Downloader. We have posited
a method download(url:completionHandler:). When that method is
called, Downloader stores the completion function; it then asks for a new
download task and sets it going:

@discardableResult

func download(url:URL,

 completionHandler ch : @escaping DownloaderCH) -> URLSessionTask {

 let task = self.session.downloadTask(with:url)

 // ... store the completion function somehow ...

 task.resume()

 return task

}

(I return to the client a reference to the task, so that the client can
subsequently cancel the task if need be.)
When the download finishes, the DownloaderDelegate calls the completion
function:

func urlSession(_ session: URLSession,

 downloadTask: URLSessionDownloadTask,

 didFinishDownloadingTo url: URL) {

 let ch = // ... retrieve the completion function somehow ...

 ch(url)

}

In my carefree speculative coding design, I have left a blank — the storage
and retrieval of the completion function corresponding to each download

task. Let’s use the same technique I used earlier for accumulating the data
of multiple data tasks, namely a dictionary keyed by the task’s taskIdenti
fier. This will be a private property of DownloaderDelegate, along with a
public method:

private var handlers = [Int:DownloaderCH]()

func appendHandler(_ ch:@escaping DownloaderCH, task:URLSessionTask {

 self.handlers[task.taskIdentifier] = ch

}

We are now ready to fill in the blank in Downloader’s download(url:comp
letionHandler:) method. By the time this method is called by the client,
the delegate has already been created and handed to the session, and only
the session has a reference to it; so we obtain the delegate from the session
and call the appendHandler(_:task:) method that we gave it for this
purpose:

func download(url:URL,

 completionHandler ch : @escaping DownloaderCH) -> URLSessionTask {

 let task = self.session.downloadTask(with:url)

 let del = self.session.delegate as! DownloaderDelegate

 del.appendHandler(ch, task: task)

 task.resume()

 return task

}

All that remains is to write the delegate methods for DownloaderDelegate.
There are two of them that we need to implement. When the download
arrives, we find the completion function corresponding to this download
task and call it, handing it the file URL where the downloaded data has
been stored:

func urlSession(_ session: URLSession,

 downloadTask: URLSessionDownloadTask,

 didFinishDownloadingTo url: URL) {

 let ch = self.handlers[downloadTask.taskIdentifier]

 ch?(url)

}

When the task completes, whether successfully or not, we purge the
completion function from the dictionary:

func urlSession(_ session: URLSession,

 task: URLSessionTask,

 didCompleteWithError error: Error?) {

 self.handlers[task.taskIdentifier] = nil

}

NOTE
As written, DownloaderDelegate’s delegate methods are being called on the main thread. That’s
not necessarily a bad thing, but it may be preferable to run that code on a background thread. I’ll
describe in Chapter 24 how to do that.

Downloading Table View Data
To exercise Downloader, I’ll show how to solve a pesky problem that arises
quite often in real life: we have a UITableView where each cell displays
text and a picture, and the picture needs to be downloaded from the Internet.
We’ll supply each picture lazily, when that cell might become visible. That
way, if a cell never becomes visible, we might never have to download its
picture.

What will our implementation of tableView(_:cellForRowAt:) do? It
must not try to network synchronously — that is, it mustn’t wait around for
the picture to arrive before returning the cell. We must not gum up the
works; this method needs to return a cell immediately. The correct strategy,
if we don’t have the image yet, is to put a placeholder (or no image at all) in
the cell, and then see about downloading it.
The model object for a table row will be an instance of a dedicated Model
class, which is nothing but a bundle of properties:

class Model {

 var text : String! // text for the cell's text label

 var im : UIImage! // image for the cell's image view; initially nil

 var picurl : String! // url for downloading the image

 var task : URLSessionTask! // current download task, if any

}

Presume, for simplicity, that we have only one section. Then our table view
model is an array of Model. When the table turns to the data source for a
cell in tableView(_:cellForRowAt:), the data source will turn to the
model and consult the Model object corresponding to the requested row,
asking for its im property, which is supposed to be its image. Initially, this
will be nil. In that case, the data source will display no image in this cell,
and will immediately return a cell without an image.
We also want to request that the image be downloaded from this Model
object’s picurl. Later, when the image arrives and this Model object’s im is
no longer nil, we can reload the row, and this time tableView(_:cellFor
RowAt:) will find that image and display it in the cell.
This is an opportunity to exercise a feature of UITableView (and
UICollectionView) that I didn’t mention in Chapter 8 — prefetching. If we
assign to our table view’s prefetchDataSource property some object
adopting the UITableViewDataSourcePrefetching protocol, the runtime will
call that object’s delegate method tableView(_:prefetchRowsAt:) before
calling tableView(_:cellForRowAt:) — not only when the user is
scrolling a cell onto the screen, but when the user might scroll a cell onto
the screen.
This architecture allows us to separate provision of the data from provision
of the cell. For example, let’s say that initially the first 12 rows of the table
are displayed. Then the runtime will call tableView(_:prefetchRowsAt:)
for the next 12 rows — because if the user scrolls at all, those are the rows
that will come into view.

Presume, then, that we (self, the view controller) adopt
UITableViewDataSourcePrefetching, and that we have configured the table
view accordingly in our viewDidLoad:

override func viewDidLoad() {

 super.viewDidLoad()

 self.tableView.prefetchDataSource = self // turn on prefetching

}

Our implementation of tableView(_:cellForRowAt:) is trivial, just as it
should be; everything we need to know is right there in the Model object for
this row. The image displayed in the image view will be a downloaded
UIImage or nil, depending on whether the Model has acquired the image
for this row:

override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: self.cellID, for: indexPath)

 let m = self.model[indexPath.row]

 cell.textLabel!.text = m.text

 cell.imageView!.image = m.im // picture or nil

 return cell

}

Meanwhile, the runtime is busy calling tableView(_:prefetchRowsAt:)
for us. In this method we deal directly with the model data. We examine the
Model for the given row; if it already has an image, obviously the image
was already downloaded, so there’s nothing more to do. We also examine
the Model’s task; if it is not nil, that’s a marker that this image is currently
being downloaded, so there’s nothing more to do. Otherwise, we start the
download, storing the download task in the Model’s task as a sign that the
download for this row has been requested:

func tableView(_ tableView: UITableView,

 prefetchRowsAt indexPaths: [IndexPath]) {

 for ip in indexPaths {

 let m = self.model[ip.row]

 guard m.im == nil else { return } // we have a picture already

 guard m.task == nil else { return } // already downloading

 let url = URL(string:m.picurl)!

 m.task = self.downloader.download(url:url) { url in

 // ...

 }

 }

}

When the download finishes, our completion function is called. We reset
the Model’s task to nil, because we are no longer downloading. If the
image data has been successfully downloaded, we store it in the Model.
Now we call reloadRows for this row. There’s no telling when this will
happen; remember, the completion function is being called asynchronously.
But that doesn’t matter. If the row is visible on the screen, tableView(_:ce
llForRowAt:) will be called for this row, and the image will be displayed
now; if the row is no longer visible on the screen, there are no ill effects,
and the image is still stored, ready for the next time the row becomes
visible:

m.task = self.downloader.download(url:url) { url in

 m.task = nil

 if let url = url, let data = try? Data(contentsOf: url) {

 m.im = UIImage(data:data)

 tableView.reloadRows(at:[ip], with: .none)

 }

}

But there’s a problem. When the table view initially appears, the images are
all missing from the visible rows. That’s because the runtime calls tableVi
ew(_:prefetchRowsAt:) for the next 12 rows, but not for the 12 rows that
are initially visible! (I regard that as a bug in the table view architecture.)
However, it’s easy to deal with that; at the end of tableView(_:cellForRo
wAt:), I call tableView(_:prefetchRowsAt:) myself:

// ... same as before ...

cell.imageView!.image = m.im // picture or nil

if m.task == nil && m.im == nil {

 self.tableView(tableView, prefetchRowsAt:[indexPath])

}

return cell

Our table view is now working perfectly!
Further details are merely a matter of progressive refinement. For example,
if these are large images, we could end up retaining many large images in
the model array, which might cause us to run out of memory. There are lots

of ways to deal with that. We might start by reducing each image, as it
arrives, to the size needed for display. If that’s still too much memory, we
can implement tableView(_:didEndDisplaying:forRowAt:) to expunge
each image from its Model (by setting the Model object’s im to nil) when
the cell scrolls out of sight; if the cell comes back into view, we would then
automatically download the image again. Or, as we expunge the image from
the Model, we might save it to disk and substitute the file URL as its picur
l (with appropriate adjustments in the rest of the code).

Background Session
If your app goes into the background while in the middle of a normal
networking task, the task might not be completed. However, iOS provides a
way to request that a download or upload task be carried out regardless,
even if your app isn’t frontmost — indeed, even if your app isn’t running.
That way is to make the URLSession a background session. To do that,
assign it a URLSessionConfiguration created with the class method backgr
ound(withIdentifier:).
A background session hands the work of downloading over to the system.
Your app can be suspended or terminated and the download will still be
taken care of. As with location monitoring (Chapter 21), your app does not
formally run in the background just because you have a background session
with tasks, so you do not have to set the UIBackgroundModes of your
Info.plist. But the session still serves as a gateway for putting your app in
touch with the networking task as it proceeds; in particular, you need to
provide the URLSession with a delegate so that you can receive messages
informing you of how things are going.

The argument that you pass to background(withIdentifier:) is a string
identifier intended to distinguish your background session from all the other
background sessions that other apps have requested from the system. It
should be unique; a good approach is to use your app’s bundle ID as its
basis.

You may want to set the URLSessionConfiguration’s isDiscretionary to
true. This will permit the system to postpone network communications to
some moment that will conserve bandwidth and battery — for example,
when Wi-Fi is available, and the device is plugged into a power socket. Of
course, that might be days from now! But this is part of the beauty of
background downloads.

There is no need to set a background session’s waitsForConnectivity; it
is true automatically, and cannot be changed. Similarly, a task does not fail
if a background session’s timeoutIntervalForRequest arrives; the
background session will simply try again. However, a task is abandoned if
the timeoutIntervalForResource arrives.

New in iOS 11, you can also set your URLSessionTask’s earliestBeginDa
te. This is a date in the future; the start of the networking task is delayed
until after that date. You can also implement this delegate method:

urlSession(_:task:willBeginDelayedRequest:completionHandler:)

New in iOS 11; optional. If implemented, called only if your
URLSessionTask’s earliestBeginDate was set. The begin date has
arrived, and the system is thinking of starting the networking task. The
purpose of this method is to give your app a chance to change its mind
about this task, possibly canceling it or even substituting a different
request. The completion function takes two parameters; your job is to
call it, passing as its first argument a URLSession.DelayedRequestDis
position stating your decision:

.cancel (the second completion function argument will be nil)

.continueLoading (the second completion function argument will
be nil)

.useNewRequest (the second completion function argument will be
the new URLRequest)

Once the background session is configured and the task is told to resume,
the system is going to have to get back in touch with your code somehow

when it has a delegate message to send you. How it does this depends on
what state your app is in at that moment:

Your app is frontmost and still running
Your app may have gone into the background one or more times, but it
was never terminated, and it is frontmost now. In that case, your
background URLSession still exists and is still hooked to its delegate,
and the delegate messages are simply sent as usual.

Your app is not frontmost or was terminated
Your app is in the background or not running, or it is frontmost but it
was terminated since the time you told your task to resume. Now the
system needs to perform a handshake with your URLSession in order to
get in touch with it. To make that handshake possible, you must
implement these two methods:

application(_:handleEventsForBackgroundURLSession:completi

onHandler:)

This message is sent to the app delegate. The session: parameter
is the string identifier you handed earlier to the configuration object;
you might use this to identify the session, or to create and configure
the session if you haven’t done so already. You do not call the
completion function now! Instead, you must store it, because it will
be needed later.

urlSessionDidFinishEvents(forBackgroundURLSession:)

This message is sent to the session delegate. This is the moment
when you must call the previously stored completion function.

When the system wants to send you a delegate message, if your app is not
frontmost, it is awakened in the background and remains in the background.
If it is not running, it is launched in the background and remains in the
background. In the latter case, you should immediately create a
URLSession, giving it a URLSessionConfiguration initialized by calling ba
ckground(withIdentifier:) with the same identifier as before, and

assigning a session delegate, which will then be able to receive delegate
messages.
This is all much easier if the app delegate and the session delegate are one
and the same object. In this example, the app delegate holds the
URLSession property, which is created lazily; it also provides storage for
the completion function:

lazy var session : URLSession = {

 let id = "com.neuburg.matt.backgroundDownload"

 let config = URLSessionConfiguration.background(withIdentifier: id)

 config.allowsCellularAccess = false

 // could set config.isDiscretionary here

 let sess = URLSession(

 configuration: config, delegate: self, delegateQueue: .main)

 return sess

}()

var ch : (() -> ())!

The URLSessionDownloadDelegate methods are as before, plus we have
the two required handshake methods in case the system needs to get back in
touch with us:

func application(_ application: UIApplication,

 handleEventsForBackgroundURLSession identifier: String,

 completionHandler: @escaping () -> ()) {

 self.ch = completionHandler

 _ = self.session // *

}

func urlSessionDidFinishEvents(forBackgroundURLSession session: URLSession) {

 self.ch?()

}

The starred line will “tickle” the session lazy initializer and bring the
background session to life if needed.

TIP
If the user kills your app in the background by way of the app switcher interface, pending
background downloads will not be completed. The system assumes that the user doesn’t want your
app coming magically back to life in the background.

On-Demand Resources
Your app can store resources, such as images and sound files, on Apple’s
server instead of including them in the app bundle that the user initially
installs on the device. Your app can then download those resources as
needed when the app runs. Such resources are on-demand resources.
To designate a resource as being an on-demand resource in Xcode, you
assign it one or more tags (arbitrary strings); you can do this in many places
in the Xcode interface. A tag may be assigned to an individual resource or
to a folder. Any resources to which you have assigned tags are not copied
into the app when you build it; you have to obtain them as on-demand
resources, in code, when your app runs.
Your on-demand resource configuration is summarized and managed in the
Resource Tags pane of the target editor. Figure 23-1 shows the Resource
Tags pane displaying the "pix" tag, which has been attached to a folder
called images in my app bundle.

Figure 23-1. An on-demand resource

How do you obtain an on-demand resource? In code, you instantiate an
NSBundleResourceRequest, handing it the tags of the resources you want to
use. Let’s call this the request object. You will probably want to retain the
request object, probably in an instance property (I’ll talk more about that in
a moment). You then toggle access to the resource associated with those
tags by sending the request object these messages:

beginAccessingResources(completionHandler:)

Your completion function is called when the resources are available
(which could be immediately if they have already been downloaded).
Do not assume that the completion function runs on the main thread.
The parameter is an Optional Error. If it is nil, you can now use the
resources.
If your call causes the resources to be downloaded, you can track the
download progress using the NSBundleResourceRequest’s progress
property, which is a Progress object. This might be desirable if the
download causes a perceptible delay in your app’s action and you need
to let the user know what’s happening. Optimally, you might use a more
proactive strategy to prefetch the resources so that they are present by
the time the user needs them.

endAccessingResources

Lets the runtime know that you are no longer actively using these
resources. You are expected to call this method eventually. After that,
you can no longer access these resources. This doesn’t mean that the
resources will be deleted — but they might be.

Having called endAccessingResources, you should now abandon use
of this NSBundleResourceRequest instance; its life cycle is over. If you
need to access the same resources again, start over by creating a new
NSBundleResourceRequest and calling beginAccessingResources
again.

If your app is terminated before you call endAccessingResources, then on
relaunch you obviously have no NSBundleResourceRequest instance. But

that doesn’t matter, because you just keep following the same rules about
how to access the resources. When you need access to them, you create an
NSBundleResourceRequest and call beginAccessingResources; your
resources might still be present, in which case you will get access
immediately.
A request object, as I’ve already suggested, will probably need to persist,
most likely as an instance property of a view controller. Indeed, because an
individual NSBundleResourceRequest instance is tied to a specific set of
tags, and hence to a specific bunch of resources, you might need to keep
multiple request objects stored simultaneously. One reasonable strategy
might be to declare each instance property as an Optional of type NSBundle
ResourceRequest?. That way, you can set the property to nil when you’re
done with that request instance, so that you won’t accidentally use it again.
A more sophisticated approach might be to maintain a single mutable
dictionary of type [Set<String>:NSBundleResourceRequest], keyed by
the request object’s tags.
Your code that actually accesses on-demand resources does so in the normal
way. For example, if the resource is an image, you can access it using
UIImage’s init(named:). If it’s a data set in the asset catalog, you can
access it using NSDataAsset’s init(name:). If it is a resource at the top
level of the main bundle, you can get its URL by calling url(forResourc
e:withExtension:) on the bundle. And so forth.
What makes an on-demand resource special, from your code’s point of
view, is merely that your attempt to access it in this way will fail in good
order — you’ll get nil — until you have successfully called beginAccessi
ngResources. After a call to beginAccessingResources and a signal of
success in its completion function, the resources spring to life and you can
access them. After calling endAccessingResources, these values will all
be nil again, even if the resources have not been deleted.
How on earth does this architecture work? Is it a violation of the rule that
your app bundle can’t be modified? No; it’s all an ingenious illusion. In
actual fact, your on-demand resources are kept in your app’s

OnDemandResources directory, outside the app bundle — and the methods
that access resources are rejiggered so as to point to them, or to return nil,
as appropriate.
There are two special categories of on-demand resource tags (visible in
Figure 23-1) — initial install tags and prefetch tags:

Initial install tags
Resources with initial install tags are downloaded at the same time the
app is installed; in effect, they appear to be part of the app.

Prefetch tags
Resources with prefetch tags are downloaded automatically by the
system after the app is installed.

Neither of these special categories relieves you of the responsibility to call
beginAccessing before you actually use a tagged resource, nor does it
prevent the resources from being deleted if you are not accessing them. The
difference is that the desired resources will probably be already present
when you call beginAccessing early in the lifetime of the app.

TIP
Amazingly, you can test on-demand resources directly by running your app from Xcode. Also,
you can check the status of your on-demand resources in the Disk gauge of the Debug navigator.

In-App Purchases
An in-app purchase is a specialized form of network communication: your
app communicates with the App Store to permit the user to buy something
there, or to confirm that something has already been bought there. This is a
way to make your app itself inexpensive or free to download, while
providing an optional increased price in exchange for increased
functionality later. In-app purchases are made possible through the Store Kit
framework; you’ll need to import StoreKit.

There are various kinds of in-app purchase — consumables,
nonconsumables, and subscriptions. You’ll want to read the relevant
discussion in Apple’s In-App Purchase Configuration Guide for iTunes
Connect and In-App Purchase Programming Guide.
To configure an in-app purchase, you need first to use iTunes Connect to
create, in connection with your app, something that the user can purchase;
this is easiest to do if your app is already available through the App Store.
For a simple nonconsumable purchase, you are associating your app’s
bundle ID with a name and arbitrary product ID representing your in-app
purchase, along with a price.
In order to test your app’s in-app purchase interface and functionality, you
will want to create a special Apple ID, called a sandbox ID, for testing
purposes; you cannot test your in-app purchase interface without one.
Sandbox IDs are created and managed in the Users and Roles section of
iTunes Connect.
To test, you’ll need to do these things:

Test on a device. In-app purchases don’t work properly in the simulator
(in my experience).
On the device, sign out of your normal Apple ID.
Build and run directly from Xcode to the device. The development
profile embedded in the app is what tells the system that App Store
communication should remain inside the testing sandbox.

Now exercise your app. When the purchase dialog asks you for an Apple
ID, use the sandbox ID and password. As you test repeatedly, you will
probably need to delete the app from the device and sign out from the
sandbox ID before building and running afresh.

WARNING
If you accidentally perform the in-app purchase later when logged into the App Store with your
real Apple ID, you’ll be charged for the purchase and you won’t be able to get your money back.
Can you guess how I know that?

Here’s an example from an actual game app of mine, which offers a single
nonconsumable purchase: it unlocks functionality allowing users to involve
their own photos in the game by tapping the Choose button. When a user
taps the Choose button, if the in-app purchase has not been made, a pair of
dialogs will appear, offering and describing the purchase (Figure 23-2); if
the in-app purchase has been made, a UIImagePickerController’s view
appears instead (Chapter 17).

Figure 23-2. Interface for an in-app purchase

For a nonconsumable in-app purchase, the app must provide the following
interface (all of which is visible in Figure 23-2):

A place where the in-app purchase is described. You do not hard-code
the description into your app; rather, it is downloaded in real time from
the App Store, using the Display Name and Description (and price) that
you entered at iTunes Connect.
A button that launches the purchase process.
A button that restores an existing purchase. The idea here is that the user
has performed the purchase, but is now on a different device or has
deleted and reinstalled your app, so that the UserDefaults entry stating
that the purchase has been performed is missing. The user needs to be
able to contact the App Store to get your app to recognize that the
purchase has been performed and turn on the purchased functionality.

Both the actual purchase process and the actual restore process are
performed through dialogs presented by the system; the purpose of the

interface shown in Figure 23-2 is to give the user a way to initiate those
processes.
In my app, the purchase process proceeds in two stages. When the user taps
the Learn More button (on the left in Figure 23-2), I first confirm that the
user has not been restricted from making purchases; then I create an
SKProductsRequest, which will attempt to download an
SKProductsResponse object embodying the details about the in-app
purchase corresponding to my single product ID:

if !SKPaymentQueue.canMakePayments() {

 // ... put up alert saying we can't do it ...

 return

}

let req = SKProductsRequest(productIdentifiers: ["DiabelliChoose"])

req.delegate = self

req.start()

This kicks off some network activity, and eventually the delegate of this
SKProductsRequest, namely self (conforming to
SKProductsRequestDelegate), is called back with one of two delegate
messages. If we get request(_:didFailWithError:), I put up an
apologetic alert, and that’s the end. But if we get productsRequest(_:did
Receive:), the request has succeeded, and we can proceed to the second
stage.

In productsRequest(_:didReceive:), the response from the App Store
arrives as the second parameter. It is an SKProductsResponse object
containing an SKProduct representing the proposed purchase. I create the
second view controller, give it a reference to the SKProduct, and present it:

func productsRequest(_ request: SKProductsRequest,

 didReceive response: SKProductsResponse) {

 let p = response.products[0]

 let s = StoreViewController2(product:p)

 // and on to the next view controller

 if let presenter = self.presentingViewController {

 self.dismiss(animated: true} {

 presenter.present(s, animated: true)

 }

 }

}

My second view controller is now being presented (on the right in
Figure 23-2). This view controller has a product property that was set in its
initializer. In its viewDidLoad, it populates its interface based on the
information that the product contains (for my lend utility, see
Appendix B):

self.titleLabel.text = self.product.localizedTitle

self.descriptionLabel.text = self.product.localizedDescription

self.priceLabel.text = lend { (nf : NumberFormatter) in

 nf.formatterBehavior = .behavior10_4

 nf.numberStyle = .currency

 nf.locale = self.product.priceLocale

}.string(from: self.product.price)

If the user taps the Purchase button, I dismiss the presented view controller,
load the SKProduct into the default SKPaymentQueue, and stand back:

self.dismiss(animated: true) {

 let p = SKPayment(product:self.product)

 SKPaymentQueue.default().add(p)

}

The system is now in charge of presenting a sequence of dialogs,
confirming the purchase, asking for the user’s App Store password, and so
forth. My app knows nothing about that. If the user performs the purchase,
however, the runtime will call paymentQueue(_:updatedTransactions:)
on my transaction observer, which is an object adopting the
SKPaymentTransactionObserver protocol whose job it will be to receive
messages from the payment queue. But how does the runtime know who
that is? When my app launches, it must register the transaction observer:

func application(application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 SKPaymentQueue.default().add(

 self.window!.rootViewController

 as! SKPaymentTransactionObserver)

 return true

}

As you can see, I’ve made my root view controller the transaction observer.
It adopts the SKPaymentTransactionObserver protocol. There is only one
required method — paymentQueue(_:updatedTransactions:). It is
called with a reference to the payment queue and an array of
SKPaymentTransaction objects. My job is to cycle through these
transactions and, for each one, do whatever it requires, and then, if there
was an actual transaction (or an error), send finishTransaction(_:) to
the payment queue, to clear the queue.
My implementation is extremely simple, because I have only one
purchasable product, and because I’m not maintaining any separate record
of receipts. For each transaction, I check its transactionState
(SKPaymentTransactionState). If its state is .purchased, I pull out its paym
ent, confirm that the payment’s productIdentifier is my product
identifier (it had darned well better be, since I have only the one product),
and, if so, I throw the UserDefaults switch that indicates to my app that the
user has performed the purchase:

func paymentQueue(_ queue: SKPaymentQueue,

 updatedTransactions transactions: [SKPaymentTransaction]) {

 for t in transactions {

 switch t.transactionState {

 case .purchasing, .deferred: break // do nothing

 case .purchased, .restored:

 let p = t.payment

 if p.productIdentifier == "DiabelliChoose" {

 UserDefaults.standard.set(true, forKey: CHOOSE)

 // ... put up an alert thanking the user ...

 queue.finishTransaction(t)

 }

 case .failed:

 queue.finishTransaction(t)

 }

 }

}

Finally, let’s talk about what happens when the user taps the Restore button
(on the left in Figure 23-2). It’s very simple; I just tell the default
SKPaymentQueue to restore any existing purchases:

self.dismiss(animated: true) {

 SKPaymentQueue.default().restoreCompletedTransactions()

}

Again, what happens now in the interface is out of my hands; the system
will present the necessary dialogs. If the purchase is restored, however, my
transaction observer will be sent paymentQueue(_:updatedTransaction
s:) with a transactionState of .restored. We pass through exactly the
same case in my switch as if the user had freshly purchased the app; as
before, I throw the UserDefaults switch indicating that the user has
performed the purchase.
There remains one piece of the puzzle: what if the user taps the Restore
button and the purchase is not restored? This can happen, for example,
because the user is lying or mistaken about having previously made this
purchase. In that case, paymentQueue(_:updatedTransactions:) is not
called. I regard this as a bug in the store architecture; in my view, we should
be called with a .failed transaction state, so that I can learn what just
happened.
As a workaround, I also implement the SKPaymentTransactionObserver
method paymentQueueRestoreCompletedTransactionsFinished(_:). It
is called after any restoration attempt where communication with the store
was successful. This method still gives us no way to learn definitively what
happened, but if paymentQueue(_:updatedTransactions:) is called, it is
called first, so if the UserDefaults switch has not been thrown, we can guess
that restoration failed because the user has never made the purchase in the
first place.

Chapter 24. Threads

A thread is a subprocess of your app that can execute even while other
subprocesses are also executing. Such simultaneous execution is called
concurrency. The iOS frameworks use threads all the time; if they didn’t,
your app would be less responsive to the user — perhaps even completely
unresponsive. For the most part, however, the iOS frameworks use threads
behind the scenes on your behalf; you don’t have to worry about threads
because the frameworks are worrying about them for you.
For example, suppose your app is downloading something from the network
(Chapter 23). This download doesn’t happen all by itself; somewhere,
someone is running code that interacts with the network and obtains data.
Yet none of that interferes with your code, or prevents the user from tapping
and swiping things in your interface. The networking code runs “in the
background.” That’s concurrency in action.
This chapter discusses concurrency that involves your code in the use of
background threads. It would have been nice to dispense with this topic
altogether. Background threads can be tricky and are always potentially
dangerous, and should be avoided if possible. However, sometimes you
can’t avoid them. So this chapter introduces threads. But beware:
background threads entail complications and subtle pitfalls, and can make
your code hard to debug. There is much more to threads, and especially to
making your threaded code safe, than this chapter can possibly touch on.
For detailed information about the topics introduced in this chapter, read
Apple’s Concurrency Programming Guide and Threading Programming
Guide.

Main Thread
Distinguish between the main thread and all other threads. There is only one
main thread; other threads are background threads. All your code must run

on some thread, but you are not usually conscious of this fact, because that
thread is usually the main thread. The reason your code runs on the main
thread is that the Cocoa frameworks ensure that this is so. How? Well, the
only reason your code ever runs is that Cocoa calls it. When Cocoa does
this, it is generally careful to call your code from the main thread.
Whenever code calls a function, that function runs on the same thread as the
code that called it. Thus, your code runs on the main thread.
The main thread is the interface thread. This means that the main thread is
the meeting-place between you and your user. When the user interacts with
the interface, those interactions are reported as events on the main thread.
When your code interacts with the interface, it must do so on the main
thread. Of course that will usually happen automatically, because your code
normally runs on the main thread. But when you are involved with
background threads, you must be careful.
So pretend now that I’m banging the table and shouting: If your code
touches the interface, it must do so on the main thread. Don’t fetch any
interface-related values on a background thread. Don’t set any interface-
related values on a background thread. Whenever you use background
threads, there is a chance you might touch the interface on a background
thread. Don’t!
Unfortunately, touching the interface on a background thread is a very
common beginner mistake. A typical sign of trouble in this regard is an
unaccountable delay of several seconds. In some cases, the console will also
help with a warning. But in other, less fortunate cases, you might touch the
interface on a background thread and never know it. New in Xcode 9, the
Main Thread Checker will automatically report runtime violations, where
your code touches the interface on a background thread; the Main Thread
Checker is a diagnostic in your scheme’s Run and Test actions, and is
turned on by default (and I strongly recommend that you leave it turned on;
Figure 24-1).

Figure 24-1. The Main Thread Checker is watching you

Since you and the user are both using the main thread, the main thread is a
very busy place. Imagine how things proceed in your app:

1. An event arrives — on the main thread. The user has tapped a button,
for example, and this is reported to your app as a UIEvent, which
passes to the button through the touch delivery mechanism
(Chapter 5) — on the main thread.

2. The button emits a control event that causes your code (the button’s
action method) to be called — on the main thread. Your code now
runs — on the main thread. While your code runs, nothing else can
happen on the main thread. Your code might perform some changes in
the interface; this is safe, because your code is running on the main
thread.

3. Your code finishes. The main thread’s run loop is now free to report
more events, and the user is free to interact with the interface once
again.

The bottleneck here is obviously step 2, the running of your code. Your
code runs on the main thread. That means the main thread can’t do anything
else while your code is running. No events can arrive while your code is
running. The user can’t interact with the interface while your code is
running. Main thread code blocks the main thread — two things can’t

happen on the main thread at the same time — and therefore blocks the
interface. But this is usually no problem, because:

Your code is fast
Your code executes really fast. It’s true that the user can’t interact with
the interface while your code runs, but this is such a tiny interval of time
that the user will probably never even notice.

Blocking briefly is good
Your code, as it runs, blocks the user from interacting with the interface.
As long as your code finishes quickly, that’s actually a good thing. Your
code, in response to what the user does, might update the interface; it
would be insane if the user could do something else in the interface
while you’re in the middle of updating it.

The iOS frameworks frequently operate on background threads. This
usually doesn’t affect you, because the frameworks usually talk to your
code on the main thread. You have seen many examples of this in the
preceding chapters:

During an animation (Chapter 4), the interface remains responsive to the
user, and it is possible for your code to run. The Core Animation
framework is running the animation and updating the presentation layer
on a background thread. But your delegate methods and completion
functions are called on the main thread.
A web view’s fetching and loading of its content is asynchronous
(Chapter 11); that means the work is done in a background thread. But
your delegate methods are called on the main thread.
Sounds are played asynchronously (Chapters 14 and 16). But your
delegate methods are called on the main thread. Similarly, loading,
preparation, and playing of movies happens asynchronously
(Chapter 15). But your delegate methods are called on the main thread.
Saving a movie file takes time (Chapters 15 and 17). So the saving takes
place on a background thread. Similarly, UIDocument saves and reads

on a background thread (Chapter 22). But your delegate methods and
completion functions are called on the main thread.

Thus, you can (and should) usually ignore the existence of background
threads and just keep plugging away on the main thread.
Nevertheless, there are two kinds of situation in which your code will need
to be explicitly aware of background threads:

Your code is called back, but not on the main thread
Some frameworks explicitly inform you in their documentation that
callbacks are not guaranteed to take place on the main thread. For
example, the documentation on CATiledLayer (Chapter 7) warns that dr
aw(_:in:) is called on a background thread. By implication, our draw
(_:) code, triggered by CATiledLayer to update tiles, is running on a
background thread. (Fortunately, drawing into the current graphics
context is thread-safe.)
Similarly, the documentation on AV Foundation (Chapters 15 and 17)
warns that its completion functions and notifications can arrive on a
background thread. So if you intend to update the user interface, or use
a value that might also be used by your main-thread code, you’ll need to
be thread-conscious.

Your code takes significant time
If your code takes significant time to run, you might need to run that
code on a background thread, rather than letting it block the main thread
and prevent anything else from happening there:

During launch and other app state transitions

For example, in Chapter 22, I called URL(forUbiquityContainerI
dentifier:) during app launch. The documentation told me to call
this method on a background thread, because it can take some time
to return; we don’t want to block the main thread waiting for it,
because the app is trying to launch on the main thread, and the user
won’t see our interface until the launch process is over. Similarly,
when your app is in the process of being suspended into the

background, or resumed from the background, your app should not
occupy the main thread; it must act quickly and get out of the way.

When the user can see or interact with the app

For example, in Chapter 19, I called enumerateEvents(matching:
using:) on a background thread, because it can take some time to
run. If I were to call this method on the main thread, then when the
user taps the button that triggers this call, the button might stay
highlighted for a significant amount of time, during which the
interface will be completely frozen. I would be perceptibly blocking
the main thread. Similarly, in a table view data source (Chapter 8), t
ableView(_:cellForRowAt:) needs to be fast. Otherwise, the user
won’t be able to scroll the table view; you’ll be freezing the
interface because you are blocking the main thread.

WARNING
Moving time-consuming code off the main thread, so that the main thread is not blocked, isn’t just
a matter of aesthetics or politeness: the system “watchdog” will summarily kill your app if it
discovers that the main thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the
path of execution, one statement at a time. Successive lines of code, in
effect, are performed in the order in which they appear, and nothing else
happens between them. With threading, that certainty goes right out the
window.
If you have code that can be performed on a background thread, then you
don’t know when your code will be performed. Your code is now
concurrent. This means that any line of your background-thread code could
be interleaved between any two lines of your main-thread code. Indeed,
under certain circumstances, your background-thread code can be called

multiple times on multiple background threads, meaning that any line of
your background-thread code could be interleaved between any two lines of
itself.
The reason this can be problematic is because of shared data. There are
variables in your app, such as instance properties, that persist and can be
accessed from multiple places. Background threads mean that such
variables can be accessed at unexpected moments. That is a really scary
thought. Suppose, while one thread is in the middle of using a variable,
another thread changes it. Who knows what horrors might result?
This problem cannot be solved by simple logic. For example, suppose you
try to make access to a variable safe with a condition, as in this pseudocode:

if no other thread is touching this variable {

 ... do something to the variable ...

}

Such logic is specious. Suppose the condition succeeds: no other thread is
touching this variable. But between the time when that condition is
evaluated and the time when the next line executes and you start to do
something to the variable, another thread can still come along and start
touching the variable!
It is possible to request assistance at a deeper level to ensure that a section
of code is not run by two threads simultaneously. For example, you can
implement a lock around a section of code. But locks generate an entirely
new level of potential pitfalls. In general, a lock is an invitation to forget to
use the lock, or to forget to remove the lock after you’ve set it. And threads
can end up contending for a lock in a way that permits neither thread to
proceed.
Another problem has to do with thread lifetimes. The lifetime of a thread is
independent of the lifetimes of other objects in your app. When an object is
about to go out of existence and its deinit has been called and executed,
you are supposed to be guaranteed that none of your code in that object will
ever run again. But a thread might still be running, and might try to talk to
your object, even after your object has supposedly gone out of existence.

This can result in a crash, if you’re lucky; if you’re not lucky, your object
might become a kind of zombie.
Not only is threaded code hard to get right; it’s also hard to test and hard to
debug. It introduces indeterminacy, so you can easily make a mistake that
never appears in your testing, but that does appear for some user. The real
danger is that the user’s experience will consist only of distant
consequences of your mistake, long after the point where you made it,
making the true cause of the problem extraordinarily difficult to track down.
Perhaps you think I’m trying to scare you away from using threads. You’re
right! For an excellent (and suitably frightening) account of some of the
dangers and considerations that threading involves, see Apple’s technical
note Simple and Reliable Threading with NSOperation. If terms like race
condition and deadlock don’t strike fear into your veins, look them up on
Wikipedia.
Naturally, Xcode provides lots of aids to assist you in studying your app’s
use of threads. The Debug navigator distinguishes threads; you can even see
pending calls and learn when a call was enqueued. When you call NSLog,
the output in the console displays a number (in square brackets, after the
colon) identifying the thread on which it was called. In Instruments, the
Time Profiler records activity on different threads. And the Thread Sanitizer
(visible in Figure 24-1) can help catch threading violations that would
otherwise be difficult to track down.

Blocking the Main Thread
To illustrate making your code multithreaded, I need some code that is
worth making multithreaded. I’ll use as my example an app that draws the
Mandelbrot set. (This code is adapted from a small open source project
found on the Internet.) All it does is draw the basic Mandelbrot set in black
and white, but that’s a sufficiently elaborate calculation to introduce a
significant delay, especially on an older, slower device. The idea is then to
see how we can safely get that delay off the main thread.

The app contains a UIView subclass, MyMandelbrotView, which has one
property, a CGContext called bitmapContext. Here’s MyMandelbrotView:

let MANDELBROT_STEPS = 1000 // determines how long the calculation takes

var bitmapContext: CGContext!

// jumping-off point: draw the Mandelbrot set

func drawThatPuppy () {

 self.makeBitmapContext(size: self.bounds.size)

 let center = CGPoint(self.bounds.midX, self.bounds.midY)

 self.draw(center: center, bounds: self.bounds, zoom: 1)

 self.setNeedsDisplay()

}

// create bitmap context

func makeBitmapContext(size:CGSize) {

 var bitmapBytesPerRow = Int(size.width * 4)

 bitmapBytesPerRow += (16 - (bitmapBytesPerRow % 16)) % 16

 let colorSpace = CGColorSpaceCreateDeviceRGB()

 let prem = CGImageAlphaInfo.premultipliedLast.rawValue

 let context = CGContext(data: nil,

 width: Int(size.width), height: Int(size.height),

 bitsPerComponent: 8, bytesPerRow: bitmapBytesPerRow,

 space: colorSpace, bitmapInfo: prem)

 self.bitmapContext = context

}

// draw pixels of bitmap context

func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat) {

 func isInMandelbrotSet(_ re:Float, _ im:Float) -> Bool {

 var fl = true

 var (x, y, nx, ny) : (Float, Float, Float, Float) = (0,0,0,0)

 for _ in 0 ..< MANDELBROT_STEPS {

 nx = x*x - y*y + re

 ny = 2*x*y + im

 if nx*nx + ny*ny > 4 {

 fl = false

 break

 }

 x = nx

 y = ny

 }

 return fl

 }

 self.bitmapContext.setAllowsAntialiasing(false)

 self.bitmapContext.setFillColor(red: 0, green: 0, blue: 0, alpha: 1)

 var re : CGFloat

 var im : CGFloat

 let maxi = Int(bounds.size.width)

 let maxj = Int(bounds.size.height)

 for i in 0 ..< maxi {

 for j in 0 ..< maxj {

 re = (CGFloat(i) - 1.33 * center.x) / 160

 im = (CGFloat(j) - 1.0 * center.y) / 160

 re /= zoom

 im /= zoom

 if (isInMandelbrotSet(Float(re), Float(im))) {

 self.bitmapContext.fill(

 CGRect(CGFloat(i), CGFloat(j), 1.0, 1.0))

 }

 }

 }

}

// turn pixels of bitmap context into CGImage, draw into ourselves

override func draw(_ rect: CGRect) {

 if self.bitmapContext != nil {

 let context = UIGraphicsGetCurrentContext()!

 let im = self.bitmapContext.makeImage()

 context.draw(im!, in: self.bounds)

 }

}

The draw(center:bounds:zoom:) method, which calculates the pixels of
self.bitmapContext, is time-consuming, and we can see this by running
the app on a device. If the entire process is kicked off by tapping a button
whose action method calls drawThatPuppy, there is a significant delay
before the Mandelbrot graphic appears in the interface, during which time
the button remains highlighted. This is a sure sign that we are blocking the
main thread.
We need to move the calculation-intensive part of this code onto a
background thread, so that the main thread is not blocked by the
calculation. In doing so, we have two chief concerns:

Synchronization of threads

The button is tapped, and drawThatPuppy is called, on the main thread.
setNeedsDisplay is thus also called on the main thread — and rightly
so, since this affects the interface — and so draw(_:) is rightly called
on the main thread as well. In between, however, the calculation-
intensive draw(center:bounds:zoom:) is to be called on a

background thread. Yet these three methods must still run in order: draw
ThatPuppy on the main thread, then draw(center:bounds:zoom:) on
a background thread, then draw(_:) on the main thread. But threads are
concurrent, so how will we ensure this?

Shared data

The property self.bitmapContext is referred to in three different
methods — in makeBitmapContext(size:), and in draw(center:bou
nds:zoom:), and in draw(_:). But we have just said that those three
methods involve two different threads; they must not be permitted to
touch the same property in a way that might conflict or clash. Indeed,
because draw(center:bounds:zoom:) runs on a background thread, it
might run on multiple background threads simultaneously; the access to
self.bitmapContext by draw(center:bounds:zoom:) must not be
permitted to conflict or clash with itself. How will we ensure this?

Manual Threading
A naïve way of dealing with our time-consuming code would involve
spawning off a background thread as we reach the calculation-intensive part
of the procedure, by calling performSelector(inBackground:with:).
This is a very bad idea, and you should not imitate the code in this section.
I’m showing it to you only to demonstrate how horrible it is.

Adapting your code to use performSelector(inBackground:with:) is
not at all simple. There is additional work to do:

Pack the arguments

The method designated by the selector in performSelector(inBackgr
ound:with:) can take only one parameter, whose value you supply as
the second argument. So if you want to pass more than one piece of
information into the thread, you’ll need to pack it into a single object.
Typically, this will be a dictionary.

Set up an autorelease pool

Background threads don’t participate in the global autorelease pool. So
the first thing you must do in your threaded code is to wrap everything
in an autorelease pool. Otherwise, you’ll probably leak memory as
autoreleased objects are created behind the scenes and are never
released.

We’ll rewrite MyMandelbrotView to use manual threading. Because our dr
aw(center:bounds:zoom:) method takes three parameters, the argument
that we pass into the thread will have to pack that information into a
dictionary. Once inside the thread, we’ll set up our autorelease pool and
unpack the dictionary. This will all be much easier if we interpose a
trampoline method between drawThatPuppy and draw(center:bounds:zo
om:). So our implementation now starts like this:

func drawThatPuppy () {

 self.makeBitmapContext(size:self.bounds.size)

 let center = CGPoint(self.bounds.midX, self.bounds.midY)

 let d : [AnyHashable:Any] =

 ["center":center, "bounds":self.bounds, "zoom":CGFloat(1)]

 self.performSelector(inBackground: #selector(reallyDraw), with: d)

}

// trampoline, background thread entry point

@objc func reallyDraw(_ d: [AnyHashable:Any]) {

 autoreleasepool {

 self.draw(center: d["center"] as! CGPoint,

 bounds: d["bounds"] as! CGRect,

 zoom: d["zoom"] as! CGFloat)

 // ...

 }

}

The comment with the ellipsis indicates a missing piece of functionality: we
have yet to call setNeedsDisplay, which will cause the actual drawing to
take place. This call used to be in drawThatPuppy, but that is now too soon;
the call to performSelector(inBackground:with:) launches the thread
and returns immediately, so our bitmapContext property isn’t ready yet.
Clearly, we need to call setNeedsDisplay after draw(center:bounds:zo

om:) has finished generating the pixels of the graphics context. We can do
this at the end of our trampoline method reallyDraw(_:).

But then we must remember that reallyDraw(_:) runs in a background
thread. Because setNeedsDisplay is a form of communication with the
interface, we should call it on the main thread, with performSelector(onM
ainThread:with:waitUntilDone:). For maximum flexibility, it will
probably be best to implement a second trampoline method:

// trampoline, background thread entry point

func reallyDraw(_ d: [AnyHashable:Any]) {

 autoreleasepool {

 self.draw(center: d["center"] as! CGPoint,

 bounds: d["bounds"] as! CGRect,

 zoom: d["zoom"] as! CGFloat)

 self.performSelector(onMainThread: #selector(allDone), with: nil,

 waitUntilDone: false)

 }

}

// called on main thread! background thread exit point

@objc func allDone() {

 self.setNeedsDisplay()

}

This works, in the sense that when we tap the button, it is highlighted
momentarily and then immediately unhighlighted; the time-consuming
calculation is taking place on a background thread. But the seeds of
nightmare are already sown:

We now have a single object, MyMandelbrotView, some of whose
methods are to be called on the main thread and some on a background
thread; this invites us to become confused at some later time.
The main thread and the background thread are constantly sharing a
piece of data, the instance property self.bitmapContext; this is messy
and fragile. And what’s to stop some other code from coming along and
triggering draw(_:) while draw(center:bounds:zoom:) is in the
middle of manipulating the bitmap context that draw(_:) draws?

To solve these problems, we might need to use locks, and we would
probably have to manage the thread more explicitly. Such code can become
quite elaborate and difficult to understand; guaranteeing its integrity is even
more difficult. There are much better ways, and I will now demonstrate two
of them.

Operation
An excellent strategy is to turn to a brilliant pair of classes, Operation and
OperationQueue. The essence of Operation is that it encapsulates a task, not
a thread. You don’t concern yourself with threads directly; the threading is
determined for you by an OperationQueue. You describe the task as an
Operation, and add it to an OperationQueue to set it going. You arrange to
be notified when the task ends, typically by the Operation posting a
notification. (You can also safely query both the queue and its operations
from outside with regard to their state.)
We’ll rewrite MyMandelbrotView to use Operation and OperationQueue.
We need an OperationQueue property; we’ll call it queue, and we’ll create
the OperationQueue and configure it in the property’s initializer:

let queue : OperationQueue = {

 let q = OperationQueue()

 // ... further configurations can go here ...

 return q

}()

We also have a new class, MyMandelbrotOperation, an Operation subclass.
(It is possible to take advantage of a built-in Operation subclass such as
BlockOperation, but I’m deliberately illustrating the more general case by
subclassing Operation itself.) Our implementation of drawThatPuppy
creates an instance of MyMandelbrotOperation, configures it, registers for
its notification, and adds it to the queue:

func drawThatPuppy () {

 let center = CGPoint(self.bounds.midX, self.bounds.midY)

 let op = MyMandelbrotOperation(

 center: center, bounds: self.bounds, zoom: 1)

 NotificationCenter.default.addObserver(self,

 selector: #selector(operationFinished),

 name: .mandelOpFinished, object: op)

 self.queue.addOperation(op)

}

Our time-consuming calculations will be performed by
MyMandelbrotOperation. An Operation subclass, such as
MyMandelbrotOperation, will typically have at least two methods:

A designated initializer
The Operation may need some configuration data. Once the Operation
is added to a queue, it’s too late to talk to it, so you’ll usually hand it
this configuration data as you create it, in its designated initializer.

A main method
This method will be called automatically by the OperationQueue when
it’s time for the Operation to start.

MyMandelbrotOperation has three private properties center, bounds, and
zoom, to be set in its initializer; it must be told MyMandelbrotView’s
geometry explicitly because it is completely separate from
MyMandelbrotView. MyMandelbrotOperation also has its own CGContext
property, bitmapContext; it must be publicly gettable so that
MyMandelbrotView can retrieve the finished graphics context. Note that
this is different from MyMandelbrotView’s bitmapContext, thus helping to
solve the problem of sharing data promiscuously between threads:

private let center : CGPoint

private let bounds : CGRect

private let zoom : CGFloat

private(set) var bitmapContext : CGContext! = nil

init(center c:CGPoint, bounds b:CGRect, zoom z:CGFloat) {

 self.center = c

 self.bounds = b

 self.zoom = z

 super.init()

}

makeBitmapContext(size:) and draw(center:bounds:zoom:), the
methods that perform the time-consuming calculation, have been
transferred from MyMandelbrotView to MyMandelbrotOperation
unchanged; the only difference is that when these methods refer to self.bi
tmapContext, that now means MyMandelbrotOperation’s bitmapContext
property:

let MANDELBROT_STEPS = 1000

func makeBitmapContext(size:CGSize) {

 // ... same as before

}

func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat) {

 // ... same as before

}

Finally, we come to MyMandelbrotOperation’s main method. First, we
check the Operation isCancelled property to make sure we haven’t been
cancelled while sitting in the queue; this is good practice. Then, we do
exactly what drawThatPuppy used to do, initializing our graphics context
and drawing into its pixels. At that point, the calculation is over and it’s
time for MyMandelbrotView to come and fetch our data. There are two
ways in which MyMandelbrotView can learn this; either main can post a
notification through the NotificationCenter, or MyMandelbrotView can use
key–value observing to be notified when our isFinished property changes.
We’ve chosen the former approach; observe that we check one more time to
make sure we haven’t been cancelled:

override func main() {

 guard !self.isCancelled else {return}

 self.makeBitmapContext(size: self.bounds.size)

 self.draw(center: self.center, bounds: self.bounds, zoom: self.zoom)

 if !self.isCancelled {

 NotificationCenter.default.post(

 name: .mandelOpFinished, object: self)

 }

}

Now we are back in MyMandelbrotView, hearing through the notification
that MyMandelbrotOperation has finished. We must immediately pick up
any required data, because the OperationQueue is about to release this
Operation. However, we must be careful; the notification may have been
posted on a background thread, in which case our method for responding to
it will also be called on a background thread. We are about to set our own
graphics context and tell ourselves to redraw; those are things we want to
do on the main thread. So we immediately step out to the main thread
(using Grand Central Dispatch, described more fully in the next section).
We remove ourselves as notification observer for this operation instance,
copy the operation’s bitmapContext into our own bitmapContext, and
we’re ready to redraw:

// warning! called on background thread

@objc func operationFinished(_ n:Notification) {

 if let op = n.object as? MyMandelbrotOperation {

 DispatchQueue.main.async {

 NotificationCenter.default.removeObserver(self,

 name: .mandelOpFinished, object: op)

 self.bitmapContext = op.bitmapContext

 self.setNeedsDisplay()

 }

 }

}

Adapting our code to use Operation has involved some work, but the result
has many advantages that help to ensure that our use of multiple threads is
coherent and safe:

The background task is encapsulated
Because MyMandelbrotOperation is an object, we’ve been able to move
all the code having to do with drawing the pixels of the Mandelbrot set
into it. The only MyMandelbrotView method that can be called in the
background is operationFinished(_:), and that’s a method we’d
never call explicitly ourselves, so we won’t misuse it accidentally —
and it immediately steps out to the main thread in any case.

The data sharing is rationalized

Because MyMandelbrotOperation is an object, it has its own bitmapCon
text property. The only moment of data sharing comes in operationFi
nished(_:), when we must set MyMandelbrotView’s bitmapContext
to MyMandelbrotOperation’s bitmapContext — and that happens on
the main thread, so there’s no danger. Even if multiple
MyMandelbrotOperation objects are added to the queue, they are
separate objects with separate bitmapContext properties, which
MyMandelbrotView retrieves only on the main thread, so there is no
conflict.

The threads are synchronized
The calculation-intensive operation doesn’t start until
MyMandelbrotView tells it to start (self.queue.addOperation(op)).
MyMandelbrotView then takes its hands off the steering wheel and
makes no attempt to draw itself. If draw(_:) is unexpectedly called by
the runtime, self.bitmapContext will be nil or will contain the
results of an earlier calculation operation, and no harm done. Nothing
else happens until the operation ends and the notification arrives (opera
tionFinished(_:)); then and only then does MyMandelbrotView
update the interface — on the main thread.

If we are concerned with the possibility that more than one instance of
MyMandelbrotOperation might be added to the queue and executed
concurrently, we have a further line of defense — we can set the
OperationQueue’s maximum concurrency level to 1:

let q = OperationQueue()

q.maxConcurrentOperationCount = 1

This turns the OperationQueue into a serial queue: every operation on the
queue must be completely executed before the next can begin. This might
cause an operation added to the queue to take longer to execute, if it must
wait for another operation to finish before it can even get started; however,
this delay might not be important. What is important is that by executing
the operations on this queue separately from one another, we guarantee that

only one operation at a time can do any data sharing. A serial queue is thus
implicitly a safe and reliable form of data locking.
Because MyMandelbrotView can be destroyed (if, for example, its view
controller is destroyed), there is still a risk that it will create an operation
that will outlive it and will try to access it after it has been destroyed. We
can reduce that risk by canceling all operations in our queue as
MyMandelbrotView goes out of existence:

deinit {

 self.queue.cancelAllOperations()

}

There is more to know about Operation; it’s a powerful tool. One Operation
can have another Operation as a dependency, meaning that the former
cannot start until the latter has finished, even if they are in different
OperationQueues. Moreover, the behavior of an Operation can be
customized; for example, an Operation subclass can redefine what isReady
means and thus can control when it is capable of execution. Thus,
Operations can be combined to express your app’s logic, guaranteeing that
one thing happens before another (cogently argued in a brilliant WWDC
2015 video).

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to
Operation and OperationQueue; in fact, OperationQueue uses GCD under
the hood. When I say GCD is low-level, I’m not kidding; it is effectively
baked into the operating system kernel. Thus it can be used by any code
whatsoever and is tremendously efficient.
GCD is like OperationQueue in that it uses queues: you express a task and
add it to a queue, and the task is executed on a thread as needed. A GCD
queue is represented by a dispatch queue (DispatchQueue), a lightweight
opaque pseudo-object consisting essentially of a list of functions to be
executed. You can use a built-in system queue or you can make your own; if

you make your own, your queue by default is a serial queue, with each task
on that queue finishing before the next is started, which, as I’ve already
said, is a form of data locking.
We’ll rewrite MyMandelbrotView to use GCD. We start by creating a queue
and storing it in an instance property:

let MANDELBROT_STEPS = 1000

var bitmapContext: CGContext!

let draw_queue = DispatchQueue(label: "com.neuburg.mandeldraw")

Our goal is to eliminate data sharing, so our makeBitmapContext(size:)
method now returns a graphics context rather than setting a property
directly:

func makeBitmapContext(size:CGSize) -> CGContext {

 // ... as before ...

 let context = CGContext(data: nil,

 width: Int(size.width), height: Int(size.height),

 bitsPerComponent: 8, bytesPerRow: bitmapBytesPerRow,

 space: colorSpace, bitmapInfo: prem)

 return context!

}

For the same reason, our draw(center:bounds:zoom:) method now takes
an additional context: parameter, the graphics context to draw into, and
operates on that context without ever referring to self.bitmapContext:

func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat, context:CGContext) {

 // ... as before, but we refer to local context, not self.bitmapContext

}

Now for the implementation of drawThatPuppy. This is where all the action
is:

func drawThatPuppy () {

 let center = CGPoint(self.bounds.midX, self.bounds.midY)

 let bounds = self.bounds

 self.draw_queue.async {

 let bitmap = self.makeBitmapContext(size: bounds.size)

 self.draw(center: center, bounds: bounds, zoom: 1, context: bitmap)

 DispatchQueue.main.async {

 self.bitmapContext = bitmap

 self.setNeedsDisplay()

 }

 }

}

That’s all there is to it: all our app’s multithreading is concentrated in those
few lines! There are no notifications; there is no sharing of data between
threads; and the synchronization of our threads is expressed directly
through the sequential order of the code.

Our code makes two calls to the DispatchQueue async method, which takes
as its parameter a function — usually, an anonymous function —
expressing what we want done asynchronously on this queue. This is the
GCD method you’ll use most, because asynchronous execution will be your
primary reason for using GCD in the first place. It has several optional
parameters, but we don’t need any of them here; we simply supply an
anonymous function.

Our two calls to async are nested — the first call takes an anonymous
function, which contains the second call, which takes another anonymous
function. This nesting is crucial, because trailing anonymous functions are
closures that can see the higher surrounding scope. As a result, we don’t
need to use any passing of parameters from an outer scope to an inner
scope. The local variables center and bounds simply “fall” into the
anonymous function of the first call to async, and the local variable bitmap
simply “falls” into the anonymous function of the second call to async.
Thus there is no data sharing, because values cascade sequentially from one
scope into the next.

Here’s how drawThatPuppy works:
We begin by calculating our center and bounds. These local variables
will be visible within the subsequent anonymous functions, because a
function body’s code can see its surrounding context and capture it.

Now comes our task to be performed in a separate background thread
on our queue, self.draw_queue. We specify this task with the async
method. We describe what we want to do on the background thread in
an anonymous function.
In the anonymous function, we begin by declaring bitmap as a local
variable. This is our graphics context. We call makeBitmapContext(si
ze:) to create it, and then call draw(center:bounds:zoom:context:)
to set its pixels. Those calls are made on a background thread, because s
elf.draw_queue is a background queue.
Now we need to step back out to the main thread. How do we do that?
With the async method again! This time, we specify the main queue
(which is effectively the main thread), whose name is DispatchQueue.
main. We describe what we want to do on the main queue in another
anonymous function.
Here we are in the second anonymous function. Because the first
function is part of the second function’s surrounding context, the second
function can see the first function’s local bitmap variable. Using it, we
set our bitmapContext property and call setNeedsDisplay — on the
main thread! — and we’re done.

The benefits and elegance of GCD as a form of concurrency management
are simply stunning:

No data sharing

The only time we ever refer to a property of self is at the start (self.b
ounds) and at the end (self.bitmapContext), when we are on the
main thread. The bitmap context where all the drawing action takes
place is a local variable, bitmap, confined to each individual call to dra
wThatPuppy. Moreover, that drawing action is performed on a serial
queue, so no two drawing actions can ever overlap.

Transparent synchronization of threads
The threads are correctly synchronized, and this is obvious, because the
nested anonymous functions are executed in succession, so any instance

of bitmap must be completely filled with pixels before being used to set
the bitmapContext property.

Maintainability
Our code is highly maintainable, because the entire task on all threads is
expressed within the single drawThatPuppy method; indeed, the code is
modified only very slightly from the original nonthreaded version.

You might object that we still have the methods makeBitmapContext(siz
e:) and draw(center:bounds:zoom:context:) hanging around
MyMandelbrotView, and that we must therefore still be careful not to call
them on the main thread, or indeed from anywhere except from within draw
ThatPuppy. If that were true, we could at this point destroy both methods
and move their functionality completely into drawThatPuppy. But we don’t
have to, because these methods are now thread-safe: they are self-contained
utilities that touch no properties or persistent objects, so it doesn’t matter
what thread they are called on. Still, I’ll demonstrate later how we can
intercept an accidental attempt to call a method on the wrong thread.

Commonly Used GCD Methods
The most important DispatchQueue methods are:

async(execute:)

Push a function onto the end of a queue for later execution, and proceed
immediately with the next line of our own code. The function will
execute whenever the queue determines, and meanwhile we can finish
our own execution without waiting for that to happen. Commonly,
however, there is no next line of our own code; an async call is
typically the last statement (as was the case for both async calls in the
preceding example).

You might use async to execute code in a background thread or,
conversely, from within a background thread as a way of stepping back
onto the main thread in order to talk to the interface. Also, it can be

useful to call async to step out to the main thread even though you’re
already on the main thread, as a minimal form of delayed performance,
a way of waiting for the run loop to complete and for the interface to
settle down; examples have appeared throughout this book.

asyncAfter(deadline:execute:)

Similar to async, but the function is executed only after a certain
amount of time has been permitted to elapse following the call (delayed
performance). Many examples in this book have made use of it through
my delay utility function (see Appendix B).

sync(execute:)

Push a function onto the end of a queue for later execution, and wait
until the function has executed before proceeding with our own code.
You should do this only in special circumstances, typically where you
need the queue as a lock, mediating access to a shared resource, but you
also need to use a result that the function is to provide.

The use of sync is sufficiently unusual that it deserves an example. Let’s
say we’d like to revise the Downloader class from Chapter 23 so that the
delegate methods are run on a background thread, thus taking some strain
off the main thread (and hence the user interface) while these messages are
flying around behind the scenes. This looks like a reasonable and safe thing
to do, because the URLSession and its delegate are packaged inside the
Downloader object, isolated from our view controller.
To begin with, we’ll need our own background OperationQueue, which we
can maintain as a property:

let queue = OperationQueue()

Our session is now configured and created using this background queue:

lazy var session : URLSession = {

 return URLSession(configuration:self.config,

 delegate:DownloaderDelegate(), delegateQueue:self.queue)

}()

This means that urlSession(_:downloadTask:didFinishDownloadingT
o:) will be called on our background queue. So what will happen when we
call back into the client through the completion function that the client
handed us at the outset? My feeling is that there is no need to involve the
client in threading issues; so I want to step out to the main thread as I call
the completion function. But we cannot do this by calling async:

let ch = self.handlers[downloadTask.taskIdentifier]

DispatchQueue.main.async { // bad idea!

 ch?(url)

}

The reason is that the downloaded file is slated to be destroyed as soon as
we return from urlSession(_:downloadTask:didFinishDownloadingT
o:) — and if we call async, we will return immediately, the downloaded
file will be destroyed, and url will end up pointing at nothing by the time
the client receives it! The solution is to use sync instead:

let ch = self.handlers[downloadTask.taskIdentifier]

DispatchQueue.main.sync {

 ch?(url)

}

That code steps out to the main thread and also postpones returning from ur
lSession(_:downloadTask:didFinishDownloadingTo:) until the client
has had an opportunity to do something with the file pointed to by url. In
this way we lock down the shared data (the downloaded file). We are
blocking our background OperationQueue, but this is legal, and in any case
we’re blocking very briefly and in a coherent manner.
Another useful GCD feature to know about is dispatch groups. A dispatch
group effectively combines independent tasks into a single task; we proceed
only when all of them have completed. Its usage is structured as in
Example 24-1.

Example 24-1. Dispatch group usage

let group = DispatchGroup()

// here we go...

group.enter()

queue1.async {

 // ... do task here ...

 group.leave()

}

group.enter()

queue2.async {

 // ... do task here ...

 group.leave()

}

group.enter()

queue3.async {

 // ... do task here ...

 group.leave()

}

// ... more as needed ...

group.notify(queue: DispatchQueue.main) {

 // finished!

}

In Example 24-1, each task to be performed asynchronously is preceded by
a call to our dispatch group’s enter and is followed by a call to our
dispatch group’s leave. The queues on which the tasks are performed do
not have to be different queues; the point is that it doesn’t matter if they are.
Only when every enter has been balanced by a leave will the completion
function in our dispatch group’s notify be called. Thus, this is effectively a
way of waiting until all the tasks have completed independently, before
proceeding with whatever the notify completion function says to do.

ENSURING ONE-TIME CALLS WITHOUT GCD
Sometimes, you need a thread-safe way of ensuring that code is run only once; this is often
used, for example, to help vend a singleton. In Objective-C, you’d use dispatch_once, which
is part of GCD; in Swift, however, dispatch_once is unavailable (because it can’t be
implemented in a thread-safe way).

The workaround is not to use GCD, but rather to take advantage of the built-in lazy
initialization feature of global and static variables.

In this example, my view controller has a constant property oncer whose value is an instance of
a struct Oncer that has a doThisOnce method; the actual functionality of that method is
embedded in the initializer of a private static property once. The result is that, no matter how
many times we call self.oncer.doThisOnce() in the course of this view controller’s lifetime,
that functionality will be performed only once:

class ViewController: UIViewController {

 struct Oncer {

 private static var once : Void = {

 print("I did it!")

 }()

 func doThisOnce() {

 _ = Oncer.once

 }

 }

 let oncer = Oncer()

 override func viewDidLoad() {

 super.viewDidLoad()

 self.oncer.doThisOnce() // I did it!

 self.oncer.doThisOnce() // nothing

 }

}

To change the temporal scope of the “onceness,” change the semantic scope of oncer. If oncer
is defined at the top level of a file, its once functionality can be performed only once in the
entire lifetime of the app.

Concurrent Queues
Besides serial dispatch queues, there are also concurrent dispatch queues. A
concurrent queue’s functions are started in the order in which they were
submitted to the queue, but a function is allowed to start while another
function is still executing. Obviously, you wouldn’t want to submit to a

concurrent queue a task that touches a shared resource! The advantage of
concurrent queues is a possible speed boost when you don’t care about the
order in which multiple tasks are finished — for example, when you want
to do something with regard to every element of an array.

The built-in global queues, available by calling DispatchQueue.global(q
os:), are concurrent. You specify which built-in global queue you want by
means of the qos: argument; this is a DispatchQoS.QoSClass value (QoS
is an acronym for “quality of service”), which can be:

.userInteractive

.userInitiated

.default

.utility

.background

You can also create a concurrent queue yourself by calling the
DispatchQueue initializer init(label:attributes:) with a .concurrent
attribute.

Checking the Queue
A question that sometimes arises is how to make certain that a method is
called only on the correct queue. Recall that in our Mandelbrot drawing
example, we may be concerned that a method such as makeBitmapContext
(size:) might be called on some other queue than the background queue
that we created for this purpose. This sort of problem can be solved quite
elegantly by calling the dispatchPrecondition(condition:) global
function. It takes a DispatchPredicate enum, whose cases are:

.onQueue

.onQueueAsBarrier

.notOnQueue

These cases each take an associated value which is a DispatchQueue. (I told
you it was elegant!) Thus, to assert that we are on our draw_queue queue,
we would say:

dispatchPrecondition(condition: .onQueue(self.draw_queue))

The outcome is similar to Swift’s native precondition function: if our
assertion is false, we’ll crash.

Threads and App Backgrounding
A problem arises if your app is backgrounded and suspended while your
code is running. The system doesn’t want to stop your code while it’s
executing; on the other hand, some other app may need to be given the bulk
of the device’s resources now. So as your app goes into the background, the
system waits a very short time for your app to finish doing whatever it may
be doing, and it then suspends your app.
This shouldn’t be a problem from your main thread’s point of view, because
your app shouldn’t have any time-consuming code on the main thread in the
first place; you now know that you can avoid this by using a background
thread. On the other hand, it could be a problem for lengthy background
tasks, including asynchronous tasks performed by the frameworks.
To solve that kind of issue, you can request extra time to complete a lengthy
task (or at to least abort it yourself, coherently) in case your app is
backgrounded, by wrapping it in calls to UIApplication’s beginBackgroun
dTask(expirationHandler:) and endBackgroundTask(_:). Here’s how
you do it:

1. You call beginBackgroundTask(expirationHandler:) to announce
that a lengthy task is beginning; it returns an identification number.
This tells the system that if your app is backgrounded, you’d like to be
woken from suspension in the background now and then in order to
complete the task.

2. At the end of your lengthy task, you call endBackgroundTask(_:),
passing in the same identification number that you got from your call
to beginBackgroundTask(expirationHandler:). This tells the
system that your lengthy task is over and that there is no need to grant
you any more background time.

The function that you pass as the argument to beginBackgroundTask(expi
rationHandler:) does not express the lengthy task. It expresses what you
will do if your extra time expires before you finish your lengthy task. This
is a chance for you to clean up. At the very least, your expiration function
must call endBackgroundTask(_:)! Otherwise, the runtime won’t know
that you’ve run your expiration function, and your app may be killed as a
punishment for trying to use too much background time. If your expiration
function is called, you should make no assumptions about what thread it is
running on.

Let’s use MyMandelbrotView as an example. Let’s say that if drawThatPup
py is started, we’d like it to be allowed to finish, even if the app is
suspended in the middle of it, so that our bitmapContext property is
updated as requested. To try to ensure this, we call beginBackgroundTask
(expirationHandler:) before doing anything else; our hope is that if our
app is backgrounded while drawThatPuppy is in progress, it will be given
enough background time to run so that it can eventually proceed all the way
to the end:

func drawThatPuppy () {

 // prepare for background task

 var bti : UIBackgroundTaskIdentifier = UIBackgroundTaskInvalid

 bti = UIApplication.shared.beginBackgroundTask {

 UIApplication.shared.endBackgroundTask(bti) // expiration

 }

 guard bti != UIBackgroundTaskInvalid else { return }

 // now do our task as before

 let center = CGPoint(self.bounds.midX, self.bounds.midY)

 let bounds = self.bounds

 self.draw_queue.async {

 let bitmap = self.makeBitmapContext(size: bounds.size)

 self.draw(center: center, bounds: bounds, zoom: 1, context: bitmap)

 DispatchQueue.main.async {

 self.bitmapContext = bitmap

 self.setNeedsDisplay()

 UIApplication.shared.endBackgroundTask(bti) // completion

 }

 }

}

Observe that there are two routes by which endBackgroundTask(_:) might
be called:

We are not given enough time
Our expiration function is called. There is no cleanup to do, so we just
call endBackgroundTask(_:).

We are given enough time

Our entire drawThatPuppy runs from start to finish; thus, self.bitmap
Context will be updated, and setNeedsDisplay will be called, while
we are still in the background, and we signal completion by calling end
BackgroundTask(_:). Our draw(_:) will not be called until our app is
brought back to the front, but there’s nothing wrong with that.

Chapter 25. Undo

The ability to undo the most recent action is familiar from macOS. The idea
is that, provided the user realizes soon enough that a mistake has been
made, that mistake can be reversed. Typically, a Mac application will
maintain an internal stack of undoable actions; choosing Edit → Undo or
pressing Command-Z will reverse the action at the top of the stack, and will
also make that action available for redo.
Some iOS apps may benefit from an undo facility. Certain built-in views —
in particular, those that involve text entry, namely UITextField and
UITextView (Chapter 10) — implement undo already. And you can add it
in other areas of your app.
Undo is provided through an instance of UndoManager, which basically
just maintains a stack of undoable actions, along with a secondary stack of
redoable actions. The goal in general is to work with the UndoManager so
as to handle both undo and redo in the standard manner: when the user
chooses to undo the most recent action, the action at the top of the undo
stack is popped off and reversed and is pushed onto the top of the redo
stack.
In this chapter, I’ll illustrate an UndoManager for a simple app that has just
one kind of undoable action. More complicated apps, obviously, will be
more complicated; on the other hand, iOS apps, unlike macOS apps, do not
generally need deep or pervasive undo functionality. For more about the
UndoManager class and how to use it, read Apple’s Undo Architecture and
the class documentation.

TIP
UIDocument (see Chapter 22) has an undo manager (its undoManager property), which
appropriately updates the document’s “dirty” state for you automatically.

Undo Manager
In our artificially simple app, the user can drag a small square around the
screen. We’ll start with an instance of a UIView subclass, MyView, to
which has been attached a UIPanGestureRecognizer to make it draggable,
as described in Chapter 5. The gesture recognizer’s action target is the
MyView instance itself, and its action method is called dragging(_:):

@objc func dragging (_ p : UIPanGestureRecognizer) {

 switch p.state {

 case .began, .changed:

 let delta = p.translation(in:self.superview!)

 var c = self.center

 c.x += delta.x; c.y += delta.y

 self.center = c

 p.setTranslation(.zero, in: self.superview!)

 default:break

 }

}

Our goal is to make dragging of this view undoable. We will need an
UndoManager instance. Let’s store this in a property of MyView itself, sel
f.undoer:

let undoer = UndoManager()

Now we need to use the undo manager to register the drag action as
undoable. I’ll show two ways of doing that.

Target–Action Undo
I’ll start with this UndoManager method:

registerUndo(withTarget:selector:object:)

This method uses a target–action architecture: you provide a target, a
selector for a method that takes one parameter, and the object value to be
passed as argument when the method is called. Later, if the UndoManager
is sent the undo message, it simply sends that action to that target with that

argument. The job of the action method is to undo whatever it is that needs
undoing.

What we want to undo here is the setting of our center property — this
line in the earlier code:

self.center = c

We need to express this as a method taking one parameter, so that the undo
manager can call it (the selector:). So, in our dragging(_:) method,
instead of setting self.center to c directly, we now call a secondary
method:

var c = self.center

c.x += delta.x; c.y += delta.y

self.setCenterUndoably(c) // *

We have posited a method setCenterUndoably(_:). Now let’s write it.
What should it do? At a minimum, it should do the job that setting self.ce
nter used to do. At the same time, we want the undo manager to be able to
call this method. The undo manager doesn’t know the type of the parameter
that it will be passing to us, so its object: parameter is typed as Any.
Therefore, the parameter of this method also needs to be typed as Any:

func setCenterUndoably (_ newCenter:Any) {

 self.center = newCenter as! CGPoint

}

This works, in the sense that the view is draggable exactly as before; but we
have not yet made this action undoable. To do so, we must ask ourselves
what message the UndoManager would need to send in order to undo the
action we are about to perform. We would want the UndoManager to set se
lf.center back to the value it has now, before we change it as we are
about to do. And what method would the UndoManager call in order to do
that? It would call setCenterUndoably(_:), the very method we are
implementing! So now we have this:

@objc func setCenterUndoably (_ newCenter:Any) {

 self.undoer.registerUndo(withTarget: self,

 selector: #selector(setCenterUndoably),

 object: self.center)

 self.center = newCenter as! CGPoint

}

That code works; it makes our action undoable. And it also has an
astonishing secondary effect: it makes our action redoable as well! How can
this be? Well, it turns out that UndoManager has an internal state, and
responds differently to registerUndo(withTarget:selector:object:)
depending on that state. If the UndoManager is sent registerUndo(withTa
rget:selector:object:) while it is undoing, it puts the target–action
information on the redo stack instead of the undo stack (because redo is the
undo of an undo, if you see what I mean).
Confused? Here’s how our code works to undo and then redo an action:

1. We set self.center by way of setCenterUndoably(_:), which
calls registerUndo(withTarget:selector:object:) with the old
value of self.center. The UndoManager adds this to its undo stack.

2. Now suppose we want to undo that action. We send undo to the
UndoManager.

3. The UndoManager calls setCenterUndoably(_:) with the old value
that we passed it in step 1. Thus, we are going to set the center back to
that old value. But before we do that, we send registerUndo(withTa
rget:selector:object:) to the UndoManager with the current
value of self.center. The UndoManager knows that it is currently
undoing, so it understands this registration as something to be added
to its redo stack.

4. Now suppose we want to redo that undo. We send redo to the
UndoManager, and sure enough, the UndoManager calls setCenterU
ndoably(_:) with the value that we previously undid. And, once
again, we call registerUndo(withTarget:selector:object:)
with an action that goes onto the UndoManager’s undo stack.

Undo Grouping
So far, so good. But our implementation of undo is very annoying, because
we are adding a single object to the undo stack every time dragging(_:) is
called — and it is called many times during the course of a single drag!
Thus, undoing merely undoes the tiny increment corresponding to one
individual dragging(_:) call. What we’d like is for undoing to undo an
entire dragging gesture. We can implement this through undo grouping. As
the gesture begins, we start a group; when the gesture ends, we end the
group:

func dragging (_ p : UIPanGestureRecognizer) {

 switch p.state {

 case .began:

 self.undoer.beginUndoGrouping() // *

 fallthrough

 case .changed:

 let delta = p.translation(in:self.superview!)

 var c = self.center

 c.x += delta.x; c.y += delta.y

 self.setCenterUndoably(c)

 p.setTranslation(.zero, in: self.superview!)

 case .ended, .cancelled:

 self.undoer.endUndoGrouping() // *

 default:break

 }

}

This works: each complete gesture of dragging MyView, from the time the
user’s finger contacts the view to the time it leaves, is now undoable (and
redoable) as a single unit.
A further refinement would be to animate the “drag” that the UndoManager
performs when it undoes or redoes a user drag gesture. To do so, we take
advantage of the fact that we, too, can examine the UndoManager’s state by
way of its isUndoing and isRedoing properties; we animate the center
change when the UndoManager is “dragging,” but not when the user is
dragging:

@objc func setCenterUndoably (_ newCenter:Any) {

 self.undoer.registerUndo(withTarget: self,

 selector: #selector(setCenterUndoably),

 object: self.center)

 if self.undoer.isUndoing || self.undoer.isRedoing {

 UIView.animate(withDuration:0.4, delay: 0.1, animations: {

 self.center = newCenter as! CGPoint

 })

 } else { // just do it

 self.center = newCenter as! CGPoint

 }

}

Functional Undo
Starting in iOS 9, there’s a more modern way to register an action as
undoable:

registerUndo(withTarget:handler:)

The handler: is a function that will take one parameter, namely whatever
you pass as the target: argument, and will be called when undoing (or, if
we register while undoing, when redoing). This gives us a far more
idiomatic way to express registration of an action. In addition, setCenterU
ndoably(_:) no longer needs to take an Any as its parameter; it can take a
CGPoint, because instead of asking Objective-C to call it for us, we are
calling it directly:

func setCenterUndoably (_ newCenter:CGPoint) {

 self.undoer.registerUndo(withTarget: self) {

 [oldCenter = self.center] myself in

 myself.setCenterUndoably(oldCenter)

 }

 if self.undoer.isUndoing || self.undoer.isRedoing {

 UIView.animate(withDuration:0.4, delay: 0.1, animations: {

 self.center = newCenter

 })

 } else { // just do it

 self.center = newCenter

 }

}

The example shows what the target: parameter is for — it’s to avoid
retain cycles. By passing self as the target: argument, I can retrieve it as
the parameter, which I’ve called myself, in the handler: function. Thus, in
the body of the handler: function, I never have to refer to self and there
is no retain cycle.
I’ve also taken advantage of a little-known feature of Swift anonymous
functions allowing me to capture the value of self.center as it is now, as
a local value oldCenter. The reason is that if the anonymous function were
to call setCenterUndoably(myself.center), we’d be using the value that
myself.center will have at undo time, and would thus be pointlessly
setting the center to itself.
Our code works perfectly, but we can go further. So far, we are failing to
take full advantage of the fact that we now have the ability to register with
the undo manager a full-fledged function body rather than a mere function
call. This means that the handler: function can contain everything that
should happen when undoing, including the animation:

self.undoer.registerUndo(withTarget: self) {

 [oldCenter = self.center] myself in

 UIView.animate(withDuration:0.4, delay: 0.1, animations: {

 myself.center = oldCenter

 })

 myself.setCenterUndoably(oldCenter)

}

But we can go further still. Let’s ask ourselves: Why are we setting self.c
enter here at all? We can do it back in the gesture recognizer’s dragging
(_:) action method, just as we were doing before we added undo to this
app! And in that case, why do we need a separate setCenterUndoably
method at all? True, we still need some function that calls registerUndo
with a call to itself, because that’s how we get redo registration during
undo; but this can be a local function inside the dragging(_:) method.

Our dragging(_:) method can thus provide a complete undo
implementation internally, resulting in a far more legible and encapsulated

architecture:

@objc func dragging (_ p : UIPanGestureRecognizer) {

 switch p.state {

 case .began:

 self.undoer.beginUndoGrouping()

 fallthrough

 case .began, .changed:

 let delta = p.translation(in:self.superview!)

 var c = self.center

 c.x += delta.x; c.y += delta.y

 func registerForUndo() {

 self.undoer.registerUndo(withTarget: self) {

 [oldCenter = self.center] myself in

 UIView.animate(withDuration:0.4, delay: 0.1, animations: {

 myself.center = oldCenter

 })

 registerForUndo()

 }

 }

 registerForUndo() // *

 self.center = c // *

 p.setTranslation(.zero, in: self.superview!)

 case .ended, .cancelled:

 self.undoer.endUndoGrouping()

 default: break

 }

}

Undo Interface
We must also decide how to let the user request undo and redo. While I was
developing the code from the preceding section, I used two buttons: an
Undo button that sent undo to the UndoManager, and a Redo button that
sent redo to the UndoManager. This can be a perfectly reasonable interface,
but let’s talk about some others.

Shake-To-Edit
By default, your app supports shake-to-edit. This means that the user can
shake the device to bring up an undo/redo interface. We discussed this

briefly in Chapter 21. If you don’t turn off this feature by setting the shared
UIApplication’s applicationSupportsShakeToEdit property to false,
then when the user shakes the device, the runtime walks up the responder
chain, starting with the first responder, looking for a responder whose
inherited undoManager property returns an actual UndoManager instance. If
it finds one, it puts up an alert with an Undo button, a Redo button, or both;
if the user taps a button, the runtime communicates directly with that
UndoManager, calling its undo or redo method.
You will recall what it takes for a UIResponder to be first responder in this
sense: it must return true from canBecomeFirstResponder, and it must
actually be made first responder through a call to becomeFirstResponder.
Let’s have MyView satisfy these requirements. For example, we might call
becomeFirstResponder at the end of dragging(_:), like this:

override var canBecomeFirstResponder : Bool {

 return true

}

@objc func dragging (_ p : UIPanGestureRecognizer) {

 switch p.state {

 // ... the rest as before ...

 case .ended, .cancelled:

 self.undoer.endUndoGrouping()

 self.becomeFirstResponder()

 default: break

 }

}

Then, to make shake-to-edit work, we have only to provide a getter for the
undoManager property that returns our undo manager, self.undoer:

let undoer = UndoManager()

override var undoManager : UndoManager? {

 return self.undoer

}

This works: shaking the device now brings up the undo/redo alert, and its
buttons work correctly. However, I don’t like the way the buttons are
labeled; they just say Undo and Redo. To make this interface more

expressive, we should provide a string describing each undoable action. We
do that by calling setActionName(_:); we can call it at the same time that
we register our undo action:

self.undoer.setActionName("Move")

Now the undo/redo alert has more informative labels, as shown in
Figure 25-1.

Figure 25-1. The shake-to-edit undo/redo alert

Undo Menu
Another possible undo/redo interface is through a menu (Figure 25-2).
Personally, I prefer this approach, as I am not fond of shake-to-edit (it
seems both violent and unreliable). This is the same menu used by a
UITextField or UITextView for displaying the Copy and Paste menu items
(Chapter 10). The requirements for summoning this menu are effectively
the same as those for shake-to-edit: we need a responder chain with a first
responder at the bottom of it. So the code we’ve just supplied for making
MyView first responder remains applicable.

Figure 25-2. The shared menu as an undo/redo interface

Let’s cause the menu to appear in response to a long press on our MyView
instance. We’ll attach another gesture recognizer to MyView. This will be a
UILongPressGestureRecognizer, whose action method is called longPress
(_:). Recall from Chapter 10 how to implement the menu: we get the
singleton global UIMenuController object and specify an array of custom
UIMenuItems as its menuItems property. We can make the menu appear by
sending the UIMenuController the setMenuVisible(_:animated:)
message. But a particular menu item will appear in the menu only if we also
return true from canPerformAction(_:withSender:) for that menu
item’s action. Delightfully, the UndoManager’s canUndo and canRedo
properties tell us what value canPerformAction(_:withSender:) should
return. We can also get the titles for our custom menu items from the
UndoManager itself, through its undoMenuItemTitle and redoMenuItemTi
tle properties:

@objc func longPress (_ g : UIGestureRecognizer) {

 if g.state == .began {

 let m = UIMenuController.shared

 m.setTargetRect(self.bounds, in: self)

 let mi1 = UIMenuItem(title: self.undoer.undoMenuItemTitle,

 action: #selector(undo))

 let mi2 = UIMenuItem(title: self.undoer.redoMenuItemTitle,

 action: #selector(redo))

 m.menuItems = [mi1, mi2]

 m.setMenuVisible(true, animated:true)

 }

}

override func canPerformAction(_ action: Selector,

 withSender sender: Any?) -> Bool {

 if action == #selector(undo) {

 return self.undoer.canUndo

 }

 if action == #selector(redo) {

 return self.undoer.canRedo

 }

 return super.canPerformAction(action, withSender: sender)

}

@objc func undo(_: Any?) {

 self.undoer.undo()

}

@objc func redo(_: Any?) {

 self.undoer.redo()

}

Appendix A. Application
Lifetime Events

When your app launches, the UIApplicationMain function creates its one
and only UIApplication instance as the shared application object, along
with the app delegate, adopting the UIApplicationDelegate protocol (see
“How an App Launches”). The application then proceeds to report lifetime
events to its delegate through calls to protocol-defined methods; other
objects can also register to receive most of these events as notifications.
These fundamental events, notifying you of stages in the lifetime of your
app as a whole and giving your code an opportunity to run in response, are
extraordinarily important. This appendix is devoted to a survey of them,
along with some typical scenarios in which they will arrive.

Application States
In the early days of iOS — before iOS 4 — the lifetime of an app was
extremely simple: either it was running or it wasn’t. The user tapped your
app’s icon in the home screen, and your app was launched and began to run.
The user used your app for a while. Eventually, the user pressed the Home
button (the physical button next to the screen) and your app was terminated
— it was no longer running. The user had quit your app. Launch, run, quit:
that was the entire life cycle of an app. If the user decided to use your app
again, the whole cycle started over.
The reason for this simplicity was that, before iOS 4, an iOS device, with its
slow processor and its almost brutal paucity of memory and other resources,
compensated for its own shortcomings by a simple rule: it could run only
one app at a time. While your app was running, it occupied not only the
entire screen but the vast majority of the device’s resources, leaving room

only for the system and some hidden built-in processes to support it; it had,
in effect, sole and complete control of the device.
Starting in iOS 4, that changed. Apple devised an ingenious architecture
whereby, despite the device’s limited resources, more than one app could
run simultaneously — sort of. The Home button changed its meaning and
its effect upon your app: contrary to the naïve perception of some users, the
Home button was no longer a Quit button. Nowadays, when the user
presses the Home button to leave your app, your app does not die;
technically, the Home button does not terminate your app. When your app
occupies the entire screen, it is in the foreground (or frontmost); when some
other app proceeds to occupy the entire screen, your app is backgrounded
and suspended.
Suspension means that your app is essentially freeze-dried; its process still
exists, but it isn’t actively running, and it isn’t getting any events — though
notifications can be stored by the system for later delivery in case your app
comes to the front once again. And because it isn’t running, it isn’t using
very much of the device’s precious resources. Later, when the user returns
to your app after having left it to use some other app for a while, your app is
found in the very same state as when the user left it. The app was not
terminated; it simply stopped and froze, and waited in suspended animation.
Returning to your app no longer means that your app is launched, but
merely that it is resumed.
All of this is not to say, however, that your app can’t be terminated. It can
be — though not by the user pressing the Home button. For example, the
user might switch off the device; that will certainly terminate your app. And
a savvy user might force-terminate your app from the app switcher. The
most common scenario, however, is that the system quietly kills your app
while it is suspended. This undermines the app’s ability to resume; when the
user returns to your app, it will have to launch from scratch, just as in the
pre–iOS 4 days. The death of your app under these circumstances is rather
like that of the scientists killed by HAL 9000 in 2001: A Space Odyssey —
they went to sleep expecting to wake up later, but instead their life-support
systems were turned off while they slept. The iOS system’s reasons for

killing your app are not quite as paranoid as HAL’s, but they do have a
certain Darwinian ruthlessness: your app, while suspended, continues to
occupy a chunk of the device’s memory, and the system needs to reclaim
that memory so some other app can use it.
After the user leaves your app, therefore, one of two things might happen
later when the user returns to it. It could be woken and resumed from
suspended animation, in the very state that it was in when the user left it, or
it could be launched from scratch because it was terminated in the
background. It is this bifurcation of your app’s possible fates that state
saving and restoration, discussed at the end of Chapter 6, is intended to
cope with. The idea, in theory, is that your app should behave the same way
when it comes to the front, regardless of whether it was terminated or
merely suspended. We all know from experience, however, that this goal is
difficult to achieve, and Apple’s own apps are noteworthy for failing to
achieve it; for example, when Apple’s iBooks app comes to the front, it is
perfectly obvious from its behavior and appearance whether it was
terminated or merely suspended in the background.
Over time, successive iOS systems have complicated the picture. A modern
iPad that does iPad multitasking (Chapter 9) is capable of running two apps
at once: they are both in the foreground at the same time. This seems oddly
incoherent; even on the macOS desktop, which has true multitasking,
usually just one application at a time is in the foreground.
A further complication is that your app can be backgrounded without being
suspended. This is a special privilege, accorded in order that your app may
perform a limited range of highly focused activities. For example, an app
that is playing music or tracking the device’s location when it goes into the
background may be permitted to continue doing so in the background. In
addition, an app that has been suspended can be woken briefly, remaining in
the background, in order to receive and respond to a message — in order to
be told, for example, that the user has crossed a geofence, or that a
background download has completed. (See Chapters 14, 21, and 23.)
There is also an intermediate state in which your app can find itself, where
it is neither frontmost nor backgrounded. This happens, for example, when

the user summons the control center or notification history in front of your
app. In such situations, your app may be inactive without actually being
backgrounded.
Your app’s code can thus, in fact, be running even though the app is not
frontmost. If your code needs to know the app’s state in this regard, it can
ask the shared UIApplication object for its applicationState
(UIApplicationState), which will be one of these:

.active

.inactive

.background

NOTE
Your app can opt out of background suspension: you set the “Application does not run in
background” key (UIApplicationExitsOnSuspend) to YES in your Info.plist, and now the Home
button does terminate your app, just as in the pre–iOS 4 days. It’s improbable that you would want
to do this, but it could make sense for some apps.

App Delegate Events
The suite of basic application lifetime events that may be sent to your app
delegate is surprisingly limited and considerably less informative than one
might have hoped. The events are as follows:

application(_:didFinishLaunchingWithOptions:)

The app has started up from scratch. You’ll typically perform
initializations here. If an app doesn’t have a main storyboard, or is
ignoring the main storyboard at launch time, this code must also ensure
that the app has a window, set its root view controller, and show the
window (see Appendix B).

(Another event, application(_:willFinishLaunchingWithOption
s:), arrives even earlier. Its purpose is to allow your app to participate

in the state saving and restoration mechanism discussed in Chapter 6.)

applicationDidBecomeActive(_:)

The app is now well and truly frontmost. Received after application
(_:didFinishLaunchingWithOptions:). Also received after the end
of any situation that caused the app delegate to receive applicationWi
llResignActive(_:).

applicationWillResignActive(_:)

The app is entering a situation where it is neither frontmost nor
backgrounded; it will be inactive. Perhaps something has blocked the
app’s interface — for example, the screen has been locked, or the user
has summoned the notification history. A local notification alert or an
incoming phone call could also cause this event. Whatever the cause,
the app delegate will receive applicationDidBecomeActive(_:)
when this situation ends.
Alternatively, the app may be about to go into the background (and will
then probably be suspended); in that case, the next event will be applic
ationDidEnterBackground(_:).

applicationDidEnterBackground(_:)

The application has been backgrounded. Always preceded by applicat
ionWillResignActive(_:).
Your app will then probably be suspended; before that happens, you
have a little time to finish up last-minute tasks, such as relinquishing
unneeded memory (see Chapter 6), and if you need more time for a
lengthy task, you can ask for it (see Chapter 24).

applicationWillEnterForeground(_:)

The application was backgrounded, and is now coming back to the
front. Always followed by applicationDidBecomeActive(_:). Note
that this message is not sent on launch, because the app wasn’t
previously in the background.

applicationWillTerminate(_:)

The application is about to be killed dead. Surprisingly, even though
every running app will eventually be terminated, it is extremely unlikely
that your app will ever receive this event (unless it has opted out of
background suspension, as I explained earlier). The reason is that, by
the time your app is terminated by the system, it is usually already
suspended and incapable of receiving events. (I’ll mention some
exceptional cases in the next section, and see Chapter 14 for another.)

App Lifetime Scenarios
A glance at some typical scenarios will demonstrate the chief ways in
which your app delegate will receive app lifetime events. I find it helpful to
group these scenarios according to the general behavior of the events.

Major State Changes
During very significant state changes, such as the app launching, being
backgrounded, or coming back to the front, the app delegate receives a
sequence of events:

The app launches from scratch
Your app delegate receives these messages:

application(_:didFinishLaunchingWithOptions:)

applicationDidBecomeActive(_:)

The user clicks the Home button
If your app was frontmost, your app delegate receives these messages:

applicationWillResignActive(_:)

applicationDidEnterBackground(_:)

The user summons your backgrounded app to the front

Your app delegate receives these messages:

applicationWillEnterForeground(_:)

applicationDidBecomeActive(_:)

If the user summons your backgrounded app to the front indirectly,
another delegate message may be sent between these two calls. For
example, if the user asks another app to hand a file over to your app
(Chapter 22), your app delegate receives the application(_:open:opt
ions:) call between applicationWillEnterForeground(_:) and app
licationDidBecomeActive(_:).

The screen is locked
If your app is frontmost, your app delegate receives these messages:

applicationWillResignActive(_:)

applicationDidEnterBackground(_:)

The screen is unlocked
If your app is frontmost, your app delegate receives these messages:

applicationWillEnterForeground(_:)

applicationDidBecomeActive(_:)

Paused Inactivity
Certain user actions effectively pause the foreground-to-background
sequence in the middle, leaving the app inactive and capable of being either
backgrounded or foregrounded, depending on what the user does next.
Thus, when the app becomes active again, it might or might not be coming
from a backgrounded state. For example:

The user double-clicks the Home button
The user can now work in the app switcher interface. If your app is
frontmost, your app delegate receives this message:

applicationWillResignActive(_:)

The user, in the app switcher, chooses another app
If your app was frontmost, your app delegate receives this message:

applicationDidEnterBackground(_:)

The user, in the app switcher, chooses your app
If your app was the most recently frontmost app, then it was never
backgrounded, so your app delegate receives this message:

applicationDidBecomeActive(_:)

The user, in the app switcher, terminates your app
If your app was the most recently frontmost app, your app delegate
receives these messages:

applicationDidEnterBackground(_:)

applicationWillTerminate(_:)

This is one of the few extraordinary circumstances under which your
app can receive applicationWillTerminate(_:), perhaps because it
was never backgrounded long enough to be suspended.

The user summons the control center or notification history
If your app is frontmost, your app delegate receives this message:

applicationWillResignActive(_:)

The user dismisses the control center or notification history
If your app was frontmost, your app delegate receives this message:

applicationDidBecomeActive(_:)

But if the user has summoned the notification history, there’s another
possibility: the user might tap a notification alert or a today widget to
switch to that app. In that case, your app will continue on to the
background, and your app delegate will receive this message:

applicationDidEnterBackground(_:)

The user holds down the screen-lock button
The device offers to shut itself off. If your app is frontmost, your app
delegate receives this message:

applicationWillResignActive(_:)

The user, as the device offers to shut itself off, cancels
If your app was frontmost, your app delegate receives this message:

applicationDidBecomeActive(_:)

The user, as the device offers to shut itself off, accepts
If your app was frontmost, the app delegate receives these messages:

applicationDidEnterBackground(_:)

applicationWillTerminate(_:)

Transient Inactivity
There are certain circumstances where your app may become inactive and
then active again in quick succession. These have mostly to do with
multitasking on the iPad. If this happens, your app delegate may receive
these messages:

applicationWillResignActive(_:)

applicationDidBecomeActive(_:)

Here are some examples:

The user summons the dock
The dock is new in iOS 11. The results in my testing are inconsistent.
Sometimes the app delegate indicates that we pass through transient
inactivity; most of the time, nothing happens. Either way, your app
ultimately remains active while the dock is present.

The user drags an app from the dock into slideover or splitscreen position

The results in my testing are similar to the previous case: sometimes
there is transient inactivity, sometimes nothing happens, but either way,
the app ultimately remains active. That behavior is new in iOS 11. On
earlier systems, in slideover mode your app delegate’s applicationWil
lResignActive(_:) would have been called and your app would have
remained inactive, and to reach splitscreen mode, the user would have
had to pass through slideover mode, causing your app to receive applic
ationWillResignActive(_:) and applicationDidBecomeActive
(_:).

The user toggles between split sizes
The app undergoes transient inactivity. As I mentioned in Chapter 9, if
your view controller is notified of a change of size and possibly trait
collection, this will happen during the period of transient inactivity.

Lifetime Event Timing
The app delegate messages may well be interwoven in unexpected ways
with the lifetime events received by other objects. View controller lifetime
events (“View Controller Lifetime Events”) are the most notable case in
point.
For example, there are circumstances where the root view controller may
receive its initial lifetime events, such as viewDidLoad: and viewWillAppe
ar(_:), before application(_:didFinishLaunchingWithOptions:) has
even finished running, which may come as a surprise.
Different systems can also introduce changes in timing. For example, when
I started programming iOS, back in the days of iOS 3.2, I noted the opening
sequence of events involving the app delegate and the root view controller;
they arrived in this order:

1. application(_:didFinishLaunchingWithOptions:)

2. viewDidLoad

3. viewWillAppear(_:)

4. applicationDidBecomeActive(_:)

5. viewDidAppear(_:)

Relying on that order, I would typically use the root view controller’s viewD
idAppear(_:) to register for .UIApplicationDidBecomeActive in order
to be notified of subsequent activations of the app.
That worked fine for some years. However, iOS 8 brought with it a
momentous change: the app delegate now received applicationDidBecom
eActive(_:) after the root view controller received viewDidAppear(_:),
like this:

1. application(_:didFinishLaunchingWithOptions:)

2. viewDidLoad

3. viewWillAppear(_:)

4. viewDidAppear(_:)

5. applicationDidBecomeActive(_:)
This was a disaster for many of my apps, because the notification I just
registered for in viewDidAppear(_:) arrived immediately.
Then, in iOS 9, the order returned to what it was in iOS 7 and before —
knocking my apps into confusion once again.
And now, in iOS 11, the order is back to what it was in iOS 8!
Such capricious changes from one system version to the next are likely to
pose challenges for the longevity and backward compatibility of your app.
The moral is that you should not, as I did, rely upon the timing relationship
between lifetime events of different objects.

Appendix B. Some Useful Utility
Functions

As you work with iOS and Swift, you’ll doubtless develop a personal
library of frequently used convenience functions. Here are some of mine.
Each of them has come in handy in my own life; I keep them available as
user snippets in Xcode so that I can paste them into any project.

Launch Without Main Storyboard
As I explained in Chapter 1, if an app lacks a main storyboard, or if you
want to ignore the main storyboard and generate the app’s initial interface
yourself, configuring the window and supplying the root view controller is
up to you. A minimal app delegate class would look something like this:

@UIApplicationMain

class AppDelegate : UIResponder, UIApplicationDelegate {

 var window : UIWindow?

 func application(_ application: UIApplication,

 didFinishLaunchingWithOptions launchOptions:

 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {

 self.window = self.window ?? UIWindow()

 self.window!.backgroundColor = .white

 self.window!.rootViewController = ViewController()

 self.window!.makeKeyAndVisible()

 return true

 }

}

Core Graphics Initializers
The Core Graphics CGRectMake function needs no argument labels when
you call it. Swift cuts off access to this function, leaving only the various
CGRect initializers, all of which do need argument labels. That’s

infuriating. We know what each argument signifies, so why clutter the call
with labels? The solution is another CGRect initializer, without labels:

extension CGRect {

 init(_ x:CGFloat, _ y:CGFloat, _ w:CGFloat, _ h:CGFloat) {

 self.init(x:x, y:y, width:w, height:h)

 }

}

As long as we’re doing that, we may as well supply label-free initializers
for the three other common Core Graphics structs:

extension CGSize {

 init(_ width:CGFloat, _ height:CGFloat) {

 self.init(width:width, height:height)

 }

}

extension CGPoint {

 init(_ x:CGFloat, _ y:CGFloat) {

 self.init(x:x, y:y)

 }

}

extension CGVector {

 init (_ dx:CGFloat, _ dy:CGFloat) {

 self.init(dx:dx, dy:dy)

 }

}

Center of a CGRect
One so frequently wants the center point of a CGRect that even the
shorthand CGPoint(rect.midX, rect.midY) becomes tedious. You can
extend CGRect to do the work for you:

extension CGRect {

 var center : CGPoint {

 return CGPoint(self.midX, self.midY)

 }

}

Adjust a CGSize
There’s a CGRect method insetBy(dx:dy:), but there’s no comparable
method for changing an existing CGSize by a width delta and a height
delta. Let’s make one:

extension CGSize {

 func sizeByDelta(dw:CGFloat, dh:CGFloat) -> CGSize {

 return CGSize(self.width + dw, self.height + dh)

 }

}

String Range
String ranges are hard to construct, because they are a range of String.Ind
ex rather than Int. Let’s write a String extension that takes a Character
index and count as integers and converts them into either a Swift Range or a
Cocoa NSRange. While we’re up, let’s permit a negative index, something
that most modern languages allow:

func range(_ start:Int, _ count:Int) -> Range<String.Index> {

 let i = self.index(start >= 0 ?

 self.startIndex :

 self.endIndex, offsetBy: start)

 let j = self.index(i, offsetBy: count)

 return i..<j

}

func nsRange(_ start:Int, _ count:Int) -> NSRange {

 return NSRange(self.range(start,count), in:self)

}

Here’s some sample input and output:

let s = "abcdefg"

let r1 = s.range(2,2)

let r2 = s.range(-3,2)

let r3 = s.nsRange(2,2)

let r4 = s.nsRange(-3,2)

print(s[r1]) // cd

print(s[r2]) // ef

print((s as NSString).substring(with:r3)) // cd

print((s as NSString).substring(with:r4)) // ef

Delayed Performance
Delayed performance is of paramount importance in iOS programming,
where the interface often needs a moment to settle down before we proceed
to the next command. Calling asyncAfter is not difficult (Chapter 24), but
we can simplify with a utility function:

func delay(_ delay:Double, closure: @escaping ()->()) {

 let when = DispatchTime.now() + delay

 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)

}

Call it like this:

delay(0.4) {

 // do something here

}

Dictionary of Views
When you generate constraints from a visual format string by calling
NSLayoutConstraint’s constraints(withVisualFormat:options:metri
cs:views:), you need a dictionary of string names and view references as
the last argument (Chapter 1). Forming this dictionary is tedious. Let’s
make it easier.
There are no Swift macros (because there’s no Swift preprocessor), so you
can’t write the equivalent of Objective-C’s NSDictionaryOfVariableBind
ings, which forms the dictionary from a literal list of view names. You can,
however, generate a dictionary with fixed string names, like this:

func dictionaryOfNames(_ arr:UIView...) -> [String:UIView] {

 var d = [String:UIView]()

 for (ix,v) in arr.enumerated() {

(,) () {

 d["v\(ix+1)"] = v

 }

 return d

}

That utility function takes a list of views and simply makes up new string
names for them, of the form "v1", "v2", and so on, in order. Knowing the
rule by which the string names are generated, you then use those string
names in your visual format strings.

For example, if you generate the dictionary by calling dictionaryOfNames
(mainview, myLabel), then in any visual format string that uses this
dictionary as its views: dictionary, you will refer to mainview by the name
v1 and to myLabel by the name v2.

Constraint Priority Arithmetic
It is often desired to increment or decrement a constraint’s priority in order
to prevent layout ambiguity. That used to be easy, because a priority was
just a number, but in iOS 11, a constraint priority became a
UILayoutPriority struct (Chapter 1). This extension allows a number to be
added to a UILayoutPriority struct:

extension UILayoutPriority {

 static func +(lhs: UILayoutPriority, rhs: Float) -> UILayoutPriority {

 let raw = lhs.rawValue + rhs

 return UILayoutPriority(rawValue:raw)

 }

}

Constraint Issues
These are NSLayoutConstraint class methods aimed at helping to detect and
analyze constraint issues (referred to in Chapter 1):

extension NSLayoutConstraint {

 class func reportAmbiguity (_ v:UIView?) {

 var v = v

 if v == nil {

 v = UIApplication.shared.keyWindow

 }

 for vv in v!.subviews {

 print("\(vv) \(vv.hasAmbiguousLayout)")

 if vv.subviews.count > 0 {

 self.reportAmbiguity(vv)

 }

 }

 }

 class func listConstraints (_ v:UIView?) {

 var v = v

 if v == nil {

 v = UIApplication.shared.keyWindow

 }

 for vv in v!.subviews {

 let arr1 = vv.constraintsAffectingLayout(for:.horizontal)

 let arr2 = vv.constraintsAffectingLayout(for:.vertical)

 NSLog("\n\n%@\nH: %@\nV:%@", vv, arr1, arr2);

 if vv.subviews.count > 0 {

 self.listConstraints(vv)

 }

 }

 }

}

Configure a Value Class at Point of Use
A recurring pattern in Cocoa is that a value class instance is created and
configured beforehand for one-time use. Here’s a case in point:

let para = NSMutableParagraphStyle()

para.headIndent = 10

para.firstLineHeadIndent = 10

para.tailIndent = -10

para.lineBreakMode = .byWordWrapping

para.alignment = .center

para.paragraphSpacing = 15

content.addAttribute(

 .paragraphStyle,

 value:para, range:NSMakeRange(0,1))

That feels clunky, procedural, and wasteful. First we create the
NSMutableParagraphStyle; then we set its properties; then we use it once;

then we throw it away.
It would be clearer and more functional, as well as reflecting the natural
order of thought, if the creation and configuration of para could happen just
at the actual moment when we need this object, namely when we supply the
value: argument. Here’s a generic function that permits us to do that:

func lend<T> (_ closure: (T)->()) -> T where T:NSObject {

 let orig = T()

 closure(orig)

 return orig

}

Now we can express ourselves like this:

content.addAttribute(.paragraphStyle,

 value:lend { (para:NSMutableParagraphStyle) in

 para.headIndent = 10

 para.firstLineHeadIndent = 10

 para.tailIndent = -10

 para.lineBreakMode = .byWordWrapping

 para.alignment = .center

 para.paragraphSpacing = 15

 }, range:NSMakeRange(0,1))

Drawing Into an Image Context
My original goal was to encapsulate the clunky, boilerplate, imperative-
programming dance of drawing into an image graphics context (Chapter 2):
begin an image graphics context; draw into it; extract the image; end the
context. In its place, I wrote a utility function that did everything but the
drawing, which would be provided as a function parameter.
Then iOS 10 introduced UIGraphicsImageRenderer, which works in exactly
that way. But now there’s a new problem: what if you want backward
compatibility? So now my utility function combines the old implementation
with the new one:

func imageOfSize(_ size:CGSize, opaque:Bool = false,

 closure: () -> ()) -> UIImage {

() ()) g {

 if #available(iOS 10.0, *) {

 let f = UIGraphicsImageRendererFormat.default()

 f.opaque = opaque

 let r = UIGraphicsImageRenderer(size: size, format: f)

 return r.image {_ in closure()}

 } else {

 UIGraphicsBeginImageContextWithOptions(size, opaque, 0)

 closure()

 let result = UIGraphicsGetImageFromCurrentImageContext()!

 UIGraphicsEndImageContext()

 return result

 }

}

You call it like this (using my label-free Core Graphics initializers, of
course):

let im = imageOfSize(CGSize(100,100)) {

 let con = UIGraphicsGetCurrentContext()!

 con.addEllipse(in: CGRect(0,0,100,100))

 con.setFillColor(UIColor.blue.cgColor)

 con.fillPath()

}

Finite Repetition of an Animation
This is a solution to the problem of how to repeat a view animation a fixed
number of times without using begin-and-commit syntax (Chapter 4). My
approach is to employ tail recursion and a counter to chain the individual
animations. The delay call unwinds the call stack and works around
possible drawing glitches:

extension UIView {

 class func animate(times:Int,

 duration dur: TimeInterval,

 delay del: TimeInterval,

 options opts: UIViewAnimationOptions,

 animations anim: @escaping () -> (),

 completion comp: ((Bool) -> ())?) {

 func helper(_ t:Int,

 _ dur: TimeInterval,

 _ del: TimeInterval,

 _ opt: UIViewAnimationOptions,

 _ anim: @escaping () -> (),

 _ com: ((Bool) -> ())?) {

 UIView.animate(withDuration: dur,

 delay: del, options: opt,

 animations: anim, completion: { done in

 if com != nil {

 com!(done)

 }

 if t > 0 {

 delay(0) {

 helper(t-1, dur, del, opt, anim, com)

 }

 }

 })

 }

 helper(times-1, dur, del, opts, anim, comp)

 }

}

The calling syntax is exactly like ordering a UIView animation in its full
form, except that there’s an initial times parameter:

let opts = UIViewAnimationOptions.autoreverse

let xorig = self.v.center.x

UIView.animate(times:3, duration:1, delay:0, options:opts, animations:{

 self.v.center.x += 100

 }, completion:{ _ in

 self.v.center.x = xorig

})

Remove Multiple Indexes From Array
It is often convenient to collect the indexes of items to be deleted from an
array, and then to delete those items. We must be careful to sort the indexes
in decreasing numeric order first, because array indexes will be off by one
after an item at a lower index is removed:

extension Array {

 mutating func remove(at ixs:Set<Int>) -> () {

 for i in Array<Int>(ixs).sorted(by:>) {

 self.remove(at:i)

 }

 }

}

Appendix C. How
Asynchronous Works

Beginners sometimes don’t quite understand what it means for code to run
asynchronously. Asynchronous code runs at an indefinite time. It runs out of
order with respect to the surrounding code.
Consider the following (and see Chapter 23):

func doSomeNetworking() {

 // ... prepare url ...

 let session = URLSession.shared

 let task = session.downloadTask(with:url) { loc, resp, err in

 // ... completion function body goes here ...

 }

 task.resume()

}

The method downloadTask(with:completionHandler:) calls its
completion function asynchronously. It calls it when the networking
finishes — and networking takes time. The order in which the chunks of
code run is the numerical order of the numbered lines:

The code before the call.
The call itself.
The code after the call, including the return from the surrounding
function doSomeNetworking. Your code has now come to a complete
stop!
The code inside the completion function. This is the asynchronous code.
It runs later — possibly much later, and certainly well after the
surrounding function doSomeNetworking has returned.

This means that the surrounding function cannot return a value from the
asynchronous code. Beginners might try to write this sort thing:

func doSomeNetworking() -> UIImage? { // vain attempt to return an image

 // ... prepare url ...

 var image : UIImage? = nil

 let session = URLSession.shared

 let task = session.downloadTask(with:url) { loc, resp, err in

 if let loc = loc, let d = try? Data(contentsOf:loc) {

 let im = UIImage(data:d)

 image = im // too late!

 }

 }

 task.resume()

 return image // can only be nil!

}

The author of that code seems to be hoping that the data will be
downloaded and turned into an image, and that image will be returned from
the surrounding function doSomeNetworking. But that can never work,
because the last line, return image, will execute before the line image =
im has ever had a chance to execute. Thus, the returned UIImage is useless:
it will always be nil.
Beginners might then think: So maybe I can wait until my asynchronous
code has finished. That is wrong! Asynchronous means you don’t wait.
When you obtain a value in some asynchronous code and you want to do
something with it, do it in the asynchronous code.
Here, for example, our goal is to update the interface with the downloaded
image:

func doSomeNetworking() {

 // ... prepare url ...

 let session = URLSession.shared

 let task = session.downloadTask(with:url) { loc, resp, err in

 if let loc = loc, let d = try? Data(contentsOf:loc) {

 let im = UIImage(data:d)

 DispatchQueue.main.async {

 self.iv.image = im // update the interface _here_

 }

 }

 }

 task.resume()

}

That’s an excellent solution. But now let’s say you really do want to hand
back a value from the asynchronous code to whoever called the
surrounding method in the first place, leaving it up to the caller what to do
with it. We’ve already established that you can’t return the value. But you
can call back to whoever called the surrounding method in order to hand
them the value. That is the strategy used throughout Cocoa; it propagates
asynchronousness.
A typical architecture is that you allow the caller to hand you a completion
function. Inside your asynchronous code, you call the caller’s completion
function — like this:

func doSomeNetworking(callBackWithImage: @escaping (UIImage?) -> ()) {

 let s = "https://www.apeth.net/matt/images/phoenixnewest.jpg"

 let url = URL(string:s)!

 let session = URLSession.shared

 let task = session.downloadTask(with:url) { loc, resp, err in

 if let loc = loc, let d = try? Data(contentsOf:loc) {

 let im = UIImage(data:d)

 callBackWithImage(im) // call the caller's completion function

 }

 }

 task.resume()

}

Let’s look at the example from the caller’s point of view. The caller of doSo
meNetworking(callBackWithImage:) passes in a completion function
that does whatever the caller ultimately wants done. Here, once again, our
goal is to update the interface with the downloaded image:

doSomeNetworking { im in // completion function

 DispatchQueue.main.async {

 self.iv.image = im

 }

}

That completion function, too, is asynchronous! The caller doesn’t know
when or whether this completion function will be called back; perhaps there
aren’t even any rules about what thread it will be called back on. But when

and if it is called back, the image will arrive as its parameter — and now the
caller can dispose of it as desired.

Index

Symbols
3D touch (see force touch)
A
accelerometer, Raw Acceleration
accessory views, Built-In Cell Styles, Navigation from a Table View
action

control, UIControl
nil-targeted, Text Field Menu
quick, Quick Actions

action extension, Action Extensions
action mechanism, Actions-Nonproperty Actions
action sheet, Action Sheets
activity indicator, UIActivityIndicatorView
activity views, Activity Views-Share Extensions
activity, custom, Custom Activities
activity, motion, Other Core Motion Data
adaptive popover, Adaptive Popovers
adaptive presentation, Adaptive Presentation
adaptive split view controller, Split Views
address

converting to coordinate, Geocoding
natural language search, Searching

Address Book (see Contacts framework)
alerts, Alerts

custom, Dialog Alternatives
local notification, Local Notifications

altimeter, Other Core Motion Data
anchors, Anchor notation

(see also constraints)

animation, Animation-Animation and Autolayout

action mechanism, Actions
action search, Action Search
additive, View Animation Basics, Animation options
annotation, Other Annotation Features
begin-and-commit, A Brief History of View Animation
block, A Brief History of View Animation
blur, View Animation
canceling, Canceling a block-based animation, Animations List
collision, UICollisionBehavior
completion function, Completion function
constraints, Animation and Autolayout, Bipartite Manual Layout
controller, Noninteractive Custom Transition Animation
Core Image, CIFilter Transitions
delay, Animation delay
delegate, CABasicAnimation and Its Inheritance
drag and drop, Additional animation
duration, Animation duration

emitter layers, Emitter Layers
field, UIFieldBehavior
freezing, Frozen View Animation, Freezing an Animation
function, View Animation Basics
GIF, Image View and Image Animation, Dealing with Image Picker
Controller Results
gravity, UIGravityBehavior
grouped, Grouped Animations
hit-testing, Hit-Testing During Animation
image, Image View and Image Animation
image view, Image View and Image Animation
interruptible, Hit-Testing During Animation, Interactive Custom
Transition Animation
keyframe, Keyframe View Animation, Keyframe Animation
layer, adding, Animations List
layer, explicit, Core Animation
layer, implicit, Implicit Layer Animation
list, Animations List
motion effects, Motion Effects
“movie”, Drawing, Animation, and Threading
physics, UIKit Dynamics
presentation layer, Canceling a block-based animation
preventing, View Animation Basics, Animation Transactions,
Hooking Into the Action Search
property animator, A Brief History of View Animation

property, custom, Custom Animatable View Properties, Making a
Property Animatable, Making a Custom Property Implicitly
Animatable
push, UIPushBehavior
redrawing, Transitions, Transitions
repeating, Animation options, Finite Repetition of an Animation
replicator layer, UIActivityIndicatorView
reversing, Animation options, Canceling a property animator’s
animation
rotation of interface, Bipartite Manual Layout
shapes, Freezing an Animation
spring, Springing timing curves, Springing Animation,
UISnapBehavior
stuttering, Layer Efficiency
subviews, Transitioning two views and their superview, Nonproperty
Actions
synchronized with video, Synchronizing Animation with Video
table view cells, Dynamic Cells
timing curves, Animation timing, Timing Curves, Media Timing
Functions
touches, Hit-Testing During Animation
transactions, Animation Transactions
transitions, Transitions, Transitions
UIKit dynamics, UIKit Dynamics, Collection Views and UIKit
Dynamics
view, View Animation
view controller interactive, Interactive Custom Transition Animation

view controller interruptible, Interactive Custom Transition
Animation
view controller presentation, Transition style, Customizing the
animation
view controller transition, Custom Transition
view, removal, View Animation Basics, Nonproperty Actions
when actually happens, Animation Transactions

annotation (see map view)
API, Preface
app

delegate, How an App Launches, Application Lifetime Events
launch, How an App Launches
lifetime events, Application Lifetime Events
rotation, App Rotation, Rotation
state, Application States
switcher, State Restoration, Paused Inactivity

app bundle resources, Image Files
App Transport Security, Basic Networking
appearance proxy, Appearance Proxy
Application Support folder, Standard Directories
archiving, NSCoding
array, deleting by indexes, Remove Multiple Indexes From Array
asset catalog, Image Files, Resizable Images, Transparency Masks
Assets Library (see Photos framework)
asynchronous, Web Views, How Asynchronous Works

(see also threads)

layer drawing, Layer Efficiency

attitude of device, Gyroscope
attributed strings, Attributed Strings-Drawing and Measuring an
Attributed String

creating, Making an Attributed String

in nib, Other ways to create an attributed string

custom attributes, Custom Attributes
drawing, Drawing and Measuring an Attributed String
importing and exporting, Other ways to create an attributed string
inline images, Text attachments
measuring, Drawing and Measuring an Attributed String
modifying, Modifying and Querying an Attributed String
tab stops, Tab stops

audio, Audio-Further Topics in Sound, Video

(see also video)
background, Playing Sound in the Background
ducking, Ducking
effects, AVAudioEngine
interruption, Interruptions
MIDI, MIDI Playback
mixable, Category
mixing, AVAudioEngine
music library, Music Player
playing, Audio Player
remote control, Remote Control of Your Sound

routing, Routing Changes, MPVolumeView
screen locking, Category
secondary, Secondary Audio
session, Audio Session
volume, MPVolumeView

Audio Toolbox framework, System Sounds
authorization, Music Library Authorization

calendars, Calendar
camera, Using the Camera
contacts, Contacts
Core Motion, Other Core Motion Data
local notifications, Authorizing for Local Notifications
location services, Location Manager, Delegate, and Authorization
microphone, Speech to Text, Using the Camera
music library, Music Library Authorization
photo library, Photos Framework
reminders, Calendar
speech recognition, Speech to Text
user location, Map Kit and Current Location

autolayout, Layout, Autolayout and Constraints-Layout Events

(see also constraints)
animation, Animation and Autolayout
button, UIButton
image view, Image Views
label, Resizing a Label to Fit Its Text

progress view, UIProgressView
scroll view, Automatic Content Size with Autolayout
segmented control, UISegmentedControl
slider, UISlider
stack view, Stack Views

autorelease pool, Manual Threading
autoresizing, Autoresizing
autoresizing constraints, Autoresizing Constraints
autosaving, Document Architecture
AV Foundation framework, Audio Session, Video-Further Exploration
of AV Foundation, Playing Songs with AV Foundation-Playing Songs
with AV Foundation

audio

ducking, Constructing Media
mixing, AVAudioEngine
playing, Audio Player
queueing, Playing Songs with AV Foundation

camera, Capture with AV Foundation
classes, Some AV Foundation Classes
key–value observing, Things Take Time
property loading, Things Take Time
time measurement, Time is Measured Oddly
video

editing, Constructing Media
playing, AVPlayerViewController

AVAudioEngine, AVAudioEngine-AVAudioEngine

AVAudioPlayer, Audio Player
AVAudioSession, Audio Session
AVCapturePhoto, Capture with AV Foundation
AVCaptureSession, Capture with AV Foundation
AVKit framework, Video
AVPlayer, AVPlayerViewController, Some AV Foundation Classes
AVPlayerLayer, AVPlayerLayer
AVPlayerLooper, Other AVPlayerViewController Properties, Dealing
with Image Picker Controller Results
AVPlayerViewController, AVPlayerViewController
AVQueuePlayer, Playing Songs with AV Foundation
AVSpeechSynthesizer, Text to Speech
AVSynchronizedLayer, Synchronizing Animation with Video
B
back button, Navigation Items and Toolbar Items, UINavigationBar
back indicator, UINavigationBar
back item, Navigation Controller
background, Application States

audio, Playing Sound in the Background
black, Drawing a UIView, Erasing
downloading, Background Session
location, Background Location
memory management, Background Memory Usage
tasks, Threads and App Backgrounding

banner, Local Notifications
bar button item, Bar Button Items, UIBarButtonItem, UIToolbar

bars, Bars-UITabBar

appearance, Bar Appearance
bar button item, UIBarButtonItem
bar metrics, Bar Position and Bar Metrics
color, Bar Appearance
height, Bar Position and Bar Metrics
image, Bar Appearance
navigation bar, UINavigationBar

back button, Navigation Items and Toolbar Items,
UINavigationBar
back indicator, UINavigationBar

position, Bar Position and Bar Metrics
search bar, Bars
shadow, Bar Appearance
style, Bar Appearance
tab bar, UITabBar

More item, UITabBar

tab bar item, UITabBar
toolbar, UIToolbar
underlapping status bar, Bar Position and Bar Metrics

beep, System Sounds
begin-and-commit animation, A Brief History of View Animation
black background, Drawing-Related Layer Properties
block-based animation, A Brief History of View Animation
blocking the main thread, Main Thread

blurred views, Blur and Vibrancy Views

animating blur, View Animation

borders, Borders and Rounded Corners
bottom and top reversed, Content Resizing and Positioning, Transitions
bounds, Bounds and Center
browser, document, Document Browser
browser, web, Web Views
button, UIButton

in alert, Alerts
in local notification, Notification Category

C
CA prefix, Layers
CAAction, What an Action Is
CAAnimationGroup, Grouped Animations
CABasicAnimation, CABasicAnimation and Its Inheritance
caching a drawing, View and Layer
caching data, NSCache, NSPurgeableData, and Memory-Mapping,
Standard Directories
CADisplayLink, CIFilter Transitions
CAEmitterCell, Emitter Layers
CAEmitterLayer, Emitter Layers
CAGradientLayer, Layers that Draw Themselves
CAKeyframeAnimation, Keyframe Animation
CALayer, Layers

(see also layers)

calendar, Calendar

alarms, Creating Calendars and Events

location-based, Proximity Alarms

authorization, Calendar
calendars, Calendars
changes, Calendar Database Changes
creating, Creating Calendars and Events
events, Calendar Items

creating, Creating Calendars and Events
fetching, Fetching Events

interface, Calendar Interface
recurrence rules, Recurrence
reminders, Reminders

Calendar app, Calendar
CAMediaTimingFunction, Media Timing Functions
camera, Using the Camera-Capture with AV Foundation
Camera app, Capture with UIImagePickerController
CAPropertyAnimation, CABasicAnimation and Its Inheritance
CAReplicatorLayer, UIActivityIndicatorView
carousel, Flow Layout Subclass
CAScrollLayer, CAScrollLayer
CAShapeLayer, Layers that Draw Themselves

animating, Freezing an Animation

CATextLayer, Layers that Draw Themselves, Customized Label
Drawing
CATiledLayer, Tiling, Zooming with Detail

CATransaction, Animation Transactions
CATransform3D, 3D Transforms
CATransformLayer, Transform layers
CATransition, Transitions
cells, Table View Cells-Designing a cell in a storyboard

(see also table views)
accessing, Direct Access to Cells
accessory views, Built-In Cell Styles, Navigation from a Table View
background, Built-In Cell Styles
collapsing, Dynamic Cells
collection views, Collection View Classes
configuration, Built-In Cell Styles
content, Custom Cells-Designing a cell in a storyboard
deleting, Deleting Cells
editable, Editable Content in Cells
height, Built-In Cell Styles, Variable Row Heights
inserting, Inserting Cells
labels, Built-In Cell Styles
layout, Overriding a cell’s subview layout
menus, Table View Menus
nib-loaded, Designing a cell in a nib
prototype, Designing a cell in a storyboard
rearranging, Rearranging Cells
registration of class, Registering a Cell Class
registration of nib, Designing a cell in a nib
reusing, Table View Cells, Reusing Cells

selected, Table View Cell Selection
storyboard-loaded, Designing a cell in a storyboard
styles, Built-In Cell Styles, Registering a Cell Class
swiping, Custom Action Buttons

center of CGRect, Center of a CGRect
CGAffineTransform, Transform, Graphics Context Transforms, Affine
Transforms
CGColor, Colors and Patterns
CGContext, Graphics Contexts
CGGradient, Gradients
CGImage, CGImage Drawing
CGPath, Paths and Shapes
CGPattern, Colors and Patterns
CGPoint initializer, Frame, Core Graphics Initializers
CGRect initializer, Frame, Core Graphics Initializers
CGSize initializer, Frame, Core Graphics Initializers
CGVector initializer, Frame, Core Graphics Initializers
CIFilter, CIFilter and CIImage
CIImage, CIFilter and CIImage
clear, Erasing, Drawing-Related Layer Properties
CLGeocoder, Geocoding
clipboard, Text Field Menu
clipping, Subview and Superview, Clipping
cloud-based

calendars, Calendars
files, iCloud

music, Media Picker
photos, Fetching Images

CLPlacemark, Geocoding
CLRegion, Location monitoring
CMAltimeter, Other Core Motion Data
CMAttitude, Gyroscope
CMDeviceMotion, Gyroscope
CMMotionActivityManager, Other Core Motion Data
CMMotionManager, Using Core Motion
CMPedometer, Other Core Motion Data
CMSensorRecorder, Other Core Motion Data
CMTime, Time is Measured Oddly
CNContactPickerViewController, CNContactPickerViewController
CNContactViewController, CNContactViewController
CNLabeledValue, Labeled Values
CNPostalAddress, Labeled Values
Codable, Codable
collection views, Collection Views-Collection Views and UIKit
Dynamics

animation, Collection Views and UIKit Dynamics
cells, Collection View Classes
decoration views, Decoration Views
drag and drop, Table Views and Collection Views
headers and footers, Collection View Classes
layout, Collection Views, Collection View Classes

changing, Switching Layouts

custom, Custom Collection View Layouts

supplementary views, Collection View Classes

columns of text, Text Kit Without a Text View
compass, Heading
completion function, View Animation Basics, Completion function,
Canceling a property animator’s animation, Fetching Images,
Geocoding, Searching, and Directions, Session Tasks, How
Asynchronous Works
component of a picker view, UIPickerView
compound paths, Paths and Shapes
concurrency, Threads
concurrent queues, Concurrent Queues
constraints, Layout, Autolayout and Constraints, Autolayout and
Constraints-Problems with Nib Constraints

(see also autolayout)
activating and deactivating, Autolayout and Constraints
adding and removing, Autolayout and Constraints
alignment rects, Intrinsic Content Size and Alignment Rects
ambiguous, Mistakes with Constraints
anchors, Anchor notation
animation, Animation and Autolayout, Bipartite Manual Layout
autoresizing, Autoresizing Constraints
changing, Constraints as Objects
conflicting, Mistakes with Constraints
content compression, Intrinsic Content Size and Alignment Rects
content hugging, Intrinsic Content Size and Alignment Rects

creating in code, Creating Constraints in Code
debugging, Mistakes with Constraints, Xcode View Features,
Constraint Issues
implicit, Autoresizing Constraints
intrinsic content size, Intrinsic Content Size and Alignment Rects
layout guides, Custom layout guides
margins, Margins
nib editor

creating, Creating a Constraint
editing, Viewing and Editing Constraints
problems, Problems with Nib Constraints

priority, Autolayout and Constraints, Constraint Priority Arithmetic
safe area, Safe area
stack views, Stack Views
visual format, Visual format notation, Dictionary of Views

contacts, Contacts

authorization, Contacts
fetching, Contact Classes
groups, Contact Sorting, Groups, and Containers
interface, Contacts Interface
sorting, Contact Sorting, Groups, and Containers
sources, Contact Sorting, Groups, and Containers
storing, Saving Contact Information

Contacts app, Contacts
Contacts framework, Contacts-Unknown contact

Contacts UI framework, Contacts, Contacts Interface-Unknown
contact
container view, Noninteractive Custom Transition Animation
container view controller, Container View Controllers
content size (scroll view), Content Size
content view (scroll view), Using a Content View
context (see graphics context)
control center, Remote Control of Your Sound, Paused Inactivity
control events, UIControl
controls, UIControl-Custom Controls

action, UIControl
button, UIButton
custom, Custom Controls
date picker, UIDatePicker
events, UIControl
page control, UIPageControl
segmented control, UISegmentedControl
slider, UISlider
state, UIControl
stepper, UIStepper
switch, UISwitch
target, UIControl
touches, UIControl, Custom Controls

coordinates

converting, Bounds and Center, Manipulating the Layer Hierarchy

to an address, Geocoding

coordinate space, Window Coordinates and Screen Coordinates
layer, Manipulating the Layer Hierarchy
polar, Custom Controls
screen, Window Coordinates and Screen Coordinates
systems, Frame
view, Bounds and Center
window, Window Coordinates and Screen Coordinates, iPad
Multitasking

Core Animation, Core Animation, Core Animation
Core Data framework, Core Data-Core Data
Core Image framework, CIFilter and CIImage
Core Location framework, Proximity Alarms, Maps, Core Location-
Heading

(see also location)

Core Media framework, Time is Measured Oddly
Core Motion framework, Using Core Motion-Other Core Motion Data
Core Text framework, Text, Adding fonts
creating a file, Saving and Reading Files
creating a folder, Basic File Operations
creating a view controller, View Controller Creation-How a View Nib is
Loaded
cropping, UIImage Drawing
CTFont, Fonts and Font Descriptors
CTFontDescriptor, Fonts and Font Descriptors, Font Descriptors
CTM, Graphics Context Transforms
current graphics context, Graphics Contexts

D
data

downloading, HTTP Request with Task Completion Function, Data
task
memory-mapped, NSCache, NSPurgeableData, and Memory-
Mapping
persistent, Persistent Storage
shared, Why Threading Is Hard

date

calculation, Recurrence
constructing, Creating Calendars and Events
converting to string, UIDatePicker

date picker, UIDatePicker
DateComponents, UIDatePicker, Creating Calendars and Events,
Recurrence
DateFormatter, UIDatePicker
Debug menu of Simulator, Layer Efficiency, Scroll View Performance
debugger, view, Mistakes with Constraints, Xcode View Features
decoding, Restoring View Controller State, Codable
deferred location updates, Continuous background location
delay, Delayed Performance
delayed performance, Commonly Used GCD Methods, Delayed
Performance
delegation, Communication with a Presented View Controller
detail (see master–detail interface)
device

attitude, Gyroscope
heading, Heading, Gyroscope
location, Map Kit and Current Location, Location Tracking
motion, Raw Acceleration
shake to undo, Shake Events, Shake-To-Edit
user acceleration, Raw Acceleration

dialogs, modal (see modal dialogs)
dictionaryOfNames, Dictionary of Views
dimming background views, Customizing the presentation
dimming tint color, Tint Color
directions, Directions
directories (see folders)
dismissing a view controller, Presentation and Dismissal
dispatch table, Gesture Recognizer Classes, UIControl
DispatchGroup, Commonly Used GCD Methods
DispatchQueue, Grand Central Dispatch
documents (see files)
Documents folder, Standard Directories
double tap vs. single tap, Interpreting Touches, Gesture Recognizer
Conflicts
downloading, Session Tasks, HTTP Request with Task Completion
Function

background, Background Session

drag and drop, Drag and Drop-iPhone and Local Drag and Drop

animation, Additional animation
flocking, Flocking

iPhone, iPhone and Local Drag and Drop
item provider, Item Providers
local, iPhone and Local Drag and Drop
preview, Custom drag preview
spring loading, Spring Loading
table views, Table Views and Collection Views

drawing

caching, View and Layer
efficiently, Visibility and Opacity, Layer Efficiency, Scroll View
Performance
hit-testing, Hit-Testing For Drawings
image, Graphics Contexts, UIImage Drawing, Drawing Into an
Image Context
path, Paths and Shapes
PDF, PDFs
rotated, Graphics Context Transforms
text, Drawing and Measuring an Attributed String

with Text Kit, Text Kit Without a Text View

view, Drawing a UIView
when actually happens, Drawing, Animation, and Threading,
Animation Transactions

dynamic, Making a Custom Property Implicitly Animatable
dynamic message handling, UITabBar
dynamic type, Dynamic type
dynamics, UIKit, UIKit Dynamics, Collection Views and UIKit
Dynamics

E
EKAlarm, Creating Calendars and Events
EKCalendarChooser, EKCalendarChooser
EKEventEditViewController, EKEventEditViewController
EKEventViewController, EKEventViewController
EKRecurrenceRule, Recurrence
EKReminder, Reminders
ellipsis, Wrapping and Truncation, Text Fields
emitter layers, Emitter Layers
encoding, Restoring View Controller State, Codable
entity

calendar, Calendars
Core Data, Core Data
photo library, Photos Framework

eponymous nib, View in a Separate Nib
errors (see warnings)
Euler angles, Gyroscope
EventKit framework, Calendar-EKCalendarChooser
EventKit UI framework, Calendar Interface-EKCalendarChooser
events

control, UIControl
layout, Layout Events
remote, Remote Control of Your Sound
shake, Shake Events
touch, Touch Events and Views

EXIF data, Image Files

extensions

action extension, Action Extensions
communicating with app, Today Extensions, User Defaults
debugging, Share Extensions
notification content extension, Notification Content Extensions
photo editing extension, Photo Editing Extension
Quick Look preview extension, Custom Previews
share extension, Share Extensions
thumbnail extension, Custom Thumbnails
today extension, Today Extensions

F
file sharing, Standard Directories
FileManager, Basic File Operations
files, Persistent Storage-Image Files

cloud-based, iCloud
creating, Saving and Reading Files
database, SQLite
document architecture, Document Architecture
document browser, Document Browser
document types, Document Types and Receiving a Document
document, receiving, Document Types and Receiving a Document
document, sending, Handing Over a Document
downloading, HTTP Request with Task Completion Function,
Download task
image, Image Files, Image Files
interface for managing, Document Browser

PDF, PDFs
previewing, Previewing a Document
reading, Saving and Reading Files
sandbox, The Sandbox
saving, Saving and Reading Files, Document Architecture
sharing through iTunes, File Sharing
temporary, Standard Directories
thumbnail, Custom Thumbnails
where to save, Standard Directories

Files app, A Basic Document Example, Document Browser
first responder, Summoning and Dismissing the Keyboard, Shake
Events, Shake-To-Edit
flipping, CGImage Drawing, Custom Thumbnails, PDFs
floating views, Motion Effects
flocking, Flocking
fmdb, SQLite
folders

creating, Basic File Operations
listing contents, Basic File Operations
standard, Standard Directories

fonts, Fonts and Font Descriptors-Font Descriptors

app bundle, Adding fonts
converting between, Font Descriptors
downloadable, Adding fonts
dynamic type, Dynamic type
families, Fonts

font descriptors, Font Descriptors
system, System font
variants, Font Descriptors

footer, Built-In Cell Styles, Section Headers and Footers
force touch, Receiving Touches

gestures, 3D Touch Press Gesture
live photos, Dealing with Image Picker Controller Results
local notification alert, Local Notifications
peek and pop, Peek and Pop
quick actions, Quick Actions
web views, Web View Peek and Pop

foreground, Application States
forwarding messages, UITabBar
frame, Frame, Positioning a Sublayer
frontmost, Application States
G
GCD, Grand Central Dispatch
geocoding, Geocoding
geofencing, Proximity Alarms, Location monitoring
gesture recognizers, Gesture Recognizers-Gesture Recognition Logic

(see also touches)
action, Gesture Recognizer Classes
conflicting, Gesture Recognizer Conflicts
delegate, Gesture Recognizer Delegate
exclusive touches, Touch Exclusion Logic

nib object, Gesture Recognizers in the Nib
scroll view, Scroll View Touches
state, Gesture Recognizer Classes
subclassing, Subclassing Gesture Recognizers
swarm, Gesture Recognizer Conflicts
target, Gesture Recognizer Classes
touch delivery, Gesture Recognizer and View

gestures, distinguishing, Interpreting Touches
gestures, force touch, 3D Touch Press Gesture
GIF, animated, Image View and Image Animation, Dealing with Image
Picker Controller Results
glyph, Layout Manager
GPS, Sensors
gradients, Gradients, Layers that Draw Themselves
Grand Central Dispatch, Grand Central Dispatch
graphics context, Graphics Contexts-Points and Pixels

clipping region, Clipping
current, Graphics Contexts
opaque, Erasing
size, Clipping
state, Graphics Context Settings

gravity, Raw Acceleration
groups, undo, Undo Grouping
GUI (see interface)
gyroscope, Gyroscope
H

header, Built-In Cell Styles, Section Headers and Footers
heading, Heading, Gyroscope
hierarchy

layer, Layers and Sublayers
view, Subview and Superview
view controller, View Controller Hierarchy

high-resolution image files, Image Files
high-resolution layers, Drawing-Related Layer Properties
highlighted table view cells, Table View Cell Selection
hit-testing

animation, Hit-Testing During Animation
drawings, Hit-Testing For Drawings
layers, Hit-Testing For Layers
munging, Hit-Test Munging
views, Hit-Testing

hole, punching, Masks
Home button, Application States
HTML files, Web Views
HTTP requests, Basic Networking, HTTP Request with Task
Completion Function
HUD, Creating a Constraint
I
IBDesignable, Designable Views and Inspectable Properties
IBInspectable, Designable Views and Inspectable Properties
iCloud, iCloud
identifier path, Identifier path

image context, Graphics Contexts
image files, Image Files, Image Files
Image I/O framework, Image Files
images, Images and Image Views

(see also photos)
animated, Image View and Image Animation
cropping, UIImage Drawing
drawing, Graphics Contexts, UIImage Drawing, Drawing Into an
Image Context
inline, Text attachments
PDF, Image Files
photo library, Fetching Images
resizable, Resizable Images
reversing, Reversible Images
small, Image Files
template, Transparency Masks

implicit constraints, Autoresizing Constraints
in-app purchase, In-App Purchases
initial view controller, How a View Controller Nib is Loaded
Instruments, Layer Efficiency, Scroll View Performance
interaction, preventing, Drawing, Animation, and Threading
interactive view controller transitions, Interactive Custom Transition
Animation
interface

conditional, Conditional Interface Design

differing on iPad, View in a Separate Nib, Adaptive Presentation,
Split Views
for calendar, Calendar Interface
for contacts, Contacts Interface
for map, Maps
for music library, Media Picker
for photos, Browsing with UIImagePickerController
for playing video or audio, AVPlayerViewController
for searching, Table View Searching
for taking pictures, Capture with UIImagePickerController
for trimming video, UIVideoEditorController
for undoing, Undo Interface
resizing, Resizing Events, iPad Multitasking
reversing, Internationalization, Reversible Images
rotating, App Rotation, Resizing Events, Rotation, Presentation,
Rotation, and the Status Bar
threads, Main Thread

Interface Builder (see nib editor)
Internet, displaying resources from, Web Views
interruptible animations, Hit-Testing During Animation
interruptible view controller transitions, Interactive Custom Transition
Animation
intrinsic content size, Intrinsic Content Size and Alignment Rects
iPad

interface that differs on, View in a Separate Nib, Adaptive
Presentation, Split Views

multitasking, Permitting compensatory rotation, iPad Multitasking,
Picture-in-Picture, Application States, Transient Inactivity
presented view controllers on, Presentation style
resources that differ on, Image Files

iPod app (see Music app)
iPod library (see music library)
item provider, Item Providers
iTunes, sharing files, File Sharing
J
JavaScript, Communicating with a Web Page, Developing Web View
Content
JSON, JSON
K
keyboard, Summoning and Dismissing the Keyboard-Keyboard
language, Text View and Keyboard-Text View and Keyboard

accessory view, Accessory view
customizing, Keyboard and Input Configuration
dismissing, Summoning and Dismissing the Keyboard, Text Field
Delegate and Control Event Messages, Text View and Keyboard
language, Keyboard language
replacing, Input view
scrolling, Keyboard Covers Text Field
shortcuts bar, Shortcuts bar
table views, Keyboard Covers Text Field

key–value coding, The Scope of This Book

layers, Layers and Key–Value Coding

managed objects, Core Data

key–value observing, The Scope of This Book

AVFoundation, Things Take Time, Playing Songs with AV
Foundation
Operation, Operation
Progress, The Progress Class
WKWebView, Tracking Changes in a Web View

KVC (see key–value coding)
KVO (see key–value observing)
L
labels, Built-In Cell Styles, Labels-Customized Label Drawing

line breaking, Wrapping and Truncation
number of lines, Number of Lines
sizing to fit content, Resizing a Label to Fit Its Text
text and font, Built-In Cell Styles
wrapping and truncation, Wrapping and Truncation

landscape orientation at launch, Initial orientation
launch, app, How an App Launches
layers, Layers-Animation and Autolayout

adding and removing, Manipulating the Layer Hierarchy
animation, Implicit Layer Animation, Core Animation

adding, Animations List
explicit, Core Animation
implicit, Implicit Layer Animation

preventing, Animation Transactions, Hooking Into the Action
Search

animations list, Animations List
black background, Drawing-Related Layer Properties
borders, Borders and Rounded Corners
contents, Drawing in a Layer

positioning, Content Resizing and Positioning

coordinates, Manipulating the Layer Hierarchy
depth, Manipulating the Layer Hierarchy, Depth
emitter layers, Emitter Layers
frame, Positioning a Sublayer
gradient, Layers that Draw Themselves
hierarchy, Layers and Sublayers
hit-testing, Hit-Testing For Layers
key–value coding, Layers and Key–Value Coding
layout, Layout of Sublayers
mask, Masks
opaque, Drawing-Related Layer Properties
position, Positioning a Sublayer
presentation, Drawing, Animation, and Threading
redisplaying, Drawing in a Layer, Drawing in a Layer
resolution, Drawing-Related Layer Properties
scrolling, CAScrollLayer
shadows, Shadows
shape, Layers that Draw Themselves
text, Layers that Draw Themselves, Customized Label Drawing

transform, Transforms
transparency, Shadows, Drawing-Related Layer Properties
underlying view, View and Layer

layout

cells, Overriding a cell’s subview layout
collection views, Collection Views
layers, Layout of Sublayers
views, Layout, View Controller Manual Layout

layout bar, Creating a Constraint
layout events, Layout Events
layout guides, Margins and Guides
layout margins, Margins
leak, The Dynamics Stack, Communicating out of a web page, Custom
Schemes, Custom Activities, Delegate Memory Management, Manual
Threading, Functional Undo
lend, Configure a Value Class at Point of Use
line breaking (see wrapping)
line fragment, Layout Manager
loading a view controller’s view, How a View Controller Obtains Its
View
local notifications, Local Notifications-Notification Content Extensions

authorization, Authorizing for Local Notifications
buttons, Notification Category
categories, Notification Category
content extensions, Notification Content Extensions
location-based, Location monitoring

managing, Managing Scheduled Notifications
placeholder text, Preview Suppression
responding to, Hearing About a Local Notification
scheduling, Scheduling a Local Notification
secondary interface, Local Notifications
ways of displaying, Local Notifications

location, Core Location

authorization, Map Kit and Current Location, Location Manager,
Delegate, and Authorization
background updates, Continuous background location
deferred updates, Continuous background location
device, Location Tracking
heading, Heading
manager, Location Manager, Delegate, and Authorization
mapping, Map Kit and Current Location
monitoring, Location monitoring
region, Location monitoring
services, Core Location
significant, Location monitoring
visit, Location monitoring

lock screen, Major State Changes

audio, Category, Remote Control of Your Sound

login screen, Launching Without a Main Storyboard
M
magnetometer, Heading

main storyboard, How an App Launches, How a View Controller Nib is
Loaded

launch without, Launching Without a Main Storyboard, Launch
Without Main Storyboard

main thread, Main Thread

(see also threads)

main view of view controller, View Controllers
main window, The Window and Root View

background color, How an App Launches
coordinates, Window Coordinates and Screen Coordinates, iPad
Multitasking
referring to, Referring to the Window
root view, How an App Launches
subclassing, Subclassing UIWindow

Map Kit framework, Displaying a Map-Directions
map view, Maps

annotations, Annotations

animation, Other Annotation Features
clustering, Annotation View Hiding and Clustering
custom, Customizing an MKMarkerAnnotationView, Custom
Annotation Class
custom callout, Other Annotation Features
custom view, Changing the Annotation View Class
dragging, Other Annotation Features
hiding, Annotation View Hiding and Clustering

displaying directions, Directions

displaying user’s location, Map Kit and Current Location
overlays, Overlays
region, Displaying a Map
tiles, Other Overlay Features

Maps app, Maps, Communicating with the Maps App
margins, Margins
mask, Masks
Master–Detail app template, Configuring a Navigation Controller,
Split Views
master–detail interface, Navigation Controller, Table Views and
Collection Views, Navigation from a Table View, Split Views
Media Player framework, Remote Control of Your Sound, Music
Library
media services daemon, Audio Session
media timing functions, Media Timing Functions
memory

leak, The Dynamics Stack, Communicating out of a web page,
Custom Schemes, Custom Activities, Delegate Memory Management,
Manual Threading, Functional Undo
reducing, View Controller Memory Management, Tiling, Fetching
Images, SQLite, Downloading Table View Data

memory-mapped data, NSCache, NSPurgeableData, and Memory-
Mapping
menus, Table View Menus, Undo Menu
message forwarding, UITabBar
message percolation, View Controller Message Percolation
metadata, image file, Image Files

MIDI, MIDI Playback
misaligned views, Bounds and Center
misplaced views, Problems with Nib Constraints
MKAnnotation, Annotations
MKAnnotationView, Annotations
MKDirections, Directions
MKLocalSearch, Searching
MKMapItem, Communicating with the Maps App
MKMapRect, Displaying a Map
MKMapView, Displaying a Map
MKMarkerAnnotationView, Customizing an
MKMarkerAnnotationView
MKOverlay, Overlays
MKOverlayRenderer, Overlays
MKPlacemark, Geocoding
Mobile Core Services framework, Photo Library and Camera
modal dialogs, Modal Dialogs

action sheet, Action Sheets
activity view, Activity Views
alert, Alerts
alternatives, Dialog Alternatives
quick actions, Quick Actions

modal popovers, Passthrough Views
modal presentation context, Current context presentation
modal presentation style, Presentation style
modal transition style, Transition style

modal view, Presented View Controller

in popover, Popover Presenting a View Controller

model–view–controller, View Controller Responsibilities, Table View
Data
More item, Configuring a Tab Bar Controller, UITabBar
motion activity, Other Core Motion Data
motion effects, Motion Effects
motion manager, Using Core Motion
motion of device, Raw Acceleration
movies in photo library (see photos)
movies, playback (see video)
MPMediaCollection, Exploring the Music Library
MPMediaEntity, Exploring the Music Library
MPMediaItem, Exploring the Music Library
MPMediaLibrary, Persistence and Change in the Music Library
MPMediaPickerController, Media Picker
MPMediaQuery, Querying the Music Library
MPMusicPlayerController, Music Player
MPNowPlayingInfoCenter, Remote Control of Your Sound
MPRemoteCommandCenter, Remote Control of Your Sound
MPVolumeView, MPVolumeView
multitasking, iPad, Permitting compensatory rotation, iPad
Multitasking, Picture-in-Picture, Application States, Transient
Inactivity
multitouch sequence, Touch Events and Views
munging, hit-test, Hit-Test Munging

Music app, Remote Control of Your Sound, Music Library, Music
Player
music library, Music Library-Media Picker

accessing, Exploring the Music Library
authorization, Music Library Authorization
interface, Media Picker
persistence and change, Persistence and Change in the Music
Library
playing, Music Player, Playing Songs with AV Foundation

N
navigation bar, Navigation Controller, UINavigationBar

back button, Navigation Items and Toolbar Items, UINavigationBar
back indicator, UINavigationBar
contents, Navigation Items and Toolbar Items
hiding, Configuring a Navigation Controller
large title, Navigation Items and Toolbar Items
search bar, Search bar in navigation bar
underlapped by view, Bars and Underlapping

navigation controller, Navigation Controller
navigation interface, Navigation Controller, Navigation from a Table
View
navigation item, Navigation Controller, Navigation Items and Toolbar
Items, UINavigationBar
network activity in status bar, UIActivityIndicatorView
nib editor

attributed strings, Other ways to create an attributed string

autoresizing, Autoresizing in the Nib
conditional interface, Conditional Interface Design
constraints, Configuring Layout in the Nib-Size classes in the canvas
designable views, Designable Views and Inspectable Properties
dynamic type, Dynamic type
gesture recognizers, Gesture Recognizers in the Nib
image views, Image Views
inspectable properties, Designable Views and Inspectable Properties
popovers, Popover Segues
presented view controller, Configuration in the nib editor
previews, Previewing Your Interface
refresh control, Refresh Control
safe area, Safe area
scroll views, Scroll View in a Nib, Internal Autolayout
table view cells, Designing a cell in a nib
table views, Built-In Cell Styles
View As button, Conditional Interface Design
view controller size, View Size in the Nib Editor
view controllers, View Controller Creation
web views, WKWebView

nib, eponymous, View in a Separate Nib
nib-loaded cells, Designing a cell in a nib
notification center, Local Notifications
notification content extensions, Notification Content Extensions
notification history, Paused Inactivity
notifications, local (see local notifications)

NSAttributedString, Attributed Strings

(see also attributed strings)

NSCache, NSCache, NSPurgeableData, and Memory-Mapping
NSCoder, Restoring View Controller State
NSCoding, NSCoding
NSFileCoordinator, Document Architecture
NSItemProvider, Item Providers
NSKeyedArchiver, NSCoding
NSKeyedUnarchiver, NSCoding
NSLayoutAnchor, Anchor notation
NSLayoutConstraint, Autolayout and Constraints

(see also constraints)

NSLayoutManager, Text Kit
NSManaged attribute, Making a Custom Property Implicitly
Animatable
NSParagraphStyle, Attributed String Attributes
NSPurgeableData, NSCache, NSPurgeableData, and Memory-Mapping
NSShadow, Attributed String Attributes
NSStringDrawingContext, Drawing and Measuring an Attributed
String
NSTextAttachment, Text attachments
NSTextContainer, Text Kit
NSTextStorage, Text Kit
NSTextTab, Tab stops
O
on-demand resources, On-Demand Resources

once, running code, Commonly Used GCD Methods
opaque graphics context, Erasing
opaque layers, Drawing-Related Layer Properties
Operation, Operation
OperationQueue, Operation
orientation mask, Permitting compensatory rotation
orientation of device, Rotation
orientation of interface at launch, Initial orientation
orientation, resources that depend on, Image Files
original presenter, View controller relationships during presentation
overlay (see map view)
P
page control, UIPageControl

in page view controller, Page indicator

page view controller, Page View Controller-Other Page View
Controller Configurations

configuration, Preparing a Page View Controller
gestures, Navigation gestures
navigation, Page View Controller Navigation
page indicator, Page indicator
storyboard, Other Page View Controller Configurations

parallax, Motion Effects
parent view controller, custom, Container View Controllers
passthrough views, Passthrough Views
password field, Text input traits
pasteboard, Text Field Menu

paths, Paths and Shapes
patterns, Colors and Patterns
PDF, Text, PDFs

document, PDFs
drawing, PDFs
image, Image Files
page, PDFs
previewing, Quick Look Previews
view, PDFs

PDF Kit framework, PDFs
pedometer, Other Core Motion Data
peek and pop, Peek and Pop

web view, Web View Peek and Pop

percolation, message, View Controller Message Percolation
persistent data, Persistent Storage
PHAdjustmentData, Handling the adjustment data
phases of a touch, Touch Events and Views
PHAsset, Photos Framework
PHAssetCollection, Photos Framework
PHChange, Being Notified of Changes
PHCollection, Photos Framework
PHCollectionList, Photos Framework
PHFetchOptions, Querying the Photo Library
PHFetchResult, Querying the Photo Library
PHLivePhotoView, Dealing with Image Picker Controller Results

PHObjectPlaceholder, Modifying the Library
photo editing extension, Photo Editing Extension
photos, Photo Library and Camera

interface, Browsing with UIImagePickerController
library, Photos Framework

authorization, Photos Framework
changes, Being Notified of Changes
editing images, Editing Images
fetching images, Fetching Images
fetching videos, Fetching Images
modifying, Modifying the Library
querying, Querying the Photo Library

live, Image Picker Controller Presentation
taking, Capture with UIImagePickerController

Photos app, Photo Library and Camera
Photos framework, Photo Library and Camera, Photos Framework-
Photo Editing Extension
Photos UI framework, Dealing with Image Picker Controller Results
PHPhotoLibrary, Photos Framework
picker view, UIPickerView
picture-in-picture, Picture-in-Picture, AVPlayerLayer
pixels vs. points, Points and Pixels
pixels, transparent, Hit-Testing For Drawings
polar coordinates, Custom Controls
pool, autorelease, Manual Threading
popovers, Popovers-Popover Presenting a View Controller

action sheet, Action Sheets
arrow source, Arrow Source and Direction
customizing appearance, Popover Appearance
dismissing, Passthrough Views
modal, Passthrough Views
passthrough views, Passthrough Views
presented view controller in, Popover Presenting a View Controller
presenting, Popover Presentation, Dismissal, and Delegate
size, Popover Size
storyboard, Popover Segues

popping a view controller, Configuring a Navigation Controller
preferences, user (see UserDefaults)
preferred content size, Status Bar, Traits, and Resizing
prefetching, Downloading Table View Data
presentation

adaptive, Adaptive Presentation

popover, Adaptive Popovers

context, Current context presentation
controller, Adaptive Presentation, Custom Presented View
Controller Transition, Customizing the presentation
customizing, Customizing the presentation
layer, Drawing, Animation, and Threading, Canceling a block-based
animation
style, Presentation style

presented view controller, Presented View Controller

animation, Transition style

in popover, Popover Presenting a View Controller
rotation, Presentation, Rotation, and the Status Bar

previewing a document, Previewing a Document
previewing view controller transitions, Peek and Pop
primary view controller, Split Views
Progress, The Progress Class
progress view, UIProgressView
properties

animatable, Implicit Layer Animation

custom, Custom Animatable View Properties, Making a Property
Animatable, Making a Custom Property Implicitly Animatable

inspectable, Designable Views and Inspectable Properties

property animator, A Brief History of View Animation

(see also animation)
animations functions, View Animation Basics
completion functions, View Animation Basics, Completion function,
Canceling a property animator’s animation
custom transition animation, Noninteractive Custom Transition
Animation
initializers, Cubic timing curves
retained, Property Animator Basics
states, Property Animator Basics
timing curves, Cubic timing curves

property lists, Saving and Reading Files
prototype cells, Designing a cell in a storyboard
proximity alarms, Proximity Alarms

purchase, in-app, In-App Purchases
pushing a view controller, Configuring a Navigation Controller
Q
QLPreviewController, Quick Look Previews
questions, three big (see table views)
queues (see threads)
quick actions, Quick Actions
Quick Look framework, Quick Look Previews
Quick Look preview extension, Custom Previews
R
range, string, String Range
reachability, Session Configuration
reading a file, Saving and Reading Files
rectangle, rounded, Borders and Rounded Corners
redraw moment, Drawing, Animation, and Threading, Animation
Transactions
redrawing with animation, Transitions
reference, storyboard, Storyboard References
refresh control, Refresh Control
relationship (see segue)
reminders (see calendar)
Reminders app, Calendar
removeAtIndexes, Remove Multiple Indexes From Array
resizable image, Resizable Images
resizing interface, responding to, Resizing Events, iPad Multitasking

resolution, Image Files, CGImage Drawing, Drawing-Related Layer
Properties
resources

depending on size class, Image Files
differing on iPad, Image Files
in app bundle, Image Files
network-based, Web Views, Basic Networking
on-demand, On-Demand Resources

responder chain, The Scope of This Book

gesture recognizers, Gesture Recognizer Classes
nil-targeted actions, Text Field Menu
shake events, Shake Events
undo, Shake-To-Edit
view controllers, View Controllers, Ensuring a Coherent Hierarchy
views, Views
walking, Alerts

restoration identifier, Participating in State Restoration
restoration identifier path, Identifier path
restoration of state, State Restoration
retain cycle, The Scope of This Book, The Dynamics Stack, Peek and
Pop, Appear and Disappear Events, Communicating out of a web page,
Custom Schemes, Custom Activities, Delegate Memory Management,
Functional Undo
Retina display (see screen, high-resolution)
root view, How an App Launches
root view controller, View Controller Responsibilities

rotation, App Rotation, Rotation, Initial orientation

(see also orientation)
bar height, Bar Position and Bar Metrics
compensatory, Rotation
drawing, Graphics Context Transforms
forced, Rotation, Presentation, Rotation, and the Status Bar
interface, Rotation-Tripartite Manual Layout, Presentation,
Rotation, and the Status Bar
layer, 3D Transforms
presented view controllers, Presentation, Rotation, and the Status
Bar
responding to, Resizing Events, Bipartite Manual Layout
view, Transform

rounded rectangle, Borders and Rounded Corners
route, Directions
row of a table, Table View Cells
RTF files, Other ways to create an attributed string, Web Views
S
Safari view controller, Safari View Controller
safe area, Safe area, Bars and Underlapping
sandbox, The Sandbox
saving data (see files)
saving state, State Restoration, User Defaults
scene, How Storyboards Work, Storyboards
screen coordinates, Window Coordinates and Screen Coordinates

screen, high-resolution, Image Files, CGImage Drawing, Drawing-
Related Layer Properties
screen, user locks or unlocks, Major State Changes
screens, multiple, The Window and Root View
scroll indicators, Scrolling
scroll views, Scroll Views-Scroll View Performance

autolayout, Automatic Content Size with Autolayout
content inset, Content Inset
content layout guide, Scroll View Layout Guides
content size, Content Size
content view, Using a Content View
delegate, Scroll View Delegate
floating subviews, Floating Scroll View Subviews
gesture recognizers, Scroll View Touches
inset, Content Inset
keyboard dismissal, Keyboard Covers Text Field
nib-instantiated, Scroll View in a Nib
paging, Paging
scrolling, Scrolling
stuttering, Scroll View Performance
tiling, Tiling
touches, Scroll View Touches
underlapping bars, Content Inset
zooming, Zooming

scrolling in response to keyboard, Keyboard Covers Text Field
search bar, UISearchBar

in navigation bar, Search bar in navigation bar
in table view, Minimal search results table
scope buttons, Scope buttons, UISearchBar
top bar, Bars

search field (see search bar)
searching, interface for, Table View Searching
secondary view controller, Split Views
section data model, Section Data
segmented control, UISegmentedControl
segue, How a View Controller Nib is Loaded, Storyboards-Unwind
segue customization

action, Storyboards, How a segue is triggered
custom, Triggered segue behavior
cycle, Unwind Segues
embed, Container Views and Embed Segues
manual, Storyboards
modal, Storyboards
popover, Popover Segues
present modally, Storyboards
push, Storyboards
relationship, How a View Controller Nib is Loaded, Storyboards
reversing, Unwind Segues
show, Storyboards
show detail, Split View Controller in a Storyboard
triggered, How a View Controller Nib is Loaded, Storyboards-View
controller communication

triggering, How a segue is triggered
unwind, Unwind Segues

serial queues, Operation
serializing objects, Saving and Reading Files
session task, Session Tasks
Settings app, User Defaults
settings bundle, User Defaults
SFSafariViewController, Safari View Controller
SFSpeechRecognizer, Speech to Text
shadows, Shadows, Shadows, Bar Appearance
shaking the device, Shake Events, Shake-To-Edit
shape layers, Layers that Draw Themselves
shapes

animating, Freezing an Animation
hit-testing, Hit-Testing For Drawings

share extension, Share Extensions
sharing files through iTunes, File Sharing
Simulator, Debug menu, Layer Efficiency, Scroll View Performance
single tap vs. double tap, Interpreting Touches, Gesture Recognizer
Conflicts
size classes, Trait Collections and Size Classes

bar height, Bar Position and Bar Metrics
conditional interface, Conditional Interface Design
overriding, Status Bar, Traits, and Resizing, Setting the Collapsed
State
resources that depend on, Image Files

sizeByDelta, Adjust a CGSize
slicing in asset catalog, Resizable Images
slideover, iPad Multitasking
slider, UISlider
small caps, Font Descriptors
snapshot of view, Snapshots
sound (see audio)
Speech framework, Speech to Text
speech recognition, Speech to Text
speech synthesis, Text to Speech
split views, Split Views-View Controller Message Percolation

adaptive, Split Views
collapsed, Collapsed Split View Controller (iPhone)
customizing, Customizing a Split View Controller
expanded, Expanded Split View Controller (iPad)
expanding, Expanding Split View Controller (iPhone 6/7/8 Plus)
forcing to collapse or expand, Setting the Collapsed State
storyboard, Split View Controller in a Storyboard

splitscreen, iPad Multitasking
spring loading, Spring Loading
SQLite, SQLite
stack

navigation bar, Navigation Controller, UINavigationBar
navigation controller, Navigation Controller

state

application, Application States
button, UIButton
control, UIControl
gesture recognizer, Gesture Recognizer Classes
graphics context, Graphics Context Settings
property animator, Property Animator Basics
saving and restoration, State Restoration-Restoration of Other
Objects
saving into UserDefaults, User Defaults

static tables, Cell Choice and Static Tables
status bar

color, Status bar, Presentation, Rotation, and the Status Bar,
Navigation Controller, Status Bar, Traits, and Resizing, Bar
Appearance
network activity, UIActivityIndicatorView
transparent, Bars and Underlapping
underlapped by top bar, Bar Position and Bar Metrics
underlapped by view, Bars and Underlapping
visibility, Status bar, Presentation, Rotation, and the Status Bar,
Status Bar, Traits, and Resizing

step counting, Other Core Motion Data
step out to main thread, Grand Central Dispatch
stepper, UIStepper
Store Kit framework, In-App Purchases
storyboards, How an App Launches, How Storyboards Work-How a
View Nib is Loaded, Storyboards-Unwind segue customization

(see also nib editor)
(see also segue)
container view controllers, Container Views and Embed Segues
Exit proxy object, Creating an unwind segue
main storyboard, How an App Launches, How a View Controller
Nib is Loaded

launch without, Launching Without a Main Storyboard, Launch
Without Main Storyboard

popovers, Popover Segues
prototype cells, Designing a cell in a storyboard
relationships, Storyboards
scenes, How Storyboards Work, Storyboards
split views, Split View Controller in a Storyboard
static tables, Cell Choice and Static Tables
storyboard reference, Storyboard References
view controllers, View Controller Creation, How a View Controller
Nib is Loaded, Storyboards

stretching a resizable image, Resizable Images
stuttering animation, Layer Efficiency
stuttering scroll views, Scroll View Performance
styled text, Attributed Strings

(see also attributed strings)

subclassing

CIFilter, CIFilter and CIImage
NSLayoutManager, Layout Manager
NSTextContainer, Text Container

Operation, Operation
UICollectionViewFlowLayout, Custom Collection View Layouts
UIDocument, Document Architecture
UIDynamicBehavior, Custom Behaviors
UIGestureRecognizer, Subclassing Gesture Recognizers
UIPresentationController, Customizing the presentation
UIStoryboardSegue, Triggered segue behavior
UIViewController, View Controllers
UIWindow, Subclassing UIWindow

sublayer, Layers and Sublayers
subview, Views
subviews, animating, Transitioning two views and their superview,
Nonproperty Actions
subviews, removing all, Subview and Superview
superlayer, Layers and Sublayers
superview, Views
suspended, Threads and App Backgrounding, Application States
Swift, Preface
switch, UISwitch
sync, Commonly Used GCD Methods
System Sound Services, System Sounds
T
tab bar, Tab Bar Controller, UITabBar

More item, Configuring a Tab Bar Controller, UITabBar
underlapped by view, Bars and Underlapping

tab bar controller, Tab Bar Controller

tab bar interface, Tab Bar Controller
tab bar item, Tab Bar Controller, UITabBar

creating, Tab Bar Items
images, Tab Bar Items

tab stops, Tab stops
Tabbed app template, Configuring a Tab Bar Controller
table view controller, Table View Controller
table views, Table Views and Collection Views-Table View Menus

(see also cells)
data source, Built-In Cell Styles, Registering a Cell Class, Table View
Data-Section Index
data, downloading, Downloading Table View Data, Commonly Used
GCD Methods
drag and drop, Table Views and Collection Views
editing, Table View Editing-Dynamic Cells
grouped, Table Views and Collection Views
height of row, Built-In Cell Styles, Variable Row Heights
keyboard, Keyboard Covers Text Field
layout, Table View Scrolling and Layout
menus, Table View Menus
navigation interface, Navigation from a Table View
prefetching, Downloading Table View Data
refresh control, Refresh Control
refreshing, Refreshing a Table View
restoration of state, Table View State Restoration
rows, Table View Cells

scrolling, Table View Scrolling and Layout
searching, Table View Searching-No search results controller
sections, Table View Sections

collapsing, Dynamic Cells
data model, Section Data
header and footer, Section Headers and Footers
height, Section Headers and Footers, Automatic Row Height
index, Section Index

selection, Table View Cell Selection
separators, Built-In Cell Styles
static, Cell Choice and Static Tables

tap, single vs. double, Interpreting Touches, Gesture Recognizer
Conflicts
target–action, Gesture Recognizer Classes, UIControl, Target–Action
Undo
template images, Transparency Masks
termination of app, Application States
text, Text-Text Kit Without a Text View

alignment, Attributed String Attributes
columns, Text Kit Without a Text View
drawing, Drawing and Measuring an Attributed String, Text Kit
Without a Text View
styled, Attributed Strings

(see also attributed strings)

truncation, Attributed String Attributes, Wrapping and Truncation
wrapping, Attributed String Attributes, Wrapping and Truncation

text fields, Text Fields-Text Field Menu

alert, Alerts
control events, Text Field Delegate and Control Event Messages
delegate, Text Field Delegate and Control Event Messages
insertion, Text Field Delegate and Control Event Messages
keyboard, Summoning and Dismissing the Keyboard
menus, Text Field Menu
selection, Text Field Menu
table view cells, Editable Content in Cells

Text Kit, Text, Text Kit-Text Kit Without a Text View

layout manager, Layout Manager

multiple, Alternative Text Kit Stack Architectures
subclassing, Layout Manager

multicolumn text, Text Kit Without a Text View
responding to tap, Text Kit Without a Text View
text container, Text Container

exclusion paths, Text Container
multiple, Alternative Text Kit Stack Architectures
subclassing, Text Container

text layers, Layers that Draw Themselves, Customized Label Drawing
text views, Text Views-Text View and Keyboard

delegate, Text Views
keyboard, Text View and Keyboard
links, Links, Text Attachments, and Data
responding to tap, Links, Text Attachments, and Data

selection, Text Views
self-sizing, Self-Sizing Text View
text container, Text Container

threads, Threads-Threads and App Backgrounding

deinit, Why Threading Is Hard
dispatch groups, Commonly Used GCD Methods
GCD, Grand Central Dispatch
interface, Main Thread
locks, Why Threading Is Hard
main thread, Main Thread

blocking, Blocking the Main Thread

manual, Manual Threading
multiple execution, Why Threading Is Hard
Operation, Operation
queues

dispatch, Grand Central Dispatch
global, Concurrent Queues
instead of locks, Operation
operation, Operation
serial, Operation

shared data, Why Threading Is Hard
waiting, Commonly Used GCD Methods, How Asynchronous Works

thumbnail extension, Custom Thumbnails
thumbnail image, Image Files
TIFF, converting to, Image Files

tiling a resizable image, Resizable Images
tiling a scroll view, Tiling
tint color, Transparency Masks, Tint Color

dimming, Tint Color

today extension, Today Extensions
toolbar, Navigation Controller, UIToolbar

underlapped by view, Bars and Underlapping

toolbar items, Navigation Items and Toolbar Items, UIToolbar
top and bottom reversed, Content Resizing and Positioning, Transitions
top item, Navigation Controller
top-level view controller, View Controller Responsibilities, Permitting
compensatory rotation, Presentation, Rotation, and the Status Bar
touches, Touches-Gesture Recognition Logic

(see also gesture recognizers)
coalesced and predicted, Receiving Touches
control, UIControl, Custom Controls
delivery, Touch Delivery
during animation, Hit-Testing During Animation
force, Receiving Touches, 3D Touch Press Gesture
pencil, Receiving Touches
phases, Touch Events and Views
restricting, Restricting Touches, Touch Exclusion Logic
touch methods, Receiving Touches

trait collections, Trait Collections and Size Classes

(see also size classes)

asset catalog, Image Files
overriding, Status Bar, Traits, and Resizing, Setting the Collapsed
State
resizing of interface, Resizing Events, iPad Multitasking
rotation of interface, Resizing Events

transactions, Animation Transactions
transform, Transform, Graphics Context Transforms, Transforms

depth, Sublayer transform

transition animation

interactive, Interactive Custom Transition Animation
interruptible, Interactive Custom Transition Animation
layer, Transitions
view, Transitions
view controller, Custom Transition

transition context, Noninteractive Custom Transition Animation
transition coordinator, Bipartite Manual Layout, Transition
Coordinator
transitions, Core Image, CIFilter Transitions
transparency layer, Shadows
transparency mask, Transparency Masks
transparent pixels, Hit-Testing For Drawings
transparent status bar, Bars and Underlapping
type, dynamic, Dynamic type
typecasting to quiet compiler, Hooking Into the Action Search
U
UIActivity, Custom Activities

UIActivityIndicatorView, UIActivityIndicatorView
UIActivityViewController, Activity Views
UIAlertAction, Alerts and Action Sheets
UIAlertController, Alerts and Action Sheets
UIApplicationMain, How an App Launches, How a View Controller
Nib is Loaded
UIApplicationShortcutItem, Quick Actions
UIBarButtonItem, Bar Button Items, UIBarButtonItem, UIToolbar
UIBarButtonItemGroup, Shortcuts bar
UIBarItem, Tab Bar Items, Bar Button Items
UIBezierPath, Paths and Shapes
UIButton, UIButton
UICollectionView, Collection Views

(see also collection views)

UICollectionViewCell, Collection View Classes
UICollectionViewController, Collection View Classes
UICollectionViewFlowLayout, Collection View Classes, Custom
Collection View Layouts
UICollectionViewLayout, Collection Views
UICollectionViewLayoutAttributes, Collection View Classes
UIContentContainer, Resizing Events, Status Bar, Traits, and Resizing
UIContextualAction, Custom Action Buttons
UIControl, UIControl

(see also controls)

UICoordinateSpace, Window Coordinates and Screen Coordinates
UIDatePicker, UIDatePicker

UIDocument, Document Architecture
UIDocumentBrowserViewController, Document Browser
UIDocumentInteractionController, Handing Over a Document
UIDynamicAnimator, The Dynamics Stack, Collection Views and
UIKit Dynamics
UIDynamicBehavior, The Dynamics Stack
UIDynamicItem, The Dynamics Stack, Collection Views and UIKit
Dynamics
UIDynamicItemGroup, The Dynamics Stack
UIEdgeInsets, Margins and Guides, Content Inset
UIEvent, Touches
UIFont, Fonts and Font Descriptors
UIFontDescriptor, Font Descriptors
UIFontMetrics, Dynamic type
UIGestureRecognizer, Gesture Recognizer Classes

(see also gesture recognizers)

UIImage, Images and Image Views, Graphics Contexts

(see also images)

UIImageAsset, Image Files
UIImagePickerController, Browsing with UIImagePickerController
UIImageView, Image Views
UIKit dynamics, UIKit Dynamics-UIAttachmentBehavior, Collection
Views and UIKit Dynamics
UILabel, Built-In Cell Styles, Labels-Customized Label Drawing

(see also labels)

UILayoutGuide, Margins and Guides

UILayoutPriority, Autolayout and Constraints, Constraint Priority
Arithmetic
UIMenuController, Text Field Menu, Undo Menu
UIMenuItem, Undo Menu
UIMotionEffect, Motion Effects
UINavigationBar, Navigation Controller, UINavigationBar
UINavigationController, Navigation Controller
UINavigationItem, Navigation Controller, Navigation Items and
Toolbar Items, UINavigationBar
UIPageControl, UIPageControl
UIPageViewController, Page View Controller
UIPickerView, UIPickerView
UIPopoverPresentationController, Popovers
UIPresentationController, Adaptive Presentation
UIPreviewInteraction, 3D Touch Press Gesture
UIProgressView, UIProgressView
UIRectEdge, Gesture Recognizer Classes
UIRefreshControl, Refresh Control
UIScreen, Window Coordinates and Screen Coordinates
UIScrollView, Scroll Views

(see also scroll views)

UISearchBar, Table View Searching, UISearchBar

(see also search bar)

UISearchController, Table View Searching-No search results controller
UISegmentedControl, UISegmentedControl
UISlider, UISlider

UISplitViewController, Split Views

(see also split views)

UIStackView, Stack Views
UIStepper, UIStepper
UIStoryboardSegue, Triggered Segues
UISwipeActionsConfiguration, Custom Action Buttons
UISwitch, UISwitch
UITabBar, Tab Bar Controller, UITabBar
UITabBarController, Tab Bar Controller
UITabBarItem, Tab Bar Controller, UITabBar
UITableView, Table Views and Collection Views

(see also table views)

UITableViewCell, Table Views and Collection Views

(see also cells)

UITableViewController, Table View Controller
UITableViewHeaderFooterView, Section Headers and Footers
UITextField, Text Fields

(see also text fields)

UITextView, Text Views

(see also text views)

UIToolbar, Navigation Controller, UIToolbar
UITouch, Touches, Receiving Touches

(see also touches)

UITraitCollection, Trait Collections and Size Classes

(see also trait collections)

UITraitEnvironment, Resizing Events, Status Bar, Traits, and Resizing
UIVideoEditorController, UIVideoEditorController
UIView, Views

(see also views)

UIViewAnimationOptions, Animation options
UIViewController, View Controllers

(see also view controllers)

UIViewControllerRestoration, Restoration class
UIViewPropertyAnimator, Property Animator Basics

(see also property animator)

UIVisualEffectView, Blur and Vibrancy Views
UIWindow, The Window and Root View

(see also window)

unarchiving, NSCoding
underlying layer of view, View and Layer

animating, Implicit Layer Animation, Core Animation

undo, Undo-Undo Menu

alert button titles, Shake-To-Edit
groups, Undo Grouping
interface for, Undo Interface
manager, Undo Manager
shake to, Shake Events, Shake-To-Edit
target–action, Target–Action Undo

UndoManager, Undo
UNMutableNotificationContent, Scheduling a Local Notification

UNNotification, Hearing About a Local Notification
UNNotificationAction, Notification Category
UNNotificationAttachment, Scheduling a Local Notification
UNNotificationCategory, Notification Category
UNNotificationResponse, Hearing About a Local Notification
UNNotificationTrigger, Scheduling a Local Notification
UNUserNotificationCenter, Local Notifications
unwind method, Creating an unwind segue
unwind segue, Unwind Segues
URLRequest, HTTP Request with Session Delegate
URLSession, HTTP Requests

background, Background Session
configuring, Session Configuration
delegate, Session Delegate, Delegate Memory Management
invalidating, Delegate Memory Management
memory management, Delegate Memory Management
obtaining, Obtaining a Session
task, Session Tasks

URLSessionTask, Session Tasks
URLSessionTaskDelegate, Session Delegate
Use Auto Layout, Configuring Layout in the Nib
Use Safe Area Layout Guides, Configuring Layout in the Nib
Use Trait Variations, Configuring Layout in the Nib
user

activity, Other Core Motion Data
altitude, Other Core Motion Data

calendar, Calendar
contacts, Contacts
defaults, User Defaults
interaction, preventing, Drawing, Animation, and Threading,
Restricting Touches
location, Map Kit and Current Location, Location Tracking
music library, Music Library
photo library, Photo Library and Camera
reminders, Calendar
steps, Other Core Motion Data

User Notifications framework, Local Notifications
UserDefaults, User Defaults
V
Vary for Traits button, Conditional Interface Design
vibrancy views, Blur and Vibrancy Views
video, Video-UIVideoEditorController

(see also photos)
photo library, Fetching Images
picture-in-picture, Picture-in-Picture
recording, Capture with UIImagePickerController
remote, Things Take Time
trimming interface, UIVideoEditorController

view controller

for calendar, Calendar Interface
for contacts, Contacts Interface
for files, Document Browser

for music library, Media Picker
for photos, Browsing with UIImagePickerController
for taking pictures, Capture with UIImagePickerController
for trimming video, UIVideoEditorController
for web browsing, Safari View Controller

view controllers, View Controllers-Testing Memory Usage

adaptive presentation, Adaptive Presentation

popover, Adaptive Popovers

animation

custom transition, Custom Transition
interactive, Interactive Custom Transition Animation
interruptible, Interactive Custom Transition Animation

appearing and disappearing, View Controller Lifetime Events
bottom bar, Configuring a Navigation Controller
child, View Controller Hierarchy

adding and removing, Adding and Removing Children

communication between, Communication with a Presented View
Controller, View controller communication
contained, View Controller Hierarchy
container, Container View Controllers
creating, View Controller Creation-How a View Nib is Loaded
hierarchy, View Controller Hierarchy
initial, How a View Controller Nib is Loaded
keyboard, Input view
layout, View Controller Manual Layout

lifetime events, View Controller Lifetime Events

app, relation to, Lifetime Event Timing
forwarding to child, Event Forwarding to a Child View Controller

main view, View Controllers
memory management, View Controller Memory Management
message percolation, View Controller Message Percolation
modal, View Controller Hierarchy, Presented View Controller
navigation bar, Configuring a Navigation Controller
navigation item, Navigation Items and Toolbar Items
nib name matching, View in a Separate Nib
original presenter, View controller relationships during presentation
parent, View Controller Hierarchy, Container View Controllers
popping, Configuring a Navigation Controller
preferred content size, Status Bar, Traits, and Resizing
presentation animation, Customizing the animation
presentation controller, Adaptive Presentation
presentation, custom, Customizing the presentation
presented, View Controller Hierarchy, Presented View Controller
presenting, View Controller Hierarchy, Presentation and Dismissal
previewing transitions, Peek and Pop
primary, Split Views
pushing, Configuring a Navigation Controller
resizing interface, Resizing Events, iPad Multitasking
retaining, View Controller Creation
root, View Controller Responsibilities

rotating interface, Resizing Events, Bipartite Manual Layout,
Presentation, Rotation, and the Status Bar
safe area, Bars and Underlapping
secondary, Split Views
state restoration, State Restoration
storyboard-instantiated, View Controller Creation, How a View
Controller Nib is Loaded, Storyboards
subclassing, View Controllers
toolbar items, Navigation Items and Toolbar Items
top-level, View Controller Responsibilities, Permitting compensatory
rotation, Presentation, Rotation, and the Status Bar
view

appearing and disappearing, View Controller Lifetime Events
created in code, Manual View
loading, How a View Controller Obtains Its View-How a View Nib
is Loaded
nib-loaded, View in a Separate Nib
populating, Generic Automatic View
preferred size, Status Bar, Traits, and Resizing
resized, View Resizing
resizing, View Resizing
size in nib editor, View Size in the Nib Editor
storyboard-loaded, How Storyboards Work
view hierarchy, Automatic Child View Placement, Adding and
Removing Children

view property, View Controllers

view debugger, Mistakes with Constraints, Xcode View Features
view property animator, A Brief History of View Animation
viewport, Developing Web View Content
views, Views-Gesture Recognition Logic

adding, Subview and Superview
alignment rects, Intrinsic Content Size and Alignment Rects
animation, View Animation
appearance proxy, Appearance Proxy
autolayout, Autolayout and Constraints-Layout Events
autoresizing, Autoresizing
black background, Drawing a UIView, Erasing
blurred, Blur and Vibrancy Views
bounds, Bounds and Center
constraints, Autolayout and Constraints

(see also autolayout)

content mode, Content Mode
coordinates, Bounds and Center
debugging, Mistakes with Constraints, Xcode View Features
designable, Designable Views and Inspectable Properties
distributing evenly, Custom layout guides, Stack Views
drag and drop, Drag and Drop Architecture
dragging, Interpreting Touches
drawing, Drawing a UIView
floating, Motion Effects
frame, Frame
hidden, Visibility and Opacity

hierarchy, Subview and Superview
hit-testing, Hit-Testing
input, Input view
intrinsic content size, Intrinsic Content Size and Alignment Rects
layer, View and Layer
layering order, Subview and Superview
layout, Layout, View Controller Manual Layout
margins, Margins
misalignment, Bounds and Center
misplaced, Problems with Nib Constraints
opaque, Visibility and Opacity, Drawing a UIView
overlapping, Subview and Superview
position, Frame
previewing, Previewing Your Interface
removing, Subview and Superview
root view, How an App Launches
safe area, Safe area, Bars and Underlapping
snapshot, Snapshots
spring loaded, Spring Loading
tag, Subview and Superview
tint color, Transparency Masks, Tint Color

dimming, Tint Color

touch delivery, Gesture Recognizer and View
transform, Transform
transparency, Visibility and Opacity, Drawing a UIView, Erasing
vibrancy, Blur and Vibrancy Views

visit, Location monitoring
volume, audio, MPVolumeView
W
waiting, Commonly Used GCD Methods, How Asynchronous Works
warnings

illegal property type, Appearance Proxy
invalid nib registered for identifier, Designing a cell in a nib
scrollable content size ambiguity, Internal Autolayout
supported orientations, Permitting compensatory rotation
unable to simultaneously satisfy constraints, Autoresizing
Constraints, Mistakes with Constraints

watchdog, Main Thread
Web Inspector, Developing Web View Content
web views, Text, Web Views-Developing Web View Content

configuring, WKWebView
content, Web View Content, Developing Web View Content
debugging, Developing Web View Content
delegate, Web View Navigation
JavaScript, Communicating into a web page
navigation, Web View Navigation
observing changes, Tracking Changes in a Web View
peek and pop, Web View Peek and Pop
schemes, custom, Custom Schemes
shortcomings, Web View State Saving and Restoration
UIWebView, Web Views
viewport, Developing Web View Content

WKWebView, Web Views

WebKit framework, WKWebView
window coordinates, Window Coordinates and Screen Coordinates
window, main, The Window and Root View

(see also main window)

WKWebView, WKWebView

(see also web views)
X
Xcode, The Scope of This Book

(see also nib editor)

XML, XML
XMLParser, XML
Z
zooming a scroll view, Zooming

About the Author
Matt Neuburg started programming computers in 1968, when he was 14
years old, as a member of a literally underground high school club, which
met once a week to do timesharing on a bank of PDP-10s by way of
primitive teletype machines. He also occasionally used Princeton
University’s IBM-360/67, but gave it up in frustration when one day he
dropped his punch cards. He majored in Greek at Swarthmore College, and
received his PhD from Cornell University in 1981, writing his doctoral
dissertation (about Aeschylus) on a mainframe. He proceeded to teach
Classical languages, literature, and culture at many well-known institutions
of higher learning, most of which now disavow knowledge of his existence,
and to publish numerous scholarly articles unlikely to interest anyone.
Meanwhile he obtained an Apple IIc and became hopelessly hooked on
computers again, migrating to a Macintosh in 1990. He wrote some
educational and utility freeware, became an early regular contributor to the
online journal TidBITS, and in 1995 left academe to edit MacTech
magazine. In August 1996 he became a freelancer, which means he has
been looking for work ever since. He is the author of Frontier: The
Definitive Guide, REALbasic: The Definitive Guide, and AppleScript: The
Definitive Guide.

Colophon
The animal on the cover of Programming iOS 11 is a kingbird, one of the
13 species of North American songbirds making up the genus Tyrannus. A
group of kingbirds is called a “coronation,” a “court,” or a “tyranny.”
Kingbirds eat insects, which they often catch in flight, swooping from a
perch to grab the insect midair. They may also supplement their diets with
berries and fruits. They have long, pointed wings, and males perform
elaborate aerial courtship displays.
Both the genus name (meaning “tyrant” or “despot”) and the common name
(“kingbird”) refer to these birds’ aggressive defense of their territories,
breeding areas, and mates. They have been documented attacking red-tailed
hawks (which are more than twenty times their size), knocking bluejays out
of trees, and driving away crows and ravens. (For its habit of standing up to
much larger birds, the gray kingbird has been adopted as a Puerto Rican
nationalist symbol.)
“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an
average-size kingbird (7.5–9 inches long, wingspan 13–15 inches) found all
across North America. This common and widespread bird has a dark head
and back, with a white throat, chest, and belly. Its red crown patch is rarely
seen. Its high-pitched, buzzing, stuttering sounds have been described as
resembling “sparks jumping between wires” or an electric fence.
The cover image is from Cassell’s Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	The Scope of This Book
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	I. Views
	1. Views
	The Window and Root View
	How an App Launches
	Launching Without a Main Storyboard
	Subclassing UIWindow
	Referring to the Window

	Experimenting with Views
	Subview and Superview
	Visibility and Opacity
	Frame
	Bounds and Center
	Window Coordinates and Screen Coordinates
	Transform
	App Rotation
	Trait Collections and Size Classes
	Layout
	Autoresizing
	Autolayout and Constraints
	Autoresizing Constraints
	Creating Constraints in Code
	Constraints as Objects
	Margins and Guides
	Intrinsic Content Size and Alignment Rects
	Stack Views
	Internationalization
	Mistakes with Constraints

	Configuring Layout in the Nib
	Autoresizing in the Nib
	Creating a Constraint
	Viewing and Editing Constraints
	Problems with Nib Constraints
	Varying the Screen Size
	Conditional Interface Design

	Xcode View Features
	View Debugger
	Previewing Your Interface
	Designable Views and Inspectable Properties

	Layout Events

	2. Drawing
	Images and Image Views
	Image Files
	Image Views
	Resizable Images
	Transparency Masks
	Reversible Images

	Graphics Contexts
	UIImage Drawing
	CGImage Drawing
	Snapshots
	CIFilter and CIImage
	Blur and Vibrancy Views
	Drawing a UIView
	Graphics Context Commands
	Graphics Context Settings
	Paths and Shapes
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Erasing

	Points and Pixels
	Content Mode

	3. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Drawing-Related Layer Properties
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Affine Transforms
	3D Transforms
	Depth

	Further Layer Features
	Shadows
	Borders and Rounded Corners
	Masks

	Layer Efficiency
	Layers and Key–Value Coding

	4. Animation
	Drawing, Animation, and Threading
	Image View and Image Animation
	View Animation
	A Brief History of View Animation
	Property Animator Basics
	View Animation Basics
	View Animation Configuration
	Timing Curves
	Canceling a View Animation
	Frozen View Animation
	Custom Animatable View Properties
	Keyframe View Animation
	Transitions

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Springing Animation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Freezing an Animation
	Transitions
	Animations List

	Actions
	What an Action Is
	Action Search
	Hooking Into the Action Search
	Making a Custom Property Implicitly Animatable
	Nonproperty Actions

	Emitter Layers
	CIFilter Transitions
	UIKit Dynamics
	The Dynamics Stack
	Custom Behaviors
	Animator and Behaviors

	Motion Effects
	Animation and Autolayout

	5. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Gesture Recognizer Conflicts
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate
	Gesture Recognizers in the Nib

	3D Touch Press Gesture
	Touch Delivery
	Hit-Testing
	Performing Hit-Testing
	Hit-Test Munging
	Hit-Testing For Layers
	Hit-Testing For Drawings
	Hit-Testing During Animation

	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Gesture Recognition Logic

	II. Interface
	6. View Controllers
	View Controller Responsibilities
	View Controller Hierarchy
	Automatic Child View Placement
	Manual Child View Placement
	Presentation View Placement
	Ensuring a Coherent Hierarchy

	View Controller Creation
	How a View Controller Obtains Its View
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Summary

	How Storyboards Work
	How a View Controller Nib is Loaded
	How a View Nib is Loaded

	View Resizing
	View Size in the Nib Editor
	Bars and Underlapping
	Resizing Events
	Rotation

	View Controller Manual Layout
	Initial Manual Layout
	Bipartite Manual Layout
	Tripartite Manual Layout

	Presented View Controller
	Presentation and Dismissal
	Configuring a Presentation
	Communication with a Presented View Controller
	Adaptive Presentation
	Presentation, Rotation, and the Status Bar

	Tab Bar Controller
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controller
	Bar Button Items
	Navigation Items and Toolbar Items
	Configuring a Navigation Controller

	Custom Transition
	Noninteractive Custom Transition Animation
	Interactive Custom Transition Animation
	Custom Presented View Controller Transition
	Transition Coordinator

	Page View Controller
	Preparing a Page View Controller
	Page View Controller Navigation
	Other Page View Controller Configurations

	Container View Controllers
	Adding and Removing Children
	Status Bar, Traits, and Resizing

	Peek and Pop
	Storyboards
	Triggered Segues
	Container Views and Embed Segues
	Storyboard References
	Unwind Segues

	View Controller Lifetime Events
	Incoherencies in View Controller Events
	Appear and Disappear Events
	Event Forwarding to a Child View Controller

	View Controller Memory Management
	Lazy Loading
	NSCache, NSPurgeableData, and Memory-Mapping
	Background Memory Usage
	Testing Memory Usage

	State Restoration
	How to Test State Restoration
	Participating in State Restoration
	Restoration ID, Identifier Path, and Restoration Class
	Restoring View Controller State
	Restoration Order of Operations
	Restoration of Other Objects

	7. Scroll Views
	Content Size
	Creating a Scroll View in Code
	Manual Content Size
	Automatic Content Size with Autolayout
	Scroll View Layout Guides
	Using a Content View

	Scroll View in a Nib
	No Internal Autolayout
	Internal Autolayout

	Content Inset
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Floating Scroll View Subviews
	Scroll View Performance

	8. Table Views and Collection Views
	Table View Controller
	Table View Cells
	Built-In Cell Styles
	Registering a Cell Class
	Custom Cells

	Table View Data
	The Three Big Questions
	Reusing Cells

	Table View Sections
	Section Headers and Footers
	Section Data
	Section Index

	Refreshing a Table View
	Direct Access to Cells
	Refresh Control

	Variable Row Heights
	Manual Row Height Measurement
	Measurement and Layout with Constraints
	Estimated Height
	Automatic Row Height

	Table View Cell Selection
	Managing Cell Selection
	Responding to Cell Selection
	Navigation from a Table View
	Cell Choice and Static Tables

	Table View Scrolling and Layout
	Table View State Restoration
	Table View Searching
	Configuring a Search Controller
	Using a Search Controller

	Table View Editing
	Deleting Cells
	Custom Action Buttons
	Editable Content in Cells
	Inserting Cells
	Rearranging Cells
	Dynamic Cells

	Table View Menus
	Collection Views
	Collection View Classes
	Using a Collection View
	Deleting Cells
	Rearranging Cells

	Custom Collection View Layouts
	Flow Layout Subclass
	Collection View Layout Subclass
	Decoration Views

	Switching Layouts
	Collection Views and UIKit Dynamics

	9. iPad Interface
	Popovers
	Arrow Source and Direction
	Popover Size
	Popover Appearance
	Passthrough Views
	Popover Presentation, Dismissal, and Delegate
	Adaptive Popovers
	Popover Segues
	Popover Presenting a View Controller

	Split Views
	Expanded Split View Controller (iPad)
	Collapsed Split View Controller (iPhone)
	Expanding Split View Controller (iPhone 6/7/8 Plus)
	Customizing a Split View Controller
	Split View Controller in a Storyboard
	Setting the Collapsed State
	View Controller Message Percolation

	iPad Multitasking
	Drag and Drop
	Drag and Drop Architecture
	Basic Drag and Drop
	Item Providers
	Slow Data Delivery
	Additional Delegate Methods
	Table Views and Collection Views
	Spring Loading
	iPhone and Local Drag and Drop

	10. Text
	Fonts and Font Descriptors
	Fonts
	Font Descriptors

	Attributed Strings
	Attributed String Attributes
	Making an Attributed String
	Modifying and Querying an Attributed String
	Custom Attributes
	Drawing and Measuring an Attributed String

	Labels
	Number of Lines
	Wrapping and Truncation
	Resizing a Label to Fit Its Text
	Customized Label Drawing

	Text Fields
	Summoning and Dismissing the Keyboard
	Keyboard Covers Text Field
	Keyboard and Input Configuration
	Text Field Delegate and Control Event Messages
	Text Field Menu
	Drag and Drop

	Text Views
	Links, Text Attachments, and Data
	Self-Sizing Text View
	Text View and Keyboard

	Text Kit
	Text View and Text Kit
	Text Container
	Alternative Text Kit Stack Architectures
	Layout Manager
	Text Kit Without a Text View

	11. Web Views
	WKWebView
	Web View Content
	Tracking Changes in a Web View
	Web View Navigation
	Communicating with a Web Page
	Custom Schemes
	Web View Peek and Pop
	Web View State Saving and Restoration

	Safari View Controller
	Developing Web View Content

	12. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	Progress View Alternatives
	The Progress Class

	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	Bar Position and Bar Metrics
	Bar Appearance
	UIBarButtonItem
	UINavigationBar
	UIToolbar
	UITabBar

	Tint Color
	Appearance Proxy

	13. Modal Dialogs
	Alerts and Action Sheets
	Alerts
	Action Sheets
	Dialog Alternatives

	Quick Actions
	Local Notifications
	Authorizing for Local Notifications
	Notification Category
	Scheduling a Local Notification
	Preview Suppression
	Hearing About a Local Notification
	Managing Scheduled Notifications
	Notification Content Extensions

	Today Extensions
	Activity Views
	Presenting an Activity View
	Custom Activities
	Action Extensions
	Share Extensions

	III. Some Frameworks
	14. Audio
	System Sounds
	Audio Session
	Category
	Activation and Deactivation
	Ducking
	Interruptions
	Secondary Audio
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	AVAudioEngine
	MIDI Playback
	Text to Speech
	Speech to Text
	Further Topics in Sound

	15. Video
	AVPlayerViewController
	Other AVPlayerViewController Properties
	Picture-in-Picture

	Introducing AV Foundation
	Some AV Foundation Classes
	Things Take Time
	Time is Measured Oddly
	Constructing Media
	Synchronizing Animation with Video
	AVPlayerLayer
	Further Exploration of AV Foundation

	UIVideoEditorController

	16. Music Library
	Music Library Authorization
	Exploring the Music Library
	Querying the Music Library
	Persistence and Change in the Music Library

	Music Player
	MPVolumeView
	Playing Songs with AV Foundation
	Media Picker

	17. Photo Library and Camera
	Browsing with UIImagePickerController
	Image Picker Controller Presentation
	Image Picker Controller Delegate
	Dealing with Image Picker Controller Results

	Photos Framework
	Querying the Photo Library
	Modifying the Library
	Being Notified of Changes
	Fetching Images
	Editing Images
	Photo Editing Extension

	Using the Camera
	Capture with UIImagePickerController
	Capture with AV Foundation

	18. Contacts
	Contact Classes
	Fetching Contact Information
	Fetching a Contact
	Repopulating a Contact
	Labeled Values
	Contact Formatters

	Saving Contact Information
	Contact Sorting, Groups, and Containers
	Contacts Interface
	CNContactPickerViewController
	CNContactViewController

	19. Calendar
	Calendar Database Contents
	Calendars
	Calendar Items

	Calendar Database Changes
	Creating Calendars and Events
	Recurrence
	Fetching Events
	Reminders
	Proximity Alarms
	Calendar Interface
	EKEventViewController
	EKEventEditViewController
	EKCalendarChooser

	20. Maps
	Displaying a Map
	Annotations
	Customizing an MKMarkerAnnotationView
	Changing the Annotation View Class
	Custom Annotation View Class
	Custom Annotation Class
	Annotation View Hiding and Clustering
	Other Annotation Features

	Overlays
	Custom Overlay Class
	Custom Overlay Renderer
	Other Overlay Features

	Map Kit and Current Location
	Communicating with the Maps App
	Geocoding, Searching, and Directions
	Geocoding
	Searching
	Directions

	21. Sensors
	Core Location
	Location Manager, Delegate, and Authorization
	Location Tracking
	Where Am I?
	Background Location
	Heading

	Acceleration, Attitude, and Activity
	Shake Events
	Using Core Motion
	Raw Acceleration
	Gyroscope
	Other Core Motion Data

	IV. Final Topics
	22. Persistent Storage
	The Sandbox
	Standard Directories
	Inspecting the Sandbox
	Basic File Operations
	Saving and Reading Files

	User Defaults
	Simple Sharing and Previewing of Files
	File Sharing
	Document Types and Receiving a Document
	Handing Over a Document
	Previewing a Document
	Quick Look Previews

	Document Architecture
	A Basic Document Example
	iCloud
	Document Browser
	Custom Thumbnails
	Custom Previews

	XML
	JSON
	SQLite
	Core Data
	PDFs
	Image Files

	23. Basic Networking
	HTTP Requests
	Obtaining a Session
	Session Configuration
	Session Tasks
	Session Delegate
	HTTP Request with Task Completion Function
	HTTP Request with Session Delegate
	One Session, One Delegate
	Delegate Memory Management
	Downloading Table View Data
	Background Session

	On-Demand Resources
	In-App Purchases

	24. Threads
	Main Thread
	Why Threading Is Hard
	Blocking the Main Thread
	Manual Threading
	Operation
	Grand Central Dispatch
	Commonly Used GCD Methods
	Concurrent Queues
	Checking the Queue

	Threads and App Backgrounding

	25. Undo
	Undo Manager
	Target–Action Undo
	Undo Grouping
	Functional Undo

	Undo Interface
	Shake-To-Edit
	Undo Menu

	A. Application Lifetime Events
	Application States
	App Delegate Events
	App Lifetime Scenarios
	Major State Changes
	Paused Inactivity
	Transient Inactivity

	Lifetime Event Timing

	B. Some Useful Utility Functions
	Launch Without Main Storyboard
	Core Graphics Initializers
	Center of a CGRect
	Adjust a CGSize
	String Range
	Delayed Performance
	Dictionary of Views
	Constraint Priority Arithmetic
	Constraint Issues
	Configure a Value Class at Point of Use
	Drawing Into an Image Context
	Finite Repetition of an Animation
	Remove Multiple Indexes From Array

	C. How Asynchronous Works

	Index

