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Preface
It is an empirically proven fact in computer science that there is no single
solution, language, platform, framework, or tool that can solve all
computational problems. Instead, a suitable combination is carefully
selected based on the characteristics of the workload. This means it is
possible to find a language L1 that is better suited for a specific workload
than another language L2, a framework F1 that works better for it than
framework F2, and so on and so forth.
For example, the C programming language is used to develop device
drivers, and JavaScript is used to develop interactive web pages. The reason
why these languages are chosen is obvious—constructs that are often
required for developing this code are readily available and in abundance in
these languages.
On the other hand, when workloads evolve and mature (foreseen to stay so
for a relatively long period), languages, tools, and frameworks are seen to
be developed new (or evolve as well) to suit the needs of such workloads.
The plethora of languages, tools, and frameworks that we see today is the
result of such evolution—the continuous innovation in the software industry
to improve the stated purpose of the business that runs these workloads.
Most modern workloads run on Cloud. A minimum common behavior
exhibited by Cloud-hosted software is that they are accessed and consumed
through a web interface. As a result, research has been performed to
improve web workload efficiency. The most reasonable thing is to see how
the programming platform can learn from the web characteristics and
customize itself to improve developer productivity (the ability to write more
code in less time) as well as machine productivity (the ability to run more
code in less time).
Node.js is the successful result of such an innovation. By combining the
constructs of JavaScript that enable asynchronous event-driven
programming with the modern practices of developing in the open and
packaging in the public, Node.js has pioneered the art of bringing



exponential performance improvement and developer productivity for
highly concurrent web workloads.
By illustrating the step-by-step development of a production-grade
application from scratch with Node.js, this book aims to unravel the power
of Node.js. So, the most natural target audience of this book includes:

Students who want to learn the essentials of web development with
Node.js
Developers who want to develop and specialize in various web
components
Architects who want to redefine, customize, and architect their
application based on a specific use case by applying the learnings
from Node.js story

This book covers various aspects of building a production-grade web
application using Node.js by leveraging the essential components of a web
server. We will not refer to or use any frameworks or modules for building
our web application, so the book will discuss the internal capabilities of a
web server in depth to illustrate the finest details of the features.
The book will cover several concepts, including event-driven architecture,
asynchronous programming, website and web server, networking APIs, the
basic building blocks of a web transaction (aka request-response cycle) at
the frontend and at the backend, best practices for maintaining the
enterprise-grade application, and the troubleshooting of common
production issues.
This book is for anyone with basic programming fundamentals and some
familiarity with client-server applications. While basic JavaScript
knowledge is desired, prior experience of Node.js or backend web server is
not required. We will cover the basics of backend server programming and
a representative client’s typical interactions with it.
As a result, this book takes the pragmatic approach of defining the basic
building blocks of a web application, providing the example code in the
backend, and showing the resulting view in the frontend. For each concept,
we also put out questions, critically introspecting on the approach,
presenting alternatives, discussing the tradeoffs, and ratifying the current
design.



To introduce the concepts of enterprise enabling features like performance
and security, the book builds a comparison model between a desktop
application and a web application in the context of their exposure to various
weaknesses. Identifying and addressing those weaknesses of the web
application directly explains the relevance of the said features.
This book is divided into 11 chapters that cover the premise of highly
concurrent workload, the elements of a web application, expanding each to
a full-fledged component with code examples, and alternative design and
implementation considerations. The details of the chapters are listed here:
Chapter 1 examines the basic premises of highly concurrent web
workloads and the associated developer’s considerations. It also covers the
basics of event-driven architecture as the backbone of Node.js platform and
the asynchronous programming style that it uses abundantly for event-
driven architecture. This chapter also introduces the concept of concurrency
versus parallelism, which plays an important role in the Node.js
architecture.
Chapter 2 describes the essential pre-requisites for running the code we
develop. We won’t need a lot of preparation as we aim to build a web server
from scratch by leveraging only the Node.js platform, but we need to make
some subtle decisions to run our application as a stable web server that can
handle real workload.
Chapter 3 discusses the fundamental considerations of a website developer.
It examines the components that make up a web server and looks at a web
server developer’s main considerations to develop an efficient web server. It
introduces concepts like website and client-server topology with various
considerations around the application by virtue of its placement in the web
backend.
Chapter 4 takes you through building a simple web server. The example
code retrieves the time of the day on the locale with respect to the hosting
server for any client that connects to it in any manner. It helps you dissect
every section and line of this trivial program and try to make meaning out
of it.
Chapter 5 digs deeper into the API abstractions that Node.js offers to
implement web applications. It first differentiates the raw native networking
protocol from a much higher-level and handy protocol. It also looks at



streaming APIs, as almost all server communications are stream-oriented.
The chapter illustrates the two popular web server abstractions that
represent the interaction: request and response. It also discusses in detail the
configurations that affect the server’s behavior and the server’s life cycle
control points and server events.
Chapter 6 is about the concepts of static and dynamic content serving that
define the nature of the server. It also covers routes and endpoints that help
the client and server categorize request types. It then introduces HTTP
verbs (methods) and explains the most popular methods (GET and POST)
in detail. Then, it illustrates how to forward a client request to another
server using cookies and sessions for managing client sessions.
Additionally, it touches upon common security issues and ways to address
them. For all these components, it lays out the most common production
issues and problem determination steps.
Chapter 7 examines other software components that our web server
typically interacts with as part of serving our client. These could be services
or modules developed as part of our application or third-party services that
serve a specific purpose. It is essential to understand how and where the
server interacts with these services to make our learning complete.
Chapter 8 illustrates a website’s common requirements (frontend
rendering) and how the pages and forms can implement some of those
common features. We look at how a large amount of site data can be
rendered for better consumption (pagination, search, and filtering),
implementing authentication, authorization, and other common
requirements.
Chapter 9 examines external factors to make our website robust and
production grade. These factors include deployment topologies, scaling
considerations, implementing RAS (Reliability, Availability and
Serviceability), and monitoring and tracing. These ingredients ensure that
the website is industrial-strength software that can be used at the enterprise
level.
Chapter 10 explains some of the best practices that we need to follow from
the runtime (virtual machine) perspective to make the server efficient. Some
of these are generic to any runtimes, while a few are specific to Node.js.



Chapter 11 shares insight on the most common problem symptoms for a
Node.js-based web server and provides a set of methods and best practices
to be followed for each symptom to troubleshoot and resolve the issue
comprehensively. The chapter covers the troubleshooting steps for crash,
hang, spins, memory issues, performance, and exceptions.
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I

CHAPTER 1
Getting Started with the

Fundamentals
n this chapter, we will examine the basic premises of highly concurrent
web workloads and introduce Node.js as an optimal platform for hosting

such workloads. We will take a glance at the important characteristics of a
web application and illustrate how Node.js defines a pioneering
programming model that naturally aligns and resonates with these
characteristics at the semantics level.
To do this, we will illustrate the basics of concepts like event-driven
architecture, asynchronous programming, concurrency, parallelism, and
scalability. Then, we will combine all these concepts to introduce the
Node.js programming platform and showcase how it efficiently caters to
highly concurrent web workloads.

Structure
In this chapter, we will cover the following topics:

Introduction to event-driven architecture
Introduction to asynchronous programming
Concurrency versus parallelism
Concurrency and scalability
Putting everything together - Introduction to Node.js
Core Node.js features

Objective
After studying this chapter, you should be able to understand the Node.js
philosophy around event-driven architecture with asynchronous
programming. You will also understand workload efficiency-related



concepts, performance characteristics of web workloads, and various
tradeoffs that exist in resource usage versus performance. You will also
learn some of the core Node.js features that are relevant to our goal of
developing a web application.

Introduction to event-driven architecture
To better understand event-driven architecture, let’s look at the existing
programming models and traditional workload characteristics.

Calculator example
As we know, calculators were the primitive types of computers. How does a
calculator work? We feed in the operands (values that are computed) and
the operation. The device starts the calculation upon hitting a specific key
(‘=’ or ‘enter’). The activities performed by the calculator are as follows:

1. Receive the inputs - operands and operator
2. Parse the inputs – separate operands and the operator
3. Load the data and perform the operation
4. Store the data and / or display the result

The ‘program code’ in this case corresponds to the four above-mentioned
actions. Can you identify anything special with the code here? Once the
program starts, it runs a set of instructions without any interaction with the
‘programmer’ or user. In other words, the set of actions is run as a
‘procedure’.

Number sorting example
Let’s take a more complex example. We have a list of numbers that needs to
be sorted in ascending order. The most common steps carried out are:

1. Take the first number
2. Compare it with every other number in the list
3. If the given number is bigger swap the positions
4. Repeat these steps for every number



An actual working code written in JavaScript is as follows:

1. function sort(d) {
2.   for(var i = 0; i < d.length; i++) {
3.     for(var j = i + 1; j < d.length; j++) {
4.       if(d[i] > d[j]) {
5.         const temp = d[i]
6.         d[i] = d[j]
7.         d[j] = temp
8.       }
9.     }

10.   }
11. }

Do you see the same pattern here? Once the program starts with the loaded
data, it runs a set of instructions without any interaction with the
programmer or any other external program. So the set of actions is run as a
procedure here as well.

Note: Procedural programming is a programming paradigm in which
programs are connected series of computations steps. Calculations,
function calls, loops, conditional branches etc. are standard building
blocks that constitute procedural languages. First-generation languages
such as Fortran, Cobol, and Pascal are classical examples of procedural
languages.

Echo example
Now let’s take another example: a program that receives input from the user
and echoes it back to the terminal. The steps carried out in this case are:

Wait for user input
Receive the user input in a variable
Print the value of the variable
Repeat the steps



A working example code (run with Node.js) is as follows:

1. process.stdin.on('data', (d) => {
2.   console.log(d.toString())
3. })

What happens to the program if the user is not supplying any data? The
program has to wait till it receives something. Once it receives data, it
completes an iteration and goes back to the waiting mode. The waiting
period can be none, or it can be a few milliseconds to a few minutes to
weeks or even infinite.
A notable difference between this program and the procedural programs
that we saw earlier is that this program is driven by an event.

Web page access example
Another example is a program that makes a request with a remote service,
waits for the response, and performs an action with the response. In this
case, the response is obtained from a known entity (a website), but at an
arbitrary time instance in the future, after the request has been made.
A working example code is as follows:

1. const h = require('http')
2. h.get('http://www.google.com', (r) => {
3.   r.on('data', (m) => {
4.     console.log(m.toString())
5.   })
6. })

Web server example
Yet another example is a web server that receives a request from a client
and provides a response. In this case, the request is obtained from an
unknown entity (a web client), at an arbitrary time instance in the future.
The server is idle until it receives a request from some client.
A working example code is as follows:



1. const h = require('http')
2. h.createServer((q, r) => {
3.   r.end('hello world!')
4. }).listen(12000)

In the last three examples, the flow of the execution of the code depends on
one or more external events. This is in due contrast with procedural
programming, wherein the flow is fully dependent on its internal structure.
Event-driven programming is a programming paradigm in which the
program flow critically depends on software-defined events. Programs that
use contextual data in abundance are best suited for event-driven
programming. A context can be a piece of data, occurrence of an event,
time of event occurrence, or a combination of these. In the first example,
the context is the user data, which is input. In the second example, the
response from the remote service is the context and in the third example,
the client request contains the context. In all three, the program responds to
the events and works with the supplied context.

Note: Event-driven programming is a paradigm in which the flow of the
program is controlled by events, as opposed to self-directed code blocks.
In such programs, events and contextual data pertinent to the event is vital
to the logic of the program. Graphical applications, web servers and
clients, and message-driven applications such as chat applications are best
suited for event-driven programming.

Windows event loop
An example of an event-driven system is the classical Windows message
loop that listens for mouse or keyboard events in win32 applications. The
message loop sits idle until an event occurs, and when it receives an event,
runs a handler function to handle it.

1. while (true) {
2.   getMessage()
3.   handleMessage()
4. }



In the preceding pseudo-code, note that the ‘getMessage()’ call can be
potentially blocked until there is an event occurrence in the system.

Messaging example
Another example of an event-driven system is Kafka, which implements a
message channel. Message publishers and subscribers communicate
through the message channel, with message event as the primary trigger for
actions.

1. // producer logic
2. producer.send(data, topic, callback)
3. 
4. // consumer logic
5. consumer.subscribe(topic, callback)

Event-driven architecture is a paradigm in which connected components
orient themselves around the lifecycle of software events.
Event-driven architecture is a perfect fit for web workload. We will
examine the reason for this when we study other aspects of web workload
and combine them together toward the end of this chapter.

Introduction to asynchronous programming
Asynchronous programming is a programming paradigm that defines
program lifecycles outside of the main program flow. In other words,
asynchronous programs implement out-of-order execution to help meet the
main program’s goal in an intermingled way. Easy visualization of an
asynchronous program is two functions `foo` and `bar`, where:

`bar` is executed while `foo` is in between its execution, and
`bar` is not invoked directly from `foo`.

The seemingly complicated concept can be illustrated with a few examples.

Program interrupt example



Assume that you are running a program with a large loop. The program is
taking more time than expected when run for testing purposes. You want to
keep experimenting with the code, but how would you stop the program in
the first place? The normal way is to wait for the program to complete,
which will yield the terminal. In most terminal interfaces, we apply an
interrupt (a key combination of Control and C) that stops the program in the
middle of execution and terminates the program. How does this work?
The following actions occur under the cover in most computing systems:

1. Pressing of the key combination causes an interruption for the CPU.
2. The processor halts the current execution.
3. The processor stores the current execution context.
4. The processor consults with an interrupt vector table.
5. The table maintains a mapping between interrupts and their handlers.
6. The right entry is searched and located, and the handler is invoked.
7. The handler runs while the main program is halted.
8. The default action for a handler of Ctrl +C interrupt is to terminate the

program.
9. So, the main program flow is abandoned and the program is

terminated.

If the CPU logic around signal handling was implemented in software, an
equivalent JavaScript code will look like this:

1. function handle(signal) {
2.   interruptVector.forEach((e) => {
3.     if (e.signal === signal)
4.       e.handler(signal)
5.   })
6. }

In this case, the handling of the keyboard interrupt is performed
‘asynchronous’ to the long running loop. In addition, this ‘asynchrony’ is
required for the proper functioning of our program.



In this example, the main flow is terminated due to the asynchronous
execution.

Multimedia example
Let’s examine another example. You are playing a movie from your favorite
site. A multi-media player software runs in your browser and downloads
data from the vendor’s site, stores it in an internal buffer, synchronizes the
audio and video, applies the play configuration such as speed, quality, and
so on, and then renders the movie in the player’s client area. While the
movie is on, after some time, you want to pause the play. When you click
on the pause button, these things happen:

1. Playing of the video content is stopped
2. Playing of the audio content is stopped
3. Data downloading is continued until an internal buffer is full

The sequence of actions in a pause() function can be represented as
follows:

1. function pause() {
2.   video.stream.pause()
3.   audio.stream.pause()
4.   if (buf.length === MAX)
5.     downloader.pause()
6. }

These things are performed ‘asynchronous’ to the playing sequence.
In this example, the main flow is not terminated due to the asynchronous
execution but only suspended for a duration and then resumed from the
point where it was suspended.

JavaScript web page example
The most common example is of the ‘onClick’ and ‘onSubmit’ handlers in
client-side JavaScript, which performs actions asynchronously.

1. <html>



2. <body>
3. <script>
4. function foo() {
5.   alert("hello world!");
6. }
7. </script>
8. <form action="p8.html" onsubmit="foo()">
9. <input type="text">

10. <input type="submit">
11. </form>
12. </body>
13. </html>

From all these examples, it is evident that there are common programming
scenarios where one or more actions need to run out-of-order with the main
program flow. It is not meaningful for the main program flow to cater to
these out-of-order actions without severely distorting the code or losing
precision. So, an established design pattern is to let the main flow focus on
the core logic while the asynchronous handlers focus on the out-of-order
actions.

Operating system scheduler example
Operating system programs are filled with asynchronous actions. Process
scheduler comes into action at a predefined time interval, de-schedules a
currently running process, and schedules a currently waiting process. It is a
classical use case where asynchronous programming is at its best.

1. setInterval(() => {
2.   cpus.forEach((c) => {
3.     c.running.process.runTime += 10
4.     c.running.process.state = 'runnable'
5.     c.runnable.push(c.running.process)
6.     const newProcess = c.runnable.shift()



7.     c.running.push(newProcess)
8.     c.running.process = newProcess
9.     c.running.process.state = 'running'

10.   })
11. }, 10)

One of the important aspects of asynchronous programming is the way they
orchestrate the main and asynchronous flow of execution. In other words,
how the main program flow is suspended temporarily, how its contextual
data is preserved, how a new execution environment is created where the
asynchronous code runs, how both the flows communicate if need be, and
finally, how the main flow comes back to life from the contextual data, if
need be.
Asynchronous programming is a natural fit for web workload. We will
examine the reason when we study other aspects of the web workload, and
combine them together, towards the end of this chapter.

Tip: Asynchronous programming does not necessarily involve multiple
threads. A piece of code B is executed asynchronously with another piece
of code A if B is executed irrespective of the completion status of A, and
vice versa. That is, one code does not need to wait for the other to
complete.

Introduction to functional programming
Functional programming is a programming paradigm in which function
definitions are trees of expressions – the vortex of each tree is a function.
The most relevant feature of functional programming in our context is that
functions are treated as first class variables.
This means functions can be passed as arguments to other function calls,
can be returned from calls, and can be assigned to and assigned with values.

Function passed as a value
An example in which function is passed as a variable:

1. function foo() {



2.   return 10
3. }
4. 
5. function bar(fn) {
6.   return fn() + 10
7. }
8. 
9. bar(foo)

Function returned as a result
An example in which function is returned as a result:

1. function foo() {
2.   return 10
3. }
4. 
5. function bar() {
6.   return foo
7. }
8. 
9. const ret = bar()

10. ret()

Function as assignment subject
An example in which function is assigned to variable, and function is
assigned with a value:

1. function foo() {
2.   return 10
3. }
4. 
5. const bar = foo



6. foo = 10

An implied aspect of treating functions as first-class variables is the ability
to define functions inside a function, just like we define data elements
inside a function.

Closure functions
1. function outer(op) {
2.   let ol = 1
3.   function inner(ip) {
4.   let il = 2
5.     // access to ip and il as always
6.     // access to op an ol even after outer exits
7.   }
8.   return inner
9. }

In the previous example, ‘outer’ is a function that defines (or embed)
another function ‘inner.’ By definition, such a method is called a Closure
function. Among other things, the most important aspect of a Closure is
that, at the time of its definition (when ‘outer’ is invoked and the control
flow reaches line 3 in the above-mentioned code) a Closure context is
created with the ‘inner’ function defined in it, alongside the values of the
variables that it can access. These are:

ip: Its own parameters
il: Its local variables
op: The embedding function's parameters
ol: The embedding function's local variables

But does invocation of 'outer' lead to invocation of 'inner'? No. The Closure
function is assigned to a variable as return value to the call to 'outer'. After
that, 'inner' can be invoked like any other function.
The following example illustrates this fact:



1. function outer() {
2.   let ol = 1
3.   function inner() {
4.     // o1 is retained for inner
5.     console.log(ol)
6.   }
7.   return inner
8. }
9. const foo = outer()

10. foo()

In this example, the local variable of ‘outer’ is retained in the closure
context of ‘inner’ for its own use, whenever ‘inner’ is invoked.

Closure context
In this model, when the function 'inner' is invoked, the function 'outer'
would have been returned long back, and will not be in the scope. So the
question is, how are the variables 'op' and 'ol' available to 'inner'? When
'inner' is created, it just does not create a normal function. Instead, the
function and its defining environment (the closure context) is also created
and bound to that Closure function. In this case, the current values of 'op'
and 'ol' at the time of defining 'inner' also get pinned to the closure,
detached from the 'outer' function.
What is the big deal about these seemingly ‘ugly’ constructs? What great
capabilities do they add to general purpose programming? Do they improve
or damage readability and purity of the code? Again, the relevance of
functional programming, more specifically Closure, will become apparent
when we combine all the concepts together at the end of this chapter.

Tip: In the above example, if the ‘outer’ function is called multiple times
with potentially different arguments, as many Closures will be created and
returned, with unique Closure contexts associated with each.

Concurrency



Concurrency in programming is execution of multiple tasks coherently but
interweavingly. In our definition of concurrency, the tasks are logically
related but physically not necessarily. Again in our definition of
concurrency, the tasks are executed interweavingly, but this is not a
necessity in general definition. We will examine these aspects with the help
of multiple examples:

Cooking example
Think of a chef working in a kitchen, making pasta. The following is a
rough sequence; the exact steps may vary based on the recipe, but that is not
important here:

1. First boil the pasta noodles / sticks for 5-10 minutes.
2. While that is happening, get vegetables such as onion, garlic, bell

pepper, and so on.
3. Cut them into fine pieces.
4. Rinse the pasta to be boiled.
5. Gather the necessary sausages.
6. Check if the pasta is boiled and drain the water.
7. Deep fry the vegetables in oil and add salt to the fried veggies.
8. Add the boiled pasta to the fried vegetables.
9. Add sausages.

10. Stir for a few minutes.
11. Leave it for 1-2 minutes.
12. Meanwhile, put the rest of the vegetables and sausages back to their

places.

Let’s see how various activities will look if plotted on a time graph:



Figure 1.1: Concurrency with time sharing - I

In the above graph, the lines represent an action that runs for a period of
time. The presence of two lines in the same time frame indicates actions
that are taking place simultaneously.
Here, the key part of concurrency is when the chef was doing multiple
things (items marked in bold) since they keep the pasta noodles to boil.
How many items were executed in that time frame? How were they
executed? How are those items related? Revisiting the definition of
concurrency in this context, it is the execution of multiple (cooking) tasks
coherently, wherein the tasks are logically related and executed in an
interweaving manner.

Progress bar example
In our next example, let’s see what happens when we download a large file
from the Internet. A progress bar shows how much of the file is
downloaded, how much is remaining, and where does it stand in a graphical
manner; it is called the progress bar. Let’s see how it works:

1. Calculate the total bytes to download: b.
2. Identify the number of blocks in the progress bar: n.



3. Compute the number of bytes that correspond to one block: b/n.
4. Start downloading the data.
5. Compute the current total every time data arrives: i.
6. Compute current progress p = i % n.
7. Render / ensure p blocks are marked in the bar.
8. Resume the download and repeat the steps.

Again, let’s see how the two activities will look if plotted on a time graph:

Figure 1.2: Concurrency with time sharing - II

Here, the key part of concurrency is between the data download,
recalculating the progress, and refreshing the progress bar. How many items
were executed in that time frame? How were they executed? How are those
items related? Revisiting the definition of concurrency in this context, it is
the execution of multiple (downloading) tasks coherently, wherein the tasks
are logically related and executed interweavingly.

Garbage collection
In a more complex example, many modern language runtimes employ a
technique called garbage collection, wherein the runtime heap is



enumerated and stale objects (program data) are purged occasionally. This
activity is performed by utilizing a small amount of CPU time from the
application execution without hampering its performance or showing any
visible pause. We say that the garbage collection runs concurrent to the
application while garbage collection and application execution are logically
related but physically not, and the actions are executed interweavingly.

Note: Concurrency in a nutshell is multi-tasking with time sharing by a
single resource.

Parallelism
Parallelism in programming is the execution of multiple tasks truly
independently and parallelly. The tasks may be logically related or
unrelated but are executed with physical separation between them. The
tasks are executed independently. We will examine these aspects with the
help of multiple examples:
Consider the previous example of making pasta. If this were part of a large
restaurant with lot of tables and rush in the busy hours, there would be
many chefs making pasta independent of each other. Furthermore, there
would be chefs who make other food items as well.
Again, let’s take a look at the time graph:



Figure 1.3: Concurrency without time sharing

Distributed word counting example
In a more complex example in programming, let’s take the classical word
count problem in a massive list of a billion records. For this, the algorithm
may run as follows:

Identify the number of parallel tasks we want to run: n.
Split the record into n equal records.
Assign each record to each parallel task.
In each task, iterate over the list, search for the word, and make a
count.
Iterate over each task and add up the word count that each task
gathered.

In summary, we implement parallelism by executing similar or dissimilar
tasks independent of each other. Parallelism improves application
performance.

Note: Parallelism, in a nutshell, is multi-tasking without time sharing by
multiple resources.



Concurrency versus parallelism
Now that we understood concurrency and parallelism separately, we will
compare the two concepts and discuss the similarities and differences
between them. This distinction will be of utmost importance when we
understand certain principles of Node.js.

Similarity
In both, multiple tasks progress together
In both, program responsiveness improves

Differences
In concurrent, only one task runs at a time, while in parallel, multiple
tasks run together.
In concurrent, one resource switches between tasks, while in parallel,
each task has a resource.

In a real program, a task would essentially mean a block of code, and a
resource would mean a processor that runs a block of code.
If you revisit the two concepts with this in mind, we can infer that:

In concurrent, a CPU time-slices between multiple code blocks
In parallel, multiple CPUs run multiple code blocks

It is immaterial whether or not the multiple code blocks are part of the same
program, at least in the context of our discussion.
In higher-level programs, a CPU is abstracted as a Thread. Refining our
differentiation further, we can say that multiple threads run parallelly while
a single thread switching between tasks runs concurrently.

Why do we want to switch tasks when you have more threads in the
system?
Which one will be more efficient - a thread multiplexing between ‘n’
tasks or ‘n’ threads running n tasks in parallel?



What is the overhead of switching between tasks in a single thread?
When is it appropriate to switch a task?
How can you resume/return to the first task after switching from one
task to another?

Think about these questions and try to answer them. We will answer these
in the next section.

Concurrency and scalability
Let’s discuss our own case here. When a web server is serving many clients,
how does it manage all the connections together? If the server handles
client requests sequentially, the subsequent clients would wait and
eventually, timeout depends on the number of simultaneous requests. This
is a case of poor scalability of the server.

Thread pooling
Traditionally, server implementations used to solve this problem by
implementing two types of scalability: vertical and horizontal. In vertical
scalability, a number of threads (roughly equal to the number of cores in the
system) are created, prepared, and managed in a farm or a pool, called a
thread pool. Each client request, as and when it arrives, will be picked up
by one free thread from the pool, and that thread serves the client to its
completion. This solves the problem of poor scalability.

Horizontal scaling
What happens if the number of simultaneous client requests is much higher
than the number of cores in the server hardware? Then the pool starves, and
the scenario goes back to the first case – client requests get queued up and
eventually time out. In such scenarios, more machines are provisioned to
run the same server application, and the requests are distributed to these
servers. It brings back the desired scalability. This is called horizontal
scaling.
What is the tradeoff here? In vertical scalability, we exploit the multicore by
parallelizing request handling. However, each thread comes with its



associated resource consumption – such as thread stack, working memory,
context switch, scheduling, lock contention, and so on. Similarly, in
horizontal scalability, we replicate the server in multiple systems to further
parallelize request handling. Naturally, each hardware implies more
resource consumption.
In summary, we trade additional resources to improve scalability and
responsiveness.
Can we condense more requests in one server system itself without losing
responsiveness and adding more resource pressure? What if we increase
concurrency to our server rather than parallelism? As per definition, a
concurrent program does multi-tasking with a single thread. So, can a
thread switch between multiple client requests and serve them in an
interweaving manner?
Answering this question will take us directly to the principles of Node.js.

Introduction to Node.js
Now that we learned a number of seemingly unrelated concepts, let’s stich
those together to understand the underpinning theory behind Node.js.

Latency in computer systems
Have you thought how much time different operations take in your
computer? It depends on the operation itself. The following chart gives a
rough estimate on how much time it takes for a unit amount of data to be
moved from one endpoint to another. An endpoint here is any recordable
media in a computing system.

Endpoints Latency (in nano seconds)

Registers ~0 (reciprocal of clock frequency)

Hardware data cache 10

Main memory 100

Secondary memory 10000000

Network 15000000

Table 1.1: Latency of data transfer between endpoints



What does this mean? By virtue of the way some of these devices
(endpoints) are manufactured, installed, and operated and due to some cost
versus performance tradeoffs that the vendors have opted while designing
these devices, data movement in some endpoints can be faster, while some
can be slower. For example, registers and main memory are part of the
processor board itself. External disk requires interaction with an external
software as well as physical movement of the disk head. In other words, the
registers and memory are bound to the CPU, whereas the disk and network
require input and output operations with the controlling hardware and
software. Operations involving input and output devices are generally
called I/O operation, and hence, such operations are said to be bound to I/O.
This means an arithmetic operation (such as adding two numbers) and
storing the result will be much faster than fetching a similar data from the
disk. And needless to say, the difference in latencies of those two types of
operation is huge and is not comparable.

CPU bound and I/O bound operations
Operations involving the CPU bound devices - first three endpoints in the
above table, i.e., registers, cache, and main memory - are called CPU bound
operations. Operations involving, I/O bound devices - secondary memory
(disk) and network - are called I/O bound operations.

Tip: A CPU bound operation can typically be a million times faster than
an I/O bound operation.

There is a special case to be mentioned here. The latency comparison is
based on an assumption that the endpoints are ready to send and receive the
data in question. This is always the case in CPU bound operations, while it
is not so in I/O bound operations. What if the rate at which the server is
writing is higher than the rate at which the client is reading, and the network
transport buffer in the operating system kernel becomes full? What if a
client is not reading at the time the server is writing? Depending on how the
endpoints are designed to function, an initiated data transport can occur
now, later, or never! The latency values shown in the previous table are
measured when both the endpoints are ready to transfer data.



If an endpoint has initiated a data transfer (read / write) and the other
endpoint is either not ready or incurs visible latency, the owning thread that
initiated the data transfer will be seen as blocked on I/O. A thread waiting
for I/O completion will be mostly be de-scheduled by the operating system
scheduler, and the owning CPU will be used to run some other program,
rendering the said thread in the current process as dormant.

Characteristics of web workload
A scientific computation is predominantly a CPU bound application, as it
involves lot of operations on data that is already residing in the registers or
main memory. A chat application, on the other hand, is an I/O bound one,
as it involves a lot of operations on data that is either incoming from the
network or going out to it. A web server is a fine mixture of CPU bound
and I/O bound work. Every connected client requires at least two I/O
operations (one inbound request and one outbound response). If the client
makes multiple requests, the number of I/Os multiplies too. In addition, the
server would perform some operations between the request and the
response, which can potentially be CPU bound activities or even I/O
operations.
In summary, a fully loaded web server will contain numerous I/O bound
activities.

Bringing the context of scalability
Dissecting further, if you profile a single request in a web server, you can
see that it:

Accepts a client connection
Reads the client request
Parses the client request
Performs some computation
Prepares a response
Writes back to the client
Closes the connection



Among these seven operations the server performs, the first two and the last
two items are I/O bound. Assume that it takes 1 millisecond for the whole
sequence to complete. How will the division of time among these tasks look
like? Given the latency theory at the beginning of this section, it would be
like 99.9999:0.0001 or even more skewed.

Figure 1.4: Division of tasks between a Request-Response cycle

This means if you take a peek at the thread that handles the request at a
representative time instance, it might be waiting – either for the input or for
writing the output. So, due to the presence of rich I/O, even when the server
is fully engaged, we observe less than 20% CPU utilization in a typical web
workload.
So now we have identified two issues:

A single thread is not sufficient to handle simultaneous client requests
(scalability issue that we discussed earlier)
A single thread itself is under-utilized for most of its service time – the
request response phase (due to the high presence of I/O operations that
takes longer as compared to computations)

The first issue can be solved with thread pooling—again as we discussed
earlier, with its own tradeoff—of proportionately high resource



consumption. The second one is a new finding. Do things improve if we
correlate the two issues and synthesize new ways of running our workload?
On the one hand, a single thread is not enough for handling all the load, and
on the other hand, a single thread itself is idle for most of the time! The
thread’s idle time could be leveraged to run other processes in the system –
but in a production-grade server computer, there aren’t many other critical
processes than the server process itself. So that is not a great relief and does
not provide much benefit.
What if the idle thread is made to handle another waiting client? (Harp on
this question. If this has occurred to you already, give yourself a pat on the
back! This thought is exactly the pivot of innovation around Node.js
technology; the rest is implementation detail.)

Bringing back the context of asynchronous
programming
Yes, that is possible. In the previous sections, we have seen a case wherein a
running program is interrupted asynchronously, performing an unrelated
task and coming back to resume the main program flow. What if we reuse
that technique here? That is:

Process nth client request until it reaches a slow I/O operation
Detach the thread from nth request
Attach the thread to n+1th request
Process n+1th request until it is either complete or reaches a slow I/O
by itself
Revisit nth request to see if that can move ahead now
If yes, repeat the logic in a cycle
If not, go for a third request, n+2nd request, and repeat the cycle

In short, we can run the single thread asynchronously between multiple
client requests, much like we ran an asynchronous interrupt signal or
controlled a multimedia stream in previous examples, with these main
differences:

Asynchrony is triggered internally as opposed to externally



Asynchrony is triggered in response to encountering slow I/O

The asynchrony comes in by way of running different blocks of code
concurrently, much like we cooked pasta. downloaded a huge file with a
progress bar, or ran garbage collection concurrently with the main program
flow. The key points to note are:

A single thread multiplexes between many client requests
A single thread advances to the extent it can, regardless of the
previous work
No differentiation between main and side car program flow – all are
main flows

What would we achieve with these adjustments in place? We can execute a
million CPU bound operations instead of a single blocking I/O if the
multiplexing is absolute – this is because that is the I/O latency - CPU
latency ratio. And it is a huge benefit! But does that mean we can handle a
million clients concurrently? Probably not. Each task will require some
CPU bound processing as part of the request handing. So the benefit of
concurrency will be lesser than that.
However, compared to the existing alternatives, this mechanism provides a
great level of concurrency. As the thread is no idler, the switching happens
in-process and in-thread, and each task is able to run to its potential. At any
given point in time, no task waits to get resources allocated, and none has
any additional resource allocation!
So far so good. Now, we have to address two problems to achieve this
concurrent task execution:

Manage the I/O multiplexing
Manage the context switching

Each of these items is discussed in separate sections.

Bring back the context of event-driven
architecture
Remember the definition of event-driven architecture? A paradigm in which
the program flow is controlled by events. In the context of the concurrent



execution, we need events. More specifically, we need events that will
trigger a change in program flows. And the main program flow changes
from our algorithm are:

Encountering an I/O, needing current flow to pause and a new flow to
come in
Encountering an I/O completion, needing the old flow to resume

The core of Node.js architecture is to address exactly these two aspects.
Using the native terms of Node.js, this would translate to:

Convert blocking I/O as non-blocking I/O
Create and push an event pertinent to I/O
Continue with the rest of the code
When I/O completes, trigger the matching event
Handle the event by invoking its continuation handler

I/O multiplexing becomes possible by customizing the single thread in this
way. Many operating systems provide means to convert blocking I/O to
non-blocking ones and allow one to later ‘poll’ the system to see if the I/O
has been completed. Similarly, as we are storing the context of I/O
initiation, it is possible to invoke the completion handler/continuation
handler after the I/O completion.

Figure 1.5: Node.js’ Event-driven architecture

In this architecture diagram, there are blocks of code in the left side pane: A
‘dns’ lookup, a file read operation, and a network access – all of which take
a lot of I/O cycles and can potentially block the thread. In Node.js, the API



abstractions that deal with these operations are designed in such a manner
that they don’t block. Instead, they initiate a non-blocking I/O after creating
an event and binding it with the completion handler function. The thread
returns immediately, as shown with the red arrows. When each event
actually gets triggered, the event is picked up and the binding function is
identified and invoked with the result of the I/O operation as the input. This
is repeated until all the events are processed.
The main component that manages the event lifecycle is called event loop.
With this setup in place, the events are processed at exactly the time when
they occur. In addition, the thread is not waiting for an I/O to complete.
This solves both our above-mentioned problems: issues with many threads
and issue with the thread blocking on I/O. When the I/O become non-
blocking, the thread is continuously engaged and is executing many tasks in
a time-shared manner, wherein the slicing is decided by occurrence of the
events. Now if we profile the Node.js single thread in a reasonably loaded
server application, we see that its average CPU consumption is above 90% -
an indication of highly efficient concurrency. This is a perfect fit for the
web workloads.
At this point, we are ready to revisit all the questions we encountered earlier
and attempt to explain those in the new architecture’s context.
Why do we want to switch tasks when you have more threads in the
system?
This is because:

Threads are expensive – they consume resources
Threads are underutilized on I/O workloads

So, if the workload contains homogenous transactional types (request-
response cycle in the web server example), and those transactions contain
heavy I/O, then switching tasks using a single thread is beneficial both in
terms of resource consumption and CPU utilization.
Which method will be more efficient: a thread multiplexing between ‘n’
tasks or ‘n’ threads running n tasks in parallel?
If efficiency here is a measure of the tasks performed per resource
consumption, then, as illustrated with the architecture, a thread multiplexing
between ‘n’ tasks is much more efficient than the other one.



The single thread is seen as:

Utilizing most of its allocated CPU share
Responding to I/O events as and when they occur
Handling multiple client requests simultaneously

What is the overhead of switching between tasks in a single thread?

Bring back the context of functional programming
Generally, the overhead is to preserve the context of the outgoing task and
resume the context of the incoming task. In Node.js, the context
preservation and resumption are achieved by using the JavaScript primitive
called Closure, which we learned earlier under the header functional
programming.

1. function foo(p1) {
2.   let l١ = 10
3. 
4.   function bar(p2) {
5.     // access p1, l1 and p2
6.     // from the original context
7.   }
8. 
9.   anAsyncIOMethod(i١, bar)

10. }

Following the definition of Closure functions, in the example above, ‘foo’
is a function that embeds a Closure function ‘bar’. Among other things, the
most important aspect of a Closure is that at the time of its definition (when
‘foo’ is invoked and the control flow reaches line 4 in the code above, a
Closure context is created with function ‘bar’ is defined in it alongside the
values of the variables in the outer function ‘foo’. When ‘bar’ is actually
invoked, it has access to its own parameters (p2), the local variable of its
outer function (l1) as well as its parameters (p1). So assuming an IO routine
is invoked through ‘anAsyncIOMethod’, which registers an IO event with



the event loop and returns immediately, it will resume its continuation
through ‘bar’ when the IO actually completes. Now because ‘bar’ is a
Closure function, it ‘remembers’ the context in which it was created. When
‘bar’ is thus invoked by the event machinery, it gets access to the ‘old’
context in which the asynchronous method was invoked.
In summary, Closure functions provide a powerful building block for
implementing event-driven architecture in Node.js, alongside asynchronous
programming. They are largely used as completion handler functions or
continuation functions for asynchronous methods.
When is it appropriate to switch a task?
It is appropriate when the currently running task has exhausted all of its
activities or succumbed to an asynchronous (I/O bound) activity. After
initiating the I/O action and registering for its completion, the thread
switches to the next task. In reality, the asynchronous call just returns as if it
is completed, and the following code is executed. Later, when the
asynchronous activity completes, the associated completion handler
(typically a closure function) gets invoked.
Is it mandatory that the completion handler be a closure function?
No. We want the completion handler to be a closure function only if we
want to resume the original context in which the asynchronous method was
invoked earlier (as closure functions remember its environment). If the
completion handler executes a pure code that does not have dependency on
any other part of the system, it can be a regular function too.

Core Node.js features
Now that we understand the basic premises of asynchronous programming
with event-driven architecture that Node.js pioneers, let’s quickly look at
some of the notable and interesting features of this platform. We will
expand many of these aspects later. This section serves as a quick-byte
experience for its core features.

Structure
The core interpreter that provides a JavaScript runtime environment for
Node.js is ‘v8’. This component is responsible for executing general



purpose JavaScript code. The event machinery is called event loop or
‘libuv’ (as the name of the project) that is written in ANSI C. There are
several APIs (notably asynchronous APIs) that are modules or functions
that provide a pure JavaScript interface to the programmer. Under the cover,
these APIs interact with the event loop through a C++ intermediary called
“wraps”. Node.js is written in C++ that integrates these components
together and orchestrates the asynchronous event-driven JavaScript
programming.

APIs
Many Node.js APIs are asynchronous by specification. For most of these
asynchronous APIs, synchronous counterparts are also provided – for
convenience to certain user programs that do not follow the philosophy of
asynchrony.
Many APIs are event emitters. This means many objects that are part of
these APIs are capable of managing events. This is an essential Node.js
abstraction that helps to deal with the event machinery through JavaScript
semantics.

Note: The famous “.on” primitive of event emitter class technically and
philosophically symbolizes the event-driven architecture – it’s highly
expressive semantics tells: “Upon an event occurrence on this object, call
that function”. Many APIs that implement event handling, inherit from
event emitter Class.

Few APIs abstract common base capabilities such as operating system calls,
in a platform independent manner. As we know, abstracting native
capabilities is important for usability of non-native languages.

Streams
Streams are just another API but require a special mention here. By
definition, a stream is flowing data. In the context of event-driven
architecture, the inception, segregation, aggregation, transportation, and
exportation of program data is much more efficient if the data is in a
flowing manner as opposed to static. This is because several endpoints that
take part in the program data processing may be at different lifecycle phases



and implementing code blocks that are inherently capable of working with
flowing data provides optimal performance. Many APIs that deal with disk
and network I/O employ streams to cater to their main data transport and
management. There are readable, writeable, duplex, and transformer
streams defined as part of the API specification. Streams are event emitters
and have a long list of lifecycle events associated with them.

Small core philosophy
One of the reasons (other than high performance for I/O workloads) why
Node.js platform is highly successful is its small footprint and fast startup
that makes it a natural selection for Containerized workloads. This is
achieved by:

Maintaining the core Node.js to be as small as possible
Building all the dependent code into a single binary
Implementing only the most common capabilities in core

This means there is no separate enterprise edition or standard edition for
Node.js; all we have is a single, simple core set of APIs. Any extra
requirements are satisfied by userland extensions called ‘npm’ modules.

Note: The Node.js APIs provide well defined and high-level abstraction
on top of the low-level networking capabilities such as TCP, HTTP, File
system etc. Hence, these are termed as core capabilities. The extended
capabilities that build on top of the core ones are usually implemented as a
library outside of the Node.js core and termed as "userland".

npm
NPM stands for Node Package Manager. It is a built-in component that
defines the management capabilities for reusable node.js libraries and
modules, also called as npm modules. The small core in conjunction with the
ability to integrate with reusable modules significantly improves the
developer productivity of Node.js applications. At the time of this writing,
npm registry hosts the world’s largest software library.



Conclusion
In this chapter, we learned the basic premises of highly concurrent web
workloads and the asynchronous, event-driven programming of Node.js.
We also understood how this programming style is a natural fit for the said
type of workloads. To understand the programming style, we learned a
number of concepts such as concurrency, parallelism, scalability, functional
programming etc. and then combined these concepts to learn the typical
performance characteristics of web workload in the context of these entities.
Then we learned how separating CPU bound and I/O bound tasks and
multiplexing between multiple tasks while making I/O bound tasks non-
blocking and event-based yields a high level of performance. We
understood this as the key philosophy behind Node.js architecture. We also
looked at some of the peculiar features of Node.js that will be useful when
we design our web server application.
In the next chapter, we will describe the essential pre-requisites for running
the web application that we develop, enabling us to kick-start with our web
server development work. While these pre-requisites are suitable for the
development stage, many of these will go forward for considerations in the
production stage as well.

Points to remember
CPU bound operations are much faster than I/O bound ones
Web workload - both client and server - are I/O intensive
Traditional blocking I/O behavior cost a lot of resources to web
programs
Node.js converts blocking I/O to non-blocking I/O
Node.js initiates and pushes I/O tasks asynchronously and switches
tasks
JavaScript and its functional semantics are conveniently chosen to
compliment event-driven architecture
With this model in place, Node.js provides unprecedented scaling
density for web programs
Node.js leverages 'v8' JavaScript engine to execute JavaScript code



Node.js leverages 'libuv' to manage event lifecycles
Node.js follows 'small core' philosophy with large number of third-
party reusable modules that provide common extension capabilities
‘npm’, Node.js’ in-built package manager, facilitates seamless
integration of Node.js applications with the said reusable modules
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CHAPTER 2
Setting Up the Environment

n this chapter, we will describe the essential pre-requisites for running
the web application that we develop. Here, we aim to build a web server

from scratch by leveraging only the Node.js platform. There are not many
pre-requisites, but we still need to make subtle decisions that we need to
make in order to be running our application as a stable web server capable
of running real workload. While these decisions are suitable for the
development stage, many of these can work for considerations in
production stage as well. This is mostly because Node.js does not have
separate editions for standard and enterprise applications.

Structure
In this chapter, we will cover the following topics. In general, they cover
selecting:

The application development platform
Node.js versions
Dependencies
Resource requirements
Code editor

Objective
After studying this chapter, you should be able to understand the pre-
requisites for developing a Node.js application from scratch. This will
include understanding the supported platforms, common development tools
and dependencies, selection criteria for Node.js version, its resource usage,
and so on.

Platform selection



There are a number of platforms (14 at the time of writing this book) that
support Node.js. The tier1 platforms are Linux, Windows, and MacOS,
which means these are platforms where Node.js release line is maintained
with the best focus. So, we will only pick up those in our discussion.
Linux and Windows operating systems are commonly used operating
systems and hence, do not require any explanation. MacOS is a UNIX
variant that brings in the best of command-line programming and operating
system semantics of UNIX and graphical user experience of Microsoft
Windows. While all three are equally good to meet the objective of this
book, if there is a personal choice to be expressed, we recommend MacOS
for the development of our application due to enhanced user experience
with its interfaces.
There is very little difference between these platforms with respect to the
Node.js API abstractions. For example: signals, path separator, file
permissions, user resource limit settings work differently in Node.js on
UNIX and Windows. However, these are emanating from the underlying
platform’s differences itself and hence are trivial and very familiar to the
developers already. For example, Windows uses backward slash ('\') as path
separator, while MacOS and Linux use forward slash ('/'). These
fundamental differences are well explained in the Node.js API
documentation at the respective pages of the API and illustrated with
examples.

Tip: A full list of supported platforms (operating system and underlying
architecture), kernel and C runtime versions, and support tier structure are
listed here:
https://github.com/nodejs/node/blob/master/BUILDING.md#platform
-list
Detailed descriptions and additional platform-specific instructions are also
provided on the same page.

Node.js version selection
Node.js versions with even numbered major versions are Long-term
Supported (LTS) variants. For example, v10.x, v12.x, v14.x etc. This
means that they expose a matured, long term supported and backward

https://github.com/nodejs/node/blob/master/BUILDING.md#platform-list


compatible set of APIs. Generally, LTS versions are actively supported for a
year and enter into maintenance mode for another 18 months. A detailed
release cadence and support process related information is documented
here: https://nodejs.org/en/about/releases/
As of writing this book, we will go with v14.x as it is in active LTS phase.
You can install Node.js from https://nodejs.org/en/ in MacOS. The default
configurations will be sufficient in most cases.
The following figure is the screenshot of an introductory dialog window
from the installer:

Figure 2.1: Node.js installation step 1: Introduction

The following figure is the screenshot that shows the next step, license
agreement:

https://nodejs.org/en/about/releases/
https://nodejs.org/en/


Figure 2.2: Node.js installation step 2: License

The following figure is the screenshot of the license agreement dialog
window:



Figure 2.3: Node.js installation step 3: License Acceptance

Next, the installer examines the file system for the installation and validates
the disk space, as follows:



Figure 2.4: Node.js installation step 4: Destination select

Subsequently, the installer allows you to select a destination location, as
shown. It also has additional customization options on the installation:



Figure 2.5: Node.js installation step 5: Installation type

Once all the user input has been received, the installer starts the installation,
as follows:



Figure 2.6: Node.js installation step 6: Installation start

The following figure is a screenshot of the installation progress:



Figure 2.7: Node.js installation step 7: Installation progress

And finally, the installer shows the summary of the installation, as follows:



Figure 2.8: Node.js installation step 8: Installation complete

And at the end of it, we can confirm the installation and version as follows:
Microsoft Windows:



Figure 2.9: Node.js installation and version verification in Windows

Linux and MacOS:

Figure 2.10: Node.js installation and version verification in UNIX

Dependencies selection
As we recollect from the title of this book, our objective is to develop a web
application from scratch by making use of only core Node.js APIs. This
means we don’t have any dependencies with third-party node modules.

Resource requirements
While we will need to meet large-scale system requirements for hosting our
server in production, these can be simple and trivial for the development
purposes. Some minimum expectations are as follows:

Memory: 8 GB
Disk: 2 GB
CPU: 2GHz frequency

Note: One of the main success factors for Node.js is its very low resource
requirements. Being single executable binary, Node.js is preferred runtime
for many platforms where application stack is bootstrapped through
runtime orchestrations.



Code editor selection
There is no static assumption made in this book about any specific editors,
and we are not exercising any editor features as well. You can use your
favorite editors for developing the application. The preferred option is ‘vi’
editor.
Any JavaScript editor works well for Node.js development. The common
JavaScript editors/IDEs are as follows. A key advantage of using a
sophisticated, special purpose editor is the syntax highlighting, not to
mention a number of other cool features.

‘vi’ editor (comes by default with UNIX systems)
‘notepad’ (comes by default with Windows systems)
Visual Studio Code: https://code/visualstudio.com
Sublime Text: https://www.sublimetext.com
Atom: https://atom.io

Conclusion
In this chapter, we learned about a number of aspects about the execution
environment and system requirements for using Node.js for application
development. This includes the supported and recommended platforms for
Node.js, Node.js version selection and LTS philosophy, resource
requirements, and code editor considerations. In the next chapter, we will
examine some fundamental considerations of a website developer, such as
architecture, functional features, performance, security, and debuggability.
Learning these will empower us to write code that can be used in a real
commercial setting and sustained for longer.

https://code/visualstudio.com
https://www.sublimetext.com/
https://atom.io/
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CHAPTER 3
Introduction to Web Server

n this chapter, we will formally introduce the concept of web server and
define its core components. Further, we will examine the fundamental

considerations and concerns of a website developer. We will determine
what makes up a web server and understand the most common best
practices that can be followed while developing an efficient web server.
Much of these considerations will be carried over, discussed in detail, and
leveraged in the subsequent chapters, when we deal with the specific
components of our web application. For that matter, we will introduce the
concept here for completeness and move on.

Structure
In this chapter, we will cover the following topics:

Introduction to web server
Web server basic components
Concerns and considerations of web servers
Web server considerations: Architecture
Web server considerations: Performance
Web server considerations: Security
Web server considerations: Reliability
Web server considerations: Extensibility
Web server considerations: Maintainability
Web server considerations: Serviceability
Web server considerations: Observability

Objective



After studying this chapter, you will be able to understand the Node.js
philosophy around event-driven architecture with asynchronous
programming. While meeting that objective, you will also understand
workload efficiency-related concepts, the performance characteristics of
web workloads, and various tradeoffs that exist in resource usage versus
performance. You will also learn about some of the core Node.js features
that are relevant to our goal of developing a web application, and
understand the basic definition of a modern web server application and its
internal composition. Further, you will understand the main considerations
when building a web server, with their effects on specific capabilities of the
said web server. More specifically, you will understand how principles of
software engineering apply to a web server: architecture, performance,
security, reliability, extensibility, maintainability, serviceability, and
observability. This learning will also be useful when we deal with
individual components while building our web server application.

Introduction to web server
A web server is a software that serves web content to its clients over a
network. The content can be any one or more or a combination of
predefined and hand-written static pages or dynamically crafted HTML
pages, or it can be multimedia content obtained from another software.
Based on the specific use case that the server handles, the server may be
performing a number of actions within its scope of execution. The produced
web content may be seen as a manifestation or final product of those
actions. The following figure illustrates the simplest form of a web server:



Figure 3.1: A simple web server architecture

Web servers represent an important phase in the evolution of software
engineering. A web server represents heavily reusable software without
needing a license fee to use it. Hosting the software at a central location and
making it accessible through a public network with a well-defined protocol
improves its reachability and reusability by large.

Core components
While there is no easy way to generalize hundreds (if not thousands) of web
server architectures that are in use today, the componentry of a web server
is depicted here:



Figure 3.2: A practical web server architecture

Client
A client is an entity that consumes the services of a web server. Typically,
this is a web browser, but it can also be command line tools or any custom
program that understands the protocol of communicating with a web server.
The communication happens over the internet, in the most common use
case.

Web layer
This acts as a proxy for the backend components. The web layer intercepts
the requests from the clients. Also, it composes the response into a
presentable form for the client.
The advantage of having this layer is the ability to abstract heterogeneous
types of clients—desktop browsers, mobile devices, sensors, testing tools,
and so on—can seamlessly interact with the web server, and the varying
communication styles for the different endpoints do not need to live beyond
the web layer.

Middleware
Middleware in general sense is a software component that interfaces
various entities of a distributed computing system. In the context of a web
server, a middleware is simply the request–response pipeline. That is, all the



processing on the client request and the server response are managed in the
middleware. The request data is parsed and extracted out of the request
object before passing it to its backend components. Similarly, the response
data is composed into the response object in the middleware on the return
path of the request–response pipeline.

Tip: The key functions of web middleware are: managing request data,
implementing session, and managing protocol headers.

The advantage of middleware component is clear isolation between the
business logic layers and the web server layers; in other words, it is the
separation of concerns. When our web server becomes the subject of
debugging, bug fixes, extensions, enhancements, and re-architecture, this
modularity comes in handy as the developer can easily identify and focus
on the correct code.

Business logic layer
This layer implements the core business logic of the web server. For
example, if we are building a flight booking application, the business logic
layer would implement:

i. Reservation/cancellation feature
ii. Flight schedule view feature
iii. A customer profile management system at the least

The business layer in this case would act as a composition of three
capabilities, and those three capabilities are delegated to individual
microservices placed next in the architecture diagram. In yet another
example of a natural language processing application, the business logic
layer would implement the following:

i. A data receiving and preparing feature
ii. A language processing pipeline feature
iii. A data aggregation and presentation feature

The business layer would simply act as a container for these discrete
capabilities while the actual capabilities are implemented in individual sub-
components or crafted into a micro-service callable from the business layer.



The advantage of the business layer is trivially obvious: it contains the core
logic pertinent to the business of the web server and are subject to changing
demands from its users and customers. The developer is able to enhance the
logic without worrying about other parts of the server functions.

The microservice layer
This layer specializes in a specific aspect of the business logic. In the
above-mentioned example of flight booking, the microservices implement
reservation or cancellation, schedule view, and customer profile
management function. To implement the said functions, these services may
be leveraging capabilities from services further downstream in the
architecture or from remote web services accessed through the Internet.
The advantages of business layer apply as is to microservices, as these are
specialized ingredients of the business layer itself. Additionally, lifecycles
of microservices can be independently managed. This means if we find that
a specific microservice is a performance bottleneck in the entire application,
we can scale it up to share the load and relax the bottleneck. This is because
the service is loosely coupled with the main trunk of the application, as the
communication is over the network as opposed to a direct function
invocation.
In summary, microservice architecture provides a high degree of flexibility
to the application. While acting as a vital ingredient of the application, it is
inherently decoupled from it, leading to independent lifecycle management.

Note: We defined web server as a software that serves web content to its
clients. Mainstream use cases of a web server also include received
content from clients. Think about filling a form, uploading a file, etc.
These use cases do not change any of the premises, architecture, or design
of the web server; it instead just reverses the data flow in its request-
response pipeline.

Concerns and considerations of web servers
Understand the problems inherent in the web server architecture and
identify best practices around those issues to properly scope the placement
of web servers in the spectrum of software architecture. Let’s compare a



web server software with a simple desktop application that provides a trivial
software capability, such as image processing (say user supplied images are
color-inversed).

Comparison of a desktop and a web server
The two systems are symbolically represented as follows:

Figure 3.3: A desktop application and a web server

Similarities
Both the desktop app and the web app are driven by user (client)
actions
Both the desktop app and the web app perform computation
Both the desktop app and the web app produce result

Differences
A desktop app is installed individually on the client’s system, whereas
a web app is installed at a central location (such as a server hardware).
A desktop app may be subjected to the vendor’s license fee, while web
apps are not.
In a desktop app, the user actions are directly translated to events that
trigger processing actions, most probably direct function calls. On the
other hand, in a web app the user actions are first translated to a
request, which is wrapped under a protocol and then sent across the
network to the server. In the server, the reverse action takes place,



wherein the protocol is terminated and the request is parsed and
processed.
In a desktop app, the computational resources consumed for the
processing has bearing on the user interface and vice versa. In other
words, both the user interface and the backend image processing
reside and run in the same operating system process. In a web app,
these are fully decoupled - the user interface and the request
processing actions are performed in different processes and computer
systems with potentially different operating systems. This trivial-
looking difference has visible implications to the web server
architecture and various issues that we will examine later, but
contemplate over this.
A desktop app is usable by a single user at a time, while a web app is
inherently multi-user. This means a single web server process may be
handling multiple clients simultaneously–remember the topic of
concurrency that we learned in the first chapter.
In a desktop app, there is near-zero latency for a processed request to
be rendered in the view, while in a web app, this depends on few
factors such as the speed of the network, the number of concurrent
connections, the number of server instance replications, and so on.
A desktop app is secure from external interferences, while a web app
is vulnerable against various threats, as there is a public medium
between the two layers (client and server).
A desktop app becomes less reliable if the hosting system crashes. A
web app can be made highly reliable by making provisions for fast
recovery, including replications.
A desktop app’s state represents the current user’s session. A web
app’s state represents the session of all the currently connected users.
This means, to debug application issues, a web app will need special
logging mechanisms to customize the runtime state as well as the
application state to a specific user’s context.

There are more differences that can be drawn – discrete or derived, but we
will stop here for now. The main intention of this comparison is to dissect
the two software architecturally and showcase how different they are, with
various tradeoffs. This differentiation will take us directly to the need of



discussing each of these differences in detail with pros and cons. And
focusing on the drawbacks of the web server architecture over the desktop
application will lead us directly to the best practices while developing
server software, and those best practices will mostly make up the rest of this
book.

Note: It is surprising to observe the degree of divergence occurring to
software components when their architecture changes even slightly.
Among other things, it emphasizes on the critical importance of the role of
architecture and why we should be spending enough time on the
architecture while developing a software.

Web server considerations: Architecture
At the core of a web server is a server-side entity that serves web content.
The simplest representation of a server is as shown in the following figure:

Figure 3.4: A simple client-server architecture

In the preceding picture, the client can be a browser, a crawler, or any
software that adheres to a network protocol to talk to the server. However,
for a durable client-server experience, the server needs to qualify in certain



aspects so that the peculiarities discussed in the previous section do not
cause any issue to the web server.
Architecture, in general, is a set of components and their interactions. The
most common web app architectures are client–server, peer–to–peer, and
microservice architectures.
In the above diagram, the server is a single entity encapsulating a lot of
capabilities. This is fine for visualization, but in the real world, a single
program dealing with a number of things will neither function nor scale
properly under various circumstances.

Microservice architecture
An obvious solution to this is to split the program into modules, with each
module encapsulating a discrete function of the web server. This is a good
first step and improves readability and maintenance, but it does not fully
address the reliability and scalability issues.
At this point, we consider microservice architecture as the preferred choice.
This addresses the readability and maintenance issues and also takes care of
scalability issues.
But it also brings its own issues: performance as well as complexity of
deployment and monitoring. For example, running a command in a
command line or a simple script was sufficient for deploying a single
program, but now we need to execute a number of scripts in a pipeline to
get all the microservices up and running, while properly dealing with the
complexities involved when one of the services does not come up. Should
we retry or rollback? If retrying, how many times should we do so before
declaring a failure? How show we interpret the log messages emanating
from different services? How can we produce an aggregate view of the
application?
These are problems that also have known solutions. Additionally, these
issues are empirically proven to be less pervasive as compared to the earlier
issues of scalability and maintainability, so our preferred architecture for the
web server is microservice architecture.
Here’s a simple representation of microservice architecture:



Figure 3.5: A typical microservice architecture

Web server considerations: Performance
At the beginning of the chapter, we compared a web app with a desktop app
and made an observation that the former will perform slow as compared to
the latter by virtue of the proximity of the request processing entity (the
server or the backend) and the rendering entity (the view). In the desktop
app, the view communicates directly with the backend, in-process through a
method invocation.
This is illustrated in the following figure:



Figure 3.6: A desktop application where the calls are direct

In a web app, this communication is made over the network, with TCP,
HTTP and/ or other protocol overheads. The overhead persists all the time
and occurs four times in one communication:

1. Overhead of building the protocol header on the client side when the
request is made.

2. Overhead of unwrapping the header on the server side when the
request is parsed.

3. Overhead of building the protocol header of the response on the server
side before it is sent to the client.

4. Overhead of unwrapping the header in the response at the client side.

This is illustrated in the following diagram with the hotspots of
performance degradation highlighted in red circles.



Figure 3.7: A web server application where the calls are indirect

So inherently, a web app will be slower than a desktop app.
In addition, further layers in the web server (brought for modularity and
independent lifecycle management) each bring the same proportionate
performance overhead as the overhead of the communication between the
client and the server.

Performance overheads
In a nutshell, here are the main inhibitors to performance:

1. The overhead of network transport (request and response)
2. The overhead to packing and terminating protocol headers (network,

application layer)
3. The overhead of processing (understanding) the request
4. The overhead of composing (formulating) the response
5. The overhead of switching between concurrent clients
6. The overhead of switching between different tasks of a single request

response cycle



The net result is that the end user experience grows weak with latency (the
time between the request issuance and the response rendition).
This means a web application should strive to improve its response time,
wherever possible.
The first item in the list of factors is a natural side effect of being a web
server. The best thing to do to improve this is network performance tuning
at the operating system.
The second item is partly a natural side effect of being a web server, and
partly due to the selection of an application-level protocol such as HTTP.
When we add security to this, the protocol changes to HTTPS, which adds
more overhead to the performance.
Under normal deployment circumstances, there is nothing we can do to
change this. If you are deploying under a container orchestration system
with a cluster and a load balancer, there are techniques to terminate SSL at
the load balancer level etc. But as of now, we are good with HTTP and
HTTPS as is.
Overhead of processing the request and composing the response is not new;
those overheads are at par with the overhead of a desktop application.
Overhead of switching between clients is a side effect of Node.js. As we
have only one thread to run the application, a single thread needs to switch
between all the connections.

Best practices
A best practice is to ensure that the core business logic (code between the
request and response) does not carry large and complex operations such as
deep loops, long processing of binary data, and so on.
Overhead of switching between different tasks of a single request response
cycle is also a side effect of Node.js. This switching is managed within the
Node.js core platform, so we don’t need to worry too much here.
In summary, given the architecture and design considerations, the most
natural best practice around performance of a web server is to avoid
unnecessary I/O and minimize the CPU bound operations between its
request and response phases.



Note: You may recollect the objective of Node.js from the first chapter:
Given the nature of the workload in the web application, how can we best
separate and multiplex the CPU bound and I/O bound work, while
transforming all the blocking code to non-blocking and defining
convenient language-level semantics to manage the asynchronous context:
ultimately to improve the performance of web workloads.

Web server considerations: Security
Given that our web server is centrally placed and accessed over the
network, the server software is subject to a number of security threats. In
fact, web server is the software architecture that is the target for most
security exploits. The threats include:

Tampering with the privacy and integrity of the server software
Tampering with the privacy and integrity of the data that the server
deals with
Tampering with the privacy and integrity of the resources that the
server deals with
Tampering with the privacy and integrity of the transport channel that
the server uses to communicate with its clients

In short, all the security threats can be generalized into one model:
tampering with the privacy and integrity of data and resource at endpoints
that the server has access to. This is clearly a side effect of the network-
based architecture that the web server uses but it is something we are
accepting as a tradeoff for improved code reusability, stability, and user
experience. In addition, the good thing with security is the fact that most of
these issues can be addressed at the server side itself, which means these
concerns can be concealed from the user who accesses the web server
through a browser. So, they are oblivious to many of these concerns.

Security threat types
The following figure shows the top 10 web server security threats:



Figure 3.8: A graphical illustration of top web server security threats

Tip: Cyber security is a vast topic and concerns a number of security
themes. Lot of research happens in this area, and it is also a specialization
paper for many universities.

Best practices
Here are some of the common best practices around web server security to
alleviate the above-mentioned issues:

Understand what portion of code and data are subject to privacy and
integrity
Define the scope/span of code and data that your web server
accesses/processes
Define the scope/span of resources that the web server accesses
Understand the scope/span of transport channel the server
communicates through
Use authentication mechanism to protect the code, data, and resources
Define roles (authorization) to implement the said protection
hierarchically



Treat every data-intake point as untrusted and ensure proper validation
Parse and prune scripts, commands, and queries that originate from the
user
Treat all data that flows over the network as exposed and ensure
encryption

In addition to this, ensure that the entire application stack is up to date with
the latest security fixes. Also, constantly auditing the application to check
whether all the usage of the web server is genuine and detect outlier
patterns and address them in a recurring manner.
These are the most common best practices for our web server. It is
surprising to see the cost of securing a software that is centrally placed in
the internet! However, we prefer the web-based approach over a desktop
program as the pros outweigh the cons.

Web server considerations: Reliability
Reliability for a web server generally refers to its ability to be available and
consistent with respect to the external interface and its function. From a
client’s perspective, a reliable server is considered available at any time.
Also, a consistent response is obtained for a specific type of request sent.
In a narrow sense, availability is different from reliability, but we will treat
availability as a subset of reliability for our discussion.
At the enterprise deployment level, there are several techniques to ensure
high availability of the server, including clustering, load balancing, disaster
recovery, and so on. However, we will not talk about those techniques here
as our baseline is a simple desktop application; instead, we will focus on the
single instance of our server.

Examples of reliability issues
The common types of reliability issues are as follows:

Server crash
Server unresponsive/hang
Operating system crash



Hardware failure
Traffic overload

Crash is a situation when the server process terminates abnormally when it
is not expected to. The reasons are bad code, bad data, or both. Crash leads
to broken client requests as well as call drops, resulting in unavailability of
the server until it is booted up again.
The following figure illustrates an example of a crashed process:

Figure 3.9: An example of a crashed process

Hang is a situation where the server process is alive but the thread is unable
to progress and handle the work when it is expected to make progress. The
reason is usually bad logic in code, due to which it waits for a non-existent
event occur. Implication of a hang is the same as that of crash–the current
requests are abandoned, and the server is unavailable until it is restarted.
The following figure shows an idle process that consumes 0 CPU for 10
hours or so:



Figure 3.10: An example of a hanging process

Operating system crash occurs when a bug in the kernel manifests. The
reason is trivial. As the system reboots upon an OS crash, the implication to
the clients is the same.
Hardware failure may imply a long delay to clients, as the recovery from
the failure may not always be realized through a reboot.
Traffic overload is a situation wherein the resources in the server (memory,
CPU, disk, ports, etc.) are exhausted or nearing exhaustion. The reason is
more concurrent clients than normal. The implication is delay in addressing
client requests, eventual crash due to exhaustion, or both.

Best practices
Common reliability best practices are as follows:

Define key reliability metrics (Service Level Agreements (SLAs) and
Service Level Objective (SLOs)). This helps identify automated
mitigation plan upon unavailable/unreliable server.
Loose coupling between components. This helps isolate and refresh
faulty components without bringing everything down.
Automation of deployment. This helps in faster bootstrapping.
Minimize startup time. This helps in faster bootstrapping. Node.js has
a specified objective to be faster on startup time, and it is one of the
fastest bootstrapping runtime at present.



Be stateless (no local persistence). This helps in reconciling broken
states from safe and stable endpoints rather than fixing from a broken
file.

Note Service Level Agreement and Service Level Objective together refer
to a set of predefined terms of understanding between the producer and
the consumer of a software service in terms of the expectation on quality,
responsiveness, and cost of the software as well as the responsibilities of
both the stakeholders. This agreement acts as a governing principle for the
producer and consumer in all phases of development, delivery, and
production.

Web server considerations: Extensibility
Extensibility is the measure of making amendments to the server program
after it has been developed and deployed. Software is known to evolve over
time due to the continuous feedback that it usually obtains from the field
(userbase). Based on the original architecture and design, these evolutionary
changes can affect every part of it, including the architecture itself – the
highest level of abstraction of the software.

Examples of extensibility
Some examples of future growth for a web server are as follows:

1. A custom middleware function that every request passes through. In
this example extension, the new feature introduces a new logging
routine or a new validation routine that touches every client request
that reaches the server. The following pseudo-code shows a simple
middleware that is invoked on every client request and logs a specific
data element:

1. function customLogger(q, r, n) => {
2.   logger.log(q.query.name)
3.   n(q, r)
4. }



2. Extend the web server to support a new route (request type). In this
example, the web server is able to handle a new request type. The
request type may be characterized by its method, type of query data, or
the type of response data that it expects from the server. The following
pseudo-code shows a new route being inserted:

1. function handle(q, r) => {
2.   if(q.url === 'foo') {
3.     handleFoo(q, r)
4.   }
5.   // rest of the code
6. }

3. Support a new encryption algorithm. In this example, the web server is
able to handle a new type of client, which wishes to communicate
through a new data encryption algorithm that the server did not cover
earlier. The following pseudo-code illustrates an example of
leveraging a new cryptography algorithm ‘AECS-256-FOO’, which is
implemented as an extension in the crypto API but the user is able to
use seamlessly.

1. const c = require('crypto')
2. c.createCipher('AECS-256-FOO', 'foo')

In all the three examples, the key to extensibility is the ability to add the
feature as a natural extension to the existing program, without needing to
refactor the existing features to accommodate new ones.

Best practices
Here are some common best practices to achieve extensibility to our web
server:

You need to understand and document the following:

key assumptions made in the design. This helps in designing
extensions and plugging them in extensions naturally into the
existing design.



key data and data type definitions. This helps in fusing new types
into the existing types, and/or leveraging existing types required
for new extensions.
key feature functions. This helps in reusing existing code.
high-level code flow. This is very important to maintain the
sanctity of the design and code after the server has been
extended.
high-level data flow. This is very important, to maintain the
sanctity of the design and data after the server has been extended.

Define data types with provision for extensions. This means Classes
and Data structures are designed as abstract where there is a potential
for future extensions.
Define capabilities with provision for extensions. This means
functions are designed as abstract where there is a potential for future
extensions.
Parameterize key policies around code and data. This helps in
implementing polymorphic functions that behave differently based on
input. In other words, avoid implementing functions with assumptions
on input data.
Define architecture components loosely. This helps in re-architecting
the server, if need be, without heavily refactoring the existing code.

Web server considerations: Maintainability
Maintainability of a web server refers to the ability to seamlessly maintain
the software over a period of time. Maintenance generally refers to:

Fixing bugs that are reported from the field
Fixing security issues that are reported from the field
Supporting newer platforms and environments
Enhancing user guide based on user experience
Enhancing code to improve performance
Enhancing code to improve reliability



Importance of maintainability
All of these are relevant in the context of a web server. At the same time, it
is worthwhile to note that there is no added burden on maintenance to the
server by virtue of its architectural difference with our desktop application.
In other words, all the above-mentioned items are applicable for a simple
desktop application as well. In either case, the server software should aim to
prepare itself for being subject to these maintenance activities.

Best practices
Here are some best practices around building highly maintainable software:

Modularize the code around key abstractions and capabilities. This
helps scope the subject of maintenance well within one or more
modules.
Ensure that the code is highly readable (by other developers). This
helps isolate the subject of maintenance into one or more modules and
understand the business logic just through code review. The design
document or the user guide may not mention anything about the bug
due to its nature, so code reading is the only alternative.
Document key functions and interfaces. This helps scope the subject
of maintenance well within one or more modules or APIs.
Factor and modularize platform-specific code. This helps scope and
isolate the subject of maintenance well within the relevant platform.
Establish performance benchmarks with baselines. This helps in
making meaningful comparisons and quantification of performance
bottlenecks or degradations.
Ensure that bug fixes do not ‘grow’ into features. This helps retain the
software’s original architecture and design. Otherwise, the bug fixes
can tamper the design objectives.
Ensure that backward compatibility is maintained. This helps confine
the features and bug fixes within a well-defined scope, instead of them
escaping into regressions and cascaded issues.
Define and follow semantic versioning. This helps organize
maintenance artifacts of code in an easily traceable manner, with



proper audit trails. Also, classification of work items become easy,
leading to a well-defined release process.

Web server considerations: Serviceability
Serviceability refers to installation, configuration, fault detection, fault data
capture, problem isolation, problem recreation, problem determination, and
applying fixes and patches, among other things. It is an important aspect of
maintaining the delivered software, as the serviceability directly influences
the warranty cost, which is the cost of supporting the software. The
following is a graphical representation of an in-production software
qualifier:

Figure 3.11: A graphical view of common production-grade software capabilities

Best practices
The common serviceability best practices are discussed here. You need to
ensure that:

The server software has a well-defined lifecycle in the design. This
helps scope and understand anomalies based on problem reports.
There is well-defined failure data for every possible anomaly type.
The known anomaly types of a web server are crash (abnormal



termination), hang (low CPU), tight loop (high CPU), exceptions,
performance degradation, memory leak, memory exhaustion, and
incorrect result from computations.
There is well-defined failure data capture method for every possible
anomaly type.
There are reliable tools for every possible anomaly type.
There are proven methodologies for every possible anomaly type.
The hosting system is prepared for failure data capture upon the
occurrence of anomaly events before deployment.
The design of the server software is inherently accommodative of
serviceability. This means the high-level design review also has a
checklist on serviceability confidence capture.

Web server considerations: Observability
Observability is defined as the ability to understand the state of the
application through its naturally collected data points, without resorting to
debugging means. The state of the application would mean the health of the
process, the load on the system, the internal state of the language
runtime/virtual machine, the client interaction patterns, the request-response
demography, the fault rates, the resource usage patterns, and so on.

Importance of observability
Why is observability important? As a web server adopts other above-
mentioned best practices (for example modularity, security, maintainability,
etc.), the complexity of the software increases, and human examination and
assertion becomes difficult and error prone. At the same time,
understanding how efficiently we designed our software is important for its
subsequent enhancement and evolution. For example, an aggregated time
graph may show us that a specific microservice in our application is a
bottleneck with respect to request traffic and would benefit from
independent scaling.

Best practices
Here are some of the observability best practices:



Understand the key observables (data points). What do we want to
observe in order to assert the key performance indices?
Define the interpretation of data points. What data will help us make
meaningful assertions?
Understand the life span of data points. How much of such data will
help us make these assertions with reasonable confidence?
Define lifecycle for data points. When does data collection start, when
does it end, and where is the data stored? How long do we retain the
data?
Define a comprehensive data collection method. How do we collect
data from various subsystems and components of the server software?
Define a unique collection method for better isolation and control over
these methods.
Define a comprehensive data aggregation method. How is the
collected data aggregated? What aggregations are meaningful to the
user?
Define a comprehensive data visualization method. How is the data
visualized? Is the visualization easy to interpret? For example, is the
given data better represented through a pie chart as opposed to a bar
graph?
Document observability artifacts in the software. This helps fix bugs
and enhance, extend, and control the observability-related code in our
software.

Conclusion
In this chapter, we learned the basic concept of a web server and defined the
server’s core components. To scope the server’s context in the wide
spectrum of software architectures, we made a comparison of our web
server with a desktop application that serves a similar function. This
comparison helped us observe the characteristic features of a request
processing system when it is situated in the backend, across the network, at
a central location. This, in turn helped us visualize a number of tradeoffs
with respect to key software efficiency parameters, examine the
fundamental considerations of a web server developer, and learn about best
practices for an efficient web server, addressing the issues that emanated by



virtue of its placement and accessibility. In the next chapter, we will start
putting the theory into practice. We will write a simple web server that
responds with the time of the day and try to make meaning out of it.
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CHAPTER 4
Our First Program: Time of the Day

Server
o we have obtained a detailed background on Node.js programming by
now – the fundamental principles of event-driven architecture to set

the premise of Node.js as well as many considerations of web server
applications. In this chapter, we will start putting the theory into practice.
We will write a simple web server that responds with the Time of the Day
and illustrates each program part.

Structure
In this chapter, we will cover the following topics:

The hello world web server program
A Time of the Day program
Running the server
Program parts

Objective
After studying this chapter, you should be able to understand the basic
ingredients of a Node.js program. More specifically, a web server program.
We will pick up a trivial ‘hello world’ program to demonstrate the
development lifecycle and then move on to the Time of the Day server. We
will then examine specific parts of the program and learn what those mean
and how each piece is contributing to the overall server logic.

A ‘hello world!’ server
Just like any other program, we start with a ‘hello world’ program. This
helps us clearly identify parts of the program. Incremental understanding



comes in handy, as some level of understanding is already available for a
‘hello world’ program for any programmer.
Here’s a ‘hello word’ program written as a Node.js web server code:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end('hello world!')
4. })
5. s.listen(12000)

Running the program
Follow the given steps to run the preceding program:

1. Save the program as ‘hw.js’.
2. Open a terminal and go to the location where the file is present.
3. Run the code as follows:

Figure 4.1: Running the ‘hello world’ web server program

Accessing the server through the browser
Now, while our program is running in the terminal, open a web browser and
access this URL: http://localhost:12000, as shown in the following
diagram:



Figure 4.2: Accessing the web server through browser

That was our first Node.js program! We will come back to it later in this
chapter to inspect different parts of it. For now, we will examine a Time of
the Day server.

Assignment: Change the message that the server sends to some other
message, restart the server program, refresh the request in the browser,
and observe the response. Do you see the change that you expected?

A Time of the Day Server
Now, let’s build our Time of the Day server that responds to its client with
the current time:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end(new Date().toString())
4. })
5. s.listen(12000)



Just like earlier, run this program in the terminal, as shown:

Figure 4.3: Running the Time of the Day web server program

And then access it through the web browser, as illustrated:

Figure 4.4: Accessing the Time of the Day server through browser

That was simple! We should appreciate that ‘hello world’ and Time of the
Day were identical, except the message composed at the server side and
passed to the client.



If you take a closer look when string is displayed in the browser, it brings
up this question: Is the time with respect to the server or the client? It is the
server’s time, as the time was captured in the server’s code, through this
line:

1.   r.end(new Date().toString())

Of course, if we are accessing the client in the same system where the
server is running, there is only one time. But think about a more real-world
scenario where the server could be located elsewhere in the network.
The fact that it shows the server’s local time imposes two issues:

The user has to make adjustments with respect to the server’s time
zone
It accidentally reveals where the server is located (an unwanted
security exposure)

A more reasonable approach is to ‘hide’ the server’s time zone and show an
absolute time that every other locale can use as a reference, such as
Universal Co-ordinated Time (UTC).
So our modified code uses a Date API that converts the local time to UTC
time:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end(new Date().toUTCString())
4. })
5. s.listen(12000)

Just like earlier, run this program in the terminal, as follows:



Figure 4.5: Running Time of the Day with UTC

And then access it through the web browser, as shown:

Figure 4.6: Accessing the Time of the Day server (with UTC) through browser

Now, as you can see, the time is displayed in UTC, solving both the
mentioned issues. The user has no awareness about where the server is, and
they can compute the local time using well-known arithmetic on UTC to
obtain their locale-specific time.



Program sections
At a higher level, there are five discrete sections in a simple Node.js web
server. Let’s look at each of those.

Require statement
The ‘require’ function is an essential part of Node.js API. It is a global
function used to include, incorporate, or import reusable modules into your
program. A module is a code unit that exports one or more fields and/or
methods. The caller of ‘require’ gets an object that contains the exported
content from the module.
Node.js APIs are made available as modules so that they can be easily used
in a program.
In our code, the first line is:

1. const h = require('http')

It indicates importing a module called ‘http’ into our program. After this
statement, the ‘http’ module capability is available through variable ‘h’,
and our program has access to the ‘http’ module, which comes in handy
for creating an ‘http’ server.
While ‘http’ is the most common, it is not the only module that abstracts
server capabilities. In our next chapter, we will make comparisons between
the ‘tcp’ and ‘http’ protocols and understand the difference in server
implementations with these two protocols.

Assignment: Print the content of the ‘http’ object to the console and try to
identify some fields and their meanings.

The server loop
This is the most important part of the web server. The loop code is shown as
follows:

1. const s = h.createServer((q, r) => {
2.   r.end(new Date().toString())
3. })



As we can see, it has two sections:

The server creation
The client handler

The ‘createServer’ API of the ‘http’ module is used to create an ‘http’
web server. The create object is returned in the variable ‘s’ that we can use
for managing various lifecycle operations of the server.
The anonymous function passed as the single argument to `createServer`
is the client handler callback (in some programming world, this is called a
servlet). This handler is responsible for handling a client connection.
The contract that an ‘http’ server makes is that:

This handler function is invoked every time a client connects
The two input parameters ‘q’ and ‘r’ are populated upon entry
‘q’ is an abstraction around the client request (contains the request
header, body etc.)
‘r’ is an abstraction around the server response (means to compose and
send response)

This function is re-entrant in that when multiple clients connect at the same
time, this function would be invoked for each one independently, with no
side effect on the others.
This function roughly corresponds to the lifecycle of a client connection:
the request–response cycle. Upon entry to this function, we can say that a
new client request has arrived, and its request is completed when this
function returns after sending a response.
The request and response objects that encapsulate the client and server
respectively, represent classical web server programming and follow the
same abstraction that is followed in many other web programming
platforms.
Both the request and response objects are streams (Stream) as well as event
emitters (EventEmitter) so that they can manage flowing data and define
several events that make up the lifecycle of request and response.
In our next chapter, we will make a detailed examination of the request and
response objects, including their inheritance, composition, and lifecycle



events.

Note: Heavy parsing of request happens behind the scenes before the
request object is populated. This is because the client request originally
comes as a binary stream of data over the network, formatted according to
the selected protocol. This needs to be first parsed, then verified for
conformity to the protocol specification, and then transformed to the
structure aligned with that of the request object.

The date
Another component in the program is the date computation. ‘Date’ is a
standard JavaScript class, so ‘new Date()’ provides the current date with
time, with respect to the invoking system’s locale. There are a number of
functions that help creating as well as representing a date object in various
convenient ways.

The server response
The server’s response is sent to the client through the ‘end’ function, as
shown:

1.   r.end(new Date().toUTCString())

If there are large chunks of data to be sent to the client, the ‘r.write()’
API can be called as many times. But calling ‘r.end’ ends the response, and
no more response can be sent through to that client through that connection.
Most browsers start rendering the page only when it receives the final piece
of data. Due to this, the `end` API is essential.

Questions: Comment out the response sending code in our program and
access the page through the browser. Observe what happens to the
browser. Why?

The server listen
The listen API is invoked as follows:

1. s.listen(12000)



This is the last piece of code in our program. The ‘listen’ API of the
server object causes the server to prepare itself for receiving client
connections. In the most common form, it takes a port number where the
server should be available. The same port number should be used by the
clients when they compose the server’s URL.

Note: A port number can be listened to by only one process at a time.

Conclusion
In summary, we studied each line of our program and understood their
meaning and purpose in the context of a web server that provides current
time information to a requesting client. In that process, we also understood
some of the powerful features and APIs of Node.js that make it a flexible
and easy web programming platform. In the next chapter, we will take a
closer look at the networking features of Node.js around web applications.
This will include API abstractions for different protocols, data transport
mechanisms, and client-server interactions.

Exercises
Two common yet simple problems are described below to get you up to
speed with the practical aspects of web server programming.

Problem #1
In a particular scenario, the following error occurred when the Time of the
Day program (either of the versions) was run on the terminal:



Figure 4.7: Demonstration of potential server startup error

What does the error mean?
Why does this error occur?
How to resolve the error?

Problem #2
In a particular scenario, the following error was observed when the Time of
the Day program (either of the versions) was run and accessed through the
browser:



Figure 4.8: Demonstration of potential access error at the client

What does the error mean?
Why does this error occur?
How to resolve the error?
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CHAPTER 5
Common Networking Interfaces of

Node.js
t this stage, we are ready to dig deeper into the API abstractions that
Node.js offers to implement common web applications. We will first

compare the raw native networking protocol TCP/IP with a higher-level,
convenient protocol HTTP. This is important to justify our choice of HTTP for
building applications throughout this book. We also need to understand how
data transport works in the underlying network. Then, we will look at the
streaming APIs, as almost all client-server communication is stream-oriented,
and buffer APIs, as almost all stream-based data transport uses buffers to hold
the data. We illustrate the two popular web server abstractions—‘request’ and
‘response’—that represent the fundamental building block objects for the
client-server interaction. We will also examine in detail the configurations that
affect the server’s behavior and the server’s life cycle control points and server
events. Additionally, we will touch base upon a few other important
networking APIs that we will use in this book.

Structure
In this chapter, we will cover the following topics:

Network programming
TCP versus HTTP
Node.js streams
Node.js buffers
Request and response objects
Request and response life cycle
Server configuration
Server’s life cycle events
Other networking APIs



Objective
After studying this chapter, you will be able to understand the common
network abstractions in the Node.js programming platform. These include
network programming considerations, the necessity of network protocols,
network data transport considerations, and how Node.js abstracts these
capabilities, aligning the APIs well with the underlying philosophy of event-
driven and asynchronous programming style while comprehensively covering
all the aspects of the said capabilities. You will be able to appreciate the
current server abstractions as a comprehensive set of APIs and understand why
streams and buffers are extensively used in network programs. You will also
learn about server configurations and server life cycle events.

Network programming
Network programming is a programming paradigm in which computation
occurs in more than one computing systems connected in a network. There are
several programming models (topologies) that we can derive, depending on
how the computations are organized, divided, aggregated, and consumed. For
example, client–server, peer–to–peer, and so on.
The most common programming model of Node.js is that of a web server. It is
a classic example of client–server topology and so, an example of network
programming as well. We discussed the merit of this programming model in
detail in Chapter 3, Introduction to Web Server.
A key difference between a simple desktop program and a network program, as
explained in Chapter 3, Introduction to Web Server, is that the invocation and
consumption of a computation function happens in-process (a direct function
call) in the former, whereas it happens over the network in the latter. This
difference implies mainly to the structure, functionality, and interface of the
program. Among other things, we need a protocol to communicate between the
processes across the network.

Why a protocol?
Earlier, we just mentioned the protocol; now is the time to look at it in detail.
Let’s start with the simple function call example. These things happen when
the ‘foo’ function calls the ‘bar’ function, typically in a natively compiled
program:



At the calling function side
The function arguments are pushed to the program stack/designated
registers
The return address (where the callee should return) is pushed to the
program stack
A jump is made to the target function

At the called function side
Creates a stack frame for holding its data
Updates the stack pointer
Executes its code
Resets the stack pointer
Jumps back to the return address
The execution continues in the caller

Here’s a concrete example with a C function ‘foo’ making a call to ‘bar’. Let’s
look at its source code and the generated assembly in a ‘x64’ system and
understand how the call is being managed.
The following is the code for the caller function ‘foo’ and callee function
‘bar’:

1. void foo() {
2.   int ret = bar(0xaaaa, 0xbbbb, 0xcccc);
3. }

1. int bar(int p, int q, int r) {
2. return p + q + r;
3. }

Now, let’s also look at how the generated machine code will look for these
functions. Only the relevant portions are displayed for simplicity and clarity.
Also, I have annotated every instruction with comments, for better
understanding of what is happening at the lower level.
The following code shows the call site of ‘bar’ in ‘foo’:

1. // store the third argument into edx



2. mov    edx,0xcccc
3. // store the second argument into esi
4. mov    esi,0xbbbb
5. // store the first argument into edi
6. mov    edi,0xaaaa
7. // invoke the target method
8. call   bar

Here, the caller’s argument (or parameters when they are referred in the callee)
are stored in designated registers, and then the target method is invoked. In
some other architectures, these arguments may be pushed onto the stack
directly or stored in other registers or a combination of both.
In the ‘x64’ architecture, the ‘call’ instruction is internally composed of two
actions: i) push the address of the next instruction to the stack, ii) jump to the
mentioned target.
Now, let’s look at what happens in ‘bar’, the callee. Here’s how the first part of
the function will look:

1. // store the current frame base pointer
2. push   rbp
3. // set the current stack pointer as the new frame base

pointer

4. mov    rbp,rsp
5. // store first param into first slot of base pointer
6. mov    DWORD PTR [rbp-0x4],edi
7. // store second param into second slot of base pointer
8. mov    DWORD PTR [rbp-0x8],esi
9. // store third param into third slot of base pointer

10. mov    DWORD PTR [rbp-0xc],edx

In the callee, the base pointer register is saved on the stack first, and then the
current stack pointer value is stored in the base pointer, marking a new stack
frame. Then, each of the parameters (which were stored by the caller) are
stored at designated slots in the memory, with ‘rbp’ as the reference, at specific



offsets from it. This whole exercise, performed before the business logic of the
function starts, is called function prologue.
The following code shows the actual ‘body’ of the function – the adding logic:

1. // load first param into edx
2. mov    edx,DWORD PTR [rbp-0x4]
3. // load second param into eax
4. mov    eax,DWORD PTR [rbp-0x8]
5. // add eax and edx, store the result in edx
6. add    edx,eax
7. // load third param into eax
8. mov    eax,DWORD PTR [rbp-0xc]
9. // add eax and edx, store the result in eax

10. add    eax,edx

This is self-explanatory. The values are fetched from the registers, and the add
operation is performed one by one. At the end, the result is stored in the ‘eax’
register, also known as the accumulator register, which holds the return value
from a function.
The following code shows the final piece of the callee, called epilogue:

1. // unwind the frame, get the old base pointer back
2. pop    rbp
3. // return, leaving the result in eax
4. ret

The action performed in the epilogue is to restore the base frame pointer and
thereby, unwind the current frame and restore the previous frame before
returning to the caller. When the execution reaches the caller, everything is
back to normal at the time of the call, with the return value of the call available
in the ‘eax’ register. The caller continues from there.
This set of rules is called calling convention or subroutine linkage convention.
It is part of a wider rule specification called Application Binary Interface
(ABI). If any of these steps are slipped or violated while a program is under
execution, the program will malfunction, mostly leading to a crash.



Note: A computer CPU works based on a specified behavior, and this
specification is called its architecture. Among other things, the two important
aspects of a machine architecture that are relevant here are: i) the calling
convention or subroutine linkage convention, and ii) instruction set
specification.

TCP/IP
Clearly, we need a rule when a program is talking to another program. The
complexity of the rules increases when programs are situated across the
network. For example, when program A passes a piece of data to program B
across the network, there are several questions, like:

How can we uniquely identify program A’s data? (hint: network has
access to all the posted data)
How do we know program A’s data boundary/length? (hint: data flows as
octet streams)
How do we know program A’s data sequence/order? (hint: which one is
the higher order bit?)

If every application starts dealing with these complexities, network
programming will become extremely complex and unmanageable.
Additionally, programs lose inter-operability. So, it is natural that we define a
set of rules that comprehensively cover how communication happens between
programs, while the programs can better focus on their ‘business logic’.
TCP/IP is the most commonly used set of such rules. While these are two
discrete protocols (Transmission Control Protocol and Internet Protocol)
layered on top of each other, we don’t need to understand the details and
differences. Also, there are many other protocols over and below and also at
par with TCP/IP that are outside the scope of this book.

Note: Here’s a simple example that gives us a feel about the importance of a
network protocol. At the lowest level, when two-byte data (B1, B2) reaches
an endpoint, the question as to how to combine the bytes to reconstruct the
original word—B1B2 or B2B1—is defined by a concept called endian-ness.
Two types of endian-ness are prevalent: big endian and little endian.

A network protocol defines a set of rules for transporting data in the network.
TCP/IP provides reliable, stream-oriented data to participating applications in



the network. By communicating over TCP/IP, the programs are spared from
dealing with data transport complexity like data chunking, routing, traffic load
balancing, error correction, managing lost packets, and aggregation. Stream-
oriented means a hand-shake and connection needs to be established between
the endpoints before transferring data.
In other words, the contract with TCP/IP is that a piece of data ‘hello’ sent
from a network—endpoint A—reaches its destination—endpoint B—intact, as
‘hello’ and A and B are connected through TCP/IP way.
The following figure shows this contract in a symbolic manner:

Figure 5.1: A graphical view of TCP/IP’s contract

An organization called International Standards Organization (ISO) defined
the reference architecture for data exchange between connected computers.
This architecture is called Open Systems Interconnection (OSI). It takes the
shape of a connected set of pipelines in the computing abstractions, starting
from the application to the physical network apparatus for the forward data
flow (writing), and starting from the physical network apparatus to the
application, for the reverse data flow (reading).
The following figure shows the seven layers of OSI data interchange
architecture:



Figure 5.2: The OSI-specified networking layers

While the OSI model’s seven layers specify a guideline, TCP/IP is a concrete
implementation of the same, and at the implementation level, a few layers have
been coalesced by virtue of convenience and modularity. In other words,
TCP/IP is a protocol of the actual Internet that we use and is heavily derived
from the OSI specification. Here’s a brief description of the TCP/IP layers:

Application: Defines the standard internet services and network APIs. A
program deals with the network at this level. Examples: ftp and telnet.
The standard network abstractions such as sockets and ports are part of
the application layer.
Transport: Defines data integrity and reliability constraints in forward
and reverse paths.



Internet: Defines transport protocols of data packets in the network:
routing, resending lost packets, and so on.
Physical: Defines the characteristics of the hardware that transmits the
data.

The TCP/IP programming interfaces, as implemented in the operating system
and consumed by a standard C program, are listed as follows:

API Meaning

socket Creates an end point (server or client)

connect Makes a connection with a remote (client)

bind Binds with a port and network interface (server)

listen Enables the socket to be usable (server)

accept Waits for client connections (server)

read, write Standard I/O APIs (server and client)

Table 5.1: Core TCP/IP C APIs

A socket abstracts the remote endpoint in a network program. In the server
connected with a client, the socket that was created as a result of the
connection represents the client. Similarly, in a client, the socket created as a
result of the connection represents the server. In other words, if a client reads
from a connected socket, it is actually reading from the server. This way, a
reasonable two-way communication can be carried out using connected
sockets.

Assignment: Write a simple client-server program in which the server
echoes a piece of data that the client sends, in C language, using the above-
mentioned APIs. Observe the complexity.

Fortunately, we don’t need to dig deeper into the complexities of these
concepts. In Node.js, we have sophisticated APIs that hide these complexities,
and help us to focus more on our business domain, rather than in the network
domain. Here’s a simple example of TCP-based Node.js server and client that
exchange a piece of word.
The following code illustrates a simple TCP server:

1. const n = require('net')



2. const s = n.createServer((s) => {
3.   s.end('hello world!')
4. })
5. s.listen(12000)

And the following code illustrates a simple TCP client:

1. const n = require('net')
2. const c = n.createConnection({port: 12000})
3. c.on('data', (d) => {
4.   console.log(d.toString())
5.   c.end()
6. })

And the following figure shows the execution of the code with the output:

Figure 5.3: TCP client server execution output

As we can easily note here, the complexity of the data transported in the
network is not visible in the program! Instead, a sophisticated abstraction is
made available to the program called ‘socket’, which is used to perform the
communication. The variables that hold the return values of both
‘createServer()’ in the server and ‘createConnection()’ in the client are
sockets, which are used for communication.

HTTP



Is that enough for writing large-scale network programs? Does it (TCP/IP)
satisfy our need to communicate easily and seamlessly?
Yes, to an extent. But the protocol is still low-level to be easily consumable for
software that operates at much higher levels of abstraction. A simple example
is a case wherein an application form is submitted on a website.
The following figure shows a sample form data:

Figure 5.4: A sample form data

Now when the form is filled and submitted in the client browser, it needs to be
transmitted across the network and parsed into higher-level programming
constructs on the server side. How will we easily manage that transportation
and transformation?

We need a rule that defines the data is being sent to the server from the
client
We need a rule that defines what type of data is being sent
We need a rule that defines the actual record length
We need a rule that defines how individual entries are delimited
We need a rule that defines how key-value pairs are delimited

Again, if each application starts building these set of rules privately to the
application in a custom manner, the development becomes complex. Plus,
applications lose their inter-operability.

Question: Take a step back and reflect on where these complexities came
from. Did a function invoking another function in the same program have
these issues to tackle? Or is it that they also have complexities but at a
different operating space?

So it makes perfect sense to define another set of rules that solve the same
problem as that of TCP/IP (standardizing data transport mechanism) but



operate at a much higher level, which is closer to the application’s level of
abstraction.
Hyper Text Transfer Protocol (HTTP) is an application-layer protocol that
operates on top of the TCP/IP protocol, defines a set of rules for transporting
data in a more flexible and seamless manner than the more complex and low-
level TCP/IP. The protocol includes rule definitions for request type, message
format, message body, transfer encoding, and status code. With these
primitives, it becomes easy for an HTTP parser to interpret the data. Further, it
becomes easy for an HTTP endpoint to receive and handle the request and
send the response.
When the above-mentioned record is transferred through HTTP protocol and
intercepted in the network, it will look as follows:

Figure 5.5: A sample HTTP payload

The contract with HTTP is that a piece of data ‘hello’ sent from a network—
endpoint A—reaches its destination—endpoint B—intact as ‘hello’, with
additional information such as the request type, the request context, the data
type, and the data length, if A and B are connected through the HTTP protocol.
The following figure shows this contract of HTTP in a symbolic manner:

Figure 5.6: A visualization of contract with the HTTP protocol

The HTTP protocol deals with the important things:

What to do with the data (the request method)



Where to use the data (the request path)
Who the data is meant for (the host)
Its type (the Content-Type)
Its length (the Content-Length)

Now that the data has its raw message content as well as a number of attributes
around it, the recipient can understand the ‘intent’, through standard
mechanisms, without resorting to low-level primitives. In the below sections,
we look at each tokens in the HTTP message, and interpret the mentioned
example HTTP message format.

POST
This token specifies the HTTP method or request type. The request type
defines the nature and format of the rest of the request body. POST indicates
that the client is providing a block of data, along with the request – creating or
updating a resource. Other common HTTP methods include GET, PUT, and
DELETE.

/ verb
This token specifies the request target or protocol path. The path defines a
context of the request such that different requests can be characterized at the
server, classifying them based on the request target.
Different forms of the path include:

The simplest form, such as ‘/’
A simple token path, such as ‘/foo’
A resource path form, such as ‘/cat.png’
A query string form, such as ‘/test?name=foo&type=bar’

HTTP/1.1
This token specifies the HTTP version in use. Naturally, with a different
version, one would expect a change in the format for the rest of the message.
Also, specifying the version is a request to the server to format its response
accordingly so that the client can consume it.

Host



This token specifies the host name and port number of the server to which this
request is sent. If the port number is missing (as is the case here), it would
mean the target port is the default port (80).

Question: What purpose the ‘Host’ field solves? If the message is destined to
a specific host, and this field helps with that, how did the message reach this
server in the first place, before parsing the field? Also, if the need is to select
the destination, who should be the consumer of such a data? the lower level
TCP stack, or the application itself?

Content-Type
This token specifies the data type of the content part of the request. It has two
parts: the media type that specifies the high-level type, and the media subtype
that provides a hint about the file extension. There is a long list of valid data
types: application, audio, video, image, multipart, text, and so on.

Content-Length
This token specifies the number of bytes of the request body, including the
metacharacters that are used to delimit records.
And finally, the body itself is composed as a single string by combining all the
message parts with well-defined delimiters separating them.
There are many more fields, each with several extensions and exceptions, but
we are good here in terms of understanding the basic format of a typical HTTP
message.
Do we see an evident flexibility improvement here in terms of dealing with
large and complex business data? Yes, we can. As a result of these
improvements, HTTP is the preferred way of communicating for common web
applications.

Tip: How do we see an HTTP message header? A simple technique is to
write and run a TCP server that just prints the incoming request and access
the server through a browser client as if it is an HTTP-based server. The
client will fail, but the message in the TCP server will be the complete HTTP
message that the browser has sent.

Now let’s revisit the questions we could not solve with TCP alone and see how
they fare in the context of HTTP capabilities.



We need a rule that says the data is being sent to the server from the
client: this is now addressed, as we have a ‘method’ verb defined in the
HTTP header, such as ‘GET’ or ‘POST’.
We need a rule that defines what type of data is being sent: this is now
addressed, as we have a ‘Content-Type’ verb defined in the HTTP header
– such as ‘application/text’ or ‘image/jpeg’.
We need a rule that defines the actual record length – this is now
addressed, as we have a ‘Content-Length’ verb defined in the HTTP
header.
We need a rule that defines how individual entries are delimited – this is
now achieved, as we have a well-defined delimiter for the individual
fields in the message, such as ‘&’.
We need a rule that defines how key-value pairs are delimited: this is now
achieved, as we have a well-defined delimiter for the key-value pairs,
such as ‘=’.

Evidently, dealing with HTTP is much simpler than TCP/IP. The latter gives
fine control on the data being transported but is more complex.

Question: In Node.js, when the server receives an HTTP message (in the
form of a request), it is not in the form explained above. Instead, the
individual values are decomposed and constructed into ‘request’ object. Who
performs this activity and when? What is this action called?

In summary, we learned the definition of network programming and the
associated complexity. We then understood the need for protocols and studied
the two most popular network protocols: TCP/IP and HTTP. We also made
head-to-head comparison of the two in the purview of a web program to gauge
its efficiency with both.

Node.js streams
Now that we have a well-defined protocol in place for communicating, let’s
take peek at the data to be communicated. Earlier in this chapter as well as in
Chapter 3, Introduction to Web Server, we touched upon an important concept.
Let’s recollect that in detail.
The flow of data has implications on the transport layer as well as the
application layer. Let’s see how:



First, data is chunked, and then the chunks are split into packets. The packets
are then sent across the network, not necessarily in a specific order or through
a specific route. These packets are regrouped at the destination and ordered.
The ordered data is coalesced (de-chunked) back as required and then
presented to the application. The volume and speed of the data will directly
influence these sequences. This is the implication of data flow on the transport
layer.

Note: Data is chunked because it has to pass through socket buffers
(internally stored in kernel memory), which have a definite size. Chunks are
split into packets, as TCP/IP packets also have a definite size, which is much
lesser than the size of the socket buffer.

Figure 5.7: View of network data fragmentation

Second, consider two network endpoints engaged in a data transfer. When an
endpoint has initiated a read from the socket, these are the possibilities for the
state of the other endpoint:

The other endpoint has already written its data
The other endpoint is writing data



The other endpoint is writing much more data than the receiver can
handle
The other endpoint is about to write data
The other endpoint is not writing any data

The receiving end has to prepare itself to face these possibilities, or its function
to receive the desired data will be adversely affected. For example, how can
the data be managed if the other endpoint is writing much more data than the
receiver can hold in a chunk? Similarly, what if the other endpoint is never
going to write? Will the receiver have to wait forever? If so, what will happen
to the program logic that depends on it? In summary, the volume, speed, and
order of the data will directly influence these sequences. This is the implication
of data flow to the application layer.
As we know, Node.js is single threaded, and we cannot afford the only thread
dedicating itself to preparing for (or blocking) data transport in that platform.
As we saw in the previous examples, the network data is already transported in
a fluid manner, with no definite sequencing enforcement possible in any
endpoint. These are two problems, but combining them gives us an innovative
revelation—data transport over the network is a perfect fit for event-driven
architecture!
That is, let the data flow as per the network transport considerations and
constraints, but handle it incrementally when a certain amount has been
received.

Figure 5.8: Dataflow with streams



Node.js stream is an abstraction around flowing data. Stream is not a Node.js-
specific concept, but streamed data management is a natural alignment for
event-driven architecture. With streams, functions are designed to operate with
partial data. To mitigate the issue of additional processing because of operating
on partial data, these functions are capable of producing partial data to a
second stream. Such functions are called filter functions. Depending on how
many levels of operations are required on the data, these streams can be
connected sequentially, making a pipeline.
The following figure shows an example of a Natural Language Processing
(NLP) pipeline that uses filter functions and pipes on stream data:

Figure 5.9: A sample NLP pipeline that uses stream of data

Data containers of all the I/O operations that Node.js implements are streams.
This includes network, file, and console. In other words, you perform I/O
operations on these devices through stream APIs. This gives an advantage to
the programmer – uniformity across different data containers with respect to
how we deal with their data.
Node.js stream has a relatively large set of life cycle events. Due to this,
Stream is inherited from the ‘EventEmitter’ interface. This makes streams
first-class event-driven objects. The next figure shows various Node.js objects
that are event emitter types:



Figure 5.10: EventEmitter and its common subclasses

An added positive side effect of stream is memory efficiency. If you are
dealing with a large amount of data, you can make do with less space by
processing small chunks of data incrementally. The following code illustrates a
small program that shows a simple usage of streams:

1. const f = require('fs')
2. console.log('the file content is:\n-----')
3. const r = f.createReadStream(__filename)
4. r.on('data', (d) => {
5.   console.log(d.toString())
6. })
7. r.on('end', () => {
8.   console.log('-----\nend of file')
9. })

In the program, we are opening our own source code as a stream and reading
from it. (‘__filename’ is a predefined variable that can be used globally in
Node.js; it represents the executing module’s filename). The following figure
shows what the output looks like when the program is executed:



Figure 5.11: Output of the sample stream program

As we can see, the entire file contents are printed in the output.

Question: In the above-mentioned code, why is the data received in the data
handler function ‘stringified’ before being printed? What would happen if the
data is printed as is?

Node.js buffers
Picking up where we left off, streams are a convenient way to manage I/O
data. One of the important life cycle events of stream object is ‘data’, which is
emitted when there is a ‘chunk’ of data available in the stream for the
program’s consumption. The word ‘chunk’ deserves special attention here. If
1MB of data is sent from an endpoint A to another endpoint B, what is the size
of ‘chunk’ when ‘data’ event occurs at B? Less than 1MB, exactly 1MB, or
some system-default, such as 1KB, 64 KB, or 512 KB?
The answer is: It depends on a number of factors:

The TCP implementation
The TCP configuration
The HTTP parser implementation
The HTTP parser configuration



The sender’s kernel buffer size
The recipient’s kernel buffer size
The speed of the involved network

Above all this, the stream API can take specific decisions as to when and with
how much data to emit a ‘data’ event, such as:

Wait for all the data to flow in over the network and then emit ‘data’
event
Wait for a predefined amount of data (chunk) to flow in, and emit ‘data’
event for that
Emit the event with whatever data came in in a single read from the
network

There could be more possibilities with variants of the above-mentioned. The
bottom line is that there are several considerations around what a meaningful
amount would be in a single chunk, for which the handler can be invoked.
From the consuming program’s standpoint, the length of a chunk in the ‘data’
callback is arbitrary for most practical purposes.
But wait! how can the data be chunked? If that happens, what does it imply for
the underlying record? Remember the example message we used in the
previous section? What if that message was broken into two chunks with the
chunk boundary at an arbitrary number of characters from start, neither ending
at a record boundary nor at a key or value boundary? The following figures
show an HTTP message split at an arbitrary point due to the aforementioned
considerations:

Figure 5.12: A chunked HTTP message part 1



Figure 5.13: A chunked HTTP message part 2

With this example, the receiving program will get the handler invoked twice –
once with the first part of the message, and once again with the second.
Evidently, the data cannot be reliably used by the program. This behavior is
well understood and justified in an event-driven world. As a solution, we need
to store the data flowing in until we can get a coherent unit of data so that we
can start working on it.
What is the type of such a split data? With streaming in place, the incoming
data usually has no type. Even if it had a definite shape and type at the source,
the incoming data token cannot be cast to a system-defined or user-defined
type as the data flows in the network as octet streams (byte streams) and is
truncated at arbitrary points in a chunk.
If the original data was a record of three key-value pairs with 47 bytes length
(forget the headers here), the incoming chunk at the receiving side in one
iteration could be full 47 bytes, 25 bytes, or even 1 byte! The only known
aspect of the data chunk is that it is octets.
How and where can we hold such data?
Node.js Buffer is a user-defined type to contain and process binary data of
arbitrary length. At the lowest level, a Buffer is an array of unsigned bytes or
unsigned 8-bit integers. This type definition makes it possible to hold any
arbitrary amount of data that flows between a network and a program.
Buffer API also provides a long set of primitives for data restructuring,
conversion, and transformation, including conversions to and from strings, a
common JavaScript type.
Buffers are an inevitable use case for stream-based data transport across I/O
endpoints.
There was a question in the previous section – Node.js streams: why is the data
received in the data handler function ‘stringified’ before it is printed? What



would happen if the data is printed as is? The answer is obvious by now. The
type of the data is Buffer not string, hence the ‘stringification’. If we print the
data as is, we will get a ‘stringified’ version of the buffer object, which is a few
bytes of the data in its binary form. Let’s see that. The following code shows
reading from the file as a stream, but printing the data as is:

1. const f = require('fs')
2. const r = f.createReadStream(__filename)
3. r.on('data', (d) => {
4.   console.log(d)
5. })

And the output will be as follows if we execute that:

Figure 5.14: Output with a sample Buffer program

Evidently, the data that comes in the handler is a buffer object, so the printed
matter is unreadable. On the other hand, the following code shows the same
scenario, but the data is converted with ‘toString()’ before printing:

1. const f = require('fs')
2. const r = f.createReadStream(__filename)
3. r.on('data', (d) => {
4.   console.log(d.toString())
5. })



And we have the right data printed, as in the following screenshot:

Figure 5.15: Output with the Buffer program

Why do we need to perform the stringification?

First, we used web server because of architectural considerations
Next, we used established protocols to transfer data
Then, we had to use stream to be efficient in network I/O
We devised Buffer, a new generic type that can hold arbitrary data

This is why we are casting the data from a generic type to the known type at
the point of its actual use.
The following are some common examples of Buffer API usages:

1. Create a Buffer object of some size and fill it with some data:

1. const b = Buffer.alloc(4, 'ABCD')
2. console.log(b)

The output of the preceding code is as follows:



Figure 5.16: Output of Buffer object

2. Create a Buffer object from a string:

1. const b = Buffer.from('node')
2. console.log(b)

The output is shown as follows:

Figure 5.17: Output of Buffer holding a string

3. Cast two bytes as a 16-bit integer from a Buffer object in Little Endian
mode:

1. const b = Buffer.from([0x0a, 0x0b])
2. console.log(b.readInt16LE(0))

And the output is shown as follows:



Figure 5.18: Output of LE integer read

What is the value 2826 here? It is the decimal equivalent of 0x0b0a. We
want to cast the bytes in Little Endian mode, so the higher-order bytes
will appear as the most significant ones, and vice-versa.

4. Cast two bytes as a 16-bit integer from a Buffer object in Big Endian
mode:

1. const b = Buffer.from([0x0a, 0x0b])
2. console.log(b.readInt16BE(0))

And this is the output:

Figure 5.19: Output of BE integer read

Similarly, what is the value 2571 here? It is the decimal equivalent of 0x0a0b.
As we are casting in Big Endian mode, the lower-order bytes will appear as the
most significant ones, and vice-versa.
In summary, Buffer provides a convenient way to offload stream data from an
I/O. The class provides a lot of convenient methods to create, cast, and



transform data to and from its raw representation.

Request and response objects
So far in this chapter, we have learned that network programming requires
special protocols, HTTP is a common network protocol, network data transport
is carried out in Node.js through streams, and that stream data itself is largely
held in Buffers.
Now, let’s revisit the famous networking abstractions at the server side: the
‘request’ and the ‘response’ objects. In an HTTP-based Node.js server
implementation, these objects are pre-populated and made available to a
connection handler function. As we have reiterated a couple of times in the
previous chapters, the ‘request’ object represents the client request, and the
‘response’ object represents the server’s response.
We asked a question in the HTTP section of this chapter: When the server
receives a request, it is not in the form of a standard HTTP message. Instead,
the individual values are decomposed and constructed into s ‘request’ object.
Who performs this activity?
An easy way to determine this is to trace the history of the program sequence
that led to the calling of request handler callback. For that, just insert
‘console.trace()’ in the callback and observe the call stack. The following
figure shows the call stack upon entry to the request handler callback:

Figure 5.20: The call-stack at request handler function

The HTTP message is first parsed by an HTTP parser. Upon validating the
sanctity of the message and when the parser believes it has enough
information, it populates the ‘request’ object with the relevant message parts
and invokes the request handler callback. When is this done? At the message
parsing phase. What is this action called? This action is called HTTP parsing.

Request



A request object is of ‘http.IncomingMessage’ type. It is a readable stream,
allowing it to manage flowing data while inhibiting writing into it. This is
created each time when there is a client request and is made available to the
client request handler function. Being a stream helps it exhibit flowing data.
This is convenient in cases where the request data cannot be made available to
the server atomically (for example, large data uploads). At the same time,
HTTP parsing would have been fully performed by the time it reaches the
handler, providing an efficient way for the programmer to start processing the
request.
For that matter, the object that the request-initiating entity (usually the client)
receives upon obtaining a response from the other endpoint is also of
`http.IncomingMessage’ type. This is not accidental. Although the nature of
these two entities might look fundamentally different at first glance, closer
inspection reveals similarity in these aspects:

Both represent a message arrival (one from the client, the other from the
server)
Both represent a message in transit (readable streams)
Both have similar life cycle events

The key difference is that the former is called a request in its spirit and
purpose, while the latter is actually a response to a previous request from the
remote. Do not confuse this with the ‘ServerResponse’ object, which we will
discuss later. The request object contains the underlying socket, which is a
handle to the remote endpoint.
The following figure shows the data types of the three objects we mentioned
earlier:



Figure 5.21: Request and response objects and their placement

The following code snippet shows the common usage of the request object
with both the client and server in a single program so that we can see the type
of request object as well:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   console.log(`In server, q is a ${q.constructor.name}`)
4.   console.log(`client said: ${q.url}`)
5.   r.end('/bar')
6. }).listen(12000, () => {
7.   h.get('http://localhost:12000/foo', (m) => {
8.     console.log(`In client, m is a ${m.constructor.name}`)
9.     m.on('data', (d) => {

10.       console.log(`server said: ${d.toString()}`)
11.     })
12.     m.on('end', () => {
13.       s.close()
14.     })



15.   })
16. })

Here’s the output:

Figure 5.22: Output that shows the request object types

Response
A response object is of ‘http.ServerResponse’ type and is a stream. This is
created each time there is a client request and is made available to the client
request handler function, along with the request object. Being a stream helps it
manage the server’s response as flowing data. It is a ‘WritableStream’, so the
response can be written to it. It is a ‘ReadableStream’ too, so the server
program itself can read from the in-light (half-baked) response that has not
been sent to the client and flushed from the send queue. Key functions of this
object include writing the response header and body and controlling the data
flow through the stream interface. The response object also contains the
underlying socket, which is a handle to the remote endpoint. So, this object is
used if we want to control the configuration of the underlying network
transport pertinent to the server’s response.

Question: What is the use case for reading from the response stream by the
same program that wrote into it?

Here are a couple of programs that illustrate some aspects of the response
objects as well as showcase general usage. The following code shows the
usage of the response object to set a custom header:

1. const h = require('http')



2. const s = h.createServer((q, r) => {
3.   r.setHeader('hello', 'world')
4.   r.end(r.getHeader('hello'))
5. }).listen(12000, () => {
6.   h.get('http://localhost:12000', (m) => {
7.     m.on('data', (d) => {console.log(d.toString())})
8.     m.on('end', () => {s.close()})
9.   })

10. })

The response object is a writable stream, so we can write valid HTTP
messages into it. And it is a readable stream too, so we can also read back from
it. In line #4, we are reading the header that we set earlier and sending it as a
message body as well, just to show that we can read back from the response.
The output is shown in the following screenshot:

Figure 5.23: Output of code with the response object

The following code shows the use case with the ‘writeHead’ API, which also
serves a similar purpose as that of the ‘setHeader’ API but inhibits reading
back data, in the absence of a ‘setHeader’ usage:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.writeHead(200, {'hello': 'world'})
4.   r.end(r.getHeader('hello'))
5. }).listen(12000, () => {



6.   h.get('http://localhost:12000', (m) => {
7.     m.on('data', (d) => {console.log(d.toString())})
8.     m.on('end', () => {s.close()})
9.   })

10. })

The intent is similar to the ‘setHeader’ case, but the ‘getHeader’ API was
unable to get any data from the response object, as the headers were
immediately written to the network and flushed from the program’s memory!
This is illustrated as follows:

Figure 5.24: Output with the use of ‘writeHead’

The function ‘setHeader’ can be used when a large number of headers are
being set in an iterative manner with potential for later retrieval and
modification, while ‘writeHead’ is used to respond to the client as and when
we have data, with no caching of intermediary headers in the response object.
Obviously, there is no later modification possible with this approach.

Request and response life cycle
As mentioned earlier, both request and response objects are stream objects, so
the life cycle of these objects is essentially that of a data stream. This helps the
program install handlers for interested life cycle events and take appropriate
action. The most common life cycle events are as follows:

Request life cycle



There are two discrete ways this object is used: i) as an abstraction that holds
the client request in the server upon a client request, and ii) as an abstraction
that holds the server response in the client upon the server’s reply. Apart from
the usual life cycle events of a ‘ReadableStream’ that apply as is, these
additional events are defined:

‘aborted’
This event is emitted when the underlying client request is aborted. Any
subsequent processing of the request is deemed invalid. Programs can install a
handler for this event to catch such situations and gracefully shutdown any
subsequent actions on this request.
The following code illustrates this event being captured at the
‘IncomingMessage’ objects. The request is explicitly aborted here, but this
could come as any network glitch in the real world:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   q.on('aborted', () => {
4.     console.log('client request aborted')
5.   })
6.   r.write('ok')
7. }).listen(12000, () => {
8.   const r = h.get('http://localhost:12000', (m) => {
9.     m.on('data', (d) => {

10.       console.log(d.toString())
11.     })
12.     m.on('end', () => {})
13.     m.on('aborted', () => {
14.       console.log('server response aborted')
15.       s.close()
16.     })
17.     r.abort()
18.   })
19. })



The following output shows that when the client request is aborted, the same is
reflected in the server as an event, which, in turn, percolates to the client who
requested it in the form of an ‘aborted’ event on the server’s response:

Figure 5.25: Output of code with ‘aborted’

‘close’
This event is emitted when the underlying client connection is closed. Again,
programs can use this event to perform post-close activities if any, on the
connection.
Apart from these, the most common events usually performed on a request
object (inherited from ‘ReadableStream’) are:

‘data’
This event is emitted when the underlying stream has data available. Install a
handler to consume it. On the server side, this handler is usually required only
when a client sends a large amount of data (upload use case using HTTP POST
verb), as other types of requests carry small amount of data and are readily
available in the respective fields of the request object. On the client side,
usually a data handler is installed to ‘catch’ the server’s response.
There are two ways of using the ‘data’ handler: i) those that are capable of
operating on arbitrary amount of data, ii) those that buffer the data until it
receives everything.
The following code shows a handler that works on an arbitrary amount of data,
fully aligning to the principles of stream:

1. m.on('data', (d) => {



2.   // do work on d
3.   // (arbitrary type,
4.   // arbitrary length)
5. })

The following code shows a handler that buffers the stream data until the data
flow has ended, before it starts working on it:

1. const data = ''
2. 
3. m.on('data', (d) => {
4.   data += d
5. )}
6. 
7. m.on('end', () => {
8.   // work on data
9.   // (complete data)

10. })

Both the cases are common, and there is no merit to one over the other.
Depending on the specific scenario, you may choose whichever is convenient.

‘end’
This event is emitted when the request’s underlying stream has no more data to
read, and the writing end of the stream has acknowledged the completion of
writing. This is a powerful construct in the case of streams – as the data is
flowing, the programs should know when the data reception is complete,
precisely, and consistently.
Whether on the client or server side, programs usually start processing the
request data when this event occurs, as it marks the complete availability of
data.

1. stream.on('end', () => {
2.   // all the data has arrived
3.   // process the data gathered so far
4. })



Response life cycle
As the response is a full duplex stream object, it has a large set of events
associated with both writable and readable streams. The ones specific to the
response objects are as follows:

‘close’
This event is emitted when the response is completed or if and when the
underlying connection breaks in between. Programs can install a handler for
this event to catch such situations and gracefully shutdown any subsequent
actions on this response.

‘finish’
This event is emitted when the response is dispatched from the server process.
While this does not guarantee that the response has reached or will be reaching
the client (due to various factors like network breakage), it is an indication that
all the data pertinent to the server’s response has been submitted to the server
system’s operating system, which, ultimately, is responsible for transporting
the data. The following code illustrates an example usage of the ‘finish’ event:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.on('finish', () => {
4.     console.log('response finished')
5.   })
6.   r.end('hello')
7. }).listen(12000, () => {
8.   h.get('http://localhost:12000', (m) => {
9.     m.on('data', (d) => {})

10.     m.on('end', () => {s.close()})
11.   })
12. })

This event is emitted after the call to ‘end’. It may be an exercise to see which
event occurs first - the ‘finish’ event in the server, or the message arrival in the
client.



Figure 5.26: Output of code with the ‘finish’ event

Server configuration
So far, we have examined request and response objects, their specific roles in
the server, and their life cycle events. We also know that these objects
implement the ‘HTTP’ protocol, which also leverages TCP/IP underneath, and
that all data transport is managed as streams. Now, let’s look at the server
object itself, which abstracts a web server and manages the client
communication through a system-defined abstraction called socket.
The server object is created by a call to ‘createServer’ of the ‘http’ module.
This object is inherited from a TCP server, aligning to what we learned earlier
—HTTP communication uses TCP communication underneath. The following
figure shows a live dump of the relevant fields of a server object:



Figure 5.27: A sample server object dump

The server object is used to control certain server characteristics that affect all
the connections that the server handles. This includes parameters pertinent to
data flow, connection inactivity, and maximum concurrent connections. These
can be modified at any point in time – at the time of creating the server, after
the creation, or even after handling some connections.

‘maxHeadersCount’
This parameter defines the maximum number of incoming headers per request.
0 means no limit is imposed.
In the following code, the server starts with `maxHeadersCount` configurable
(user passes the actual value in the command line) and the client adds three
headers to its request:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   console.log(q.headers)
4.   r.end('hello')



5. })
6. s.maxHeadersCount = +process.argv[2]
7. s.listen(12000, () => {
8.   h.get('http://localhost:12000',
9.     {headers: {a: 'b', c: 'd', e: 'f'}}, (m) => {

10.     m.on('data', (d) => {console.log(d.toString())})
11.     m.on('end', ()  => {s.close()})
12.   })
13. })

As we can see in the following screenshot of the output, only the number of
headers specified at the server configuration is allowed in any request:

Figure 5.28: Output with the header configuration code

‘timeout’
This parameter defines the amount of inactivity for the server sockets (that are
created after new client connections) before the connection times out. It
enforces the server to prevent slow backends from bloating the server with



resources. In the following code, the server receives a request from the client
but responds only after 10 milliseconds. However, the server has setup an
inactivity timeout of 1 millisecond, which is much lower than the current
request’s inactivity:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   setTimeout(() => {
4.    r.end('hello')
5.   }, 10)
6. })
7. s.timeout = 1
8. s.listen(12000, () => {
9.   const r = h.get('http://localhost:12000', (m) => {

10.     m.on('data', (d) => {console.log(d.toString())})
11.     m.on('end', ()  => {s.close()})
12.   })
13.   r.on('error', (e) => {
14.     console.log(e)
15.     s.close()
16.   })
17. })

As a result, the underlying connection gets reset, and the request does not
complete, as shown in the exception here:



Figure 5.29: Output with the code that changes ‘timeout’

Server’s life cycle events
A Node.js HTTP server is also a TCP server instance. It is also an
‘EventEmitter’ instance to be able to manifest event-driven behavior. The
server object defines a set of events that cover its life cycle. Remember that the
life cycle of a connection and a server are subtly different. The former
represents a specific connection with a client, while the latter represents the
whole server itself, which has a wider life span. Some important life cycle
events are listed here:

‘listening’
This event is emitted when the server starts listening and is ready to accept
connections. It is a onetime event in the server’s life.
The following examples illustrate the importance of this event:
In the first example, the server listens at port 12000, and then we start the
client that connects to the server and makes a request:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3. r.end('hello')
4. })
5. s.listen(12000)
6. const r = h.get('http://localhost:12000', (m) => {
7.   m.on('data', (d) => {console.log(d.toString())})
8.   m.on('end', ()  => {s.close()})
9. })

And what happens? Do you see anything evidently wrong here?



Figure 5.30: Output with improper listen call

The ‘connection refused’ message highly resembles a scenario wherein the
server is not listening at that port. And the actual reason is the same! We are
calling an asynchronous API ‘listen’ but not waiting for the actual ‘listen’ to
complete before we start our client!
So, in our second example, we start the client only in our handler function of
the ‘listening’ event. We will invoke the listen API only after setting up the
handler:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3. r.end('hello')
4. })
5. s.on('listening', () => {
6.   const r = h.get('http://localhost:12000', (m) => {
7.     m.on('data', (d) => {console.log(d.toString())})
8.     m.on('end', ()  => {s.close()})
9.   })

10. })
11. s.listen(12000)



And this time it works perfectly (output not shown as we have seen this pattern
several times before). But as a matter of practice, the async call to listen itself
gives us a completion handler, so we can use that short-cut form, as shown
here:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3. r.end('hello')
4. })
5. s.listen(12000, () => {
6.   const r = h.get('http://localhost:12000', (m) => {
7.     m.on('data', (d) => {console.log(d.toString())})
8.     m.on('end', ()  => {s.close()})
9.   })

10. })

‘connect’
This event is emitted when a new connection is made to this server. A natural
thought would be, when and where would we use this event? And what is the
relation between a ‘connect’ event and the client connection callback that is
triggered whenever there is a new connection?
The answer is: A ‘connect’ event is actually triggered on the server, which
eventually leads up to the invocation of the client request handler, duly
populating the request and response object. So, if you want to override the
default behavior of how client connections are handled, this is the event you
would be registering for handling.

‘close’
This event is emitted when the server shuts down. The following example
illustrates this:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.    r.end('hello')
4. })



5. s.listen(12000, () => {
6.   h.get('http://localhost:12000', (m) => {
7.     m.on('data', (d) => {console.log(d.toString())})
8.     m.on('end', ()  => {s.close()})
9.   })

10.   s.on('close', () => {
11.     console.log('server closes')
12.   })
13. })

And the output of the program is as shown here:

Figure 5.31: Output with server ‘close’ event

Note: `process.argv` is a convenient way to tap the user input from the
command line. It is an array. argv[0] is the ‘node’ executable itself, while
argv[1] is the name of the script file. The rest of the command line
arguments, if any, are made available in argv[2], argv[3], and so on. If the
argument is a number, we usually precede it with a ‘+’ sign to force its type,
lest the value can get operated with other operands in strange ways.

Other networking APIs
In this section, we will quickly go through other important networking APIs
that Node.js exposes. We will not be using them in this book, but this chapter
will not be complete if we don’t touch base on that as they are vital parts of
Node.js networking capabilities.



HTTPS
This is an extension to HTTP, and the ‘S’ stands for secure. It provides a
security layer on top of the base protocol by defining data securing semantics
at the transport layer. This will imply additional hand-shaking semantics at the
application level to enable secure communication. The ‘https’ module provides
the necessary APIs for supporting applications to communicate securely.

HTTP 2
This is an enhancement to the HTTP/1.1 protocol. The protocol is around 30
years old and has some inefficiencies with respect to the premise of
internetworking. HTTP 2 provides an optimized protocol specification as
compared to its previous counterpart. The two key enhancements are:

Performance optimization around key protocol design
Ability of the server to push data to the client

Node.js provides a comprehensive set of methods to working with this protocol
through the ‘http2’ module.

UDP
User Datagram Protocol (UDP) is another protocol at peer-level with TCP.
This is a connection-less protocol in that it does not require the endpoints to
have a prior handshake establishment for transferring data. The ‘dgram’
module provides APIs that fully support the UDP protocol.

Conclusion
We have taken a full tour of the Node.js networking APIs. We thoroughly
examined the need for protocols for inter-network communication among
programs. We took TCP/IP and HTTP as exemplary case studies and discussed
them at length. We understood why streams and buffers are so important in
Node.js programs that deal with heavy I/O. We then dissected the Node.js
server abstractions—‘request’ and ‘response’—that gave us a good insight into
server middleware concepts. We also examined the configurations that affect
the server’s behavior as well as the server’s life cycle control points and server
events. This enabled us to write common server programs that are functionally
correct and cover a basic set of communication.



In the next chapter, we will start talking about the building blocks of a website
that our server program aims to develop. We will cover static and dynamic
content, routes and endpoints, and request types. We will also cover advanced
topics like cookies, sessions, and request forwarding.
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CHAPTER 6
Major Web Server Components

e have established and familiarized ourselves with the natural flow
of this book: a bottom-up approach, wherein the bottommost layer

is the workload characteristics, the implication of computer organization to
those characteristics, and the placement of Node.js architecture in it. The
topmost layer is the website application and its user interface. The chapters
in between deal with topics that constitute the middle layers, with an
increasing level of abstractions around business logic. In the previous
chapter, we got good an insights into Node.js APIs on network
programming. This chapter introduces the next layer—web server
middleware—components that a typical web server uses and reuses for its
most common use cases. These include static and dynamic content serving,
routes and endpoints, HTTP verbs, request forwarding, cookies and
sessions, and so on. Not every web server will need these primitives, but the
concepts are generic in nature, so they constitute a reasonable, coherent set
for learning together.
The following diagram depicts the progressive buildup of the web server
with incremental capabilities added:



Figure 6.1: Incremental buildup of server capabilities

Note: Here’s a simple example to help is understand the importance of a
network protocol. At the lowest level, when two-byte data (B1, B2)
reaches an endpoint, the question as to how to combine the bytes to
reconstruct the original word—B1B2 or B2B1—is defined by a concept
called endian-ness. Two types of endian-ness are prevalent: big endian and
little endian.

Tip: How do we see an HTTP message header? A simple technique is to
write and run a TCP server that just prints the incoming request, accessing
the server through a browser client as if it is an HTTP-based server. The
client will fail, but that is fine; the message we obtained in the TCP server
will be the complete HTTP message that the browser has sent.

There exist specialized and reusable ‘npm’ modules or frameworks for all
these primitives, but we will not refer to any of those. Instead, we will
inspect the concept in great detail with the pertinent use case, definition,
and implementation considerations - to better align with the objective of
this book of developing web application with only Node.js CLI as the single
tool. We also want readers to be able to re-architecture these components to
fit their use cases and optimize their specific workload scenarios. The
detailed study of these concepts is essential for achieving such insights and
abilities.

Structure
In this chapter, we will cover the following topics:

A static file server
HTTP methods (verbs)
Routes and endpoints
Cookies
Sessions
Request forwarding
Multipart form-data
Body parser



Cross-Origin Request Sharing (CORS)
HTTP response codes
A dynamic web server
Server security

Objective
After studying this chapter, you will be able to understand the common
middleware abstractions in a web server. This will include the concepts of
static and dynamic content serving that define the nature of the server. You
will also learn about routes and end points that help the client and server
categorize request types. Further, the chapter includes illustrations of
important topics like HTTP verbs (methods), and you will learn about the
most popular methods (GET and POST) in great detail. Then, we will look
at how to forward a client request to another server using cookies and
sessions for managing client sessions. You will also understand common
security issues and ways to address those. For all these components, we also
will lay out the most common production issues and problem determination
steps.

Introduction
To better present the server middleware theme, we start with a scratch web
server with no capability and zero reusability and ask a series of connected
questions to ourselves. The answers to these questions will help us progress
in this chapter, and our server builds up its efficiency and reusability along
the way. For each topic, we illustrate the common use case, provide the
definition of the component, and spend some time discussing the design
considerations around the component’s implementation. That will help us
better scope the component, understand various hidden features in the Web,
and identify the scope of enhancements, extensions, and customizations.
To start with, how do we serve simple web content to our clients?

A static file server
We learned about a time fetching server in Chapter 3, Introduction to Web
Server. That was one of the most trivial use cases for a web server. Another



minor use of a web server is a file server. A static file serving server can be
used for describing a web server’s architecture. Let’s examine its purpose,
meaning, and implementation.

Use case
A file server is a server system that is centrally located in a network and
serves different types of file resources to its clients. The file serving can be
qualified with additional attributes like:

i. with or without authentication (needing a registered user profile to
access the resources)

ii. with or without navigation (the ability to view the file listings and the
directory structure in the remote server)

iii. with or without type inference etc. (ability for the client to detect the
type of the incoming file and assign appropriate extensions to it.)

Definition
A static file server is a server that serves static files to its clients. The files
are neither fetched from another server nor generated on the fly; they reside
in the server’s file system. The files are usually HTML, CSS, JavaScript, or
image files, but there are no restrictions on the file types. These files either
directly contribute to the pages that constitute the website or are consumed
by the client for different purposes.
A simple static file server architecture diagram is as follows:



Figure 6.2: Static file serving components

Implementation
We will start with a trivial implementation: How to serve a file? Assuming
that the file is stored in a single folder/directory in server’s file system, all
what we need is a way to receive the identifier of the file–mostly the
filename. So, let the client request the name of the file, and the server will
respond with the file content. How can we implement such a trivial file
server?

Set up a trivial server
Read the name of the file in the request handler
Read the file content
Respond with the file content

The following code shows a trivial file server:

1. const h = require('http')
2. const f = require('fs')
3. const s = h.createServer((q, r) => {
4.   const file = q.url.substring(1)
5.   const data = f.readFileSync(file)



6.   r.end(data.toString())
7. })
8. s.listen(12000)

The code is trivial, except line 4. What are we doing there? ‘q.url’ provides
the path/route/‘url’ that the user requests. This is usually the portion of data
that is appended with the base ‘url’ (protocol string followed by the
hostname followed by the port number if non-default is used). We use the
‘substring’ call to trim off the first character from the ‘url’, which is a ‘/’.
When accessed through the browser, we see the following:

Figure 6.3: Accessing a file serving server with predefined file location

The first limitation here is that all the static content has to be at a single
location. What if the files are organized in a typical tree structure? We have
to search the file from the vortex/root of the tree structure, or we should
receive the complete path of the file in question.
The first approach has a limitation in that it requires the filenames to be
unique, or else there will be multiple files in the search result, causing
confusion as to which one to send. So, an easy approach is to force the



requester to provide the full path so that the server code can be restructured,
as shown in the following code:

1. const h = require('http')
2. const f = require('fs')
3. const s = h.createServer((q, r) => {
4.   const data = f.readFileSync(q.url)
5.   r.end(data.toString())
6. })
7. s.listen(12000)

Here’s how we can consume it in the browser; pay special attention to the
URL:

Figure 6.4: Accessing file serving server with file location supplied by user

A new limitation arises with this approach—the end user should know the
complete path of each file! This can be alleviated by displaying the server’s
file structure in the browser and letting the client navigate through it rather
than typing individual filenames.



A second limitation with this approach is the file type. You are sending the
file content but not the type information, so how does the client know what
type of file is coming? This can be addressed by setting up MIME type in
the response. The following server program sets the MIME type of the file
for the client’s benefit:

1. const h = require('http')
2. const f = require('fs')
3. const s = h.createServer((q, r) => {
4.   const file = q.url.substring(1)
5.   const data = f.readFileSync(file)
6.   r.setHeader("Content-Type", 'application/zip')
7.   r.end(data)
8. })
9. s.listen(12000)

As can be seen, the following client downloads the compressed file as
opposed to rendering its binary content on to its client area. This is the
result of specifying the MIME type:



Figure 6.5: Accessing a file serving server that is MIME aware

Note: The Multipurpose Internet Mail Extensions (MIME) type is a
standard that specifies the type and format of web content. Browsers use
this information to decide what to do with the server data: render in its
client area, download the file, or play as multimedia, and so on.

A third limitation with this approach is the visibility. We are allowing the
client to specify an arbitrary location in the server and the server is bound to
read the content as directed by the client and send it back, so we are
essentially exposing the server’s system details, which is a security risk.
As a solution, we can confine all requests to a specific ‘data’ location
within the server system. Also, we need to prohibit the request filename
referencing anything outside of this ‘data’ location, usually with the help of
relative path referencing, such as ‘.’ and ‘../’.
This brings the concept of ‘content root’—a directory or folder that is the
vortex of a tree structure scoped for the file serving needs of client requests.
All file references should treat this content root as the virtual root of the file



system. In other words, a ‘/’ in the client request should be mapped to the
‘content root’ in the server.
The following program illustrates the usage of the content root:

1. const h = require('http')
2. const f = require('fs')
3. const cr = '/var/www/website1/public'
4. const s = h.createServer((q, r) => {
5.   const file = cr + q.url
6.   const data = f.readFileSync(file)
7.   r.end(data)
8. })
9. s.listen(12000)

By doing this, we are only exposing a specific location within the server to
the client requests, and the rest of the server file system is immune to client
access.
And the following screenshot shows its usage by the client browser:



Figure 6.6: Accessing a file serving server with content root

Question : We are allowing the client to specify an arbitrary location in
the server, and the server is bound to read the content as directed by the
client and send it back, so we are essentially exposing the server’s system
details. This is a security risk. Why?

Other optional enhancements that we can implement on our static file server
are:

Additional file attributes can be sent (think of creation time and such)
Define an index file for file listing (so that the client doesn’t need to
remember filenames)
A way to download multiple files (for example, an entire folder as
opposed to a single file)
A way to download the whole structure as a ZIP file
A way to cache the file content in memory to serve frequent files
faster



Assignment: Extend the previous example program and accommodate the
above-mentioned enhancements, one at a time. This helps you identify
and use several new Node.js APIs and also improves your Node.js
backend skills.

That wraps up our answer to the question of how we serve simple web
content to our clients. Next, how do we make our server a little more
versatile than serving static content? Can we ‘manage’ the files and other
resources in the server as opposed to just consuming it? Can our sever be a
bit more polymorphic? That is, can we allow the client to send different
types of requests, intercept and interpret those request types, and serve
different content based on the request?

HTTP verbs (request methods)
As our web server builds a little more capability than a static file server, the
next natural thing to do is to diversify its capability. For example, can it
serve two or more different types of content (though still static) for two or
more different types of requests? HTTP verbs can help meet this
requirement.

Use case
A typical web server implements several interfaces to abstract plurality of
capabilities. A simple example is a web server that allows a user to
download published images and also allows them to upload and publish
newer images. This is handled by the same web server as opposed to two
different servers and implemented using two different interfaces.
Accordingly, the client should be able to specialize their requests to qualify
further on the specific aspect of what their requests are; for example:

i. here is a request to “get” a file named foo.png
ii. I want to “upload” a file named “bar.png”.

Definition
Request methods are the highest level of specialization of a request. These
methods allow clients to indicate the purpose of the request. They allow



servers to segregate the implementation based on what purpose each
interface abstracts. The verbs are designed to represent discrete, predefined
actions on resources that the server abstracts, though in practice, the server
is free to perform any action it deems fit.
The most used verbs are GET and POST. The GET request represents
requesting the specified resource in the server, while the POST request
represents requesting the creation (or updating) of a resource in the server
with the data supplied in the request body.
Here’s a simple figure showing an exemplary request with HTTP verbs:

Figure 6.7: A client-server interaction with HTTP verbs

Implementation
On the client side, the verbs are attached to the request header, and the rest
of the data is decided based on the verb. On the server side, the verbs
appear in the request body. So, parsing the verb first would be a good idea
to understand the request properly. Furthermore, the server can perform a
functional segregation based on the request type. The most trivial
segregation can be a switch case with the variable that holds the verb as the
switch variable and its possible values as the case headers.
The following code illustrates this model:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   switch(q.method) {
4.     case 'GET':



5.       r.end('GET invoked')
6.       break;
7.     case 'POST':
8.       r.end('POST invoked')
9.       break;

10.     default:
11.       r.end('default response!')
12.       break;
13.   }
14. })
15. s.listen(12000)

With that in place, clients can send their intent by specializing the request.
For example, a typical ‘GET’ request will look like this:

1. const h = require('http')
2. const r = h.get('http://localhost:12000', (m) => {
3.   m.on('data', (d) => {
4.     console.log(d.toString())
5.   })
6. })

Similarly, the following is a client that makes a POST request:

1. const h = require('http')
2. 
3. const r = h.request({port: 12000, method: 'POST'}, (m) => {
4.   m.on('data', (d) => {
5.     console.log(d.toString())
6.   })
7. })
8. r.end()



A convenient optimization that can be performed at the server is to define
handlers with well-known verbs as the name and attach those handlers to
the server. This way, the segregator can easily invoke the appropriate
handler based on the request method type.
The following code has specialized handlers based on request types:

1. const h = require('http')
2. 
3. function onGet(q, r)  {
4.   r.end('GET invoked')
5. }
6. function onPost(q, r)  {
7.   r.end('POST invoked')
8. }
9. 

10. const s = h.createServer((q, r) => {
11.   if (q.method == 'GET')
12.     onGet(q, r)
13.   else if (q.method == 'POST')
14.     onPost(q, r)
15.   else
16.     r.end('default response!')
17. })
18. s.listen(12000)

The HTTP verbs and their well-known meanings are as follows:

Verb Meaning

GET Get a resource from the server (to the client)

POST Set a resource in the server with the client-supplied one

PUT Replace a resource in the server with the client-supplied one

DELETE Delete a resource in the server



HEAD Get a status from the server (to the client)

CONNECT Establish a tunnel between the client and server

TRACE Perform a message loop back test with the server

OPTIONS List the communication options exposed by the server

Table 6.1: List of HTTP verbs

“GET” and “POST” are the most common verbs among these.

Implement row-level security that restricts the Salespersons to view
the data only for their assigned reg Question: Getting back to our static
file serving server, what would be a reasonable use case for the above-
mentioned HTTP verbs? That is, what kind of verbs can be used to
enhance/extend the file serving server? ions.

If your web server is designed to manage many such request types, one of
the important design considerations is to ‘hide’ the request parsing logic in
the layer beneath and then implement handlers that are specialized to
perform specific request types. The bottom layer focusses on intercepting
the allowed request types, dispatching appropriate handlers, handling
exceptions in case of inappropriate request types, and so on.

Note: Given that the modern workload is moving away from monolith and
embracing microservice architecture, bear in mind that too many request
types being handled in a single server can make it grow toward a
monolith, losing the characteristic traits of microservices.

With that, we call our server reasonably polymorphic. But is that all? How
do we represent different resources in our request? That is, how do we
allow the client to send a request while also being able to provide path
specification for different resources as well as small tokens of data that
enriches the request?

Route
Building further on the versatility of our server based on HTTP verbs,
routes overload the requests with different parameters to make it (the



server) reusable even further. This makes the server truly polymorphic, as it
can now handle a wide variety of clients.

Use case
As we mentioned in the HTTP verb case, a server implements several
interfaces to abstract the plurality of capabilities. Furthermore, the server
should allow means to specify the plurality of resources that it has. A
simple example is a web server that allows a user to download published
images by specifying the exact path of the filename in the request. Further,
a client should be able to provide a relative path of the filename. It should
also specify parameterized path specifiers. The server should follow the
way in which the path was specified and translate the request accordingly.

Definition
Routes are the next level of specialization of a request, after the request
method. It allows clients to specify the resource required in the request. The
route is part of a client request semantics, specifying a target resource. A
URI reference represents the target resource, but the reference can be
overloaded with additional qualifiers through a mutually understood
protocol, for covering a general class of resource referencing requirements.
The following diagram illustrates a client-server interaction with the routes
highlighted:



Figure 6.8: A client-server interaction that uses routes

Implementation
Just like the request method, on the client side, the routing path is attached
to the request header and is largely referred to as path. On the server side,
the route appears in the request body. Again, as in the case of verbs, parsing
the route first would be a good idea to understand the request in its fullest.
If there are only a finite number of routes available for the specific
application, the server can perform a functional segregation based on the
route. The most trivial segregation can be a switch case with the variable
that holds the route as the switch variable and its possible values as the case
headers.
The following code shows a simple route handling:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   switch(q.url) {
4.     case '/foo':
5.       r.end('foo path invoked')
6.       break;
7.     case '/bar':



8.       r.end('bar path invoked')
9.       break;

10.     default:
11.       r.end('default response!')
12.       break;
13.   }
14. })
15. s.listen(12000)

And a client request can be specialized by adding path specifiers to the base
URL, as shown here. The following client request contains a ‘/foo’ route:

1. const h = require('http')
2. const r = h.get('http://localhost:12000/foo', (m) => {
3.   m.on('data', (d) => {
4.     console.log(d.toString())
5.   })
6. })

And the next one contains a ‘/bar’ route:

1. const h = require('http')
2. const r = h.get('http://localhost:12000/bar', (m) => {
3.   m.on('data', (d) => {
4.     console.log(d.toString())
5.   })
6. })

On the other hand, having a generic handler function that handles the routes
dynamically is more suitable if infinite routes are possible (such as
numerous static filenames).
A clean implementation will look like this:

1. const h = require('http')
2. function onFoo(q, r)  {



3.   r.end('foo invoked')
4. }
5. function onBar(q, r)  {
6.   r.end('bar invoked')
7. }
8. const s = h.createServer((q, r) => {
9.   if (q.url == '/foo')

10.     onFoo(q, r)
11.   else if (q.url == '/bar')
12.     onBar(q, r)
13.   else
14.     r.end('default response!')
15. })
16. s.listen(12000)

Note: A word on the name selection of routes: While there is no standard
for what would make up a great route name, and there can be unique
names, having meaningful names that truly reflect what the underlying
handler for the route is performing would be a best practice for both code
readability and maintainability.

Endpoints
Endpoints are the combination of verbs and routes. Together, they provide a
way to represent a unique interface of the server for the client to
communicate to. In other words, an endpoint represents a combination of a
request method and a route that constitute a meaningful request from the
client’s perspective.
A simple server that prints back the endpoint that the client accessed is as
follows:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end(`${q.method} http://localhost:12000${q.url}`)



4. })
5. s.listen(12000)

And a matching client code is as follows:

1. const h = require('http')
2. 
3. const r = h.request({path: '/foo',
4.                      port: 12000,
5.                      method: 'POST'}, (m) => {
6.   m.on('data', (d) => {
7.     console.log(d.toString())
8.   })
9. })

10. r.end()

Note: The term endpoint is overloaded, just like the word virtual machine.
In many situations, an endpoint is defined as a remote computing device
that can communicate with external systems through a network. Here, the
endpoint simply means the request type, host, port and the URL combined
together according to the protocol specification.

Now we have a server capable of consistently serving a client in multiple
ways based on the nature and intent of the request. This means a client can
use the server features in different ways. This implies that a client, based on
the website’s implemented function, can make multiple requests to the same
server at different points in time. Currently, the interactions are deemed
idempotent (making multiple client requests, leading the server to take the
same action, and producing the same result). On the other hand, the server
is not capable of keeping track of clients and client requests and making
correlations. How does the server ‘remember’ a previous request from a
client and act/optimize its functionality accordingly?

Cookie



Should the server be indifferent to clients that connect for the first time and
clients that connected with it one or more times in the past? Is there any
benefit of the server ‘remembering’ the previous visits? For example, are
any code or/and data optimizations possible? Cookie addresses this aspect
to make the server more intelligent.

Use case
A web server needs to know if and when a client revisits the website it
hosts. Further, it would also want to ‘remember’ some contextual
information between the visits so that the current request can be handled
better with the information on the previous one.

Definition
Cookie is data that the server defines for representing the context of a client
visit. It is a size-limited key-value pair. The data is first composed by the
server and sent to the client as part of the response header. The client
retrieves the cookie from its response header and sends it in its subsequent
requests in the request header for a matching endpoint. When the server
receives the request, the cookie that arrives in its header helps the server
recollect the context of this client’s previous request.
A simple data flow with cookie is demonstrated as follows:

Figure 6.9: A client-server interaction with cookies



Implementation
The most trivial implementation has a semantic that specifies how to define
a cookie at the server side and send it to the client, and how the client uses
it in subsequent requests to the server.
One notable specialty of the semantics is that the attributes of a cookie are
separated by semicolons, while multiple cookies are separated by commas.
There are two cookies in the preceding example represented in figure 6.9:

A cookie named foo with the value hello, an expiry date, and an
attribute.
A cookie named bar with the value world.

As we can see, Boolean attributes with value true does not need to specify
that as such.
The following is a piece of server-side code that sends a cookie in its
response to the client while retrieving it in subsequent requests from the
client to associate the requests:

1. const h = require('http');
2. 
3. const c = ['sessionkey=fd0ea63; \
4.             expires=Sun, 1-Jan-2100 12:00:00 GMT']
5. const s = h.createServer((q, r) => {
6.   console.log(q.headers['cookie'])
7.   r.setHeader('set-cookie', c)
8.   r.end('cookie sent')
9. })

10. s.listen(12000)

In the client, the cookie is available in the response header, under `set-
cookie` head:

1. const h = require('http')
2. const r = h.get('http://localhost:12000', (m) => {
3.   console.log(m.headers['set-cookie'])



4.   m.on('data', (d) => {
5.     console.log(d.toString())
6.   })
7. })

Again, in the client, the cookie value is printed as shown here:

Figure 6.10: A cookie received by a client

From the client side, this is obtained in the response. It adds the cookies in
the header for future use. However, note that the cookies are separated by a
semicolon here.
Also, the additional cookie attributes are not sent back to the server. Why?
Those are for the client to consume.
If you are accessing the server through the browser, hit the same address
twice and check the server log; you will see the cookie header sent back by
the client for the second request.

Question: We have learned that the cookie tokens are returned by the
client for the server to consume and associate the client requests. What if a
client does not honor this rule? That is, it receives the cookie data from the
server but makes requests to the server as usual, without returning the
cookie?

Cookie attributes
Here are some most commonly used cookie attributes:
Secure: Instructs the client to use this cookie only with secure connections,
as it may contain sensitive or semi-sensitive information.
Domain: All the possible domain names for which this cookie is applicable.
Path: The path in the subsequent requests for which this cookie is relevant.

Session



This is the server-side counterpart of the contextual ‘memory’ that we
discussed in the previous section. A cookie is stored on the client side, and
the corresponding contextual data is stored in the server, with the ID as the
matching key between both. With both session and the cookie, the server
builds the complete information required to remember a client’s visit
history.

Use case
Similar to the use case for cookie, a web server needs to know if and when
a client revisits the website it hosts, within the scope of a single iteration,
and as part of browsing session. This knowledge will help the server
‘remember’ some contextual information between the requests so that the
current request can be handled better with the information on the previous
one. The most common example is that of a banking portal, where the first
request leads to a user login, and the session created at the login time is
used to carry over the context in subsequent requests from the same client.
The use case of session is the same as that of a cookie, except that the
server does not want to fully ‘trust’ the client for its request management.

Definition
Session is temporary data that is used to manage the conversational state
between a server and a client. Session is relevant for websites that contain
multiple requests in a transaction. A session is a state information obtained
in the first request and used to associate subsequent requests under one
logical unit. The life cycle operations of the session are managed by the
server.
The following figure illustrates a session data flow with a session store:



Figure 6.11: A client-server interaction that uses session

Implementation
Where do we store the session? Let’s say at the server side. But then how
do we recognize the first and subsequent requests coming from a client and
associate them together? So, we need the session data to be stored in the
client, just like in the case of cookies. But then there’s an issue. A session
stored in the client is subject to manipulation; for example, a malicious
client can modify the session object, point it to some other user to hijack
their sessions, or reuse previously used sessions in the computer.
To solve these issues, the session is created by the server on the first visit
and stored in a data store at the server’s side, and a key to the session data is
sent to the client. The client sends the session key in all its subsequent
requests for the server to make the association. The server obtains the actual
session object with the help of the key that the client sent.
Server code that implements session is illustrated here:

1. const h = require('http')
2. const cr = require('crypto')
3. const m = new Map()
4. const s = h.createServer((q, r) => {
5.   const sd = q.headers['cookie']
6.   if (sd === undefined) {
7.     const hash = cr.createHash('md4')
8.     const sk = hash.digest('hex').substring(0, 10)



9.     const sv = 'my session data'
10.     m.set(sk, sv)
11.     r.setHeader('set-cookie', [`${sk}=${sv}`])
12.     r.end('cookie sent')
13.   } else {
14.     const k = sd.split('=')[0]
15.     r.end(`session: ${k}, ${m.get(k)}`)
16.   }
17. })
18. s.listen(12000)

What happens if the server crashes after the client logs in but before its
subsequent requests? The session object created and stored in the server is
flushed, and the new server (on the same host or a different node in the case
of a clustered deployment) does not have access to the previous session
information. In this case, the new server initiates a login again and starts a
new session. This poses a weak user experience.
To remedy this, the session objects are typically stored in a central data
store, and they are accessible to multiple server processes serving the same
application. This central store is called session store.
In the following code, the store is centrally located, as opposed to the
program:

1. const h = require('http')
2. const cr = require('crypto')
3. const s = h.createServer((q, r) => {
4.   const sd = q.headers['cookie']
5.   if (sd === undefined) {
6.     const hash = cr.createHash('md4')
7.     const sk = hash.digest('hex').substring(0, 10)
8.     const sv = 'my session data'
9.     // store this session to a central store

10.     r.setHeader('set-cookie', [`${sk}=${sv}`])



11.     r.end('cookie sent')
12.   } else {
13.     const k = sd.split('=')[0]
14.     // load the session from the central store
15.     r.end(`session: ${session}`)
16.   }
17. })
18. s.listen(12000)

What is the life span of a session object? Let’s say it is infinite. What are
the implications for a session with no set life span?

A client that had a session a year ago can still come back and
continue.
A user using a public computer for browsing a sensitive website will
leave the session open for subsequent users to enter.

Clearly, we need an expiry date for sessions. The following code illustrates
this:

1. const h = require('http')
2. const cr = require('crypto')
3. const m = new Map()
4. const s = h.createServer((q, r) => {
5.   const sd = q.headers['cookie']
6.   if (sd === undefined) {
7.     const hash = cr.createHash('md4')
8.     const sk = hash.digest('hex').substring(0, 10)
9.     const sv = 'my session data'

10.     m.set(sk, sv)
11.     r.setHeader('set-cookie',
12.   [`${sk}=${sv}; expires=${new Date(Date.now() + 1000)}`])
13.     r.end('cookie sent')
14.   } else {



15.     const k = sd.split('=')[0]
16.     r.end(`session: ${k}, ${m.get(k)}`)
17.   }
18. })
19. s.listen(12000)

Question: In the previous examples, we used a random hash to create
session keys. What if we use a simpler, ever-increasing number with a
zero-based index? Which problem does the random hashing technique
solve? What happens if the values are more predictable?

We have progressed quite a bit from a simple static file server. We can now
handle different requests by type and path with full duplex (bi-directional)
data flow as well as the ability to manage transactions (multiple requests
that are coherent). Now, let’s look at some of the maintenance aspects. An
endpoint that was established earlier and was in use was
cached/bookmarked by the user. But the server was refactored as part of the
maintenance cycle, and that endpoint is not available in the server anymore.
How do we handle such scenarios?

Request forwarding
When a website application is massively refactored, it is possible that some
of the links to the existing resources change. Let’s understand how request
forwarding helps users work with the old links even after they have become
obsolete.

Use case
Based on the usage of the website in the field, users might have
cached/bookmarked the old link. With the changes in place, an uninformed
user using the old link will trigger an HTTP 404 (page not found) error, and
the user will not have information about the modified link. It would be great
if one of the endpoints still accepts the old request (method and route) and
transparently forwards it to the new resource.



Definition
Request forwarding is a technique by which a physically separated resource
is allowed to be referenced by the client, and the real resource reference is
supplied by the server upon receiving the old reference. The client
subsequently re-requests with the new resource reference. The references
that are subject to redirection can be that of a form, a page, or the entire
website. This technique allows temporary or permanent redirection of pages
or a site based on a various use cases.
The following diagram illustrates a request forwarding architecture:

Figure 6.12: A client-server interaction that uses request forwarding

Implementation
The simplest way to perform redirection is to:

Intercept the old request



Make a new request
Receive the response
Respond to the client in response to the old request

In this approach, the server hides the redirection information from the
client. The following server code performs the internal redirection:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/foo') {
4.     let data = ''
5.     h.get('http://www.google.com', (m) => {
6.       m.on('data', (d) => {
7.         data += d
8.       })
9.       m.on('end', () => {

10.         r.end(data)
11.       })
12.     })
13.   }
14. })
15. s.listen(12000)

What use case does this technique solve? None. The user/client never
comes to know about the redirection happening under the cover. So, it adds
a permanent burden to the server to manage the additional stale resource
references.
So, we need to make the client aware that the reference is old and needs
redirection. The following code depicts this:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/foo') {
4.     r.end('this site has moved.')



5.   }
6. })
7. s.listen(12000)

And accessing the server from the browser shows the following message:

Figure 6.13: Accessing a moved site route

This does not go well with clients and leads to poor user experience.
Returning the new reference looks like a better solution, but it still isn’t the
best. The following code sends more useful information to the client:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/foo') {
4.     r.end('this site has moved. pls use ' +
5.     'http://www.google.com instead')
6.   }
7. })
8. s.listen(12000)



And the following screenshot shows what the client receives:

Figure 6.14: Accessing a site with moved site route

So, the one that works better is ‘co-ordinate with the client and redirect
automatically’, but let the user know that this is happening so that they can
refresh their bookmarks.
The following code illustrates the usage of status code for redirection:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/foo') {
4.     r.statusCode = 302;
5.     r.setHeader('Location', 'http://www.google.com')
6.     r.end()
7.   }
8. })
9. s.listen(12000)



In this case, a browser client understands that the requested endpoint has
moved, and the server wants it to re-request to the new location that is a
replacement of the old one. Subsequently, the browser performs the re-
request to the new location, transparent to the user. The user sees the
redirection message momentarily, and from the new target address that
appears in the address bar, the user becomes knowledgeable about the
movement that they can accommodate in future uses.
The seamless redirection performed by the browser client is demonstrated
with the help of a JavaScript console window, wherein the HTTP headers
pertinent to the request and response are captured.
The following screenshot of the client request details from a JavaScript
console shows the header values:

Figure 6.15: A browser client that handles server redirection



Multipart form-data
So far, we have been discussing the server serving content to the client. The
reverse is a valid scenario as well, for example, file upload. How does the
client make the server learn various attributes of the file content being sent,
given that the physical file is newly recreated in the server? Multi-part
form-data is defined to cover this aspect.

Use case
A website application receives files from clients that need to be stored at
server locations. When the files are stored, the server wants to make sure
that not only the file content, but also the file metadata are preserved in the
server. Some attributes might have changed (for example file
creation/access time), but static attributes like filename, extension, and so
on need to be preserved.

Definition
The multipart/form-data is a content-type in a client request that represents
the submission of form data. This can be used by clients as a way of
returning a set of values from filling out a form in a page. A multipart/form-
data body contains a series of parts separated by a boundary, that is a series
of special characters like CRLF, "--", and a "boundary" string, any sequence
of characters conveniently chosen.
The following diagram shows the client-server interaction with a complex
user form/file being uploaded to the server:



Figure 6.16: A client-server interaction that uses form data

Implementation
First, design an approach to how the client would send the file data to the
server. Then, learn how the data will arrive at the server. After that, develop
a parser to parse the relatively complex header for multi-part form-data.
Extract the file content and file metadata from the request. Decide where to
store the obtained file, create the file with the same attributes, and store the
data in the file.
The following code illustrates basic handling of form/file uploads:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/upload') {
4.     q.on('data', (d) => {
5.       console.log(d.toString())
6.     })
7.     q.on('end', () => console.log('done uploading'))
8.   } else {



9.     const form = '<form action="/upload" ' +
10.     'enctype="multipart/form-data" method="post"> '+
11.     '<input type="file" name="upload"> ' +
12.     '<input type="submit" value="submit"> '+
13.     '</form>'
14.     r.end(form)
15.   }
16. })
17. s.listen(12000)

The print in the server shows the following form data that was received
from the client:

Figure 6.17: A form data with the associated HTTP header

The obvious question is, how do we meaningfully extract the content from
the form data? There is a lot of protocol-related content, and the actual data
is fully blended with the metadata. It will be a pain for a server to manage
this complexity while handling every request it receives. How do we better
handle complex form data that arrives from the client?

Body parser
Parsing the request body is a non-trivial task, and it needs to be performed
in-line with the request before the request is presented to the backend
application. This section illustrates specific use cases and the
implementation of request body parsing.



Use case
The web server wants to handle complex client requests such as multi-part
form data (as explained earlier). The basic Node.js parser does not parse
such requests completely, and the request body is made available as is in the
request object. Additionally, pluralities of content types are defined in the
HTTP specification for data transfer. This means it is desirable to have a
higher-level parser that understands common request types and parse those
and populate the request object, augmenting the Node.js core parser APIs.

Definition
A body parser consumes the body of a stream-based client request, casts it
to an appropriate data type, and attaches it to the request object that the
request handler function receives. This saves the request handlers from
performing repeated body parsing and helps them focus on their business
logic instead.
Here’s a diagram that shows the various components a body parser would
parse:

Figure 6.18: A body parser component with the associated functions

Implementation



A trivial implementation for the body parser could be an asynchronous
function that receives the request object and institutes ‘data’ and ‘end’
handlers for it (request being a ReadableStream object). In the data handler,
the incoming data is either buffered (if the chunk is not enough to parse) or
parsed and converted to a known type. Then it is attached to the request
body as and when a coherent, fully-formed body is available. In the end, the
handler returns to the main business logic of the request handler that wants
to consume the body.
A simple body parser logic is as follows:

1.   if (q.url === '/upload') {
2.     let data = ''
3.     q.on('data', (d) => {
4.       data += d
5.     })
6.     q.on('end', () => {
7.       data = data.toString()
8.       const delim = data.split("\r")[0]
9.       let file = data.split('filename')[1]

10.       file = file.split('\r')[0]
11.       file = file.replace(/\"/g, '')
12.       file = file.replace(/=/g, '')
13.       console.log(file)
14.       let rest = data.split('\r\n\r\n')[1]
15.       let content = rest.split('\r\n')[0].trim()
16.       console.log(content)
17.     })
18.   }

The drawback here is that every request handler can be seen as `polluted`
with the use of body parser invocations in them. An alternative is to design
an abstraction between the client connection callback and the actual request
handler callback and let the request pass through the abstraction that parses



the body. When the request handler is invoked, the request object is already
populated with the body that is duly parsed.
A reasonable thing to do is to implement a body parser function that is
generic enough and can be reused for multiple scenarios. For example, a
function that intakes the request and response object, gathers the form data,
parses it, and either populates the request object with the parsed content or
makes a callback with the parsed content so that the caller can proceed with
request handling.
The following code illustrates this improvement:

1. const h = require('http')
2. function parse(q, r, cb) {
3.   let data = ''
4.   q.on('data', (d) => {
5.     data += d
6.   })
7.   q.on('end', () => {
8.     data = data.toString()
9.     const delim = data.split("\r")[0]

10.     let file = data.split('filename')[1]
11.     file = file.split('\r')[0]
12.     file = file.replace(/\"/g, '')
13.     file = file.replace(/=/g, '')
14.     let rest = data.split('\r\n\r\n')[1]
15.     let content = rest.split('\r\n')[0].trim()
16.     cb(file, content)
17.   })
18. }

Once the reusable parse function is in place, we can use it in our client
request handler, as follows:

1. const s = h.createServer((q, r) => {
2.   if (q.url === '/upload') {



3.     parse(q, r, (name, data) => {
4.       r.end(`got ${name} with content ${data}`)
5.     })
6.   } else {
7.     const form = '<form action="/upload" ' +
8.     'enctype="multipart/form-data" method="post"> '+
9.     '<input type="file" name="upload"> ' +

10.     '<input type="submit" value="submit"> '+
11.     '</form>'
12.     r.end(form)
13.   }
14. })
15. s.listen(12000)

Cross-Origin Resource Sharing (CORS)
How do we reuse the capability of a second server, under certain
circumstances, and yet function safely? Cross-origin resource sharing is a
feature that helps in this situation.

Use case
The website wants to “embed” data that originated from a second server
into its web page, which is otherwise populated by its own web server. At
the end of this operation, the resulting web page will appear as a composite
page, partly from the main server and partly from the second server. With
such resource sharing capability, the website can reuse many such data
elements from third-party web services while focusing on its own
specialization.

Definition
Cross-Origin Resource Sharing (CORS) is a specification for
communicating with a server in a different domain as part of a request with
the server in the original domain. The main domain that serves the web



content is called origin server, and the second domain that serves part of
the content is called cross-domain. The specification defines a new HTTP
header set. This semantics allows programs to work with the same idioms
as same-domain requests while sharing resources cross-origin. The use-case
for CORS is simple.
The following diagram illustrates request life cycle with CORS:

Figure 6.19: A client-server interaction that uses CORS

Implementation
First, we need a mechanism for the server to describe what domains are
allowed to refer to it. This is achieved by sending HTTP OPTIONS verb to
the cross-referenced server.
The following code shows a client that obtains the server’s OPTIONS:

1. const h = require('http')



2. h.request({method: 'OPTIONS', host: 'www.google.com'}, (m)
=> {

3.   console.log(m.headers)
4. }).end()

And the following screenshot shows the options available at the server:

Figure 6.20: Output of the obtained server capabilities

The client receives the response and parses it. If the response indicates that
the origin server has rights to refer the cross-referenced server, the client
sends the actual request to the origin server.

Dynamic web page
As is the case with most modern web applications, most of the content is
generated at runtime. This section discusses how to implement simple
dynamic pages and embed the dynamic part of data into static pages.

Use case
The website wants to generate a page at runtime by parametrizing its
content and deriving the values from the current request context. In the
most trivial example, after a user performs a login, the result page should



have a reference to the current user. For a second user, this page would refer
to the second user, and so on.

Definition
A dynamic web page is a web page that is assembled on the fly. The
assembling process is controlled by either the server or the client and may
include replacing a placeholder variable with a value obtained in the request
context (as explained in the use case) or designing the entire structure of the
page with dynamically obtained design elements, or any other
customizations in between.
The following diagram illustrates a basic dynamic web page generator:

Figure 6.21: A client-server interaction that uses dynamic HTML

Implementation
The following code gives the simplest example of a dynamic web page:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end('<html><body>hello world!</html>')
4. })
5. s.listen(12000)

This is how it will be accessed through a browser client:



Figure 6.22: Accessing a server that generates simple HTML

How do we parameterize it? For example, a logged in username? The
following code parses the URL, extracts the username token from it, and
prints it back:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end(`<html><body>hello ${q.url.split('=')[1]}!</html>`)
4. })
5. s.listen(12000)

And the browser client requests with a URL that contains the query
parameters, as shown here:



Figure 6.23: Accessing a server that embeds parameters in HTML page

How about getting arbitrary records from a database? The following code
illustrates random data generated in the server being passed to the client:

1. const h = require('http')
2. const m = new Map()
3. for (var i=0; i< 10; i++)
4.   m.set(i, Math.round(Math.random() * 100))
5. const s = h.createServer((q, r) => {
6. let data = ''
7. for(var i = 0; i < 10; i++)
8.   data += `<tr><td> ${i} </td><td> ${m.get(i)} </td></tr>`
9. const html = '<html><body>' +

10.               '<table><tr>' +
11.               '<th> key </th>' +
12.               '<th> value</th></tr>' + data +



13.               '</table></html>'
14.   r.end(html)
15. })
16. s.listen(12000)

And the client renders the data as a table, as dictated by the generated
HTML:

Figure 6.24: Accessing a server that generates HTML pages with tabular data

HTTP status codes
Every response from the server should have a status code to indicate the
interpretation of the server about how it handled the request. This helps
identify the request result outside of the response data and its nature. The
status codes are part of the HTTP specification.



Use case
Remember the use case for HTTP request methods? A server can easily
classify the type of request based on the request method (verb) and then
parse, validate, and process the rest of the request accordingly. In short, an
HTTP request method represents the highest abstraction level for the
request. When the server responds, it makes sense to have a similar
mechanism at the client side—have an abstract verb that represents the type
of the response at the highest level, and the header or/and body carry the
full details.

Definition
The status code is a three-digit integer code representing the result of a
previous request, along with an optional full response. The status code
provides a method for HTTP clients to interpret the response reliably and
consistently.

Implementation
The response codes are classified into five based on hundreds of possible
outcomes of common requests, and a client, which is not interested in
covering the full range of scenarios, can inspect the first digit of the
response and get the top-level classification of the response.
The following table shows the classification of HTTP status codes:

Code range Category Meaning

100 – 200 Informational Request received, still in progress (further server action)

200 – 300 Successful Request received, validated, and processed (desirable)

300 – 400 Redirection The request needs forwarding (further client action)

400 – 500 Client error The request was not well received

500 – 600 Server error The request may be good, but unexpected server state

Table 6.2: Ranges of HTTP status codes

The following table shows the most familiar status codes:

Status code Meaning



200 OK

404 Not found

301 Permanent Redirect

500 Internal server error

503 Service unavailable

Table 6.3: The most commonly used HTTP status codes

Server security
Server security is one of the most important aspects of the web application.
Let’s understand common security issues that are relevant to a web
application and the recommended remediation to each.

Use case
The server is centrally placed and every client request passes through the
network, and the server has no direct way of validating the user’s
authenticity and credibility, so the server (as well as the client) is inherently
subject to security threats at various dimensions. Every component involved
in the whole transaction needs to be hardened against these threats.

Definition
Server security is the act of securing the web server, website, and web
services from various internet-based security threats. By virtue of the
placement of this software on the Internet, security exploitation is a vast
topic with wide possibilities. As a result, security best practices that
addresses these threats have evolved and grown to become a branch of
software engineering itself.

Implementation
Security threats can be classified into three types based on how they impact
the server:

Theft, corruption, destruction, and disclosure of server data
Illegal access and usage of server resources



Denial of service

The following are some common security issues that a web server can be
subjected to, along with their practical remedies:

Data privacy and integrity
The basic design of the Internet (connected network of computers) allows
every connected computer access to every byte of data in the network,
irrespective of the computer’s role in the data transport. So, if a client
makes a request to a server and the server responds with some data, the
transaction details as well as the data contained in the transaction reach
every system in the network.

Threat
A malicious player can read and understand a transaction and exploit it by
faking the client, the server, or both.
The following diagram shows the Internet in the middle of a client-server
interaction, along with the associated vulnerability:

Figure 6.25: Client-server interaction through the Internet

Remedy
HTTPS (HTTP Secure) is an extension to HTTP that is used to secure the
data used in the HTTP communication. It operates on top of HTTP and
creates an abstraction of a secure channel in an insecure network. This



means the data still flows normally, but it will be encrypted using strong
cipher algorithms that can be decrypted only by its intended receiver.
The following diagram illustrates the usage of secure protocols to protect
the data pertinent to the client-server interactions:

Figure 6.26: Client-server interaction with encrypted data

Cross-Site Scripting (XSS)
Assume that the web server has a workflow by which the user request
content is also returned to the client with its response. Such a web server is
vulnerable to cross-site scripting attacks.

Threat
In the simple form of the attack, a URL is presented to the user through
email or some other media. A URL contains crafted messages, such as
JavaScript. When the user clicks on the link, the server performs certain
actions through the said workflow, but it eventually returns the script as part
of its response. This causes the client browser to render the HTML while
executing the script as part of the rendition. Now, depending on what is
coded in the script, the attacker is able to perform arbitrary insecure
operations in the client system.
The following diagram depicts this:



Figure 6.27: Client-server interaction with cross-site scripting

Remedy
How can we remediate the vulnerability? The most straightforward way is
to:

i. avoid reflecting user content back to the client
ii. if that is absolutely unavoidable, institute a special routine that parses

the request and suppress or quarantine any script elements.

The following figure illustrates the measures for preventing cross-site
scripting:



Figure 6.28: A server that validates and normalizes scripts in requests

Query injection
In a data-driven application, with the server making queries to a secure
backend database, the query parameters can be derived by user requests. In
an over-simplified example, this refers to fetching a user record from a
secure database and returning it to the user while the name of the user is
used to uniquely identify the record; the username is obtained from the user.

Threat
A malicious user can supply a different username or a wildcard (a regular
expression that would still make a meaningful query semantics to the target
database when evaluated, expanded, and augmented with the main query
string) that matches every user in the database, and thereby obtain sensitive
data, even though the entire infrastructure for data transport is secure.
The following figure illustrates query injection vulnerability:



Figure 6.29: Client-server interaction with arbitrary database query strings

Remedy
Common remedies include input validation of query string and defining
database permissions. For example, define the query string with
parameterized placeholders derived from the user input, and ensure that the
user input matches the expected type of the parameter rather than
unbounded query phrases or regular expressions. From the database side,
we can define fine-grained permissions to types of requests to sections of
data, which ensures that unbounded or malicious requests will not be
honored.
The query validator component, as shown in the following figure, offers
protection from such threats:

Figure 6.30: A server that validates and normalizes query strings before execution



(Distributed or non-distributed) Denial of Service
In this type of vulnerability, the objective is to cause the server software,
hardware, or the network to fail to function either temporarily or
permanently, leading to denial of the service to the server’s users.

Threat
The attack is performed by carrying out a careful study of weak points in
the server’s execution environment and exploiting that to cause the damage.
The attack surface for this threat is wide.
The following figure shows how the attack can cause reliability issues in
the server:

Figure 6.31: Client-server interaction with denial of service vulnerability

Remedy
There is no single remedy to this threat. Every part of the execution stack of
the server needs to be carefully designed to ensure reliability and durability.
Some best practices are:

Input validation: Ensure that combinations of user input can be
properly validated and sanitized before processing and the code flow
path that process the data is free from abnormal termination due to the
data.



Isolation: Ensure that the server stack is isolated from the traffic
through a dedicated software for managing the traffic (such as reverse
proxy or load balancer).
Firewalling, switching, and routing: Perform some level of sanity
check on the requests and ensure that they are pruned before
presenting to the server and are not presented in their raw form.

The following figure shows how to remediate from such attacks:

Figure 6.32: Additional measures in the server to improve reliability

Brute force (weak authentication)
Brute force is also referred to as repeated, random guesses of the
credentials. The objective is to gain access to the system through
impersonation.

Threat
In this type of threat, an attacker uses structured, empirical, or/and
statistical means to `guess` another user’s password and uses it to hijack
their account. Despite all security measures, the credentials directly help the



attacker impersonate a genuine user, invalidating all other forms of security
controls.
This is illustrated as follows:

Figure 6.33: Iterative password guessing method

Remedy
There are a number of best practices around password strengthening, such
as:

i. using a complex password that is hard to ‘guess’
ii. managing its storage in a secure manner
iii. using multi-factor authentication (in which password is just one pass,

and other passes are also required to actually log in, for which the
attacker may not have enough leeway between the first and the second
passes etc.)

The following figure illustrates this:

Figure 6.34: Measures to strengthen both the password and its intake methods

Conclusion



In this chapter, we looked at the building blocks of a typical web server that
deals with the use cases of a website, starting from implementing a static
web content server to web server security threat types and their mitigations.
This enabled us to develop a website with common features that are
functionally correct and commercially feasible and reasonable.
In the next chapter, we will look at the external components that our server
typically wants to interact with, such as backend services—either part of
our larger application or third-party services we want to leverage and reuse.
This will comprehensively cover our web server and website componentry.



I

CHAPTER 7
Interacting with Backend Components

n this chapter, we will look at other software components that our web
server typically interacts with as part of serving our client. These could

be services or modules developed as part of our application, third-party
services that serve a specific purpose, or components that manifest well-
defined design patterns in the software engineering. It is essential to
understand where (at what point in the request-response cycle) and how the
server interacts with these services. That would make our understanding of
the web server complete in all aspects in the backend.

Structure
In this chapter, we will cover the following topics:

Backend components: internal services
Backend components: external services
Backend components: database

Objective
After studying this chapter, you will be able to understand the general
objective and design of leveraging backend services in your web
application. The discussion will include the architecture of a web
application, integration with backend services, and various design
considerations of such interactions, like functional, performance, reliability,
security, and serviceability. These considerations will help us develop
backend components, architect newer interactions, extend the existing
interactions, and even optimize service invocations for improving server
efficiency.

Backend components: internal services



The internal services of an application are helper routines or modules that
are logically part of the application but developed and deployed separately
to achieve maximum decoupling, leading to overall efficiency
improvements to the application’s development and production life cycle.

Intent
The reason for our web application to interact with internal services is
largely attributed to microservice architecture. When the web application
was a single process, it had faced several issues throughout the lifecycle of
the application, namely:

Development, testing, and deployment: Due to the monolithic
nature, these phases have to ‘drag’ all the components in the monolith
together, even for a minor change in the application.
Readability and maintenance: Due to its sheer size, possibly tangled
with unwanted abstractions in the modules as well as several patches
and extensions, reading code can be extremely difficult, and it also
brings in the possibility of introducing bugs.
The application’s footprint grows unnecessarily.
Minor issues in an unimportant part of the code can bring down the
entire process.

The micro-service architecture was evolved to remedy this; it decomposes
large applications into small, self-contained modules that can function
(bootup and execute and undergo process life cycles) independently.
The following diagram illustrates micro-service architecture:



Figure 7.1: Microservice architecture

A side effect of this architecture is that a direct function call from a module
A to a module B in an earlier monolith is now a service invocation across
the network in the microservice world.
The transformation of a monolith into a microservice is depicted in the
following diagram:

Figure 7.2: Transformation from monolith to microservices



Design considerations
In this section, we will look at design considerations for the web application
in view of various parameters like capability, performance, scalability,
reliability, and so on. We will also establish and ratify the way the internal
modules are architected.

Functional
When interacting with an internal service, one of the primary considerations
is how the interaction will be carried out. We have already seen that the web
server functions with a request-response cycle, which means it receives the
client request, parses and processes it, prepares the response, and then sends
the response back to the client. With the service invocation in place, its role
would most naturally be in the middle—contribute to preparing the
response. It is possible that the internal service also needs the request
context and details either in parts or in their entirety.
The following figure illustrates the placement of service invocation in the
request-response cycle:

Figure 7.3: Microservice call melded into a request-response cycle

With our asynchronous, event-driven programming model, the service
invocation scenario can be designed as a chain of callbacks, wherein the
client request handler callback initiates the service request, the response
handler of the service request installs a response end callback, and the final
response is made to the client in the response end callback.



This is illustrated in the following code sample:

1. const h = require('http')
2. const f = require('fs')
3. const s = h.createServer((q, r) => {
4.   h.get('http://localhost:13000/myservice', () => {
5.     const data = '';
6.     m.on('data', (d) => {
7.       data += d
8.     })
9.     m.on('end', () => {

10.       r.end(data.toString())
11.     })
12.   })
13. })
14. s.listen(12000)

As we can see, the service invocation is fully melded into the web server
and is an integral part of the request-response cycle. A positive side effect
of this is that the integration with and the invocation of the service becomes
seamless with respect to the server’s function. On the other hand, this leads
to the concern of the server code becoming subject to general software
efficiency indicators like performance, reliability, security, and
serviceability.

Tip: A service invocation in a web server can be exemplified using a
pipeline. An existing pipeline is cut in the middle, and a new pipeline is
inserted at the opening. So, the fluid that flows in the pipeline now reaches
the first end of the cut, flows through the new pipeline, comes back at the
second end of the cut, and continues flowing through the old one till the
end.

Performance



An additional set of network transaction between the original client-server
interaction causes the performance to be poorer than its monolith
counterpart—the same HTTP protocol overheads we discussed in the
previous chapters come into play. Additionally, the proximity of the
invoking and invoked services can play a role in the network latency,
adding to the performance characteristics.
The performance bottlenecks in the service invocations are highlighted as
follows:

Figure 7.4: Performance hotspots highlighted in a web server architecture

Caching of responses is a good remedy to improve performance. Is the
internal service insensitive to the request context? Is the internal service
independent on data that is modified externally? If so, previous responses
can be cached based on the request as the key. This means if some of the
request parameters match a predefined set of rules, we can bypass the
service invocation and directly compose the response.
The following example code illustrates how caching can help improve
performance:

1. const h = require('http')
2. const f = require('fs')
3. const cache = new Map()



4. const s = h.createServer((q, r) => {
5.   if (q.url === 'foo') {
6.     return r.end(cache.get('foo'))
7.   } else {
8.     h.get('http://localhost:13000/myservice', () => {
9.       const data = '';

10.       m.on('data', (d) => {
11.         data += d
12.       })
13.       m.on('end', () => {
14.         r.end(data.toString())
15.       })
16.     })
17.   }
18. })
19. s.listen(12000)

Question: The preceding diagram highlights the natural performance
inhibitors in a microservice architecture. Assume that your application has
reported a severe performance issue. Also, assume that you have identified
(through some performance testing) that the time for overall compute is
much less than the time for network transport. What strategy will you use
for some real performance improvement?

Reliability
What if the target service crashes? What if the target service is not
responding? We are in the middle of a request-response cycle when such
anomalies occur, and these kinds of events can bring our transaction to an
inconsistent state.
The following diagram illustrates this:



Figure 7.5: Web server architecture with vulnerable control points

Defining timeouts, exception catch sinks, and other measures to gracefully
manage communications is a best practice. Does the internal service have
mechanisms to respond under erroneous conditions with error
codes/messages? Does the caller have measures in place to figure out if the
internal service failed? If so, the final response can be crafted based on
these assertions made at appropriate situations rather than leaving the server
in an arbitrary state.
In the following example code, we install an error handler for the invoked
service so that we have a well-defined control point if the service fails:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   h.get('http://localhost:13000/myservice', () => {
4.     const data = '';
5.     m.on('data', (d) => {
6.       data += d
7.     })
8.     m.on('end', () => {
9.       r.end(data.toString())

10.     })
11.     m.on('error', (e) => {
12.       r.end(`internal server error: ${e}`)



13.     })
14.   })
15. })
16. s.listen(12000)

Security
A new request-response cycle has emerged from within the original request-
response cycle that involves the real client, and the internal service is
located in the network as opposed to an in-process module (in case of a
monolith), so the communication now becomes a subject of security.
The following figure illustrates additional security measures required for
service calls:

Figure 7.6: Security hotspots in a service invocation setting

Applying the same set of security measures that we adopted for a web
server component is the best way to address this. Is the internal service
located within the same network? Is the system that hosts the internal
service managed by an orchestration system? These are some of the
considerations that apply when designing secure communication between
the server component and the internal service.

Serviceability
An in-process module is now a top-level service running in a separate
process in a separate system across the network, with its own process life



cycle definitions, resource consumptions, logging, and such, so the
serviceability parameters also need to be redefined. For example, how do
we detect and debug a service failure? Which logs needs to be collected and
analyzed? Should logs from the consuming and consumed entities be
analyzed in unison? Should the logs from both modules be time-series’d so
that they can be aggregated or sequenced?
Answers to these questions will take us to observability technology, which
is implemented by a number of tools and frameworks. Most of these have
dedicated features for applications that follow microservice architecture.
Microservices with observability features are illustrated as follows:

Figure 7.7: Observability parameters in a microservice architecture

Question : We talked about refactoring monolith into microservices. Does
this mean each service should be developed in the same language as that
of the original monolith or the invoking web server? For example, in our
scenario of the web server being developed in Node.js, can we have a
service developed in Java or C++ and still the communication carried out
seamlessly, without additional language-specific bridges or foreign
function interfaces?

Backend components: external services



External services are software modules specialized on a specific use case
and designed to be highly reusable. In many cases, it makes sense to invoke
an existing service to get a specific functionality rather than implementing it
by hand. This section examines such external services that our web
application can potentially leverage.

Intent
The reason for our web application to interact with external services is
attributed to reusability of software and separation of concerns. For
example, if you are developing a ticket reservation system, your main
concerns are the business logic involved in reservation, such as the amount
and type of tickets, seasonal offers, precedence constraints, booking
policies, cancellation policies, and so on. But as we know, a vital capability
of any ticketing software is the ability to manage payments. Since payment
is a pervasive use case in business and not a unique feature of a ticketing
system, payment gateway software evolved as a reusable service. They
have a well-defined set of life cycle events, transactional constraints,
security measures, and policies that can be orthogonal to that of our server.
In summary, it does not make sense to implement a payment feature native
to a web server; instead, leverage an existing one that fits its use case and
invoke it as a service.
The following figure shows how a web server makes an external service
invocation:

Figure 7.8: A web server architecture with external backend service



A side effect of this approach is that the web server application builds a
dependency on an external service that is developed, tested, and hosted by a
third party, giving rise to a number of implications, such as commercial
contracts, Service Level Agreements (SLAs), parity/disparity with respect
to the functional, performance, reliability, security, and serviceability
parameters of such interactions.
Here’s a typical payment service invocation example:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   const gateway = require('mypayment_gaetway)
4.   gateway.key = '024acd67de99f'
5.   gateway.username = 'user'
6.   gateway.password = 'password'
7.   gateway.card = '1234 5678 9010 1112'
8.   gateway.cvv = '123'
9.   gateway.user = 'foo'

10.   gateway.expiry = '1230'
11.   gateway.comment = 'book purchase'
12.   gateway.amount = 2000
13.   gateway.currency = 'INR'
14.   gateway.toaccount = '987 654 3210'
15.   gateway.uniqueid = 'a4df90bdbbc'
16.   gateway.pay(() => (e, s) => {
17.     if (e != null) {
18.       return r.end(`error making payment: ${e}`)
19.     } else {
20.       r.end(data.toString())
21.     }
22.   })
23. })
24. s.listen(12000)



Question: This question can appear anywhere in this book, but we’re
asking it here for re-iteration, recollection, and better understanding. What
is the state of our web server when the payment service is in action? In
other words, will the server block all its operations and wait for the
payment to be carried out by the third-party service?

Design considerations
In this section, we will look at the design considerations of our application
when interacting with an external service. The section discusses
implications to functional, reliability, and performance characteristics and
illustrates best practices.

Functional
When interacting with an external service, the key consideration is how the
interaction will be carried out—exactly like we discussed in the case of an
internal service—by embedding service calls between the request-response
cycle and potentially passing the request context to the call after properly
sanitizing the data. In addition, the external service may have a calling
semantics that is not native to our application, in which case the caller will
need to have an ‘adaptor’ or a ‘connector’ that manages the communication
with the service.
A sample external API invocation is illustrated as follows:

1. const h = require('http')
2. const hs = require('https')
3. const u = 'https://api.twitter.com/2/tweets/search/stream'
4. const s = h.createServer((q, r) => {
5.   hs.get(u, {apikey:'a09bfde1'}, (m) => {
6.     let data = '';
7.     m.on('data', (d) => {
8.       data += d
9.     })

10.     m.on('end', () => {



11.       r.end(data.toString())
12.     })
13.   })
14. })
15. s.listen(12000)

A key difference between the invocation of internal and external service can
be the protocol: an internal service can be used using plain HTTP protocol,
while an external service typically needs much higher-level and specialized
protocols, like REST, SOAP, XML, and such.
Another embodiment of an external service is an API key or a token. What
is the commercial bearing of your web server with a third-party service?
Why would it respond to your request and provide an important service free
of cost using a software they have developed with great research and
carrying intellectual property? So, the calls need to be accounted and billed.
An easy way to achieve this is through API keys. A service’s consumer
service logs into the vendor’s website and uses the service. When they
make the payment, they receive an API key, an authentication token that
vouches for the authorization to use the API for a predefined number of
invocations.

Performance
An additional set of network transaction is involved between the original
client-server interaction, so the same performance degradation that we saw
in the case of an internal service applies here. In addition, external services
are almost always hosted on different servers, so network latency can be
more than that of internal services. Further, the caller doesn’t have enough
control over the performance characteristics of the called service as the
former has no control over the latter’s concurrency, traffic policies,
performance considerations, and such. So, a best practice is to ensure that
the service is tested under a wide variety of conditions to see that the
responses we get are well within the acceptable latency levels.

Reliability



The same reliability measures that we adopted for internal services apply to
external services as well, in addition to the network outage possibilities on
the internet as our third-party service sits across the network on the internet.
Another aspect to look at is how we want to manage these services’
failures. Do we want to relay the same error messages back to the end user
upon a failure? Or do we want to abstract the error and provide a more
meaningful, contextual message that the end user is able to interpret more
easily?

Security
Given that the communication between the web server and the third-party
service is now happening across the network, applying the same set of
security measures that we adopted for the web server component is the best
way to address it. In essence, we should treat our service program as a
client to the third-party service, in all aspects, and embed the security
measures on the request side as a typical client would do.

Serviceability
Part of the web server functionality is now supplied by a third-party service,
so issues from that service or interaction with the service become a new
topic of serviceability. For example, if the server fails, how do we identify
if it is due to an anomaly in the web server or a problematic interaction with
the backend server?
We need to integrate the serviceability features of both the web server and
the remote service and make it (the serviceability feature) seamless to the
consumer. That way, we can have a uniform problem determination
experience irrespective of the problem source.

Backend components: database
Just like any standard application, a web application deals with a lot of
business data, and a database software is essential to store those for proper
and efficient functioning of the application.

Intent



The reason for our web application to interact with database services is
attributed to many important characteristics of the server, like flexibility,
performance, reliability, security, and auditing.

Isolating data management functions from business logic leads to
improved flexibility of our web server.
We improve the overall performance and security of our server by
using specialized database software that optimizes data management
and secures the data access through well-defined policies.
Ability to persist business critical data in case of a server crash and
reduction in the CPU usage of the server software means our server is
now more reliable.
It is easy to audit the business over a period if we have the data and
the data access points separated and powered with special purpose
logging mechanism.

In summary, it is advantageous to use a database component to store the
business data pertinent to the server, including the session data we studied
in Chapter 6, Major Web Server Components.
The following figure shows web server architecture with a database
backend:

Figure 7.9: Web server architecture with database backend

A side effect of this approach is that the web server application builds a
dependency on an external service, such as a database. This means the life



cycle operations of the server (like developing, testing, deploying, running,
and upgrading) must also consider the presence and interplay of the
database service now.

Design considerations
Now, let’s examine various enterprise aspects of the application and see
how those influence the application design.

Functional
When interacting with a database service, the key consideration is how the
interaction will be carried out—exactly like we discussed in the case of
internal and external services—by embedding the database calls between
the request-response cycle, potentially passing the request context to the
call after properly sanitizing the data. In addition, the database service will
have a calling semantics that is not native to our application, in which case
the caller will need to have an ‘adaptor’, ‘connector’, or a ‘database client’
that manages the communication with the database service.
The following code illustrates making a database query in the request-
response cycle:

1. const h = require('http')
2. const d = require('mydbclient')
3. const u = 'http://mydb.remote:9000/u=user&p=password'
4. const s = h.createServer((q, r) => {
5.   const c = d.connect(u)
6.   c.query({name: 'foo'}, (m) => {
7.     let data = '';
8.     m.on('data', (d) => {
9.       data += d

10.     })
11.     m.on('end', () => {
12.       r.end(data.toString())
13.     })



14.   })
15. })
16. s.listen(12000)

Another major consideration is what to store in the database. The general
answer is, data that needs to be persisted. More specifically, if the server
crashes, we want the data that was already retrieved, computed, processed,
and accumulated to be available without the need to repeat these processes.
The main data elements typically stored in a database in the context of a
web server are:

Template data (also called bootstrap data): Data that defines
axioms/ground-truths around the server application’s business logic.
Examples are dictionary of terms, common messages, policy data, and
so on.
User data (also called form data): Data that is retrieved, computed,
processed, filtered, pruned, and transformed from the user forms as
part of client requests. Examples are customer profile and account
details.
Session data: Data that holds the context of ongoing user transactions.
We learned about sessions in Chapter 6, Major Web Server
Components.
Derived data: Data that is either an aggregation or higher-order
derivative of one or more of the above-mentioned data. Examples are
count of user requests in a 24-hour period, the total amount transacted
from a specific account, and so on.

With the knowledge that the web server can be decomposed into
microservices and the server can store business data into databases, a
natural question arises: will there be individual databases for individual
microservices, or a single, central database for all the microservices?
It depends. It is desirable to have individual database instances for
microservices in most cases, but this imposes its own side effects. What if
the data stored in individual databases has redundancy, relations, priority
orders, and such? We are dealing with a single application logically, so it is
natural that the discrete databases contain fragments of data in an



interleaved manner from the application’s perspective, though coherent
from individual microservice’s perspective.
The database design needs to take care of such anomalies. If aggregations,
normalizations, or synchronizations are required, we need to define events,
triggers, and timers for initiating such activity. If the number of anomalies
is very large, we will need to redesign our database design. The independent
database model works well if such things are not present and the data for
each service is mutually exclusive.

Performance
An additional set of network transaction is involved between the original
client-server interaction, so the same performance degradation that we saw
in the case of an internal service applies here as well. In addition, external
services are almost always hosted on different servers, so network latency
can be more than that of internal services. There are a number of things that
we can take care of at both the database end and the web server end
considering these factors and to offset the lost performance.

Database end
Ensure that the database and the documents are aligned with the type
of data stored—structured versus unstructured, and so on.
Ensure that the documents are designed for easy retrieval for common
queries.
Ensure that the documents are aligned with the existing and possible
future query types.

Web server end
Ensure the implementation of connection pooling (reusing of
connection) as opposed to making fresh connections every time (saves
network latency by large).
Ensure that multiple parts of the server do not cause contention at the
database side. If there are queries that cause bottlenecks, either
implement enough isolation between the, or consider coalescing the
queries into one.



Reliability
The same reliability measures that we adopted for internal and external
services apply as is to database services as well, in addition to the network
outage possibilities in the internet – as our database service sits across the
network on the internet.
In the case of internal/external services, we discussed how we want to
manage the service failures and how we want to gracefully respond to the
user through the response. What is the case when the database is down?
Can we think of a similar strategy? No. The database holds vital business
data that is essential for the server to function well (including session data),
so it is neither feasible nor meaningful to continue accepting new
connections. For all practical purposes, we should treat the database as a
vital part of our server component itself, although it is discretely situated
across the network as a module.

Security
Given that the communication between the web server and the database
service is now happening across the network, and a person skilled in the art
can very well speculate what would be typically stored in a database, the
communication between the server and the database becomes a security
topic. A few important security measures are mentioned as follows:

Database level: Design and organize the data in such a manner that
different users have different and matching/deserving levels of
authorization/access to the data.
Connection level: Ensure that opening up a request with the database
is allowed only upon logged in connections, and that the connection
parameters are strongly typed.
Transport level: Ensure that the data—inward and outward—is
encrypted to prevent theft.
Query level: As we studied in Chapter 6, Major Web Server
Components, database queries crafted through untrusted user input can
potentially harm the database. So, ensure that the query strings are
properly validated and sanitized before relaying them to the database.



Serviceability
Just like any other external service, we need to integrate the serviceability
features of both the web server and the database and make the feature
seamless to improve problem determination experience. However, by
isolating part of the application program (code and data) and implementing
well-defined control and access points to manipulate that part of the
program (database), our overall serviceability confidence increases instead
of deteriorating.

Conclusion
In this chapter, we understood the general objective and design of
leveraging backend services in our web application. We looked at three
different flavors of backend service types and the fundamental design
considerations of interacting with each of those services. This helped us
easily develop a server with one or more such backend services, architect
newer interactions, extend the existing interaction, or optimize service
invocations for improved performance, reliability, security, or serviceability.
In the next chapter, we will look at the last set of missing pieces of our
website—common requirements of a website (front-end rendering) and how
the pages and forms can implement some of those common features. We
will see how large amounts of site data can be rendered for better
consumption (pagination, search, and filtering), and we will also cover
implementing authentication and authorization and other common
requirements. Technically, that will wrap up the constituent elements that
make up a website.
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CHAPTER 8
Implementing Common Website

Features
fter learning about web server concepts, we went on to cover all the
backend components: the web server components, the various

middleware components that support the server for its functionality, and
backend components that the server leverages for extended capabilities. The
only remaining piece in the bigger picture of the web architecture is
frontend elements. In this chapter, we will look at the common requirements
of a website (frontend rendering) and how the pages and forms can
implement some of those common features. We will look at the
considerations of web page constitution based on different use cases and
how special components meet those requirements in page design.
Technically, that will complete the coverage of constituent elements that
make up a website.

Structure
In this chapter, we will cover the following topics:

Website – design considerations
Website – elements and components
Website – advanced features

Objective
After studying this chapter, you will be able to understand the general
objective and design of the frontend components in your web application.
The discussion will include user experience around the frontend design,
constituent elements that shape user experience, and some advanced
features that make up modern web applications’ frontends. These learnings
will help us build a scalable, responsive, and modern website. More



importantly, the selection of items, the order in which they’re picked up,
and the depth of our discussion of those components will help us rearchitect
the components in a typical development process based on changing needs.

History of web pages
The Web started in the 1990s with simple, distributed servers serving static
content. Then, HTTP specification was defined. The need for small-scale
validation and animation of the pages gave raise to JavaScript. As the use
cases of the Web widened, cookies were invented. Soon, many other
languages (such as Java) started implementing client-side frameworks (such
as Applets) that run in conjunction with HTML pages. Consequently, the
HTTP specification was refined and upgraded.
The early 2000s brought in an increase in use cases such as interactive
pages and that led to the evolution of Asynchronous JavaScript And XML
(AJAX), which empowered parts of the pages to dynamically and
asynchronously interact with the server and update part of the views,
bringing high level of interactions without wasting network bandwidth
while also enhancing user experience.
Cascading Style Sheets (CSS) that centrally define and control the look
and feel of pages, web workers that allow script execution in background
threads, rich multimedia support, and the ability to embed third-party
content added exponential value to web pages. At this point, web pages
were able to functionally deliver superior value than their thick client
counterparts (desktop applications).
In the early 2010s, mobile devices became prominent consumers of web
pages, disruptively changing the user experience and thereby, user interface
considerations. With that, the current web page design became an extremely
complex set of intents that must cater to the needs of multiple types of use
cases and users.
In this chapter, we will examine the expectations of a typical current user in
terms of user experience, elements in a website that meet such expectations,
and design considerations around these elements.

Website – design considerations



In general terms, user experience refers to the degree of intuitiveness,
usability, ease of use, and efficiency of a product. So, developing a product
with satisfactory user experience requires us to understand the type of users,
user behavior, user expectations, and their abilities and weaknesses with
respect to product consumption.
Relating this definition to a website, it boils down to the perception of a
web user on how aligned the website is for their needs and how compelling
it is for them to retain its use in comparison with other websites that present
similar offerings. What are those compelling reasons? Let’s look at each of
those in detail.
The following diagram shows the main elements of user experience on the
Web:

Figure 8.1: Elements of user experience

Usability
In the usability section, we look at some of the considerations that directly
relate to the usability of web pages. These very fundamental considerations



for a user and create a strong impression about the website.

Registered and unregistered views
How does it feel when a user opens a website and they get a huge login
form as a pre-requisite for access to its content? Obviously, this is a visible
inconvenience to the user. A website, whatever important functionality it
offers, should have unregistered views. If the content is confidential and
needs a valid user context and account to access it, the site could provide
high-level narration on the objective, the nature of content inside, how it is
useful, and what types of users the website is relevant for.
The following figure illustrates a bad user experience on the home page
when everything is concealed through a login/registration flow.

Figure 8.2: A home page with no unregistered view

On the other hand, the following figure shows how this can be improved by
bifurcating between registered and unregistered views:



Figure 8.3: A home page with unregistered views

Navigation bar
Most websites will have multiple pages, organized hierarchically. An old
design is to provide navigation buttons (previous, next, home, and so on)
for the user to move from one page to another. This roughly means the user
needs to keep track of their navigation history. A modern alternative is to
provide a navigation bar that is available in all pages so that the user is free
to move from any page to any other, and it also spares them from
‘remembering’ the navigation history.
Here’s a screenshot with a few menu items and a navigation bar that
appears commonly for all pages:



Figure 8.4: A web page with navigation bar

Articles
Articles constitute the main trunk of a page. Rather than spreading it in the
entire page, an article placed at the center of the page with sufficient focus
significantly improves the page’s usability. The following figure shows an
article section:



Figure 8.5: A web page with article tag

Headers and footers
A page header is a horizontal bar on top of the page. This section ideally
contains website logo, common website information, and any press
releases.
The following diagram shows how a page header may look:



Figure 8.6: A web page with header

A page footer is also a horizontal bar, but at the bottom of the page. This
Copyright information and contact details are generally placed in the footer
section. The following screenshot shows what a page footer may look like:



Figure 8.7: A web page with footer

Forms
A form is an essential part of many websites. An organized web form helps
collect related information from a user for processing at the backend. The
most common form types are registration and profile forms.
The following screenshot illustrates a simple web form:



Figure 8.8: A web page with a form

Search option
A good site will have a search bar that provides a custom search function
confined to the website content. This is useful when the site provides a
relatively large number of features and content and some of the items are
not directly discoverable.
The following screenshot shows a page that embeds a search option:



Figure 8.9: A web page with a search bar

Feedback forms
Collecting user feedback directly is one of the easiest ways to improve user
experience, so it is highly desirable to have a feedback form where a user
can enter their overall experience and any improvement suggestions.
The following screenshot illustrates a typical feedback form:



Figure 8.10: A web page with feedback form

Shopping carts
Wherever applicable, a cart feature provides users with the ability to ‘add’
commodities to a tray so that actions like purchases can be performed in
aggregation, instead of needing to perform common transactions repeatedly.
The following screenshot illustrates a typical usage of this pattern:



Figure 8.11: A web page with shopping cart

Payment options
In a web application, a payment feature provides users with the ability to
‘pay’ for an item or a service that the web application offers, without
leaving the website. Keep in mind that depending on an external
vendor/website to perform the payment on behalf of the current website will
lead to poor user experience.
The following screenshot illustrates a payment form:



Figure 8.12: A web page with payment option

Ease of use
In this section, we will look at some of the non-functional aspects that are
directly related to user experience.

Consistent pages
The following are the traits of consistent pages for improved user
experience:

Having a similar look and feel in related pages
The placement of controls and components in similar coordinates
Uniform appearance of controls and components
Behavior of controls and components in an expected manner

The following screenshot illustrates an inconsistent set of pages:



Figure 8.13: Inconsistent web pages

On the other hand, the following screenshot shows web pages made
consistent:

Figure 8.14: Consistent web pages

Question: Which framework/technology provides the capability to
implement consistent look and feel to a bunch of web pages?

Short pages
Ideally, you should try to fit the page in one screen and avoid the need to
scroll as much as possible. But of course, at times, a coherent set of content
may have to be kept on a single page, irrespective of its volume. In such
cases, it is worthwhile to look at meaningful segregations for the content so
that you can still split it.
The following screenshot shows a short web page, which is easy to
consume:



Figure 8.15: A short web page

Short forms
Forms are very important. They switch user effort, from simple
consumption and navigation to careful feeding of information. Some of the
features that improve user experience with forms are:

Collect minimal information (which is required)
Follow a logical ordering of the form elements
Label the input fields appropriately
Provide additional help text for ambiguous fields, providing default
values wherever possible, auto-completion based on past interaction,
or other analytical means

The following screenshot shows a short web form:



Figure 8.16: A short web form

Question: For the previous section (short pages), we said reduce the
content such that it fits in one page. Is there a difference between short
pages and short forms in terms of usability and ease of use? For example,
what happens if you really need to capture critical information that is not
fitting in a single page?

Home page
In the early days of web evolution, a site map feature helped users see
where they have reached in the navigation and how to get out of return.
Modern websites either have a navigation bar that is available on all the
pages or a home button that is available everywhere so that one can easily
return to the first page.
The following screenshot shows a link to the home page that is made
available across the site:



Figure 8.17: A web page with home page link

Responsive web forms
Web content is not only consumed through browsers but also through a
variety of mobile devices, tablets, and other smart devices like television, so
the content should provide a uniform experience through all forms of
interaction. To achieve this, the page or form should adjust its dimensions
and scales based on the type of the target device.
The following screenshot shows a responsive web page that has a similar
appearance in all forms of consuming devices:



Figure 8.18: A responsive web page with consistent look and feel and behavior

Note: One of the primary considerations for web pages designed to be
rendered in mobile devices is the inefficiency with the keyboard. As most
mobile keyboards are software simulations as opposed to physical keys,
the typing is more difficult than on their desktop counterparts. Its
implication on web page design is that the interaction should be such that
user input has to be minimized or should boil down to clicks and
selections as opposed to bare typing.

In summary, we looked at a number of factors that shape user experience of
the web content consumption, in terms of usability as well as ease of use.
These are generic concepts that apply across the World Wide Web and have
nothing to do with a specific development platform like Node.js. Now, let’s
look at some of the actual elements and components that constitute a web
page and those that contribute to achieving the said user experience.

Website – elements and components
So far, we talked about the user experience and design aspects of websites
in general. Now, let’s the main elements of a single web page that constitute
websites. We classify these based on multiple criteria, such as language,
elements, and components.

By language
In this section, we look at the languages commonly used for rendering a
web page. We also illustrate how they interact with each other, manifesting



perfect polyglot behavior by the client devices.

HTML
Hyper Text Markup Language (HTML) defines the fundamental
structural semantics for web document. It has a rich set of syntax to
represent page appearance and attributes to cover a wide variety of features.
This is supported by all browsers and client devices that consume web
content.
The following code snippet shows the shortest HTML syntax:

1. <html> hello html</html>

Question: Assume that we have browsers that do not support HTML.
How do you think the client-side rendition can be implemented with the
help of another language, say C?

CSS
Cascading Style Sheets (CSS) defines the presentation styles for plurality
of pages for a website. It separates web content from its format, and thereby
reduces the complexity of managing web content. The main formatting that
comes under the purview of CSS are colors, layouts, and fonts.
The following code snippet shows an inline style sheet embedded in
HTML:

1. <html>
2. <body>
3. <p style="color:blue;">hello css</p>
4. </body>
5. </html>

Note: There are semantics defined in CSS that help us refer to part of the
HTML document and apply styles selectively. This design helps improve
the separation of concerns, isolating the core component definitions from
how they should appear.



JavaScript
JavaScript is an event-driven, functional, and imperative programming
language with APIs for general purpose programming. In the client's
execution environment, it has constructs to access the components of the
web page it is a part of.
The following code snippet shows an inline JavaScript embedded in
HTML:

1. <html>
2. <script> alert('hello JavaScript!') </script>
3. </html>

Note: This aspect of the web frontend – the ability to embed JavaScript
and thereby manipulate the content in markup format asynchronously and
dynamically, with the help of the same programming language that we
used in the backend (Node.js), is by far the most important reason for the
proliferation of JavaScript in the web workloads.

In summary, among these three languages, HTML acts as the main trunk of
the web page and focuses on organizing the content, CSS focusses on
providing common style and format to the web page, and JavaScript
provides dynamic rendition by exhibiting multi-tasking and asynchronous
programming.

By elements
In this section, we will look at various programming abstractions and
interfaces to work with a web page, at the front end. This includes plain
HTML as well as JavaScript programming interfaces that work in
conjunction with the HTML elements.

DOM
Document Object Model (DOM) is an abstraction of web content. The
model allows programmatic access to the web content, which is organized
as a tree structure and available as a composite object in the language
through which the content is accessed. This abstraction helps us modify the



web content after those (the individual components of the web content)
have been rendered/scheduled for rendition and bring dynamic content to
the page by installing events and event handlers specific to parts of the
document.
The following code snippet shows how JavaScript can access and modify
the HTML components, leveraging the Documented Object Model
abstraction:

1. <html>
2. <p>
3. <body>
4. <div>
5. <input id="foo" placeholder="foo"></input>
6. </div>
7. <script>
8. document.getElementById('foo').placeholder = 'bar'
9. </script>

10. <p>
11. </html>

After running that, we see that the original value of the input placeholder
‘foo’ has been changed by the script to ‘bar’, which is showcased as
follows:



Figure 8.19: A web page with JS manipulation

Note: An additional advantage of using JavaScript in web pages is the
ability to improve client interaction more efficiently, from simple
validations to imparting complex event-driven behavior to elements in the
page, leading to a perfect complementation of HTML’s capabilities.

Assignment: Demonstrate the local management capabilities of
JavaScript by adding an event handler function for an HTML element and
explain how part of the server functions are delegated to the client side,
thereby reducing network bandwidth and improving performance.

XMLHttpRequest
Despite its somewhat strange name, this is another abstraction for direct
HTTP interaction with a backend server. But why another networking
abstraction when the browser has native interfaces to deal with the server
either through its address bar or through special HTML elements and
attributes? Those interfaces affect the current page as a whole. For example,
a URL request through the browser will invalidate the current page and



render the resulting content from the server. On the other hand, the
XMLHttpRequest APIs interact and obtain content from the backend, which
can be used to ‘hand-craft’ the existing content (think about the DOM
update explained in the previous section) and refresh part of the page. This
enables the page to appear lively.
Think about a website that provides live scores of a match. The scoreboard
refreshes itself at regular intervals, but the page doesn’t reload as a whole,
and the user doesn’t refresh it either. For this, one implementation approach
is for the JavaScript elements in the page to install a timer that kicks in at
regular intervals, and issue a request with the server, fully transparent to the
user.
The following code snippet is a server-side logic that handles
XMLHTTPRequest:

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   if (q.url === '/bar') {
4.     return r.end('response to XMLHttpRequest!')
5.   }
6.   r.end(require('fs').readFileSync(process.argv[2]))
7. })
8. s.listen(12000)

The following code snippet (client-side) shows the usage of the
XMLHTTPRequest API:

1. <html>
2. <body>
3. <p>
4. <div id='xhr'>
5. <button type='button' onclick='XHR()'>XHR</button>
6. </div>
7. <div id='non-xhr'>



8. I am a building, in the city of London, very tall, very
old, and extremely famous. One of the most important things

about me, is its very large domed roof.

9. </div>
10. <script>
11. function XHR() {
12.   const x = new XMLHttpRequest()
13.   x.onreadystatechange = function() {
14.     if (this.readyState == 4 && this.status == 200) {
15.       document.getElementById('xhr').innerHTML =

this.responseText

16.     }
17.   }
18.   x.open('GET', '/bar', true)
19.   x.send()
20. }
21. </script>
22. </body>
23. </html>

The following screenshot shows how the initial rendition of the preceding
code looks:



Figure 8.20: A web page with elements controlled by XMLHTTPRequest

Once the user clicks on the button, the API fetches new data from the server
and renders that in the view, as follows:



Figure 8.21: A web page with the result of the XMLHTTPRequest action

Question: While a client loads a web page, it has already established a
connection with the server and obtained the content from it. When a
component in the page subsequently issues an XMLHTTPRequest to the
server, does it open a new connection with the server or reuse the existing
connection established while loading the main page?

WebSocket
This is similar to XMLHttpRequest in terms of the model, and it is yet
another network abstraction that enables a programming element in the web
page to directly interact with the server through TCP protocol. The full-
duplex nature of the TCP connection enables WebSockets to receive
asynchronous events and data from the server. This leads to a feature
wherein the server can proactively write to the client in response to a
previously registered interest.
The following code shows a typical usage of web socket:



1. <html>
2. <body>
3. <input id="ws" type="text"></input>
4. <script>
5. const ws = new WebSocket('ws://localhost:12000')
6. ws.onopen = function() {
7.   alert('connecting')
8.     ws.send('hello')
9. }

10. ws.onmessage = function(e) {
11. document.getElementById('ws').value = e.data
12. }
13. </script>
14. </body>
15. </html>

Let’s revisit the previous example where a live scoreboard needs to be
implemented. With WebSockets, the timer loop in the client code is not
required; instead, the server that intercepts the score change in the actual
event (the game) is able to ‘push’ the new data to the client through the
previously opened WebSocket. This significantly enhances programming
efficiency.

Question: What are the similarities/differences between the use case of
XMLHTTPRequest and WebSocket?

At some point around here, it is natural to think about the role of backend
and frontend and the boundary between the two. With the previously-
mentioned two features, the frontend is now able to do many/most of the
things that the server is capable of doing:

Perform validations
Perform computations
Perform connections to the backend



So, an intuitive architectural question would be: why does the backend not
focus just on rendering initial content while the frontend in the rendered
content manages everything else? The answer lies in privacy and security.
The code that runs on the client side is visible to the user. In many use
cases, we don’t want to expose the business logic, the details of the backend
components and their inter-relations, and the data involved in the
application. So, while the frontend is now capable of doing many things
that the back end is capable of, and while offloading responsibility to clients
where the content serving is occurring is architecturally valid and
reasonable, commercial websites draw a fine boundary between the front
and backend based on the privacy and security considerations.

WebWorker
WebWorker implements a threading abstraction. Using WebWorkers, we
can create background threads that can theoretically run any script. Page
rendition and user interaction that involve massive computation can heavily
benefit from worker threads, as they help parallelize the given tasks.
Additionally, web workers act as a network proxy, which can
asynchronously manage all the network interactions so that the main thread
can focus on the frontend interactions. The workers and the main thread do
not use normal synchronization primitives to work with shared data;
instead, they communicate over non-blocking and asynchronous messaging
channel.
The following code snippet shows how to use web workers:

1. const w = new Worker('worker.js')
2. w.onmessage = function(event) {
3.   document.getElementById('data').innerHTML = event.data
4. })

Question: What is the premise/benefit of communicating between threads
over messages as opposed to shared data and synchronization primitives
to streamline access?

By components



In this section, we will look at the visual components that make up an
HTML page. We illustrate the most common form of each component and
provide an example of each, along with how they appear on screen.

Hyperlink
This defines a linkage from the current page to another or from the current
section to another. Hyperlink is the most fundamental semantics for web
navigation. It practically overarches any other object, making any web
object potentially a hyperlink.
The following code uses a hyperlink:

1. <html
2. <body>
3. <a href="foo.hml"> click here for foo </a>
4. </html>

The following screenshot shows how a hyperlink will be displayed:

Figure 8.22: A web page with hyperlink tag

Article



This defines an independent block of web content. It is a basic construct
used to create sections in blogs and journals.
The following code shows the usage of the article tag:

1. <html>
2. Welcome to foo's web site!
3. <p>
4. <body>
5. Article:
6. <article>
7. I am a building, in the city of London, very tall, <br>
8. very old, and extremely famous. One of the most <br>
9. important things about me, is its very large domed roof.

<br>

10. </article>
11. </body>
12. </html>

The following screenshot shows how an article tag will be rendered:



Figure 8.23: A web page with article tag

Dialog
This defines a popup frame and is useful for displaying contextual messages
and alerts.
The following code shows the usage of the dialog tag:

1. <html>
2. Welcome to foo's web site!
3. <p>
4. <body>
5. <dialog open>
6. I am a building, in the city of London, very tall,
7. very old, and extremely famous. One of the most
8. important things about me, is its very large domed roof.
9. </dialog>

10. </html>

And the following diagram shows how a dialog tag will be rendered:



Figure 8.24: A web page with dialog tag

Form
A form defines a complex interface for collecting user input and helps the
server obtain data from the client. The interface has several fields and
attributes to cover various data types and collection methods.
The following code shows the usage of the forms tag:

1. <html>
2. Welcome to foo's web site!
3. <p>
4. <body>
5. Registration:&nbsp;&nbsp;&nbsp;&nbsp;
6. <p>
7. First name:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
8. <input/>
9. <p>



10. Last name:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
11. <input/>
12. <p>
13. Organization:&nbsp;&nbsp;&nbsp;
14. <input/>
15. <p>
16. Phone number:&nbsp;
17. <input/>
18. <p>
19. <button type="button">submit</button>
20. <p>
21. </html>

The following screenshot shows the resultant web form:

Figure 8.25: A web page with web form

Options/dropdown



It defines a list for selecting a choice and is useful when the input set is
known but the input itself is not.
The following code shows the usage of the option tag:

1. <html>
2. <body>
3. <h3>Choose a fruit:</h3>
4. <select id="fruits">
5.   <option value="apple">Apple</option>
6.   <option value="orange">Orange</option>
7.   <option value="mango">Mango</option>
8.   <option value="strawberry">Strawberry</option>
9. </select>

10. <button type="button">Add to cart</button>
11. </body>
12. </html>

And the following screenshot shows how it will look in the browser:



Figure 8.26: A web page with option tag

Table
This defines a tabular structure, and the attributes define rows, columns,
and properties relating to their physical appearance.
The following code shows the usage of the table, th (table header), tr
(table row), and td (table data) tags:

1. <html>
2. <head>
3. <body>
4. <style>
5. table, th, td {
6.   border: 1px solid black;
7. }
8. </style>
9. Table for foo

10. <p>
11. <table>
12.   <tr> <th>Fruit</th> <th>Cost</th> <th>Discount</th> </tr>
13.   <tr> <td>Apple</td> <td>$4</td> <td>25%</td> </tr>
14.   <tr> <td>Orange</td> <td>$5</td> <td>30%</td> </tr>
15.   <tr> <td>Mango</td> <td>$7</td> <td>10%</td> </tr>
16. </table>
17. </body>
18. </html>

And the following diagram shows the resultant table:



Figure 8.27: A web page with tabular data

Image
This defines an image reference and is useful to embed pictures on a web
page.
The following code shows the usage of the image tag:

1. <html>
2. <body>
3. Welcome to foo's site!
4. <p>
5. <img src="/img.png" width="150" height="100">
6. </body>
7. </html>

The following screenshot diagram shows the resultant image:



Figure 8.28: A web page with image

Audio
This defines an audio reference and is useful to embed audio clips in a web
page. The following code shows the usage of the audio tag:

1. <html>
2. <body>
3. Welcome to foo's web site!
4. <p>
5. <audio controls>
6. <source src="foo.mp3" type="audio/mpeg">
7. </audio>
8. </body>
9. </html>

And the following screenshot shows a web page that embeds an audio
control:



Figure 8.29: A web page with audio control

Video
This defines a video reference and is useful to embed video clips in a web
page. The following code shows the usage of the video tag:

1. <html>
2. <body>
3. Welcome to foo's website!
4. <p>
5. <video controls>
6. <source  src="foo.mp4" type="video/mp4">
7. </video>
8. </body>
9. </html>

And the following screenshot shows how it gets rendered:



Figure 8.30: A web page with video control

Script
This defines a program in another language to be embedded that gets
executed instead of rendition. So, the resultant action of the script is
considered to be the result of the rendition of the element. At present, only
JavaScript is supported as a target script. The following code shows the
usage of JavaScript embedding in HTML using the script tag:

1. <html>
2. Welcome to foo's web site!
3. <p>
4. <body>
5. <script>
6. alert('hello from script!')
7. </script>
8. </html>

And the following screenshot shows the resultant action in the web page:



Figure 8.31: A web page with JavaScript in action

Website: Advanced features
In this section, we will look at some of the advanced features that make our
website attractive and versatile. These features are evolved as a natural
extension to the web page design and integrated into the web standards, or
they are contributions from third-party vendors. These features enhance the
usability of web pages two-fold and contribute to improved user experience.

Google APIs
So far, we have seen examples of common constructs and interfaces that are
useful on a web page. Extending the use cases further, how do we add more
complex objects into a web page? Complexity should be in terms of their
appearance, features, data model and behavior, and response to user
interaction.
As we know with moderately complex components like a table, the HTML
code grows in terms of complexity. This complexity leads to the
introduction of errors. We have seen examples of a manually coded HTML



table missing a column, data element skewed a little, and so on. It is natural
that the readability and manageability of code is inversely proportional to
the complexity.
What would be the complexity of an office tool, such as a spreadsheet? A
spreadsheet is a superset of a table, with several extended features, such as a
collection of mathematical functions, and higher order visualization of data,
such as graphs and charts. Obviously, the page becomes unmanageable.
Think of the server responsible for composing such a page and dispatching
it to the client, along with other business logic processing and their
responses!
Google APIs for office documents come from an architectural perspective
of HTML as a service. What if a server dedicates the business logic
pertinent to one complex object rendered in our page, and the server
handles all the interactions, like events, event handling, re-rendering of
data, and computations? Google APIs are exactly that. They provide an
interface to the client for embedding complex but isolated objects into the
web pages that are self-sustainable. The following code shows the usage of
object embedding with the iframe tag:

1. <html>
2. <body>
3. Welcome to foo's web site!
4. <p>
5. <iframe align="center"

src="https://docs.google.com/document/d/

6. 1t5CrKW4jIBUcn4KZXZRJVYL4OdZigkj-miVGY31P36I/edit?
7. usp=sharing" height="200" width="400"></iframe>
8. </body>
9. </html>

And the following diagram shows how a Google document is embedded
into a web page:



Figure 8.32: A web page with embedded Google document

Assignment: Develop a small web page and transform it such that the
entire content can be embedded into another page by removing only the
over-arching ‘<html>’ and ‘</html>’ tags. Observe how the new page
(embedded page) behaves and isolates itself from the master page
(embedding page) in terms of styles, attributes, and behavior.

Similarly, the following code embeds a Google spreadsheet into a page:

1. <html>
2. <body>
3. Welcome to foo's web site!
4. <p>
5. <iframe

src="https://docs.google.com/spreadsheets/d/1roC4JOoW1Y59Py

n-iXVM_hyFmojUXI3et8XxakEy0ZY/edit#gid=0" height="200"

width="400"></iframe>



6. </body>
7. </html>

And the resultant view is as follows:

Figure 8.33: A web page with embedded Google spreadsheet

Similarly, the following code embeds a Google presentation into a web
page:

1. <html>
2. <body>
3. Welcome to foo's web site!
4. <p>
5. <iframe

src="https://docs.google.com/presentation/d/1VHW_itra4gq9Th

jTGPAQrm0fuRWjEiHZaFz7niaggMs/edit#slide=id.p" height="200"

width="400"></iframe>



6. </body>
7. </html>

And the following screenshot shows the resulting Google presentation:

Figure 8.34: A web page with embedded Google presentation

The following code shows how to embed a custom Google chart into a web
page:

1. <html>
2. <head>
3. <script type="text/javascript"

src="https://www.gstatic.com/charts/loader.js"></script>

4. <script type="text/javascript">
5. google.charts.load('current', {'packages':['corechart']});
6. google.charts.setOnLoadCallback(draw);
7. function draw() {



8.   var data = new google.visualization.DataTable();
9.   data.addColumn('string', 'Fruit');

10.   data.addColumn('number', 'percentage');
11.   const rows = []
12.   rows.push(['Apple', 30])
13.   rows.push(['Orange', 40])
14.   rows.push(['Mango', 30])
15.   data.addRows(rows)
16.   const opt = {'width':600, 'height':400}
17.   const chart = new

google.visualization.PieChart(document.getElementById('frui

t'))

18. chart.draw(data, opt)
19. }
20. </script>
21. </head>
22. <body>
23. <div id="fruit"></div>
24. </body>
25. </html>

And the following screenshot shows the custom chart rendered in the web
page:



Figure 8.35: A web page with embedded Google charts

Embedding: Maps and social media
This is a similar use case as explained earlier but semantically slightly
different in terms of object embedding. In this style, the map is expressed in
a division of the page using the “<div>” HTML tag. Google Maps provide
powerful abstraction for navigating in the real world.
The following code shows the embedding of Google maps into a web page:

<html>

<head>

<body>

<iframe src="https://www.google.com/maps/embed?pb=!1m10!1m8!1m

3!1d248849.84916296526!2d77.6309395!3d12.9539974!3m2!1i1024!2i7

68!4f13.1!5e0!3m2!1sen!2sin!4v1617636691038!5m2!1sen!2sin"

width="600" height="450" style="border:0;" allowfullscreen=""

loading="lazy"></iframe>



1. </body>
2. </html>

And the following screenshot depicts the resulting Google Map:

Figure 8.36: A web page with embedded Google Maps

Similarly, social media share icons provide ways to share your contextual
content with your contacts, which significantly improves communication.
An alternative is to copy the link of the web page, open your social media
application, and share the link. The drawbacks include the additional effort
required for copy pasting and that the entire page becomes the subject for
sharing as opposed to any customizations.
The following code shows how to embed the social media share feature in
your web page:

1. <html>
2. Welcome to foo's web site!
3. <p>



4. <body>
5. <a class="twitter-share-button"
6.   href="https://twitter.com/intent/tweet?

text=I%20am%20a%20building,%20in%20the%20city%20of%20London

,%20very%20tall,%20very%20old,%20and%20extremely%20famous.%

20One%20of%20the%20most%20important%20things%20about%20me,%

20is%20its%20very%20large%20domed%20roof.">

7. Tweet</a>
8. <p>
9. Unregistered view:

10. <article>
11. I am a building, in the city of London, very tall, very

old, and extremely famous. One of the most important things

about me, is its very large domed roof.

12. </article>
13. </html>

And following screenshot shows how the share feature is embedded in the
page:



Figure 8.37: A web page with embedded social media share button

And the following screenshot shows the target page of the share link:



Figure 8.38: A web page with embedded social media

Pagination
When the backend responds with data that the frontend renders in the page,
what happens if there’s more data than the page can hold? As we discussed
in the user experience section, dumping a lot of content leads the page to
have a scroll bar and exhibits poor user experience.
A known technique to solve this is to conveniently cut the data at logical
boundaries and amounts that can roughly fit in a page and provide
navigational controls for the rest of the data. This is called pagination.
Pagination has an added advantage. It can focus on delivering the first page
to the client with utmost responsiveness and offload the processing of the
rest of the page at its own sweet pace, depending on how the backend is
designed.
The following code shows the implementation of simple pagination:

1. <html>



2. <head>
3. <style>
4. .pagination a {
5.   color: red; float: left;
6.   padding: 10px 16px;
7.   text-decoration: none;
8. }
9. </style>

10. </head>
11. Welcome to foo's web site!
12. <p>
13. Page 1:
14. <br>
15. <article>
16. I am a building, in the city of London, very tall, <br>
17. very old, and extremely famous. One of the most <br>
18. important things about me, is its very large domed roof.

<br>

19. </article>
20. <body>
21. <div class="pagination">
22.   <a href="pagination1.html">&laquo;</a>
23.   <a href="pagination1.html">1</a>
24.   <a href="pagination2.html">2</a>
25.   <a href="pagination3.html">3</a>
26.   <a href="pagination3.html">&raquo;</a>
27. </div>
28. </html>

And the following screenshot shows the resulting paginated web content:



Figure 8.39: A web page with paginated content

Search
This refers to embedding a trivial search engine or a custom search feature;
both are equally useful in many websites. While a trivial search engine
provides you with the option of searching the Internet while still remaining
on the website, the custom search feature performs the search within the
website.
Creating a search form is very easy, but what makes it complex is how the
query is processed at the server side.
The following code shows how to embed a search feature in our web page:

1. <html>
2. <body>
3. <form action="https://www.google.com/search"

target="_self">

4. <input name="q" type="text">
5. <button type="submit">Search</button>



6. </form>
7. </body>
8. </html>

The following screenshot shows how the search feature is embedded in the
page:

Figure 8.40: A web page with search option

The next screenshot shows the resultant page of a search performed:



Figure 8.41: A web page with search result

Filters
Filters are predicates that control the search behavior. The most common
filter types are: filter by date range and by match type. Similarly, sorters are
functions applied on result ordering. The most common sort types are: sort
by date and by relevance.
The following code shows how to apply filter controls:

1. <html>
2. <body>
3. <form method="POST">
4. <select name="range" id="range">
5.   <option value="day">this day</option>
6.   <option value="week">this week</option>
7.   <option value="month">this month</option>
8.   <option value="year">this year</option>
9. </select>



10. <input name="q" type="text">
11. <button type="submit">Search</button>
12. </body>
13. </html>

The following screenshot shows how the filter control is rendered in the
page:

Figure 8.42: A web page with filter controls

It is up to the backend to decide what to do with the filter options. The
following screenshot shows a web page that simply printed back the filter
options to show how it can be retrieved:



Figure 8.43: A web page with filtered content

Geolocation indexing
In many use cases, the server would need to know your current location. A
simple example is a home delivery application wanting to know your
precise location rather than address; this can then be mapped to know the
street address using Google Maps integration.
The following code shows the usage of geolocation indexing:

1. <html>
2. <head>
3. <style>
4. table, th, td {border: 1px solid black;}
5. </style>
6. </head>
7. <body>
8. Welcome to foo's web site!



9. <p>
10. Your location details:
11. <table>
12.   <tr>
13.     <th>Longitude</th>
14.     <th>Latitude</th>
15.   </tr>
16.   <tr>
17.     <td id="long">0</td>
18.     <td id="lati">0</td>
19.   </tr>
20. </table>
21. <script>
22. var long = document.getElementById("long")
23. var lati = document.getElementById("lati")
24.   navigator.geolocation.getCurrentPosition((pos) => {
25.   lati.innerHTML = Math.round(pos.coords.latitude * 100) /

100

26.   long.innerHTML = Math.round(pos.coords.longitude * 100) /
100

27. })
28. </script>
29. </body>
30. </html>

And the following screenshot shows how the location is displayed on the
page:



Figure 8.44: A web page with geolocation

Authentication
User authentication is a complex process. On one side, a website has to deal
with the algorithms that define passwords, while on the other hand, it needs
to take care of managing its safe creation, transport, validation, and
processing.
The complexity increases with federated accounts, wherein websites reuse
another account that is already created or one that is already logged into.
The complexity increases further with two-factor authentication for
tightening the validation methods, as there are workflows that include
multiple validation methods.
Non-standard credential management APIs address most of these
complexities. Web Authentication APIs, which is an extension of Credential
management APIs, expose interfaces for creating and obtaining new or
existing credentials associated with a user account. The APIs take care of
preventing common security threats like phishing and password attacks.



While it is possible to authenticate using plain Node.js APIs, it is neither
straightforward nor practical, so a recommended approach is to use third-
party libraries that specialize in authentication feature.

Admin dashboard
Websites that deal with commercial transactions can have an administrative
dashboard that shows multiple views around the usage of the website,
through the mainstream path. Here are some examples of what these
dashboards can typically include:

Tickets: open, closed, new
Users: total users, daily, weekly, monthly
Resource usage: CPU, memory, network
Geography: NA, EU, EMEA, AP

The following screenshot shows a typical website admin dashboard:

Figure 8.45: A web page with sample admin dashboard

User profile



A user profile page is a form that collects users’ information beyond just the
username. This information can be useful for the site owner for associating
the site activities and customer’s attributes to glean valuable insights. On
the other hand, the user benefits through the profile in the form of
customized and personalized experience in the website, which has taken
into account the extended personal information while processing the user
request and composing the web page from the server response.
The following code shows a typical user profile page:

Figure 8.46: A web page with user profile form

Conclusion
In this chapter, we bridged the knowledge of our backend with that of the
frontend and filled the missing piece in the bigger picture of web
architecture—frontend design considerations and web page elements. We
looked at the common requirements of a website (frontend rendering) and
how pages and forms can implement some of those common features. First,
we looked at the user experience of website and how that drives the
considerations of web page constitution. We also looked at the various



constituent elements that contribute to a website based on different use
cases and how special components meet those requirements in the page
design.
This completes our end-to-end study of developing a web server and
website using just Node.js and command line interface.
In the next chapter, we will examine non-functional factors that are
important in terms of hosting an industrial-strength and production-grade
website. These factors include deployment topologies; scaling
considerations; Reliability, Availability, and Serviceability (RAS); and
monitoring and tracing. These elements help execute the life cycle
operations of our software (such as development, testing, deployment,
upgrade, and support) with relative ease and maintain our website with
enhanced confidence.
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CHAPTER 9
Making Our Website Production

Grade
ith the previous chapters, we completed our end-to-end study of
developing a web server and website using Node.js and command

line interface as the sole tool from the perspective of functional capabilities.
In this chapter, we will examine the non-functional factors that are
important in terms of hosting an industrial-strength and production-grade
website application. These factors include deployment topologies; scaling
considerations; Reliability, Availability, and Serviceability (RAS)
features; security; observability; and documentation. These ingredients help
execute the life cycle operations of our software (such as development,
testing, deployment, upgrade, and support) with relative ease and maintain
our website with enhanced confidence on its usability. While this
knowledge is not an absolute must for building a sample website, we would
consider it critical for a commercially successful product.

Structure
In this chapter, we will cover the following topics:

Reliability
Availability
Scalability
Observability
Security
Documentation

Objective



After studying this chapter, you will be able to understand the enterprise
enablement of a software in general and a web application in particular. You
will understand how our website can contain the complexities when the
consumption rate increases to enterprise grade and consumption nature
become versatile and heterogeneous. You will also learn how the
application incorporates numerous best practices to make it more robust,
secure, serviceable, and observable.

Enterprise enabling components
The following diagram represents how the above-mentioned attributes help
strengthen a software application for attaining enterprise grade:

Figure 9.1: Constituent elements of a high workload application

Performance
A web application’s performance (responsiveness) is important for its
success, so we want to discuss it in depth, covering the application and the
rest of the execution environment. For that, we focus on the performance
aspects in the next chapter, covering both the web application and the
Node.js runtime. So, we will pass on performance here.



Reliability
Reliability is a software’s ability to perform its stated capabilities as per the
specification under all reasonably possible execution environments.
The following equation can be used to mathematically represent the degree
of reliability:

R = e-λt
Here, R is the reliability, t is the time period in which the reliability is
measured, and λ is the failure rate within the specified interval. From the
relationship, it is evident that the reliability increases for increased time
periods of constant failure rates. Also, the reliability decreases when the
failure rate increases for a constant period.
Reliability is largely a measure of the said software’s quality. This is
because a highly reliable software will cover many possible scenarios in
which the software will be used. So, any action performed to improve
reliability is, in a way, improving the software’s overall quality.
The reliability of a web application is the sum total effect of the reliability
of its constituent components: the frontend and backend, and its internal
and external services. In addition to these, reliability depends on the way
these components interact and the transportation of the input and output of
the business data. So, care needs to be taken to ensure that the component
interaction scenarios are covered when testing for reliability, not just unit
tests or component-based testing.
The following table shows the reliability matrix for a web application—a
minimum checklist that, when met, assures a reasonable level of reliability:

Reliability Fault anticipation Fault interception Fault toleration

Frontend

Backend

Services

Network



File system

Table 9.1: Web application reliability matrix

In other words, these components should ensure an acceptable degree of
fault anticipation, interception, and toleration to make the overall web
application reliable.
In this chapter, we will look at the most common reliability issues that a
web application is subject to and illustrate the remediation or best practices
to be followed in such scenarios. We will start from the frontend, go
backward in the application topology, and cover all the components and
their interactions in a specific order, roughly following the request-response
trajectory.

Issue
The client view of port’s size and shape appear different when the
application is accessed through different devices. Also, the resize behavior
is not consistent.

Remediation
The view port meta tag in HTML can be used to define the overall
characteristics of the view port. And more specifically, the width is defined
as a function of the device's width and a scaling factor to set the default as
the initial window width. The scaling factor is applied onto the width of the
viewport thus obtained.
The following code is an example of how to set the scaling factor correctly:

1. <meta name="viewport" content="width=device-width, initial-
scale=0.5">

In this example, half of the device's width is used to define the width of the
viewport. So, the actual width becomes a function of the actual device
independent of any hard-coded or development-time heuristics.

Issue



Form fields and controls are not scaling relative to the window size, and the
alignments of form fields and controls are haphazard.

Remediation
Cascading Style Sheets (CSS) present very powerful semantics for
positioning and aligning form controls within a form and defining the resize
strategy when the form resizes.

Issue
Inconsistent, irrelevant, and insecure error messages appear on the page
when the backend crashes. The following figure shows an example of a bad
error response:

Figure 9.2: Example of a bad error message

Remediation
Ensure that all responses that reach the client are hand-crafted as opposed to
funneled directly from the error stack.



Ensure that all responses that reach the client are meaningful and
complimented with the standard HTTP status code that most reasonably
reflects the error scenario.
Sometimes it is too tempting to intercept an error and terminate the request
by providing the response at the error site itself. The site may be too deep
into the server’s code (for example, an internal service invocation), and
throwing that error message to the user as is will be less useful. In such
cases, the response should be abstracted to a certain level for the user to
relate to it and potentially take remedial action.
On the other hand, generic error messages (such as “some error occurred,
sorry for the inconvenience”) are not useful either. So, the bottom line is
that the responses should be well abstracted to ensure that they retain the
meaning without revealing the internal specifics.
Ensure that all responses that reach the client are audited well from the
security point of view, that is, they don’t reveal the internal details of how
the server functions or what data elements it processes. As a best practice,
always return error codes and follow the standard.

Tip: Error messages in a web application should be carefully crafted.
Client errors should be well described, directed, and helpful for the user to
fix by themselves intuitively. On the other hand, server errors should
abstract the actual error with a high-level error message, hiding the
internal functioning of the server while providing a meaningful message
to the user, more specifically the message: should the user retry again
immediately, retry after some time, or wait for a notification, and so on.

Issue
Form error management is poor. It reports one error at a time and goes
round in cycles.

Remediation
Handle form validations with extra care, especially with large forms.
Clearly define what is mandatory and what is optional. Define the data type
of form fields properly, more specifically the date fields, mobile number
fields, and such where multiple formats are possible. Clearly specify what



format is accepted, with example, if possible. Accept the most common
formats without being strict, if possible.
Show all errors upfront instead of hiding them from the user until they click
the form submit button.
Don’t clean up the properly filled fields upon validation. Depending on how
large the form is, these can cause severe usability issues as well.
A bad example of an error message: “you might have pressed the back
button in the browser or might have refreshed the page, or some other
unknown error occurred!”. What is the message to the end user here? It’s
that the software is unable to understand what is happening, which leads to
poor end-user experience.

Issue
Captcha is useless—neither readable nor consistent.
The following figure shows an example of a bad captcha that is neither
readable nor meaningful:

Figure 9.3: Example of a bad captcha

Remediation
If captcha is used, be consistent with its font and range. Some captchas are
confusing. For example, an ‘F’ and a ‘T’ will look the same in some bad
captchas, which can add to user frustration.

Issue



Inconsistent behavior with sessions—arbitrary persistence across sessions.
Additionally, the session ID hints at the business logic of the application.
The following figure shows an example of a poorly crafted session record,
as the key-value pair is revealing the business logic of the web application:

Figure 9.4: Example of a poor session cookie object

Remediation
Implement session persistence separately with the main backend process; a
database implementation that adheres to the data integrity constraints is



preferred. That way, sessions become immune to server crashes and can be
used consistently.
Also, ensure that the session IDs (that are stored on the client side) are only
symbolic names and don’t reveal the real meaning of the data that they back
up. Additionally, make the session ID long enough to be immune to brute
force guessing by attackers.
Ensure that all the state transitions in the application are properly covered
under the session’s life cycle and there are no loose ends. An example is a
specific code flow that terminates the current request and completes the
response with the user logging off but the session is still valid due to an
unforeseen flow path in code that the session did not cover.

Issue
File upload function is flaky. Huge files cause the server to hang, and some
binary files can crash the server.

Remediation
Ensure that the file upload feature is properly sanitized in terms of valid file
types and length. Use the file content filter as well as size filter to abort
outlier cases. Throw proper error messages for such cases.

Issue
Based on the location and context of the server failure, the messages appear
differently and in a non-deterministic manner. This inconsistency affects the
interaction with the server.

Remediation
This happens when broken data access leaves the service in an inconsistent
state. Ensure that your application services are not managing the data
directly and are delegated to database management systems instead.
Ensure that the database offers transactional integrity to the data it hosts.
Ensure that the data caching decisions are consistent across different
services.



Issue
Page loads are inconsistent. Some take less and some take more, based on
the request. Some interactions result in timeout or a 404 error.

Remediation
Avoid tight coupling between your application’s internal and external
services, that is, establish inter-service communication through well-defined
API calls, make those calls asynchronous, and define fault tolerating
mechanisms (error handling sequences in simple words) on the service
invocation sites to handle service invocation failures.

Issue
The process is seen to be slowing down over time. When inspected with
tools, it is seen as holding a large amount of native memory.

Remediation
Native add-ons are the first suspects that use native memory outside of the
JavaScript heap. Avoid allocating a large amount of native memory that is
unmanaged by the virtual machine, or it can potentially affect the reliability
of the process in general.

Issue
Inconsistent payment behavior—gateway failures cause lack of
determinism.

Remediation
Ensure that the gateway function is sufficiently robust, atomic, and flexible,
and specifically manage all the failure cases appropriately. Payment
function is very sensitive to the user, so implement it after sufficient and
surplus testing.

Availability



Availability is the ability of a software to be available to perform its stated
capabilities in the eventuality of faults or erroneous situations.
It is defined as the duration for which an application’s service is available,
in relation to the total duration in which the measurement was taken.
Availability is often considered complimentary to reliability because a
software’s availability coupled with its reliability leads to its robustness,
which is a critical quality of production systems.
The following equation can be used to mathematically represent the degree
of availability:

Here, tf is the time to failure and tr is the time to recover, on an average,
and A is the average degree of availability, measured in the time span within
which tf and tr are computed.
Listed here are the most common availability issues and their known
solutions and best practices:

Issue
The web application crashes in certain use cases due to bad or malicious
input.
The following figure provides a typical example of a server crash due to a
simple bug in the program in one code flow path:



Figure 9.5: Example of a server crash

Remediation
Ensure that the application in general and the most common request handler
modules in particular have exception handlers installed, apart from the error
handlers on the participating objects. The most common programming
model of Node.js is to have an ‘error’ event defined on the I/O routines
(such as request and response).
The following code illustrates how to install an error handler on the
participating object:

1. req.on('error', (err) => {
2.   log(`request encountered an error: ${err}`)
3. })

However, the implication of not implementing an error handler is that the
error gets ignored, which may cause the final outcome of the request to
become obscure. On the other hand, exception handlers (such as try-catch
blocks) are part of general programming model and help catch unexpected
programming scenarios.
The following code snippet illustrates how to install an exception handler:

1. try {
2.   const ret = await send(data)
3. } catch (err) {
4.   console.log(err)
5. }

The implication of not implementing an exception handler is that the
process terminates if an exception occurs, and there is no handler to absorb
it.
So, while not having an error handler only affects the serviceability of the
application functions, not having an exception handler affects the
availability of the application itself. So, a best practice is to cover vital parts
of the application with an exception handler. This ensures that faulty
transactions are aborted with proper exception messages, while good



transactions continue to be processed, leading to improved availability of
the application.
When dealing with exceptions, ensure that there is a designated catch block
to handle every explicit exception thrown from the application. There are
exceptions that can leak through it (for example the exceptions that the
runtime API throws), but we should handle as many exceptions as possible.
A Node.js-specific best practice is to emit errors as opposed to throwing
exceptions wherever possible. When the erroneous context has an event
handler object as a subject of the error or the consumer of the error, it is
reasonable to emit the error on that event handling object.
The following code snippet illustrates how to effectively use event
mechanism to intercept and propagate erroneous situations in your program:

1. setTimeout(() => {
2.   if (source.hasData)
3.     source.emit('error', 'ETIMEOUT')
4. },10000)

Issue
The web application crashes/terminates under certain unavoidable and
unanticipated scenarios.

Remediation
Despite the earlier precaution being accommodated, the application can
abruptly terminate at times. An example is the lack of resources to process
the current load (such as memory, thread, and file descriptor).
On the eventuality of such a crash, the simplest strategy in a production box
is to collect the crash artifacts (such as dumps, traces, and logs) and then
immediately restart the application. But there is a definite delay, which can
range from minutes to hours (depending on how fast the crash is detected) if
this is a manual process.
So, a recommendation is to run the application through a launcher script
that can run a loop, whose sole function is to:

Run the application



Collect the must-gather artifacts
Repeat this in a loop

A simple pseudo UNIX shell script is shown here to illustrate how to carry
this out:

1. while [1]
2.   do
3.   node app.js
4.   if test core
5.     then
6.     mkdir /tmp/`date +"%m%d%y%H%M%S"`
7.     mv core /tmp/`date +"%m%d%y%H%M%S"`/core
8.   fi
9. done

The preceding code runs the Node.js application in an infinite loop. In each
loop iteration, we test for the presence of a core file by name after the
application is terminated (potentially due to a crash), and if yes, we create a
temporary folder with the current date and time and move the core file to
that location. Then, we rerun the application. This ensures that the core files
are not lost in the eventuality of server crashes.
This will also ensure that the application is always available at a granularity
equal to the startup time of the application. But it also has a side effect—the
request that actually caused the crash, and all other requests that are running
concurrently in the application, will be aborted together and need to be re-
issued from the client side.

Note: Do not compromise reliability and functional correctness for
availability, that is, do not try to cover up or circumvent an abnormal
program scenario that is completely unanticipated by the application
and/or the runtime. Doing so by ignoring the error and trying to continue
can lead to more severe side effects for the application.

Issue



We cannot afford the aforementioned scenario of call-drops and low
availability at the time of server crashes.

Remediation
If the above setup does not meet your application’s Service Level
Agreement (SLA), the next action is to make redundant copies of your
application in multiple systems. In simple words, this will make multiple,
identical copies of your application running in different systems, all ready
to serve the client. Redundancy is a production best practice process that
recommends creating systems with improved degrees of availability.
There are several approaches to achieve high availability through
redundancy, with varying costs to maintain availability tradeoff.

Master-slave replication
In the master-slave model, we run the main server in primary mode, while
the slave system will be on standby. When the master crashes, the slave
rises up to the occasion and manages the load, designating itself as the
master. Behind the scenes, the master will bootstrap from crash and become
the new slave. When the new master crashes, the new slave becomes the
master, and the cycle goes on.
The following diagram illustrates the master-slave model in availability
architecture:

Figure 9.6: Application replicated in a master and slave system



The tradeoff here is the low maintenance cost for a little fallback on the
availability. There is still a time gap between the master becoming
unavailable and the slave becoming available.

Peer-peer replication
In the master-slave model, the key drawback was the downtime between
master crash and slave boot-up. In the peer-to-peer model, both or all the
systems are ready to serve clients at any point. This model banks on the
statistical theory that the probability of all the systems to be down
simultaneously is almost zero.
The following diagram demonstrates the peer-peer model in availability
architecture:

Figure 9.7: Application replicated in two identical peers

The tradeoff with peer-peer system is the high cost to maintain all the
systems, but it ensures a high degree of availability. Also, there is
synchronization between the peers: how to determine which request goes to
which peer?

Cluster and load balancer
The concern of peer-peer is addressed in the cluster with load balancer
topology. In this, several identical servers (called replicas) run parallelly
while the request routing is carried out by a load balancer (also called
reverse proxy) placed between the client and the peers (also called replicas).



This solves the issue of synchronization. The load balancer performs a
number of other actions, such as page caching and request validations.
The cluster-load balancer model in availability architecture is illustrated as
follows:

Figure 9.8: Application replicated in multiple systems

Issue
There is still a concern on the availability, as the systems (nodes) in the
cluster are physically co-located and incidents like fire can cause the entire
system to be damaged and thereby, unavailable.

Remediation
The recommended solution for this is to diversify the application with
respect to its physical presence, that is, have data centers and clusters at
different geographical locations.



The following diagram illustrates the cluster-load balancer with a
geographically distributed model in availability architecture:

Figure 9.9: Application replicated in multiple geographical locations

Note: Application availability with multiple servers installed across
multiple geographical locations and synchronized by a central router to
balance the load is the most modern format for achieving high availability
at the time of writing this book.

Issue
The above-mentioned methods work well for the application and its
dependent services. However, the database that the services connect is still a
single instance and cannot be replicated the way the application is. So, all
the mentioned issues affect the database too. This leads to the reduction of
overall application’s availability, as there is at least one component still
vulnerable from the high availability standpoint.

Remediation
Databases can be scaled up as well, through a technique called sharding. A
shard is a subsidiary database of the main database that is partitioned in
terms of rows. With sharding in place, several shards will constitute the



logical aggregation of a database. Database operations scoped with rows
(deletion, update, insertion, and so on) can be performed on any shard,
while operations scoped at the table level need aggregated views of all the
shards. These internal complexities are managed by the database server
software and are fully concealed from the consuming application.
The following is an illustration of the database replication model in
availability architecture:

Figure 9.10: Database sharding

Additional database-related best practices include performing regular data
backups and regular data replication.

Issue
Despite all these features, there are times when the application needs to be
brought down for maintenance, for example, to upgrade the server
application. This is an unavoidable downtime and affects the application’s
availability.



Remediation
There are techniques to incrementally upgrade the application in a
controlled manner. One of these techniques is called blue-green
deployment. Here’s how the blue-green deployment works:

1. Part of the instances is brought down
2. The brought down instances are upgraded to a new version
3. The traffic is diverted to old instances in the meanwhile
4. The brought down instances are made up and running
5. Some traffic is diverted to the new instances
6. Once the new version stabilizes, more traffic is diverted
7. This is repeated until all the instances are upgraded

Another approach that works for certain runtimes and languages is hot code
replacement. In hot code replacement, the running application is amended
even without it being brought down. Instead, special instrumentation APIs
are used to modify the code and data—classes, objects, methods, fields,
configurations, strings, and so on. This way, the application is upgraded in
process.

Scalability
Scalability is the ability of a software to perform its stated capabilities
under growing load, without compromising on reliability, availability, and
performance.
Bringing the definition to the context of a web application, scalability is the
ability of a web application to adjust with the change in traffic and provide
the same response time for all clients.
Scalability can be measured as a ratio of the application’s performance
(average response time) to the increase in the client request count.
The following equation can be used to mathematically represent the degree
of scalability:



Here,/ Req(t) represents the request density (the number of incoming
requests within a specific time span) and Res(t) represents the average
responses sent in the same time span.
At high level, scalability has two governing principles:

Add more resources (CPU, memory, I/O) to handle the increased load
Reduce bottlenecks (single point critical sections) as much as possible

The key here is to be able to supply server resources in proportion to the
increase in client demand and sustain the ability of these resources to
function independently. A static configuration of resources that is pre-
defined based on the perceived amount of load is a good baseline for a
healthy application. An application capable of continuously adjusting these
resources as the workload characteristics change qualifies as a healthy and
scalable application.
All the scalability best practices specialize on the two above-mentioned
elements.
Node.js as a language runtime is designed to be scalable, which means,
there is a high level of resource autonomy—the ability to create and use
resources without any side effects to the environment— at the platform and
the API level. The following are the main reasons for this are:

Single-threaded virtual machine
Event-driven architecture with asynchronous programming

The single–threaded programming model ensures that there is no shared
data and locks in the program. At the application level, this would mean
that the increasing number of concurrent client requests does not impose
any bottleneck to the application or process. The opposite of single–
threaded programming model is multi-threaded or a thread–pool model,
wherein the concurrency is managed by multiple threads, with associated
resources and shared data that all the threads synchronize upon.



Event–driven architecture ensures that the execution density is maximum at
any given point. This means the single thread is free to perform queued
operations while the events (mostly I/O events) are processed behind the
scenes.
Despite these benefits of inherent scalability, we must be aware of several
considerations for a web application and address them through best
practices.

Note: Execution density is defined as the number of operations performed
per second at the lowest level of measurement possible. This mostly boils
down to the average CPU usage, as active usage of the CPU is a true
measure of how much of the allocated time of a specific CPU to a specific
thread was leveraged by the thread.

Vertical scalability
Vertical scalability is the ability to effectively increase the resources in
response to an increase in the load from within the server’s system. In other
words, it is how the application can withstand the increased load, by using
more CPU, memory, network resource, and so on.
The following diagram shows stacked up CPUs in a single system to
represent the approach of vertical scalability:



Figure 9.11: Representation of vertical scaling

Issue
My system has several CPUs, and yet the Node.js application is not
exercising all of them. On the other hand, a performance saturation can be
seen when the concurrent client count increases beyond certain limits. As a
result, the system is incapable of handling the load, while the available
resources are underutilized.
The following graph illustrates a poorly scalable system, wherein the
throughput drops after a certain number of (1500) concurrent users
connecting to the application instance:



Figure 9.12: An example graph showing performance saturation

Note: Performance saturation is a phenomenon in which the throughput
reduces slowly in response to an increase in concurrent workload.

Remediation
This is a known side-effect of the single-threaded programming model that
Node.js presents. As we are increasing the concurrency level to extreme
scales in one thread itself, the model does not go hand-in-hand with multi-
processor systems (systems that are largely developed to support multi-
threaded software).
We need to realize a few things before even recognizing this as a
problem/tradeoff. Some key aspects around Node.js concurrency are
explained ahead. Evaluate your workload characteristics and use case
carefully in the context of Node.js’s concurrency before applying scalability
best practices.

Node.js is NOT single-threaded!
“Is Node.js single-threaded?” This is a recurring question, like the chicken-
egg puzzle. In many places (even in this book), we read that Node.js is
single threaded, but many other places talk about threads and (even)



threading in Node.js. What is the truth? Let’s examine a representative
Node.js process from the operating system’s perspective. For this, let’s
perform this simple activity:

1. List all the processes running in the shell, expanding on the process
threads

2. Start a trivial Node.js process
3. Make it run in the background
4. Repeat the first step—list the processes and thread in the shell
5. Count the number of new threads that have come up

The following screenshot shows that Node.js is not a single-threaded
process by first printing the number of threads in an empty shell, and then
counting the number of new threads seen through the shell with a Node.js
process started:



Figure 9.13: Multi-thread view of a Node.js process

So, it is not single-threaded and has more than 10 threads inside! What does
this mean?
Here are the facts about threading in Node.js. Node.js is technically multi-
threaded, which means the virtual machine or the language runtime has
multiple threads in it. However, the application runs on a single thread. The
other threads support tasks that are essential for the non-blocking,
asynchronous, event-driven programming model. Here are some examples:



Perform a disk I/O (that was requested by the application) in a
separate thread rather than in the main thread (also known as the
application thread).
Run garbage collection concurrent to the application. Evidently, these
operations take a lot of CPUs and can potentially delay activities in the
main thread if carried out there.

In summary, Node.js runs its application on a single thread, but there are
several supporting threads to implement the high level of concurrency.
So, if you have machines with 2, 4, 8, or even 16 logical CPUs, you can
host a single Node.js process without worrying about resource
underutilization. A concurrent workload will ensure that most CPUs are
engaged in a reasonable manner.

Efficiency does not increase in proportion with threads
The preceding discussion on threads could easily bring in the notion that the
more threads you have, the better. But it’s not true. More threads run
parallelly when run on multi-CPU systems, but if there are shared
resources, the parallelism is lost due to resources (code and data) that act as
bottlenecks.
This can be exemplified with a real-world case study. A thread-pool based
Java application server hosting a Java web application showed the
following data when profiled for CPU efficiency. The following table
shows an exemplary (not an industrial benchmark, only a reasonable
average) workload efficiency with a multi-threaded application:

Attributes Value

Number of threads 10

Average CPU consumption 8%

Total workload efficiency 80%

Table 9.2: Average workload efficiency in multi-threaded applications

The result differs when the same workload is hosted on a single-thread
Node.js runtime. The following table shows an exemplary (again, not an
industrial benchmark, only a reasonable average) workload efficiency with
a single-threaded Node.js application.



Attributes Value

Number of threads 1

Average CPU consumption 93%

Total workload efficiency 93%

Table 9.3: Average workload efficiency in single-threaded applications

Evidently, a single thread can bring more workload efficiency than 10
threads. This is because the threads performing blocking I/O are idle for
most of the time while holding on to resources. On the other hand, the
single-threaded system performs I/O as non-blocking, and the wait time is
effectively utilized for running other work (potentially the next request in
the queue), increasing the overall efficiency.
Secondly, multiple threads introduce the burden of locking. With a single
thread, the program data is automatically protected from cluttered access
and devoid of the overhead of synchronization efforts and the wait time
thereon.
In summary, the number of threads does not truly reflect
efficiency/inefficiency. Instead, the amount of CPU utilization as a function
of the available CPU count is a reasonably good measure of efficiency.
So, carefully assess the above-mentioned factors and determine whether
scalability is a need before tuning your application for scalability
improvements.

Issue
My system is underutilized despite the consideration of high CPU density
through concurrency, as only a very small percentage (< 10%) of the CPUs
are actually contributing to handling the load.

Remediation
There are at least three different architectural models that help a Node.js
process to vertically scale and take advantage of the multiple CPUs in the
system. Each model addresses the case differently and with different
tradeoffs.



Multiple Node.js processes or child process
In this model, identical application replicas are started in the system to use
the free CPUs and share the workload.
The following code snippet shows how to prepare the application to run its
multiple instances in the same system (by parameterizing the port number):

1. const h = require('http')
2. const s = h.createServer((q, r) => {
3.   r.end('hello')
4. })
5. 
6. s.listen(+process.argv[2])

And the following code snippet shows how to run the application’s multiple
instances in the same system (by assigning different port numbers to
different instances):

1. $ node app.js 12000
2. $ node app.js 13000
3. $ node app.js 14000
4. $ node app.js 15000
5. $ node app.js 16000

Pros
Each process is truly independent from the others, so it improves
vertical scalability and availability in case one or more processes
crash.

Cons
Each process is running on the same system and one system can have
one unique port, so multiple servers cannot listen at the same port at
the same time. On the other hand, we need to expose a single port
number to the external world.



Also, if we resolved the unique port problem, how do we decide which
server instance should handle which request? How do we ensure that
the client requests are evenly distributed? So, there is the additional
work of intercepting the request through a published port and routing
requests to the different instances of the application.

These can be addressed by installing a load balancer (reverse proxy) in the
middle, which receives the request and routes it to the actual Node.js
processes in the system.

Cluster (Node.js module)
Don’t confuse the cluster module with the general concept of cluster in
distributed computing. While the objective is the same, we are discussing
the Node.js module called Cluster here.
This module implements APIs specifically to address the two issues
mentioned in the child process case:

Unique port
Balancing the load

The following code snippet shows how to run multiple instances of the
application in the same system and share a single port number (using the
Cluster API):

1. const c = require('cluster')
2. const h = require('http')
3. 
4. if (c.isMaster) {
5.   c.fork()
6.   c.fork()
7.   c.fork()
8.   c.fork()
9.   c.fork()

10.   c.on('exit', (w, e, s) => {
11.     c.fork()



12.   })
13. } else {
14.   const s = h.createServer((q, r) => {
15.     res.end('hello')
16.   })
17.   s.listen(12000)
18. }

In the preceding code, we implement a web server with the help of a master
and five workers. We create the workers in the master. Upon the exit of any
worker, we create another worker to ensure that we always have five
healthy workers. The ‘fork’ API of the cluster module is used to create a
new worker process, and we set up a server instance in each worker. The
key aspect to note here is the usage of the port. Although it appears that
every worker process seems to be listening to port 12000, under the cover
only one entity (the master) is actually listening, while the request is routed
to any of the workers based on a predefined algorithm.
The following screenshot shows proof that all the cluster instances share a
single port number and that the server is listening to accept incoming
connections:

Figure 9.14: Proof for port sharing by all cluster members

In this approach, there is one master process and several worker processes.
In the most common model, the master process accepts the request and
delegates further processing of the request to one of the worker nodes. The
assignment happens in a round robin manner.

Pros



With this approach, the multi-core leverage and load balancing are
taken care of.
Worker crashes do not affect the cluster. New workers can be spawned
transparent to the frontend/client.

Cons
Sessions are not managed by the module; that is a responsibility of the
application itself.
Crash to the master will destabilize all the workers, so there is a single
point of criticality.

Worker threads
The worker threads module provides API support for first class threads in
Node.js. These threads can run parallelly with the main thread and execute
any arbitrary piece of code. In the most common use case, worker threads
are used to run CPU-intensive operations that are off-loaded from the main
thread. Web request sharing through workers is a natural expectation, but
we haven’t seen workers used in that manner yet.
The following code snippet shows how to run the web application with
multiple threads in the same process, offloading CPU-intensive work to
those threads (using the worker-threads API):

1. const worker = require('worker_threads')
2. const w = new worker.Worker('./worker.js')
3. w.on('message', (m) => {
4.   console.log(`worker message: ${m}`)
5. })
6. w.on('error', (e) => {
7.   console.log(`worker error: ${e}`)
8. })
9. w.on('exit', (c) => {

10.   console.log(`worker exit code: ${c}`)
11. })



In the preceding code, we create a worker thread and pass the script that it
needs to run as an argument. In the parent, we install callbacks for message,
potential error, or exit from the worker thread and handle those scenarios
appropriately.

Pros
Managing the worker thread life cycle is easiest among the three
vertical scalability approaches: Child Process, Cluster, and Worker
Threads (creation, launching, executing, data transport, and
destroying)

Cons
Sharing web workload is not easy

In summary, these three modules provide different capabilities to exploit
multi-core and increase vertical scalability at different levels of API
abstraction. One or a combination of these can be employed based on your
specific use case.

Horizontal scalability
The best practice around horizontal scalability is to employ redundant
copies of the same application (called replicas) in different systems and
install a central dispatching entity (called load balancer) that controls the
traffic between the replicas.
The following screenshot shows stacked up CPUs in multiple systems to
represent the approach of horizontal scalability:



Figure 9.15: Horizontal scaling example

Auto-scale architecture is an application architecture in which fully
independent replicas of application modules are deployed and used in
response to an increase in the application’s demand. First, the application
itself is decoupled and decomposed into multiple services, and then each of
those services is allowed to function independently. This produces optimal
scalability outcome, though at the expense of a little extra allocation of
resources per replica.

Observability
Observability is defined as the measure of visibility to an application’s
internal state, from the observable data that it produces. In other words, it is
the degree of transparency the application’s functions are exposed to the
outside world, through the logging data it produces.
Bringing the definition to the context of a web application, observability is
the ability of a web application to capture data of at least three levels of
abstraction:

Application topology view: The ability to visualize the shape of the
application
Performance view: The ability to visualize the performance
characteristics
Individual transaction view: The ability to dissect to each request-
response cycle



In addition to this, we should capture data pertinent to anomalies (incidents)
that occur in the application. The data can be a crash dump, a CPU spike
graph, or a call drop trace. The data thus captured should be sufficient to
figure out what happened to the application and why, when, and how it
happened. The best practices listed here focus on these scenarios and ensure
that the application is observable in a comprehensive manner, under all its
stated use cases.
The following figure shows the key elements that constitute Observability:

Figure 9.16: Essential ingredients for observability

To achieve all these, the comprehensive data capture will follow this form:

Trace/log
Profile/monitor
Dump/snapshot



Trace (also known as log)
Trace is defined as the process of recording the information about a
software execution. More specifically, it is the capturing of important
information at vital control flow points in an application to visualize the
sequence of actions (instructions/tasks) that were carried out in the
program. Tracing and logging are used to represent different things in many
technologies, but they are one and the same at the level of generalization we
are describing.
The following screenshot shows an exemplary trace with the built-in
`NODE_DEBUG` option enabled, which traces the specified module:

Figure 9.17: Example of executing application with Node.js debug tracing

The following screenshot shows how to enable built-in trace for a Node.js
application:

Figure 9.18: Command line to execute application with v8 tracing

The following screenshot shows an exemplary trace with the built-in `--
trace` option enabled, which traces the entire application:

Figure 9.19: Example of a Node.js trace data

Tracing is useful when we are inspecting a specific sequence of task or a
single transaction. Here’s a common debugging algorithm:

1. Line up the trace data for the entire span
2. Identify the earliest trace record with no anomaly
3. For each trace record, inspect the corresponding code in the source



4. Follow the control flow and the data flow
5. Repeat the last two steps until you catch the error

Some common practices around tracing are as follows:

Ensure that the tracing frequency is normalized across the application,
so try to maintain the same rate if you have a trace record per 100
lines of code in a module.
Ensure that the tracing follows a hierarchy, that is, a trace record tells
us which module that trace belongs to. For example, application logs,
database logs, and network logs are discretely distinguishable from
one another.
Ensure that the trace record has a well-defined structure and is
machine-readable so that it can also be fed to sophisticated
visualization programs in addition to direct human consumption.
Ensure that each record has a unique ID, a timestamp, and a clear
message that reflects a specific decision point in the control flow and
its associated data.
Ensure that the trace is configurable and with different levels of
intensity. This means a more intense tracing will produce maximum
trace records, while a less intensive tracing will produce minimal trace
data. As tracing incurs CPU time, there is always a tradeoff between
traceability and performance.

Profiling/monitoring
Profiling is defined as the process of recording information about a software
execution. More specifically, it refers to capturing important information
about resource consumption in an application to visualize the performance
characteristics.
Profiling is useful when we are inspecting a general sequence of task with
the expectation of drilling down to a specific section of the code. Here’s a
common debugging algorithm:

1. Line up the profile data for the entire span
2. Identify the top space (memory)/time (CPU) consumer(s)
3. Narrow the profile data to cover the span of the top consumer



4. Identify the top consumers(s) again
5. Repeat the last two steps until you catch the hotspot

Ensure that the profiler can show hierarchical views in terms of top CPU (or
memory) consumer:

Modules, classes, functions, blocks, lines, instructions – for CPU
Modules, libraries, classes, objects – for memory
Application, middleware, frameworks, tools, runtime, OS – for both

The following screenshot shows an exemplary profile captured through a
monitoring tool that shows the CPU utilization profile for various methods
that took part in a transaction:

Figure 9.20: Example of a CPU profile (aka flame graph)

This hierarchy helps different people diagnose the bottlenecks at differing
levels of abstraction. For example, an architect may want to see the most
memory-savvy module with an objective of restructuring it, while a
developer may want to see a set of instructions that is responsible for a
specific latency value.
Similarly, the division of resources between various software stack
components helps isolate the bottleneck in a specific component.



One of the important things about performance profiling is defining a
baseline. This is carried out by running a desired workload and measuring
and recording all the relevant parameters. Later, this is used for comparison
for easy detection of outlier patterns and abnormal behavior.

Dumping/snapshotting
Dumping is defined as the process of recording information about a
software execution. More specifically, it refers to capturing important
information about the state of the application as an operating system
process to visualize the internal state.
Generally, there are three types of dumps:

System dump (aka core dump, minidump, core file, abend dump, core)
Heap dump (aka heap snapshot, heap profile)
Textual dump (aka snapshot)

A system dump contains the entire virtual address space of the running
process and the internal state of the process; for example, the call-stack and
register content of each thread, shared libraries, open file descriptors, and so
on. We need a special debugger tool to launch and process the system
dumps. Node.js dumps can be launched in native debuggers like gdb, lldb,
windbg, and dbx. Some of the internal data structures are not understood by
the native debuggers due to the managed runtime nature, so a debugger
plugin like `llnode` comes in handy to have a sophisticated debug
experience.
The following screenshot shows an exemplary stack trace captured through
a debugging tool (gdb) that shows the function calling sequence within a
core dump collected from a Node.js application:



Figure 9.21: Example of a stack trace from a system dump

A heap dump contains the entire content of the managed heap (aka object
heap). We need special tools to launch and process the heap dumps. We can
produce heap dumps at will using v8 APIs, or they are automatically
generated when the heaps get exhausted.
The following screenshot shows an exemplary JavaScript heap captured
through a debugging tool (heapdump) that shows the objects within the
heap with their resident size:

Figure 9.22: Example of a JavaScript heap snapshot

A textual dump contains an array of usual information about the
application. This can be thought of as a combination of both process-level
and application-level data that is easily consumable. For Node.js, diagnostic
report is the text dump. It is produced on demand and automatically
produced in the case of abnormal events.
The following screenshot shows an exemplary text dump captured through
a debugging tool (diagnostic report) that shows the various internal states of
the running process:



Figure 9.23: Example of a diagnostic report snapshot

Dumping is useful when we are debugging issues at the lowest level with
the ability to drill down to a specific section of the code and date. Here’s a
common debugging algorithm when debugging a system core file:

Identify the problem context: code and data
Locate the failing context in the dump
Identify the call sequence that led to the failing context
Walk backward in the call sequence
Record the data transformation/code logic in the backward route
Repeat the last two steps until you catch the bad code/data

In summary, tracing, profiling, and dumping are powerful techniques to
know the code flow/data flow, performance, and the internal state of the
application, respectively. It is an anti-pattern to use these techniques
interchangeably; for example, using tracing to figure out the state of the
application, dumping to detect the application flow, and so on. While they
give you some result, they are neither comprehensive nor optimal.



Security
Security is defined as the measures taken in the software to protect it
against intended or unintended abuse leading to loss of data, business, and
reputation. In web application’s context, security is of paramount relevance
and importance as most software abuse targets web applications.
We have discussed the driving principle of web application security in
Chapter 3, Introduction to Web Server. Since the application resides in a
remote host and is accessed through the internet, the software becomes
subject to illegal access and potential manipulation. So, securing a web
application means:

Ensuring that only valid users are accessing the service
Ensuring that access is restricted to specific areas for valid users

All the security best practices are fundamentally one or the other form of
these.

Input validation
Given that the server processing is largely driven by input (user request), a
class of security threats use crafted input to drive the web application into
vulnerable control flow paths. So, the input should be thoroughly sanitized
even before the request processing begins.
The following screenshot shows an exemplary request URL that shows an
embedded query that is potentially vulnerable if processed as is (or un-
sanitized):

Figure 9.24: Example of a vulnerable request header

This can be direct, such as an SQL query in the user input driving the server
to execute it as is, or indirect, such as a number in the query string driving
the server to allocate as many bytes of memory to hold a string. In either
case, care must be taken to validate the request and assert that it is genuine
and will not break the server.
Other examples where user input can mislead server actions are regular
expressions, evaluation function, timer intervals, child process strings,



operating system commands, and so on.

Secure headers
Use security headers like X-content-type-options, X-frame-options, and
content-security-policy to protect against cross-site scripting and click-
hijacking.
The following screenshot shows a secure request header:

Figure 9.25: Example of a secure request header

Secure sessions
Create strong, unique session identifiers with proven algorithms. Ensure
that the sessions are well confined to the scope of the user's login session,
and ensure that the session has a reasonable life span. Too short an interval
can affect user experience, while too long an interval can lead to security
issues.
The following code snippet shows an exemplary secure session cookie
object creation:

1. const session = new Session({
2.   secret: 'top secret',
3.   resave: false,
4.   saveUninitialized: false,
5.   cookie: {
6.     secure: true,
7.     maxAge: 20000
8.   }
9. })

Authentication and authorization



In simple words, we must institute controls to ensure that only valid users
can enter the service and only a well-defined part of the service is
accessible to a group of users. This is called role-based access control.
The following code snippet showcases authentication and authorization:

1. function authenticate(user, ctx) {
2.   if (!user.cred.matches(ctx.cred))
3.     reject()
4. }
5. 
6. function authorize(user, ctx)
7. if (!user.role(matches(ctx.access))
8.   reject()
9. }

Data encryption
Ensure that valuable business data that flows between the client and server
is always encrypted. Though this does not directly impact the server’s
functioning, the data that gets stolen if sent unencrypted can lead to
credibility loss for your web application. So, always use secure protocol for
data transport.
The following code snippet demonstrates secure data transport:

1. const crypto = require('crypto')
2. const data = 'top secret'
3. const buffer = Buffer.from(data)
4. crypto.publicEncrypt(buffer, rsa_pubenc)

Audit logging (aka logging for security)
Security incidents like executing arbitrary code and taking undesired
control flow can be detected later if there is adequate logging in your
application. So, apart from the logging that aids observability, ensure that
the audit log is taken care of in the application at the design phase itself.



The following code snippet shows logging for security (audit log):

Figure 9.26: Example of a security log

File system protection
Ensure that the web application has well-defined access to the file system.
The application code and the configuration are maintained as read-only for
the user who runs the application. That way, the process cannot corrupt the
code and configuration in the case of an exploit.
The following code snippet shows a secure file system management of
server resources:

Figure 9.27: Example that shows how to secure server file system

Shutdown unwanted ports
Use networking primitives to close unused ports in the system as open and
lingering ports allow attackers to use them to send content to the outside
world if the system is compromised. Also, open ports allow attackers to
gain better information about your network, operating system, and such
without breaking into the system.



Documentation
Documentation is a text that explains the software’s capabilities and usage.
In the context of a web application, it is composed of at least three things:

Topology of the website (or a site map)
Feature documentation (or user guide)
Troubleshooting guide (or support document)

The philosophy of web application documentation is to be able to follow
the documentation to use the web application in its entirety, with minimum
or zero manual intervention and support from the vendor. Ideally, users do
not want to read through long documents to understand how a web
application works, but from the application’s perspective, it is great to have
a compact document. Some simple best practices are:

Categorize the content. Ensure that the overall content is organized
based on the high-level features that the application is offering.
Show screenshots when describing the interactive view part of the
feature. That way, the consumption becomes faster and atomic.
Give examples wherever possible as opposed to explaining generically
or in an abstract manner. Examples are easily consumed as opposed to
definitions.
FAQ-style content is highly consumable too.
Inline help in forms. Some fields are difficult to fill in; for example,
“domain” - the user may not be able to fill it as it is hard to
understand. Some fields (like passwords) may have complex content
rules. So, a tooltip that explains the field context when the user hovers
over it will be very useful.
Make the document or document link available on every page. That
way, user can access it wherever they are.
Document the contact information. A web application with contact
information is a trustworthy site as opposed to a site without one.

Conclusion



In this chapter, we examined non-functional factors that are important in
terms of hosting an industrial-strength and enterprise grade website, like
reliability, availability, scalability, security, observability, and
documentation. We looked at several best practices to strengthen our
application against each of these attributes. We gathered some generic
knowledge that is relevant for any software and specific know-how for web
applications, plus we looked at more concrete scenarios for a Node.js-based
web application. One of the key attributes that we omitted here is
performance, and we want to look at it a little more. So, the next chapter is
dedicated to performance best practices in a web application context,
touching on the software stack involved.



I

CHAPTER 10
Best Practices for High Performant

Code
n the previous chapter, we examined non-functional factors that are
important in terms of hosting an industrial-strength, enterprise-grade web

application. We studied best practices that strengthen our application toward
each of these attributes. One of the key attributes that we omitted there was
performance, and we want to expand that a little more and examine it
exclusively. So, we are focusing on the performance aspect of our web
application in this chapter, fine tuning all the software stack involved. This will
help us understand the execution environment of our application at its finest
level of details, get an insight into various tradeoffs that play roles in the
application’s performance aspects, and apply best practices that are relevant
and known in the area.

Structure
We will cover the following topics in this chapter:

Performance best practice: Hardware
Performance best practice: Network
Performance best practice: Operating system
Performance best practice: Runtime (Node.js)
Performance best practice: Application

Objective
After studying this chapter, you will be able to understand the performance
characteristics of a web application and various best practices to improve its
performance from the ground up. You will learn about the specific
considerations for the selection of hardware, operating system, and network,
and you will understand the specific configurations for the runtime platform



and the application. You will be able to follow these practices independent of
the application’s deployment model. Many of these best practices are generic
and useful for any application, some are for web applications, while some
others are specific for Node.js-based applications due to their peculiar
characteristics and behavior on web workloads.

Performance best practice: Hardware
The server runs instructions on the underlying hardware, so the systems must
be robust (resilient to failures) and powerful (able to execute several millions
of instructions in unit time). It should be able to run for months without
needing to restart. Let’s look at the specific aspects of the hardware that are
relevant to the performance of a Node.js web application.

CPU
In the previous chapter, we described the multi-core exploitation patterns of a
Node.js application in detail. The number of CPUs may be selected based on
your specific case. For example, if you are using an in-built Cluster module
with 10 worker nodes, each worker node will have one Node.js process, and
each will have 11 threads, making up a total of 110 threads. A 120 CPU system
will be a reasonable match for such an application.
The preceding calculation is a rough estimate but a practical approach to
computing the CPU count. For example, not all 11 threads will need active
CPU throughout the application runtime. Except the main thread (the
application thread), all other background helper threads will typically consume
much less CPU, so the application in the above example can run well even
with 70-80 CPUs. But these approximations are reasonable to make given that
every workload will have a certain level of variation either way for CPU
demand.
Installing a lot of spare CPUs does not add value to the application as they are
unutilized and wasted. On the other hand, having less CPUs than required
causes CPU starvation to the threads and will lead to poor performance. So, the
key is to count the number of threads in the application and design a system
that matches the count.
The bottom line here is to allow the Node.js process to run on enough number
of CPUs so that each process thread can run on a separate CPU.



Note: If you are hosting your application on a container orchestration system,
the load balancing is performed by the orchestration system in a horizontal
manner—auto scaling with the help of new replicas of the application. In that
scenario, there is no need for vertical scalability and a large number of CPUs
in the hardware.

Cache
CPU cache are memory devices that are volatile memory for storing in-flight
code and data for programs. CPU caches are faster than main memory (RAM)
but slower than the CPU register, so frequently used data can be stored in
cache instead of the main memory (that needs address translation, optional
memory bus locking, and so on). L1 cache are the fastest but available in KBs,
followed by L2 and L3 caches.
The following screenshot shows the contrast between performance and space
of various internal storage devices:

Figure 10.1: Space-time tradeoff between various data storage devices

The usage of cache improves the overall application performance, but it is not
reasonable to expect these caches to hold all the program code and data of an
enterprise application, even if we select the most frequently used objects as
cacheable candidates. The reason is that a large application will have too much
data to be held in cache. So, at some point in time, useful data gets evicted into
main memory, leading to cache miss. Cache miss is not a program error, but it
affects performance.



Cache miss is more pronounced for applications that run managed runtimes
than for those running applications developed in native languages. This is
because there are two or more discrete layers in the application stack with
respect to data, and their locality of reference is distorted. For example, an
application that deals with the JavaScript heap is in one specific address range,
and the data that the virtual machine deals with for its business logic is in
another specific address range. As a result, caches are a little less efficient in
managed runtimes, though JIT compilers can rectify this to some extent.
The cache miss is even more pronounced in Node.js due to the high level of
concurrency. The same thread is multiplexing between many transactions, so
the data used for Nth transaction may be useless for (N+1)th transaction that
comes for execution and may evict the cache content to put its own data, but
the Nth transaction will find its own data out of cache when it resumes its
execution.
A best practice is to use large L2 cache for your system. In other words, keep
L2 cache size as a key factor when you are selecting your hardware.
Disable Symmetric Multi-threading (SMT) in the system. Enough physical
CPUs to run the workload will help schedule each thread on a physical CPU,
and logical CPUs with SMT may prove counterproductive as SMT threads
share CPU cache and can pollute each other.

Note: Unfortunately, there is no easy way to measure and validate cache
efficiency and map it to the granularity of program objects. However, there
are operating system commands that show cache hit and cache miss on a per-
process basis; these can be used to iteratively understand the cache
characteristics of your process.

Disk
If your application is not a file server or a file upload destination, you do not
really need to worry about the disk specification. This is because the code and
configuration required to run the application are loaded into the memory
before use and remain there for the life of the application. So, the only thing to
take care of is to ensure that the disk has ample storage space for the
application, any logs it may produce, and potential diagnostic artifacts like
heap dumps or snapshots.



Performance best practice: Network
Network tuning plays an important role in the performance characteristics of
Node.js web applications. However, the precise configuration will vary from
one platform to another and one application to another.
Keeping performance as the paramount factor, a general best practice is to
inspect the network tuning parameters, review their implications on your
specific application, and adjust the network parameters accordingly. Specific
and limited example configurations are given here:
It is a good practice to enable the TCP window scaling for applications that
deal with large data, for sending or receiving. In Linux, this can be done as
follows:

1. $ sudo sysctl -w net.ipv4.tcp_window_scaling=1

For the same type of applications, it is a good practice to modify the operating
system’s send and receive buffer sizes. An example setting is as follows:

1. $ sudo sysctl -w net.core.rmem_max=16777216
2. $ sudo sysctl -w net.core.wmem_max=16777216

The individual socket buffer sizes can also be modified as follows:

1. $ sudo sysctl -w net.ipv4.tcp_rmem="4096 87380 16777216"
2. $ sudo sysctl -w net.ipv4.tcp_wmem="4096 16384 16777216"

As a rule of thumb, set the network parameters based on what is permissible in
your network and leverage that to the maximum.
Disabling Nagle's algorithm on the participating sockets is a good idea. This
will ensure that the data is dispatched instantly, as and when it is submitted by
the application to the TCP component, without internal buffering.

Note: Nagle's algorithm addresses the "small packet problem" in the network
data transport. Years ago, when the network bandwidth was slow and costly,
data sent in terms of a small number of bytes caused unwanted congestion in
the network. To remedy this, the algorithm suggests buffering the data
internally and sending it only when an internal buffer has at least a
predefined amount of bytes or a specific period of time has elapsed. This
algorithm may prove counter-productive in modern day's highly concurrent
workload running on high speed and relatively cheap network.



The SetNoDelay API is available on the socket as well as ClientRequest
abstractions. This API is used to toggle the usage of Nagle’s algorithm on the
socket through which we are attempting to transport data.

Note: Network configuration parameters drastically change between
operating systems, so we must carefully select specific options. Do not
assume that a concept or command that is prevalent in an operating system
carries over the same meaning in another one.

Performance best practice: Operating system
Ensure that the running application process has access to full breadth of the
resources that are available in the system. Dedicate everything that the system
has to the application’s disposal so that the process is not constrained by lack
of computing resources.
Ensure that the process gets enough memory to hold the data sections. This can
be done as follows in UNIX systems:

1. $ ulimit -d unlimited

Ensure that the process can open the necessary file descriptors (files and
sockets) as:

1. $ ulimit -n unlimited

Ensure that the process gets enough memory to hold the program data as:

1. $ ulimit -m unlimited

Ensure that the process gets enough CPU to execute tasks as:

1. $ ulimit -t unlimited

Ensure that the process gets enough virtual memory spectrum as:

1. $ ulimit -v unlimited

If there are no memory pages available to satisfy the current application’s
demand, the operating system will offload some part of the application’s
memory to secondary storage, which is considerably slower than the main
memory. This will impact your application’s performance. Ensure that the
process memory does not get paged or swapped often. If possible, avoid the



use of disk swapping by installing an ample amount of real memory, preferably
at least double than the peak memory usage of the application.
Ensure not to run other, unrelated process in the system. More processes add
pressure to the system resources—scheduler, CPU, cache, disk, network
device, and memory bus—and can adversely affect our application’s
performance.
Further, use the tools provided by the operating system to monitor the system
under load and ensure that our configuration is ratified by the statistics. This
will vary from one system to another. In a Linux system, these commands are
typically useful:

1. The /proc file system provides live statistics of process, CPU, memory,
disk, and network characteristics on a per-process and system-wide basis.
The following snapshot shows the content of the virtual file system
“proc” that essentially covers the dynamic attributes of all running
processes:

Figure 10.2: Sample /proc file system content

2. The “top” command provides system-wide and per-process attributes of
resource usage.
The following snapshot shows the output of the “top” command, which
provides a different view of running processes’ resource usage:



Figure 10.3: Sample top command output

3. “vmstat” provides system-wide attributes of processes, memory, paging,
block IO, traps, disks, and CPU activity.
The following screenshot shows the “vmstat” output that provides
memory-specific usage statistics across the system:



Figure 10.4: Sample vmstat command output

4. “mpstat” provides system-wide attributes of the CPUs.
The following snapshot shows the output of “mpstat”, which displays
various dynamic attributes of the available processors in the system:



Figure 10.5: Sample mpstat command output

5. “iostat” provides system-wide attributes of CPU and I/O devices.
The following snapshot shows various “I/O” statistics in the system:

Figure 10.6: Sample iostat command output

Note: The operating system that we run our application on is a general-
purpose operating system designed for operating in the multi-user multi-
tasking mode. However, we would want to undo or reverse some of those
capabilities and defaults that were set for a general-purpose multi-tasking
operating system when it is used for running an application exclusively and
dedicatedly. Most of the above-mentioned best practices are precisely doing
that.

Performance best practice: Runtime (Node.js)
In this section, we will look at the specific best practices that can be applied at
the runtime level, that is, Node.js platform. We will look at the important
components, like the garbage collector and the event loop, and learn how to
fine-tune those components to yield better performance for our workload.

Garbage collection
Generational garbage collection policy perfectly complements the web
workload. This is because the generational collection policy works on a
principle that objects are short-lived and request-response based transactional
workload is the most appropriate workload type for leveraging the best out of
generational garbage collector. In such workloads, objects that got created as
part of a transaction are generally eligible for being collected after the response



has been sent. There may be exceptions, such as audit data we want to
store/persist beyond the transactions and global data we want to reuse across
transactions, but those are generally limited as compared to the objects
pertinent to the transactions.
The following screenshot gives a view of generational garbage collection
model with the new and old heap spaces and the object residence pattern in
those:

Figure 10.7: Generational garbage collection architecture

Carry out the following to leverage the best of the generational garbage
collection policy that Node.js uses under the cover and improve performance:

1. Select a test workload characterized by your real-world use case
2. Match the concurrent user count of the test workload with the real-world

use case
3. Select default new space and old space for the JavaScript heap
4. Run the workload with garbage collection tracing enabled
5. Record the frequency of new and old space collections
6. Repeat the test by increasing the default new and old spaces
7. Record the frequency of collections again
8. Repeat this process until:



Maximum objects are collected in the new space itself
Long intervals are realized between global collections

The following command illustrates how to modify the new space size of
JavaScript heap:

1. $ node --max-semi-space-size=1024 app.js

The following command illustrates how to modify the old space size of
JavaScript heap:

1. $ node --max-old-space-size=4096 app.js

The following command illustrates how to trace garbage collection in the
process:

1. $ node --trace-gc app.js

The following screenshot illustrates the desired state of the heap spaces after
the heap tuning exercise has been performed and the object allocation is
optimized:

Figure 10.8: Optimal generation collection state for web applications



The bottom line of this algorithm is to avoid frequent global garbage
collections by accommodating many transactional (request-response cycle)
objects in the young space collections.
Avoid frequent garbage collections as it adds pressure on the application.
Based on the specific characteristics of the application and the layout of
objects in memory, the in-flight transactions can experience above-normal
latency.
The following screenshot illustrates a misconfiguration, wherein the
application is causing frequent garbage collection and resulting in turbulence
to the application:

Figure 10.9: Frequent gc pause times from a poorly configured JavaScript heap

Avoid creating large objects. If the usage of large objects is inevitable, try to
understand the premise in which those are created and see if it can be
circumvented by application redesign; for example, splitting them into multiple
objects.
Ensure that the JavaScript heap size is large enough to hold the peak time load.
The peak time load can be measured using operating system tools like “top” in
Linux. A thumb rule is to set the old space to 1.5 times the peak load demand.

Event loop
Event loop is an integral part of the Node.js architecture; in fact, it is the
central part. This is because everything is executed as a response to an event
after the initial warm-up and preparation of your web application server in
event-driven architecture. So, the event interception and dispatch should occur
on time—as soon as the event is originated and made available to the
application—to obtain the required performance boost. In short, the event loop
should be running at frequent intervals. Tight program loop constructs prove
detrimental to this requirement as they block the progress of the single thread
toward executing the event loop.
The following code snippet illustrates how performance can be degraded with
loops in the code with arbitrary/unknown loop counter values:



1. const f = require('fs')
2. 
3. function digest(file) {
4.   const d = f.readFile(file, (e, d) => {
5.     let l = 0
6.     for (var i = 0; i < d.length - 2; i++)
7.       l = (l << 8) | d[i + 2]
8.     return l
9.   })

10. }

In the preceding example, the “digest” function takes a file name as an input,
reads it, applies some transformation to each byte, adds it up to a variable, and
returns the value. The issue here is that the loop iteration count is equal to the
number of bytes in the file; for example, the loop will run for 1024 * 1024 *
1024 times for a 1GB file.
Avoid tight “for” and “while” loops that run for more than 10 milliseconds.
How to avoid those? For example, a stable workaround is to do the following
if our application’s business logic demands it:

Convert the code part that involves tight loops into a function
Convert the function into an asynchronous call
Create a worker thread and delegate it to execute that function
Use the result from the worker thread asynchronously
Continue the execution post the tight loop in the completion callback

The following code snippet illustrates how such tight loops with arbitrary loop
counters can be converted to asynchronous executions with the help of worker
threads:

1. const w = require('worker_threads')
2. const f = require('fs')
3. 
4. if (w.isMainThread) {
5.   const worker = new w.Worker(__filename,



6.     {workerData: './worker.js'})
7.   worker.on('message', (m) => {
8.     console.log(m)
9.   })

10. } else {
11.   const file = w.workerData
12.   const d = f.readFile(file, (e, d) => {
13.     let l = 0
14.     for (var i = 0; i < d.length; i++)
15.       l = (l << 8) | d[i + 2]
16.     w.parentPort.postMessage(l)
17.   })
18. }

In lines 4 through 9 of the preceding example, a worker thread is created with
the data filename as the input, and a message loop is put up to obtain the result
from the worker thread. Lines 10 through 18 are executed in the worker thread,
wherein the file is read and the loop code is executed. Given that this whole
sequence is executed in a separate CPU, the loop count does not affect the
main thread in any manner.

Note: To reiterate the philosophy of event loop with a single thread: we (the
single thread of execution) execute all CPU-bound operations inline, and
when we encounter an I/O bound operation, we push it to the event loop and
continue with the rest of the code. The pushed request will execute
asynchronously in the system, return with the result, and continue execution
in the designated callback.

Concurrency: “sync” versus “async”
Overall application performance is a function of the level of concurrency in a
Node.js application, and the level of concurrency is a function of the density of
asynchronous code executions. There are several synchronous APIs in the
Node.js core, and they are provided for use cases where concurrency is not a
concern. Avoid synchronous APIs as much as possible. If they need to be used
in unavoidable circumstances and take more than 10 milliseconds to complete,



consider instituting a worker thread and run the synchronous API in there,
while managing the communication between the parent and child threads
through asynchronous messages.
There is an asynchronous counterpart for almost every synchronous API.
The following code snippet shows a synchronous version of a file copy API:

1. const f = require('fs')
2. f.copyFileSync('sync.js', 'async.js')
3. console.log('copy success')

And the following code snippet shows its asynchronous counterpart:

1. const f = require('fs')
2. f.copyFile('async.js', 'sync.js', (e) => {
3. if (!e)
4.   console.log('copy success')
5. })

Increasing concurrency
While we classified the slow computational operations as I/O-bound and fast
ones as CPU-bound, several I/O operations cannot be performed
asynchronously. Here are some examples of slow operations that are not
supported by the operating system to be performed asynchronously:

Disk I/O
Cryptographic computations
DNS lookup
Compression and decompression

The asynchronous versions of these capabilities are simulated using internal
helper threads that carry out tasks in a synchronous manner in-thread but act
asynchronous with the application thread. The number of such threads is
chosen at a convenient default but is controlled by an environment variable—
UV_THREADPOOL_SIZE. While its default value of 4 is good for normal
scenarios, adjusting this value based on the specific workload can make a
difference. For example, an experiment in a Linux system with 16 logical



CPUs showed these results with the default and customized value for
“UV_THREADPOOL_SIZE”.
The following code is used for the preceding experiment with
“UV_THREADPOOL_SIZE”:

1. const z = require('zlib')
2. const c = require('crypto')
3. const p = require('perf_hooks')
4. const start = p.performance.now()
5. 
6. process.on('exit', (c) => {
7.   const end = p.performance.now()
8.   console.log(Math.round(end - start))
9. })

10. 
11. for(var i = 0; i< +process.argv[2]; i++) {
12.   c.randomBytes(1024 * 1024, (e, b) => {
13.     z.gzip(b, (r, d) => {})
14.   })
15. }

The preceding code creates random bytes of 1MB and compresses them. The
time taken for this action is measured using performance counter APIs.
The following output shows a 40% reduction in CPU time with thread pool
size tuning:

Figure 10.10: Performance improvement with thread pool tuning



As we can see from the program output, the compression of 1MB random
bytes was performed 1000 times, first with the default thread pool size that
took 11.534 seconds, and then by running the same code with the thread pool
size set to 8. This time, the code took 7.216 seconds to run.

Note: If you are adjusting UV_THREADPOOL_SIZE for your application,
ensure that you accommodate this as well in the CPU selection of the
hardware that we discussed in the hardware section.

Remove debug options
Remove any code that was used for debugging, and also remove any flags used
for debugging. Options meant to be used in debugger’s context are not
designed to take performance into consideration and are inherently slow. This
includes any tracing options like “—trace-gc” and “—trace”.

Performance best practice: Application
Now that we examined the runtime optimizations, let’s focus on the potential
opportunities within the application itself. We will look at the application as an
integration of code, data, and configuration and see how each of this can be
optimized to improve our web application’s performance.

Content optimization
The key to the application’s performance improvement is to minimize the
response time. Here are the key questions that can be asked from the
application’s point of view for each exposed endpoint and see how it can be
addressed:

What is the dynamic part of your response?
What is the source of the dynamic part of the response?
How do we ensure that the dynamic part is reduced?
How do we ensure that the dynamic part is reusable?

Assuming that we are sending a page or part of a page (or even a piece of
server-computed data) to the client, ensure that we fully understand the type of
the data: is it statically available, or is it contextual and needs computation in
the request context? If the response is static, there’s no reason why the request



should reach up to the web backend. Instead, it can be served as static pages
from the web cache and implemented by reverse proxies.
The following diagram shows how a typical response would be a mix of static
and dynamic data:

Figure 10.11: Web response as a mixture of static and dynamic data

Another aspect is the reusability of the dynamic part. Even if there is a
dynamic part to the response, we can check if that data, in full or in parts, can
be reused for the plurality of requests. That way, we are reducing the overall
processing overhead on requests.

Application decoupling
When we decouple business logic, it is easy to perform the decoupling at
wrong program boundaries or overdo the decoupling. Every decoupled
program part (module or service) now interacts through the network instead of
through direct function invocations. The net result is that the performance is
affected. It is a good idea to decouple the business logic into multiple modules
and services but with appropriate reasons and at reasonable code boundaries.
An unnecessary decoupling costs a new network traffic in every request-
response cycle.
The following diagram shows poor decoupling of the application by making a
simple file reader code a separate module or service:



Figure 10.12: A bad module selection for application decoupling

And the following screenshot shows better decoupling of the application by
making an inventory service a separate module:

Figure 10.13: A reasonable module selection for application decoupling

Why can’t the file reader module be decoupled from the application and made
into a separate service? This is because:

Reading a file is a relatively tiny operation that can be achieved by a
direct Node.js API call
There is no qualifier for it to be functioning as an independent service
Large data will flow over the network if we decouple such a module.

On the other hand, the inventory service is a good candidate for decoupling
due to the following reasons:



It potentially abstracts a set of data that represents the inventory
The service can be invoked from multiple parts of the application
It can benefit from being a separate service; for example, it can scale up
and down based on the change in requests that flow into it

HTTP caching
There are several caching possibilities throughout the request-response cycle.
Some of them are part of the protocol, while some of them are configured at
the reverse proxy and others are manually created and managed by the
application. Use cache abundantly. A cache stores temporary data that is
required frequently. Static pages, images, JavaScript sources, and CSS are
natural cache candidates. It avoids file reads, copying, and parsing, which
otherwise take up a good amount of CPU.
The following screenshot shows the positioning of HTTP cache in a web
framework:

Figure 10.14: HTTP caching model

Ensure that the database connections are pre-created in abundance and kept in
a common pool to use on demand, without being creating on every request and
destroyed after every need. How do we know the number of connections to be
pre-created? There are no formulae to compute that; it is a function of the
number of concurrent connections and average query completion period.
Arrive at a number by taking these parameters into consideration and
measuring them.



The following pseudo-code shows the usage of a connection pool with a
pseudo database:

1. dbclient.connect(url, {
2.   pool: 128,
3.   assignmentPolicy: 'ROUNDROBIN',
4.   cleanOnTimeout: true,
5.   collectStale: true,
6.   autoExpand: true,
7.   autoShrink: true
8. })

Optimize your database. If it is an SQL database, ensure that it is normalized
and indexed. Use precise queries to reduce the pressure on both the database
and the code that receives and processes the output. Identify the read-only
sections of the database and qualify them as such. Additionally, cache such
sections in-memory as these are read-only copies of data.

API selection
Use “ChildProcess” APIs only if required. Many asynchronous APIs fulfil the
needs of what a program typically wants to execute through a child process
(for example, file system operations, obtaining process memory, and so on).
Invoking those APIs in-process is much more efficient than starting a new
process altogether.
The following code lists the files in the current folder using the ChildProcess
API:

1. const child = require('child_process')
2. 
3. const ls = child.spawn('ls')
4. 
5. ls.stdout.on('data', (d) => {
6.   console.log(d.toString())
7. })
8. 



9. ls.stderr.on('data', (d) => {
10.   console.log(d.toString())
11. })

In the preceding code, a UNIX command “ls” is being invoked from the
Node.js process via the “spawn” API from the “child_process” module that is
capable of spawning a child process. The output of the child process is
obtained via standard event and stream semantics. So, the directory listing is
obtained and printed in the ‘data’ handler callback in the parent.
The following code lists files in the current folder using the “fs” API. The key
difference is that the former uses a child process, while the latter achieves the
same in-process:

1. const f = require('fs')
2. f.readdir('.', (e, l) => {
3.   l.forEach((e) => {
4.     console.log(e)
5.   })
6. })

The following output shows the time taken by the ChildProcess API for the
task:

Figure 10.15: Time spent for child process-based execution



Here’s the output showing the time taken by the “fs” API for the same task. As
is evident, the in-process model works faster:

Figure 10.16: Time spent for API-based execution

Consider the usage of HTTP/2 instead of HTTP, as applicable. This is an
improvement over HTTP and enhances data transport through HTTP header
compression. Plus, features like pro-active push from the server rather than
pulling from the clients. Of course, switching the protocol warrants code
changes to that effect as well.
The following code snippet shows the usage of the HTTP2 module for secure
and flexible communication:

1. const h = require('http2')
2. 
3. const s = h.createSecureServer({key: key, cert: cert})
4. s.on('stream', (r, h) => {
5.   s.respond({'content-type': 'text/html',':status': 200})
6.   s.end('http2')
7. })
8. s.listen(12000)

Almost all data emanating from the I/O is stream-oriented. If such data is
destined to I/O targets, ensure that it is not buffered in memory but streamed



with an optional transformer or filter as required.
The following code shows working with flowing data without buffering it in
intermediary memory. The natural flow rate is maintained, and the data is
processed in-flight:

1. const s = require('stream')
2. const f = require('fs')
3. 
4. const t = new s.Transform({
5.   transform(d, e, c) {
6.     c(null, d.toString().toUpperCase())
7.   }
8. })
9. const d = f.createReadStream(__filename)

10. d.pipe(t)
11. t.pipe(process.stdout)

In the preceding example, there are three streams: the read stream that we get
when we open the file in streaming mode; process.stdout, which is a write
stream with the console as the target; and a transform stream (read-write
stream) that we created to read from the file reader, apply some transformation
and then write into the console. As we can see, the transformation is applied on
the incoming data as chunks. Using this approach, we can ensure that the
incoming data is not buffered internally.

Miscellaneous
Avoid explicit invocation of garbage collection (gc). Once the JavaScript heap
is sufficiently sized, leave the garbage collection decision to the runtime
engine instead of explicitly invoking gc. The programming context that you
selected to invoke gc and the internal context that the runtime engine maintains
to manage the garbage can be mutually conflicting in their functioning, so
mixing both can make your application highly inefficient, leading to
suboptimal performance.
The following code shows a plain loop computation in action:

1. let l = 0



2. for(var i = 0; i < +process.argv[2]; i++) {
3.   l += i
4. }

And the following output shows the time taken for executing that loop:

Figure 10.17: Time for executing a trivial ‘for’ loop

The following code shows the same loop, but invoking garbage collector
explicitly:

1. let l = 0
2. for(var i = 0; i < +process.argv[2]; i++) {
3.   l += i
4.   gc()
5. }

And the following output shows the time taken for executing that loop with
garbage collection within the loop. Clearly, we are wasting a lot of CPU cycles
by invoking garbage collection where potentially no garbage is present.
Depending on the loop counter variable, the wasted CPU cycles can be
minimal, substantial, or exorbitant:

Figure 10.18: Time for executing a for loop with gc calls in it

If a code flow is identified as always throwing exception and being caught in
the bottom of the stack, the whole sequence is irrelevant and adds no value to
the application’s business logic. The whole flow can be bypassed.



The following code shows a bad way of sending data to a remote endpoint, by
trying on an arbitrary connection and rectifying the issue upon an exception:

1. try {
2.   db.update(data)
3. } catch(e) {
4.   if (e.message === 'StaleConnectionError') {
5.     db.reconnect()
6.     db.update(data)
7.   }
8. }

And the following code shows a good way of achieving the same with better
performance, as we are avoiding an exception unwinding and stack walk,
which are expensive from the CPU standpoint, in addition to several CPU
cycles being wasted in the failed attempt:

1. if (db.connection.status === db.CONN.STALE)
2.   db.reconnect()
3. db.update(data)

Reading from a file is a costly operation, so avoid it in the request-response
path as much as possible. If the file is static, read it once and store it in
memory. Implement a file watcher, watch the file for modifications, and
refresh the cached content if the file content changes dynamically at a lower
frequency (than the request frequency).
The following code shows how to manage static and semi-static file content
without performing a disk I/O in each request:

1. const s = require('stream')
2. const f = require('fs')
3. const h = require('http')
4. 
5. const t = new s.Transform({
6.   transform(d, e, c) {
7.     c(null, d.toString().toUpperCase())



8.   }
9. })

10. const file = './tmp.data'
11. let d = f.readFileSync(file)
12. f.watch(file, (e, g) => {
13.   d = f.readFileSync(file)
14. })
15. h.createServer((q, r) => {
16.   t.pipe(r)
17.   t.write(d)
18.   r.end()
19. }).listen(12000)

In the preceding example, we read from file content once and cache it in a
variable. However, we install a file watcher as there is no guarantee that the
file is static. The watcher watches for file content changes and rereads from the
file and replenishes the cache in response to any change, ensuring that the file
is not read on each request and that the data is updated whenever there is a file
content change.
If the size of the response data is more than 64KB, (or whatever the socket
buffer and operating system buffer can hold) consider compressing the
response with “gzip”, which is a fast compression algorithm, and the protocol
is well understood by networking endpoints. Doing so reduces the network
traffic and saves additional round trips. On the other hand, avoid compression
for small amounts of data. Either way, do not mix compression strategy in a
single endpoint; instead, fix on one based on the common nature and size of
the data flow from that endpoint.
The following screenshot shows a typical request header with transfer
encoding:

Figure 10.19: HTTP request header that uses transfer encoding



Where to store session data? The answer to this varies. If your application uses
replicated instances with a reverse proxy to balance the load and perform the
routing and your priority is to provide high availability, the session data can be
kept in a central store that is accessible from all the replicas. That way, even if
an instance crashes, the other instances can process the request with the help of
the central session data, making the crash invisible to the client. The drawback
of this approach is that it impacts the performance for all transactions. This is
because for every request, there are at least two additional I/O involved to
fetch the session data upon entry and store the session data back upon exit. On
the other hand, an in-memory session will be a good choice if you are focused
on improving performance and not worried about call drops in case the server
instance crashes.
What to store in a session? Ideally, all contextual data pertinent to the current
user session that will not have side effects on the rest of the system should be
stored. On the other hand, ensure that a huge amount of session data does not
explode your memory.
The following snapshot shows session data:

Figure 10.20: An example session data

Note: The session data is a per user request object. This means the effective
(memory) pressure exerted on the runtime engine is equal to the product of
individual session data and the number of concurrent users operated with the
session data.

Call “require()” once rather than in a re-enterable block. Module loading is a
very complex and CPU-consuming activity, and if you require a module inside
block repeatedly, it will run a lot of code before it realizes that the module is
already loaded, wasting CPU cycles in the process.
The following code shows “require” being invoked in re-enterable code
blocks:



1. function addID(d) {
2.   let b = require('v8').deserialize(d)
3.   b.id = require('crypto').randomUUID()
4.   return require('v8').serialize(d))
5. }

And the following code shows a better way of requiring modules:

1. const c = require('crypto')
2. const v = require('v8')
3. 
4. function addID(d) {
5.   let b = v.deserialize(d)
6.   b.id = c.randomUUID()
7.   return v.serialize(d))
8. }

Ensure that highly computational activities do not come in the way of the
application thread. If inevitable, off-load them to a worker thread or a child
process, whichever is convenient. As a thumb rule, offload anything that takes
more than 10ms. The thumb rule here is to off-load any scratch work
asynchronously to the worker threads.

Conclusion
In this chapter, we examined web application performance, which is one of the
key attributes that make a production-grade website. We examined various
components involved in the hardware and software stack of the application and
identified best practices for tuning each one to improve the overall
performance. We also discussed some deployment options that build up the
execution environment of the application, as several performance best
practices are tightly coupled with the way the application is deployed.
In the next chapter, we will look at problem determination best practices for
the most common production anomalies that can occur in a highly concurrent
web application. Knowing how to detect, diagnose, and fix those anomalies
will complete our learning of a web application.



Questions

1. What is old space and new space in the JavaScript heap? What data do
they store? Where do the application’s objects reside?

2. Some operations, such as pure I/O operations, are made asynchronous
with direct support from the operating system, without needing to adjust
the thread pool size. On the other hand, some operations, such as
compression, are simulated with additional helper threads. Can you
identify the fundamental reason for this differential treatment?

3. Discuss the advantages and disadvantages of buffered operations on
network data in synchronous and asynchronous programming models.



I

CHAPTER 11
Debugging Program Anomalies

n the last chapter, we examined web application performance, in
continuation with the previous chapters, wherein we discussed other

attributes that make a production-grade website. We took up various
programming scenarios and made observations and inferences around the
best practices to be followed in dealing with web application workloads. In
this chapter, we will look at problem determination (troubleshooting) best
practices for the most common production anomalies that can potentially
occur in a highly concurrent web application. Knowing how to detect,
diagnose, and fix these anomalies will complete our learning of a web
application and its long-term maintenance.

Structure
We will cover the following topics in this chapter:

Debugging crash
Debugging low CPU (hang)
Debugging high CPU (spin)
Debugging memory leak/exhaustion
Debugging performance degradation

Objective
After studying this chapter, you will be able to understand tools,
frameworks, methodologies, and best practices for performing basic
problem determination of our web application. You will be able to observe
the application’s external symptoms and make assertions about the type of
anomaly, devise a debugging strategy accordingly, pick the right set of tools
and methodologies, and troubleshoot the issue yourself. If the issue is
rooted deeper inside the application stack, such as Node.js core or the



operating system, you will be able to isolate it to the extent of providing a
first-hand report and the steps to reproduce the problem so as to pass it to
the concerned team and get it rectified in a timely manner. Some of these
are generic learnings that you can apply on other platforms/applications as
well.

Debugging crash
While there can be multiple definitions for a program crash depending on
the nature of the application and the referring person, there are at least two
broad types of crashes:

Processor instigated program abends
Software instigated program abends

Here, processor means the CPU, and abend means an abnormal ending of
the process. The term “program crash” was traditionally used to refer to the
first category, but over time, any abnormal program termination, regardless
of its nature and origin, was termed as a crash.
An example of the first category (CPU or processor instigated crash) is a
typical program abend with the program receiving a signal, such as
“SIGSEGV”. An example of the second category (program instigated
crash) is an application termination with an exception. Exceptions can be
generally thrown from the application itself or from the lower-level stack
(such as the middleware, Node.js runtime API, or the C or C++ runtime
libraries). When the said exception does not have a handler function to
absorb, handle, and contain the exception, it results in an unhandled
exception and crashes.
The following snapshot shows a Node.js program crash with segmentation
fault:

Figure 11.1: An application crash with SIGSEGV

An example of the second category (program instigated crash) is a program
abend with the Node.js runtime asserting when it encounters an unexpected
scenario.



The following snapshot shows a Node.js program crash with assertion
failure:

Figure 11.2: Application crash with low-level assertion failure

In the preceding example, the Node.js runtime is throwing an assertion
because it encountered an unexpected program state. While resetting the
standard IO handles, it applied file control operations (“fcntl” system call)
on the file descriptor of each handle and made an assertion that the return
value of the call should NOT be -1; the system call should not fail for this
handle. In our erroneous case, the assertion was hit. As it is evident from
the assertion, the program cannot make meaningful progress with the
system call fails on such as file descriptor – the file descriptor that the
program believes is in good shape and want to use it for further operations.
Yet another example of the second category (program instigated crash) is a
program abend with the application throwing an exception when a NULL
value is treated as a function and an invocation is attempted on it after a foo
function is invoked.
The following code shows a sample application function that throws an
exception:

1. // name: foo
2. // function: write data into the object's
3. // internal buffer
4. // invoke a special handler for long writes
5. function foo(data, encoding, cb) {
6. if (data.length > 64 * 1024) {
7. return longWrite(data, encoding, cb)
8. }



9. setTimeout(() => {
10. this.buffer.push(data.toString())
11. this.written += data.length
12. cb()
13. }, Math.floor(Math.random() * 128))
14. }

The following snapshot shows this program’s output when crashed with
exception:

Figure 11.3: Application crash with exception

Preparation
It is not easy to reproduce the crash a second time, on will. For that matter,
it is always recommended to prepare your host system (or systems) to
produce all the intended diagnostic data upon the first failure itself. The
common preparatory steps for a Node.js web application toward crash
diagnostics are as follows:

1. Change the relevant operating system settings so that a core dump (the
purpose of the core dump will become evident when we visit the
problem determination section) can be produced upon abnormal
program conditions.
The following command enables core dump generation and defines a
location in Linux:

1. $ echo "/home/nodeuser/dump/core.%e.%p" >

/proc/sys/kernel/core_pattern

2. Change the relevant user limits on the system so that a core dump can
be produced and written to the disk.



The following command enables disk space for core dump generation:

1. $ ulimit -c unlimited

3. Configure the application command line arguments so that it is forced
to abort, leading to the generation of a core dump upon the event of an
uncaught exception.
The following command enables the process to generate a core dump
on uncaught exceptions:

1. $ node --abort-on-uncaught-exception app.js

4. Configure the application command line argument so that it produces
a diagnostic report upon the event of an uncaught exception or an
abnormal program termination.
The following command enables the process to generate a report on
uncaught exceptions:

1. $ node --report-uncaught-exception app.js

Symptom
If you are using a single instance of the backend application, the frontend
will report the status code 404 or an equivalent error message to indicate
that the server is unavailable.
The following snapshot shows the client browser when its backend has
crashed:



Figure 11.4: External manifestation of a server crash

If you are using multiple replicas of your application and one of the
instances crashes, it’s effects may not be visible from the frontend as the
request may be handled by other healthy replicas, unless all the replicas go
down together.
On the other hand, the crash may not be easily visible but a few requests
may get dropped off if you are using an automatic recycler program script
which immediately brings a crashed program back to life.
However, in the server systems, the log file will show messages pertinent to
the exceptions, program assertions, or abend signals that affected the
program and led to the crash in all cases.

Useful data
If the application crashed due to processor-instigated crash (CPU signal),
the most important data is the core dump (also known as system dump or



abend dump).
If the application crashed due to assertion failures, the most important data
is the core dump and the assertion failure message itself.
If the application crashed due to environmental error conditions, such as
memory corruption or memory exhaustion scenarios, the stdout log and the
memory dump (heap dump, core dump) are useful.
If the application crashed due to exceptions, the stdout log is the most
useful data.
In all cases, the diagnostic report is a good First-Failure-Data-Capture
(FFDC) document as it provides a starting point for the debugging path. In
many cases, the diagnostic report alone is sufficient to perform the root
cause analysis and fix the issue.

Problem determination
The methodology of problem determination is approximately the same in
all types of crashes, but the tools and specific steps may differ. The
established and recommended way of debugging a program crash is as
follows:

Identify the immediate reason for the crash - at the instruction,
expression, or statement level (depending on the nature of the crash)
Identify the operation (code) and the operands (code) involved in the
crash
The procedure is over if the reason directly leads to the identification
of the issue
Else, walk backward in the block of code and function following the
call stack and interfering threads by tracing the trajectory of the issue
in the code and/or data
Repeat he previous step until the root cause is identified

Generally, the root cause of a crash is one or more of the following:

Bad code
Bad data
Bad input



Bad timing

A core dump contains the following data points to help diagnose the issue.
A debugger tool that understands the core dump format can extract this
useful data:

Failing instruction
Register values at the failing context
Call stack at the failing context
Complete program memory dump
State of all threads in the process
Loaded library information

The following code is used to explain the problem determination with the
help of a crash dump:

1. sock.on('data', (d) => {
2. console.log(d.toString())
3. })

A set of data points is collected and explained in the crash dump pertinent
to the previous program. Evidently, the code is fine, but some issues in the
lower-level stack (the API, runtime engine, and operating system) caused
the crash.
The following snapshot shows the Instruction Address Register content in a
core dump:

Figure 11.5: Instruction Address Register in gdb

The following snapshot shows all the CPU registers of the failing thread in
a core dump:



Figure 11.6: CPU register values of the current thread in gdb

The following snapshot shows the current thread’s call stack in a core
dump:

Figure 11.7: Call stack of the current thread in gdb

The following snapshot shows the memory mappings of the process in a
core dump:



Figure 11.8: Memory regions of the process in gdb

The following snapshot shows the state of all the threads in a core dump:



Figure 11.9: Information of the process threads in gdb

The following snapshot shows the loaded shared libraries in a core dump:

Figure 11.10: Information on the loaded libraries in gdb

A debugger tool that understands both the core dump format and the
internal data structures of the Node.js runtime can extract this additional
data:

JavaScript objects
JavaScript heap
Node.js internal data structures
Composite call stack (C, C++ and JavaScript)

A diagnostic report contains the following data points to help diagnose the
issue:

Abend trigger reason
Abend time stamp
Process ID
Process command line
Version of internal components
CPU, OS, and architecture information
JavaScript stack (JS)
Native stack (C, C++)
JavaScript heap sections
Resource consumption details
Handles in the event loop
Pending timers
Environment variables



User resource limits
Loaded shared libraries

The following snapshot shows the header section of a diagnostic report:

Figure 11.11: Diagnostic report – header section

The following snapshot shows execution environment-related data in a
diagnostic report:



Figure 11.12: Diagnostic report – version information

The following snapshot shows the JavaScript stack in a diagnostic report:



Figure 11.13: Diagnostic report – JavaScript stack

The following snapshot shows the JavaScript heap section in a diagnostic
report:



Figure 11.14: Diagnostic report – JavaScript heap

The following snapshot shows the resource usage section in a diagnostic
report:



Figure 11.15: Diagnostic report – resource usage

The following snapshot shows the event loop and its handles in a diagnostic
report:



Figure 11.16: Diagnostic report – handles and their states in the event loop

The following snapshot shows the environment variables in a diagnostic
report:

Figure 11.17: Diagnostic report – environment variables

The following snapshot shows the user limit settings in a diagnostic report:



Figure 11.18: diagnostic report – configured user limits

The following snapshot shows the loaded shared libraries in a diagnostic
report:



Figure 11.19: Diagnostic report – loaded shared libraries

Evidently, a diagnostic report provides an exhaustive set of data and in most
debugging scenarios, the information from the report will be a good starting
point. In many cases, this information alone is sufficient to fix the issue as
well.
Multi-thread interference does not usually happen in a Node.js application
as the application runs on a single thread, and worker threads run in
separate “v8” execution contexts. However, it is possible as the runtime
itself is multi-threaded, but it occurs rarely.
On the other hand, a Node.js application suffers from a new type of issue:
the call stack will not carry the complete sequence of methods that led to
the crash in most scenarios of crash due to exceptions. This is due to the
event-driven asynchronous programming style of Node.js. Almost all the
activities in a Node.js application are event-driven, which means the bottom
of the stack will be an event that triggered the current actions, and further
history of the sequences behind the said event will not be available in the
current call stack, limiting debugging to an extent.
The following snapshot illustrates a sample exception when an
asynchronous API fails:



Figure 11.20: Less informative call stack for asynchronous methods

This happened when an http client tried to connect to a local server
listening at port 12000. Apparently, the connection to the server is refused,
and the reason is represented in the exception pertinent to the crash.
The async_hooks module that helps track the asynchronous context of the
code sequence can help remedy this. The call stack generated with the help
of async_hooks will form the complete asynchronous sequence, from
which tracing the history backward will be easy. The resulting sequence
will look the same for applications developed in any other language
runtime.
The following snapshot demonstrates a sample exception when an
asynchronous API fails with async_hooks used to capture and link all
related asynchronous calls:



Figure 11.21: Complete call stack with the help of async_hooks

The JavaScript heap needs to be inspected with the help of a heap dump if
the application crashed due to JavaScript heap memory exhaustion. Further,
the dominant objects in the heap need to be mapped to their allocation
context and retention context in the application, and assertions need to be
made on their validity. Subsequently, a remedial action needs to be taken
based on that assertion to fix the memory exhaustion issue.
The native heap needs to be inspected with the help of a core dump if the
application crashed due to native heap memory exhaustion. Further, the
allocation sites of memory need to be traced and matched against their de-
allocation patterns, and an assertion needs to be made as to why the
allocations are not getting freed or why there are so many allocations in
relation to the freed ones. Subsequently, remedial actions need to be taken
based on that assertion to fix the native memory issue.

Debugging low CPU
Low CPU is a situation wherein the program is slow in responding to
external input. In a web application’s context, the external input is the client
request. This scenario results in requests taking longer than normal in
normal circumstances, and the server stops responding to the requests in
extreme cases. As a result, the requests eventually time out.
Low CPU situation is also referred to as freeze, stall, or hang.
The following snapshot shows the output of the top command in Linux,
which shows 0% CPU consumption of a Node.js process:

Figure 11.22: A Node.js process with no CPU consumption

Preparation
Change the relevant operating system settings and user limits so that a core
dump can be produced in abnormal program conditions, like in the case of a
crash.
Configure the application command line so that it produces a diagnostic
report upon a signal that is sent to the process when it becomes



unresponsive.
The following snapshot shows how to enable the process to trigger a
diagnostic report on demand using a signal issued to it:

1. $ node --report-on-signal app.js

Symptom
If you are using a single instance of the backend application, the frontend
will report the status code 408 or an equivalent error message to indicate
that the request has timed out.
If you are using multiple replicas of your application and one of the
instances hung, it may not be visible from the frontend as the timed-out
request may have been reattempted by one of the other healthy replicas,
unless all the replicas hang together.
In some cases, the client will get the response from the server, but it’s
extremely slow to be of any use and affects the user experience by large.

Useful data
We have learned from the crash section that a core dump is the complete
snapshot of the running process, so collecting a core dump on the hung
process (without terminating it) is a good idea. In a Linux platform, this is
typically achieved with the gcore command.
Collecting a heap dump is a good idea as well if the application is
experiencing high memory demand.
A diagnostic report is a good First-Failure-Data-Capture (FFDC)
document in both cases.

Problem determination
When the process experiences low (or zero CPU), the most probable reason
is that the only thread (application thread) is unable to move ahead.
Probable reasons for this are listed here:

The thread is waiting for a lock that is owned by another thread
forever



The thread is waiting for an (wrong) event that is never going to
happen
The thread is waiting on a (wrong) socket that does not accept requests
The thread is executing (wrong) code that does not terminate

In all the cases, the important step in the debugging process is to check
what the main thread is doing while experiencing low CPU.
One of the ways to do this is via Node.js inspector, as follows:

1. Attach the Node.js inspector to the hanging process
2. Inspect the call stack
3. Continue the execution within the inspector
4. Step debug a little to see the bounds of program execution
5. Make inference on the code flow and detect the issue

Another approach is to collect CPU profile of the hanging process that will
provide similar information in a slightly different manner. A CPU profile
shows the list of methods that were executed in a specific period, with the
CPU consumption against each method. This information gives a hint about
where the thread has been spending time. This needs to be mapped with the
control flow in the application to pinpoint the root cause of low CPU.
The following command can be used to collect CPU profile from the
application:

1. $ node --prof app.js

And the following command can be used to process the generated profile
output. Note that the filename of the generated profile output will be
different in each case:

1. $ node --prof-process isolate-0x53986f70-88-v8.log

The following snapshot shows the output of the profiler. A higher number
of ticks against a specific function means it has consumed more CPU within
the sampling interval:



Figure 11.23: Sample-based CPU profile of the application

If the previous two methods are not helping or do not provide sufficient
data to inspect, a system dump can be collected on the running process
without terminating it.
The following steps demonstrate how to collect a core dump from a running
process in Linux:

Figure 11.24: Capturing core dump on a running process

Collecting and reviewing a diagnostic report is always useful as it enables
the native and JavaScript stack to show where the thread is at the moment.
Collecting multiple reports back-to-back and analyzing the call stack to
determine the progress is also a good idea.

Note: Node.js runtime exposes only one application thread, and those
deadlocks are by far the most common hang reasons, so hang-related
issues are rare in Node.js workloads. However, given that there are
internal helper threads that communicate with the main thread for various
reasons, the deadlocks and complete hang are, theoretically, still possible.



Debugging high CPU
High CPU is a scenario when the process is eating up all of its allotted CPU
slices without performing any useful work. This is the opposite of low CPU
from the processor time consumption point of view, but similar to it from an
end result point of view—both make the process hang in an inconsistent
state without the ability to deliver any useful work.

Preparation
System preparation for high CPU is exactly same as that for low CPU, that
is, change the relevant operating system settings and user limits so that a
core dump can be produced upon abnormal program conditions.
Additionally, tune the application so that it produces a diagnostic report
upon receiving a signal that is sent to the process when it starts
looping/spinning.

Symptom
If you are using a single instance of the backend application, the frontend
will report the status code 408 or an equivalent error message to indicate
that the request is timed out.
If you are using multiple replicas of your application and one of the
instances hangs, it may not be visible from the frontend as the timed-out
request may be reattempted by other healthy replicas, unless all the replicas
hang together.
The following snapshot shows the output of the top command in Linux,
which shows 100% CPU consumption of a Node.js process:

Figure 11.25: A Node.js application showing 100% CPU consumption

Useful data
Just like in the low CPU section, a core dump on the hung process (without
terminating it) provides the most comprehensive data. Also, a heap dump,



CPU profile data, and a diagnostic report are good for diagnosing high
CPU.

Problem determination
First, the high CPU situation needs to be well qualified. For example, how
much is high, and how much is moderate?
The following table shows the average CPU consumption of various
workloads running on traditional technologies:

Workload type Average CPU consumption (%)

Web server 6

Database 9

Email application 7

Application server 6

Web service 7

Node.js web server 80

Table 11.1: Average CPU consumption of commercial workloads

Clearly, the consumption is pretty low, say less than 20% on an average, for
non-Node.js workloads. The main reason is that every work is a mixture of
CPU-bound and I/O-bound operations, with I/O-bound operations taking
considerably longer as compared to their CPU-bound counterparts. This
means the thread will be seen as blocked for I/O completion for most of the
time, resulting in such statistics.
This means anything above 20% is a high CPU for those platforms.
On the other hand, CPU-bound and I/O-bound operations are separated out
for Node.js-based applications, and the thread is allowed to run almost all
its allotted time, with the absence of any CPU-bound code as the only
delimiting factor. This happens when there are no requests in the backlog, at
under-load situations.
Under normal circumstances, a Node.js based web application running in
production scale load will be seen as consuming as much as 90% of its
allocated CPU. This is not a problematic scenario; it only means your
application is running at its full potential, leveraging the allocated CPU to



its best possible extent and bringing high level of concurrency to our
workload.
This is an important distinction to make, as this understanding will help us
identify a real high CPU situation that we need to debug and distinguish it
from a normal scenario of our application running smooth.
Many a times, users get suspicious when they look at monitoring tools, see
the CPU usage above 80% or so, and compare those values with their
understanding of workloads from other technologies.
An easy way to identify a problematic high CPU situation is when the
requests are not getting serviced and get timed out instead.
When the process experiences high CPU, the most probable reason is that
the only thread (application thread) is doing a lot of work but is unable to
move ahead. Probable reasons for such a situation are as follows:

The thread is executing a (wrong) tight loop with no exit criteria
The thread is executing a (wrong) wide loop recursively

Note: Tight loop is a small set of instructions and expressions running in a
loop with a very large loop counter or a very far loop termination
condition. Wide loop is a relatively large set of instructions or expressions,
involving multiple code blocks and even functions being executed within
a loop, with a large loop counter or a far loop termination condition. The
net effect of tight loop and wide loop is full consumption of the allotted
CPU, with the program being unable to make move forward.

In both cases, the important step in debugging is to check what the main
thread is doing when the process is experiencing high CPU, just as we did
for the low CPU case.
One of the ways to do this is via the Node.js inspector, as follows:

1. Attach the Node.js inspector to the hanging process
2. Inspect the call stack
3. Continue the execution within the inspector
4. Step debug to run the program incrementally and determine the

bounds of the loop in the program execution
5. Make inference on the code flow and detect the issue



The following command shows how to attach the inspector. First, start the
application normally:

$ node app.js

Issue SIGUSR1 signal to the PID of the process to attach the inspector:

Figure 11.26: Inspecting the process – issuing signal to the process

The inspector is enabled when we see the following message:

Figure 11.27: Inspecting the process – the process enabling the inspector

At that point, open the code debugger and visualize the call stack, as
follows:

Figure 11.28: Inspecting the process – various views in Chrome developer tools

The other approach is to collect CPU profile of the high CPU process that
will provide similar information in a slightly different manner. A CPU



profile shows the list of methods that were executed in a specific period,
with the CPU consumption against each of the methods recorded separately.
This information provides a hint about where the thread has been spending
time. This needs to be mapped with the control flow in the application to
pinpoint the root cause.
The following snapshot shows the output of performance sampling by the
profiler, showing the top level breakup of the CPU:

Figure 11.29: Top level break-up of sample CPU profile

If the preceding two methods do not help or do not provide sufficient data
to inspect, a system dump can be collected on the running process without
terminating it.
Collecting and reviewing a diagnostic report is always useful, as it enables
the native and JavaScript stack to show where the thread is at the moment.
Collecting multiple reports back-to-back and analyzing the call stack to
determine the progress is also a good idea.

Tip: The sampling profiler output shows the CPU consumption across
various dimensions – for easy categorization and abstraction. It shows the
breakup in terms of the language (JavaScript / C++ / C), in terms of the
threads (application thread and helper threads), and then in terms of the
methods.

Debugging memory
Memory anomalies in a web application are of two broad categories:

Memory leak
Memory exhaustion



The former is a situation where the program thinks one or more objects as
no longer required and not accessed by the program, while the garbage
collector finds contrary evidence, leading to the objects lingering around in
the program. The latter is an aggravated situation of the former, wherein
such objects fill up the entire JavaScript heap and lead to the exhaustion of
the heap.
A similar definition holds for native heap memory as well, with the only
exception that there is no garbage collection in the native heap. The
program itself wrongly assumes the life cycle of some objects and doesn’t
free them up.

Preparation
Ensure that the system has sufficient disk space to hold the core dump and
the heap dump. A general rule of thumb is to keep a space equal to or
greater than double the size of the program’s JavaScript heap size.
Change the relevant operating system settings so that a core dump can be
produced upon demand.
Change the relevant user limits on the system so that a core dump can be
produced and written to the disk to its fullest.
Install a signal handler in your application that can be invoked upon
demand, with a sole function of generating a heap snapshot.
The following code illustrates enabling a signal handler in the application
so that heap snapshots can be collected on demand:

1. process.on('SIGUSR2', () => {
2. require('v8').writeHeapSnapshot()
3. })

Tune the application so that it produces a diagnostic report upon the event
of an uncaught exception or an abnormal program termination due to
memory exhaustion.
Running the application with the verbose option switched on for garbage
collection is also useful while we are in the phase of problem determination.

Symptom



There may not be an identifiable external symptom for small- or medium-
scale memory leaks, but large-scale memory leaks can manifest in the form
of reduced throughput. On the other hand, a memory exhaustion will crash
the server, so the usual rules apply. Some calls will be dropped if the server
is running on a single instance, and some calls may be delayed due to the
internal retries by the load balancer if there are multiple replicas.

Useful data
A heap dump when the process experiences the memory leak provides the
most comprehensive diagnostic data. A core dump and the diagnostic report
are good for diagnosing memory leaks and memory exhaustion.
Additionally, verbose log of garbage collection history can be very useful at
times.

Problem determination
Debugging memory leaks in a well-designed single-threaded web
application is relatively easy and straightforward because all the activities
in the application are driven by the request-response cycle. In other words,
all the objects pertinent to a transaction are created at the time of the request
arrival, and all of them are garbage collected (or deemed eligible for
garbage collection) when the response has been sent to the wire. This
important aspect helps in debugging leaks and also feeds back into the
application design; ensure that no/minimal objects are persisted beyond the
request-response cycle.
However, this is not as straightforward in practice. For example, a user may
want to store some information coming out of every request for auditing
purposes. Similarly, they want to cache some responses for certain types of
requests and decide which item in the cache matches which request type.
They also want to maintain a list of the requests and some identifiable types
of those requests. All these lead to additional objects being created on
request arrival and escaping the request-response boundary.
The key to memory leak debugging is to precisely know the designed life
cycle of the objects that you create in your application.
Debugging memory leak with the help of a heap dump follows this
procedure:



1. Locate the top memory retainers in the heap
2. For each retainer, ratify their presence and retention
3. For non-ratified objects, identify (and fix) their life cycle

The following snapshot is the high-level view of the JavaScript heap, with
the top level breakup of memory consumption as a chart:

Figure 11.30: JavaScript heap summary view as a chart

Locating the top memory retainers is achieved by loading the heap dump in
a dump visualizer tool, inspecting the retention statistics, and sorting based
on the retained amount.
The following snapshot illustrates the high-level view of the JavaScript
heap, with the top level breakup of memory consumption as a list:



Figure 11.31: JavaScript heap summary view as a list

Open the source code and the heap dump side by side to ratify their
presence and retention. For each large object shown in the heap dump,
review the source code and locate the creation of that object. Make a
manual estimate of the size of the object at the time of allocation and its
future growth through the code propagation. Check whether the said object
being alive at the current control flow point in the application (at the time of
the heap dump collection) is valid, and check whether the object carrying
the said amount of memory is valid.
If the first validation fails, that is, if we determine that the object should not
be alive at this point of time, go to the allocation site of the object, traverse
through the code by covering all the control flow points to the current
location in the code (at the time of the heap dump collection), and see why
the object is still live, or determine which code logic the object is made
alive through. Fix the issue by scoping the object appropriately or nullifying
the object at the appropriate location in the code.
If the second validation fails, that is, if we determine that the object can be
alive at this point of time but its amount of memory retention is



unexpectedly large, perform a similar step as the previous validation, but
pay close attention to how the object grows in size. Objects usually grow in
size through addition (new fields getting added in an object like structure)
or aggregation (new entries appended in a list like structure). Spot the point
where unwanted data is getting added to the object and fix it, or spot the
point where data is no more valid in the object and purge it.

Note : In the heap explorer, the term shallow size of an object refers to its
own size, as defined by its constructor or composition. On the other hand,
the retained size refers to the sum total of its own size and the size of all
its internal objects, counted cumulatively. In other words, retained size
refers to the overall retention volume in the JavaScript heap due to the
presence of the said object.

Debugging performance degradation
Performance anomaly is defined as latency or concurrency issues that come
in the service invocation, resulting in delayed response to a class of users or
overall reduction in the rate of handling requests, leading to poor user
experience for the web application.

Preparation
Ensure that the application is started with the “v8” sampling profiler when
we are debugging for performance issues.
If the application can be modified, it is highly recommended that we apply
performance hook APIs that help define measuring points within the
request-response cycle and also measure loop latency when we are dealing
with highly concurrent workload. This is a vital and unique piece of
information on performance debugging.

Symptom
The application is seen as slow in responding, and requests are seen as
responded with above-normal latencies, affecting overall user experience.
Requests will be seen as timing out under extreme scenarios.



Useful data
There are two classes of useful data that aid performance debugging:

Data pertinent to the current performance characteristics as a whole
Complete span data pertinent to an exemplary transaction that is
performing poorly

Problem determination
There can be pluralities of techniques for performance debugging: based on
various tools, based on various methodologies, and based on various
deployment models and execution environments. The one illustrated in the
next figure assumes no external tools and does not assume any specific
deployment models. So, this is the most generic methodology that will work
for any environment, but we will need to specialize this methodology to the
specific environment.
General performance debugging follows this procedure:

1. Measure the performance in the entire transaction and break it down
2. Identify the span of transaction where performance is degraded
3. Identify the code blocks that correspond with the transaction span
4. Measure the performance within the span and break it down
5. Repeat this process until the culprit is found and the fix is applied

The following screenshot shows a flame graph visually representing hot
methods:

Figure 11.32: A flame graph



The performance in the entire transaction can be measured using the v8
sample profiler, a native CPU sample profiler like Linux perf tool, or the
performance counter APIs that are part of the Node.js core APIs.
Identifying the slow span is a manual process by which we enumerate over
identifiable sections in the transaction (such as request arrival, HTTP
parsing, body composition middleware, database connection, computation,
and response composition).
Identifying the code blocks is easy once we can successfully break down
the transaction into discrete spans. Just locate the bounds of those spans in
the source code.

Note: It is highly recommended to define a performance baseline before
you start performance debugging. This means the numbers you measured
and ratified when you performed a staging-based performance testing.
This helps you precisely find out which area of the transaction and which
area of the code are exhibiting outlier behavior in terms of performance,
resulting in a better debugging experience.

Measuring the performance within the span depends on the tool we are
using. In general, compute the difference between the time of entering and
exiting the span, or see if relative CPU consumption against each span is
available via sampling.
In some cases, individual transactions may seem alike, and there may be no
visible performance issues whatsoever. However, the overall throughput
decreases when the number of concurrent requests increase. In this case, the
loop latency measurement will be of real help. Use the performance counter
API to measure the loop latency and find out how the loop latency increases
in response to the number of concurrent connections. Identify the inflection
point (the number of concurrent users where the loop latency increases
beyond an unacceptable limit) and use that as the concurrency level for the
application for the class of requests. We will need to adjust the load
balancer or other part of the workload management system to bring this into
effect.

Conclusion



In this chapter, we learned problem determination best practices for the
most common production anomalies that can occur in a highly concurrent
web application.
We learned about the tools, frameworks, methodologies, and best practices
for performing basic problem determination of our web application. We
also looked at how to understand the type of anomaly by observing the
external symptoms of the application and devise a debugging strategy
accordingly, choose the right set of tools and methodologies, and
troubleshoot the issue ourselves. Many of these are generic learnings that
we can apply in other platforms/applications as well. Knowing how to
detect, diagnose, and fix web application anomalies wraps up our learning
of a web application and its long-term maintenance.

Questions:

1. Why do programs (or libraries or even runtimes) throw assertions
or/and exceptions, very well knowing that it can potentially terminate
the application?

2. In our application, the JavaScript heap (new space) usage shows a
linear increase with the increase in concurrent requests, and at some
point, we see objects escape into the old space, which will eventually
lead to global garbage collection. Should we adjust the new space
size to match the peek concurrency, or should we adjust the
admissible concurrent request count to match the current heap
setting?

3. The performance (latency) saw a 30% reduction when an application
was upgraded to its newer version. How do you pinpoint and resolve
the issue?

End
In this book, our aim was to learn about the elements to build an enterprise-
grade web application with the help of basic building blocks from the
Node.js programming platform. We set an objective of achieving this by
understanding all the dimensions of a client-server use case, asking all the
relevant questions and answering them ourselves.



We started by looking back on the evolution of languages to meet the need
of ever-changing workload characteristics and then discusses Node.js as an
exemplary evolution over JavaScript to meet the need of web workloads,
which comprise I/O operations. We then made the statement that Node.js is
best suited for highly concurrent web workloads due to its peculiar
characteristics as a programming model and the runtime architecture. We
spent some time understanding event-driven architecture, asynchronous
programming, concurrency, parallelism, and scalability, which make up the
basic premise of this programming platform.
We then covered the operating space of a web server. It included a variety
of components that make up a web application, including the frontend and
the backend. We inspected the available APIs in the programming platform
required in this space, emphasizing on the networking APIs. Finally, we
learned about the enterprise-enabling aspects of a web application to make
our application robust and efficient, and we went through the relevant
problem determination aspects to debug the most common production
issues of web applications.
With that, we believe our learning is complete in all aspects that are
required to develop and host an application. We did not focus on any
specific tools or frameworks that can change/evolve over time and render
the content in this book obsolete. At the same time, we took care not to
reinvent the wheel and implement things from ground up. Instead, we
attempted to strike a perfect balance between not being biased with any
tools while explaining the underlying concepts with a sufficient level of
abstraction.
The fundamental concepts and rationales are also discussed when behavior
and capabilities are explained, along with asking the most relevant question
to invoke an exploratory thought in the reader and solicit architectural
interest. This is very important for learners who want to take up Node.js for
their prospective career or business. This is because the deployment models
and workloads that Node.js hosts are highly dynamic, and developers may
constantly be asked to reconsider their program design to meet the ever-
changing demands.
We hope this book helps readers understand the implementation details that
are required to build an efficient web application based on Node.js CLI, and
we hope it is usable as reference material for understanding programming



premises of Node.js and its exemplary use case—web workloads. We
sincerely seek feedback on the theme, content, presentation style, or
examples and are happy to accommodate those in potentially upcoming
editions.
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