
Getting
Started with
Raspberry Pi
4th Edition

Getting to Know the Inexpensive
ARM-Powered Linux Computer
Matt Richardson, Shawn Wallace, and Wolfram Donat

Untitled-1 1Untitled-1 1 10/27/21 2:52 PM10/27/21 2:52 PM

Getting
Started with
Raspberry Pi

4TH EDITION

Getting to Know the
Inexpensive ARM-Powered

Linux Computer

Matt Richardson, Shawn Wallace,
and Wolfram Donat

GSW_RASPI_4ED_FIN.indd 1GSW_RASPI_4ED_FIN.indd 1 10/28/21 10:53 AM10/28/21 10:53 AM

Getting Started with Raspberry Pi, 4th Edition
by Matt Richardson, Shawn Wallace, and Wolfram Donat

Copyright © 2021 Matt Richardson, Shawn Wallace, and Wolfram Donat

Printed in the USA

Published by Make Community, LLC

150 Todd Road, Suite 100, Santa Rosa, CA 95407

Make: books may be purchased for educational, business, or sales promotional use.

Online editions are also available for most titles.

For more information, contact our corporate/institutional sales department:

800-998-9938

Publisher: Dale Dougherty

Editor: Patrick DiJusto, Michelle Lowman

Copy Editor: Craig Couden

Interior Designer: David Futato

Cover Designer: Juliann Brown

Illustrator: Rebecca Demarest

December 2012: First Edition

October 2014: Second Edition

July 2016: Third Edition

September 2021: Fourth Edition

Revision History for the Fourth Edition: 10/29/2021

See www.oreilly.com/catalog/errata.csp?isbn=9781680456998 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Make Community, LLC.

The Make: Community logo is a trademark of Make Community, LLC. Getting Started

with Raspberry Pi and related trade dress are trademarks of Make Community, LLC.

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and Make

Community, LLC was aware of a trademark claim, the designations have been printed

in caps or initial caps. While the publisher and the authors have made good faith efforts

to ensure that the information and instructions contained in this work are accurate,

the publisher and the authors disclaim all responsibility for errors or omissions, including

without limitation responsibility for damages resulting from the use of or reliance

on this work. Use of the information and instructions contained in this work is at your own

risk. If any code samples or other technology this work contains or describes are subject

to open source licenses or the intellectual property rights of others, it is your responsibility

to ensure that your use thereof complies with such licenses and/or rights.

978-1-680-45699-8

GSW_RASPI_4ED_FIN.indd 2GSW_RASPI_4ED_FIN.indd 2 10/28/21 10:53 AM10/28/21 10:53 AM

O’Reilly Online Learning
For more than 40 years, www.oreilly.com has provided technology and business training,

knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise

through books, articles, conferences, and our online learning platform. O’Reilly’s online

learning platform gives you on-demand access to live training courses, in-depth learning

paths, interactive coding environments, and a vast collection of text and video from

O’Reilly and 200+ other publishers. For more information, please visit www.oreilly.com

How to Contact Us:
Please address comments and questions concerning this book to the publisher:

Make: Community
150 Todd Road, Suite 100, Santa Rosa, CA 95407

Make: Community is a growing, global association of makers who are shaping the future

of education and democratizing innovation. Through Make: magazine, and 200+ annual

Maker Faires, Make: books, and more, we share the know-how of makers and promote

the practice of making in schools, libraries and homes.

You can send comments and questions to us by email at books@make.co.

To learn more about Make: visit us at make.co.

GSW_RASPI_4ED_FIN.indd 3GSW_RASPI_4ED_FIN.indd 3 10/28/21 10:53 AM10/28/21 10:53 AM

Contents

What They’re Saying. .. vii
Preface. .. ix

1/Getting Up and Running ..1

A Tour of the Boards ..2

The Proper Peripherals ...8

The Case ..13

Choose Your Distribution ..15

Flash the SD Card..15

For Advanced Users: Create Your Own Disk Image ..16
Booting Up ...17

Configuring Your Pi ..17

Getting Online ..22

Shutting Down ...24

Running Headless ..24

Troubleshooting...25

Going Further ...26

2/Getting Around Linux on the Raspberry Pi. ..27

Using the Command Line ...31

Files and the File system ..32

More Linux Commands ..37

Processes ..39

Sudo and Permissions ...41

The Network ...43

/etc ...44

Setting the Date and Time ..44

Installing New Software ..45

Sound in Linux ...46

Upgrading Your Firmware ...46

Going Further ...47

iv Contents

GSW_RASPI_4ED_FIN.indd 4GSW_RASPI_4ED_FIN.indd 4 10/28/21 10:53 AM10/28/21 10:53 AM

3/Other Operating Systems and Linux Distributions. ...49

Distributions for Home Theater ...50

Distributions for Music ...52

Retro Computing and Retro Gaming ...53

Internet of Things ..53

Other Useful Distributions ..54

Going Further ...55

4/Python on the Pi ..57

Hello, Python..58

A Bit More Python ...60

Objects and Modules ..63

Even More Modules ...67

Launching Other Programs from Python ..70

Troubleshooting Errors ...72

Going Further ...73

5/Arduino and the Pi ..75

Installing Arduino on the Raspberry Pi OS ..78

Finding the Serial Port ...79

Talking in Serial ..80

Using Firmata ..84

Going Further ...86

6/Basic Input and Output. ..87

Using Inputs and Outputs ...90

Digital Output: Lighting Up an LED ...92
Digital Input: Reading a Button ...97

Project: Cron Lamp Timer ..100

Scripting Commands ...100
Connecting a Lamp ..102
Scheduling Commands with Cron ..103

Going Further ...106

7/Programming Inputs and Outputs with Python ...107

Installation ...107

Testing GPIO in Python ...109

Blinking an LED ...110

Reading a Button ...112

Project: Simple Soundboard ..114

Going Further ...119

Contents v

GSW_RASPI_4ED_FIN.indd 5GSW_RASPI_4ED_FIN.indd 5 10/28/21 10:53 AM10/28/21 10:53 AM

8/Analog Input and Output ...121

Output: Converting Digital to Analog ...122

Test-Driving PWM ...124
Taking PWM Further ...125

Input: Converting Analog to Digital ..126

Variable Resistors ...132

Going Further ...136

9/Working with Cameras. ..137

Connecting and Testing the Camera Module ..141

Project: Making a GIF ...144
Capturing Video ..144

Testing USB Webcams ..145

Installing and Testing Open CV ...146

Additional Step for the Raspberry Pi Camera Module ..148

Displaying an Image ..148

Modifying an Image ...151

Accessing the Camera ..153

Face Detection ...156

Project: Raspberry Pi Photobooth ...158

Going Further ...163

10/Python and the Internet. ..165

Download Data from a Web Server ..165

Fetching the Weather Forecast ..167

Serving Pi (Be a Web Server)..176

Flask Basics ..176

Connecting the Web to the Real World ..180

Project: Web Lamp ..183

Going Further ...188

A/Writing an SD Card Image ..189

B/The Raspberry Pi Pico ..197

C/Another Raspberry Pi?! ...210

Index ..214

GSW_RASPI_4ED_FIN.indd 6GSW_RASPI_4ED_FIN.indd 6 10/28/21 10:53 AM10/28/21 10:53 AM

What They’re Saying
...about Getting Started with Raspberry Pi, 4th Edition

“An exceptional introduction to the Raspberry Pi, accessible to
a beginner and with in-depth references for experienced
makers.” —Tim Wright, Aerospace Engineer

“I’m a kid from New York City. I thought the book was really
helpful with the command line. I wanted to do some stuff with
a project, but I was quite intimidated. Now that I read this
book, I can set off!” —Kenji D., age 11.

 vii

GSW_RASPI_4ED_FIN.indd 7GSW_RASPI_4ED_FIN.indd 7 10/28/21 10:53 AM10/28/21 10:53 AM

GSW_RASPI_4ED_FIN.indd 8GSW_RASPI_4ED_FIN.indd 8 10/28/21 10:53 AM10/28/21 10:53 AM

Preface

Ten years.

It’s been ten years since the Raspberry
Pi was first announced in 2011. And what
a decade it has been. A credit-card–sized
computer for $35? That I can hook up to
my existing monitor and keyboard setup?
And connect to physical things via GPIO
pins? It seemed like a pipe dream. This is why,
when it started shipping, the Rasp berry Pi
created a frenzy of excitement.
Demand outstripped supply for months, and the waitlists for these
mini computers were very long. Some of their newest products
(and not-so-new) like the Pi Zero W and the Pi 4 still have limited
availability; it’s difficult to find a place that will sell more than two Pi
Zeros to a customer. Besides the price, what is it about the Rasp-
berry Pi that tests the patience of this hardware-hungry mass
of people? Before we get into everything that makes the Raspberry
Pi so great, let’s talk about its intended audience.

Eben Upton and his colleagues at the University of Cambridge
noticed that students applying to study computer science didn’ t
have the skills that they did in the 1990s. Students were consider-
ing themselves skilled at what they called “computer science” when
all they could do was use MS Word and Excel and perhaps write
a little HTML and perhaps JavaScript.

Upton and the others attributed this to—among other factors—
the “rise of the home PC and games console to replace the Amigas,

Preface ix

GSW_RASPI_4ED_FIN.indd 9GSW_RASPI_4ED_FIN.indd 9 10/28/21 10:53 AM10/28/21 10:53 AM

BBC Micros, Spectrum ZX, and Commodore 64 machines that peo-
ple of an earlier generation learned to program on.”1

Because the computer has become important for every member
of the household, it may also discourage younger members from
tinkering around and possibly putting such a critical tool out of
commission for the family. Parents don’t want their children “hack-
ing” the family computer while learning to program, because they-
run the risk of possibly breaking it.

Meanwhile, mobile phone and tablet processors had become less
expensive while getting more powerful, clearing the path for the
Raspberry Pi’s leap into the world of ultra-cheap-yet-serviceable
computer boards. The ARM chip family that’s used in all of the Pi
boards got its main start inside mobile phones.

As Linus Torvalds, the founder of Linux, said in an interview with
BBC News, the Raspberry Pi makes it possible to “afford failure.”
If a child (or an adult) manages to brick the Pi, he or she can just
buy another one, for far less than the cost of replacing a laptop.2

Raspberry Pi Foundation
It’s important to note that Raspberry Pi primarily exists to advance
the charitable mission of the Raspberry Pi Foundation. That mis-
sion is to “put the power of computing and digital making into the
hands of people all over the world.” The Raspberry Pi Foundation
hopes that people—kids especially—will learn to code, learn how
computers work, and learn how to make things with computers.

With every Raspberry Pi purchase you make, you’re not only pay-
ing for the cost of the hardware, fulfillment, and the engineering
behind it, you’re also contributing the free online resources, free
teacher training, and special programs that the Raspberry Pi Foun-
dation offers to further its charitable mission.

As you’ll learn in this book, the Raspberry Pi is great for learning,
but it also makes for a powerful tool. Even if the primary

1 “About us,” Raspberry Pi Foundation (www.raspberrypi.org/about).
2 Leo Kelion, “Linus Torvalds: Linux Succeeded Thanks to Selfishness and Trust,”

BBC News, June 12, 2012.

x Preface

GSW_RASPI_4ED_FIN.indd 10GSW_RASPI_4ED_FIN.indd 10 10/28/21 10:53 AM10/28/21 10:53 AM

purpose of the board is for education, we find that its utilization
stretches into commercial and industrial applications. Companies
use it for things such as sensor networks, remote monitoring, and
product prototyping. Even though the Raspberry Pi is great for
kids, you should keep in mind that it’s a real computer. It’s not a toy
or some kind of watered-down device.

What Can You Do with It?
One of the great things about the Raspberry Pi is that there’s no
single way to use it. Whether you just want to watch videos and
browse the Web, or you want to hack, learn, and make with the
board, the Raspberry Pi is a flexible platform for fun, utility, and ex-
perimentation. Here are just a few of the different ways you can use
a Raspberry Pi:

General-purpose computing
It’s important to remember that the Raspberry Pi is a general-
purpose computer and you can, in fact, use it as one. The Pi ver-
sion 4.0 (the most recent release as of this writing), with 8GB
of RAM and two HDMI outputs capable of 4K 60fps, is power-
ful enough to completely replace most general users’ desktop
computers. After you get it up and running in Chapter 1, you can
launch a web browser to access email, news sites, and social
networks, which is a lot of what we use computers for these
days. Going beyond the Web, you can launch the free and open-
source LibreOffice (www.libreoffice.org) productivity suite,
which allows you to work with documents and spreadsheets
when you don’t have an internet connection.

Learning to program
Because the Raspberry Pi is meant as an educational tool to
encourage kids to experiment with computers, it comes pre-
loaded with interpreters and compilers for many different pro-
gramming languages. If you’re eager to jump into writing code,
the Python programming language is a great way to get started,
and we cover the basics of it in Chapter 4. But with Raspberry

Preface xi

GSW_RASPI_4ED_FIN.indd 11GSW_RASPI_4ED_FIN.indd 11 10/28/21 10:53 AM10/28/21 10:53 AM

Pi, you’re not limited to only Python. You can write programs for
your Raspberry Pi in many different programming languages,
including C, Ruby, Java, and Perl.

All newer versions of the Raspberry Pi OS come pre-installed
with Scratch, a programming environment meant to introduce
younger users to programming concepts. There’s even a pro-
gramming language and development environment for creat-
ing music called Sonic Pi.

Project platform
The Raspberry Pi differentiates itself from a regular computer
not only because of its price and size, but also because of its
ability to integrate with electronics projects. Starting in Chap-
ter 6, we’ll show you how to use the Raspberry Pi to control
components from LEDs to AC devices, and you’ll learn how to
read the state of buttons and switches.

Product prototyping
More and more electronics products use Linux computers in-
side, and now this world of embedded Linux is more accessible
than ever. Let’s say you create something with your Raspberry
Pi that would make a great product for the every-day consum-
er. With the Raspberry Pi Compute Module (a smaller version
of the board that we’ll discuss later), it becomes possible to
create a product that’s powered by Raspberry Pi. Companies
can also use the smaller Pi versions like the Zero and Zero W
for products and prototypes where a full-size Pi is either too big
or too expensive to make a good fit.

xii Preface

GSW_RASPI_4ED_FIN.indd 12GSW_RASPI_4ED_FIN.indd 12 10/28/21 10:53 AM10/28/21 10:53 AM

Raspberry Pi for Makers
As makers, we have a lot of choices when it comes to platforms
on which to build technology-based projects. Microcontroller
development boards like the Arduino (and the new Raspberry Pi
Pico RP2040) have long been a popular choice because they’ve
become very easy to work with. But system on a chip platforms like
the Raspberry Pi are a lot different than traditional microcontrollers
in many ways. It’s a common misconception that the Pi and a
microcontroller are interchangeable; in fact, they are completely
different devices that fulfill totally different functions. The Raspberry
Pi is a computer, like your desktop computer, while the Arduino
is a microcontroller that has no business trying to replace a Dell
or an iMac.

This is not to say that a Raspberry Pi is better than a traditional
microcontroller; it’s just different. For instance, if you want to make
a basic thermostat, you’re probably better off using an Arduino
Uno or similar microcontroller for purposes of simplicity. But if you
want to be able to remotely access the thermostat via the Web to
change its settings and download temperature log files, you should
consider using the Raspberry Pi.

Choosing between one or the other will depend on your project’s
requirements, and, in fact, you don’t necessarily have to choose
between the two. In Chapter 5, we’ll show you how to use the
Raspberry Pi to program the Arduino and get them communicating
with each other. Many projects—built by both hobbyists and
professional engineers—require both a controlling CPU like the Pi
and a microcontroller like the Arduino.

As you read this book, you’ll gain a better understanding of the
strengths of the Raspberry Pi and how it can become another use-
ful tool in the maker’s toolbox.

Preface xiii

GSW_RASPI_4ED_FIN.indd 13GSW_RASPI_4ED_FIN.indd 13 10/28/21 10:53 AM10/28/21 10:53 AM

But Wait… There’s More!
There’s so much you can do with the Raspberry Pi, it couldn’t fit
into scores of books, much less just one. Here, for example, is a list
of several other things that can be done quite easily with the Pi:

Media center
Because the Raspberry Pi has HDMI outputs (and composite
video embedded in the 3.5mm AV jack), it’s easy to connect
the Pi to almost any modern television. As I mentioned
before, it’s also quite capable of displaying full screen video
in 1080p or even 4K resolution. So it seems natural that you
may want to leverage these capabilities and make the Pi
a media server. You can run the Plex media service on it, and
you can install media player operating systems like Open
ELEC (openelec.tv) and OSMC (osmc.tv) on the Pi. These
systems can play lots of different media formats and are
designed to be easily accessible on a largeTV.

“Bare-metal” computer hacking
Most programmers write code that runs within an OS
like Windows, Mac OS, or Linux. However, it’s possible to
write code that runs directly on the processor, similar to a
microcontroller, or within a different type of operating system
called a real-time operating system like FreeRTOS. Although
it’s not for a beginning user, you can write and run these
programs on the Pi, or even write your own operating system!
A free online course from the University of Cambridge (bit.
ly/1BW2e3C) walks you through the process of developing
an OS, though it’s a bit outdated now and has not been
updated for newer versions of the Pi.

Retro gaming
If you’re a retro gaming enthusiast who misses the days of
Super Mario Bros. and Joust and Galaga and others, you can
use the RetroPie (retropie.org.uk) as a platform for emulat-
ing a lot of older gaming systems like the Nintendo and the
Atari. You can use after-market add-ons for the Pi (called
HATs) to wire up joysticks,

GSW_RASPI_4ED_FIN.indd 14GSW_RASPI_4ED_FIN.indd 14 10/28/21 10:53 AM10/28/21 10:53 AM

Linux and Raspberry Pi
Most general computers that you’re used to using run an operating
system like Windows, MacOS, or Linux. The operating system is
what you use to interact with the applications and programs that
run on the computer, and it could be said that the OS acts as a
“buffer” between the user or programmer and the hardware—you
don’t need to know the specifics of the TCP/IP protocol or the
Ethernet chip to program and use a web browser, for instance.

The Pi is no different and runs a flavor of Linux called the Raspber-
ry Pi OS. It’s a Debian-based distribution, and if you’ve ever used
Debian or Ubuntu in the past, the Pi’s OS will seem very familiar to
you. It’s a great match for the Pi because it’s free, it’s easy to use,
and it’s also hackable.

But you aren’t limited to the Pi OS. There are other distributions
you can load onto the Pi, such as Ubuntu, and even some non-Linux
systems like Windows 10 Core or even Android. Check out Chapter
3 for a rundown of some of the options available to you. In this
book, I use the standard Raspberry Pi OS available from the Pi
Foun dation’s download page (www.raspberrypi.org/software). It’s
a good place to start. And if you’re not familiar with Linux, check
out Chapter 2 for a quick introduction to this surprisingly easy-
to-use OS.

What Others Have Done
with Raspberry Pi
If you’ve gotten yourself a Pi and are having trouble deciding what
to do with it, fear not. There are so many projects out there to build
with your Pi it’d be silly for me to try and choose just a few to share
with you. Seriously—if you can think of something to do with the
Pi, there’s an excellent chance someone else has done it already,
whether it’s a weather station or a planetary rover or an arcade
game or even a supercomputing cluster. But don’t let the fact
that you’re not the first discourage you; rather, be happy that the

Preface xv

GSW_RASPI_4ED_FIN.indd 15GSW_RASPI_4ED_FIN.indd 15 10/28/21 10:53 AM10/28/21 10:53 AM

community that has sprung up around the Pi and its projects is
immense and supportive and no matter what you do with your Pi
you’ll be contributing and adding to an incredibly diverse ecosystem.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to re-
fer to program elements such as variable or function names,
databases, data types, environment variables, statements, and
keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

This element signifies a tip or suggestion.

 This element signifies a general note.

 This element indicates a warning or caution.

xvi Preface

GSW_RASPI_4ED_FIN.indd 16GSW_RASPI_4ED_FIN.indd 16 10/28/21 10:53 AM10/28/21 10:53 AM

Acknowledgments
I’d like to thank a few people who have contributed to this edition
of Getting Started with Raspberry Pi:

First and foremost, the original authors—Matt Richardson and
Shawn Wallace. Their original book was (and still is) an awesome
introduction to this little computer and I’m honored to be able
to add my thoughts and work to it.

And of course, Patrick Di Justo and the rest of the new Make: team
for thinking of me when it came time to update the book again.

Bill of Materials
Following is a list of the major components used in this book:

• Raspberry Pi (obviously)
• Raspberry Pi Pico
• microSD card (at least 8GB)
• Power supply (3A or greater, preferably)
• HDMI cable(s)
• HDMI-micro
• HDMI adapter
• mouse
• keyboard
• webcam and/or Pi camera module
• powered USB hub, either 2.0 or 3.0
• Pi case
• Arduino (doesn’t matter which one)
• solderless bread board
• assortment of jumper wires (M/M, M/F, and F/F)
• assorted LEDs
• push button switch
• assorted resistors
• Power Switch Tail
• IIADS1115 or ADS1015 ADC board
• potentiometer
• force-sensitive resistor
• photocell (light-sensitive resistor)

Preface xvii

GSW_RASPI_4ED_FIN.indd 17GSW_RASPI_4ED_FIN.indd 17 10/28/21 10:53 AM10/28/21 10:53 AM

GSW_RASPI_4ED_FIN.indd 18GSW_RASPI_4ED_FIN.indd 18 10/28/21 10:53 AM10/28/21 10:53 AM

1/Getting Up
and Running

A few words arise over and over when people
talk about the Raspberry Pi: small, cheap,
hackable, education-oriented. However, it
would be a mistake to describe it as plug-
and-play, even though it is easy enough to
plug the Pi into a TV set and get something
to appear on the screen. The bottom line
is that the Raspberry Pi is not a consumer
device, and depending on what you intend
to do with it, you’ll need to make a number
of decisions about peripherals and software
when getting up and running.
Of course, the first step is to actually acquire a Raspberry Pi. Chanc-
es are you have one by now, but if not, the Raspberry Pi is avail-
able from a huge selection of vendors online, including Maker Shed
(makershed.com), Sparkfun (sparkfun.com), Adafruit (adafruit.
com), Element14 (www.element14.com/community/welcome), RS
Components (www.rs-online.com), DigiKey (digikey.com), and even
good old Amazon.

The Raspberry Pi’s low price is obviously an important part of its
story. Enabling the general public to go directly to a distributor and

 1Getting Up and Running 1

GSW_RASPI_4ED_FIN.indd 1GSW_RASPI_4ED_FIN.indd 1 10/28/21 10:53 AM10/28/21 10:53 AM

order small quantities of a computer for the same price offered
to resellers is an unusual arrangement. A lot of potential resellers
were confused by the original announcements of the price point;
it was hard to see how there could be any profit margin. That’s why
you’ll see some resellers (particularly on Amazon and eBay) adding
a slight markup to the price of any of the Pi models. Some of these
resellers, such as Adafruit and Spark-fun, offer a whole host of ac-
cessories to go with the Pi, including HATs (addon boards to im-
mediately enable certain functionality for the Pi), LCD- and touch-
screens, and various cases. While these resellers may mark up the
price a bit, it’s often worth it (in my opinion) to pay a little more and
browse the add-ons that they have made available to the average
hobbyist.

Enough micro economic gossip; let’s start by taking a closer look
at the Raspberry Pi board.

A Tour of the Boards
There have been quite a few different versions of the Raspberry Pi
board. The first version was the Raspberry Pi 1 Model B, which was
followed by a simpler and cheaper Model A. In 2014, the Raspberry
Pi Foundation announced a significant revision (and improvement)
in the board design: the Raspberry Pi 1 Model B+. The Model B+
set the form-factor for “mainline” Raspberry Pis for the foreseeable
future. Since then, the Foundation has also created a device for em-
bedding the Pi in products, called the Compute Module. In 2015,
it also released a stripped-down $5 model called Raspberry Pi
Zero, followed closely by a wireless version called the Raspberry Pi
Zero W. In February 2016, the Raspberry Pi 3 Model B came on-
line, then the Model 3B+. As of this writing, the latest board is the
Raspberry Pi 4B, which is a huge step up in terms of the Pi’s capa-
bilities. There are three different models of the 4 available, depend-
ing on how much RAM you want to play with: the 2GB model costs
$35 (the same price as the original Pi), the 4GB costs $55, and the
8GB—the newest model—costs $75. Although that may seem a little
high for a Pi, when you consider that it’s powerful enough to conceiv-
ably replace your usual desktop computer, $75 seems like a steal.

M
ik

e
S

en
es

e

2 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 2GSW_RASPI_4ED_FIN.indd 2 10/28/21 10:53 AM10/28/21 10:53 AM

Over the years, there have been a few different versions
of the mainline Raspberry Pi, which is the $35 model
with four USB ports that most people tend to use. Each
of these models added performance improvements to
the processor. Raspberry Pi 2 added more RAM, the
Raspberry Pi 3 added onboard Wi-Fi and Bluetooth, and
the Pi 4 added even more RAM and more display capa-
bilities, along with USB 3.0.

If you’re following along with the examples in this book,
any of these mainline Raspberry Pis will do just fine.

Figure1-1. Raspberry Pi 2, 3, and 4 (Model B), from top left

Let’s start with a tour of what you’ll see when you take your
Raspberry Pi out of the box.

M
ik

e
S

en
es

e

Getting Up and Running 3

GSW_RASPI_4ED_FIN.indd 3GSW_RASPI_4ED_FIN.indd 3 10/28/21 10:53 AM10/28/21 10:53 AM

It’s easy to think of Raspberry Pi as a microcontroller development
board like Arduino or as a laptop replacement. In fact, the Pi is more
like the exposed innards of a mobile device with maker-friendly
headers for various ports and functions. Figure 1-2 shows the parts
of the board.

Figure 1-2. A map of the hardware interface of the Raspberry Pi

Here’s a description of each part:

A. The processor
At the heart of the Raspberry Pi is the same kind of processor
you’d find in a cell phone. If you’re using Raspberry Pi 4, this
is a 64-bit, quad-core 1.5GHz system on a chip, which is built
on the ARM A72 architecture. ARM chips come in a variety of
architectures with different cores configured to provide differ-
ent capabilities at different price points. Raspberry Pi 1 had 512
megabytes of RAM and Raspberry Pi 2 and 3 have one gigabyte
of RAM. The Pi 4, as I mentioned earlier, comes in flavors of 2, 4,
or 8GB of RAM.

B. Composite video and analog audio out
Analog audio and video outputs are available on a standard
3.5mm 4-pole plug connector. You can pick up A/V to RCA con-
version cables that will fit the 3.5mm jack on your Pi from many
of the vendors listed on page 1.

4 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 4GSW_RASPI_4ED_FIN.indd 4 10/28/21 10:53 AM10/28/21 10:53 AM

C. Status LEDs
Two indicator LEDs on the board provide visual feedback (Table
1-1). There are also network activity LEDs on the Ethernet port
itself.

Table1-1.The status LEDs

ACT Green Lights when the SD card is accessed

PWR Red Hooked up to 3.3V power

Starting with Raspberry Pi 3, the status LEDs are placed
near the MicroUSB power port as shown in Figure 1-2.
For previous boards, you’ll find them near the GPIO pins.

D. External USB 3.0 ports
New to the Pi 4 are two USB 3.0 ports, differentiated by the blue
color of the ports (a shade called Pantone 300C, if you’re inter-
ested). USB 3.0 is not only capable of providing more electrical
power to external peripherals (provided you are sourcing more
power to the Pi itself), it also offers up to 10x faster data transfer
speeds than USB 2.0.

E. External USB 2.0 ports
On all versions of the Raspberry Pi, there are at least two USB
2.0 ports for connecting peripherals like keyboards, mice, thumb
drives, and printers. While many USB devices can be powered
from these ports, you may want to consider using a powered
external hub if you have peripherals that need more power, such
as a hard drive.

F. Ethernet port
This is a standard RJ45 Ethernet port capable of 1 gigabit per
second data speed. Connect this to your router to get online;
otherwise, you can use Wi-Fi—the onboard dual-band Wi-Fi chip
is compatible with b, g, n, and ac Wi-Fi bands.

Getting Up and Running 5

GSW_RASPI_4ED_FIN.indd 5GSW_RASPI_4ED_FIN.indd 5 10/28/21 10:53 AM10/28/21 10:53 AM

G. Micro HDMI connectors
The two micro HDMI ports on the Pi 4 are each capable of 60fps
4K video output. (Video performance may vary on how much
you’re taxing the Pi; just because the GPU is capable of these
outputs doesn’t mean it will always look good.)

H. Power input
There is no power switch on the Pi. This USB-C connector is
used to supply power (and only power; this isn’t an additional
USB port). USB-C was selected because the connector is cheap
and USB power supplies are easy to find. When you’re powering
your Pi 4, the Pi Foundation strongly suggests a power supply
capable of delivering 3A (15W), particularly if you’re planning on
powering external devices as well.

I. The microSD card slot
There’s no hard drive on the Pi. Everything from the operating
system to working programs to data are stored on a microSD
card. Raspberry Pi 1 and 2 are equipped with spring-loaded
full-size SD slots, so you’ll push to put the SD card in and push
again to take it out. With Raspberry Pi 3, they did away with the
spring-loaded component in favor of a friction-fit microSD slot.
On that model and all those following, including the Zero and the
Zero W, you’ll push to insert the microSD card and pull to remove
it. Of course, you should only insert or remove the SD card when
the Raspberry Pi is powered down.

Figure 1-3 shows all of the power and input/output (I/O) pins on the
Raspberry Pi.

6 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 6GSW_RASPI_4ED_FIN.indd 6 10/28/21 10:53 AM10/28/21 10:53 AM

Figure1-3.The pins and headers on the Raspberry Pi

Here’s a description of the pins and headers shown:

A. General-purpose input/output (GPIO) and other pins
The current Raspberry Pis have a 2×20 pin GPIO header. Chap-
ters 6 and 7 show how to use these pins to read buttons and
switches and control actuators like LEDs, relays, or motors.

B. The Camera Serial Interface (CSI) connector
This port allows a camera module to be connected directly to
the board (see Figure 1-4).

C. The Display Serial Interface (DSI) connector
This connector accepts a 15-pin, flat ribbon cable that can
be used to communicate with the official Raspberry Pi touch
display.

Getting Up and Running 7

GSW_RASPI_4ED_FIN.indd 7GSW_RASPI_4ED_FIN.indd 7 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 1-4. The Raspberry Pi camera module connects directly to
the CSI connector. See Chapter 9 for a full discussion of cameras
and the Pi.

The Proper Peripherals
Now that you know where every thing is on the board, you’ll need
to know a few things about the proper peripherals to use with the
Pi. There are a bunch of prepackaged starter kits that have well-
vetted parts lists, though there are also a few caveats and gotchas
when fitting out your Raspberry Pi. There’s an extensive list of
supported peripherals (elinux.org/RPi_VerifiedPeripherals) on the
eLinux.org wiki, but these are the most basic:

A power supply
This is the most important peripheral to get right. For the
Raspberry Pi 4, you should use a USB-C adapter that can
provide 5V and at least 3,000mA (3A) of current. If you’re using
a Pi 3/B+, you’ll need a micro-USB adapter that can supply 5V
and at least 1.5A of current. Older Pis will only need 1,000mA
(1A). A cell phone charger won’t necessarily cut it, even if it has

8 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 8GSW_RASPI_4ED_FIN.indd 8 10/28/21 10:53 AM10/28/21 10:53 AM

the correct connector. Many cellphone chargers don’t provide
enough current, so check the rating marked on the back. An
underpowered Pi may still seem to work but will be flaky and
may fail unpredictably. Newer versions of the Pi will also blink
an error message on the desktop — “Under voltage detected!”
If in doubt, use the official Raspberry Pi power supply, which is
available at most places where Raspberry Pis are sold.

There are also several battery-pack solutions for taking
your Raspberry Pi on the go; the same rules about volt-
age and current apply there as well.

With the current version of the board, it is possible to power
the Pi from a USB hub that feeds power back into one of the
two external USB ports. However, there isn’t much protection
circuitry, so it may not be the best idea to power it over the
external USB ports. This is especially true if you’re going to
be doing electronics prototyping where you may accidentally
create short circuits that may draw a lot of current.

A microSD card
You’ll need at least 8GB, and it should be a Class 10 card for the
best read and write performance. There are operating systems
that fit onto SD cards with less than 8GB, but the standard Rasp-
berry Pi OS installation requires at least an 8GB microSD card.

USB keyboard and mouse
They’ll be helpful for controlling your computer. These peripher-
als are fairly generic, so no need to use anything fancy.

HDMI cable(s)
If you’re connecting to a monitor, you’ll need this or an appropri-
ate adapter for a DVI monitor. If you’re using the Pi 4, you’ll need
either an HDMI/HDMI microcable or the appropriate adapter.
You can also run the Pi headless, as described later in this chap-
ter. HDMI cables can vary wildly in price. If you’re just running
a cable three to six feet to a monitor, there’s no need to spend
more than $3 on an HDMI cable. If you are running long lengths

Getting Up and Running 9

GSW_RASPI_4ED_FIN.indd 9GSW_RASPI_4ED_FIN.indd 9 10/28/21 10:53 AM10/28/21 10:53 AM

of cable or displaying 4K video, you should definitely research
the higher-quality cables and avoid the cheap generics.

Ethernet cable
Your home may not have as many wired Ethernet jacks as it did
five years ago. Because everything is wireless these days, you
might find the wired port to be a bit of a hurdle; see the section
“Getting Online” on page 22 for some alternatives to plugging
the Ethernet directly into the wall or a hub.

Wi-Fi USB dongle
If you’re using one of the older Pis, you may want to add a Wi-Fi
dongle for wireless internet access. Many 802.11 WiFi USB don-
gles work with the Pi out of the box. Wi-Fi uses a lot of power, so
you will need to make sure you have anadequate power supply;
a 2A supply or a powered USB hub is a good choice. If you are
having problems with a Wi-Fi dongle, power is almost always the
problem.

You may also want to consider some of the following add-ons:

A powered USB hub
If you want to add more than four USB devices to a mainline
Raspberry Pi, you’ll need a USB hub. A powered USB 2.0 hub
(or 3.0 for the Pi 4) is recommended.

Heatsink
A heatsink is a small piece of metal, usually with fins, that creates
a lot of surface area to dissipate heat efficiently. Heat sinks can
be attached to chips that get hot. The Pi’s chipset was designed
for mobile applications, so a heat sink isn’t necessary most of the
time. However, as we’ll see later, there are cases where you may
want to run the Pi at higher speeds, or crunch numbers over an
extended period, and the chip may heat up a bit. Some people
have reported that the network chip can get warm as well.

10 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 10GSW_RASPI_4ED_FIN.indd 10 10/28/21 10:53 AM10/28/21 10:53 AM

Real-time clock
You may want to add a real-time clock chip (like the DS1307)
for logging or keeping time when offline. This is also necessary
should you want to experiment with running a real-time operat-
ing system on the Pi.

Camera module
A $25 Raspberry Pi camera module is available as an official
peripheral. Version 2 of the camera sports an 8MP image sensor
and is capable of recording 1080p video, while the newest ver-
sion has a 12MP sensor. There is also an infrared camera model;
with a few infrared LEDs to “light” the scene, you can take pic-
tures in total darkness. You can also use a USB webcam (more
on this in Chapter 9).

LCD
Most Liquid Crystal Displays can be used via a few connections
on the GPIO header. Look for a TFT (thin-film transistor) display
that can communicate with the Pi using the SPI (Serial Peripheral
Interface) pins on the header. The Raspberry Pi Foundation
also has a touch display that connects to the DSI interface
on the Raspberry Pi.

Soundcards
You’ll probably find that the built-in analog audio is inadequate
for most of your projects. If you want high-quality sound out-
put (or input) from the Pi, you’ll need a soundcard. Many USB
soundcards also work well with the Pi; Behringer’s U-Control
devices are a popular, inexpensive option.

Laptop dock
Several people have modified laptop docks intended for cell-
phones (like the Atrix lapdock) to work as a display/base for the
Raspberry Pi. Some companies like Pi-Top create a laptop-like
device specifically for Raspberry Pi. (As of this writing, the Rasp-
berry Pi 400 is also available, which is a Pi in a laptop form fac-
tor. This design definitely calls for a laptop dock, in my opinion.)

Getting Up and Running 11

GSW_RASPI_4ED_FIN.indd 11GSW_RASPI_4ED_FIN.indd 11 10/28/21 10:53 AM10/28/21 10:53 AM

HATs
A number of vendors and open hardware folks have released add-on
daughterboards that sit on top of the Pi and connect via the GPIO
header. These boards add capabilities like driving LCDs, motors,
or analog sensor inputs. If you’re familiar with Arduino terminology,
you might call these daughterboards “shields,” but the Raspberry Pi
Foundation calls them HATs (Hardware Attached on Top), see Fig-
ure 1-5. The full specification is available on the Raspberry Pi Foun-
dation’s GitHub page (github.com/raspberrypi/hats).

Figure1-5. The Sense HAT add-on board includes an LED matrix,
a suite of sensors, and a joystick input. It was designed for the
Raspberry Pis that were sent to the International Space Station.

To share just one example, the Raspberry Pi Foundation makes a HAT
called the Sense HAT, which includes an RGB LED matrix; sensors for
temperature, pressure, and humidity; an accelerometer; a gyroscope;
and a magnetometer. It also has a five-position joystick. It’s the HAT
that was designed for the Raspberry Pis that were sent to the Intern-
tional Space Station as part of the Foundation’s AstroPi program.

12 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 12GSW_RASPI_4ED_FIN.indd 12 10/28/21 10:53 AM10/28/21 10:53 AM

The Case
You may find that you want a case for your Raspberry Pi. The stiff
cables on all sides make it hard to keep the Pi flat, and some of the
components like the SD card slot can be mechanically damaged
even through normal use.

There are a bunch of premade cases available, but there are also a lot
of case designs available to download and fabricate on a laser cutter
or 3D printer. In general, avoid tabbed cases where brittle acrylic is
used at right angles. The layered acrylic of the Pi bow (shop.pimoroni.
com/?q=pibow) is a colorful option (Figure 1-6).

The Raspberry Pi Foundation also creates an official case, which
uses a nice injection-molded design. It has multiple parts that can
be removed to allow access to the GPIO pins and other components.
(Figure 1-7).

It should probably go without saying, but it’s one of those obvious
mistakes you can make sometimes: make sure you don’t put your
Raspberry Pi on a conductive surface. Flip over the board and
look at the bottom; there are a lot of components there and a lot
of solder joints that can be easily shorted. Another reason why it’s
important to case your Pi!

Figure1-6. The colorful Pibow case from Pimoroni

Getting Up and Running 13

GSW_RASPI_4ED_FIN.indd 13GSW_RASPI_4ED_FIN.indd 13 10/28/21 10:53 AM10/28/21 10:53 AM

Figure1-7. With the official Raspberry Pi case, you can remove the
top and sides to access the different parts of the board.

Choose Your Distribution
The Raspberry Pi runs Linux for an operating system. Linux is tech-
nically just the kernel, but an operating system is much more than
that—it’s the total collection of drivers, services, and applications
that makes the OS. A variety of flavors or distributions of the Linux
OS have evolved over the years. Some of the most common on desk-
top computers are Ubuntu, Debian, Fedora, and Arch. Each has its
own communities of users and is tuned for particular applications.

Because the Pi is based on a mobile device chipset, it has different
software requirements than a desktop computer. The Broadcom
processor has some proprietary features that require special “binary
blob” device drivers and code that won’t be included in any standard
Linux distribution. And, while most desktop computers have giga-
bytes of RAM and hundreds of gigabytes of storage, the Pi is more
limited in both regards (though the 8GB of RAM available on the Pi 4

14 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 14GSW_RASPI_4ED_FIN.indd 14 10/28/21 10:53 AM10/28/21 10:53 AM

rival that available on some lower-end desktop computers). Special
Linux distributions that target the Pi have been developed.

In this book, we will concentrate on the official Raspberry Pi OS
distribution, which is based on Debian. Note that though raspbian.
org still exists, it does not seem to be affiliated with the Raspberry
Pi OS, and is a community site, not operated by the Foundation.
If you’re looking for the official distribution, visit the Raspberry Pi
Foundation’s downloads page (raspberrypi.org). Other specialized
distributions are explored in Chapter 3.

Flash the SD Card
Many vendors sell SD cards with the operating system preinstalled;
for some people, this may be the best way to get started. Even if
it isn’t the latest release, you can easily upgrade once you get the
Pi booted up and on the internet.

The easiest way to get the OS on the microSD card is to use the-
NOOBS tool. Don’t take offense; no one is questioning your com-
puter acumen. NOOBS stands for New Out Of the Box Software
and is a configuration tool that will help install the OS.

You’ll need an SD card (at least 8GB) and reader, then follow these
steps: when you boot up the Pi, you’ll see a configuration screen
with several OS options. Select Raspberry Pi OS and hit the Install
button; that’s all there is to it!

For Advanced Users:
Create Your Own Disk Image
The first thing you’ll need to do is download one of the distributions
from the Raspberry Pi Foundation’s downloads page (www.rasp-
berrypi.org/downloads) or one of the sites in Chapter 3. Note that
you can’t just drag the disk image onto the SD card; you’ll need to
make a bit-for-bit copy of the image. You’ll need a card writer and a
disk image utility; any inexpensive card writer will do. The instruc-
tions vary depending on the OS you’re running. Unzip the image
file (you should end up with a .img file), then follow the appropriate
directions described in Appendix A.

Getting Up and Running 15

GSW_RASPI_4ED_FIN.indd 15GSW_RASPI_4ED_FIN.indd 15 10/28/21 10:53 AM10/28/21 10:53 AM

Faster Downloads with BitTorrent
You’ll see a note on the download site about downloading a
torrent file for the most efficient way of downloading Raspberry
Pi OS. Torrents are a decentralized way of distributing files;
they can be much faster because you’ll be pulling bits of the
download from many other torrent clients rather than a single
central server. You’ll need a BitTorrent client if you choose this
route.

Some popular BitTorrent clients are:

Vuze (www.vuze.com)
Integrated torrent search and download

Miro (www.getmiro.com)
Open source music and video player that also handles
torrents

MLDonkey (mldonkey.sourceforge.net)
Windows and Linux-only file sharing tool

Transmission (www.transmissionbt.com)
Lightweight Mac and Linux-only client; also used in embedded
systems

Booting Up
Follow these steps to boot up your Raspberry Pi for the first time:

1. Push the microSD card into the socket on the bottom of the board.
On Raspberry Pi 1 and 2, it’ll click into place. On Raspberry Pi 3 and
all later versions, the micro SD card won’t click and is held in place
by friction.

2. Plug in a USB keyboard and mouse.

16 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 16GSW_RASPI_4ED_FIN.indd 16 10/28/21 10:53 AM10/28/21 10:53 AM

3. Plug the HDMI output into your TV or monitor. Make sure your
monitor is on and set to the correct input. If you’re working with
the Pi 4, you’ll need a micro-HDMI to HDMI adapter as well.

4. Last, plug in the power supply. It’s a good habit to make sure
everything else is hooked up before connecting the power.

If all goes well, you should see a bunch of startup log entries
appearing on your screen. At the top, you’ll see a Raspberry Pi logo,
or four if you’re using a quad-core model (Raspberry Pi 2 or later).
If things don’t go well, skip ahead to “Troubleshooting” on page 26.
These log messages show all of the processes that are launching
as you boot up the Pi. You’ll see the network interface be initialized,
and you’ll see all of your USB peripherals being recognized and
logged. You can see these log messages after you login by typing
dmesg on the command line.

Configuring Your Pi
The very first time you boot up, you’ll be presented with the Rasp-
bian desktop environment. The first thing you’ll want to do is set
a few settings with the Raspberry Pi Configuration tool. To open it,
click Menu → Preferences → Raspberry Pi Configuration (see Fig-
ure 1-8).

Next, in Figure 1-9, we’ll show you which configuration options are
essential and which you might want to come back to if you need
them.

Getting Up and Running 17

GSW_RASPI_4ED_FIN.indd 17GSW_RASPI_4ED_FIN.indd 17 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 1-8. How to launch the Raspberry Pi Configuration tool.

18 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 18GSW_RASPI_4ED_FIN.indd 18 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 1-9. The Raspberry Pi Configuration tool allows you to
change many of the important settings on your Raspberry Pi.

System → Change Password
If you’re on a network with others, it’s a good idea to change the
default password from “raspberry” to something a little stronger.

System → Boot
This option lets you boot straight to the graphical desktop en-
vironment and is set this way by default. If you select CLI, you’ll
get the command line when you boot up, and you’ll have to start
the graphical interface manually with the command startx.

Display → Overscan
The overscan option is set to enabled at first because some mon-
itors may cut off the edges of the desktop. If you have a black bor-
der around your desktop, then you can disable overscan to get the
desktop to fill your screen.

Getting Up and Running 19

GSW_RASPI_4ED_FIN.indd 19GSW_RASPI_4ED_FIN.indd 19 10/28/21 10:53 AM10/28/21 10:53 AM

Interfaces → SSH
This option turns on the Secure Shell (SSH) server, which will
allow you to login to the Raspberry Pi remotely over a network.
This is really handy, so you should leave it on.

Performance → GPU Memory
This option allows you to change the allocation of RAM available
to the graphics processing unit. The rest of the RAM is left for
the CPU to use. It’s best to leave the default split for now. If
you decide to experiment with 3D graphics or video decoding,
you may want to adjust this value in the future.

Performance → Overclock
With this option, you can run the processor at speeds higher
than the default operation. This option is not available for Rasp-
berry Pi 3 or 4. For now, it’s best to leave this setting alone.

Localisation → Set Keyboard
The default keyboard settings are for a generic keyboard in
a UK-style layout. If you want the keys to do what they’re labeled
to do, you’ll definitely want to select a keyboard type and map-
ping that corresponds to your setup. Luckily, the keyboard list is
very robust. Note that your locale settings can affect your key-
board settings as well.

Localisation → Set Locale
If you’re outside the UK, you should change your locale to reflect
your language and character encoding preferences. The default
setting is for UK English with a standard UTF-8 character encod-
ing (en_GB.UTF-8). Select en_US.UTF-8 if you’re in the US.

Localisation → SetTimezone
You’ll probably want to set this.

When you’re done, select OK and you’ll be prompted to restart so
that the settings can take effect.

20 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 20GSW_RASPI_4ED_FIN.indd 20 10/28/21 10:53 AM10/28/21 10:53 AM

If you want to access these settings from the command line, you
can use the raspi-config tool (see “Configuring Your Pi” on page 17).
Type the following at the command line if you want to try that out:

sudo raspi-config

Figure 1-10. The raspi-config tool when run from the command line

Getting Up and Running 21

GSW_RASPI_4ED_FIN.indd 21GSW_RASPI_4ED_FIN.indd 21 10/28/21 10:53 AM10/28/21 10:53 AM

Getting Online
You’ve got a few different ways to connect to the internet. If you’ve
got easy access to a router, switch, or Ethernet jack connected to
a router, just plug in using a standard Ethernet cable. If you have a
Wi-Fi USB dongle or you’re using a Raspberry Pi 3 or later, you can
connect wirelessly; there’s an icon on the task-bar to setup your
wireless connection (see Figure 1-10).

If you’ve got a laptop nearby, or if you’re running the Pi in a head-
less configuration, you can share the Wi-Fi on your laptop with the
Pi (Figure 1-11). It is super simple on the Mac: just enable internet
Sharing in your Sharing settings, then use an Ethernet cable to con-
nect the Pi and your Mac. In Windows, enable “Allow other network
users to connect through this computer’s internet connection” in
your internet Connection Sharing properties. The Pi should auto-
matically get an IP address when connected and be online.

You will probably need a cross-over cable for a Windows-based PC,
but you can use any Ethernet cable on Apple hardware, as it will
autodetect the type of cable. (A cross-over cable is a spe cially-wired
type of Ethernet cable —CAT5 or CAT6—that has the “receive” pin
on one end connected to the “transmit” pin on the other. This allows
two computers to be wired together via their Ethernet ports and
be able to talk to each other without having to use an intervening
switch or hub in the middle.)

22 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 22GSW_RASPI_4ED_FIN.indd 22 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 1-11. Click on the network icon on the right side of the task
bar to select a Wi-Fi network to connect to.

Getting Up and Running 23

GSW_RASPI_4ED_FIN.indd 23GSW_RASPI_4ED_FIN.indd 23 10/28/21 10:53 AM10/28/21 10:53 AM

Shutting Down
There’s no power button on the Raspberry Pi (although there is
a header for a reset switch on newer boards). The proper way to
shut down is through the Shut down command under the taskbar
menu with in the desktop environment.

You can also shut down from the command line by typing:

pi@raspberrypi: ~ $ sudo shutdown now

If you want to restart, you can type

pi@raspberrypi: ~ $ sudo shutdown -r now

Be sure to do a clean shutdown whenever possible (and don’t just
pull the plug). In some cases, you can corrupt the SD card if you
turn off the power without halting the system.

Running Headless
If you want to work on the Raspberry Pi without plugging in a mon-
itor, keyboard, and mouse, there are some ways to set it up to run
headless. If all you require is to get into the command line, you can
simply hook the Raspberry Pi up to the network and use an SSH
client to connect to it (username: pi, password: raspber-
ry). The SSH utility on Mac or Linux will do; use PuTTY (bit.ly/
1sfuf4X) on Windows (or Linux). The SSH server on the Raspberry
Pi is enabled by default (run the Raspberry Pi configuration utility
again if for some reason it doesn’t launch at startup).

Another way to connect to the Pi over a network connection is to
start the Virtual Network Computing (VNC) server on the Pi and
connect to it using a VNC client. The benefit of this is that you can
run a complete working graphical desktop environment in a window
on your laptop or desktop. This is a great solution for a portable
development environment. The VNC server comes preinstalled on
the latest versions of the Raspberry Pi OS; to start and configure
it, click the VNC server icon on the top right of the taskbar (Figure
1-12).

24 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 24GSW_RASPI_4ED_FIN.indd 24 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 1-12. Starting the VNC server

A third way of logging in to the Pi without a keyboard or monitor
is via some pins on the GPIO header. You can use a special cable
from FTDI that allows you to connect to that serial port via USB.
The FTDI cable has three wires that connect to ground (pin 6),
TX (pin 8), and RX (pin 10) on the header. This allows you to login
via the serial port, an artifact from olden times when programmers
would log into their VAXes and ENIACs via serial cables. Nowadays
this type of login is almost never used, as telnet and SSH are avail-
able on the vast majority of machines and are much faster commu-
nication protocols.

Alternatively, you could use the BUB I from Modern Device, which
is a breakout board for the FTDI chip with a prototyping area that
allows you to reroute the signals.

Getting Up and Running 25

GSW_RASPI_4ED_FIN.indd 25GSW_RASPI_4ED_FIN.indd 25 10/28/21 10:53 AM10/28/21 10:53 AM

Troubleshooting
If things aren’t working the way you think they should, there area
few common mistakes and missed steps. Be sure to check all of the
following suggestions:

• Is the correct type of microSD card in the slot, and is it mak-
ing a good connection?

• Try copying the disk again with another card reader.

• Run a Secure Hash Algorithm (SHA) check sum utility on
the disk image and comparing the result to the 40-character
hash published on the download page.

• Is the Pi restarting or having intermittent problems? Check
your power supply; an underpowered board may seem to
work but act flaky.

• Do you get a kernel panic on startup? A kernel panic is the
equivalent of Windows’ Blue Screen of Death; it’s most often
caused by a problem with a device on the USB hub. Try un-
plugging USB devices and restarting.

If that all fails, head over to the Raspberry Pi Hub’s troubleshooting
page (elinux.org/R-Pi_Troubleshooting) for solutions to all sorts of
problems people have had.

Which Board Do You Have?
If you’re asking for help in an email or on a forum, it can be helpful
to those assisting you if you know exactly what version of the
operating system and which board you’re using. To find out the OS
version, open LXTerminal, and type:

cat/proc/version

To find your board version, type:

cat/proc/cpuinfo

26 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 26GSW_RASPI_4ED_FIN.indd 26 10/28/21 10:53 AM10/28/21 10:53 AM

Going Further
The Raspberry Pi Hub (elinux.org/RPi_Hub)

Hosted by elinux.org, this is a massive wiki of information on
the Pi’s hardware and configuration.

List of Verified Peripherals (elinux.org/RPi_VerifiedPeripherals)
The definitive list of peripherals known to work with the
Raspberry Pi.

Getting Up and Running 27

GSW_RASPI_4ED_FIN.indd 27GSW_RASPI_4ED_FIN.indd 27 10/28/21 10:53 AM10/28/21 10:53 AM

GSW_RASPI_4ED_FIN.indd 28GSW_RASPI_4ED_FIN.indd 28 10/28/21 10:53 AM10/28/21 10:53 AM

2/Getting Around
Linux on the
Raspberry Pi

If you want to get the most out of your Raspberry Pi, you’ll need
to learn a little Linux. This chapter aims to present a whirlwind tour
of the operating system and point out the most important tools
you’ll need today. This should give you enough context and com-
mands to get around the filesystem, and to install packages from
the command line or desktop environment.

Raspberry Pi OS comes with the Lightweight X11 Desktop Environ-
ment (LXDE) graphical desktop environment installed (Figure 2-1).
This is a trimmed-down desktop environment for the X Window
System that has been powering the GUIs of Unix and Linux com-
puters since the 1980s. Some of the tools you see on the desktop,
such as the LXTerminal shell, are bundled with LXDE.

Running on top of LXDE is Openbox, a window manager that
handles the look and feel of windows and menus. If you want to
tweak the appearance of your desktop, click the Raspberry menu
in the upper left, then choose Preferences→Appearance Settings.
Unlike OS X or Windows, it is relatively easy to completely custom-
ize your desktop environment or install alternative window manag-
ers. Some of the other distributions for Raspberry Pi have differ-
ent environments tuned for applications like set-top media boxes,
phone systems, or network firewalls. See elinux.org/RPi_Distribu-
tions and Chapter 3 for more.

Getting Around Linux on the Raspberry Pi 29

GSW_RASPI_4ED_FIN.indd 29GSW_RASPI_4ED_FIN.indd 29 10/28/21 10:53 AM10/28/21 10:53 AM

As of October 2015’s update to the Raspberry Pi OS,
the default behavior is to log in and launch the desktop
environment immediately after booting. If you find
yourself at a prompt for a username and password, the
default user is pi and the password is raspberry. If you
find yourself at the text command line (which looks like
pi@raspberrypi:~ $) and want to launch the desktop
environment, just type startx and press Enter. We’ll
cover the command line more in-depth later in this
chapter.

Figure 2-1.The graphical desktop

The Raspberry Pi software engineers and designers have cus-
tomized the Pi’s Linux distribution and its desktop environment for
general-purpose computing, making, and learning. If you browse
the programs in the Raspberry menu in the upper-left corner of
your screen (Figure 2-2), you’ll notice that there are programming
environments, office tools, accessories, games, and internet pro-
grams preinstalled. Feel free to click around and explore!

30 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 30GSW_RASPI_4ED_FIN.indd 30 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 2-2. The contents of the Raspberry menu

A few applications that you encounter may be a little different
than those in other desktop environments:

The File Manager
If you prefer not to move files around using the command line
(more on that in a moment), select the File Manager from the
taskbar or within the Raspberry menu→Accessories. You’ll be
able to browse the filesystem using icons and folders the way
you’re probably used to doing.

Getting Around Linux on the Raspberry Pi 31

GSW_RASPI_4ED_FIN.indd 31GSW_RASPI_4ED_FIN.indd 31 10/28/21 10:53 AM10/28/21 10:53 AM

The web browser
The default web browser on the Pi is Chromium (not to be confused
with Chrome). Chromium is the open-source web browser upon
which Chrome is based and runs quite well on all models of the Pi.
If you’re used to using Chrome, you probably won’t notice much of
a difference with Chromium. Advances in the Pi’s hardware have
made Chromium a perfectly reasonable option for the Pi.

Video and audio
The default video/audio player included in Raspberry Pi OS is
VLC. VLC is a powerful, easy-to-use media player that can play
pretty much any media file you throw at it.

Wolfram and Mathematica
Bundled with the Raspberry Pi OS (if you use the NOOBS down-
load) are releases of Wolfram language and Mathematica. Math-
ematica is the front end interface for the Wolfram programming
language (no relation to the author). Together they’re commonly
used for complex computations in math, science, and engineer-
ing fields. To see what Wolfram and Mathematica are capable
of, the Wolfram Language and System Documentation (bit.
ly/1qoitzW) is a great place to start.

Text editor
Previously, the Raspberry Pi came with its own text editor, called
Leafpad, but now it’s just a simple text editor, similar to gedit
on Ubuntu, TextEdit on the Mac, or Notepad on Windows. It’s
available from the Accessories submenu under the Raspberry
icon. You can use nano (nano-editor.org) for editing text files
from the command line, as it’s preinstalled, as is vim. Emacs
(my personal favorite) is not installed but is easy to install
afterward (see“Installing New Software” on page 47).

Copy and paste
Copy and paste functions work between applications pretty well,
although you may find some oddball programs that aren’t con-
sistent. If your mouse has a middle button, you can select text
by highlighting it as you normally would (click and drag with the

32 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 32GSW_RASPI_4ED_FIN.indd 32 10/28/21 10:53 AM10/28/21 10:53 AM

left mouse button) and paste it by pressing the middle button
while you have the mouse cursor over the destination window.

The shell
A lot of tasks are going to require you to get to the command line
and run commands there. The LXTerminal program provides ac-
cess to the command line, or shell. It can be launched from the
task bar icon or from the Raspberry menu→Accessories. Un-
fortunately, the standard Debian shortcut for the terminal, Ctrl-
Alt-T, does not work on the Pi. The default shell on the Raspberry
Pi OS is the Bourne-again shell (bash (bit.ly/1oTTXqW)), which
is very common on Linux systems. There’s also an alternative
called dash (bit.ly/1oTTVzs). You can change shells via the pro-
gram menu or with the chsh command.

Using the Command Line
If it helps, you can think of using the command line as playing
a text adventure game, but with the files and the filesystem in place
of clues and mazes. If that metaphor doesn’t help you, don’t worry:
all the commands and concepts in this section are standard Linux
and are valuable to learn.

Before you start, open up the LXTerminal program (Figure 2-3).
There are two tricks that make life much easier in the shell: auto-
complete and commandhistory. Often you will only need to type
the first few characters of a command or file name, then hit Tab.
The shell will attempt to auto complete the string based on the files
in the current directory or programs in commonly used directories
(the shell will search for executable programs in places like /bin
or/usr/bin/). If you hit the up arrow on the command line, you’ll be
able to step back through your command history, which is useful if
you mistyped a character in a long string of commands. If you need
to go really far back in your history, just type history in the shell.
You’ll see a list of commands entered into the shell, going quite
a way back, each preceded by a number. If you want to repeat a
certain command, just type an exclamation point, followed by the
number preceding that command, and press Return.

Getting Around Linux on the Raspberry Pi 33

GSW_RASPI_4ED_FIN.indd 33GSW_RASPI_4ED_FIN.indd 33 10/28/21 10:53 AM10/28/21 10:53 AM

Figure 2-3. LXTerminal gives you access to the command line
(or shell).

Files and the Filesystem
Table 2-1 shows some of the important directories in the filesys-
tem. Most of these follow the Linux standard of where files should
go; a couple are specific to the Raspberry Pi. The /sys directory is
where you can access all of the hardware on the Raspberry Pi.

Table 2-1. Important directories in the Raspberry Pi OS
file system

34 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 34GSW_RASPI_4ED_FIN.indd 34 10/28/21 10:53 AM10/28/21 10:53 AM

Directory Description

/bin Programs and commands that all users can run

/boot All the files needed at boot time

/dev Special files that represent the devices
on your system

/etc Configuration files

/etc/init.d Scripts to start up services

/etc/X11 X11 configuration files

/home User home directories

/home/pi Home directory for Pi user

/lib Kernel modules/drivers

/media Mount points for removable media

/proc Virtual directory with details about run-
ning processes and the OS

/sbin Programs for system maintenance

/sys A special directory on the Raspberry Pi
that represents the hardware devices

/tmp Space for programs to create temporary files

/usr Programs and data usable by all users

/usr/bin Most of the programs in the operating system
reside here

/usr/games Games (surprise!) No, it’s empty by default

/usr/lib Libraries to support common programs

/usr/local Software that may be specific to this machine
goes here

/usr/sbin More system administration programs

/usr/share Supporting files that aren’t specific to any process
or architecture

/usr/src Linux is open-source; here’s the source!

/var System logs and spool files

/var/
backups

Backup copies of all the most vital system files

/var/cache Programs such as apt-get cache their data here

/var/log All of the system logs and individual service logs

/var/mail All user email is stored here, if you’re setup
to handle email

/var/spool Data waiting to be processed (e.g., incoming
email, print jobs)

GSW_RASPI_4ED_FIN.indd 35GSW_RASPI_4ED_FIN.indd 35 10/28/21 10:53 AM10/28/21 10:53 AM

You’ll see your current directory displayed before the command
prompt. In Linux, your home directory has a shorthand notation:
the tilde (~). When you open the LXTerminal, you’ll be dropped into
your home directory, and your prompt will look like this:

pi@raspberrypi:~ $

Here’s an explanation of that prompt:

pi@ raspberrypi: ~ $

 Your username, pi, followed by the at (@) symbol.

 The name of your computer (raspberry pi is the default host
name). It can be changed.

 The current working directory of the shell. You always start
in your home directory (~). If you should change directo-
ries into the Documents directory, the prompt will change to
pi@raspberrypi:~/Documents $

 This is the shell prompt. Any text you type will appear to the right
of it. Press Enter or Return to execute each command you type.

Later in the book, we will omit the pi@raspberrypi ~
portion of the prompt and just show you the $ in some
examples, to keep things less cluttered.

Use the cd (change directory) command to move around the file
system. The following two commands have the same effect (chang-
ing to the home directory) for the Pi user:

cd /home/pi/
cd ~

In addition, if you just type cd, you’ll be taken to the home directory.
It’s a handy shortcut to know.

If the directory path starts with a forward slash, it will be interpreted
as an absolute path to the directory. Otherwise, the directory will be
considered relative to the current working directory. You can also use
. and .. to refer to the current directory and the current directory’s
parent. For example, to move up to the top of the filesystem:

36 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 36GSW_RASPI_4ED_FIN.indd 36 10/28/21 10:53 AM10/28/21 10:53 AM

pi@raspberrypi:~ $ cd..
pi@raspberrypi:/home $ cd..

You could also get there with the absolute path/ :

pi@raspberrypi:~ $ cd /

Once you’ve changed to a directory, use the ls command to list the
files there:

pi@raspberrypi:/ $ ls
bin dev home lost+found mnt proc run selinux sys usr
boot etc lib media opt root sbin srv tmp var

Most commands have additional parameters, or switches, that can
be used to turn on different behaviors. For example, the -l switch
will produce a more detailed listing, showing file sizes, dates, and
permissions:

pi@raspberrypi:~ $ ls -l
total 8
drwxr-xr-x2pipi4096Oct1214:26Desktop
drwxrwxr-x2pipi4096Jul2014:07python_games

The -a switch will list all files, including invisible ones (invisible file
names begin with a dot):

pi@raspberrypi:~ $ ls -la
total 80

drwxr-xr-x 11 pi pi 4096 Oct 12 14:26 .
drwxr-xr-x 3 root root 4096 Sep 18 07:48 ..
-rw------- 1 pi pi 25 Sep 18 09:22 .bash_history
-rw-r--r-- 1 pi pi 220 Sep 18 07:48 .bash_logout
-rw-r--r-- 1 pi pi 3243 Sep 18 07:48 .bashrc
drwxr-xr-x 6 pi pi 4096 Sep 19 01:19 .cache
drwxr-xr-x 9 pi pi 4096 Oct 12 12:57 .config
drwx------ 3 pi pi 4096 Sep 18 09:24 .dbus
drwxr-xr-x 2 pi pi 4096 Oct 12 14:26 Desktop
-rw-r--r-- 1 pi pi 36 Sep 18 09:35 .dmrc
drwx------ 2 pi pi 4096 Sep 18 09:24 .gvfs
drwxr-xr-x 2 pi pi 4096 Oct 12 12:53 .idlerc
-rw------- 1 pi pi 35 Sep 18 12:11 .lesshst
drwx------ 3 pi pi 4096 Sep 19 01:19 .local
-rw-r--r-- 1 pi pi 675 Sep 18 07:48 .profile
drwxrwxr-x 2 pi pi 4096 Jul 20 14:07 python_games
drwx------ 4 pi pi 4096 Oct 12 12:57 .thumbnails
-rw------- 1 pi pi 56 Sep 18 09:35 .Xauthority
-rw------- 1 pi pi 300 Oct 12 12:57 .xsession-errors
-rw------- 1 pi pi 1391 Sep 18 09:35 .xsession-errors.old

Getting Around Linux on the Raspberry Pi 37

GSW_RASPI_4ED_FIN.indd 37GSW_RASPI_4ED_FIN.indd 37 10/28/21 10:53 AM10/28/21 10:53 AM

drwxr-xr-x 11 pi pi 4096 Oct 12 14:26 .
drwxr-xr-x 3 root root 4096 Sep 18 07:48 ..
-rw------- 1 pi pi 25 Sep 18 09:22 .bash_history
-rw-r--r-- 1 pi pi 220 Sep 18 07:48 .bash_logout
-rw-r--r-- 1 pi pi 3243 Sep 18 07:48 .bashrc
drwxr-xr-x 6 pi pi 4096 Sep 19 01:19 .cache
drwxr-xr-x 9 pi pi 4096 Oct 12 12:57 .config
drwx------ 3 pi pi 4096 Sep 18 09:24 .dbus
drwxr-xr-x 2 pi pi 4096 Oct 12 14:26 Desktop
-rw-r--r-- 1 pi pi 36 Sep 18 09:35 .dmrc
drwx------ 2 pi pi 4096 Sep 18 09:24 .gvfs
drwxr-xr-x 2 pi pi 4096 Oct 12 12:53 .idlerc
-rw------- 1 pi pi 35 Sep 18 12:11 .lesshst
drwx------ 3 pi pi 4096 Sep 19 01:19 .local
-rw-r--r-- 1 pi pi 675 Sep 18 07:48 .profile
drwxrwxr-x 2 pi pi 4096 Jul 20 14:07 python_games
drwx------ 4 pi pi 4096 Oct 12 12:57 .thumbnails
-rw------- 1 pi pi 56 Sep 18 09:35 .Xauthority
-rw------- 1 pi pi 300 Oct 12 12:57 .xsession-errors
-rw------- 1 pi pi 1391 Sep 18 09:35 .xsession-errors.old

Use the mv command to rename a file. The touch command can be
used to create an empty dummy file:

pi@raspberrypi:~ $ touch foo
pi@raspberrypi:~ $ ls
foo Desktop python_games
pi@raspberrypi:~ $ mv foo baz
pi@raspberrypi:~ $ ls
baz Desktop python_games

Remove a file with rm. To remove a directory, you can use rmdir if the
directory is empty, or rm -r if it isn’t. The -r is a parameter sent to
the rm command that indicates it should recursively delete every-
thing in the directory.

rm -r is a bit like nuclear war—it is easy to start, and it
does great damage. Make sure you’re in exactly the
right directory before you set it off.

38 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 38GSW_RASPI_4ED_FIN.indd 38 10/28/21 10:54 AM10/28/21 10:54 AM

If you want to find out all the parameters for a particular command,
you can read the user manual with the man command (or you can
often use the --help option):

pi@raspberrypi ~ $ man curl
pi@raspberrypi ~ $ rm --help

To make a new directory, use mkdir. To bundle all of the files in a
directory into a single file, use the tar command, originally created
for tape archives.

You’ll find a lot of bundles of files or source code are distributed as
tar files, and they’re usually also compressed using the gzip com-
mand. Try this:

pi@raspberrypi ~ $ mkdir myDir
pi@raspberrypi ~ $ cdmy Dir
pi@raspberrypi ~ $ touch foo bar baz
pi@raspberrypi ~ $ cd ..
pi@raspberrypi ~ $ tar -cf myDir.tar myDir
pi@raspberrypi ~ $ gzip myDir.tar

You’ll now have a .tar.gz archive of that directory that can be distrib-
uted via email or the internet.

More Linux Commands
One of the reasons that Linux (and Unix) is so successful is that the
main design goal was to build a very complicated system out of small,
simple modular parts that can be chained together. You’ll need to
know a little bit about two pieces of this puzzle: pipes and redirection.

Pipes are simply a way of chaining two programs together so the out-
put of one can serve as the input to another. All Linux programs can
read data from standard input (often referred to as stdin), write data
to standard output (stdout), and throw error messages to standard
error (stderr). A pipe lets you hook up stdout from one program to
stdin of another (Figure 2-4). Use the | operator, as in this example:

pi@raspberrypi ~ $ ls -la | less

In the above example, the output of the ls command is sent to
the input of the less program, which prints data one screenful at
a time. (Press q to exit the less program.)

Getting Around Linux on the Raspberry Pi 39

GSW_RASPI_4ED_FIN.indd 39GSW_RASPI_4ED_FIN.indd 39 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 2-4. Pipes are a way of chaining smaller programs together
to accomplish bigger tasks.

Now (for something a little more out there) try:

pi@raspberrypi ~ $ sudo cat/boot/kernel.img | aplay

You may want to turn the volume down a bit first; this command
reads the kernel image and spits all of the 1s and 0s at the audio-
player. That’s what your kernel sounds like!

Amusing Digression
sudo is a command that stands for “super user do”. It is a way for an
ordinary computer user, like you, to temporarily gain super user
powers on a Linux system. This gives you the ability to change the
system greatly, which can do a lot of damage if you’re not careful.
Treat sudo with respect.

In some of the examples later in the book, we’ll also be using redi-
rection, where a command is executed and the stdout output can
be sent to a file. As you’ll see later, many things in Linux are treated
like ordinary files (such as the Pi’s general-purpose input/output

40 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 40GSW_RASPI_4ED_FIN.indd 40 10/28/21 10:54 AM10/28/21 10:54 AM

pins), so redirection can be quite handy. To redirect output from
a program, use the > operator:

pi@raspberrypi ~ $ ls > directoryListing.txt

Special Control Keys
In addition to the keys for auto complete (Tab) and command
history (up arrow) previously mentioned, there are a few other-
special control keys you’ll need in the shell. Here are a few:

Ctrl-C
Kills the running program. May not work with some interac-
tive programs such as text editors.

Ctrl-D
Exits the shell. You must type this at the command prompt by
itself (don’t type anything after the $ before hitting Ctrl-D).

Ctrl-A
Moves the cursor to the beginning of the line.

Ctrl-E
Moves the cursor to the end of the line.

There are others, but these are the core keyboard shortcuts
you’ll use every day.

Sometimes you’ll want to display the contents of a file on the
screen. If it’s a text file and you want to read it one screen at a time,
use less:

pi@raspberrypi ~ $ ls >flob.txt
pi@raspberrypi ~ $ less flob.txt

(Another option for reading one screen at a time is more (I know,
I know...). Most power users use less, however, as it’s a bit more
functional than more (less is more than more...?).

If you want to just dump the entire contents of a file to standard
output, use cat (short for concatenate). This can be handy when

Getting Around Linux on the Raspberry Pi 41

GSW_RASPI_4ED_FIN.indd 41GSW_RASPI_4ED_FIN.indd 41 10/28/21 10:54 AM10/28/21 10:54 AM

you want to feed a file into another program or redirect it some-
where.

For example, this is the equivalent of copying one file to another
with a new name (the second line concatenates the two files first):

pi@raspberrypi ~ $ ls >wibble.txt
pi@raspberrypi ~ $ cat wibble.txt > wobble.txt
pi@raspberrypi ~ $ cat wibble.txt wobble.txt > wubble.txt

To look at just the last few lines of a file (such as the most recent
entry in a log file), use tail (to see the beginning, use head). If you
are searching for a string in one or more files, use the venerable
program grep:

pi@raspberrypi ~ $ grep Puzzle */*

grep is a powerful tool because of the rich language of regular
expressions that was developed for it. Regular expressions can be
a bit difficult to read—going into detail of how regular expressions
work could fill an entire book—and maybe a major factor in whatev-
er reputation Linux has for being opaque to newcomers.

Processes
Even when the Pi is “doing nothing”, its operating system is very
busy, maintaining the file system, monitoring the network connec-
tion, and many other tasks to keep your Pi humming. Every pro-
gram on the Pi runs as a separate process; at any particular point,
you’ll have dozens of processes running. When you first bootup,
about 75 processes will start, each one handling a different task
or service. To see all these processes, run the top program, which
will also display CPU and memory usage. top will show you the pro-
cesses using the most resources; use the ps command to list all the
processes and their ID numbers (see Figure 2-5).

42 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 42GSW_RASPI_4ED_FIN.indd 42 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 2-5. The top command shows all the processes running, as
well as CPU and memory usage.

Try:

pi@raspberrypi ~ $ ps aux | less

Sometimes you may want to kill a rogue or unresponsive process.
To do that, use ps to find its ID, then use kill to stop it:

pi@raspberrypi ~ $ kill 95689

In the case of some system processes, you won’t have permission
to kill it (though you can circumvent this with sudo, covered in the
next section).

Sudo and Permissions
Linux is a multiuser operating system; the general rule is that
everyone owns their own files and can create, modify, and delete
them within their own space on the filesystem. The root (or super)
user can change any file in the filesystem, which is why it is good
practice to not login as root on a day-to-day basis. There is a saying
among Linux users: “Only noobs log in as root.”

There are some tools like sudo (“su–peruser–do”) which allow users
to act like superusers for performing tasks, like installing software

Getting Around Linux on the Raspberry Pi 43

GSW_RASPI_4ED_FIN.indd 43GSW_RASPI_4ED_FIN.indd 43 10/28/21 10:54 AM10/28/21 10:54 AM

without the dangers (and responsibilities) of being logged in as root.
You’ll be using sudo a lot when interacting with hardware directly, or
when changing system-wide configurations, such as when you’re
installing software.

As the pi user, there’s not much damage you can do to
the system. As superuser, you can wreak havoc,
accidentally or by design. Be careful when using sudo,
especially when moving or deleting files. Of course, if
things go badly, you can always make a new SD card
image (see Appendix A).

Each file belongs to one user and one group. Use chown and chgrp
to change the file’s owner or group. You must be root to use either:

pi@raspberrypi ~ $ sudo chown pi garply.txt
pi@raspberrypi ~ $ sudo chgrp staff plugh.txt

Each file also has a set of permissions that show whether a file can
be read, written, or executed. These permissions can be set for the
owner of the file, the group, or for everyone (see Figure 2-6).

Figure 2-6. File permissions for owner, group, and everyone

You set the individual permissions with the chmod command. The
switches for chmod are summarized in Table 2-2.

44 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 44GSW_RASPI_4ED_FIN.indd 44 10/28/21 10:54 AM10/28/21 10:54 AM

Table 2-2.The switches that can be used with chmod

u User

g Group

o Others not in the group

a All/everyone

r Read permission

w Write permission

x Execute permission

+ Add permission

- Remove permission

Here are a few examples of how you can combine these switches:

chmodu+rwx,g-rwx,o-rwx wibble.txt
chmodg+wx wobble.txt
chmod -rw, +r wubble.txt

 Allow only the user to read, write, and execute.
 Add permission to write and execute to the entire group. Make

read-only for everyone.
 The only thing protecting your user space and files from other

people is your password, so you better choose a strong one.
Use the passwd command to change it, especially if you’re put-
ting your Pi on a network.

Getting Around Linux on the Raspberry Pi 45

GSW_RASPI_4ED_FIN.indd 45GSW_RASPI_4ED_FIN.indd 45 10/28/21 10:54 AM10/28/21 10:54 AM

The Network
Once you’re on a network, there are several Linux utilities that you’ll
be using regularly. When you’re troubleshooting an internet con-
nection, use ifconfig, which displays all of your network interfaces
and the IP addresses associated with them (see Figure 2-7).

Figure 2-7. The ifconfig command gives you information about all
of your network interfaces.

The ping command is actually the most basic tool for trouble-shoot-
ing network connections. Ping acts like sonar on the internet—
it sends out a simple pulse to a specific network address and mea-
sures the time it takes for the pulse to return, to test whether there
is a two-way connection between two IP addresses on the network
or internet. Note that many websites block ping traffic, so you may
need to ping multiple sites to accurately test a connection:

ping google.com
ping opendns.com
ping cloudflare.com
ping netscape.com

To log into another computer remotely (and securely, with encrypt-
ed passwords), you can use the Secure Shell (SSH). The computer
on the remote side needs to be running an SSH server for this to
work, but the SSH client comes built into the Raspberry Pi OS and
it’s easy to enable the SSH server as well. In fact, this is a great way
to work on your Raspberry Pi without a monitor or keyboard, as
discussed in “Running Headless” on page 24.

Related to SSH is the sftp program, which allows you to securely
transfer files from one computer to another. Rounding out the set is

46 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 46GSW_RASPI_4ED_FIN.indd 46 10/28/21 10:54 AM10/28/21 10:54 AM

scp, which you can use to copy files from one computer to another
over a network or the internet. The key to all of these tools is that
they use the Secure Sockets Layer (SSL) to transfer files with
encrypted login information. These tools are all standard stalwart
Linux tools.

/etc
The /etc directory holds all of the system-wide configuration files
and startup scripts. When you ran the configuration scripts the first
time you started up, you were changing values in various files in the
/etc directory. You’ll need to invoke superuser powers with sudo to
edit files in /etc; if you come across some tutorial that tells you to
edit a configuration file, use a text editor to edit and launch it with
sudo:

pi@raspberrypi ~ $ sudo nano /etc/hosts

Setting the Date and Time
A typical laptop or desktop will have additional hardware and a
backup battery (usually a coin cell) to save the current time and
date. The Raspberry Pi does not, but the Raspberry Pi OS is config-
ured to automatically synchronize its time and date with a Network
Time Protocol (NTP) server when plugged into a network.

Having the correct time can be important for some applications
(see the example in Chapter 6 using cron to control a lamp). To set
the time and date manually, use the date program:

$ sudo date --set="Sun Nov 20 1:55:16 EST 2022"

If the time was set automatically via the internet with NTP, you may
want to update your time zone. To do this, go to the International-
isation Settings within the raspi-config utility (see “BootingUp” on
page 16).

Installing New Software
One of the areas where Linux completely trounces other operating
systems is in software package management. Package managers
handle the downloading and installation of software, and they

Getting Around Linux on the Raspberry Pi 47

GSW_RASPI_4ED_FIN.indd 47GSW_RASPI_4ED_FIN.indd 47 10/28/21 10:54 AM10/28/21 10:54 AM

automatically handle downloading and installing dependencies—
the other software the package relies upon. The package manager
keeps it all straight, and the package managers on Linux are
remarkably robust.

The Raspberry Pi OS comes with a pretty minimal set of software,
so you will soon want to start downloading and installing new
programs. The examples in this book will all use the command line
for this task because it is the most flexible and quickest way of
installing software.

The program apt-get with the install option is used to download
software. apt-get will even download any extra software or libraries
required so you don’t have to go hunting around for dependencies.
The software has to be installed with superuser permissions, so
always use sudo. For example, this command installs the excellent
Emacs text editor:

pi@raspberrypi ~ $ sudo apt-get install emacs

Taking a Screenshot

One of the first things we needed to figure out when
writing this book was how to take screenshots on the
Pi. Pre-installed in the Raspberry Pi OS is a program
called scrot (an abbreviation for SCReen-shOT). To take
a screenshot, just type scrot on the command line. A
.png file will be saved in your home directory. Scrot is
powerful and has a lot of command-line options; type
scrot -h to see a short guide on how to use it. Another
way to invoke scrot is to press your keyboard’s Print
Screen button.

Sound in Linux
Raspberry Pi has the built-in capability to play sound. This makes
it a popular platform for DIY projects that play sound effects or
stream music from the internet. The Pi uses the Advanced Linux
Sound Architecture, or ALSA, for low-level control of audio devices.

48 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 48GSW_RASPI_4ED_FIN.indd 48 10/28/21 10:54 AM10/28/21 10:54 AM

You can test it with a pre-loaded sound file and the sound playback
utility aplay:

$ aplay /usr/share/scratch/Media/Sounds/Human/PartyNoise.wav

If you’re using an HDMI display, by default, the sound will be played
through the HDMI device.

To adjust the volume output, run alsamixer and use your arrow keys
to change the gain.

You’re not limited to the onboard sound; you can also add USB audio
devices. Many USB audio devices even have an audio input so that
you can use your Raspberry Pi to record audio in addition to playing it.

The easiest way to enable a particular audio device is to open VLC
from the Sound & Video menu. Once VLC is open, click on Audio at
the top of the window and select your preferred audio device.

Upgrading Your Firmware
Some of your Raspberry Pi’s firmware is stored on the SD card
and includes much of the low-level instructions that need to be
executed before the boot process is handed over to your operating
system.

While it’s typically not necessary, if you run into some strange
behavior, you may want to try to update the firmware on your SD
card. With an Internet-connected Raspberry Pi, this is very easy to do:

$ sudo rpi-update

If you’d like to see what’s being updated when you run the utility,
you can review the latest changes in Raspberry Pi’s firmware
repository on GitHub (github.com/raspberrypi/firmware).

To view what version of the Raspberry Pi firmware you currently
have, run vcgencmd version:

$ vcgencmd version
Jan 27 2021 22:26:53
Copyright (c) 2012 Broadcom
version c156d00b148c30a3ba28ec376c9c01e95a77d6d5 (clean)
(release) (start)

Getting Around Linux on the Raspberry Pi 49

GSW_RASPI_4ED_FIN.indd 49GSW_RASPI_4ED_FIN.indd 49 10/28/21 10:54 AM10/28/21 10:54 AM

Going Further
There’s much more to Linux and many places to continue learning
about it. Some good starting points are:

Linux Pocket Guide
by Daniel J. Barrett
Handy as a quick reference.

Linux in a Nutshell
by Ellen Siever, Stephen Figgins, Robert Love, and Arnold Robbins
More detailed, but still a quick reference guide.

The Debian Wiki (wiki.debian.org/FrontPage)
The Raspberry Pi OS is based on Debian, so a lot of the info on
the Debian wiki applies to the Pi as well.

The Jargon File (catb.org/jargon)
by Eric S. Raymond
Also published as the New Hacker’s Dictionary, this collection
of definitions and stories is required reading on the Unix/Linux
subculture.

50 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 50GSW_RASPI_4ED_FIN.indd 50 10/28/21 10:54 AM10/28/21 10:54 AM

3/Other Operating
Systems and
Linux Distributions

The stock Raspberry Pi OS is great for gen-
eral-purpose computing, but sometimes
you may want to tailor the Pi to a specific
purpose, like making it a standalone me-
dia center or a guitar effects pedal. The Li-
nux ecosystem is rich in software for every
imaginable application. A number of folks
have spent the time to bundle all the right
software together so you don’t have to do it.
This chapter will highlight just a few of the
more specialized Linux distributions and
other operating systems to get you started.

When talking about “Linux distributions,” we’re usually talking
about three things together:

• The Linux kernel and drivers
• Preinstalled software for a particular application
• Special configuration tools or tools preconfigured for a

particular task (e.g., to boot up into a particular program)

Other Operating Systems and Linux Distributions 51 51

GSW_RASPI_4ED_FIN.indd 51GSW_RASPI_4ED_FIN.indd 51 10/28/21 10:54 AM10/28/21 10:54 AM

As you saw in Chapter 1, there are essentially four popular general-
purpose distributions. You’ll find the first three in the NOOBS
installer:

Raspberry Pi OS (raspbian.org)
The recommended distribution from the Foundation to start
with; based on Debian. If you’re not sure which distribution to
choose, this is the one for you.

Arch Linux (www.archlinux.org)
Arch Linux specifically targets ARM-based computers, so they
supported the Pi very early on.

Pidora (pidora.ca)
Pidora is a version of the Fedora distribution tuned for the Pi.

Ubuntu MATE (ubuntu-mate.org)
Ubuntu MATE is a version of the very popular Ubuntu distribu-
tion of Linux. It has a slimmed-down desktop environment that
works rather well on Raspberry Pi 2 and subsequent versions.
It won’t work on previous versions of Raspberry Pi because
Ubuntu only supports ARMv7 and later.

Here are a few other interesting specialized Linux distributions and
operating systems.

Distributions for Home Theater
A long-time favorite operating system for home theater is XBMC,
which began as a media center project to run on the Xbox game
console. Over the years, however, XBMC morphed to become a
more general entertainment center platform and happens to work
very well on the Pi. In the summer of 2014, the XBMC Foundation
renamed the software Kodi to bring the evolution of the project
into focus, because it doesn’t even run on the newer Xbox versions.
There are a couple of Pi distributions that make it easy to put Kodi in
your living room:

OSMC (osmc.tv)
Formerly called Raspbmc, the OSMC distribution is based on

52 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 52GSW_RASPI_4ED_FIN.indd 52 10/28/21 10:54 AM10/28/21 10:54 AM

Debian and Kodi. It has great support for Raspberry Pi and can
be installed from NOOBS (Figure3-1).

Figure 3-1. OSMC’s interface

OpenELEC (openelec.tv)
The Open Embedded Linux Entertainment Center is a pared-
down version of Kodi that may appeal to more ascetic Pi users
(Figure 3-2).

Figure 3-2.The main menu for The Open Embedded Linux Enter-
tainment Center (OpenELEC)

Other Operating Systems and Linux Distributions 53

GSW_RASPI_4ED_FIN.indd 53GSW_RASPI_4ED_FIN.indd 53 10/28/21 10:54 AM10/28/21 10:54 AM

Distributions for Music
It’s cheap and it can fit in a guitar effects stompbox, so of course
the electronic music world has been excited about the Pi since its
release. Here are some examples:

Satellite CCRMA (stanford.io/1riPJsE)
This distribution from Stanford’s Center for Computer Research
in Music and Acoustics (CCRMA) is geared toward embedded
musical instruments and art installations, as well as effects pedals.
The original rationale is described in Edgar Berdahl and Wendy
Ju’s paper “Satellite CCRMA: A Musical Interaction and Sound
Synthesis Platform” (bit.ly/1qol7Wo).

Volumio (volumio.org)
A music player for audiophiles. This project evolved from Raspy-
Fi (www.hifiberry.com/hbdigi).

PiCore Player (www.picoreplayer.org)
This is a full-fledged music player distribution for almost all
models of the Pi, enabling you to play your Spotify, Tidal, or
other streaming music service playlists on your Pi, as well as
local music playlists on a local drive.

PiMusic Box (www.pimusicbox.com)
Another music player distribution for local and streaming play-
lists. Like PiCore Player, it’s exceedingly small, which means it
can run on any version of Pi, even the Zero W.

Also on the music front, you may want to check out the Sun Vox
modular music platform for the Pi (www.warmplace.ru/soft/sun-
vox).

Although it’s not limited to the Raspberry Pi platform, there is also
a fascinating program called Sonic Pi (sonic-pi.net) that music-
loving programmers might want to check out. It enables you to
create music in real-time by writing coding commands, and has
been used in environments as diverse as teaching and ambient
music in nightclubs.

54 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 54GSW_RASPI_4ED_FIN.indd 54 10/28/21 10:54 AM10/28/21 10:54 AM

Retro Computing and Retro Gaming
The Pi was inspired by the inexpensive personal computers of the
1980s, so it seems fitting that there are a number of distributions
aimed at nostalgic retro computing or gaming:

RISCOS (www.riscosopen.org/content)
Boots straight into BASIC!

Retropie (retropie.org.uk)
An SD card image and GPIO hardware board that makes it easier
to build retro gaming consoles.

PiPlay (piplay.org)
A prebuilt distribution for gaming and emulation based on
MAME (formerly PiMAME).

It’s not an OS, but if you’re into retro text adventures,
try Frotz:

sudo apt-get install frotz

Internet of Things
The Internet of Things or IoT describes the realm of devices
connected to the internet. These can be thermostats, body weight
scales, and doorbells that can be accessed remotely via the
Weborina mobile app. The realm of IoT extends beyond the home
as well. Large companies put their equipment online to monitor
their assets, which may be spread all over the globe.

Because of Raspberry Pi’s low cost and connectivity, it makes
a great choice for experimentation with the Internet of Things,
especially the Pi Zero W. While you could use Raspberry Pi OS for
this (in fact, see “Connecting the Web to the Real World” on page
181), here are a few operating systems that are geared toward IoT.

Other Operating Systems and Linux Distributions 55

GSW_RASPI_4ED_FIN.indd 55GSW_RASPI_4ED_FIN.indd 55 10/28/21 10:54 AM10/28/21 10:54 AM

UbuntuCore (ubuntu.com/core)
Available for the Raspberry Pi models 2, 3, and 4, UbuntuCore
is a Linux distribution aimed at devices and cloudservers. It’s a
bare bones operating system that includes methods for being
very specific about which versions of applications are installed to
support your project. It’s meant to be leaner, faster, more reliable,
and more secure. It was originally designed to be just for embedded
applications, but it has grown along with the Pi’s capabilities, and
you can now install a full Ubuntu server on your Pi!

Windows 10 IoT Core (dev.windows.com/en-us/iot)
With the release of Windows 10, Microsoft doubled down on
IoT with the introduction of the Windows 10 IoT Core. While it
doesn’t have the full Windows desktop environment, developers
can now deploy universal Windows applications to Raspberry Pi
2 and 3. (Unfortunately, as I write this, IoT Core does not run
on the Pi 4.) If you already have experience developing Windows
applications, trying out Windows 10 IoT Core on the Raspberry
Pi is a no-brainer. If you’re interested in getting started, Microsoft
provides excellent getting-started documentation.

56 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 56GSW_RASPI_4ED_FIN.indd 56 10/28/21 10:54 AM10/28/21 10:54 AM

Other Useful Distributions
Here are a few other distributions of note:

Qt on Pi (www.qt.io)
An OS bundle aimed at developers of standalone “single-
purpose appliances”using the QtGUI framework.

Web kiosk (www.binaryemotions.com)
For making Internet kiosks and digital signage.

Openwrt (openwrt.org)
Turn your Pi into a powerful router with this open-source router
platform.

OctoPrint (octoprint.org)
With OctoPrint, you can control your 3D printer via your
network. Just connect it to a Raspberry Pi and boot from the
OctoPiSD card image.

Going Further
List of Linux distributions that work with Raspberry Pi
(bit.ly/1BW4SGp)

This is the definitive list at the Raspberry Pi Hub.

Raspberry Pi Downloads
(www.raspberrypi.org/downloads)

The downloads section of the Raspberry Pi Foundation website
will have a listing of notable operating systems and distributions.

Other Operating Systems and Linux Distributions 57

GSW_RASPI_4ED_FIN.indd 57GSW_RASPI_4ED_FIN.indd 57 10/28/21 10:54 AM10/28/21 10:54 AM

GSW_RASPI_4ED_FIN.indd 58GSW_RASPI_4ED_FIN.indd 58 10/28/21 10:54 AM10/28/21 10:54 AM

4/Python on the Pi

Python is a great first programming lan-
guage; it’s clear and easy to get up and
running. More importantly, there are a lot
of other users to share code with and ask
questions.
Guido van Rossum released Python in 1991, and very early on recognized
its usefulness as a first language for computing. In 1999, van Rossum
put together a widely read proposal called “Computer Programming
for Everybody” (www.python.org/doc/essays/cp4e) that laid out a
vision for an ambitious program to teach programming in elementary
and secondary schools using Python. More than two decades later, it’s
actually happening, due in part to the incredible popularity and use of
the Raspberry Pi in the classroom.

Python is an interpreted language, which means that you can write
a program or script and execute it directly, rather than compiling
it into machine code. Interpreted languages are a bit quicker to
program with, and they give you a few side benefits. For example,
in Python you don’t have to explicitly tell the computer whether
a variable is a number, a list, or a string; the interpreter figures out
the data types when you execute the script.

The Python interpreter can be run in two ways: as an interactive
shell to execute individual commands, or as a command-line pro-
gram to execute standalone scripts. The integrated development
environment (IDE) often bundled with Python is called IDLE. The
latest version of the Raspberry Pi OS no longer comes with IDLE,
but instead with Geany and Thonny. Both of these IDEs are a bit
more robust, in my opinion, than IDLE, which is more of a simple
command line environment.

Python on the Pi 59 59

GSW_RASPI_4ED_FIN.indd 59GSW_RASPI_4ED_FIN.indd 59 10/28/21 10:54 AM10/28/21 10:54 AM

The Python Version Conundrum
In your experiments on the Pi, you may discover that there
are two versions of Python installed on the Pi. This is common
practice (though a bit confusing). As of this writing, Python 3 is
the newest version of the language, and the only version in ac-
tive development—support of Python v2.7 stopped in January
of 2021. Unfortunately, changes made to the language between
versions 2 and 3 made the latter not backward compatible.
Even though Python 3 has been around for years, it has taken
awhile for it to be widely adopted, and lots of user-contributed
packages have still not been upgraded to Python 3. Things get
even more confusing when you search the Python documenta-
tion; make sure you’re looking at the right help file for the ver-
sion you’re working in!

You can explicitly run Python 3 with:

python3

The examples in this book will work with Python 2.7 or 3.X, un-
less otherwise noted, but will be written exclusively in Python 3
syntax (using opening and closing parentheses in print state-
ments, for instance.)

Hello, Python
The best way to start learning Python is to jump right in. Although
you can use any text editor to start scripting, we’ll begin by using
the IDLE 3 application. To run IDLE, click the desktop menu in the
lower left, and choose Programming→Python (IDLE 3).

When IDLE opens you’ll see a window with the interactive shell. The
triple chevron (>>>) is the interactive prompt; when you see the
prompt, it means the interpreter is waiting for your commands. At
the prompt, type the following:

>>> print("SalutonMondo!")

Hit Enter or Return. Python executes the statement you just typed,

60 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 60GSW_RASPI_4ED_FIN.indd 60 10/28/21 10:54 AM10/28/21 10:54 AM

and you’ll see the result in the shell window. You can use the shell as
a kind of calculator to test out statements or calculations. Try this:

>>> 3+4+5
12

Think of the statements executed in the interactive shell as a
program that you’re running one line at a time. You can even setup
variables or import modules:

>>> import math
>>> (1 + math.sqrt(5)) / 2
1.618033988749895

The import command makes all of Python’s math functions available
to your program (more about modules in “Objects and Modules” on
page 65). To set up a variable, use the assignment operator(=):

>>> import math
>>> radius = 20
>>> radius *2* math.pi
125.66370614359173

If you want to clear all variables and start in a fresh state, select Shell
→ Restart Shell from the menu to start over. You can also use the in-
teractive shell to get information about how to use a particular state-
ment, module, or other Python topics with the help() command:

help (“print”)

To get a listing of all of the topics available, try:

help (“topics”)
help (“keywords”)
help (“modules”)

The Python interpreter is good for testing statements or simple op-
erations, but you will often want to run your Python script as you
would a standalone application. To start a new Python program,
select File → New Window, and IDLE will give you a script editing
window (see Figure 4-1).

Try typing a line of code and selecting Run→Run Module. You’ll get
a warning that “Source Must Be Saved OK To Save?”. Save your-
script in your home directory as SalutonMondo.py and you’ll see it
execute in the shell.

Python on the Pi 61

GSW_RASPI_4ED_FIN.indd 61GSW_RASPI_4ED_FIN.indd 61 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 4-1. The IDLE interactive shell (left) and an editor window
(right)

Sometimes you may not want to use the IDLE environment. To run
a script from the command line, open up the Terminal and type:

python3 SalutonMondo.py

That’s really all of the basic mechanics you need to know to get up
and running with the environment. Next, you’ll need to start learn-
ing the language.

A Bit More Python
If you’re coming to Python from the Arduino world, you’re used to
writing programs (known as sketches in Arduino, but often called
scripts in Python) in a setup/loop format, where setup() is a func-
tion run once and loop() is a function that executes over and over.
The following example shows how to achieve this in Python. Select
New Window from the shell in IDLE 3 and type the following:

Setup
n=0
Loop
while True:
 n = n + 1
 # The % is the modulo operator
 if ((n % 2) == 0):
 print(n)

62 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 62GSW_RASPI_4ED_FIN.indd 62 10/28/21 10:54 AM10/28/21 10:54 AM

Select Run Module, and give your script a name (such as Count-Evens.
py). As it runs, you should see all even integers printed (press Ctrl-C to
interrupt the output, because otherwise, it will go on forever).

You could also implement this using a for loop that just counts the
first 100 even integers:

for n in range (0, 100):
 if ((n % 2) == 0):
 print(n)

In the preceding example, you may not notice that each
level of indentation is four spaces, not a tab (but you
can press Tab in IDLE, and it will dutifully insert four
spaces for you). Indentation has structural meaning in
Python, similar to code blocks situated within curly
braces in C or Javascript.

This is one of the big stumbling blocks for beginners,
especially when copying and pasting code. Still, we feel
that the mandatory use of white space makes Python
a fairly readable language. See the Style Guide for Py-
thon Code (bit.ly/1ne4xO5) for tips on writing readable
code.

It is important to watch your white space; Python is a highly
structured language where the white space determines the structure.
In the next example, everything indented one level below the loop()
function is considered part of that function. The end of a loop is
determined by where the indentation moves up a level (or end of
the file). This differs from languages like C that delimit blocks of
code with brackets or other markers.

Python on the Pi 63

GSW_RASPI_4ED_FIN.indd 63GSW_RASPI_4ED_FIN.indd 63 10/28/21 10:54 AM10/28/21 10:54 AM

Use functions to put chunks of code into a code block that can
be called from other places in your script. To rewrite the previous
example with functions, do the following (when you go to run this
sketch, save it as CountEvens.py):

Declare global variables
n=0
Setup function
def setup():
 global n
n = 100
def loop():
 global n
 n = n + 1
 if ((n % 2) == 0):
 print(n)
Main
setup()
while True:
 loop()

In this example, the output will be every even number from 102 on.
Here’s how it works:

 First, the variable n is defined as a global variable that can be
used in any block in the script.

 Here, the setup() function is defined (but not yet executed).
 Similarly, here’s the definition of the loop()f function.
 In the main codeblock, setup() is called once, then loop() is

called forever.

The use of the global keyword in the first line of each function is
important; it tells the interpreter to use the global variable n rather
than create a second (local, or private to that function) n variable
usable only in the function.

This tutorial is too short to be a complete Python reference. To
really learn the language, you may want to start with Learn Py-
thon the Hard Way (learnpythonthehardway.org),Think Python, or
the Python Pocket Reference. The rest of this chapter will give you
enough context to get up and running and will map out the basic
features and modules available in Python.

64 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 64GSW_RASPI_4ED_FIN.indd 64 10/28/21 10:54 AM10/28/21 10:54 AM

Command Line Versus IDLE
One thing you will notice is that the output of IDLE is very slow
when running example code that prints to the shell. To get an
idea of just how slow it is, keep IDLE open, and start a new ter-
minal alongside it. In IDLE, run the CountEvens script using Run
Module; it will need the headstart. Then type the following at
the terminal’s command line prompt:

python3 CountEvens.py

You’ll quickly get an idea of the overhead from using the IDE on
the fairly limited resources of the Pi. The examples later in the
book will all be executed from the command line, but IDLE can
still be used as an editor if you like.

Objects and Modules
You’ll need to understand the basic syntax of dealing with objects
and modules to get through the examples in this book. Python is
a clean language, with just 35 reserved keywords (see Table 4-1).
These keywords are the core part of the language that let you
structure and control the flow of activity in your script. Pretty much
everything that isn’t a keyword can be considered an object. An ob-
ject is a combination of data and behaviors that has a name. You
can change an object’s data, retrieve information from it, and even
manipulate other objects.

Python on the Pi 65

GSW_RASPI_4ED_FIN.indd 65GSW_RASPI_4ED_FIN.indd 65 10/28/21 10:54 AM10/28/21 10:54 AM

Table 4-1. Python has just 35 reserved keywords.

Conditionals Loops Built-in
functions

Classes, modules,
functions Error handling

if for print class try

else in pass def def

elif while del global finally

not break lambda break raise

or as nonlocal assert

and continue yield with

is import

True return

False from

None

In Python, strings, lists, functions, modules, and even numbers
are objects. A Python object can be thought of as an encapsulated
collection of attributes and methods. (For those that are unsure,
attributes are also sometimes referred to as variables, and methods
are also referred to as functions. In the software world, these terms
are often interchangeable, particularly methods and functions.)
You get access to these attributes and methods using a simple dot
syntax. For example, type this at the interactive shell prompt to set
up a string object and call the method that tells it to capitalize itself:

>>> myString = "quux"
>>> myString.capitalize()
'Quux'

Or use reverse() to rearrange a list in reverse order:

>>> myList = ['a', 'man', 'a', 'plan', 'a', 'canal']
>>> myList.reverse()
>>> print(myList)
['canal', 'a', 'plan', 'a', 'man', 'a']

66 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 66GSW_RASPI_4ED_FIN.indd 66 10/28/21 10:54 AM10/28/21 10:54 AM

Both string and list are built-in modules of the standard
library, which are available from any Python program. In
each case, the string and list modules have a defined
bunch of functions for dealing with strings and lists, in-
cluding capitalize() and reverse().

Some of the standard library modules are not built-in, and you
need to explicitly tell the Pi you’re going to use them. Do that with
the import command. For example, to use the time module from the
standard library to gain access to helpful functions for dealing with
timing and time stamps, use:

import time

You may also see import as used to rename the module in your
program:

import time as myTime

Or from import used to load only select functions from a module:

from time import clock

Here’s a short example of a Python script using the time and date
time modules from the standard library to print the current time
once every second:

from datetime import date time
from time import sleep
while True:
now = str(datetime.now())
print(now)
sleep(1)

The sleep function stops the execution of the program for one
second. One thing you will notice after running this code is that the
displayed time will drift a bit from reality.

That’s for two reasons:
• The code doesn’t take into account the amount of time it takes

to calculate the current time.
• Other processes are sharing the Pi’s CPU, and may take cycles

away from your program’s execution. This is an important thing

Python on the Pi 67

GSW_RASPI_4ED_FIN.indd 67GSW_RASPI_4ED_FIN.indd 67 10/28/21 10:54 AM10/28/21 10:54 AM

to remember: when programming on the Raspberry Pi, you are
not executing in a real-time environment.

If you’re using the sleep() function, you’ll find that it is accurate
to within about 5ms on the Pi. However, you can read that to also
mean that the sleep() function is accurate to about 5ms, but no
more than that. If you need to pause in your program for a short-
er length of time than 5ms, you may need to consider using a re-
al-time operating system or a microcontroller for your application,
as the Pi is unlikely to be accurate to within those specs.

Next, let’s modify the example to open a text file and periodically
log some data to it. In Python, everything is a string when handling
text files.

Use the str() function to convert numbers to strings (and int()
to change numeric strings back to an integer. This is referred to as
casting a variable):

from datetime import datetime
from time import sleep
import random

log = open ("log.txt", "w")

for i in range(5):
 now = str(datetime.now())
 # Generate some random data in the range 0-1024
 data = random.randint(0, 1024)
 log.write(now + " " + str(data) + "\n")
 print(".")
 sleep(.9)
log.flush()
log.close()

In a real data-logging application, you’ll want to make
sure you’ve got the correct date and time setup on your
Raspberry Pi, as described in “Setting the Date and
Time” on page 47.

68 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 68GSW_RASPI_4ED_FIN.indd 68 10/28/21 10:54 AM10/28/21 10:54 AM

Here’s another example (ReadFile.py) that reads in a file name as an
argument from the command line (run it from the shell with python3
ReadFile.py filename). The program opens the file, reads each line
as a string, and prints it. Note that print() acts like println() does
in other languages; it adds a new line to the string that is printed.
The end argument to print() suppresses the new line:

Open and read a file from command-line argument
import sys

if (len(sys.argv) != 2):
 print("Usage: python3 ReadFile.py filename")
 sys.exit()

scriptname = sys.argv[0]
filename = sys.argv[1]

file = open(filename, "r")
lines = file.readlines()
file.close()

for line in lines:
print(line,end = '')

Even More Modules
One of the reasons Python is so popular is that there are a great
number of user-contributed modules that build on the standard
library. The Python Package Index (PyPI) (pypi.org) is the
definitive list of packages (or modules) available for the language.
Some of the more popular modules that are particularly useful
on the Raspberry Pi are shown in Table 4-2. You’ll be using
some of these modules later on, especially the GPIO module to
access the general inputs and outputs of the Raspberry Pi.

Python on the Pi 69

GSW_RASPI_4ED_FIN.indd 69GSW_RASPI_4ED_FIN.indd 69 10/28/21 10:54 AM10/28/21 10:54 AM

Table 4-2. Some packages of particular interest to Pi users

Module Description URL Package name

RPi.GPIO Access to
GPIO pins

sourceforge.net/
projects/raspber-
ry-gpio-python

python-
rpi.gpio

GPIOzero Simplified access
to GPIO pins

gpiozero.readthedocs.
org(https://gpiozero.
readthe docs.org)

python-
gpio-zero

Pygame Gaming frame
work

pygame.org python-
pygame

OpenCV Easy API for
Computer Vision

opencv.org opencv-python

SciPy Scientific com-
puting

www.scipy.org python-scipy

NumPy
The numerical
underpinnings of
Scipy

numpy.scipy.org python-numpy

Flask
Microframework
for web develop-
ment

flask.palletsprojects.
com python-flask

Feed
parser

Atom and RSS
feedparser

pypi.python.org/pypi/
feedparser

No
package

Requests “HTTP for
Humans”

docs.python-requests.
org

python-
requests

PIL Image processing www.pythonware.com/
products/pil

python-
imaging

wxPython GUI framework wxpython.org python-
wxgtk2.8

pySerial Access to the
serial port

github.com/pyserial/
pyserial

python-
serial

PyUSB FTDI-USB
interface

bleyer.org/pyusb No
package

70 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 70GSW_RASPI_4ED_FIN.indd 70 10/28/21 10:54 AM10/28/21 10:54 AM

To use one of these modules, you’ll need to download the code,
configure the package, and install it. The NumPy module, for exam-
ple, can be installed as follows:

sudo apt install python-numpy

If a package has been bundled by its creator using the standard
approach to bundling modules (with Python’s distutils tool), all you
need to do is download the package, uncompress it, and type:

python3 setup.py install

Easy Module Installs with Pip
Many modules can be installed with apt. You may also want to
look at the Pip package installer (pip.pypa.io), a tool that makes
it quite easy to install packages from the PyPI. Install Pip using apt:

sudo apt install python3-pip

Then you can install most modules using Pip to manage the
downloads and dependencies. For example:

pip3 install flask

In later chapters, you’ll use application-specific modules extensively,
but here’s one example that shows how powerful some modules
can be. The Feedparser module is a universal parser that lets you
grab RSS or Atom feeds and easily access the content. Because
most streams of information on the Web have RSS or Atom output,
Feedparser is one of several ways to get your Raspberry Pi hooked
into the Internet of Things.

First, install the Feedparser module using Pip (see “Easy Module
Installs with Pip” above):

pip3 install --user feedparser

Feedparser gives you the ability to download and parse RSS feeds
from within your Python code—hence the name.

To use it, simply give the parse function the URL of an RSS feed.
Feedparser will fetch the XML of the feed and parse it, and turn it into

Python on the Pi 71

GSW_RASPI_4ED_FIN.indd 71GSW_RASPI_4ED_FIN.indd 71 10/28/21 10:54 AM10/28/21 10:54 AM

a special list data structure called a dictionary. A Python dictionary
is a list of key/value pairs, sometimes called a hash or associative
array. The parsed feed is a dictionary, and the parsed items in the
feed are also a dictionary, as shown in this example, which grabs the
current weather in Providence, RI, from weather.gov:

import feedparser

feed_url = "http://w1.weather.gov/xml/current_obs/KPVD.
rss"
feed = feedparser.parse(feed_url)
RSSitems = feed["items"]
for item in RSSitems:
 weather = item["title"]
 print(weather)

Launching Other Programs
from Python
Python makes it fairly easy to trigger other programs on your Pi
with the sys.subprocess module. Try the following:

from datetime import datetime
from time import sleep
import subprocess
for count in range(0, 60):
filename = str(datetime.now()) + ".jpg"
subprocess.call(["fswebcam", filename])
sleep(60)

This is a simple time-lapse script that will snap a photo from a
webcam once a minute for an hour. Cameras are covered in greater
detail in Chapter 9, but this program should work with a USB
camera connected and the fswebcam program installed; run this
command first to install it:

sudo apt install fswebcam

The subprocess.call function takes a list of strings, concatenates
them together (with spaces between), and attempts to execute
the program specified. If it is a valid program, the Raspberry Pi
will spawn a separate process for it, which will run alongside the

72 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 72GSW_RASPI_4ED_FIN.indd 72 10/28/21 10:54 AM10/28/21 10:54 AM

Python script. The command in the preceding example is the same
as if you typed the following at a terminal prompt:

fswebcam20220812.jpg

To add more parameters to the program invocation, just add strings
to the list in the subprocess.call function:

subprocess.call(["fswebcam", "-r", "1280x720", filename])

This will send the fswebcam program a parameter to change the res-
olution of the snapped image.

Running a Python Script
Automatically at Startup
Because the Pi can act as a standalone appliance, a common
question is how to launch a Python script automatically when
the Pi boots up. The answer is to add an entry to the /etc/
rc.local file, which is used for exactly this purpose in the Linux
world. Just edit the file:

sudo nano /etc/rc.local

and add a command to execute your script between the com-
mented section and exit0. Something like:

/usr/bin/python3/home/pi/foo.py&

The ampersand at the end will run the script as a background
process, which will allow all the other services of the Pi to con-
tinue booting up. Note also that you are using the full path
name of the Python executable, which may be necessary if your
Pi has several users.

Python on the Pi 73

GSW_RASPI_4ED_FIN.indd 73GSW_RASPI_4ED_FIN.indd 73 10/28/21 10:54 AM10/28/21 10:54 AM

Troubleshooting Errors
Inevitably, you’ll run into trouble with your code, and you’ll need to
track down and squash a bug. The IDLE interactive mode can be
your friend; the Debug menu provides several tools that will help
you understand how your code is actually executing. You also have
the option of seeing all your variables and stepping through the ex-
ecution line by line.

Syntax errors are the easiest to deal with; usually, this is just a typo
or a misunderstood aspect of the language. Semantic errors—
where the program is well-formed but doesn’t perform as expect-
ed—can be harder to figure out. That’s where the debugger can
really help unwind a tricky bug. Effective debugging takes years to
learn, but here is a quick cheat sheet of things to check when pro-
gramming the Pi in Python:

• Use print() to show when the program gets to a particular point.
• Use print() to show the values of variables as the program exe-

cutes.
• Double-check whitespace to make sure blocks are defined the

way you think they are.
• When debugging syntax errors, remember that the actual error

may have been introduced well before the interpreter reports it.
• Double-check all of your global and local variables.
• Check for matching parentheses.
• Make sure the order of operations is correct in calculations; in-

sert parentheses if you’re not sure. For example, 3 + 4 * 2 and
(3 + 4) * 2 yield different results.

After you’re comfortable and experienced with Python, you may
want to look at the code and logging modules for more debugging
tools.

74 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 74GSW_RASPI_4ED_FIN.indd 74 10/28/21 10:54 AM10/28/21 10:54 AM

Going Further
There is a lot more to Python, and here are some resources that
you’ll find useful:

Think Python
by Allen Downey
This is a clear and fairly concise approach to programming
(that happens to use Python).

Python Pocket Reference
by Mark Lutz
Because sometimes flipping through a book is better than
clicking through a dozen Stack Overflow posts.

Stack Overflow (stackoverflow.com)
That said, Stack Overflow is an excellent source of collective
knowledge. It works particularly well if you’re searching for a
specific solution or error message; chances are someone else
has had the same problem and posted it here.

Learn Python the Hard Way (learnpythonthehardway.org)
by Zed Shaw
A great book and online resource; at the very least, read the
introduction “The Hard Way Is Easier.”

Python for Kids
by Jason R. Briggs
Again, more of a general programming book that happens to
use Python (and written for younger readers).

Python on the Pi 75

GSW_RASPI_4ED_FIN.indd 75GSW_RASPI_4ED_FIN.indd 75 10/28/21 10:54 AM10/28/21 10:54 AM

GSW_RASPI_4ED_FIN.indd 76GSW_RASPI_4ED_FIN.indd 76 10/28/21 10:54 AM10/28/21 10:54 AM

5/Arduino and the Pi

As you’ll see in the next few chapters, you
can use the GPIO pins on the Raspberry Pi
to connect to sensors or things like blinking
LEDs and motors. And if you have experi-
ence using the Arduino microcontroller de-
velopment platform, you can also use that
alongside the Raspberry Pi.

When the Raspberry Pi was first announced,
a lot of people asked if it was an Arduino kill-
er. For about the same price, the Pi provides
much more processing power, so why use
an Arduino when you have a Pi? It turns out
the two platforms are actually complemen-
tary, and the Raspberry Pi makes a great
host for the Arduino. There are quite a few
situations where you might want to put the
Arduino and Pi together:

• To use the large number of libraries and sharable examples for
the Arduino.

• To supplement an Arduino project with more processing power.
For example, maybe you have a MIDI controller that was hooked
up to a synthesizer, but now you want to upgrade to synthesizing
the sound directly on the Pi.

Arduino and the Pi 77 77

GSW_RASPI_4ED_FIN.indd 77GSW_RASPI_4ED_FIN.indd 77 10/28/21 10:54 AM10/28/21 10:54 AM

• When you’re dealing with 5V logic levels. The Pi operates at
3.3V, and its pins are not tolerant of 5V. The Arduino can act as
a “translator” between the two.

• To prototype something a little out of your comfort zone,
in which you may make some chip-damaging mistakes. For ex-
ample, we’ve seen students try to drive motors directly from
a pin on the circuit board (don’t try it). On an Arduino, it was easy
to pry the damaged microcontrollerchip out of its socket and
replace it (less than $10 usually). Not so with the Raspberry Pi.

• When you have a problem that requires exact control in
real-time, such as a controller for a 3D printer. As we saw
in Chapter 4, the Raspberry Pi OS is not a real-time operating
system, and programs can’t depend on the same “instruction
per clock cycles” rigor of a microcontroller.

The examples in this section assume that you know at least the
basics of using the Arduino development board and integrated
development environment (IDE). If you don’t have a good grasp
of the fundamentals, Getting Started with Arduino by Massimo Banzi
and Michael Shiloh is a great place to start. The official Ardui no tuto-
rials (bit.ly/1oTWBNB) are quite good as well, and provide a lot of
opportunities to cut and paste good working code.

78 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 78GSW_RASPI_4ED_FIN.indd 78 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 5-1. Arduino and the Raspberry Pi are BFFs.

Installing Arduino
on the Raspberry Pi OS
To program an Arduino development board, you need to hook it up
to a computer with a USB cable, then compile and flash a program
to the board using the Arduino IDE. You can do this with any com-
puter, or you can use your Raspberry Pi as a host to program the
Arduino.

Using the Raspberry Pi to program the Arduino will be quicker to
debug, and though compiling might be a teensy bit slower on the
Pi, it’s not going to be particularly noticeable. The Arduino IDE also
only compiles code that has changed since the last compilation,
so after the first compile, it’s smooth sailing.

To install the Arduino IDE on the Raspberry Pi, type the following
into a terminal:

sudo apt-get update
sudo apt-get install arduino

 Make sure you have the latest package list.
 Download the Arduino package.

Arduino and the Pi 79

GSW_RASPI_4ED_FIN.indd 79GSW_RASPI_4ED_FIN.indd 79 10/28/21 10:54 AM10/28/21 10:54 AM

This command will install Java plus a lot of other dependencies.
The Arduino environment will appear under the Programming sec-
tion of the program menu (don’t launch it just yet though).

You can just plug the Arduino into one of the Raspberry Pi’s open
USB ports. The USB connection will be able to provide enough
electrical power for the Arduino, but you might want to power the
Arduino separately, depending on your application (if you’re run-
ning motors or heaters, for instance). Too much of a power draw on
the Pi’s USB ports can cause it to act strangely, and can even cause
a system crash and/or spontaneous reboot.

Note that you’ll need to plug the Arduino USB cable in
after the Raspberry Pi has booted up. If you leave it
plugged in at boot time, the Raspberry Pi may hang as
it tries to figure out all the devices on the USB bus.

80 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 80GSW_RASPI_4ED_FIN.indd 80 10/28/21 10:54 AM10/28/21 10:54 AM

When you launch the Arduino IDE, it polls all the USB
devices and builds a list that is shown in the Tools→
Serial Port menu. Click Tools→Serial Port and select
the serial port (most likely /dev/ttyACM0), then click
Tools→Board, and select the type of Arduino Board
you have (e.g.,Uno). Click File→Examples→01. Ba-
sics→Blink to load a basic example sketch. Click the
Upload button in the toolbar or choose File→Upload to
upload the sketch, and after the sketch loads, the Ardu-
ino’s onboard LED will start blinking.

To access the serial port on versions of the Raspberry
Pi OS older than Jessie, you’ll need to make sure that
the pi user has permission to do so. You don’t have to do
this step on Raspbian Jessie. You can do that by adding
the pi user to the tty and dialout groups. You’ll need to
do this before running the Arduino IDE:

sudo usermod -a -G tty pi
sudo usermod -a -G dialout pi

 usermod is a Linux program to manage users.

 -a -G puts the user (pi) in the specified group
(tty, then dialout).

Finding the Serial Port
If for some reason, /dev/ttyACM0 doesn’t work, you’ll need to do
a little detective work. To find the USB serial port that the Arduino
is plugged into without looking at the menu, try the following from
the command line. Without the Arduino connected, type:

ls /dev/tty*

Plug in the Arduino, then try the same command again and see what
changed. When I plugged in the Arduino, /dev/ttyACM0 popped up
in the listing.

Arduino and the Pi 81

GSW_RASPI_4ED_FIN.indd 81GSW_RASPI_4ED_FIN.indd 81 10/28/21 10:54 AM10/28/21 10:54 AM

Improving the User Experience
While you’re getting set up, you may notice that the quality of
the default font in the Arduino editor is less than ideal. You can
improve it by downloading the open-source font Inconsolata.
To install (when the Arduino IDE is closed), type:

sudo apt-get install fonts-inconsolata

Then edit the Arduino preferences file:

nano ~/.arduino/preferences.txt

and change the following lines to:

editor.font=Inconsolata,medium,14
editor.antialias=true

When you restart the Arduino IDE, the editor will use the
new font.

Talking in Serial
To communicate between the Raspberry Pi and the Arduino over a
serial connection, you’ll use the built-in Serial library on the Arduino
side, and the Python pySerial (github.com/ pyserial/pyserial) mod-
ule on the Raspberry Pi side. It comes pre-installed in Jessie and
subsequent releases, but if you ever need to install it, the package
names are:

sudo apt-get install python-serial python3-serial

Open the Arduino IDE and upload this code to the Arduino:

void setup() {
 Serial.begin(9600);
}

void loop() {
 for(byte n = 0; n < 255; n++){
 Serial.write(n);
 delay(50);
 }
}

82 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 82GSW_RASPI_4ED_FIN.indd 82 10/28/21 10:54 AM10/28/21 10:54 AM

This counts upward and sends each number over the serial
connection.

Note that in Arduino, Serial.write() sends the actual
number, which will get translated on the other side as
an ASCII character code. If you want to send the string
“123” instead of the number 123, use the Serial.print()
command.

Next, you’ll need to write a small Python script that will read the USB
serial port the Arduino is connected to (see “Finding the Serial Port”
on page 81). Here’s the Python script; if the port isn’t /dev/ttyACM0,
change the value of port. (See Chapter 4 for more on Python). Save
it as SerialEcho.py and run it with python SerialEcho.py:

import serial

port = "/dev/ttyACM0"
serialFromArduino = serial.Serial(port,9600)
serialFromArduino.flushInput()
while True:
 if serialFromArduino.inWaiting() > 0:
 input = serialFromArduino.read(1)
 print(ord(input))

 Open the serial port connected to the Arduino.
 Clear out the input buffer.
 Read one byte from the serial buffer.
 Change the incoming byte into an actual number with ord().

Arduino and the Pi 83

GSW_RASPI_4ED_FIN.indd 83GSW_RASPI_4ED_FIN.indd 83 10/28/21 10:54 AM10/28/21 10:54 AM

You won’t be able to upload to the Arduino when
Python has the serial port open, so make sure you kill
the Python program with Ctrl-C before you upload the
sketch again. You will be able to upload to an Arduino
Micro, but doing so will break the connection with the
Python script, so you’ll need to restart it anyhow.

The Arduino is sending a number to the Python script, which
interprets that number as a string. The input variable will contain
whatever character maps to that number in the ASCII table (bit.
ly/ZS47D0). To get a better idea, try replacing the last line of the
Python script with this:

print(str(ord(input)), " = the ASCII character ", input, ".")

Setting the Serial Port as an Argument
If you want to set the port as a command-line argument in the
Python sketch, use the sys module to grab the first argument:

import serial, sys

if (len(sys.argv) != 2):
 print("Usage:pythonReadSerial.pyport")
 sys.exit()
port = sys.argv[1]

After you do this, you can run the program like this:

python SerialEcho.py /dev/ttyACM0

The first simple example just sent a single byte; this could be fine
if you are only sending a series of event codes from the Arduino.
For example, if you have two buttons connected and the left button
is pushed, send a 1; if the right, send 2. That’s only good for 255
discrete events, though; more often you’ll want to send arbitrarily
large numbers or strings. If you’re reading analog sensors with the
Arduino, for example, you’ll want to send numbers in the range of
0 to 1,023.

84 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 84GSW_RASPI_4ED_FIN.indd 84 10/28/21 10:54 AM10/28/21 10:54 AM

Parsing arbitrary numbers that come in one byte at a time is trivial,
the way Python and pySerial handle strings. As a simple example,
update your Arduino with the following code that counts from 0 to
1,024:

void setup() {
 Serial.begin(9600);
}

void loop() {
 for(int n = 0; n < 1024; n++)
 Serial.println(n, DEC);
 delay(50);
 }
}

The key difference is in the println() command. In the previous
example, the Serial.write() function was used to write the raw
number to the serial port. With println(), the Arduino formats
the number as a decimal string and sends the ASCII codes for
the string. So instead of sending a single byte with the value 254,
it sends the string 254\r\n. The \r represents a carriage return, and
the \n represents a new line (these are concepts that carried over
from the teletypewriter into computing: carriage return moves to
the start of the line; new line starts a new line of text).

On the Python side, you can use readline() instead of read(), which
will read all of the characters up until (and including) the carriage
return and new line. Python has a flexible set of functions for con-
verting between the various data types and strings. It turns out you
can just use the int() function to change the formatted string into an
integer:

import serial

port = "/dev/ttyACM0"
serialFromArduino = serial.Serial(port,9600)
serialFromArduino.flushInput()
while True:
 input = serialFromArduino.readline()
 inputAsInteger = int(input)
 print(inputAsInteger * 10)

Arduino and the Pi 85

GSW_RASPI_4ED_FIN.indd 85GSW_RASPI_4ED_FIN.indd 85 10/28/21 10:54 AM10/28/21 10:54 AM

Note that it is simple to adapt this example so that it will read ana-
log input and send the result; just change the loop to:

void setup() {
 Serial.begin(9600);
}

void loop(){
 int n = analogRead(A0);
 Serial.println(n, DEC);
 delay(100);
}

Assuming you change the Python script to just print inputAsInte-
ger instead of inputAsInteger * 10, you should get some floating
values in the 200 range if nothing is connected to analog pin 0. With
some jumper wire, connect the Arduino’s pin 0 to GND and the val-
ue should be 0. Connect it to the 3V3 pin and you’ll see a value
around 715, and 1,023 when connected to the 5V pin.

Using Arduino Compatibles
Many microcontroller boards are compatible with the Arduino
IDE. Some use a special adapter from FTDI that handles all
of the USB-to-TTL serial communication. To connect to these
(often more inexpensive) boards, you would use an FTDI cable
or an adapter board like the USB BUB or FTDI Friend. In the Jes-
sie and subsequent releases, the FTDI driver for these boards
is already installed, so they should work right out of the box.
These boards typically show up as the /dev/ttyUSB0 device.

Using Firmata
As you go deeper, many projects will look the same as far as the-
code for basic communication goes. As with any form of commu-
nication, things get tricky once you get past “Hello, world”; you’ll
need to create protocols (or find an existing protocol and imple-
ment it) so that each side understands the other.

86 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 86GSW_RASPI_4ED_FIN.indd 86 10/28/21 10:54 AM10/28/21 10:54 AM

One good solution that comes bundled with the Arduino is
Hans-Christoph Steiner’s Firmata (bit.ly/1CXFnqF), an all-
purpose serial protocol that is simple and human-readable.It may
not be perfect for all applications, but it is a good place to start.
Here’s a quick example:

1. SelectFile→Examples→Firmata→StandardFirmata in the
Arduino IDE; this will open the sample Firmata code that will
allow you to send and receive messages to the Arduino and get
information about all of the pins.

2. Upload that code to the Arduino the same way you did in pre-
vious examples.

3. You’ll need a bit of Python code on the Pi to send commands
to the Arduino to query or change its state. The easiest way is to
use the pyFirmata module. Install it using Pip (see “EasyModule
Installs with Pip” on page 71):

pip install --user pyfirmata
pip3 install --user pyfirmata

4. Because Firmata is a serial protocol, you talk to the Arduino
from Python in the same way as in previous examples, but using
pyFirmata instead of pySerial. Use the write() method to make
a digital pin high or low on the Arduino:

from pyfirmata import Arduino
from time import sleep
board = Arduino('/dev/ttyACM0')
while (1):

board.digital[13].write(1)
print("on")
sleep(1)
board.digital[13].write(0)
print("off")
sleep(1)

This code makes the Raspberry Pi blink the LED on the Arduino Uno
board! The full module is documented on the pyFirmata GitHub
page (github.com/tino/pyFirmata).

Arduino and the Pi 87

GSW_RASPI_4ED_FIN.indd 87GSW_RASPI_4ED_FIN.indd 87 10/28/21 10:54 AM10/28/21 10:54 AM

Going Further
The nitty-gritty of serial protocols is beyond the scope of this
book, but there are a lot of interesting examples of how oth-
er people have solved problems in the “Interfacing with Soft-
ware” (bit.ly/1o17nGY) section of the Arduino Playground (www.
arduino.cc/playground). In addition, you may want to try:

MIDI
If your project is musical, consider using MIDI commands as
your serial protocol. MIDI is (basically) just serial, so it should
just work.

Arduino-compatible Raspberry Pi shields
There are tons of shields, or PHATs (Pi HATs—Hardware
Attached on Top) on the market that connect the GPIO pins on
the Raspberry Pi with an Arduino-compatible microcontroller.
WyoLum’s AlaMode (bit.ly/1EylgRM) shield is a good solution
and offers a few other accessories, including a real-time clock.

Talk over a network
Finally, you can ditch the serial connection altogether and talk to
the Arduino over a network. A lot of really interesting projects are
using the WebSocket (www.websocket.org) protocol along with
the Node.js (nodejs.org) JavaScript platform.

Using the serial pins on the Raspberry Pi header
The header on the Raspberry Pi pulls out a number of input and
output pins, including two that can be used to send and receive
serial data bypassing the USB port. To do that, you’ll first need
to cover the material in Chapter 7, and make sure that you have
a level shifter to protect the Raspberry Pi 3.3V pins from the
Arduino’s 5Vpins.

If you’re looking to get deeper into making physical devices com-
municate, a good starting point is Making Things Talk, 3rd Edition
(www.makershed.com/products/making-things-talk-third-edi-
tion), by Tom Igoe.

88 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 88GSW_RASPI_4ED_FIN.indd 88 10/28/21 10:54 AM10/28/21 10:54 AM

6/Basic Input
and Output

While the Raspberry Pi is, in essence, a very
inexpensive Linux computer, there are a few
things that distinguish it from laptop and
desktop machines that we usually use for
writing email, browsing the Web, or word
processing. One of the main differences
is that the Raspberry Pi can be directly
used in electronics projects, because it has
general-purpose input/output pins right on
the board, shown in Figure 6-1.

Figure 6-1. Raspberry Pi’s GPIO pins

Basic Input and Output 89

GSW_RASPI_4ED_FIN.indd 89GSW_RASPI_4ED_FIN.indd 89 10/28/21 10:54 AM10/28/21 10:54 AM

These GPIO pins can be accessed for controlling hardware such as
LEDs, motors, and relays, which are all examples of outputs. As for
inputs, your Raspberry Pi can read the status of buttons, switches,
and dials, or it can read sensors for things like temperature, light,
motion, or proximity (among many others).

With the introduction of Raspberry Pi 1 Model B+, the
number of GPIO pins increased from 26 to 40. If you
have one of the first Pis, you can still carry out the
examples in this chapter as they’ll use only the first 26
pins on the GPIO header.

The best part of having a computer with GPIO pins is that you can
create programs to read the inputs and control the outputs based
on many different conditions, as easily as you’d program your
desktop computer. Unlike a typical microcontroller board, which
also has programmable GPIO pins, the Raspberry Pi has a few
extra inputs and outputs, such as your keyboard, mouse, and
monitor, as well as the Ethernet port, which can act as both an
input and an output. If you have experience creating electronics
projects with microcontroller boards like the Arduino, you have a
few more inputs and outputs at your disposal with the Raspberry
Pi. Best of all, they’re built right in; there’s no need to wire up any
extra circuitry to use them.

Having a keyboard, mouse, and monitor is not the only advantage
that Raspberry Pi has over typical microcontroller boards. There
are a few other key features that will help you in your electronics
projects:

Filesystem
Being able to read and write data in the Linux filesystem will
make many projects much easier. For instance, you can con-
nect a temperature sensor to the Raspberry Pi and have it take
a reading once a second. Each reading can be appended to the
end of a log file, which can be easily downloaded and parsed in a

90 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 90GSW_RASPI_4ED_FIN.indd 90 10/28/21 10:54 AM10/28/21 10:54 AM

graphing program. It can even be graphed right on the Raspberry
Pi itself!

Linux tools
Packaged in the Raspberry Pi’s Linux distribution is a set of core
command-line utilities, which let you work with files, control
processes, and automate many different tasks. These powerful
tools are at your disposal for all of your projects. And because
there is an enormous community of Linux users that depend
on these core utilities, getting help is usually one web search
away. For general Linux help, you can usually find answers at
Stack Overflow (stackoverflow.com). If you have a question
specific to Raspberry Pi, try the Raspberry Pi Forum (www.
raspberrypi.org/phpBB3) or the Raspberry Pi section of Stack
Overflow (raspberrypi.stackexchange.com).

Languages
There are many programming languages out there, and embed-
ded Linux systems like the Raspberry Pi give you the flexibility
to choose whichever language you’re most comfortable with.
The examples in this book use shell scripting and Python, but
they could easily be translated to languages like C, Java, or Perl.

One of the drawbacks to the Raspberry Pi is that there’s
no way to directly connect analog sensors, such as light
and temperature sensors. Doing so requires a chip
called an analog-to-digital converter or ADC. See Chap-
ter 8 for how to read analog sensors using an ADC.

Basic Input and Output 91

GSW_RASPI_4ED_FIN.indd 91GSW_RASPI_4ED_FIN.indd 91 10/28/21 10:54 AM10/28/21 10:54 AM

Using Inputs and Outputs
There are a few supplies that you’ll need in addition to the Raspber-
ry Pi itself to try out these basic input and output tutorials. Many of
these parts you’ll be able to find in hobby electronics component
stores, or they can be ordered online from stores like Maker Shed,
SparkFun, Adafruit, Mouser, or Digi-Key. Here are a few of the basic
parts:

• Solderless breadboard
• LEDs, assorted
• Male-to-male jumper wires
• Female-to-male jumper wires (these are not as common as their

male-to-male counterparts but are needed to connect the Rasp-
berry Pi’s GPIO pins to the breadboard)

• Push button switch
• Resistors, assorted

To make it easier to connect breadboarded components to the
Raspberry Pi’s pins, we also recommend Adafruit’s Pi Cobbler Plus
(adafruit.com/product/2029), which connects all the GPIO pins to
a breadboard with a single ribbon cable. This eliminates the need to
use female-to-male jumper wires.

In Figure 6-2, we’ve labeled each pin according to its default GPIO
signal number, which is how you’ll refer to a particular pin in the
commands you execute and in the code that you write. The unla-
beled pins are assigned to other functions by default.

92 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 92GSW_RASPI_4ED_FIN.indd 92 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 6-2. The default GPIO pins on the Raspberry Pi. Some of
the pins left blank could also be used as GPIO, but they have other
possible functions. Unless you need more GPIO pins than are listed
here, steer clear of them for now.

There’s a handy website created by Phil Howard called Raspberry
Pinout (pinout.xyz) which we recommend you bookmark. It’ll show
you the Raspberry Pi’s GPIO pins and has tons of reference infor-
mation about how they can be used.

There are also great products such as RasPiO Portsplus port ID
board (rasp.io), shown in Figure 6-3. It’s a small board that fits
over the GPIO pins for the sole purpose of making the pins easy to
identify.

Basic Input and Output 93

GSW_RASPI_4ED_FIN.indd 93GSW_RASPI_4ED_FIN.indd 93 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 6-3. The RasPiO Portsplus port ID board

Digital Output: Lighting Up an LED
The easiest way to use outputs with the GPIO pins is by connecting
a light emitting diode, or LED. You can then use the Linux command
line to turn the LED on and off. Once you have an understanding
of how these commands work, you’re one step closer to having an
LED light up to indicate when you have new email, when you need
to take an umbrella with you as you leave your house, or when it’s
time to go to bed. It’s also very easy to go beyond a basic LED and
use a relay to control a lamp on a set schedule, for instance.

Beginner’s Guide to Breadboarding

If you’ve never used a breadboard (Figure 6-4) before, it’s import-
ant to know which terminals are connected. In the diagram, we’ve
shaded the terminal connections on a typical breadboard. Note
that the power buses on the left side are not connected to the
power buses on the right side of the breadboard. You’ll have to use
male-to-male jumper cables to connect them to each other if you
need ground and voltage on both sides of the breadboard.

94 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 94GSW_RASPI_4ED_FIN.indd 94 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 6-4. Breadboard

Here are the instructions you should follow:

1. Using a male-to-female jumper wire, connect pin 25 on the
Raspberry Pi to the breadboard. Refer to Figure 6-2 for the loca-
tion of each pin on the Raspberry Pi’s GPIO header.

2. Using another jumper wire, connect one of the Raspberry Pi’s
ground pins to the negative power bus on the breadboard.

3. Now you’re ready to connect the LED (see Figure 6-5).
Before you do that, it’s important to know that LEDs are polar-
ized: it matters which of the LED’s wires is connected to what. Of
the two leads coming off the LED, the longer one is the anode (or
“plus”) and should be connected to a GPIO pin. The shorter lead
is the cathode (or “minus”) and should be connected to ground.
Another way to tell the difference is by looking from the top. The
flat side of the LED indicates the cathode, the side that should
be connected to ground. Insert the anode side of the LED into
the breadboard in the same channel as the jumper wire from pin
25, which will connect pin 25 to the LED. Insert the cathode side
of the LED into the ground powerbus.

Basic Input and Output 95

GSW_RASPI_4ED_FIN.indd 95GSW_RASPI_4ED_FIN.indd 95 10/28/21 10:54 AM10/28/21 10:54 AM

An easy way to remember the polarity of an LED is that
the “plus” lead has had length added to it, while the
“minus” lead has had length subtracted from it.

Figure 6-5. Connecting an LED to the Raspberry Pi

4. With your keyboard, mouse, and monitor hooked up, power on
your Raspberry Pi and log in. If you’re at a command line, you’re
ready to go. If you’re in the X Window environment, double-click
the LXTerminal icon on your taskbar. This will bring up a terminal
window.

5. To access the input and output pins from the command line,
you’ll need to run the commands as root, the super user account
on the Raspberry Pi. To start running commands as root, type
sudo su at the command line and press Enter:

pi@raspberrypi: ~ $ sudo su
root@raspberrypi:/home/pi#

You’ll notice that the command prompt has changed from $ to #,
indicating that you’re now running commands as root.

96 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 96GSW_RASPI_4ED_FIN.indd 96 10/28/21 10:54 AM10/28/21 10:54 AM

The root account has administrative access to all the
functions and files on the system and there is very little
protecting you from damaging the operating system if
you type a command that can harm it. You must exer-
cise caution when running commands as root. If you do
mess something up, don’t worry about it too much; you
can always reimage the SD card with a clean Linux in-
stall; however, you’ll lose any customization you made
to the operating system, as well as any programs or
sketches you wrote.

When you’re done working within the root account,
type exit to return to working within the pi useraccount.

6. Before you can use the command line to turn the LED on
pin 25 on and off, you need to export the pin to the userspace
(in other words, make the pin available for use outside of the
confines of the Linux kernel), this way:

root@raspberrypi:/home/pi# echo 25 > /sys/class/gpio/export

The echo command writes the number of the pin you want to
use (25) to the export file, which is located in the folder /sys/
class/gpio. When you write pin numbers to this special file, it
creates a new directory in /sys/class/gpio that has the control
files for the pin. In this case, it created a new directory called /
sys/class/gpio/gpio25.

7. Change to that directory with the cd command and list the
contents of it with Is:

root@raspberrypi:/home/pi#cd/sys/class/gpio/gpio25
root@raspberrypi:/sys/class/gpio/gpio25# ls
active_low direction edge power subsystem uevent
 value

The command cd stands for “change directory.” It changes the
working directory so that you don’t have to type the full path for
every file. ls will list the files and folders within that directory.
There are two files that you’re going to work within this directory:
direction and value.

Basic Input and Output 97

GSW_RASPI_4ED_FIN.indd 97GSW_RASPI_4ED_FIN.indd 97 10/28/21 10:54 AM10/28/21 10:54 AM

8. The direction file is how you’ll set this pin to be an input (like
a button) or an output (like an LED). Because you have an LED
connected to pin 25 and you want to control it, you’re going to
set this pin as an output:

root@raspberrypi:/sys/class/gpio/gpio25# echo out >
 direction

9. To turn the LED on, you’ll use the echo command again to
write the number 1 to the value file:

root@raspberrypi:/sys/class/gpio/gpio25# echo 1 >
value

10. After pressing Enter, the LED will turn on! Turning it off is as
simple as using echo to write a zero to the value file:

root@raspberrypi:/sys/class/gpio/gpio25# echo 0 > value

Virtual Files
The files that you’re working with aren’t actually files on the
Raspberry Pi’s SD card, but rather are a part of Linux’s virtual
filesystem, which is a system that makes it easier to access
low-level functions of the board more simply. For example, you
could turn the LED on and off by writing to a particular sectionof
the Raspberry Pi’s memory, but doing so would require more
coding and more caution.

So if writing to a file is how you control components that are out-
puts, how do you check the status of components that are inputs?
If you guessed “reading a file,” then you’re absolutely right. Let’s try
that now.

Digital Input: Reading a Button
Simple push button switches like the one in Figure 6-6 are great for
controlling basic digital input. Best of all, they’re made to fit per-
fectly into a breadboard.

98 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 98GSW_RASPI_4ED_FIN.indd 98 10/28/21 10:54 AM10/28/21 10:54 AM

These small buttons are very commonly used in
electronics projects and understanding what’s going on
inside of them will help you as you prototype your
project. When looking at the button as it sits on the
breadboard (see Figure 6-6), the top two terminals are
always connected to each other. The same is true for
the bottom two terminals; they’re always connected.
When you push down on the button, these two sets of
terminals are connected.

Figure6-6. Button

When you read a digital input on a Raspberry Pi, you’re check-
ing to see if the pin is connected to either 3.3V or to ground.
It’s important to remember that it must be either one or the other,
and if you try to read a pin that’s not connected to either 3.3V or
ground, you’ll get unexpected results. Once you understand how
digital input with a push button works, you can start using com-
ponents like magnetic security switches, arcade joysticks, or even
vending machine coin slots. Start by wiring up a switch to read its
state:

1. Insert the push button into the breadboard so that its leads
straddle the middle channel.

2. Using a jumper wire, connect pin 24 from the Raspberry Pi to
one of the top terminals of the button.

3. Connect the 3V3 pin from the Raspberry Pi to the positive
powerbus on the breadboard.

Basic Input and Output 99

GSW_RASPI_4ED_FIN.indd 99GSW_RASPI_4ED_FIN.indd 99 10/28/21 10:54 AM10/28/21 10:54 AM

Be sure that you connect the button to the 3V3 pin and
not the 5V pin. Using more than 3.3V on an input pin will
permanently damage your Raspberry Pi.

4. Connect one of the bottom terminals of the button to the
power bus. Now when you push down on the button, the 3.3V
will be connected to pin 24.

5. Remember what we said about how a digital input must be
connected to either 3.3V or ground? When you let go of the but-
ton, pin 24 isn’t connected to either of those and is therefore
floating. This condition will cause unexpected results, so let’s fix
that. Use a 10K resistor (labeled with the colored bands: brown,
black, orange, and then silver or gold) to connect the input side
of the switch to the ground rail, which you connected to the
Raspberry Pi’s ground in the output example. When the switch
is not pressed, the pin will be connected to ground. Electricity
always follows the path of least resistance toward ground, so
when you press the switch, the 3.3V will go toward the Raspber-
ry Pi’s input pin, which has less resistance than the 10K resistor.
When everything’s hooked up, it should look like Figure 6-7.

6. Now that the circuit is built, let’s read the value of the pin from
the command line. If you’re not already running commands as
root, type sudo su.

7. As with the previous example, you need to export the input
pin to userspace:

echo 24 > /sys/class/gpio/export

8. Let’s change to the directory that was created during the ex-
port operation:

cd /sys/class/gpio/gpio24

9. Now set the direction of the pin to input:

echo in > direction

100 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 100GSW_RASPI_4ED_FIN.indd 100 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 6-7. Connecting a button to the Raspberry Pi

10. To read the value of the pin, you’ll use the cat command, which
will print the contents of files to the terminal. The command cat
gets its name because it can also be used to concatenate, or
join, files. It can also display the contents of a file for you:

cat value
0

11. The zero indicates that the pin is connected to ground. Now
press and hold the button while you execute the command
again:

cat value
1

12. If you see the number 1, you’ll know you’ve got it right!

To easily execute a command that you’ve previously
executed, hit the up arrow key until you see the com-
mand that you want to run and then hit Enter.

Basic Input and Output 101

GSW_RASPI_4ED_FIN.indd 101GSW_RASPI_4ED_FIN.indd 101 10/28/21 10:54 AM10/28/21 10:54 AM

Now that you can use the Linux command line to control an LED or
read the status of a button, let’s use a few of Linux’s built-in tools
to create a very simple project that uses digital input and output.

Project: Cron Lamp Timer
Let’s say you’re leaving for a long vacation early tomorrow morn-
ing and you want to ward off would-be burglars from your home.
A lamp timer is a good deterrent, but hardware stores are closed
for the night and you won’t have time to get one before your flight
in the morning. However, because you’re a Raspberry Pi hobbyist,
you have a few supplies lying around, namely:

• Raspberry Pi board
• Breadboard
• Jumper wires, female-to-male
• PowerSwitch Tail II relay
• Hookup wire

With these supplies, you can make your own programmable lamp
timer using two powerful Linux tools: shell scripts and cron.

Scripting Commands
A shell script is a file that contains a series of commands (just like
the ones you’ve been using to control and read the pins). Take a
look at the following shell script and the explanation of the key lines:

#!/bin/bash
echo Exporting pin $1.
echo $1 > /sys/class/gpio/export
echo Setting direction of $1 to out.
echo out > /sys/class/gpio/gpio$1/direction
echo Setting pin $1 high.
echo 1 > /sys/class/gpio/gpio$1/value

 This line is required for all shell scripts.
 $1 refers to the first command-line argument.
 Instead of exporting a specific pin number, the script uses the

first command-line argument.
 Notice that the first command-line argument replaces the pin

number here as well.

102 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 102GSW_RASPI_4ED_FIN.indd 102 10/28/21 10:54 AM10/28/21 10:54 AM

Save that as a text file called on.sh and make it executable with the
chmod command:

root@raspberrypi:/home/pi # chmod +x on.sh

You still need to be executing these commands as root.
Type sudo su if you’re getting errors like “Permission
denied.”

A command-line argument is a way of passing information into
a program or script by typing it in after the name of the com-
mand. When you’re writing a shell script, $1 refers to the first com-
mand-line argument, $2 refers to the second, and so on. In the case
of on.sh, you’ll type in the pin number that you want to export and
turn on. Instead of hard coding pin 25 into the shell script, it’s more
universal by referring to the pin that was typed in at the command
line. To export pin 25 and turn it on, you can now type:

root@raspberrypi:/home/pi/# ./on.sh 25
Exporting pin 25.
Setting direction of 25 to out.
Setting pin 25 high.

 The ./ before the filename indicates that you’re executing the
script in the directory you’re in.

If you still have the LED connected to pin 25 from earlier in the
chapter, it should turn on. Let’s make another shell script called off.
sh, which will turn the LED off. It will look like this:

#!/bin/bash
echo Setting pin $1 low.
echo 0 >/sys/class/gpio/gpio$1/value
echo Unexporting pin $1
echo $1 > /sys/class/gpio/unexport

Now let’s make it executable and run the script:

root@raspberrypi:/home/pi/temp# chmod +x off.sh
root@raspberrypi:/home/pi/temp# ./off.sh25
Settingpin25low.
Unexportingpin25

Basic Input and Output 103

GSW_RASPI_4ED_FIN.indd 103GSW_RASPI_4ED_FIN.indd 103 10/28/21 10:54 AM10/28/21 10:54 AM

If everything worked, the LED should have turned off.

Connecting a Lamp
Of course, a tiny little LED isn’t going to give off enough light to fool
burglars into thinking that you’re home, so let’s hook up a lamp to
the Raspberry Pi:

1. Remove the LED connected to pin 25.

2. Connect two strands of hookup wire to the breadboard, one
that connects to pin 25 of the Raspberry Pi and the other to the
ground bus.

3. The strand of wire that connects to pin 25 should be connected
to the “+in” terminal of the PowerSwitch Tail.

4. The strand of wire that connects to ground should be con-
nected to the “-in” terminal of the PowerSwitch Tail. Compare
your circuit to Figure 6-8.

5. Plug the PowerSwitch Tail into the wall and plug a lamp into
the PowerSwitch Tail. Be sure the lamp’s switch is in the on po-
sition.

6. Now when you execute ./on.sh 25, the lamp should turn on. If
you execute ./off.sh 25, the lamp should turn off!

Figure 6-8. Connecting a PowerSwitch Tail II to the Raspberry Pi

104 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 104GSW_RASPI_4ED_FIN.indd 104 10/28/21 10:54 AM10/28/21 10:54 AM

Inside the PowerSwitch Tail, there are a few electronic
components that help you control high-voltage devices
like a lamp or blender by using a low-voltage signal such
as the one from the Raspberry Pi. The “click” you hear
from the PowerSwitch Tail when it’s turned on or off is
the relay, the core component of the circuit inside. A
relay acts like a switch for the high-voltage device that
can be turned on or off depending on whether the low-
voltage control signal from the Raspberry Pi is on or off.

Scheduling Commands with cron
So now you’ve packaged up a few different commands into two-
simple commands that can turn a pin on or off. And with the lamp
connected to the Raspberry Pi through the PowerSwitch Tail, you
can turn the lamp on or off with a single command. Now you can
use cron to schedule the light to turn on and off at different times
of the day. cron is Linux’s job scheduler. With it, you can set com-
mands to execute on specific times and dates, or you can have jobs
run on a particular period (for example, once an hour). You’re going
to schedule two jobs: one of them will turn the light on at 8:00 p.m.,
and the other will turn the light off at 2:00 a.m.

As with other time-dependent programs, you’ll want to
make sure you’ve got the correct date and time set up
on your Raspberry Pi, as described in “Setting the Date
and Time” on page 47.

To add these jobs, you’ll have to edit the cron table (a list of com-
mands that Linux executes at specified times):

root@raspberrypi:/home/pi/# crontab -e

This will launch a text editor to change root’s cron table (to change
to the root user, type sudo su). At the top of the file, you’ll see some
information about how to modify the cron table. Use your arrow

Basic Input and Output 105

GSW_RASPI_4ED_FIN.indd 105GSW_RASPI_4ED_FIN.indd 105 10/28/21 10:54 AM10/28/21 10:54 AM

keys to get to the bottom of the file and add these two entries at
the end of the file:

0 20 * * * /home/pi/on.sh 25
0 2 * * * /home/pi/off.sh 25

cron will ignore any lines that start with the hash mark.
If you want to temporarily disable a line without deleting
it or add a comment to the file, put a hash mark in front
of the line. cron also expects a blank line at the end of
the file; if you get unexpected behavior from your cron
table, make sure you haven’t filled that blank line with
text/commands and not replaced it.

Press Ctrl-X to exit, press y to save the file when it prompts you,
and hit Enter to accept the default filename. When the file is saved
and you’re back at the command line, it should say installing new
crontab to indicate that the changes you’ve made are going to be
executed by cron.

More About cron
cron will let you schedule jobs for specific dates and times or at
intervals. There are five time fields (or six if you want to schedule by
year), each separated by a space followed by another space, then
the command to execute; asterisks indicate that the job should
execute each period (Table 6-1).

Table 6-1. cron entry for turning light on at 8:00 p.m. everyday

0 20 * * * /home/pi/on.sh25

Minute
(:00)

Hour
(8 p.m.) Everyday Every

month

Every
day of
the week

Path to
command

Let’s say you only wanted the lamp to turn on every weekday. Table
6-2 shows what the crontab entry would look like.

106 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 106GSW_RASPI_4ED_FIN.indd 106 10/28/21 10:54 AM10/28/21 10:54 AM

Table 6-2. cron entry for turning light on at 8:00 p.m. every weekday

0 20 * * 1-5 /home/pi/on.sh25

Minute
(:00)

Hour
(8 p.m.)

Every-
day

Every
month

Monday
to Friday

Path to
command

As another example, let’s say you have a shell script that checks if
you have new mail and emails you if you do. Table 6-3 shows how
you’d get that script to run every five minutes.

Table 6-3. cron entry for checking for mail every five minutes

*/5 * * * * /home/pi/checkMail.sh

Every five
minutes

Every
hour

Every-
day

Every
month

Every
day of
the week

Path to
command

The */5 indicates a period of every five minutes.

As you can see, cron is a powerful tool that’s at your disposal for
scheduling jobs for specific dates or times and at specific intervals.

Going Further
eLinux’s Raspberry Pi GPIO Reference Page
(bit.ly/1vORWl3)

This is the most comprehensive reference guide to the
Raspberry Pi’s GPIO pins.

Gordon Henderson’s Command Line GPIO Utility
(projects.drogon.net/raspberry-pi/wiringpi/the-gpio-utility)

This command line utility makes it easier to work with GPIO pins
from the command line. It’s bundled with all the latest versions
of the Raspberry Pi OS. Try running the command gpioreadall
to get an overview of all your pins.

Basic Input and Output 107

GSW_RASPI_4ED_FIN.indd 107GSW_RASPI_4ED_FIN.indd 107 10/28/21 10:54 AM10/28/21 10:54 AM

GSW_RASPI_4ED_FIN.indd 108GSW_RASPI_4ED_FIN.indd 108 10/28/21 10:54 AM10/28/21 10:54 AM

7/Programming
Inputs and Outputs
with Python

At the end of Chapter 6, you did a little bit
of programming with the Raspberry Pi’s
GPIO pins using a shell script. In this chap-
ter, you’re going to learn how to use Python
to do the same thing… and a little more.
As with the shell script, Python will let you
access the GPIO pins with code that reads
and controls the pins automatically.
The advantage that Python has over shell scripting is that Python
code is easier to write and is more readable. There’s also a whole
slew of Python modules that make it easy for you to do some
complex stuff with basic code. See Table 4-2 for a list of a few
modules that might be useful in your projects. Best of all, there’s
a Python module called GPIO Zero (gpiozero.readthedocs.io/en/
stable) that makes it easy to read and control the GPIO pins. You’re
going to learn how to use that module in this chapter.

Installation
GPIO Zero is now included in the desktop version of the Raspberry
PI OS. It builds on some other libraries that you may be familiar
with, including RPi.GPIO (bit.ly/1vzTBtI) and pigpio, and even lets
you select particular pin libraries as you need them.

Programming Inputs and Outputs with Python 109

GSW_RASPI_4ED_FIN.indd 109GSW_RASPI_4ED_FIN.indd 109 10/28/21 10:54 AM10/28/21 10:54 AM

If you are using Raspberry Pi OS Lite or another OS on the Pi, you’ll
need to install GPIO Zero, which is not a difficult task.

With the Pi OS Lite, first update your repositories list with

pi@raspberrypi: ~ $ sudo apt update

Then install either the Python 2 or Python 3 package:

pi@raspberrypi: ~ $ sudo apt install python-gpiozero

or

pi@raspberrypi: ~ $ sudo apt install python3-gpiozero

If you’re using another OS, you may need to use pip to install it in-
stead. Use

pi@raspberrypi: ~ $ sudo pip install gpiozero

or

pi@raspberrypi: ~ $ sudo pip3 install gpiozero

for Python 2 or 3, respectively.

There are some programmers, myself included, who
frown on using sudo when installing packages with pip.
This is because using sudo may install some of the
dependencies and binaries in directories that are
inaccessible to ordinary, non-root users. That can often
lead to problems when trying to use the packages that
were installed this way. Most often I will use the --user
flag, like so:

pipinstall --usergpiozero

Only if the installation fails that way will I use the sudo method.

110 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 110GSW_RASPI_4ED_FIN.indd 110 10/28/21 10:54 AM10/28/21 10:54 AM

Testing GPIO in Python
1. Go into the Python interactive interpreter from the terminal
prompt by typing python3.
2. When you’re at the >>> prompt, try importing the LED
module:

>>> from gpio zero import LED

If you don’t get any errors after entering the import command,
you know it’s installed and ready to use.

1. As with other libraries, gpiozero allows you to control each
of the Pi’s pins individually. However, there’s a catch. gpiozero
refers to the pins not by their physical placement on the board,
but by their internal connection to the CPU, which is what’s
known as the pin’s Broadcom or BCM number. Other libraries
allow you to select how you’re going to refer to the pins; gpiozero
only gives you the Broadcom option. Luckily, it’s pretty easy
to find printouts online of the pins’ individual BCM numbers.
There is also an awesome mobile app called Electrodoc
(play.google.com/store/apps/details?id=it.android.demi.
elettronica&hl=en_US&gl=US or apps.apple.com/us/app/
electrodoc-pro/id1146647134) that I have installed on my phone,
which lets you call up the pin-outs for almost any hobbyist board
you can think of. I highly recommend it!

2. Tell the gpiozero library which pin to use. Let’s use GPIO
pin #4, and connect it the way you did in “Beginner’s Guide to
Breadboarding”:

3. >>> led = LED(4)

4. Turn on the LED:
 >>> led.on()

5. Turn off the LED:
 >>> led.off()

6. Exit the Python interactive interpreter:
 >>> exit()

 $

Programming Inputs and Outputs with Python 111

GSW_RASPI_4ED_FIN.indd 111GSW_RASPI_4ED_FIN.indd 111 10/28/21 10:54 AM10/28/21 10:54 AM

In Chapter 6, you learned that digital input and output
signals on the Raspberry Pi must be either 3.3V or
ground. In digital electronics, we refer to these signals
as high or low, respectively. Keep in mind that not all
hardware out there uses 3.3V to indicate high; some
use 1.8V, and others use 5V. If you plan on connecting
your Raspberry Pi to digital hardware through its GPIO
pins, it’s important that the other hardware also uses
3.3V.

These steps give you a rough idea of how to control the GPIO pins by
typing Python statements directly into the interactive interpreter.
It’s hard to imagine it being any easier, to be honest! Just as you
created a shell script to turn the pins on and off in Chapter 6,
you’re going to create a Python script to read and control the pins
automatically.

Blinking an LED
To blink an LED on and off with Python, you’re going to use the
statements that you already tried in the interactive interpreter,
in addition to a few others. For the next few steps, we’ll assume
you’re using the desktop environment (as shown in Figure 7-1),
but feel free to use the command line to write and execute these
Python scripts if you prefer.

Here’s how to blink an LED with a Python script:

1. Open the text editor by clicking the Raspberry menu→
Accessories→TextEditor.
2. Enter the following code:

from gpizero import LED
import time

led = LED(4)

while True:

112 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 112GSW_RASPI_4ED_FIN.indd 112 10/28/21 10:54 AM10/28/21 10:54 AM

led.on()
time.sleep(1)
led.off()
time.sleep(1)

 Import the code needed for GPIO control.
 Import the code needed for the sleep function.
 Set pin 4 as an output for the LED.
 Create an infinite loop consisting of the indented code
 below it.
 Turn the LED on.
 Wait for one second.
 Turn the LED off.
 Wait for one second.

3. Save the file as blink.py within the home directory, /home/pi.
There’s a shortcut to this folder in the places list on the left side
of the Save As window.

Remember—indentation matters in Python!

4. Open LXTerminal, then use these commands to make sure
the working directory is your home directory, and execute the
script (see Figure 7-1):

pi@raspberrypi ~/Documents $ cd ~
pi@raspberrypi ~ $ python blink.py

5. Your LED should now be blinking!

6. Press Ctrl-C to stop the script and return to the command
line.

Programming Inputs and Outputs with Python 113

GSW_RASPI_4ED_FIN.indd 113GSW_RASPI_4ED_FIN.indd 113 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 7-1. Using a text editor and LXTerminal to edit and launch
Python scripts.

Try modifying the script to make the LED blink faster by using dec-
imals in the time.sleep() functions. You can also try adding a few
more LEDs and getting them to blink in a pattern. You can use any
of the dedicated GPIO pins that are shown in Figure 6-2.

Reading a Button
If you want something to happen when you press a button, one way
to do that is to use a technique called polling. Polling means contin-
ually checking over and over again for some condition. In this case,
your program will be polling whether the button is connecting the
input pin to 3.3V or to ground. To learn about polling, you’ll create a
new Python script that will display text on the screen when the user
pushes a button:

1. Connect a push button between pin 24 and ground.
(Remember, you’re using BCM numbers to refer to the pins,
so here we’re actually referring to physical pin #18!) gpio-
zero’s Button.wait_for_press() function checks for a pin going to

114 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 114GSW_RASPI_4ED_FIN.indd 114 10/28/21 10:54 AM10/28/21 10:54 AM

ground. The logic behind doing it this way is that you don’t need
to connect a pulldown resistor between the switch and GND.

2. Create a file in your home directory called button.py and open
it in the editor.

3. Enter the following code:

from gpiozero import Button
import time
button = Button(24)
count = 0
while True:
 button.wait_for_press()
 count += 1
 print("Buttonpressed" + str(count) + "times.")
 time.sleep(0.1)

 Set pin 24 as an input.
 Create a variable called count and store 0 in it.
 Poll the button for presses.
 Add to count if the button has been pressed.
 Print the text to the terminal
 Wait briefly, but let other programs have a chance to run by

 not hogging the processor’s time.

4. Go back to LXTerminal and execute the script:

$ python3 button.py

5. Now press the button. If you’ve got everything right, you’ll see
a few lines of “The button has been pressed” for each time you
press the button.

The preceding code checks for the status of the button 10 times
per second, which is why you’ll see more than one sentence printed
(unless you have incredibly fast fingers). The Python statement
time.sleep(0.1) is what controls how often the button is checked.

But why not continually check the button? If you were to remove
the time.sleep(0.1) statement from the program, the loop would
indeed run incredibly fast, so you’d know much more quickly when

Programming Inputs and Outputs with Python 115

GSW_RASPI_4ED_FIN.indd 115GSW_RASPI_4ED_FIN.indd 115 10/28/21 10:54 AM10/28/21 10:54 AM

the button was pressed. This comes with a few drawbacks: you’d
be using the processor on the board constantly, which will make
it difficult for other programs to function, and it would increase
the Raspberry Pi’s power consumption. Because button.py has to
share resources with other programs, you have to be careful that
it doesn’t hog them all up.

These are challenges that you’ll face when you’re using polling to
check the status of a digital input. One way to get around these
challenges is to use an interrupt, which is a way of setting a
specified block of code to run when the hardware senses a change
in the state of the pin. gpiozero supports interrupts—specifically,
detecting and responding to an edge state change (when the pin
changes from HIGH to LOW, or vice versa) and you can read about
how to use that feature in the library’s documentation (gpiozero.
readthedocs.io/en/stable/api_pins.html).

Note that edge detection only works on pins that support it,
 and the library documents state that depending on the hardware,
the information read from the state at any given time is not guaran-
teed to be accurate.

Project: Simple Soundboard
Now that you know how to read the inputs on the Raspberry Pi,
you can use the sound functions of the Python module Pygame
to make a soundboard. A soundboard lets you play small sound
recordings when you push its buttons. To make your own sound-
board, you’ll need the following in addition to your Raspberry Pi:

• Three push button switches
• Female-to-male jumper wires
• Standard jumper wires or hookup wire, cut to size
• Solderless breadboard
• Computer speakers, or an HDMI monitor that has built-in speak-

ers. You can also use a simple pair of headphones—anything
that will plug into the Pi’s audio analog OUT port.

116 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 116GSW_RASPI_4ED_FIN.indd 116 10/28/21 10:54 AM10/28/21 10:54 AM

You’ll also need a few uncompressed sound files, in .wav format.
For purposes of testing, there are a few sound files preloaded on
the Raspberry Pi that you can use. Once you get the soundboard
working, it’s easy to replace those files with any sounds you want,
though you may have to convert them to .wav from other formats.
Start by building the circuit:

1. Using a female-to-male jumper wire, connect the Raspberry
Pi’s ground pin to the negative rail on the breadboard.

2. Insert the three push button switches in the breadboard,
all straddling the center trench.

3. Using standard jumper wires or small pieces of hookup wire,
connect the groundrail of the breadboard to the top pin of each
button.

4. Using female-to-male jumper wires, connect each button’s
bottom pin to the Raspberry Pi’s GPIO pins. For this project,
we used pins 4, 14, and 25.

Figure 7-2 shows the completed circuit. We created this diagram
with Fritzing (fritzing.org), an open-source tool for creating hard-
ware designs.

Programming Inputs and Outputs with Python 117

GSW_RASPI_4ED_FIN.indd 117GSW_RASPI_4ED_FIN.indd 117 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 7-2. Completed circuit for the soundboard project

118 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 118GSW_RASPI_4ED_FIN.indd 118 10/28/21 10:54 AM10/28/21 10:54 AM

Now that you have the circuit breadboarded, it’s time to work
on the code:

1. Create a new directory in your home directory called sound-
board.

2. Open that folder and create a file there called soundboard.py.

3. Open soundboard.py and type in the following code:

import pygame.mixer
from time import sleep
from gpiozero import Button
from sys import exit

button1 = Button(4)
button2 = Button(14)
button3 = Button(25) Again, BCM 4,14 and 25 match up
with pins 4,14, and 25??

pygame.mixer.init(48000, -16, 1, 1024)
soundA = pygame.mixer.Sound(

"/usr/share/sounds/alsa/Front_Center.wav")
soundB = pygame.mixer.Sound(

"/usr/share/sounds/alsa/Front_Left.wav")
soundC = pygame.mixer.Sound(

"/usr/share/sounds/alsa/Front_Right.wav")

soundChannelA = pygame.mixer.Channel(1)
soundChannelB = pygame.mixer.Channel(2)
soundChannelC = pygame.mixer.Channel(3)

print "Soundboard Ready."

while True:
try:

button1.wait_for_press()
soundChannelA.play(soundA)
button2.wait_for_press()
soundChannelB.play(soundB)
button3.wait_for_press()
soundChannelC.play(soundC)
sleep(.01)

except KeyboardInterrupt:
exit()

Programming Inputs and Outputs with Python 119

GSW_RASPI_4ED_FIN.indd 119GSW_RASPI_4ED_FIN.indd 119 10/28/21 10:54 AM10/28/21 10:54 AM

 Initialize Pygame’s mixer.
 Load the sounds.
 Setup three channels (one for each sound) so that we can play

different sounds concurrently.
 Let the user know the soundboard is ready.
 Poll the button. If the button is pressed, execute the following line.
 Play the sound.
 Don’t “peg” the processor by checking the buttons faster

 than we need to.
 This will let us exit the script cleanly when the user hits Ctrl-C,

without showing the trace back message.

4. Go to the command line and navigate to the folder where
you’ve saved soundboard.py and execute the script:

pi@raspberrypi ~/soundboard $ python3 soundboard.py

5. After you see “Soundboard Ready,” start pushing the buttons
to play the sound samples.

Depending on how your Raspberry Pi is setup, your sound might
be sent via HDMI to your display, or it may be sent to the 3.5mm
analog audio output jack on the board. To change that, exit out of
the script by pressing Ctrl-C and executing the following command
to use the analog audio output:

pi@raspberrypi ~/soundboard $ sudo amixer cset numid=31

To send the audio through HDMI to the monitor, use:

pi@raspberrypi ~/soundboard $ sudo amixer cset numid=32

Of course, the stock sounds aren’t very interesting, but you can
replace them with any of your own sounds: applause, laughter,
buzzers, and dings. Add them to the soundboard directory and
update the code to point to those files. If you want to use more
sounds on your soundboard, add additional buttons and update
the code as necessary.

120 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 120GSW_RASPI_4ED_FIN.indd 120 10/28/21 10:54 AM10/28/21 10:54 AM

Going Further
gpiozero documentation
(gpiozero.readthedocs.io/en/stable/)

The gpiozero library is not only under active development, it’s
got a ton of functionality that we’ve barely touched on here.
It would be well worth your time to dig through the documenta-
tion, breadboard up some components, and see what you can
do with it.

Programming Inputs and Outputs with Python 121

GSW_RASPI_4ED_FIN.indd 121GSW_RASPI_4ED_FIN.indd 121 10/28/21 10:54 AM10/28/21 10:54 AM

GSW_RASPI_4ED_FIN.indd 122GSW_RASPI_4ED_FIN.indd 122 10/28/21 10:54 AM10/28/21 10:54 AM

8/Analog Input
and Output

In Chapter 6, you learned about digital in-
puts and outputs with buttons, switches,
LEDs, and relays. Each of these compo-
nents was always either on or off, never
anything in between. However, you might
want to sense things in the world that are
not necessarily one or the other—for in-
stance, temperature, distance, light levels,
or the status of a dial. These all come in
a range of values.
Or you may want to put something in a state that’s not just on or
off. For example, suppose you wanted to dim an LED or control the
speed of a motor, rather than just turning it on or off. To make an
analogy for analog and digital, you can think of a typical light switch
versus a dimmer switch, as pictured in Figure 8-1.

Analog Input and Output 123

GSW_RASPI_4ED_FIN.indd 123GSW_RASPI_4ED_FIN.indd 123 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 8-1. Digital is like the switch on the left: it can be either on
or off. Analog, on the other hand, can be set at a range of values
between fully on and completely off.

Output: Converting Digital to Analog
Just as in Chapter 7, in this chapter you’ll use the GPIO Zero module
already installed in the most recent versions of Raspberry Pi OS.
The module has functions for controlling the GPIO pins. Some of
these functions act sort of like a dimmer switch.

We say that it’s “sort of” like a dimmer switch because the module
uses a method called pulse-width modulation, or PWM, to make
it seem like there’s a range of voltages coming out of its outputs.
What the GPIO module is actually doing is pulsing its pins on and
off really quickly, so quickly that the human eye doesn’t register
the blinking. All you see is that the light isn’t as bright as it would be
if it were on all the time. If you want the pin to behave as though it’s
at half voltage, the pin will be pulsed so that it is on 50% of the time
and off 50% of the time. If you want the pin to behave as though it’s

124 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 124GSW_RASPI_4ED_FIN.indd 124 10/28/21 10:54 AM10/28/21 10:54 AM

at 20% power, the Raspberry Pi will turn the pin on 20% of the time
and off 80% of the time. The percentage of time that it’s on versus
the total time of the cycle is called the duty cycle (Figure 8-2). When
you connect an LED to these pins and instruct the Raspberry Pi
to change the duty cycle, the effect we see is that the LED gets
dimmer.

Figure 8-2. The duty cycle represents how much time the pin is
turned on over the course of an on-off cycle.

Analog Input and Output 125

GSW_RASPI_4ED_FIN.indd 125GSW_RASPI_4ED_FIN.indd 125 10/28/21 10:54 AM10/28/21 10:54 AM

Test-Driving PWM
For the next few steps, we’ll assume you’re using the desktop
environment, but feel free to use the command line to write and
execute these Python scripts if you prefer:

1. Connect an LED to GPIO pin 25 (physical pin 22) as you did in
“Beginner’s Guide to Breadboarding” on page 94.

2. Open the File Manager by clicking its icon in the taskbar.

3. Be sure you’re in the home directory, the default being /
home/pi. If not, click on the home icon under the Places listing.

4. Create a file in your home directory called blink.py. Do this by
right-clicking in the home directory window and choosing “New
File.” Name the file fade.py.

5. Double-click on fade.py to open it in the default text editor.

6. Enter the following code and save the file:

from gpiozero import PWMLED
from time import sleep

led = PWMLED(25)

while True:
for dc in range(0, 100, 1):

led.value = dc/100.0
time.sleep(0.01)

for dc in range(100, 0, -1):
led.value = dc/100.0
time.sleep(0.01)

 Create a PWM LED object and set it to GPIO pin 25.
 Run the indented code below this line, each time incrementing

the value of dc by 1 from starting at 0 and going to 100.
 Set the duty cycle of GPIO pin 25 to the value of dc.
 Run the indented code that follows, each time decrementing the

value of dc by 1 from starting at 100 and going to 0.

7. Open the terminal, then use these commands to make sure
the working directory is your home directory, and execute the

126 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 126GSW_RASPI_4ED_FIN.indd 126 10/28/21 10:54 AM10/28/21 10:54 AM

script:

pi@raspberrypi:~/Development $ cd~
pi@raspberrypi:~ $ python3 fade.py

8. Your LED should now be fading up and down!

9. Press Ctrl-C to stop the script and return to the command
line.

If you’re accustomed to using PWM on a microcontrol-
ler like the Arduino, you’ll find that—unlike Arduino—
there is unsteadiness in the PWM pulses from the Rasp-
berry Pi. This is because in this example, you’re using
the CPU to turn the LED on and off. Because that CPU is
used for multiple things at one time, it may not always
keep perfect time. You can always reach for other hard-
ware like Adafruit’s PWM/Servo Driver (www.adafruit.
com/products/815) if you need to have more precise
control.

Taking PWM Further
With the ability to use pulse-width modulation to fade LEDs up and
down, you could also connect an RGB LED and control the color
by individually changing the brightness of its red, green, and blue
elements.

As we mentioned earlier, you can also use pulse-width modulation
to control the speed of a direct current motor that’s connected to
your Raspberry Pi through transistors. The PWM output, when fed
into the transistors, will modulate the amount of power the transis-
tors allow into the motor, and hence its speed.

The position of the shaft on a hobby servo motor (the kind that-
steers RC cars) can also be controlled with specific pulses of elec-
tricity. Though, keep in mind that you may need additional hard-
ware and power to control these motors with a Raspberry Pi.

Analog Input and Output 127

GSW_RASPI_4ED_FIN.indd 127GSW_RASPI_4ED_FIN.indd 127 10/28/21 10:54 AM10/28/21 10:54 AM

Input: Converting Analog to Digital
Just like you controlled the output of a GPIO pin on a scale of 0 to
100, it’s also possible to read sensors that can offer the Raspberry
Pi a range of values. If you want to know the temperature outdoors,
the light level of a room, or the amount of pressure on a resistive
pad, you can use various sensors. On a microcontroller like the
Arduino, there’s special hardware to convert the analog voltage
level to digital data. Unfortunately, your Raspberry Pi doesn’t have
this hardware built-in.

This section will show you how to convert from analog to digital
using an ADC, or analog-to-digital converter. There are a few differ-
ent models of ADCs out there, but this chapter will use the ADS1x15
from Texas Instruments. The package of the ADS1x15 chip is too
small for your standard breadboard, so Adafruit Industries has
created a breakout board (www.adafruit.com/products/1083) for
it, shown in Figure 8-3. Once you’ve soldered header pins to the
breakout board, you can build prototypes with this chip in your
breadboard. The chip uses a protocol named Inter-Integrated Cir-
cuit (commonly called I2C) for transmitting the analog readings.
Luckily, we don’t need to understand the protocol to use it. Adafruit
provides an excellent open-source Python library to read the values
from the ADS1115 or its little brother, the ADS1015, via I2C.

To connect the ADS1115 or ADS1015 breakout to your Raspberry Pi:

1. Connect the 3.3V pin from the Raspberry Pi to the positive
rail of the breadboard. Refer to Figure 6-2 for pin locations on
the Raspberry Pi’s GPIO heade.r

2. Connect the ground pin from the Raspberry Pi to the negative
rail of the breadboard.

3. Insert the ADS1x15 into the breadboard and use jumper wires
to connect its VDD pin to the positive rail and its GND pin to the
negative rail.

4. Connect the SCL pin on the ADS1x15 to the SCL pin on the
Raspberry Pi. The SCL pin on the Pi is the one paired with the
ground pin on the GPIO header.

128 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 128GSW_RASPI_4ED_FIN.indd 128 10/28/21 10:54 AM10/28/21 10:54 AM

5. Connect the SDA pin on the ADS1x15 to the SDA pin on the
Raspberry Pi. The SDA pin is in between the SCL pin and the
3.3V pin.

Figure 8-3. The ADS1015 analog-to-digital converter breakout
from Adafruit

Now you’ll need to connect an analog sensor to the ADS1x15. There
are many to choose from, but for this walk-through, you’ll use a 2K
potentiometer so that we can have a dial input for your Raspberry
Pi. A potentiometer, or pot, is essentially a variable voltage divider,
and can come in the form of a dial or slider.

The value of the potentiometer you use doesn’t have to
be 2K. If you only have a 10K or 1M potentiometer, it will
work just fine.

Analog Input and Output 129

GSW_RASPI_4ED_FIN.indd 129GSW_RASPI_4ED_FIN.indd 129 10/28/21 10:54 AM10/28/21 10:54 AM

To connect a potentiometer to the ADS1x15:

1. Insert the potentiometer into the breadboard.

2. The pot has three pins. Connect the middle pin to pin A0 on
the ADS1x15.

3. One of the outside pins should connect to the positive rail of
the breadboard. For now, it doesn’t matter which.

4. Connect the other outside pin to the negative rail of the
breadboard.

The connections should look as shown in Figure 8-4.

Figure 8-4. Using the ADS1x15 to connect a potentiometer to the
Raspberry Pi

Before you can read the potentiometer, you’ll need to enable I2C
and install a few things (see Figure 8-5):

130 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 130GSW_RASPI_4ED_FIN.indd 130 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 8-5. Enabling the I 2C interface

1. Open up the Raspberry Pi Configuration tool by clicking on
Menu→Preferences→Raspberry Pi Configuration.

2. Click the Interfaces tab.

3. Next to I2C , click Enable.

4. Click OK and reboot your Raspberry Pi.

5. Open up a Terminal window and update your list of packages:

$ sudo apt-get update

6. The i2c-tools tools should already be installed with the latest
version of the Raspberry Pi OS, but if you want to make sure,
enter the following line at the command prompt. You’ll either get
a message that you’ve already got the newest version, or you will
be prompted to install it.

$ sudo apt-get install i2c-tools

7. Restart your Raspberry Pi.

Analog Input and Output 131

GSW_RASPI_4ED_FIN.indd 131GSW_RASPI_4ED_FIN.indd 131 10/28/21 10:54 AM10/28/21 10:54 AM

8. After you’ve restarted your Raspberry Pi, test that the Rasp-
berry Pi can detect the ADS1x15 with the command:

$ sudo i2cdetect -y 1

9. If the board is recognized, you’ll see the number in the grid
that is displayed:

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

10. Now that we know that the device is connected and is recog-
nized by our Pi, it’s time to start reading the potentiometer. To
do so, download the Raspberry Pi Python library from Adafruit’s
code repository into your home folder. Type the following com-
mand at the shell prompt, all on one line with nospaces in the
URL:

wget https://github.com/adafruit/Adafruit_Python_ADS1x15/
 archive/master.zip

11. Unzip it:

$ unzip master.zip

12. Change to the library’s ADS1x15 directory:

$ cd Adafruit_Python_ADS1x15-master/

13. Install the library:

$ sudo python3 setup.py install

14. Run one of the example files:

$ python3 examples/simpletest.py

15. Turn the potentiometer all the way in one direction and back
in the other. Notice how the value in the pin 0 column changes:

132 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 132GSW_RASPI_4ED_FIN.indd 132 10/28/21 10:54 AM10/28/21 10:54 AM

Reading ADS1x15 values, press Ctrl-C to quit...

| 0 | 1 | 2 | 3 |

| 0 | 4320 | 4496 | 4528 |
| 0 | 4224 | 5104 | 4432 |

0	4352	4688	5104
6128	4640	4384	5552
10928	4592	4592	5056
18736	4384	4992	4384
23312	4496	4912	4784
26512	4912	4800	5968
25968	4816	4800	5008
16528	4416	4928	4928
9280	4656	4416	5312
2688	4240	5008	4464
0	4384	4352	5360
0	4336	4624	4272
0	4256	4432	4592

16. Press Ctrl-C to terminate the script.

As you can see, turning the dial on the potentiometer changes
the voltage coming into channel 0 of the ADS1x15. The code in the
example does a little bit of math to determine the voltage value
from the data coming from the ADC. Of course, your math will vary
depending on what kind of sensor you use.

You can look inside that example script to see how it works, or try
out the even simpler example that follows to learn how to take
readings from the ADC. Create a new file with the code from Exam-
ple 8-1 and execute it.

Example 8-1.Writing the code to read the ADC
from Adafruit_ADS1x15
from time import sleep

adc = Adafruit_ADS1x15.ADS1115()

while True:
result = adc.read_adc(0)
print result
sleep(.5)

0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Analog Input and Output 133

GSW_RASPI_4ED_FIN.indd 133GSW_RASPI_4ED_FIN.indd 133 10/28/21 10:54 AM10/28/21 10:54 AM

 Import Adafruit’s ADS1x15 library.
 Create a new ADS1x15 object called adc.
 Get a reading from channel 0 on the ADS1x15 and store it in
result.

When you run this code, it will output raw numbers for each reading
twice a second. Turning the potentiometer will make the values go
up or down.

Once you get it all set up, the Adafruit ADS1x15 library does all
the hard work for you and makes it easy to use analog sensors in
your projects. For instance, if you want to make your own Pong-like
game, you could read two potentiometers and then use Pygame to
draw on the game on the screen. For more information about using
Pygame, see pygame.org.

Variable Resistors
Not all analog sensors work like the potentiometer, which provides
a variable voltage based on some factor (such as the amount the
dial on the pot is turned).

Some sensors are simply variable resistors that change the flow of
electricity through the circuit, based on some factor. For instance,
a photocell like the one in Figure 8-6 is a resistor that changes values
based on the amount of light hitting the cell. Add more light, and
the resistance goes down. Take away light, and the resistance goes
up. On the other hand, a force-sensitive resistor decreases its resis-
tance as you put pressure on the pad.

134 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 134GSW_RASPI_4ED_FIN.indd 134 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 8-6.The photocell and force-sensitive resistors act as
variable resistors and can be used as analog inputs.

To read sensors like these with analog input pins, you’ll need to
incorporate a voltage divider circuit.

Voltage Divider Circuit

When you’re working with sensors that offer variable resistance,
the purpose of a voltage divider is to convert the variable resis-
tance into a variable voltage, which is what the analog input pins
are measuring. First, take a look at a simple voltage divider.

In Figure 8-7, you’ll see two resistors of the same value in series
between the positive and ground. A single wire is connected to
analog input 0, between the two resistors. Because both resistors
are the same, 10KΩ, the voltage is divided neatly in half. Since the
source voltage is 3.3V, there’s about half of that, 1.65V, going to
analog input 0.

Analog Input and Output 135

GSW_RASPI_4ED_FIN.indd 135GSW_RASPI_4ED_FIN.indd 135 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 8-7. With two of the same value resistors between voltage
and ground, the voltage between the two would be half of the total
voltage.

Without getting bogged down in the math involved, if you removed
one 10K resistor and replaced it with a resistor of a higher value,
the voltage going into the analog pin would decrease. If you removed
that 10K resistor and replaced it with one of a lower value, the volt-
age going into the analog pin would increase. We can use this princi-
ple with sensors that are variable resistors to read them with analog
input pins. You’ll simply replace one of the resistors with your sensor.

To try the circuit out, you’ll have to wire up a type of variable resis-
tor called a force-sensitive resistor, or FSR.

Force-Sensitive Resistor

A force-sensitive resistor is a variable resistor that changes based
on the amount of pressure placed on its pad. When there’s no pres -
sure on the pad, the circuit is open. When you start placing
pressure on it, the resistance drops.

136 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 136GSW_RASPI_4ED_FIN.indd 136 10/28/21 10:54 AM10/28/21 10:54 AM

The exact figures will depend on your particular FSR, but typi-
cally you’ll see 100KΩ of resistance with light pressure and 1Ω
of resistance with maximum pressure. If you have a multimeter,
you can measure the changes in resistance to see for yourself,
or you can look at the component’s datasheet, which will tell you
what to expect from the sensor.

If you’re going to replace the resistor connected to 3.3V in Figure
8-7 with a variable resistor like an FSR, you’ll want the value of the
other resistor to be somewhere in between the minimum and max-
imum resistance so that you can get the most range out of the sen-
sor. For a typical FSR, try a 10KΩ resistor. To give the force-sensitive
resistor a test drive:

1. Wire up an FSR to the ADC as shown in Figure 8-8.

2. Execute the code in Example 8-1 again.

3. Watch the readings on the screen as you squeeze the FSR.

If everything is working correctly, you should see the values rise as
you increasingly squeeze harder on the FSR. As you press harder,
you’re reducing the resistance between the two leads on the FSR.
This has the effect of sending higher voltage to the analog input.

You’ll encounter many analog sensors that use this very same
principle, and a simple voltage divider circuit, along with an ana-
log-to-digital converter, will allow your Raspberry Pi to capture that
sensor data.

Analog Input and Output 137

GSW_RASPI_4ED_FIN.indd 137GSW_RASPI_4ED_FIN.indd 137 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 8-8. Wiring up a force-sensitive resistor to the ADC requires
a voltage divider circuit.

Going Further
Controlling a DC Motor with PWM (bit.ly/1xpmBIF)

Adafruit has an excellent guide that teaches you how to use
PWM to control the speed of a DC motor.

Reading Resistive Sensors with RC Timing (bit.ly/1rk6yJI)
Adafruit also shows you how to use a simple circuit to read resis-
tive analog sensors without an analog-to-digital converter.

138 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 138GSW_RASPI_4ED_FIN.indd 138 10/28/21 10:54 AM10/28/21 10:54 AM

9/Working
with Cameras

One of the advantages of using a platform
like the Raspberry Pi for DIY technology
projects is that it supports a wide range of
peripheral devices. Not only can you hook
up a keyboard and mouse, you can also con-
nect accessories like printers, W-iFi adapt-
ers (at least on the first two generations
of Raspberry Pi—the Model 3 and 4 have
their own built-in), thumb drives, additional
memory cards, cameras, and hard drives.
In this chapter, we’re going to show you
a few ways to use a camera in your Rasp-
berry Pi projects.
While not quite as common as a keyboard and mouse, a webcam
is almost a standard peripheral for computers these days. Most
laptops sold have a tiny camera built into the bezel of the display.
And if they don’t have a built-in camera, a USB webcam from a well-
known brand can be purchased for as little as $25. You can even
find webcams for much less if you take a chance on an unknown
brand.

The folks at the Raspberry Pi Foundation have created their own
camera peripheral that is designed to work with Raspberry Pi (Fig-

Working with Cameras 139

GSW_RASPI_4ED_FIN.indd 139GSW_RASPI_4ED_FIN.indd 139 10/28/21 10:54 AM10/28/21 10:54 AM

ure 9-1). Unlike a USB webcam, you’re unlikely to find the official
Raspberry Pi camera module in an office supply store, but you
should be able to buy it wherever Raspberry Pis are sold, for around
$25.

As of this writing, the newest version has a Sony IMX219 8-megapix-
el sensor (compared to the 5-megapixel OmniVision OV5647 sen-
sor of the original camera). In addition, there is a new high-quality
camera available for the Pi, with a 12.3 mega-pixel Sony IMX477
sensor, 7.9mm diagonal image size, and back-illuminated sensor
architecture, with adjustable back focus and support for C- and
CS-mount lenses.

And just in case those aren’t quite cool enough options for you,
you can also pick up an infrared camera—the Pi NoIR camera, with
the same specs as the new version 2. This camera just doesn’t
have an infrared filter attached, so you’re able to capture images
using infrared lighting. Luckily, all of these different cameras use
the same connector and the same code to access, so whichever
version you’re using, the code you see here will work with your
camera.

140 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 140GSW_RASPI_4ED_FIN.indd 140 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 9-1. Raspberry Pi’s camera module

Unlike a USB webcam, the camera board connects to Raspberry
Pi’s Camera Serial Interface (CSI) connector (Figure 9-2). The rea-
son is this: since the Broadcom chip at the core of the Raspberry Pi
is meant for mobile phones and tablets, the CSI connection is how
a mobile device manufacturer would connect a camera to the chip.
Throughout this chapter, we’ll use the official camera board as our
chief example, but many of the projects and tutorials can also be
done with a USB webcam (Figure 9-3).

Working with Cameras 141

GSW_RASPI_4ED_FIN.indd 141GSW_RASPI_4ED_FIN.indd 141 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 9-2. Raspberry Pi’s camera serial interface

Figure 9-3. A typical USB webcam

142 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 142GSW_RASPI_4ED_FIN.indd 142 10/28/21 10:54 AM10/28/21 10:54 AM

Connecting and Testing
the Camera Module
Connecting the official camera module isn’t as straightforward
as connecting a USB device, but once you get it working, it should
be a piece of cake.

Make sure the Raspberry Pi is powered down before
you do this.

Here are the steps you’ll need to take:

1. Pull up on the edges of the CSI connector, which is right next
to the Ethernet port. A piece of the connector will slide up and
lean back toward the Ethernet port. (See Figure 9-4.)

Figure 9-4. Opening the camera serial interface connector lock-
ing mechanism

2. Insert the camera module’s ribbon cable into the CSI con-
nector so that its metal contacts are facing away from the USB
ports.

Working with Cameras 143

GSW_RASPI_4ED_FIN.indd 143GSW_RASPI_4ED_FIN.indd 143 10/28/21 10:54 AM10/28/21 10:54 AM

3. Hold the ribbon cable into the CSI connector and press the
moving part of the CSI connector down to lock and hold the rib-
bon cable in place. You’ll still see part of the metal contacts on
the ribbon cable.(See Figure 9-5.)

Figure 9-5. After placing the ribbon cable into the camera serial
interface connector and locking it down, you may still see metal
contacts on the ribbon cable.

4. Power up the Raspberry Pi and open the Configuration tool
from the desktop Menu→Preferences. (See Figure 9-6.)

144 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 144GSW_RASPI_4ED_FIN.indd 144 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 9-6. Enabling the camera interface in the Raspberry Pi
configuration tool

5. Click the “Interfaces” tab.

6. Click the option to enable the camera.

7. Click OK and reboot your Raspberry Pi.

8. After you reboot, open a Terminal session and test the cam-
era with:

$ raspistill -o test.jpg

If everything works, you’ll see a preview image from the camera ap-
pear on the screen for a few seconds. After it disappears, a JPEG file
of the captured image will be saved in your current directory. (An
interesting side note here: if you’re connecting to your Pi using the
VNC connection and you run the command shown above in your
terminal, the preview image will not appear in your VNC window,
though it will appear on the Pi’s main screen, should you have it
connected to a monitor. This is because the raspistill command
is interfacing with a different display than the VNC connection.)

raspistill is a powerful program with a lot of options. To see what’s
possible with it, view all the command-line options by running the
program and piping the output through less:

$ raspi still 2>&1 | less

Working with Cameras 145

GSW_RASPI_4ED_FIN.indd 145GSW_RASPI_4ED_FIN.indd 145 10/28/21 10:54 AM10/28/21 10:54 AM

Use the up and down arrow keys to scroll through the options,
and press q when you want to get back to the command line.

Project: Making a GIF
One of the features of raspistill is that it can take a series of
photos at a specific interval. We can use this feature, along with
the command-line image converting and editing software Image-
Magick, to create fun animated GIFs with the Raspberry Pi:

1. First, install ImageMagick:

$ sudo apt-get update
$ sudo apt-get install imagemagick

2. Create a new directory to hold the images you capture and-
switch to that directory:

$ mkdir gif-test
$ cd gif-test

3. With your camera ready, execute raspistill to run for nine
seconds, taking a 640×480 resolution image every three sec-
onds, naming each file with an incrementing filename:

$ raspistill -t 9000 -tl 3000 -o image%02d.jpg -w
640 -h 480

4. Next, input those files into ImageMagick outputting as thefile
test.gif:

$ convert -delay 15 *.jpgtest .gif

5. Now open the test.gif by double-clicking the file within the
desktop environment, and you’ll see the GIF you made!

Capturing Video
There’s also a command-line utility called raspivid to capture video
from the official Raspberry Pi camera module. Try capturing a five-
second video and saving it to a file:

$ raspivid -t 5000 -o video.h264

You can play that file back with:

$ omxplayer video.h264

146 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 146GSW_RASPI_4ED_FIN.indd 146 10/28/21 10:54 AM10/28/21 10:54 AM

which will open the video in the Pi’s preinstalled VLC video
player. And just like raspistill, raspivid is a powerful program
with a lot of options. To see what’s possible with it, view all the
command-line options by running the program and piping the
output through less:

$ raspivid 2>&1 less

Testing USB Webcams
With all the different models of webcams out there, there’s no
guarantee that a camera will work right out of the box. If you’re
purchasing a webcam for use with the Raspberry Pi, search online to
make sure that others have had success with the model that you’re
purchasing. You can also check the webcam section of eLinux.org’s
page of peripherals (elinux.org/RPi_USB_Webcams) that have been
verified to work with the Raspberry Pi.

Be aware that you may need to connect a powered USB hub to your
Raspberry Pi if you want to connect your webcam in addition to your
keyboard and mouse. The hub must be powered because the Rasp-
berry Pi only lets a limited amount of electrical current through its
USB ports, and it may not be able to provide enough power for your
keyboard, mouse, and webcam—especially if you’re using one of
the older models of Pi. A powered USB hub plugs in to the wall and
provides electrical current to the peripherals that connect to it so
that they don’t max out the power on your Raspberry Pi.

If you have a webcam that you’re ready to test out with the Raspberry
Pi, use apt-get in the Terminal to install a simple camera viewing ap-
plication called luvcview:

$ sudo apt-get install luvcview

After apt-get finishes the installation, run the application by typing
luvcview in a Terminal window while you’re in the desktop environ-
ment. A window will open showing the view of the first video source
it finds in the /dev folder, likely /dev/video0. Note the frame size
that is printed in the Terminal window. If the video seems a little
choppy, you can fix this by reducing the default size of the video.
For example, if the default video size is 640×480, close luvcview

Working with Cameras 147

GSW_RASPI_4ED_FIN.indd 147GSW_RASPI_4ED_FIN.indd 147 10/28/21 10:54 AM10/28/21 10:54 AM

and reopen it at half the video size by typing the following at the
command line:

$ luvcview -s 320x240

If you still have your Pi camera connected when you connect the
webcam, luvcview will show the Pi camera’s view, since the Picam-
era is the source being pointed to by /dev/video0. To test the web-
cam without disconnecting the Pi camera, type luvcview -d /dev/
video1 in the Terminal, and you should see the web-cam’s view-
point.

If you don’t see video coming through, you’ll want to troubleshoot
here before moving on. One way to see what’s wrong is by discon-
necting the webcam, reconnecting it, and running the command
dmesg, which will output diagnostic messages that might give you
some clues as to what’s wrong.

148 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 148GSW_RASPI_4ED_FIN.indd 148 10/28/21 10:54 AM10/28/21 10:54 AM

Installing and Testing OpenCV
To access the camera with Python code, we’re going to be using
OpenCV (Figure 9-7), which is a feature-packed open-source com-
puter vision library. OpenCV makes it really easy to get images from
the camera, display them on screen, or save them as files. But what
makes OpenCV really stand out is its computer vision algorithms,
which can do some pretty amazing things. Besides basic image
transformations, it can also track, detect, and recognize objects in
an image or video. Later on in this chapter, we’ll try basic face de-
tection with OpenCV (“Face Detection” on page 158). OpenCV is
used by many working professionals in the fields of machine learn-
ing, artificial intelligence, and computer vision, and is considered
a fully professional tool in these fields.

Figure 9-7. Open CV logo

To install OpenCV for Python, you’ll need to start by installing the
other libraries it depends on. For those, you can use apt-get:

$ sudo apt -get install libhdf5-dev libhdf5-serial-dev
libhdf5-103
$ sudo apt -get install libqtgui4 libqtwebkit4 libqt4-test
python3-pyqt5
$ sudo apt -get install libatlas-base-dev
$ sudo apt -get install libjasper-dev

Working with Cameras 149

GSW_RASPI_4ED_FIN.indd 149GSW_RASPI_4ED_FIN.indd 149 10/28/21 10:54 AM10/28/21 10:54 AM

It’s a big install, and it may take a while before the process is com-
plete.

Next, if you’re starting with a fresh installation of the Raspberry Pi
OS, you’ll need to install pip, Python’s package manager. To do that
using wget (a command-line tool for interacting with and download-
ing files from the internet), enter the following into your Terminal:

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python3 get-pip.py

Finally, you’ll install the actual OpenCV library with the following
command:

$ sudo pip install opencv-contrib-python==4.1.0.25

When it’s done, check that the installation worked by going into the
Python interactive interpreter and importing the library:

$ python3
Python 3.7.3 (default, Jan 22 2021, 20:04:44)
[GCC8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
 information.
>>> import cv2
>>> cv2.version
'4.1.0'
>>>

If you get no errors after importing the library and can list the
library version, you know you’ve got OpenCV installed correctly.
If you’re using a USB webcam, you can jump ahead to “Displaying
an Image” on page 151. If you’re using the Raspberry Pi camera
module, there may be one extra step, which we’ll cover now.

Additional Step for the Raspberry
Pi Camera Module
Because we want to use Python and OpenCV to access the Pi-
camera module, we’ll need to install one extra library—picamera.
And because we’re going to be using OpenCV, which makes use
of NumPy arrays, we’ll need to install the array sub-module. (The
reason why I keep saying “may” is that depending on which version
of the Raspberry Pi OS you’re using, these modules may already be

150 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 150GSW_RASPI_4ED_FIN.indd 150 10/28/21 10:54 AM10/28/21 10:54 AM

installed. If you’re not sure, just do the following, and if the modules
are installed, you’ll simply get a message telling you so.) To install
what you need, enter the following in theTerminal:

$ pip3 install "picamera[array]"

Now you’re ready to interact with the camera using OpenCV!

Displaying an Image
For many of the examples in this chapter, you’ll need to work in the
desktop environment so that you can display images on the screen.
You can work in IDLE, or save your code as .py files from the default
text editor and execute them from the Terminal window. And while
you can use a VNC connection, we don’t recommend it, simply
because you often won’t be able to see the camera display (see the
note above.)

We’re going to start you off with some OpenCV basics using image
files, and then you’ll work your way up to reading images from the
camera. Once you’ve got images coming in from the camera, it will
be time to try some face detection:

1. Create a new directory within your home directory called
opencv-test.

2. Open the web browser and search for an image that interests
you. I used a photograph of raspberries from Wikipedia and re-
named it raspberries.jpeg.

3. Right-click on the image and click “Save Image As.”

4. Save the image within the opencv-test folder.

5. In the File Manager (on the Accessories menu), open the
opencv-test folder and right-click in the folder. Choose Create
New → Blank File.

6. Name the file image-display.py.

7. Double-click on the newly created image-display.py file to
open it in the text editor.

8. Enter the code in Example 9-1.

9. Save the image-display.py file and run it from the Terminal
window. If you’ve got everything right, you’ll see a photo in a new

Working with Cameras 151

GSW_RASPI_4ED_FIN.indd 151GSW_RASPI_4ED_FIN.indd 151 10/28/21 10:54 AM10/28/21 10:54 AM

window as in Figure 9-8. You can close the window itself, or in the
Terminal, press Ctrl-C to end the script.

Figure 9-8. The raspberry photo displayed in a window

Example 9-1. Source code for image-display.py

import cv2

img = cv2.imread("raspberries.jpeg")

cv2.imshow("Raspberries",img)

cv2.waitKey(0)
cv2.destroyAllWindows()

 Import the OpenCV library.
 Creates a new image object, img, and reads ‘raspberries.jpeg’

into it.
 Creates a window object named ‘Raspberries’ and displays the

image object img within it.
 Wait for the user to press a key to end the program.
 Clean up after ourselves by destroying all windows when the

program ends.

152 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 152GSW_RASPI_4ED_FIN.indd 152 10/28/21 10:54 AM10/28/21 10:54 AM

Image size
You may notice that the image-display.py script is an excellent
example of a piece of code doing exactly what you tell it to—in
this case, displaying an image in its exact form. If the image you
choose happens to be 5440×2880 pixels, that’s what OpenCV
will display, regardless of whether or not it’ll fit on your monitor.
Keep reading to see how to resize your image to a more man-
ageable display size.

Modifying an Image
Now that you can load an image into memory and display it on
the screen, the next step is to modify the image before displaying
it (doing this does not modify the image file itself; it simply modifies
the copy of the image that’s held in memory):

1. Save the image-display.py file as superimpose.py.

2. Make the enhancements to the code that are shown in Ex-
ample 9-2.

3. Save the file and run it from the command line.

4. You should see the same image, but now superimposed with
the shape and the text. To close the window, press ‘Q’ on your
keyboard.

Example 9-2. Source code for superimpose.py
import cv2

img = cv2.imread("raspberries.jpeg’")

font = cv2.FONT_HERSHEY_SIMPLEX
org = (50,50)
font_scale = 1
color = (0, 255, 0)
thickness = 2

cv2.imshow("Raspberries", image)

Working with Cameras 153

GSW_RASPI_4ED_FIN.indd 153GSW_RASPI_4ED_FIN.indd 153 10/28/21 10:54 AM10/28/21 10:54 AM

cv2.rectangle(img, (30, 20), (270, 70), (255, 255, 255),
-1)
image = cv2.putText(img, "Raspberries!", org, font,
font_scale, color, thickness,cv2.LINE_AA)

cv2.imshow("Raspberries", image)

cv2.waitKey(0)cv2.
destroyAllWindows()

 Import OpenCV.
 Specifications for the text: font, coordinates of the top left cor-

ner, scale, text size, and thickness
 On the image, draw a white rectangle from the coordinates (30,

20) to (270, 70) and fill it in.
 On the image (on top of the white rectangle), write the text

“Raspberries!” using the preset specs.
 Display the image.

Figure 9-9. The modified raspberry photo

Instead of displaying the image on the screen, if you wanted to sim-
ply save your modifications to a file, Example 9-3 shows how the
code would look.

154 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 154GSW_RASPI_4ED_FIN.indd 154 10/28/21 10:54 AM10/28/21 10:54 AM

Example 9-3. Source code for superimpose-save.py
import cv2
img = cv2.imread ('raspberries.jpeg')

font = cv2.FONT_HERSHEY_SIMPLEX
org = (50, 50)
font_scale = 1
color = (255, 0, 0)
thickness = 2

cv2.rectangle (img, (30, 20), (270, 70), (255, 255,
255), -1)
image = cv2.putText(img, 'Raspberries!', org, font,
font_scale, color, thickness, cv2.LINE_AA)

cv2.imwrite ('raspberries_text.jpeg', image)

Save the modified image in memory to a new file called rasp-
berries_text.jpeg.

Because this code doesn’t even open up a window, you can use it
from the command line without the desktop environment running.
You could even modify the code to watermark batches of images
with a single command.

And you’re not limited to text and rectangles. Here are a few of the
other drawing functions available to you with OpenCV (their full doc-
umentation is available from OpenCV (docs.opencv.org/):
• Circle
• Ellipse
• Line
• Polygon
• Bezier curve

Working with Cameras 155

GSW_RASPI_4ED_FIN.indd 155GSW_RASPI_4ED_FIN.indd 155 10/28/21 10:54 AM10/28/21 10:54 AM

Accessing the Camera
Luckily, getting a camera’s video stream into OpenCV isn’t much
different than accessing image files and loading them into memory.
To try it out, you can make your own basic camera viewer:

1. Create a new file named basic-camera.py and save the code
shown in Example 9-4 in it.

2. With your camera plugged in, run the script. You should see a
window pop up with a view from the camera, as in Figure 9-10.

3. To close the window, press ‘Q’ on the keyboard.

Figure 9-10. Outputting camera input to the display

Example 9-4. Source code for basic-camera.py
from pi camera.array import Pi RGBArray
from pi camera import PiCamera
import time
import cv2

camera = PiCamera()

156 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 156GSW_RASPI_4ED_FIN.indd 156 10/28/21 10:54 AM10/28/21 10:54 AM

camera.resolution = (640,480)
rawCapture = PiRGBArray(camera)

time.sleep (0.1)

camera.capture (rawCapture, format = 'bgr')
image = rawCapture.array

cv2.imshow ('Camera', image)
cv2.waitKey(0)

 Create a new camera object and set the height and width of the
image to 640×480 for better performance and to fit the image
on the screen better.

 Give the camera a tenth of a second to warm up.
 Get a frame from the camera, specifying “bgr” format rather

than “rgb”, because OpenCV uses BGR because it’s just silly that
way.

 Show the image in a window named, appropriately enough,
“Camera”.

You can even combine the code from the last two examples to make
a Python script that will take a picture from the camera and save
it as a .jpeg file:

from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2

camera = PiCamera()
camera.resolution = (640, 480)
rawCapture = PiRGBArray(camera)

time.sleep(0.1)

camera.capture(rawCapture,format='bgr')
image = rawCapture.array

cv2.imwrite('Camera.jpeg', image)

Working with Cameras 157

GSW_RASPI_4ED_FIN.indd 157GSW_RASPI_4ED_FIN.indd 157 10/28/21 10:54 AM10/28/21 10:54 AM

Face Detection
One of the most powerful functions that comes with OpenCV
is built-in face detection. You can use deep learning or a few other
algorithms, but the fastest and easiest way to detect faces is with
Haar cascades. Haar cascades are basically pre-trained machine
learning models, included in OpenCV, that allow you to detect
faces with only a few lines of code. The process is a bit more error-
prone than other methods, but it’s faster and can run on resource-
constrained machines such as a Pi. There are a few cascades
included with OpenCV, such as face, nose, eye, mouth, and full body.
Alternatively, you can download or generate your own cascade file
if need be. cv2.CascadeClassifier() analyzes an image for matches,
and if it finds at least one, the function returns the location of
those matches within the image. This means that you can detect
objects like cars, animals, or people within an image file or from the
camera. To try out CascadeClassifier(), you can do some basic face
detection:

1. First, you’ll need to download the pre-trained classifier from
OpenCV’s Github page: github.com/opencv/opencv/blob/mas-
ter/data/haarcascades/haarcascade_frontalface_default.xml.
Download it, saving it under the same name, and store it in your
opencv-test directory.

2. Find an image online that has at least one face in it; I’m using
a publicly available image from morguefile.com.

3. Create a new file in the opencv-test directory called face-
detector.py.

4. Enter the code shown in Example 9-5, changing the image
name to match your downloaded image.

5. Run the script.

Example 9-5. Source code for face-detector.py

import cv2

face_cascade = cv2.CascadeClassifier('haarcascade_frontal
face_default.xml')

158 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 158GSW_RASPI_4ED_FIN.indd 158 10/28/21 10:54 AM10/28/21 10:54 AM

img = cv2.imread('faces.jpeg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray, 1.1, 4)

for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y),(x+w, y+h),(255, 0, 0),2)

cv2.imshow('Faces', img)
cv2.waitKey(0)

 Load the Haar cascades classifier.
 Convert the image to grayscale, as Haar cascades do not work

on color images
 Detect faces according to the detectMultiScale function, which

takes the image, the relative size of the included faces, and
a parameter specifying how sensitive the algorithm should be to
“face-like” structures.

 Draw a rectangle around each detected face in the image.

If your picture has faces in it but they’re not being detected,
try tweaking the last parameter of detectMultiScale() until you
have some good results. You can also experiment with different
images. As you can see, in the image I’m using for this test, there’s
a misidentified face in the middle of the photo. Playing around
with that last parameter may help to avoid that misidentification.
Also, this particular Haar cascade is meant to find faces that are
in their normal orientation. If the faces in your photo are tilted
or not fully facing the camera, this will affect the algorithm’s ability
to find them.

Working with Cameras 159

GSW_RASPI_4ED_FIN.indd 159GSW_RASPI_4ED_FIN.indd 159 10/28/21 10:54 AM10/28/21 10:54 AM

Figure 9-11. Finding faces (mostly) in an image

Project: Raspberry Pi Photobooth
You can combine different libraries to make Python a powerful tool
to do some fairly complex projects. With the GPIO library you learned
about in Chapter 7 and OpenCV, you can make your own Raspberry
Pi-based photo booth that’s sure to be a big hit at your next party (see
Figure 9-12). And with the CascadeClassifier() function in OpenCV,
you can enhance your photobooth with a special extra feature: the
ability to automatically superimpose fun virtual props like hats,
monocles, beards, and mustaches on the people in the photobooth.
The code in this project is based on the code in the original editions
of this book, which in turn is based on the Mustacheinator project
in Practical Computer Vision with SimpleCV by Kurt Demaagd,
Anthony Oliver, Nathan Oostendorp, and Katherine Scott (O’Reilly).

160 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 160GSW_RASPI_4ED_FIN.indd 160 10/28/21 10:54 AM10/28/21 10:54 AM

erineScott(O’Reilly).

Figure 9-12. Output of the Raspberry Pi Photobooth

Here’s what you’ll need to turn your Raspberry Pi into a
photobooth:

• A USB webcam or Raspberry Pi Camera Module
• A monitor
• A pushbutton, any kind you like
• Hook up wire, cut to size

Working with Cameras 161

GSW_RASPI_4ED_FIN.indd 161GSW_RASPI_4ED_FIN.indd 161 10/28/21 10:54 AM10/28/21 10:54 AM

Before you get started, make sure that both the gpiozero and
OpenCV Python libraries are installed and working properly on
your Raspberry Pi.

1. As you did in Chapter 7, connect pin 24 to the pushbutton.
One side of the button should be connected to ground, the other
to pin 24. (Remember, we’re talking about BCM numbers here,
not physical pins. You’re actually connecting to physical pin #18
on the Pi.)

2. Find or create a small image of a black mustache on a white
background and save it as moustache.png in a new folder called
photobooth on your Raspberry Pi. You can also download a pre-
made mustache file from the images subdirectory of the Github
repository for this book: github.com/wdonat/gsw_raspi_4e.

3. From the same repository, grab the haarcascade_mcs_mouth.
xml file and place it into the photobooth directory. (If you
download the file from Github’s web interface, the best way
to do it is to get the raw version of the file, copy all of the text,
and then paste it into a blank text document on your computer.
Then save as haarcascade_mcs_mouth.xml.)

4. In the photobooth directory, create a new file called
photo-booth.py, type in the code listed in Example 9-6, and save
the file.

Example 9-6. Source code for photobooth.py
import cv2
from picamera.array import PiRGB Array
from picamera import PiCamera
from gpiozero import Button
import time

button = Button(24)
camera = PiCamera()
camera.resolution = (800, 608)
rawCapture = PiRGBArray (camera)

mouth_cascade =

cv2.CascadeClassifier(‘'haarcascade_mcs_mouth.xml')

162 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 162GSW_RASPI_4ED_FIN.indd 162 10/28/21 10:54 AM10/28/21 10:54 AM

moustache = cv2.imread(‘moustache.png’)
rows,cols,_ = moustache.shape

moustache2gray = cv2.cvtColor(moustache,cv2.COLOR_
BGR2GRAY)
ret, mask = cv2.threshold(moustache2gray,10,255,cv2.
THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)

whileTrue:
button.wait_for_press()
camera.capture(rawCapture,format= 'bgr')
cap = rawCapture.array
cv2.imwrite('face.jpg', cap)
image = cv2.imread('face.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
mouths = mouth_cascade.detectMultiScale(gray, 1.5, 15)

for(x, y, w, h)inmouths:
roi = image[y-rows+10:y+10, x-5:x+cols-5]

face_bg = cv2.bitwise_and(roi, roi, mask = mask)
moustache_fg = cv2.bitwise_and(moustache, mous-
tache, mask = mask_inv)
dst = cv2.add(face_bg, moustache_fg)
image[y-rows+10:y+10, x-5:x+cols-5] = dst

cv2.imshow('Photobooth', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
time.sleep(0.1)

 Set the camera resolution. It’s not exactly 800×600—hence
the 608 value. If you force the camera to use 600px, the image
often gets a strange blue cast, and we’re not going for the An-
dorian or the Avatar look here.

 This is the Haar cascade that will search the image for a mouth.
 This line and the previous one remove everything but the black

Working with Cameras 163

GSW_RASPI_4ED_FIN.indd 163GSW_RASPI_4ED_FIN.indd 163 10/28/21 10:54 AM10/28/21 10:54 AM

pixels in the mustache image and create a mask and an inverted
mask.

 After capturing the image, you must write it to a file and then
reopen it for editing. The raw image fresh from the capture is
non-editable, even by sudo.

 This finds the mouth(s) in the grayscale image, using the Haar
cascade.

 This determines a region of interest (ROI) above the mouth
where we are going to place the mustache.

 This masks the face with the mustache image.
 This masks the non-mustache portion of the mustache image

with the portion of the face image that lies within the ROI.
 This line literally adds the two images together.
 Finally, replace the ROI of the face image with the mustache +

face image we just created.

Now you’re ready to give it a try. Make sure your camera is connected.
Next, go to the terminal, change to the photobooth directory, and
then run the script:

$ python3 photobooth.py

Point the camera toward your face and press the button. If all of
the parameters are correct and you’re pointing the camera in the
right direction, you’ll see an image on the screen similar to the one
above.

TROUBLESHOOTING:

This is where some serious experimentation on your part maybe
necessary. The mouth classifier is not nearly as well-trained as the
face classifier we used earlier, so you’re bound to get either some
false positives or the program won’t recognize any mouths in the
image at all, even if you’re grinning from ear to ear at the camera.
If either of these things happen, play around with the values in
above. Also, make sure your face is well-lit, the camera is pointed
directly at you, and your face is centered in the frame.

Next, there’s the placement of the mustache. I’ve sized the one
we’re using here to fit pretty well on a well-centered face inside

164 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 164GSW_RASPI_4ED_FIN.indd 164 10/28/21 10:54 AM10/28/21 10:54 AM

an 800×600 image, but you will most likely need to play with its
positioning. To do that, experiment with the constants in and
above. When you do, make sure that any changes you make to the
first line are mirrored in the second line, or your script will probably
fail with an error. (If you want to move the mustache to the left or
right, change the y associated constant; up or down, change the x
constant. It’s a bit counter-intuitive.)

You can also play with different size images and see if they give you
any better results.

Going Further
PyImage Search

Any work with OpenCV and the Raspberry Pi has to take into ac-
count Dr. Adrian Rosebrock’s excellent PyImage Search site. This
site is exceptionally well done and has a wealth of information
about almost anything you care to learn about using OpenCV,
whether on Linux or the Pi or even other operating systems. In
addition, he’s been branching out into machine learning, neural
networks, and AI. Definitely worth your time to peruse and book-
mark.

OpenCV Documentation
As always, checking out the online documentation for OpenCV
is never a bad idea. In my opinion, the docs for OpenCV are not
very well indexed or user-friendly, but there is a lot of information
there and it may be worthwhile to browse if you have questions
or even if you’re just curious as to everything OpenCV can do.

Working with Cameras 165 165

GSW_RASPI_4ED_FIN.indd 165GSW_RASPI_4ED_FIN.indd 165 10/28/21 10:54 AM10/28/21 10:54 AM

GSW_RASPI_4ED_FIN.indd 166GSW_RASPI_4ED_FIN.indd 166 10/28/21 10:54 AM10/28/21 10:54 AM

10/Python and
the Internet

Python has a very active community of de-
velopers who often share their work in the
form of open-source libraries that simpli-
fy complex tasks.Some of these libraries
make it relatively easy for us to connect our
projects to the internet to do things like get-
ting data about the weather, send an email
or text message, follow trends on Twitter,
or act as a webserver.
In this chapter, we’re going to take a look at a few ways to create
internet-connected projects with the Raspberry Pi. We’ll start by
showing you how to fetch data from the internet and then move
into how you can create your own Raspberry Pi-based webserver.

Download Data from a Web Server
When you type an address into your web browser and hit Enter, your
browser is the client. It establishes a connection with the server,
which responds with a web page. Of course, a client doesn’t have to
be a web browser; it can also be a mail application, a weather wid-
get on your phone or computer, or a game that uploads your high
score to a global leaderboard. In the first part of this chapter, we’re
going to focus on projects that use the Raspberry Pi to act as a cli-
ent. The code you’ll be using will connect to internet servers to get
information. Before you can do that, you’ll need to install a popular
Python library called Requests that is used for connecting to web
servers via hyper-text transfer protocol, or HTTP.

Python and the Internet 167

GSW_RASPI_4ED_FIN.indd 167GSW_RASPI_4ED_FIN.indd 167 10/28/21 10:54 AM10/28/21 10:54 AM

To use Requests in Python, you first need to import it. Within
Terminal:

$ python3
Python3.7.3(default, Jan222021, 20:04:44)
[GCC8.3.0]onlinux
Type "help", "copyright", "credits" or "license" for
more information.
>>> import requests
>>>

If you don’t get any kind of error message, you’ll know Requests
has been imported in this Python session.

Now you can try it out:

>>> r = requests.get('http://www.google.com/')
>>>

You may be a bit disappointed at first because it seems like noth-
ing happened. But actually, all the data from the request has been
stored in the object r. Here’s how you can display the status code:

>>> r.status_code
200

The HTTP status code 200 means that the request succeeded.
There are a few other HTTP status codes inTable 10-1.

Table 10-1. Common HTTP status codes

Code Meaning

200 OK

301 Moved permanently

307 Moved temporarily

401 Unauthorized

404 Not found

500 Server error

If you want to see the contents of the response (what the server
sends back to you), try the following:

>>> r.text

168 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 168GSW_RASPI_4ED_FIN.indd 168 10/28/21 10:54 AM10/28/21 10:54 AM

If everything worked correctly, what will follow is a large block of
text; you may notice some human-readable bits in there, but most
of it will be hard to understand. This is the raw HTML of Google’s
landing page, which is meant to be interpreted and rendered on-
screen by a web browser.

However, not all HTTP requests are meant to be rendered by a web
browser. Sometimes only data is transmitted, with no information
about how it should be displayed. Many sites make these data pro-
tocols available to the public so that we can use them to fetch data
from and send data to their servers without using a web browser.
Such a data protocol specification is commonly called an applica-
tion programming interface, or API. APIs let different pieces of soft-
ware talk to each other and are popular for sending data from one
site to another over the Internet.

For example, let’s say you want to make a project that will sit by
your door and remind you to take your umbrella with you when rain
is expected that day. Instead of setting up your own weather sta-
tion and figuring out how to forecast the precipitation, you can get
the day’s forecast from one of many weather APIs out there.

Fetching the Weather Forecast
To determine whether or not it will rain today, we’ll show you how
to use the API from Weather Underground (www.wunderground.
com).

To use the API, take the following steps:

1. In a web browser, go to Weather Underground’s API home-
page (www.wunderground.com/weather/api) and enter your in-
formation to sign up.

2. After signing up, you’ll need to create and register a weather
station to be issued an API key. Don’t sweat it—you can register
a Raspberry Pi as a weather station.

3. Once you’ve signed up, go back to weather/api (www.wun-
derground.com/weather/api). If this is your first login, you’ll see
a notice that you don’t have any API keys assigned yet because
you must own a weather station. Click the “Learn More” button

Python and the Internet 169

GSW_RASPI_4ED_FIN.indd 169GSW_RASPI_4ED_FIN.indd 169 10/28/21 10:54 AM10/28/21 10:54 AM

to be taken to the Personal Weather Station Network page, and
then click the “Register” tab.

4. Click “Add New Device” (Figure 10-1).

5. On the Add New Device page, choose Raspberry Pi from the
drop down menu under Personal Weather Station and click
“Next”.

6. Now enter your home address (or wherever you want to use
your Pi weather station) and click “Next”. On the next screen,
give your device a name and enter a height above the ground at
which your device will be stored. Accept the Privacy Agreement
and click “Next.”

7. At this point your registration is complete (figure 10-2).Copy
the credentials down, as you’ll need them later, and then click
the “My Devices” button. Finally, on that page, click the API Keys
tab. Check the Terms of Service checkbox and click “Generate
New Key”. Your new API key will be generated and populated into
the text box. You should copy it somewhere and save it.

8. From here, if you click the “View API Documentation” button,
you’ll be taken to a Google docs page detailing the APIs that are
available to you. To learn more about how to use any of them,
click on its associated link at the right. For this project, click on
the “Forecast” link at the bottom.

9. This will take you to another Google doc page with five pages
of information about the fields available, what they each mean,
different API calls you can make, the parameters required
for each, and finally an example of a JSON response to one of
the API calls. Take a look at the first line, which shows the URL
needed to get the weather forecast at any location. Note that
embedded in the URL is your API key, as well as the latitude and
longitude of a particular weather station (I’m not sure which
one). The API key is not filled in in the example, but the latitude
and longitude are. If you want to see the forecast for any place
on earth, you can use your own API key, and just change the
location in the URL.

10. To try out the forecast API, copy the URL to your brows-
er address bar, substituting your API key where required. You

170 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 170GSW_RASPI_4ED_FIN.indd 170 10/28/21 10:54 AM10/28/21 10:54 AM

should see the forecast data in a format called JSON, or Java
Script Object Notation (see Example 10-1). Congratulations!
You’ve just interacted with the Weather Underground’s API!

Figure 10-1. Adding a new device

.

Figure 10-2. Registration complete

Even though the J stands for JavaScript, JSON is used
in many programming languages, especially for com-
municating between applications via an API.

Python and the Internet 171

GSW_RASPI_4ED_FIN.indd 171GSW_RASPI_4ED_FIN.indd 171 10/28/21 10:54 AM10/28/21 10:54 AM

When I’m first interacting with an API and I want to
make sense of its responses, sometimes I’ll copy the text
to a text editor and break it down, line by line, to make it
more human-readable. This way I can see the natural
hierarchy of the JSON and figure out exactly what I have
to look for when I’m decoding the response in my code.
It starts with putting the key: value pairs on the individual
lines (example 10-2). Here you can see that there are
keys like “sunriseTime Local”, and “precipChance”, and
“narrative”, which is the verbal description of the
forecast for the coming days of the week.

Keep in mind that not all APIs are created equal and you’ll
have to review their documentation to determine if it’s
the right one for your project. Also, most APIs limit the
number of requests you can make, and some even charge
you to use their services. Many times, the API providers
have a free tier for a small number of daily requests, which
is perfect for experimentation and personal use.

Example 10-1. Partial JSON response from
WeatherUnderground’sAPI

{
"calendarDayTemperatureMax": [74,83,75,73,62,63],
"calendarDayTemperatureMin": [49,55,63,59,52,50],
"dayOfWeek": ["Saturday,"Sunday","Monday","Tuesday",

"Wednesday","Thursday"]
...
"daypart": [

 {
"cloudCover": [null,37,38,78,86,65,79,89,92,82,83,61],
"dayOrNight":

[null,"N","D","N","D","N","D","N","D","N","D","N"],
"precipChance": [null,1,1,49,51,24,24,56,55,39,33,2
4],
....

}
]

}

172 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 172GSW_RASPI_4ED_FIN.indd 172 10/28/21 10:54 AM10/28/21 10:54 AM

As it happens, JSON is identical in form to Python’s dictionary data
type (a set of key/value entries), which makes it very easy to write
Python code that reads and writes JSON to interact with various
APIs. To do this, you can import Python’s json library.

If you would like to really get a sense of what the API offers, you can
make some commands in your terminal:

$ python3

>>> import requests
>>> key ='<YOUR KEY HERE>"
>>> api_url = 'https://api.weather.com/v3/wx/forecast/dai-
ly/
5day?geocode=33.74,-84.39&format=json&units=e&language=en-
US&apiKey=' + key
>>> r = requests.get(api_url)
>>> forecast = r.json()
>>> for key in forecast:
... print(key)

(Note that when you’re interacting with Python in the terminal
this way, command-by-command, after entering a command that
requires an indented block of code such as for, use the TAB key
for each indented line that follows. You’ll see the three-dot ellipse
as evidence of the indentation. Hit return once again to end the
indented block.)

These commands will return

calendarDayTemperatureMax
calendarDayTemperatureMin
dayOfWeek
expirationTimeUtc
moonPhase
moonPhaseCode
moonPhaseDay
moonriseTimeLocal
moonriseTimeUtc
moonsetTimeLocal
moonsetTimeUtc
narrative
qpf
qpfSnow

Python and the Internet 173

GSW_RASPI_4ED_FIN.indd 173GSW_RASPI_4ED_FIN.indd 173 10/28/21 10:54 AM10/28/21 10:54 AM

sunriseTimeLocal
sunriseTimeUtc
sunsetTimeLocal
sunsetTimeUtc
temperatureMax
temperatureMin
validTimeLocal
validTimeUtcdaypart

so you can see exactly what keys are available to look at. Note that
‘daypart’ is a one-item list that contains a dictionary, so you can
dig a little deeper with

>>> for key in forecast ['daypart'][0]:
... print(key)

This will return

cloudCover
dayOrNight
daypartName
iconCode
iconCodeExtend
narrativeprecip
ChanceprecipType
qpf
qpfSnow
qualifierCode
qualifierPhrase
relativeHumidity
snowRange
temperature
temperatureHeatIndex
temperatureWindChill
thunderCategory
thunderIndex
uvDescription
uvIndex
windDirection
windDirectionCardinal
windPhrase
windSpeed
wxPhraseLong
wxPhraseShort

174 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 174GSW_RASPI_4ED_FIN.indd 174 10/28/21 10:54 AM10/28/21 10:54 AM

As you can see, there’s a lot of information packed into this one
simple API call, and you can spend a lot of time with it to get the
information you want. But if you remember, we wanted a script that
would tell us if we need an umbrella. Because there’s a key inside
‘daypart’ called precipChance, we can just query that key’s value to
see the percent chance that it will rain that day. For a rain forecast
indicator, let’s say that any probability of precipitation value over
30% is a day that we want to have an umbrella handy.

1. Connect an LED to pin 25, as you did in Figure 6-5.

2. Create a new file called umbrella-indicator.py and use the
code in Example 10-2. Don’t forget to put in your own API key
and the location in the Weather Underground API URL.

3. Run the script as root with the command sudo python3um-
brella-indicator.py.

Example 10-2. Source code for umbrella-indicator.py
import requests
import time
from gpiozero import LED

key = '<YOUR API KEY HERE>'
latitude = '<YOUR LATITUDE>' Use quotes to make it a string
longitude = '<YOUR LONGITUDE>' # Again, use quotes
api_url = 'https://api.weather.com/v3/wx/forecast/daily/5day?
geocode=' + latitude +', ' + longitude +
'&format=json&units=e&language=en-US&apiKey=' + key

while True:
r = requests.get(api_url)
forecast = r.json()
pop_value = forecast['daypart'][0]['precipChance']
if pop_value is None:

pop_value = 0
if pop_value >= 30:

led.on()
else:

led.off()
time.sleep(180) # 3minutes

Python and the Internet 175

GSW_RASPI_4ED_FIN.indd 175GSW_RASPI_4ED_FIN.indd 175 10/28/21 10:54 AM10/28/21 10:54 AM

 As before, change this to your API key.
 Get today’s probability of precipitation and store it in popValue.
 Convert popValue from a string into an integer so that we can

evaluate it as a number.
 If the value is greater than 30, then turn the LED on.
 Otherwise, turn the LED off.
 Wait three minutes before checking again so that the script

stays within the API limit of 500 requests per day.

As you may have already discovered, there’s a small sticking point
in the API that we need to take into consideration in our script: if
there is no chance of precipitation on a particular day, the value
saved into the precipChance list is “None” This means that if we
check for the value of precipChance on that day, instead of getting
“0” back as a result, we’ll get None, which is literally “no value”. We
can’t compare “no value” to 30, so the script will fail if we try to run
it on a day with no precipitation in the forecast. To account for that
failure, if popValue is None, we set it to zero instead and go on about
our business.

Press Ctrl-C to quit the program when you’re done.

The Weather Underground API is one of a plethora of different APIs
that you can experiment with. Table 10-2 lists a few other sites and
services that have APIs.

Table 10-2. Popular application programming interfaces

Site API Reference URL

Facebook developers.facebook.com

Flickr www.flickr.com/services/api

Four-
square

developer.foursquare.com

Reddit www.reddit.com/dev/api

Twilio www.twilio.com

Twitter dev.twitter.com

YouTube developers.google.com/youtube

176 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 176GSW_RASPI_4ED_FIN.indd 176 10/28/21 10:54 AM10/28/21 10:54 AM

Serving Pi (Be a Web Server)
Not only can you use the Raspberry Pi to get data from servers via
the internet, but your Pi can also act as a server itself. There are
many different web servers that you can install on the Raspberry
Pi. Traditional web servers, like Apache or Lighttpd, serve the files
from your board to clients. Most of the time, servers like these are
sending HTML files and images to make web pages, but they can
also serve sound, video, executable programs, and much more.

However, there’s a new breed of tools that extend programming
languages like Python, Ruby, and JavaScript to create web servers
that dynamically generate the HTML when they receive HTTP
requests from a web browser. This is a great way to trigger physical
events, store data, or check the value of a sensor remotely via
a web browser. You can even create your own JSON API for an
electronics project!

Flask Basics
We’re going to use a Python web framework called Flask (flask.
palletsprojects.com) to turn the Raspberry Pi into a dynamic web
server. While there’s a lot you can do with Flask “out of the box,” it
also supports many different extensions for doing things, such as
user authentication, generating forms, and using databases. You
also have access to the wide variety of standard Python libraries
that are available to you.

Why Flask and not Django?
Flask and Django are two different frameworks for developing
web stuff in Python. (A framework is a collection of modules or
packages that help a coder to write apps or services without
having to worry about low-level details.) Django is a fine frame-
work for developing web apps in Python. But for our purposes,
Flask is better: it is smaller, with fewer restrictions for the coder,
and fits the needs of this chapter beautifully.

Python and the Internet 177

GSW_RASPI_4ED_FIN.indd 177GSW_RASPI_4ED_FIN.indd 177 10/28/21 10:54 AM10/28/21 10:54 AM

Here’s how to install Flask and its dependencies:

$ pip3 install --user flask

To test the installation, create a new file called hello-flask.py with
the code from Example 10-3. Don’t worry if it looks a bit over-
whelming at first; you don’t need to understand what every line of
code means right now. The block of code that’s most important is
the one that contains the string “Hello World!”

Example 10-3. Source code for hello-flask.py
from flask import Flask
app = Flask(__name __)

@app.route("/")
def hello():

return "Hello World!"

if __ name __ == " __ main __":
app.run(host='0.0.0.0', port=80, debug=True)

 Create a Flask object called app.
 Run the code below when someone accesses the root URL

of the server.
 Send the text “Hello World!” to the client.
 If this script was run directly from the command line.
 Have the server listen on port 80 and report any errors.

Before you run the script, you need to know your Rasp-
berry Pi’s IP address (see “The Network” on page 46).
An alternative is to install avahi-daemon (run sudo apt-
get install avahi-daemon from the command line).
This lets you access the Pi on your local network through
the address raspberrypi.local. If you’re accessing the
Raspberry Pi webserver from a Windows machine, you
may need to also put Bonjour Services (bit.ly/1sjViwr)
on it for this to work.

178 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 178GSW_RASPI_4ED_FIN.indd 178 10/28/21 10:54 AM10/28/21 10:54 AM

Now you’re ready to run the server, which you’ll have to do as root:

$ sudo python3 hello-flask.py
* Serving Flask app "hello-flask" (lazy loading)
* Environment:production
WARNING: Do not use the development server in a produc-
tion environment. Use a production WSGI server instead.
* Debug mode: on
* Running on http://0.0.0.0:80/ (Press CTRL+C to quit)
* Restarting with stat
* Debugger is active!
* Debugger PIN:328-390-680

From another computer on the same network as the Raspberry
Pi, type your Raspberry Pi’s IP address into a web browser. If your
browser displays “Hello World!”, you know you’ve got it configured-
correctly. You may also notice that a few lines appear in the termi-
nal of the Raspberry Pi:

192.68.2.4 - - [09/May/202117:16:31] "GET/HTTP/1.1" 200 -
192.68.2.4 - - [09/May/202100:31:31] "GET/favicon.
icoHTTP/
1.1" 404 -

The first line shows that the web browser requested the root URL
and our server returned HTTP status code 200 for “OK.” The sec-
ond line is a request that many web browsers send automatically
to get a small icon called a favicon to display next to the URL in the
browser’s address bar. Our server doesn’t have a favicon.ico file,
so it returned HTTP status code 404 to indicate that the URL was
not found.

If you want to send the browser a site formatted in proper HTML,
it doesn’t make a lot of sense to put all the HTML into your
Python script. Flask uses a template engine called Jinja2 (jinja.
pocoo.org/docs/templates) so that you can use separate HTML
files that contain placeholders where you want dynamic data to be
inserted.

If you’ve still got hello-flask.py running, press Ctrl-C to kill it.

To make a template, create a new file called hello-template.py with
the code from Example 10-4. In the same directory with hello-
template.py, create a subdirectory called templates. In the tem-
plates subdirectory, create a file called main.html and insert the

Python and the Internet 179

GSW_RASPI_4ED_FIN.indd 179GSW_RASPI_4ED_FIN.indd 179 10/28/21 10:54 AM10/28/21 10:54 AM

code from Example 10-5. Anything in double curly braces within the
HTML template is interpreted as a variable that would be passed to
it from the Python script via the render_template function.

Example 10-4. Source code for hello-template.py
from flask import Flask, render_template
import datetime
app = Flask(__name__)

@app.route("/")
def hello():

now = datetime.datetime.now()
timeString = now.strftime("%Y-%m-%d%H:%M")
templateData = {

'title':'HELLO!',
'time':timeString
}

return render_template('main.html', **templateData)

if __name__ == "__main__":
app.run(host='0.0.0.0', port=80, debug=True)

 Get the current time and store it in now.
 Create a formatted string using the date and time from the now

object.
 Create a dictionary of variables (a set of keys, such as title, that

are associated with values, such as HELLO!) to pass into the tem-
plate.

 Return the main.html template to the web browser using the
variables in the templateData dictionary.

Example 10-5. Source code for templates/main.
html

<!DOCTYPE html>
<head>

<title>{{ title }}</title>
</head>
<body>

<h1>Hello, World!</h1>
<h2>The date and time on the server is:{{ time }}</h2>

</body>
</html>

180 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 180GSW_RASPI_4ED_FIN.indd 180 10/28/21 10:54 AM10/28/21 10:54 AM

 Use the title variable in the HTML title of the site.
 Use the time variable on the page.

Now, when you run hello-template.py (as before, you need to use
sudo to run it) and pull up your Raspberry Pi’s address in your web
browser, you should see a formatted HTML page with the title “HEL-
LO!” and the Raspberry Pi’s current date and time.

It’s unlikely that this page will be accessible from out-
side your local network via the internet, though that de-
pends on how your network is set up. If you’d like to
make the page available from outside your local net-
work, you’ll need to configure your router for port for-
warding. When you do this, you’ll be telling the router
that incoming requests to its external IP address on
port 80 (for example) should be sent directly to the Pi
to be handled. Refer to your router’s documentation for
more information about how to do this.

Connecting the Web to the
Real World
You can use Flask with other Python libraries to bring addition-
al functionality to your site. For example, with the GPIO Zero Py-
thon module (see Chapter 7), you can create a website that inter-
faces with the physical world. To try it out, hook up three buttons
or switches to pins 23, 24, and 25 in the same way as the Simple
Soundboard project in Figure 7-2.

The following code expands the functionality of hello-template.py,
so copy it to a new file called hello-gpio.py. Add the gpiozero mod-
ule and a new route for reading the buttons, as we’ve done in Exam-
ple 10-6. The new route will take a variable from the requested URL
and use that to determine which pin to read.

Python and the Internet 181

GSW_RASPI_4ED_FIN.indd 181GSW_RASPI_4ED_FIN.indd 181 10/28/21 10:54 AM10/28/21 10:54 AM

Example 10-6. Modified source code for
hello-gpio.py

from flask import Flask, render_template
import datetime
from gpiozero import Button
app = Flask(__name__)

button1 = Button(24)
button2 = Button(25)
button3 = Button(26)

@app.route("/")
def hello():

now = datetime.datetime.now()
timeString = now.strftime("%Y-%m-%d%H:%M")
templateData = {

'title' : 'HELLO!',
'time' : timeString
}

return render_template('main.html', **templateData)

@app.route("/readPin/<pin>")
def readPin(pin)

try:
if pin == '23':

if button1.is_pressed:
response = "Pin number 23 is high!"

else:
response = "Pin number 23 is low!"

elif pin == '24':
if button2.is_pressed:

response = "Pin number 24 is high!"
else:

response = "Pin number 24 is low!"
elif pin == '25':

if button3.is_pressed:
response = "Pin number 25 is high!"

else:
response = "Pin number 25 is low!"

except:
response = "There was an error reading pin" + pin + "."

templateData = {
'title' : 'StatusofPin' + pin,

182 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 182GSW_RASPI_4ED_FIN.indd 182 10/28/21 10:54 AM10/28/21 10:54 AM

'response' : response
}

return render_template('pin.html', **templateData)

if __name__ == "__main__":
app.run(host='0.0.0.0', port=80, debug=True)

 Add a dynamic route with pin number as a variable.
 If the code indented below raises an exception, run the code in

the except Block.
 Take the pin number from the URL and check for the corre-

sponding button (pin).
 If the pin is high, set the response text to say that it’s high.
 Otherwise, set the response text to say that it’s low.
 If there was an error reading the pin, set the response to indicate

that.

You’ll also need to create a new template called pin.html (it’s not
very different from main.html, so you may want to copy main.html
to pin.html and make the appropriate changes, as in Example 10-7):

Example 10-7. Source code for templates/
pin.html

<!DOCTYPEhtml>
<head>

<title>{{ title }}</title>
</head>

<body>
<h1>Pin Status</h1>
<h2>{{ response }}</h2>

</body>
</html>

 Insert the title provided from hello-gpio.py into the page’s title.
 Place the response from hello-gpio.py on the page inside HTML

heading tags.

Python and the Internet 183

GSW_RASPI_4ED_FIN.indd 183GSW_RASPI_4ED_FIN.indd 183 10/28/21 10:54 AM10/28/21 10:54 AM

With this script running, when you point your web browser to your
Raspberry Pi’s IP address, you should see the standard “Hello
World!” page we created before. But add /readPin/24 to the end
of the URL so that it looks something like 10.0.1.103/readPin/
24. A page should display showing that the pin is being read as low.
Now hold down the button connected to pin 24 and refresh the
page; it should now show up as high!

Try the other buttons as well by changing the URL. The great part
about this code is that we only had to write the function to read the
pin once and create the HTML page once, but it’s almost as though
there are separate web pages for each of the pins!

Project: WebLamp
In Chapter 6, we showed you how to use Raspberry Pi as a simple AC
outlet timer in “Project: Cron Lamp Timer” on page 100. Now that you
know how to use Python and Flask, you can now control the state of
a lamp over the Web. This basic project is simply a starting point for
creating internet-connected devices with the Raspberry Pi.

And just as the previous Flask example showed how you can have
the same code work on multiple pins, you’ll setup this project so
that if you want to control more devices in the future, they will be
easy to add:

1. The hardware setup for this project is exactly the same as the
“Project: Cron Lamp Timer” on page 100, so all the parts you
need are listed there.

2. Connect the PowerSwitch Tail II relay to pin 25, just as you did
in the Cron Lamp Timer project.

3. If you have another PowerSwitch Tail II relay, connect it to pin
24 to control a second AC device. Otherwise, just connect an
LED to pin 24. We’re simply using it to demonstrate how multiple
devices can be controlled with the same code.

4. Create a new directory in your home directory called Web-
Lamp.

5. In WebLamp, create a file called weblamp.py and put in the
code from Example 10-8.

6. Create a new directory within WebLamp called templates.

184 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 184GSW_RASPI_4ED_FIN.indd 184 10/28/21 10:54 AM10/28/21 10:54 AM

7. Inside templates, create the file main.html. The source code
of this file can befound in Example 10-9.In the terminal, navigate
to the WebLamp directory and start the server. Be sure to use
Ctrl-C to kill any other Flask server you have running first, be-
cause if you already have a server running, your code will not
run. Instead, you’ll get an error message that the address is al-
ready in use and the script will fail.

pi@raspberrypi ~/WebLamp $ sudo python3 weblamp.py

Open your mobile phone’s web browser and enter your Raspberry
Pi’s IP address in the address bar, as shown in Figure 10-3.

Figure 10-3. The device interface, as viewed through a mobile
browser

Python and the Internet 185

GSW_RASPI_4ED_FIN.indd 185GSW_RASPI_4ED_FIN.indd 185 10/28/21 10:54 AM10/28/21 10:54 AM

Example 10-8. Source code for weblamp.py
from gpiozero import LED
from flask importFlask, render_template, request
app = Flask(__name__)

pins = {
24 :{'name': 'coffeemaker', 'state': False},
25 :{'name': 'lamp', 'state': False}
}

led24 = LED(24)
led25 = LED(25)
led24.off()
led25.off()

@app.route("/")
defmain():

pins[24]['state'] = led24.is_lit
pins[25]['state'] = led25.is_lit

templateData = {
'pins' : pins
}

return render_template('main.html', **templateData)

@app.route("/<changePin>/<action>")
def action(changePin, action):

changePin = int(changePin)
deviceName = pins[changePin]['name']
if action == "on":

if changePin == 24:
led24.on()
pins[24]['state'] = led24.is_lit

if changePin == 25:
led25.on()
pins[25]['state'] = led25.is_lit

message = "Turned" + deviceName + "on."

if action == "off":
if changePin == 24:

led24.off()
pins[24]['state'] = led24.is_lit

186 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 186GSW_RASPI_4ED_FIN.indd 186 10/28/21 10:54 AM10/28/21 10:54 AM

if change Pin == 25:
led25.off()
pins[25]['state']=led25.is_lit

message = "Turned" + deviceName + "off."

if action == "toggle":
if changePin == 24:

led24.toggle()
pins[24]['state'] = led24.is_lit

if changePin == 25:
led25.toggle()
pins[25]['state'] = led25.is_lit

message = "Toggled" + deviceName + "."

templateData = {
'message': message,
'pins': pins

}
returnrender_template('main.html', **templateData)

if __name__ == "__main__":
app.run(host='0.0.0.0', port=80, debug=True)

 Create a dictionary called pins to store the pin number, name,
and pin state.

 Set each pin as an output and make it low.
 For each pin, read the pin state and store it in the pins

dictionary.
 Put the pins dictionary into the template data dictionary.
 Pass the template data into the template main.html and return

it to the user.
 The function below is executed when someone requests a URL

with the pin number and action in it.
 Convert the pin from the URL into an integer.
 Get the device name for the pin being changed.
 If the action part of the URL is “on,” execute the code indented

below.
 Set the pin high.
 Save the status message to be passed into the template.
 Read the pin and set it to whatever it isn’t (i.e., toggle it).

Python and the Internet 187

GSW_RASPI_4ED_FIN.indd 187GSW_RASPI_4ED_FIN.indd 187 10/28/21 10:54 AM10/28/21 10:54 AM

 For each pin, read the pin state and store it in the pins dictionary.
 Along with the pins dictionary, put the message into the

template data dictionary.

Example 10-9. Source code for templates/main.
html

<!DOCTYPEhtml>
<head>

<title>Current Status</title>
</head>

<body>
<h1>Device Listing and Status</h1>

{% for pin in pin s%}
<p>The {{ pins[pin].name }}
{% if pins[pin].state == True %}

is currently on (turn off</
a>)

{% else %}
is currently off(turn on)

{% end if %}
</p>
{% end for %}

{% if message %}
<h2>{{ message }}</h2>
{% end if %}

</body>
</html>

 Run through each pin in the pins dictionary.
 Print the name of the pin.
 If the pin is high, print that the device is on and link to the URL to

turn it off.
 Otherwise, print that the device is off and link to the URL to turn

it on.
 If a message was passed into the template, print it.

188 Getting Started with Raspberry Pi

GSW_RASPI_4ED_FIN.indd 188GSW_RASPI_4ED_FIN.indd 188 10/28/21 10:54 AM10/28/21 10:54 AM

The best part about writing the code in this way is that you can very
easily add as many devices that the hardware will support. Sim-
ply add the information about the device to the pins dictionary and
add the correct action for the individual pin in each function (“ON”,
“OFF”, or “TOGGLE”. When you restart the server, the new device
will appear in the status list and its control URLs will work automat-
ically.

There’s another great feature built-in: if you want to be able to flip
the switch on a device with a single tap on your phone, you can
create a bookmark to the address <ipaddress>/pin/toggle. That
URL will check the pin’s current state and switch it.

Going Further
Requests (docs.python-requests.org/en/latest)

The home page for Requests includes very comprehensive
documentation complete with easy-to-understand examples.

Flask (flask.pocoo.org)
There’s a lot more to Flask that we didn’t cover. The official site
outlines Flask’s full feature set.

Flask Extensions (flask.pocoo.org/extensions)
Flask extensions make it easy to add functionality to your site.

Python and the Internet 189

GSW_RASPI_4ED_FIN.indd 189GSW_RASPI_4ED_FIN.indd 189 10/28/21 10:54 AM10/28/21 10:54 AM

A/Writing an
SD Card Image
This book has mostly concerned itself with the Raspberry Pi OS ,
how to install it, and how to use it. However, as you may remember
from Chapter 3, there are lots of other distributions and operating
systems that can run ont he Pi.

With any distribution, it’s normally just a matter of downloading the
image file and then copying that file to an SD card. This appendix
seeks to do two things: simplify the process of writing a disk im-
age file to an SD card, and also to illustrate the process the other
way around—to create a disk image file from an SD card. This is
extremely helpful if you want to save a working SD card image, for
example, so if you screw up your working Pi you can reinstall your
working backup. It’s also useful if you want to create an army of Pis,
all running the exact same processes.

Here’s how you do these things, in Windows, Mac OS, and Linux.

Writing an SD Card from OS X
There are two ways to write an image to an external device with a
Mac using the terminal, or using an external application. First, let’s
look at the terminal method.

1. Open your Terminal application (it’s in the Utilities folder in-
side your Applications folder.)

2. With the SD card not inserted, type diskutil list into the
terminal. You’ll see a list of all disk partitions currently mounted,
including the main hard drive and any virtual disks you may have
running (Figure A-1). Listed here, you see /dev/disk0 and /dev/
disk1. The numbers below each disk correspond to disk parti-
tions and are referred to with “s” (seen in the far right column).
For example, /dev/disk1s2 is the 2nd partition of /dev/disk1.

190 Appendix A

GSW_RASPI_4ED_FIN.indd 190GSW_RASPI_4ED_FIN.indd 190 10/28/21 10:54 AM10/28/21 10:54 AM

3. Now insert the SD card and run the command again.
You’ll see a new entry corresponding to the card (figure A-2).
Here, it’s a 32GB card and is labeled /dev/disk2.

4. Unmount all partitions on the SD card by typing sudo dis-
kutilunmount /dev/disk2s1 (substituting whatever your par-
ticular disk and partition are labeled, of course.) If you’re using
a brand new SD card, it’ll likely only have one partition. If it
has more than one partition, make sure you unmount them all
(/dev/disk2s2, /dev/disk2s3,etc.)

5. In your terminal, navigate to the location of the disk
image you want to write to the card. It should have a file ending
of .img; if it ends in .zip, you’ll need to unzip the file first. Then
write the image to the card using the following command: sudo
dd bs=4M if=filename.img of=/dev/rdisk2;sync. This uses the
Unix dd utility to write to the card, using 4MB block sizes. Note:
substitute your disk label for rdisk2, make sure you put the “r”
in front, and MAKE SURE YOU’RE TARGETING THE CORRECT
DISK IN YOUR of=FLAG. The dd command is nicknamed “disk
destroyer” because if you get the input and output file names
wrong, it’s very easy to write over your hard drive. Double-check
everything before you hit Return. If you get the error message
“dd:bs:illegalnumeric value”, use bs=1m instead, as it depends on
which version of dd you have installed on your Mac.

Appendix A 191

GSW_RASPI_4ED_FIN.indd 191GSW_RASPI_4ED_FIN.indd 191 10/28/21 10:54 AM10/28/21 10:54 AM

 Figure A-1. diskutil list on Mac OS

 Figure A-2. diskutil list on Mac OS

192 Appendix A

GSW_RASPI_4ED_FIN.indd 192GSW_RASPI_4ED_FIN.indd 192 10/28/21 10:54 AM10/28/21 10:54 AM

When it’s finished, you should have a working SD card. If you want
to make a copy of a working Pi SD card, it’s a similar process.

1. Run diskutillist before and after inserting the SD card to
determine its label.

2. If you’re using a working Raspberry Pi SD card, it’ll have two
partitions on it. Use sudo diskutil unmount to unmount both
partitions.

3. Now use this command to write the disk image to a file:
sudoddbs=4Mif=/dev/rdisk2of=filename.img;sync. Again, use
your particular disk label, and note that no partitions are listed.
This ensures you’re copying the entire disk.

Now you have a working copy that you can then write to another card.
It’s a handy way of keeping a backup of a known-working system.

If you want to use a third-party utility to write to your SD card, there
are several to choose from. The Raspberry Pi Foundation offers
one as a freedownload—the Raspberry Pi Imager, which is avail-
able on their main software page (www.raspberrypi.org/software).
I have also had very good luck with balenaEtcher (www.balena.io/
etcher/). Simply download it and install it and follow the onscreen
instructions to create the SD card. balenaEtcher will not let you
create a disk image file, but it will let you clone an SD card directly
to another card, so that’s almost as helpful. Use the terminal trick
above if you want to create an image file to use later.

Writing an SD Card in Linux
Although you can use third-party utilities in Linux to write image-
files as well, I just use the command line, as it’s very simple.

1. With the card not inserted, in your terminal, run lsblk
(figure A-3).

2. Insert the card and run lsblk again (figure A-4). Note the new
disk listed. In this case, the new disk is /dev/sdc and is showing
as 7.5GB. Yours maybe /dev/sdb, /dev/sdc, or something else.
The individual partitions of the disk are the numbers following it:
sdb1, sdb2, and so on.

Appendix A 193

GSW_RASPI_4ED_FIN.indd 193GSW_RASPI_4ED_FIN.indd 193 10/28/21 10:54 AM10/28/21 10:54 AM

3. Unmount all partitions on the disk using sudo umount /dev/
sdc1, sudo umount /dev/sdc2, and so on until all partitions are un-
mounted.

4. Now navigate, in your terminal, to the location of your disk
image file. Copy it to the SD card with the following command:
sudo dd bs=4M if=filename.img of=/dev/sdc

Figure A-3. lsblk on Linux

194 Appendix A

GSW_RASPI_4ED_FIN.indd 194GSW_RASPI_4ED_FIN.indd 194 10/28/21 10:54 AM10/28/21 10:54 AM

Figure A-4. lsblk on Linux

When the operation finishes, you’ll have a working SD card. If you
want to go the other way and create an image file for use later,
it’s just as simple.

1. Run lsblk before and after inserting the card to determine the
correct disk label.

2. Unmount all partitions on the card. A working Raspberry Pi
SD card will have two partitions; make sure you unmount them
both.

3. Navigate in your terminal to the location where you would like
to store the image file.

4. Run the following command to create the file, substituting
your disk label: sudo dd bs=4M if=/dev/sde of=filename.img
conv=fsync status=progress. Note that you do not specify
partitions of the SD card, which ensures that you’re copying the
entire card, not just a single partition.

When the process finishes, you’ll have an image file you can then
burn to another card.

Appendix A 195

GSW_RASPI_4ED_FIN.indd 195GSW_RASPI_4ED_FIN.indd 195 10/28/21 10:54 AM10/28/21 10:54 AM

Writing an SD Card from Windows
Writing an SD card in Windows is pretty simple, as you have your
choice of various third-party applications to use. The Raspberry Pi
Imager (www.raspberrypi.org/software) is available for Windows,
as is balenaEtcher (balena.io/etcher). I’ve also had good luck with
Win32 Disk Imager (sourceforge.net/projects/win32diskimager/
files/latest/download). Choose your fav orite, install it, and follow
the onscreen instructions to write to your card. I believe none of
these tools will allow you to create an image file from an SD card,
so you may want to switch to a Mac or Linux box if that’s your goal.

196 Appendix A

GSW_RASPI_4ED_FIN.indd 196GSW_RASPI_4ED_FIN.indd 196 10/28/21 10:55 AM10/28/21 10:55 AM

B/The Raspberry
Pi Pico
In this appendix, we’ll take a look at the Raspberry Pi Pico.
The Pico is the newest entry in the Raspberry Pi ecosystem and was
released in February 2021. It’s a small microcontroller, similar to an
Arduino, that utilizes the RP2040 chip developed by the Raspberry
Pi organization. It retails in the United States for $4. The RP2040
is a dual-core ARM Cortex-M0+ that runs at up to 133MHz and is
programmable using both C and MicroPython.

The Pico Itself

Figure B-1. The Raspberry Pi Pico

Appendix B 197

GSW_RASPI_4ED_FIN.indd 197GSW_RASPI_4ED_FIN.indd 197 10/28/21 10:55 AM10/28/21 10:55 AM

Why, Pi?
One wonders why the Raspberry Pi Foundation would go
through all the trouble of creating and designing its own mi-
cro-processing chip. We’re sure there are multiple answers to
that question, chief among which is the desire to simply have
their own reliable source of microprocessors. But it is curious
as to why Raspberry Pi would want to step into an already sat-
urated microcontroller market with what is, essentially, a high-
end Arduino.

The Pico board itself houses the RP2040 and adds 2MB of flash mem-
ory, integrated USB connectivity, and careful power management.
(The board can run on as little as 1.8V, meaning it can be powered by
a lithium-ion battery, or even a couple of AA batteries). There are 26
GPIO pins rated at 3.3V. With careful programming, you can have two
channels of I2C, two channels of SPI, and 16 pulse-width-modulation
(PWM) pins. (The PWM pins on the Pico are interesting in that they
can also measure incoming PWM signals, returning information on
the frequency and the duty cycle of the pulses they receive.)

One interesting note about the Pico is that there is an internal
ROM space that contains the chip’s bootloader. This means that
it should be almost impossible for you to brick the Pico, rendering
it inoperable due to your bad, buggy programming. Then again, at
$4 each, these boards are practically disposable, if you don’t care
about the environment.

The Raspberry Pi Foundation’s website, raspberrypi.org, is loaded
with technical documentation for the Pico and the RP2040, con-
taining comprehensive datasheets for both devices, as well as CAD
files for recreating compatible boards.It even includes the complete
contents of the onboard boot ROM! There’s also serious amounts
of information on how to set up the entire C/C++ compilation tool
chain for the Pico. All of that is beyond the scope of this book: we’ll
spend this chapter getting you introduced to MicroPython on the
Pico.

198 Appendix B

GSW_RASPI_4ED_FIN.indd 198GSW_RASPI_4ED_FIN.indd 198 10/28/21 10:55 AM10/28/21 10:55 AM

MicroPython
MicroPython is, as the name suggests, a version of Python that is
optimized to run on microcontrollers. It was created by Australian
programmer Damien George in 2014, after a successful Kickstarter
campaign, as a way to easily program microcontrollers and other
memory-and power-constrained devices. Since the original Python
was developed for full-fledged computers with adequate amounts
of memory and an operating system, MicroPython has to walk
a fine line between features and operability.

Step 1 on the Pico will be using MicroPython inside an interactive
environment called a REPL (often pronounced with a vowel sound
halfway between “repple” and “ripple”), which stands for “Read-
Evaluate-Print-Loop”. In a REPL, the computer first pauses to read
input from the user, in this case, the typed message “Hello, Pico”:

Figure B-2. REPL step 1: Read

Step 2 comes when the user presses return or enter. The environ-
ment evaluates the input. This is where the action happens: if the
command were to light up an LED or open a network connection,
that would take place during the evaluation stage.

Step 3 is print. This is where the MicroPython environment returns
the result of the evaluation stage.

Appendix B 199

GSW_RASPI_4ED_FIN.indd 199GSW_RASPI_4ED_FIN.indd 199 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-3. REPL step 3: Print

After the statement is evaluated and printed, the REPL environ-
ment loops back to the first step, and waits to read a new statement
from the user. In MicroPython, this is shown by a new >>> prompt.

Figure B-4. REPL step 4: Loop

Like any good Python variant, the MicroPython REPL will auto-
indent your code as you type, and even offers auto-complete by
pressing the TAB key as you type your command. As with regular
Python, hitting the Ctrl-C key combination is supposed to interrupt
a running program. If that doesn’t work, or if you need to completely
reset the REPL, the Ctrl-D combination will restart the Micro Python
interpreter without disconnecting the link between the Pico and
your computer. Usually.

200 Appendix B

GSW_RASPI_4ED_FIN.indd 200GSW_RASPI_4ED_FIN.indd 200 10/28/21 10:55 AM10/28/21 10:55 AM

Some Differences between
MicroPython and Python:
• MicroPython requires spaces between literal numbers

and keywords

• Unicode name escapes are not implemented

• Error messages for methods may display unexpected
argument counts

• Function objects do not have the module attribute

• User-defined attributes for functions are not supported

• Failed to load modules are still registered as loaded

If you think about it, nearly all of these differences are caused by
the need to keep MicroPython as compact (and memory-kind)
as possible.

Installing MicroPython on the Pico
The Raspberry Pi operating system came equipped with Python.
The Pico doesn’t come equipped with MicroPython, but adding it
is a snap.

1. Completely unplug your Pico from all sources of power. For-
most users, this simply means unplugging the USB cable from
your computer. It also means disconnecting any LiPo or other
batteries you may be using. For this to work, the Pico must be
absolutely dead.

2. On your computer, go to micropython.org/down-load/rp2-pi-
co/rp2-pico-latest.uf2 to download the latest MicroPython code
for the Pico.

3. Press and hold the BOOTSEL button on the Pico.

Appendix B 201

GSW_RASPI_4ED_FIN.indd 201GSW_RASPI_4ED_FIN.indd 201 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-5. The BOOTSEL (Boot Select) button on the Raspberry
Pi Pico

4. Power up the Pico by plugging in the USB cable attached to
your computer.

5. Release the BOOTSEL button.

6. On your computer, you should see the Raspberry Pi Pico
appear in your file manager, as a USB Mass Storage Device
called RPI-RP2. (It may take a few moments for it to register.) If you
examine it with some drive manager software, you’ll see that the
Pico pretends to be a 128MB FAT flashdrive.

202 Appendix B

GSW_RASPI_4ED_FIN.indd 202GSW_RASPI_4ED_FIN.indd 202 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-6. The Pico as a USB drive attached to your computer

7. Use the file manager to drag and drop the rp2-pico-
latest.uf2 file from your computer to the Pico, just as you would
move any other file from one drive to another.

8. The Pico will ingest the file (it may take a few seconds), and
automatically reboot. Your Pico is now running the MicroPython
REPL, and is no longer a USB drive.

9. At this point, your Pico is now a character device attached
to your computer’s serial port. To communicate with the Pico’s
REPL, you’ll need a terminal emulator program.

Linux and Mac
In their documentation, the Raspberry Pi Foundation recommends
using minicom, a text-based serial terminal emulator, but really, just
about any terminal emulator like CoolTerm or PuTTY will do.

First, you’ll have to determine which serial port your Pico is at-
tached to. If you’re working in Linux, you can simply run ls/dev/
tty* and look for /dev/ttyACM0. (This includes if you’re working on

Appendix B 203

GSW_RASPI_4ED_FIN.indd 203GSW_RASPI_4ED_FIN.indd 203 10/28/21 10:55 AM10/28/21 10:55 AM

a Raspberry Pi; it’s definitely possible to work with your Pico from
your Pi!)

Figure B-7. Listing/dev/tty* from a Pi

204 Appendix B

GSW_RASPI_4ED_FIN.indd 204GSW_RASPI_4ED_FIN.indd 204 10/28/21 10:55 AM10/28/21 10:55 AM

Microsoft Windows
In Windows, you’ll have to open your device manager:

Figure B-8. Device manager

And then under the View menu, sort the devices by container.

Appendix B 205

GSW_RASPI_4ED_FIN.indd 205GSW_RASPI_4ED_FIN.indd 205 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-9. Pico in the Device Manager

Look for the device that’s a “Board in FS Mode”. (In some instances,
you may see a message on plugging in the Pico that “Windows
is setting up a Board in FS Mode,” but then the board will be populated
in Device Manager as a USB Serial Device under “Unknown” in the
main window. Note the specific COM port it’s using, COM3 in this
case.

Still in Device Manager, click on the entry for COM3 and choose the
Port Settings tab.

206 Appendix B

GSW_RASPI_4ED_FIN.indd 206GSW_RASPI_4ED_FIN.indd 206 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-10. Settings for COM3 connection

Note down the communications parameters: 9600 bits per sec-
ond, 8 data bits, no parity, 1 stop bit, no flow control.

Then open your terminal emulator. We’re using PuTTY for Windows.
Enter the communications parameters into the settings, making
sure you’re specifying a Serial connection rather than an SSH one,
and you should be connected to the Pico’s MicroPython REPL.

Appendix B 207

GSW_RASPI_4ED_FIN.indd 207GSW_RASPI_4ED_FIN.indd 207 10/28/21 10:55 AM10/28/21 10:55 AM

Figure B-11. Entering settings in PuTTY

If you’re using Linux (on your Pi, for example), you don’t need any of
the communications parameters, as the Pico is really attached to a
virtual serial port. If you’re using minicom, just enter minicom-o-D/
dev/ttyACM0 and press Enter once the minicom window opens to
get the initial >>> REPL prompt. (Minicom can be installed with a sim-
ple sudo apt-get install minicom.)

Using MicroPython on the Pico
So now your computer is connected directly to the Pico’s REPL via
your terminal emulator program. You should see something like
this:

Figure B-12. Minicom connection to the Pico onthe Pi

208 Appendix B

GSW_RASPI_4ED_FIN.indd 208GSW_RASPI_4ED_FIN.indd 208 10/28/21 10:55 AM10/28/21 10:55 AM

It looks almost exactly like the description of the REPL a few pages
ago, because it is. You can stick to tradition and type print ("Hello
World") as your first MicroPython program if you want to, but there
are more exciting things in store.

Blinking an LED on the Pico
from machine import Pin
led = Pin(25, Pin.OUT)
led.value(1)

What happened? One of the LEDs on the Pico just lit up! To shut
it off, type into the REPL:

led.value(0)

It’s generally accepted that the ability to control a microcontroller
pin in this way is the foundation of all physical computing. Now that
you’ve got that pin working, the world is yours!

Digression
Did you know that the Chrome browser keeps track of the
devices plugged into your computer? And did you know that
you can get Chrome to tell you which devices are plugged into
your computer? Just type: chrome://device-log/?refresh=30
into the address bar to see what Chrome knows about your
computer. Kind of cool, and kind of creepy.

Appendix B 209

GSW_RASPI_4ED_FIN.indd 209GSW_RASPI_4ED_FIN.indd 209 10/28/21 10:55 AM10/28/21 10:55 AM

C/Another Raspberry
Pi?!

Figure C-1: The Raspberry Pi Zero W2

As this book goes to press, the Pi Foundation has just announced
another entry in their lineup of Pi models: a souped-up model Zero
W, known as the Zero W2.

So what’s special or interesting about the Zero W2? As a Pi Zero
model, it’s about the size of a stick of gum — less than half the size of
a normal Pi. It’s also about a third of the price of the new Pi 4. At the
$15 price point, it’s ideal for throwing a prototype together or putting
it into a set-and-forget thingamajig in which you wouldn’t want to
use a more expensive, full-size Pi. It’s like the Zero W in that it has
onboard Wi-Fi, and, get this, the chip it uses, the RP2041, contains
the same processor as the Raspberry Pi 3.

210 Appendix C

GSW_RASPI_4ED_FIN.indd 210GSW_RASPI_4ED_FIN.indd 210 10/28/21 10:55 AM10/28/21 10:55 AM

In case you didn’t get that, let us reiterate: this is basically a
Raspberry Pi model 3 (which is still a perfectly good, capable Pi) but
smaller, and it costs only 15 bucks. It’s been under-clocked a bit to
1GHz instead of the Pi 3’s 1.2GHz, but it’s the same processor. (We
have a feeling that some of us are going to be experimenting to see if
we can overclock it and recover those lost clock cycles.)

There are a few other products in the Pi Foundation’s lineup that
come close to the Zero W2 in terms of size and power. The one
that comes to mind first is the Compute Module 3. The Compute
Modules tend to be forgotten by many makers when it comes to
building things because they’re not quite as user-friendly. They don’t
have connectors for HDMI and USB, or an SD card slot, as they’re
designed to plug into another board with a single edge connector.
Plus, when you add the cost of the development board to which
you’re connecting, the price increases quite a bit. But power- and
size-wise, the Compute Module 3 is pretty close to the Zero W2.

So what’s the big deal about the Zero W2? After all, there’s already
a Zero and a Zero W. First, if you’ve looked around recently, you may
have noticed it can be difficult to find a Zero. Maybe it’s because
there just aren’t many around, or it may be that they’re very popular,
but searching for a Pi Zero on sites such as Amazon or Pimoroni will
often bring up the Zero W but not the Zero. The Zero has one major
pro and one major con. The pro — the price. It’s hard to beat a Pi for
$5. The con — no Wi-Fi capability built in. If you want to connect the
Zero to a network, you have to use a USB-to-Ethernet adapter, which
either takes one of the precious ports on the board or requires a USB
hub, and both of those take up space that you may not be ready to
lose in the guts of your prototype.

The next step up, obviously, is the Zero W. We’ve always assumed that
users just prefer the Zero W because of its inbuilt Wi-Fi and Bluetooth
connectivity; many makers want to build connected devices, and a
device that is already set up to connect to Wi-Fi just makes sense.
The Zero W is only $10, but it has one drawback, and that is supply.
As of this writing, all suppliers selling the Zero W limit customers to
one, and this has not changed in the more than four years since it
was first released. (I was recently experimenting with a sort of Zero

Appendix C 211

GSW_RASPI_4ED_FIN.indd 211GSW_RASPI_4ED_FIN.indd 211 10/28/21 10:56 AM10/28/21 10:56 AM

W Beowulf cluster and was forced to make lots of small individual
purchases to obtain my cluster of Ws.)

Now, makers have the choice of using the Zero W2, and it’s almost
a no-brainer. (Of course, we’ll have to see what the supply/demand
issues work out to be, since it’s bound to be a popular board.) In
testing, the Zero W2 is light years faster than the Zero. This is most
likely due to the Zero W2’s multicore processor, which can be taken
full advantage of using multi-threaded code.

It’s still not going to be anybody’s desktop computer, since it’s so
lightweight and will likely have trouble with any Javascript-heavy
website that it visits. So this is most likely going to be used in
projects and designs and inventions. But that’s exactly what the Pi
was originally supposed to be used for. It’s kind of nice, then, to see
this small, powerful board that’s able to really boost the horsepower
in small, embedded systems. It’s also encouraging that the onboard
chip, the RP2041, is the Pi Foundation’s second microcontroller chip.
We’ll be curious to see what they’ll come up with next, since they
seem to be doing quite well making their own silicon.

Oh, one last thing: we can’t guarantee results, but most if not all of
the code in this book should run on the Zero W2, with the possible
exception of the OpenCV chapter. Again, we’re revisiting the Pi’s
roots as a low-cost teaching computer, and you can’t really beat $15.

Have fun programming!

212 Appendix C

GSW_RASPI_4ED_FIN.indd 212GSW_RASPI_4ED_FIN.indd 212 10/28/21 10:56 AM10/28/21 10:56 AM

Appendix C 213

GSW_RASPI_4ED_FIN.indd 213GSW_RASPI_4ED_FIN.indd 213 10/28/21 10:56 AM10/28/21 10:56 AM

Index

Symbols
(hash) tags and cron, 105
-- help option, 39
- a switch, 37
. (dot), 36
.. (dots), 36
802.11 Wi-Fi USB dongles, 10
| (pipe) operator, 39

A
absolute paths, 36
Adafruit Industries

ADS1115 breakout board for, xviii,
128
online store, 92

ADS1115 (Texas Instruments),
128-133

Advanced Linux Sound Architecture
(ALSA), 48

AlaMode shield (WyoLum), 88
alsa mixer program, 48

Amiga, ix
analog input/output, 123-138

for Arduino, 86
converting from digital, 124
converting to digital, 128-134
variable resistors, 134

analog-to-digital converter (ADC),
128-134

Apache webserver, 177
API (application programming inter-

face), 169,176
apt-get command-line utility, 48
ArchLinux, 52
Arduino, 77-88, 198

communicating with, 80-84
default font, changing, 80
environment location, 78

Firmata and, 86
installing, 79
powering, 80
PWM on, 127
Python in, 62
on serial port, finding, 81
serial protocols, 88
tutorials webpage, 78
user experience, improving, 82

ARM, 197
associative arrays (Python), 72
Atom feeds, grabbing, 71
Atrix lapdock, 11
audio out (Raspberry Pi), 4

forcing output to, 48
omxplayer, 146

sending sound to, 120
autocomplete, 33
avahi-daemon, 178

B
Banzi, Massimo, 78
bare-metal computer hacking, xiv
Barrett, Daniel J, 50
bash terminal shell, 33
BASIC, programming language, 55
BBC Micro, x
BBC News, x
Behringer’s U-Control devices, 11
Berdahl, Edgar, 54
BitTorrent, 16
blit function, 162-164
Bonjour Services, 178
Briggs, Jason R., 75
Broadcom chipset, 14
BUB I board (Modern Device), 25
buttons (physical)

and breadboards, 98
reading, 98-102
reading in Python, 114-116
updating websites with, 181

C
camera module (Raspberry Pi), xvii,

7-8, 11, 139-166
Camera Serial Interface (CSI) con-

214 Appendix B

GSW_RASPI_4ED_FIN.indd 214GSW_RASPI_4ED_FIN.indd 214 10/28/21 10:56 AM10/28/21 10:56 AM

nector, 7, 141-44
cameras, 139-165

displaying images, 151-153
face detection, 149, 151, 158
GIFs, creating, 146
modifying images, 153-155
Raspberry Pi camera module,
 139-165

Raspberry Pi Photobooth project,
160-165

SimpleCV, 160
sources for, 137
video, capturing, 146

viewing applications for, 146-147
webcams, testing, 147

case (Raspberry Pi),13
cat command (Linux), 40, 101
cd command (Linux), 36, 97
Center for Computer Research in

Music and Acoustics (Stanford),
54

chgrp command (Linux), 44
chmod command (Linux), 44
chown command (Linux), 44
Chrome, 210
chsh command (Linux), 33
clients, 167
code module (Python), 74
command

--help option, 39
parameters for, listing, 39
sudo, 40, 43
switches on, 37

command history, 33
command-line, 33

IDLE vs., 65
moving cursor to beginning of, 41

moving cursor to end of, 41
command-line arguments, 102-103
Commodore 64, x
compiling on Raspberry Pi, 79
components as files, 98
 composite video out (Raspberry

Pi), 4
Computer Programming for Every-

body (van Rossum), 59
Controlling a DC Motor with PWM

(website), 138
copy/paste functions, 32-33
Cron Lamp Timer project, 100
extending to Web Lamp project,

184-189
cron tables

(hash) marks and, 106
exiting, 106
saving changes to, 106
scheduling commands with,
 105-107

Ctrl-A (keyboard shortcut), 41
Ctrl-C (keyboard shortcut), 41
Ctrl-D (keyboard shortcut), 41
Ctrl-E (keyboard shortcut), 41

D
Demaagd, Kurt, 160
dash terminal shell, 33
data protocol specifications, 169
datasheets of components, 137
date/time, setting, 47
Debian Linux, 14-15, 52-3
The Debian Wiki (website), 50
dictionaries (Python), 72, 173
Digi-Key online store, 92
digital input, 98-102

converting from analog, 128-134
converting to analog, 124

digital output, 94-98
digital signage, 57
directories

changing, 34
creating, 36
current, finding, 33
listing, 35
in Raspberry Pi, 37
removing, 38

Display Serial Interface (DSI)
connector, 7

distributions
for home theater, 52
for Internet of Things, 55
for music, 54
for Retrocomputing, 55
for Retrogaming, 55
specialized, 51-58

Index 215

GSW_RASPI_4ED_FIN.indd 215GSW_RASPI_4ED_FIN.indd 215 10/28/21 10:56 AM10/28/21 10:56 AM

version, finding, 26
dmesg command code, 148
Downey, Allen, 75
duty cycle, 125

E
echo command (Linux), 97
elinux.org, 8, 26, 27,147
eLinux’s Raspberry Pi PIO Reference

Page (webpage), 107
/etc directory, 47
Ethernet cables, 10
Ethernet port (Raspberry Pi), 5

F
face detection, 158
favicons, 179
Fedora Linux, 14, 52
Feed parser module (Python), 70
File Manager (LXDE), 29
files (Linux), 34-38

displaying contents of on
 screen, 41
dummy, creating, 38
dumping to stdout, 39-40
group, changing, 44
hidden, showing, 37
owner, changing, 44
permissions on, 43
permissions, changing, 44
removing, 38
renaming, 38
transferring with sftp/scp, 46

file system (Linux), 34
findHaar Features function

(SimpleCV), 158
Firmatta, 86
firmware, upgrading, 49
flashing the SD card, 15
Flask extensions, 189
Flask framework, 177-181

controlling real world objects with,
 181-189

official site, 189
testing, 178

floating pins, 100

fonts, updating, 82
force-sensitive resistor, 134
Fritzing, 117
fswebcam program, 72
FTDI cables, 25, 86

G
general-purpose computing, xi
general-purpose input/output

(GPIO) pins, 5, 7, 70, 77, 88
exporting to user space, 97
floating pins, 100
using, 92

Getting Started with Arduino (Banzi),
78

GIF project, 146
global keyword (Python), 64
GPIO (general-purpose input/out-

put) pins (see general-purpose
input/output (GPIO) pins)

GPIO Pythonmodule, analog input/
output, 124

GUI, booting to, 19
gzip compression, 39

H
Hardware Attached on Top (HATs), 12
hashes (Python), 72
HDMI cables, 9
HDMI port (Raspberry Pi), 6

as default for sound output, 49
sending sound to, 120

headless, running, 24
getting online while, 22
SSH and, 24

heatsinks, 10
hidden files, showing, 37
home directory, 35-36, 48, 61, 113,

115, 119, 126, 151, 184
home theater distributions, 52-53
HTTP (hyper text transfer protocol),

167

I
I2C protocol, 128
IDLE (Python IDE), 59-63, 151

216 Index

GSW_RASPI_4ED_FIN.indd 216GSW_RASPI_4ED_FIN.indd 216 10/28/21 10:56 AM10/28/21 10:56 AM

command line vs., 65
creating new scripts in, 61
debugging code in, 74

ifconfig utility (Linux), 46
Igoe, Tom, 88
ImageMagick software, 146
images

displaying, 151-153
face detection, 149, 158
modifying, 153-155

import command (Python), 61, 67,
111

initial startup, 16-17
input/output, 40, 89

analog, 123-138
digital input, 97-102
digital output, 94-98
PowerSwitch Tail, 104-105, 184
with Python, 87, 109
using, 92

installing new software, 32, 47
Internet of Things, 55, 71, 181-189
Internet of Things distributions, 55
interrupts, 116
IP address, finding, 178

J
The Jargon File (website), 50
JavaScript, 63, 88, 171, 177
Jinja2 template engine, 179
Ju, Wendy, 54

K
Kelion, Leo, x
keyboard, configuring, 17-21
kill command (Linux), 41
Kodi, 52

L
laptop docks, 11
LCD displays, 11, 19
Learn Python the Hard Way (Shaw),

64, 75
LEDs

blinking with Python, 112
connecting to breadboards, 94

using as output, 94-98
less command, 39-43
lighttpd webserver, 177
Linux, xv, 29-49

absolute paths,36
changing directories, 95
command line, 33
components as files, 98
cron, scheduling commands with,
 105-107
current directory, finding, 33, 36
date/time, setting, 47
/etc directory, 47
files, 34-38
filesystem, 34-38
home directory, 35
installing software, 47
permissions, 43
pipes, 39
process IDs, getting, 42
processes, 42
on Raspberry Pi, 90
reading pin values, 101
redirection in, 39
relative paths, 36
root, running commands as,96
running processes, listing, 37, 41
shell scripts, 102
shortcut keys, 41
sound, 48
specialized distributions of, 51-57
SSH utility, 24
sudo command, 40

Linux in a Nutshell (Siever, Figgins,
Love, and Robbins), 50

Linux Pocket Guide (Barrett), 50
List of Verified Peripherals (website),

27
locale, setting, 20
logging in, 30
logging module (Python), 74
lscommand (Linux), 37, 39, 97
Lutz, Mark, 75
luvcview camera viewing application,

147
LXTerminal terminal shell, 33

Index 217

GSW_RASPI_4ED_FIN.indd 217GSW_RASPI_4ED_FIN.indd 217 10/28/21 10:56 AM10/28/21 10:56 AM

M
Maker Shed online store, 92
Making Things Talk, 2E (Igoe), 88
man command (Linux), 39
microcontroller, 197
microcontrollers, Raspberry Pi vs.,

xiii
MIDI protocol, 88
Miro BitTorrent client, 16
MLDonkey BitTorrent client,16
Model A (Raspberry Pi)

audio/video outs, 4
keyboard/mouse, plugging in, 16
USB ports, 3-5

Model B (Raspberry Pi)
audio/videoouts, 4
 USB ports, 3-5

Model B+ (Raspberry Pi)
audio/video outs, 4
GPIO pins on, 5
HATs for, 12
USB ports, 3-5

Modern Device, 25
modules (Python), 65-69

importing,67
user-defined, 67

Mouser online store, 92
multimeter, 137
music distributions, 54
Mustacheinator project (Practical

Computer Vision with SimpleCV),
 160

mv command (Linux), 38

N
network connectivity, 22, 46
Network Time Protocol (NTP) server,

47
New Hackers Dictionary (website),

47
Node.js protocol, 88
NOOBS installer, 15, 32, 52

O
objects (Python), 65-68
OctoPi distribution, 57

Oliver, Anthony, 160
omxplayer, 146
Oostendorp, Nathan, 160
Open Embedded Linux Entertain-

ment Center distribution, 53
OpenELEC, xiv
OpenELEC distribution, 53
Openwrt distribution, 57
operating system development, xiv
operating systems

booting, 16
distributions, 14
installing from SD cards, 15

OSX
sharing Wi-Fi with, 22-23
SSH utility, 24
writing SD cards in, 190

OSMC distribution, 52
OSMC open source media player, xiv
overclocking processors, 20
overscan option, 19

P
package managers, 47
passwd command (Linux), 45
password, setting, 19, 45
pegging the processor, 120
peripherals, 8-12
permissions

in Linux, 48
for RPi.GPIO, 109
for serial port, 81

Photobooth project, 160-165
photocells, 134
Pi Cobbler Breakout Kit (Adafruit),

92
pi user account, 43
Pibow case, 13
Pidora, 52
PiMAME distribution, 55
Pimoroni, 13
ping command (Linux), 46
Pip, installing, 71
pipes, in Linux, 39
PiPlay distribution, 55
potentiometers, 129, 134
power supply, 8

218 Index

GSW_RASPI_4ED_FIN.indd 218GSW_RASPI_4ED_FIN.indd 218 10/28/21 10:56 AM10/28/21 10:56 AM

PowerSwitch Tail, 104
Practical Computer Vision with Sim-

pleCV (Demaagd, Oliver, Oosten-
dorp, and Scott), 160

print() function (Python), 66
processes, 41

ID numbers, getting, 42
killing, 41
listing, 41

processor (Raspberry Pi), 20
product prototyping, xi
programming, learning, xi
programs, killing, 41
project platforms, xii
projects

Cron Lamp Timer, 102
making GIFs, 144
Raspberry Pi Photobooth, 160-165
Simple Soundboard, 116-121
Web Lamp, 184-189

Providence, Rhode Island, 72, 221
pscommand (Linux), 42
pulse-width modulation (PWM), 124-

127, 198
PuTTY utility, 24, 203, 207-208

PWM/Servo Driver (Adafruit), 127
pySerial module, 70, 82
Python, 59-75

in Arduino, 62
blinking LEDs with, 112
buttons, reading in, 114-116
connecting to webservers,
 167-176
downloading data from websites,
 167-176
Flask framework, 177-181
IDLE IDE, 59-63, 151
implementing webservers with,
 177
input/output with, 89, 109
interpreter, 59
launching programs from, 72
MicroPython, 199-209
modules, 65-69
modules, importing, 67
objects, 65-68
Pip, installing, 71

printing text with, 68
reserved keywords in, 65
running scripts at startup, 72
sending formatted websites from,
 179
troubleshooting, 74
versions of, 60
Weather Forecast project,
 169-176
whitespace in, 63

Python For Kids (Briggs), 75
Python Package Index (PyPI), 69
Python Pocket Reference (Lutz), 64,

75

Q
Qt on Pi distribution, 57

R
Raspberry Pi

analog sensors and, 91
anatomy of, 4-7
Arduino and, 77-88
Arduino compatible shields, 88
configuring, 17
firmware, upgrading, 49
headless, running, 24
initial startup, 17
microcontrollers vs., xiii
Model B, 90
network connectivity, 22
Pico, xiii, xvii, 197-209
as router, 57
serial ports, communicating over,
 81-85
shutting down, 24
SSH server on, 20
as 3D printer server, 57
troubleshooting, 26

Raspberry Pi Foundation, 198
Raspberry Pi Foundation (website),

x,15
Raspberry Pi Hub, 26
Raspbian, 15, 17, 52

installing Arduino, 79
serial port, finding, 81

Index 219

GSW_RASPI_4ED_FIN.indd 219GSW_RASPI_4ED_FIN.indd 219 10/28/21 10:57 AM10/28/21 10:57 AM

raspi-config tool, 21, 47
raspistill utility, 145, 146
raspivid utility, 146
RaspyFi distribution, 54
Raymond, EricS., 50
RCA-type jacks for composite video

(Raspberry Pi), 4
Reading Resistive Sensors with RC

Timing (website), 138
real-time clock peripheral, 11
redirection in Linux, 39
relative paths, 36
REPL, 199-209
Requests library (Python), 167, 189
Retrocomputing distributions, 55
Retrogaming, 55
RetroPie, xiv
Retropie distribution, 55
RISCOS distribution, 55
rm command (Linux), 38
rmdir command (Linux), 38
root, running commands as,96
routers, 57
RP2040, 148-198
RPi.GPIO library, 121
Pi.GPIO module (Python), 183
RPi.GPIO Python module, 109
RSS feeds, grabbing, 71
Ruby, xii, 177

S
Satellite CCRMA distribution, 54
Satellite CCRMA: A Musical Interac-

tion and Sound Synthesis Platform
(Berdahl and Ju),54

Scott, Katherine, 160
scp program (Linux), 47
screenshots, taking, 48
scripts (Python)

running from command line, 62
running on start up, 72
white space in, 63
writing in IDLE, 61

scrot program, 48
SD Card slot (Raspberry Pi), 6
SD cards, 6

flashing, 15

requirements for, 9
Retropie image for, 55
writing from OSX, 190

Secure Shell (SSH) server, 20, 24, 46
Secure Sockets Layer (SSL), 47
semantic errors, 74
Serial library (Arduino), 82
serial ports

finding, 82
setting as argument, 84

serial protocols for Arduino, 84
servers, 167

web, 177
sftp program (Linux), 46
Shaw, Zed, 75
shell, 33, 41
shell scripts, 102

command-line arguments for, 102
Python vs., 109

shields, 12
Simple Soundboard project, 116-121
SimpleCV

accessing webcams with, 156
displaying images with, 151-153
facial recognition with, 158
findHaarFeatures function, 158
installing, 149
modifying images with, 153-155
Raspberry Pi camera module and,
 150

sketches (Arduino)(see scripts(Py-
thon)), 62

sleep() function (Python), 67
Snappy UbuntuCore, 56
software, installing, 47
sound, 48

volume, setting, 48
.wav files, 117

sound cards, 11
SparkFun online store, 92
Spectrum ZX, x
SPI (Serial Peripheral Interface), 11
SSH (Secure Shell server), 20
SSL (Secure Sockets Layer),47
Stack Overflow (website), 75
standard library (Python), 67
Stanford’s Center for Computer

220 Index

GSW_RASPI_4ED_FIN.indd 220GSW_RASPI_4ED_FIN.indd 220 10/28/21 10:57 AM10/28/21 10:57 AM

Research in Music and Acoustics
 (CCRMA), 54

status LEDs (Raspberry Pi), 5
stderr (standard error), 39
stdin (standard input), 39
stdout (standard output), 39-40
Steiner, Hans-Christoph, 87
sudo command, 40, 43, 96
Sunvox modular music platform, 54
superuser account, 43
syntax errors, 74

T
tar command (Linux), 39
Texas Instruments, 128-134
TFT (thin-film-transistor) display, 11
thin-film-transistor (TFT) display, 11
Think Python (Downey), 64, 75
3D printers, 57, 78
timezone, setting, 20, 47
top program (Linux), 42
Torvalds, Linus, x
touch command (Linux), 38
Transmission BitTorrent client, 16
troubleshooting

with dmesg, 148
networking, 45
Python, 74
Raspberry Pi, 26

U
Ubuntu Linux, 14
Ubuntu MATE, 52
University of Cambridge, xi
University of Cambridge’s Computer

Laboratory, xiv
Upton, Eben, ix
USB audio devices, 49
USB hubs, xvii, 9-10, 26, 147
USB ports (Raspberry Pi), 4, 9, 80
USB serial ports

finding, 206
USB serial ports, finding, 81

V
van Rossum, Guido, 59

variable resistors, 134
force-sensitive resistor, 134
voltage divider circuit, 135
video

capturing, 146
converter software, 146

video project, 146
virtual filesystem (Linux), 98
Virtual Network Computing (VNC),

24
VNC (Virtual Network Computing),

24
voltage divider circuit, 135
volume, setting, 48
Volumio distribution, 54
Vuze BitTorrent client, 16

W
.wav files, 117
Weather Forecast project, 169-177
Weather Underground (website), 169
weather.gov, 72
web browsers, 32, 167
Web kiosk distribution, 57
web servers, 167, 177

accessing from Windows
 machines, 177
controlling real world objects with,
 181-189
downloading from, 167-177
Flask framework for, 177-181
Internet of Things and, 181-189
making available on the Internet,
 181
Raspberry Pi as, 177

WebLamp project, 184-189
webcams
accessing, 156
testing, 147

WebSocket protocol, 88
white space in Python, 63
Wi-Fi USB dongle, 10
Windows, 205

PuTTY utility, 24
sharing Wi-Fi with, 22-23

Windows10 IoT Core, 56
WyoLum, 88

Index 221

GSW_RASPI_4ED_FIN.indd 221GSW_RASPI_4ED_FIN.indd 221 10/28/21 10:57 AM10/28/21 10:57 AM

X
XBMC Foundation, 52
XBMC open source media player, 52
XBox (Microsoft), 52

222 Index

GSW_RASPI_4ED_FIN.indd 222GSW_RASPI_4ED_FIN.indd 222 10/28/21 10:57 AM10/28/21 10:57 AM

About the Authors
Matt Richardson is an Executive Director for the Raspberry Pi
Foundation and is responsible for their non-profit work within
North America. He’s a graduate of New York University’s Interactive
Telecommunications Program. Highlights from his work include
the Descriptive Camera (a camera that outputs a text description
instead of a photo) and The Enough Already (a DIY celebrity-silenc-
ing device). Matt’s work has been featured at The Nevada Museum
of Art, The Rome International Photography Festival, and Milan De-
sign Week, and has garnered attention from The New York Times,
Wired, and New York Magazine.

Shawn Wallace lives in Providence, RI, and builds creative coding
tools for young people at Unruly Studios. He is the inventor of Flux-
ly, Cryptozoologic, and the Fluxamasynth. Previously he helped
start the Providence FabLab, wrote and edited books for O’Reilly
and Maker Media, and designed electronics for Modern Device.

Wolfram Donat is an engineer, maker, and author who has been
building things with the Raspberry Pi since he got his first Model
1A+ delivered, oh-so-many moons ago. He’s currently the Software
Architect at Arc Machines, Inc., where he uses the Pi (among oth-
er things) to build and control intelligent welding machines. This
marks his fourth foray into books about/utilizing the Raspberry Pi.

Colophon
The cover and body font is Benton Sans, the heading font is Serifa,
and the code font is The Sans Mono Condensed.

Index 223

GSW_RASPI_4ED_FIN.indd 223GSW_RASPI_4ED_FIN.indd 223 10/28/21 10:57 AM10/28/21 10:57 AM

	Contents
	Preface
	1/Getting Up and Running
	2/Getting Around Linux on theRaspberry Pi
	3/Other Operating Systems andLinux Distributions
	4/Python on the Pi
	5/Arduino and the Pi
	6/Basic Input and Output
	7/Programming Inputs and Outputs with Python
	8/Analog Input and Output
	9/Working with Cameras
	10/Python and the Internet
	A/Writing an SD Card Image
	B/The Raspberry Pi Pico
	C/Another Raspberry Pi?!
	Index
	About the Authors

