

Vayu Education of India
2/25, Ansari Road, Darya Ganj, New Delhi-110 002

• Shadab Saifi (Illustrator) • Ayaz Uddin (Editor)

Copyright © Vayu Education of India

First Edition: 2022

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

DISCLAIMER
Errors, if any, are purely unintentional and readers are requested to communicate such errors to the
publisher to avoid discrepancies in future.

Published by:
AN ISO 9001:2008 CERTIFIED COMPANY
VAYU EDUCATION OF INDIA
2/25, ANSARI ROAD, DARYA GANJ, NEW DELHI-110 002
PH.: 011-41564440, MOB. 09910115201

1. INTRODUCTION TO VISUAL BASIC ...1-9
1.1 INTRODUCTION ... 1
1.2 FEATURES OF VB .. 1
1.3 VISUAL BASIC CONCEPT .. 2

1.3.1 Working of Windows, Events and Messages ... 2
1.3.2 Event Driven Model ... 2
1.3.3 Interactive Development ... 2

1.4 VISUAL BASIC ENVIRONMENT .. 3
1.4.1 VB Integrated Development Environment ... 3
1.4.2 VB Application Mode .. 7

1.5 PROPERTIES, METHODS AND EVENTS ... 7
1.6 DEBUGGING ... 7
1.7 DIFFERENCE BETWEEN .EXE AND .DLL FILE ... 8

Let Us Revise ... 9
2. VB PROGRAMMING BASICS ..10-25

2.1 INTRODUCTION ... 10
2.2 KEYWORD .. 10
2.3 DATA TYPES ... 10

2.3.1 Numeric Data Type ... 11
2.3.2 Non Numeric Data Types .. 12

2.4 VARIABLES ... 13
2.4.1 Variable Naming Conventions ... 13
2.4.2 Declaring Variables .. 14
2.4.3 Type Declaration Characters ... 14
2.4.4 Fixed Length Vs. Variable Length String .. 15
2.4.5 Assigning Values To Variables ... 16
2.4.6 Variable Default Values .. 16
2.4.7 Implicit And Explicit Variable Declaration ... 17
2.4.8 Variable Scope And Lifetime .. 17
2.4.9 Static Variable .. 19

2.5 LITERALS .. 19
2.6 OPERATORS IN VB .. 20

CONTENTS

2.6.1 Arithmetic Operator .. 20
2.6.2 Concatenation Operator .. 20
2.6.3 Comparison Operator .. 21
2.6.4 Logical Operator ... 21
2.6.5 Operators Precedence .. 22

2.7 SOME USEFUL FUNCTION .. 22
2.7.1 Rnd Function (Random Number Generator) .. 23
2.7.2 Format Function ... 23
2.7.3 Val Function ... 24

Let Us Revise ... 25
3. WORKING WITH CONTROLS.. 26-67

3.1 INTRODUCTION ... 26
3.2 INTRINSIC AND CONTAINER CONTROL ... 27
3.3 WORKING WITH CONTROLS ... 27

3.3.1 To Draw a Control On a Form ... 27
3.3.2 Object Naming Conventions ... 27
3.3.3 Setting Properties ... 28

3.4 CREATE EVENT PROCEDURE .. 29
3.5 MANIPULATING FORMS ... 30

3.5.1 Events of Form ... 30
3.5.2 Form Properties .. 31

3.6 BASIC CONTROLS .. 32
3.6.1 Pointer .. 32
3.6.2 Label .. 32
3.6.3 Text Box ... 33
3.6.4 Command Button .. 33
3.6.5 Check Box .. 36
3.6.6 Option Button .. 36
3.6.7 Frame Control .. 37
3.6.8 ListBox Control .. 37
3.6.9 ComboBox Control ... 40

3.6.10 Image Box .. 41

3.6.11 Picture Box ... 43
3.6.12 Hscroll Bar & Vscroll Bar .. 45
3.6.13 Shape & Line ... 47
3.6.14 Timer .. 49
3.6.15 File System Control : DriveList Box , DirList Box & FileList Box 51

3.7 CONTROL ARRAYS ... 53
3.8 SOME USEFUL EVENTS .. 54
3.9 ACTIVEX CONTROL .. 55

3.9.1 Adding and Removing ActiveX Controls ... 56
3.9.2 Common Dialog Boxes ... 57
3.9.3 Microsoft Windows Common Controls .. 60

3.10 OBJECT LINKING AND EMBEDDING (OLE) ... 63
3.11 DIALOG BOX ... 63

3.11.1 Input Box .. 63
3.11.2 Message Box .. 64

Let Us Revise ... 66
4. CONTROL STRUCTURE ...68-98

4.1 INTRODUCTION ... 68
4.2 CONTROL FLOW .. 68
4.3 DECISION STRUCTURES ... 69

4.3.1 If….Then Statement .. 69
4.3.2 Select….Case Statement ... 78

4.4 LOOPING STRUCTURE ... 84
4.4.1 For…..Next ... 85
4.4.2 Do Loop Structure ... 87
4.4.3 While …Wend .. 91
4.4.4 Problems with loop ... 91

4.5 ARRAYS .. 91
4.5.1 Dimension of an Array .. 92
4.5.2 Declaring Arrays ... 92
4.5.3 Static and Dynamic Arrays ... 96
4.5.4 Arrays within UDTs ... 96
4.5.5 Array within Another Array ... 97

Let Us Revise ... 97
5. PROCEDURES, FUNCTIONS AND MODULES99-134

5.1 INTRODUCTION ... 99
5.2 PROCEDURES .. 99

5.3 SUB PROCEDURES (SUB-ROUTINES) .. 100
5.3.1 Declaring Syntax ... 100
5.3.2 Add Procedure Menu Option ... 101
5.3.3 Calling Sub-Procedures .. 101

5.4 FUNCTION PROCEDURE .. 102
5.4.1 Declaring Syntax ... 103
5.4.2 Calling Function .. 103

5.5 PASSING PARAMETERS TO PROCEDURES .. 104
5.5.1 Call by Value .. 105
5.5.2 Call By Reference ... 105

5.6 PROPERTY PROCEDURE .. 109
5.7 CODE MODULE .. 109

5.7.1 Form Module ... 110
5.7.2 Standard Module ..111
5.7.3 Class Module .. 117

5.8 LIBRARY FUNCTION ... 118
5.8.1 String Function ... 118
5.8.2 Numeric Function ... 128
5.8.3 Date and Time Function ... 130

Let Us Revise ... 134
6. VB INTERFACE STYLE ...135-149

6.1 INTRODUCTION ... 135
6.2 INTERFACE STYLE ... 135

6.2.1 Single Document Interface (SDI) .. 135
6.2.2 Multiple Document Interface (MDI) .. 136
6.2.3 Explorer Style Interface .. 138

6.3 CREATING MENUS ... 138
6.3.1 Menu Basics ... 138
6.3.2 Menu Title And Naming Guidelines ... 139
6.3.3 Access Keys And Shortcut Keys ... 139

6.4 DESIGNING MENUS ... 140
6.4.1 Steps To Create Menu .. 141
6.4.2 Menu Control Array ... 148

6.5 POPUP MENUS .. 148
6.5.1 Creating Popup Menu ... 148

Let Us Revise ... 149
7. ERROR HANDLING AND FILE HANDLING ..150-160

7.1 INTRODUCTION ... 150
7.2 TYPES OF ERROR ... 150

7.2.1 Compile – Time Error .. 150
7.2.2 Run-Time Error ... 151
7.2.3 Logical Errors ... 152

7.3 HANDLING ERRORS ... 152
7.4 TRAP THE ERROR .. 152

7.4.1 On Error GoTo 0 ... 152
7.4.2 On Error Resume Next ... 153
7.4.3 On Error GoTo Line ... 153

7.5 HANDLE THE ERROR ... 154
7.5.1 Leaving Error Handlers ... 156
7.5.2 Error Object .. 156

7.6 FILE HANDLING .. 157
Let Us Revise ... 159

8. DATABASE CONNECTIVITY AND VISUAL
 DATABASE TOOLS ...161-209
8.1 INTRODUCTION ... 161
8.2 DB CONCEPTS ... 161
8.3 DATA ACCESS MECHANISM .. 162

8.3.1 Difference Between DAO, RDO and ADO ... 163
8.4 DB ENGINE ... 163

8.4.1 Microsoft Jet Database Engine .. 163
8.4.2 Open DB Connectivity (ODBC) ... 164
8.4.3 Object Link Embedding (OLE DB) ... 165

8.5 VB DATA CONTROL .. 165
8.5.1 Data Control ... 165
8.5.2 Data Bound Controls .. 166

8.6 COMPANY DATABASE ... 166
8.7 DB CONNECTION BY DATA CONTOL ... 168
8.8 DB CONNECTIVITY BY ADO DC ... 174
8.9 DB CONNECTIVITY BY ADODB .. 187

8.9.1 Objects Of ADO ... 187
8.9.2 Locktype ... 188
8.9.3 Steps To Access DB Through ADODB .. 188

8.10 VISUAL DATABASE TOOLS .. 197
8.10.1 Data Environment Designer .. 197
8.10.2 Data Report .. 197
8.10.3 Crystal Report ... 198

8.11 CREATING DATA REPORT .. 198
8.11.1 Steps To Create Data Environment For Emp_Dept ... 198

 8.11.2 Steps To Create Data Report Emp_Dept .. 203
8.12 TRANSACTIONS AND CONCURRENCY CONTROL.. 207

8.12.1 Transaction ... 208
8.12.2 Concurrency Control ... 208

Let Us Revise ... 208

9. HELP WRITING AND SOME OTHER FEATURES210-227
9.1 INTRODUCTION ... 210
9.2 HELP FILE ... 210

9.2.1 Help Modes ... 210
9.2.2 Requirements ... 210
9.2.3 HTML Help File ... 211
9.2.4 Steps To Create Html Help File .. 211

9.3 CONTEXT-SENSITIVE HELP ... 213
9.3.1 About The Helpprovider Class .. 214
9.3.2 Steps To Create Context-Sensitive Help ... 214

9.4 COMPONENT OBJECT MODEL (COM) .. 216
9.5 DISTRIBUTED COMPONENT OBJECT MODEL (DCOM) .. 216
9.6 WINDOWS APPLICATION PROGRAMMING INTERFACE (API) 217

9.6.1 What Is The Windows API? ... 217
9.6.2 Exploring The API Function List ... 217
9.6.3 Calling API ... 218

9.7 MESSAGING APPLICATION PROGRAMMING INTERFACE (MAPI) 219
9.8 MICROSOFT TRANSACTION SERVER... 221

9.8.1 Microsoft Transaction Server Run-Time Environment ... 221
9.8.2 Microsoft Transaction Server Explorer .. 222
9.8.3 Microsoft Transaction Server APIS ... 222
9.8.4 Microsoft Transaction Server Sample Applications ... 223

9.9 VISUAL SOURCESAFE .. 223
9.9.1 Limitation .. 225

9.10 MICROSOFT’S VBSCRIPT .. 225
9.10.1 Adding VbScript To Web Pages... 225
9.10.2 Working With Variables ... 226
9.10.3 Objects And VbScript .. 226
9.10.4 Linking VbScript With Objects ... 227
9.10.5 Using VbScript With Forms.. 227

10. ADVANCE FEATURES OF VB 2010 ..228-242
10.1 INTRODUCTION ... 228
10.2 VB COMPILER RUNTIME SWITCH ... 228
10.3 AUTO-IMPLEMENTED PROPERTY .. 229

10.3.1 Backing Field ... 231
10.3.2 Initializing an Auto Implemented Property .. 232
10.3.3 Property Definitions That Require Standard Syntax .. 232
10.3.4 Expanding an Auto-Implemented Property .. 233

10.4 COLLECTION INITIALIZERS .. 233
10.5 IMPLICIT LINE CONTINUATION SUPPORT ... 234
10.6 MULTILINE LAMBDA EX-PRESSIONS AND SUBROU TINES ... 234

10.6.1 To Create a Single-line Lambda Expression Subroutine 235

10.6.2 To Create a Multiline Lambda Expression Function .. 236
10.6.3 To Create a Multiline Lambda Expression Subroutine .. 236

10.7 TYPE EQUIVALENCE SUPPORT ... 237
10.8 DYNAMIC SUPPORT... 238
10.9 COVARIANCE AND CONTRAVARIANCE... 239

10.10 NAVIGATE TO .. 240
10.11 NEW COMMAND-LINE OPTION .. 241

Let Us Revise ... 241

INDEX ... 243

SPECIAL BONUS!
Want These 3 Bonus Books for free?

Get FREE, unlimited access to these
and all of our new books by joining

our community!

SCAN w/ your camera TO JOIN!

OR Visit

freebie.kartbucket.com

1.1 INTRODUCTION
Visual Basic was developed in early 1990s by Microsoft Corporation. It is one of the powerful
programming systems that help to develop sophisticated, graphical applications that can be run on
Microsoft Windows environment. Visual Basic is actually BASIC language, which is visual in
nature. It creates graphical entities rather than writing numerous lines of code to describe the ap-
pearance, functioning etc., of the application’s interface.

A program can be developed in either modular or procedural programming style or object-
oriented programming style. The modular programming style emphasizes on procedures and not on
data. A bigger program is divided into smaller complete sub programs, known as module. The
object-oriented programming style emphasizes upon objects. An object is an identifiable entity
with some characteristic and associated behavior.

Visual Basic supports a new type of programming style i.e Event Driven Programming. The
event driven programming style responds to the user events and is driven by the occurrence of user
events. Visual Basic is a combination of object oriented and event driven programming, which
supports visual effects.

In this chapter we, learn about visual basic feature, its environment and various tools that can
be used in Visual Basic. In this chapter and in the entire forthcoming chapter Visual Basic is re-
ferred as VB.
1.2 FEATURES OF VB
VB programming environment provides all features that are required to develop a graphical user
interface as ready to use components. To design user interface, programmer can directly use the
components like button, text box, radio button etc instead of writing codes to create and display
these components. VB provides many powerful features. Some prominent features are:
 It is successor of BASIC language.
 VB supports event driven programming.
 VB provides a common programming platform across all MS-Office applications.

Introduction to Visual Basic

Chapter - 1

2 Zero to Mastery in Visual Basic

 VB offers many tools that that provides a quick and easy way to develop applications.
 VB also provides many wizards that can automate tasks or coding.
 VB development environment provides tools for quick editing, testing and debugging.
 VB allows to migrate applications to an ActiveX documents. An ActiveX document enables

the application to install and run from a web browser. Thus, even if the programmer does not
know web language, he can develop applications that can run on web browser.

 A traditional client/server model has two layers i.e two tier of application – the client appli-
cation which request for something and the server application which servers that request.

In two tier architecture, there are no middle layers of applications. However VB provides
some layers between the client tier and server tier. Thus, VB is allows N-tier architecture.
1.3 VISUAL BASIC CONCEPT
In order to develop an application, there are some key concepts upon which VB is built. VB is a
window development language, which supports event driven programming. Also coding is done
interactively in VB.
1.3.1 Working of Windows, Events and Messages
A window can be a rectangular region with its own boundaries. You must aware of several different
type of window like document window, dialog window etc. There are many other type of windows.
A command button, a text box, a radio button are also called windows.

The window operating system manages all of these windows by assigning a unique id to each
window. The system continuously monitors each of these windows for signs of activities and events.
Event can occur through user actions such as mouse click or key press etc.

An Event refers to the occurrence of an activity.
Each time an event occurs, it causes a message to be sent to the operating system. The system

processes the message and broadcasts it to the other windows. Each window can then take the
appropriate action based on its own instructions for dealing with that particular message.

A Message is the information / request sent to the application
1.3.2 Event Driven Model
In an event driven application, the code doesn’t follow a predetermined path rather it executes
different code sections in response to events. Events can be triggered by the user’s actions, by
messages from system or other applications or even from the application itself. The sequence of
these events determines the sequence in which the code executes.
1.3.3 Interactive Development
The traditional application development process can be categorized into three steps- writing, com-
piling and testing code. VB uses an interactive approach to development that merges these three
steps.

Introduction to Visual Basic 3

VB interprets your code as you entered it, catching and highlighting most syntax or spelling
errors. In addition to catching errors, VB also partially compiles the code as it is entered. If the
compiler finds an error, it is highlighted in your code. You can fix the error and continue compiling
without having to start over.
1.4 VISUAL BASIC ENVIRONMENT
To start up VB, you need to follow following steps –

1. Click on Start button.
2. Click at All Programs — Microsoft Visual studio — Microsoft Visual Basic

This will open New Project dialog box where you find many different type of projects. Select
the desires Project. Generally, we select Standard EXE Project.

A Project in VB is a collection of several different types of files that make up your program.
An application is the final program that is used by the people.

VB provides many different types of project to create. These projects are listed in table 1.1.
The working environment in VB integrates many different functions such as design, editing,

compiling and debugging within a common environment. This working environment of VB is known
as Integrated Development Environment (IDE).
1.4.1 VB Integrated Development Environment
When we open a new project, the VB IDE shows the screen as shown in Fig 1.1. VB IDE consists
of following elements:

Table 1.1
Project Type Description

1. Standard EXE For creating a typical application.
2. ActiveX EXE For creating an ActiveX executable component that can be

executed from other applications.
3. ActiveX DLL For creating ActiveX dynamic link library
4. ActiveX Control For creating your own ActiveX control. It is a basic ele

ment of user interface eg. Textbox, check box
5. VB ApplicationWizard For setting up the skeleton of a new application
6. VB Wizard Manager For building your own wizard. A wizard is a sequence of

dialog windows that collect information from the user to
carry out a specific task.

7. Data Project For creating data project which is combination of standard
EXE and various data access controls.

8. IIS Application For creating an application that can run on a web server.
9. Add in For creating your own Add In .

4 Zero to Mastery in Visual Basic

10. ActiveX DocumentDLL For creating ActiveX documents in DLL form.
11. DHTML Application For building dynamic HTML pages.
12. VB EnterpriseEdition Control It creates a new standard EXE project and loads all the tools

of the professional edition of VB.
1. Title Bar: It is top most bar displaying the title of project. By default, VB will give name as

Project1, Project2….to your project. It also displays the application mode which we discuss
further.

2. Menu Bar: The horizontal menu displayed below the title bar where each option on the
menu bar has a drop-down list of items.

3. Toolbar: A toolbar displays icon for the commonly used tasks. The standard toolbar of VB
displays icons for the most frequently used commands in VB.

4. Form: Forms are the main part of the project which is used to display various controls (textbox,
listbox, buttons, etc) that form the user interface.

Project Explorer

Properties

Form Layout

Title Bar

Toolbox
Form Designer

Standard Toolbar
Menu Bar

Fig. 1.1
5. Toolbox: A toolbox is a window that displays a set of tools that may be used to place controls

on the form. The buttons on the toolbox is called is termed as control.
In chapter – 3 , we discuss each control of toolbox in detail.

Introduction to Visual Basic 5

6. Form Designer: The form designer window is the form window in design form. In this
window different controls are placed and grid of dots helps you to line up controls at the time
of design. These dots will disappear at the time of execution.

7. Project Explorer: The project explorer window shows the list of forms and modules in a
project. A VB project consists of a number of forms, modules and controls that make up an
application.
If project explorer is not displayed, then click on view Project explorer or press ctrl+R.

8. Properties Window: A form can consist of many controls on it. Every control and form has
some properties associated with it. The properties window lists the properties of selected
control. A property is a characteristic of a control such as its size, name, caption, color etc. It
displays property of one control at a time.
If properties window is not displayed, then click on view Properties Window or press F4.

9. Form Layout: It shows how big a form is in relation to the screen. It also displays the
position of the form where it will be displayed at run time.

 Context Menu

10. Context menu: These are the shortcut menus that contain shortcuts to frequently performed
actions. To open a context menu, click the right mouse button on the object you are using.

6 Zero to Mastery in Visual Basic

The specific list of shortcuts available from context menu depends on the part of the environ-
ment where you click the right mouse button.

11. Code Editor Window: It is the window where you write code for your application.

Code editor

To open code window either double click on the control or click on the view code button of
project explorer.

 View Code

Introduction to Visual Basic 7

1.4.2 VB Application Mode
A VB application works in the following three modes

1. Design Mode – There application is being created or designed.
2. Run Mode – When application is executing.
3. Break / Suspend Mode - When application is in the state of suspension.

1.5 PROPERTIES, METHODS AND EVENTS
An object or control has some characteristic attributes such as its name, color, appearance etc.
These characteristic are called properties.

A Method causes an object to do some action and Event is the occurrence of an action i.e the
activity that happens when an object does something. Methods are block of code that tells the
control how to do things. Some common methods are move, drag and setfocus etc.

Table 1.2 shows some common events associated with controls
Table 1.2

Events Occurs When
Change The user modifies text in a combo box or text box.
Click The user clicks the primary mouse button on an object.
Dbl Click The user double clicks the primary mouse button on an ob

ject.
Got Focus An object receives focus.
Key Down The user presses a keyboard key while an object has focus.
Key Press The user presses and releases a keyboard key while an ob

ject has focus.
Key Up The user releases a keyboard key while an object has focus.
Lost Focus An object lost focus.

Although properties, methods and events do different things but they are interrelated. For
example – If you move a control with the move method, one or more control’s position properties
will change as a result. Because the control’s size has changed, the resize event occurs.

Code in VB is divided into smaller blocks called procedures. A procedure containing code
that is executed when an event occurs is called Event procedure.
1.6 DEBUGGING
Debugging is the process of locating and fixing or bypassing bugs (errors) in computer program
code or hardware device. To debug a program or hardware device is to start with a problem, isolate
the source of the problem, and then fix it. A user of a program that does not know how to fix

8 Zero to Mastery in Visual Basic

the problem may learn enough about the problem to be able to avoid it until it is permanently
fixed.

Debugging is a necessary process in almost any new software or hardware development pro-
cess, whether a commercial product or an enterprise or personal application program. Debugging
tools (called debuggers) help identify coding errors at various development stages.VB gives us a
lot of opportunities to find bugs before one put their software into the hands of the users. The
primary debugging tools in the Visual Basic programming environment are the following three
debugging windows:

• The Watch window • The Immediate window
• The Locals window

Immediate Window is a great place for you to modify data or to test the function during
development. The Immediate window is used at design time to debug and evaluate expressions,
execute statements, print variable values, and so forth. It allows you to enter expressions to be
evaluated or executed by the development language during debugging. To display
the immediate window, open a project for editing, then choose Windows from the Debug menu
and select Immediate.

Local Window enables you to see the value of every variable and each member of all the
objects which are in current scope. To display the Locals window. From the Debug menu,
choose Windows and click Locals. The default context is the function containing the current ex-
ecution location. You can choose an alternate context to display in the Locals window.

Watch Window enables you to monitor the value for a certain state. You might want the
program execution to pause on an instruction that sets a certain date. You might want to set watch
expression that cause VB to break when a variable changes its value or when an expression’s value
us True.
1.7 DIFFERENCE BETWEEN .EXE AND .DLL FILE

.dll .exe
Full name of .dll is Dynamic Link Library Fullname of .exe is Extensible Execute File
.dll files requires address space to run .exe files are executed in its own address space
.dll can be part of the .exe. .exe can run independently
.dll files can b reused in the application. .exe files cannot be reused
.dll can not use by End User. .exe use by End User like-Client
We can not Run the .dll We can Run the .exe
A .dll is a file that can be loaded and When you deployed your application at that time
executed by programs dynamically. the .dll,.exe files will create
.dll is in-process component, both component .exe is out process component, it will run in its
and consumer will share same memory own memory.

Introduction to Visual Basic 9

LET US REVISE
 VB is a visual programming environment with BASIC language.
 VB supports event driven programming and ActiveX
 A property refers to the characteristic of a control.
 An event refers to an occurrence of an activity.
 A method causes an action to do something.
 A message is the request sent to an application.
 The working environment of VB is known as Integrated Development Environment.
 A project in VB is collection of several different files that make up your program.
 An ActiveX control is a basic element of user interface eg. Textbox , checkbox.
 A VB application works in three modes – design mode, run mode, break mode.
 Various windows can be opened through View menu.
 An event procedure is a procedure containing code that is executed when an event occurs.
 Process of locating or fixing errors in a program is called debugging.
 Debugging tools in VB are: Watch window, immediate window and local window.

10 Zero to Mastery in Visual Basic

2.1 INTRODUCTION
Through programming you can create many more useful and complex applications. But program-
ming involves manipulation of many values and these values must be stored somewhere.

In this chapter we discuss how values are named, how they can store, what is the lifetime and
scope of these values how these values are manipulated and many more.
2.2 KEYWORD
Keywords are the words whose meaning has already been explained in VB compiler. The keywords
cannot be used as variable names because if we do so we are trying to assign a new meaning to the
keyword, which is not allowed by the computer. However you may create variables names which
exactly resembles the keyword but not exactly the same. It would be safer not to mix up the variable
names and the keywords. These words are also called Reserved words.

The word whose meaning is already defined in VB is known as Keyword.
Following is the list of some keywords which is used by VB compiler–

Integer String Double Date
Text List Image Caption
Data Recordset If For

2.3 DATA TYPES
Like any other programming language, VB also provides facilities to work with different types of
data. These different types of data types of data can be worked with through data types. Each type
of data is handled in a different manner. A data type is to identify the type of data and associated
operations with it.

VB Programming Basics

Chapter - 2

VB Programming Basics 11

Data Type is means to identify the type of data and associated operations with it.
DATA TYPES

We can divide the data types in two major categories: Numeric and Non numeric data types.
DATA TYPES

NON NUMERIC NUMERIC

 String(Fixed length)
 String (Variable length)
 Date
 Boolean
 Object
 Variant Currency

 Byte
 Integer
 Long
 Single
 Double

 Decimal

2.3.1 Numeric Data Type
Numeric data are the data that consists of number, which can be used in calculations. These numeric
data can be represented in different ways as mentioned in Table 2.1

Table 2.1
Data Type Description

Byte This data type allows positive integer in the range of 0-255.
Integer This data type holds non fractional values within the range of -32,768 to +32,767.
Long This data type holds non fractional values that are larger than integer.
Single It is short for single precision values. It allows up to store 6 digits after decimal.
Double It is short for double precision values. It can store values up to 14 digits after

decimals.
Currency This data type is used to hold currency data. It allows maximum 15 numbers of

digits before decimal point and 4 numbers of digits after decimal point.
These data type have different size in terms of bytes and have different range of values that

can be stored in them. This can be summarized in Table 2.2

12 Zero to Mastery in Visual Basic

Table 2.2
Type Storage Range Of Values

Byte 1 byte 0 to 255
Integer 2 bytes -32,768 to +32.767
Long 4 bytes -2,147,483,648 to +2,147,483,648
Single 4 bytes -3.402823E+38 to -1.401298E–45 for negative values

1.401298E-45 to 3.402823E+38 for positive values
Double 8 bytes -1.79769313486232E+308 to -4.94065645841247E-324 for

negative values
4.94065645841247E-324 to 1.79769313486232E+308 for
positive values

Currency 8 bytes -922,337,203,685,477.5808 to -922,337,203,685,477.5807
2.3.2 Non Numeric Data Types
Non numeric values are those values which cannot participate in calculations like string, true or
false. VB provides following different type of non numeric data type –

Table 2.3
Data Type Description

Boolean This data type can take either true or false.
Date This data type holds date and time values.
Object It is a special data type which is used to hold and refer to objects

such as controls and forms.
String This is used to store textual data. It can store data having digits,

alphabets and other characters.
Variant It can store ant type of system defined data type. It is the default

data type for values whose data type is not specified.
As numeric data type, these data types also have different size in terms of bytes and have

different range of values that can be stored in them. This can be summarized in table 2.4.

VB Programming Basics 13

Table 2.4
Data Storage Range
Type
Boolean 1 Byte True or false
Date 8 Bytes 1 January 100 to 31 December 9999
Object 4 Bytes Any embedded object
String (Fixed) 1 byte for every character 1 to 65,400 characters
String (Variable) Length of string + 10 bytes 0 to 2 billion characters
Variant 16 Bytes Any value as large as double data type

2.4 VARIABLES
Sometimes you need to store some values while your program is running. For example – Consider
a program handing transaction of a restaurant. To find the total profit of a day, you might need to
store previous amount, which is added to new amount time by time. Thus a storage location is
required to store the latest amount, which can be changed or varied. Such a storage location is
called Variable.

Variable is a named storage location whose content can be varied.
A variable is temporary storage space for numbers, text, and objects. Variables are constantly

being created and destroyed and will not hold any values after your program have ended.
2.4.1 Variable Naming Conventions
VB provides extremely liberal rules for naming variables. All variables names must conform to the
following requirements:
 The name must begin with a letter of the alphabet.
 The name can be as long as 255 characters.
 The name must consist only of letters, digits, and the underscore character. (No punctuation

marks are allowed).
 Variable names can’t be duplicated with the same scope. This means that you can’t have two

variables of the same name within a procedure. However, you can have two variables with
the same name in two different procedures.
Examples of some valid variable name in VB:

Rollno, acc_number, rule1, data1a
Examples of some invalid variable name in VB:

3Rollno, acc.number, data 1a

14 Zero to Mastery in Visual Basic

2.4.2 Declaring Variables
Telling the program about a variable in advance is called declaring variable. A variable has two
associated thing with it – a name and a data type. The variable name refers to the value stored in it
and the data type tells what type of value can be stored in the variable. A variable can be declared
as per following syntax:
Syntax:
Dim <varname> [As <datatype>] , <varname> [As <datatype>]

Where
 Dim is the keyword that tells VB that a variable is declared.
 <varname> is the variable name
 As is another keyword that tells VB the datatype of the variable.
 <datatype> is a legal data type that is defined in Vb
 [] brackets means the part is optional.

Example
1. Dim rollno: There variable name is ‘rollno’ . As no data type is defined, thus VB assumes its

data type as ‘variant’. But use of variant data type must be discouraged as it takes large
memory as compared to other data types.

2. Dim rollno As Byte: There variable name is ‘ rollno ‘ and its data type is ‘ byte ‘. That means
‘rollno’ can store any value between its range i.e 0 – 255. This is the proper way of declaring
a variable.

3. Dim rollno, marks As Integer: Here you want to define ‘rollno’ and ‘marks’ as integer data
type. In above syntax only marks carry integer data type whereas data type of ‘rollno’ is
variant as no data type is declared with it. Thus to declare ‘rollno’ and ‘marks’ both as integer
data type you have to use following syntax :
Dim rollno as Integer, marks as Integer

2.4.3 Type Declaration Characters
An alternative way of specifying data type while declaring variables is the use of some special
characters in place of data type. These special characters that specify the data type is called type
declaration characters. Table 2.5 lists various type declarations

VB Programming Basics 15

Symbols:
Table 2.5

Type Declaration Character Data Type
% Integer
$ String
@ Currency
& Long
Double
! Single

The variables can be declared as follows by using type declaration character:
Syntax:
Dim <varname><type declaration symbol>

‘As’ clause is not needed in this syntax. The type declaration symbol is not part of the variable
name even though it is typed with variable name.
Example
Dim rollno%: This defines ‘rollno’ as integer data type as % symbol is used for integer.
2.4.4 Fixed Length Vs. Variable Length String
A string is a data element which can store some information composed of characters. Number of
characters that a string can store is called string length. As each character requires one byte of its
storage, number of characters inside a string determines its string length in byte. There can be fixed
length and variable length string.
Fixed Length String
Fixed length string occupies fixed number of bytes for data element they store. The numbers of
bytes are determined by the maximum number of characters the string can store. To declare a string
of fixed length you need to specify its size as shown below: Dim name As String * 15

Above, you declare a string variable ‘name’ which can store maximum 15 characters. If you
assign more characters than its length, then all extra characters are removed without any warning.
Variable Length String
Variable length string has varied string lengths which is determined separately for every data
element inside a string. The number of characters in the data element becomes its string
length. To declare a varied length string, you declare it as you declare other variables. Dim name As
String

16 Zero to Mastery in Visual Basic

Above, you declare a varied length string. Its length changes as value of ‘name’ varies. If
‘name’ has data ‘SHILPI’ then its length is 6. If we change the data of ‘name’ to ‘VISUAL BASIC’
then its length is 12.
2.4.5 Assigning Values To Variables
After declaring various variables using Dim statement, you need to assign values to these variables.
To assign values to these variables use ‘=’ as per following format:
Format

Variable = Expression
Where

 Variable is the variable name, which has been declared by using Dim statement.
 Expression can be literal or another variable or mathematical expression. We discuss literal

in 2.5 of this chapter.
Example

Rollno = 11
This stores value 18 in a variable ‘Rollno’, which is already declared by using Dim statement.

Table 2.6
Data Type Default Value
Boolean False
String “” blank / null
Integer 0
Long 0
Double 0
Single 0
Date 0
Currency 0
Variant Empty

2.4.6 Variable Default Values
When you create a variable, VB automatically assigns a value to it. This value is known as default
value of the variable. This value is depending upon the data type of the variable. Table 2.6 shows
the default values of different data type.

VB Programming Basics 17

2.4.7 Implicit And Explicit Variable Declaration
VB supports two types of variable declarations:
 Implicit Declaration
 Explicit Declaration

Implicit Declaration
Till now you learnt to declare variable. But even if we use a variable without declaring it, VB
program will not produce any error message. As VB automatically creates a variable with Variant
data type , if the variable being used has not been declared prior to it. These type of variable which
don’t declare before using it is called Implicit Variable.
Explicit Declaration
The variables which are properly declared by using keywords before using it is called Explicit
Variable.
Example

Dim num As integer
num = val(Text1.Text)
sqrval = Sqr(num)
In above example ‘num’ is declared explicitly but another variable is implicitly declared.
First is ‘sqrval’ as it doesn’t declared before so VB assign its data type as Variant.

2.4.8 Variable Scope And Lifetime
When you declare a variable, it’s not necessary that you can use them everywhere in your program.
This is because a variable may not be accessible everywhere in the program. The area of a program
in which a variable is accessible is called scope.

Part of program in which a variable is accessible is known as its Scope.
There are three different type of scope in VB :

 Private or Local Scope
 Module Scope
 Public Scope

18 Zero to Mastery in Visual Basic

Fig. 2.1
Private or Local Scope
A variable that can be used only in one procedure, in which it is declared, is said to have private
scope. If you give a Dim statement within a procedure, it means that this variable will be available
and accessible only within this specific procedure and this variable is said to have private scope.

In fig 2.1 , the variable ‘ans’ is declared within command1_click() procedure by Dim state-
ment. This ‘ans’ variable can only be used within this procedure.
Module Scope
Modules are place where you can put most commonly used routines, functions, constants, variables
etc. These things may be used in many projects and anywhere inside a project. In VB there are three
kinds of modules–

(a) Form Module: It stores everything related to form. Eg- Event procedures for all controls
placed in it, variables and constants being used in it etc.

(b) Standard Module: It stores commonly used variables, constants and procedures etc.
(c) Class Module: It stores code to create new objects.

A variable that is available inside a module i.e to all procedures in that module is said to have
module scope.

In fig 2.1, variable ‘num1’ and ‘num2’ are having module scope.

VB Programming Basics 19

Public Scope
The variable available to all the modules and procedures in an application are said to have public
scope. Since public variable are available to all procedures and modules of an application, this is
also known as global variable.

In fig 2.1 , the variable ‘num3’ is public variable.
The time for which a variable lives in the memory is called its lifetime. A variable having

private scope lives in memory as long as its parent procedure is being run. As soon as parent
procedure ends, the variable is removed from the memory. The lifetime of module scope variable
exists as long as their parent module is open. When the form is closed or removed from the memory,
all its variable gets removed from the memory. The longest lifetime is occupied by public variables.
These variables are available in the memory as soon as their parent application starts up and lives in
the memory as long as application runs.

The time for which a variable lives in the memory is known as lifetime.
2.4.9 Static Variable
We discussed that private variable have lives in the memory as long as its parent procedure runs.
But there is one exception here. If you declare a private variable with keyword static as follows :

Static <varname> As <data type>
The lifetime of the variable changes, now the variable lives in the memory even after its

parent procedure is over. That means, static variable is not removed from the memory even after its
procedure is over. Thus it retains its value and when next time its procedure gets executed, the static
variable old value is accessible. However, the scope of static variable remains private to the proce-
dure.
2.5 LITERALS
The value assigned to the variable is called literals. A literal whose data type is not specific is
considered to be variant data type. Following rules must be followed to specify a literal:
 String literals must be declared within quotation marks. Eg. “shilpi”, “Visual Basic”, “21st”,

“3214” . If quotation marks don’t have any space between them, “”, then it indicates a null or
empty string.

 Date and time value must be declared in #. Eg - #17.05 pm#, #19 September 2011#.
 Boolean literals are either true or false.

The moment you add the suffix character to a literal, it becomes Constant. Constants are
declares as follows:
Format
Const <Constant name> = <value>

20 Zero to Mastery in Visual Basic

Example
Const Pi= 3.14 This defines a constant Pi with value 3.14. User will not allow to change this value in
entire module.

A constant is a fixed value i.e a value that doesn’t change whereas a literal is a certain data
value.
2.6 OPERATORS IN VB
In order to use variables efficiently, you need to use operators. Operators are basically some sym-
bols that trigger an action and the data on which the operators work are called operands.

Operators are the symbols that trigger an action on some data. The data on which the opera-
tors operate are called Operands.

Operators in VB are divided into following categories:
 Mathematical / Arithmetic operators Concatenation or string operator
 Comparison operators Logical operators

2.6.1 Arithmetic Operator
VB supports a number of different math operators that can be used in program statement. Table 2.7
demonstrate the usage of different math operator by VB.
2.6.2 Concatenation Operator
The concatenation operator ‘&’ is used to join two or more strings.

Example:
Table 2.7

Operator Operation Function Example: Using values
Val1 = 10 & val2 = 3

+ Addition It adds two number Val1 + val2 = 13
- Subtraction It subtracts second number Val1 – val2 = 7

from first number
* Multiplication It multiplies two number Val1 * val2 = 30
/ Division It divides two number Val1 / val2 = 3.33
\ Integer Division It divides two number add Val1 \ val2 = 3

returns the integer quotient
Mod Modulus It gives remainder of a division Val1 Mod val2 = 1

operation.
^ Exponentiation It returns a number raised to Val1 ^ val2 = 1000

the power of another number.

VB Programming Basics 21

Str1 = “Visual”
Str2 = “Basic”
Book = Str1 & “ “ & str2
Msgbox (Book)
The above code will display a message box with text ‘ Visual Basic ‘.

‘+’ sign is also used to concatenates two string.
2.6.3 Comparison Operator
Operators demonstrate in table 2.8 are used to compare the values of two or more variables or
expressions.
2.6.4 Logical Operator

Table 2.8
Operator Operation Function Example: Using values

Val1 = 10 & val2 = 5
= Equal to Returns true if both values Va1=val2 is false

are equal.
<> Not equal to Returns true if both values Va1<>val2 is true

are not equal.
> Greater Than Returns true if first value Va1>val2 is true

is greater than second
>= Greater than or Returns true if first value is Va1>=val2 is true

equal to either greater than or equal
to second

< Less than Returns true if first value is Val1<val2 is false
lesser than second

<= Less than or Returns true if first value is Va1<=val2 is false
equal to either lesser than or equal to

second

22 Zero to Mastery in Visual Basic

The logical operators are used to combine two or more checking conditions. Commonly used
logical operators are described in table 2.9.

Table 2.9
Operator Function Example : using variable

Val1 = 200 & val 2 = 300
AND If both operand conditions are true, (i) val1>=100 AND val2<=500, returns true

it returns true. (ii) val1>=100 AND val2<300, returns false
OR If at least one operand conditions are (i) val1>=100 OR val2<=500, returns true

true , it returns true. (ii) val1>=100 OR val2<300, returns true
NOT Negates the result of condition (i) NOT(val1 >=200) returns false

(ii) NOT(val1<200) returns true
XOR Returns true if one operand condition (i) val1=200 XOR val2= 100, returns true.

is true and other is false. It returns (ii) val1=200 XOR val2=300, returns false
false if both operands conditions are
either true or false simultaneously.

2.6.5 Operators Precedence
A VB statement may have one or more operators in it. In such case, VB evaluates the expression
depending upon the precedence of the operator. The precedence order is given below in table 2.10.

Table 2.10
Operator Operation

^ Exponentiation
- Unary Minus
*, / Multiplication, Division
\ Integer Division
Mod Remainder
+, - Addition, Subtraction
& Concatenations
=, <>, >, <, >=, <= Comparison
NOT, AND, OR, XOR Logical Operators

2.7 SOME USEFUL FUNCTION
Although you have learnt the basic things of programming which you must know before creating a
program. There are two useful functions: Rnd() and Format(), which you will use in next chapter.
So before moving you must aware of that function.

VB Programming Basics 23

High

Resolved left to right

Low

2.7.1 Rnd Function (Random Number Generator)
The Rnd() function is used to generate a random number. The Rnd() func-
tion returns a single value that contains a randomly generated number less
than 1 but greater than or equal to 0. This is used as
Syntax:
Rnd [(number)]

The optional number argument can be used to determine how Rnd()
generates the random number. It generates the number as explained in table
2.11.
Example:
Dim val

Val = Int ((6 * Rnd) + 1)
The above statement generates a random value between 1 to 6.

Table 2.11
If number is Rnd generates
Less then 0 The same number every time
Greater then 0 The next random number in the sequence
Equal to 0 The most recently generated number
Not supplied The next random number in the sequence.

To produce random integers in a given range, use following formula:
Int ((upperbound – lowerbound + 1) * Rnd + lowerbound)
Where upperbound is the highest number of the range and lowerbound is the lowest number

in the range.
2.7.2 Format Function
While working in an application, sometime you need to present data in a particular formatted way.
VB provides a Format function to do this. The syntax of format function is :
Syntax
Format (expression [, format [, firstdayoftheweek [, firstweekoftheyear]]]

Where
 Expression is required.
 Format is optional. It is a valid name or user defined format expression.
 First day of the week is optional. It is a constant that specifies the first day of the week.

24 Zero to Mastery in Visual Basic

 First week of the year is optional. It is a constant that specifies the first week of the year.
The expression argument specifies a number to convert, and the format argument is a string

made up of symbols that shows how to format a number. The most commonly used symbols are
listed in table 2.12.
Example

Format(1997.9, “00000.00”) results 01997.90
Format(1997.9, “#####.##”) results 1997.9
Format(1997.9, “#,###.00”) results 1,997.90
Format(now, “ dd-mmm”) results 19 – sep
Format(now, “dd-mm-yyyy hh:mm) results 19 september 2011 7:45

Table 2.12
Symbol Description
0 Digit placeholder, prints a trailing or leading 0 in this position.
Digit placeholder, never prints leading or trailing 0.
. Decimal placeholder
, Thousands separator.
- + $ Characters that display exactly as typed
dd/mmm/yy Short date/month /year
mmmm/yyyy Long month/year
hh/mm/ss Hour/minute/second

2.7.3 val Function
In VB , we enter digits in the field of characters. So to make sure that digits are treated as number
instead of string , we use val () function. It converts a string value having digits into equivalent
number. It has following syntax:
Syntax
Val (String)

Where string is required.
Example
Val(“19”) results 19

VB Programming Basics 25

LET US REVISE
 Keyword are the word whose meaning is already defined in compiler.
 Data type are means to identify the type of data and associated operations with it.
 Data types supported by VB are Boolean, Byte, Currency, Date, Double, Integer, Long, Ob-

ject, String, Variant.
 String can either be fixed length or variable length.
 A named storage location whose content can be varied is called variable.
 Variables can be declared by Dim statement.
 If data type of a variable is not specified, VB assumes it as variant.
 Variable which are not declared before using are called implicit variable
 A literal is a value that is assigned to a variable.
 val() converts a string value having digits into equivalent number.
 Str() converts a number into equivalent string.
 In VB a variable can have private, module or public scope.
 The time for which a variable lives in the memory is known as its lifetime.
 Symbols or word that triggers an action are known as operators.
 VB supports arithmetic, concatenation, comparison, logical operator.
 Rnd function is used to generate random function.
 Format function is used to present values in a formatted way.

26 Zero to Mastery in Visual Basic

3.1 INTRODUCTION
The VB toolbox contains many tools to design user interface quickly and easily. On screen you find
twenty controls to work. These controls are command box, text box, label, list box, combo box etc.
You can also put many more controls on window by accessing then from components. In this chapter
you learn to work with controls, uses of different controls and their properties.

Pointer
Label

Frame
Check Box

List Box Horizontal Scroll Bar Timer
 Directory List Box
 Shape
 Image Box

OLE

 Picture Box
Text Box
Command Button
Option Button
Combo Box
Vertical List Box
Drive List Box
File List Box
Line
Data

Working With Controls

Chapter - 3

Working With Controls 27

3.2 INTRINSIC AND CONTAINER CONTROL
The VB toolbox contains the tools that can use to draw controls on the form. The controls that are
always included in toolbox and act as an integral part of Standard Exe project are known as Intrinsic
Control.

A Container Control can hold other controls within it. The controls inside a container are called
child controls. These child controls cannot move outside the container control. When you delete a
container control, all its child automatically get deleted. Eg: Frame, Picturebox.
3.3 WORKING WITH CONTROLS
3.3.1 To Draw a Control On a Form
To draw a control on the form you have to follow the following steps –

1. Click on the desired control icon that is available on toolbox.
2. Now, move the mouse pointer over the form. When your pointer comes over the form it

changes to crosshair (+) instead of arrow. Take it on the desired location and click and hold
the left mouse button.

3. While holding the left mouse button, drag the mouse down till it comes to the desired size.
Now release the mouse button.

You can also add a control on the form by double click on the control. This will automatically
add this control on the form.

To move a control, click on the control and drag it to the new location. Now release the mouse
button.

To resize a control, select it first and then use its sizing handle to resize it. When mouse pointer
moves over the sizing handles, the pointer will change to double headed arrow. Now press the left
mouse button, hold it and drag the sizing handle to desired new position.

To delete a control, select the control by clicking it and press DEL (Delete) key.
3.3.2 Object Naming Conventions
Every time when we put a control on the form, VB automatically gives a name to it. Name is one of
the very important attribute as whenever you want to do something you have to call control by its
name. If you add a Command Button VB name it Command1, similarly for textbox it named Text1.

When there are multiple controls on the form, naming like this can be very confusing as it
does not mention anything characteristic of control. Thus, while naming control, we need to follow
the following points –
 Name must begin with a letter.
 It must contain only letters, numbers and underscore.
 It must not be longer than 40 characters.

28 Zero to Mastery in Visual Basic

You can choose prefix as define in table 3.1 , to describe the class, followed by the descriptive
name for the control. This naming convention makes the control more self descriptive.

Example – cmdadd
Above name describes that it is a command button which is performing addition of

numbers.
Table 3.1

Control Prefix Control Prefix
Label Lbl Picture Box pic
Frame fra Text Box txt
Check Box Chk Command Button cmd
List box Lst Option Button opt
Horizontal Scroll Bar Hsb Combo Box cbo
Timer Tmr Vertical scroll bar vsb
Directory List Box Dir Drive List Box drv
Shape Shp File List Box fil
Image Box Img Line lin
OLE Ole Data dat

3.3.3 Setting Properties
Every control has some properties which make it different from rest of the controls. The property
window provides an easy way to set properties of the selected control. The property window con-
sists of the following elements
 Object Box: It displays the name of the control for which you set properties.
 Sort Tab: It gives a choice between alphabetic list or hierarchical view of properties.
 Properties List: It displays all the properties of the selected object.

Working With Controls 29

Sort Tab

Properties List

 Object Box

To set properties from the properties window, we do following –
1. From properties list, select the name of the property.
2. In right column, type or select the new property.

3.4 CREATE EVENT PROCEDURE
Code in VB is divided into smaller blocks. These blocks are called procedures. An event procedure
is a procedure containing code that is executed when an event occurs. An event procedure for a
control is comprises of the control’s name, underscore and the event name. A procedure can be
written between Sub and End Sub.

Example: If you want a command button named ‘cmdadd’ to invoke an event procedure
when it is clicked, is written as

Sub cmdadd_click()
End Sub
There are following three ways to open the code window

1. Double click on the object for which event procedure to be written. It will invoke code editor
window for the selected object.

30 Zero to Mastery in Visual Basic

2. Double click on the form and then select the control from the object list box.
3. In Project Explorer window, click on the code view.

Now let’s begin with the controls and discuss their important properties and events.
3.5 MANIPULATING FORMS
Form is the top level object in a VB application and every application must starts with the form. Form
acts as a container for all the controls that make up the user interface. At run time forms are called
windows. There are two types of forms:

1. Modal: A modal form takes total control of the application. It prevents user interaction with
any other window in the application besides the one that is shown. That is, it will not let the user
perform any action while modal form is open.
Syntax:
<formname>.Show.[Vbmodal]
Where <formname> is the name of the form and Vbmodal is optional field.

2. Modaless: Modaless form can interact with the user and they allow the user to switch to any
other form of the application. By default, forms are modaless.
Syntax:
<formname>.Show.[Vbmodaless]
Where <formname> is the name of the form and Vbmodaless is optional field.

3.5.1 Events of Form
Certain events can fire every time when a user moves from one form to another. These events are:

1. Initialize event: This is the first event written which is used to initialize the variable used in
the form.

2. Load Event: This event happens one time for each form when it is loaded into the memory
and is ready to display. It includes code that is executed when this event occur. A form can be
loaded by giving the succeeding syntax:
Load <formname>

3. Activate/Deactivate: The activate event occurs whenever the form becomes the active
window i.e it is receiving events from the user.
To show a form you may use the syntax:
<formname>.Show (e.g abc. show, where abc is the name of form and show in the method
name)
To hide a form you use the syntax:
<formname>.Hide

4. Unload: This event is fired when unload is involved. In this all variable and objects should be
cleared from the memory. This can also be done by using the statement Unload Me

Working With Controls 31

5. Terminate: This is final event triggered from a form which indicates that VB has removed
the form.

3.5.2 Form Properties
The appearance of the form can be customized by changing properties of form from properties
window. Some commonly used properties are demonstrated in table 3.2.

Table 3.2
Property Description
Name Specifies the name of the form by which it is call at run time. By

default VB call the first form as Form1
Caption Holds the text that appears on the title bar of the form.
MinButton, Maxbutton When these properties are true, it displays minimize and maximize

button on the title bar.
BorderStyle Determines the border style and appearance of the form.
BackColor Specifies the form background color.
Enabled Determines whether the form is active or not. By default its prop

erty is true.
Font Sets the text font name, style and size for all the controls that are

placed on form.
Movable Specifies whether the form can move at runtime or not.

Example 1: Design a form to welcome you in VB.

32 Zero to Mastery in Visual Basic

Open a form and placed a label box on it set their properties as follows:
Control Property
Form Name – Form1

Caption – My First Program
Font – Viner Hand ITC, style –bold, size 20

Label Name – Label1
Caption – WELCOME IN VB

First save this form with the extension .frm . Once you save the form immediately it asks you
to save the project with the extension .vbp .

When you click on the Run button which is available on toolbar, following window will
appear.

Control Box

3.6 BASIC CONTROLS
Before writing an event procedure for the control to response to a user’s input, you have to set
certain properties for the control to determine its appearance and how it will work with the event
procedure. Now let’s start with controls that are available on toolbox.

3.6.1 Pointer
This is the only control on the toolbox which cannot draw any thing. Its job is to select, resize or
move a control that has already placed on a form.
3.6.2 Label
It displays text that the user can not change directly. Only the person who designs the form can do
it. Some major properties of control are:

Working With Controls 33

Property Description
Name Used to name the label control
Caption Used to display the text on the label control
Font Used to specify the font, style and size of displayed text
Alignment Sets alignment of the label’s caption
WordWrap Sets word wrap for the caption text. By default, if text exceeds the

width of the label, it automatically wrap to the next line.
Autosize Allows the control to horizontally expand according to the caption

3.6.3 Text Box
The text box is the standard control for accepting input from the user as well as to display the
output. It can handle string (text) and numeric data but not images or pictures. String in a text
box can be converted to a numeric data by using the function Val(text). Major properties of text box
are:

Property Description
Name Used to name the textbox control
Text Specifies text to be displayed. This text can be edited at run time.

Usually you have to clear the box at design time.
MaxLength Sets the maximum number of characters allowed in the textbox.
Enabled Determines whether the text box is active or not. By default its

property is true.
Multiline If it is true, it allows multiple lines of text in the text box.
Scrollbar Enables to attach a built in scroll bar to the text box.
Password Character It is important property if you want to make the field as password.

If you specify a character in this property, then in place of text
being entered, this character is displayed.

3.6.4 Command Button
The Command Button is used to initiate actions, usually by clicking on it. When user pushed and
released the button, it carries out the appropriate action. Some common properties are:

Property Description
Name Used to name the command button
Caption Used to display the text on the command button
Backcolor Specifies the background color.

34 Zero to Mastery in Visual Basic

Cancel Determines whether the command button gets a click event if user
presses Esc key.

Default Determines whether the command button respond to an Enter key
Enabled Determines whether the text box is active or not. By default its

property is true.
Font Used to specify the font, style and size of displayed text
MousePointer Determines the shape of the mouse cursor when user moves the

mouse over the command button.
Picture Allows to display a selected graphical image on the command but

ton when the style property is set to 1-Graphical.
Visible Determines the command button appears or hidden from the user
Tooltip Text Display the text that appears as a tooltip at runtime.

Default Button is that command button whose click event can be activated by pressing Enter
key even though focus is not on the command button. Cancel Button is that command button
whose click event gets activated by pressing Esc key. There is only one default and one cancel
button on the form.
Assigning Access key
To assign a keyboard access key to a command button , place an ampersand (&) in front of the letter
that is to be used as access key while setting the caption property.

Assigning access key at design time Access key appear at runtime
&Print Print

Example 2: Write a program to accept two numbers from users and display their sum in
message box.

Solution: Design the form as:

Working With Controls 35

Control Property
Form Name – frmadd
Label 1 Caption – ADDITION OF TWO NUMBER
Label 2 Name – lblfirst
Text box 1 Caption – Enter First Number
Text box 2 Name – lblsecond
Comm and Button Caption – Enter Second Number

Name – txtfirst
Text – [Empty]
Name – txtsecond
Text – [Empty]
Name – cmdadd
Caption - ADD

 Now write code on the click event of add button as

Now save and run your program. At run time it appears as

36 Zero to Mastery in Visual Basic

Note : If you are adding a new form in the existing project. Then to run the second form go to
Project — Project1 Properties and set form name as startup object.
3.6.5 Check Box
A check box control offers a small set of choices from which a user can choose one or more options.
These check boxes works independently , thus user can select any number of boxes at runtime.
Following are the main properties of check box:

Property Description
Name Used to name the check box
Caption Used to display the text with the check box
Enabled Determines whether the text box is active or not. By default its property is true.
Value Used to specify the state of check box. If its value is true or 1, the

check box is checked otherwise unchecked.
3.6.6 Option Button
An option button control offers a small set of choices from which a user can choose only one
option. It always works in group. Selecting one option immediately clears the selected button from
the group. Following are the main properties of check box:

Working With Controls 37

Property Description
Name Used to name the option button
Caption Used to display the text with the option button
Enabled Determines whether the text box is active or not. By default its

property is true.
Value Used to specify the state of option button. If its value is true or 1,

the option button is selected.
3.6.7 Frame Control
It is a container control which is used to group various other controls. It does not carry out any
action and does not respond to any event by itself. Some major properties of frame are :

Property Description
Name Used to name the frame
Caption Used to display the text in the frame control
BorderStyle Used to specify the style of border. It can be 0 or 1
Appearance Used to set the look of the frame. It can be either 0-flat or 1-3D

3.6.8 ListBox Control
It presents a list of choices to the user in a column. If the number of item exceeds in the list box,
scroll bar automatically appear on the control. Major properties of listbox are:

Property Description
Name Used to name the listbox
Sorted Determines whether the items in the list are sorted or not.
Style Determines the appearance of the control. It can be either 0-stan

dard or 1-checkbox style
Multi Select Determines whether user can select multiple item from list or not.

It can take following values:
0 – Multiple selection not allowed
1 – Simple multiple selection. Item can be selected or deselected
through mouse.
2 – Extended multiple selection. Items can be selected by pressing
shift and clicking the mouse.

Common Methods of Listbox
With listbox you are able to do the following tasks:

38 Zero to Mastery in Visual Basic

1. Add items to the list: To add items in the list, use AddItem method as follows:
Syntax:
List1.AddItem<item>,<index>
Where List1 is the name of the list control, item is the string to be added and index is its order.
Index is the optional argument.

2. Remove items from the list: To remove an item from the list you must know its index value.
An item is removed from the list by using RemoveItem method with index value as follows:
Syntax:
List1.RemoveItem<index>
To count the total number of items in the list , use ListCount method
To remove first item from the list:
List1.RemoveItem 0
To remove last item of the list:
List1.RemoveItem Listcount-1

3. Access individual items in the list: The items in a list box are sorted with List() property.
List(0) holds first item, List(4) holds fifth item of the list. ListIndex property gives the index
of selected item in the list. If multiple items are selected then listindex stores the index of
most recently selected item. To remove the selected item from the list we use the following
syntax:
List1.RemoveItem List1.Listindex

Example 3: Write a program to accept an item from user and add that item in the list with the
privilege to delete any item from the list.

Solution: Design the form as follows:

Working With Controls 39

Control Property
Form Name – frmlist
Label 1 Caption – Select Item
Label 2 Name – lbltext
Label 3 Caption – Enter item to insert
Textbox 1 Name – lblremove

Caption – Select an item from list to remove
Name – lblexit
Caption – Click to close the program
Name – txtitem
Text – [Empty]

List Box Name – lstitem
Command 1 Name – cmdadd

Caption – ADD
Command 2 Name – cmdremove

Caption – REMOVE
Command 3 Name – cmdexit

Caption – EXIT
Now write the code on click event of command button as:

40 Zero to Mastery in Visual Basic

At run time, at the time of adding items it appears as:

 When we select an item from list, while clicking on remove button that item will be deleted

3.6.9 ComboBox Control
Combo box is a combination of text box and list box. It contains multiple item in its listbox. User can
select any item from given list. If his desired item is not in the listbox, he can able to select that item
by writing it in the textbox of combobox. It is practically an extendable listbox control, which can

Working With Controls 41

grow when user wants to make a selection and retract after the selection is made. It has following
common properties:

Property Description
Name Used to name the combobox
Sorted Determines whether the items in the list are sorted or not.
Style Determines the appearance of the control. There are following three

type of combox control
0 – Drop Down Combo. The control is made up of dropdown list
and textbox.
The user can select an item from list or type his own item. This is
default combobox.
1-Simple Combo. Includes a textbox and a list that doesn’t drop
down. The user can select from the list or write his own item.
2- DropDown List. This is a drop down list, from which user can
select an item but doesn’t enter a new one.

3.6.10 Image Box
The image control is used to display graphics in the format of : bitmap, icon, metafile, enhanced
metafile, cursor, .jpeg or .gif files. Some common properties are:

Property Description
Name Used to name the lmage box.
Appearance Used to control the appearance. It can be set with or without 3D

effect
Borderstyle Determines border style of the control
Picture Determines which picture will be displayed in the control. This

can also be done with the help of LoadPicture function.
Stretch Determines whether the image is resized or not.

Example 4: WAP to swap two images.
Design the form with following properties:

42 Zero to Mastery in Visual Basic

Control Property
Form Name – frmimage

Caption – Swapping Of Images
Image 1 Name – image1

Picture – Select picture from dialog box
Stretch – False

Image 2 Name – image2
Picture – Select picture from dialog box
Stretch - False

Image 3 Name – image3
Stretch - False
Visible – False

Command Button 1 Name – cmdswap
Caption – SWAP

Working With Controls 43

Write the following code

At runtime, after swapping it appear as

 3.6.11 Picture Box
The picture box control is used to display graphics which act as a container for other controls. It is
similar to the image box and supports its each graphic format . It is used to display output from
graphics method or text using the Print method. It provides methods for drawing at runtime and is
much more flexible than image box. Some common properties are:

44 Zero to Mastery in Visual Basic

Property Description
Name Used to name the Picture box.
Borderstyle Determines border style of the control
Picture Determines which picture will be displayed in the control. This

can also be done with the help of LoadPicture function.
Autosize Determines whether picture box is automatically resized to display

the entire image.
Example 5: WAP to load picture of penguins.
Design the form with following properties :

Control Property
Form Name – frmpicture

Caption – Load Picture
Picture 1 Name – Picture1

Autosize – Ture
Command Button 1 Name – cmdLoad

Caption – Load Image
Write the following code
Path of picture

Working With Controls 45

At runtime it appears as:

3.6.12 Hscroll Bar & Vscroll Bar
 Scroll bar is a graphical tool for quickly navigating a large list of items, by indicating the current

position on the scale. There are two type of scroll bars :
1. Horizontal scroll bar (hscroll): Moves left to right .
2. Vertical scroll bar (vscroll): Moves top to bottom.

The left end and top end corresponds to minimum value whereas other ends corresponds
maximum value . Its value ranges between 0 to 32,767. Both have following common properties –

46 Zero to Mastery in Visual Basic

Property Description
Name Used to name the scroll bar.
Min Returns scroll bar minimum value
Max Returns scroll bar maximum value
Value Returns current value of the scroll bar

Example 6: WAP to change the color of the textbox by using scroll bar.
Design the form with following properties :

Control Property
Form Name – frmscroll

Caption – Using Scrollbar
Text 1 Name – txtcolor

Locked – True
Text – Nil

HScroll1 Name – Hscroll
Vscroll1 Name – VScroll

Write the following code:

Working With Controls 47

At runtime it appears as:

3.6.13 Shape & Line
These controls are used for drawing graphical elements on the form. They don’t support any event,
they only used for decorative purposes. Line is used to draw line only. They have following proper-
ties:

Property Description
Name Used to name the control.
Shape Sets the shape of the control like rectangle, circle, oval etc
BorderColor Sets the color of border of the shape
FillColor Sets the color of the shape
FillStyle Controls how shape is drawn
BorderStyle Sets style of border. VB provides six border style
BorderWidth Sets width of border line of shape

48 Zero to Mastery in Visual Basic

Exapmple 7: WAP to change the size and shape of a circle by using scroll bar.
Design the following form:

Control Property
Form Name – frmshape
Shape 1 Caption – Circle

Name – shape
Fill Color – Green Fill
Style – 0 solid
Style – Circle

HScroll1 Name – Hscroll
Vscroll1 Name – VScroll

Write the code as follows:

Working With Controls 49

At runtime it appears as:

3.6.14 Timer
It is used to perform some activity at regular interval of time. This interval is specified by the pro-
grammer. This control is invisible at runtime. Instead of making a beep, the control executes code
when the specified interval is complete. It has two properties:

50 Zero to Mastery in Visual Basic

Property Description
Name Used to name the timer.
Enable It counts down repeatedly, as long as this property is true
Interval It contains a value than lies between 0 – 65,535 milliseconds. Gen

erally we set this to 1000 which indicates one second.
Example 8: WAP to display current date.
Design the form as:

Control Property
Form Name – frmtimer

Caption – Date
Lable 1 Name – lbldate

Caption – Nil
Timer1 Name – Timer

Interval – 1000
Enable – true

At run time it appears as

Working With Controls 51

3.6.15 File System Control : DriveList Box , DirList Box & FileList Box
Using these controls user can access the host computer’s file system, locate any folders or files on
hard disk or on network drives. These controls are independent of one other but they always used
together. These file controls has following function :

1. Drive List Box: Displays the name of drives within and connected to the computer.Its basic
property is drive which sets the selected drive.

2. Dir List Box: Displays folder of the current drive. It displays all the folders or files stored in
the drive which is selected by user through DriveListBox. Its basic property is Path which is
name of the folder whose subfolders are displayed in the control.

3. File List Box: Displays the file of the current folder i.e folder displayed in DirList Box.Its
basic properties are Path and Pattern. Path gives the path name of the folder whose files are
displayed and pattern specifiles which file will be displayed with a file matching string such
as ‘*.doc’.

Example 9: WAP to implement file system control which allows user to view the selected file
address in the textbox.

Design the form with following properties

52 Zero to Mastery in Visual Basic

Control Property
Form Name – frmfile

Caption – File Control System
Lable 1 Name – lbladd

Caption – Address
Lable 2 Name – lbldri

Caption – Select Drive
Lable 3 Name – lbldir

Caption – Select Directory
Lable 4 Name – lblfile

Caption – Select File
Textbox 1 Name – txtname

Text – Nil
Locked – True

Dir List Box Name – Dir1
Drive List Box Name – Drive1
File List Box Name – File1

Write the following code:

Working With Controls 53

At run time it appears as:

3.7 CONTROL ARRAYS
A control array is a group of controls that share common name, type and event procedures. Thus a
single event procedure for an event will be applicable to all elements of a control array. A control
array has atleast one element and can grow maximum upto 32767 elements. Elements of same
control array have same name, have their own properties and they differentiate from each other
through their index value.

Adding controls with control array uses fewer resources than simply adding multiple. If we
want to create a new instance of a control at run time, that control must be a member of a control
array. With a control array, each new element inherits the common event procedures of the array.
Thus it is useful for mainly two reasons:

1. To create and add a new menu item to a menu at run time.
2. To simplify code because common blocks of code can be used for all menu item.

Steps to create control array:
1. Place the desired control on the form. Let it be label1.
2. Select the control (label1) and click on copy command.
3. When you click on paste command on the form a dialog box will ask you “You already have

a control named label1. Do you want to create a control array?”

54 Zero to Mastery in Visual Basic

4. Click on yes button.
Now you have two controls on the from having same name ‘label1’ and different index value.

These index value starts from 0 and goes upward. Similarly you may add any number of controls in
a control array.
3.8 SOME USEFUL EVENTS
As event refers to the occurrence of the user activity. Here are some common events that can occur
to the controls drawn on a form.

1. Click Event: A control’s Click event fires when the control is enabled and the user both
presses and releases a mouse button while the mouse pointer is over the control. If the mouse
pointer is over a disabled control or if the mouse cursor is over a blank area of the form, then
the form receives the Click event. The Click event is easy to understand, because it represents
a common user action that occurs dozens of times during a single session in any Windows-
based application.

2. Dbl Click Event: The DblClick event occurs on a form or a control when the object is
enabled, the mouse pointer is directly over the form or control, and the user clicks the mouse
twice in rapid succession. Windows determines whether the user’s two clicks represent a
double-click or two single clicks. The user can access the Windows Control Panel to set
the maximum time interval between two clicks for these two clicks to count as a double-
click.

3. MouseUp and MouseDown: The MouseDown event fires when the user presses a mouse
button over a control or form. Similarly the MouseUp event occurs when the user releases the
mouse button over a control or form. If the user moves the mouse between the time the button
was pressed and released, the same control will receive the MouseUp event.

During the MouseDown and MouseUp event procedures, you might want to know whether
the left or right mouse button was pressed. You might also want to know whether or not one of the
auxiliary keys (Shift, Alt, or Ctrl) also was depressed during the mouse event.

All of the foregoing information is available in following four parameters that the MouseUp
or MouseDown event procedure receives from the system:

(a) Button As Integer: This is a value representing which mouse button fired the event. The
value of this parameter is either vbLeftButton, vbRightButton, or vbMiddleButton.

(b) Shift As Integer: This parameter represents an integer that indicates whether an auxiliary
key is pressed during the Mouse event. It contains a value of 0 (none), 1 (Shift), 2 (Ctrl),
4 (Alt), or the sum of any combination of those keys.

(c) X As Single: This is the horizontal position of the mouse pointer from the internal left
edge of the control or form receiving the event.

(d) Y As Single: This is the vertical position of the mouse pointer from the internal top edge
of the control or form receiving the event.

Working With Controls 55

4. KeyUp and KeyDown Event: The KeyDown and KeyUp events happen when the user
respectively presses and releases a key on the keyboard. Their event procedures take the
following two parameters:
1. KeyCode: contains an integer code for the physical key that the user pressed. You can

check for a particular key by comparing KeyCode with one of the special VB internal
constants for physical key codes. Each constant name begins with the string “vbKey”
followed by an obvious name for the key. Examples of vbKey constants would be vbKeyA,
vbKeyW, vbKeyF1, vbKeyPgUp, and so forth.

2. Shift: indicates if any of the three shift keys (Alt, Ctrl, or Shift) is pressed at the moment.
This parameter works in the same way as the Shift parameter for the MouseDown and
MouseUp event procedures. That is, Shift is an integer representing a bit mask. You can
extract information concerning the state of each of the three control keys by ANDing the
Shift parameter with one of the three VB constants for the control keys.

5. KeyPress Event: The KeyPress event happens after the KeyDown event but before the KeyUp
event. It detects the ASCII value of the character generated by the pressed key. The KeyPress
event procedure’s single parameter is KeyAscii. KeyAscii is an integer representing the ASCII
value of the character generated by the user’s key press.For instance, if the user keys an
uppercase “A,” then the KeyPress event fires and the KeyAscii parameter will have a value
of 65 (since 65 is the ASCII code for uppercase “A”).

If you change the value of KeyAscii to 0, then the system will not see a keystroke, and you
have in effect discarded the keystroke. This implies the following general technique for handling
user keyboard input in the KeyPress event procedure:

(a) Use the Chr function to convert KeyAscii to a character value.
(b) Manipulate or evaluate the character.
(c) Use the Asc function to convert the changed character back to its corresponding integer

value, or determine the desired ASCII value in some other way.
(d) Assign the new ASCII value to the KeyAscii parameter.

6. GotFocus: It occurs when an object receives the focus, either by user action, such as tabbing
or clicking the object, or by changing focus in code using the SetFocus method. A form
receives the focus only when all visible controls are disabled.

7. LostFocus: Occurs when an object loses the focus, either by user action, such as tabbing or
clicking another object, or by changing focus in code using the SetFocus method.

3.9 ACTIVEX CONTROL
An active X control is an extension to the VB toolbox. It is an interactive object that can reside on
any form that supports OCX controls. ActiveX control exist s in a separate file with a .ocx file name
extension.

56 Zero to Mastery in Visual Basic

You can use these controls as any standard VB control. Programmers writing for ActiveX
create components, self-sufficient programs that can be run by the Windows operating system. One
of the main advantages of ActiveX components is that they can be re-used by many applications.
3.9.1 Adding and Removing ActiveX Controls
You can add or remove active controls to and from the toolbox using the following procedures.
Steps to add active control

1. Click on Project Menu — Components.
2. Select the checkbox next to the name of desired .ocx control and then click on OK.

Once a control is placed in the toolbox, you can use it as other intrinsic controls.
Steps to remove activeX control

1. Remove all instances of the control from the form. Delete any references to the control in the
project’s code.

2. From Project Menu — Components.
Clear the checkbox next to the name of the .ocx control.
Commonly used active control are:

Working With Controls 57

3.9.2 Common Dialog Boxes
The Common Dialog Box Library contains a set of dialog boxes for performing common application
tasks, such as opening files, choosing color values, and printing documents. The common dialog
boxes allow you to implement a consistent approach to your application’s user interface. It is stored
in file COMDLG32.OCX.

You can use the common dialog control in your application by adding it to a form and setting its
properties. The dialog displayed by the control is determined by the methods of the control. At run
time, a dialog box is displayed or the Help engine is executed when the appropriate method is in-
voked. This control has the ability to display help by running the windows help file. At design time,
the common dialog control is displayed as an icon on a form. This icon can’t be sized.

The common dialog control allows you to display these commonly used dialog boxes:
• Open: The Open dialog box allows the user to specify a drive, a directory, a file name exten-

sion, and a file name.
• Save As: The Save As dialog box is identical to the Open dialog in appearance. It is used to

save a file.
• Color: The Color dialog box allows the user to select a color from a palette or to create and

select a custom color. At run time, when the user chooses a color and closes the dialog box,
you use the Color property to get the selected color.

• Font: The Font dialog box allows the user to select a font by its size, color, and style.
• Print: The Print dialog box allows the user to specify how output should be printed. The user

can specify a range of pages to be printed, a print quality, a number of copies, and so on. This
dialog box also displays information about the currently installed printer and allows the user
to configure or reinstall a new default printer.

• Help: The help dialog control allows you to display a Help file.
Steps to use the common dialog control

1. Add the common dialog control to the toolbox by selecting Components from the Project
menu. Locate and select the control Microsoft Common Dialog Control 6.0 in the Controls
tabbed dialog, then click the OK button.

2. On the toolbox, click the CommonDialog control () and draw it on a form.
When you draw a common dialog control on a form, it automatically resizes itself. Like the
timer control, the common dialog control is invisible at run time.

3. At run time, use the appropriate method, as listed in the following table, to display the de-
sired dialog.

58 Zero to Mastery in Visual Basic

Method Dialog displayed
ShowOpen Open
ShowSave Save As
ShowColor Color
ShowFont Font
ShowPrinter Print
ShowHelp Invokes Windows Help

When you call the equivalent method, the corresponding dialog box appears on the screen and
execution of the program is suspended until the dialog box is closed.

Example 10: Design a form by using all the methods of commondialog box.
Design the form as follows

Control Property
Form Name – frmcdb

Caption – Common Dialog box
CommandButton1 Name – cmdopen

Caption – OPEN
CommandButton2 Name – cmdsave

Caption – SAVE
CommandButton3 Name – cmdfont

Caption – FONT
CommandButton4 Name – cmdcolor

Caption – COLOR
CommandButton5 Name – cmdprint

Caption – PRINT

Working With Controls 59

CommandButton6 Name – cmdhelp
Caption – HELP

Textbox1 Name – txtresult
Text – [Empty]

Commondialog1 Name – commondialog
Write the following code:

At run time when we click on the font button, it appear as

60 Zero to Mastery in Visual Basic

3.9.3 Microsoft Windows Common Controls
The Microsoft Windows Common Controls are a group of controls that let you add some of the
same features to your program that windows uses – hence it calls common control. They are stored
under file MSCOMCTL.OCX. It includes following control –

Working With Controls 61

• TabStrip • Toolbar
• StatusBar • ProgressBar
• TreeView • ListView
• ImageList • Slider
• ImageCombo

Steps to use the windows common control
1. Select Components from the Project menu. Locate and select the control Microsoft Win-

dows Common Control 6.0 in the Controls tabbed dialog, then click the OK button.
2. In the toolbox, you get following controls:

 TabStrip
Status Bar
TreeView
ImageList
ImageComb

 Toolbar
 ProgressBa
 ListView
 Slider

Select the desired control and place it on the form to use.
3.9.3.1 Imagelist
The imagelist control contains a collection of images that can be used by other controls. Toolbars
usually features icons that represent a function of the application. To display such images on the
toolbar, you must associate an imagelist control with the toolbar control. This control is invisible at
runtime.

Steps to add images to imagelist control
1. After adding windows common control in toolbox, click on imagelist and draw it on the

form.
2. Select imagelist control. Right-click upon it and select properties. It will open property

page dialog box.

62 Zero to Mastery in Visual Basic

3. In property page dialog box, select image tab and click on the insert picture button. This will
open a dialog box to select the desired picture. Click on open, this will add image in image list.
To add another image repeats the process.

4. Once you add all the required images in imagelist, click ok.
3.9.3.2 Toolbar
A toolbar control contains a collection of button objects used to create a toolbar that can associate
with an application. Each button of toolbar corresponds to items in an application’s menu , provid-
ing a graphic interface for user to access an application’s most frequently used functions and com-
mands.

Steps to create toolbar
1. After adding windows common control in toolbox, add imagelist control with desired num-

ber of pictures as described in imagelist section.
2. After this, add toolbar control on the form.
3. Right click on the toolbar and select properties from the shortcut menu. This will display the

property page dialog box.
4. In general tab, select the imagelist property to the imagelist control name that is placed on

the form. To give raising effect to the buttons of toolbar set style property to tbrFlat.
5. To create buttons, select Button tab.
6. Click at insert button to add a button in the toolbar. This will enable the button window.
7. After this add index number of image in the imagelist, that is to be inserted under image box.
8. Type a unique string under key box, a short description under tooltip box and to display text

on the button adds text in caption box.
9. Repeat the process for adding more buttons. Then click on ok

10. To perform action by each button of the toolbar, add code for action in button click event of
toolbar control. Key property is used to identify the button selected by the user.

3.9.3.3 Status Bar
A status bar control is a frame that can comprises several other panels which inform the user of the
status of an application. The control can hold up to 16 frames.

Steps to create status bar with two panels. First panel will display a message and second
panel will show time.

1. After adding windows common control in toolbox, add Status Bar control.

Working With Controls 63

2. Right click on status bar and select properties from shortcut menu. This will open a property
window.

3. Select Panel tab. To insert a panel click on Insert Panel button. Set panel index value to 1.
Set key property to msg, style property to 0-sbrText and to display default text in this panel
type some text in text property box.

4. To add another panel, again click on Insert Panel button. Set panel index to 2, key property to
time, style property to 5-sbrTime. This will add time panel.

5. Once complete, click on apply and then ok.
3.10 OBJECT LINKING AND EMBEDDING (OLE)
OLE is a compound document standard developed by Microsoft Corporation. It enables you to
create objects with one application and then link or embed them in a second application. Embedded
objectsretain their original format and links to the application that created them. For developers, it
brought OLE Control eXtension (OCX), a way to develop and use custom user interface elements.
On a technical level, an OLE object is any object that implements the IOleObject interface, possi-
bly along with a wide range of other interfaces, depending on the object’s needs.

Visual Basic provides us the facility to link / open any different application from him by using
object linking and embedding tool box,

Steps to add PowerPoint/ Excel / word file in your VB project
1. Open VB project.
2. Place OLE Tool on form and arrange its dimensions.
3. Click on SourceDoc property.
4. Select option create new object and then select desired object (.ppt,.exl, .doc)
5. To open a specific file select from file and click on browser. Select file and check on link.
6. At run time double click on the object.

3.11 DIALOG BOX
A dialog box is a window that is used to display or accept information. Dialog boxed are either
modal or modeless. A modal dialog box does not allow the user to perform to work on other appli-
cation until it is closed. A modeless dialog box allows the user to switch between the open dialog
box and other application window. There are two type of dialog boxes- Input box and Message box.
3.11.1 Input Box
Inputbox function displays a command prompt in a dialog box. It is a modal dialog box and ask the
user to enter some data for processing. It is used by the following syntax:
Syntax:

InputBox(prompt[,title,default,xpos,ypos]

64 Zero to Mastery in Visual Basic

Where
Prompt
Required String expression displayed as the message in the dialog box. The maximum length
of Prompt is approximately 1024 characters, depending on the width of the characters used.

Title
Optional. String expression displayed in the title bar of the dialog box. If you omit Title, the
application name is placed in the title bar.

DefaultResponse
Optional. String expression displayed in the text box as the default response if no other input
is provided. If you omit DefaultResponse, the displayed text box is empty.

XPos
Optional. Numeric expression that specifies, in pixels, the distance of the left edge of the
dialog box from the left edge of the screen. If you omit XPos and YPos, the dialog box is
centered on the screen.

YPos
Optional. Numeric expression that specifies, in pixels, the distance of the upper edge of the
dialog box from the top of the screen. If you omit XPos and YPos, the dialog box is centered
on the screen

Example: The following coding displays as:
a = InputBox(“Enter your name “, “Inputbox”, “xxx”)

Title
Prompt

DefaultResponse

3.11.2 MessageBox
The MsgBox function displays a message in a dialog box, waits for the user to click a button, and
returns an Integer indicating which button the user clicked. It is used to get yes or no response from
users, and to display brief messages, such as errors, warning or alerts in a dialog box. After reading
the message user chooses a button to close.

Working With Controls 65

Syntax:
MsgBox(prompt[, buttons] [, title] [, helpfile, context])

Where
Prompt

Required. String expression displayed as the message in the dialog box. The maximum
length of prompt is approximately 1024 characters, depending on the width of the characters
used.

Buttons
Optional. Numeric expression that is the sum of values specifying the number and type of
buttons to display, the icon style to use, the identity of the default button, and the modality of
the message box. If omitted, the default value for buttons is 0

Title
Optional. String expression displayed in the title bar of the dialog box. If you omit title, the
application name is placed in the title bar.

Helpfile and context
Both optional. These arguments are only applicable when a Help file has been set up to work
with the application.
Usually the button argument can take any of the following value:

Constant Value Description
vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.

66 Zero to Mastery in Visual Basic

LET US REVISE
 The VB toolbox contain tools that can used to draw controls on the form.
 A control can be drawn on the form by clicking at its icon on the toolbox and then dragging on

the form.
 The control array found on the toolbox are called intrinsic control.
 A container control holds other control within it.
 The control name must begin with a letter and can contain digits, letters and underscore.
 An event procedure is a procedure containing code that is executed when an event occurs.
 The form act as a container for all the controls that make up the interface.
 A form can be loaded and unloaded through Load and Unload statement.
 In a form module, a form can be referred by keyword Me.
 A form can be shown by Show method and hide by Hide method.
 By setting default property to true, a command button can be designed as Default button.
 By setting cancel property to true, a command button can be designed as Cancel button.
 The label and textbox are text manipulation control.
 By setting multiline property to true, a textbox can hold multiple lines.
 The Maxlength property of a textbox specifies the maximum number of allowed characters.
 The Password property of a textbox used to hide the entered text.
 The controls available for choice selections are checkbox, option button, listbox, combobox

and scroll bar.
 Additem and Removeitem method used to add or remove element from list.
 A listbox can be cleared through clear method.
 The Listcount property tells total number of items in the list.
 The shape and line are used for drawing graphical elements on the surface of a form.
 Timer is an invisible control used for taking actions at regular intervals.
 The three file system control – drivelistbox, dirlistbox and filelistbox, are used to explore the

file system.
 A control array is a group of control that share common name and code.
 Some common events are click, dblclick, keypress, keydown & keyup, mouseup & mousedown,

gotfocus and lostfocus.
 The OLE container control supports object linking and embedding.
 An active control is an interactive object that can reside on any form that supports OCX

control.

Working With Controls 67

 A common dialog box provides commonly used dialog box i.e open,save,font,color and help
dialog box.

 The MS windows common control provides a set of 9 controls i.e tabstrip, toolbar, status bar,
progressbar, treeview, listview, imagelist, slider, imagecombo.

 The toolbar control is associated with an imagelist control.
 A ststusbar is a control that can consists several panels.
 A dialog box is a window that is used to display information. There are two types of dialog

box- message box and input box.
 Message box is used to display some information.
 Inputbox is used to accept some value from the user.

68 Zero to Mastery in Visual Basic

4.1 INTRODUCTION
Generally a program executes all its statement from beginning to end. But this is not true in every
case. Most programs decide what to do in response to changing circumstances. These programs not
only store data but also manipulate data. To perform these manipulations, programs need tools for
performing repetitive actions and for making decisions. This can be done by providing statements
in the program. Such statements are called program control statements. In this chapter we discuss
such statements.
4.2 CONTROL FLOW
In a program, statements can be executed sequentially, selectively or iteratively. Thus, every pro-
gram constructs sequence, selection and iteration.

1. Sequence: The sequence construct means that the statements are executed sequentially. This
represents the default flow of statements i.e the computer executes one line of code after
other. Programming languages provide tools to control the flow of a program by skipping or
repeating certain lines or groups of lines of code.

 Statement 1

Statement 2

Statement 3
2. Selection: The selection construct means the execution of statements depends upon a condi-

tion test. If a condition evaluates to true, a set of statements is followed otherwise another set
of statements will follow. This construct is called decision construct as it helps in making
decision which set of statements is to be executed.

Control Structure

Chapter - 4

Control Structure 69

Condition Set of statements

Set ofstatements

True

False

3. Iteration: The iteration construct means repetition of a set of statements depending upon a
test condition. Till the time a condition is true, a set of statements are repeated again and
again. As soon as the condition becomes false, the repetition stops. This is also called looping
construct. The set of statements that are repeated again and again is called body of loop and
the condition on which execution stop is called exit/test condition.

Condition

Sstatementset of

True

False
The exit condition

4.3 DECISION STRUCTURES
The decision structure allows to choose the set of statements for execution depending upon the test
condition’s. VB provides two type of selection construct –

1. If Statement
2. Select Case Statement

4.3.1 If….Then Statement
The If….Then statement tests a particular condition and executes the followed set of statements.

Syntax
If condition
Then statements
End If

If the condition evaluates to true, the statement executes otherwise ignored.

70 Zero to Mastery in Visual Basic

Example 1: Design a digital clock.
Design the following form

Control Property
Form Name – frmclock
Lable 1 Caption – Digital Clock
Lable 2 Name – lblhr
Lable 3 Caption – 00
Lable 4 Name – lable2
Lable 5 Caption – :
Timer 1 Name – lblmin

Caption – 00
Name – lable4
Caption – :
Name – lblsec
Caption – 00
Locked – True
Name – Timer
Interval – 1000

Write the following code:

Control Structure 71

At run time it appear as

If….Then….Else Statement
This form of if allows for either – or kind of conditions. Its syntax is
Syntax

If condition Then
Statements 1

Else
Statements 2

End If
If the condition evaluates to true the statements 1 are executed otherwise statements 2 are

executed.
Example 2: WAP that offers various food items and a mode of payment to select. It then

displays the total payable amount in a message box.
Design the following form

72 Zero to Mastery in Visual Basic

Control Property
Form Name – frmamount
Frame 1 Caption – Amoount
Check 1 Name – Frame
Check 2 Caption – Select item to purchase
Check 2 Name – chkpizza
Check 3 Caption – Pizza
Check 4 Name – chkpasta
Frame 2 Caption – Pasta
Option 1 Name – chkburgur
Option 2 Caption – Burgur
Command 1 Name – chkpastrey
Command 2 Caption – Pastrey

Name – frame 2
Caption – Select mode of payment
Name – optcash
Caption – Cash
Name – optcredit
Caption – Credit
Name – cmdamt
Caption – Amount
Name – cmdexit
Caption – Exit

Control Structure 73

Write the following code

At run time it appear as

74 Zero to Mastery in Visual Basic

If…..Then…..Else If Statement
This is last statement in if family of statements. This statement allows you to test a number of

exclusive cases and only executes one set of lines of code for the case that is true first. The syntax
for using this statement is:

Syntax:
If condition1 Then

statements 1
Elseif condition2 then

statements 2
Elseif condition3 then

Statements 3
•
•
•
End If

If first condition is true then statement 1 is executed and then flow jumps to the endif state-
ment. If condition1 is false then next condition is evaluated. If it is true the statement2 is executed
and flow jumps to the endif. This keeps going till an else statement or endif statement are executed.

Example 3: WAP to design a basic mathematical calculator by using control array.
Design the following form

Control Structure 75

Control Property
Form Name – frmcal

Caption – Calculator
Command 1 Create control array of command 1 to

create numberpad of calculator
Name – Digit
Caption – 0,1,2……9
Index – 0,1,2……9

Command 2 Name – cmddot
Caption – .

Command 3 Name – cmdequal
Caption – =

Command 4 Name – cmdadd
Caption – +

Command 5 Name – cmdsub
Caption – —

Command 6 Name – cmdmul
Caption – *

Command 7 Name – cmddiv
Caption – /

Text1 Name – txtdisplay
Text – nil
Locked - True

76 Zero to Mastery in Visual Basic

Write the following code

Control Structure 77

At runtime to calculate 5+8 , it appear as

78 Zero to Mastery in Visual Basic

4.3.2 Select….Case Statement
The if statement is good for data comparisons in case where two or more relational tests must be
made. But when you compare too many conditions, then nesting becomes difficult to read and
understand. VB supports a statement called select…case that handle such multiple choice condi-
tions better than if-else. The select case can be used when multiple if statements become messy and
difficult to read. It comes in three format.

Format 1:
Select Case expression
Case value

Statement
Case value

Statement
•
•
•
Case else

Statement
End select

Example 4: WAP to accept two numbers and a basic mathematical operator to perform the
user’s choice action.

Design the following form

Control Structure 79

Control Property
Form Name – frmmath
Lable 1 Caption – Basic Calculator
Lable 2 Name – lblfirst
Lable 3 Caption – Enter First Number
Text 1 Name – lblsec
Text 2 Caption – Enter Second Number
Text 3 Name – lblop
Command 1 Caption – Enter Operator (+, -, *, /)

Name – txtfirst
Text – nil
Name – txtsec
Text – nil
Name – txtop
Text – nil
Name – cmdans
Caption – ANSWER

Write the following code

80 Zero to Mastery in Visual Basic

At runtime it appear as

Format 2: This format specify the relation of values with the case expression.
Select Case expression
Case Is relation

Statement
Case Is relation

Statement
•
•
•
Case else

Statement
End select

Here relation can be tested to perform against expression.
Example 5: WAP to find overall percentage and division of a student depends upon his marks

obtained from 100 in three subjects .
Design the following form

Control Structure 81

Control Property
Form Name – frmresult
Lable 1 Caption – Result
Lable 2 Name – lblname
Lable 3 Caption – Student’s Name
Lable 4 Name – lblscience
Text 1 Caption – Science
Text 2 Name – lblmath
Text 3 Caption – Maths
Text 4 Name – lbleng
Command 1 Caption – English

Name – txtname
Text – nil
Name – txtscience
Text – nil
Name – txtmath
Text – nil
Name – txteng
Text – nil
Name – cmdans
Caption – ANSWER

82 Zero to Mastery in Visual Basic

Write the folowing code

At runtime it appear as

Control Structure 83

Format 3: This format specifies the ranges in the case value.
Select Case expression
Case exp1 to exp2

Statement
Case exp1 to exp2

Statement
•
•
•
Case else

Statement
End select

Example 6: WAP to obtain a character from user and check whether it is in upper case, lower
case, digit or symbol.

Design the following form:

Control Property
Form Name – frmchar
Lable 1 Caption – Check Character
Text 1 Name – lblchar
Command 1 Caption – Enter a character

Name – txtchar
Text – nil
Name – cmdcheck
Caption – CHECK

84 Zero to Mastery in Visual Basic

Write the following code

At runtime it appear as

4.4 LOOPING STRUCTURE
Looping structures are the statements that execute instructions repeatedly. VB provides two loop-
ing structures:

1. Sentinel controlled loop structure: It iterates the statements until a sentinel / terminating
value is obtained.

Control Structure 85

2. Counter controlled loop structure: It requires a counter variable which get incremented in
every iteration. Loop terminates when the counter reaches a particular value.

There are three types of looping structure
1. For….Next 2. Do loop 3. While ….wend

4.4.1 For…..Next
This loop is used when you know exactly how many times the code must be repeated. The general
syntax is

Syntax:
For variable = <start_value> To <End_value> Step [<increment_value>]

Statements
Next variable

The number of iterations is determined by start_value and end_value, where both are integers.
Initially the variable has start_value, the variable is get incremented by the increment_value after
every iteration. When the variable value exceeds the end value the loop terminates. The step clause
is optional and by default, the increment value is equal to 1 .

Example 7: WAP to print Fibonacci series.
Design the following form

Control Property
Form Name – frmseries
Lable 1 Caption – Fibonacci Series
Text 1 Name – lblno
Command 1 Caption – Enter number of terms to be displayed

Name – txtno
Text – nil
Name – cmdprint
Caption – Print Series

86 Zero to Mastery in Visual Basic

Write the following code

At runtime it appear as

Nested for loop
A loop structure placed inside another loop structure is called nested loop. Here the inner loop must
end before the outer loop. The nested for loop is used to display data in the form of rows and
columns. It can be write as follows

For i = 1 to 10
For j = 1 to 5

Control Structure 87

Print i, j
Next j
Next i

Example 8: WAP tp print the following pattern
*
**

Write the following code on click event of Print command button.

“ ; “ ensures that successive * is placed next to previous *
Sometimes, you may need to exit from a loop even though its terminating condition is not

reached. In such cases use Exit Do statement at the place from where you want to exit.
4.4.2 Do Loop Structure
A Do loop repeats statements in its body as long as the condition evaluates to true. And a Do
….Until loop repeats itself as long as the given condition evaluates to false. There are four ways to
use do…loop statement:
Do While…..Loop
Do While…Loop is an entry controlled loop i.e there is control over the entry into the loop. You
should use this loop when you want to test a condition first and if the condition evaluates to true
then only you want to repeat the statements. The general form of Do While …Loop is

88 Zero to Mastery in Visual Basic

Syntax:
Do While Condition

Statement
Loop

The condition is evaluated first if it is false, the body will never be executed. If it is true, the
body will execute and again check the condition before executing next time.

Example 9: WAP to count the numbers entered and calculate their sum. The loop should
terminate when 0 is entered.

Write the following code at Form_Load event

At run time it appear as

Control Structure 89

Do…Loop While
In Do..Loop while, first the body of loop is executed then condition is evaluated. If condition is true
then it repeats again otherwise terminated. In this loop the body is executed at least one time. This
is an exit controlled loop.

Syntax:
Do

Statement
Loop While Condition

Example 10: WAP to calculate the sum of numbers entered by user. The loop should termi-
nate when 0 is entered.

Write the following code at Form_Load event

The above code will execute at least once even if condition is not evaluated . At runtime even
if we write 0 as first number it displays the result as follows

Do Until….Loop
This is similar to Do While loop, but here the loop repeats as long as test condition is false. As soon
as the condition becomes true , the loop will terminate.

90 Zero to Mastery in Visual Basic

Syntax:
Do Until condition

Statement
Loop

The following code repeats as long as number is not 0.
Do Until num=0
Num = inputbox(“ Enter a number”)
Sum = sum+num
Loop

Do….Loop Until
This loop is similar to above loop but only difference is that it evaluates the condition at the end of
loop. The general form of this loop is

Syntax:
Do

Statement
Loop Until condition

Example 11: WAP to print first n squares on number where square is less than 50.
Write the following code at click event of Print command button

At runtime it gives the following result

Control Structure 91

Sometimes, you may need to exit from a loop even though its terminating condition is not
reached. In such cases use Exit Do statement at the place from where you want to exit.
4.4.3 While …Wend
The while…wend loop is functionally equivalent to the Do While …Loop. It uses the following

syntax:
While condition

Statements
Wend

The following code repeats as long as number is not 0.
While num<>0
Num=inputbox(“ Enter a number”)

 Sum = sum+num
Wend

4.4.4 Problems with loop
While using loop two types of problems are often encountered:

1. Infinite loop: These loops are written in such a way that it never reach at their terminating
condition. It keeps repeating itself endlessly that is why it is also called endless loop. It is a
common programming error which is caused by neglecting increment or decrement counter.
You can use Break or Ctrl+Break button to suspend execution and correct the code.

2. Invalid initial and terminal conditions: A program also not able to perform well if it doesn’t
get proper initial and terminal value. It mostly done with arrays.

4.5 ARRAYS
When you work with a single item, you only need to use one variable. However, if you have a list of
items which are of similar type to deal with, you need to declare an array of variables instead of
using a variable for each item. For example, if we need to enter one hundred names, you might have
difficulty in declaring 100 different names, this is a waste of time and efforts. So, instead of declar-

92 Zero to Mastery in Visual Basic

ing one hundred different variables, you need to declare only one array. Thus, an array is a collec-
tion of variables, all with the same data type and name.

An array stores in a consecutive group of memory locations having the same name and the
same data type. To refer to a particular location or element in the array, you specify the array name
and the array element position number. The Individual elements of an array are identified using an
index value. The index value of first element of an array is always be 0. Arrays have upper and
lower bounds and the elements have to lie within those bounds. Each index number in an array is
allocated individual memory space and therefore users must evade declaring arrays of larger size
than required.
4.5.1 Dimension of an Array
An array can be one dimensional or multidimensional. One dimensional array is like a list of items
or a table that consists of one row of items or one column of items. The format for a one dimen-
sional array is ArrayName(x).
Student

Name(0) Name(1) Name(2) Name(3) Name(4) Name(5)
Name

A two-dimensional array will be a table of items that make up of rows and columns. To
identify a particular table element, we must specify two indexes: The first (by convention) identi-
fies the element’s row and the second (by convention) identifies the element’s column. Normally it
is sufficient to use one dimensional and two dimensional arrays, you only need to use higher dimen-
sional arrays if you need with engineering problems or even some accounting problems. VB sup-
ports maximum 60 dimensional arrays. The format for a two dimensional array is ArrayName(x,y).

Name(0,0) Name(0,1) Name(0,2) Name(0,3)
Name(1,0) Name(1,1) Name(1,2) Name(1,3)
Name(2,0) Name(2,2) Name(2,2) Name(2,3)

4.5.2 Declaring Arrays
Arrays occupy space in memory. The programmer specifies the array type and the number of ele-
ments required by the array so that the compiler may reserve the appropriate amount of memory.
Arrays may be declared as Public or Private by using keywords Dim or Static. Array must be
declared explicitly with keyword “As”.

There are two types of arrays in Visual Basic namely:
1. Fixed-size array: The size of array always remains the same as declared. It doesn’t change

its size during the program execution.
2. Dynamic array: The size of the array can be changed at the run time i.e size changes during

the program execution.

Control Structure 93

Fixed-sized Arrays
When an upper bound is specified in the declaration, a Fixed-array is created. The upper limit
should always be within the range of long data type.
Declaring a fixed-array

Dim numbers(6) As Integer
Here, numbers is the name of the array, and the number 6 included in the parentheses is the

upper limit of the array. The above declaration creates an array with 6 elements, with index num-
bers running from 0 to 5.

If we want to specify the lower limit, then the parentheses should include both the lower and
upper limit along with the To keyword as

Dim numbers (1 To 6) As Integer
In the above statement, an array of 6 elements is declared but with indexes running from 1 to

6 instead of 0 to 5.
A public array can be declared using the keyword Public instead of Dim as shown below.

Public numbers(5) As Integer
The following statement declares a two-dimensional array 50 by 50 array within a procedure.

Dim AvgMarks (50, 50)
It is also possible to define the lower limits for one or both the dimensions as for fixed size

arrays.
Dim Marks (101 To 200, 1 To 100)

Example 12: WAP to sort numbers in ascending order.
Design the following form:

94 Zero to Mastery in Visual Basic

Control Property
Form Name – frmsortarray

Caption – Soring
Command 1 Name – cmdlist

Caption – Show Elements of array
Command 2 Name – cmdsort

Caption – Show sorted array list
Write the following code

Control Structure 95

At runtime it appear as

96 Zero to Mastery in Visual Basic

4.5.3 Static and Dynamic Arrays
Static arrays must include a fixed number of items, and this number must be known at compile time
so that the compiler can set aside the necessary amount of memory. You create a static array using
a Dim statement with a constant argument.

Dim Names(100) As String ‘This is a static array.
Most programs don’t use static arrays because programmers rarely know at compile time how

many items you need and also because static arrays can’t be resized during execution. Both these
issues are solved by dynamic arrays. You declare and create dynamic arrays in two distinct steps.
Initially you declare the array to account for its visibility using a Dim command with an empty pair
of brackets.

Dim Customers() As String
 Then you create the array when you actually need it, using a ReDim statement:
ReDim Customer(1000) As String
Dynamic arrays can be re-created at will, each time with a different number of items. When

you re-create a dynamic array, its contents are reset to 0 (or to an empty string) and you lose the data
it contains. If you want to resize an array without losing its contents, use the ReDim Preserve
command:

ReDim Preserve Customers(2000) As String
When you’re resizing an array, you can’t change the number of its dimensions nor the type of

the values it contains. Moreover, when you’re using ReDim Preserve on a multidimensional array,
you can resize only its last dimension:

Finally, you can destroy an array using the Erase statement. If the array is dynamic, Visual
Basic releases the memory allocated for its elements (and you can’t read or write them any longer);
if the array is static, its elements are set to 0 or to empty strings.
4.5.4 Arrays within UDTs
UDT(User Defined Type) structures can include both static and dynamic arrays. Here’s a sample
structure that contains both types:

Type MyUDT
 StaticArr(100) As Long
 DynamicArr() As Long
End Type
...
Dim udt As MyUDT
ReDim udt.DynamicArr(100) As Long
udt.StaticArr(1) = 1234

Control Structure 97

The memory needed by a static array is allocated within the UDT structure; Dynamic arrays
are advantageous when each individual UDT variable might host a different number of array items.
4.5.5 Array within another array
It is possible to create a variant array and populate it with other arrays of different data types. The
following code creates two arrays, one containing integers and other strings. It then declares a third
variant array and populates it with the integer and string array.

Private Sub command1_Click()
Dim counterA(5) As Integer
Dim intx As Integer
For intx = 0 To 4

counterA(intx) = 5
Next intx

Dim counterB(5) As String
For intx = 0 To 4

counterB(intx) = “hello”
Next intx
Dim arrx(2) As Variant
arrx(1) = counterA()
arrx(2) = counterB()
MsgBox arrx(1)(2)
MsgBox arrx(2)(3)
End Sub

LET US REVISE
 Every programming language provides constructor to support sequence, selection or itera-

tion.
 Sequence construct means the statements are being executed sequentially.
 Selection construct means the execution depends upon a condition test.
 Iteration means repetition of a set of statements depending upon a test condition.
 If statement and select case are two selections construct.
 An if statement can have another if statement inside it, called nested if.
 The select case handles multiple choice conditions better than if else.
 Looping structure are statements that execute repeatedly.
 For..Next, Do loop and while..wend provides loop structure.

98 Zero to Mastery in Visual Basic

 Exit do, Exit for can be used to exit from loop.
 Array is a group of homogeneous element.
 Arrays can either be fixed size i.e static or dynamic.
 Redim statement is used to specify number of elements in dynamic array.
 To preserve array element, Preserve keyword is used with Redim statement.

Procedures, Functions and Modules 99

5.1 INTRODUCTION
In most programming languages, large programs are generally avoided because it is difficult to
manage a single list of instructions. Thus, a large program is broken down into various small units
which perform a complete task. Such units are called procedures. There is various types of proce-
dures. We will discuss those in this chapter. Along with procedures, we also discuss modules and
their type.
5.2 PROCEDURES
A procedure is a block of Visual Basic statements enclosed by a declaration statement (Function,
Sub, Operator, Get, Set) and a matching End declaration which performs a well defined task.. All
executable statements in Visual Basic must be within some procedure.

Benefits of procedures:
1. They allow you to break up large or complex tasks into understandable pieces. Thus it makes

program easier to handle.
2. Procedures are useful for condensing repeated operations such as the frequently used calcu-

lations, text and control manipulation etc.
3. They save you programming time by allowing you to reuse the same code over and over in

your program.
4. They allow you to modularize your program so that if the specification of your program

changes, you can minimize the number of lines that you must modify.
5. It is easier to debug a program a program with procedures, which breaks a program into

discrete logical limits.
6. After you develop procedures for use in one program, you can use them in other programs,

often with little or no modification. This helps you avoid code duplication.
Visual Basic uses following types of procedures:
(i) Sub Procedures perform actions but do not return a value to the calling code.

Procedures, Functions and Modules

Chapter - 5

100 Zero to Mastery in Visual Basic

(ii) Function Procedures return a value to the calling code. They can perform other actions
before returning.

(iii) Property Procedures return and assign values of properties on objects or modules.
5.3 SUB PROCEDURES (SUB-ROUTINES)
A Sub procedure is a series of Visual Basic statements enclosed by the Sub and End Sub statements.
The Sub procedure performs a task and then returns control to the calling code, but it does not
return a value to the calling code.

Each time the procedure is called, its statements are executed, starting with the first execut-
able statement after the Sub statement and ending with the first End Sub, Exit Sub, or Return
statement encountered.

You can define a Sub procedure in modules, classes, and structures. By default, it is Public,
which means you can call it from anywhere in your application that has access to the module, class,
or structure in which you defined it. The term, method, describes a Sub or Function procedure that
is accessed from outside its defining module, class, or structure.

A Sub procedure can take arguments, such as constants, variables, or expressions, which are
passed to it by the calling code.

There are two type of sub procedures in VB-
(i) General Procedures: A general procedure is one that you create for your own specific pur-

pose. It tells application how to perform a specific task and it must be specifically invoked by
the application. They are Public by default, which means you can call them from anywhere in
your application.

(ii) Event Procedures: An event procedure is a procedure block that contains the control’s ac-
tual name, an underscore(_), and the event name. An event procedure is procedures associ-
ated with a specific event of an object and are named in a way that indicates the object and
the event clearly. When an object in VB recognizes that an event has occurred, it automati-
cally invokes the event procedure using the name corresponding to the event. Event Proce-
dures acquire the declarations as Private by default.

5.3.1 Declaring Syntax
The syntax for declaring a Sub procedure is as follows:

[modifiers] Sub Procedurename [(parameterlist)]
‘Statements of the Sub procedure.
End Sub
The modifiers can specify access level i.e public, private or protected. Parameters or argu-

ments are the values that are passed to procedures to accomplish its specific task. The arguments
that are to be passed to a procedure are defined at the time of procedure creation. Each argument

Procedures, Functions and Modules 101

looks like a variable declaration and act like a variable in a procedure. The syntax for each argu-
ment is

Variablename [as datatype]
If you don’t provide a type, the argument accepts a variant data type.
Example: Public Sub Addition (num1 as integer, num2 as integer)

Msgbox(“ Sum of numbers are :” & (num1+num2)
End Sub

5.3.2 Add Procedure Menu Option
Open the code window and type the code for your procedure. VB provides a tool to add procedures.
For this firstly open the code window and then Select Tools Add Procedure command to bring up
the add procedure window where you can name your new procedure , its type and scope and whether
to use static variables or not. When you click OK , VB places a skeleton code for your procedures
in the code window. Now you can write your procedure code between Sub and End Sub.

5.3.3 Calling Sub-Procedures
You invoke a Sub procedure explicitly with a stand-alone calling statement. You cannot call it by
using its name in an expression. You must provide values for all arguments that are not optional,
and you must enclose the argument list in parentheses. If no arguments are supplied, you can op-
tionally omit the parentheses. The use of the Call keyword is optional but not recommended.

The syntax for a call to a Sub procedure is as follows:
[Call] Procedurename [(Parameterlist)]

Example 1: WAP to add two numbers by using procedure .
Create the procedure addition and call it on click event of add button to add numbers 2 and 3

102 Zero to Mastery in Visual Basic

You may call procedure in two ways:
(i) With a call statement

Eg. Call Addition (2, 3) ‘must use parentheses
(ii) Without a call statement

Eg. Addition 2, 3 ‘must call without parentheses
Exit Sub statement immediately exits the Sub procedure in which it appears and the execu-

tion continues with the statement following the statement that called the Sub procedure.
5.4 FUNCTION PROCEDURE
A function is a procedure that performs a specific task and returns a value. It is a series of Visual
Basic statements enclosed by the Function and End Function statements. The function procedure
performs a task and then returns control to the calling code. When it returns control, it also returns
a value to the calling code.

Each time the procedure is called, its statements run, starting with the first executable state-
ment after the Function statement and ending with the first End Function, Exit Function, or
Return statement encountered.

You can define a Function procedure in a module, class, or structure. It is public by default,
which means you can call it from anywhere in your application that has access to the module, class,
or structure in which you defined it. A Function procedure can take arguments, such as constants,
variables, or expressions, which are passed to it by the calling code.

There are two types of functions in VB:
(i) Built-in-Function/Intrinsic Function: These functions are already defined in VB. When

required user just have to call these functions. We discuss this later in this chapter.
(ii) User Defined Function: These functions are created by user to perform their own task.

Procedures, Functions and Modules 103

5.4.1 Declaring Syntax
The syntax for declaring a Function procedure is as follows:

[modifiers] Function functionname [(parameterlist)] As returntype
Statements of function
Return functionname
End Function

The modifiers can specify access level i.e public, private or protected. You declare each pa-
rameter the same way you do for Sub Procedures.

Every Function procedure has a data type, just as every variable does. This data type is speci-
fied by the As clause in the Function statement, and it determines the data type of the value the
function returns to the calling code. The value a Function procedure sends back to the calling code
is called its return value. The procedure returns this value in one of two ways:

• It assigns a value to its own function name in one or more statements of the procedure.
Control does not return to the calling program until an Exit Function or End Function
statement is executed.
Function functionname [(parameterlist)] As returntype
functionname = expression
End Function

• It uses the Return statement to specify the return value, and returns control immediately to
the calling program.
Function functionname [(parameterlist)] As returntype
Return expression
End Function

The advantage of assigning the return value to the function name is that control does not
return from the procedure until it encounters an Exit Function or End Function statement. This
allows you to assign a preliminary value and adjust it later if necessary.

Example: Public Function Addition (num1 as integer, num2 as integer) As integer
Ans = num1 + num2
Addition = Ans
End Sub

5.4.2 Calling Function
You invoke a Function procedure by including its name and arguments either on the right side of an
assignment statement or in an expression. You must provide values for all arguments that are not
optional, and you must enclose the argument list in parentheses. If no arguments are supplied, you
can optionally omit the parentheses.

104 Zero to Mastery in Visual Basic

The syntax for a call to a Function procedure is as follows:
lvalue = functionname [(argumentlist)]

Now, solve the example1 by using functions.
Example 2: WAP to add two numbers by using Function .
Create the procedure addition and call it on click event of add button to add numbers 2 and 3

Exit Function statement immediately exits the function procedure in which it appears and the
execution continues with the statement following the statement that called the Function.
5.5 PASSING PARAMETERS TO PROCEDURES
In most cases, a procedure needs some information about the circumstances in which it has been
called. A procedure that performs repeated or shared tasks uses different information for each call.
This information consists of variables, constants, and expressions that you pass to the procedure
when you call it.

A parameter represents a value that the procedure expects you to supply when you call it. The
procedure’s declaration defines its parameters. You can define a procedure with no parameters, one
parameter, or more than one. The part of the procedure definition that specifies the parameters is
called the parameter list. An argument represents the value you supply to a procedure parameter
when you call the procedure. The calling code supplies the arguments when it calls the procedure.
The part of the procedure call that specifies the arguments is called the argument list.

In Visual Basic, you can pass an argument to a procedure by value (ByVal) or by reference
(ByRef). This is known as the passing mechanism, and it determines whether the procedure can
modify the programming element underlying the argument in the calling code.

You should choose the passing mechanism carefully for each argument to provide

Procedures, Functions and Modules 105

• Protection. In choosing between the two passing mechanisms, the most important criterion is
the exposure of calling variables to change. The advantage of passing an argument by refer-
ence is that the procedure can return a value to the calling code through that argument. The
advantage of passing an argument by value is that it protects a variable from being changed by
the procedure.

• Performance. Although the passing mechanism can affect the performance of your code, the
difference is usually insignificant. One exception to this is a value type passed by value. In
this case, Visual Basic copies the entire data contents of the argument. Therefore, for a large
value type such as a structure, it can be more efficient to pass it by reference.

The default in Visual Basic is to pass arguments by value. You can make your code easier to
read by using the ByVal keyword. It is good programming practice to include either the ByVal or
ByRef keyword with every declared parameter.
5.5.1 Call by Value
The call by value method copies the values of actual parameters into the formal parameters, that is,
the procedures takes its own copy of argument value and uses them. When referencing something
by value in your method you are only taking a ‘copy’ of the value, so any changes are only made to
your copy. Thus, in call by method, the changes are not reflected back to the original values.

This can be done by using keyword ByVal when declaring arguments as
Sub procedurename(ByVal variable As datatype)
‘
‘
‘
EndSub

Example: Private Sub Welcome(ByVal Language As String)
MsgBox(“Welcome to the world of “ & Language)
End Sub

When To Pass an Argument by Value
• If the calling code element underlying the argument is a nonmodifiable element, declare the

corresponding parameter ByVal. No code can change the value of a nonmodifiable element.
• If the underlying element is modifiable, but you do not want the procedure to be able to

change its value, declare the parameter ByVal. Only the calling code can change the value of
a modifiable element passed by value.

5.5.2 Call By Reference
An alternative to passing an argument as done so far is to pass the address of the argument to the
procedure. When this is done, the procedure doesn’t receive a simple copy of the value of the

106 Zero to Mastery in Visual Basic

argument: the argument is accessed by its address. That is, at its memory address. With this tech-
nique, any action carried on the argument will be kept. If the value of the argument is modified, the
argument would now have the new value, dismissing or losing the original value it had. This technique
is referred to as passing an argument by reference.

In call by reference, the called procedure does not create its own copy of original values, rather,
it refers to original values only by different names i.e reference. Thus, using the reference method
you are taking the reference of your object so any changes made are made to the actual object.

This can be done by using keyword ByRef when declaring arguments as
Sub procedurename(ByRef variable As datatype)
‘
‘
‘
EndSub

Example: Private Function Addition(ByRef Value1 As Integer, ByRef Value2 As Integer)
Value1 = InputBox(“Enter First Number: “)
Value2 = InputBox(“Enter Second Number: “)
Addition = Value1 + Value2
End Function

When To Pass an Argument by Reference
• If the procedure has a genuine need to change the underlying element in the calling code,

declare the corresponding parameter ByRef.
• If the correct execution of the code depends on the procedure changing the underlying ele-

ment in the calling code, declare the parameter ByRef. If you pass it by value, or if the calling
code overrides the ByRef passing mechanism by enclosing the argument in parentheses, the
procedure call might produce unexpected results.

Example 3: WAP to swap two values by using both (ByVal & ByRef) methods.
Design the form as follows

Procedures, Functions and Modules 107

Control Property
Form Name – frmswap

Caption – Passing Parameters
Label 1 Name – lblfirst

Caption – First Number
Label 2 Name – lblsecond

Caption – Second Number
Label 3 Name – lblorig

Caption – Original Value
Label 4 Name – lblswap

Caption – Swap No
Textbox 1 Name – txtfirst

Text – [Empty]
Textbox2 Name – txtsec

Text – [Empty]
Textbox 3 Name – txtswapf

Text – [Empty]
Textbox2 Name – txtswaps

Text – [Empty]
CommandButton Name – cmdref

Caption – Swap By Reference
CommandButton Name – cmdval

Caption – Swap By Value

108 Zero to Mastery in Visual Basic

Write the following code:

At run time when you click on value is invoked by value, the original value remains unchanged
but when this is invoked by reference the original value get swapped. It appears as :

Procedures, Functions and Modules 109

5.6 PROPERTY PROCEDURE
Till now you have worked with controls that ar. To use these controls you need to set some of their
properties and define a few of the event procedures. But these properties and events are predefined.

You can also create your own controls which can be added in the form like OCX controls. The
objects that you create yourself are called class modules. That is, if you want you can also create
your own controls and add them to toolbox as OCX control.

Property procedures are the code which runs when a property of a control gets new value or
the value is retrieved. It is used to create and manipulate custom properties. It is used to create read
only properties for Forms, Standard modules and Class modules. Visual Basic provides three kind
of property procedures-

• Let procedure: Sets the value of a property.
• Get procedure: Returns the value of a property.
• Set procedure: Sets the references to an object.

5.7 CODE MODULE
A key part of developing applications using Visual Basic is ensuring that the code is carefully
structured. This involves segmenting the code into projects, modules and procedures so that it is
easy to understand and maintain. A complete Visual Basic application is typically contained in a
single project. Within a project, code is placed in separate code files called modules, and within
each module, the Visual Basic code is further separated into self contained and re-usable proce-
dures.

A module is a code container in VB, that contains some procedure and definitions.
Following are three types of modules in VB –

110 Zero to Mastery in Visual Basic

• Form Modules
• Standard Modules
• Class Modules

5.7.1 Form Module
You have developed many applications in VB. An application contains many forms. All the code of
a single form resides in a module called a form module. Basically, a form is a module that stores all
the procedures and declarations pertaining to single form.

The form modules can contain procedures that handle events, general procedures and form
level declarations of variables, constants, types and external procedures. All the declarations under
general section, sub or functions of a form, is accessible from anywhere within the form. Thus, all
these are part of a one single module – the form module.

The form modules are saved with extension .frm. You can open a .frm file in an editor window
and see description of the form and its control including their property setting. Following window
shows the form module of given form -

.frm
module

Procedures, Functions and Modules 111

5.7.2 Standard Module
The standard modules are the modules that store general purpose code of the application i.e. the
code and declaration are not specific to one single form of the application.

It is like a form without graphical interface – it is a code container, consisting only of a general
declarations section, accessible from anywhere within the program. The standard module stores the
procedures and declarations commonly accessed by other modules within the application. It stores
with extension .bas .

Steps to add standard module
• Select Add Module from Project Menu.
• Select Module from Add Module dialog box and click on Open.

112 Zero to Mastery in Visual Basic

This will open the code window for new module and add it to the project explorer. When
module is selected , the Form view button is disabled because module does not contain any control.
The module itself is a kind of control, it has only property Name.

Example 4: Design an application with two forms .Both forms should be able to share data
with each other,

Design the first form as

Procedures, Functions and Modules 113

Control Property
Form Name – frmmod1
Label 1 Caption – Form1
Label 2 Name – lblfirst
Textbox 1 Caption – First Number

Name – lblsecond
Caption – Second Number
Name – txtfirst
Text – [Empty]

Textbox 2 Name – txtsec
Text – [Empty]

Command 1 Name – cmdwelcome
Caption – Welcome

Command 2 Name – cmdnext
Caption – Next

Add another form in the same project by selecting Project — Add Form. Design the second
form as

114 Zero to Mastery in Visual Basic

Control Property
Form Name – frmmod2
Label 1 Caption – form2
Label 2 Name – lblfirst
Label 3 Caption – First Number
Textbox 1 Name – lblsecond

Caption – Second Number
Name – lbladdress
Caption – Address
Name – txtfname
Text – [Empty]
Locked – True

Textbox 2 Name – txtsname
Text – [Empty]
Locked – True

Textbox 2 Name – txtaddress
Text – [Empty]
Locked – false

Command 1 Name – cmdwelcome
Caption – Welcome

Command 2 Name – cmdback
Caption – Back

Procedures, Functions and Modules 115

Now add a module in the same project by selecting Project — Add Module. Design the
module as

Write the following code in code window of Form1

Now write the following code in code window of Form2

116 Zero to Mastery in Visual Basic

At run time it appear as

When you click on the next button second form will open. When you click on welcome button
of any form following msgbox will appear

Procedures, Functions and Modules 117

5.7.3 Class Module
Object Oriented programming was introduced to make large program easier to make and handle.
The OOP resolves the problem by creating objects each with their own properties, methods, func-
tions etc. The entire programming interface of VB is based upon some objects that you place on the
forms. The toolbox and components of project are loaded with objects that you can add to your
project. These are the objects that someone else has created; you can also create your own control
with the help of class module.

A class module is a special code module that stores the blueprint for user created custom
objects. When you need the functionality of a particular object you create an instance of it, based
on the code contained in the class module. Each class module can contain only one class that
defines everything about the new object. Basically class defines the properties and behavior for a
type and an object is created instance of its class type. You can create any number of objects from
a class.

 Name of theobject Name of the classfrom which objectwas derived

Adding a class module
To add a class module in a project , just click on Project — Add class module. This will open a class
module dialog box. Select class module and then open. Now you find a code window opened to

118 Zero to Mastery in Visual Basic

type the code for new class, its properties, methods etc. The class module is seved with .cls exten-
sion.

Creating properties and methods
Properties are used to define characteristics of the object. To create a property of a new object, a
module level variable is defined to hold property value and two procedures property Let and prop-
erty Get. Property procedures are the code which runs when a property gets anew value (Let) or
when the value is retrieved (get).

Methods are defined to implement the behaviors of the object. Methods are written through
sub or function procedures.
5.3 LIBRARY FUNCTION
The functions which are available in VB to use directly without passing their definition are called
built-in-function . They are also called library function. It offers a set of functions to manipulate
strings, date, times and number. These built in functions are useful as they save time and efforts.
5.3.1 String Function
The string functions allow you to work with strings in numerous ways such as changing cases,
extracting characters from a string, determining whether a character is a part of a string etc. etc.

1. The LCase and UCase Functions: These two functions convert strings to all lower or all
upper case. The LCase() functions converts a string into all lower case and UCase() does
exactly the opposite. These functions might be useful if you want to compare strings. The
Syntax of this function is

Syntax:
LCase(String)

Procedures, Functions and Modules 119

UCase(String)
Consider the following example

Print UCase(“hello world”)
The output would be HELLO WORLD.

Similarly,
Print LCase(‘Hello WORLD”)
The output would be hello world.

Example 5: Obtain text from textbox txtLocation and determine whether the user lives in
Delhi or not. The user is allowed to enter the location in any possible case combination.

Write the following code at change event of txtlocation

2. The Len Function: This Function gives you the length of the string i.e. how many characters
long the string is. It counted all the characters i.e punctuation, numbers, alphabets, special
characters and blank spaces etc.

Syntax
Len(String)

Consider this:
Len(“ Visual Basic”)
The output will be 12

3. The Trim, LTrim and RTrim Functions: These functions remove leading (LTrim function)
or trailing(RTrim Function) from a string. These functions don’t affect any spaces between
words. The Trim() function simply accomplishes both LTrim() and RTrim() function, i.e.
removes all leading and trailing blanks.

Syntax
LTrim(String)
RTrim(String)

120 Zero to Mastery in Visual Basic

Trim(String)
Users may inadvertently type spaces into a text box, and you can use these functions to
account for that, but mostly the Trim() function is used with fixed-Length strings, user de-
fined types, and Random Access Files.

Consider the example:
Trim(“ Visual Basic “)
The output will remove a blank space before Visual i.e Visual Basic

4. Left and Right Functions: These are two functions that are used to extract a certain number
of characters from the leftmost or rightmost portions of a string. These functions require two
arguments: the original string and the number of characters to extract from that string.

Syntax
Left(string, no-of characters)
Right(string, no-of characters)

consider the following example code.
name = “ Dinesh Ch. Srivastav”
Print Left(name, 6)
Print Right(name, 8)

The above code produces the result:
Dinesh ‘extract 6 leftmost characters from the name string.
rivastav ‘extracts 8 rightmost characters from the name string.

5. Mid Function and Mid Statement: Mid function is used to extract characters from the
middle of a string. We need three arguments here: the Original String, the place to Start
Extracting characters, and the number of characters to extract.

Syntax
Mid(String, start-position, no-of-characters)

for example:
Print Mid(“The Pink City “, 7, 3)
The output will be ‘nk ‘

Starting from the 7th character extracting 3 characters including the start position character.
Also consider that all characters are included in the operation.

The Mid Statement not only extracts the characters, but also replaces them with the text you
specify.

For example, in the following code we put ‘-‘ in the given string
Sinput = “Object oriented”

Procedures, Functions and Modules 121

Mid(sinput,7,1) = “-”
Example 6: Write a function namely AltCap that receives a String argument and returns the

string wherein each alternate character is in Uppercase.
Design the following form:

Write the following code at click event of change button

At run time it appear as

122 Zero to Mastery in Visual Basic

6. InStr Function: The InStr function searches for strings within strings.
Syntax

InStr([start],string1,string2,[Compare]) ‘ [] means optional.
Where

Start - Is a numeric expression that sets the starting position for each search, if omitted, the
search begins at the first character of the string.

String1 - Is the String in which to search.
String2 - Is the string to be searched for.
Compare - Specifies the type for string comparison. 0 for case sensitive search and 1 for case

insensitive search.
There are two ways to compare strings - case sensitive and case insensitive.

• case sensitive is a Binary Comparison
e.g. string “VISUAL” and string “VisUal” are not equal in this case.

• case insensitive is a Text Comparison.
e.g. string “VISUAL” and string “VisUal” are equal in this case.

By default VB6 will use the Binary method to compare strings unless explicitly specified.
Now Consider the Following Code.
Dim SearchString, SearchChar, MyPos
SearchString = “The earth is the third planet in the Solar system”
SearchChar = “S”
‘Textual Comparison starting at position 1 returns 12
MyPos = InStr(1,SearchString, SearchChar,1)

Procedures, Functions and Modules 123

Print MyPos
‘Binary Comparison starting at position 1 returns 38
MyPos = InStr(1,SearchString, SearchChar,0)
Print MyPos
‘If you simply omit the compare and start argument, it will return 38
MyPos = InStr(SearchString, SearchChar)
Print MyPos
InStr is a function and will return the position of the first occurrence of the search string . if the

string is not found then it will return 0
InStrRev() is a related function here. It works similar to the InStr function, but it performs the

search BACKWARDS.
7. Space Function: This function by itself produces a certain number of spaces.

Syntax
Space(number) ‘Number argument is the number of spaces you want in the string.

Consider the following example code.
Dim MyString
MyString = “HelloWorld”
Print MyString
‘Following line inserts 10 blank spaces in between “Hello” and “World”
MyString = “Hello”& Space(10) & “World”
Print MyString
The output will be “ Hello World”

8. String Function: This function is used for producing a string with certain number of repeating
characters.

Syntax
String(number,character)
Where Number is number of characters to be repeated and character is the character to
repeat

ForExample, the following code
sResult = String(10,66)
will return BBBBBBBBBB as 66 is character code of ‘B’

Now consider this:
MyString = String(10, “ABC”)

124 Zero to Mastery in Visual Basic

Will returns AAAAAAAAAA
Remember that no matter how long the string you enter in the character argument, it will

always select the first character of that string.
9. Str Function: This function converts a number into equivalent string.

Syntax
Str(number)
Where number argument is a long containing any valid numeric expression.
when numbers are converted to strings, a leading space is always reserved for the sign of
number. If number is positive, then the returned string contains a leading space and the plus
sign is implied, else a “-” sign is put in front of the number.
The following example uses the Str Function to return a sting representation of a number.
Dim MyString
MyString = Str(1302)
Print MyString ‘Returns 1302
MyString = Str(-12503.54)
Print MyString ‘Returns -12503.54

10. Asc Function: This function is used to get a character’s equivalent ASCII code.
Syntax

Asc(String)
Normally you would use a single character enclosed in quotes or one character resulting from
another function, but using a multi character string doesn’t cause an error, the function will
simply take the first character of the string.

For Example the following code will print 68, the ASCII code of character “D”.
City = “Dehradun”
Result = Asc(City)
Print Result

11. Chr Function: This function returns a String containing the character associated with the
specified character code.

Syntax
Chr(charcode)
where the required charcode argument is a Long that identifies a character.
Numbers from 0 - 31 are the same as standard, non printable ASCII codes. For example,

Procedures, Functions and Modules 125

Chr(10) returns a linefeed character. The normal range for charcode is 0 - 225. However on
DBCS systems, the actual range for charcode is from -32768 to 65535.

consider the following example:
Dim MyChar
MyChar = Chr(65) ‘Returns A
MyChar = Chr(97) ‘Returns a

12. StrReverse Function: This Function returns a string in which the order of a specified string
is reversed.

Syntax
StrReverse(String1)
Where String1 is the argument whose characters are to be reserved.

For Example:
StrReverse(“Visual”)
Will retuen “lausiV”

Example 7: WAP that lets the user to enter a line of text and a word to be searched for. It then
reports how many times the word has occurred in the line of text.

Design the following form

Write the following code at click event of search button

126 Zero to Mastery in Visual Basic

At runtime , it appear as

Example 8: WAP to accept a string from user. And then check whether that string is palin-
drome or not.

Design the following form

Procedures, Functions and Modules 127

Write the following at click event of check button

At run time it appear as

128 Zero to Mastery in Visual Basic

5.8.2 Numeric Function
The mathematical functions are very useful and important in programming because very often we
need to deal with mathematical concepts in programming such as chance and probability, variables,
mathematical logics, calculations, coordinates, time intervals and etc.

Some commonly user functions are:
1. Int Function: Int is the function that converts a number into an integer by truncating its

decimal part and the resulting integer is the largest integer that is smaller than the number. It
returns the first negative integer less than or equal to the number.

Syntax
Int(number)

Example:
Int(2.4)=2,
Int(4.8)=4,
Int(-4.6)= -5,
Int(0.032)=0

2. Fix Function: Fix truncates the fractional portion of a number. If the number is a positive
number as both truncate the decimal part of the number and return an integer. However, when
the number is negative, it will return the first negative integer greater than or equal to the
number.

Syntax
Fix(number)

Example:
Fix(-6.34)= -6
Fix(-14.7) = -14

Procedures, Functions and Modules 129

3. Round Function: Round is the function that rounds up a number to a certain number of
decimal places.

Syntax
Round(number,m)
Where m is number of places to round of. The Format Round (n, m) means to round a number
to m decimal places.

Example:
Round (7.2567, 2) =7.26

4. Sgn Function: This function is used to determine the sign of a number.
Syntax:

Sgn(number)
It returns a value indicating the sign of a number as
If number is less than zero, -1.
If number is equal to zero, 0.
If number is greater than zero, 1.

Example:
Dim val1, val2 , ans
Val1 = 12
Val2 = -12.3
Ans = sgn(val1) ‘Return 1 as number is greater than 0
Ans = sgn(val2) ‘Return -1 as number is less than 0

5. Abs Function: This function returns the absolute value of a number.
Syntax

Abs(number)
The return value matches the type of number. If number is a variant string , the return value is
converted to double, long or integer.

Example:
Abs(-8) = 8
Abs(8)= 8.

6. Exp Function: This function returns e (the base of natural logarithms) raised to a power. Exp
of a number x is the value of ex. Its return type is double.

Syntax:
Exp(number)

130 Zero to Mastery in Visual Basic

Example:
Exp(1)=e1 = 2.7182818284590

7. Sqr Function: This function returns the square root of a number.
Syntax

Sqr(number)
Example:

Sqr(4)=2
Sqr(9)=2

5.3.2 Date and Time Function
This section deals with various date and time function. Before starting, remember one thing that,
computer remembers its own date and time. So before proceeding check your system’s date and
time, to get the correct result.

The Date and Time functions return the system date and time in the four-byte Date format.
1. Now Function: It returns the current date and time.

Syntax
Now()
The value returned by Now function is of variant type. It considers both date and time and
return the value in following format:
mm/dd/yy hh:mm:ss[AM][PM]

Example:
Print Now() / Now
Its output is 9/19/11 11.27AM

2. Date & Date$ Function: Both Date and Date$ function returns the system date.
Syntax

Date()
Datte$()
The Date() function returns the current date in variant datatype in the following format:
mm/dd/yy ‘9/19/11
The Date$() function returns the current date in string datatype in the following format:
mm-dd-yy ’09-19-11

3. Time & Time$ Function: Both Time and Time$ function returns the system time.
Syntax

Procedures, Functions and Modules 131

Time()
Time$()
The Time() function returns the current time in variant datatype in the following format:
hh:mm:ss[AM][PM] hh can be 1-12, mm 0-59, ss 0-59

Example:
02:04:14 PM
The Time$() function returns the current time in string datatype in the following format:
hh:mm:ss hh can be 0-23, mm 0-59, ss 0-59

Example:
13:03:45

4. DatePart Function: The DatePart function returns an Integer containing the specified part
of a given date/time value.

Syntax
DatePart(interval, date)

Where date is a valid date value that you want to evaluate and interval is a string expression
that is the interval of time you want to return. The interval can take one of the following values –

Interval Description Possible Range of Values
“yyyy” Year 100 to 9999
“q” Quarter 1 to 4
“m” Month 1 to 12
“y” Day of year 1 to 366 (a “Julian” date)
“d” Day 1 to 31
“w” Weekday 1 to 7
“ww” Week 1 to 53
“h” Hour 0 to 23
“n” Minute 0 to 59
“s” Second 0 to 59

Example:
Print Date() ‘Return 5/12/11
Print DatePart(“m”,Now) ‘Return 5

5. Day, Month and Year Function: These functions return their date argument’s in the form of
a day number, month number and year number.
Day () returns a number from 1 to 31 indicating the day portion of a given date.

132 Zero to Mastery in Visual Basic

Syntax
Day(Dateargument)

Example:
intDay = Day(Now) ‘ intDay = 12
Month() returns a number from 1 to 12 indicating the month portion of a given date.

Syntax
Month(Dateargument)

Example:
intMonth = Month(Now) ‘ intMonth = 8
Year() returns a number from 100 to 9999 indicating the year portion of a given date.

Syntax
Year(Dateargument)

Example:
intYear = Year(Now) ‘ intYear = 2001

6. Hour, Minute and Second Function: These functions return their time argument’s in the
form of a hour number, minute number and second number.
Hour()Returns an integer specifying a whole number between 0 and 23 representing the hour
of the day.

Syntax
Hour(Time argument)

Example:
intHour = Hour(Now) ‘ intHour = 21 (for 9 PM)
Minute Returns an integer specifying a whole number between 0 and 59 representing the
minute of the hour.

Syntax:
Minute(Time argument)

Example:
intMinute = Minute(Now) ‘ intMinute = 15
Second Returns an integer specifying a whole number between 0 and 59 representing the
second of the minute.

Syntax
Second(Time argument)

Example:
intSecond = Second(Now) ‘ intSecond = 20

Procedures, Functions and Modules 133

7. Weekday Function: This function returns a number from 1 to 7 indicating the day of the
week for a given date, where 1 is Sunday and 7 is Saturday.

Syntax
Weekday(Date)

Example:
intDOW = Weekday(Now) ‘intDOW = 6
VB has a set of built-in constants that can be used instead of the hard-coded values 1 thru 7:
Constant Value

vbSunday 1
vbMonday 2
vbTuesday 3
vbWednesday 4
vbThursday 5
vbFriday 6
vbSaturday 7

8. DateAdd() Function: It Returns a date to which a specific interval has been added.
Syntax

DateAdd(Interval. Number date)
Where Interval is same as mentioned in datepart function. Number is the interval you want to
add. Date is the processed date to which interval is being added.

Example:
Print DateAdd(“m”,4,Now) ‘return 9/12/11

9. DateDiff() Function: DateDiff returns a Long data type value specifying the interval be-
tween the two values.

Syntax
DateDiff(Interval, date1, date2)
Where Interval is same as mentioned in datepart function Date1 & 2 are to determine the
difference between two dates.

Example:
Print DateDiff(“m”,Now, # 9/12/11#) ‘return 4

134 Zero to Mastery in Visual Basic

LET US REVISE
 A procedure is a named unit of a group of statements that perform a well defined task.
 Advantages of procedures are : reusability, modularity and simplification of complex problems.
 There are three type of procedures: Sub procedures, Function Procedures and Property pro-

cedures.
 A sub procedure performs a task but does not return a value.
 Sub procedures are of two types: General Procedure and Event Procedure.
 A function performs a task and returns a value.
 Functions are of two types: Library Function and User Defined function.
 Property procedure contains a code which runs when a property of an object gets a new value

or when the value is retrieved.
 Values are passed to procedures in two ways: Pass by value and Pass by reference.
 In pass by value method the original value remain unchanged by the changes made in the

called procedure.
 In pass by reference method the original value gets changed through the change made in the

procedure.
 A module is a code container in VB, which contains some procedures and functions.
 A form module is a module that stores all the procedures and declarations pertaining to a

single form.
 A standard module stores general purpose code of application.
 A class module is a special code module that stores the blueprint for user created custom

objects.
 Library function is used to perform various type of operations.
 The string function allows string manipulation.
 The numeric function allows number manipulation.
 The date and time function manipulates date and time.

Assignments:
1. Write a program using function leff & MiD$ to scroll the given text in the lable filed.
2. Write a program to check the gien email address in the text box is a valid email address or not.
3. Write a program to split the given text which are rpperated by any delimeter ey s/r = “VISUAL ;

BASIC ; IS ; EASY ; LANGUAGE.”

VB Interface Style 135

6.1 INTRODUCTION
When you start to work on a VB Project you are no longer just a programmer - you are now a
developer. Any project that you develop has to involve Users. They are the people who will sit in
front of your interface for eight hours a day and decide if they like it or not. If they don’t like it, no
matter how efficient the code and how many millions of dollars were spent developing it, they will
find ways to sabotage it.

As you develop more and more parts of the application, run them by the user to check for
accuracy, completeness, clarity, etc. The user interface that you design is the most visible and per-
haps the most important part of the application. The term commonly used for this type of interface is:
GUI (Graphical User Interface). User interface refers to the fact that it is the part of the application
between the user, in front of the screen, and the code behind the screen. How well the user can
interact with the code depends on the quality of the interface.
6.2 INTERFACE STYLE
Interface is the visual part of the application, with which the user can interact. There are two main
styles of user interface that you can create in VB. These interfaces are :

1. Single Document Interface (SDI)
2. Multiple Document Interface (MDI)
3. Explorer Style Interface

6.2.1 Single Document Interface (SDI)
As the name suggests, it supports single document in its window. The moment you open a new
document the previously opened documents is closed and new document is loaded in its window.
Each window contains its own menu or tool bar, and does not have a “background” window or
“parent” window containing its menu or tool bar. Example : Wordpad, Notepad. Applications which
allow the editing of more than one document at a time, e.g. word processors, may therefore give the
user the impression that more than one instance of an application is open.

VB Interface Style

Chapter - 6

136 Zero to Mastery in Visual Basic

6.2.2 Multiple Document Interface (MDI)
The Multiple Document Interface (MDI) was designed to simplify the exchange of information
among documents, all under the same roof. The MDI allows you to create an application that
maintains multiple forms within a single container form. Example : Microsoft Excel , Microsoft
Word.

An MDI application allows the user to display multiple documents at the same time, with
each document displayed in its own window. Documents or child windows are contained in a
parent window, which provides a workspace for all the child windows in the application. A child
form is an ordinary form that has its MDIChild property set to True. Your application can include
many MDI child forms of similar or different types but has only one MDI form. At run time, child
forms are displayed within the workspace of the MDI parent form. When a child form is minimized,
its icon appears within the workspace of the MDI form instead of on the taskbar,
6.2.2.1 Creating MDI Form
To create an MDI application, follow these steps:

1. Start a new project and then choose Project b Add MDI Form to add the parent Form.

When you click on Open the window will appear as:

VB Interface Style 137

2. Choose Project Add Form to add a SDI Form.
3. Make this Form as child of MDI Form by setting the MDI Child property of the SDI Form to

True. Set the caption property to MDI Child window.

At runtime it will appear as:

138 Zero to Mastery in Visual Basic

6.2.2.2 Change View From MDI to SDI
1. Choose Options from the Tools menu. The Options dialog box appears.
2. On the Advanced page, select the SDI Development Environment check box; then click OK.

The Visual Basic IDE will reconfigure to the SDI view the next time you start a Visual Basic
programming session.

3. Click OK then terminate and restart Visual Basic
6.2.3 Explorer Style Interface
The explorer style interface is a single window containing two panes or regions, usually consisting
of a tree or hierarchical view on the left and a display area on the right, as in Microsoft Windows
Explorer.

6.3 CREATING MENUS
Forms and controls comprise the basic interface for creating an application. You can make your
application more user friendly by adding menus to them. Menus are a convenient and consistent
way of grouping commands so that they become readily and easily accessible to users.
6.3.1 Menu Basics
As you have worked with menus of various GUI environments, you already know that there are
generally two type of menus – horizontal menu i.e Menu Bar and vertical menu i.e popup menu.
First we discuss, Menu bar.

VB Interface Style 139

Lets revise all the components of Menu
Menu Bar This is the horizontal bar containing different menu options.
Menu Item An option on a menu is called menu item.
Sub Menu A menu attached to a menu is called sub menu.
Separator Bar A bar on a menu that divides menu items into logical groups.
Access Key A key combination used to open sub menu of a menu item.
Shortcut Key A key combination used for directly invoking the command associated

with a menu item.
6.3.2 Menu Title And Naming Guidelines
To make your code more reliable and easier to maintain, it’s good to follow the naming conversions
when setting the Name Property. To identify the menu object, you use prefix mnu for each control.
For example: To represent File Menu name it mnufile.

To maintain consistency within an application, its good to follow following guidelines when
assigning Caption for menu item:

1. Item name should be unique within a menu, but may repeat in different menus to represent
similar actions.

2. Item name may be single, multiple or compound.
3. Each item name should have a unique access character for users who choose commands with

keyboard.
4. The access character should be the first character of the name.
5. Keep the item name short.

6.3.3 Access Keys And Shortcut Keys
Access key and shortcut key provides keyboard access to menu command.

Access key allows user to open a menu by pressing ALT key and typing a designated letter.
Once an application can open with a menu bar, the user can choose a control by pressing the letter
assigned to it. An access key assignment appears as an underlying letter in menu control’s caption.
You have to type an ampersand (&) immediately in front of the letter you want to be the access key.

140 Zero to Mastery in Visual Basic

For Example: To make access key of Edit menu , write its caption property as &Edit. At run
time you find Edit menu as Edit where E is underlined. To open Edit menu press ALT+E through
keyboard.

Shortcut Keys directly activate a menu item i.e execute menu item command immediately
when pressed. Command is activated by pressing CTRL key with a designated character. They
appear on the menu to the right of the corresponding menu item.
6.4 DESIGNING MENUS
Visual Basic provides an easy way to create menus with the Menu Editor dialog. The below dialog
is displayed when the Menu Editor is selected in the Tool Menu. The Menu Editor command is
grayed unless the form is visible. And also you can display the Menu Editor window by right
clicking on the Form and selecting Menu Editor.

Basically, each menu item has a Caption and a Name property. Each item also exposes three
Boolean properties, Enabled, Visible, and Checked, which you can set both at design time and at
run time. At design time, you can assign the menu item a shortcut key so that your end users don’t
have to go through the menu system each time they want to execute a frequent command.

Move to thenext menu

 I Insert a newmenu

Delete a selected menu
Move theselected menudown

Move theselected menu up

AddSubmenu

Remove Submenu

Menus that can grow or shrink at runtime is called dynamic menus.

VB Interface Style 141

6.4.1 Steps To Create Menu
To learn designing of menu bar, you create a menu on MDI form with File and Edit option. Open a
SDI form within MDI form like as follows:

1. Open a VB standard EXE project.
2. Click on Project Add MDI Form.

3. When you click on open MDI form will open as follows :

142 Zero to Mastery in Visual Basic

4. Click on Tool Menu Editor..

This will open menu editor window.
5. To make first menu item File, fill the boxes as mentioned

& in front of File in Caption indicates that file is a access key. When you click on OK button,
it will displays as

6. To make sub menu under file button, first click on insert button. Then it will appear as

VB Interface Style 143

7. Now click on arrow which is used to add submenu. This will create sub menu of file
menu. Fill the editor as follows:

8. Now to write another item below New click on Next Button and fill the editor as

144 Zero to Mastery in Visual Basic

Here you also create shortcut key by selecting ctrl+O option from drop down list of shortcut.
9. Repeat the steps 6 to design following sub menu of File:

10. Now insert a separator bar, click on next button and type hyphen (-) in the caption box.

VB Interface Style 145

11. Now add exit control to your menu. File menu will appear as

12. Now design Edit menu, for this first click on arrow to come on main menu, it will appear

146 Zero to Mastery in Visual Basic

13. Repeat steps 3 to 6 to design the edit menu as follows:

14. To create submenus of toolbar menu item, click on arrow so that it comes like

15. Now again repeat step 6 to create sub menu of toolbar. The Edit menu will appear as :

At runtime both menus are appear as

VB Interface Style 147

16. Now add code to New button , so that whenever you click on New menu item a new form will
appear. For this first add an SDI form to your application by clicking on Project Add
Form.

17. Set Form1 MDIChild property to true.

18. Now go to MDI form and write following code on click event of New menu item:

At runtime the window will be appear as:

148 Zero to Mastery in Visual Basic

6.4.2 Menu Control Array
A menu control array is a set of menu items on the same menu that share the same name and event
procedure. Basically, a menu control array is a control array having elements as menu items. As
control array all menu items share the common name and identified by its unique index number.

Uses
1. To create and add a new menu item to a menu at runtime.
2. To simplify code because common blocks of code can be used for all menu items.

Steps to create menu control array in Menu editor:
1. Select the form and open Menu Editor.
2. In caption text box, type the first menu title that you want to appear on menu bar.
3. In name text box, type the name of the first control. Leave the Index box empty.
4. At the next indention level, create the menu item that will become the first element in the

array by setting its Caption and Name.
5. Set the index for the first element in the array to 0.
6. Create a second menu item at the same level of indention as the first.
7. Set the name of the second element to the same as first element and set its index to 1.
8. Repeat steps 5 – 7 for subsequent elements of the array.

6.5 POPUP MENUS
A popup menu is a floating menu that is displayed over a form, independent of the menu bar. The
items displayed on the popup menu depend on where the pointer was located when the right mouse
button was pressed. It is also called context menu. To display the popup menu, use the following
Syntax: PopupMenu menuname
6.5.1 Creating Popup Menu
To create a popup menu, you first define a menu through Menu Editor and make sure that this menu
will not display on menu bar. For this set its visible property to false and its submenu has true value.
Then write the code for this that uses Popupmenu method.

Learn it with a help of an example : Create a text box with a popup menu that format the text
of the textbox.
Steps

1. Open Project and click on Form1 and sets its caption as frmmenu and Name as Popup Menu.
2. Design the frmmenu as follows:

Name the text box as txtsample.
3. Click on Tool Menu Editor..

VB Interface Style 149

4. Design the menu as follows:
Make sure that visible property of Format menu item is unchecked and same property of rest
of its submenu is checked.

5. Write the following code on click event of respective menu items:
6. To execute this menu floating, write the following code on Mouse Move event of text box:

At runtime it will appear as:
LET US REVISE

 Interface is the visual part of the application with which user interact.
 VB supports mainly three type of interfaces – SDI, MDI and Explorer style interface.
 SDI supports single document in its window.
 MDI supports multiple documents at the same time.
 The explorer style interface is a single window containing two panes.
 A project can have only one MDI form.
 New form object can be created through New keyword.
 There are two type of menus : Menubar and popup menu.
 An option in a menu is called menu item.
 A bar in a menu that divides menu items in a logical group is called separator bar.
 A key combination used to directly execute the command is called shortcut key.
 Access key allows you to open a menu.
 A menu control array is a set of menu items on the same menu that share same name and

event procedure.
 Menus that can grow or shrink at runtime are called dynamic menus.
 A popup menu is a floating menu that displayed over a form independent of the menu bar.

Assignment:
1. Create the follwoing menu using menu editor. Also reate popup menu for the some.

Format Bold
Italic
Underline

Also perform the above menu opeations on a given text to format the text.

150 Zero to Mastery in Visual Basic

7.1 INTRODUCTION
Although you have learnt a lot about VB programming but still you have to learn two very impor-
tant thing – the error handling and file handling. You deal with various functions, statements,
properties and methods available in Visual Basic and the components used in Visual Basic expect
to deal with certain types of data and behavior in your applications. For example, you have a
program to divide two numbers. If instead of writing 200/10 you write 200/0 then what happens?
To deal with such situations you use error handling.

If you want to be an expert VB programmer then you’ll need to know a lot about how VB
handles files - what is possible and what is not, plus how to do something in the smallest code or in
the least amount of time. To do this you need to understand the file handling features which VB
offers.
7.2 TYPES OF ERROR
An error is anything in the code that prevents a program from compiling and running correctly. An
error is also called a bug. Some bugs are catastrophic in their effects, some are innocuous and
others are so obscure that you will ever discover them. They are classified in three sections:

1. Compile-time Error
2. Run-time Error
3. Logical Error

7.2.1 Compile – Time Error
When a program is compiles, its source code is checked for whether it follows the programming
language’s rules or not. Errors that occur at this compile time are known as compile time error.
There are two types of compile type error:

(a) Syntax Errors: It occurs when rules of programming languages are misused i.e when a
grammatical rule of VB is violated. Example: Instead of writing (x-y) you write (x_y).

(b) Semantics Errors: It occurs when statements are not meaningful. For example:

Error Handling and File Handling

Chapter - 7

Error Handling and File Handling 151

x-y = z
is a semantical error as an expression cannot come on the left side of an assignment state-
ment.
When such compile time errors occur, VB raises an alert as:

7.2.2 Run-Time Error
Run-time errors are those that appear only after you compile and run your code. That is, errors that
occur during the execution of a program are run time errors. These involve code that may appear to
be correct in that it has no syntax errors, but that will not execute. These errors are harder to detect.
Some run time errors stop the execution of the program which is then called program crashed or
abnormally terminated.

For example, you might correctly write a line of code to open a file. But if the file is corrupted,
the application cannot carry out the Open function, and it stops running. It appear as :

Most run time errors are easy to identify because program halts when it encounters an error
and generates an alert as above figure. You can fix most run-time errors by rewriting the faulty
code, and then recompiling and rerunning it.

152 Zero to Mastery in Visual Basic

7.2.3 Logical Errors
Sometimes, even if you don’t encounter any error during compile time or run time and still your
program does not provide the correct result. This is because of the wrong analysis of the program-
mer to solve the problem he is trying to solve. Such types of errors are called logical errors.

It appears once the application is in use. They are most often unwanted or unexpected results
in response to user actions. For example- wrong parameters are passed. Logic errors are generally
the hardest type to fix, since it is not always clear where they originate.
7.3 HANDLING ERRORS
Handling errors at run time, which will crash the program, requires special code so that errors can
be trapped. In VB, it is possible to trap errors that normally cause the program to abort. Trapping
error means that it is an indication to the operating system that you will handle the errors.

In an application, there may be a program logical error or it may be a data entry error on the
part of the user. In the first case, you need to debug the program to fix the mistake. However, there
is no way for you to anticipate the behavior of the end users of the application. If the user enters
data you can’t handle, you need to deal with the situation.

Dealing with errors at run-time is a two step process:
1. Trap the Error: Before you can deal with an error, you need to know about it. You use VB’s

On Error statement to setup an error trap.
2. Handle the Error: Code in your error handler may correct an error, ignore it, inform the user

of the problem, or deal with it in some other way. You can examine the properties of the Err
object to determine the nature of the error. Once the error has been dealt with, you use the
Resume statement to return control to the regular flow of the code in the application

7.4 TRAP THE ERROR
Before you can do anything to deal with a run-time error, you need to capture the error. You use the
On Error statement to enable an error trap. On Error will redirect the execution in the event of a run-
time error. There are several forms of the On Error statement:

1. On Error GoTo 0 2. On Error Resume Next
3. On Error GoTo Line

7.4.1 On Error GoTo 0
On Error Goto 0 disables any error handler within the current procedure. A run-time error that
occurs when no error handler is enabled or after an On Error Goto 0 is encountered will be handled
using VB’s default error handling logic.

Example: Write the following code to enter a number.

Error Handling and File Handling 153

Instead of writing a number insert any other character and see how it works.
If the program encounters an error after this statement executes, it crashes.

7.4.2 On Error Resume Next
On Error Goto 0 disables any error handler within the current procedure. A run-time error that
occurs when no error handler is enabled or after an On Error Goto 0 is encountered will be handled
using VB’s default error handling logic. Execute the following code:

It makes the program ignore errors that means when it encounters an error, the program con-
tinues execution after the statement that caused the error.
7.4.3 On Error GoTo Line
This form of the On Error statement redirects program execution to the line label specified. When
you use this form of On Error, a block of error handling code is constructed following the label.
Execute the following code :

The On Error GoTo Line statement registers a new error handler. If a program encounters an
error, it passes control to the error handler beginning at the indicated line number or label. An error
handling routine is not a Sub procedure or Function procedure. It is a section of code marked by a
line label or number

154 Zero to Mastery in Visual Basic

You have done the same example with all three ways to trap an error, so you can easily judge
the difference between all.
7.5 HANDLE THE ERROR
Trapping an error using the On Error statement is only the first step in dealing with run-time errors
in your code. You must also deal with the error in some way, even if the error handling code is as
simple as ignoring the error or displaying a message for the user.

The first step in handling an error is determining the nature of the error. This is accomplished
by examining the properties of Visual Basic’s Err object. The Err object includes the following
properties:

• Number: This is the error number that was raised.
• Description: This contains a descriptive message about the error. Depending on the error,

the description may or may not be useful.
• Source: The Source property tells you what object generated the error.
When a run time error occurs, the properties of the Err object are filled with information that

uniquely identifies the error and information that can be used to handle it. To find out which error
has occurred, you have to use the Err.Number property. Following list gives you some sample error
numbers and corresponding errors:

Example: WAP to divide first number by the second number. Use Err object to display differ-
ent messages for different errors.

Error Handling and File Handling 155

Design the form as follows:

Change the Name property of different controls with the text displayed in it and clears the
boxes. Write the following code on click event of cmddiv button:

At run time it appear as :

 cmddiv

156 Zero to Mastery in Visual Basic

7.5.1 Leaving Error Handlers
There are several ways a program can leave error handling code and return to normal execution.
These are:

• Resume: The Resume statement tells VB to continue execution with the line that generated
the error.

• Resume Next: Resume Next instructs Visual Basic to continue execution with the line fol-
lowing the line that generated the error. This allows you to skip the offending code.

• Resume label: This allows you to redirect execution to any label within the current proce-
dure. The label may be a location that contains special code to handle the error, an exit point
that performs clean up operations, or any other point you choose.

• Exit: You can use Exit Sub, Exit Function, or Exit Property to break out of the current proce-
dure and continue execution at whatever point you were at when the procedure was called.

• End: This is not recommended, but you can use the End statement to immediately terminate
your application. Remember that if you use End, your application is forcibly terminated. No
Unload, QueryUnload, or Terminate event procedures will be fired. This is the coding equiva-
lent of a gunshot to the head for your application.

7.5.2 Error Object
Errors can be categorized into various groups such as

• General File Errors: Errors pertaining to file related operations such as File not found or
File already exists etc.

Error Handling and File Handling 157

• Physical Media Errors: Errors related to storage media such as Disk full or Disk not ready
etc.

• Program Code Errors: Errors occurring in your code such as syntax errors or logical errors.
• Database Errors: Errors that occur when your code tries to connect to and access a database

using a provider.
The mechanism of trapping and handling errors that you have covered so far can trap all type

of errors but provider specific database errors. To trap provider specific database error , you need
to use Error Object.

An Error Object contains details about data access errors pertaining to a single operation
involving the provider.

Any operation involving ActiveX Data Object(ADO) objects can generate one or more pro-
vider errors. As each error occurs, one or more error objects are placed in the Error collection of the
connection object. When another ADO operation generates an error , the Error collection is cleared
and new set of Error objects is placed in the Errors collection.

There is a difference between Err Objects and Error Objects. The Err Object is an object that
keeps track of all general type of errors where as Error Object contains details about data access
errors pertaining to a single operation involving the provider.
7.6 FILE HANDLING
As far as Visual Basic is concerned, there are three modes in which a file can be accessed:

1. Text Mode (Sequential Mode)
2. Binary Mode
3. Random Access Mode

In the Text Mode, data is ALWAYS written and retrieved as CHARACTERS. Hence, any
number written in this mode will result in the ASCII Value of the number being stored.

For Example, The Number 17 is stored as two separate characters “1” and “7”.
Which means that 17 is stored as [49 55] and not as [17].
In the Binary Mode, everything is written and retrieved as a Number. Hence, The Number 17

Will be stored as [17] in this mode and characters will be represented by their ASCII Value .
One major difference between Text Files and Binary Files is that Text Files support Sequen-

tial Reading and Writing. This means that we cannot read or write from a particular point in a file.
The only way of doing this is to read through all the other entries until you reach the point where
you want to start reading.

Binary Mode allows us to write and read anywhere in the file. For ex- we can read data
directly from the 56th Byte of the file, instead of reading all the bytes one by one till we reach 56.

158 Zero to Mastery in Visual Basic

Just like the Binary Mode, the Random Access Mode allows us to gain instant access to any
piece of information lying anywhere in the file .For example, if we need to store a few names in the
file Random Access Mode requires us to mention the length of the ‘Names’ Field. Some Names
might not fit and for the shorter names the space is inefficiently used. Random Access Mode allows
us to read or write data at a particular record position rather than a byte position like in Binary
Mode.

The File System Object (FSO) enables you to manipulate the files, folders and drives as well
as read and write to sequential files. Before using the FSO, you have to add the “Microsoft Script-
ing Runtime Library” to the current project by selecting “Project”, “References” . Alternatively
you can use the CreateObject function to create the reference at run-time.

There are five types of File System Object.
1. File.
2. Folder.
3. Drive.
4. TextStream.
5. Random Access Files.

The FileSystemObject is used to manipulate the files, folders and directories. Some of the
common methods available to the FileSystemObject are –

CreateTextFile Used to create a text file
DeleteFile Used to delete a file
CopyFile Used to copy an existing file.
OpenTextFile Used to open an existing text file

Files can be opened in three modes in Sequential File Handling i.e
Reading -> Used to Read From a File.
Writing -> Used to Write to a File.
Appending -> Used to append the existing File.
Example: Make a text box on a form and create a text file to write, read and update data in the

file.
General Declaration
Dim fs As New FileSystemObject
Dim f1 As File

Private Sub Cmdsubmit_Click()
fs.CreateTextFile (“abc.txt”)

Error Handling and File Handling 159

fs.OpenTextFile(“abc.txt”, ForWriting).WriteLine (Text1.Text)
Text1.Text = “”
MsgBox (“data written”)
End Sub

Private Sub cmdupdate_Click()
fs.OpenTextFile(“abc.txt”, ForAppending).WriteLine (Text1.Text)
Text1.Text = “”
MsgBox (“data updated”)
End Sub

Private Sub cmdread_Click()
Text1.Text = fs.OpenTextFile(“abc.txt”, ForReading).ReadAll()
End Sub

Private Sub cmdclear_Click()
Text1.Text = “”
End Sub

LET US REVISE
 Errors are also called bug.
 There are three types of errors – Compile time, run time error and logical error.
 Trapping error means that program is going to handle the errors.
 On Error statement is used to register error handling code.
 On Error GoTo 0 displays any enabled error handler.
 On Error GoTo line statement passes control to the error handler beginning at the indicated

line number.
 On Error resume next ignores the program error.
 Err object number property gives the error identification number.
 The resume statement continues the execution by repeating the statement that causes the

error.
 An error object contains details about data access error pertaining to a single operation in-

volving the provider.

160 Zero to Mastery in Visual Basic

 There are three modes in which a file can be accessed : Text mode, binary mode and random
access mode.

 In the Text Mode, data is always written and retrieved as characters.
 In the Binary Mode, everything is written and retrieved as a Number
 Text Files support Sequential Reading and Writing whereas Binary Mode allows us to write

and read anywhere in the file.
 The Random Access Mode allows us to gain instant access to any piece of information lying

anywhere in the file.
 The File System Object (FSO) enables you to manipulate the files, folders and drives as well

as read and write to sequential files.

Database Connectivity and Visual Database Tools 161

8.1 INTRODUCTION
Databases (DBs) are the systems that contain many different objects which work together to facili-
tate fast and efficient access to the data. You can use many type of DB as backend with you appli-
cation. Some of these DB are Microsoft Access, Microsoft Foxpro, Oracel , MS SQL Server etc.
These DBs are categorized as :

1. Local Database: DB that can access directly from VB through VB’s database jet engines.
2. Remote Database: DB that cannot be accessed by using VB’s standard DB access capabili-

ties.
You can access both local and remote DBs using the same Db access controls and objects

known as ActiveX Data Object (ADO).
ADO is an application program interface from Microsoft that lets a programmer writing win-

dows applications, get access to a relational and non relational DB from both Microsoft and other
Db providers. In this chapter, you will learn how you can access and manipulate DB using ADO
data controls in VB.
8.2 DB CONCEPTS
Before working with DB , you must aware of some basic concepts of DB. These concepts are:

1. Database: A DB represents a set of data related to a particular topic. A DB contains tables
and can also contain queries and table relationships.

2. Table: A table is a collection of data arranged in rows and columns. Each column would
contain a certain type of information and each row will contain all the information about a
specific author.

3. Record: Record is a complete set of information. It is a row of data in a database table
consisting of a single value from each column of data in the table.

4. Recordset: It is a logical set of records. Recordset creates a temporary object which contains
data from one or more tables in the DB. A recordset is not the DB itself; it is just a working
copy of some parts of DB tables.

Database Connectivity and
Visual Database Tools

Chapter - 8

162 Zero to Mastery in Visual Basic

You can manipulate the contents of recordset through VB code but the actual DB file will not
be changed until you or user take action to save the changes. There are five type of recordsets–

(a) Table-type Recordset: It represents a complete table from a DB. You can use it to add,
change or delete records. This is the simplest concept but it is not the best choice in many
applications.

(b) Dynaset-type Recordset: It represents the result of a query that can have updatable records.
You can use it to add, change or delete records. It can contain fields from one or more
tables. This provides the worse performance than a table-type recordset.

(c) Snapshot-type Recordset: It represents a read-only set of records that you can use to find
data or generate reports. It can contain fields from one or more tables but they cannot be
updated. This recordset uses minimum resources and provides fast performance.

(d) Forward-only-type Recordset: This is identical to a snapshot recordset except that no
cursor is provided. Cursor indicates the current position in the recordset. You can only
scroll forward through records. This improves performance in situations where you only
need to make a single pass through a recordset.

(e) Dynamic-type Recordset: This recordset stores a query result set from one or more base
tables in which you can add, change or delete records from row returning query.
Out of above five, mostly first three are used.

8.3 DATA ACCESS MECHANISM
In VB you can access DB through three different data access mechanism. These mechanisms are:

1. Data Access Object (DAO): It was first object oriented interface that exposed the Microsoft
Jet Database Engine used by Microsoft Access and allowed VB developers to directly con-
nect to Access DB through open DB Connectivity, commonly known as ODBC. ODBC re-
fers to a standard protocol that permits applications to connect to a variety of external DB
servers or file. It is best suited for either single system applications or for small deployments.

2. Remote Data Object (RDO): It is an interface to ODBC combined with easy to use style of
DAO. RDO is limited; it doesn’t access Jet DB very well and can access relational DB through
existing ODBC drivers.

3. ActiveX Data Object (ADO): It is successor of DAO and RDO. This technology allows
users to access data easily from many existing databases such as Access or Paradox or from
ODBC compliant databases like Oracle or MS SQL Server. ADO is quite simple and allows
programmers to provide flexible database front ends to users that are reliable and include
many features.

Database Connectivity and Visual Database Tools 163

8.3.1 Difference Between DAO, RDO and ADO
DAO (Data RDO (Remote ADO (ActiveX

access object) Data Object) data object)
DAO is used for accessing RDO was used for accessing Ado most powerful till date it is noth
data before ADO. It was remote data. ing but combination of both DAO and
used for database installed RDO
on same system where the
application resides.
It can be used to access RDO are used to access ADO can be used for different data
local database. remote databases. bases i.e. For both local & remote

database.
It uses Jet Database Engine. It uses ODBC drivers It uses OLEDB driver
DAO is used for small ADO is used to handle a large num
data base access. ber of records.
8.4 DB ENGINE
The DB Engine is the highest-level object in the DAO object model. It contains all other objects
and collections. The DB object is the member of the DB collection of the default workspace object,
which is member of the workspace collection of the DB engine object.

The Workspace object defines a session for a user based on user’s permissions and allows
managing the current sessions. It also contains open DB and offers mechanism for simultaneous
transaction and for securing the application.
8.4.1 Microsoft Jet Database Engine
The Microsoft Jet Database Engine is a database engine on which several Microsoft products have
been built. A database engine is the underlying component of a database, a collection of informa-
tion stored on a computer in a systematic way. The first version of Jet was developed in 1992,
consisting of three modules, which could be used to manipulate a database.

JET stands for Joint Engine Technology, sometimes being referred to as Microsoft JET
Engine or simply Jet. Microsoft Access and Visual Basic use or have used Jet as their underlying
database engine. The Jet engine can be said to be comprised of two broad components:- a Data
Definition Language to create and edit the data structures, and a Data Manipulation Language used
for adding, editing and deleting data, and for querying.
Architecture
Jet allows the manipulation of a relational database and is part of a Relational Database Manage-
ment System (RDBMS). It offers a single interface that other software can use to access Microsoft
databases and provides support for security, referential integrity, transaction processing, indexing,
record and page locking, and data replication. In later versions, the engine has been extended to be

164 Zero to Mastery in Visual Basic

able to run SQL queries, store character data in Unicode format, create database views and allow
bi-directional replication with Microsoft SQL Server.

There are three modules to Jet: One is the Native Jet ISAM Driver, a dynamic link library (DLL)
that can directly manipulate Microsoft Access database files (MDB) using Indexed Sequential Ac-
cess Method (ISAM). Another one of the modules contains the ISAM Drivers, DLLs that allow
access to a variety of ISAM databases, among them Xbase, Paradox, Btrieve and FoxPro, depend-
ing on the version of Jet. The final module is the Data Access Objects (DAO) DLL. DAO provides
an API(Application Programming Interface) that allows programmers to access JET databases
using any programming language.

8.4.2 Open DB Connectivity (ODBC)
In computing, Open DB Connectivity (ODBC) provides a standard software interface for accessing
and alerting the contents of relational and non- relational DB management system (DBMS). It was
developed by SQL Access Group in 1992 in order to facilitate easier communication between
applications and DBs across computing platforms. The designer of ODBC aimed to make it inde-
pendent of programming languages, DB systems and operating systems.

The goal of ODBC aimed to make it possible to access any data from any application, regard-
less of which DBMS is handling the data. ODBC manages this by inserting a middle layer, called a
DB driver, between an application and the DBMS. The purpose of this layer is to translate the
applicant’s data queries into commands that are understandable by DBMS.

An application can communicate through ODBC is referred to as ODBC compliant. Any
ODBC compliant application can access any DBMS that has a corresponding driver. For the driver,
the ODBC models allow for two different solutions, either having the driver reside on the client
machine or as part of the server side solution.

Regardless of where the driver exists, te basic model is the same. The application sends ODBC
commands to the driver, which then translates those commands into the native format of the DBMS.
Once the DBMS has performed the query, it then sends those results back through ODBC driver
which then translate them back into a standard format.

Database Connectivity and Visual Database Tools 165

 8.4.3 Object Link Embedding (OLE DB)
OLE DB is Microsoft’s strategic low-level application program interface (API) for access to differ-
ent data sources where OLE stands for “Object Link Embedding” and “DB” for database. OLE DB
includes not only the Structured Query Language (SQL) capabilities of the Microsoft-sponsored
standard data interface Open Database Connectivity (ODBC) but also includes access to data other
than SQL data.

OLE DB is building on the success of ODBC by providing an open standard for accessing all
kinds of data. Unlike ODBC but not imposes specific limitation on either the query syntax, or the
structure of the data exposed.

As a design from Microsoft’s Component Object Model (COM), OLE DB is a set of methods
for reading and writing data. The objects in OLE DB consists mainly of a data source object, a
session object, a command object, and a row set object. An application using OLE DB would use
this request sequence:

1. Initialize OLE. 2. Connect to a data source.
3. Issue a command. 4. Process the results.
5. Release the data source object and uninitialize OLE.
OLE DB is, in turn, an open standard for providing data access. Various OLE DB data provid-

ers now exist. Data Provider is a control or mechanism that provides data for use by connecting to
a source of data i.e a DB. Most commonly used data providers are –

Database Data Provider
Access Microsoft Jet DB engine/ Microsoft.Jet.OLEDB.4.0
Oracel MSDAORD

A programmer using ADO can connect to a data source through one of the existing OLE DB
providers. The programmer can then manipulate this data by using the ADO object model.
8.5 VB DATA CONTROL
VB provides two controls – the Intrinsic Data Control and the ADO Data Control (ADO DC) i.e
Bound Control that make the link to the DB file and which creates the Recordset that is exposed to
the rest of the controls in the application. The two controls are identical in concept but differ in
flexibility they offer to the programmer.
8.5.1 Data Control
Data Control is an older type of control used with DAO connections. The concept is simple, once
you place the DAO control on your form. First set the .connect property of DB to tell which type of
DB you are going to connect. Then set the .Database property tells which DB files to read. Then set
.Recordset property tells it which table or query from the DB is to be open.

166 Zero to Mastery in Visual Basic

For any control which supports DB, bind that control with a field of DB. For this first set
.DataSource property to the data control name and then .Datafield property to the specific field
within the table.

Now, the data control provides access to data stored in the connected table of the DB.
8.5.2 Data Bound Controls
Data Bound Control is a new ADO control which makes use of all the ADO features. A bound
control is a control that can provide access to a specific column in a data source through a data
control. When a data control moves from one row to the next, all bound controls connected to data
control changes to display data from columns in the current row. If user changes in a bound control
and then move to a different row, the changes are automatically saved in the data source.

The data bound control has three properties - .Datasource, .Datafield and .Datachanged.
The datasource and datafield properties are same as discussed in above section. .Datachanged
property is set to true by VB when a value displayed in the control has changed. After setting the
properties of data bound control, set the control to display the data of table by using .Datasource
and .Datafield properties.
8.6 COMPANY DATABASE

Before learning DB connection, we first create a DB Company you use the same DB to
establish connection by different means.

Database Connectivity and Visual Database Tools 167

Now, make a simple DB Company with two table and query in Microsoft Access .
Design first table Employee as follows:

Insert the following data in Employee Table

Design second table Department as:

Insert following data in the Department table

168 Zero to Mastery in Visual Basic

One by one you will learn to connect this DB initially with Data control then with ADO DC and
finally with ADODB.
8.7 DB CONNECTION BY DATA CONTOL
You start with the simplest type of connection object i.e data control. You connect the above DB with
an interface of VB. And put all the important navigation buttons.

Steps to access Employee table of Company DB
1. Design the form which displays attributes of table as label and place a text box in front of

each label to accept and display values from and to user. Save the textbox with the name
displayed in the textbox make them empty. Make seven command buttons and name them as
follows:
Control Caption Name Property

Command1 NEW Cmdnew
Command2 ADD Cmdadd
Command3 DELETE Cmddel
Command4 FIRST Cmdfirst
Command5 NEXT Cmdnext
Command6 PREVIOUS Cmdpre
Command7 LAST cmdlast

2. Put data control named Data1 on the form as follows.

Database Connectivity and Visual Database Tools 169

3. Select location of DB to be selected
To establish connection with data control, Set Data1 control’s connect, DB name and
Recordset property.

Select location ofDB to be selected

 Select want to connect with form.table which you

Select table which you want to connect with form.
4. Now, one by one bind every text box with their respective attribute name of MS-Access. For

this select textbox, set its Data Source property to Data1 and select respective attribute from
dropdown list of Data Field property.

5. Navigating the Recordset. Use the first, next, previous and last button to display data of the
DB. The first button will take you to the very first record of the table. Next shows the fol-
lowed data whereas previous displays the preceded data of the currently shown data of the
table. Last button takes you to the last record of the table. Write the following code for
navigation:

170 Zero to Mastery in Visual Basic

BOF stands for Beginning Of The Table and EOF stands for End Of The Table.

Database Connectivity and Visual Database Tools 171

6. The New Command button will clear all textbox to make new entry. Write the following code
at click event of new button:

When you click on new button screen will display as

172 Zero to Mastery in Visual Basic

Now, you are ready to write new record in the table.
7. The Add command button will add the entered record into the selected table of the database.

This will execute by writing:

Write a new entry in the blank textboxes as

Database Connectivity and Visual Database Tools 173

When you click on the add button the entered data is saved into the Employee DB.

8. The Delete button will remove the currently shown record from the table. This will done by
writing:

174 Zero to Mastery in Visual Basic

With the help of navigation button select the desired record which you want to delete. Let it be:

When you click on delete button above record is removed from the Table.

Note: Sometime you find it difficult to attach your DB with form. In such case , first convert
your DB in windows 1997 format and then try to connect.
8.8 DB CONNECTIVITY BY ADO DC
ADO is an object oriented programming interface. This is also called Universal data Access as it
access different kinds of data using OLE DB as a data provider and ADO as data access technology.
ADO enables us to write an application to access and manipulate data in a DB server through an

Database Connectivity and Visual Database Tools 175

OLE DB provider.
OLE DB is an the underlying system service , that is, it is a set of interfaces that provide

applications with uniform access to data stored in diverse information sources ot data sources, for
the programmer using ADO. OLE DB can access all type of DB s in the same manner.

You can create VB application using ADO Data Control (ADO DC) in two ways:
1. By employing ADO DC interactively using VB wizard.
2. Writing code for ADO. This is called ADO DB

Steps to access DB using ADO DC
Let us, again connect Employee table of Company DB with the help of ADO DC. Initially you have
to add ADO DC on your tool box of VB.

Adding ADO Control in toolbox
1. Open VB standard EXE project.
2. Click on Project Menu and click on Components to open.
3. Select Microsoft ADO Data Control (OLEDB) and click on apply then Ok.

This will add ADO DC in the toolbox.

176 Zero to Mastery in Visual Basic

 ADO DC

Design the form
4. Design the form same as you designed in above section (Connection through DAO).
5. Place ADO DC on form.

Setting Connection
6. Right click on ADODC ® select Properties. This will open property page window of ADO DC

Database Connectivity and Visual Database Tools 177

7. Select General Tab, select Use Connection String

8. Click on Built button of connecting string. This will open Data Link Property window.

178 Zero to Mastery in Visual Basic

Select providerof your DB

9. As your DB is made in Access thus select provider ‘Microsoft Jet 4.0 OLE DB Provider’
from Provider tab and click on Next button.

10. This will open the connection tab. Under connection tab select the DB which you want to
connect with the Project .i.e Company.

Database Connectivity and Visual Database Tools 179

Select location of DBwhere it is stored

Now, click on Test Connection.
11. Wait for message “ Test Connection Succeed “® Click OK

12. Select record source tab

180 Zero to Mastery in Visual Basic

13. Select adcmdTable for command type field
14. Select Employee table name for table or stored procedure name field

Select table which youwant to connect with form

Database Connectivity and Visual Database Tools 181

15. Click on Apply and then Ok.
Attach form with different attributes of table

16. Now, one by one bind every text box with their respective attribute name of MS-Access. For
this select textbox, set its Data Source property to ADODC1 and select respective attribute
from dropdown list of Data Field property.

17. Navigating the Recordset. Use the first, next, previous and last button to display data of the
DB. The first button will take you to the very first record of the table. Next shows the
followed data whereas previous displays the preceded data of the currently shown data of
the table. Last button takes you to the last record of the table. Write the following code for
navigation:

182 Zero to Mastery in Visual Basic

Database Connectivity and Visual Database Tools 183

We also include error handling in each procedure to prevent out program from improper termi-
nation.

18. To Add new record , first you should make empty all the textboxes. For this you use Add
button. And to save the entered record into the table, you then click on Save button. Both
button contains the following code.

This will clear all the textboxes. Now enter the new record as

184 Zero to Mastery in Visual Basic

Now, execute the following command to save the record into the DB.

When you click on the save button , control will automatically shift to the first record of the
DB.

Database Connectivity and Visual Database Tools 185

See, the record is entered into the Table.

19. To Update Record. If you want to make changes in the existing record , then use the follow-
ing command

Lets change some values of record no. 1006.

186 Zero to Mastery in Visual Basic

When you click on the update button, the change will save in the table.

20. To Delete Record. Display the desired record on the form and click on delete button. The
delete button will carry the following command:

Delete the following record no 1004:

Database Connectivity and Visual Database Tools 187

Now click on delete button. See the record will be deleted from the table.

Note: If you find it difficult to connect DB made in 2007, then convert the DB in 2000 .
8.9 DB CONNECTIVITY BY ADODB
After using ADODC , let us now learn to use ADO programmatically i.e ADODB . The ADO is a
DB access paradigm that enables client applications to access and manipulate data in a DB server
through an OLEDB provider. It provides you high speed, low requirement of disk space , low
memory overheads and easy to use.
8.9.1 Objects Of ADO
ADO providers collections, a type of object that conveniently contains other objects of a particular
type. The objects in the collection can be retrieved with a collection method .It includes four major
objects:

188 Zero to Mastery in Visual Basic

1. Connection: The connection object has the Errors collection, which contains all Error objects
created in response to a single failure involving the data source. That means, it allows estab-
lishing connection with data source. Open, Close and Execute are some common methods of
connection object.

Open method opens a connection to a data source. It uses a connection string to connect to the
DB. The connection string uses the following attributes:

(a) File Name – Name of the file that contains connection information.
(b) Provider – Name of the provider.
(c) Data Source – Name of the server or name of the DB to which you want to connect.
(d) User ID – The user’s name
(e) Password – The user’s password.

2. Command: This object contains information about a command such as query string, param-
eter definition, which contains all parameter objects that apply to that command object. This
may be either a SQL statement or an invocation of a stored procedure.

3. Recordset: The Recordset object has a field collection, which contains all field objects that
define the columns of that Recordset object. It is used to manipulate rows in the DB and
contain the result of a query.

4. Field: This object contains information about a single column of data in a Recordset.
8.9.2 Locktype
The LockType argument is an optional value that determines the type of locking that the provider
should use when opening the recordset. The possible values of lockType are:

1. adLockReadOnly: (default) Specifies read-only locking. Records can be read, but data can-
not be added, changed, or deleted. This is the locking method used with static cursors and
forward-only cursors.

2. adLockPessimistic: Specifies pessimistic locking. The provider does what is necessary to
ensure successful editing of records, usually by locking records at the data source immedi-
ately upon editing.

3. adLockOptimistic: Specifies optimistic locking. The provider locks records only when you
call the Update method, not when you start editing.

4. adLockBatchOptimistic: Specifies optimistic batch locking. Records are locked in batch
update mode, as opposed to immediate update mode. This option is required for client-side
cursors.

 8.9.3 Steps To Access DB Through ADODB
Design the form

1. Design the form same as you designed in above section (Connection through DAO).

Database Connectivity and Visual Database Tools 189

Names of all text boxes and command buttons are same as earlier.
Set reference to ADODB

2. Click on Project menu and select Reference.
3. Select Microsoft ActiveX Data Objects 2.x Library. Click on Ok.

190 Zero to Mastery in Visual Basic

Create connection object
4. Declare the following object in general section.

To open Employee Table of Company DB
5. Write the following code in Load event of form. This will connect form with DB.

Private Sub Form_Load()dim connectingstring As Stringconnectingstring = "Provider = Microsoft, Jet, OLEDB,4.0; Data Soruce=C:\Users\shilp\desktop\Company1.mdb.;"adoconn.Open connectingstringrs. Open "Employee", adoconn, adOpenDynamic, adLockOptimisticEnd Sub
Provider will be selected according to the DB and Data Source displays the location of DB
where it is stored.

Bind different textboxs with Table fields
6. To connect different fields of access DB with different textboxes placed on form, you create

a following procedure in general section of code window ,which you call whenever it is
required.

7. Now create the navigation buttons. To display data on the form with the help of navigation
button, write the following code on respective buttons:

Database Connectivity and Visual Database Tools 191

When you click on last button, last record of the table is displayed:

192 Zero to Mastery in Visual Basic

8. To add new record first clears all the text boxes. To do this write the following code on click
event of Add button.

This will clear all the text boxes:

Database Connectivity and Visual Database Tools 193

DELETE

9. Now add new record in the fields :

DELETE

To add above data in the DB, click on save button which contains following code:

194 Zero to Mastery in Visual Basic

When you click on save button, the form will appear as follows:

Click on yes button to save the record.

Database Connectivity and Visual Database Tools 195

10. To update existing record write the following code:

The window will appear as

When you click on yes button the record will updated in the table.

11. To delete any record from the table write the following code:

196 Zero to Mastery in Visual Basic

To delete record display the desired record on the form and click on delete button:

When you click on yes button, the record will be deleted from the table.

These are the different ways by which you can connect your database with your form i.e
backend with frontend.

Database Connectivity and Visual Database Tools 197

8.10 VISUAL DATABASE TOOLS
Accessing DB becomes very important and crucial when you develop real life projects. In real life
projects, you need to perform many complex activities, which may involve multiple tables or view.
For this you need to use ADO programmatically because with ADO DC you get bound to the limits.
For this VB offers you Visual DB Tools which uses – Connection, Recordset and Command Ob-
jects of ADO and create elaborate form and display reports. These tools are –

1. Data Environment
2. Data Report and Crystal Report

8.10.1 Data Environment Designer
The Data Environment designer provides an interactive, environment for creating programmatic
data access. At design time, you set property values for Connection and Command objects, write
code to respond to ActiveX Data Object (ADO) events, execute commands, and create aggregates
and hierarchies. You can also drag Data Environment objects onto forms or reports to create data-
bound controls.

Thus, The data environment designer is a design time representation of ADO objects, which
are created at runtime. It allows us to add Data environment object ,using which data is accesses
from database.

With the Data Environment designer, we can accomplish the following tasks:
I. Add a Data Environment designer to a Visual Basic project.

II. Create Connection objects.
III. Create Command objects based on stored procedures, tables, views, synonyms, and SQL

statements.
IV. Create hierarchies of commands based on a grouping of Command objects, or by relating one

or more Command objects together.
V. Write and run code for Connection and Recordset objects.

VI. Drag fields within a Command object from the Data Environment designer onto a Visual
Basic form or the Data Report designer.

8.10.2 Data Report
The data that we view on the form is not always in the presentable form. To store hardcopy of the
data presented in the formatted manner, we need to create reports. VB6.0 introduced the new data
report designer to create reports visually from within VB.

Data Report is a visual database tool to create and design reports based on database data.
Each report part appears in a separate band of the report.
Following are the section of the data reports:

198 Zero to Mastery in Visual Basic

1. Report Header: It contains the text that appears at the very beginning of a report, such as
report title, author or database name.

2. Page Header: It contains information that goes on the top of every page, such as report title.
3. Group Header/Footer: It contains information that signifies that signifies the beginning of

a new group. Each group header is matched with group footer. The header and footer pair is
associated with a single command object in the data environment designer.

4. Details: It contains the innermost repeating part of the reports. The detail band consists of
the layout applicable to one record, which is repeated for every record.

5. Page Footer: It contains the information that goes on the bottom of every page , such as page
footer.

6. Report Footer: It contains text that appears at the very end of the report, such as summary
information, address or contact details.

8.10.3 Crystal Report
Crystal Reports allows users to graphically design data connections and report layout. In the Data-
base Expert, users can select and link tables from a wide variety of data sources, including Microsoft
Excel spreadsheets, Oracle databases, Business Objects Enterprise business views, and local file
system information. Fields from these tables can be placed on the report design surface, and can
also be used in custom formulas, using either BASIC or Crystal’s own syntax, which is then placed
on the design surface. Formulas can be evaluated at several phases during report generation as
specified by the developer.

Both fields and formulae have a wide array of formatting options available, which can be
applied absolutely or conditionally. The data can be grouped into bands, each of which can be split
further and conditionally suppressed as needed. Crystal Reports also supports sub reports, graph-
ing. With Crystal Reports, you can create complex and professional reports in a GUI-based pro-
gram. Popular reporting and analysis software for Windows from SAP that is used to retrieve data
from more than 30 types of databases. Queries and reports can be made via a Web browser, and the
functionality can also be added to proprietary programs written in languages such as C, C++, J++,
Delphi and Visual Basic.
8.11 CREATING DATA REPORT
Let us create a report from Company DB which includes fields from Employee Table. You name
this report Emp_Dept which contains attributes Ecode, Ename, Department and Hire_Date.

To create data report first we need to include Data Envitonment. So, first we create data
environment and then data report.
8.11.1 Steps To Create Data Environment For Emp_Dept

1. Click on Project in which you create the form ® Add data environment

Database Connectivity and Visual Database Tools 199

Adding connections
To access data from data environment, create a connection object. Thus every data environ-
ment has atleast one connection object.

2. Click on Add connection. By default its name is connection1.
3. Right click on connection1. Select properties.

4. From Data Link Properties dialog box, First select provider from provider tab and click on
next.

200 Zero to Mastery in Visual Basic

5. From connection tab, enter DB name

Select locationof DB

Database Connectivity and Visual Database Tools 201

6. Click on Test Connection and wait for message “Test connection succeed”.

7. Click on Ok then again on Ok.
Adding commands
After creating connection object, we have to create the command object. The command object
fetches data from the database by using connection objects. The command can be based on a table,
a view, a stored procedure or a SQL statement.

Thus, Command Object represents an action performed on a database.
8. Right click on data environment connection1, click on ADD Command.

This will appear as

202 Zero to Mastery in Visual Basic

9. Right click on command object and select properties

10. In general tab set values for command name (command1) , connection (connection1) Data-
base Object (Table/ Query), Object Name(Table /Query name)

Database Connectivity and Visual Database Tools 203

11. Click on Apply and then OK.
This will add all the fields of Employee table in Command object. Rename command1 as
Employee.

There are two type of command object –
(a) Recordset returning command object: Command object returns rows of data and result

can be accessed using a recordset object available from data environment.
(b) Non – Recoedset returning command Type: Command object does not return rows of

data .
 8.11.2 Steps To Create Data Report Emp_Dept
After creating data environment you add data report to your project.

12. Click on Project menu ® Add Data report

13. Set Name to rptemployee, Data Source Property to Data Environment1 and Data Member
Property to Command object of data environment i.e Employee

204 Zero to Mastery in Visual Basic

14. Write Report Heading by using tools of data report.

15. Drag all the desired fields of Employee command object from data environment window to
Detail Section of Data Report.

Database Connectivity and Visual Database Tools 205

16. Place the Labels in Page Header section and text boxes in Detail Section.

17. Change the page header heading if required and arrange the view of report.

18. Save the report as rptemployee.

206 Zero to Mastery in Visual Basic

19. Create a command button in respective form i.e Employee - ADODB.

20. To execute report , write code

21. To view report click on Emp_Dept button. The report will appear as:

Database Connectivity and Visual Database Tools 207

Now, you are able to connect a DB with a VB form by different means of connectivity and also
you are cable to generate reports. So, similarly as above connect Department DB with your form
and create its report.
8.12 TRANSACTIONS AND CONCURRENCY CONTROL
A Database is a software system that defines a collection of predefined operations. Mainly it in-
cludes following operations:

• Efficient management of large amount of persistent data in a persistent storage (database)
• Transaction Management which includes Concurrency Control, Atomicity and backup re-

covery procedure.
• A DataModel which gives a separate level of abstraction

208 Zero to Mastery in Visual Basic

8.12.1 Transaction
A transaction is an abstract unit of concurrent computation that execute automatically. The effect of
transaction does not interfere with other transactions that access the same data. Also a transaction
happens with all of its effects or it doesn’t happen none of its effects In the transaction control we
generally define code in between a block where we perform mission critical operation. If all opera-
tions get completed successfully then that part is committed in the database otherwise whatever
modification you might have done during the process is roll backed from the database so that it
never affect other user’s operations.
8.12.2 Concurrency Control
While doing certain modification in the database some time you need to lock the data so that no one
can else perform modification in that data. There are two commonly known approaches for locking
database they are optimistic locking and pessimistic locking.

Both these approaches are used to maintain concurrency in the database. Pessimistic
concurrency locking is done at rows of the data source to prevent users from modifying data in a
way that affects other users. In a pessimistic model, when a user performs an action that causes a
lock to be applied, no one else can perform action until unless owner releases that lock. But , in
optimistic concurrency model user does not lock row while reading it. User only locks the row
while updating changes to the database.

LET US REVISE
 There are two types of DB – Local DB and Remote DB.
 ADO is an application program interface that lets a programmer to get access relational as

well as non relational DB.
 A Recordset is a logical set of records.
 VB supports three different types of data access mechanisms – DAO, RDO and ADO.
 ODBC refers to the standard protocol that permits application to connect to a variety of

external DB servers or files.
 A bound control provides access to a specific column or columns in a data source through

data controls.
 Data provider is a control that provides data for use by connecting to a source of data.
 ADO uses a underlying system service called OLE DB.
 To use ADO data control, Microsoft ActiveX Data Control 6.0 component is added through

Component command under Project menu.
 To bind text boxes , its data source and data field properties are set.
 To navigate a Recordset following methods are used – Movefirst, Movenext, Moveprevious,

Movelast.

Database Connectivity and Visual Database Tools 209

 To modify DB following methods are used – Add, New, Update and Delete.
 To test end of file and beginning of file, EOF and BOF properties are used.
 To use ADO programmatically, Microsoft ActiveX Library 2.x is set through References

command under Project menu.
 Four major objects of ADO DB are : connection, Recordset, command and field.
 Locktype determines which type of lock is used by the provider at the time of opening a

recordset.
 OLE DB providers code for oracle DB is MSDAORA and for ODBC its MSDASQL.
 OLE DB provider for Ms-access DB is Microsoft jet OLE DB provider.
 A Recordset is opened through open method.
 Visual DB tools consist of data environment and data report.
 The data environment designer is a design time representation of ADO objects.
 Data environment is added through project menu.
 Data environment lets us create various ADO objects such as connection, command field

object without programming.
 Data report is a visual DB tool to create and design reports based on DB data.
 All designer files are stored with .dsr extension.
 <reportname>.show method is used to display reports.
 A transaction is an abstract unit of concurrent computation that execute automatically.

Assignment:
Create the grouping repost using the some record as on the page 207 (emp Dept. Report).
Also count the number of employees in each department.

210 Zero to Mastery in Visual Basic

9.1 INTRODUCTION
9.2 HELP FILE
Online help is topic-oriented, procedural or reference information delivered through computer soft-
ware. It is a form of user assistance. Most online help is designed to give assistance in the use of a
software application or operating system, but can also be used to present information on a broad
range of subjects. When online help is linked to the state of the application, it is called context-
sensitive help.

Microsoft products such as Microsoft Visual Studio to locally installed help as Offline
help or Local help, while help installed on their web server is referred to as Online help. However
the general term Online help has always referred to the electronic documentation associated with
an application.
9.2.1 Help Modes
The help system can run in three modes: workbench (normal), information center, and standalone.
Workbench mode is used for serving help integrated with the product, usually via a Help menu.
This mode also offers context help and the help view, which are not available in the two other
modes. Standalone mode has the same goal as workbench mode, but is for products that are not
eclipse-based .. Information center mode is used to serve help content to the masses over the
Web.
9.2.2 Requirements
The following are recommended hardware, software, network infrastructure, skills and knowledge
and service packs-

• HTML Help 1.3
• Visual Basic development.
Every statement, function, property, method and event is fully documented. However, that

Help Writing and
Some Other Features

Chapter - 9

Help Writing and Some Other Features 211

doesn’t really help us if we don’t know what the keyword is that we need to find to accomplish our
objective. The VB help files are well indexed and offer the capability of full-text searching. There
are a number of different files needed to create a Windows Help file. A Help file is made up follow-
ing–

(a) Rich Text Format (RTF) files: Microsoft Windows on-line help files are generated by using
one or more Rich Text Format (.RTF) source files. Many word processors can save docu-
ments in this format including MS Word. Each help file can have multiple topics and multiple
links between topics.

(b) Hypertext links and pointers to any graphics file: To create a link which will replace the
currently displayed topic with a new one, first write the text or insert a graphic which will
form the link, now double underline it, and then immediately after it write the topic ID of
where the link will go and place it in hidden text.

(c) A Help Project (HPJ) file: a Help Project (HPJ) file which holds settings and file names of
all the source RTF files .The Help Project and provide a suitable file name with the extension
‘.HPJ’. All that has been created is a new help file project. This is quite similar to a Visual
Basic project file ,it is used to determine which files and settings are used in the compilation
process

(d) Help Compiler Workshop: These three different file types are then processed by the Help
Compiler Workshop to produce a help file (.HLP) and a contents file (.CNT). After the help
file has been written and compiled it is ready for use by an application.

9.2.3 HTML Help File
The principal entry point for HTMLHelp operations in Microsoft Visual Basic is
the HTMLHelpfunction. This application programming interface (API) function is declared as :

Private Declare Function HTMLHelp Lib “HHCtrl.ocx” Alias “HTMLHelpA” _
(ByVal hWndCaller As Long, _
ByVal pszFile As String, _
ByVal uCommand As Long, _
dwData As Any) As Long

The first parameter represents a parent window for your application. The second parameter is
the name of the compiled (.chm) file that contains the help data. The third parameter is a value that
represents an HTMLHelp command. The fourth parameter is additional data, the value and format
of which depends on the HTMLHelp command.
9.2.4 Steps To Create Html Help File

1. Click Start, point to Programs, and then click HTML Help Workshop two times to start HTML
Help Workshop.

212 Zero to Mastery in Visual Basic

2. On the File menu, click New.
3. In the New dialog box, click Project, and then click OK. The New Project wizard starts.
4. Follow these steps in the New Project Wizard:

• In the first dialog box, press Next.
• In the Destination dialog box, enter the folder and file name for the help project, and then

click Next.
• In the Existing Files dialog box, press Next.
• Click Finish to create a blank project.

5. On the File menu, click New.
6. In the New dialog box, click HTML File, type Default for the title, click OK,

typeDefault between the <BODY> and </BODY> tags, and then save this file as Default.htm.
7. On the File menu, click New.
8. In the New dialog box, click HTML File, type Sample Topic for the title, click OK, typeSample

Topic between the <BODY> and </BODY> tags, and then save this file as Sample.htm.
9. On the left toolbar in the HTML Help Workshop window, click Add/Remove topic files.

10. Click Add, browse for both the Default.htm file and the Sample.htm file in the file
selection dialog box, click Open, and then click OK. The two files are now listed in the Files
section at the left of the HTML Help Workshop window.

11. Open Notepad, and then type the following context IDs:
#define DEFAULT 100
#define SAMPLE 101
Save the file as Map.h in the same folder as the other HTMLHelp project files that you have
created.

12. On the left toolbar in the HTML Help Workshop window HTML Help Workshop,
clickHtmlHelp API information, click Header File, type the file name Map.h, and then
click OK two times.

13. On the File menu, click Save All Files.
14. On the File menu, click Compile.
15. In the Create a compiled file dialog box, click Compile. This creates a compiled HTML

help file named HHDemo.chm.
Uses the Help File

16. Start a new Visual Basic 6.0 Standard EXE Project.
17. Add two Command buttons to Form1. The buttons have the default names Command1 and

Command2.

Help Writing and Some Other Features 213

18. Add the following code to the General Declarations section of Form1:
Option Explicit
Private Declare Function HtmlHelp Lib “HHCtrl.ocx” Alias “HtmlHelpA” _

(ByVal hWndCaller As Long, _
ByVal pszFile As String, _
ByVal uCommand As Long, _
dwData As Any) As Long

Const HH_DISPLAY_TOPIC As Long = 0
Const HH_HELP_CONTEXT As Long = &HF
Private Sub Form_Load()

ChDir App.Path
End Sub
Private Sub Command1_Click()

HtmlHelp hWnd, “HHDemo.chm”, HH_DISPLAY_TOPIC, ByVal “Sample.htm”
End Sub

Private Sub Command2_Click()
HtmlHelp hWnd, “HHDemo.chm”, HH_HELP_CONTEXT, ByVal 100&

End Sub
Save the files for this project in the same folder as the sample HTMLHelp file.

9.3 CONTEXT-SENSITIVE HELP
Context-sensitive help is a kind of online help that is obtained from a specific point in the state of
the software, providing help for the situation that is associated with that state. Context-sensitive
help, as opposed to general online help or online manuals, doesn’t need to be accessible for reading
as a whole. Each topic is supposed to describe extensively one state, situation, or feature of the
software.

Context-sensitive help can be implemented using tooltips, which either provide a terse de-
scription of a GUI widget or display a complete topic from the help file. Other commonly used
ways to access context-sensitive help start by clicking a button. One way uses a per widget button
that displays the help immediately. Another way changes the mouse pointer shape to a question
mark, and then, after the user clicks a widget, the help appears. Context-sensitive help is mostly
used in GUI environments

214 Zero to Mastery in Visual Basic

Requirements
The following are recommended hardware, software, network infrastructure, and service packs
that needs to provide online help pages and context-sensitive help for the controls in a Microsoft
Windows application:

• Microsoft Visual Studio 2005 or Microsoft Visual Studio .NET
• Internet Connectivity

9.3.1 About The Helpprovider Class
The HelpProvider class provides context-sensitive help or online help pages for controls. Each
instance of HelpProvider maintains a collection of references to the controls that are associated
with the instance. To provide online help pages for the control, set theHelpNamespace property
of HelpProvider, and then associate a Help file with theHelpProvider object.

You can specify the type of help that the application provides for the control by calling
theSetHelpNavigator method, and by providing a HelpNavigator value for the specified
control. Help and HelpProvider use the HelpNavigator enumeration to provide access to specified
elements of the Help file. The members of HelpNavigator are the following:

1. AssociateIndex
2. Find
3. Index
4. KeywordIndex
5. TableOfContents
6. Topic

About the Help class
The Help class provides help to an application by calling the static ShowHelp method and the
static ShowHelpIndex method. The ShowHelp method displays the contents of a Help file.
The ShowHelpIndex method displays the index of the specified Help file. You can use theHelp object
to display Help files such as Compiled Help Module (.chm) files or HTML files that are in the
HTML Help format.
9.3.2 Steps To Create Context-Sensitive Help

1. Start Microsoft Visual Studio 2005 or Microsoft Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. Under Project Types, click Visual Basic Projects. Under Templates, click Windows Ap-

plication, and then click OK. By default, a form that is named Form1 is created.
Add a HelpProvider component to the Form1 form.

4. Right-click HelpProvider1, and then click Properties.

Help Writing and Some Other Features 215

5. In the Properties dialog box, set the HelpNamespace property to http://
msdn.microsoft.com/library/en-us/vbcon/html/vbconbuttoncontroloverview.asp.

6. Add a Button control to the Form1 form. Button1 is created.
7. In the Properties dialog box of Button1, set ShowHelp on HelpProvider1 to True.
8. Set the Text property of Button1 to Submit.

Use the HelpProvider class to provide context-sensitive help for controls
9. When you click the Help button on the title bar of the Form1 form, and then click the control,

the Help string appears.
10. Add two TextBox controls to the Form1 form.
11. Add the following sample code to the Form1_Load event handler.

‘Set the Help string for the TextBox control on the form.
HelpProvider1.SetHelpString(Me.TextBox1, “Enter your UserName”)
HelpProvider1.SetHelpString(Me.TextBox2, “Enter your Password in this TextBox”)
‘Set the Help string for the Button control on the form.
HelpProvider1.SetHelpString(Me.Button1, “Click submit after you type your UserName and
Password”)

12. Right-click Form1, and then click Properties.
13. In the Properties dialog box, set HelpButton to True.
14. Set MaximizeBox to False.
15. Set MinimizeBox to False.

Use the Help class to display an online Help file for a control
16. Add a ListBox control to the Form1 form.
17. Right-click ListBox1, and then click Properties.
18. In the Properties dialog box, click the Items property, and then click the ellipsis button (...).
19. In the String Collection Editor dialog box, type the following strings:

Domain1
Domain2
Domain3
Click OK.

20. Add the following sample code to the ListBox1_KeyDown event handler.
If e.KeyCode = Keys.F1 Then
‘Display the Help file for the ListBox control when you press F1.

216 Zero to Mastery in Visual Basic

Help.ShowHelp(ListBox1, “http://msdn.microsoft.com/library/default.asp?url=/library/
en-us
vbcon/html/vboriListBoxControlProgramming.asp”)

End If
9.4 COMPONENT OBJECT MODEL (COM)
Component Object Model (COM) is a binary-interface standard for software
componentry introduced by Microsoft in 1993. It is used to enable interprocess communication and
dynamic object creation in a large range of programming languages.

The essence of COM is a language-neutral way of implementing objects that can be used in
environments different from the one in which they were created, even across machine boundaries.
For well-authored components, COM allows reuse of objects with no knowledge of their internal
implementation, as it forces component implementers to provide well-defined interfaces that are
separate from the implementation. The different allocation semantics of languages are accommo-
dated by making objects responsible for their own creation and destruction through reference.

COM is object-oriented programming model that defines how objects interact within a single
application or between applications. Client software accesses an object through a pointer to an
interface on objects. Both OLE and ActiveX are based on COM. Also COM provides the interfaces
between objects, and Distributed COM (DCOM) allows them to run remotely. COM objects can be
small or large. They can be written in several programming languages, and they can perform any
kind of processing. A program can call the object whenever it needs its services.
9.5 DISTRIBUTED COMPONENT OBJECT MODEL (DCOM)
Distributed Component Object Model (DCOM) is a proprietary Microsoft technology for commu-
nication among software components distributed across networked computers. DCOM was first
made available in 1995 with the initial release of Windows NT 4.

Additions to the Component Object Model (COM) that facilitate the transparent distribution
of objects over networks and over the Internet. DCOM is part of the specification managed by The
Open Group for deployment across heterogeneous platforms.

(Distributed Component Object Model) is an extension of the Microsoft Component Object
Model (COM) that allows COM components to communicate across network boundaries. Tradi-
tional COM components can only perform intercrosses communication across process boundaries
on the same machine. DCOM uses the Remote Procedure Call (RPC) mechanism to transparently
send and receive information between COM components (ie, clients and servers) on the same
network. DCOM had to solve the problems of

• Marshalling: serializing and deserializing the arguments and return values of method calls
“over the wire”.

Help Writing and Some Other Features 217

• Distributed garbage collection: ensuring that references held by clients of interfaces are
released when, for example, the client process crashed, or the network connection was lost.

9.6 WINDOWS APPLICATION PROGRAMMING INTERFACE (API)
The Windows Application Programming Interface, or API, is a complex set of functions for interact-
ing with indows.The API allows Visual Basic, C++, Java and Delphi programmers to gain access to
many of the functions that windows uses internally, such as printing, thread-based resources, and the
registry. API calls can be used to perform almost any Windows task, from shutting down a computer
to installing a printer.
9.6.1 What Is The Windows API?
The Windows API is a name that collectively refers to the procedures and functions that comprise
the Windows Operating System. The procedures and functions are shipped with Windows in librar-
ies, called Dynamic Link Libraries. The main API functions reside in three system DLL files, which
are located on every computer that is using the Windows operating system.

• User32.dll - Handles the user interface
• Kernel32.dll - Working with files and your computers memory
• Gdi32.dll - Graphical commands
Microsoft bundled all of the API functions into system DLL’s so that they were easily acces-

sible for developers from a number of programming languages. Other developers how to create an
API declaration for the functions contained within that DLL.
9.6.2 Exploring The API Function List
Make a program to show path of windows.

To start the API viewer,
• Click Start -> Programs -> Microsoft Visual Studio 6 -> Microsoft Visual Studio 6 Tools ->

API Text Viewer.

218 Zero to Mastery in Visual Basic

• Click on File, then Load Text File. Find the file named Win32api.txt and load it up.
If a box appears asking you if you want to change this file from text to database, accept it.

• Set API type to ‘Declares’. The Available Items Box displays all of the API Type that we
have selected.
Select the function ‘GetWindowsDirectory’. click the ‘Add’ button.

 Its source code should appear in the Selected Items Box. Copy the source onto the Windows
clipboard.

Keep open the API viewer.
9.6.3 Calling API

• Create a new project in Visual Basic 6. This project must contain at least a single form and
one module.
Now access the source code that will call up the API function. With the source code
copied to the Windows clipboard, return to Visual Basic and paste it at the top as part of the
source code for the Module.

• Place a command Button on your form and set the caption to ‘Show Windows Directory’.
Write the following code to the Click event of this button -
Dim TheResult
Dim TheWindowsDirectory As String
TheWindowsDirectory = Space(144)

‘Fill 144 spaces in TheWindowsDirectory string

Help Writing and Some Other Features 219

TheResult = GetWindowsDirectory(TheWindowsDirectory, 144) ‘Get path and
place it in TheResult string

If TheResult = 0 Then
MsgBox “Cannot get the Windows Directory”

Else ‘Prepare the String for preview,
and then display in a Message Box

TheWindowsDirectory = Trim(TheWindowsDirectory)
MsgBox “The Windows Path: “ & TheWindowsDirectory

End If
End Sub

• Run the program and click on the command button. Following message box is displayed:

9.7 MESSAGING APPLICATION PROGRAMMING INTERFACE (MAPI)
MAPI was originally designed by Microsoft. MAPI was the main e-mail data access method used
by the Exchange Data Objects (EDO) and Collaboration Data Objects (CDO) interfaces.

The MAPI architecture can be used for e-mail, scheduling, personal information managers,
bulletin boards, and online services that run on mainframes, personal computers, and hand-held
computing devices. The comprehensive architectural design allows MAPI to serve as the basis for
a common information exchange.

Under MAPI architecture, to use the messaging services, a client must first establish a ses-
sion. A session is a specific connection between the client and the MAPI interface based on infor-
mation provided in a profile. After establishing a MAPI session, the client can use the following
three primary services:

• Address book: A persistent database that contains valid addressing information.
• Transport: supports communication between different devices and different underlying mes-

saging systems.
• A message store: stores messages in a hierarchical structure that consists of one or more

folders.
A message in MAPI represents a communication that is sent from the sender to one or more

220 Zero to Mastery in Visual Basic

recipients or that gets posted in a public folder. It provides a consistent interface for multiple applica-
tion programs to interact with multiple messaging systems across a variety of hardware platforms. A
message can include one or more attachments.

MAPI is made up of a set of common application programming interfaces and a dynamic-link
library (DLL) component. The interfaces are used to create and access diverse messaging applica-
tions and messaging systems, offering a uniform environment for development and use and provid-
ing true independence for both.

Simple MAPI is a subset of 12 functions, which enable developers to add basic messaging
functionality. Extended MAPI allows complete control over the messaging system on the client
computer, creation and management of messages, management of the client mailbox, service pro-
viders, and so forth. Simple MAPI ships with Microsoft Windows as part of Outlook Express/Win-
dows Mail while the full Extended MAPI ships with Office Outlook and Exchange. Extended MAPI
serves three main purposes:

• It’s the programming interface used to write components that connect to different mail serv-
ers, provide access to custom address books and provide rich storage facilities — in other
words, the components that you can add through see on the Tools | Services dialog in Out-
look.

• You can use MAPI to develop new types of custom forms, not based on the built-in Outlook
forms.

Help Writing and Some Other Features 221

• You can create addins for Outlook, Exchange and Windows Messaging that extend the func-
tionality of those clients.

9.8 MICROSOFT TRANSACTION SERVER
Microsoft Transaction Server was software that provided services to Component Object
Model (COM) software components, to make it easier to create large distributed applications. The
major services provided by MTS were automated transaction management, instance management
and role-based security. MTS is a component-based transaction processing system for developing,
deploying, and managing high-performance, scalable, and robust enterprise, Internet, and intranet
server applications. MTS allows us to deploy and administer our MTS server applications with a
rich graphical tool. It provides the following features:

1. The MTS run-time environment.
2. The MTS Explorer: A graphical user interface for deploying and managing application

components.
3. MTS APIs: Application programming interfaces(API) and resource dispensers for making

applications scalable and robust. Resource dispensers are services that manage non-durable
shared state on behalf of the application components within a process.

4. MTS Sample Applications: Three sample applications that demonstrate how to use the
application programming interface (API) to build MTS components, and use scriptable ad-
ministration objects to automate deployment procedures in the MTS Explorer.

The three-tiered programming model provides more flexibility and opportunity for develop-
ers and administrators to move beyond the constraints of two-tier client/server applications be-
cause:

• The three-tier model emphasizes a logical architecture for applications, rather than a physical
one. Any service may invoke any other service and may reside anywhere.

• These applications are distributed, which means you can run the right components in the
right places, benefiting users and optimizing use of network and computer resources.

9.8.1 Microsoft Transaction Server Run-Time Environment
The MTS run-time environment is a middle-tier platform for running those components that encap-
sulate business logic. The MTS run-time infrastructure makes application development, deploy-
ment, and management easy by providing the application developer and system administrator a
comprehensive but easy-to-use set of system services that include:

• Distributed transactions. A transaction is a unit of work that is done as an atomic operation
that is, the operation succeeds or fails as a whole.

• Automatic management of processes and threads.
• Object instance management.
• A distributed security service to control object creation and use.

222 Zero to Mastery in Visual Basic

• A graphical interface for system administration and component management.
Application developers who rely upon these system services to make their applications scal-

able and robust can focus on solving their business problems rather than on developing a system
infrastructure.

MTS is designed to work with a wide variety of resource managers, including relational data-
base systems, file systems, and document storage systems. This allows developers to easily use two
or more resource managers within a single application.
9.8.2 Microsoft Transaction Server Explorer
The MTS Explorer uses to register and manage components executing in the MTS run-time envi-
ronment. The MTS Explorer is a graphical user interface for managing and deploying MTS compo-
nents. System and web administrators as well as developers can use the MTS Explorer to adminis-
ter, distribute, install, deploy, and test packages. Developers use the MTS Explorer to assemble
components into pre-built packages, distribute and test components in the MTS environment. The
Explorer allows us to monitor and manage transactions. The Explorer hierarchy depicts how the
following items in the run-time environment are organized:

• Computers • Packages
• Components • Roles
• Interfaces • Methods

MTS packages are installed on computers, contain components, and define roles. Compo-
nents in a package define interfaces and methods.
9.8.3 Microsoft Transaction Server APIS
MTS application programming interfaces (APIs) uses to develop scalable and robust applications
that take advantage of the features of the MTS run-time environment, and to automate administra-
tion of packages and components.
Developing Client Applications
Client applications that run outside the MTS run-time environment instantiate MTS objects by
using the standard COM library functions
Developing Components
While developing MTS components one can use different property of MTS interfaces to:

• Declare that an object’s work is complete
• Prevent a transaction from being committed
• Create other MTS objects
• Include other objects’ work within the scope of the current object’s transaction
• Determine if a caller is in a particular role

Help Writing and Some Other Features 223

• Determine if security is enabled
Automating MTS Administration
Using Visual Basic Scripting or any other Automation-compatible language, one can automate
procedures in the MTS Explorer ranging from installing a prebuilt package to enumerating through
related collections.
9.8.4 Microsoft Transaction Server Sample Applications
In addition to the documentation, MTS includes useful sample applications. One can copy any part
of them into their own applications and modify them as necessary. MTS provides the following
sample applications.

Sample Description
Sample Bank Sample Bank is a simple transactional database application that

demonstrates how to use the MTS application programming
inter faces

Tic-Tac-Toe Tic-Tac-Toe is a simple multiuser game that shows nontransac-
tional components managing shared state.

Administrative Sample Scripts The administrative object scripts demonstrate how to auto mate
MTS Explorer procedures using VBScript.

9.9 VISUAL SOURCESAFE
Microsoft Visual SourceSafe is a file-level version control system that permits many types of orga-
nizations to work on several project versions at the same time. This capability is particularly ben-
eficial in a software development environment, where it is used in maintaining parallel code ver-
sions. However, the product can also be used to maintain files for any other type of team.

Visual SourceSafe supports cross-platform development by allowing collaborative editing
and sharing of data. It is designed to handle the tracking and portability issues involved in maintain-
ing one source control base. For developers, Visual SourceSafe accommodates reusable or object-
oriented code. Visual SourceSafe does the following:

• Helps protect ones team from accidental file loss.
• Allows back-tracking to earlier versions of a file.
• Supports branching, sharing, merging, and management of file releases.
• Tracks versions of entire projects.
• Tracks modular code (one file that is reused, or shared, by multiple projects).

Compatibility
The current release of Visual SourceSafe is fully compatible with database versions 6.0 and earlier.

224 Zero to Mastery in Visual Basic

Version Control and File Sharing
Visual SourceSafe allows the quick and efficient sharing of files among projects. When you add a file
to Visual SourceSafe, the file is stored on the database and made available to other users. Changes
that have been made to the file are saved so that any user can recover an old version at any time.
When a set of files is ready to deliver, Visual SourceSafe makes it easy to share and obtain different
versions of the selected set of files.
Extensibility
Using the Visual SourceSafe automation interfaces, you can write extensions based on Visual
SourceSafe as needed for your environment. Extensions are usually provided in the form of stand-
alone applications written to the automation interfaces by writing an add-in or plug-in that is com-
patible with the integrated development environment (IDE) of the third-party program that will run
the software package.
Parallel Development
Visual SourceSafe supports parallel development and cross-platform development techniques. Such
support allows individual team members to complete different parts and versions of a project at the
same time, instead of being stalled while waiting for each to other to finish certain tasks. File merge
operations enable independent work without the need to synchronize changes with those made by
other individuals.

In support of parallel operations, Visual SourceSafe also includes a label promotion feature to
advance files as needed to different versions of a project.
Developer Support
More and more, developers are accessing Visual SourceSafe functions from their development
environments within third-party programs. Visual SourceSafe can be easily integrated with Visual
Studio and other development tools, such as Microsoft Access. Visual SourceSafe supports a devel-
oper environment in many ways by allowing:

• Setting of folder policies to enable group development scenarios.
• Bug fixes
• Easy transition to a new release of an existing project
• Batch/nightly builds
• Automation of source code control events
• Access to automation interfaces
• Source control over slow connections
• Configuration of new projects for isolated Web development
• Addition of a new Web developer to an existing team Web project
• Tracking of programming modules to allow reusable or object-oriented code

Help Writing and Some Other Features 225

Database Maintenance
Visual SourceSafe provides a number of powerful database maintenance tools to keep your data-
bases operating efficiently and securely. It supports archival and restoration through easy-to-use
wizards, as well as several command line-based maintenance utilities.
9.9.1 Limitation
Visual SourceSafe’s stability is criticized due to the way Visual SourceSafe uses a direct, file-based
access mechanism that allows any client to modify a file in the repository after locking it. If a client
machine crashes in the middle of updating a file, it can corrupt that file. Many users of Visual
SourceSafe mitigate this risk by making use of a utility provided by Visual SourceSafe that checks
the database for corruption and, when able, corrects errors that it finds.
9.10 MICROSOFT’S VBSCRIPT
Microsoft’s VBScript (Visual Basic Script) is a scripting language used to create dynamic and
interactive web pages. VBScript is a subset of Visual Basic, a more developed scripting language,
and is commonly used on the Web as a client side scripting language and server-side processing in
ASPs (Active Server Pages). The interpreted script language VBScript is designed for Web Browser
interpretation. VBScript is similar to scripting languages, including; Netscape’s JavaScript, Sun
Microsystem’s Tcl, IBM’s Rexx and the UNIX-derived Perl. These scripting languages have been
designed to be used as an extension for html language. A Web Browser receives the scripts for
websites through web page documents that are then parsed and processed.

It is designed as a “lightweight” language with a fast interpreter for use in a wide variety of
Microsoft environments. VBScript uses the Component Object Modelto access elements of the
environment within which it is running; for example, the FileSystemObject (FSO) is used to create,
read, update and delete files.

VBScript has been installed by default in every desktop release of Microsoft Windows . A
VBScript script must be executed within a host environment, of which there are several provided
with Microsoft Windows, including: Windows Script Host (WSH), Internet Explorer (IE),
andInternet Information Services
9.10.1 Adding VbScript To Web Pages
VBScript, are designed as an extension to HTML. The web browser receives scripts along with the
rest of the web document. It is the browser’s responsibility to parse and process the scripts. Add
scripts into your web pages within a pair of<SCRIPT> tags. The <SCRIPT> tag signifies the start
of the script section, while </SCRIPT> marks the end. Example:

<HTML>
<HEAD>
<TITLE>Working With VBScript</TITLE>
<SCRIPT LANGUAGE=”VBScript”>

226 Zero to Mastery in Visual Basic

 MsgBox ”Welcome to my Web page!”
</SCRIPT>

9.10.2 Working With Variables
A variable is a named location in computer memory that can use for storage of data during the
execution of scripts. variables can be used to:

• Store input from the user gathered via your web page
• Save data returned from functions
• Hold results from calculations
There are two methods for declaring variables in VBScript, explicitly and implicitly. Usually

we declare variables explicitly with the Dim statement as
Dim Name
Dim Name, Address, City, State
Variables can be declared implicitly by simply using the variable name within your script.

This practice is not recommended. It leads to code that is prone to errors and more difficult to
debug.

Example:
 < script >
Dim name
Sub cmdclickme_OnClick
Dim age
End Sub
< / script >

9.10.3 Objects And VbScript
Objects enhance the functionality that is provided with HTML. By using VBScript one can extend
the capabilities of these controls, integrating and manipulating them from within our scripts. Scripting
with objects involves two steps:

• Adding the object to web page using HTML
• Writing script procedures to respond to events that the object provides

Adding Objects to Web Pages
Objects are added to a page with the single <OBJECT> tag. The properties, or characteristics, of
the object are configured using the several <PARAM> tag. Example :

<OBJECT ID=”lblTotalPay” WIDTH=45 HEIGHT=24
CLASSID=”CLSID:978C9E23-D4B0-11CE-BF2D-00AA003F40D0">

Help Writing and Some Other Features 227

<PARAM NAME=”ForeColor” VALUE=”0">
<PARAM NAME=”BackColor” VALUE=”16777215">
<PARAM NAME=”Caption” VALUE=””>
<PARAM NAME=”Size” VALUE=”1582;635">

9.10.4 Linking VbScript With Objects
Once you have added a control to your web page, it can be configured, manipulated and responded
to through its properties, methods and events. Properties are the characteristics of an object. They
include items like a caption, the foreground color and the font size. Methods cause an object to
perform a task. Events are actions that are recognized by an object. The Script Wizard found in the
Microsoft ActiveX Control Pad can be used to identify events provided by a control, and to gener-
ate script to respond to these events.

 Example:
<SCRIPT LANGUAGE=”VBScript”>
Sub cmdCalculatePay_onClick

Dim HoursWorked
Dim PayRate
Dim TotalPay
HoursWorked = InputBox(“Enter hours worked: ”)
PayRate = InputBox(“Enter pay rate: ”)

TotalPay = HoursWorked * PayRate
lblTotalPay.caption = TotalPay

End Sub
</SCRIPT>

9.10.5 Using VbScript With Forms
As the popularity of web page forms increase, so does the need to be able to validate data before the
client browser submits it to the web server. As a scripting language, VBScript is well suited for this
task. Once the form has been validated, the same script can be used to forward the data on to the
server. The process of validating forms involves checking the form to see if:

• All of the required data is proved
• The data provided is valid

228 Zero to Mastery in Visual Basic

10.1 INTRODUCTION
In April 2010 Microsoft released Visual Studio 2010, the .NET Framework 4.0 (which includes
ASP.NET 4.0), and new versions of their core programming languages: C# 4.0 and Visual Basic 10.
Previously, the C# and Visual Basic programming languages were managed by two separate teams
within Microsoft, which helps explain why features found in one language was not necessarily
found in the other. For example, C# 3.0 introduced collection initializers, which enable developers
to define the contents of a collection when declaring it. However, Visual Basic did not support
collection initializers. Conversely, Visual Basic has long supported optional parameters in meth-
ods, whereas C# did not.

Now, Microsoft merged the Visual Basic and C# teams to help ensure that C# and Visual
Basic grow together. Thus, the major functions which are introduced in one language, it should
appear in the other as well. To this end, with version 4.0 C# now supports optional parameters and
named arguments, two features that have long been part of Visual Basic’s vernacular. And, like-
wise, Visual Basic has been updated to include a number of C# features that it was previously
missing.

This chapter explores some of these new features that were added to Visual Basic 2010.
10.2 VB COMPILER RUNTIME SWITCH
Visual Basic has a long history, the first version of Visual Basic was released in 1991. VB1 was the
first RAD tool for creating Windows applications and created a new way of programming by draw-
ing the user interface using a control toolbox. But the actual language syntax was an extension of
the older QuickBasic language.

Microsoft did their best to make the transition to .Net as smooth as possible and added a lot of
legacy functions in the Microsoft.VisualBasic.dll assembly, such as Left(), Mid(), Right(), Chr(),
ChDir(), MsgBox() and so on. These functions aren’t really necessary since there are other ways of
getting the same result, but it made the transition from VB6 a lot smoother. A lot of other stuff was
also added to this assembly, such as the ability to use late binding, are On Error Goto and On Error

Advance Features of VB 2010

Chapter -10

Advance Features of VB 2010 229

Resume Next that still works in VB.Net. The main reason to keep this is to Upgrade Wizard that
converted VB6 code into VB.Net , should be make it able to work.

VB , C# and Visual C++ also have their own runtime assemblies. The difference is the size of
these assemblies and what they contain. The Microsoft.CSharp.dll, which was added in .Net 4,
contains the runtime builder that adds support for the dynamic keyword, while
Microsoft.VisualBasic.dll contains a lot more. If you only want to write code for platforms that
include the full .Net framework, such as desktop applications for Windows or ASP.Net applications
for the web. But there is other platform that doesn’t include the full framework, such as Windows
Phone 7 or XNA for creating games that runs on the Xbox. There can also be other third-party
platforms that only contain parts of the .Net framework. When you have limited space for a custom
implementation one of the last things you might want to add is the large Microsoft.VisualBasic.dll
assembly.

However the assembly is always referenced by default as soon as you create a VB project, but
you can actually remove the reference when you compile the project. However you would need to
use the command line compiler to do so. But there is a problem with removing the VB assembly and
the name of that problem is the CType operator. Since CType is an operator and not a function the
conversion will be done inline at compile time, or rather the compiler will try to do it inline but that
is not always possible. Converting an integer to a double can easily be done during compile time
but converting the generic System. Object to a less generic type is not possible until run-time. So
there is a helper function in the VB assembly that does the conversion for you, if you have a
reference of a assembly.

So the vbruntime switch that has existed in the command line compiler (vbc.exe) for a long
time has now been extended. Instead of just excluding the runtime assembly or using another as-
sembly as the runtime, it will now be able to include the key VB runtime as a reference into your
application. This will be a great help to get VB support faster for new platforms.

The vbruntime compiler option has a new vbruntime switch that embeds core functionality
from the Visual Basic Runtime Library into an assembly. Where Runtime specifies that the com-
piler should compile without a reference to the Visual Basic Runtime Library, or with a reference to
a specific runtime library. And the switch will enable Visual Basic developers to target their appli-
cations and libraries at platforms where the full Visual Basic Runtime hasn’t traditionally been
available. You can use this switch to enable your Visual Basic application to run on platforms that
do not contain the Visual Basic Runtime Library.
10.3 AUTO-IMPLEMENTED PROPERTY
In C# we can create properties for classes in simple way by just specifying the below code, this
option is called auto-implemented property, as the implementation is taken care by the compiler.

public int Price { get; set; }
In Visual Basic we don’t have such simple option to create properties, hence to create a simple

class we have to write the below code..

230 Zero to Mastery in Visual Basic

Class Client
Private Code As String
Public Property Code() As String

Get
Return Code
End Get
Set(ByVal value As String)
Code = value
End Set

End Property

Private Name As String
Public Property Name() As String

Get
Return Name
End Get
Set(ByVal value As String)
Name = value
End Set

End Property
Private CreditLimit As Single = 2000
Public Property CreditLimit() As Single

Get
Return CreditLimit
End Get
Set(ByVal value As Single)
CreditLimit = value
End Set

End Property
End Class
But in Visual Basic 2010 with auto-implemented properties, a property, including a default

value, can be declared in a single line. We can write the below code instead of the above..

Advance Features of VB 2010 231

Class Client
Public Property Code As String
Public Property Name As String
Public Property CreditLimit As Single = 2000

End Class
Auto-implemented properties enable you to quickly specify a property of a class without hav-

ing to write code to Get and Set the property. When you write code for an auto-implemented prop-
erty, the Visual Basic compiler automatically creates a private field to store the property variable in
addition to creating the associated Get and Set procedures. An auto-implemented property is equiva-
lent to a property for which the property value is stored in a private field. The following code
example shows an auto-implemented property.

Property Prop2 As String = “Empty”
The following code example shows the equivalent code for the previous auto-implemented

property example.
Private _Prop2 As String = “Empty”
Property Prop2 As String

Get
Return _Prop2
End Get
Set(ByVal value As String)
 _Prop2 = value
End Set

End Property
10.3.1 Backing Field
When you declare an auto-implemented property, Visual Basic automatically creates a hidden pri-
vate field called the backing field to contain the property value. The backing field name is the auto-
implemented property name preceded by an underscore (_). For example, if you declare an auto-
implemented property named CITY, the backing field is named _CITY. If you include a member of
your class that is also named _CITY, you produce a naming conflict and Visual Basic reports a
compiler error.

The backing field also has the following characteristics:
• The access modifier for the backing field is always Private, even when the property itself

has a different access level, such as Public.
• If the property is marked as Shared, the backing field also is shared.

232 Zero to Mastery in Visual Basic

• Attributes specified for the property do not apply to the backing field.
• The backing field can be accessed from code within the class and from debugging tools

such as the Watch window. However, the backing field does not show in an IntelliSense
word completion list.

10.3.2 Initializing an Auto Implemented Property
Any expression that can be used to initialize a field is valid for initializing an auto-implemented
property. When you initialize an auto-implemented property, the expression is evaluated and passed
to the Set procedure for the property. The following code examples show some auto-implemented
properties that include initial values.

Property FirstName As String = “Amit”
Property PartNo As Integer = 54203
Property Orders As New List(Of Order)(300)
You cannot initialize an auto-implemented property that is a member of an Interface, or one

that is marked MustOverride.
When you declare an auto-implemented property as a member of a Structure, you can only

initialize the auto-implemented property if it is marked as Shared.
When you declare an auto-implemented property as an array, you cannot specify explicit

array bounds. However, you can supply a value by using an array initializer, as shown in the follow-
ing examples.

Property Marks As Integer() = {95, 70}
Property Temperatures As Integer() = New Integer() {66, 53, 81}

10.3.3 Property Definitions That Require Standard Syntax
Auto-implemented properties are convenient and support many programming scenarios. However,
there are situations in which you cannot use an auto-implemented property and must instead use
standard, or expanded, property syntax.

You have to use expanded property-definition syntax if you want to do any one of the follow-
ing:

• Add code to the Get or Set procedure of a property, such as code to validate incoming values
in the Set procedure. For example, you might want to verify that a string that represents a
telephone number contains the required number of numerals before setting the property value.

• Specify different accessibility for the Get and Set procedure. For example, you might want to
make the Set procedure Private and the Get procedure Public.

• Create properties that are WriteOnly or ReadOnly.
• Use parameterized properties (including Default properties). You must declare an expanded

property in order to specify a parameter for the property, or to specify additional parameters
for the Set procedure.

Advance Features of VB 2010 233

• Place an attribute on the backing field, or change the access level of the backing field.
• Provide XML comments for the backing field.

10.3.4 Expanding an Auto-Implemented Property
If you have to convert an auto-implemented property to an expanded property that contains a Get or
Set procedure, the Visual Basic Code Editor can automatically generate the Get and Set procedures
and End Property statement for the property. The code is generated if you put the cursor on a blank
line following the Property statement, type a G (for Get) or an S (for Set) and press ENTER. The
Visual Basic Code Editor automatically generates the Get or Set procedure for read-only and write-
only properties when you press ENTER at the end of a Property statement.
10.4 COLLECTION INITIALIZERS
Collection initializers provide a shortened syntax that enables you to create a collection and popu-
late it with an initial set of values. Collection initializes are useful when you are creating a collec-
tion from a set of known values, for example, a list of menu options or categories, an initial set of
numeric values, a static list of strings such as day or month names, or geographic locations such as
a list of states that is used for validation.
Syntax
You identify a collection initializer by using the From keyword followed by braces ({}). This is
similar to the array literal syntax that is described in Arrays in Visual Basic. A collection initializer
consists of a list of comma-separated values that are enclosed in braces ({}), preceded by the From
keyword, as shown in the following code.

Dim names As New List(Of String) From { “Amit “ , “Namit “ , “Sumit “ }
When you create a collection by using a collection initializer, each value that is supplied in

the collection initializer is passed to the appropriate Add method of the collection. For example, if
you create a List(Of T) by using a collection initializer, each string value in the collection initializer
is passed to the Add method. If you want to create a collection by using a collection initializer, the
specified type must be valid collection type. Examples of valid collection types include classes that
implement the IEnumerable(Of T) interface or inherit the CollectionBase class. The specified type
must also expose an Add method that meets the following criteria.

• The Add method must be available from the scope in which the collection initializer is being
called. The Add method does not have to be public if you are using the collection initializer
in a scenario where non-public methods of the collection can be accessed.

• The Add method must be an instance member or Shared member of the collection class, or an
extension method.

• An Add method must exist that can be matched based on overload resolution rules, to the
types that are supplied in the collection initializer.

234 Zero to Mastery in Visual Basic

When you use a collection initializer to create a collection, the Visual Basic compiler searches
for an Add method of the collection type for which the parameters for the Add method match the
types of the values in the collection initializer. This Add method is used to populate the collection
with the values from the collection initializer. You cannot combine both a collection initializer and
an object initializer to initialize the same collection object. You can use object initializers to initial-
ize objects in a collection initializer.
10.5 IMPLICIT LINE CONTINUATION SUPPORT
All programming languages use some character to denote the end of a statement. C-flavored lan-
guages (like C#) use the semicolon to mark the end of a statement, whereas the Basic programming
language has long used the carriage return. VB assumes that each statement is on one line of code.
If your line of code is too long then you could use the underscore character to tell the compiler that
the line of code continues onto the next line. Thus, when a statement in VB has been split up across
multiple lines, you had to use a line-continuation underscore character (_) to indicate that the
statement wasn’t complete.

For example, with VB 2008 the below LINQ query needs to append a “_” at the end of each
line to indicate that the query is not complete yet:

Public Function ChangePassword(ByVal Username As String, _
ByVal OldPassword As String, _
ByVal NewPassword As String) As Boolean
...

End Function
The VB 2010 compiler and code editor now adds support for what is called “implicit line

continuation support” – which means that it is smarter about auto-detecting line continuation sce-
narios, and as a result no longer needs you to explicitly indicate that the statement continues in
many, many scenarios. This means that with VB 2010 we can now write the above code with no
“_” at all:

Public Function ChangePassword(ByVal Username As String,
ByVal OldPassword As String,
ByVal NewPassword As String) As Boolean
...

End Function
The implicit line continuation feature also works well when editing XML Literals within VB

10.6 MULTILINE LAMBDA EX-PRESSIONS AND SUBROU-TINES
A lambda expression is a function or subroutine without a name that can be used wherever a

Advance Features of VB 2010 235

delegate is valid. Lambda expressions can be functions or subroutines and can be single-line or multi-
line. You can pass values from the current scope to a lambda expression.
Lambda expression syntax
The syntax of a lambda expression resembles that of a standard function or subroutine. The differ-
ences are as follows:

• A lambda expression does not have a name.
• Lambda expressions cannot have modifiers, such as Overloads or Overrides.
• Single-line lambda functions do not use an As clause to designate the return type. Instead, the

type is inferred from the value that the body of the lambda expression evaluates to. For
example, if the body of the lambda expression is cust.City = “London”, its return type is
Boolean.

• In multi-line lambda functions, you can either specify a return type by using an As clause, or
omit the As clause so that the return type is inferred. When the As clause is omitted for a
multi-line lambda function, the return type is inferred to be the dominant type from all the
Return statements in the multi-line lambda function. The dominant type is a unique type that
all other types supplied to the Return statement can widen to. If this unique type cannot be
determined, the dominant type is the unique type that all other types supplied to the Return
statement can narrow to. If neither of these unique types can be The body of a single-line
function must be an expression that returns a value, not a statement. There is no Return
statement for single-line functions. The value returned by the single-line function is the value
of the expression in the body of the function.

• The body of a single-line subroutine must be single-line statement.
• Single-line functions and subroutines do not include an End Function or End Sub statement.
• You can specify the data type of a lambda expression parameter by using the As keyword, or

the data type of the parameter can be inferred. Either all parameters must have specified data
types or all must be inferred.

• Optional and Paramarray parameters are not permitted.
• Generic parameters are not permitted.
• Determined, the dominant type is Object.

10.6.1 To create a single-line lambda expression subroutine
1. In any situation where a delegate type could be used, type the keyword Sub, as shown in the

following example.
Dim add = Sub

2. In parentheses, directly after Sub, type the parameters of the subroutine. Notice that you do
not specify a name after Sub.

236 Zero to Mastery in Visual Basic

Dim add = Sub (msg As String)
3. Following the parameter list, type a single statement as the body of the subroutine.

Dim writeMessage = Sub(msg As String) Console.WriteLine(msg)
4. You call the lambda expression by passing in a string argument.

writeMessage(“Hello”)
10.6.2 To create a multiline lambda expression function

1. In any situation where a delegate type could be used, type the keyword Function, as shown in
the following example.
Dim add = Function

2. In parentheses, directly after Function, type the parameters of the function. Notice that you
do not specify a name after Function.
Dim add = Function (index As Integer)

3. Press ENTER. The End Function statement is automatically added.
4. Within the body of the function, add the following code to create an expression and return the

value. You do not use an As clause to specify the return type.
Dim getColumn = Function(index As Integer)

Select Case index
Case 0
Return “FirstName”
Case 1
Return “LastName”
Case 2
Return “CompanyName”
Case Else
Return “LastName”

End Select
End Function
You call the lambda expression by passing in an integer argument.

Dim getColumn = getColumn(0)
10.6.3 To create a multiline lambda expression subroutine

1. In any situation where a delegate type could be used, type the keyword Sub, as shown in the
following example:

Advance Features of VB 2010 237

Dim add = Sub
2. In parentheses, directly after Sub, type the parameters of the subroutine. Notice that you do

not specify a name after Sub.
Dim add = Sub(msg As String)

3. Press ENTER. The End Sub statement is automatically added.
4. Within the body of the function, add the following code to execute when the subroutine is

invoked
Dim writeToLog = Sub(msg As String)
Dim log As New EventLog()
log.Source = “Project”
log.WriteEntry(msg)
log.Close()
End Sub

You call the lambda expression by passing in a string argument.
writeToLog(“Project started.”)
A lambda expression shares its context with the scope within which it is defined. It has the

same access rights as any code written in the containing scope. This includes access to member
variables, functions and subs and parameters and local variables in the containing scope.

Access to local variables and parameters in the containing scope can extend beyond the life-
time of that scope. As long as a delegate referring to a lambda expression is not available to garbage
collection, access to the variables in the original environment is retained. In the following example,
variable target is local to makeTheGame, the method in which the lambda expression playTheGame
is defined. Note that the returned lambda expression, assigned to takeAGuess in Main, still has
access to the local variable target.
10.7 TYPE EQUIVALENCE SUPPORT
You can now deploy an application that has embedded type information instead of type information
that is imported from a Primary Interop Assembly (PIA). With embedded type information, your
application can use types in a runtime without requiring a reference to the runtime assembly. If
various versions of the runtime assembly are published, the application that contains the embedded
type information can work with the various versions without having to be recompiled.

The /link option enables you to deploy an application that has embedded type information.
The application can then use types in a runtime assembly that implement the embedded type infor-
mation without requiring a reference to the runtime assembly. /link causes the compiler to make
Component Object model (COM) type information in the specified assemblies available to the
project that you are currently compiling.

238 Zero to Mastery in Visual Basic

Syntax /link:fileList or /l:fileList
Where filelist is required. It is comma-delimited list of assembly file names. If the file name

contains a space, enclose the name in quotation marks.
Using the /link option is especially useful when you are working with COM interop. You can

embed COM types so that your application no longer requires a primary interop assembly (PIA) on
the target computer. The /link option instructs the compiler to embed the COM type information
from the referenced interop assembly into the resulting compiled code. The COM type is identified
by the CLSID (GUID) value. As a result, your application can run on a target computer that has
installed the same COM types with the same CLSID values. The /link option embeds only inter-
faces, structures, and delegates. Embedding COM classes is not supported.
10.8 DYNAMIC SUPPORT
Dynamic objects expose members such as properties and methods at run time, instead of in at
compile time. This enables you to create objects to work with structures that do not match a static
type or format. For example, you can use a dynamic object to reference the HTML Document
Object Model (DOM), which can contain any combination of valid HTML markup elements and
attributes. Because each HTML document is unique, the members for a particular HTML docu-
ment are determined at run time. A common method to reference an attribute of an HTML element
is to pass the name of the attribute to the GetProperty method of the element.

Dynamic objects provide convenient access to dynamic languages such as IronPython and
IronRuby. You can use a dynamic object to refer to a dynamic script that is interpreted at run time.
You reference a dynamic object by using late binding. In C#, you specify the type of a late-bound
object as dynamic. In Visual Basic, you specify the type of a late-bound object as Object.

You can create custom dynamic objects by using the classes in the System.Dynamic namespace.
You can also create your own type that inherits the DynamicObject class. You can then override the
members of the DynamicObject class to provide run-time dynamic functionality.

The DynamicObject class enables you to define which operations can be performed on dy-
namic objects and how to perform those operations. For example, you can define what happens
when you try to get or set an object property, call a method, or perform standard mathematical
operations such as addition and multiplication.

You cannot directly create an instance of the DynamicObject class. To implement the dy-
namic behavior, you may want to inherit from the DynamicObject class and override necessary
methods. For example, if you need only operations for setting and getting properties, you can
override just the TrySetMember and TryGetMember methods.

The following code example demonstrates how to create an instance of a class that is derived
from the DynamicObject class.

Public Class SampleDynamicObject

Advance Features of VB 2010 239

Inherits DynamicObject
...
Dim sampleObject As Object = New SampleDynamicObject()
You can also add your own members to classes derived from the DynamicObject class. .
The DynamicObject class implements the DLR interface IDynamicMetaObjectProvider, which

enables you to share instances of the DynamicObject class between languages that support the
DLR interoperability model. For example, you can create an instance of the DynamicObject class
in C# and then pass it to an IronPython function.
10.9 COVARIANCE AND CONTRAVARIANCE
In C# and Visual Basic, covariance and contravariance enable implicit reference conversion for
array types, delegate types, and generic type arguments. Covariance preserves assignment compat-
ibility and contravariance reverses it.

Covariance enables you to use a more derived type than that specified by the generic param-
eter, whereas contravariance enables you to use a less derived type. This allows for implicit con-
version of classes that implement variant interfaces and provides more flexibility for matching
method signatures with variant delegate types. You can create variant interfaces and delegates by
using the new In and Out language keywords. The .NET Framework also introduces variance sup-
port for several existing generic interfaces and delegates, including the IEnumerable(Of T) inter-
face and the Func(Of TResult) and Action(Of T) delegates. For more information, see Covariance
and Contravariance (C# and Visual Basic).

The following code demonstrates the difference between assignment compatibility, covari-
ance, and contravariance.

‘Assignment compatibility.
Dim str As String = “test”
Dim obj As Object = str
‘Covariance.
Dim strings As IEnumerable(Of String) = New List(Of String)()
Dim objects As IEnumerable(Of Object) = strings ‘ An object that is instantiated
‘Contravariance.
Dim actObject As Action(Of Object) = AddressOf SetObject
Dim actString As Action(Of String) = actObject

240 Zero to Mastery in Visual Basic

10.10 NAVIGATE TO
You can use the Navigate To feature to search for a symbol or file in source code. You can search
for keywords that are contained in a symbol by using Camel casing and underscore characters to
divide the symbol into keywords.You can use Object Browser, Navigate To, Find Symbol, or Go
to Definition to search for objects, definitions, or references (symbols) in a solution.

In the Object Browser, you can type a search string to filter the names of the symbols that are
displayed in the objects pane for the current browsing scope. For example, the string MyObject
would return “MyObject,” “MyObjectTest” and “CMyObject.”

You can use the Navigate To feature to search for a symbol or file in the source code.
Searching for Symbols By Using Object Browser
When you type a search string in the Search box in Object Browser, just the current brows-

ing scope is searched. Use the Browse list to select a browsing scope.
To search for symbols by using a search string in Object Browser

1. In Object Browser, in the Browse list, select a browsing scope.
2. In the Search box, type all or part of a symbol name to search for, or select one from the drop-

down list.
3. Click Search.

The objects pane displays just those symbol names in the browsing scope that include the
search string. The string is highlighted in every match.
To clear the results
• In Object Browser, click the Clear Search button on the toolbar.

The objects pane now displays all the objects in the current browsing scope.
Searching for Symbols By Using Navigate To
Navigate To lets you find and navigate to a specific location in the solution, or explore ele-

ments in the solution. It helps you pick a good set of matching results from a query.
To search for symbols or files in Navigate To

1. On the Edit menu, click Navigate To.
2. In the upper box, type a search string.

Notice that results are displayed in the lower box as you type, and change as you type more.
The search results may include symbol definitions and file names in the solution, but does not
include namespaces or local variables.

A search string can have multiple search terms, which must be separated by spaces. If a search
term has an uppercase letter, the search for that term is case-sensitive; otherwise, the search is case-
insensitive. File names are always case-insensitive for the first characters of the file name.

Advance Features of VB 2010 241

You can search for keywords that are contained in a symbol by using Camel casing and under-
score characters to divide the symbol into keywords. For example, to find an “AddOrderHeader”
and “Update customer” symbol, you could search the combinations, as shown in the following
table.
Symbol Name Associated Keywords Matching Search String Examples
AddOrderHeader Add, Order, Header “add”, “order”, “header”, “order add”, “AOH”,

“a o”, “add ord”, “OrderH”
update_customer update, customer “update”, “customer”, “customer upd”, “update

c”
The Navigate To syntax does not support special logic or special characters such as these:

• Wildcard matching
• Boolean logic operators, including and, or, &, |
• Regular expressions

10.11 NEW COMMAND-LINE OPTION
The command-line option causes the compiler to accept only syntax that is valid in the specified
version of Visual Basic. /langversion causes the compiler to accept only syntax that is included in
the specified Visual Basic language version.

Syntax:
/langversion:version
Where version is required. The language version to be used during the compilation. Accepted

values are 9, 9.0, 10, and 10.0.
Example
vbc /langversion:9.0 sample.vb
The /langversion option specifies what syntax the compiler accepts. For example, if you specify

that the language version is 9.0, the compiler generates errors for syntax that is valid only in version
10.0 and later.

You can use this option when you develop applications that target different versions of the.
NET Framework. For example, if you are targeting .NET Framework 3.5, you could use this option
to ensure that you do not use syntax from language version 10.0.

LET US REVISE
 VB2010 includes the features of Visual basic and C#.
 The /vbruntime compiler option has a new /vbruntime switch that embeds core functionality

from the Visual Basic Runtime Library into an assembly.

242 Zero to Mastery in Visual Basic

 Auto-implemented properties provide a shortened syntax that enables you to quickly specify
a property of a class without having to write code to Get and Set the property.

 Collection initializers provide a shortened syntax that enables you to create a collection and
populate it with an initial set of values.

 implicit line continuation enables you to continue a statement on the next consecutive line
without using the underscore character (_).

 The/langversion command-line option causes the compiler to accept only syntax that is valid
in the specified version of Visual Basic.

 A lambda expression is a function or subroutine without a name that can be used wherever a
delegate is valid.

 Visual Basic binds to objects from dynamic languages such as IronPython and IronRuby.
 Covariance enables you to use a more derived type than that specified by the generic param-

eter.
 contravariance enables you to allow implicit conversion of classes that implement variant

interfaces and provides more flexibility for matching method signatures with variant del-
egate types.

 Navigate To feature is used to search for a symbol or file in source code.

SPECIAL BONUS!
Want These 3 Bonus Books for free?

Get FREE, unlimited access to these
and all of our new books by joining

our community!

SCAN w/ your camera TO JOIN!

OR Visit

freebie.kartbucket.com

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 96.00 %
 Align: centre

 D:20220228121002

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 3
 6
 0.9600
 0
 0
 1
 0.0000
 1

 D:20220228120956
 841.8898
 a4
 Blank
 595.2756

 Tall
 749
 303
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 7.500 x 9.250 inches / 190.5 x 234.9 mm
 Shift: none
 Normalise (advanced option): 'original'
 Keep bleed margin: no

 D:20220228121013

 32

 D:20220228105011
 666.0000
 Blank
 540.0000

 Tall
 1
 0
 No
 771
 335
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 CurrentAVDoc

 Uniform
 43.9200
 Bottom

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 0
 253
 252
 253

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220312181122

 Blanks
 Always
 1
 1
 1
 1210
 295
 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 11
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as page 1

 D:20220312181142

 Blanks
 Always
 1
 1
 1
 1210
 295

 0
 1
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0b
 Quite Imposing Plus 4
 1

 254
 1

 1

 HistoryList_V1
 qi2base

		2022-03-12T21:49:46+0000
	Preflight Ticket Signature

