

SQL
2 BOOKS IN 1

The Ultimate Beginner & Intermediate Guides To
Mastering SQL Programming Quickly

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without
direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or
author, for any damages, reparation, or monetary loss due to the information contained within this
book, either directly or indirectly.

Legal Notice:

This book is copyright protected. It is only for personal use. You cannot amend, distribute, sell, use,
quote, or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author
is not engaged in the rendering of legal, financial, medical, or professional advice. The content within
this book has been derived from various sources. Please consult a licensed professional before
attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, that are incurred as a result of the use of the information contained
within this document, including, but not limited to, errors, omissions, or inaccuracies.

TABLE OF CONTENTS
INTRODUCTION

SQL
CHAPTER 1: BASICS OF SQL

Data and Databases
The Elements of an SQL Database
SQL Server

CHAPTER 2: INSTALLING AND CONFIGURING MYSQL
Downloading, Installing, and the Initial Setup of MySQL on a
Microsoft Windows Computer System
Downloading, Installing, and the Initial Setup of MySQL on a
Mac Computer System

CHAPTER 3: GETTING STARTED WITH SQL
MySQL Screen
Working With MySQL Databases
Working With Tables
Exercise 1
Viewing Data in a Table

CHAPTER 4: DATA TYPES
SQL Data Type Categories

CHAPTER 5: SQL STATEMENTS AND CLAUSES
SQL Statements
SQL Clauses

CHAPTER 6: SQL EXPRESSIONS, FUNCTIONS, AND
OPERATORS

Expressions
Operators
Functions

CHAPTER 7: WORKING WITH CONSTRAINTS
Commonly Used SQL Constraints
Adding Constraints
Altering Constraints
Exercise 2

CHAPTER 8: JOINS, UNIONS, ORDERING, GROUPING, AND
ALIAS

JOINS

UNION
Order
Group By
Alias

CHAPTER 9: STORED PROCEDURES
CHAPTER 10: VIEWS, INDEX, TRUNCATE, TOP,
WILDCARDS, AND TRIGGERS

Index
Truncate
Top
Wildcards
Triggers

CHAPTER 11: PIVOTING TABLES IN MYSQL
CHAPTER 12: CLONE TABLES
CHAPTER 13: SECURITY
CHAPTER 14: SQL INJECTIONS
CHAPTER 15: FINE-TUNING
CHAPTER 16: WORKING WITH SSMS

Downloading SQL Server Management Studio (SSMS)
The Basics and Features of SSMS

CHAPTER 17: DATABASE ADMINISTRATION

Maintenance Plan
Running the Maintenance Plan
Backup and Recovery
Database Backup
Attaching and Detaching Databases

CHAPTER 18: DEADLOCKS
CHAPTER 19: NORMALIZATION OF YOUR DATA

How to Normalize the Database
Database Normal Forms

CHAPTER 19: REAL-WORLD USES
CONCLUSION
REFERENCES

INTRODUCTION
CHAPTER 1: DATA ACCESS WITH ODBC AND JDBC

ODBC
JDBC

CHAPTER 2: WORKING WITH SQL AND XML
The Relationship Between XML and SQL
Mapping
SQL Functions and XML Data
Converting XML Data Into SQL Tables

CHAPTER 3: SQL AND JSON
Combining JSON with SQL
Functions

CHAPTER 4: DATASETS AND CURSORS
Cursor Declaration
Fetching Data

CHAPTER 5: PROCEDURAL CAPABILITIES
Compound Statements
Managing Conditions
The Flow of Control Statements
Stored Procedures and Functions

CHAPTER 6: COLLECTIONS
Overview
Associative Arrays
Nested Tables
Varrays

CHAPTER 7: ADVANCED INTERFACE METHODS
External Routines
External Programs

CHAPTER 8: LARGE OBJECTS
LOB Data Types
BLOB, CLOB, NCLOB, and BFILE
Creating Large Object Types
Managing Large Objects

CHAPTER 9: TUNING AND COMPILING
Compilation Methods
Tuning PL/SQL Code

CONCLUSION
REFERENCES

SQL
The Ultimate Intermediate Guide to Learning SQL

Programming Step by Step

INTRODUCTION

A database stores information in a structured way that is pertinent to the
type of data it is storing. This data needs to be easily accessible to pull
various reports and update, delete, modify, or add to the data stored.
One of the first databases was established in 1880. It was done with punch
cards to organize a census in the USA. Charles Bachman was one of the
first to take this concept and automate it in a system called the Integrated
Data Store (IDS) in the 1960s (Hosch. n.d.).
By the 1970s, databases were well known, as were their usefulness and
limitations. The database system was an excellent way of storing the data.
However, accessing the data and manipulating it was cumbersome, time-
consuming, and costly. Computer systems were also not as sophisticated as
they are today.
Businesses started to rely more and more on technology. How companies
processed and manipulated their data became more sophisticated. With
historical databases, this would mean costly reworks of database systems
that could take months.
Edgar Codd, who was working for IBM at the time, developed the
relational data model in 1970. This model was introduced in a seminal
paper he wrote. The paper was titled “A Relational Model of Data for Large
Shared Data Banks,” and it described a new way of structuring data (Hosch,
n.d.). Codd’s idea was derived from a branch of mathematics called Set
Theory.
Oracle, Sybase Inc., and other Silicon Valley companies were already
putting Edgar Codd’s relational data model into practice long before IBM
released SQL/DS. SEQUEL (Structured English Query Language), which
was the original name of SQL, was developed in the early 1970s by
Raymond Boyce and Donald Chamberlin.

It was not until 1981 that IBM released its first relational database called
SQL/DS (Sequel Database system). In 1983 IBM released its second
database management software family called SQL/DB2. The SQL/DB2
software was one of IBMs most successful software products ever. To date,
DB2 products are still used for mission-critical systems through various
industries (Relational Database, n.d.)

SQL
A standard relational database is a distributed system that constantly runs in
the background, usually on a server. This is the program that interprets all
the data files collected by a system. As it runs in the background it is known
as the “back-end” of the system.
To update, delete, run reports, or manipulate that data, you need some sort
of interpreter that can send those requests to the database from a client
computer. Client software is installed on the client computer to send these
requests or statements to the database. These requests are written in
Structured Query Language (SQL) for the server to process and return the
desired results.
SQL was initially called Structured English Query Language as it uses basic
English sentences for writing queries. This makes it not only a powerful
relational database tool but also not that hard to learn or use because of the
common words it uses, such as select, update, insert, etc. Each statement
takes very few lines of script to declare what needs to be done.

CHAPTER 1:

BASICS OF SQL

In today’s environment, there are vast quantities of data that are collected
nearly every second of the day. To be able to make this data useful it needs
to be organized, edited, and structured in certain ways depending on the
needs of the organization using it.
To understand how data can be manipulated using SQL, you first need to
understand how the process all fits together. This chapter briefly outlines all
the parts that fit together to create a workable database system.

Data and Databases
Data
Data is a collection of values, facts, and figures that has been gathered for
some purpose. For instance, every ten years or so local or national
governments collect data on residents within their cities or burroughs—
census data. This data is gathered to help with various demographic
conditions, city planners, and to aid government departments in understand
various economic or social structures.
Data is only considered viable if it is meaningful. Meaningful data can
come in various forms and come from different sources such as:

● Agricultural data
● Blogs
● Cultural data
● Educational data
● Environmental data

● Financial data
● Geographical data
● Meteorological data
● Scientific data
● Social media
● Statistical data
● Transport data

Databases
A database is a library, or storage area, where the collected data is stored. A
database is bidirectional in that it can receive input and return the requested
information. When data is imputed from a user, it is processed, converted,
and then used as raw data/schema.
People use databases nearly every day without even realizing they’re using
them. For example, when you store a new contact on your phone, you are
using a database. Here you would store information such as the person's
name, surname, work, phone number(s), maybe even their physical
addresses. When you look up that person’s number, you are scrolling
through a phonebook database to find and retrieve a phone number.
There are different types of databases:

● Cloud database
● Centralized database
● Distributed database
● Graph database
● NoSQL database
● Object-oriented database
● Operational database
● Relational database

Relational Database

Simply put, a relational database is a database that stores information and
organizes it as a collection of tables with related data points. These related
data points are connected by a unique ID called the Primary Key or Key.
Relational databases store information in tabular form which makes data
more flexible to store, access, and manipulate. To better understand this,
take a look at the tables below for a simple name, phone number, and
address book:

The phone numbers and address lists are joined to the names table by the
User ID key. The above is a very basic example. Another example is that of
a customer list and ordering system. Each customer will get a unique ID
Key. This is the key that will be used to identify which customer is placing
the order. The ID key is what forms the relationship bond between the two
tables.
There are many relational database management programs on the market
today. Some of the more popular relational databases on the market are:

● Azure SQL
● IMB DB2
● Informix
● MariaDB

● Microsoft Access
● MongoDB
● MySQL
● Oracle
● PostgreSQL
● SQLite
● SQL Server

Web/Cloud-Based Database Systems
A web or cloud database is a database that is accessed through the Internet.
More and more companies as well as private individuals are moving
towards web-based systems and applications.
Some of the top cloud-based relational databases include:

● Amazon Relational Database
● Couchbase
● DataStax
● Google Cloud SQL
● IBM Db2 on Cloud
● Microsoft Azure SQL Database
● MongoDB Atlas
● Oracle Database Cloud

Client/Server Technology
Historically, data was stored on large systems known as mainframe
computers. To access the information on these systems the user would use a
dumb terminal. Most of these terminals had a small screen and keyboard.
They were heavy and the screen was black with either green or blueprint.
They relied on the mainframe being accessible and drew all the information
from it. If the mainframe was down, the terminals would not work.
Although there are still mainframes around, file servers have become the
normal system storage solutions. A file server is either one powerful

computer or a data center of powerful computers. These are the systems that
not only store files, they also run various programs and allow for shared
resources.
The end-user that needs to access the network does so through a network
client. This is a desktop PC, a laptop, notebook, tablet, etc. For each
program/database there will be the backend, which runs on the server, and
the front-end, which runs on the client. The client accesses the data on the
server by making a service request to the server. The server will process the
request and respond. This is a client-server relationship.
The client is reliant on the server to manage, process, and provide
information. However, most programs these days are resilient and allow the
client to run independently from the server. If the server is down for any
reason, depending on the system, the client may still be able to work. When
the server is restored the information will update from the client to the
server.
There are some applications, like web browsers, or web/cloud-based
databases that are reliant on the back-end servers being up.

The Elements of an SQL Database
An SQL database consists of the following elements:
Tables
Tables or datasheets are much like a spreadsheet that holds specific related
information. A database is made up of many different, but related tables.
For example, in a simple ordering system you could have the following
tables:

● Customer table — This table would hold all the customer’s
information.

● Stock Items table — This table would hold all the items held in
stock.

● Orders table — This would hold all the customer’s orders of the
stock being sold.

● Invoices table — This would hold the invoices that were
generated for the customers.

● Payments table — This would hold the payments that were made
by the customers.

A table has to have a unique name within a database.
Each table will have a specific or set number of columns. Each column will
have a unique identifying name that relates to the data and data type being
stored in it.
Cells are an attribute. Each attribute will be defined by the name of the
column and the data type to be stored in the column.
Each row will have a unique row ID or key that is used to identify the
record or data in that row.
A row in a database is called a tuple. Each table will have an undefined
number of rows or records that can and will grow as more records are added
to the database.
Where the column and row meet is called a cell.
Fields
Each table will have several columns depending on the type of data the
table was being used to collect. For instance, in the simple ordering system:

● Customer table you may have columns/fields for:
○ First Name
○ Last Name
○ Telephone
○ Address

● Stock Items you have columns/fields for:
○ Stock code
○ Item
○ Description
○ Price

Fields, also known as attributes, get set up to accommodate the type of data
that is to be stored in the field. For instance:

● Stock codes would be an alphanumeric field
● Names would be a text field
● Quantity would be a numeric field
● Price would be a currency

There are many different types of fields, and each would be set up to not
only hold but manage and manipulate the data. Names would need to be set
as text to be able to effectively sort through them. Numbers have a few
purposes such as codes, quantities, percentages, and currency. Each of these
is used and calculated in a certain way and needs to be established when the
database is set up.
Records
A table or datasheet also has a set of rows. These rows are the records or
tuples and are what group the fields together. Each row will make up a
collection of related information about the row’s unique ID or key. For
example, in a customer table, a single row would contain the customer’s
customer code, first name, last name, address, contact number, and so on.
Database Schemas
Every database contains what is called an object ownership group. These
groups are known as a schema. This is the blueprint of the logical view as
to how the database is structured and the relationships between the data.
Schemas are also used to form data constraints which help to authorize or
prevent access for certain users or groups to various database tables, fields,
and records. It is like a file that contains pertinent information with regard
to certain parts of a database.

SQL Server
The actual SQL Server is a database engine that processes transactions such
as creating databases, creating and manipulating tables, and handling the
data contained in them.
It is also a Relationship Database Management System that manages the
databases that are housed within its system.

SQL Server not only manages the data on the system, it also ensure that the
database is:

● Secure
● Performs well
● Ensures data integrity
● Ensures data reliability
● Allows multiple concurrent access to the database

To use an SQL database, you need to have an instance of the SQL server
running on the system that houses the SQL database. There can be more
than one instance of an SQL server running on a system at one time.
Each SQL Server instance can contain one or more databases. Each
database running on an SQL server will have a set of stored procedures,
views, tables, and records. To access the SQL database, a user would need
to log in with a user ID.
Each user ID will be granted access according to the specific task they need
to perform within the database. Some databases do not require user logins.
There are many programs or management tools that can be used to access
SQL databases. These tools include:

● Azure Data Studio
● DataGrip
● DCIM
● RazorSQL
● SQL Server Management Studio (SSMS).
● Squirrel SQL

You can manage the SQL Server engine using management tools such as:
● SQL Server Management Studio (SSMS)
● Business Intelligence Developer
● Configuration Management
● SQL Profiler

CHAPTER 2:

INSTALLING AND CONFIGURING MYSQL

For this book, you will be using MySQL. MySQL is a relational database
system that uses SQL syntax to facilitate the manipulation and management
of SQL databases. It is one of the most popular RDBMS systems because it
is free to download, easy to configure, and easy to use.

Downloading, Installing, and the Initial Setup of
MySQL on a Microsoft Windows Computer
System
From the MySQL website www.mysql.com select the “DOWNLOADS”
menu option.
From the “DOWNLOADS” page select MySQL Community (GPL)
Downloads, which you will find right at the bottom of the page.
On the next page select the “MySQL Community Server” option.
From the “Select Operating Systems” option, select the “Microsoft
Windows” operating system from the drop-down selection box.
Click on the “MySQL Installer for Windows.”
On the next page choose and “Download” the first installer on the page
“Windows (x86, 32-bit), MSI Installer”.
On the next page, there will be a few extra options to either “Login” or
“Sign Up.” Click on “No thanks, just start my download” near the bottom
of the page.
The installer will download it.

Once it has downloaded, click on the “mysql-installer-web-community-
8.0.21.0.msi” file in the “Downloads” folder.
If a pop-up box appears that asks “Do you want to allow this app to make
changes,” click on “Allow.”
You may also be prompted to run an upgrade. Allow the system to run an
upgrade.
The next screen is “Choosing a Setup Type.”
It defaults to “Developer Default.” Leave it at this option and click the
“Next” button.
NOTE:

● If you get a screen that lists some MySQL install instances with
an error about “Microsoft Visual C++ Redistributable 2019 not
installed,” exit the installation.

● Go to the following website: https://www.itechtics.com/microsoft-
visual-c-redistributable-versions-direct-download-links/#6-
microsoft-visual-c-redistributable-2019.

● Download the version the machine is asking for and restart the
MySQL Community installation.

The “Check Requirements” screen has an option to connect to Python.
Leave this option unchecked and click on the “Next” button. It is good to
note that at this screen it may list some other packages such as “MySQL
For Excel” or “MySQL for Visual Studio.” Do not install any of these
packages.
You will get a pop-up box that says, “One or more product requirements
have not been satisfied.” Click on “Yes.”
The “Installation” screen will have a whole list of products that need to be
installed on your system.
Click “Execute.”
This will take a few minutes to install, and each application that is being
installed will have a progress count next to it. Let the installation finish.

https://www.itechtics.com/microsoft-visual-c-redistributable-versions-direct-download-links/#6-microsoft-visual-c-redistributable-2019

The installation is complete when all the products to be installed have a
green checkmark next to them.
Click on “Next.”
This takes you to the “Product Configuration” screen.
This screen lists products that have been installed that are now ready to be
configured.
Click on “Next.”
The next screen is called either “Group Replication” or “High Availability.”
It will have the option to choose a “Standalone MySQL Server / Classic
MySQL Replication” or “InnoDB Cluster.”
Leave it on the default option which is the “Standalone MySQL Server /
Classic MySQL Replication” option and click “Next.”
At the “Type of Networking” options screen leave all the settings as they
are (on the default settings) and click “Next.”
At the “Authentication Method” screen leave the choice as the default
method for authentication, “Use Strong Password Encryption for
Authentication (RECOMMENDED)” and click on “Next.”
At the “Accounts and Roles” screen you will need to set a password for the
“root” user. Choose a strong password that you will remember. The “root”
user is the admin user for MySQL. When you have created a password,
leave the rest of the options as default and click “Next.”
At the “Windows Service” screen you will leave all the default options and
click on “Next.”
At the “Apply Configuration” screen click on the “Execute” button and the
system will apply all the settings. This will take a few minutes.
When the configuration is done there will be green check marks next to all
the configuration steps. Click on “Finish.”
At the “Product Configuration” screen click “Next.”
At the “MySQL Router Configuration” screen, leave all the default settings
and click “Finish.”

At the “Connect To Server” screen, leave all the settings as the default
settings. You do need to type in the root password you have just created in
the “Password” box. Click on the “Check” box to see if it is correct. If you
get a green check next to the “Check” button, click “Next.”
At the “Apply Configuration” screen, click on “Execute.”
When the configuration has successfully finished, click on “Finish.”
At the next “Product Configuration” screen click on “Next.”
The “Installation Complete” screen will appear and there should be two
checked options on the screen which are “Start MySQL Workbench after
Setup” and “Start MySQL Shell after Setup.” Leave both of these checked
and click on “Finish.”
Two screens will open:

● A command prompt — In this tutorial, you will not be working
with the command prompt to execute instructions so you can
close this screen.

● “Welcome to MySQL Workbench” — You will be using MySQL
Workbench, so you will need to leave this screen open for now.

On the “Welcome to MySQL Workbench” screen you should see MySQL
Connections near the bottom of the page.
There should be a default connection:

Local instance MySQL80
root
localhost: 3306

If you do not have the above or similar you can create it by:
Next to “MySQL Connections” click on the + icon.
You will be taken to the “Setup New Connection” screen.

● Connection Name: Local Connection (this is a
name you can set up)

● Connection Method: Standard (TCP/IP) (this
is the default connection type)

● Hostname: 127.0.01 (this is the localhost
address)

● Port: 3306 (this is the default SQL port)
● Username: root
● Password: you will need to click on the “Store

in Keychain” and type in the password you
set up during the installation.

● Default Schema: Leave this blank
Test the connection by clicking on the “Test
Connection” button at the bottom right-hand side of the
screen.
You should see the “Successfully made the MySQL
connection” screen.
Click on “OK” on the pop-up screen and again on the
bottom right-hand side of the screen.

The next screen will be the “Welcome to MySQL Workbench” screen
where you should now see the connection you set up under “MySQL
Connections.”
Whenever you open MySQL Workbench you will see this connection. To
access the local MySQL server you will need to click on this connection.
The next screen will be the MySQL Workbench, and you will have
completed setting up MySQL.

Downloading, Installing, and the Initial Setup of
MySQL on a Mac Computer System
From the MySQL website www.mysql.com and select the
“DOWNLOADS” menu option.
From the “DOWNLOADS” page select MySQL Community (GPL)
Downloads, which you will find right at the bottom of the page.
On the next page click on “MySQL Community Server” option.

https://www.mysql.com/

From the “Select Operating Systems” option, select the “macOS” operating
system from the drop-down selection box.
Download the first option in the list “macOS 10.15 (x86, 64-bit), DMG
Archive”.
On the next page, there will be a few additional extra options to either
“Login” or “Sign Up”. Click on “No thanks, just start my download” near
the bottom of the page.
The .dmg file will download.
Once the .dmg file has downloaded, open the directory where the file has
been downloaded to.
Double-click on the “mysql-8.0.15-macos-x86_64.pkg” file which will
launch the installation.
Click on “Continue” when the warning/installation box appears on the
screen.
Click on “Continue” over the next few screens until you get to the Licence
agreement.
Click “Agree” to the license.
Click “Continue” once again on the Installation type screen.
This will begin the installation of MySQL.
If you get a message “Installer is trying to install new software” and asks
for a password, you must enter the password you use to access your
computer.
The software will install.
You will get to the “Configure MySQL Server” screen. Here you will need
to choose the first option “Use Strong Password Encryption”. Click “Next”.
In the “Please enter a password for the “root” user” you will need to enter a
memorable password. This is the root user password, so make sure you can
remember it. When you have entered your password click “Continue”.
MySQL will continue to install and start the initial database setup.
You may need to enter your macOS password one more time.

When the “The installation was completed successfully” screen appears,
click on the “Close” button.
Once the MySQL Community Server has downloaded you will need to
download MySQL Workbench. This is the API interface software that
allows you to communicate with the MySQL Community Server.
Go back to the “DOWNLOADS” page and select MySQL Community
(GPL) Downloads once again.
On the next page select “MySQL Workbench”.
From the “Select Operating Systems” option, select the “macOS” operating
system from the drop-down selection box.
Download the first option which is “macOS (x86, 64-bit), DMG Archive”.
On the next page, there will be a few extra options to either “Login” or
“Sign Up”. Click on “No thanks, just start my download” near the bottom
of the page.
The .dmg file will download.
Once the .dmg file has downloaded, open the directory where the file has
been downloaded to.
Double-click on the “mysql-workbench-community-8.0.15-macos-
x86_6.dmg” file which will launch the installation.
This screen will be a bit different. You get to the “MySQL Workbench 8.0”
screen. Beneath the title, there will be instructions “Drag the MySQL
Workbench icon to the Applications folder”.
Drag the MySQL Workbench Icon from the left side (in the small black
box) to the blue box with the Application folder in it.

This will copy the file into the Applications folder.
Once the system has finished copying over the application, press the
command spacebar to search for “MySQL Workbench”.
Open the application.
You may get a warning box “MySQLWorkbench is an app downloaded
from the Internet. Are you sure you want to open it?”
Click “Open”.
On the next screen, you should see MySQL Connections near the bottom of
the screen. There should be a default connection.

Local instance 3306
root
localhost: 3306

If you do not have the above or similar you can create it by:
Next to “MySQL Connections” click on the + icon
You will be taken to the “Setup New Connection” screen

● Connection Name: Local Connection (this is a
name you can set up)

● Connection Method: Standard (TCP/IP) (this
is the default connection type)

● Hostname: 127.0.01 (this is the localhost
address)

● Port: 3306 (this is the default SQL port)
● Username: root
● Password: you will need to click on the “Store

in Keychain” and type in the password you
set up during the installation.

● Default Schema: Leave this blank
Test the connection by clicking on the “Test
Connection” button at the bottom right-hand side of the
screen.
You should see the “Successfully made the MySQL
connection” screen.
Click on “OK” on the pop-up screen and again on the
bottom right-hand side of the screen.

The next screen will be the “Welcome to MySQL Workbench” screen
where you should now see the connection you set up under “MySQL
Connections”.
Whenever you open MySQL Workbench you will see this connection. To
access the local MySQL server you will need to click on this connection.
The next screen will be the MySQL Workbench and you will have
completed setting up MySQL.

CHAPTER 3:

GETTING STARTED WITH SQL

For this tutorial, the exercises have been done on a computer running the
Windows Operating system. As you are by now aware, there are many
versions of SQL Server. For this book, we will be using MySQL and
running most of the statements through MySQL Workbench.
Open MySQL Workbench.
Click on the MySQL Connection to access the database.
Your screen should look similar to the example below.

MySQL Screen
On the top left-hand corner of the screen is the “Home” icon which is
represented by a house. If you click on the “House” icon it will take you
back to the Welcome screen.

Next to the “House” icon, there is the “Local instance MySQL80” tab. This
is the instance you are currently working in.
Below these tabs are the menu and quick access ribbon that will change to
reflect the chosen menu option.
Below the menu ribbon on the left is the Navigation panel.
Below the menu ribbon in the middle is the Query Editor where you will be
writing your queries.
Below the menu ribbon on the far right is the SQL additions screen.
At the bottom of the screen on the left, there is the Administration tab. This
is for the administration of the database(s). You select this tab to start and
stop the server, run various health checks, etc.
Schemas list the current databases that are running in the currently selected
MySQL server instance. If you had to take a look at the Schemas now you
would see the “sys” database. This is the internal database of the system.
You may have two other test databases on the system, namely, “Sakila” and
“World”.
The Query tab or Instance tab is where you will be writing and executing
queries.

Working With MySQL Databases
Creating a Database with MySQL Workbench
On the top right-hand corner of the screen, you will see three boxes each
with a portion of the box colored in. These boxes hide various panels on the
screen. This is handy to keep the screen clean and not confuse you.
Hide the bottom and right-hand panel on the screen. This will make the
screen easier to use while you navigate SQL.

To create a database, start in the “Queries” tab and type the following:
create database test1;

This will create a database called test1. Each statement in SQL needs to end
with or be separated by a semicolon (;). This allows for multiple statements
to be executed within the same call to the SQL Server.
Click on the lightning bolt icon above the statements. The lightning bolt is
what executes a selected script, or if there is no particular script selected it
will execute all the statements.

Make sure you have the “Schemas” tab selected.

Below the statement portion of the screen, you will find the “Output”
section. This shows whether or not the execution of the statement was
successful.
Refresh the “Schemas” tab and you should now see the test1 database
listed.
Deleting a Database with MySQL Workbench
If you want to delete a database in MySQL, click on a new row in the
“Queries” tab and type the following:

drop database test1;
Highlight the statement and then click on the Lightning bolt icon above the
statement window. When you have a statement selected, when you click on
the execute icon only that statement will be executed.

Working With Tables
In the chapter above you were introduced to the concept of tables. In this
section, you are going to work with basic table concepts.
Before moving on to the next section, create a database called School1.
If you have more than one database you will need to set the database you
are working on as the default schema.
Highlight the database and right-click.
Choose “Set as Default Schema”.
School1 should now be highlighted.
Types of Storage Engines Supported by SQL
When you create a database you want it to be optimized for the best
performance, reliability, and stability. The handling of various SQL
operations is done by an underlying SQL software component called a
storage engine.
Usually, the default method is sufficient but at times, depending on the type
of data and tables, you could run into performance issues.
There are a few different storage engine types each with their pros and cons.
Some of these storage engines to consider are:

Archive
Archive is best for the storage of historical data that is seldom accessed or
referenced. Archive is not designed for everyday database access.

● The tables are not indexed.
● Compression is done upon insert.
● Has no transaction support.
● It is best for the archiving and retrieval of historical archived data.

Blackhole
This engine is best in a testing environment where there is no need to store
data.

● Blackhole will accept data.
● Blackhole does not store data.
● Useful if data is stored in a different location to the local database

(distributed database environment).
● Useful for testing environments.
● Has a lot of similarities to UNIX/ dev/null.

CSV
If data needs to be sent to other applications such as Excel, the CSV storage
engine stores data tables in a comma-delimited format text file(s). It is
important to note that CSV tables do not get indexed. A way to get around
this is to initially have an InnoDB storage engine and switch to CSV when
you are ready to send the files to the program in CSV format.

● An excellent engine for sharing files to programs that are
compatible with CSV format.

● CSV file formats are not indexed in SQL.
InnoDB
This is the default storage engine for MySQL and will create InnoDB tables
as the default. InnoDB offers the following values to a database:

● It offers row-level locking.

● It offers integrity constraints for FOREIGN KEY.
● With the use of non-locking reads, multi-user concurrency is

increased.
● It is fully compliant with ACID.
● It has commit, crash-recovery, and rollback.
● It gives overall excellent performance for nearly every type of

database and can be used for the majority of applications.
MyISAM
ISAM has been around for a long time and is known for its speed.

● MyISAM is best suited for Data warehousing applications.
● MyISAM has no transaction support.
● It does offer full-text search indexes.
● MyISAM offers table-level locking.
● MyISAM performs best on read-heavy applications.
● MyISAM is not ACID compliant.

NDB
● NDB is also known as NDBCLUSTER.
● NDB is used for clustered environments.
● NDB is best suited for distributed computing environments.
● NDB operates well where an environment requires high-

redundancy.
● NDB offers one of the highest uptimes and high availability.

Creating a Table
The first table to be created for the School1 database will be the Student
table.
Type the following into the Query tab for the School1 database using
MySQL Workbench.

create table Students(

id int not null auto_increment,
sname varchar(25),
fname varchar not null (35),
address varchar (45),
marks int,
primary key (id)
);

Highlight the entire statement and execute it.
Refresh the Schema and you will notice that Tables will now show the
newly created “Students” table.
Adding Data to a Table
In this section, you are going to insert some data into the table so you have
some information stored in the database.
Ensure you have the School1 database selected. You are going to be using
the “INSERT”, “INTO”, and “VALUES” statements to insert data into the
table. Starting in a new row in the Query tab type the following:

insert into students (sname, fname, address, marks)
values (‘brent’, ‘charles’, ‘2 data road’, 455);

Highlight both lines and execute the statement.
To see if the data has been inserted into the table, use the “SELECT” query
by typing in the following in a blank Query tab line:

select * from students;
You should see a table similar to the example below showing the data you
inserted into the table.

You will notice the green checkmarks in the Output section which shows
that the statement ran through correctly and without error.
You will also notice that the ID column automatically added an ID number.
This is because it was set to auto_increment when you set up the ID
column. You can leave off auto_increment if you need to insert your ID into
the field.

Exercise 1
Using the statements you have learned, complete the following tasks:
Delete the School1 database.

drop database school1;
Create a database called Shop1

create database Shop1;
Set the Shop1 database as the default schema.
Create the following tables and corresponding fields:
Customers

Fields
○ Cust_ID — auto_increment NOT NULL
○ Sname — varchar (35)

○ Fname — varchar (35)
○ Address — varchar (50)
○ Phone — varchar (20)

MySQL Statement
create table Customers(
cust_id int not null auto_increment,
sname varchar (35),
fname varchar not null (35),
address varchar (50),
phone varchar (20),
primary key (Cust_ID)
);

Data to Populate the Fields
insert into customers (sname, fname, address, phone)
values (‘barnes’, ‘jackie’, ‘2 jupiter rd’, ‘555-
6565656’);
insert into customers (sname, fname, address, phone)
values (‘carter’, ‘’john’, ‘5 milky way’, ‘555-
7777777’);
insert into customers (sname, fname, address, phone)
values (‘pearce’, ‘sam’, ‘15 uphill way’, ‘555-
8689894’);

Products
Fields

○ Prod_ID — auto_increment NOT NULL
○ Product — varchar(45)
○ Descript — varchar(50)
○ Price — decimal (19, 2)

MySQL Statement
create table products(
prod_id int not null auto_increment,
product varchar(35),
descript varchar not null (50),
unit int,
price decimal (19,2),
primary key (prod_id)
);

Data to Populate the Fields
insert into products (product, descript, unit, price)
values (‘apples’, ‘red and green apples’, 1, 1.20);
insert into products (product, descript, unit, price)
values (‘pears’, ‘green pears’, 1, 1.25);
insert into products (product, descript, unit, price)
values (‘oranges’, ‘large oranges’, 1, 1.30);
insert into products (product, descript, unit, price)
values (‘bananas’, ‘imported bananas’, 4, 3.10);

Viewing Data in a Table
To view data in an individual table you can use the navigation bar on the
left by selecting the table you want to view. When the table is selected you
will notice that if you hover over the table, three icons appear to the right of
it. Click on the tiny grid with a lighting bolt on it and the data the table has
been populated with will appear in the “Results grid”. It should look similar
to the image below:

You will also notice that you have been switched to a new tab with the
name of the table on it and the select statement appears in the Query screen.

CHAPTER 4:

DATA TYPES

Different types of data are captured, and each type can be used to
manipulate the captured data in certain ways. A store would have data
relating to its products such as the types of products, the products, the
amount they have in stock, and the price. If you were going to put the
store’s data into a database you would have three different data type fields,
namely:

● Product — This would be a character data type
● Amount of stock on hand — This would be an integer data type
● Price of the product — This would be a currency or decimal data

type
There are many different data types and each one has a specific purpose.
The more advanced you get with database development, the more advanced
working with database types become.

SQL Data Type Categories
SQL data types can be broken into different data type categories, and these
categories and the data types they represent are:
Approximate Numeric Data Types
SQL defines numbers to be either approximate or exact. Approximate
numeric data types are floating-point numeric data types.
The data types for this category are:
FLOAT
Starting at - 1.79E + 308 and ending at 1.79E + 308

REAL
Starting at - 1.79E + 308 and ending at 1.79E + 308
Binary Data Types
A binary data type includes images, PDF files, video files, Word files, Excel
files, etc. They can be set to store either a variable-length or fixed-length
field to store these types of files.
The data types for this category are:
BINARY
This data type has a maximum length of 8 000 bytes, fixed length.
IMAGE
This data type has a maximum length of 2 147 483 647 bytes, variable
length.
VARBINARY
This data type has a maximum length of 8 000 bytes, variable length.
Character Strings Data Types
Character string data is used for normal text or alphanumeric text fields.
The data types for this category are:
CHAR
This data type can store a mix of most of the data types such as numeric
data that is not used in a calculation, text, and alphanumeric text. This data
type has a maximum length of 8 000 characters but is a fixed-length data
type.
VARCHAR
This data type can store a mix of most of the data types such as numeric
data that is not used in a calculation, text, and alphanumeric text. This data
type has a maximum length of 8 000 characters but is variable-length data.
Date and Time Date Types
If you have worked in any type of database or spreadsheet program you will
know that there is a certain format for inserting the date and time. You can

use a character string field, but that will not enable you to do date-based
calculations. It is always best to set a date and time field up as such.
The data types for this category are:
DATE
The way the date is stored can be set by the regional settings on the system
the database is running on. This data type will store the date in the standard
format, ex. May 02, 2020.
DATETIME
This will store both the date and time with a date range from Jan 1, 1753, to
Dec 31, 9999.
SMALLDATETIME
This data type has a smaller date range window starting from Jan 1, 1900,
to Jun 6, 2079.

TIME
This data type will store the time and can be set through the regional
settings on the system to display the time in a customized format. An
example of how it stores the time is: 13:00.
Exact Numeric Data Types
Exact numeric data types are data types where the scale and the precision of
the data value have to be preserved.
The data types for this category are:
BIGINT
This data type takes 8 bytes of storage and represents 64-bit integers. The
data type can range from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 for signed values, while unsigned values have a
minimum value of 0 and a maximum value of 264-1.
BIT
This data type is used to store bit values which can range from 1 to 64.
DECIMAL

Decimal is used to define data that requires exact numeric data such as
money. You have to define the number of digits and decimals, for example
decimals (6, 2) which will show as 000000.00. The values for this field
range from -999.99 to 999.99. If a calculation returns more decimal points
than have been specified, the decimal will be automatically rounded up to
the nearest ten.
INT
This data type stores integer values, and it uses 4 bytes of storage. It has a
minimum value of -2147483648 for signed values (data that can be a
negative value), and a maximum value of 2147483647 for signed values.
Unsigned values have a minimum value of 0 and a maximum value of
4294967295.
MEDIUMINT
This data type stores integer values, and it uses 3 bytes of storage. It has a
minimum value of -8388608 for signed values (data that can be a negative
value) and a maximum value of 8388607 for signed values. Unsigned
values have a minimum value of 0 and a maximum value of 25516777215.
NUMERIC
The same rules that apply to decimal apply to numeric, as this data type is
used in the same way as the decimal data type is.
SMALLINT
This data type stores integer values. It uses 2 bytes of storage. It has a
minimum value of -32768 for signed values (data that can be a negative
value) and a maximum value of 32767 for signed values. Unsigned values
have a minimum value of 0 and a maximum value of 65535.
TINYINT
This data type stores integer values, uses 1 byte of storage, has a minimum
value of -128 for signed values (data that can be a negative value) and a
maximum value of 127 for signed values. Unsigned values have a minimum
value of 0 and a maximum value of 255.
Default Data Type Values

A default value can be a literal constant or expression in SQL. Literal
constants are known either as literals or constants and are values that cannot
be altered during statement execution.
The example below creates a date column that takes the current date and
subtracts 20 years:

date default (current_date - interval 20 year)

CHAPTER 5:

SQL STATEMENTS AND CLAUSES

One of the first things you need to understand when setting up an SQL
database is the difference between an SQL Statement and SQL Clause.

SQL Statements
An SQL statement is the query or action part of the SQL command. For
instance:

drop table school1;
The SQL statement in the above example is “DROP TABLE” which will
delete an entire table from the database.
The following are the most commonly used SQL statements:

ALTER DATABASE
This statement is used to add, delete, modify, or update file groups, files,
and records associated with a database.
ALTER TABLE
This statement is used to add, delete, modify, or update tables in a database.
CREATE INDEX
This statement is used to fine-tune the database by creating an Index that
allows for faster retrieval of the data in a database.
CREATE TABLE
This statement is used to create a new table in a database.

CREATE TABLE AS
This statement is similar to using the “File Save As” command in Word or
Excel. It allows you to create a new table using the structure and data of an
existing table.
DELETE
This statement is used to delete data/records from a table.

DROP DATABASE
This statement is used to delete an entire database from the SQL Server.
DROP INDEX
This statement is used to delete an index in a database.
DROP TABLE
This statement is used to delete an entire table from a database.
INSERT INTO
This statement is used to insert data into a table.
SELECT
This statement is used to retrieve certain or all records from a table.
SELECT LIMIT
This statement is used to retrieve a limited number of records from a table.
SELECT TOP
This statement is used similar to the SELECT LIMIT statement and will
return only the top records in a given query.

TRUNCATE TABLE
This statement is used to delete all the records from a table without any
rollback.
UPDATE
This statement is used to update the records in a table.

SQL Clauses
Some statements will be followed by a clause or condition of a query, for
example:

select price from products where x = 2.30;
In the above example, the query is selecting a price from the product table
that must equal 2.30. This example has the “SELECT” statement followed
by the “FROM” and “WHERE” clauses/conditions.
The following are the most commonly used SQL clauses:
DISTINCT
This clause is used to retrieve distinctive/unique records from a table.
FROM
This clause is used to combine information or list information in tables.
GROUP BY
This clause is used to group information by one or more columns in a table.
HAVING
This clause is used to only return certain groups or rows in a query.
ORDER BY
This clause is used to sort information in a query, much like the sort by
command in Word, Excel, etc.
WHERE
This clause is used to filter results by given criteria.

CHAPTER 6:

SQL EXPRESSIONS, FUNCTIONS, AND
OPERATORS

To work with a database and the tables it houses, you need a way to
manipulate the data to return the output required. You create a database to
not only store, view, and retrieve the data, but to be able to manipulate the
data to make it useful.
Take the “Shop1” database you created in an earlier chapter of this book.
You created two tables, a customer table to hold customer records and a
product table to hold product information. These tables can do more than
just collect information about customers and products. The data can be
manipulated to create even more useful information such as orders,
invoices, and so on.
Expressions, functions, operators, and conditions allow you to perform
specific tasks to create various outcomes.

Expressions
Expressions are usually called value expressions in SQL. An expression can
be complex or extremely simple. It can contain statements, values, columns,
operators, etc. It is even possible to combine multiple expressions into one
expression, as long as the outcome of the expression reduces to a single
value. An expression can be likened to a formula that is written as a query
and as such can be used to query tables for specific sets of data.
There are five different kinds of expressions in SQL:
Conditional Value Expressions

A conditional value expression is one of the more complex types of
expressions as the value of the expression depends on a condition. Although
they are for advanced SQL, you should be aware of the following
conditional expressions:
CASE
NULLIF
COALESCE
Datetime Value Expressions
The DateTime value expressions will always return date and time as these
types of expressions are used to manipulate and perform date and time
operations.
The following are common expressions of this type:
DATE
INTERVAL
TIME
TIMESTAMP
To write an expression that returns data for a month from today, it would
look similar to the following:

current_data + interval ‘30’ day

Interval Value Expressions
The interval value expression is used for scenarios such as subtracting one
date from another date to get an interval time. For instance, subtracting your
age from the current year will give you your birth year. The expression
would look similar to the following:

date (current_date - interval 20 year) month to year

Numeric Value Expressions
Numeric value expressions require the data to be numeric values of which
arithmetic operators can be used to formulate the result.
For example:

12 * 24

-109

25/5

The field name can be specified as long as the outcome equates to a
numeric value, for example:

price * qty

price/5

Oranges + Apples + Pears

String Value Expressions
String value expressions are used to concatenate expression values. The
concatenate expression is referenced by two vertical lines — ||
For example, if you had the following expressions:

‘grey’

‘goose’

You can concatenate them into a single expression:
‘grey’ || ‘ ‘ || ‘goose’

Instead of two separate expressions the above will return:
‘grey goose’

Operators
An SQL operator is a reserved character, arithmetic operator, or reserved
word that can be used to perform various arithmetic or comparison
functions in a statement. There are different types of SQL operators,
namely:
Arithmetic
Addition
The “+” symbol is used for addition.
Example:

If variable a = 5 and variable b = 10

a + b

will return:

15

Division
The “/” is used for division.
Example:

If variable a = 25 and variable b = 5

a / b

will return:

5

Modulus
The “%” symbol is used for modulus.
Example:

If variable a = 100 and variable b = 10

b % a

will return:

10

Multiplication
The “*” symbol is used for multiplication.
Example:

If variable a = 10 and variable b = 8

a * b

will return:

80

Subtraction
The “-” symbol is used for subtraction.
Example:

If variable a = 50 and variable b = 15

a - b

will return:

35

Comparison
Greater Than
The “>” symbol is used for greater than.
Example:

If variable a = 25 and variable b = 5

(a > b)

will return:

True

Less Than
The “<” symbol is used for less than.
Example:

If variable a = 25 and variable b = 5

(a < b)

will return:

False

Equal
The “=” symbol is used for equal to.
Example:

If variable a = 25 and variable b = 25

(a = b)

will return:

True

Not Equal
The “!=” or “<>” symbols are both used to represent not equal to.
Example:

If variable a = 25 and variable b = 5

(a != b)

will return:

True

or

(a <> b)

will return:

True

Greater Than or Equal
The “>=” symbols are used for greater than or equal to.
Example:

If variable a = 25 and variable b = 5

(a >= b)

will return:

True

Less Than or Equal
The “<=” symbols are used for less than or equal to.
Example:

If variable a = 25 and variable b = 5

(a <= b)

will return:

False

Not Greater Than
The “!>” symbols are used for not greater than.
Example:

If variable a = 25 and variable b = 5

(b !> a)

will return:

True

Not Less Than or Equal
The “!<” symbols are used for not less than or equal to.
Example:

If variable a = 25 and variable b = 5

(a !< b)

will return:

True

Logical
ALL
Compares all values in one data set to a specified value.
AND
This operator is used with the WHERE clause to allow for multiple
conditions in a statement.
ANY
Compares a value to similar values in a referenced list.
BETWEEN
This operator is used to return values that are between a minimum and
maximum value.

EXISTS
This operator is used to search for an existing row in a table that has been
specified that meets a specific criterion.
IN
This operator compares specified literal values in a given list.
LIKE

This operator uses wildcard operators to compare similar values in a table
or list.
NOT
This operator negates the logical operator used alongside it. For example:

not in
not between
not unique
not exist

OR
This operator is used to string together multiple conditions when used with
the WHERE clause in a statement. The value can be x or it can be y, for
instance.
IS NULL
This operator compares NULL values with a value.
UNIQUE
This operator is used to search for duplicates in a table.

Functions
SQL has a set of built-in functions and can facilitate user-defined functions.
Functions are used to manipulate and process data and are used throughout
an SQL database.
Some of the more commonly used built-in functions in SQL are:
AVG
This function returns the average of an expression.
CONCAT
This function will concat string values.
COUNT
This function will count the number of rows in a database.

MAX
This function will return the maximum value of a given range of values.
MIN
This function will return the minimum value of a given range of values.
RAND
This function will generate a random number.
SQRT
This function will return the square root of a specified value.
SUM
This function will return the sum of a given range of values

CHAPTER 7:

WORKING WITH CONSTRAINTS

A constraint is a rule that is placed on an entire table, column, or selection
of columns. It restricts what types of data may be added to the table or
column.
To ensure the integrity of the data being stored in a cell, table, or database,
the developer needs to assign certain constraints to it. There are two levels
of constraints in SQL and these are:

● Column level constraints which will only affect a single column.
● Table level constraints which will affect the entire table.

Constraints can be set when the table is first created or after the table has
been created.

Commonly Used SQL Constraints
CHECK
This constraint ensures that the data that is imputed into a cell/column meet
and satisfy the criteria that have been set for that column.
An example of using the CHECK constraint would be in a database that has
an age group selection. For a health and fitness database, you may want to
set different exercise regimes per age group.
The CHECK constraint can be used to limit a column's value between two
age groups such as 35 to 45.
Example:

create table exercises (

cust_id int not null auto_increment primary key,

name varchar (45) not null,

age int not null check (age >=35 and age<= 45)
);

The above example:
● Creates a table called exercises.
● It populates the table with the following fields:

○ cust_id — This is the primary key, the number is
automatically inserted upon creation of a record. It will
be created in the form of an integer data type. The field
cannot be blank.

○ name — This is a variable character field that is set to
forty-five characters long, the field cannot be blank.

○ age — This field is an integer field that cannot be blank
and will only accept values from 35 up to and including
45.

DEFAULT
This constraint is used to insert or specify the default value(s) for a column.
The value is automatically inserted into the column by the database engine.
Example:

create table product (

prod_id int not null auto_increment primary key,

product varchar (30) not null,

price decimal (3.2) not null,

qty int (5) not null default ‘4’
);

The above example:
● Creates a table called product.
● It populates the table with the following fields:

○ prod_id — This is the primary key, the number is
automatically inserted upon the creation of a record. It
will be created in the form of an integer data type. The
field cannot be blank.

○ product — This is a variable character field that cannot
be blank.

○ price — This field is a decimal field set to 3 digit and 2
decimal places. The field cannot be blank.

○ qty — This field is an integer field that will assign the
default quantity of the product. For the particular
example, each product comes in a quantity of four
which will automatically be assigned upon creation of a
new record in the table.

FOREIGN KEY
This is a unique identifier that is used to identify a related record in a
different table.
Example:
In Chapter 3 of this book under the “Table Exercise” section, you created
the “shop1” database. You also created two tables for the shop1 database:

● Customers
● Products

Each of the above tables had a unique primary key:
● Customers table primary key = cust_id
● Products table primary key = prod_id

If you were going to have an ordering system you would need to create
another table. For this example, the new table will be called orders.
For the ordering system to work, the orders table needs to pull information
from the customers and the products table. The way the system does this is
by referencing the primary keys from both tables which become known as a
FOREIGN key to the orders table.
Take a look at the code below:

create table orders (

order_id int not null auto_increment primary key,

cust_id int,
prod_id int,

foreign key (cust_id) references customers (cust_id),

foreign key (prod_id) references products (prod_id)

);

The above example:
● Creates a table called orders.
● Populates the table with the following fields:

○ order_id — This is the primary key, the number is
automatically inserted upon the creation of a record.
There can only ever be one primary key in a table.

○ cust_id — This is the column that references the
cust_id in the customer’s table.

○ prod_id — This is the column that references the
prod_id in the products table.

○ FOREIGN KEY (cust_id) REFERENCES customers
(cust_id) — This sets the first foreign key in the order
table to reference the customer’s table to link to the
cust_id field in the table.

○ FOREIGN KEY (prod_id) REFERENCES products
(prod_id) — This sets the first foreign key in the order
table to reference the products table to link to the
prod_id field in the table.

There can be more than one foreign key in a table. In MySQL Workbench
the newly created order table will reflect two foreign keys and look similar
to the image below.

The relationship table will look similar to the diagram below.

NOT NULL
When you see a NULL value in a table it means that the cell/record/column
is blank. In other words, it does not contain any values or data, it has a

NULL value. The NOT NULL constraint is used to ensure that the cell is
not blank. It will create an error if no data is entered into it.
PRIMARY KEY
The primary key is the unique ID that is given to each record in every row
of every table in a database. You can set the primary key to auto_increment
which will allow the database engine to automatically generate the ID. You
can also set it to be anything you want it to be and manually enter it.
For instance, your customer ID may be alphanumeric, ABC001. Always
make sure the primary key field is set to NOT NULL to ensure a value is
placed in the field.
There can only be one primary key column per table.

Adding Constraints
To add a constraint during the initial setup of a table the syntax would be
similar to:

id int not null auto_increment,
primary key (id)

Altering Constraints
To alter an existing constraint in a table the syntax would be similar to:

Alter table students drop constraint id primary key;

Exercise 2
Before continuing on to the next chapter you are going to create a new
database called “hr” using some of the information you have learned so far.
The HR Database
Starting on a new query line, type the following:

create database hr;
Execute the command.
Starting on a new query line type the following:

create table salaries (
sal_id int not null auto_increment,

jobtitle varchar (45),
joblevel varchar (10),
salary int not null,
primary key (sal_id)
);

Execute the command lines.
Starting on a new query line type the following:

create table departments (

dept_id int not null auto_increment,

dept varchar (40) not null,

primary key (dept_id)

);

Execute the command lines.
Starting on a new query line type the following:

create table employees (

emp_id int not null auto_increment,

name varchar (55) not null,

age int not null,

primary key (emp_id)

);

Execute the command lines.
Starting on a new query line type the following:

insert into departments (department) values (‘IT Department’);

insert into hr.departments (department) values (‘Accounting Department’);

insert into hr.departments (department) values (‘Helpdesk Department’);

insert into hr.departments (department) values (‘HR Department’);

insert into hr.departments (department) values (‘Snr Management’);

insert into hr.employees (name, age) values (‘John Green’, ‘35’);

insert into hr.employees (name, age) values (‘Sandy Smith’, ‘28’);

insert into hr.employees (name, age) values (‘Terry Peach’, ‘31’);

insert into hr.employees (name, age) values (‘Jack Sunny’, ‘47’);

insert into hr.employees (name, age) values (‘Dru Red’, ‘51’);

insert into hr.employees (name, age) values (‘Jane Web’, ‘30’);

insert into hr.’salaries (jobtitle, joblevel, salary) values (‘Administration’, ‘Entry 1’,
‘25000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘Clerk 1’, ‘Entry 2’, ‘28000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Clerk 2’, ‘Mid 1’, ‘31000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Management’, ‘Mid 2’,
‘35000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Engineer 1’, ‘Entry 3’,
‘26000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Engineer 2’, ‘Mid 2’,
‘32000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Engineer 3’, ‘Mid 3’,
‘40000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Sn Manager 1’, ‘Snr 1’,
‘43000’);

insert into hr.salaries (jobtitle, joblevel, salary) values (‘’Director’, ‘Snr 2’, ‘55000’);

Execute all the “insert into” command lines
Starting a new query tab type the following:

select * from hr.departments

Execute the command and the “Results Grid” should look similar to the
image below

Starting a new query tab type the following:
select * from hr.employees

Execute the command and the “Results Grid” should look similar to the
image below

Starting a new query tab type the following:
select * from hr.salaries

Execute the command and the “Results Grid” should look similar to the
image below

CHAPTER 8:

JOINS, UNIONS, ORDERING, GROUPING, AND
ALIAS

In a database, you are going to want to combine the information from one
or more tables into one table. You can do this using Join and Union, but it is
important not to get the two confused. In this chapter, you are going to learn
the basics of join and union, and how they work.

JOINS
Consider the shop1 database created in an earlier chapter. There is the
products table and the customers table. These tables collect valuable
information about the store's products and customers. In Chapter 7 you
created the orders table which references the products table and customers
table. The information stored in the orders table does not show much
information about either table except for ID codes.
Before you start working with joins, populate the orders table with some
example data.
In a new “Query” line, insert the following data into the orders table:

insert into shop1.orders (cust_id, prod_id) values (‘1’, ‘2’);

insert into shop1.orders (cust_id, prod_id) values (‘3’, ‘2’);

insert into shop1.orders (cust_id, prod_id) values (‘3’, ‘4’);

insert into shop1.orders (cust_id, prod_id) values (‘2’, ‘1’);

insert into shop1.orders (cust_id, prod_id) values (‘2’, ‘3’);

Currently the orders table returns information similar to the table below:

The orders table would not make much sense to someone who did not
know all the customer and product identification numbers. When dealing
with a large customer and product databases with long lists of customers
and products, only seeing the codes is not going to be useful.
The information that gets filtered into the database can be selected by
joining tables. For this exercise use the shop1 database to join information
between the orders table and the customers table.
Using MySQL Workbench, set the shop1 database as the default database
by typing the following into a new “Query” line:

select order_id, sname, fname

from orders

join customers on orders.cust_id=customers.cust_id

Execute the script and the “Results Grid” should look similar to the one in
the image below.

The orders table now reflects the customer’s details and not just the cust_id.
Notice that there is no cust_id field. This field may be required, especially
for reporting purposes.
If the cust_id field had been included in the following script, the script
would not have run:

select order_id, cust_id, sname, fname

from orders

join customers on orders.cust_id=customers.cust_id
Instead, it would have thrown out an error similar to the example below:

“Error code: 1052 Column ‘emp_id’ in field list is ambiguous”

This error occurs because the cust_id field appears in both tables being
joined. To get around this error and show the cust_id type the code as
follows:

select order_id, orders.cust_id, sname, fname

from orders

join customers on orders.cust_id=customers.cust_id

The cust_id field will now appear in the query.

Types of Joins
There are different types of SQL joins, and each will return a different
result when used in a table.
INNER JOIN

Join and inner join are the same function. If you are working in a database
with different types of joins, using inner join makes the statement a lot
clearer.
The inner join or join will only return records that are a match in both Table
A and Table B.

Example:
Using the hr database created in Exercise 2, type the following in a new
“Query” line:

create table workforce (
wf_id int not null auto_increment primary key,

emp_id int,
dept_id int,
sal_id int,
foreign key (emp_id) references employees (emp_id),
foreign key (dept_id) references departments (dept_id),
foreign key (sal_id) references salaries (sal_id)
);

Execute all the command lines.
Starting on a new “Query” line, type the following:

insert into workforce (emp_id, dept_id, sal_id) values (‘1’, ‘5’, ‘8’);
insert into workforce (emp_id, dept_id, sal_id) values (‘2’, ‘4’, ‘4’);
insert into workforce (emp_id, dept_id, sal_id) values (‘5’, ‘1’, ‘7’);

Execute all the command lines.
Run the following query:

select * from hr.workforce
Execute the command line and the results will be similar to the following
image:

Using an inner join to populate the workforce table with the emp_id, name,
and age from the employees table, type the following code in a new
“Query” line:

select wf_id, employees.emp_id, name, age, dept_id, sal_id
from workforce
inner join employees on workforce.emp_id=employees.emp_id

The “Results Grid” should show the workforce table as below:

The inner join returns only the records from the workforce table that match
the records from the employees table.

FULL JOIN (OUTER)

The full join is also known as the outer or full outer join. It will show all the
records in both Table A and Table B, regardless of whether they match or
not.
To use the full join to populate the workforce table with the emp_id, name,
and age fields from the employees table, the code should look similar to the
following:

select wf_id, employees.emp_id, name, age, dept_id, sal_id

from workforce

full join employees

The join will return all the records in the workforce table and the employees
table.
LEFT JOIN

The left join will show all the records in Table A regardless of whether they
match the records in Table B.
To use the left join to populate the workforce table with the emp_id, name,
and age fields from the employees table, the code should look similar to the
following:

select wf_id, employees.emp_id, name, age, dept_id, sal_id

from workforce

left join employees on employees.emp_id=workforce.emp_id

The join should have returned all the records from the workforce table and
only the matching records from the employees table.
RIGHT JOIN

The right join will show all the records in Table B regardless of whether
they match the records in Table A.
To use the right join to populate the workforce table with the emp_id, name,
and age fields from the employees table, the code should look similar to the
following:

select wf_id, employees.emp_id, name, age, dept_id, sal_id

from workforce

left join employees on employees.emp_id=workforce.emp_id

The join returns all the records from the employees table and only the
matching records from the workforce table.
Joining More Than Two Tables
Consider the hr database for instance. It is not only the employee table
information that is required to make the workforce table usable. What about
the information from the departments table and the salaries table?
In the examples above only the dept_id and sal_id information is reflected
in the workforce table query. More than two tables can be joined together
using the various SQL joins.
To use the right join, to populate the workforce table with the emp_id,
name, and age fields from the employees table, the code should look similar
to the following:

select wf_id, employees.emp_id, name, age, departments.dept_id, department,
salaries.sal_id, jobtitle, joblevel, salary

from workforce

inner join employees on employees.emp_id=workforce.emp_id
inner join departments on departments.dept_id=workforce.dept_id

inner join salaries on salaries.sal_id=workforce.sal_id

Execute all the command lines.
The join returns all the records from the matching records from the
employees table, departments table, and the salaries table that match the
records listed in the workforce table.
Try using each of the different types of joins to join the tables in the hr
database.

UNION
It is easy to get confused with join and union as they are both used to join
information. The difference between these two types of joins is that join is
used to filter and combine data from two or more different tables. The union
clause is used to join the results of two or more queries without returning
any duplicate information.
Example:
If certain information was required from the employees table such as a
criterion for a certain age group, the select statement would be similar to:

select age from employees where age >= 30 and age <=40;

Type the query above into a new “Query” line and execute all the command
lines.
The “Results Grid” will list all the employees in the employees table that
are within the set query age parameters.
From the workforce table, information needs to be extracted to find what
jobs earn between $25,000 and $35,000. The select statement would be
similar to:

select salary from salaries where salary >= 21000 and salary <=32000;

Type the query above into a new “Query” line and execute all the command
lines.

The “Results Grid” will list all the job titles in the salaries table that are
within the set query salary parameters.
If you had to create a union between the two queries above:

select age from employees where age >= 30 and age <=40;
union

select salary from salaries where salary >= 21000 and salary <=32000;

The above union would combine the two queries with the information
specified in both select statements. However, the above example is a basic
example of what the union clause does.
There are a few rules that apply when using the union clause:

● The data types must be the same in each select statement.
● The data must follow the same order in each select statement.
● There must be the same number of selected columns in each select

statement.
● There must be the same number of column expressions in each

select statement.
● There does not need to be the same amount of records in each

select statement.
Example:
Create a small customer and order database as follows:

create database orders1
Set the orders1 database as the default schema in MySQL Workbench.
Create tables for the orders1 database.
In a new “Query” line type the following:

create table customer (
cust_id int not null auto_increment,
custname varchar (55),
address varchar (55),
olimit dec (10. 2),
primary key (cust_id)
);

Execute the script.
In a new “Query” line type the following:

insert into customer (custname, address, olimit) values ('Henery', 'address 1',
'2300.34');

insert into customer (custname, address, olimit) values ('Janet', 'address 2', '2000.00');

insert into customer (custname, address, olimit) values ('John', 'address 3', '4500.50');
insert into customer (custname, address, olimit) values ('Jessie', 'address 3', '5200.00');

insert into customer (custname, address, olimit) values ('Daisy', 'address 4', '3500.00');

Execute the script.
In a new “Query” line type the following:

create table orders (

ord_id int not null auto_increment primary key,

cust_id int,

oddate date,

amount decimal (10,3),

ostatus varchar (25),

foreign key (cust_id) references customer (cust_id)

);

Execute the script.
In a new “Query” line type the following:

insert into orders (cust_id, oddate, amount, ostatus) values ('1', '2020-03-12',
'100.50','Pending');

insert into orders (cust_id, oddate, amount, ostatus) values ('3', '2020-07-10',
'1000.00','Shipped');
insert into orders (cust_id, oddate, amount, ostatus) values ('4', '2020-07-15',
'500.50','Complete');

insert into orders (cust_id, oddate, amount, ostatus) values ('4', '2020-09-19',
'2300.00','Processing');

Execute the script.
In a new “Query” line type the following query:

select customer.cust_id, custname, address, oddate, amount from customer

left join orders on customer.cust_id=orders.cust_id

Execute the script and take note of the results the query returned.
In a new “Query” line type the following query:

select customer.cust_id, custname, address, oddate, amount from customer

right join orders on customer.cust_id=orders.cust_id

Execute the script and take note of the results the query returned.
Now create a union between the two queries. In a new “Query” line type the
following query:

select customer.cust_id, custname, address, oddate, amount from customer
left join orders on customer.cust_id=orders.cust_id
union

select customer.cust_id, custname, address, oddate, amount from customer
right join orders on customer.cust_id=orders.cust_id

Execute the script and take note of the results the query returned. You will
notice that there is now no repeated information in the table.
The more advanced you become in SQL, the more you will be able to refine
the union clause.

Order
The order clause is used much like the “Sort By” command in programs
such as MS Word, MS Excel, and various databases. The order clause is
used to sort data in the tables by selected columns in ascending or
descending order.
Using the customer table in the order1 database run the following scripts:

select * from customer

order by custname

Execute the script.
You will notice that the table has been sorted alphabetically from a to z
(ascending) order.
Using the customer table in the order1 database run the following scripts:

select * from customer

order by custname, olimit

Execute the script.
You can sort data in a table by more than one column.
Try the following script:

select * from customer

order by olimit, custname

Execute the script.
You select the first column the data is to be sorted by, by referencing that
column name first.
You can sort the table in descending order:
Try the following script:

select * from customer

order by custname desc;

Execute the script.
Now the order of the records runs from z to a. The same rules that apply to
sort the columns in ascending order (default) apply to sort the columns in
descending order.

Group By
The group by clause is used to group identical data. For instance, if you
look at the orders table in the order1 database, some customers have placed
more than one order.
To get the total amount a customer has spent on orders, the group by clause
can be used.
Try the following example to give you a better idea of how this clause
works.

select ord_id, customer.cust_id, custname, sum(amount) from orders

join customer on customer.cust_id = orders.cust_id

group by cust_id;

Execute the script.
The results of the above script will show all the customers who have placed
orders and total the amount of their orders.

Alias
There are times when you need to shorten the name of a table or column.
The following script is a prime example. You can shorten the fields

highlighted in bold below to make working with the table a lot simpler.
select customer.cust_id, customer.custname, orders.amount

join customer on customer.cust_id = orders.cust_id

Using an alias for the script above would reduce the syntax to the
following:

select ord_id cust.cust_id, custname, sum(amount)

from customer as cust, orders as o

where cust.cust_id = o.cust_id;

CHAPTER 9:

STORED PROCEDURES

As you have been working through the various chapters of this book you
have been writing quite a few scripts. You may have noticed some of the
scripts have recurring code and some scripts are exactly the same as other
scripts that you had written before.
When you are writing quick small scripts as you have been doing in the
exercises above, it is not that time-consuming. But what if you had complex
queries that performed various tasks on a weekly or daily basis? Some
complex scripts can carry on for many lines. When you are writing scripts
such as those, it is very easy to miss the odd comma, underscore, brackets,
and so on. Once the script is perfect, you are going to want to have a way to
store the script so you can use it again and again.
The Advantages of Using Stored Procedures
There are a few benefits to using SQL stored procedures. Some of these
benefits are:

● Stored procedures increase the execution speed of the script.
Execution is faster because stored procedures are compiled,
optimized, parsed, and stored in the database cache.

● Executing a stored procedure is less bandwidth-hungry if you are
using a network because the procedure is executed from the local
database cache.

● Stored procedures can be used over and over again without having
to rewrite complex scripts.

● Stored procedures offer great security and have tighter restrictions
and constraint options.

Creating Stored Procedures
Using the following script you used in the group by section of the previous
chapter, you are going to create a stored procedure.
In a new “Query” line type the following:

select ord_id, customer.cust_id, custname, sum(amount) from orders

join customer on customer.cust_id = orders.cust_id

group by cust_id

order by custname;

If you were using the orders database in a real-life situation, the order table
would be large and would more than likely grow per day. The above script
is one that would most likely be used for an invoicing procedure.
On a new “Query” line create a stored procedure as follows:

delimiter $$
use `orders1`$$
create procedure `totalcustorder` ()
begin
select ord_id, customer.cust_id, custname, sum(amount) from orders
join customer on customer.cust_id = orders.cust_id
group by cust_id
order by custname;
end;$$

delimiter ;

Execute the script.
In the “Navigation Panel” of MySQL, under the “Schemas Tab”, refresh the
“Schemas”.
Expand the orders database. Below the database, there are the “Tables”,
“View”, and “Stored Procedures”.
Expand the “Stored Procedures”. You will see the newly created
totalcustorder procedure.

Executing Stored Procedures
There are two ways of executing stored procedures.
MySQL “Navigator Panel”
Expand the “Stored Procedures” in the navigations panel.
Hover over the stored procedure that is to be executed. Click on the
lightning bolt icon that appears upon hover.
Use a Call Function
You can write a small script:

call orders1.totalcustorder();

CHAPTER 10:

VIEWS, INDEX, TRUNCATE, TOP, WILDCARDS,
AND TRIGGERS

You can use views as virtual tables that do not hold any data with their
contents being defined by a query. The advantage of using a view is that it
adds a layer of security to the database by restricting access to certain
columns or rows.
A view can also restrict data being viewed to a summary view instead of a
detailed one. They can be used to protect the data layer while still allowing
viewing access to it.
Encrypting a View
You can create a view without columns that contain sensitive data, thus
hiding the data you don’t want to share. You can also encrypt the view
definition, which returns data of a privileged nature. Not only are you
restricting certain columns in a view, but you are also restricting who has
access to the view. However, once you encrypt a view, it is difficult to get
back to the original view detail. The best precaution is to make a backup of
the original view.
Creating a View
To create a view in MySQL, expand the database you want to create the
view for.
Right-click on Views.
Select New View.
The View Designer will appear.

Type the following in the script that is pre-written on the screen using the
shop1 database:

CREATE VIEW `customerview` AS select cust_id, sname, phone

from shop1;

Execute the script by clicking on the “Apply” button on the bottom right-
hand side of the “Query” screen.
Refresh the “Schemas” navigation panel in MySQL.
Expand the shop1 database.
Expand the Views beneath the shop1 database.
Hover the mouse over the customerview you created.
Click on the small table with a lightning bolt icon and the “Result Grid”
will bring up the view.
You can order columns for views and create views that pivot tables (see the
chapter in this book on how to Pivot tables in MySQL). Creating views in
SQL allows you to limit what certain users can and cannot see right down
to the data records in a table.

Index
Indexing data searches speeds up the data lookup and access to the
tables/records that have been indexed. They work much like the Index or
TOC in a book. Instead of flipping through hundreds or thousands of pages
looking for information, you can refer to the book’s index to find the page
you are looking for. This cuts down the time and effort of having to scan
through all those pages.
In a database, creating an index will speed up a search using the select
query and the where clause. But, you have to be careful with indexes
because they may speed up lookup but they can have a negative impact on
updating and inserting information into a table. But creating or dropping
indexes will not affect the data in tables and is relatively easy to do.
There are different types of indexes that you can create within a database
and these are:
Table Indexes

This creates an index for an entire table.
To create an index on a table you will use the create index command and
the statement will look similar to the following statement:

create index testindex on customers;

This will create an index for the entire customers table in the shop1
database.
Single-Column Indexes
You can create an index for a single column within a database table by
typing in a statement such as the one below:

create index testindex2 on customers (sname);

This will create an index for the sname column in the customers table of the
shop1 database.
Composite Index
You can also create an index that will index more than one column within a
table. This is called a composite index and the statement to create this index
is as follow:

create index testindex3 on customers (sname, fname);

The above statement will index both the sname and the fname columns of
the customer table in the shopt1 database.
Implicit Index
The moment you set up a table in a database it will automatically create an
index for the new object. Unique constraints and primary keys will
automatically be indexed by the SQL engine as an implicit index.
Unique Index
Unique indexes test for the integrity of data and do not allow any duplicate
entries to be entered into a table. A unique index can be created by using
the following SQL statement:

create unique index testindex4 on products (products);

This will create a unique index on the products table and ensure there are no
duplicate product names in the products table of the shop1 database.
Deleting an Index

You can delete an index when it is no longer useful or is taking up to many
resources. To do this, you use the drop index statement. This can be done by
using the following statement:

alter table customers

drop index testindex3;

Indexing Tips
There are times when using an index is necessary and can greatly enhance
the performance of a search through millions of database records. But there
are also times when indexes should not be used.
Here are a few tips on when to use or not use database indexes:

● Indexes are necessary when searching through large amounts of
data.

● Indexes are not necessary when the database tables are small.
● Avoid using indexes on data that is not searched frequently.
● If columns in a table contain NULL values it is not a good idea to

use indexes.
● Tables and columns that are used for large batch inputs, updates,

and modifications should not be indexed.

Truncate
The truncate command is used to completely delete all the data from a
table. This differs from the drop table command in that truncate only
deletes the data and not the table itself.
This is useful when you have obsolete data in a table but want to keep the
structure of the table, or you have archived the current data in a table and
need to use it for more recent data.
The syntax to truncate data from a table is as follows:

truncate table customers;

You can check that all the records have been removed from the table by
running the following:

select * from customers;

Top
SQL uses the top command to return the top n amount of records from a
table. For example, say you had the following products with their sales data
for the year:

Product Yearly Sales

Apples 40000

Bananas 22000

Grapes 35000

Pears 48000

Watermelon 55000

You could write a query that will return the top products in the products
table. To do this you would use the following statement in SQL:

select top 2 * from products;

The result of the query would return:

Product Yearly Sales

Apples 40000

Bananas 22000

MySQL does not support the top command. Instead, you will need to use
the limit statement in a similar query to the one below:

select * from products limit 3;

The above statement will return the same result as using the top statement
in SQL does.

Wildcards

SQL supports the use of wildcards to make selecting certain data easier. For
instance, when you add the “*” in the select statement you are using a wild
card, as the asterisks tell SQL to select “all” the columns in that particular
table without having to type them out individually.
Besides the asterisk, there are two other common wildcards supported by
SQL:
The Underscore Operator “_”
The underscore operator is used to mark place holders to create a match in a
search for one character example:

select * from customers where fname like _ndy

The above statement will return all the customer names that end with “ndy”
and have one character in front of the search criteria, for instance, Andy.

select * from customers where fname like sh___

The above statement will feature all the customers' names that start with
“sh” and have three characters at the end of the name, for instance, Shane,
Shawn, Shaye, etc.
The Percentage Operator “%”
The percentage operator works a lot like the asterisks but is used to match
one or more characters in a search:

select * from customers where fname like %nd%

The above statement will list all the customers' names that have an “nd” in
them in any position of the word, such as Sandy, Andy, Mandy, etc. Some
databases use the * operator in place of the %.

select * from customers where fname like %am

The above statement will only return names that have “am” as the last two
letters such as Pam, Sam, William, etc.

Triggers
Triggers can be used to automatically execute actions within an SQL
database during a DDL or DML operation.
An example of a database trigger is setting the database maintenance to run
after a set period of time. Another example would be setting up

notifications when certain conditions are met. Retail stores use them to run
future promotions or to give certain discounts for the one-hundredth user,
and so on.
SQL offers two types of triggers which are:
AFTER Trigger
The AFTER trigger will be executed after an event or action has been
performed and meets the trigger's conditions (for instance, when a certain
database threshold has been exceeded, trigger an event).
INSTEAD OF Trigger
This trigger will perform an action that is different from the actual event.
Trigger Syntax
You can create a trigger in MySQL by expanding the Schema navigation
view of the MySQL database. For this example, you can use the shop1
database, so make sure it is set as the default schema.
Type the following in the script that is pre-written on the screen using the
shop1 database:

create table totalaccount (
id int auto_increment not null,
tamount decimal (10,2),
Primary key (id)
);
create trigger ins_sum before insert on totalaccount
for each row set @sum = @sum + new.tamount;

Execute the script.
Refresh the “Schemas” navigation panel in MySQL.
Expand the shop1 database.
Expand the Triggers beneath the shop1 database.
You will now see the trigger you created.
This will sum the amount of the tamount column when data is entered into
it.

 

CHAPTER 11:

PIVOTING TABLES IN MYSQL

Records in an SQL database are presented in rows. To pivot data in SQL
means to rotate the data records and convert them into columns. This is
handy for use in data analysis and reporting, especially for visualizing
trends and multidimensional reports.
Create a Products Sales Database
Open a new MySQL session with a new “Query” tab and type the following
script:

create database sales

Set the sales database as the default schema in MySQL Workbench.
Create tables for the sales database.
In a new “Query” line type the following:

create table prodsales (

id int not null auto_increment,

product varchar (45),

syear year,

sales decimal (10, 2),

primary key (id)

);

Execute the script.
In a new “Query” line type the following:

insert into prodsales (product, syear, sales) values ('Razor Blades', '2015', '23000');

insert into prodsales (product, syear, sales) values ('Razor Blades','2015', '25000');

insert into prodsales (product, syear, sales) values ('Razors', '2015', '23800');

insert into prodsales (product, syear, sales) values ('Razors', '2015', '20800');

insert into prodsales (product, syear, sales) values ('Razor Blades','2016', '30000');

insert into prodsales (product, syear, sales) values ('Razor Blades','2016', '32000');

insert into prodsales (product, syear, sales) values ('Razors', '2016', '35000');

insert into prodsales (product, syear, sales) values ('Razors', '2016', '37000');

insert into prodsales (product, syear, sales) values ('Razor Blades', '2017', '43000');

insert into prodsales (product, syear, sales) values ('Razor Blades', '2017', '45000');

insert into prodsales (product, syear, sales) values ('Razors', '2017', '46000');

insert into prodsales (product, syear, sales) values ('Razors', '2017', '48000');

Execute the script.
Query the prodsales table:

select * from prodsales

Execute the script.
The prodsales table currently looks like the table below.

Prodsales SQL Table

product syear sales

Razor Blades 2015 23000.00

Razor Blades 2015 25000.00

Razors 2015 23800.00

Razors 2015 20800.00

Razor Blades 2016 30000.00

Razor Blades 2016 32000.00

Razors 2016 35000.00

Razors 2016 37000.00

Razor Blades 2017 43000.00

Razor Blades 2017 45000.00

Razors 2017 46000.00

Razors 2017 48000.00

How to PIVOT Data in MySQL
MySQL does not support pivot, nor do a few other RDBMS databases such
as Microsoft SQL Server and SQLite. However, like MySQL, some
functions can simulate the functionality of pivot.
In MySQL, the case function can be used to pivot tables. The case function
is a conditional statement. It will check to see if a condition is met before
returning a result. It uses the same type of format as the “if … then … else
… and is usually followed by an aggregate function or two such as when
and then.
A simple explanatory example of using the case statement would be to
consider a simple customer address log where you want to group customers
by the towns they live in.
This simple script would look something like:

select residents, town, state, zip
from states

order by (CASE WHEN town is NULL THEN zip ELES state END);

The above script selects residents and sorts them by either their town, zip,
or state.
In the next section, you are going to use the case function to pivot data
using the prodsales table from the sales database you have created.
If you look at the data collected in the above prodsales table representation,
you can see there are numerous ways you could manipulate and report on
that data. One such report would be to view the number of sales per product
per year as per the table below.

Pivoted Prodsales SQL Table

product 2015 2016 2017

Razor Blades 47000.00 62000.00 88000.00

Razors 44600.00 72000.00 94000.00

You could extract the information with the following query:

Select product, sum(sales), syear

from prodsales

group by syear;

But this would still return the output view in a column view.
Select a new “Query” tab and start the following script to pivot the data to
read as shown in the table above.

SELECT

product,

sum(case when syear = '2015' then sales else 0 end) as '2015',

sum(case when syear = '2016' then sales else 0 end) as '2016',

sum(case when syear = '2017' then sales else 0 end) as '2017'

FROM prodsales

GROUP BY product

Execute the script and the data will be presented with only the two
products, each showing the sales per year.
As good practice and to keep your SQL skills fresh, save the pivot table
script as a procedure that you can reference and use again.

CHAPTER 12:

CLONE TABLES

Clone tables are identical tables that you can create to perform SQL tasks.
Clone tables have exactly the same format and content as the original table
they are cloned from. Using a clone table, you can ensure that the new table
has the exact same indexes, constraints, etc. that the original table has.
Why Use a Clone Table?

● To create identical tables to work with for updates, fixes, etc.
instead of working on live tables and data.

● To act as practice tables for beginners, so that the tables in the live
databases are safe and protected.

● To feature new interfaces for new users.

Using Clone Table
Using the sales database, you will clone the prodsales table created in the
previous chapter and populate the cloned table with the data of the original
table.
Open a new “Query” tab in MySQL. You will use the same script you used
to create the original prodsales table. Type the following into a new
“Query” line:
create table prodsales_clone (

id int not null auto_increment,

product varchar (45),

smonth varchar (25)

syear year,

sales decimal (10, 2),

primary key (id)

);

Execute the script. You now have two identical prodsales tables in the sales
database to work with.
Populate the prodsales_clone table with the exact same data as the original
table by typing the following into a new “Query” line in MySQL:

insert into prodsales_clone (product, smonth, syear, sales)

select product, smonth, syear, sales

from prodsales;

Execute the script.
Query the prodsales_clone table:

select * from sales.prodsales_clone;

Execute the script and the “Result Grid” will show the cloned table
populated with the exact same data as the original prodsales table.
 

CHAPTER 13:

SECURITY

Databases hold all kinds of sensitive data including employee records,
company blueprints, and so on. Due to the nature of company data, systems
need high-end, functional, and reliable security which include controlled
access to systems. Many companies today use Microsoft's Active Directory
to manage users and sort them into access profiles using processes such as
group policies.
Group policies are used to assign employees various permissions based on
their job title, security level access, etc. by using group level, directory
level, and even file-level permissions for more individualized permissions.
Active Directory is compatible with SQL but only for access control and
does not provide internal security for authorization. These types of security
servers are provided by the applications that run SQL, such as MySQL,
SMSS, Microsoft Sequel server, and so on.
Components of Database Security
There are four main components of database security and these are:
Authentication
Authentication pertains to validating a user’s permission to access various
systems resources, directories, files, and applications.
The most common method of authentication is simply a username and
password. A username and password will verify the credentials of a person
trying to access the system.
Single sign-on is available which uses secure certificate authentication. This
means that the user can only sign onto the system on a certain device that

has been set up with the necessary security certificates.
Encryption
Most corporations go to great lengths to ensure that system access is
authenticated and appropriately authorized.
Encryption strengthens this access control by scrambling data into
indecipherable symbols which are hard to interpret if not correctly
authenticated.
Microsoft SQL Server uses RSA data encryption. RSA is an algorithm that
uses key management and a layered hierarchical structure to encrypt data. It
makes use of SSL certificate key infrastructure which uses both Public and
Private Keys.
Authorization
The Authorization process is what determines a systems user’s
authentication type, in other words, what they can and cannot access.
Once a user has logged onto the system their access policies will prevent
them from being able to access the information they do not have
permissions to access. If the client is dealing with information,
authorization can be restricted right down to the file level. Rights can be
limited to being able to modify, update, delete, create, etc.
Access Control
Change tracking is used to maintain and keep a log of a user's use of the
system. SQL user change tracking also makes it possible to track the
activities of all authorized users.
Tracking can track the day, time, and even what was accessed per
workstation or user ID.
Tracking changes helps to prevent a user with top-level access from causing
damage to the system.
Three-Class Security Model
SQL uses a security model consisting of three classes. All three SQL
security classes interact with each and have the same basic security
functions, namely:

● Principals — Principals can only access certain specified objects
in the database.

● Securables — Securables are system regulated resources that run
within the database.

● Permissions — Permission refers to the right to view, edit, or
delete securables. This access is pre-defined.

Although this security model is a Microsoft SQL Server-based idea, other
SQL Management systems such as MySQL, DB2, and MongoDB have a
similar security structure.
Security modeling is a lot more widespread across the IT industry. It
incorporates networks, cloud computing, and personal computers or devices
right down to mobile phones.
Security covers a wide area of SQL and any system that houses sensitive
data. It is not a subject that can be covered in a chapter, but rather an entire
course on its own.
Schemas
In relation to security, the schema defines ownership of resources in a
database system. Schemas identify principles based on the client’s level of
authorization.
According to Microsoft, a schema is “a group of database objects under the
ownership of a single individual and together they create what is known as
a single namespace.”
The single namespace refers to a limitation that does not allow two tables
that are contained in one schema to contain similar names.
Principals are used for either group, single login, or a single user.
Multiple users sharing one role are grouped using group policies, and all
can cooperatively own a schema or many schemas.
It is possible to share or transfer a schema between principals without
renaming the schema.
There are T-SQL statements for managing schema, but a majority of this
work belongs to database administrators, not the principals of a database.

Server Roles
Roles offer a database system another layer of security. This layer identifies
access based on a user's systems credentials such as responsibilities and
access levels.
Although there are many different kinds of roles, SQL comes with both
fixed database and server roles, each of which provides implicit
permissions.
SQL offers the option to customize roles such as user-defined server roles,
application roles, and user-defined database roles.
A few Fixed Server Roles are:

● sysadmin —The role of the sysadmin user holds the highest form
of access and can perform any SQL database or SQL Server
action.

● blkadmin — This role permits users to run the bulk insert
statement.

● dcreator — This role permits users to create a new database
within an SQL Server instance.

● diskadmin — Users allocated to this role manage SQL Server
disk files.

● processadmin — This role allows users to terminate SQL Server
processes.

● public — This role is used for user authentication to the SQL
database.

● securityadmin —The securityadmin role grants users permission
to assign or revoke user rights to the database in an SQL Server
instance.

● serveradmin — The serveradmin role can start and stop the SQL
Server as well as assign various configuration rights.

● setupadmin – Users assigned this role can use T-SQL statements
to remove or add new linked servers and they must have
sysadmin rights to perform this role.

Roles play an important role in securing a database and database engine.
SQL security functions are mostly built on top of server roles as the
authentication upon login determines the access permissions principals have
to various schemas.
Data encryption protects information from potential hackers and other
unauthorized access or login attempts. It also plays a vital role in protecting
company data from internal threats or for information being accessed by
users that should not be accessing it.
Roles govern exactly what users can access or what tasks they can perform
within a database or Database server instance. SQL security practices are to
allocate a user the barest minimum rights they need to effectively perform
their duties.
This stops a user from having rights to the wrong information and access to
valuable resources that they are either not trained to use or may be holding
an unnecessary license for.
Sysadmins are considered to be database or schema owners.
Members of an organization's IT department are usually tasked or assigned
the role of database administrators. There are different levels and
departments of both database administrators and database owners. The level
depends on the assigned task within the organization.
Customized Server Roles
Server roles can also be created and customized to suit a given purpose
within an organization.
Custom server roles can be created by:

● Selecting Security objects in the SQL server management
program.

● Select “New”
● Select “Role”
● The name of the role can be anything, but it is usually given a

name pertaining to the role and function of the role.

● The “Explicit Permissions” needs to be set. This is usually a
checkmark box.

● The permissions are then set and the role is created.
Logins
The security hierarchy in an SQL database starts with the systems
administrator or database owner that originally creates the database
instance.
The SQL security model is based on the principles as covered earlier in this
chapter:

● Principals – Have access to deny, granted, or revoke access at all
levels.

● Securable – These are database/database engine objects that can
be manipulated and as such need access level rights to be set.

● Permissions – Permissions are set to allow various access levels to
data, database tables, and securables.

Groups
Groups can be set up to contain either various roles, access permission
rights to specific files, databases, tables, or database functions.
Groups make granting various access and roles to a specific group of people
a lot easier. For instance, a manager of an accounting department may
require access to the same roles as their teams but may also need to have
access to resources. These can all be set in a group, making it easier to
manage all the users’ access and for granting another user the same access
requirements more efficiently.
It is usually the function of the database owner or administrator to create
and manage groups.
Mixed Mode Authentication
Mixed mode authentication gives an extra layer of security to authentication
of a user login. Mixed mode authentication means logging into the database
has two-tier authentication and passwords are stored on the database.

The “Systems Administrator” or “SA” user is enabled when mixed mode
authentication is set. The SA has the highest level of access rights on the
database and this user is barely used or checked; it can become a security
risk. The SA is usually the first ID targeted by hackers.
SQL best practice is to rename the SA and ensure it has a strong password
that is changed regularly.
Find the name of the SA or root user by typing in the following:

select user, host from mysql.user;

This will return a table similar to the following in the “Result Grid”.

User Host

mysql.infoschema localhost

mysql.session localhost

mysql.sys localhost

root localhost

The SA or root user can be renamed in MySQL by typing the following into
a new “Query” line:

rename user ‘root’@’localhost’ to ‘newroot’@’localhost’

flush privileges;

mysql -u newroot -p

To change the password of the SA or root user:
update mysql.user SET Password=PASSWORD(‘thisismynewpassword’) where
user=’root’,

flush privileges

After the root password has been changed you will need to completely log
out and shut MySQL down. Then log in again with the new password.
Database Roles

Permissions managed at the server level are called server roles. Permissions
managed at the database are called database roles. Database roles can assign
common permissions to principles by grouping them.
The most common database roles are:

● db_accessadmin — Manages user access by being able to add and
remove users a database instance.

● db_backupoperator — This user role is used to backup the
database.

● db_datareader — This user role is permitted to use the select
statement in permitted database instances.

● db_datawriter — This user role is permitted to execute Data
Manipulation Language (DML) statements on permitted database
and table instances.

● db_denydatareader — This user role is used to deny permission to
run the select statement throughout all database instances.

● db_denydatawriter — This user role is used to deny permissions
to perform DML statements in database instances.

● db_ddladmin — This user role can drop, alter, and create objects
in a database.

● db_owner — This is the user role that has full access to the entire
database.

● db_securityadmin – This user role is used to set permission to the
database securables.

Customized Database Roles
Like server roles, database roles can also be created and customized as and
when required to suit a given purpose within an organization.
Custom database roles can be created by:

● Selecting Security objects in the SQL server management
program.

● Select “New”

● Select “Database Role”
● The name of the role can be anything but should be something

pertaining to the role and function of the role.
● The “Explicit Permissions” needs to be set; this is usually a

checkmark box.
● The permissions are then set and the role is created.

Encryption
Encryption can be used to enhance database security. Encryption is just
another layer of security and does not replace the main security control
method for an SQL database.
Encryption offers the following benefits:

● It can be easy to implement.
● It does not have an impact on any applications or scripting.
● It offers protection for system backups.
● Allows for more useful and efficient audit trails.

While encryption enhances the system’s security, it can have a few negative
impacts on the database system as well. Some of the negative impacts of
implementing encryption are:

● Encryption can have a negative impact on the system's
performance.

● There is no encryption protection at the application level which
leaves data vulnerable to inside attacks.

● There are usually large amounts of encryption keys to manage that
can become costly and add to an overburdened database
administration team.

● Encryption has been known to be disruptive to DB functions such
as indexing, merge, and search.

Master Keys
SQL Server root encryption uses service master keys. When a new SQL
server instance is created a new master key is automatically generated. A

master key is to be used to encrypt database master keys and is linked to
various server passwords.
There can only be one master key per server instance and the key gets
stored in the master database.
You can generate a new master key should you need. The script to generate
a new SQL master key is as follows:

alter service master key regenerate

SQL best practice is to create a backup of the master key and to create a
password for it. To backup the master key and set a password the script
would look similar to the following:

backup service master key

to file = 'c:\sqlserverkeys\servicemasterkey'

encryption by password = 'Password1'

to restore to a previous master key, you use the following:

restore service master key

from file = 'c:\ sqlserverkeys \servicemasterkey'

decryption by password = 'Password1'

There are database master keys that should have a strong password that is
changed regularly. To create a database master key, you use the following
script:

create master key encryption by password = 'Password1'

To back up the database master key you can use the following script:
backup master key to file = 'c:\ sqlServerKeys \serviceMasterKey'

encryption by password = 'Password1';

If you need to use the backup master key, you can run a restore procedure
such as the following one:

restore master key

from file = 'c:\ sqlserverkeys \servicemasterkey'

decryption by password = 'Password1'

encryption by password = 'Password1'

Transparent Data Encryption (TDE)
If you store the data by encryption key in the boot record of a database, you
can encrypt aspects of the database such as log files and data pages. To do
this, pages need to be encrypted before they are written to disk, then before
they are written to memory they get decrypted. This is one of the most
efficient ways of encryption as it does not put unnecessary strain on the
system or cause bloat.
Because the encryption method is transparent across all systems, this
encryption method does not require extra coding.
Once a database master key is created a security certificate is also created,
which can only be encrypted by the master key. A database is still
accessible once TDE has been implemented. But some statements are
affected and will not be accessible. These are:

● Drop a file
● Drop a filegroup
● Drop a database
● Detach a database
● Take a database offline
● Set a database as read-only

The following script can be used to create a service master and create a
server certificate using the master key.
In a new “Query” tab, type the following on a new “Query” line:

use master
create master key encryption by password = 'Password1'
create certificate TDECertificate with subject = 'Certificate For TDE'

This key can be used to encrypt the database it was created in.
You can also use the database encryption wizard to create a TDE
certificate.

CHAPTER 14:

SQL INJECTIONS

Hackers are the cat burglars of the Internet, and they are always on the
lookout for new targets. They find vulnerabilities in systems and exploit
those vulnerabilities to gain access to a system. Once in a system, they can
destroy data, steal data, and so on as they have access to credit card
information, bank details, and other sensitive data.
Hackers access vulnerabilities in a SQL database by using a method called
“SQL Injection”. This is the most widely used method for unauthorized
users to gain access to an SQL system. It is called a code injection
technique because it injects malicious code through a web page into SQL
statements.
A user can inject this malicious code into the system at a login screen. The
user will use an SQL statement in place of a username or userid to login
with. This statement passes into the system and is run through the database,
unknowingly unleashing the code.
The statement below is a common authentication statement that allows
users to login to a system:

select * from users where username='username' and password=’password’

There is nothing wrong with the above code and it will perform the task and
return the desired results. For instance, the login screen would give you the
following details to fill in:

Enter Username: Mike

Enter Password: Rainyday

Once the user enters the above details the query run on the system looks
like this:

select * from users where username='Mike' and password=’Rainyday’

This simple code will check for the user name Mike. If it finds the
username SQL presumes the login is successful; if the username is not
found the login is unsuccessful. Here the hacker can subvert the application
logic by removing the password check after the where clause simply by
using the SQL comments symbol “--”.
The unauthorized user could use the following to gain full access to the
SQL database:

Enter Username: root --

Enter Password:

The “--” in SQL is a line comment statement and when it is entered
everything after “--” is ignored. Simply by adding a common administrator
name and then “--” after the name, SQL was told to ignore the password
and allow access. Most SQL databases have an administrator, SA, or root
user with full administrative rights to the database. These are the first
userids a hacker will exploit.
Another common way of gaining unauthorized access is using the concept
of 1=1 is always true. If you use the same username and password script
you used above and entered the following user credentials:

Enter Username: ‘jjj or’ ‘1=1’

Enter Password: ‘jjj or’ ‘1=1’

The SQL statement would run as:
select * from users where username='' jjj or ‘’ ‘’1=1’’ and password='' jjj or ‘’ ‘’1=1’’

The above SQL statement reflects as a valid statement in SQL as x=x is
always true. Thus the above username and password will gain the
unauthorized access. This access will allow them to view all the users and
their passwords in the SQL user table, which in turn allows the hacker
access to valid users and all their details along with it.
Due to the nature and size of data out there today, the above attack can also
render the database inaccessible to its valid users with a denial of service
(DoS).
The above scenario is an attack on an SQL database table for a select query.
Imagine what an unauthorized user can do with an update or delete query.

They could inject all kinds of data into the existing data and even destroy
all the records in a table.
Preventing an SQL Injection
PHP and Perl offer a function of “escaped characters” which enable the use
of special characters. MySQL uses a PHP extension to ensure SQL scripts
can handle the MySQL version of the escaped characters by providing the
“mysql_real_escape_string()”.
This string will get the data being entered and then “escape” the character to
ensure that SQL sees the data being entered as text and not as code. Using
this string is outside the scope of this course and is for more advanced SQL
users. Here’s an example of how the code would look:

if (get_magic_quotes_gps()) {$userid = stripslases($userid);}

$userid = mysql_real_escape_string($userid);

mysql_query(Select * from customers where name=’{$useried}’ ”);

Hacking Scenario
If you want to find vulnerable websites, Google is one of the best hacking
tools in the world to do so. With the use of the inurl: command it is quite
simple to find vulnerable websites.
Try it. You can copy and paste one of the commands below into the Google
website browsers search bar, press enter, and you will get a list of websites:

inurl:index.php?id=
inurl:shop.php?id=
inurl:article.php?id=
inurl:pageid=

You can go through each of them and find their vulnerabilities.

CHAPTER 15:

FINE-TUNING

Investing time and effort into learning all there is to know about a database
and how it works is the best way to learn about the database and the data it
houses. This is important because it adds awareness to help you fine-tune
and keep the database functional, effective, and useful.
By closely examining the database you will be able to understand various
data trends, find vulnerabilities, and keep the database current. To
confidently and effectively manage and administer an SQL database, you
need to ensure you are equipped with the right credentials and knowledge to
do so.
Helpful tips for learning the ins and outs of the database:

● Work with the “Third Normal Form” (3NF) design when working
with an SQL database. The 3NF is a database schema that is used
to design relational databases. To avoid anomalies of data, any
data duplication, and ensure the referential integrity of the data,
the 3NF approach uses normalizing principles.

● Wildcards should only be used when necessary. For example,
using the * will load all the information from the chosen fields. In
a small database, this is not that significant. In a large database,
this could mean hours of loading time and a screen full of data to
sift through.

● Only index tables that are frequently used. Indexes take up both
memory and disk space.

● Large tables that are accessed frequently should be indexed to cut
down on complex large search time. If there are no indexes a full

index is run when a table is referenced. For smaller indexes,
create table indexes for specific rows.

● Be careful when using equality operators, especially when you are
using real numbers, times, and dates. It is likely there will be
subtle differences that are not that obvious to spot, and this can
cause errors. The equality operators make it nearly impossible to
get an exact data match.

● Use pattern matching sparingly.
● Make sure tables are optimized for peak performance and the

structure makes sense.
● Avoid the OR operator, unless absolutely necessary, as it will not

only slow down searches but also add to database security
vulnerabilities. Try not to use it in extra-large databases as it adds
too many layers to a comparison query.

● Run regular backups. Backups should be kept at a safe site off
location and in the cloud if this facility is available.

● Run regular maintenance checks on the database and ensure that
the system has enough room for the database to grow. If you run
out of space you run the risk of a database crash which could
cause loss of data, data corruption, and application downtime.

● Defragment the database at least once a week to ensure data
integrity and that the database runs smoothly.

SQL Tuning Tools
There are a few SQL optimization tools that can be used to help fine-tune
SQL and they are broken into built-in tools and application fine-tuning
tools.
SQL Built-In Fine Tuning Tools include:

● TKProf — This tool is used to measure database performance
over a specified period of time. This time is based on how long an
SQL statement takes to process.

● EXPLAIN PLAN — This tool is used to track the path of a
statement to verify the statement’s credibility and efficiency.

● SQL*Plus Command — This command is used to measure the
elapsed time between SQL search passes.

Some of the most popular application tools are:
● SQL Query Tuner for SQL Diagnostic Manager
● SQL Server Management Studio
● EverSQL
● SolarWinds Database Performance Analyzer

CHAPTER 16:

WORKING WITH SSMS

Downloading SQL Server Management Studio
(SSMS)
SQL Server Management Studio is Microsoft’s interface for interacting
with SQL databases. It’s free and is a great tool for learning and managing
database servers.
Download the latest version of SSMS from the following link:

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-ver15

Once the SSMA-Setup_ENU.exe has downloaded, double click the file in
the Downloads folder.
Keep the default settings and let it install.
Starting the Database Engine Services
Login
Ensure that the SSMS instance is running on your system by:

● Using the Windows key + R
● Type services.msc in the Run command box.

● This will bring up a list of services currently running on the
device.

● Scroll through the services to find SQL Server.

● When first installed, this service is not automatically started by
default.

● Start the service if it is not currently running
● This service can consume a lot of computer resources. You can

either leave it as a manual start or set it to automatically start
whenever the computer is started.

Connect to SQL Server with SSMS
● From the program, the menu finds SQL Server Management

Studio.
● The following needs to be configured as follows:

○ Server Type: Database Engine
○ Server Name: (The name of your computer)
○ Authentication: Windows Authentication

You may not need to enter a password as the server will authenticate
through the windows instance running on the device.
Click Connect to connect to the database engine.

The Basics and Features of SSMS
Managing Connections
Managing connections to servers within SSMS can be done in several ways.
The connection the red arrow points to at the top allows you access to
manage the current SSMS server.
The connection the red arrow points to at the bottom gives you access to
control connections to many database SSMS servers.

Choosing Your Database
You can choose the database to manage depending on the server instance in
SSMS.

You do so by choosing a database from the list of available databases listed
in the drop-down menu.

New Query Window
You will need to open a new query to run queries against the current
session.
Use the “New Query” button for a new query. Alternatively, you can use the
shortcut key “Ctrl + N”.
Executing Statements
SSMS offers several easy to execute statements and they work much the
same way as they do in MySQL.

● Highlight certain batches of code and execute the run command.
● If you do not select any code to execute and use the execute code

command, all the code scripted on the open “Query” tab will be
executed.

IntelliSense
Intellisense is like predictive text on a mobile phone. Instead of having to
type out statement names, tables, or field names, it will list what it thinks
you want to use. As soon as you type the first few letters it will give you a

list of options to choose from. This is handy as it cuts down on coding
errors.
What is great about SSMS is that you can turn this option on and off as you
need.
If for some reason, IntelliSense doesn’t work as well as it should, or it stops
working completely, it may mean you need to clean out the cache. To do
this follow these directions:
Got to the “Edit” menu option
Choose “IntelliSense”
Choose Refresh Local Cache.
You can also use the keyboard shortcut Ctrl + Shift + R to refresh the
IntelliSense cache.
Results Presentation
The way that the result set is presented can be changed to your preference
from the provided options.
The most commonly used preferences are:

● Results to Grid
● Results to Text

Keyboard shortcuts to change the presentation of the results are:

● Text results — Ctrl + T
● Grid option — Ctrl + D

Below is an example of the grid option:

Below is an example of the text option:

Ctrl + R toggles between show/hide the result set.
Object Explorer
This is one of the most used tools in SSMS.
The object explorer interface expands and contracts the visual presentation
of the navigation panel to view databases, tables, views, users, stored
procedures, and more.

Databases
The database view can be expanded to see all the objects beneath each
database in a server instance. This will take you right down to the table
view.
SQL Server system database summary:

● Master — Contains the system/server configurations. It is good
practice to do regular backups of this object.

● Model – This is the template that is used whenever a new
database is created.

● Msdb – This object holds the configuration for the SQL server
and is used to manage the server configuration. It is used for
scheduled jobs and various automated tasks.

● Tempdb –For the storage of temporary data files, running queries,
and stored procedures. The information that exists and is used in
this database is temporary and will be erased once the session
ends.

There are also the ReportServer and ReportServerTempDB. These two
objects represent the Reporting Services that are installed when SSMS is
installed. These two services are used for:

● ReportServer – The main reporting server that houses custom
reports, and is used to schedule jobs and notifications.

● ReportServerTempDB – This is a temporary reporting service
that holds data in its caches until the session ends, at which time
all the data is erased.

CHAPTER 17:

DATABASE ADMINISTRATION

Databases are not only about getting set up and working. They also need to
be managed, maintained, modified, fine-tuned and kept updated. This
means regular integrity, performance, resilience, and various other checks.
Organizations that run and maintain an in-house database usually have a
designated person or team that performs these tasks. They are a database
administration (DBAT) team or database administrator (DBA).
A DBA will perform a number of different database tasks which can
include the following tasks:

● Database Integrity Checks
Database integrity checks ensure the data structures are consistent
and accurate.

● Index Reorganization
Updating of database tables can start to make data unravel or
become messy, especially if there is indexing involved. Regular
reorganizing of database indexes needs to happen to ensure the
database does not become bloated, full, or lag.

● Rebuild Index
If an index is not functioning correctly it will need to be dropped
and rebuilt.

● Database Backup
Backups are one of the most important parts of any system. They
should be done each night. There are a few different types of

backups:
○ Differential — This will check for any changes in the

data and back up those changes.
○ Incremental — This will look for changes and only

back up changes that have taken place since the last
backup.

○ Full Backup — This will backup the entire database
regardless of whether or not there have been changes
made.

● Check Database Statistics
This is to keep the newest queries being run from getting mixed
up with any old queries. All old outdated queries should be
deleted or archived to protect the integrity of the data.

● Data and Log File
Data and log files should be kept in order, with older logs that are
not used either archived or deleted. The file sizes of the logs also
need to be tracked as they can grow to quite a large size that takes
up valuable space. Larger log files can also become hard to read
and decipher. It is important to maintain smaller log files.

● Defragmenting
The fragmentation of the database should stay consistently below
30%. If it is higher the database will need to be defragmented. It
is good practice to check on this at least two to three times a
month for very large databases.

Maintenance Plan
SQL Server Agent allows for the setting up of an automated maintenance
plan. When setting up a maintenance plan, you need to get the maintenance
schedule right to optimize the database and run it during off-peak usage
times. This ensures that the CPU is not being over-utilized. It also does not
slow it down which would impact any work being done on the database or
database applications.

Setting up a Maintenance Plan in SQL Server
The first set up establishing an SQL server plan is to identify the SQL
server instances advance options. To do this you can run the following
script:

sp_configure 'show advanced options', 1

go

reconfigure

go

sp_configure 'agent xps', 1

go

reconfigure

go

Once the advanced options are displayed:

● Left-click the + icon to the left of the SSMS Management screen.
● Left-click Maintenance Plans.
● Right-click Maintenance Plans
● Choose New Maintenance Plan Wizard

○ Enter the name of the maintenance plan
○ Enter an appropriate description so anyone can use it
○ From this point, you can

■ Run a specific task
■ Run all tasks

● Choose Single Schedule then click the Next button.
● Design your maintenance plan around one of the following

options available within SSMS:
○ Checking your Database Integrity
○ Shrinking the Database

○ Reorganizing Index
○ Rebuilding the Index
○ Updating the Statistics
○ Clean up History
○ Executing SQL Server Agent Job
○ Backup – full, differential, or transaction log
○ Maintenance Cleanup Task

● Once you have selected the tasks this plan must perform the
Maintenance Plan Wizard will guide you through setting up and
fine-tuning each task.

● When you have fine-tuned the plan click Next.
● Order the tasks in order of importance. It is always best practice to

set Database Backup first.
● When you have ordered the tasks click Next and you are done.

Defining Tasks for the Maintenance Plan
The following is a list of handy tips for defining tasks within the
Maintenance Plan for SSMS:
Full Database Backup Task
This option allows you to choose which full database backup to perform
when running the task in the maintenance plan. The best practice is to keep
one database per plan.
The best choice for this option is to select 1.
Define Database Check Integrity Task
This is an SQL Server command that runs and checks the integrity of the
database, the tables, and the data populating the database.
Define Shrink Database Task
You can shrink (compact) the database. This option helps to keep the
database from expanding and taking up unnecessary space. It also speeds up
the amount of time it takes to back up the database.

This option will let you choose which database you wish to shrink.
Define Reorganize Index Task
Every time you add, modify, and delete indexes you will need to reorganize
them.
The process is the same as a hard disk, where you have fragmented files and
space scattered across the disk.
Perform this task at least once a week or more for a busy database.
Define Rebuild Index Task
You can either reindex or reorganize the index tables in a database.
Define Update Statistics Task
This option will help to keep the update statistics log current. It handles the
statistics for both indexes and individual columns. You will need to select
which database you want to keep the statistical logs for.
Define History Cleanup Task
This is the screen that will delete or keep various historical data which can
include:

● Backup information
● Recovery tables
● Agent job history
● Various other historical data

Define Backup Database (Differential) Task
This option can be set to back up every page in the database that was altered
since the last full backup. You will be prompted to select the database to
backup.

Define Backup Database (Transaction Log) Task
The transaction log backup backs up all the log records since the last
backup.
Define Execute SQL Server Agent Job Task

Any job that is not listed in the Maintenance Plan Wizard can be tasked
here. For example:

● Check for null values.
● Check the database meets specified standards.
● Many jobs are defined here.

SQL Server Agent Job Tasks are all listed in this section of the Maintenance
Plan.
Define Maintenance Cleanup Task
You will define the cleanup action of the maintenance task.
This will ensure that no unnecessary files or objects are taking up disk
space.
Report Options
This part is to set up the Maintenance Plan reporting system. This report
will send a summary of the maintenance performed and how the scheduled
tasks ran.
You can either have the report saved to disk in a specific folder or have it
emailed to a specific account or both.

Running the Maintenance Plan
To run the SQL Maintenance plan you first need to check that the SQL
Server Agent is running.
Press the Windows key and press the letter R.
Type services.msc in the Run box and hit Enter.
At the services screen, scroll through the services and find the SQL Server
Agent (MSSQLEXPRESS).
Back in SSMS, right-click on the maintenance plan you created under the
Maintenance Plans section.
Click Execute to start running the Maintenance Plan.
When the plan has successfully completed, click OK.
Close the dialogue box.

The maintenance reports can be viewed by right-clicking the maintenance
plan you created and selecting View History. You will see all the different
maintenance plans in the SQL Server instance along with the results of the
plans.
To send off the database maintenance plan report you can email it.
You will first need to up a Server Agent. To do this, right-click on SQL
Server Agent.
Select New.
Select Operator.
Allocate an operatorname.
Enter in a valid email address to which you want the report sent.
Click OK and the report will be sent to the designated email.
Right-click the maintenance plan that has just been successfully run.
Select the Modify option.
The maintenance plan design screen will appear on the right-hand side.
Here you will see a graphical representation of the completed tasks.
Click on Reporting and Logging. You will find the icon for this situated on
the menu bar of the design plan. This is on the left of Manage Connections.
When the Reporting and Logging screen appears, select the “Send Report to
an Email Recipient”.
Select the maintenance plan operator name to send the report to.
This sets the report up to be sent to the selected recipient each time the
Maintenance Plan is run.
The running and maintenance of a database is an important job. You need to
ensure you have the right plan set up for the best performance and
optimization of the system you're working on.

Backup and Recovery
The most important task a DBA can perform is backing up the essential
database in use. When you create a maintenance plan, it’s important to have

backup and recovery at the top of the maintenance list in case the job
doesn’t get fully completed.
It is important to have an understanding of the transaction log and its
relevance to running a successful database system.

The Transaction Log
Whenever a change is made to the database, be it a transaction or
modification, it is stored in the transaction log.
The transaction log is one of the most important files to ensure the integrity
of a database in an SQL Server instance. A lot of importance is set around
the use of and saving of the transaction log.
Every transaction log can facilitate transaction recovery, recover all
incomplete transactions, roll forward a restored file, filegroup, or page to a
point of failure, replicate transactions, and facilitate disaster recovery.
Recovery
Choosing a recovery option for the database is one of the first things that
needs to be done.
When the SQL Server is online, and even while users are still using the
database services, all three SQL database backup options can be used.
When a backup and restore are run on the SQL Server, they are run within
the confines of the SQL database recovery mode.
SQL has three database recovery model options:
Simple Recovery
The simple recovery model does not make allowances for the transaction
log to be backed up.
This model should only be used for databases with infrequent updates.
The log file will be truncated only allowing for minimally logged
transactions.
Full Recovery

The transaction log is backed up during a full recovery model. However, the
log will be truncated once the backup process begins.
You can recover to any point in time with the full recovery option. In this
model, you will need all the log files pertaining to the specific back to
successfully restore the data.
Bulk-Logged Recovery
This recovery option is only used for bulk import operations. It is used in
conjunction with the full recovery model.
It must be noted that with this option the backup cannot be recovered to any
point in time. Rather you can only recover to certain points in time.
The option does not fill up the transaction log and is fast.
Changing the Recovery Model
The recovery model can be changed in a few ways.

● You can change the model in the SQL Server Management Studio
screen by right-clicking on the database you want to change the
setting for.

● Select the Properties option.
● Select Options.
● Choose the recovery model from the drop-down box.
● Reset the model to the preferred choice.

Alternatively, you can use an SQL statement query to do so. There are a few
you can choose from:
Simple Recovery Option

alter database sqlebook set recovery simple

go

Full Recovery Option
alter database sqlebook set recovery full
go

Bulk Recovery Option
alter database sqlebook set recovery bulk_logged

go

Backups
Database Administrators base their backup plans on the following two
measures:

● Recovery Time Objective (RTO) — The RTO measures the
recovery period time from after a disruption notification of the
business process gets logged.

● Recovery Point Objective (RPO) —The RPO measures the
elapsed time passed during a disruption but before the data size
that has been lost exceeds the maximum limit of the business
process.

There are three types of database backup processes to choose from in SQL
and these are:
Full Backup
The SQL Server will create a CHECKPOINT when a full database backup
is set. This checkpoint is set to make sure that existing dirty pages are
written to disk. For those that don’t know what dirty or clean pages are:

● A dirty page is a page that has been altered or added to since it
was loaded into memory. In other words, the original file that
exists on the disk and the one in the memory is no longer the
same.

● A clean page is a page that has been read from disk but nothing
has changed. It is still the same as its counterpart on the disk it
was read from.

The entire database will then be backed up along with the majority of the
transaction log to keep the transactional consistency intact. Thus the
database can be restored to the most recent point in time. It will also recover
all the transactions up to the time the backup started.
What this means in plain English is that you can essentially only completely
restore the database back to one point of time. This will be the last full
backup that was taken of the database.

The reason this is not the most ideal backup option is that there is a chance
of hours of data loss. For example, if the full backup ran every 24-hours and
there was database corruption during the day, you would have to restore the
database back to the previous night's data. This could result in the loss of an
entire day's worth of work.
Transaction Log Backup
The transaction log backup will only backup the data in the transaction log.
Which means only the transactions that were updated or changed in any
way in between backups.
Because only recently changed files are backed up, it makes this backup
model less resource-hungry. Because it does not take up a lot of resources
to run, nor does it have to lock files it is backing up, backups can be
performed throughout the day.
Differential Backup
Differential backups are backups that can run through the course of the day
as they do not require a lot of resources to run. These backups will only
backup a file that has changed during the day.
If there is a database corruption, using the differential model, the data can
be restored to a more recent point in time. For instance, if you set the
backup to run every hour, it scans for the most recently committed files and
will back them up. The only data you may lose if there is a database
corruption is an hour's worth (between backups).
The SQL Server keeps track of all the different pages that have been
modified via flags and DIFF pages.

Database Backup
Performing a Backup
To back up a database in SSMS start by right-clicking the database object in
SSMS.
Select Tasks.
Select Backup.
Select the type of backup to perform (full, differential, or transaction log).

Select when to run the backups.
The copy-only backup is for running a backup that will not affect the
restore sequence.
Restoring a Database
To restore a database in SSMS you need to start by right-clicking the
database object.
Select Tasks.
Select Restore.
Select Database.
Select the database contained in the drop-down menu.
Keep the rest of the tabs populated.
If you choose the Timeline, you can see a graphical diagram of when the
last backup was created. This shows how much data was lost.
There is an option of recovering up to the end of a log, or a specific date
and time.
The Backup Timeline media button is there to help you verify the integrity
of the backup media using it to restore the database.
Select if you want to restore the data to the original structure or a new
location.
Specify the required restore options. You can choose too:

● Overwrite the existing database
● Keep the existing database as a copy.

The recovery state either brings the database online or allows further
backups to be applied.
Click OK.
The database will start the restore which could take some time depending
on how large it is.

Attaching and Detaching Databases

The method of attaching and detaching databases is similar to that of a
backup and restore method.
Attaching and detaching a database is used for:

● Copying the .MDF file and .LDF file to a new disk or server.
● Completely taking the database offline makes sure that the

database cannot be accessed by any users or applications.
● The database remains offline until it is reattached.

A database can be taken offline — this is how you detach it. Then you can
re-attach a database to a new destination if need be. This is very handy if
for some reason the database engine needs to come down. You can run
another database engine and reattach the database to the new instance.
A database has two main file groups, these files are the:

● .MDF — This file group is the database’s primary data file, which
holds its structure and data.

● .LDF. — This file group is where all the transactional logging
activity and history is stored in.

These are the two main database files and are the files you would move to a
new location once the database has been detached.
There is another file to be aware of and that is the .BAK file. This is the
backup file that gets created during a database backup. You may notice that
there are different versions of this file due to the various backups that have
been created.
Detaching the Database
While a database is operational it is considered to be attached.
SQL has a stored procedure for detaching a database which makes this
procedure a lot easier for a DBA.
The detach procedure is held in the “master” database store.
Have a look at the complexity of the detach stored procedure by following
these steps in SSMS:

● Click on the Databases folder in the navigation panel.

● Click on the System Databases beneath the database folder.
● Click on the “master” database.
● Click on the Programmability option.
● Click on Stored Procedures.
● Click on System Stored Procedures.
● Scroll down until you find sys.sp_detach_db.
● Right-click on this object.
● Select ‘Modify’ in SSMS.
● This will bring up the syntax for this procedure on the Query

screen.
● You can execute this code to detach the database.

The SQL syntax for detaching a database is as follows:
use master

go

alter database databasename set single_user

with rollback immediate

go

exec master.dbo.sp_detach_db @dbname = n'databasename',

@skipchecks = 'false'

go

Attaching Databases
When the database has been detached, to get it operational again it needs to
be attached.
Navigate the data directory.
Find the .MDF file for the database
Connect to an instance of the SQL database.
In SSMS open a New Query option.

Type in the following SQL script to reattach the database files, note you
have to reattach both the .MDF and .LDF files.

create database databasename on

(filename = 'c:\sql data files\databasename.mdf'),
(filename = 'c:\sql data files\databasename_log.ldf') for attach

It should be noted that you do not have to reattach the .LDF as once you
start up the database a new log will be created if it cannot find the original
one.

CHAPTER 18:

DEADLOCKS

In most cases, multiple users access database applications simultaneously. This will mean that multiple
transactions are being executed at one time on a database instance. When a transaction executes an
operation request on a database resource such as a table, that resource is locked by default. Thus no
other transaction can access the locked resource.

A deadlock occurs when two or more processes access resources that are locked by another process.

If you consider a scenario:

● TransactionA performs an operation on TableA.

● TableA is then locked by TransactionA.

● TransactionB tries to execute a parallel operation on TableA after performing a task on
TableB and acquiring a lock for TableB.

● While TransactionB awaits a response from TableA, TransactionA attempts a process on
TableB.

● What you now have are two transactions sitting in a deadlock awaiting a response from
locked resources.

Create a dummy database by executing the following script in a new “Query” tab:

create database dldb;
go
use dldb;
create table tablea
(
id int identity primary key,
patient_name nvarchar(50)
)
 insert into tablea values ('thomas')
 create table tableb
(
id int identity primary key,
patient_name nvarchar(50)
)
 insert into table2 values ('helene')

Execute the script to create the database and table. The code you executed will also create a deadlock.

Deadlock Analysis and Prevention

In real-world scenarios, multiple users access the database simultaneously, which often results in
deadlocks.

To analyze these deadlocks, you need the proper tools to be able to find out what is causing the
deadlocks so you can create a way of preventing them.

SQL Server error logs, log what transactions and resources are involved in any deadlocks that may
have occurred throughout the database.

Reading Deadlock Info via SQL Server Error Log

The SQL Server only provides minimal information about any deadlocks that may have occurred
through the database. To find more detailed information about the deadlocks, you will need to do so in
the SQL Server error log.

To log deadlock information to the error log you need to turn on the trace flag 1222.

You can turn trace flag 1222 on, on a global level, by executing the following script in a new “Query”
tab:

DBCC Traceon(1222, -1)

You can see if the trace flag is on, by executing the following query in a new “Query” line:
DBCC TraceStatus(1222)

The above statement results in the following output:

TraceFlag Status Global Session

1222 1 1 0

The “Status value 1” indicates that the flag 1222 is on.

The 1 in the Global column implies that the trace flag has been turned on globally.

Now execute the code above to insert records into each table.

First, you need to drop tablea and tableb.

Once the tables have been dropped rerun the code below:

create table tablea
(
id int identity primary key,
patient_name nvarchar(50)
)
 insert into tablea values ('thomas')
 create table tableb
(
id int identity primary key,
patient_name nvarchar(50)
)
 insert into table2 values ('helene')

To view the SQL Server error log execute the following stored procedure:

executesp_readerrorlog

The above stored procedure will retrieve a detailed error log. A snippet of this is shown below:

458 2017-11-01 15:51:47 Parallel redo is started for database test with worker pool size

459 2017-11-01 15:51:47 Parallel redo is shutdown for database test with worker pool size

460 2017-11-01 15:51:55 deadloc list

461 2017-11-01 15:51:55 deadlock victim=process 1fcd9514ca8

462 2017-11-01 15:51:55 process list

463 2017-11-01 15:51:55 process id=process 1fcd9514ca8 taskpriority=o log...

464 2017-11-01 15:51:55 execution Stack

465 2017-11-01 15:51:55 frame procname=adhoc line=2 stmtstart=58 stmt...

466 2017-11-01 15:51:55 unknown

467 2017-11-01 15:51:55 frame procname=adhoc line=2 stmtstart=4 stmt...

The above log is just an example; errors are different depending on the database application software
being used. All the information in the log about the deadlocks will start with “deadlock-list.”

Analyze the log information retrieved by the deadlock you created by rerunning the script to create
tablea and tableb.

Take note that your values may differ per column, but the information should be the same as per the
table below:

ProcessInfo Text

spid13s deadlock-list

spid13s deadlock victim=process1fcf9514ca8

spid13s process-list

spid13s process id=process1fcf9514ca8 taskpriority=0 logused=308 waitresource=KEY: 8:72057594043105280 (8194443284a0)
waittime=921 ownerId=388813 transactionname=transactionBlasttranstarted=2019-05-27T15:51:46.547

XDES=0x1fcf8454490 lockMode=X schedulerid=3 kpid=1968 status=suspended spid=57 sbid=0 ecid=0 priority=0
trancount=2 lastbatchstarted=2019-05-27T15:51:54.380 lastbatchcompleted=2019-05-27T15:51:54.377
lastattention=1900-01-01T00:00:00.377 clientapp=Microsoft SQL Server Management Studio - Query

hostname=DESKTOP-GLQ5VRA hostpid=968 loginname=DESKTOP-GLQ5VRA\Mani isolationlevel=read committed
(2) xactid=388813 currentdb=8 lockTimeout=4294967295 clientoption1=671090784 clientoption2=390200

spid13s executionStack

spid13s frame procname=adhoc line=2 stmtstart=58 stmtend=164
sqlhandle=0x0200000014b61731ad79b1eec6740c98aab3ab91bd31af4d00

spid13s unknown

spid13s frame procname=adhoc line=2 stmtstart=4 stmtend=142
sqlhandle=0x0200000080129b021f70641be5a5e43a1ca1ef67e9721c9700

spid13s unknown

spid13s inputbuf

spid13s UPDATE tableA SET patient_name = 'Thomas - TransactionB'

spid13s WHERE id = 1

spid13s process id=process1fcf9515468 taskpriority=0 logused=308 waitresource=KEY: 8:72057594043170816 (8194443284a0)
waittime=4588 ownerId=388767 transactionname=transactionAlasttranstarted=2019-05-27T15:51:44.383

XDES=0x1fcf8428490 lockMode=X schedulerid=3 kpid=11000 status=suspended spid=54 sbid=0 ecid=0 priority=0
trancount=2 lastbatchstarted=2019-05-27T15:51:50.710 lastbatchcompleted=2019-05-27T15:51:50.710
lastattention=1900-01-01T00:00:00.710 clientapp=Microsoft SQL Server Management Studio - Query

hostname=DESKTOP-GLQ5VRA hostpid=1140 loginname=DESKTOP-GLQ5VRA\Mani isolationlevel=read
committed (2) xactid=388767 currentdb=8 lockTimeout=4294967295 clientoption1=671090784 clientoption2=390200

spid13s executionStack

spid13s frame procname=adhoc line=1 stmtstart=58 stmtend=164
sqlhandle=0x02000000ec86cd1dbe1cd7fc97237a12abb461f1fc27e27800

spid13s unknown

spid13s frame procname=adhoc line=1 stmtend=138
sqlhandle=0x020000003a45a10eb863d6370a5f99368760983cacbf489500

spid13s unknown

spid13s inputbuf

spid13s UPDATE tableB SET patient_name = 'Helene - TransactionA'

spid13s WHERE id = 1

spid13s resource-list

spid13s keylockhobtid=72057594043105280 dbid=8
objectname=dldb.dbo.tableAindexname=PK__tableA__3213E83F1C2C4D64 id=lock1fd004bd600 mode=X

associatedObjectId=72057594043105280

spid13s owner-list

spid13s owner id=process1fcf9515468 mode=X

spid13s waiter-list

spid13s waiter id=process1fcf9514ca8 mode=X requestType=wait

spid13s keylockhobtid=72057594043170816 dbid=8
objectname=dldb.dbo.tableBindexname=PK__tableB__3213E83FFE08D6AB id=lock1fd004c2200 mode=X

associatedObjectId=72057594043170816

spid13s owner-list

spid13s owner id=process1fcf9514ca8 mode=X

spid13s waiter-list

spid13s waiter id=process1fcf9515468 mode=X requestType=wait

There are three main parts logged by the SQL server in the error log which are:

1. The Deadlock Victim

One of the processes involved in a deadlock is flagged as the deadlock victim by the SQL
server. In the table above, you can see the ID of the process selected as the deadlock
victim. The process is process1fcf9514ca8 and has been highlighted in bold to make it
easier for you to see for this example.

2. Process List

The process list references all the processes that are involved in the deadlock. For the
table and the deadlock generated by the example there are two processes involved.

The processes list shows all the details of both of these processes. The process that is
listed first in the process list is the one that is selected as the deadlock victim.

The process list provides a host of information about the processes such as:

● The login information of the process.

● The isolation level of the process.

● The script that the process was trying to execute.

● And much more

3. Resource List

The resource list has information pertaining to the resources involved in the deadlock
event. For instance, in the example above the resources that were involved in the event
were tablea and tableb.

Tips for Avoiding Deadlock

● Execute transactions in a single batch and keep them short.

● Release resources automatically after a certain time period.

● Sequential resource sharing.

● Don’t allow a user to interact with the application when transactions are being executed.

CHAPTER 19:

NORMALIZATION OF YOUR DATA

With SQL, normalization is the process of taking your database and
breaking it up into smaller units. Developers will often use this procedure as
a way to make your database easier to organize and manage. Some
databases are really large and hard to handle. If you have thousands of
customers, for example, your database could get quite large. This can make
it difficult to get through all the information at times because there is just so
much that you have to filter through to get what you want.
However, with database normalization, this is not as big of an issue. The
developer will be able to split up some of the information so that the search
engine is better able to go through the database without taking as long or
running into as many issues. In addition, using database normalization will
help to ensure the accuracy and the integrity of all the information that you
place into the database.

How to Normalize the Database
Now that you understand a number of the reasons for choosing to do
database normalization, it is time to work on the actual process. The process
of normalization basically means that you are going to decrease any of the
redundancies that are inside the database (“What is Normalization? 1NF,
2NF, 3NF & BCNF with Examples”). You will be able to use this technique
any time that you want to design, or even redesign, your database. Some of
the tools that you need and the processes that you should learn to make this
happen include:
Raw Databases

Any database that hasn’t gone through the process of normalization can
contain multiple tables that have the same information inside of them. This
redundant information can slow down the search process and can make it
difficult for your database to find the information that you want. Some of
the issues that you could have with a database that hasn’t gone through
normalization include slow queries, inefficient database updates, and poor
security.
This is all because you have the same information in your database several
times, and you haven’t divided it into smaller pieces to make things easier
in your search.
Using the process of normalization on your original database can help cut
out some of the mess and make things more efficient for both you and the
user to find the information needed.
Logical Design
Each of the databases that you are working on needs to be created as well as
designed with the end-users in mind. You can make a fantastic database, but
if the users find that it is difficult to navigate, you have just wasted a lot of
time in the process. Logical model, or logical design, is a process where
you can arrange the data into smaller groups that are easier for the user to
find and work with.
When you are creating the data groups, you must remember that they
should be manageable, organized, and logical. A logical design will make it
easier for you to reduce, and in some cases even eliminate, any of the data
repetition that occurs in your database.
The Needs of the End-User
When designing the database, it is important to keep the end-users’ needs in
mind. The end users are those who will be using the database that you
develop, so you will need to concentrate on creating a database that is
beneficial to the customer.
In general, you will want to create a database that is user friendly, and if
you can add in an intuitive interface, this can be helpful, too. Good visuals
are a way to attract the customer, but you need to have excellent

performance as well or the customer may get frustrated with what you are
trying to sell them on the page.
When you are working on creating a new database for your business, some
of the questions that you should answer to ensure that you are making the
right database for your customers include:

● What kind of data will I store on here?
● How will the users be able to access the data?
● Do the users need any special privileges to access the data?
● How can the user group the data within the database?
● What connections will I make between the data pieces that I store?
● How will I ensure the integrity and accuracy of the data?

Data Repetition
When creating your database, you need to ensure that the data is not
repetitive. You need to work on minimizing this redundancy as much as
possible. For example, if you have the customer’s name in more than one
table, you are wasting a lot of time and space in the process because this
duplicated data is going to lead to inefficient use of your storage space.
On top of wasting the storage space, this repetitive entry will also lead to
confusion. This happens when one table’s data doesn’t match up or
correlate with others, even when the tables were created for the same object
or person.
Normal Forms
A normal form is a method of identifying the levels or the depth that you
will require to normalize the database. In some cases, it just has to be
cleaned up a little bit, but at other times there will be excessive work
required to ensure that the table looks clean and organized. When you are
using a normal form, you can establish the level of normalization required
to perform on the database. There are three forms that you will use for
normalizing databases: the first form, the second form, and the third form.
Every subsequent form that you use will rely on the techniques that you
used on the form preceding it. You should ensure that you have used the

right form before you move on. For example, you cannot skip from the first
form to the third form without doing the second form.
First Form
The goal of using this form is to take the data and segregate it into tables.
Once the tables are designed, the user will be able to assign a primary key
to each table or group of tables. To attain this first form, you will divide up
the data into small units, and each one needs to have a primary key and a
lack of redundant data.
Second Form
The goal of using the second form is to find the data that is at least partially
reliant on those primary keys. Then, this data can be transferred over to a
new table as well. This will help to sort out the important information and
leave behind redundant information or other unnecessary things.
Third Form
The goal of the third form is to eliminate the information that does not
depend on any of your primary keys. This will help to dispose of the
information that is in the way and slowing down the computer, and you will
also discard the redundant and unneeded information along the way.
Naming Conventions
When you are working on the normalization process, you need to be
particular and organized with your naming conventions. Make use of
unique names that will enable you to store and then later retrieve your data.
You should choose names that are relevant to the information that you are
working on in some way so that it is easier to remember these names in the
future. This will help keep things organized and avoid confusion in the
database.
Benefits of Normalizing Your Database
We have spent some time talking about normalization in your database, but
what, exactly, are the benefits? Why should you go through this whole
process simply to clean out the database that your customers are using?
Would it still work just fine to leave the information as is and let the search
sift through the redundancies and other information that you don’t need?

Here are some of the beneficial reasons why you should utilize
normalization and avoid letting your database become inefficient:

● Keeps the database organized and easier to use
● Reducing repetitive and redundant information
● Improves security for the whole system and its users
● Improves flexibility in your database design
● Ensures consistency within the database

It may seem like a hassle to go through and normalize the database, but it
truly makes the whole experience better. Your customers will have an easier
time finding the information that they want, the searching and purchasing
process will become more streamlined, and your security will be top of the
line.
Despite the many benefits, there is one downside to normalization. This
process does reduce the performance of the database in some cases. A
normalized database will require more input/output, processing power, and
memory to get the work done. Once normalized, your database is going to
need to merge data and find the required tables to get anything done. While
this can help make the database system more effective, it is still important
to be aware of it.
Denormalization
Another process that you should be aware of is denormalization. This
allows you to take a normalized database and change it to ensure that the
database has the capability of accepting repetition. The process is important
in some instances to increase how well the database can perform. While
there are some benefits to using the normalization process, it is bound to
slow down the database system simply because it is working through so
many automated functions. Depending on the situation, it could be better to
have this redundant information rather than work with a system that is too
slow.
Normalization of your database has many great benefits and it is pretty easy
to set it all up. You just need to teach the database to get rid of information
that it finds repetitive or that could be causing some of the issues within

your system. This can help to provide more consistency, flexibility, and
security throughout the whole system.

Database Normal Forms
We briefly touched on the topic of normal forms, and in this section, we
will look at them in more detail. To normalize a database, you need to
ensure that a certain normal form is achieved. A database is said to be in a
particular normal form if it adheres to a specific set of rules. A database can
have six normal forms, which are denoted as 1NF, 2NF, 3NF, 4NF, 5NF,
and 6NF. The higher the normal form, the more a database is normalized.
Most of the real-world databases are in third normal form (3NF). You have
to start with 1NF and work your way up to the higher normal forms. In this
chapter, we will delve into the different types of normal forms.
First Normal Form (1NF)
A database in 1NF adheres to the following rules:
Atomic Column Values
All the columns in the table should contain atomic values. This means that
there should be no column that contains more than one value. The following
table, which contains multiple names in the PatientName column, does not
have atomic column values

PatientName DepName

Jane, Alan, Elizabeth Cardiology

Mark, Royce Pathology

A downside to the table shown above is that you cannot perform CRUD
operations on this database. For instance, you cannot delete the record of
Jane alone; you would have to delete all the records in the Cardiology
department. Similarly, you cannot update the department name for Mark
without also updating it for Royce.
No Repeated Column Groups

Repeated column groups are a group of columns that have similar data. In
the following table, the PatientName1, PatientName2, and PatientName3
columns are considered repeated columns since all of them serve to store
names of patients.

PatientName1 PatientName2 PatientName3 DepName

Jane Alan Elizabeth Cardiology

Mark Royce Pathology

This approach is also not ideal since, if we have to add more patient names,
we will have to add more and more columns. Similarly, if one department
has fewer patients than the other, the patient name columns for the former
will have empty records, which leads to a huge waste of storage space.

Unique Identifier for Each Record
Each record in the table must have a unique identifier. A unique identifier is
also known as a primary key and the column that contains the primary key
is called the primary key column. The primary key column must have
unique values. For instance, in the following table, PatientID is the primary
key column.

PatientID PatientName PatientAge PatientGender

1 Jane 45 Female

2 Mark 54 Male

3 Alan 65 Male

4 Royce 21 Male

5 Elizabeth 27 Female

If a database adheres to all of these conditions, it is considered to be in first
normal form. You need to check the finer details to be able to establish this
aspect.

Second Normal Form (2NF)
For a database to be in second normal form, it must adhere to the following
three conditions:

● Adheres to All the Conditions That Denote First Normal Form
● No Redundant Data in Any Column Except the Foreign Key

Column
● Tables Should Relate to Each Other via Foreign Keys

Take a look at the following table:

PatientID Patient
Name

Patient
Age

Patient
Gender

DepName DepHead NoOfBeds

1 Jane 45 Female Cardiology Dr. Simon 100

2 Mark 54 Male Pathology Dr. Greg 150

3 Alan 65 Male Cardiology Dr. Simon 100

4 Royce 21 Male Pathology Dr. Greg 150

5 Elizabeth 27 Female Cardiology Dr. Simon 100

The above table is in 1NF since the column values are atomic. There is no
existence of repeated column sets, and there is a primary key that can
identify each of the records. The primary key is PatientID.
Some columns, like the last three columns, contain redundant values.
Therefore, it is not in 2NF yet. The redundant columns should be grouped
together to form a new table. The above table can be divided into two new
ones: The Patient Table and the Department Table. The Patient Table will
contain the following columns: PatientID, PatientName, PatientAge, and
PatientGender. The Department Table will have an ID column, and the
DepName, DepHead, and NoOfBeds columns.

ID DepName DepHead NoOfBeds

1 Cardiology Dr. Simon 100

2 Pathology Dr. Greg 150

Now that we are creating two tables, the third condition of 2NF requires
that we create a relationship between the two tables using a foreign key.
Here, we know that one department can have many patients. This means
that we should add a foreign key column to the Patient table that refers to
the ID column of the Department table. The Department table will not
change from what is shown above, and the updated Patient table will look
like this:
Patient Table

PatientID PatientName PatientAge PatientGender DepID

1 Jane 45 Female 1

2 Mark 54 Male 2

3 Alan 65 Male 1

4 Royce 21 Male 2

5 Elizabeth 27 Female 1

In the above table, the DepID column is the foreign key column, and it
references the ID column of the Department Table.
Third Normal Form (3NF)
You need to be careful and know when a database is in 2NF. To be
considered 3NF, it must adhere to the following conditions:

● Should Satisfy All the Rules of the Second Normal Form
● All Columns in the Tables Fully Depend on the Primary Key

Column
Take a look at the following table:
PatientID Patient

Name
Patient
Age

Patient
Gender

DepName DepHead NoOfBeds

1 Jane 45 Female Cardiology Dr. Simon 100

2 Mark 54 Male Pathology Dr. Greg 150

3 Alan 65 Male Cardiology Dr. Simon 100

4 Royce 21 Male Pathology Dr. Greg 150

5 Elizabeth 27 Female Cardiology Dr. Simon 100

In the above table, the DepHead and NoOfBeds columns are fully
dependent on the primary key column, PatientID. They are also dependent
on the DepName column. If the value in the DepName column changes, the
values in the DepHead and NoOfBeds columns also change. A solution to
this problem is that all the columns that depend on some column other than
the primary key column should be moved into a new table with the column
on which they depend. After that, the relation between the two tables can be
implemented via foreign keys as shown below:
Patient Table

PatientID PatientName PatientAge PatientGender DepID

1 Jane 45 Female 1

2 Mark 54 Male 2

3 Alan 65 Male 1

4 Royce 21 Male 2

5 Elizabeth 27 Female 1
Department Table

ID DepName DepHead NoOfBeds

1 Cardiology Dr. Simon 100

2 Pathology Dr. Greg 150

Boyce-Codd Normal Form (BCNF)
This normal form, also known as 3.5 Normal Form, is an extension of 3NF.
It is considered to be a stricter version of 3NF, in which records within a
table are considered unique. These unique values are based upon a

composite key, which is created by a combination of columns. Though, this
does not always apply or need to be applied for every table because
sometimes the data in a table does not need to be normalized up to BNCF.
Fourth Normal Form (4NF)
For this step, the previous form, BCNF, must be satisfied. This particular
form deals with isolating independent multi-valued dependencies, in which
one specific value in a column has multiple values dependent upon it. You’d
most likely see this particular value several times in a table.
Fifth Normal Form (5NF)
This is the last step in normalization. The previous normal form, 4NF, must
be satisfied before this can be applied. This particular form deals with
multi-valued relationships being associated with one another and isolating
said relationships

CHAPTER 19:

REAL-WORLD USES

Throughout this book, you had the first-hand experience of using SQL in a
stand-alone environment. For instance, you created databases, tables,
populated tables, pivoted tables, cloned tables, used stored procedures, etc.
You also performed various operations on the tables to manipulate the data
the way the data is viewed to achieve various outcomes.
SQL syntax uses basic English language and the basics of SQL is quite easy
to learn and understand. As there are different SQL applications it can be
quite a difficult language to master. Although SQL is a language you can
write code in one SQL application and use it in another, some applications
may not support various functions. Some applications may also vary
slightly in how they use a statement, thus, SQL can, at times, seem like a
difficult language to master.
In SQL you can reuse scripts, which ensures you only ever have to create a
complex script once and never have to rebuild it from scratch. You can store
the script as a stored procedure and access it at any time you may need to
use it. Triggers can also be set to automatically run the script for you.
SQL in an Application
You will find that SQL has a few weaknesses along with all its strengths.
One of these weaknesses is that it is not a procedural language. SQL must
be combined with a procedural language like Pascal, C, FORTRAN,
COBOL, Visual Basic, Java, or C++ to be used in an application. By
combining SQL with one of these procedural languages, can overcome
some of the language limitations, especially when creating an application.

SQL working alongside a procedural language allows for the creation of
powerful applications with a wide range of capabilities. RDBMS has long
since replaced the physical storage cabinets with paper files. These paper
files needed large filing facilities or archives in which to store them. Now
relational databases are used anywhere information is stored or retrieved,
without the need for a person to physically go retrieve a paper file from
reams of files. With the use of an RDBMS database you can retrieve data
anytime, from anywhere, and a lot faster.
With the rise of RDBMS databases, there are now large platforms such as
Wikipedia, and other informational based sites that you get information
from. There is not much you cannot find on the Internet today, and all these
sites use some form of RDBMS.
Sites like Amazon, Facebook, and even Netflix also use a database back-
end in which their user base, products, etc. are stored. Database systems run
on the back-end of these sites and also handle transactions such as orders
and payments.
Example of industry or organizations that use RDBMS are:

● Banks are a prime example of an organization that uses databases.
They are used for payment transactions, to manage user funds,
deposits, and so on.

● Retail industries are another prime candidate for using RDBMS to
store product information, inventory, sales transactions, customer
bases, etc.

● Medical practices utilize databases for patient information,
prescription medication, appointments, and other information.

● Environmental organizations use databases to store information
such as weather patterns, land corrosion, environmental pollution,
and various other statistics.

● Governmental agencies use RDBMS to store population statistics,
resource utilization, and various other statistics about areas,
people. and so on.

● Many, many other organizations use RDBMS daily such as
schools, military, and even NASA.

Instead of trying to list all the applications RDBMS covers in this day and
age, there are not many places or organizations that are not using a form of
RDBMS.
RDBMS is not only a way of maintaining, organizing, and using data at the
organization level but it also allows for an organization's customer base to
interact with it. Customers have access to their profile information, payment
methods, order, deliveries, etc. They can also manage their own data. In the
medical field, this also means a customer has access to their patient records,
medication history, and quick access to their medical advisor.
A digital database can leverage mobile applications. This expands on the
opportunities for RDBMS including new software platforms that use
databases daily. The use of mobile applications paired with RDBMS has
seen exponential growth in the capturing of data. In turn, this has led to
more development opportunities as the need for RDBMS is fast expanding
to keep up with technology. All you have to do is think along the lines of
email apps, chat apps, and social media apps that are run on mobile devices
daily.
New types of databases mean a call for new types of development, which in
turn means job opportunities. It is no longer only IT specialists who are
becoming database developers. With programs that are becoming easier to
use because of clever APIs and using basic English to write scripts, it is
getting easier for anyone to learn to code. Python is a language that has
great API’s, and it is also not that difficult to learn. It is also free to
download and use. As such, someone with a finance background could
easily pick up the language and write a program to suit their needs.
Incorporating an SQL database with a bit of learning time is just as cost-
effective to do.
In a real-world situation, multiple users access a database at the same time.
Some databases do not handle such a high level of concurrency and the
result can be corrupted or loss of data. SQL uses transactions to control
atomicity, consistency, isolation, and durability to enable it to manage
multiple uses without instability, data corruption, or data loss.
T-SQL statements are a sequence of SQL transactions that combine
logically and complete an operation that would otherwise introduce

database inconsistency.
Atomicity is a property that mimics a container that stores transaction
statements. A successful statement means that all transactions have been
completed. The entire operation will fail at any time during the statement a
condition is not met and it will not process any further. If the process fails
SQL will automatically roll-back to its previous state before the transaction
was executed. Only once a row, or a page-wide lock is in place will a
transaction be executed. While the transaction is locked it will prevent the
object from being updated or manipulated by another user. The object gets
reserved for the user utilizing it until their transaction has been completed.
Any attempts to use the object by another instance will fail with a “data
locked” warning. However, even when an object is locked, another user can
work on it. Their position to update will be placed in a queue until the
object becomes free.
Using transactions to transform data enables a database to efficiently move
from one consistent state to a new one. Always keep in mind and
understand that transactions can modify more than one database at a time.
For instance, if you change data in a primary key or foreign key field, make
sure to simultaneously update the data with these key effects. If this is not
done there will be inconsistencies in the SQL data. Transactions are vital to
being able to update multiple tables consecutively.
The transformation of transactions is what reinforces isolation and is a
property that prevents concurrent interactions from creating interference
between them. This means that simultaneous transactions can take place at
the same time, only one of them will be successful, while the other will fail
or be queued.
Until transactions are complete they remain invisible and the first
transaction completed is the one that will be processed first. Historically,
failed transactions would either be deleted or the user would decide to try
run the process again or end it. Most systems will now queue the
information until it can try to rerun it. Only after a specified number of
failed attempts will the process fail outright. This process is what lends
more durability and stability to transactions which are handy in the case of a
sudden system outage or power failure. In a worst-case scenario, all that

would need to be done is to rerun the script. The system will automatically
roll-back to before the execution of the failed transaction.
Any transactions that have failed to complete are retained. Rollbacks are
accomplished by the A database engine will use transactional logs to
identify what the state of data was before running the failed transaction. It
will use this reference to match to a previous state and roll it back to that
point.
Database Locks
There are many variations of a database lock which include different
locking properties that can achieve varied database lock results.
Some common properties of a database lock may include:
Mode
A lock mode is the type of database lock being applied. There are a few
different types of lock modes including:

● Shared lock mode — While the record is locked this mode allows
data reads.

● Exclusive lock mode — Used with DML to provide an exclusive
page or row to allow for data modification. It will render all
access to the data inaccessible regardless of user rights while the
data is being modified.

● Update lock — An update lock is a single object that allows data
reads while the record is locked. The update lock will also review
and determine the necessity of an exclusive lock. This is handy to
make sure the exclusive lock releases a record after it has been
committed. The update lock shares the function of both the
exclusive lock and shared lock.

Granularity
The final property of a lock, the granularity, specifies to what degree a
resource is unavailable. Rows are the smallest object available for locking,
leaving the rest of the database available for manipulations. Pages, indexes,
tables, extents, or the entire database are candidates for locking. An extent
is a physical allocation of data, and the database engine will employ this

lock if a table or index grows and more disk space is needed. Problems can
arise from locks, such as lock escalation or deadlock, and we highly
encourage readers to pursue a deeper understanding of how these function.
Duration
One of the simplistic database lock properties to define is the duration
property. The duration property of a database lock simply specifies the
duration of the object lock.
It is important to note that the locks listed above are page-level locks. There
are more advanced locks but those are beyond the scope of this book.
PL/SQL
Oracle developed an extension for procedural instruction using SQL syntax
called PL/SQL. As discussed at the beginning of this chapter, SQL is a non-
procedural language and needs to be paired with a procedural language to
create full applications. The PL/SQL extension from Oracle expands the
scope of SQL’s capabilities as a programming language.
SQL, with the use of PL/SQL code, now offers more functions, stored
procedures, and triggers. Triggers are what enable SQL to perform specific
transactions when specific conditions are met. These conditions are usually
defined by the database administrator and work in conjunction with various
notification alerts, such as alarms. PL/SQL was developed by Oracle to
meet their particular RDBMS product requirements. PL/SQL came about to
overcome the non-procedural limitations of SQL.

CONCLUSION

By now you should have quite an in-depth knowledge of SQL. Because the
code is simple and uses basic English statements, the coding may only
slightly differ across various SQL server programs.
One of SQL’s greatest strengths is its reusable code that can be easily
adapted to different environments. So do not be afraid to try your new-
found SQL skills in an environment other than MySQL. There are a few
SQL databases that you can download and try. These databases include the
likes of:

● Oracle Database
● SQL Server Management Studio(SSMS)
● MongoDB
● Microsoft SQL Server
● PostgreSQL
● MariaDB
● SQLite

The more SQL servers you try out and work on, the more diverse your SQL
skills will become. There are also various SQL certification paths for those
that want to add SQL as a certified skill to their resume to boost their IT
careers or their salaries.
The following are a few SQL Certifications from Microsoft to consider:

● Microsoft Technology Associate (MTA): Database Fundamentals
SQL

● Microsoft Certified Solutions Associate (MCSA): Database
Administration

● Microsoft Certified Solutions Associate (MCSA): Database
Development

● Microsoft Certified Solutions Expert (MCSE): Data Management
and Analytics

There are also certifications from other RDBMS programs such as:
● MongoDB

○ MongoDB Certified Developer
○ MongoDB Certified DBA

● MySQL
○ Database Administration
○ Database Developer

You cannot go wrong by improving your SQL skills or getting certified in a
world where data has become a valuable commodity.
Thank you for choosing SQL: The Ultimate Intermediate Guide to Learning
SQL Programming Step by Step to help you further your SQL knowledge.

REFERENCES

Beginner's Guide to MySQL Storage Engines. (2018, April 4). SiSense.
https://www.sisense.com/blog/beginners-guide-to-mysql-storage-engines/

Edwards, B. (2016, October 13). The Forgotten World of Dumb Terminals. PC Magazine.
https://www.pcmag.com/news/the-forgotten-world-of-dumb-terminals

Hosch, W. (n.d.). Charles Bachman. Britannica. https://www.britannica.com/biography/Charles-
William-Bachman

Hosch, W. (n.d.). Edgar Frank Codd. Britannica. https://www.britannica.com/biography/Edgar-Frank-
Codd

Learn SQL. (n.d.). Tutorialspoint. https://www.tutorialspoint.com/sql/

Network Hardware. (n.d.). BBC. https://www.bbc.co.uk/bitesize/guides/zh4whyc/revision/7

Relational Database. (n.d.). IBM. https://www.ibm.com/ibm/history/ibm100/us/en/icons/reldb/

Relational Database Definition. (n.d.). Omni-Sci. https://www.omnisci.com/technical-
glossary/relational-database

SQL - Constraints. (n.d.). Tutorialspoint. https://www.tutorialspoint.com/sql/sql-
constraints.htm#:~:text=Constraints%20are%20the%20rules%20enforced,can%20go%20into
%20a%20table.&text=UNIQUE%20Constraint%20%E2%88%92%20Ensures%20that%20al
l,record%20in%20a%20database%20table.

SQL Injections. (n.d.) PortSwigger. https://portswigger.net/web-security/sql-injection

SQL Tutorial. (n.d.). w3schools. https://www.w3schools.com/sql/default.asp

https://www.pcmag.com/news/the-forgotten-world-of-dumb-terminals
https://www.britannica.com/biography/Charles-William-Bachman
https://www.britannica.com/biography/Edgar-Frank-Codd
https://www.tutorialspoint.com/sql/
https://www.bbc.co.uk/bitesize/guides/zh4whyc/revision/7
https://www.ibm.com/ibm/history/ibm100/us/en/icons/reldb/
https://www.omnisci.com/technical-glossary/relational-database
https://www.tutorialspoint.com/sql/sql-constraints.htm#:~:text=Constraints%20are%20the%20rules%20enforced,can%20go%20into%20a%20table.&text=UNIQUE%20Constraint%20%E2%88%92%20Ensures%20that%20all,record%20in%20a%20database%20table
https://portswigger.net/web-security/sql-injection
https://www.w3schools.com/sql/default.asp

SQL
THE ULTIMATE EXPERT GUIDE TO LEARN SQL

PROGRAMMING STEP BY STEP

INTRODUCTION

This book assumes that you have a working knowledge of SQL and
managing databases. The focus is to improve your skills and guide you
through the most challenging aspects of working with SQL. To get the most
out of the lessons, take an active approach to this book. There is only so
much we can fit in these pages, so it pays to do further research on topics
and methods that remain a little foggy. While basics and intermediate topics
are easy to learn, the topics in this book will be hard. Don’t fret, because
when you find yourself struggling, that is often a sign that the learning
process is taking place. You shouldn’t find this discouraging. Anything
worth knowing is always a bit difficult to understand, and that is what
makes it valuable to know. That should motivate you and prepare your mind
for the topic ahead. When you feel a little discomfort, you will know that it
is normal; it will be a sign to step back, do some research, and digest.
You will be equipped with enough information for you to be able to carry
out research. Take your time and allow yourself to digest the information in
this book and do the work – it is the only way that the information
contained here will stick with you and be of use to you.
I have done my job to make these topics as easy as possible for you to
understand, but there is a lot of value in doing some work yourself(that’s
how concepts stick, after all).
We are going to tackle the following topics:

● Working with XML using SQL
● How XML relates to SQL
● How to convert XML data into SQL tables
● How to use SQL and JSON together to store data
● Cursors and how to use them

● Performance tuning
Let’s not waste time and start with just a few rules: stick with it and keep
practicing until you get it.

CHAPTER 1:

DATA ACCESS WITH ODBC AND JDBC

Over the past decade, high internet speed and integration of computer
systems has meant that we have become more connected than ever before.
This increase in connectivity means various systems have to share data with
one another, which makes database sharing systems an absolute must. More
computer systems online necessitate that these networks be able to
communicate through multiple networks sharing the same data, but this
raises the need for compatibility between operating systems and hardware.
SQL development circumvents these challenges by allowing the sharing of
information, but it doesn’t solve the problem completely—there are gaps.
The primary focus of SQL development has been compatibility. The
problem is that SQL isn’t standard as we would prefer. There are other ways
of solving the problems SQL is trying to fix or plugging holes when they
appear. Database management developers and other service providers use a
variety of tools, services, and extensions in SQL in order to improve their
technology or fill those gaps we talked about. This means that instead of the
technology becoming more standardized, it becomes more customized and
specific, raising the risk of it becoming incompatible with other systems.
Businesses, governments, sole developers, and everyone in between have
used the same methods and techniques to fix problems specific to their
projects. This means they have come to rely on these extensions and
services. Without them, their systems would collapse completely, and it
would cost a whole lot of money to build them back up. With the risk of
incompatibility high and with many developers reliant on extensions, there
needs to be a method that increases compatibility without adversely

affecting performance. That tool is Open DataBase Connectivity (ODBC).
It will be the focus of this chapter.

ODBC
ODBC is an interface that allows for communication between an
application and a database. This interface is standardized, meaning
regardless of what technologies are employed by developers in the
management of the database, apps in the front end will still be able to
access it even when the app and the database itself are not strictly
compatible. This is because ODBC works as a type of liaison. As long as
the front end and the back end understand ODBC and follow its standards,
they can work together. That is an ingenious solution: backend SQL
developers can enhance their technologies with a wide variety of tools
without worrying much about compatibility, and front-end developers can
do the same.
In this framework, applications use an ODBC driver to gain access to the
database. The driver’s front end is connected to the application, ensuring
that the ODBC standards are followed. This driver is the same and speaks
the same language, regardless of the database engine that is fueling the back
end. This helps back-end developers who usually develop to suit the
database engine they rely on. This means back-end developers and front-
end developers can be ignorant of the various technologies that furnish their
counterparts because all they need to communicate with is the ODBC. They
don’t need to think about what’s going on on the other side because it does
not have any impact on their development. That is the magic of ODBC.
Imagine the freedom that comes with this, and the amount of work it saves
teams.
The ODBC interface can be described as a set of strict definitions that are to
be followed. These definitions contain and spell out all the rules that both
parties(back-end and front-end) need to play by for communication between
the application and the database to be possible. Broken down further, the
interface is a collection of a few elements: function call library, standard
SQL syntax, SQL data types, error codes, and the standard protocol for
communicating with the database engine.

Here’s how it works: to connect to the database engine, there is a function
call that will run SQL statements and then communicate the output to the
application. To do any operations, we need to write SQL statements in the
form of an ODBC function call. What this means is that we have to use
ODBC’s SQL syntax. Amazingly, it does not matter what database engine
we are working with, the process is the same.
ODBC Functional Components
ODBC is built into four functional components known as layers. Each layer
plays its role in facilitating communications between the front-end and the
back-end. Now let’s look at each of these layers briefly:

1. Application layer: this is the front-end. It is the part that a user
communicates with. The application itself is not necessarily a part
of ODBC; it is nonetheless part of the process because it decides
to communicate with the interface to access the data or not. It
does this through a component known as the driver manager
which follows the ODBC standards.

2. The Driver Manager layer: A driver manager is a DLL, or
dynamic link library. Its job is to retrieve the right driver systems
data and manage the direction of function calls sent through the
driver to the data source. In a nutshell, the driver manager
processes ODBC calls. It can also detect and resolve errors when
they occur.

3. Driver DLL layer: Because data sources differ a lot, we need a
method of translating ODBC function calls to the language of the
data source. It is the job of a driver DLL layer to translate these
commands: it functions by accepting calls from the interface and
translating them into code that can be read by the data source.
When a request is fulfilled, it is also the job of the driver to
translate results into standard ODBC. This is where the critical
task of ODBC takes place. It is the core function. It is the one that
allows any application and data source to communicate with each
other.

4. Data Source Layer: This is the layer that is often as varied as the
databases. It can be a relational database system, an associated

database that is on the same system as the app, a database hosted
remotely, an indexed sequential access method file without a
management system, and many more. Because of how varied data
sources can be, each one requires its own custom driver.

In client/server systems, we will have application programming as the
interface between the two components (ODBC and server system). For this
reason, an ODBC driver will include an API that is either proprietary or
standard. Proprietary APIs are built with a specific server back end in mind.
As mentioned earlier, the core of the interface is the driver, also known as
the native driver when working with proprietary systems. The driver is the
code that does the hard work. Responsiveness is becoming more and more
important; the slower the system is, the worse the experience is for users,
and the less likely they are to use the service again. What is neat about the
driver is that it is optimized for minimum delay in data transfer.
Performance is optimized on both sides: front end and back end.
Information travels faster in both directions, which is what clever systems
will be optimized to do.
If the client-server system will only need to access one data source type and
there is no need to predict future use of other data types, you are best served
using the native driver that comes with the database management system.
But if it is clear that you will need to access future data that will be stored in
a myriad of ways, you will be best served with the ODBC API from the
start. This is why when you design your systems, you have to think ahead to
avoid headaches – reworking an entire system brings a lot of pain.
You should know that ODBC drivers are optimized with specific data
sources in mind. These optimizations depend on an identical interface
plugged into the driver manager. This means if you have a non-optimized
driver that wasn’t made for a specific front end, it won’t be as efficient as a
native driver made for that specific front end. As you may know, when the
first ODBC drivers were released, they didn’t perform as well as they do
now. This is because the latest versions are comparable to native drivers in
how rigorous they are. We no longer have to trade in performance for
standardization (stability and fluidity).

Although there are differences between database operations over the
internet and those over the client-server system, users won’t be able to
notice the difference. The only time they can spot a difference is on the
client-side itself or the app component. On an online connection, the client-
side of the system is on the local machine, but communication with the
server data is through HTTP standard protocol. This means if you are a
client-side user, you will be able to access data that is stored online. You
can, for instance, develop an app on your computer and have access to it
through a mobile device.
Extensions
Communication between a client system and a web server occurs through
the HTTP protocol. These commands are converted into ODBC-viable SQL
by a component called the server extension. When this happens, the server
database can follow the SQL commands and the data source. The output, or
result, is communicated back through the server and the server extension,
which is then converted into a format that the web server can understand.
This is how results are communicated online to the user making use of the
front end client machine.
Having said this, various applications function on locally stored data, on a
local or wide area network server, like Microsoft Access. It is also possible
to access applications stored in a cloud through the web browser. Web
browsers are so advanced nowadays that they can deliver great quality
apps/user-friendly interfaces. But when you log into your browser, you can
see that they are not optimized to act at the front end of a database. For any
online app to interact with databases, there needs to be a functionality that
allows this. That functionality is provided by client extensions which
include Java applets, scripts, and ActiveX controls.
These extensions communicate with HTML through the HTTP protocol.
Remember that HTML code which handles access to a database will be
translated to SQL through a server extension before reaching the data
source. Scripts are one of the best ways of developing a client extension.
Languages like JavaScript allow us to have full control over anything that
happens on the client-side. Through JavaScript, we can do validation
checks on input fields, so that invalid entries can be rejected or edited

before they are transmitted online. Javascript saves a lot of time and reduces
traffic because it can perform these tasks on the client-side. As a result,
everybody’s user experience is improved because there is not a lot of
unnecessary traffic. A validation check can be performed on the server as
well.
Intranet networks, which are often used by organizations for security and
simplicity reasons, can also benefit from an ODBC. ODBC works the same
way on a local network as it will on the internet. If you are using multiple
data sources, users using browsers with the right extensions will be able to
communicate through SQL, HTML, and ODBC phases respectively. The
SQL will be converted into a native language of the database and executed.

JDBC
Java DataBase Connectivity, JDBC, is an alternative to ODBC; they do the
same thing but they are different in a few crucial ways. Like ODBC, the
JDBC remains the same no matter the app and the database involved, but it
requires the client-side applications to be written in Java only. So, you
cannot have an application written in JavaScript, Python, C++, C#, or any
other famous programming language. In short, ODBC accommodates a
variety of programming languages and JDBC does not. JDBC and Java are
also developed to work on networks, the intranet, or the internet. As we
have seen, ODBC is capable of working on your local machine, offline.
As soon as a client is online, Java applets download to the client where it
executes code. The applet is embedded within the HTML, and it works to
give the client database functionality that allows it to access server data.
The applet is a small program that lives on the server, and when a user logs
in the program loads and runs on their machine. Applets are made to
execute functions in a closed area, on the computer's memory, and they
cannot affect anything that lies beyond their area. These restrictions are
embedded in the design of applets so that dangerous applets can not damage
the system, corrupt information, or access private information.
Using applets is not only safe, they are updated often. Users don’t have to
worry about downloading or updating to the latest version because the
applet is loaded each time the client makes use of the applet. This means

you don’t have to worry about compatibility loss, because users will always
be up to date. This minimizes your concerns as a developer because the
only thing you should concern yourself with is whether the applet is
compatible with your server configuration. Browsers and users will always
be taken care of because every time they use your service, they will have
the compatible latest version of the applet loaded on their machine.
Java is a powerful language that allows developers to write complex
applications that can work with any client-server database. JDBC works
with applications written in Java to give them access to databases. JDBC is
the ODBC of Java applications, but Java applications will not perform the
way C++ applications do. When a system is on the internet or intranet there
are a lot of operating conditions one has to deal with when compared to a
client-server system, but this shouldn’t discourage developers from using
Java. An application client-side is the browser that does not have much
computing power. This can be optimized to allow powerful database
processes to be performed. Java applets provide that much-needed
processing power.
It should be said that whenever a user downloads something from a server
there is risk involved, especially when they download from an unknown
server. But Java applet’s selling point is in its inherent security, so the risk is
minimized. So as a rule one should never download data from an unknown
server.
You should know that JDBC passes SQL statements the same way as
ODBC, both ways. This means you can have all the things you have when
working with ODBC: result sets, error messages, etc. JDBC also allows an
applet writer to write to the standard interfaces without learning anything
about the database. JDBC can also work on client-server environments,
despite being made for the internet; the application will be able to access
the database through the JDBC interface.

CHAPTER 2:

WORKING WITH SQL AND XML

Since 2008, eXtensible Markup Language has been supported by SQL.
XML files have become the standard way of transferring data between
various platforms. The language lets you store data and share it with any
person, no matter what operating system, hardware, or application
environment they are using. It connects different systems, and that's why it
is important to learn about SQL and XML.

The Relationship Between XML and SQL
Like HTML, XML is a markup language. This just means it is not a
programming language like Python or Java, which makes use of things like
functions, methods, and can express logic and perform tasks. Essentially, all
programming languages are command executors. They are not really aware
of the data they manipulate. XML, on the other hand, is “aware” of the data
it stores. HTML deals with text formatting and documented-related
graphics; XML manages the content’s structure. However, XML does not
handle how the data is formatted. For that you would need a stylesheet.
Stylesheets control the formatting of both XML and HTML. XML provides
the document’s structure through what is called the XML schema. Schema
is metadata that describes the concepts of the document, the position of
various elements, and their order, and what data type they are. So, it is not
just a markup language like HTML is.
There are two methods one can use to structure, save, and retrieve data for
use. The first one is provided by SQL. It offers a variety of options for
dealing with numeric and textual data. Furthermore, data can be divided
into categories of data type and size. As you might remember, one of the

purposes of SQL is to offer a standard method of operating with and
maintaining data that is stored in relational databases. The second method is
provided by XML. XML is better equipped at dealing with free form data,
which cannot be easily categorized. One of the reasons we have XML is
because developers wanted a standard way of performing data transfers
between different computer systems.
As you can see, SQL and XML can go together as they can supplement
each other. Using them together provides you with greater flexibility and
distribution. If freedom is what you value, this combination is your best bet.
 XML Data Type
Correct standard XML data type implementations can deposit and operate
XMLdata without converting it into SQL data type. The XML data types
behave like user-defined types with all their subtypes. SQL and XML can
work together in remarkable ways. For instance, applications can perform
XML operations on SQL data and the other way around. You can have an
XML type column with columns of predefined types, then have joint
operation within the query’s WHERE clause. Relationational databases and
database management systems will find the best way of running the query
and executing it.
It can be tricky to know when it is best to store data in XML. There are few
things you have to consider before storing data in XML. The following
considerations are the best guide.

1. If you are storing information to access it in the future. Of course
all information is stored with the hope of using it later. What’s
meant here is if the information is integral to the functioning of a
process or function down the line.

2. Whenever the project you are working on requires strong data
typing within your SQL statement. XML has an added advantage
of making data values valid XML values instead of just strings.

3. If you know you will need to query an entire XML document.
You should keep in mind that some implementations will include
the expansion of the EXTRACT operator so that you are allowed
to extract specific information from the XML file.

4. If you want your tech to be future proof. Many of the ongoing
optimizations offer XML data type support, and compatibility is
still one of the most important things in any design. So, when you
store data in XML, you know compatibility is guaranteed.

Below is an example of an XML data type:
CREATE TABLE ORDER (
CustomerName CHAR (40) NOT NULL,
Address CHAR (50),
City CHAR (30),
State CHAR (2),
ZIPCode CHAR (10),
Phone CHAR (13),
Email CHAR (40),
Comments XML(SEQUENCE)) ;
This is an example of an SQL statement that allows for the storage of an
XML file inside the Comments column (a part of the ORDER table).
While SQL allows you to work with XML data types, it does not mean you
should use this option all the time. There are many cases where it is best to
avoid it. Relational databases are well suited to remain as they are in most
cases. Below are two examples where that makes sense:

● Whenever data needs to be presented in rational architecture like
tables.

● We want to update parts of a file and not the entire file.

Mapping
To transfer data from an XML file to an SQL database, database
components need to be translated to their XML equivalent. This happens in
two ways. Let us look at this.
Character Sets

Support of character sets will depend on the SQL implementation you are
working with. For instance, DB2 implementations offer character sets
support but SQL does not. An SQL server might provide support for certain
character sets that are not supported on Oracle. Some character sets will be
supported by all implementations. This is why you have to think carefully
about the character sets you use, especially if you plan to move your
database to another management system. Support issues can cause a lot of
problems.
XML only supports one character set: Unicode. On the face of it, it appears
very limiting and you might get discouraged. But when it comes to SQL
and XML, this is an advantage because it allows for data transfer between
the SQL implementation and XML. All that the relational database has to
do is to provide a mapping definition between strings of all character sets
and Unicode, and vice versa.
Data Types
An SQL data type has to be mapped to its nearest XML schema data type,
according to the SQL standard. This way the values accepted by the SQL
data type will be accepted by the XML data type. This means values that
are rejected by SQL data type will be rejected by the XML schema, too.
However, there are certain XML elements, like minInclusive and
maxInclusive, that may limit the values the XML schema will accept. For
example, if we have an SQL type that limits the INTEGER type’s values to
this range “-2246392734<value<2246392733”, then we need to define the
maxInclusive value in XML to 2246392733 and the minInclusive value to
-2246392734. Let’s see how this mapping works:
<xsd:simpleType>
<xsd:restriction base="xsd:integer"/>
<xsd:maxInclusive value="2246392733"/>
<xsd:minInclusive value="-2246392734"/>
<xsd:annotation>
<sqlxml:sqltype name="INTEGER"/>
</xsd:annotation>
</xsd:restriction>
</xsd:simpleType>
(Adapted from source:

https://www.w3.org/2001/sw/rdb2rdf/wiki/Mapping_SQL_datatypes_to_X
ML_Schema_datatypes retrieved in December 2019)
Take note of the annotations where data from the SQL type is retained so it
can be used by XML.
Identifiers
XML is far more strict when it comes to characters that are allowed within
identifiers. So characters that are not accepted in SQL but rejected in XML
will have to be mapped so that they will be accepted. SQL can accept
special characters like ($, &, #) that are usually enclosed in double
quotations, but these characters are not accepted in XML. In XML names,
characters can’t be used because those characters are already reserved. This
means any SQL identifiers which start with these characters will have to be
edited in a way that allows them to be accepted.
Thankfully, there is an established standard that fixes this problem. SQL
identifiers will be translated to Unicode, and all the identifiers which are
accepted by XML Names will remain the same. Unacceptable SQL
character that can’t make an XML Name are translated to hexadecimal
code: like “xNNNN”, where N stands for uppercase digits; an underscore is
translated to “_x006F_;” a colon to “_x00#”. Any SQL identifier that starts
with x, m, or i will be prefixed with “_XFFFF_”.
The translation of characters from XML to SQL is simple. XML characters
have to be scanned and when a sequence is found, it will be replaced with
matches. So XML “_FFFF_” will be ignored.
It is simple to follow and easy to have SQL identifiers mapped to an XML
Name, and vice versa.
Tables
XML has table mapping. Tables are mapped in schema and it preserves
privileges. Anyone can SELECT privilege enabled for columns and they
will be able to map those columns to the XML file. The mapping process
will create two files: one will have the information in the table and the other
will have the XML schema which carries metadata/describes the file. Let's
take a look at an example of how to map an SQL table to an XML file:
<CLIENT>

<row>

<FirstName>John</FirstName>

<LastName>Smith</LastName>

<City>Seattle</City>

<AreaCode>345</AreaCode>

<Telephone>555-5511</Telephone>

</row>

<row>

<FirstName>Frodo</FirstName>

<LastName>Baggins</LastName>

<City>Bree</City>

<AreaCode>345</AreaCode>

<Telephone>555-3344</Telephone>

</row>

</CLIENT>

(Adapted from source:
https://www.w3.org/2001/sw/rdb2rdf/wiki/Mapping_SQL_datatypes_to_X
ML_Schema_datatypes retrieved in December 2019)
In the example above, the file base element receives the name of the table.
Each row includes the “row” tag which holds the column elements. Each
element has the same name as the matching column from the initial table
and they contain a relevant value.
Null Values
You will find SQL data often contains null values. You will need to decide
how you want them stored in an XML. There are two options you can try.
The first one is this:
<row>

<FirstName>John</FirstName>

<LastName>Smith</LastName>

<AreaCode>345</AreaCode>

<Telephone>555-3344</Telephone>

</row>

It doesn’t show you much. That’s because the row with a null value doesn’t
have a reference. In the second option you have to use xsi:nil=”true” as an
attribute for elements that contain null values. That would look something
like this:
<row>

<FirstName>John</FirstName>

<LastName>Smith</LastName>

<City xsi:nil="true"/>

<AreaCode>345</AreaCode>

<Telephone>555-3344</Telephone>

</row>

(Adapted from source:
https://www.w3.org/2001/sw/rdb2rdf/wiki/Mapping_SQL_datatypes_to_X
ML_Schema_datatypes retrieved in December 2019)
The XML Schema
Once we have mapped SQL to XML, we will end up with a generated file
which holds all the information. Like I have said, there will be a second
document which contains schema info or data about the data. I wanted to
show you how this looks with the real example below. Below is a CLIENT,
the one we have been using as an example all this time:
<xsd:schema>
<xsd:simpleType name="CHAR_15">
<xsd:restriction base="xsd:string">
<xsd:length value = "15"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="CHAR_25">
<xsd:restriction base="xsd:string">
<xsd:length value = "25"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="CHAR_3">

<xsd:restriction base="xsd:string">
<xsd:length value = "3"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="CHAR_8">
<xsd:restriction base="xsd:string">
<xsd:length value = "8"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:sequence>
<xsd:element name="FirstName" type="CHAR_15"/>
<xsd:element name="LastName" type="CHAR_25"/>
<xsd:element name="City" type="CHAR_25 nillable=”true"/>
<xsd:element name="AreaCode" type="CHAR_3" nillable="true"/>
<xsd:element name="Telephone" type="CHAR_8" nillable="true"/>
</xsd:sequence>
</xsd:schema>
(Source: http://anyflip.com/dmjz/jouf/basic/551-600 retrieved in December
2019)
As you can see, the schema uses the “nil” attribute to deal with null values.
Another option dealing with them looks something like this:
<xsd:element name="City" type="CHAR_25" minOccurs="0"/>

SQL Functions and XML Data
There are SQL operators and functions which are capable of producing
XML results when we run them on the SQL database. There are also
operators and functions that can be applied to XML data. We are going to
spend time looking at these so that you can see how they work. To get more
information about them or to find solutions to problems that deal with your
specific problem, I suggest you go see the documentation; it’s not hard to
digest. Some of the functions below will depend on XQuery, a query
language that works exclusively with XML data.

1. XMLDOCUMENT is an XML operator that accepts a value input
and returns another value as an output. The output will be an
XML value in the form of a document node. It is generated by
following the rules of the Xquery document constructor. If you’re
curious about XQuery, you can find resources online that will
help you get acquainted. I won’t discuss it any further here as it is
beyond the scope of this book.

2. XMLELEMENT converts any relational value into its XML
counterpart. When you introduce an operator within a SELECT
statement for extracting data from an SQL database and translate
the data into XML so that you can publish it, this operator will
help you.

3. XMLFOREST is an XML operator used to create a list, known as
forest, that is a collection of XML elements extracted from
relational values. Every value will create its own element.

4. XMLAGG is an aggregate function. It accepts XML files or
sections of them in the form of an input then it generates another
XML file as the output. This function will contain a forest of
components.

5. XMLCONCAT is an alternative to creating lists of elements. You
can use it to make lists, forest, through the concatenation of XML
arguments, as the name suggests.

6. XMLQUERY is used to evaluate an XQuery argument and then
return a result that is specified by the SQL program.

7. XMLCOMMENT, as the name suggests, lets you create XML
comments.

8. XMLCAST is similar to the SQL CAST functions, but it has a
few limitations. This function will allow your program to cast any
value from an XML data type to another. It also works well with
the SQL data type. It can also be cast from SQL to XML.

The functions above are the most frequently used, or the ones you will find
useful in plenty of scenarios. You can learn about them, as well as others
from the XML documentation; I promise you that the documentation is well
structured and easy to understand.

Converting XML Data Into SQL Tables
It used to be that we would spend time converting SQL data into XML so
that we could use it online. It was a simpler option, and using it has opened
us up to other possibilities. Today, we can translate XML data into SQL
tables and query them with old SQL statements. This might be a desirable

option depending on your project. The process of converting XML data into
SQL tables is handled by a pseudo-function called the XMLTABLE. Below
is the function’s syntax:
XMLTABLE ([namespace-declaration,]

XQuery-expression

[PASSING argument-list]

COLUMNS XMLtbl-column-definitions

value-expression AS identifier

column-name FOR ORDINALITY

column-name data-type

[BY REF | BY VALUE]

[default-clause]

[PATH XQuery-expression]

(Source:
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ib
m.db2.luw.sql.ref.doc/doc/r0022195.html retrieved in December 2019)
Seeing the syntax is all well and good, but we could do better with a real-
world example. But before we do that, there is something you should know.
The pseudo function puts the XML data into an SQL pseudo-table. What’s a
pseudo-table? I know it’s strange, but a pseudo-table is basically a table that
exists momentarily, so it is not really real. It is possible to use the CREATE
TABLE statement on it and add it to the XML file though. Here is our
example of the pseudo-function:
SELECT client phone.*

FROM

clients_xml , XMLTABLE(

'for $m in $col/client return $m'

PASSING

clients_xml.client AS "col"

COLUMNS

"ClientName" CHARACTER (30) PATH 'ClientName' ,

"Phone" CHARACTER (13) PATH 'phone')

AS clientphone

The SQL standard allows us to store information in a structured manner.
Users can easily maintain the data and access it as needed. XML is
advantageous because it allows for communications between systems that
would generally be incompatible with each other, expanding reach,
audience, and utility. XML also makes it easy for us to work with. We can
easily translate it to SQL data as needed. The methods, functions, and
techniques above have illustrated this to us. The advantages of using SQL
with XML are plenty, and they are also pain-free. They make it easy to
move data and maintain it without worrying about the compatibility of your
project with other systems.

CHAPTER 3:

SQL AND JSON

In the early stages of computer processing and basic programming, there
wasn’t a luxury of storing and maintaining data inside a database. Those
early programmers came with an ingenious solution: they used flat files to
store information. But these flat flies had one drawback: they weren’t able
to hold data in a structured format. Databases were made to fix these
problems, especially those with a hierarchical structure. But sooner these
were replaced by relational databases which have now become the norm.
Relational databases are still constructed with the same architecture from
the 80s. To manipulate them we have been using SQL.
Recently, with the explosion of big data, varieties of non-relational database
architectures have come to the scene. These new databases are now known
as NoSQL database structures. They all have a special, specific new way of
storing and handling data. This is because developers are confident they can
store data in one type of NoSQL database and still be able to transfer it and
manipulate it to another type of NoSQL database. They circumvent the
issues of working with various file formats in different databases by
establishing a universal file that all databases can understand and work
with. This universal interchange format is known as JavaScript Object
Notation, or JSON. As the name suggests, JSON is based on JavaScript,
which is a programming language that has taken over the internet. As the
“Object” in JSON suggests, we can translate information into objects;
JSON objects, which look a lot like JS objects. JSON objects can be
converted into a variety of things, like strings, numbers, arrays, null values,
and more.

Combining JSON with SQL

NoSQL databases are becoming very popular. This means it is becoming a
necessity to transfer data from relational databases to NoSQL databases.
Vast quantities of information stored over decades are indispensable. To use
it, an application based on an SQL database has to find a way of using vast
quantities of data stored in relational databases. We also have to think of
applications that use relational databases and need information from a
NoSQL database for it to be fully optimized. The good news is that SQL
allows us to convert JSON data into a data type that SQL systems can
understand. The same happens the other way around. Solutions like these
have become more and more important the more interconnected we
become. But to perform data conversion, we need a tool that can define all
data objects and functions that are dependent on them.
To introduce JSON information inside a relational database, it has to be
given a character or binary string. Both types are stored in a column and
you can extract and operate on them by using SQL and JSON functions. For
instance, when answering an SQL query, we can use functions to create
JSON items no matter what the original data source is (JSON or SQL data).
We can perform these actions because a specific path language is now part
of SQL operators. We can query JSON.
The Data Model
JSON and SQL store data using different processes, but sometimes
information needs to be shared between both systems. To allow this we
need to build a communications bridge between them. The SQL/JSON data
model allows us to do this.
All JSON data can be found in arrays, objects, null values, true values,
strings, numbers, and more. The obvious problem is that SQL does not have
the equivalent of these aspects of JSON, and null values, strings, and
numbers are not identical in both environments. JSON also does not have
the equivalent of datetime found in SQL. These problems mean we need to
define specific SQL/JSON objects which will be stored within the SQL
database. Even when the data is stored in SQL, it will still be able to
communicate with the JSON information, no matter where it is stored.
For instance, JSON data can be parsed into SQL/JSON objects where they
will be stored as binary or character strings. The object can be found in the

following SQL/JSON forms: scalar, arrays, objects, and null. A scalar is
any value that isn’t null but belongs to any of these categories: boolean,
datetime, numeric, or character string. The null object is any value that
differs from any other value that belongs to SQL data types. This will make
it different from other null values as well. An array is a list of SQL/JSON
objects. Items in the array will be separated like below:
[4.213545, "meaning of life", true]

It's worth mentioning that arrays in SQL start with one (their index), but in
the SQL/JSON model, just like in JavaScript, they start with zero.
The SQL/JSON object is a compilation of any item that is paired with a
character string and an SQL/JSON item. In this instance, the string value is
called the key and the value it points to is the bound value. They are often
referred to as key/value pairs. The object below is an example of this.
{ "name" : "John Smith", "ID" : 042, "goal" : "instructions" }

The key will be the string before the colon, and after those we have the
value that the key points to.

Functions
All operations performed on the JSON data are performed using SQL/JSON
functions. These functions are either query functions or constructor
functions. The first one evaluates the path of language expressions on JSON
values. Those values will generate SQL/JSON values that will be translated
into SQL. Constructor functions generate JSON values using SQL types’
values.
There is more than one query function, and they all follow the same syntax.
Below is an example of what that might look like. Keep in mind you can
summarize this into a path expression; a JSON value would be the input and
various parameters can be passed through the expression.
<JSON API common syntax> ::=

<JSON context item> <comma>

<JSON path specification>

[AS <JSON table path name>]

[<JSON passing clause>]

<JSON context item> ::= <JSON value expression>

<JSON path specification> ::=

<character string literal>

<JSON passing clause> ::= PASSING <JSON argument>

[{ <comma> <JSON argument> }]

<JSON argument> ::=

<JSON value expression> AS <identifier>

(Source: https://JSONapi.org/format/ retrieved in December 2019)
The expression type above is a string type. A JSON context object can be
defined as a value expression with an extra input class that is present in the
JSON’s presentation format. The format describes the encoding so we can
determine whether it’s implementation-defined or Unicode format.
Query Functions
There are four SQL/JSON query functions: JSON_QUERY,
JSON_VALUE, JSON_EXISTS and JSON_TABLE. They compare path
value expressions to the JSON values and then return SQL/JSON type
values that are then translated to SQL.
Let’s take a look at the JSON_EXIST function. Its job is to verify the JSON
value to see if the path search condition is met. Here is the syntax:
<JSON exists predicate> ::=

JSON_EXISTS <left paren>

<JSON API common syntax>

[<JSON exists error behavior> ON ERROR]

<right paren>

<JSON exists error behavior> ::=

TRUE | FALSE | UNKNOWN | ERROR

(Source: https://docs.oracle.com/en/database/oracle/oracle-
database/18/adjsn/condition-JSON_EXISTS.html#GUID-8A0043D5-95F8-
4918-9126-F86FB0E203F0 retrieved in December 2019)

The “ON ERROR” clause is optional. If you don’t use it the system
assumes that we have opted for “FALSE ON ERROR”. It will analyze the
path expression and only return a TRUE if at least one object is located.
The value function gets the SQL scalar from the JSON value. Below is the
syntax:
<JSON value function> ::=
JSON VALUE <left paren> <JSON API common syntax>
[<JSON returning clause>]
[<JSON value empty behavior> ON EMPTY]
[<JSON value error behavior ON ERROR]
<right paren>
<JSON returning clause> ::=
RETURNING <data type>
<JSON value empty behavior> ::=
ERROR | NULL | DEFAULT <value expression>
<JSON value error behavior> ::=
ERROR | NULL | DEFAULT <value expression>

(Source: https://docs.oracle.com/en/database/oracle/oracle-
database/18/adjsn/function-JSON_VALUE.html#GUID-0565F0EE-5F13-
44DD-8321-2AC142959215 retrieved in December 2019)
In the “JSON_EXISTS” example, rows are returned based on the “where”
keyword inside the J column. The “JSON_VALUE” function only returns a
value when it is related to a target keyword. The JSON_VALUE function
returns characters that are implemented-defined by default; however, we
can specify which data type we want with the “RETURNING” clause.
This function is best used to return a scalar from a SQL/JSON model, but it
isn’t the best option when you are trying to retrieve arrays or other value
objects. To return arrays and objects, the “JSON_QUERY” function works
best. Below is the JSON_QUERY’s syntax.
<JSON query> ::=

JSON_QUERY <left paren>

<JSON API common syntax>

[<JSON output clause>]

[<JSON query wrapper behavior>]

[<JSON query quotes behavior> QUOTES

[ON SCALAR STRING]]

[<JSON query empty behavior> ON EMPTY]

[<JSON query error behavior> ON ERROR]

<right paren>

(Source: https://jsonapi.org/format/ retrieved in December 2019)
When JSON_QUERY has on error and on empty clauses, they will be
processed the same way as value functions but with one difference: the user
is allowed to specify how the error and empty clauses should behave.
Working with a “WHERE JSON_ EXISTS” clause will remove all rows
without the key/value, and if there is an array wrapper involved, all array
elements will be returned and put within square brackets.
The “JSON_TABLE” function is perhaps the most sophisticated of all the
query functions we have discussed so far. This function accepts JSON data
as an input and then generates a relational output table based on it. Because
of how complex this function is, it won't serve us well to go over the
syntax. It can be overwhelming especially when it is your first time looking
at it. It is best to have an entire chapter dedicated to it that talks about it
briefly. Since I won’t be doing this here, I think it is best to go to the official
documentation and take your time to learn it. You should do this if you
believe that it may be useful to you, and remember that you’ll learn best
when you practice.
Constructor Functions
As the name suggests, constructor functions construct, so it won’t come as a
surprise that SQL/JSON constructor functions help set up JSON arrays and
objects. They make use of data in relational tables to achieve this. When
you compare them to query functions they act oppositely. Query functions
fulfill requests and find things, but constructors build.
We will begin by taking a look at the JSON_OBJECT function:
<JSON object constructor> ::=

JSON_OBJECT <left paren>

[<JSON name and value> [{ <comma> <JSON name and value> } ...]

[<JSON constructor null clause>]

[<JSON key uniqueness constraint>]]

[<JSON output clause>]

<right paren>

<JSON name and value> ::=

[KEY] <JSON name>

VALUE <JSON value expression> | <JSON name> <colon> <JSON value expression>

<JSON name> ::=

<character value expression>

<JSON constructor null clause> ::=

NULL ON NULL | ABSENT ON NULL <JSON key uniqueness constraint> ::=

WITH UNIQUE [KEYS] | WITHOUT UNIQUE [KEYS]

(Source:
https://docs.actian.com/actianx/11.1/index.html#page/SQLRef%2FJSON_C
onstructors.htm%23ww615126 retrieved in December 2019)
When using these functions it is important to be aware of certain rules:

1. JSON value expressions can be null but not the name of the
values.

2. An SQL/JSON null will occur if the JSON constructor clause is
“NULL ON NULL”. If the clause is “ABSENT ON NULL” the
key/value pair will not be included in the data model object
created.

3. NULL ON NULL will be the default if we don’t have a null
clause.

In some cases, it might be desirable to create a JSON item in the form of a
relational table data aggregation. If we have two columns in the table, one
containing values of the other names, we can use the OBJECTAGG
function to create an object. Here's how the function will look:
<JSON object aggregate constructor> ::=

JSON_OBJECTAGG <left paren> <JSON name and value>

[<JSON constructor null clause>]

[<JSON key uniqueness constraint>]

[<JSON output clause>]

<right paren>

(Source:
https://docs.actian.com/actianx/11.1/index.html#page/SQLRef%2FJSON_C
onstructors.htm%23ww615150 retrieved in December 2019)
Without a constructor class, the default will be “NULL ON NULL”.
If we want to construct a JSON array from a list of objects found in a
relational database, we can use the ARRAY function. Here is how the
ARRAY function looks:
<JSON array constructor> ::=

<JSON array constructor by enumeration>

| <JSON array constructor by query>

<JSON array constructor by enumeration ::=

JSON_ARRAY <left paren>

[<JSON value expression> [{ <comma> <JSON value expression> }...]

<JSON constructor null clause>]]

<JSON output clause>

<right paren> <JSON array constructor by query> ::=

JSON_ARRAY <left paren>

<query expression> [<JSON input clause>]

[<JSON constructor null clause>]

[<JSON output clause>]

(Source:
https://docs.actian.com/actianx/11.1/index.html#page/SQLRef%2FJSON_C
onstructors.htm%23ww615169 retrieved in December 2019)
There are two types of the ARRAY function: one will generate the result by
using an input list made of SQL values; the other will generate results by
using the query expressions called inside the functions. If the constructor
null clause is not included (which is optional), “ABSENT ON NULL” is the

default. As you might have noticed, the object function works the opposite
way.
If you want to create an item based on relational data aggregation, you
might want to decide to use an array. ARRAY_AGG is the function that
helps you achieve this; this is part of SQL. Here’s how it looks:
<JSON array aggregate constructor> ::=

JSON_ARRAYAGG <left paren> <JSON value expression>

[<JSON array aggregate order by clause>]

[<JSON constructor null clause>]

[<JSON output clause>]

<right paren>

<JSON array aggregate order by clause> ::=

ORDER BY <sort specification list>

(Source:
https://docs.actian.com/actianx/11.1/index.html#page/SQLRef%2FJSON_C
onstructors.htm%23ww615190 retrieved in December 2019)
Just like before, if you don’t have a constructor null clause, “ABSENT ON
NULL” will be the default. Using “array order by clause” will allow you to
arrange the output items in a variety of ways you find desirable or
appropriate (it works the same way that “ORDER BY” does in SQL).
Next, we have the “IS” JSON predicate used to verify whether a string type
is valid JSON. Here’s how it looks:
<JSON predicate> ::=

<string value expression> [<JSON input clause>]

IS [NOT] JSON

[<JSON predicate type constraint>]

[<JSON key uniqueness constraint>]

<JSON predicate type constraint> ::=

VALUE | ARRAY | OBJECT | SCALAR

(Source:
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/db2/rbafz
isjson.htm retrieved in December 2019)
If an input clause is not specified, the default will be “FORMAT JSON”.
There are optional key uniqueness constraints that without specification will
set “WITHOUT UNIQUE KEYS” as default.
JSON nulls don’t work the same way SQL nulls do. For instance, take an
SQL entity with a length of zero in the null value. This translates as
undefined (lack of defined value). In JSON, however, null is seen as a real
value--null is a string literal.
Nulls from SQL are different from those in JSON, which means a developer
will have to think carefully about including them within a JSON item.

CHAPTER 4:

DATASETS AND CURSORS

Most programming languages are incompatible with SQL. This poses a
unique challenge for SQL developers. Take table data; SQL seeks to
perform various operations on all the data at the same time, whereas most
languages only process one row at a time. So developers have found a
solution in cursors, which allows SQL to modify itself to work one row at a
time. This allows SQL to work with other languages, therefore overcoming
compatibility issues.
Cursors, as the name suggests, are pointers that point to a certain row in a
table. Your activate operations will be performed on that specific row.
Pointers are useful when you need data from a specific row or rows in a
table. They also work when you need to vary the content in the row, and
with a number of other operations like select, update, and delete. SQL can
extract rows, but a more procedural language is appropriate at working with
rows of content. Cursors allow SQL the ability to collaborate with a
procedural language. This is illustrated when we put SQL inside a loop to
go over one table row at a time. Here’s how that would look:
EXEC SQL DECLARE CURSOR statement

EXEC SQL OPEN statement

Perform test for the end of the table

Procedural code

Initiate loop

Procedural code

EXEC SQL FETCH

Procedural code

Test for end of table

End loop

EXEC SQL CLOSE statement

Procedural code

(Source:
https://docs.actian.com/ingres/10s/index.html#page/OpenSQL/Retrieve_the
_Results_Using_a_Cursor.htm retrieved in December 2019)
As you may have noticed, all the main SQL statements are there, including
statements like to declare, open, fetch, and close. For the rest of the chapter
we will go into more detail about workflow and these statements.

Cursor Declaration
Just like you would with most languages, cursors need to be declared in the
database management system to be used. In the previous example, the
“declare cursor” statement is the one that is responsible for this. Note that
the declaration itself does not perform a task, it announces the presence of
the cursor. Declarations can also specify the query type. Let’s look at the
syntax:
DECLARE cursor-name [<cursor sensitivity>]

[<cursor scrollability>]

CURSOR [<cursor holdability>]

[<cursor returnability>] FOR query expression

[ORDER BY order-by expression]

[FOR updatability expression] ;

(Source: https://www.dummies.com/programming/sql/how-to-declare-a-sql-
cursor/ retrieved in December 2019)
Cursors have to be identified by their name, and that name needs to be
unique, especially when you have multiple cursors in a module. The name
has to be indicative of its functions. Don't name your cursors something

obscure like “AA”. The name has to be relevant and even descriptive so it
makes it easier for you to work with and to remember what it points to.
When declaring a cursor keep in mind the following guidelines:

1. You need to set cursor sensitivity. You can set it to sensitive
“asensitive”, or set it to select sensitive or insensitive. This is
important because in some cases your statements might change
the data that qualifies in some way. More on this later.

2. You should also think of cursor scrollability. You need to choose
between scroll or no scroll: no scroll is the default. This tells your
cursor how to behave in relation to what your statements say.

3. Cursor holdability is another one. It comes in “with hold” or
“without hold”-- “without” hold is the default.

4. The last feature is the cursor returnability. There are also two
options: without return (the default) and with return.

With a query expression, you can use any type of SELECT statement. All
rows extracted as the result will be turned over to the cursor because they fit
the scope of the cursor. When this is happening the query itself is not
executed yet, so data cannot be obtained before the OPEN statement. Once
the loop is initiated in the FETCH statement, the data will be analyzed one
row at a time.
If there is a specific way you want the data to be processed, you can arrange
all the extracted rows before processing by using the “ORDER BY” clause.
Here is how the clause looks:
ORDER BY sort-specification [, sort-specification]

It’s very concise, but this does not mean you are limited in the number of
ordering instructions you put in. As long the syntax is followed you will
have no problems.
(column-name) [COLLATE BY collation-name] [ASC|DESC]

In most cases, the sorting happens after the name of the column, so it has to
be included in the query expression’s select list. Columns that are in the
table, but are not included in the select list, will not be recognized by

ordering instructions. Let’s say we want to perform an operation that SQL
does not support for chosen rows in a CLIENT table, by declaring:
DECLARE cust1 CURSOR FOR

SELECT CustID, FirstName, LastName, City, State, Phone

FROM CUSTOMER

ORDER BY State, LastName, FirstName ;

The SELECT statement will extract rows ordered by state, last name, and
first name. This way clients from Alaska (AK) will be extracted before
those from Alabama (AL). Once that is complete, the clients will be ordered
by their last names. If there are identical last names, the sorting will be done
after the first name.
If you have ever had the misfortune of printing a ten-page document fifty
times without using a copy machine with a collator, you will know that it
would involve making ten different paper piles, and then you would have to
place each page in the proper pile/sequence. This process is called collation
and it takes place in SQL. Collation in SQL is a set of rules that tell us how
strings in a character set are compared. For instance, a character set will
have a specific collation order which tells it how each element is arranged;
however, you can use a different collation order if you prefer by using the
“COLLATE BY '' clause.
When declaring a cursor, it is possible to mention a column that is not part
of the underlying table. In this case, there isn’t a name that can be used with
the order by clause, so we will have to name it during the declaration of the
cursors. Here is an example:
DECLARE revenue CURSOR FOR

SELECT Model, Units, Price,

Units * Price AS ExtPrice

FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;

Since a collation clause is not specified, the default will be used. Look at
the select list and the fourth column. It is the result of data calculation that
takes place in two columns preceding it. That column represents extended

price and the sorting clause is processed first by following the model name
before it deals with the extended price. We have specified in our ORDER
BY clause that we want a descending order, so the most valued transactions
will be handled first. When you use the clause and you don’t specify the
order, it will be ordered in ascending order. This is why we used DESC in
the sort.
Updatability, Sensitivity, and Scrollability
Often you will find yourself in need of an update to the table row or
removal of them. In some cases, you might want to remove the ability of
people to make modifications to the table. SQL gives you the ability to do
this. All you need are a couple of clauses and statements. Say you want to
prevent people from changing the scope of a cursor; you can use the
following clause to do that:
FOR READ ONLY
If you want to be selective and protect certain columns you can use the
following clause:
FOR UPDATE OF column-name [, column-name]
All of the columns you list need to be part of the query expression in your
cursor declaration. Without an updateability clause, you should know that
all columns will be updatable. In the default case, you can use an “update”
statement as you would any other day and update all columns the pointer is
pointed towards. The way we can tell that a certain row falls within the
scope of a cursor is through the query expressions.
Let’s say you have a statement found between the open and close
statements, and all the data is modified. The modifications will remove
them from the query’s requirement. What happens next? Will all rows be
processed, or will the modified rows be unrecognizable and therefore
skipped? Remember that SQL statements like UPDATE and DELETE work
with specific rows or the rest of the table. When these are active, other
statements, working on the same data, cannot interfere or work at the same
time. But when you use a cursor this changes; data can be manipulated by
various operations at the same time, making you vulnerable until it is
closed. You can see that if you open a cursor and run it, then open another

cursor without closing the previous one, everything that happened under the
second cursor will affect statements that belong to the second cursor.
So if you modify data under the query expression of a cursor declaration
after a number of rows, you will have chaos. You will find yourself with
data that can be very misleading or inconsistent. This issue can be avoided
by preventing cursors from being changed by other operations or
statements. To do this you have to include the “INSENSITIVE” keyword in
the cursor declaration. This means when your cursor is open, any
modifications made to the table will not change its scope. The cursor can be
updatable and insensitive at the same time, but if your cursor is insensitive
it has to be read only. Let's look at an example:
DECLARE C1 CURSOR FOR SELECT * FROM EMPLOYEE

ORDER BY Salary ;

DECLARE C2 CURSOR FOR SELECT * FROM EMPLOYEE

FOR UPDATE OF Salary ;

Say you open two cursors. You get some rows using C1 and update the
salary by using C2. The modification can result in a row that is extracted
using C1 and then appear again when another extraction is performed by
C1. So having multiple cursors open at the same time can lead to strange
things. But by isolating your cursors, you avoid problems like this. So avoid
working with multiple cursors at the same time unless it is absolutely
necessary.
The sensitivity of a cursor is set to asenstitive by default. The meaning of
asensitive changes from implementation to implementation. For instance, it
can mean sensitivity and then mean insensitive in another situation. To
understand what it means in your situation you will need to read your
system’s documentation.
Let's now turn to scrollability. Scrollability allows you to change the
position of the cursor. This way you can get access to specific rows in a
particular order, All you need to do is to add the keyword “SCROLL” when
declaring your cursor. You control the cursor’s movement within the
FETCH statement (this will be discussed later). Before exploring this in
detail we need to discuss opening cursors.

Opening the Cursor
As we have discussed, a cursor’s declaration statement does nothing. You
can include what rows are under the cursors but no action is taken. To have
the cursor act you need an OPEN statement. An open statement looks like
this:
OPEN cursor-name;

So in order to open the cursor in the “ORDER BY” example we discussed
earlier, you would do the following:
DECLARE revenue CURSOR FOR

SELECT Model, Units, Price,

Units * Price AS ExtPrice

FROM TRANSDETAIL

ORDER BY Model, ExtPrice DESC ;

OPEN revenue ;

Nothing happens until the cursor is opened, as I said previously. The cursor
has to be declared to be opened. Let’s see how it would look using SQL
inside a host language application:
EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM ORDERS

WHERE ORDERS.Customer = :NAME

AND DueDate < CURRENT_DATE ; NAME :='Acme Co';

EXEC SQL OPEN C1; NAME :='Omega Inc.';

EXEC SQL UPDATE ORDERS SET DueDate = CURRENT_DATE;

(Source: https://www.dummies.com/programming/sql/how-to-open-a-sql-
cursor/ retrieved in December 2019)
As you can see, the open statement solidifies values that have reference
inside the cursor declaration statement. The values of date/time functions
are fixed, meaning we have another assignment to the “name” variable, but
nothing will be affected in the rows the cursor works. Let’s turn our
attention to the fetch syntax.

Fetching Data
Three events take place when we use cursors. The first one is the
declaration of the cursor: this will define the scope and give the cursor a

name. Then we use an open statement to initiate activity and gather the row
specified in the query expression, Then there is the fetch statement which
gathers the information that is required. Let’s see how a fetch statement
looks:
FETCH [[orientation] FROM] cursor-name

INTO target-specification [, target-specification] ;

(Source:
https://docs.oracle.com/cd/B12037_01/appdev.101/b10807/13_elems020.ht
m retrieved in December 2019)
It’s worth mentioning that you can direct the cursor by using the following
orientation clauses: NEXT, PRIOR, FIRST, LAST, ABSOLUTE,
RELATIVE, and “simple value specification”. If you don’t do this the
default is “NEXT”. In old versions of SQL “NEXT” was the only
orientation available.
The “NEXT” clause moves the cursor from its present position to a row that
follows as specified in the query expression. So if our query is found before
the first record, it will move to the right of it: it will move from record x to
record x + 1. If it is located at the last record, it will relocate beyond it
which might produce a “no data” notification.
If a module language or embedded SQL is using the cursor, target
specification will be parameters or host variables. The type and number of
specifications will have to be the same as the name of columns, just as
types, that are in the query expression in the cursor declaration. For
instance, if we want to retrieve ten item values from the table row, we will
need to have ten matching host variables that will accept those values.
We talked earlier about the scalability of cursors and that there are other
options to the default settings, the most obvious being the PRIOR option
which makes the cursor relocate itself to a row right before the present
location. If we choose “FIRST” the cursor will go to the first record; the
“LAST” option does the opposite. When you use the RELATIVE or
ABSOLUTE options, you need an integer present. So if we declare
“FETCH ABSOLUTE 20” the cursor will move to the 20th row. The
“RELATIVE” options will relocate to the 20th row after the present

location is on. You should know that if you declare RELATIVE 0, the
cursor will not move. RELATIVE 1 will act like next and RELATIVE -1
will be equal to PRIOR.
We said that update and delete operations can be performed on a row the
cursor is pointing to. Since there is no row after the pointer, you will get an
error instead of deletion. Here’s how these operations would look:
DELETE FROM table-name WHERE CURRENT OF cursor-name ;

UPDATE table-name SET column-name = value [,column-name = value]

WHERE CURRENT OF cursor-name ;

Remember that an update will be made when the value is equal to the
expression value or the DEFAULT. If you get an error the process will be
terminated.
When you are done with the cursor, remember to close it or it will not stop
running. You may encounter problems if other operations run while the
cursor is open.
You would do so by typing:
CLOSE revenue ;

CHAPTER 5:

PROCEDURAL CAPABILITIES

Creating a database standard that could be followed by everyone was one of
the biggest goals in the world, and we have achieved that. Once that was
achieved, work continued to make our system more efficient, adding more
functions. In other words, we were building a new standard. In the gap
between the first standard and the new one, models were introduced to SQL
that added a series of statements that allowed SQL to work with control
flow, like in programming languages like C. SQL can now be used by
programmers to perform a lot of operations that were only available in other
programming languages.
In this chapter, we will explore those SQL improvements: the compound
statements, control statements, and much more.

Compound Statements
So far we have talked about SQL as a non-procedural programming
language that works with data instances in arranged sets instead of dealing
with it record by record. We are now going to learn that SQL is a far more
sophisticated language than was originally let on. We will see that SQL is
shifting to a more procedural language.
SQL 9 did not have any kind of procedural model; there were no instruction
sequences. Earlier versions of SQL worked with standalone statements
combined with C++ and Visual Basic software. In those days, executing a
series of statements was not recommended because of what systems can
handle and low networking speeds. All of this changed with the
introduction of compound statements in 1999, allowing separate statements
to work as a single statement, resolving network worries in the process.

Statements that make up compound statements need to be put between two
keywords: “BEGIN” and “END”. Here is how that would look:

void main {

EXEC SQL

BEGIN

INSERT INTO students (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;

INSERT INTO roster (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;

INSERT INTO receivable (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)

END ; /* Check SQLSTATE for errors */ }

(Source: http://pubhtml5.com/vmmz/vhzn/basic/501-550 retrieved in
December 2019)
The example above is written with C with compound SQL inside. The last
comment deals with errors. If the code does not run as it should we will get
an error message in the SQLSTATE parameter. I have put it there because it
is a best practice. This is something you should do as it is helpful; you will
avoid a lot of unnecessary strife this way.
There is a risk that when you work with compound statements you might
encounter errors you have never experienced before. To make things worse,
compound statements don’t act like common SQL statements when things
go wrong. For instance, common statements will not alter the database
when something goes wrong. But compound statements do not do that.
Looking at the example above, consider the two INSERT statements to the
STUDENTS and ROSTER tables. What happens if both statements are
executed at the same time? Because of the involvement of the second user,
the INSERT statement would fail to go into the RECEIVABLE table. This
means a student will be registered without being taxed; the university would
have to cover that somehow.

This is atomicity in action. Atomic statements are either fulfilled or they
aren’t. There are no ifs and buts about it. This is how common SQL
statements function; they are atomic. Compound statements, on the other
hand, are not atomic. This can be remedied by following the syntax below:
void main {

EXEC SQL

BEGIN ATOMIC

INSERT INTO students (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;

INSERT INTO roster (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ;

INSERT INTO receivable (StudentID, Class, Fee)

VALUES (:sid, :cname, :cfee)

END ; }

(Source:
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58232/ch05.htm
retrieved in December 2o19)
As you may have noticed, the ATOMIC keyword is introduced just next to
the BEGIN keyword. To ensure that the execution of the state is how we
desire it, you can put the keyword before the BEGIN keyword. When our
statements encounter an error the statement will revert everything to the
way it was. In other words, nothing will be changed.
A common feature of full programming languages is the use of variables.
SQL didn’t have a variable until SQL/PSM. A variable is essentially a
symbol that acts as a container for a value (this value comes in different
data types). What is interesting about compound statements is that variables
can be declared inside them, received, and used. This feature is very useful,
since as you might know, variables are like the building blocks of many
programming functions. Once the statement is finished, the variable will be
erased. Let's take a look at an example:
BEGIN

DECLARE ceopay NUMERIC ;

SELECT salary

INTO ceopay FROM EMPLOYEE

WHERE function = 'ceo' ; END;

A cursor can also be declared inside a compound statement. As we have
alluded to, the cursor can then be used to compute information row after
row. In this case, you needn't worry about the cursor remaining open until
you close it. It has the same shelf life as the variable because it gets
terminated when the compound statement is finished executing. Here is an
example below:
BEGIN DECLARE potential employee CHARACTER(30) ;

DECLARE c1 CURSOR FOR

SELECT business

FROM techytech ;

OPEN CURSOR1 ;

FETCH c1 INTO potentialemployee ;

CLOSE c1 ; END;

Managing Conditions
SQL statements give us one of the following results whenever they are
executed: a successful result, an ambiguous result, or a completely faulty
result. All these meet a specific condition or are brought about by one.
When an SQL statement is being executed, the database server will assign a
value to the SQLSTATE parameters which will show whether a statement is
executed correctly. If there is an error the parameter will give us
information about it. The SQLSTATE parameter has a field of five
characters, and the first two characters will tell us if the statement was
successful. Here’s how those codes look:

1. Successful Completion (class code 00): This statement is self-
descriptive. You get it when the statement is executed
successfully.

2. Warning (class code o1): This message means something strange
has occurred, but the database message system can’t classify it as
an error or something else. In other words, it prompts you to go
check your SQL statement to make sure that everything is as
intended. There might be a factor you are overlooking.

3. Not Found (class code o2): When this happens you might receive
a message that says “no data was returned”. This isn’t necessarily
a bad thing; sometimes what you are looking for isn't there or you
are hoping to find nothing. It depends a lot on your situation,

4. Exception (other class codes): When you receive this error the
message will include other details about the error that tell you
what it is, and from there you can figure out how to tackle it.

The first code requires no actions, but class codes 01 and 02 require you to
take some action. If you are working on something and you expect a “not
found result” or a warning message, you will probably do nothing because
that falls within what you expected. If you were not expecting any of this,
action is required. This is why as a developer you will have to create an
execution procedure to handle such situations that are hard to anticipate. All
exception handling producers will depend on the type of error faced. You
should not have an exception handling procedure that handles multiple
exceptions because each will demand a different solution. The obvious
options with dealing with errors is working around them or fixing the error.
I like the idea of choosing how to act after understanding the error. In some
cases, you might be dealing with a fatal error that kills your programs.
You can put condition handlers in your compound statements. To do this
you have to declare the conditions which the handler will deal with (it can
be an exception or a specific error code). Let’s take a look at this:
BEGIN DECLARE constraint_violation CONDITION

FOR SQLSTATE VALUE '23000' ; END ;]

When the condition is met the handler will be executed. The handler will
have a specific task when the condition is met. It can be something as
simple as an SQL statement or compound statement. When that statement
has executed the “effect” of the exception handler will be executed. Here is
a list of exception handler effects:

1. CONTINUE: This means when the exception handler is called the
execution of the statement will continue.

2. EXIT: The execution will continue only after the compound
statement that holds the exception handler is triggered.

3. UNDO: In this case, any action caused by past statements within
the compound statement will be reversed to the previous state.
The execution will then continue after passing the statement that
holds the exception handler.

If the exception handler is expected to resolve the problems that triggered it,
it’s best to choose the CONTINUE effect. The EXIT effect can work in that
situation too but it is much better in situations where the exception handler
can’t fix the problem and you don’t need changes to be reversed. The
UNDO effect is best if you prefer to revert everything to the way it was
before you ran a statement. Let’s look at an example:
BEGIN ATOMIC

DECLARE constraint_violation CONDITION FOR SQLSTATE VALUE '23000' ;

DECLARE UNDO HANDLER

FOR constraint_violation RESIGNAL ;

INSERT INTO students (StudentID, Fname, Lname)

VALUES (:sid, :sfname, :slname) ;

INSERT INTO roster (ClassID, Class, StudentID)

VALUES (:cid, :cname, :sid) ; END ;

(Source: https://www.dummies.com/programming/sql/how-to-handle-sql-
conditions/ retrieved in December 2019)
You should know that when a constraint violation is caused by an INSERT
statement you will get a 23000 result. This can happen when there is a new
record with a key identical to one that already exists. All modifications that
happened after the INSERT command will be undone through the UNDO
effect.
The RESIGNAL statement will turn over control to the current procedure.
If our INSERT statements come across issues, the execution will continue
as normal. In the example, we are using the ATOMIC keyword. It is
obligatory due to the UNDO effect found under the exception handler. Also,
you do not need to use the keyword if you are using EXIT or CONTINUE
effects.

Let’s look at a different scenario. The exception value is something other
than 23000, and the exception handler doesn’t know how to fix the error
thrown. What are we to do? In an instance like this, RESIGNAL will be
triggered which means that the problem will move to the next control where
it can be handled. If a solution is not found, it is pushed again to the next
one. This illustrates that what you need are more contingencies. So if you
are writing a statement that might return an exception, you need to have
handlers for all the possibilities. You will take care of what you cannot
predict.

The Flow of Control Statements
One of the biggest factors that discouraged people from working with SQL
procedurally was because SQL didn’t have a flow of statements. Before
SQL/PSM, there wasn't a way of getting out of the restrictive execution
sequence without the help of C. SQL/PSM provided the control structure
flow that was offered by other languages. Today, SQL can perform various
functions without accessing other programming languages.
Let’s start with the most basic statement: “IF THEN ELSE END IF”. If you
have worked with other programming languages, you will know what this
statement means. If a certain condition is met, statements after the “then”
keyword will be executed. If something else happens, those after the “else”
keyword will be executed.” Here is an example:
IF exname = 'Sam' THEN

UPDATE students

SET Firstname = 'Sam’

WHERE StudentID = 23343 ;

ELSE DELETE FROM students

WHERE StudentID = 23343 ;

END IF

In the example, we have an “exname” variable and if it contains the value
“Sam”, the particular record will be updated. If the variable is equal to
another name it will be removed from the table. This is the sort of thing you
will do in a fully-featured programming language. You can already see how

logic like this can be useful, as there are many circumstances where
something similar is needed. You may need to change something in the
database that meets specific criteria and skip other values that don’t meet
those criteria, for example.
A more rigorous statement than the “if-else” statement is the Case
statement. We have the basic case statement and then we have the searched
statement. Both enable us to utilize various execution paths that depend on
the condition's value. The basic statement checks one condition and
depending on its value, an execution will take a particular path. Here’s how
it looks:
CASE mymajor

WHEN 'Computer Engineering'

THEN INSERT INTO nerds (StudentID, Firstname, Lastname)

VALUES (:sid, :sfirsname, :slastname) ;

WHEN 'Athletic Training'

THEN INSERT INTO athletes (StudentID, Firsname, Lastname)

VALUES (:sid, :sfirstname, :slastname) ;

WHEN 'History'

THEN INSERT INTO historians (StudentID, Firsname, Lastname)

VALUES (:sid, :sfirstname, :slastname) ;

ELSE INSERT INTO undecided (StudentID, Firstname, Lastname)

VALUES (:sid, :sfirstname, :slastname) ;

END CASE

We have added the ELSE clause so that everything that isn’t included in the
categories we declared in the THEN clause can be caught. The ELSE clause
is optional; use it when you think it is appropriate for your situation. If none
of your clauses can handle one of the conditions and you have no ELSE
statement, an SQL exception will be thrown.
Then we have the LOOP statement. The LOOP statements allow us to run
SQL statements x number of times. When the last line of code is executed,

an ENDLOOP statement will go back to the first line and run the code
again, Here’s how it looks:
SET mycount = 0 ; LOOP

SET mycount = mycount + 1 ;

INSERT INTO rock (RockID)

VALUES (mycount) ;

END LOOP

The code will preload the “rock” table with unique identifiers. All the
different rocks and their details will be presented as they are found. The one
drawback in this code is that it is never-ending, so table rows will be
inserted until we run out of space. When this happens the database
management system might throw an exception, but in some cases, the
system might crash. A loop is only useful when we exit it as soon as the job
is done. To do this we need to add a LEAVE statement. When the execution
meets the line it breaks the loop and switches to another task.
Let’s now take a look at the WHILE statement. The WHILE statement will
repeat a statement as long as certain conditions are true. When the
conditions no longer apply, the while statement stops.
If you have worked with any fully featured programming language you will
know how a WHILE statement works. You might want to run a set of
statements that find a number in an unknown number of values and update
them. In such a situation you need to identify those values and update them
as long as they remain unchanged with the WHILE statement. Here is how
it looks:
RockPreparation:

SET mycount = 0 ;

WHILE mycount< 10000 DO

SET mycount = mycount + 1 ;

INSERT INTO rock (RockID)

VALUES (mycount) ;

END WHILE RockPreparation

This example works in the same manner as the example we used previously.
This is to illustrate that it can work in different ways. This is how flexible
SQL has become.
The final loop type is the FOR loop. If you have worked with C#, the FOR
loop works in a similar way as it does there. It can be used to declare and
open a cursor, then gather all rows and execute statements within the FOR
statements. Once the work is completed the cursor will be closed. It is a
very useful loop if you’d rather just rely on SQL in your build. As you
might know now, this is one of the most useful loops in any programming
language. Here’s how it looks in SQL:
FOR mycount AS C1 CURSOR FOR

SELECT RockID FROM rock

DO UPDATE rock SET Description = 'shiny onyx'

WHERE CURRENT OF C1 ;

END FOR

With this loop, all rows inside the ROCK table will be updated with a
“shiny onyx” description. It is an effortless way of adding descriptions to
what may be a long list of rocks. In a real work setting, you might have to
tweak it so that it updates accurately (you wouldn’t want every rock to have
the same description).
The ITERATE statement allows us to modify execution flow. Iterated
statements are the loops we have talked about: the LOOP, WHILE, FOR,
and REPEAT. When the condition of an iteration statement is true, or
absent, the next loop iterations will take place after the ITERATE statement.
If the condition is false, the next iteration after the ITERATE STATEMENT
will not execute. Let’s see how it looks:
RockPreparation:
SET mycount = 0 ;

WHILE mycount< 10000 DO

SET mycount = mycount + 1 ;

INSERT INTO rock (RockID)

VALUES (mycount) ;

ITERATE RockPreparation ;

SET mypreparation = 'FINISHED' ;

END WHILE RockPreparation

Stored Procedures and Functions
Stored procedures are unique because they are a part of the server instead of
the executing client. They are important because they allow for minimum
network traffic while improving performance. So the only traffic that is of
concern to the developer is that which comes from the client to the server.
This is a CALL statement that is used to invoke a stored procedure once it
is defined. Let’s have a look at the procedure:
EXEC SQL

CREATE PROCEDURE ChessMatchScore

(IN score CHAR (3),

OUT result CHAR (10))

BEGIN ATOMIC

CASE score

WHEN '1-0' THEN

SET result = 'whitewins' ;

WHEN '0-1' THEN

SET result = 'blackwins' ;

ELSE

SET result = 'draw' ;

END CASE END ;

(Source: https://www.dummies.com/programming/sql/how-to-use-sql-
stored-procedures/ retrieved in December 2019)
Now, this is the CALL statement that invokes the procedure once it is
created:
CALL ChessMatchScore ('1-0', :Outcome) ;

An input parameter is inserted into the procedure as the first argument. The
second argument is an embedded variable that takes in a value designated to
the output parameter which returns the result.
Stored procedures, like most technologies, have improved over the years.
One of the most important improvements is the addition of named
arguments. Here is how the previous statement looks with named
arguments:
CALL ChessMatchScore (result => :Outcome,score =>'1-0');

Named arguments can always be put in sequential order. Wherever their
position, we cannot confuse them.
Another improvement is the introduction of default input arguments that
can be declared of the input parameter. Once you do this, there’s no need to
declare the input value inside the call statements because defaults are
assumed.
Stored functions are almost identical to stored procedures. They are both
stored routines but are not invoked the same way. While a stored procedure
is invoked by a CALL statement, stored functions are called with a function
call. The function call can replace or stand for an SQL statement. Here’s
how it looks:
CREATE FUNCTION PurchaseHistory (CustID) RETURNS CHAR VARYING (200)

BEGIN

DECLARE purch CHAR VARYING (200)

DEFAULT '' ;

FOR x AS SELECT *

FROM transactions t

WHERE t.customerID = CustID DO IF a <>''

THEN SET purch = purch || ', ' ;

END IF ;

SET purch = purch || t.description ;

END FOR

RETURN purch ; END ;

SET customerID = 314259 ;

UPDATE customer

SET history = PurchaseHistory (customerID)

WHERE customerID = 314259 ;

(Source: https://www.dummies.com/programming/sql/how-to-use-sql-
stored-procedures/ retrieved in December 2019)
This function will generate a list of purchases made by the customer. The
customer's ID number is used to extract information from the transaction
tables. The update statement calls the purchase history to add the
customer’s most recent purchases.

CHAPTER 6:

COLLECTIONS

In most programming languages the word array refers to a collection of
items. In Oracle, arrays are known as collections that contain a list of
elements that belong to a similar type. Elements that are in an
array/collection can be accessed by their index. Each spot taken has its own
index. The difference with collections is that they are more useful and they
are a standard feature in most database programs.
Collections can boost an application’s performance and they also provide
data caching tools that can really improve an application. A collection can
be a database column, a subprogram parameter, or an attribute. In this
chapter, we are going to focus on all those features of collections.

Overview
Collections are essentially one-dimensional structures that contain an
ordered list of elements. The architecture of each element is based on cells
that have subscripts. The elements inhabit cells and we can access them by
their index. The subscript and the index are the same thing; their use is to
help us access an element and do something with it.
SQL type data, and others, can be items in a collection. For instance, an
SQL primitive is a scalar value, and the user-defined type is the object type.
Collections can be used in PL/SQL programs if we declare PL/SQL
variable as a collection type. The incredible thing is that the variable can
also contain an instance of its collection type. What’s more, database
collections can belong to the collection type structure. Since collections are
one-dimensional structures you need to keep in mind that you cannot use
two-dimensional coordinates on them. The way multidimensional arrays

can be created is if the collection contains an object types attribute. There
are two categories of collections: bounded and unbounded. Bounded
collections hold a specific number of elements amidst a host of other
restrictions. Unbounded collections are freerer and their numbers can go as
high as the system will allow.
Collections can also allow us to order data inside an array while working
with object-oriented features at the same time. For instance, a nested table
can be accessed while its information is being deposited in the table
columns. We can use collections to take advantage of data caching and
improve our applications’ performance which will improve the operations
of our SQL.
When working with dedicated server connections, we will need to make use
of PL/SQL elements called the “User Global Area” to perform various
collections operations. In a shared server mode these operations can be
handled outside the user global area. The user global area is also a
component of the system global area. This means we can have several
server processes affecting the session, which puts the user global area
outside the system global area.
Another important aspect of collections is that they can be persistent or
nonpersistent. A collection is persistent when it deposits its structure and its
elements inside the database. A non-persistent collection only runs for a
single session while a particular application runs.
On top of all this, collections come in three different formats: associative
arrays, nested tables, and varrays. These formats are dependent on the
characteristics and attributes of the PL/SQL application. Let’s take a look at
these formats:

1. Associative arrays are also known as “index by” tables. They are
the most basic type of collection and they are non-persistent and
unbounded. This means they cannot store data inside the database,
however, we can access it inside the PL/SQL block. After the
application runs, the structure and the data of the array will be
lost. The reason why it is called the index table is that we can use
indexes to identify elements in the array.

2. A nested table is persistent and unbounded. They are created
inside the database, and we can also access them in the PL/SQL
block.

3. Variable size arrays, also called varrays, are persistent and
bounded. We can set them up in a PL/SQL block or the database.
They have a one-dimensional structure. The only difference
between varrays and nested tables is their limited size and nested
tables are not limited.

Now, we should discuss the best use scenarios for each of these collection
types:

1. Associative arrays are best when you need to cache application
data temporarily to use later during a process. It is also desirable
if you want string subscripts for elements in a collection. They
also work best when we need to map hash tables from the client to
the database.

2. Nested tables work best when we want to store a set of
information directly into the database. The columns in a nested
table will need to be declared specifically so they can contain data
in a persistent manner. Nested tables are used to perform powerful
array operations and handle big sets of data.

3. Varrays are best used to store a predetermined collection in a
database since it offers you a limited space to store your
information. They are also best used in preserving the order of a
collection of elements.

Now that you have some idea of what they are and how they function, let us
look at them in more detail.

Associative Arrays
As mentioned, associative arrays are like lists inside PL/SQL applications,
and their structure and data cannot be put inside the database. They are also
not limited in how much they can store and they can contain various types
of elements in a key/value architecture.

Associative arrays were introduced in PL/SQL tables to be used in PL/SQL
blocks. Oracle 8 was the first to identify PL/SQL tables as an associative
array because of the index/value structure it had. In Oracle 10 the
associative array received its official name because of the array-like usage
of indexes. Let’s look at the syntax of arrays:
TYPE [COLL NAME] IS TABLE OF [ELEMENT DATA TYPE] NOT NULL

INDEX BY [INDEX DATA TYPE]

In the example, the index type is the data type of the subscript. Only the
following index data types are not supported: NUMBER, RAW, ROWID,
CHAR, and LONG-RAW. The following index data types are supported:
PLS_INTEGER, BINARY_INTEGER, NATURAL, POSITIVE,
SIGNTYPE, and VARCHAR2. Data types of each element can belong in
the following categories:

1. Scalar data types: Here is where we find the NUMBER data type
with all its subtypes and others like VARCHAR3, BOOLEAN,
BLOB, CLOB, AND DATE.

2. Inferred data are inferred data types from the table column or
cursor expression.

3. User-defined data types are user-defined collection types or data
item types.

Now, let us look at the PL/SQL program where an associative array is
declared inside the block. You will see that the array’s subscript belongs to
the string type and it deposits a number of days within a quarter. I put this
here to show you how to declare an associative array and assign each
element inside a cell and print them.
/* The SERVEROUTPUT is enabled in order to display the output*/

SET SERVEROUTPUT ON

/*Run the PL/SQL block*/

DECLARE

/*Declare a collection type associative array and its variable*/

TYPE string_asc_arr_t IS TABLE OF NUMBER

INDEX BY VARCHAR2(10);

l_str string_asc_arr_t;

l_idx VARCHAR2(50);

BEGIN

/*Assign the total count of days in each quarter against each cell*/

l_str ('JAN-MAR') := 90;

l_str ('APR-JUN') := 91;

l_str ('JUL-SEP') := 92;

l_str ('OCT-DEC') := 93;

l_idx := l_str.FIRST;

WHILE (l_idx IS NOT NULL)

LOOP DBMS_OUTPUT.PUT_LINE('Value at index '||l_idx||' is '||l_str(l_ idx));

l_idx := l_str.NEXT(l_idx);

END LOOP; END; /

Value at index APR-JUN is 91

Value at index JAN-MAR is 90

Value at index JUL-SEP is 92

Value at index OCT-DEC is 93

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
Look carefully at the string indexed array in the example. This will improve
performance by introducing an indexed array of values. In the final block
we see clearly how data is assigned.
Now let us have another application that is going to fill an array
automatically by itself. We are going to declare the associative array as
containing all ASCII number values from 1 to 100.
/*The SERVEROUTPUT is enabled in order to display the output*/

SET SERVEROUTPUT ON

/*Start the PL/SQL Block*/

DECLARE

/*Declare an array of string indexed by numeric subscripts*/

TYPE ASCII_VALUE_T IS TABLE OF VARCHAR2(12)

INDEX BY PLS_INTEGER;

L_GET_ASCII ASCII_VALUE_T; BEGIN

/*Insert the values through a FOR loop*/

FOR I IN 1..100 LOOP

L_GET_ASCII(I) := ASCII(I);

END LOOP;

/*Display the values randomly*/

DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(5));
DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(15));
DBMS_OUTPUT.PUT_LINE(L_GET_ASCII(75));

END; /

53 49 55

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
From these, we can see that associative arrays can be scattered or empty
collections. But, they cannot be part of DML transactions because they are
non-persistent. We also see that we can use the same block to pass
arguments to other subprograms inside. Associative arrays can also be
declared inside package specifications to make them act like persistent
arrays.

Nested Tables
As I have said, a nested table is a persistent collection that is built inside the
database and can be accessed in the PL/SQL block. We said they are
unbounded collections that rely on indexes and depend on a server
whenever information is extracted. Oracle will label the minimum subscript
with 1 and then relatively deals with the rest. Nested arrays don’t follow the
index/value architecture we saw earlier because they can be accessed the
same way as an array within a block. Nested tables are generally dense, but
they can evolve into sparse collections, especially when we have various
delete operations happening over the cells. A dense collection, as the name
suggests, means there are few or no empty cells between indexes. Sparse
collections have more empty spaces in between indexes.

When we declare a nested table inside a PL/ SQL application, it will work
the same way as a one-dimensional array that doesn’t have an index type or
a limit. If nested tables are declared within a database, they will exist as a
valid schema data item type. We can use nested tables inside PL/SQL
blocks to declare variables that will hold data temporarily, or we can use
them in a database where they will be inserted in a table that will
permanently store data inside them. Nested table columns are similar to
tables within tables, but it is a table that contains nested table information.
When we create a nested table inside a database column inside another table
(known as parent table), Oracle will make a table for storage with options
identical to those in the parent table. This storage table will have a name
that is inside the “STORE AS” clause of the nested table. You also need to
know that Oracles servers perform two actions when a new row is created
in the parent table:

1. First, a new identifier is created in order to differentiate instances
of various parent rows

2. The nested table is generated inside the storage table with a new
identifier.

All nested table operations and processes will be handled by the Oracle
server. Programmers don’t see this happening because it is hidden under the
insert-type operation. Here is how the syntax of a nested table in PL/SQL
looks:
DECLARE TYPE type_name IS TABLE OF element_type [NOT NULL];

In the example above, the element type is a primitive data type, but it can
also be a user defined data type. Here’s how the syntax of a nested table
inside the database looks:
CREATE [OR REPLACE] TYPE type_name IS TABLE OF [element_type] [NOT NULL];

We have an element type, but it is either a scalar data type that is supported
by SQL, a REF item, or a database type. Remember that all non-SQL data
types are not on the supported element type list; these are data types like
NATURAL, LONG, BOOLEAN, REF CURSOR, STRING, and so on. If
we want to change the element type size of the database collection type we
can do the following:

ALTER TYPE [type name] MODIFY ELEMENT TYPE [modified element type] [CASCADE |
INVALIDATE];

CASCADE and INVALIDATE will determine whether the dependents need
to be invalidated by the collection modification.
Then we can drop the statement by using the DROP statement. We can use
the DROP statement in conjunction with the FORCE keyword to force it to
drop regardless of any dependents attached to the statement. Here is how it
looks:
DROP TYPE [collection name] [FORCE]

Since the collection type is created within the database, we can use it to
declare columns. To do that we use the CREATE TABLE command and
declare a column of the nested table. Inside is the parent table. Let’s see
how that gets put together:
SQL> CREATE TABLE TAB_USE_NT_COL

(ID NUMBER, NUM NUM_NEST_T)

NESTED TABLE NUM STORE AS NESTED_NUM_ID;

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
Now, let’s use a collection constructor to add the nested table information.
The constructor is Oracle’s, and it generates a value for every single
attribute.
INSERT INTO TAB_USE_NT_COL (ID, NUM) VALUES (1, NUM_NEST_T(10,12,3)); /

1 row created.

INSERT INTO TAB_USE_NT_COL (ID, NUM) VALUES (2, NUM_NEST_T(23,43)); /

1 row created.

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
Now let us look at how you select a nested table column. Notice that when
the column is queried, the nested column is presented as one of the
instances of the nested table item type.
SQL> SELECT *

FROM tab_use_nt_col;

ID NUM

1 NUM_NEST_T(10, 12, 3)

2 NUM_NEST_T(23, 43)

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
We can use the TABLE statement to initiate an instance and display all the
data in the form of relational data. With the statement, we will be able to
gain access to any attributes inside the nested table type. Because of this,
Oracle will combine the parent row with the nested row when it reaches the
output of the query.
Let’s look at how we update nested table instances. There are few ways we
can do this: we can cut and paste a TABLE statement, or we can replace the
instance with another by using an UPDATE statement.
UPDATE tab_use_nt_col SET num = num_nest_t(10,12,13) WHERE id=2 /

1 row updated.

SQL> SELECT * FROM tab_use_nt_col;

ID NUM

1 NUM_NEST_T(10, 12, 3)

2 NUM_NEST_T(10, 12, 13)

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
Notice that by using the TABLE expression it is possible to update just one
collection item. Here’s how that would look:
UPDATE TABLE (SELECT num FROM tab_use_nt_col WHERE id = 1)

P SET P.COLUMN_VALUE = 100 WHERE P.COLUMN_VALUE = 12;

As you can see, we have an UPDATE statement where a TABLE expression
examines the instance of the collection type in which the subquery returns.
As a result, the instance is opened in a relational format, allowing us to
have access to the values and make modifications to them. The subquery
only needs to return one instance and one row.

Now let’s turn our attention to nested table collections in PL/SQL. In
PL/SQL we can declare nested tables in the declaration segment of the
block, which is in the form of a local collection type. When the nested table
conforms to the item orientation, the PL/SQL variable is initialized. If this
does not happen, the Oracle server will throw an exception because the
nested table type is not initialized when the block is executed. With the
declaration of the nested table collection type, the scope represents the
execution block.
Below we are going to declare a nested table in a PL/SQL block. Look at
the variable’s scope and visibility. The COUNT method will be used to
show us all the elements of the array.
/*The SERVEROUTPUT is enabled in order to display the output*/

SET SERVEROUTPUT ON

/*Run the PL/SQL block*/

DECLARE

/*Declare a local nested table collection type*/

TYPE LOC_NUM_NEST_T IS TABLE OF NUMBER;

L_LOCAL_NT LOC_NUM_NEST_T := LOC_NUM_NEST_T (10,20,30);

BEGIN

/*A FOR loop is used in order to parse the array and print all the elements*/

FOR I IN 1..L_LOCAL_NT.COUNT LOOP

DBMS_OUTPUT.PUT_LINE('Printing '||i||' element: '||L_LOCAL_ NT(I));

END LOOP;

END; /

Printing 1 element: 10 Printing 2 element: 20 Printing 3 element: 30
(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
That’s perfect! It works like a charm.

Varrays

Varrays are added to Oracle as altered nested tables. Varrays are persistent
but bounded, so it makes sense that this is the way that Oracle will perceive
them as a version of nested tables. When a varray is declared, a restriction
of the elements is also declared. We have the minimum bound which is
equal to index 1, the current bound which is the total number of current
elements, and the maximum bound which is the maximum number of
elements the array can hold. The current bound can never surpass the
maximum bound, and the current bound is informative–it tells us how many
elements there are and is not prescriptive. Varrays, as I have alluded to, can
be built in the form of database items. They can also be used in PL/SQL.
All of this is why we have been saying varrays are similar to nested tables
but with slight modification storage-wise.
Varrays are the same as the parent record, as a raw value that exists within
the parent table. This storage mechanism nullifies the need for a declaration
of a storage clause, and we don’t need to specify a unique identifier, too.
There are some exceptions when dealing with huge amounts of data; for
instance, Oracle will store the varray in the form of a LOB. The purpose of
the inline storage system is to minimize the total number of IO’s on the disk
to boost performance and offer better results even in cases where nested
tables are concerned.
Varrays can also work as valid table column types and as object type
attributes because they are database collection types. Furthermore, when we
declare a varray inside a PL/SQL block, it becomes visible on this block
alone. Now, let’s see how varrays are defined in database collection types:
CREATE [OR REPLACE] TYPE type_name IS

{VARRAY | VARYING ARRAY} (size_ limit)

OF element_type In PL/SQL

DECLARE TYPE type_name IS {VARRAY | VARYING ARRAY}

(size_limit) OF element_type [NOT NULL];

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
You will notice that the code includes a size limit that tells us the number of
items that can be part of the array. If for any reason you find yourself

needing to change the size of the array, you can do so with the following
syntax:
ALTER TYPE [varray name] MODIFY LIMIT [new size_limit] [INVALIDATE | CASCADE];

This is similar to what we did when we were working with nested arrays.
INVALIDATE and CASCADE function work the same way as they do with
nested arrays. Like we did with nested tables, we can also make use of the
DROP command:
DROP TYPE [varray type name] [FORCE]

Because of these similarities, we can declare varrays to the PL/SQL block
and it follows the same object orientation. For this reason, varrays will
always need initialization before they are accessed in the block’s execution.
/*Enable the SERVEROUTPUT to display the results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE

/*Declare a local varray type, define collection variable and initialize it*/

TYPE V_COLL_DEMO IS VARRAY(4) OF VARCHAR2(100);

L_LOCAL_COLL V_COLL_DEMO := V_COLL_DEMO('Oracle 9i',

'Oracle 10g', 'Oracle 11g');

BEGIN

/*Use FOR loop to parse the array variable and print the elements*/

FOR I IN 1 L_LOCAL_COLL.COUNT LOOP

DBMS_OUTPUT.PUT_LINE('Printing Oracle version:' ||L_LOCAL_ COLL(I));

END LOOP; END; /

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
Let’s take look at how a varray is built in the form of a database collection
type with SELECT and DML operations:
SQL> CREATE OR REPLACE TYPE num_varray_t AS VARRAY (5) OF NUMBER; /

All information about the varray is stored by Oracle inside dictionary
views. Now, let’s set up a new table that contains a varray type column (we
will not use the “store as” clause).
CREATE TABLE tab_use_va_col (ID NUMBER, NUM num_varray_t);

/*Query the USER_VARRAYS to list varray information*/
SELECT parent_table_column, type_name, return_type, storage_spec

FROM user_varrays WHERE parent_table_name='TAB_USE_VA_COL' /

PARENT_TAB TYPE_NAME RETURN_TYPE STORAGE_SPEC

NUM NUM_VARRAY_T

VALUE DEFAULT

(Source: https://hub.packtpub.com/plsql-using-collections/ retrieved in
December 2019)
I believe with all we have covered here, you have enough information to
deal with collections, handle database transactions, and work with PL/SQL,
so now we can move forward and discuss advanced interface methods.

CHAPTER 7:

ADVANCED INTERFACE METHODS

Oracle has become the most flexible database manager because it is
compatible with a large array of application clients. External routines allow
for communication between applications and the database because these
other languages still have something to add. There are many cases where
we need to call a non-PL/SQL program from PL/SQL. To solve this, Oracle
offers eternal routines. In this chapter, we are going to focus on external
routines and how to execute external applications from PL/SQL.

External Routines
Like I said, external routines allow us to run applications that were written
in another language to be used in the PL/SQL environment. Through them,
we can work with Java, C, C++ or another application by invoking it with
PL/SQL. Such applications are called external programs. The most common
place we see this is in program development environments that adhere to
the client’s uniformity and that of the API. As soon as the external routine is
published we can work with it through PL/SQL.
Before diving into the methodology, we need to take a look at a few
structural components of Oracle which support external routines:

1. The extproc method represents the entire architecture. It is the
process that receives requests from Oracle listeners and then runs
the external program. The method loads all DLLs, processes
arguments it receives from running the program, and transmits it
back. It is the most important component in the structure.

2. The shared library is the way all external programs need to be
executed inside PL/SQL. In Windows-based systems, the shared

library will present itself as DLLs; in Unix and Linux systems the
files will have the .so extension. The language that the library
uses has to allow the shared library to be called from languages
like C, C++, Visual Basic, COBOL, and FORTRAN. Inside the
libraries can exist other programs that can be called in the same
manner, so we can load fewer libraries and access many
programs.

As you know, dynamic linked shared libraries are easy to generate and they
are easy to maintain when compared to statically linked elements. In this
case, the shared libraries will be automatically loaded with the extproc
method and external programs found there will be executed right away. The
result will then be sent to the extproc process which then sends it to the
PL/SQL call process.
When working with external routines you need to keep two things in mind:
callouts and callbacks. When an external procedure is called we name this
the callout. A callback is when a statement is invoked by an external
procedure to run the database engine; this statement can either be SQL or
PL/SQL that will appear as an operation to the Oracle server. The structure
of processing components depends heavily on callouts and callbacks.
When a request from an externally performed action is received by the
PL/SQL runtime engine, the call is directed to Oracle common language
runtime connection data (the default TNS service for all external routine
connections). When the database application is installed, all these
connections are configured and managed by the Net configuration assistant.
So, the external routine connections and the data server can communicate
with each other.
The Oracle common language runtime, ORACLR, is a host whose purpose
is to manage external processes that are used to call all non-PL/SQL
applications in PL/SQL. But we can make changes to the default
configurations to improve security. The process works by receiving a key
from the TNS service address and, together with active listeners, they check
the network. This is also how the extproc process is invoked, by the way.
Remember that this process requires a DLL path so that we load a shared

library. Also, all transfers of the external program are handled with the
input arguments, if any are found.
The Net Configurations
As we have noted the extproc process runs between the external programs
and PL/SQL for communications. This process is invoked by a listener and
collaborates with external applications through shared libraries to send the
results back the same route. What I didn’t say is that the activation of the
extproc process is managed by net services. One of these services is
TSNAMES and LISTENER FILES which are configured when the
database software is installed. As I have said, these configurations can be
changed by us manually. Because of this back and forth communication,
security is very important. This is why we need to monitor and change
defaults.
The job of TSNAMES files is to connect target listeners and the database
by providing needed services to names and database connection aliases.
TSNAMES will also accept a request from the client to set up a database
connection. In the default version of the file, as part of installation, we will
have “ORACLR_CONNECTION_ DATA” service created to provide
support to all external services. Here is how that service looks inside:
ORACLR_CONNECTION_DATA = (DESCRIPTION =

(ADDRESS_LIST = (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521)))

(CONNECT_DATA = (SID = CLRExtProc)

(PRESENTATION = RO)))

We have two parameters in the example, KEY, and SID, and their values
vary unlike the fixed values of other parameters. These values need to live
by the values of the matching entries of the listener. The ADDRESS
parameter is there to look for listeners that qualify to receive any internet
procedure call requests through the EXTPROC1521 value. The
PROTOCOL parameter has a fixed value, so it can set up communication
between the external service request and the server. The CONNECT_DATA
parameter is used to initiate the extproc process as soon as the ADDRESS is
matched to an active listener. The PRESENTATION parameter boosts the

performance of the direction server’s response to the client using a remote
operations protocol.
Remember that database connections requests go through listeners. This is
why we have a listener entry file that contains all the information about the
network configurations of the server. The LISTENER file should contain
the LISTENER and the SID LIST LISTENER if you are using the default
version. LISTENER entry’s job is to provide details about the protocol and
the key. SID LIST LISTENER contains all the SID information from
external services that communicated with the listener. It contains SID
NAME, PROGRAM parameters, and ORACLE HOME information. The
first has to always be kept in sync with the SID value in order for it to
recognize the right extproc process. PROGRAM parameters provide
extproxc with program identification capability.
Another important point is that the shared library’s file location needs to be
registered within the SID LIST LISTENER entry. Oracle has various
restrictions on the location of shared libraries. By default, the libraries are
located in the $ORACLE_HOME\BIN\ directory, so any other locations
need to be declared inside the EXTPROC DLLS parameter.
There are only three allowed values in the environment: ANY, ONLY, or the
DLL path. The first options allow us to declare DLL files in various
locations (paths are stated by separating them with colons). This will
provide more security because of the restrictions affecting libraries when
being analyzed by extproc. You can specify the actual DLL without using
the ONLY parameter. This way, DLL files will be accessible in the default
directory. ANY parameter enables all DLLs to be loaded.
Ensure you include a separate listener for the extrpoc process so that you
can isolate the management of the TCP and ICP requests travel through the
SID LIST entries. While you’re in a secure environment, back up the
LISTENERS and TNSNAMES files. It is also advised that you change the
LISTENER and SID LIST LISTENER entries for the SID NAME and TCP
requests. Lastly, introduce two new entries to the LISTENER file:
EXPROC LISTENER and an SID LIST EXTPROC LISTENER. Now let
us look at an example which includes all of this:

LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS = (PROTOCOL = TCP)
(HOST = <<host>>)(PORT = 1521))))

SID_LIST_LISTENER = (SID_LIST = (SID_DESC =(SID_NAME = <<Database Name>>)
(ORACLE_HOME = <<Oracle Home>>))))

EXTPROC_LISTENER = (DESCRIPTION_LIST = (DESCRIPTION = (ADDRESS =
(PROTOCOL = IPC)(KEY = <<extproc key>>))))

SID_LIST_EXTPROC_LISTENER = (SID_LIST = (SID_DESC = (SID_NAME
= CLRExtProc)

(ORACLE_HOME = <<Oracle Home>>)

(PROGRAM = EXTPROC1521)

(ENVS= "EXTPROC_DLLS=[ONLY | ANY | (DLL path)]")))

(Source:
https://docs.oracle.com/cd/B12037_01/network.101/b10776/listener.htm
retrieved in December 2019)
Remember that we need to recreate the original service, so it can inherit all
the modifications for a new listener.
External procedures come with many benefits. They put us in a position
where we can exploit features of other programming languages to make our
tech more flexible, adaptable, and optimized. It also makes client logic
reusable because the server-side external applications are shared between
users of the database (shared by all of them). The client will also benefit
from increased performance because we have a computational task running
on the server instead of the client, saving a lot of resources. It is a better
experience overall, for everyone involved.

External Programs
Oracle has expanded its support for external applications written in various
programming languages, like C++ or Java. We saw how, through an
external procedure, the processing is performed. In this section, we will
discuss the development stages we need to go through to execute a program
written in C using PL/SQL.
The first step is obvious—you write the C-based program and compile it.
You then copy the code file and add it to the default Oracle directory we

mentioned in the previous section. We make the DLL using the C compiler
and configure the Oracle network service. Now, we need to generate
PL/SQL library object from the DLL and create a call specification so that
we can publish the external program. Remember the programming language
should be specified, as well as the library name, the external application's
method, and all the parameters that need to be mapped. Once this is done
we can test the application by running it. Of course, this is a simplified
overview, and depending on your project there may be extra steps and other
considerations. We will talk about these stages in detail soon.
As you know, when we’re in a secure program, the client separates string
utility methods from data layers. In our example, we will use a tiny program
to transform the case of a string input from lowercase to uppercase.
Let’s first illustrate creating and compiling an application. Our program is
CaseConvert.c and it will accept two inputs and return their sum.
#include<stdio.h>
#include<conio.h>
char ChangeCase(char *caps)
{

int index = 0;
while (caps[ind])
{

caps[index] = toupper(caps[index]);
index++;

}
return caps;
getch();

}
(Source: https://codescracker.com/c/program/c-program-convert-uppercase-
into-lowercase.htm retrieved in December 2019)
As long as the code file is writable, you can place it in any location on the
server. In most real-life scenarios the standard process involves saving the
file to the operating system. For the example’s sake, we are going to save it
at C:\Examples\C\. Remember that the compilation process is very
important when it comes to assessing if the program is viable. After
compilation, we have CaseConvert.o as a compiled module. It will not be

placed in the same location as the initial file. Now, we generate the shared
library for the program. We create it with “gcc” like so:
C:\Examples\C>gcc -shared CaseConvert.c -o CaseConvert.dll

Ensure that the DLL uses the same path as the code file and it is found in
the LISTENER file. Now we are going to configure the Oracle network
service and match configurations as we said in the last section. To verify
that a KEY value is found under the ADDRESS parameter, case sensitivity
has to be followed. Also, the SID value in the CONNECT DATA parameter
under the TNS service must match the SID_NAME in the SID list listener.
Finally, the DLL path should be perfectly mapped, so we can create the
PL/SQL library object.
The library object will function the same as a database alias that stands for
the location of the shared library, which all subprograms will have access
to. Any user will be able to create a library as long a privilege is given to
them. With that said, let’s take a look at the syntax:
CREATE [OR REPLACE] LIBRARY [Library name]

[IS | AS] [DLL path]

AGENT [Agent DB link, if any];

The DLL path is going to the DLL’s location on the server. Note that an
Oracle server will not perform any verification to confirm that the file exists
inside the syntax. Below we are creating the library:
/*Connect as SYSDBA*/

CONN sys/system AS SYSDBA Connected.

/*Grant the CREATE LIBRARY privilege*/

GRANT CREATE LIBRARY TO ORADEV;

(Source: https://docs.oracle.com/database/121/ADMQS/GUID-
DE8A79BD-FAE4-4364-98FF-D2BD992A06E7.htm#ADMQS0361
retrieved in December 2019)
Now, we should publish the external program using a call specification. A
wrapper method will be generated to call the external procedure from the
database. The library object will be used as a reference for the DLL which
holds the application in the form of a linked module. The program method

will be found inside; it needs to have the same name as what we used inside
the program. The parameter will be mapped based on compatibility between
C programming language and PL/SQL. For instance, an integer will be
mapped as a NUMBER.
It's worth mentioning that the wrapper method is what we refer to when we
say call specification. We use it when we publish the external applications,
but it has several purposes.

1. It allows communications between C and the database engine.
2. It dispatches the application.
3. It manages memory and maintains the database.

Another amazing thing about it is that it can be used as a standalone
function, package, or procedure. Its object type depends on the structure of
the program. Here’s how it looks:
CREATE OR REPLACE FUNCTION [Name] [Parameters]

RETURN [data type] [IS | AS] [call specification]

END;

(Source:
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58236/10_procs.ht
m retrieved in December 2019)
We can connect the specification to other procedures. Here’s how that
would look:
CREATE OR REPLACE PROCEDURE [Name] [Parameters] [IS | AS]

[Call specification] END;

The functions of the call specification are to connect all the libraries' details
with the programming language and the external program. This forms a call
to a subprogram that can be a function, package, subprogram, or procedure.
Here is how a general call specification looks:
AS LANGUAGE C [LIBRARY (library name)] [NAME (external program name)]

[WITH CONTEXT] [AGENT IN (formal parameters)]

[PARAMETERS (parameter list)];

(Source:
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58236/10_procs.ht
m retrieved in December 2019)
Briefly, let’s look at the elements in this code:

1. We have LANGUAGE C which is used to declare the language of
the applications. In our example that language happens to be C,
but it can be C++ or another language.

2. We have LIBRARY which is our database library object.
3. We have NAME which tells us the name of our external program.

Remember that the name has to be case sensitive.
4. We have WITH CONTEXT which is needed to pass context

pointers to the invoked program.
5. Last is the number of formal parameters sent to the specifications,

and other parameters that represent the mapping between
programming language C and PL/SQL.

Now, let’s code a call specification:
CREATE OR REPLACE FUNCTION

F_CASE_CONVERT (P_STRING VARCHAR2)

/* Declare the RETURN type in compatibility with the external program*/

RETURN VARCHAR2

/*Declare the external program's programming language*/

AS LANGUAGE C

/*Declare the PL/SQL library object name*/

LIBRARY EXTDLL

/*Declare the external function name*/

NAME "ChangeCase"

/*Declare the parameters*/

PARAMETERS (P_STRING STRING);

(Source:
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58236/10_procs.ht
m retrieved in December 2019)
Now, we have to test it using the PL/SQL block:
SQL> DECLARE

/*Declare a local parameter. Test data is used to initialize it*/

l_str VARCHAR2(1000) := 'oracle pl/sql developer';

BEGIN

/* Call the function and display the result*/

l_str := F_CASE_CONVERT (l_str);

DBMS_OUTPUT.PUT_LINE(l_str);

END;

(Source:
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58236/10_procs.ht
m retrieved in December 2019)
We have now combined Oracle and SQL with a C-based program. Java
classes can work as external procedures as well, but they and their source
files will be stored in a different format in the database (the schema items).
Also, the classes will need to be processed on the logical side instead of the
user interface. This shows us that applications that bring simple data
computing are not the best programs to connect to Oracle.
For our sake, code written in Java is easy to call from PL/SQL and
minimizes network requirements on the client-side. It also improves logic
distribution through all layers, diminishing redundancy in the code.
One of the reasons Java is better at this is because it has no dependency on
shared libraries. This does not mean it has no libraries. Java has a sort of a
library called Litunit, but unlike C, during the invocation, it gets
automatically loaded and run. This makes sense; Java is a native section of
the Oracle database. The extproc agent isn’t needed to handle all
communication between Oracle and Java, because of the Java Virtual
Machine which is already a part of Oracle. While Java integration is easier,

applications written in C will perform better than those written in Java
when PL/SQL is involved.

CHAPTER 8:

LARGE OBJECTS

You have probably seen by now that managing data is not as easy as it
seems in theory. You always have to be thinking about several things at the
same time – things like security, data integrity, the right storage system, and
support for various forms of data. To make things worse, software
development is growing at a rapid pace, and with it a need to handle large
amounts of binary-based data. Before large objects, LOB, Oracle had to
handle large amounts of data with LONG and LONG RAW data.
There are many restrictions one faces when dealing with LONG data types
because they require things like stable storage systems. So to avoid
headaches, LOBs were created. Large unstructured binary is handled as
BLOBS and large character-based large files are CLOBS. There are also
BFILE data types that represent the location of dependent binary files. We
are going to explore all these large files to gain a better understanding of
them. You should be aware that large objects come in many forms; they can
be a system-based physical file or a file on the OS like a document or
image. With that said, let's begin looking at these data types.

LOB Data Types
Because working with LONG and LONG raw became cumbersome for
database developers, a need arose for a large and stable data type. Here are
a few of the problems that were faced by developers:

1. Tables weren’t able to contain a single LONG or LONG RAW
column and data had to be deposited inline with the record. This
means dumping the same segments frequently.

2. We also could only store 2GB of information in LONG and
LONG RAW columns. Considering the amount of data we need
to handle today – an amount in terabytes – that is very small.

3. LONG data types only supported sequential data access. Also,
other restrictions resulted from association with this data type. For
instance, single-column specifications mean we can't rely on
indexing which leads to compatibility problems.

So when LOB data types were introduced, these issues were resolved, and
LOB data was divided into CLOB, BLOB, BFILE, and NCLOB. All of
these data types follow a stable storage system and they can be accessed at
random.
Here are more of their features:

1. LOBs can store a maximum of 128 TB worth of data, which is
mind-bogglingly large when compared to 2GB.

2. LOBS can be stored in separate sections or different segments of
the table.

3. They support national character sets, and they come with the
ORACLE database management systems package for LOBs to
perform LOB-specific operations.

You can see why when LOBs were introduced they became very popular,
while their counterparts became obsolete. But we shouldn’t think that old
data types are no longer useful—they can still be found inside dictionary
views and are often used to deposit free-text data. Oracle has continued to
support them even when LOBs are better.
You should know that LOB data, once stored in the database, becomes
internal to that database. This means a column of LOB data types is
incorporated within the table with a LOB value that is made part of the
database. The PL/SQL variable of LOBs is accessed through the PL/SQL
block, but CLOBs, BLOBs, and NCLOBs remain internal Oracle data
types.
Internal LOBS can be used to declare the type of column or the attribute of
a specific object type. Remember that in the PL/SQL block, internal data
types are used as local memory variables; in this case, they can be either

temporary or persistent. That cauterization is easy to understand at this
point. The LOB information stored inside a table is a persistent LOB,
meaning it can be used in a variety of operations involving transactions and
selections. On the other hand, temporary internal LOBs are specified and
accessed only through the PL/SQL block.
An external LOB is a complex file. An external LOB data type is used to
store the locator value instead of storing the actual LOB data. The file can
be found on an OS location but it is not a physical part of the database.
External LOBS are supported by the BFILE data type. They follow
referential semantics to access any database-dwelling external object. This
means they cannot be a part of transactions occurring in the database.
It is worth mentioning that LOB structures can be divided into two
components: a "what" and a "where." The "what" is the value of the LOB,
and the "where" is the locator component. These two elements form the
architecture of a LOB.
The value is the larger file that is loaded to the database, and the locators'
job is to lead to the location of the file- it is essentially the pointer because
it tells us where the file is. The locator is always stored inline with the table
regardless of where the value is stored. When LOB data is added, a
dedicated column will contain a locator element which will lead to the
location of the value. The value is stored in the LOB section and can be
deposited in various table spaces. To reiterate, the internal LOB section
contains both the locator and value, while external LOBs only contain a
locator that points to the external value.

BLOB, CLOB, NCLOB, and BFILE
I’ve mentioned that there are three types of internal LOB types. Now let us
look at them briefly below.

1. BLOB is a binary object data type that is used to store binary files
like images, videos, and PDFs. It is similar to LONG RAW data
but without the restrictions that plague LONG Raw data as we
have already established.

2. CLOBS are LOB data types that are used to store character data
in a character set format. CLOBs are not easily compatible with

sets of characters that have an established length. You can think of
them as being equivalent to LONG data types, but without the
restrictions.

3. NCLOBs are similar to CLOBs but their difference lies in their
compatibility. NCLOBs offer support for storing multibyte
character set data instead of single-byte data alone, and they can
also function with character sets with variable width.

In addition to these data types, we have the BFILE data type. It is used to
determine and maintain the reference with an externally located file. The
value of the BFILE is a NULL element for each BFILE attribute. However,
the locator is different and it contains information that points to the larger
file data.
The data file will be externally somewhere – it can be on a solid-state drive,
CD, or the operating system itself. BFILEs contain read-only data so they
cannot be involved in data operations and database transactions. So what
will happen if we delete a BFILE? The locator will be dropped and
removed from the references, but the file data itself will still exist. Note that
the locator always needs to be secure because unauthorized access can lead
to big problems. You should secure the location of the file to the server
machine and it is recommended you use a timeout system that limits
reading the BFILE data. Also, certain processes can be dealt with from the
operating system file, such as the management of access permissions,
storage space, and more.
PL/SQL variables of CLOBs and BLOBs behave like they are temporary
LOBs. These variables are used in designated large object-level processes,
so they are stored inside a temporary tablespace. If the temporary object
appears in the database in the form of a column value, it is seen as an
internal LOB. It's important to be aware because temporary LOBs need to
be released as soon as the operations they rely on are finished. When that
happens the locator will be invalid.

Creating Large Object Types
Just like with handing other data types, table columns that are reserved for
storing large data objects have to be declared as LOB data types. We are

going to discuss how LOBs are handled and how to create LOB table
columns.
The first important Oracle element is the directory, which we need to access
files hosted on the operating system. It gives us an interface version of the
file's location path in a form of a directory item. These directories are
generated by DBA and they give read and write privileges for every user
that has access to them. You should know that directories are considered to
be non-schema objects, but they can be used as a form of a security
container for various files stored on the client or the server. Here's how to
create a directory:
CREATE DIRECTORY [DIRECTORY NAME] AS [OS LOCATION PATH]

See how the creation process does not involve the validation of a location
path on the operating system? This is because a directory can also be
generated for a path that doesn't exist. For instance, we can do something
like this:
/*Connect as SYSDBA*/ SQL> CONN sys/system

AS SYSDBA Connected.

/*Create directory for Labs folder located at the server machine*/

SQL> CREATE DIRECTORY MY_FIRST_DIR AS 'C:\Labs\';

/*Create directory for Labs folder located at the client machine (ORCLClient)*/

SQL> CREATE DIRECTORY MY_CLIENT_DIR AS '\\ORCLClient\Labs\';

Now we can set the privileges for the created directory in the following way:

SQL> GRANT READ, WRITE ON DIRECTORY MY_FIRST_DIR TO ORADEV;

(Source:
https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_5007.
htm retrieved in December 2019)
Now, let’s set up a table that will contain a LOB:
CREATE TABLE <table name>

(Column list) [LOB (<lobcol1> [, <lobcol2>...])

STORE AS [<lob_segment_name>]

([TABLESPACE <tablespace_name>]

[{ENABLE | DISABLE} STORAGE IN ROW]

[CHUNK <chunk_size>]

[PCTVERSION <version_number>]

[{ CACHE | NO CACHE [{LOGGING | NOLOGGING}]| CACHE READS [{LOGGING |
NOLOGGING}]}] [STORAGE {MINEXTENTS | MAXEXTENTS}] [INDEX]

[<lob_index_name>] [physical attributes] [<storage_for_LOB_ index>]])]

(Source:
https://docs.oracle.com/cd/B28359_01/appdev.111/b28393/adlob_tables.ht
m#i1012988 retrieved in December 2019)
Now, let us discuss what we did there:

1. We have a LOB data type storage clause which is optional. Then
we have the large object segment name which can be declared for
the data type column of the table. Know that this section of the
table will have the same name as the LOB segment section.

2. Then we have the TABLESPACE which we need for storing the
target tablespace for the LOB column.

3. The enable disable STORAGE IN ROW expression guarantees
the inline and the out of the line storage of LOB data within the
table.

4. Then CHUNK is added to the size of the LOB data type
information sections (or chunks). It is followed by caching and
logging features.

5. We have STORAGE which is required to provide an extent
declaration for the storage clause.

6. Then we have the index which gives the LOB index specification.
The table below will store an employee’s ID, a text document, and an
image. See the LOB specifications, index, and the clause that declares
inline and out of line storage:
CREATE TABLE EMP_LOB_DEMO (EMPID NUMBER, DOC CLOB, IMAGE BLOB) LOB
(DOC)

--LOB storage clause for DOC STORE AS LOBSEGMENT_DOC_CLOB (CHUNK 4096 CACHE
STORAGE (MINEXTENTS 2)

INDEX IDX_DOC_CLOB) LOB (IMAGE)

--LOB storage clause for IMAGE STORE AS LOBSEGMENT_IMG_BLOB (ENABLE STORAGE
IN ROW CHUNK 4096

CACHE STORAGE (MINEXTENTS 2)

INDEX IDX_IMAGE_BLOB) /

(Source:
https://resources.oreilly.com/examples/9781849687225/commit/0973cbe59
b11a29341fd6228d2474e19f1cf7a18?expanded=1 retrieved in December
2019)
The metadata of the LOB is put inside the USER LOBS dictionary view.
Also, the LOB data section was generated for the LOB data column found
in the table.

Managing Large Objects
In the LOB data type management system we have interaction with the
loading interface, various data manipulation methods, and selection types.
As I have said, internal LOB data types include CLOB or BLOB data type
columns that interact through various interfaces, like the LOB database
management system native to Oracle. In PL/SQL, LOB data is managed
through the LOB database management system by default because the
system offers all kinds of subprograms needed to manipulate and extract
LOB data.
There are a few recommendations for managing internal LOB data types:

1. First, the LOB column should be initialized as NULL using the
EMPTY BLOB or CLOB functions. Then we can populate the
CLOB using a text file through PL/SQL, or directly with SQL. On
the other hand, the BLOB is loaded through the PL/SQL.

2. For a majority of operations and processes you should use the
database management system LOB module.

3. You can modify LOB data with an UPDATE statement or by
using subprograms included in the LOB database management

system.
You should know that a BFILE is also a LOB data type but it is not secured,
which means it is vulnerable to threats. It is not secure because it is located
externally. However, access to it can be controlled from the PL/SQL block
by manipulating the directory object.
Remember that you can modify user privileges in the directory location so
that a select few can write data and others will have reading privileges.
Working with directing objects, we can make the database allow additional
security layers for BFILEs once the aforementioned security measures are
taken. We can secure an operating system file in a way that prevents anyone
from accessing it or changing it. This would mean that the BFILE data
needs to be populated the same way as internal LOBs, while processes and
operations are handled by the LOB database management system. Know
that in a session a user can only open a certain number of files.
It is worth mentioning the session-level static initialization parameter is the
one that is charged with dictating how many BFILEs a user can open in one
session. By default, a user can open ten files, but the parameter can be
changed inside the spfile.ora file. When that number is reached, you will
not be allowed to open new files. You use the ALTER SESSION
instructions to change the parameter's value:
/*Connect as SYSDBA*/

Conn sys/system as sysdba Connected.

/*Alter the session to modify the maximum open files in a session*/

ALTER SESSION SET SESSION_MAX_OPEN_FILES = 25 /

(Source:
https://resources.oreilly.com/examples/9781849687225/commit/0973cbe59
b11a29341fd6228d2474e19f1cf7a18?expanded=1 retrieved in December
2019)
In the example, we have changed that number to 25, so you will be able to
open 25 files per session.
As I have mentioned, BFILEs are managed like internal LOB data types.
The DBA handles most security at operating system and database levels,

while a programmer writes programs that will work with the LOB to
populate the locator in the table column. It also handles the file system
externally by creating a directory object within the database, which will
control access to the directory itself. Remember that the BFILE column will
only be initialized when we use the “BFILENAMER” function. The
function’s role is to set a new reference to the file at the location it exists.
FUNCTION BFILENAME(directory IN VARCHAR2, filename IN VARCHAR2) RETURN BFILE;

In the previous example, the directory had a valid database directory name
as well as a file with a valid filename stored in the directory. We used the
functions to return the locator, so we can assign it to an appropriate BFILE
column. It is done by using the INSERT or UPDATE statement. All
external files are accessed in read-only mode when using BFILEs. Although
you cannot change them, the locator can be manipulated to point us to
another target.

CHAPTER 9:

TUNING AND COMPILING

Regardless of the programming language you use, compilation is one of the
powerful predictors of how well your application is going to run. This is
why Oracle offers two compilation methods. On top of this improvement,
Oracle has introduced new tuning techniques to improve the performance of
our databases. These optimizations guarantee that code logic will be
boosted. In this chapter, we are going to look at these aspects, and how they
affect PL/SQL performance. Other topics will include compiler
enhancements, real native compilations techniques, and more.

Compilation Methods
A compiler's job is to translate code written in a high level, abstracted
language into code that your machine can understand. Once a database is
installed this process is transparent. Until recently, Oracle used an
interpretable method of compiling the database application units. When the
compiler runs in interpreted mode it will translate PL/SQL program into
machine code by storing it inside the database and interpreting it when
invoked. A newer version of Oracle has introduced native compilation. It is
okay to ask yourself if this is better; we will think about that a bit.
When Oracle introduced the new code compilation method, it also made
changes to the native compilation method by borrowing from the C
compiler. It means that the native compiler uses the C compiler to translate
PL/SQL to C, creating a DLL in the process and storing it in the catalog of
the database. Remember that native compilation will support any RAC
environment; previous compilations types didn’t do this.

Backing up the database, the generated libraries are stored into the file
system designated to operating system utilities. The file system operates
with various initialization parameters managed by the DBA. Throughout
the years, compilation method has relied on the same techniques too, but
the main difference is how the code is being scanned. In interpreted
compilation, code scanning happens in the runtime phase. In native
compilations, code scanning happens outside the compilation process. This
little tweak brings a sizable runtime performance boost, notwithstanding the
size of the code and how it is applied.
So, it is not that the performance of a natively compiled program will be
better than that of an interpreted compiled program. Many factors determine
whether a program will perform better than another one. With that said, the
PL/SQL compilation relies on the C compiler to create C code and then put
it in a shareable library. The fact that native compilation is widely used
doesn’t mean the C compiler is not reliable. Many production level
databases have not been implemented because of licensing issues, and
people just like to avoid pesky admin until they have to. Native
compilations make it a lot easier to deal with compilation parameters
because they require only a few settings.
Oracle’s real native compilation will translate PL/SQL code, put it in
shareable libraries, and put the native machine code inside the system
space. Just know that when the application is called the first time, machine
code will be stored inside the shared memory. This is because from there, it
can be called repeatedly without hiccups. Let’s look at the advantages of
real native compilation:

1. It gets rid of the need for a C compiler.
2. Machine code is inside the systems tablespace. Since shareable

libraries are not part of the process there isn't a need for file
systems libraries.

3. Configuration is done through one parameter, namely the
“PLSQL CODE TYPE”.

4. In INTERPRETED mode, PL/SQL code is compiled to its version
of machine code. In runtime it is executed by the interpreter. In

native mode, the PL/SQL is changed into machine code during
runtime, and it is executed by the database server.

5. Runtime performance is improved. It is faster than the C native
compilation process.

6. Real native compilation is used for PL/SQL programs alone
because an application written in SQL alone will not offer the best
performance. Real native compilation comes with the option of
setting either at the system, session, or object level.

Choosing a compilation type will depend on the DBA. You shouldn’t
wonder much about whether to use interpreted or native compilations as
those decisions will lie with the database development administrator.
During the development cycle, there will be many stages that have their
own unique demands and requirements. The program is often debugged,
compiled, tested, and the process is repeated. This is why the compilation
process needs to be as fast as possible. As a matter of fact, application units
will compile quickly in interpreted mode because compiled code is
interpreted during runtime.
After we have compiled our application and it is ready, we need it to come
to life. In this case, the application unit execution needs to be fast. Natively
compiled units are executed faster than if using interpreted compilation
code. This means the native compilations mode is best for after the
development stage. So, interpreted code compilations boost the speed of the
compilation process, while the native compilation process boosts the app's
performance. The good news is that all this can be changed according to
your current needs, and according to the development stage you find
yourself in.
Compilation methods come with an intercompatibility system where
different compiled application units can coexist within the same schema.
They can even make calls to each other when needed. These calls will not
have a negative effect on performance.
Usually, as I have alluded to, interpreted compilation mode is chosen over
the native mode in the development phase because of how great the need to
compile and recompile is during multiple tests. In some scenarios, the code

has to be debugged at the optimization level, and the interpreted method
works well with various optimization methods.
Interpreted compilation is also suitable for applications that need to handle
a multitude of SQL statements. This is because the more SQL statements
there are, the more time is needed for interpretation. So the main issue with
native compilation is the interpretation phase-in performed at runtime
affecting performance negatively.
But native compilation is best for after development, like I have said,
because the user of our application will need the app to react fast, which it
will. Native compilations will be used mainly to handle PL/SQ units
because of the procession logic. But once an application contains a huge
number of SQL statements, performance will be reduced, even in the native
compilation. When dealing with application units that don't need to move
between PL/SQL and SQL, the native compilation is the better option.

Tuning PL/SQL Code
Once your database is configured for the best performance, code is the next
thing you turn your attention to because it also plays a major part in how
well your system will perform. In this section, we are going to focus on
ways to improve your code. Keep in mind these improvements and
optimizations in the development phase. You shouldn’t wait until later to
make these changes as that will be more complicated and you might make
more mistakes. Here are the things you will need to improve in your code:

1. Identifying the correct data type by avoiding casting.
2. Implementing modular programming techniques to spread the

workload through modularization.
3. Use the FORALL function to bind collections and improve

operations. Tune conditional statements by placing them in
logical sections.

4. There are other areas where your code can benefit from tuning
other than the ones listed here.

We have established that SQL is an interactive database language and that
PL/SQL is its procedural extension. We often debate both when it comes to

performance techniques to implement. Keep that in mind when we look at
what makes either one of them a strong tool.
SQL is probably the most used language when it comes to databases and
dealing with data. SQL’s extension offers more flexibility so we can handle
a myriad of real-world problems. Remember that SQL statements require an
SQL engine to be executed, just as PL/SQL requires its own engine. When
we have an SQL statement inside a PL/SQL application, that context is
moved to the SQL engines. This switching is what leads to a reduction in
performance, so having a large number of SQL statements inside a PL/SQL
program makes the application slower and inefficient.
The problem is, we won't be able to perform in certain scenarios without
using SQL. This means SQL statements are a must in some circumstances.
To avoid a loss in performance, we can do the following things:

1. Not putting SQL statements in a loop or any iterative structure.
This means each time the loop runs the switch happens. So avoid
it if you can.

2. Use an API to perform all the non-PL/SQL transactions. A
subroutine can also be defined to handle transactions

SQL statements inside an executable can also be optimized as single
procedures. The PL/SQL runtime engine can perform type conversion of
values; for instance, we can assign a numeric value to any string variable,
but we can’t do it the other way around. We can also have a data value
assigned, but we can’t assign the string value to it.
Earlier we learned that the Oracle server manages typecasting. A process
like this increases the amount of processing, leading to an increase in work
time. For this reason, a variable needs to be declared to the correct data type
to handle the value we assign to it. Oracle comes with various functions to
improve typecasting. We can use "TO NUMBER", "TO CHAR" or "TO
DATE" to label a value’s conversion. So imagine we have a PL/SQL block,
and we have a string variable and a numeric assigned to it inside a loop. In
this situation, the server will figure out the type conversion of the assigned
numeric value. Let's take a look at some code:
/*Set the PLSQL_OPTIMIZE_LEVEL to 1*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1 /

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE L_STR VARCHAR2(10);

L_COUNT NUMBER :=0; BEGIN

/*Capture the system time before loop*/

L_COUNT := DBMS_UTILITY.GET_TIME;

/*Start the loop*/

FOR I IN 1..1000000 LOOP

L_STR := 1; END LOOP;

/*Print the time consumed in the operations*/

DBMS_OUTPUT.PUT_LINE('Time

Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME - L_COUNT));

END; /

(Source: https://www.oracle.com/technical-resources/articles/database/sql-
11g-plsql.html retrieved in December 2019)
All we need to do is assign a string value to the string variable.
/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE L_STR VARCHAR2(10);

L_COUNT NUMBER :=0; BEGIN

/*Capture the system time before loop*/

L_COUNT := DBMS_UTILITY.GET_TIME;

/*Start a loop which assigns fixed string value to a local string variable*/

FOR I IN 1..1000000 LOOP

L_STR := 'A';

END LOOP;

/*Print the time consumed in the operations*/

DBMS_OUTPUT.PUT_LINE('Time

Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME - L_COUNT)); END; /

(Source: https://www.oracle.com/technical-resources/articles/database/sql-
11g-plsql.html retrieved in December 2019)
In many cases we will need to declare a number of NOT NULL variables in
our applications to protect the program units from various NULL values in
the application. The server deals with a lot of work, performing NO NULL
tests before assigning every variable. This affects performance in a bad
way. It works by assigning a statement result to a variable that is temporary,
then the variable will be tested. If a true value is returned, the block will be
terminated because of exception error. If it doesn’t, the application moves
forward. This tells us that a variable must never be declared using NOT
NULL constraints. Let’s look at an example:
/*Set PLSQL_OPTIMIZE_LEVEL as 1*/

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL=1 /

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Initiate the PL/SQL block*/

DECLARE L_NUM NUMBER NOT NULL := 0;

L_A NUMBER := 10;

L_COUNT NUMBER;

BEGIN /*Capture the start time*/

L_COUNT := DBMS_UTILITY.GET_TIME;

/*Initiate the loop*/

FOR I IN 1..1000000 LOOP

L_NUM := L_A + I;

END LOOP;

/* Process the time difference */

DBMS_OUTPUT.PUT_LINE('Time

Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME - L_COUNT)); END; /

Time Consumed: 17

(Source:
https://docs.oracle.com/cd/E18283_01/appdev.112/e16760/d_output.htm
retrieved in December 2019)

Another alternative is this:
/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE L_NUM NUMBER;

L_A NUMBER := 10;

L_COUNT NUMBER;

BEGIN

/*Capture the start time*/

L_COUNT := DBMS_UTILITY.GET_TIME;

/*Start the loop*/

FOR I IN 1..1000000

LOOP L_NUM := L_A + I;

IF L_NUM IS NULL THEN

DBMS_OUTPUT.PUT_LINE('Result cannot be NULL');

EXIT; END IF; END LOOP;

/*Compute the time difference and display*/

DBMS_OUTPUT.PUT_LINE('Time Consumed:'||TO_CHAR(DBMS_UTILITY.GET_TIME -
L_COUNT));

END; /

Time Consumed:12

(Source:
https://docs.oracle.com/cd/E18283_01/appdev.112/e16760/d_output.htm
retrieved in December 2019)

As you can see in the second example, less time is spent on the code. We
can see, in this example, how much performance we lose by having NOT
NULL constraints.
We also have another data type we need to consider, the PLS_INTERGER.
This data type is part of the number category and it was added with Oracle
version 7 with the purpose of boosting processing speeds when dealing with
complex arithmetic operations. It is the only data type that relies on native
machine calculations instead of the C library. This is what allows it to
perform so quickly. For instance, a 32-bit sized data type can contain values
between -2147483648 and 2147483647. Let's take a look at an example that
shows us this difference in performance. We are going to compare the
NUMBER type to the PLS_INTEGER type.
/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/ DECLARE

L_NUM NUMBER := 0;

L_ST_TIME NUMBER;

L_END_TIME NUMBER; BEGIN

/*Capture the start time*/

L_ST_TIME := DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/

FOR I IN 1..100000000 LOOP

/*The mathematical operation increments a variable by one*/

L_NUM := L_NUM+1;

END LOOP;

L_END_TIME := DBMS_UTILITY.GET_TIME();

/*Display the time consumed*/

DBMS_OUTPUT.PUT_LINE('Time taken by NUMBER:'||TO_CHAR(L_END_TIME -
L_ST_TIME));

END; /

Time taken by NUMBER:643

(Source:
https://docs.oracle.com/cd/A97630_01/appdev.920/a96624/a_samps.htm
retrieved in December 2019)

/*Enable the SERVEROUTPUT to display block results*/

SET SERVEROUTPUT ON

/*Start the PL/SQL block*/

DECLARE L_PLS PLS_INTEGER := 0;

L_ST_TIME NUMBER;

L_END_TIME NUMBER;

BEGIN

/*Capture the start time*/

L_ST_TIME := DBMS_UTILITY.GET_TIME();

/*Begin the loop to perform a mathematical calculation*/

FOR I IN 1..100000000 LOOP

/*The mathematical operation increments a variable by one*/

L_PLS := L_PLS+1; END LOOP;

/*Display the time consumed*/

L_END_TIME := DBMS_UTILITY.GET_TIME();

DBMS_OUTPUT.PUT_LINE('Time taken by PLS_INTEGER:'||TO_CHAR(L_END_ TIME -
L_ST_TIME));

END; /

Time taken by PLS_INTEGER:196

(Source:
https://docs.oracle.com/cd/A97630_01/appdev.920/a96624/a_samps.htm
retrieved in December 2019)
That is a huge difference in time. The NUMBER data type took three times
longer to perform the same operation. It is a perfect example of how

changing a data type to an optimized type can lead to an increase in
performance. So if something feels funny to you, always look for options.

CONCLUSION

I want you to know that this is only the beginning of the journey. So keep
on reading, practicing, building projects, and collaborating with others to
grow your skills and knowledge. You will not regret it. Anything that grows
you as a person is worth all the effort. We live in a world where data is
everything, and we need capable people to store it and manage it properly.
You are one of those people.

REFERENCES

Casteel, J. (2014). Oracle 11g: Sql. Australia: Brooks/Cole.
Duckett, G. (2016). Sql programming: questions and answers. Place of

publication not identified: CreateSpace Independent Publishing
Platform.

Malik, Goldwasser, M., & Johnston, B. (2019). Sql for data analytics:
perform fast and efficient data analysis with the power of Sql.
Birmingham etc.: Packt publishing.

Molinaro, A. (2011). Sql cookbook. Beijing: OReilly.

	Introduction
	SQL

	Chapter 1: Basics of SQL
	Data and Databases
	The Elements of an SQL Database
	SQL Server

	Chapter 2: Installing and Configuring MySQL
	Downloading, Installing, and the Initial Setup of MySQL on a Microsoft Windows Computer System
	Downloading, Installing, and the Initial Setup of MySQL on a Mac Computer System

	Chapter 3: Getting Started With SQL
	MySQL Screen
	Working With MySQL Databases
	Working With Tables
	Exercise 1
	Viewing Data in a Table

	Chapter 4: Data Types
	SQL Data Type Categories

	Chapter 5: SQL Statements and Clauses
	SQL Statements
	SQL Clauses

	Chapter 6: SQL Expressions, Functions, and Operators
	Expressions
	Operators
	Functions

	Chapter 7: Working With Constraints
	Commonly Used SQL Constraints
	Adding Constraints
	Altering Constraints
	Exercise 2

	Chapter 8: Joins, Unions, Ordering, Grouping, and Alias
	JOINS
	UNION
	Order
	Group By
	Alias

	Chapter 9: Stored Procedures
	Chapter 10: Views, Index, Truncate, Top, Wildcards, and Triggers
	Index
	Truncate
	Top
	Wildcards
	Triggers

	Chapter 11: Pivoting Tables in MySQL
	Chapter 12: Clone Tables
	Chapter 13: Security
	Chapter 14: SQL Injections
	Chapter 15: Fine-Tuning
	Chapter 16: Working With SSMS
	Downloading SQL Server Management Studio (SSMS)
	The Basics and Features of SSMS

	Chapter 17: Database Administration
	Maintenance Plan
	Running the Maintenance Plan
	Backup and Recovery
	Database Backup
	Attaching and Detaching Databases

	Chapter 18: Deadlocks
	Chapter 19: Normalization of Your Data
	How to Normalize the Database
	Database Normal Forms

	Chapter 19: Real-World Uses
	Conclusion
	References
	Introduction
	Chapter 1: Data Access with ODBC and JDBC
	ODBC
	JDBC

	Chapter 2: Working with SQL and XML
	The Relationship Between XML and SQL
	Mapping
	SQL Functions and XML Data
	Converting XML Data Into SQL Tables

	Chapter 3: SQL and JSON
	Combining JSON with SQL
	Functions

	Chapter 4: Datasets and Cursors
	Cursor Declaration
	Fetching Data

	Chapter 5: Procedural Capabilities
	Compound Statements
	Managing Conditions
	The Flow of Control Statements
	Stored Procedures and Functions

	Chapter 6: Collections
	Overview
	Associative Arrays
	Nested Tables
	Varrays

	Chapter 7: Advanced Interface Methods
	External Routines
	External Programs

	Chapter 8: Large Objects
	LOB Data Types
	BLOB, CLOB, NCLOB, and BFILE
	Creating Large Object Types
	Managing Large Objects

	Chapter 9: Tuning and Compiling
	Compilation Methods
	Tuning PL/SQL Code

	Conclusion
	References

