

C ++

C ++ Basics for Beginners

Table of Contents

INTRODUCTION
Chapter 1: Everything You Need to Know About Computer
Programming

1.1 What is Computer Programming
1.2 Advantages of a Career in Computer Programming
1.3 You Can Learn Computer Programming!

Chapter 2: Why Learn C ++?
2.1 Benefits of C ++
2.2 Why Should We Prefer C ++?

Chapter 3: History of C ++
3.1 Communication with C Programming
3.2 Evolution of C ++

Chapter 4: Features, Uses & Applications of C ++
4.1 Uses of C ++ Programming Language
4.2 Features of C ++
4.3 Real-World Applications of C ++
4.4 Where is C ++ used in industry?

Chapter 5: Top Reasons to Learn C ++
5.1 C ++ Popularity and High Salary
5.2 C ++ in Databases
5.3 C ++ in Web Browsers
5.4 C ++ in Embedded Systems
5.5 C ++ in Operating Systems
5.6 C ++ in Graphics
5.7 C ++ has Abundant Library Support

5.8 C ++ is Portable
Chapter 6: Understanding of Complier & Types of Errors

6.1 Learn About Compiler
6.2 Major Steps of Compiler Execution
6.3 Analysis of Semantic Structure
6.4 Error in C ++
6.5 Syntax Errors
6.6 Logical Error
6.7 Compilation Errors
6.8 Runtime Errors
6.9 Arithmetic Errors
6.10 Resource Errors
6.11 Interface Errors

Chapter 7: Fundamentals of C ++
7.1 Learning C ++
7.2 Standard Template Library
7.3 How Difficult Is It to Learn Programming?

Chapter 8: “Hello World!” application in C ++
8.1 Components of C ++ Program
8.2 C ++ Library Files

Chapter 9: Data Types & Variables in C ++
9.1 Variable Declaration in C ++
9.2 Types of Data in C ++

Chapter 10: Operators in C ++
10.1 There are two kinds of arithmetic operators

Chapter 11: Loops & Functions in C ++
11.1 While Loop
11.2 Do while loop

11.3 What about an Infinite Loop?
11.4 For loop
11.5 Functions in C ++

Chapter 12: Object-Oriented Programming using C ++
12.1 Tips for Real Object-oriented Programming in C ++
12.2 Concepts of Object-Oriented Programming in C ++

Chapter 13: Data Structure Using C ++
13.1 Concepts of Data Structure in C ++
13.2 Linked Lists
13.3 Queue

Chapter 14: Projects in C ++
14.1 Why do developers create project ideas in C ++ rather than
other programming languages?
14.2 Log-in and Registration System
14.3 Banking System Project
14.4 Guess the Casino's Numbers
14.5 Employee Record System

CONCLUSION

INTRODUCTION

C ++ is a computer language that may be put to a multitude of uses—
developed as an extension of the C programming language to include an
object-oriented paradigm, which is derived from the C programming
language. It's a compiled and imperative language at the same time, which
is nice. It’s an intermediate language with the advantage of being able to
develop low-level drivers as well as kernels, desktop apps, games, GUI, etc.
At the same time, programmers are of a higher level. The grammar and
structure of code in the languages C and C ++ are fundamentally the same.

C ++ is indeed a versatile programming language accompanied by a wide
range of capabilities. It may be used to create operating systems, browsers,
games, and a variety of other applications. Procedural, object-oriented, and
functional programming is just a few of the programming paradigms
supported by C ++. Because of this, C ++ is both strong and adaptable. The
most essential thing to remember while studying C ++ is to keep your
attention on the topics. The purpose of learning programming is to improve
your programming skills, which means being more successful at
implementing and designing the latest systems and keeping existing
systems in the long run. C ++ is capable of supporting a wide range of
programming techniques. You may write in any language in the manner of
FORTRAN, C, Smalltalk, and other programming languages.

Each style is capable of accomplishing its objectives while retaining
runtime and space effectiveness. Hundreds of millions of developers use C
++, and it's used in practically every application segment. C ++ is widely
utilized in the development of drivers of devices and other software that
depends on direct hardware manipulation while operating in strict period
limitations. Because it is clean enough to allow for effective teaching of
fundamental ideas, the frequent use of C ++ is for training and researching.
Almost everyone who has worked with a Macintosh computer or a
Windows-based computer has come into contact with C ++ on some level
since the principal UI of both systems is in C ++.

Chapter 1: Everything You Need to Know About
Computer Programming

To get the most of your programming language learning experience, it will
be beneficial for you to first grasp what programming is and how it works,
as well as some of the programming vocabulary involved. A computer on
its own is a pointless piece of equipment. It's nothing more than a collection
of several hardware components integrated into a single device. At this
point, none of the hardware parts, whether they are used collectively or
separately, are useful. This is comparable to the quality of a car that has
been constructed. Is the automobile of any use if the gasoline tank is
empty? Similar to this, we must feed the computer with fuel, in this
instance, electrical power to function properly (Although there were some
new mechanical systems, we're talking about electrical devices here.)

At this stage, a system is effectively nothing more than a jumble of small
electrical switches that can only be turned on or off. This is like with
adequate gasoline and the ability to drive, however, there are no drivers
available to drive. We need a driver who is capable of using the steering
wheel, gears, brakes, and other controls that allow the vehicle to move.
Similar to this, by configuring various switches in various configurations,
we may direct these computers for doing a certain action, such as playing a
movie on the screen or playing music via the computer speakers, or opening
a file, among other things. It is, in other words, nothing more than directing
a computer on how to operate these switches, when to operate them, and
when they should operate. In a nutshell, this is what programming is, in its
most basic form.
The term "programming" is often used to refer to computer programming.
And with that, we arrive at our first and most essential question! Creating
and creating computer programs is the procedure of developing and
designing computer programs. Isn't it a rather obvious explanation? At its
most fundamental level, programming can be thought of as the process of
delivering instructions to a computer to do a task you need - This may
appear to be quite similar to which way you use your computer. Simply
said, the distinction between what you are performing today as a computer
user and what you'll be doing in the future and the instructions are kept
somewhere and may be reused as required, which is what you might be
performing as a programmer. You have engaged in some form of computer
programming if you've ever worked with macros in a software application,
including a processor word and spreadsheet (or any of the myriad other
programs that are macro capable). It is simple like as a set of instructions
that are stored in a text file to perform certain common tasks, such as
backing up a folder containing all computer files, or something more
complicated like a word processor or application used by your computer, it
may require millions of lines of code, programs coming in all shapes and
sizes. We must realize that computers, which are normally made up of
silicon, plastic, metal, and other sticky materials, that allow them to do
amazing things that seem imaginative, cannot imagine themselves. Instead,
they can process information. They do not, however, understand how to
follow instructions. So, what exactly are these commands? It comes to the
level of detail that a computer can comprehend. These must be extremely

precise, detailed, and complete instructions. They should be in a form that
the computer's processor and other components can interpret- which are
little electrical pulses that humans are unable to produce (at least not at this
time). In some respects, a computer program may be compared to a recipe,
a series of instructions that may be followed to achieve a certain outcome.
If you're following a recipe, keep in mind that the directions were written
by a human and maybe a touch wordy, leaving out certain details. The
person is supposed to know what a blender is, where it can be found, how to
set it up, and how to use it. It is also assumed that the human understands
what the terms pour and frothy imply and how to use them correctly, etc. It
is envisaged that the human chef would fill in the gaps. This is impossible
for a computer to do since, other than a few very basic commands, it has no
understanding of what is being spoken. This is accomplished by providing a
means for humans to write instructions that can subsequently be translated
into something that computers can comprehend (or vice versa). In
computing, a programming language is defined as a "method of instructions
writing." It is possible to create computer instructions in a human-readable
programming language and then have those instructions converted into a
language that a machine can comprehend.
The commands that people understand are often referred to as (you guessed
it) code! In the computer world, each line of human-readable code turns out
to be hundreds of complex instructions. This translation is accomplished
through the use of specific software (or a combination of programs) - There
are translators for each computer language, who are referred to as editors or
interpreters. When the translation is completed, the output is saved in a
certain format, such as a file or group of files (or in-memory storage in
some situations), and instructions will be followed by the computer and
(hopefully) perform the desired function each time the software is run.
Despite the common misconception that you must be a genius to build
effective software, almost anyone who knows a computer and is interested
can learn to edit if you want to become a power user. Ordinary people with
special knowledge and skills write most computer software. While
mastering computer programming can be a lifelong endeavor, gaining the
necessary knowledge and skills to be able to perform useful tasks is not
impossible for everyone who understands how to operate a computer and is
prepared to put in a little time or a lot of effort, but is still unable to achieve

1.1 What is Computer Programming
Programming is often identified as coding. It is the skill of instructing a
system to complete a task that you have set out for it to perform.
Programming, in its most basic definition, is the act of writing programs.
It’s simply a set of commands designed to inform the computer systems to
perform each specific task. Depending on its application, a program is also
known as a computer program or a software application. Because a
computer is only hardware, it needs instructions to function. These
instructions are carried out by the computer's central processing unit (CPU).
The process of identifying how to solve an issue is known as programming.
No matter what technique is used to solve a problem — a pencil and paper,
a slide rule, an adding machine, or a computer are all options for solving
requires preparation. According to the definition above, programming is the
process of determining how to solve a problem.
The computer will solve the issue for us in this case. Thus we are not truly
solving the problem. If we solve the issue ourselves, we will not be required
to build a program, and as a result, we will not need a system. Is that not
right? So, why do we require a computer? It's only that we distinguish how
to fix an issue and also how to tell a machine to do it for us, but we are
unable to do it at the speed and precision that a computer is capable of
doing for us. We also get weary and sick with implementing the similar
over and again, but the system could perform the same task zillions of times
with the same speed and precision as the first time without being bored or
exhausted. We may use the easy example of computing the Sum of all even
integers from 1 to 1,000,000 to illustrate our point. Even while this is not
impossible, the time necessary to calculate it as well as the chance of
committing a blunder at some time, the number of resources required,
whether we use a pen and paper or a calculator, as well as other similar
considerations, make it an unattractive alternative. What if, in addition to
this, we need to compute between distinct sets of integers regularly?
Humanly speaking, it is challenging. We can, however, do this in less than 5
minutes by building a program to do it. Meanwhile, we can run the same
program again and over again to do any number of computations, and we
can receive correct answers in seconds by running the same program

repeatedly. For example, I may command that each number be added to the
next by a computer. And then add every following number to the previous
total until we reach the upper limit that has been defined.

Don't worry about the precision of instructions; what you need to realize is
that I can only teach a computer to assist in the solution of an issue if I
understand how to do it myself. This indicates that unless I am aware of the
answer to the issue, it is pointless for me to even attempt to solve one. Let
us consider the case of an on-the-street cab driver who is a newcomer to
town and needs directions. We can't just get in the vehicle and tell him to
take us to Point A as we used to with the previous taxi driver. To ensure that
he gets to his destination safely, we will have to provide him with detailed
directions on how to get there. I can only provide him with travel directions
if I am familiar with them. Unless this is done, it will be a fruitless
endeavor. In the same manner, there is no use in even attempting to develop
a program before you have a clear understanding of how you want to
approach the issue in the first place. To put it another way, programming is

the act of instructing a computer on what to perform. Even though it seems
to be simple, it is quite sophisticated.

There are two things that you will need to keep in mind in this situation:
The most crucial thing to remember about computers is that they do not
communicate in English. Because a computer is a machine, it knows just
two fundamental concepts: on and off. This is because computers are
machines. The idea of on and off is referred to as an on represents one, and
off represents zero in a binary system. Hence the computer understands just
one language, the Binary language, which is composed of 0 and 1. The
second most crucial thing to remember is that your directions must be
EXACT. As previously stated, a computer on its own is a completely
ineffective piece of equipment. It's nothing more than a collection of several
hardware components integrated into a single device.

1.2 Advantages of a Career in Computer Programming
I'd want to share some of the advantages with you pursuing a career in
computer programming, but first, let's take a brief look at what computer
programming is and how it differs from other careers. The term "computer
programming" can be defined in a variety of ways, but to make things as
basic and as useful to our lives as necessary, I'd describe computer
programming as the ability to create computer code to interact with
computers in a language that they recognize so that they can complete
certain jobs for humans. Operating a spreadsheet program, a word
processor, and other comparable tasks are examples of these tasks that
should be completed before using an email program on a daily basis. For
example, before we can use a spreadsheet application, it must first be
loaded and enabled by the computer that is hosting it. As soon as the
application has been loaded and enabled, the computer is referred to as
"running" it. As a result, the duty job of a computer programmer is to write
the instructions that make up a spreadsheet program in a language
understood by the computer. In the majority of cases, this vast collection of
specific instructions is considered to be with a software program or a
program. A significant increase in the number of possible consumers who
want different applications has resulted from the fact that computers are far

smaller and less expensive. They are also much more numerous to count
than they were several decades earlier. What's more, because of the broad
availability of the internet, a large number of these computers are now
linked to one another.

As a result, considering a career in computer programming is something
you should consider. However, it’s not suited for everyone. But, if you do
meet the requirements, you will be able to explore a whole new universe,
with the only limitations being those imposed by your own creative and
imaginative abilities. Listed below are a few of the advantages of choosing
computer programming as a professional path: Computer programmers are
in great demand, which increases their chances of landing a job or staying
in a position if they currently have one in the industry. When working in
this field, you will most likely discover that you have the opportunity of
having flexible working hours. In many circumstances, there is the
possibility of being able to work practically anywhere rather than being
required to travel. We can never entirely avoid politics since we are human,
and the programming area is typically a result-driven setting relatively than
a political one. It has the potential to be a very rewarding professional path.
There will be various opportunities to work on a range of projects with
other like-minded people. If you're retired or want to be, you'll have the
freedom to work on your own for long periods of time and to travel
between different industries depending on your preferences and where you
want to live. We have just scraped the surface of the subject here since there
are other advantages to consider. It's possible to cover some of these topics
in more depth, so keep an eye out. You can learn about computer
programming, one of the most fascinating disciplines on the planet, if you
approach it properly. Programming, in contrast to other key courses in
school, should get a separate treatment. Beginning programmers must have
a thorough grasp of how programming is done and what the fundamentals
of the subject matter are before they can begin. Programming is essentially
the act of instructing a computer to do a job. It's a lot like teaching a child
how to add numbers for the first time.

When programming persons, we often use a variety of languages that the
subject can comprehend, such as English or French. In the same manner,

producing a computer program necessitates the use of computer-readable
programming languages like Java, C, Pascal, and Python. These are written
by humans. Human languages are very complicated, yet because of our
intellect, we can learn how to communicate in them. Computers, on the
other hand, are not very intelligent; the language used to educate them is
quite basic. This is the reason why learning one or more computer
programming languages may be both enjoyable and simple for a human
being like you. Once you have been comfortable with one computer
language, it will be much simpler for you to learn another shortly. Logic is
often regarded as the foundation of every program. It must be constructed
by the resources made available by your programming language of choice.
Preparing the logic must be completed before the actual coding process can
begin. Before you begin the process of building the software, you should
create a flow plan for it or write the algorithm that will govern it. The vast
majority of applications allow you to divide the software into different
roles. These functions must be written in the shortest amount of time
possible with the fewest number of instructions. Ideally, they should be
constructed in such a manner that they may be repurposed regularly. The
incorrect use of syntax is one of the most common causes of programming
mistakes.

The syntax of each command, as well as the integral functions that you
want to employ, may be checked using a variety of applications that offer
the necessary functionality. The lower the number of instructions in a
program, the quicker the pace it may be executed. When it comes to getting
a job completed, we often use sophisticated reasoning. The fact that this
work may be completed quickly and efficiently by using the built-in
features of the programming language is something we were unaware of.
You must be familiar with all of the built-in capabilities offered in the
application to prevent these issues in the future. The usage of proper names
in functions and variables makes the coding process much easier to
complete. The use of illogical variable names will not impair the
functioning of the program, but it will make it more difficult for you to
improve or amend the code after it has been written. Aside from being
familiar with different programming languages, computer programming for
beginners entails becoming acquainted with the recommendations listed

above. If you wish to pursue a profession in programming, you should keep
these considerations in mind at all times. According to the majority of
employment forecasters, computer programming training is one of the most
promising educational paths in terms of future job prospects. A computer
programming education, whether obtained via a standard college degree
program or a certification course, may open numerous avenues for those
looking for work seeking to get work in this continuously evolving
profession. In the science of programming, which is exactly what it is,
developers and inputters work together to create and input a set of
instructions that computers may utilize to operate. They also work together
to solve issues and run logic checks on their code as it runs through the
system.

Nowadays, almost every company makes use of some sort of computer, and
while the role of the computer programmer varies greatly depending on the
sort of business for which he or she works. The position which is always
taken into consideration owing to the great level of responsibility that is
entailed as a professional. Computer programming has evolved significantly
throughout the year's transformation as a result of technological
advancement. Programmers were at the front of this development of this
transformation. At its core, computer programmers are tasked with
informing computer systems on how to reflect by entering a set of data and
algorithms and then making adjustments to those formulae when difficulties
develop. Time and experience requirements for different forms of
programming are different as well.
Simple programs may normally be built in a couple of hours. However,
more complicated programs might take years to finish, depending on the
complexity. In any case, the computer programmer must be fluent in the
programming language and capable of solving issues "on the fly" via the
use of logical reasoning and sequence. A bachelor's degree in computer
science is necessary for most computer programming positions, according
to one of the more popular career websites. However, some skilled
programmers have learned and improved their abilities only through on-the-
job training rather than through a formal education program. Because of the
entry-level education criteria, most programmers are forced to explore new

extensive training options to reregulate keep up with the newest technical
advancements in their industry.

1.3 You Can Learn Computer Programming!
Programming is a skill that almost everyone can acquire. The conditions are
few (like access to a computer), and you don't need to be a mastermind to
be successful. It certainly helps if you're a genius, but you don't need to be
one (although it helps). This chapter tackles some of the objectives you
might want to learn how to program a computer, some things to consider,
and explore a few different approaches to start studying right away! Read
on! There are a variety of reasons why you would wish to study computer
programming, and deciding what you want to achieve with it can help
narrow down your options in choosing a learning path. Perhaps you are
interested in pursuing a career in programming.

In that scenario, you'll want to make sure you're studying material that will
make you more attractive to employers who are looking for programmers.
As an alternative, you may be searching for an interesting pastime to pass

the time, in which case you can be a little more casual about what you study
and concentrate exclusively on topics that interest you. You may need to
automate many programs you use at work. Examples include automating a
word processor to create mailing labels or spreadsheets to make personal
financial forecasts, as well as writing computer games and creating a
beautiful Web site. The list of possible uses for computers is as vast as the
list of things you can do with them. These considerations will have an
impact on the programming languages you study, as well as the method
you'll want to follow when you begin learning computer programming.
Time, money, people who can help you, computers, books, programming
clubs, courses, programming forums, and so on are all things that will help
you learn to program. You’re welcome to reach out to us with your quires.
It's likely that if you have a lot of free time and money, a computer, and
access to learning opportunities such as college courses and development
group meetings, you will be able to acquire new skills very quickly. If you
can only dedicate an hour or two per day, if you are unable to use a
computer system, if all you can afford are a few books, you'll need to adapt
to your expectations. However, you will be able to learn to program either
way or anywhere in the middle of the spectrum. This is a very important
point to consider.

It will not be easy to get through this. You have to keep going even when
things seem tough, and you can't seem to find the answers you're looking
for. Doing this requires a significant amount of mental energy, willpower,
and the ability to sort things out. You'll do well if you can maintain a "stick-
it-out" mindset throughout the process. One of the appeals of computer
programming is that it involves a great deal of problem-solving, and
problem-solving a lot of problems while you are learning and when you are
applying your knowledge to relevant tasks, it will be difficult to sustain the
interest and devotion long enough to achieve success; But, if it still sounds
appealing to you, you should be able to accomplish your goals. A variety of
approaches can be used to get started.

No matter how you want to handle it in the long term, you can start right
away and work your way up from there. Here are some pointers to help you
get started early: Learn little by little - Start with something simple and

build on it slowly. Unless you have endless time and money, there's no use
going in with both hands. The simplest way to get started may be to use a
programming language that comes pre-installed with the tools you already
have. For example, in Microsoft Word, you can do a great deal of
programming using Visual Basic for Applications (VB for Applications).
Many commercial software programs can be customized using
programming or scripting languages , and this is becoming more common.
Another suggestion for a faster start is as follows: The ability to automate
repetitive operations is accessible with practically any operating system
(Windows, Linux, and Mac) through the use of native scripting languages.
For example, VBScript can be used with Windows to create scripts.

If you need more information, a simple online search will provide plenty of
results. Choose a more comprehensive language that is also available for
free. - For those who want to get started with the least amount of expense
and as fast as possible, one option is to get a free programming environment
from the Internet. For example, you can get the Ruby programming
language and everything you need to get started with it for free. NET
Express programming languages (for example, VB.NET or C# are ideal
possibilities) are another example - once again, you can get everything you
need from Microsoft for no cost. The information you want can be found by
doing a simple Internet search on the words "Ruby Language" or
"Microsoft.NET Express." Use the Internet - Even if you already know it,
or you may not be reading this post, the Internet is full of tools to help you
with your programming endeavors. This is logical, given that programmers
were responsible for building and programming the Internet. There are a
large number of programmers willing to contribute their expertise through
free tutorials, forums, advice sites, and chapter presentations. If you do just
one search, you will connect to a huge number of useful sites.

Whatever it is, there is no dearth of information for the public. Take your
approach to what you have or what you can easily get - my advice to start
fast is to do something right away and keep doing something every day.
Soon, you will be able to better determine which subjects of study are most
attractive to you and best meet your needs, as well as the knowledge you
need to continue your studies. Is. Book resellers and private individuals

form a network that allows many of the Internet's book merchants to
provide secondhand books through a network of thousands of other book
dealers and private individuals. This way you can save a lot of money.

Write simple programs to help you automate something that is currently
taking up your time after you start. Example: If you back up the files you've
worked on by copying "by hand" to a CD at the end of each day, you can
develop software that automatically finds your working folders and copies
the files for you - all without your involvement. Because of each little help
program you create, you'll get valuable extra time that you can use to
advance your programming knowledge. Search and join "user groups" for
computer programmers in your area. Almost all major cities have clubs like
this that meet regularly - usually once a month or more.

Many of these meetings are free, and most of them include how-to talks on
doing various programming tasks in different programming languages. In
addition, they often organize study groups and introductory classes. No
matter how many languages are represented, something is better than
nothing, so it may be a good idea to attend any gathering like this so you
can find that it is within acceptable driving distance. Take beginners'
courses at a local community college or extended study program to learn
the basics. These lessons are usually offered at a very low rate, and they
will help you get your business up and running. I discovered that many of
these programs are available online, making it relatively simple to enroll in
a course like this one if you're eligible. Programming can be enjoyable,
difficult, helpful, and financially rewarding. Not everyone has the natural
aptitude or inclination to pursue a career as a full-time programmer, but
practically everyone who can operate a computer can learn to program to do
something useful or enjoyable. If you think this would be something you
would be interested in, I urge you to give it a try and see what it holds for
you. It will take time and determination to become proficient, but it all
starts with a step in the right direction. So now is the time to take action.

Chapter 2: Why Learn C ++?

This is a fundamental language in case those programs may be divided into
parts and logical units, and it has a significant library that is supported and a
large range of data types. It also includes a plethora of programming
languages. A C ++ executable is an operating system but is not machine-
independent (applications generated on Linux will not run on Windows),
but it is machine-independent. It is classified as a mid-level language
because it enables the computer to produce complete programming (drivers,
kernels, networking, and so on) as well as a large number of user
applications. Support for a large variety of libraries: This framework has
library support. To facilitate rapid and rapid development, it provides
significant support for (standard underlying data structures, algorithms, and
so on) as well as for third-party libraries (e.g., the Boost library). C ++
programs do very well in terms of execution speed because it is a compiled
language that is also quite procedural. Modern programming languages
include more built-in default features, such as garbage collection, dynamic

types, and other bottlenecking features—the overall execution of the
program.

Due to the lack of extra processing cost, it is substantially quicker in C ++.
C ++ has pointer support, which allows users to directly alter the storage
address. This is helpful while conducting low-level coding (where one may
need explicit control over the storage of variables). OOP: This is a key
element of the language that distinguishes it from C. The object-oriented
support in C ++ makes it simple to create maintainable and extendable
programs. Large-scale uses, on the other hand, are feasible. Procedural
programming gets increasingly difficult to maintain as the codebase grows
in size. Because C ++ is a compiled language, it performs better overall.
Because C ++ is so near to the hardware, it allows you to operate at a lower
level, providing you more control over memory management, quicker
performance, and, ultimately, more flexible software development.

C ++ is a great place to start if you want to learn object-oriented
programming. The notion of low-level polymorphism implementation may
be found while creating virtual table pointers, as well as when creating
dynamic type identification. C ++ is an ecologically friendly programming
language that thousands of computer programmers rely on worldwide. As a
skilled C ++ coder, in no circumstances you’ll run short of opportunities.
You get well compensated for your efforts. C ++ programming is a popular
programming language in the field of application development. In
conclusion, you will become an expert in a certain field of software
development. When you grasp C ++, you will be able to distinguish
between linker, loader, and compiler, as well as various types of data,
variables, and its scopes, storage classes. There are several grounds why
you should learn C ++ programming. One thing is certain when it comes to
studying any language, even C ++: you must practice coding over and over
again until you become an expert in the meaning of the language. Practice
is required.

2.1 Benefits of C ++

When it comes to programming languages, C ++ has been considered as a
transitional programming language, which implies that it allows for High-
standard application development as well as low-Standard library
development that is near to the hardware. In the opinion of many
programmers, C ++ is the best of both worlds: it is a high-level language
that allows one to develop complex applications while also providing
flexibility in that it allows the developer to extract the best performance
possible through accurate control of resource consumption and availability.

Despite the advent of newer programming languages such as Java and
others based on the.NET framework, C ++ has stayed relevant and has
progressed as a programming language. Some programmers like the
capabilities provided by newer languages, such as garbage collection, which
is implemented as a runtime component and allows for better control of
memory. Although this is the case, C ++ continues to be the programming
language of choice for developers that want precise control over their
application's resource consumption and performance. Most applications
have an architecture with several layers, with a web server written in C ++
serving components written in HTML or Java or.NET as the backbone of
the system. We can build code without having to worry about the hardware
since C ++ has this property of portability built into it. Moving the
development of software from one platform to another is made possible by
this method. If, for example, you're working on a Windows operating
system and need to move to a LINUX operating system for whatever
reason, the operating system of Linux executes the codes of the windows
operating system smoothly and without a hitch. It is possible to regard Java
as both a Low-Level and High-Level programming language due to its mid-
level classification.

Being a supreme language, its features assist in the game development as
well as in desktop applications, whilst low-level language characteristics
aid in the construction of kernels and drivers. C ++ provides the most
benefits in OOP principles like (Polymorphism) (Encapsulation)
(Inheritance) and (Abstraction) when compared to other computer
languages. Because this functionality was not available in C at the time, it
proved to be quite beneficial in allowing users to work with data is in the

form of classes and objects. A paradigm is a strategy that goes into
programming. It is concerned with logic, style, and how we achieve the
program's objectives. DMA (Dynamic Memory Allocation) is a C ++
technology that allows you to easily free and allocate memory. Due to the
lack of a garbage collection system in C ++, the programmer has total
control over memory management.

We don't need to install any additional runtime components to run the
application because C ++ is a Compiler Based programming language. And
the outcome is pre-interpreted, allowing the code to be executed faster and
with more power. Even compilation and execution times have been
lowered, allowing for the creation of a diverse set of programs ranging from
games to drivers to complicated graphical user interfaces. C ++'s syntax is
comparable to that of C#, C, and Java. If you already know one of these
languages, learning C ++ will be a breeze. As a result, switching between
languages becomes easier. This has the extra benefit of being compatible
with C applications, which means that any C program that is already
running may be turned into a C ++ application. In most cases, we just need
to run the application on a single file. CPP extension is employed. The C ++
has a plethora of installed libraries.

They help in accelerating the software design and in providing users with
the opportunity to accomplish more with less. C ++ is useful for designing
games as well as graphical user interfaces (GUI). C ++ is also great for
creating real-time visual and algebraic simulations. As a result, C ++ is
useful in all fields. C ++ has a huge and active community behind it. The
scale of your company is vital if you wish to seek aid regularly. The wider
the community, the more and more help you will get in resolving your
issues. There are several paid and free online courses and seminars that
explain how community assistance works.

As a result, resource-intensive applications can be developed using C ++, as
programs can be written less and extensively. Knowing that C ++ offers
advantages in a variety of fields from banking to app development, user
interface design to video games, it is no surprise that C ++ has a huge job
market. Working knowledge of C ++ can help you get employment in

departments where C ++ is required. When it comes to pointers in C ++,
understanding them is a particularly difficult idea compared to other topics.
It is possible that uninitialized pointers can cause a system failure. Memory
corruption can also occur if wrong values are entered in the memory
location. Overall, pointer problems are very difficult to diagnose, which
makes them one of the biggest drawbacks of the C ++ programming
languages. Since C ++ does not have a garbage collector, the user is
responsible for managing all the data in memory in his program. In its
absence, duplicate data gets stored, and the amount of available memory
increases in the widest sense. C ++ is intrinsically risky. The major source
of these security problems is the usage of pointers, global variables, and
other related constructions.

As a result, mistakenly accessing a block of memory may wreak havoc on a
whole application. It is a multi-paradigm language, which means it supports
OOP with runtime polymorphism, templates, and static polymorphism, as
well as certain functional programming capabilities. C ++ is unsuitable for
platform-dependent applications, and as a result, it gets difficult when
employed in massive high-level software. When it comes to syntax, C ++ is
rather strict, and even the tiniest mistake may cause a chain reaction of
problems. C ++ takes the most time to master than any other programming
language. As previously said, producing comprehensible C ++ code is
challenging, making the language less friendly. Many programming
languages, such as Java, enable us to create operators that execute specific
data operations.
However, this is not entirely possible in C ++. We can utilize operator
overloading to redefine existing operators, but we can't do much else. The C
++ programming language does not provide built-in threads. Even though
this is a novel notion, it was eventually incorporated into the most recent
edition of the C ++ standard. However, it is still a long way off when
compared to languages like Java. Tuples and struts are two algebraic data
types that C ++ does not support. As a result, if we need to use it, we'll have
to rely on libraries or write our executables.

2.2 Why Should We Prefer C ++?

It is compatible with official (Object-Oriented) and (Generic Programming)
languages. And they have a comprehensive Standard Library that includes a
diverse range of functions for file handling as well as techniques for
manipulating data structures simply and efficiently, among other things.
This programming language is extensively used by programmers and
developers, mostly in the application development industry. It comprises all
of the essential components, including the core language, which provides
all of the necessary building pieces, such as variables, data types, constants,
and so on. When it comes to building programs, C ++ has a variety of
applications and advantages. As an example, consider the apps that are built
around the graphic user interface (GUI), such as Adobe Photoshop and
others. It is popular among students as a first language to learn and is taught
in many schools. Major software producers, sellers, and giants utilize C ++
to develop a variety of applications. For example, Google's Big Table,
Google File System, Google Chromium web browser, and Map Reduce big
cluster data processing are all developed in C ++. C ++ is also used to
develop a variety of other applications. Mozilla makes use of a subset of the
C ++ programming language. It is necessary to have C ++ 14 installed to
build Mozilla

The Mozilla Firefox web browser and the Thunderbird email chat client are
both developed in C ++. A large number of Windows applications that you
use daily are written in C ++. This package contains tools for creating and
debugging C ++ code, particularly code built for the DirectX, Windows
API, and.NET frameworks. Rock star Games: C ++ is used by almost all
major video game companies since it runs at a fast enough speed on bare
metal.

Many large
gaming engines are designed entirely in C ++, making use of the language's
speed and object-oriented programming features. MongoDB is an open-
source database that is extensively used as the back-end store for online
applications, as well as in big organizations such as Viacom, biotechnology
corporations, and Disney. It is also used as a front-end store for web
applications.

C ++ is a programming language that is used for game development. It
reduces the complexity of three-dimensional games and aids in the
optimization of available resources. With networking, the multiplayer
option is supported in C ++. It is preferred because it is very quick in terms
of runtime and since it's primarily used in the creation of gaming toolkits. It
is frequently utilized in the development of actual (Image Processing)
visual effects, and (Mobile Sensor) apps, as well as modeling, all of which
are mostly developing in (C ++) programming languages. This program is
used for a variety of tasks including animation, environment creation,
motion graphics, and virtual reality. These virtual reality gadgets are the
most well-known in today's modern creative industry, and they are also the
most expensive.
C ++ is also used for a variety of media-related tasks such as developing a
media player and handling video and audio data. Take, for example, the
Win amp Media Player, which was designed in C ++ and enables users to

listen to music while also accessing, sharing, and transferring movies and
audio files, among other things. We are all familiar with how compiled
languages work, which is one of the primary reasons why most compilers
are built entirely in the C ++ programming language. The compilers
compiled such as (C#) (Java) language and so on are almost entirely in(C
++) and also employed in the development of that kind of language since (C
++) is an independent platform and may be used for the production of a
wide range of Software applications. Application programs such as film
scanners and camera scanners are also written in the C ++ programming
language. It has been employed in the development of PDF technology for
print documentation, the exchange of documents, the publication of papers,
and the archiving of documents, among other things.

Chapter 3: History of C ++

C ++ editing language has a long and admirable history dating back to 1979
when Bjarne Stroustrup embarked on a career in his medical dissertation.
One of the languages Stroustrup had, the Simula, provided an opportunity
to collaborate on a programming language intended for computer
simulation. The Simula 67 planning language, in which Stroustrup is
involved, is often recognized as the first language to support an object-
oriented planning paradigm, 1967. Even though Stroustrup found that this
paradigm is very effective. In software development, the Simula
programming language was too lazy to be used practically. His next project
was "C with Classes," which aimed to be the superset of the C editing
language. Suddenly he started working on it. They aimed to integrate
programs that focused on the object in the C programming language, which
was considered and continues to be respected for their effectiveness without
compromising process speed or low-level skills. In addition to all the
features of C language, classification, inlining input of native heritage,

default parameters for operational calls, and solid test type are all included
as features in their language.

Initially, there was a C facilitator with a class called Cfront, which came
from another C facilitator called CPre. It was software designed to convert
C into an old C code with class code. The fact that Cfront was highly
developed by classes in C makes it a self-contained producer, more
important to mention (a compiler that can integrate itself). Cfront would
eventually be discontinued in 1993 because it seemed impossible to add
new features, such as the C ++ variant, to the codebase. On the other hand,
Cfront has been instrumental in the development of the latest developers
and the Unix operating system. In 1983 the name of the editing language
was changed from C to C ++ by Class. The ++ user in the C programming
language is used for flexibility enhancement, which provides some
information about how Stroustrup perceives language. This is also the time
when several new features, most popular of which were visual functions,
overload, and indexes using the symbol, const key, and single-line
comments using two forward tails (a feature derived from the BCPL
language), were introduced.

C ++ Programming Language, a language reference written by Stroustrup
and released in 1985, was the first publication on the subject. C ++ was first
released as a commercial product in the same year that it was launched.
Since language was not officially banned, this book served as a very useful
reference. The language was revised again in 1989, this time to add
protected and standing members and a legacy from many categories, among
other things. The Annotated C ++ Reference Manual, published in 1990, is
a must-have for all C ++ program editors. The Turbo C ++ compiler
developed by Borland will be launched as a commercial product next year.
Turbo C ++ includes a few new libraries that will greatly contribute to the
development of the C ++ editing language. Even though the latest and
Stable Version of (Turbo C ++) was developed in 2006, When the C ++
Standards Committee issued (ISO / IEC 14882: 1998) to be officially called
(C ++ 98), it was a momentous moment in the history of programming
languages. The Annotated C ++ Reference Manual, according to some, has
been instrumental in improving the quality of the spoken word. The

Standard Template Library, whose conceptual development began in 1979
and came into use in 1980, was also included. After receiving several
reports of difficulties with its 1998 standard, the committee responded by
reviewing the standard in 2003 to address those issues. C ++ 03 was the
name given to the new editing language. In 2005, C ++ Standards Group
published a technical report (named TR1) outlining the various additions to
the latest C ++ language version. The new standard was officially called C
++ 0x because it was to be distributed before the end of the first decade of
the 21st century. Ironically, a new standard could not be announced until
mid-2011, much to our surprise. Many technical books had been published
before, and many compilers began to add support for the testing of new
skills. The updated version of C ++ (named C ++ 11) was completed in
mid-2011.

This new level is strongly influenced by the Boost library effort, and many
new modules are developed directly from the same Boost library. New
features include regular speech support (more information about common
expressions can be found here), complete randomization library, new C ++
library, atomic support, general addiction library (i.e., since 2011, available
at C and C ++). + both were lacking). New loop syntax that provides the
same functionality for each loop in other languages, default keyword, new
container classes, better union support, and program-initiated lists, and a
new C ++ library.

3.1 Communication with C Programming
C ++ was first created in 1979 by Bjarne Stroustrup at Bell Labs to serve as
a replacement for the C programming language. In contrast, C ++ was
created as an object-oriented programming language that implements
principles such as inheritance, abstraction, polymorphism, and
encapsulation in addition to the more traditional C language. Classes are a
feature of C ++ that are used to store and manage member data and member
functions these member methods.

3.2 Evolution of C ++

Because of its widespread use, years of development have resulted in C ++
being accepted and embraced on a wide range of platforms, with the
majority of them employing their C ++ compilers. Consequently, compiler-
specific variations occurred, resulting in compatibility concerns as well as
porting difficulties. As a result, there was a pressing need to standardize the
language and give compiler makers a common language specification with
which to operate. The ISO Committee approved the first standard version of
C ++ in 1998, resulting in the publication of ISO/IEC 14882:1998. Since
then, the standard has undergone significant revisions that have increased
the usability of the language while also broadening the scope of the
standard library's support. As of the date of publication of this book, the
most recent approved version of the standard is ISO/IEC 14882:2014,
sometimes known as C ++14 unofficially.

Chapter 4: Features, Uses & Applications of C ++

It's a vast list of C ++-programmed programs, operating systems, online
services, databases, and corporate software, to name a few examples.
Whatever your profession or what you do with a computer, the odds are that
you are already consuming software written in the C ++ programming
language. In addition to software professionals, C ++ is often the language
of choice for research work by physicists and mathematicians who are
doing experiments in quantum mechanics. When you launch Notepad on
Windows or the Terminal on Linux, you are instructing the CPU to execute
an executable version of the application you are attempting to run. The
executable is the completed result that can be executed and should
accomplish the goals that the programmer set out to accomplish.

4.1 Uses of C ++ Programming Language
As previously said, C++ is among the highly adopted editing
programs worldwide. Nearly every element of software development,
including web development, uses it. A short list is presented in this section:
Application software is developed using the C ++ program, many operating
systems, such as Windows, Mac OSX, along with Linux IS, have utilized it
in their development as well as the operating system, C ++ has been used to
build key features for a number of internet browsers, together-with Google
Chrome as-well-as Mozilla Firefox. C ++ was also used in the development
of MySQL, the most widely used data system. Editing language evolution -
C ++ has now been widely utilized in the development of the latest editing
languages such as C #, JavaScript, Unix's-C-shell, Perl, PHP and Python,
Java, and Verilog. Computational Programming – scientists consider C ++
as one of the most popular programming languages due to its speed and
high computer performance. Game engine building - Because of the fast
performance of C ++, it lets programmers create intensive CPU process
processes and have better control over the hardware.

As a result, it is often used in the development of gaming engines. In the
development of medical and engineering applications, such as MRI

software, advanced CAD / CAM programs, and other similar programs, C
++ is widely used as an embedded system. The services of C ++ go on and
on. At a number of places, software experts testify to be satisfied to produce
the best software products using C ++. I highly recommend for you to
understand and learn it so that you can make a significant contribution to
the community through software development. After exploring C ++ skills,
these are some of the interesting places where this language is often used. C
++ is used to configure all applications, including Microsoft Windows, Mac
OS X, and Linux. Because it is the most typed and fast editing language, C /
C ++ serves as the basis for all the most popular applications.

This is because it is an ideal choice for designing operating systems as they
are solidly typed and fast. Additionally, C is similar to compound language,
making it easier to write standard operating system modules in C. Due to
the speed provided by C ++, the rendering engines of various web browsers
are written in this programming language. Dedicated search engines require
a quick launch to ensure that consumers do not have to wait for content to
be displayed on the screen. As a result, C ++ is used as the programming
language for these types of low-latency systems.

In a huge number of high-quality libraries, C ++ is the principal planning
language. Many machine learning frames, for example, rely on C ++ as
their backdrop language because of its speed. Tensor Flow, one of the most
frequently used machine learning libraries, is developed in the C ++ editing
language on the library's back end. Such libraries necessitate the usage of
highly efficient computing resources since they reproduce enormous
matrices for training machine learning techniques. As a response,
performance is increasingly crucial. C ++ is useful when working with such
libraries. All image programs must deliver quicker to be successful, and C
++, in the case of web browsers, aids in this endeavor by reducing latency.

The programming language of choice for all software that uses computer
vision, digital image processing, or high-end graphics processing is the C
++ programming language. Even the most popular games with lots of
visuals rely heavily on C ++ as their main programming language. As a
result of the speed provided by C ++ in these scenarios, developers can

reach a wider audience by optimizing their applications for low-end devices
that do not have a lot of computing capacity. Infosys Finacle uses C ++ as
one of its backend coding languages, a core-banking system that is one of
the most widely used in the world. Banking applications handle millions of
transactions every day and require support for high concurrency and low
latency to function properly.

C ++ naturally becomes the programming language of choice in such
applications due to its speed and multithreading capabilities. These
functionalities are enabled by the numerous standard template libraries
provided with the C ++ programming kit. Furthermore, huge organizations
that are developing cloud storage systems and other distributed systems
choose C ++ since it connects with hardware incredibly well and is
compatible with a wide range of processors. Cloud storage solutions make
use of scalable file systems that are proximate to the hardware on which the
data is stored. C ++ becomes the superior language to deal with in such
situations because it has hardware and because the multithreading libraries
in C ++ provide higher concurrency and load tolerance, both of which are
vital in such contexts. Databases such as Postgres and MySQL are written
in the two most often used programming languages, C ++ and C, which is a
forerunner of the C programming language. They are used to store and
retrieve information in almost all of the well-known apps that we all use in
our everyday lives, such as YouTube and Quora. C ++ is used as the
primary programming language in a variety of embedded systems,
including medical devices, smartwatches, and other wearable devices, since
it is more intimately coupled to the hardware level than other high-level
programming languages. Is.

C ++ is widely utilized in a variety of applications, including programming
telephone switches, routers, and space probes since it is one of the quickest
programming languages accessible. Compilers for different computer
languages utilize as backend programming languages; C and C ++ are used.
This is because C and C ++ are both low-level languages that are closer to
hardware and, as a result, are an excellent fit for such compilation systems
due to their low degree of abstraction. These are only a few examples of
how the C ++ programming language may and should be utilized. In this

part, you will learn more about the advantages of C ++ over other
programming languages.

4.2 Features of C ++
The following are among the most intriguing characteristics of C++: It’s a
computer language focused on object-oriented programming. This implies
that the emphasis is on "things" and the changes that take place around
these objects. No information is provided to the consumer of the item as to
how these operations are conducted because this information is abstract. A
large number of functions are provided through the C ++ Standard Template
Library (STL), which helps in the rapid development of code. Standard
libraries for various containers, such as assets, maps, hash tables, and other
similar constructs, are readily available. When latency is an important
parameter, C ++ is the programming language of choice.

Most other general-purpose programming languages are extremely
sluggish, both in terms of compilation and execution time. A C ++
application's compilation and execution times are relatively short. Unlike
interpreted programming languages, which do not require compilation, C
++ code must be translated to low-level code before it can be executed. The
C ++ programming language also features pointer support, which is
commonly used in programming but is not necessarily accessible in other
programming languages. Because nearly all of the programs and systems
you use have some or all of their codebase written in C/C ++. As a result,
it’s now among the essential languages for programming and development.
C ++ is included in almost all of the products we use daily, whether it is
Windows, image editing software, your favorite game, or your web
browser.

Here’s a simple example of manipulating different features:

#include<iostream>

#include<typeinfo>

int main()

{
auto m_boolean = false;
auto m_integer = 26;
auto m_float = 26.24;
auto pointer = &m_float;
//Showing types of variables
std::cout << typeid(m_boolean).name() << std::endl;
std::cout << typeid(m_integer).name();
return 0;

}

4.3 Real-World Applications of C ++
C ++ is closer to hardware, allows simple resource manipulation, allows a
technical program on CPU-intensive tasks, and it's too fast. In addition, this
is capable of overcoming the complexity of (3D) Games and enabling
multi-layer networks. The advantages of this language make the
programming language of the first choice for building gaming systems and
game development software packages. Since it has all the necessary
functionalities, it would be used to create many graphical user interface
desktop programs and GUI. The C ++ programming language is used to
build most of the Adobe system's apps, such as Illustrator, Photoshop, and
the like. Microsoft's Winamp Media Player is a well-known software that
has been meeting all our music and video demands for decades.

The C ++ programming language was used to make this Software. Usage of
c ++ in the development of Database administration applications. The most
common databases are (MySQL) and (PostgreSQL), both of which are
written in the C ++ computer language (Postgres). (MySQL) is a well-
known database management system that is frequently used in real-world
applications and is written in C ++. It is widely used as open sources
Database in the world. Database, which was created in C ++, IS used by
many companies. And the fact is that C ++ is a suitable choice for creating
operating systems and apps because it is a strictly typed and fast language.
As a bonus, C ++ offers a large system-level library of operations that can
be used to write low-level applications. Some of the code in Apple's

operating system OS X is developed in C ++. Similarly, components of both
the iPods are written in C ++. Most of Microsoft software is written in (C
++) many Versions of (Visual C ++). Which is used for writing applications
like (Windows 95) (ME, 98 (XP), and other operating systems. In addition,
C ++ is used in the development of Integrated Development Environments
(IDEs), Internet Explorer and Microsoft Office. Browser is mostly used in
C ++ for rendering purposes. Since most users don't want for waiting for the
loading of the web page, the rendering engine should be as quick as
possible in terms of execution. Due to the high efficiency of C ++, the
rendering software in most browsers is developed in C ++. Mozilla Web
Browser is a free and open-source program.

Firefox is a free and open-source project written entirely in the C ++
programming language. Thunderbird, Mozilla's email client, is written in C
++ in the same way that the Firefox web browser is produced. This is a free
and Open-Source application like the previous one. C ++ is used in
developing Google programs such as the Google File System and the
Chrome browser. For example, C ++ is beneficial in developing
applications that demand image processing of high quality, actual physical
simulation, and also portable sensor apps that must be both fast and perform
well. It is built in C ++ and is used for animations (virtual reality), (3D
graphics), and (environment). It is available through the alias system. As C
++ facilitates concurrency, it has become the programming language of
selection for bank applications that require multi-threading, concurrent, and
efficiency. Infosys Finacle is a very well banking services application with a
backend written in C ++. Cloud storage solutions, which are becoming
more popular, operate close to the hardware.

Because it is closer to that same hardware level, C ++ becomes the
programming language chosen to build such systems. C ++ also has
multithreading capabilities, which allow developers to create concurrent
programs that are load tolerant. Bloomberg is a distributed relational
database management system (RDBMS) designed to provide investors with
reliable financial news and information in real-time While Bloomberg's
Relational Database Management System (RDBMS) is developed in C, the
company's C ++ is used to write the development platform and library set.

Many high-level languages have compilers built in any C and C ++, based
on the language.

Because both the programming languages are closely related to hardware
and capable of programming and manipulating the underlying hardware
resources, they are often used in embedded systems. C ++, in comparison to
other high-level computer languages, is used to create a wide range of
embedded devices such as smartwatches and medical device systems
because it is closer to that same hardware level and has a large number of
low-level can give function calls. (C ++) is used in the development of
many commercial computer programs, along with complex applications like
flight simulation & radar systems processing, are available. When
conducting extremely complicated mathematical procedures, efficiency and
performance become critical factors.

As a result, C ++ is the primary programming language used by most
libraries. C ++ is the backend for the vast majority of a collection of high-
level computer language libraries. C ++ is significantly quicker than other
computer languages and, among other things, supports multithreading and
concurrency. C ++ is also popular for constructing apps where speed and
consistency are critical. C ++ is also closer to hardware, allowing us to
manage hardware resources fast through the usage of low-level functions in
the language. The result is that when it comes to applications that involve
low-level manipulation and hardware programming, C ++ is the logical
choice.

4.4 Where is C ++ used in industry?
C ++ has established itself as a programming language in practically
everything. C ++ is the major programming language underlying numerous
technical components, ranging from video games to databases to operating
systems and everything in between. Its use in the actual world is so strong
that, even after years of development and the introduction of several other
enhanced languages, we cannot ignore its applications and benefits. C ++ is
a programming language that is utilized in-game creation, like Sudoku, for

example, which is one popular game many people across the world enjoy.
Typically, it looks like this:

To code the game, follow as shown below:

#include<iostream>
#include<vector>

#define MAX_NUMBER 9
Using namespace std;
bool checkSudokuBoard(vector<vector<int>>&);
int main() {

vector< vector<int>> m_gameSudoku = {
 {5,3,0,0,7,0,0,0,0},
 {6,0,0,1,9,5,0,0,0},
 {0,9,8,0,0,0,0,6,0},
 {8,0,0,0,6,0,0,0,3},
 {4,0,0,8,0,3,0,0,1},
 {7,0,0,0,2,0,0,0,6},

 {0,6,0,0,0,0,2,8,0},
 {0,0,0,4,1,9,0,0,5},
 {0,0,0,0,8,0,0,7,9}
};
if (checkSudokuBoard(m_gameSudoku))
cout << "Input Sudoko is valid\n";
else
cout << "Input Sudoko is not valid\n";
return 0;

}

bool checkSudokuBoard(vector<std::vector<int>>&
_gameSudoku) {

int numberCount[MAX_NUMBER];
for (int horizontal = 0; horizontal < MAX_NUMBER;

++horizontal) {
memset(numberCount, 0, MAX_NUMBER * sizeof(int));
for (int vertical = 0; vertical < MAX_NUMBER; ++vertical)

{
if (_gameSudoku[horizontal][vertical] != 0)
++numberCount[_gameSudoku[horizontal][vertical] - '1'];
}
for (int i=0;i<MAX_NUMBER;++i)
if (numberCount[i] > 1)
return false;
}
for (int vertical = 0; vertical < MAX_NUMBER; ++vertical)

{
memset(numberCount, 0, MAX_NUMBER * sizeof(int));
for (int horizontal = 0; horizontal < MAX_NUMBER;

++horizontal) {
if (_gameSudoku[horizontal][vertical] != 0)
++numberCount[_gameSudoku[horizontal][vertical] - '1'];
}
for (int i=0;i<MAX_NUMBER;++i)
if(numberCount[i]>1)

return false;
}
int block_hoizontal = 0, block_vertical = 0;
for (int block = 0; block < MAX_NUMBER; ++block) {
block_hoizontal = (block / 3) * 3, block_vertical = (block %

3) * 3;
memset(numberCount, 0, MAX_NUMBER * sizeof(int));
for (int horizontal = block_hoizontal; horizontal <

(block_hoizontal + 3); ++horizontal)
for (int vertical = block_vertical; vertical < (block_vertical +

3); ++vertical)
if (_gameSudoku[horizontal][vertical] != 0)
++numberCount[_gameSudoku[horizontal][vertical] - '1'];
for (int i=0;i<MAX_NUMBER;++i)
if (numberCount[i] > 1)
return false;
}
return true;

}

As all of the numbers inside of a Sudoku game follow a valid pattern, the
output will reign true.

C ++ is also the preferred programming language for designing banking
applications, and many financial institutions are already using C ++ as their
back-end programming language for development. The Finacle, developed
by Infosys, is the greatest example of this. It is a well-known program that
is utilized for financial purposes at Infosys. It is built on the C ++
programming language as its foundation. Concurrency, multithreading,
speed, and high performance are all required by banking applications. All of
these are important characteristics of the C ++ programming language! You
may have been unaware of the real technology that is employed in the
construction of scanners until now! Allow me to share it with you right
now! The camera scanners and film scanners are controlled by the C ++
programming language.

They are mostly used in the technologies that facilitate the creation of PDF
documents. These programs are used for a variety of tasks, including
document creation, printing, and publishing. All of this is made possible
through C ++! Aside from that, C ++ is also employed in the development
of certain open-source and commonly used database software. MySQL,
Postgres, and Bloomberg RDBMS are three of the most well-known
database management systems, all of which were designed in C ++. Quora,
YouTube, and other similar sites make considerable use of them. In
practically all businesses, MySQL is commonly used open-source database
software that is free to download and use. It aids in the saving of time,
bundled software, money, and business processes, among other things. This
database software was developed with pride in the C ++ programming
language! The amount of data accessible is expanding as the number of
people who have access to the Internet grows across the globe. Large
enterprises rely on cloud computing and want solutions that are as near to
the hardware as possible. C ++ is the most popular computer language for
this purpose.

In practically every industry, C ++ is utilized, and here are the key reasons
why C ++ is the most helpful and generally recognized programming
language for producing apps, software, and other types of projects. It's the
most popular computer language in the world. Many areas, such as gaming,
websites, and other online services, place a high value on speed. You cannot
legitimately wait for the back-end code to complete its execution while you
wait for it to complete its execution. As a result, speed is a critical
consideration while designing games, web servers, database systems, and
other applications in C ++, among other things.

This language contains abstraction at a very low level. Consequently, it is
more closely associated with hardware than any other programming
language. The fact that it handles resources well means that it is always the
recommended language to employ in areas where proximity to hardware is
essential! As a result, we now understand how C ++ is useful in real life and
why it is C ++ and not any other programming language that is as beneficial
as it is! C ++ is a programming language that is utilized by numerous
businesses and organizations.

Chapter 5: Top Reasons to Learn C ++

C ++ is of great importance today. There are many, like operating systems,
web browsers, and other similar applications, all are contemporary systems,
incorporating C ++ code into at least some part of their codebase.
Furthermore, because of its speed, C ++ is very advantageous in areas
where performance is critical. C ++ is the backbone of many advanced
programming languages, including Java and Python. Regardless of whether
the programming language is Java, Python, JavaScript, or any other, all of
them are executed using C or C ++ as their execution engine.

Knowing just the syntax and libraries of a programming language will not
help you become a competent programmer in that language. You must be
familiar with the fundamentals of everything, which is the one and only C
++! Since the most obvious virtue of C ++ is that it is very scalable, it is
often used to develop resource-intensive applications. Graphics use a
significant amount of system resources, which is why the most beautiful 3D
games you can find are typically designed using C ++, as is the case with
most of the games you like playing. Whatever you are talking about,
whether it is operating systems, internet browsers, or apps, C ++ is all
around you. Google searches for the languages used for operating system
foundation portions will reveal that Windows, Linux, Android, and even
Mac/iOS are all built in the C programming language, as will other
operating systems.

C ++ is used to create all of the popular internet browsers, such as Chrome,
Firefox, and Safari. Additionally, if you are a gamer, you will be surprised
to learn that C ++ is utilized to develop numerous gaming engines that are
of a high degree of sophistication. The C ++ programming language is very
fast and efficient. Of course, there are a plethora of languages that are more
performing than C ++, but when utilized properly, the C ++ language may
be even faster than Java! As previously said, since you have complete
control over the resources utilized, large corporations rely on C ++ when
they need to achieve faster performance with fewer resources than they

have. If you are working with the C ++ programming language, you will
quickly notice that interfaces are well specified and standardized in the C
++ programming language.

This suggests that it may be used by any sophisticated programming
language since it can be used with a variety of compilers or different
versions when writing and assembling it. In today's fast-paced world, high-
performance apps are essential to be successful. If you are a developer, you
may be following industry-best practices while implementing various
solutions that are capable of performing effectively. In any case, knowing C
++ will assist you in gaining a better understanding of the performances.

You'll be capable of figuring out what's causing the problem and enhancing
the overall performance of the application. Because C ++ has STL
(Standard Template Library), it is incredibly helpful because it allows
programmers to write code more rapidly when the situation calls for it. This
library is divided into four main sections: functions, iterators, algorithms,
and containers. Several databases make use of C ++. Its examples include
MongoDB, MySQL, and a slew of others. The reason for this is that C ++ is
a relatively contemporary programming language that supports features
such as lambda expressions, exceptions, and so on.

Databases created in C ++ are utilized by practically all modern-day
applications, including Twitter, YouTube, WordPress, and others. To create
complex games, you must learn the language and programming tactics first.
Numerous adaptable mobile games have been made with the game engines
written in C ++. Larger firms, such as Facebook and Google, may also want
C ++ engineers to assist them in optimizing their apps or working on their
products, and you might make a substantial amount of money in this
capacity.

5.1 C ++ Popularity and High Salary
It is the world's best frequently used programming language. Over 4.4
million developers use it all over the world. Furthermore, C ++ Developers

are in high demand, they have some of the high-paid occupations in the
market, and an average annual base income of $103, 036.

5.2 C ++ in Databases
MySQL, MongoDB, MySQL, and many other current databases have been
developed in the C ++ programming language. This is because C ++ is
relatively current and offers features such as Lambda Expressions etc. a
large no of a database built into C ++ that are used in practically all the apps
we use now, including Facebook, YouTube, and other social media
platforms. How does it work? Well you must first create a connection
handle structure:

MYSQL *mysql_init(MYSQL *);

Now create new sql connection:

MYSQL mysqlConnect(

MYSQL con,
const char *acc,
const char *un,
const char *pwd,
const char *dbName,
unsigned int p,
const char *socket,
unsigned int flgs

);

Now run SQL:

int mysql_query(MYSQL *connection, const char *query);

error handle :
unsigned int mysql_err(MYSQL *conn);

char *mysql_error(MYSQL *conn);

5.3 C ++ in Web Browsers
The CGI (Cyber-Initiative) programming is a way to have your website do
more for you. Keeping this in mind before going forward with the process,
make sure that:

1) Your Web Server supports running programs from an outside source and
it's been configured correctly so as not restrict what can be done on our end

2) You've got space limitlessly set aside where all these new additions will
go - aka "The Cgi Directory"

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

<Directory "/var/www/cgi-bin">
 Options All
</Directory>

5.4 C ++ in Embedded Systems
Because it is close to the level of hardware than other programming
languages, it works especially well in embedded systems where all
hardware & software are tightly connected. Here are rare embedded C ++
applications, including smartwatches, MP3 players, GPS programs, and
other similar devices. Try to avoid using certain features when you can use
explicit conversions instead.

For example:

class myClass;

myClass *ptr = reinterpret_cast<myClass*>(0xfeaa);

5.5 C ++ in Operating Systems
Windows, Linux, Android, Ubuntu, and iOS are just a few operating
systems created with an arrangement of both windows apps are built with C
++, but android apps built in java and C / C ++, with non-default C ++
support times, as is the case with Windows applications. Additionally, C ++
can be used to build the core of iPhone and iPad apps. Typically, both are in
applications, and the reason is Speed and strictly typing of features of the
programming language.

As an example, here’s the coding to threading a program for Linux:

#include <thread>

void thread_entry(int foo, int bar)
{
 int result = foo + bar;
 // Do something with that, I guess
}

// Elsewhere in some part of the galaxy
std::thread thread(thread_entry, 5, 10);
// And probably
thread.detach();

// Or
std::thread(thread_entry).detach();

5.6 C ++ in Graphics

Due to the fast C ++ speed, it is often used in image-focused programs like
(Image Processing, Computer Vision and Screen Recording Programs,) and
more. This may include various games in which visuals play an important
role in the overall structure.
Here’s a simple start to a C ++ program that will read from the camera and
display RGB images:

#include <iostream>
#include
"opencv2/opencv.hpp"

using namespace cv;
int main() {
 VideoCapture camera(0);
 if(!camera.isOpened()){

 }

 namedWindow("Camera

Window");
 while(true){

 }
 return 0;

5.7 C ++ has Abundant Library Support

The (Standard Template Library) in C ++ is much important as it allows
programmers to write compact and fast code when the situation requires it.
It consists of four components, namely (algorithms), (containers),
(functions), and also iterator, among others—so many types of algorithms,
like searching, filtering, and so on. Classes using a variety of data
structures, including stack, Rows, Hash Tables, Vector, Set, List, and Map,
are stored in the container data building store. Factors are functions that
cause the function of related functions, which would be changed with the
given parameters. In addition, the iterator is used to deal with price
sequences.

5.8 C ++ is Portable
All Programs written in C ++ can be transferred from one place to another
without difficulty. It is the core reason why C ++ is often used in programs
that require the development of a few platforms or devices. To make your
code more portable across different platforms, you should use STL types
when possible.

Be careful about using system dependent or APIs like UINT64 and
DWORD on Windows because they might not work as expected there. If
writing GUIs is necessary then try using a cross-platform toolkit such as Qt
which provides support for many languages including C/C ++ alongside
their own framework.
Something such as this:

#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif

Chapter 6: Understanding of Complier & Types
of Errors

In this chapter,
we will learn about the working of compilers and different types of errors.

6.1 Learn About Compiler
Compilers use software that understands the code. Converts statements
expressed in a specific programming language into machine code or "code,"
which is a language recognized and used by a computer processor. The
editor can usually add one line at a time to the editor to produce statements
of language in editing language like (Pascal or C). These are the source
statements that will be included in the newly created file. The editor then
introduces the appropriate language conjunction, conveying it as a file
naming parameter containing source statements. During operation, the
compiler analyzes (or analyzes) all the language statements before creating
an exit code in a series of subsequent sections or "passing," which ensures

that statements referring to other statements are correctly identified in the
final output code. Object code or, in some cases, an object module is
traditionally used to describe the output of the merging process (see below).
(It should be emphasized that the word "object" is not related to an object-
focused program in this context.) Because the object code is a machine
code, it can only be processed by one processor at a time.

A sample C ++ source code performs the exact Approach. as this piece of
work, but with more readability and flexibility:

int int_1, int_2, total_sum_of_numbers;

cin >> int_1;
cin >> int_2;

total_sum_of_numbers = int_1 + int_2;
cout << total_sum_of_numbers << endl;

A new feature of java, which is used in Object-focused programs, is the
ability for compiling output which is known as (byte code), that can work in
any computer network platform on which the (Jvm) or byte code is
installed. The translator is available for translating byte code which would
be made by a real hardware processor. Due to the use of this virtual
machine, it is possible to compile and separate the byte code on the
platform using a timely compiler. (Java Translator and Java Compiler also
available.) Where more than one object module was to be used, and the
sequence of commands or data for each object module to the instructions or
data of another object module, some operating systems require additional
action after integration: related location for instructions and data.

The output of the function was known as the load module, and the process
is also known as coordinate planning. The compiler is used to work with
3GL and high-quality languages, sometimes used interchangeably.
Compiler editor which works with programs written in the compiler
language of the processor. When a piece of source code is created in a
standard language such as Java, the compiler is used to convert the source

code into a specific architecture of computer (For example, the Intel
Pentium design).
Each time it is utilised, the resulting machine code can be applied against a
individual set of data. Interpreters are provided with usable resource
programs written in high-quality programming language and program data
and then use the system as opposed to data to produce a variety of results.
Unix shell translator, for example, allows users to interact with the
operating system using commands. Remember that, like any other system,
Interpreters and editors are written in a high-level programming language
(It may or may not be the same as the language they received) which is
subsequently translated into the machine instructions. Java translator, for
instance, may be written in full C or Java if needed.

Because it does not generate Machine Language and does not decrypt the
static code, it sometimes is known as a disrespectful machine. (It’s critical
to distinguish between constructing and translating into machine code.
Since it repeatedly checks and analyses all statements in the system when
the statement is tested in the process being processed, the translator is
usually slower than- each step of the loop body. Numerous computer
scripts, for instance, Lisp and Java, come along with translator as well as
compiler. Java compiler, encoded in C, converts Java source programs (Java
sections with java suffixes Java translator files (with .class extension). Java
translator, also known as The Java-Virtual-Machine can transform bytes
instructions into machine code either immediately or dynamically. and use
that machine code (JIT: just a combination of time).

6.2 Major Steps of Compiler Execution
 A software that directly converts pre-programmed script to machine code is
known as Compiler. Such as "stainless steel" computer software and a
readable computer. Computers are used in a variety of computer programs,
including personal computers and embedded systems. The high-quality
source code of the program developer written in the standard programming
language is translated into the low-level object code by the developer,
which allows the output to be "processed" by the processor. The resulting

object code or, in some cases, the object module is officially named as the
result of the merging process.

Compiling a program is the process of converting it from human-readable
languages, like C or Java, into something that can be understood by your
computer's Central Processing Unit (CPU).

When you execute this command, anything written in cpp will become a
machine code that pertains only to CPUs; thus making them efficient at
executing instructions quickly without any delay due to their complexity:

g++ -Wall -ansi -o prog prog.cpp

In order to create executable files from source code, you must perform the
following four key steps:

1. The first is the preprocessor, which deals with headers and macros
in your program's C ++ input file

2. The expanded source code for C ++ made by the processor
3. The compiler generates object-code that is further assembled for

the device.
4. Compiler then takes the rough outline of your program and creates

an interactive assembly language that you can use to develop a
complete working system.

6.3 Analysis of Semantic Structure
This step is made up of several smaller stages in between. To begin, the
structure of tokens, as well as their sequence about the grammar of a
specific language, is scrutinized for accuracy. In the end, the parser and
analyzer understand the meaning of the token structure to form an
intermediate code, referred to as object code. When a relevant token is
found in the program, the object code contains instructions that specify the
processor action that should be taken. Last but not least, the complete code
is analyzed and analyzed to determine if any optimizations are available. As
soon as optimizations can be carried out, the required updated tokens are
put into the object code to produce the final object code, which is then
stored in a file with the appropriate name.

6.4 Error in C ++
An error is defined as an unauthorized activity made by the user that results
in the software not functioning properly. Programming problems often go
undiscovered until the software is compiled or run for the first time. Some

of the faults prevent the application from being built or run. Others are
harmless. Also, before the compilation and execution of the program, one
must fix the errors. Preceding are by far the most frequently seen errors in
a broad sense. By using this code below, you can flag the complier to stop
preprocessing:

g++ -E prog.cpp

6.5 Syntax Errors
Grammar rules exist in computer languages, just as they do in human
languages. Unlike humans, who are willing to communicate effectively
even if their language isn't faultless, computers are unable to ignore flaws
such as syntax errors. And let us take an example the right print syntax is
anything is print ('hi'), and we make the mistake of forgetting one of the
(parentheses) throughout the coding process. The error of syntax will occur,
and the application will be unable to continue operating as a result. As your
knowledge of the programming language grows, the likelihood of making
syntax mistakes decreases. The simplest method to keep them from causing
you difficulties is to become aware of them as soon as possible. Many text
editors and integrated development environments (IDEs) will have the
ability to notify you about syntax problems while you are writing. With the
example below, we’ll see what error, and outcome, would occur without
putting a semicolon after a line:

#include<stdio.h>
int main()
{

printf("First Program")
}

Output of program
Error: expected ';' before '}' token

6.6 Logical Error

Mistakes are very hard to detect in the mind. It all seems to work VERY
well; you just stopped the computer from performing the wrong action.
While the system sounds psychological, the output may not be what you
expected. If you have not read the requirements properly before and wrote
the code that returned the oldest user to your system when requesting the
most current user in your system, you will make a serious mistake. Among
the best-known examples is the 1999 NASA spacecraft disaster, which was
caused by translation errors between English and American units. The
program was written in one way. However, it had to work in another
language. When you have finished doing your tests, show them to the
product manager or product owner to get their approval for the idea you are
going to write. Someone with extensive knowledge of the firm would have
noticed that you do not specify that a new user is required in the example
above. Check the example below:

#include<stdio.h>
int main() {

for (int n=0;n<5;n++);
{
printf("First Program");
}

}

OUTPUT:
Line only printed one time instead of 5 times.

6.7 Compilation Errors
The integration process is required for some programming languages. Your
advanced programming language is transformed into a standard language
that the machine can easily understand during integration. If the producer
does not understand how to change your code to a lower-level code, this
results in an integration error, which is called an integration time error.
While trying to create a print ('hi,' the producer stopped and told us not to
do it) after '. If you have an error in compiling time on your software, you
will not be able to test or run it. You will find great benefits in avoiding

these mistakes with information, but in general, a big part of what you can
do is get a quick response when it happens. Some common compilation
errors include:

Undeclared identifier : DayofYear.cpp : In function `int main()':
DayofYear.cpp:25: `DayOfYear' undeclared(first use this function)

Meaning that variable[DayofYear] is trying to be pushed through before
declaration.

Undeclared: abc.cpp : In function `int main()': abc.cpp:4: `cout'
undeclared(first use this function)

This happens if you forget to include iostream.

Parse Error : somefile.cpp : 12 : parse error before `nothing'

This happens when a semi - colon isn’t in place at the end of a previous
command.

6.8 Runtime Errors
When a user tries to use your software, operating time errors arise.
Although the code may work successfully on your machine, it may not
work properly on a web server due to a different set or because it interacts
with it in a way that causes a runtime error on the website. This means that
if the form is submitted without a first word, your system will fail because it
will try to capitalize the first letter of the word using something like params
[: first name]. Capitalize.

// Example for run-time error in C ++ program
#include <iostream>
void main()
{

int number = 8, divide = 0;
//number is diveded by zero to program will crash
divide = number / 0;

std::cout << "Answer = " << divide;
}

These errors occur while the system is running and may prevent the user
from performing the tasks for which he or she is accountable. Keep
reporting the best bugs to catch any running time issues and automatically
unlock new news on your ticketing system as they arise. Try to gather some
useful information in each issue so that you do not repeat the same mistake
the next time. Using the frameworks and code stored by the community is
an excellent way to reduce the risk of these types of emerging errors as the
code is used in many different projects and thus meets and handles a large
number of problems.

6.9 Arithmetic Errors
An arithmetic error is a type of error that involves both mathematics and
logical thinking. For example, while solving a separation problem, you may
find that you cannot split zero without encountering an error. People don't
usually write 5/0, but you may not know that the size of anything in your
system can sometimes be zero, which leads to this kind of error. If age, Ax,
or all years have been zero, years of operation may produce the error. As
established earlier, mathematical errors can lead to logical errors or, in the
case of zero divisions, make a logical error. May cause work time errors.
Having an inspection system that always includes cases such as zero or
negative numbers is a good way to stop these arithmetic errors in their
tracks. For example:

int square_of_number(int num)
{

return num * num;
}
void func()
{

checked
{

int output = square_of_number(2);
}

}

Since there is not a run-time flag, it cannot control the overflow.

6.10 Resource Errors
The system on which your software is running will allocate a specific
quantity of resources to the program's functioning. If anything in your code
causes the computer to try to allocate more resources than it has available, a
resource error may be triggered. If you made the mistake of building a loop
that your code couldn't escape from, you'd quickly run out of resources. The
while loop in this example will continue to add new members to an array as
long as the loop is running. You will ultimately run out of memory.
Unfortunately, resource problems may be difficult to find down because the
machine on which you're working is usually of higher quality than the
servers on which your code is running. Aside from that, simulating real-
world use from a local computer is tough. Below are a couple of examples
of resource errors you might come across:

Undefined keyword or key name: MFT_STRING
Receiving this error usually means that there may have been typos included
in the definition of the resource.

String not found in DLGINCLUDE statement
That error means the statement did not specifically recognize a valid
include file. Therefore, it has to use this syntax: filename.h

6.11 Interface Errors
In the case of interaction failure, there is a difference between how your
product should be used and how it should be used. Most software
components adhere to the standards. If the input you receive does not meet
the conditions, your system may have a problem interacting. For example,

if you have an API that requires certain parameters to be assigned and those
parameters are not specified, an interaction error may occur. If the interface
problems are not handled correctly, they will appear to be wrong at the end
while they are wrong at the end of the caller. As a result, both parties may
be disappointed. The most effective way to say this is to have some
documentation and diagnose these issues so that you can effectively address
the issue. "Hey, you have not provided us with the information we need to
fulfill this request what he should do. It is possible that if you do not detect
these problems and return them to the caller, they will appear as operating
time errors in your report, and you will end up being more protective.
Here’s an example:

class MyInterface{
public:
 virtual ~MyInterface(){}
 virtual void initialize() = 0;
 virtual void newValueSound(int stream, double value) = 0;
 virtual void newValueAlg1(int stream, double value) = 0;
 virtual void newValueAlg2(int stream, double value) = 0;
};
When using this header for the interface

#include "MyInterface.h"

void someMethod(){
 MyInterface *interface;
}

One might come across this error:

error C2332: 'struct' : missing tag name
error C2011: '<unnamed-tag>' : 'enum' type redefinition
error C2226: syntax error : unexpected type '<unnamed-tag>'

Chapter 7: Fundamentals of C ++

No programming language is completely faultless. The good news is that a
computer language is not perfect to be a helpful apparatus for developing
good systems. A general-purpose programming language will never be
ideal for all of the numerous jobs to which it will be used. Because
excellence in one field implies specialization in another, what is excellent
for one job is sometimes severely faulty for another. As a result, C ++ was
created to be a useful tool for developing a broad range of systems and for
expressing a wide range of concepts in a straightforward manner. The built-
in elements of a language are not always sufficient to convey all that needs
to be communicated. It isn't even the best-case scenario.

There are language features that are designed to accommodate a wide range
of programming styles and methodologies. For this reason, it is important to
concentrate on mastering the native and natural styles of a language rather
than on memorizing every single detail of every linguistic aspect while
learning a new language.

The ability to write programs is required; nevertheless, comprehending a
programming language is more than simply an academic exercise. It is vital
to put ideas into action in the real world. There is no benefit in learning the
most esoteric language features or in using the greatest amount of language
features when it comes to actual programming. It is of little interest to study
a single linguistic characteristic in isolation. The feature only becomes
meaningful and interesting when it is placed in the context supplied by the
approaches and other features. To make sense of the next chapters,
remember that the true goal of learning about C ++ is to be able to utilize
language features and library capabilities in concert to enable effective
programming styles within the framework of sound designs. There is no
important system that is constructed only based on the linguistic
characteristics that are used. We create and utilize libraries to make the
work of programming easier while also improving the overall quality of our

systems. Libraries are used to increase the maintainability, portability, and
performance of the software.

Classes, templates, and class hierarchies are all examples of abstractions
that are used to represent fundamental application notions in libraries. The
standard library contains representations of many of the most basic
programming concepts and ideas. As a result, knowing the C ++ standard
library is an essential element of learning the language. When it comes to
knowing how to use C ++ properly, the standard library is the storehouse
for a lot of hard-earned information. C ++ is a programming language that
is extensively used in education and research. Some people have been
startled by this, pointing out that C ++ is neither the smallest nor most tidily
written language of programming ever created, which is right. It is,
however, as follows: It is sufficiently clean to be used effectively in the
teaching of fundamental design and programming ideas.

A sufficient amount of detail is provided to allow for the teaching of
advanced ideas and approaches. For tough tasks, this approach is
sufficiently realistic, economical, and versatile. It is sufficiently commercial
to serve as a vehicle for applying what has been learned to nonacademic
use. Organizations and partnerships that depend on a variety of
development and execution environments will have enough resources
available. This language enables you to grow your skills over time. The
most crucial thing to remember is while we learn (C ++) is to keep our
attention on important concepts (like type security and resource
management) techniques (like Resource management through the use of
object scope and an iterator in the algorithm) rather than getting bogged
down in language-specific nuances. A programming language's primary
goal is to help you become a better programmer, which means that you'll be
more successful at creating and implementing new systems, as well as
maintaining existing ones. In this case, an understanding of design and
implementation concepts is far more important than a thorough
comprehension of all of the intricacies of the program. The ability to
comprehend technical subtleties develops with time and with experience is
built on rigorous checking of the static type, and the majority of approaches
are aimed at obtaining a high degree of direct representing and abstracting

of the programmer's ideas as effectively as possible. When compared to
lower-level approaches, this can generally be accomplished without
negatively impacting run-time and space economy. Programmers who are
transitioning from another language to C ++ must acquire and internalize
the idiomatic C ++ programming style and method to reap the advantages
of the language. The same is true for programmers who are used to working
with previous and less expressive versions of C ++.

When approaches that are useful in one language are applied carelessly to
another, the result is generally clunky, poorly performing, and difficult to
maintain code. In addition, writing such code may be very unpleasant since
every line of code and every compiler error message serves as a constant
reminder to the programmer that the language being used is not the same as
"the old language." it may have been written in the manner of (Fortran),
(C), (Lisp), Java, and other programming languages in any language; but,
doing so in a language with a different philosophy is neither enjoyable nor
efficient. Every language has the potential to be a rich source of inspiration
for programmers writing C ++ applications. However, to be successful in C
++, concepts must be translated into something compatible with the overall
structure and type system of the programming language. Only Pyrrhic wins
are conceivable while battling against a language's fundamental type
structure.

In the ongoing discussion over whether or not one should study C before
moving on to C ++, I am adamant that it is preferable to skip C and get right
into C ++. Using C ++ instead of C minimizes the need to concentrate on
low-level approaches and makes them safer and more expressive. After you
have been introduced to the common subset of C and C ++, as well as some
of the higher-level methods available directly in C ++, you will find it
simpler to understand the difficult sections of C that are required to
compensate for the language's lack of higher-level features.

7.1 Learning C ++
In this post, I will introduce you to the foundations of the C ++
programming language, starting with the most basic concepts. I'll go over

all of the fundamentals you'll need to know before getting started with the C
++ programming language in this section. To guide you through the
fundamentals of the C ++ programming language, I'll start by writing a very
simple hello world program and then proceed to educate you through all
the key essentials of C ++ language step by step, beginning with the most
fundamental concepts. So let's begin by building a very basic hello world
program to get things started. # Contains the standard C++ header file's
contents, iostream via the use of a preprocessor directive known as
"include." iostream is a header file included with the standard library that
defines both in-put and out-put streams.

It's included in the library's standard distribution. These definitions are
contained inside the STD namespace, which will be discussed further
below. Programs can receive input and output from an external system –
often the terminal – using standard input/output (I / O) streams. Main () is a
new function that is defined by the int main () function. During the
program's execution, the main function is invoked as a matter of
convention. In a C ++ program, there should only be one main function, and
it should return several types of INT unless otherwise specified. The INT in
this case represents what is referred to as the return-type function. The main
function returns a code indicating that the program has terminated. A
system that is executing the software considers an EXIT SUCCESS or exit
code of 0 to be a success, according to a convention. Any other return code
indicates that an error has occurred.

If there is no return statement in the program, by-default, the primary
function (by extension, the entire script) returns 0. Such approach does not
require us to enter return 0 explicitly. Other than those that return null, all
other functions must either clearly return the value aligned with the return-
type or fail to return anything. This example writes "Hello World!" to the
standard output stream using the function STD::cout "Hello World!" we
have two distinct types of scope resolution operators in a namespace, and
the first is the scope resolution operator that enables you to search up items
in a namespace by their names. There are a plethora of namespaces. We use
the prefix: to indicate that we wish to utilize the count function from the
STD namespace. The iostream library refers to this object as the (STDout).

It prints to the output device. Throughout this scenario, the operator for
stream insertion is denoted by the symbol, which is so named because it
adds an item into the object of the stream. The insertion of data into output
streams is defined by the operator in the standard library, which may be
used for certain data types. Stream content is a function that inserts material
into a stream and returns the same stream with the content updated. Stream
insertions may now be chained together as follows: This example outputs
"FooBar" to the console using the STD::cout function. In computing, a
character string literal, often known as a "text literal," is defined as "Hello
World!" The iostream file contains the definition of the character string
literal stream insertion operator. When you use this "STD::endl", it will
insert the end-of-line characters and then flush the stream buffer, causing
the text to appear correctly on the terminal. Using this method, you can be
certain that the data you put into the stream will display on your terminal.
Most of the time, a compiler generates the executable computer code for the
C ++ language.
A compiler is software that converts code written in one computer language
into a different format that is (more) directly executable by a computer,
known as a machine translation. Compilation refers to the process of
converting code using a compiler. C++ shares the C compilation process's
structure, which is considered to be its "father" language. Compilation in C
++ is broken down into four major phases, which are detailed below. The
C++ preprocessor mimics the data of all header files contained in the script
file, generates macro code, and replaces symbolized values stated with the
#define command with their contents, as specified. Using the C ++
preprocessor, you may create source code files that are ready to be
translated further into the target network's assembly language.

It’s necessary to assemble the assembly code produced by the compiler into
object code that is suitable for the platform in question. A link is created
between the object code file produced by the assembler and the
computer code files for all library functions that were used to generate a
workable file. Many C ++ compilers additionally include the ability to
combine or unmerge portions of the compilation process for the sake of
convenience or further examination. Even while many C ++ programmers
may utilize a variety of tools, all of these tools will typically follow the

same overall procedure when it comes to creating a program. So those were
the key concepts that you needed to understand before getting started with
the C ++ programming language. It was created as an extension to the C
language. The addition of tools for profane programming, as well as the
expansion of the standard library, were the two most significant new
features. C ++ is a language that is utilized in several applications
nowadays. It is still helpful for certain applications, like game development,
even if it has been partially displaced on Windows PCs by.NET
programming.

7.2 Standard Template Library
Stl has container classes, which have the purpose of containing other
objects. The classes that are included are list, vector, multi-set, multimap,
map, hash_set, hash_multiset, hash_map, and hash_multimap. Below is an
example of how you can use vector in the same way you would use an
ordinary array of C. The vector takes the chore away of managing a
complex allocation by hand.

vector<int> vec(3);

v[0]=2;

v[1]=v[0]+1;

v[2]=v[0]+v[1];

The STL, or std library of algorithms is a set of generic routines that can be
used across many types. One such type is collections which provide data
structures for holding objects in variable ranges (think maps and sets).
There's one particular algorithm called "reverse". It takes two arguments: an
element range [Begin], and all elements greater than or equal to this first
value. Reverse will do nothing unless these conditions hold true.

double arr[6] = {7.6,2.3,2.7,7.2,5.1,9.8};

reverse(arr, arr+6);

for(int i=0;i<6;++i)

cout << "arr[" << i << "] = " << arr[i];

7.3 How Difficult Is It to Learn Programming?
Programming is usually perceived as being very difficult to learn and
comprehend by the majority of non-technical people and as being reserved
for super brains or geeks. However, although programming may indeed be a
challenging skill to master, it is not a particularly demanding activity that
requires months or years of study to master. While it is true that practice
makes perfect, and the additional months and years may enable you to
develop your programming abilities and become a better programmer,
getting started is not difficult, and anybody with an internet connection and
a computer can learn to program.

Many programming classes in school would have you begin by studying
Visual Basic or C#, or any other language that is reasonably straightforward
to learn and easy to comprehend, and then go from there. However,
programming experts suggest that students or those interested in learning
should begin with a high-level language such as C ++ or Java to grasp the
ideas of Object-Oriented Programming, often known as OOP, and get
familiar with the notions of classes, methods, and objects. It is preferable to
learn from technical books since they are often fairly extensive and provide
a variety of tasks to do, as well as examples and snippets of code to
examine. They are, on the other hand, often fairly costly, with costs ranging
from twenty dollars to more than sixty dollars. This may dissuade a
significant number of individuals from participating and compel them to
learn via the Internet. While this is not a negative technique in and of itself,
you will not receive the same learning experience from it that you would
get from a technical book from your local bookstore or library, for example.

Chapter 8: “Hello World!” application in C ++

The "Hello-World!" application is the very first program that a newbie
should learn; in computer science, it is almost considered a tradition, to
begin with, the Hello World program. If you wish to develop a program in
C ++, you must follow a set of rules that must be followed. This collection
of rules is referred to as syntax, and you will be able to grasp it in
conjunction with the Hello World program.

#includes<iostream> is a header file that is responsible for introducing
features to the application. It is found in line 1. It is these preset functions
that give you the functionality you want when building a program that is
included inside these header files. The iostream header file provides
definitions for cin, cout, and other functions that assist you in taking input
from the user and displaying the results. To add a header file into a program
the preprocessor #include is used while it is being built. The use of STD as

a standard namespace indicates that you are utilizing the object and variable
names from the standard library in line 2, which is an advantage over using
other namespaces. The INT main () function, often known as the main
function, is defined in line 3 and is an important aspect of each program.
For example:

#include <iostream>
int main() {

std::cout << "Welcome to world of programming.";
return 0;

}

Outcome:
Welcome to world of programming.

The first function is always the main function and is called when a program
is executed. Cout is an object at line 7 that is used to print the output of the
program when it is executed. For example, with this line, you will print the
message Hello, World! In line 8, the return value of 0 indicates that nothing
will be returned in this program. In this C ++ fundamentals course, you will
get an understanding of data types and variables. If you recall from Lesson
1, "Getting Started," your very first C ++ program did nothing more than
print a basic "Hello, World" line on the computer screen. Although this
program comprises some of the most crucial and fundamental building
elements, it is not a complete program.

8.1 Components of C ++ Program
This C ++ program is separated into two sections: the preprocessor
directives beginning with a # and the main body of the program beginning
with the INT main directive (). A preprocessor, as the name implies, is a
tool that runs before the actual compilation process occurs. Preprocessor
directives are instructions delivered to the preprocessor and are already
followed by the pound symbol # The directive #include filename> informs
the preprocessor to take the contents of the file (in this case, the iostream)
and include it at the line in which the directive is written.

In Line 8, the iostream header file is standard to enables the use of
STD::cout, which is enabled by the presence of the iostream header file, to
display "Hello World." In other words, the compiler was able to generate
Line 8 because we instructed the preprocessor to use the definition of
STD::cout in the include statement. This is the program's main body, as
specified by the function main, which comes after the preprocessing
instructions (). The execution of a C ++ program always begins at this
point. It is common practice to declare the function main() with an INT
before it in the definition. The method main () returns an int, which is an
acronym for integer. Talk about Line 8, which is the one that truly achieves
the program's main purpose! The phrase cout (also known as "console-out"
or "see-out") writes the message "Hello World" to the display console,
commonly known as the screen.

You're inserting the string "Hello World" into the cout stream, which is
defined in the standard STD namespace (thus, STD::cout), and you're doing
it on this line by using the operator for inserting streams. The default end-
of-line (STD::endl) character is used to end a line, and entering it into a
stream is equivalent to inserting a carriage return (cr). It should be noted
that the stream insertion operator () is used whenever a new entity must be
added to the stream of entities. The benefit of utilizing streams in C ++ is
that various stream types have equivalent stream semantics, enabling you to
perform different operations on the same text and get different outputs.

Inserting into a file instead of a console, for example, would use the same
insertion operator on a STD::fstream instead of a STD::cout to get the same
result. As time passes, dealing with streams gets more natural, and if you
become used to working with one stream (such as cout, which transmits text
to the console), you'll find it easy to work with others (such as stream,
which helps save files to the disk). Unless otherwise stated, C ++ functions
must return a value unless otherwise specified. Furthermore, the procedure
main () always returns an integer. When an application quits on its own, the
operating system receives an integer value (OS). Depending on the nature
of your program, this integer number might be highly significant, as most
operating systems enable you to query the return result of a regularly
terminated application. In many cases, one program launches another, and
the parent application (which launched the child application) wants to know
whether or not the child application (which was started) completed its
function properly. The return value of main () can be used to inform the
parent application if the action was successful or not.

Because the artefact (cout) that you want to call is located in the standard
(STD) namespace, which you used in the application, you used STD:cout
rather than just cout:

#include <iostream>
main()
{

std::cout << "Welcome to world of Programming";
return 0;

}

So, what are namespaces and how do they function? Assume you didn't use
the namespace qualifier while using cout, and that cout was available in two
places known to the compiler. In this scenario, which one should the
compiler choose to run cout? As a result, there is a conflict and, as
predicted, the compilation fails.
This is where the use of namespaces may help. Namespaces are names
assigned to parts of code to limit the possibility of a naming conflict
happening. By using the std::cout command line parameter, you may direct
the compiler to use the only cout available in the STD namespace. To
invoke functions, the namespace STD (pronounced "standard") is utilized.
When utilizing cout and other related features that are located in the same
namespace as cout, many programmers find it inconvenient to have to add
the STD namespace specifier to their code over and over again.

8.2 C ++ Library Files
The C ++ Standard Library is divided into two components, which are
described below.

The Standard Function Library is a collection The Standardized Function
Library is a collection of generic, independent functions which are
unrelated to either particular class or type. The C programming language's
function-library serves as the foundation for the function-library.

The "Object-Oriented Class Library" (OCL) is a repository of classes and
associated methods. Below is a list of a few various different types. The
Standard C ++ Library comprises all of the Standardized C libraries with
extensions and adjustments to ensure type-safety. Below is a list of a few
various different types:

<cstdlib> − General purpose utilities like program control, dynamic
memory allocation, random numbers, sort and search
<csignal> −Functions and macro constants for signal
management(SIGINT, etc.)
<csetjmp> −Macro (and function) that saves (and jumps) to an execution
context
<cstdarg> − Handling of variable length argument lists
<typeinfo> − Runtime type information utilities
<bitset> − class template of std::bitset
<functional> − Function objects, Function invocations, Bind operations
and Reference wrappers
<utility> − Various utility components
<ctime> − C-style time/date utilites
<cstddef> − standard macros and typedefs
<typeindex> − Wrapper around type_info object, can be used as index in
unordered associative containers as well as ordered
<type_traits> − Compile-time type information
<chrono> − C ++ time utilities
<initializer_list> −Library that defines a lightweight proxy object and
provides access to a plethora of objects: const T.

Chapter 9: Data Types & Variables in C ++

Take a step back and learn about the components of a computer and how it
operates before diving into the usage and use of variables in a programming
language. All computers, smartphones, and other programmable devices are
equipped with a microprocessor and a limited quantity of RAM (random
access memory) for temporary storage (RAM). In addition, many
technologies enable data to be saved on a storage device, such as a hard
drive, for later retrieval and analysis. The microprocessor is responsible for
executing your application, and to do so, it communicates with the RAM to
retrieve the binary code to be executed, as well as the data associated with
it, which includes the information displayed on the screen and the
information entered by the user, to be executed. The RAM itself may be
thought of as a storage facility, similar to a row of lockers in a hostel, with
each locker being assigned a number or an address. To access a specific
address in memory, such as location 578, the processor must be instructed
to either read a value from or write a value to that position through an
instruction. The examples that follow will assist you in understanding what
variables are and how to use them.

Consider the following scenario: you are building software that will
multiply two integers given by the user. Each multiplicand and multiplier is
sent into your software sequentially by the user, and you must store each of
them so that they may be used to multiply later on in the program. Based on
what you intend to do with the result of the multiplication, you may wish to
save the result of the multiplication for later use in your application. To
store the numbers, you would need to explicitly specify memory addresses
(such as 578), which would be time-consuming and error-prone because
you would have to worry about either accidentally overwriting existing data
at the location of your data being overwritten in the future. The compiler
gets informed by the variable type attribute concerning the sort of data that
the variable may contain, and the compiler allocates the appropriate amount
of space for it. The programmer's choice of name acts as a friendlier
substitute for the memory address where the variable's value is stored.

You cannot be certain of the contents of a memory region till the initial
value is set, which may be detrimental to the program's performance. As a
result, initialization is not required. However, it is often recommended as a
good programming practice. Using variables in a program that multiplies
two integers entered by the user Ordinary variables, like the ones we've
declared so far, have a well-defined scope within which they are valid and
may be used to perform their functions. When variables are used outside of
their scope, the names of the variables will not be recognized by the
compiler, and your program will not be able to run. A variable is an
unnamed item that the compiler is unaware of when it is used outside of its
scope.

9.1 Variable Declaration in C ++
Additionally, C ++ supports the definition of many additional variables,
which we will explore in more detail in the following chapters, such as
Calculation, Identifier (including frames), Reference (including references
to other variables), Data structures, and classes. A variable statement
instructs the compiler what further storage the variable will receive
throughout the merging process. A variable statement provides the sort of
data it contains and contains a set of one or maybe more variables, each
with its own definition. Here, The type has to be a valid C++ data type,
such as float, double, int, char, char, or bool, or any other specified by the
user., among other things, and the dynamic list may contain one or more
comma-separated identifiers, and the first reference name is first in the list.
When you see the line int.i.i.j.k., you know that you are both announcing
and explaining the INT variable. It also tells the producer to build three INT
variables of the same name: inti, intj, and into.

During the declaration process, a variable can be activated (i.e., given the
initial value). The launcher is represented by an equal sign. The following
variable default values have a fixed storage duration when no launcher is
specified: the static duration variables are automatically started NULL (all
bytes have a value of 0); the default values for all other variables are
unknown. The dynamic declaration gives the compiler the confidence that

there is only one variation of the specified type and name, allowing the
compiler to proceed with the entire compilation without knowing all the
details about the variation. Contrary to the fact that a flexible announcement
is only relevant during integration, the producer needs a real definition of
variation during system integration. When many files are used, and the
variables are created inside one of the files that will be accessible during the
application connection, a flexible announcement may be quite beneficial. At
any point in the system, one will utilize a foreign term to describe a
variable. While the variable may be declared multiple times within a C++
program, it can only be specified once within a file, task, or code block.no
matter how many times it is announced. The syntax is as follows:

Datatype variable_name;
int a;

9.2 Types of Data in C ++
During the definition of all variables, the data type keyword is used to
restrict the type of data that could be saved. We can define data types as
forms of information utilized to store various types of data. Composer
provides variable memory whenever defined in C ++, and the amount of
memory provided depends on the type of data being declared variable.
Depending on the data format, different amounts of RAM are required.
Classic data types are types of built-in or pre-set that can be used by the
user directly to create variations. Classical data types are pre-determined
data types that can be used by the user directly to declare alternatives—for
example, int, char, float, bool, and so on. Types of Data Received: Types of
Data Received are types of data based on old or built-in data types and are
used to store information about objects. Types of Data Specified or
Specified by User: These are the types of data defined by the user himself.
For example, in C ++, you could define a class or structure.

• Total number: The keyword INT is used to refer to all types of data. When
working with integers, the standard requirement is 4 bytes of memory
space, the range is -2147483648 to 2147483647.

• Character: A character type is used to store characters in a text file. The
keyword char is used to describe the type of character data. The letters
usually take up a single memory space and can be found in the range from
-128 to 127 or 0 to 255, respectively. For example:
The Syntax: char [variable name]=value;
E.g: ch1{ ‘ a ’ };
• On a computer, a type of Boolean data is used to store sensible or rational
values, such as true or false. The Boolean variable can store true or false
values. The keyword bool is used to describe a type of Boolean data. Here’s
an example utilizing perl.

use strict;
my($Username, $Userpassword);
print "\nWrite UserName: ";
chomp($Username = <STDIN>);
print "\nEnter Password: ";
chomp($Userpassword = <STDIN>);
if (($Username eq "Jhon") && ($password eq "12345")) {

print "Loggedin\n";
}
else {

print "Fail to loggin\n";
die;

}

• Maintain accurate floating-point numbers (or decimal values) using the
Floating Point data type. The float keyword is used to describe the type of
floating-point data. The memory space for the floating-point variables is
usually the size of 4 bytes.
• Double accurate floating point or decimal value is maintained using
Double Floating Point data, also known as double accurate floating point or
double decimal value. Double the keyword used to describe a type of
double-float point data. Dual variables take an average of 8 bytes of
memory for activation.
• Vanity: The word "vanity" refers to anything that has no value. Valuable
data type describes a non-value business. In the case of non-refundable

operations, a Void data type is used.
• Wide Character: The uppercase data type is the same as the uppercase data
type, but has a larger size than the standard 8-bit data type. Comprehensive
Character Data (w-Char-T) is used to represent this type of data. It is
usually 2 or 4 bytes.

Chapter 10: Operators in C ++

A programming language's Operators seem to be the fundamental building
elements of every computer language. Operators may be thought of as
symbols that assist us in doing certain mathematical and logical operations
on operands, as opposed to variables. On the other hand, we could claim
that an operator is in charge of the operands' operation. For example, the
operator '+' is used to indicate addition. There are two operands in this
equation: 'a' and 'b'. The addition operator is represented by the symbol +.
The (+ operator) instructs the compiler for combining the values of the 'a'
and 'b', which are operands.

Without the employment of operators, the capabilities of the C/C ++
programming language would be significantly reduced. C/C ++ includes a
large number of built-in operators, which may be divided into six types:
Algebraic and Numerical Operators Relational Operators are used to
establish relationships between two or more entities. Logical Operators are
a kind of logic that may be used to solve problems. Bitwise operators are a
kind of operator that operates on bits. Assignment Operators are a kind of
assignment operator. Other company's operator’s further investigation has
been conducted into the following operators: On these operators, operands
are employed to perform both arithmetic and mathematical operations.
which are referred to as arithmetic/mathematical operators. Examples are
(+, -, *, /, percent, ++, and –).

10.1 There are two kinds of arithmetic operators
Monotonic Operators: Monotonic operators are those that work with a
single operand and a pair of operands. For example, the Increment (++) and
Decrement (–) operators are both used in programming. Operation with
Two Opponents: those operators which are binary are used to operate on or
work with two operands. Let's take an example the operations Addition (+),
Subtraction (-), Multiplication (*), and Division (/) are all possible
combinations. In a mathematical equation, relational-operators are intended
to compare the values of two operands. For instance, determining If

an operand is identical towards the other operand's value or not, or if the
first operand is larger than the other one or not, and so on. Some operators
are (==, >=, =), and others are not. (For further information, see this
chapter.) The Bitwise operators are used to perform certain operations on
the operands at the bit level. Firstly, the operators are transformed to bit-
level representations, and then the calculations on operand are done.

Expressions like (+), (-), (*), and other similar operations may be done at
the bit-level for quicker computation. A bitwise AND operator, represented
as the & operator in programming languages such as Java, accepts two
integers as operands and applies the AND operator to all of the bits in both
numbers. In the case of an AND, the outcome is 1 only if both bits are 1.
When assigning a value to a variable, assignment operators are utilized to
do so. Assigning values to variables is accomplished using the assignment
operator, which takes a variable as its left side operand and a value as its
right side operand.

Unless otherwise specified, the right-side value must be similar to the data
type on the left-side variable; otherwise, the compiler will raise an
issue/error. Here are examples of several types of assessment operators: a.
"=": "=" is the most straightforward assessment operator. This operator
takes the value on the right-hand-side as an input and assigns it to the
variable on the left-hand-side. Here, "+=" is a concatenation of the operator
"plus" and "equals." The operator takes the value of the variable on left-side
towards the value of the variable on the right-side before assigning the
outcome to the variable on the left-side., as shown in the example below.

It is made up of the operators "-=" and "=," and it is used to denote the
absence of a prefix. That operator - the value of the variable on the left-
side from the number here on the right-side, before assigning the outcome
towards the variable on the left-side. As seen in the example below. "*=":
here operator is the combo of the '*' as-well-as the '=' operators, and it is
used to denote a condition. After multiplying the left variable's value by the
right variable's value, this operator returns the answer in the direction of the
leftmost variable, which is a one-to-one correspondence.

Chapter 11: Loops & Functions in C ++

To this point, you've seen how to have your program respond differently
depending on whether variables contain various values. What happens if he
wishes to conduct another addition or multiplication operation, or perhaps
five more in a row? When you need to repeat the execution of previously
written code, you're at the right place. This is the point at which you must
write a loop.

The Loop statement need only be typed at first before the loop will
get executed ten times, as shown in the example. In programming, a loop is
a set of commands which gets repeated till a specified target is met.
Following the completion of an operation, such as receiving and modifying
data, a condition, such as assessing if a counter has reached the required
number, is confirmed. If the count does not reach the specified numbers and
the following instructions in this process and instruction returns to the first
and repeats its. If the counter doesn't reach the specified number, the
following instructions in the series return to the very first instruction redo it.
If the target is fulfilled, the afterward successive instruction which is
eventually falling through or branches outside of the loop, and the loop is
ended. Loops are classified into two types: inner and outward. The ECLs
(Entry-Controlled-Loops). In this type of loop, the trial condition is checked
prior to attending the loop body. The loop body is then tested once the test
condition is passed. Loops with entrance-controlled entry are the for Loop
and the While Loop. In this form of a loop, the test condition is checked or
assessed on the end-side of this loop body, referred to as an "exit controlled
loop". The body of the loop will thus be executed at least once, regardless
of whether the test condition is true or false in the conditional statement.

Exit-controlled loops are represented by the do-while loop. It is possible to
build a (for loop), which is a control structure of repetition, that will be run
a particular time number. The loop enables us to do a lot of operations in a
single line by grouping them. The for loop is controlled by a loop variable,
which is defined as follows: Then verify whether the value of this loop

variable is less than or more than the value of the counter variable. If
factual, the loop's body will run, and the loop variable is updated
appropriately. These steps will be followed until the departure condition is
met. Expression of Initialization (in English): It is necessary to initialization
the center of the loop counter to a certain value in this phrase. As an
illustration: INT i=1; the following is an example of a test-expression: Here,
we must put the condition to the test. The loop’s body will get executed,
and we’ll go on to the update expression if the condition illustrates true; on
the other hand, we’ll leave the for-loop and return. For instance: (i = 10; i =
10; i = 10;) update the expression. After the loop, the body has been
executed, and expression increases or decreases the value of the loop
variable by a specified amount. For example: i++;

11.1 While Loop
The iterations are known ahead of time. This means that we know how
many runs the body of the loop needs in order to get executed. This was
discovered when researching for the loop. And these loops are utilized in
cases when we don't know the precise number of iterations of a loop we
will be performing in advance. The execution of the loop is ended
according to the outcome of the condition of the test. Already said, a loop is
composed mostly of these statements, and expressions are initialization,
test, and update expressions. The syntax of these loops is (for, while, and
do-while) changes only in the order in which these 3 statements are.

Initialization expression;
While (test-expression)
{
 // /statements

 Update-expression ;}

11.2 Do while loop
In this, the implementation of the loop is also halted based on the result of
the test condition. Due to the fact that the condition is verified after the

body of the loop, the “do-while loop” differs from the other two loops in
that it is controlled by exiting it. The other two loops, on the other hand, are
entrance controlled. In a “do-while loop”, loop’s body will be executed at
least once regardless of the test circumstance. The evaluation of the test
condition (i1) in the preceding software results in a misleading result.
However, the structure of the loop executes only one time. Check out how
to print numbers 1 through 5:

#include <iostream>

using namespace std;

int main() {

int loopcounter = 1;

// while loop from 1 to 5
while (loopcounter <= 5) {
cout << loopcounter << " ";
++loopcounter;
}

return 0;

}
Outcome:
12345

11.3 What about an Infinite Loop?
An endless loop is called an “infinite loop” and is a part of code that does
not have a functioning exit, causing it to continue endlessly without
stopping. An endless loop happens when the evaluation of the condition
will be true on an unlimited number of occasions. Normally, this indicates a
clerical mistake. When we know the iteration number ahead of time, i.e.
when the loop body is required to be run is identified, the loop body is used.
Where the number of iterations performed is unidentified, but the condition

of loop termination is identified. If the code has to be performed, like in
menu-driven systems, then a do-while loop should be used.
For instance:

#include <iostream>
int main() {

while (1 == 1) {
std::cout << "I love CPP" << endl;
}

}

Outcome:
I love CPP
I love CPP
I love CPP
I love CPP

11.4 For loop
Because it enables for an initialization statement to be run just once (usually
to establish a counter), checking for an exit condition (often using this
counter), and executing an action after every loop, the statement is more
advanced than the while statement (typically incrementing or modifying
this counter). An example of this is the for loop, which allows you to
construct a counter variable with an initial value, compare the current
values against a set of exit conditions at the beginning of each loop, and
alter the value of the counter variable after each loop. During this session,
you learned how to design conditional statements that establish alternate
execution routes and cause code blocks to repeat in a loop, among other
things. You learned how to use the if-else construct and switch-case
statements to handle distinct circumstances if variables have different
values. When learning about loops, you were taught about the go-to
command, but you were also advised against using it since it has the
potential to produce code that is difficult to comprehend. You learned how
to write loops in C ++ by using the while, do...while, and for statements.
You learned how to make the loops repeat indefinitely to build infinite

loops, as well as how to manage them more effectively using the continue
and break commands. For instance:

int count = 1;

do {

// code in loop

} while (count == 1);

The preceding program demonstrates that this condition is accurate will run
infinitely.

11.5 Functions in C ++
Up to this point in the book, you've encountered basic programs in which
all of the programming work is contained in the main function (). This is
particularly useful for really little programs and apps. The contents of main
() will inevitably grow in size and complexity as your program grows in
size and complexity unless you choose to organize your program via the use
of functions. Functions provide a mechanism to compartmentalize and
organize the logic that governs the execution of your program. They
provide you with the ability to divide the contents of your application into
logical chunks that are called one after another in a sequential manner.

As a result, a function is a subprogram that may accept arguments and
return a value, and it must be called to complete its work. In this session,
you will understand why it is necessary to program functions.

To declare a function, you can use this syntax:

returnType NameOfFuntion(param1, param2) {
// Body of funtion

}

example of function declaration :

void greet() {
cout << "I love CPP";

}

Unless the function is specified with a void which is the return type, a
return statement must be included in the code. Because the function has
been defined as one that returns a double, Area () is required to return a
value in this circumstance. The statement block comprises statements
enclosed in open and closed braces (...), which are executed when the
function is invoked. The statement block is divided into two parts. Area ()
computes the area of a circle by using the input parameter radius, which
includes the radius as an argument supplied by the caller, and the radius as
an argument sent by the caller. Using the [greet()] function requires the
need to call it.
For example:

int main() {

 // calling a function
 greet();

}

You can create two functions consisting an identical name and return value
but with distinct debates in each. To enable you to modify more data or
arguments in a function call, you may construct a function such that its
parameters do not need to be generated and destroyed inside the function
call; instead, you can utilize references that remain valid even after the
function has departed. Arrays are sent to functions in this part, as is function
overloading, and providing parameters by reference to functions are
covered throughout this section. Overloaded functions contain an
identical name and return type as the original function but hold a distinctive
set of arguments or a distinctive set of parameters than the original function.
Extending the functionality of a function by providing more than one form

of output may be very beneficial in situations where a function with a
certain name that generates a specific type of output has to be run with
multiple sets of inputs. Consider the following scenario: you are responsible
for building an application that computes the circumference of a circle and
the circumference of a cylinder. The radius of a circle is a parameter in the
function that computes the circumference of a circle. In addition to the
cylinder’s radius, the other function that computes the area of the cylinder
requires the height of the cylinder.

Both functions must return data of the same type, including the area, to be
successful. As a result, C ++ allows you to construct two overloaded
functions, both named Area, both returning double, but one that just accepts
the radius as input and another that accepts both the height and the radius as
input. Although it is not necessary to understand how a function call is
implemented at the microprocessor level, you may find it fascinating to
learn more about it. In understanding this, it becomes easier to see why C
++ provides you with the option of writing inline functions, which will be
discussed more in this section. Instruction about the called function at an
inconsequential memory address is executed by the microprocessor when
the function is called, which is basically what a function call is all about.
After it has finished executing the instructions contained inside the
function, it returns to the point where it was before. To put this reasoning
into action, the compiler turns your function call into a CALL instruction
that can be executed by the CPU. A function is a group of instructions that
accepts inputs and conducts a specific activity, and returns the end.

The goal is to group tasks that are performed often or regularly and turn
them into functions so that we may call the function instead of writing the
same code over and again for various inputs. Functions assist us in
decreasing the amount of redundant code in our programs. If a function
must be performed in various locations across software, rather than writing
the same code again and over, we may design a function that can be called
from anywhere. This also helps with maintenance since we just have to
make one modification if we want to make changes to the functionality in
the future. Code becomes more modular as a result of the use of functions.
Let's say you have a large file with numerous lines of code. When you

break down a large piece of code into smaller pieces, it becomes much
easier to comprehend and utilize. Functions are used to abstract
information. For example, we may utilize library functions without having
to worry about how they are implemented inside. Using a function
declaration, the compiler can find out how many arguments the function
accepts, what data types the parameters are, and what sort of return the
function will produce.

The inclusion of parameter names in the function declaration is optional;
however, it is required to include them in the definition of the function. The
next section is an example of the declaration of a function. (The names of
the parameters are not included in the following declarations.) Pass by
Value: This is how you pass by value. Parameters or arguments, can be
utilized to identify a function. Which passed when declaring the function.
Consider the following illustration:

void DisplayNumber(int n) {
cout << n;

}

Preceding, The int[n] is the parameter of function.

The CPU continues to analyze them until it reaches the RET statement
(which is the microprocessor's return code that you defined). The RET
statement causes the microprocessor to pop the address specified in the
CALL instruction from the stack that was previously saved. There is a
pointer here that points to a spot in the calling function where the execution
should proceed. As a result, the microprocessor is returned to the caller and
the process resumes where it left off. As a consequence, a conventional
function call is converted into a CALL instruction, which results in stack
operations and a microprocessor execution shift to the function, among
other things. For the most part, this is a rapid process that takes place
beneath the hood. What if, on the other hand, your role is a relatively basic
one, such as the following? "Using Variables, Declaring Constants" was the
third lesson in which you learned about the term auto. It allows you to defer

the determination of variable type to the compiler, which does base on the
initialization value supplied to the variable in question.

Starting with C ++14, The same holds accurate for both functions and
variables. Instead of declaring the return type, you would use auto, which
would allow the compiler to guess the return type for you based on the
return values that you program. With the introduction of C ++11, lambda
functions have become more useful in the use of STL algorithms to sort and
process data. Typically, a sort function needs you to provide a binary
criterion to work. This is a function that compares two inputs and returns
true if one of them is smaller than the other, otherwise false, and so
assisting in the determination of the order of items in a sorting process.
Predicates of this kind are often implemented as operators in a class,
resulting in a time-consuming chunk of code. In this session, you learned
the fundamentals of modular programming from the ground up.

You learned how functions might assist you in better structuring your code
as well as in reusing algorithms that you have written. This lesson covered
the concepts of function parameters and return values, parameter defaults
that the caller may modify, and parameters including arguments given by
reference. You learned how to pass arrays, and you also learned how to
write overloaded functions that contain an identical name and return type
yet a unique set of parameters. Last but not least, you got a sneak peek at
what lambda functions are and how they work. Lambda functions, which
are completely new as of C ++, have the potential to fundamentally alter the
way C ++ programs are built in the future, particularly when employing the
STL. The program's execution does not conclude.

There are while(true) and for (;;) loops that do the same thing, so it is not
necessarily bad; but, a recursive function call uses more and more stack
space, which is limited and ultimately runs out, resulting in an application
crash due to a stack overflow. That depends on the situation. While inlining
every function saves space, it also causes code bloat by causing functions
that are used in several locations. However, aside from that, most current
compilers are better judges of which calls may be inlined and conduct this
task on the programmer's behalf, depending on the compiler's performance

options. For function overloading to work, two functions with the same
name must have the same return types, or else they will fail. The name has
been used twice in what your compiler expects to be two functions with
separate names in this situation, and your compiler displays an error as a
result.

Chapter 12: Object-Oriented Programming using
C ++

The main driving force for the development of the object-oriented method
was the need to correct some of the problems that had been discovered in
the procedural technique. The development of Software development is still
a dynamic process. Fresh apparatuses and procedures are introduced one
after another in rapid succession. To keep up with the rising complexity of
software products and the industry's high level of competition and software
industry and software engineers must constantly seek out innovative
approaches to software development and design. This is becoming
increasingly important given the growing complication of software systems
and the industry's highly competitive character for years, engineers have
experimented with a wide range of tools, methodologies, and processes to
better manage the so that super quality software may be produced with the
enhanced efficiency and those software development process should be
optimized. A significant amount of the conceptual underpinning for the
object-oriented paradigm is drawn from general systems theory. A system
may be thought of as a collection of elements that interact with one another
to achieve certain goals. Both tangible items, such as equipment and people,
as well as abstract notions like data files and operations, may be represented
by entities. Entities, also known as objects in object-oriented analysis, are
the building blocks of the analysis. The term implies the object-oriented
paradigm focuses more emphasis on goods that serve to encapsulate data
and methods than the traditional paradigm. Because they play a major part
in all the phases of the development of software, there is an overlap of the
high degree of repetition across the various phases.

In nature, the whole development process is transformed into an
evolutionary process. As a result, a Graphical representation of the object-
oriented version of the SDLC must include the two features of overlap and
iteration. As a result of this choice, a "fountain model" replaces the existing
"waterfall model." It is the methods of specifying software Object-oriented
analysis that refers to the requirement in terms of actual objects, their

behavior, and their relationships. Object-oriented design, nevertheless, in
contrast, converts requirements of software into object specification and
generates hierarchies of the class by which objects may be produced. OOP
mentions the usage of objects in this language, like C ++, to accomplish the
desired outcome. With OOA, we have a simple but very powerful system
for recognizing objects, which serves as the building blocks of the program
that will be produced. It is primarily concerned about the deconstruction of
difficulty into its elements' components and the establishment of a model
for explanations of the operations of a computer system. The mappings of
items in the issue into objects in the solution space, well as the creation of a
general structure and computational representations of the system, are the
primary concerns of the OOD. When designing the class member functions
that offer services, this step often uses the method of (bottom-up) to
construct the structure of the system and the top-down functional
decomposition technique to construct the system's structure. Constructing
hierarchical hierarchies, identifying abstract classes, and simplifying the
communication between objects inside a system are all critical tasks. Some
of the issues for the design stage include the reusability of classes from
earlier designs, the grouping of objects into subsystems, and the creation of
acceptable protocols. Knowing that a class includes both data and code is
important if you have created programs using C ++ Builder. You also know
that classes may be manipulated both during the design process and during
the runtime. In that sense, you've progressed to the level of component user.
It is necessary to deal with classes in ways that application developers
would never have to deal with when creating new components. In addition,
you attempt to keep the inner workings of the component hidden from the
developers who will be using it. You may construct adaptable, reusable
components by selecting suitable ancestors for your components,
developing interfaces that expose just the attributes and methods that
developers want, and following the other suggestions in the following areas.
The following subjects, which are related to object-oriented programming
(OOP), should be acquainted with you before you begin constructing
components. Creating new classifications in contrast to application
developers, component writers generate new classes, and application
developers change the instances of classes created by the component
writers. A type is roughly the same as a class. In your job as a programmer,

you are always dealing with types and instances, even if you do not refer to
them as such. If you want to construct variables of a certain type, such as
int, you may do so. Generally speaking, classes are more sophisticated than
basic data types, yet they function in the same way: By giving various
values to instances of the same type, you may conduct a variety of
operations on those instances.

12.1 Tips for Real Object-oriented Programming in C ++
According to the Law of Spurgeon, ninety percent of anything is garbage.
This is absolutely in the field of software development, this is especially
true, and it is particularly true in the case of object-oriented programming,
as well as other programming languages. This is mostly due to the
widespread usage and difficulty of C ++; it is the most widely used object-
oriented programming language, although only a small percentage of the
population is proficient in its use. When you combine this with the reality
that only a small percentage of programmers understand the object-oriented
programming paradigm, sloppy code has a certain prescription. Volumes
may be written and have published on the subject of how to construct good
object-oriented design using the C ++ programming language.

Make progress on the first design of the class before deciding on the
specific order in which operations should be performed. Even though many
programmers consider themselves to be practicing object-oriented
programming, they have used some external object-oriented trappings with
structured programming. In an ideal situation, one would first choose a
group of software objects that serve as a logical abstraction of the program.
After that, focus on the order of operations. It should be noted that this is by
no means a hard and fast rule since the process of constructing this
sequence often exposes cases in which the design of the object might be
improved. Design patterns come to mind while thinking about this. When
someone uses design patterns, they may rely on years of basic problem-
solving knowledge gained within the community of computer science.
Instead of creating the wheel, why not simply use one that is already in
existence? Whenever feasible, use 'const' objects and 'const' functions to
ensure that your code is consistent. Declare an object to be a 'const' object if

you are certain that the data contained inside the object will never be
updated. This will prevent you, or even worse, a naive coworker, from
mistakenly altering the state of the object in the future. Of course, to
effectively enforce this requirement, one needs additionally declare the
necessary member functions will be constant as well. It is best not to use the
public 'get' and 'set' member methods.

Getter and setter aren't intrinsically harmful; nonetheless, they are
frequently a symptom of poor software abstraction when they are used.
These functions implicitly compel in the term of internal data of object user
thoughts (that is, whatever it is that functions are retrieving or setting), and
such information should be kept concealed from the object's user, as far as
is reasonably possible. Getter and setter have their place, but please utilize
them only when necessary. Avoid the use of double indirection. Given that
C programmers have no choice but to deal with pointers, they have become
used to the practice of using pointers in their code to refer to other points in
the code. As a result of the familiar difficulties of NULL references and
pointer arithmetic, this may often result in ambiguous or even
incomprehensible code. C ++ programmers, on the other hand, are not
restricted in this manner, owing to C ++'s built-in support for variable
references; that is, instead of using variable references, one can always use
references to pointers which significantly simplifies the understanding and
maintenance of the code. A hint: If a C ++ programmer uses double
indirection, it's a good bet he's still thinking like a beginner C programmer!

12.2 Concepts of Object-Oriented Programming in C ++
A very recent development in the history of programming languages is the
appearance of the programming style that we often refer to as object-
oriented programming (OOP). This is a unique and very handy design that
may be used in a variety of scenarios. Structured programming, which relies
primarily on extensive usage of procedures, functions, and pointers, as well
as other advance or less developed data types, was intended to address the
limitations of this approach.

Structured programming is beneficial even for modest software systems or
non-graphic applications. It should be avoided when working with big

programs that have visual aspects, for which object-oriented programming
is highly recommended instead. To be object-oriented is to organize
software resources in the form of a Both data structures and the processing
actions that they execute are included in this collection of separate and
discrete items. Object-oriented in programming, which is an extension of
structured programming, data structures, and processing activities are only
loosely connected. Each object has its own identity and is unique from the
others. An object is defined as an abstract idea with certain specific and
helpful elements for applications that are designed to be useful and specific.

Objects have two distinct purposes. They aid in the comprehension of the
issue to be addressed, and - they serve as a foundation for the execution of
the solution. A class of objects is a collection of objects with comparable
features that are all contained inside a single container. Similarity exists in
both the descriptions (data and characteristics) and the behavior of the two
systems (functions or methods). Attributes are characteristics that
distinguish one object type from another. Each property is assigned a
specific value, which may be changed at any time throughout the life cycle
of objects. If two or more items are all in the same collection, they may
have the same or distinct values for the same attribute. Operations and
methods are processing functions that are applied to objects belonging to a
certain class of objects. Objects belonging to the same class have access to
the unique set of methods which in turn may accept any number of extra
inputs. It is necessary to build an object to be able to apply numerous
methods to it (defined).

The process of object definition is referred to as instantiation. When an item
has completed its purpose, it is eliminated from the scene. Abstraction is a
basic human quality that enables us to construct models and, as a result,
deal with complexity and ambiguity. In every sphere of human endeavor,
the project method is based on the development of a model that will aid in
the understanding of the issue to be solved. The field of software
engineering is no exception. The vital core parts are separated from the non-
essential ones via the process of abstraction. As a result, there may be
numerous appropriate models for each issue. Structured programming has
made significant strides ahead in the software engineering business,

outlining three viewpoints that must be considered to correctly handle any
application.

The dynamic and static models, and also functional models, are the three
views, sometimes known as models, from which to see the world. In today's
world, there are a variety of object-oriented approaches that are employed
in the analyzing, designing, and implementing of software resources. The
OMT (Object Modeling Technique) technique is one of the methodologies
in modeling that may be used. In this type of modeling, the many growth
phases are planned, and items and their connections are represented
graphically to show how they relate to one another.

Chapter 13: Data Structure Using C ++

As we all know, the C ++ programming language provides its users with a
plethora of intriguing and helpful features and functions, and this is no
exception. Furthermore, it provides support for object-oriented
programming. In addition to performing certain big techniques like
encapsulation, abstraction, inheritance, and polymorphism, you can also
conduct some minor methods such as encoding and decoding. Data
structures are a necessary and unavoidable component of programming in C
++ because of their use and need. We may execute operations on data with
the assistance of data structures, such as data representation, storage,
organization, and many more actions on data. Data structures allow you to
arrange data in a certain manner so that it may be utilized more efficiently
in a variety of applications. There are a variety of methods for organizing
the information in memory. It is important to understand that it is not a
programming language but rather a collection of methods that may be used
to organize data into memory in any programming language. The array data
structure is used to hold a list of things in the example below. Arrays are
essentially a collection of data kinds that are stored in contiguous memory
regions that are identical to one another.

It is capable of storing basic sorts of data such as int, char, float, double, and
so on. With the use of arrays, a programmer may quickly and simply
retrieve the items in a collection. As an example, if you wish to record the
marks of 20 students, you may try declaring 20 variables such as student1
marks, student2 marks, and so on. If I told you that all of this can be
accomplished with only one variable, the answer would be "yes." You can
get access to such components with the assistance of a few lines of code. A
structure contains a collection of variables representing various types of
data. All of which are known by the same name. Because both include
collections of data of varying data kinds, they are comparable to classes in
this regard.

You'd want to keep track of a person's identifying details, such as their
names, nationality number, and yearly salary. To record this information
individually, you may simply construct distinct variables for name, Citgo,
and income. Creating a structure is accomplished through the use of the
struct-statement, which creates a new type of data for the program.

Demonstration of the Formatting :

struct [structure tag] {
 member definition;
 member definition;
 ...
 member definition;
} [one or more structure variables];

13.1 Concepts of Data Structure in C ++
What is the best way to create better algorithms? This is one of the
fundamental problems that every programmer wrestles with. Even software
designers want more effective algorithms. The question is, how can we
determine whether the algorithm is superior to the other? Isn't it sufficient
that the job has been completed and the issue has been resolved? Not all of
the time. Which of the following would you prefer: me solving the issue in
5 years or someone else coming up with a solution in 5 minutes? It is not a
matter of having fast computers, but rather of having quick algorithms. The
difficulty of an algorithm is used to determine the speed with which it
executes. Generally speaking, an algorithm with logarithmic time
complexity is regarded as superior to an algorithm with exponential time
complexity, and so on.
With functions arguments, you’ll be able to display certain information
about things (book descriptions for example). Take a look a the sample
below:

#include <iostream>
#include <cstring>

using namespace std;
struct Books {

char bookTitle[50];
char bookAuthor[50];
char bookSubject[100];
int bookId;

};
void showBook(struct Books book) {

cout << "Title of Book : " << book.bookTitle << "\n";
cout << "Author of Book : " << book.bookAuthor << "\n";
cout << "Subject of Book : " << book.bookSubject << "\n";
cout << "Id of Book : " << book.bookId << "\n";

}

int main() {

struct Books FisrtBook,SecondBook;

strcpy(FisrtBook.bookTitle, "Cooking Recipes");
strcpy(FisrtBook.bookAuthor, "Sandy Millan");
strcpy(FisrtBook.bookSubject, "Cooking");
FisrtBook.bookId = 34563;

strcpy(SecondBook.bookTitle, "Mediterranean Cooking");
strcpy(SecondBook.bookAuthor, "Singh");
strcpy(SecondBook.bookSubject, "Cooking");
SecondBook.bookId = 1224;

showBook(FisrtBook);
showBook(SecondBook);
return 0;

}
After executing the preceding code, the end result would look like this:
First book title: Cooking Recipes
First book author: Sandy Millan
First book subject: Cooking

First book ID: 1224
Second book title: Mediterranean Cooking
Second book author: Singh
Second book subject: Cooking
Second book ID: 6400700

13.2 Linked Lists
Linked lists are a far more versatile means of storing and retrieving data
than traditional databases. You are free to remove or add things anywhere
on the page, and you may even dynamically add items without knowing
how many items you will need in advance. The main drawback is that there
is no way to get random access to the system. Stacks may be constructed
using either arrays or linked lists, depending on the situation. They only
allow for the insertion and removal of items from the LIFO order of
precedence. The use of stacks is widespread, and they are used in many
different applications, such as search algorithms and recursion. The
structure of one node comes first.

The structure here:

struct Node {
 int data;
 struct Node *next;
};

It has two parts: The int data that holds value of the integer and the node,
which represents a pointer called ‘next’.

For a linked list, it's necessary to create a class that contains the necessary
functions for controlling nodes:

#include<iostream>
int main() {

class Node {
public:
int value;

Node * pointertonextNode;
};

}

13.3 Queue
A "queue" is a framework that operates on the first-in, first-out (FIFO)
principle. Queues may be built using arrays or linked lists, as seen in the
following example. Queues allow for the deletion of items from one end
and the insertion of items from the other. There are many different forms of
queues, such as circular queues: queues with two ends, queues with input
restrictions, and so forth. Trees are used to arrange data hierarchically,
making it easier to delete and add items to the database. We will look at the
design of a simple example of a queue in C ++.

Here’s one example that is easy to follow:

#include<queue>
#include<iostream>
using namespace std;
void Display(queue<int> q)
{

queue <int> temp = q;
while (!temp.empty())
{
cout<<" "<<temp.front();
temp.pop();
}
cout<<"\n";

}

int main()
{

queue <int> m_queue;
m_queue.push(89);
m_queue.push(12);
m_queue.push(23);

cout << "Data in Queue: ";
Display(m_queue);
cout<<"Total Size: "<<m_queue.size()<<"\n";
cout<<"Front: "<<m_queue.front()<<"\n";
cout<<"Back: "<<m_queue.back()<<"\n";
return 0;

}

The output:
Here is the Queue: 33 44 55
Size of Queue: 3
Front of Queue: 33
Back of Queue: 55

Chapter 14: Projects in C ++

You may complete a variety of tasks ranging from beginner to intermediate
levels to put your C ++ skills to the test. During these tasks, you will learn
something new, allowing you to get more acquainted with the most
significant issues that will always be useful since you're working on real-
time projects. You must first install an integrated development environment
(IDE) before you can begin working on such projects. Visual Studio is
available for download for free from the official website of Microsoft.
Alternatively, you can download Code: Blocks directly from the developer's
website.

To begin with, many students study their first programming languages are C
and C ++, which is standard practice. They soon gain the ability to
construct programs that include pointers, arrays, and function, as well as
data structure and file handling, among other things. However, when it
comes to creating a mini-game, an application, or a tiny project, combining
all of these aspects into a single compact program becomes tough to do.
The use of reference projects is usually beneficial in such situations. The C
and C ++ projects available on our site will educate you on how we have
started, provide you with ideas and themes for your projects, and help you
to improve your programming abilities in C and C ++ as you go through the
projects. You'll discover both short and basic crafts as well as lengthy and
sophisticated ones on this page.

14.1 Why do developers create project ideas in C ++ rather
than other programming languages?
There are many compelling reasons why those who work in the field of
embedded systems and systems programming, which includes operating
systems and hardware interfaces, seem to favor C ++ above any other
programming language to learn for a variety of reasons. To begin, C ++,
like C, is an open-source programming language, which makes it perfect for
future adaptations and advancements. C ++ is comparable to C in that it is
free to use and modify. In terms of technical abilities, it is a very simple

coding language to learn, thanks to the fact that it is composed entirely of
pure ideas and has a straightforward syntax.

The C ++ programming language, however, is a highly flexible and
dynamic language that has enabled several technical accomplishments in
sectors such as electrical devices, autos, robots, and a variety of others. This
has been made feasible because developers have found it straightforward to
incorporate C ++ into the operational frameworks of the many sectors in
which they have worked. To summarize, not only is C ++ simple to script,
but it is extremely compatible with a broad range of platforms and
operating systems as well. As a consequence, C ++ may be used to create
fresh technical inputs that were previously impossible. It is true that C ++,
which is laden with the sweetness of C but with enhanced functionality, is
the coding language of all future technologies.

14.2 Log-in and Registration System
This is among the simplest tasks to begin with when understanding the file-
systems in C ++. This task incorporates a sign up process that requires users
to provide their login details. A user folder containing the login details is
generated following a successful enrollment. If no such user exists, an error
message appears. When the user attempts to log in.

Follow this source code below to see how it’s set up:

#include<iostream>
#include<fstream>
using namespace std;

struct EmailData
{

char username[25];
char password[25];
void reg(int);

} obj[5];

void EmailData::reg(int id)
{

cout<<"Enter Name:";
cin >> username;
cout << "Enter password:";
cin >> password;
ofstream saveFile;
saveFile.open("D:\\reg.txt", ios::app | ios::binary);
if (!saveFile)
{
cout << "File can't be opened\n";
}
else
{
cout<<"\n";
saveFile.write((char *)&obj[id], sizeof(EmailData));
saveFile.close();
}
cout << "Registration completed";

}

int main()
{

cout << "User 1 :: \n";
obj[0].reg(0);
cout << "User 2 :: \n";
obj[1].reg(1);
cout << "User 3 :: \n";
obj[2].reg(2);

EmailData emailData;

ifstream saveFile;
saveFile.open("D:\\reg.txt", ios::in | ios::binary);
if (!saveFile)
{

cout << "Cannot read file\n";
}
else
{
cout << "Users:\n";
saveFile.read((char *)&emailData, sizeof(emailData));
while (saveFile)
{
cout << "Username:" << emailData.username <<

"\nPasswword:" << emailData.password << "\n";
saveFile.read((char *)&emailData, sizeof(emailData));
}
//saveFile.close();
}
return 0;

}
As a result, the previous coding will look like this:
Enter Registration Details for User 1 ::

Enter user name :: Username1

Enter password :: Nameofwebsite.com

...........You are now registered..........

Enter Registration Details for User 2 ::

Enter user name :: John

Enter password :: Mackey

...........You are now registered..........

Enter Registration Details for User 3 ::

Enter user name :: Miles

Enter password :: Pacino

...........You are now registered..........

Registered Details of All Users ::

Username:: Username1
Passwword:: Nameofwebsite.com

Username:: John
Passwword:: Mackey

Username:: Miles
Passwword:: Pacino

14.3 Banking System Project
The account class in this banking system C ++ software provides data
members including such account no, deposit account, name withdrawal
amount, and account type. The customer's information is recorded inside a
binary file. A consumer's account can be used to deposit and make
withdrawals. Accounts may be created, modified, and deleted by the user.
Here are some easy examples to help you start building a banking system.

To create an account, you can start with this module:

void write_account()
{

CustomerAccount customerAccount;

ofstream customerAccountFile;
CustomerAccount.open("CustomerAccount.dat", ios::binary

| ios::app);
customerAccount.create_account();
CustomerAccount.write(reinterpret_cast<char *>

(&customerAccount), sizeof(CustomerAccount));
CustomerAccount.close();

}

With and Deposit:

void AcountWithdrawAndDeposit(int n, int choice)
{

int amount;
bool customerFound = false;
CustomerAccount customerAccount;
fstream CustomerData;
CustomerData.open("CustomerAccount.dat", ios::binary |

ios::in | ios::out);
if (!CustomerData)
{
cout << "Cant Open File";
return;
}
while (!CustomerData.eof() && customerFound == false)
{
CustomerData.read(reinterpret_cast<char *>

(&customerAccount), sizeof(CustomerAccount));
if (customerAccount.retacno() == n)
{
customerAccount.show_account();
if (choice == 1)
{
cout << "Deposit Amount\n ";
cout << "Enter amount";
cin >> amount;

customerAccount.dep(amount);
}
if (choice == 2)
{
cout << "Withdraw Amount ";
cout << "Enter amount";
cin >> amount;
int bal = customerAccount.retdeposit() - amount;
if ((bal < 500 && customerAccount.rettype() == 'S') || (bal <

1000 && customerAccount.rettype() == 'C'))
cout << "Not enough amount in account";
else
customerAccount.draw(amount);
}
int pos = (-1)*static_cast<int>(sizeof(customerAccount));
CustomerData.seekp(pos, ios::cur);
CustomerData.write(reinterpret_cast<char *>

(&customerAccount), sizeof(CustomerAccount));
cout << "Data Updated";
customerFound = true;
}
}
CustomerData.close();
if (customerFound == false)
cout << "Customer Not Found in data file";

}

Show Balance :

void display_sp(int n)
{

CustomerAccount customerAccount;
bool cutomerFound = false;
ifstream CustomerData;
CustomerData.open("CustomerAccount.dat", ios::binary);
if (!CustomerData)

{
cout << "File Cannot be opened.";
return;
}
cout << "Account details\n";

while (CustomerData.read(reinterpret_cast<char *>

(&customerAccount), sizeof(CustomerAccount)))
{
if (customerAccount.retacno() == n)
{
customerAccount.show_account();
cutomerFound = true;
}
}
CustomerData.close();
if (cutomerFound == false)
cout << "Account in not present in data file";

}

14.4 Guess the Casino's Numbers
This is an exciting project that will teach us regarding the cstdlib package.,
which is used to generate random numbers. The application first asks the
user for a betting sum, after which it asks him or her to estimate a number
that will be rolled. If the randomly generated number matches the user's
input, the user wins; otherwise, money is removed from his account. The
user has the option to continue playing until he has lost all of the money he
originally invested.

The code structure below demonstrates:

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>

using namespace std;

void paintLine(int count, char s)
{

for (int i = 0; i < count; i++)
cout << s;
cout << "\n";

}

void GameRules()
{

system("cls");
paintLine(60, '-');
cout << "Rules\n";
paintLine(60, '-');
cout << "1. Pick number from 1 to 10\n";
cout << "2. On correct gameChoice you will have 10 time of

money\n";
cout << "3. On wrong gameChoice you will lose betting

money\n";
paintLine(60, '-');

}

int main()
{

string gamePlayer;
int gameAmount;
int gameBettingAmount;
int gameGuess;
int gameDice;
char gameChoice;

srand(time(0));

paintLine(50, '_');
cout << "\tGAME\n";

paintLine(50, '_');

cout << "Name of gamePlayer: ";
getline(cin, gamePlayer);

cout << "\n\nEnter Deposit gameAmount to play game : $";
cin >> gameAmount;

do
{
system("cls");
GameRules();
cout << "Total balance is Rs " << gameAmount << "\n";
do
{
cout << gamePlayer << ", Write amount for bet : Rs";
cin >> gameBettingAmount;
if (gameBettingAmount > gameAmount)
cout << "Amount for bet is more than total balance\n"
<< "\nEnter again the betting amount\n ";
} while (gameBettingAmount > gameAmount);

do
{
cout << "Guess your number to bet between 1 to 10 :";
cin >> gameGuess;
if (gameGuess <= 0 || gameGuess > 10)
cout << "Please check the number!! should be between 1 to

10\n"
<< "\nRe-enter data\n ";
} while (gameGuess <= 0 || gameGuess > 10);

gameDice = rand() % 10 + 1;

if (gameDice == gameGuess)
{

cout << "You won Rs." << gameBettingAmount * 10;
gameAmount = gameAmount + gameBettingAmount * 10;
}
else
{
cout << "You lost Rs " << gameBettingAmount << "\n";
gameAmount = gameAmount - gameBettingAmount;
}

cout << "\nOriginal number was : " << gameDice << "\n";
cout << "\n" << gamePlayer << ", Remaining Amount Rs "

<< gameAmount << "\n";
if (gameAmount == 0)
{
cout << "You have no money to play ";
break;
}
cout << "play again (y/n)? ";
cin >> gameChoice;
} while (gameChoice == 'Y' || gameChoice == 'y');

cout << "\n\n\n";
paintLine(70, '=');
cout << "Your balance gameAmount is Rs " <<

gameAmount << "\n";
paintLine(70, '=');

return 0;

}

14.5 Employee Record System
Employee Record System (ERS) is a computerized system that enables
businesses to manage their staff members along with their records. It can be
utilized by any size business, whether it has 10 or 1000 members in its staff.
Here is the C program for the Employee recording system:

#pragma warning(disable : 4996)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>
#include <conio.h>

struct emp {

char empName[50];
float empSalary;
int empAge;
int empId;

};
struct emp emp;

long int empSize = sizeof(emp);

FILE *fp, *ft;

void deleteentry()
{

system("cls");
char empName[50];
char again = 'y';

while (again == 'y') {
printf("\nEnter employee name: ");
scanf("%s", empName);

ft = fopen("temp.txt", "wb");
rewind(fp);

while (fread(&emp, empSize,
1, fp)

== 1) {
if (strcmp(emp.empName,
empName)
!= 0)
fwrite(&emp, empSize, 1, ft);
}

fclose(fp);
fclose(ft);
remove("EmployeeDataFile.txt");
rename("temp.txt", "EmployeeDataFile.txt");
fp = fopen("EmployeeDataFile.txt", "rb+");

printf("delete another ?(Y/N) :");
fflush(stdin);
again = getch();
}

}

void displayentry()
{

system("cls");
rewind(fp);

printf("\nEmployee Name\t\tEmployee Age\t\tEmployee

Salary\t\t"
"\tEmployee ID\n",
emp.empName, emp.empAge,
emp.empSalary, emp.empId);

while (fread(&emp, empSize, 1, fp) == 1)
printf("\n%s\t\t%d\t\t%.2f\t%10d",
emp.empName, emp.empAge, emp.empSalary, emp.empId);

printf("\n");
system("pause");

}

void modifyentry()
{

system("cls");
char empName[50];
char again = 'y';

while (again == 'y') {
printf("Employee name : ");
scanf("%s", empName);

rewind(fp);

while (fread(&emp, empSize, 1, fp) == 1) {
if (strcmp(emp.empName, empName) == 0) {
printf("New name:");
scanf("%s", emp.empName);
printf("New age :");
scanf("%d", &emp.empAge);
printf("New Salary :");
scanf("%f", &emp.empSalary);
printf("New ID :");
scanf("%d", &emp.empId);

fseek(fp, -empSize, SEEK_CUR);
fwrite(&emp, empSize, 1, fp);
break;
}
}

printf("modify another record (Y/N) :");
fflush(stdin);
scanf("%c", &again);
}

}

void addentry()
{

system("cls");
fseek(fp, 0, SEEK_END);
char again = 'y';

while (again == 'y') {
printf("\nEnter Employee Name : ");
scanf("%s", emp.empName);

printf("\nEnter Employee Age : ");
scanf("%d", &emp.empAge);

printf("\nEnter Employee Salary : ");
scanf("%f", &emp.empSalary);

printf("\nEnter Employee Id : ");
scanf("%d", &emp.empId);

fwrite(&emp, empSize, 1, fp);

printf("add another employee?"
" record (Y/N) : ");
fflush(stdin);

scanf("%c", &again);
}

}

int main()
{

int option;

fp = fopen("EmployeeDataFile.txt", "rb+");

if (fp == NULL) {
fp = fopen("EmployeeDataFile.txt", "wb+");
if (fp == NULL) {
printf("\nCan't open file...");
exit(1);
}
}

printf("EMPLOYEE Database\n");
system("pause");

while (1) {
system("cls");
printf("1. New Entry\n");
printf("2. Delete Entry\n");
printf("3. Display Entry\n");
printf("4. Modify Entry\n");
printf("5. Close Program\n");
printf("Enter option...\n");
fflush(stdin);
scanf("%d", &option);

switch (option) {
case 1:
addentry();
break;

case 2:
deleteentry();
break;

case 3:
displayentry();
break;

case 4:
modifyentry();
break;

case 5:
fclose(fp);
exit(0);
break;

default:
printf("Wrong option.\n");
}
}

return 0;

}

CONCLUSION

Thank you so much for purchasing this book. C ++ is a language that is
widely used, particularly in-system programs and embedded devices.
System programming refers to the creation of operating systems and drivers
that interact with hardware. Automobiles, robots, and appliances are
examples of embedded systems. It has a larger or richer developer
community, which facilitates the employment of development companies
and online solutions.

Because of its security and features, C ++ is touted to it as the smartest
language. It's the first language that each developer should learn if they
want to work with this language. And is very simple for learning since it is
a basic principle language. The fairly basic syntax is, making it simple to
write and develop, and faults are quickly repeated. Before learning some
other languages, programmers wanted to study (C ++) first, followed by
additional languages. However, most developers choose C ++ because of its
versatility and interoperability with a broad range of systems and software.

Good Luck!

	INTRODUCTION
	Chapter 1: Everything You Need to Know About Computer Programming
	1.1 What is Computer Programming
	1.2 Advantages of a Career in Computer Programming
	1.3 You Can Learn Computer Programming!

	Chapter 2: Why Learn C ++?
	2.1 Benefits of C ++
	2.2 Why Should We Prefer C ++?

	Chapter 3: History of C ++
	3.1 Communication with C Programming
	3.2 Evolution of C ++

	Chapter 4: Features, Uses & Applications of C ++
	4.1 Uses of C ++ Programming Language
	4.2 Features of C ++
	4.3 Real-World Applications of C ++
	4.4 Where is C ++ used in industry?

	Chapter 5: Top Reasons to Learn C ++
	5.1 C ++ Popularity and High Salary
	5.2 C ++ in Databases
	5.3 C ++ in Web Browsers
	5.4 C ++ in Embedded Systems
	5.5 C ++ in Operating Systems
	5.6 C ++ in Graphics
	5.7 C ++ has Abundant Library Support
	5.8 C ++ is Portable

	Chapter 6: Understanding of Complier & Types of Errors
	6.1 Learn About Compiler
	6.2 Major Steps of Compiler Execution
	6.3 Analysis of Semantic Structure
	6.4 Error in C ++
	6.5 Syntax Errors
	6.6 Logical Error
	6.7 Compilation Errors
	6.8 Runtime Errors
	6.9 Arithmetic Errors
	6.10 Resource Errors
	6.11 Interface Errors

	Chapter 7: Fundamentals of C ++
	7.1 Learning C ++
	7.2 Standard Template Library
	7.3 How Difficult Is It to Learn Programming?

	Chapter 8: “Hello World!” application in C ++
	8.1 Components of C ++ Program
	8.2 C ++ Library Files

	Chapter 9: Data Types & Variables in C ++
	9.1 Variable Declaration in C ++
	9.2 Types of Data in C ++

	Chapter 10: Operators in C ++
	10.1 There are two kinds of arithmetic operators

	Chapter 11: Loops & Functions in C ++
	11.1 While Loop
	11.2 Do while loop
	11.3 What about an Infinite Loop?
	11.4 For loop
	11.5 Functions in C ++

	Chapter 12: Object-Oriented Programming using C ++
	12.1 Tips for Real Object-oriented Programming in C ++
	12.2 Concepts of Object-Oriented Programming in C ++

	Chapter 13: Data Structure Using C ++
	13.1 Concepts of Data Structure in C ++
	13.2 Linked Lists
	13.3 Queue

	Chapter 14: Projects in C ++
	14.1 Why do developers create project ideas in C ++ rather than other programming languages?
	14.2 Log-in and Registration System
	14.3 Banking System Project
	14.4 Guess the Casino's Numbers
	14.5 Employee Record System

	CONCLUSION

