

Getting Started
with CockroachDB

A guide to using a modern, cloud-native,
and distributed SQL database for your
data-intensive apps

Kishen Das Kondabagilu Rajanna

BIRMINGHAM—MUMBAI

Getting Started with CockroachDB
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have been
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Publishing Product Manager: Sunith Shetty
Senior Editors: Roshan Kumar, Nazia Shaikh
Content Development Editor: Tazeen Shaikh
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan
Marketing Coordinator: Priyanka Mhatre

First published: March 2022

Production reference: 1090322

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-065-9

www.packt.com

http://www.packt.com

During my childhood, I have spent more time watching insects than
interacting with human beings. So, I dedicate this book to cockroaches and

all the other insects that have fascinated me throughout my life.

Contributors

About the author
Kishen Das Kondabagilu Rajanna is currently working as a distributed query engineer
at Adobe. His previous experience includes leading the data warehouse team at Cloudera,
managing the SaaS platform at Rubrik, writing core services for the Oracle public cloud,
and managing data infrastructure at Apple.

About the reviewers
Nadir Doctor is a database and data warehousing architect, plus DBA, who has worked
in various industries with multiple OLTP and OLAP technologies, as well as primary
data platforms, including CockroachDB, Snowflake, Databricks, DataStax, Cassandra,
ScyllaDB, Redis, MS SQL Server, Oracle, Db2 Cloud, AWS, Azure, and GCP. A major
focus of his is health check scripting for security, high availability, performance
optimization, cost reduction, and operational excellence. He has presented at several
technical conference events, is active in user group participation, and can be reached
on LinkedIn.

Thank you to Kishen and all the staff at Packt. I'm grateful for the immense
support of my loving wife, children, and family during the technical
review of this book. I hope that you all find the content enjoyable,

inspiring, and useful.

Scott Ling is a technology specialist with over 30 years experience of working at the
forefront of technology in various roles, in companies from start-ups to 10 bn+ listed
companies, with a focus on distributed technologies, software as a service, and
product/project management. He is currently working on a free product designed to
make it easy for anyone to create and manage an SaaS product, service, or business as his
way of giving back to the community. Scott is also an established technical author with
a bestselling book on .NET published back in 2001 and has worked with authors and
publishers on various books and technologies over the years.

Table of Contents

Preface

Section 1: Getting to Know CockroachDB

1
CockroachDB – A Brief Introduction

The history and evolution
of databases � 3
SQL � 4
Object-oriented databases � 4
NoSQL � 5
NewSQL � 5

Database concepts � 6
Cardinality � 6
Overview of database models � 8
Processing models � 11
Embedded and mobile databases � 12
Database storage engines � 12

CAP theorem � 13
Consistency and partition tolerance (CP) � 13
Availability and partition tolerance (AP) � 14
Consistency and availability (CA) � 15

CockroachDB � 15
Why yet another database? � 16
Inspiration � 16
Key terms and concepts � 16
High-level overview � 17

Summary � 18

2
How Does CockroachDB Work Internally?

Technical requirements � 20
Installing a single-node
CockroachDB cluster using
Docker � 21
Execution of a SQL query � 24
SQL query execution � 24

Parsing � 25
Logical planning � 25
Physical planning � 26
Query execution � 30

Managing a transactional
key-value store � 31

viii Table of Contents

Data distribution across
multiple nodes � 32
The MSKVS � 32
Meta ranges � 32
Table data � 34

Data replication for resilience
and availability � 34

What is consensus? � 34
The Raft distributed consensus protocol � 34

Interactions with the disk for
data storage � 41
Storage engine � 42

Summary � 43

Section 2: Exploring the Important Features
of CockroachDB

3
Atomicity, Consistency, Isolation, and Durability (ACID)

An overview of ACID properties � 48
Atomicity � 48
Consistency � 49
Isolation � 49
Durability � 51

ACID from CockroachDB's
perspective � 51
Atomicity � 51
Consistency � 57
Isolation � 57
Durability � 57

Summary � 60

4
Geo-Partitioning

Technical requirements � 62
Introduction to
geo-partitioning � 62
Cloud, regions, and zones � 64
Region � 65
Zone � 65

Regions and zones on various
cloud providers � 66

Geo-partitioning in
CockroachDB � 67
Single region � 67
Multi-region � 70

Summary � 84

Table of Contents ix

5
Fault Tolerance and Auto-Rebalancing

Technical requirements � 86
Achieving fault tolerance � 86
Achieving fault tolerance at the
storage layer � 86

Working example of fault tolerance
at play � 87

Automatic rebalancing � 96
Recovering from multi-node
failures � 98
Summary � 99

6
How Indexes Work in CockroachDB

Technical requirements � 101
Introduction to indexes � 102
Different types of indexes � 103
Primary indexes � 104
Secondary indexes � 106
Hash-sharded indexes � 108
Duplicate indexes � 110

Inverted indexes � 110
Partial indexes � 111
Spatial indexes � 113
Table joins and indexes � 115

Best practices while using
indexes � 118
Summary � 120

Section 3: Working with CockroachDB

7
Schema Creation and Management

Technical requirements � 124
DDL � 124
CREATE � 124
ALTER � 129
DROP � 130

DML � 131
DQL � 135

Supported data types � 136
Column-level constraints � 137
Table joins � 140
Using sequences � 141
Managing schema changes � 142
Summary � 143

x Table of Contents

8
Exploring the Admin User Interface

Technical requirements � 146
Introducing the admin UI � 146
Cluster overview � 148
Metrics deep dive � 151
Database and table definitions � 158

Understanding sessions � 160
Transactions � 162
Tracking jobs � 163
Summary � 165

9
An Overview Of Security Aspects

Technical requirements � 168
Introduction to security
concepts � 168
Client and node authentication � 169
Generating certificates and keys � 171
Client authentication � 172
Node authentication � 173

Authorization mechanisms � 174
Roles � 175
Privileges � 176

Data encryption at rest
and in flight � 177
Encryption at rest � 177
Encryption in flight � 178

Audit logging � 178
RTO and RPO � 181
Keeping the network secure � 182
Security best practices � 183
Summary � 184

10
Troubleshooting Issues

Technical requirements � 186
Collecting debug logs � 186
Log files � 186
Log levels � 187
Log channels � 188
Emitting logs to an external sink � 189
Gathering Cockroach debug logs � 189

Connection issues � 190

Tracking slow queries � 191
Capacity planning � 192
Configuration issues � 193
Guidelines to avoid issues
during an upgrade � 193
Network latency � 194
Advanced debugging options � 196
Summary � 197

Table of Contents xi

11
Performance Benchmarking and Migration

Technical requirements � 200
Performance – Things to
consider � 200
Infrastructure � 200
Popular benchmark suites � 201
Benchmarking your specific use cases � 202

Performance benchmarking for
CockroachDB � 204

Migration – Things to consider � 207
Migrating from traditional
databases � 208
Migrating from PostgreSQL to
CockroachDB � 209

Summary � 210

Appendix:
Bibliography and Additional Resources
Index
Other Books You May Enjoy

Preface
This book will introduce you to the inner workings of CockroachDB and help you
understand how it provides faster access to distributed data through a SQL interface.
You'll learn how you can use the database to provide solutions that require data to be
highly available.

Starting with CockroachDB's installation, setup, and configuration, this book will
familiarize you with the database architecture and database design principles. You'll
then discover several options that CockroachDB provides to store multiple copies of
your data to ensure fast data access. The book covers the internals of CockroachDB,
how to deploy and manage it on the cloud, performance tuning to get the best out of
CockroachDB, and how to scale data across continents and serve it locally. In addition
to this, you'll get to grips with fault tolerance and auto-rebalancing, how indexes work,
and the CockroachDB Admin UI. The book will guide you in building scalable cloud
services on top of CockroachDB, covering administrative and security aspects and tips
for troubleshooting, performance enhancements, and a brief guideline on migrating from
traditional databases.

By the end of this book, you'll have enough knowledge to manage your data on
CockroachDB and interact with it from your application layer.

Who this book is for
Software engineers, database developers, database administrators, and anyone who wishes
to learn about the features of CockroachDB and how to build database solutions that
are fast, highly available, and cater to business-critical applications, will find this book
useful. Although no prior exposure to CockroachDB is required, familiarity with database
concepts will help you to get the most out of this book.

What this book covers
Chapter 1, CockroachDB – A Brief Introduction, talks about databases and how they
have evolved over time. You will also get to know about the high-level architecture
of CockroachDB.

xiv Preface

Chapter 2, How Does CockroachDB Work Internally?, explores various layers of
CockroachDB and some of its inner workings.

Chapter 3, Atomicity, Consistency, Isolation, and Durability (ACID), introduces you to
ACID properties and how they are implemented in CockroachDB.

Chapter 4, Geo-Partitioning, explains the concept of geo-partitioning, why we need it, and
what are the various options for geographically distributing the data using CockroachDB

Chapter 5, Fault Tolerance and Auto-Rebalancing, explores the concept of fault tolerance
and auto-recovery strategies. It also covers a few experiments to understand these
concepts better.

Chapter 6, How Indexes Work in CockroachDB, is all about database indexes, how they are
useful in improving query performance, the different types of indexes that are supported
in CockroachDB, and some of the best practices that you can follow while using indexes.

Chapter 7, Schema Creation and Management, introduces you to SQL syntaxes for DDL,
DML, and DQL with examples, different data types available in CockroachDB, sequences,
and how to manage schema changes.

Chapter 8, Exploring the Admin User Interface, explores the admin user interface that
comes by default when you deploy a CockroachDB cluster. We examine all the metrics
and other information that are available in the user interface and how they are useful in
troubleshooting issues.

Chapter 9, An Overview of Security Aspects, touches upon the key security aspects that you
have to pay attention to when using CockroachDB. We also learn about authentication,
authorization, how to protect data with encryption while at rest and in flight, and how
to achieve desired data protection by defining the correct strategies for RTO and RPO.
Network security and some security best practices are also covered.

Chapter 10, Troubleshooting Issues, helps you in getting yourself familiarized with
troubleshooting issues by collecting logs, looking at some of the metrics, understanding
and tracking slow queries, and integrating logs with external sinks. This chapter also
covers advanced debugging options at the end.

Chapter 11, Performance Benchmarking and Migration, discusses performance, what the
key indicators of performance are, and how to measure them. You will also learn about
migrating from other traditional databases to CockroachDB.

Appendix: Bibliography and Additional Resources, provides additional resource material
that you can go through to become more familiar with CockroachDB.

Preface xv

To get the most out of this book
You should have access to the internet so that you can download CockroachDB and try it
on your laptop.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Getting-Started-with-CockroachDB. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800560659_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Here, in the SELECT query, you should use AS OF SYSTEM TIME
follower_read_timestamp()."

https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800560659_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800560659_ColorImages.pdf

xvi Preface

A block of code is set as follows:

SHOW TABLES

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

DROP DATABASE <DATABASE_NAME>

DROP ROLE <ROLE_NAME>

DROP TABLE <TABLE_NAME>

Any command-line input or output is written as follows:

$ cockroach cert create-client <user_name> \

--certs-dir=<certs_directory> \

--ca-key=<CA_key_directory>

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The Sessions dashboard gives information about all the active client sessions within the
CockroachDB cluster."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com

Preface xvii

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Getting Started with CockroachDB, we'd love to hear your thoughts!
Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-800-56065-6

Section 1:
Getting to Know

CockroachDB

In this section, we will provide a brief introduction to CockroachDB and the motivation
behind creating this new database, as well as go into its overall architecture and
design concepts.

This section comprises the following chapters:

•	 Chapter 1, CockroachDB - A Brief Introduction

•	 Chapter 2, How Does CockroachDB Work Internally?

1
CockroachDB – A

Brief Introduction
In this chapter, we will go over the history of databases, where we will learn about the
evolution of SQL, NoSQL, and NewSQL databases, various relational models, different
categories for classifying databases, and timelines. Later, we will discuss the CAP theorem.
Finally, we will briefly discuss the motivation for creating a new database and learn about
the basic architecture of CockroachDB.

The following topics will be covered in this chapter:

•	 The history and evolution of databases

•	 Database concepts

•	 CAP theorem

•	 CockroachDB

The history and evolution of databases
A database is a collection of data that can be organized, managed, modified, and
retrieved using a computer. The system that helps with managing data in a database is
called a database management system (DBMS).

4 CockroachDB – A Brief Introduction

In the 1950s and 1960s, several advancements were made in terms of processors, storage,
memory, and networks. We also had our first programming languages, COBOL and
FORTRAN. The development of hard disk drives for data storage further spurred the
development of databases. Around the same time, the first notion of a modern-day
computer with a mouse and graphical user interface came into existence, making it easy
for the general public to consume it. In this section, we will discuss how various types of
databases evolved.

SQL
The first database was designed by Charles William Bachman III, an American computer
scientist. In 1963, he developed the Integrated Data Store (IDS), which gave rise to the
concept of the navigational database. In navigational databases, we can find records by
chasing references from other objects. For example, let's say that in a school database, you
want to find all the students from a specific grade in a specific school. In a navigational
database, first, you have to go to the group of students that belong to a particular school
and then to the group that belongs to a particular grade. So, records can be accessed by
hierarchical navigation. Based on IDS, Bachman later developed the CODASYL database
model in 1969. CODASYL stands for Conference/Committee on Data Systems
Languages, which was a consortium to guide the development of programming
languages. Around the same time Edgar F. Codd, an IBM employee, developed the IBM
Information Management System (IMS), which was based on the hierarchical database
model. A hierarchical database model is a data model in which the data is designed in
a tree-like structure. In 1970, Donald D. Chamberlin and Raymond F. Boyce developed
Structured Query Language (SQL) based on what they'd learned about IMS. They
initially called it Structured English Query Language (SEQUEL), which System R was
later developed with by a group at the IBM San Jose research laboratory. In 1976, QUEL,
which is a relational database query language designed by Michael Ralph Stonebraker, was
developed as part of the Interactive Graphics Retrieval System (INGRES) database
management system at the University of California, Berkeley.

Based on QUEL and SQL, several databases were implemented. Some of the most
prominent ones include Post Ingres (Postgres), Sybase, Microsoft SQL, IBM DB2,
Oracle, MariaDB, and MySQL.

Object-oriented databases
In the 1980s, object-oriented database systems (OODBMSes) grew in popularity. In
OODBMSes, information is represented as objects compared to tables in relational
databases. Some of the important ones include Gemstone/S, Objectivity/DB,
InterSystems Cache, Perst, ZODB, Wakanda, ObjectDB, ODABA, and Realm.

The history and evolution of databases 5

NoSQL
The concept of non-SQL or non-relational databases has existed since the 1960s, but
the term NoSQL became has much more popular in the last decade. NoSQL databases
focus on performance and scaling and mostly rely on a non-relational data model such
as a document, key-value, wide-column, or graph to organize the data. Some of the most
popular ones in this category include Cassandra, MongoDB, Couchbase, Dynamo,
FoundationDB, Neo4j, and Hbase.

NewSQL
With the introduction of the on-demand availability of compute, storage, and network
resources and the pay-as-you-go model, which is collectively known as cloud computing,
the amount of data that we collect, process, manage, and analyze has been growing
exponentially. Although it was relatively easier for some of the NoSQL databases to
adapt to the cloud, it is still much harder for traditional SQL databases to do so. Many of
them are better suited for vertical scaling and do not consider geographically distributed
data, the shared-nothing architecture, and enormous scale as part of their initial design.
This created a void. We needed SQL databases that are cloud-native, scale well with data
growth, and are easy to manage. Many companies developed in-house solutions on top of
existing SQL databases:

•	 Facebook developed TAO, a NoSQL graph API built on top of sharded MySQL.

•	 YouTube developed Vitess to easily scale and manage MySQL clusters.

•	 Dropbox developed Edgestore, a metadata store to power their services and
products, which again was built on top of MySQL.

•	 GreenPlum developed a massively parallel data platform by the same name for
analytics, machine learning, and AI on top of Postgres.

However, it was still relatively hard and painful to manage the data as the underlying
database was not built to scale.

In 2012, Google published a seminal paper on Google Spanner: a globally distributed
database service and storage solution. Spanner essentially combined the important
features of SQL databases such as ACID transactions, strongly consistent reads, and the
SQL interface with some of the features that were only available with NoSQL databases,
such as scaling across geographical locations, multi-site replication, and failover. It created
a new category of databases called NewSQL, which is meant to indicate a combination of
SQL features at NoSQL scale. YugabyteDB and CockroachDB were developed later, both
of which got their inspiration from Google Spanner.

6 CockroachDB – A Brief Introduction

Database concepts
In this section, we will learn about some of the core database concepts, including
cardinality, database models, and various processing models.

Cardinality
Before we discuss database models, it is important to know about cardinality. Cardinality
refers to the relationship between two entities or tables. The most popular ones include
one-to-many, many-to-one, and many-to-many.

One-to-one relationship
In the case of a one-to-one relationship, a row or entry in one entity or table can be
related to only one row in another entity or table. For example, in a Department of Motor
Vehicles database, let's say there are two tables called License Info and Driver
Info, as shown in the following diagram:

Figure 1.1 – An example of a one-to-one relationship

Here, Driver ID can only be assigned to one driver as it has to uniquely identify a
driver. Also, a driver can only be assigned one Driver ID. So, here, any row in the
License Info table will be associated with a specific row in the Driver Info table.

One-to-many relationship
In a one-to-many relationship, a single row from one entity or table can be associated
with multiple rows in another entity or table.

Database concepts 7

For example, let's consider the Driver Info and City Info tables shown in the
following diagram::

Figure 1.2 – An example of a one-to-many relationship

Here, for every row in City Info, there will be multiple rows in Driver Info, as
there can be many drivers that live in a particular city.

Many-to-many relationship
In a many-to-many relationship, a single row in one entity or table can be associated with
multiple rows in another entity or table and vice versa.

For example, let's consider two tables: Vehicle Ownership History, where we
are maintaining the history of ownership of a given vehicle, and Driver Ownership
History, where we are maintaining the history of vehicles owned by a given driver:

Figure 1.3 – An example of a many-to-many relationship

Here, a driver can own multiple vehicles and a vehicle can have multiple owners over time.
So, a given row in the Vehicle Ownership History table can be associated with
multiple rows in the Driver Ownership History table. Similarly, a given row in
the Driver Ownership History table can be associated with multiple rows in the
Vehicle Ownership History table.

8 CockroachDB – A Brief Introduction

Now, let's take a look at some of the most important database models.

Overview of database models
A database model determines how the data is stored, organized, and modified. Databases
are typically implemented based on a specific data model. It is also possible to borrow
concepts from multiple database models when you are designing a new database. The
relational database model happens to be the most widely known and has been popularized
by databases such as Oracle, IBM DB2, and MySQL.

Hierarchical database model
In the hierarchical database model, the data is organized in the form of a tree. There is
a root at the first level and multiple children at the subsequent levels. Since a single parent
can have multiple children, one-to-many relationships can easily be represented here.
A child cannot have multiple parents, so this results in the advantage of not being able to
model many-to-many relationships.

IBM's Information Management System (IMS) was the first database that implemented
this data model.

The following diagram shows an example of a hierarchical database model:

Figure 1.4 – An example of a hierarchical database model

Typically, the tree starts with a single root and the data is organized into this tree. Any
node except the leaves can have multiple children, but a child can have only one parent.

Database concepts 9

Network model
The network model was developed as an enhancement of the hierarchical database model
to accommodate many-to-many relationships. The network model relies on a graph
structure to organize its data. So, there is no concept of a single root, and a child can have
multiple parents and a parent can have multiple children. Integrated Data Store (IDS),
Integrated Database Management Systems (IDMS), and Raima Database Manager
(RDM) are some of the popular databases that use the network model.

As shown in the following diagram, there is no single root and a given child (for example,
Object 2 can have multiple parents; that is, Object 1 and Object 3):

Figure 1.5 – An example of a network model

Relational model
Although the network model was an improvement over the hierarchical model, it was still
a little restrictive when it came to representing data. In the relational model, any record
can have a relationship with any other with the help of a common field. This drastically
reduced the design's complexity and made it easier to independently add, update, and
access records, without having to walk down the tree or traverse the graph. SQL was
combined with the relational database model to provide a simple query interface to add
and retrieve data.

10 CockroachDB – A Brief Introduction

All the popular traditional databases such as Oracle database, IBM DB2, MySQL,
MariaDB, and Microsoft SQL Server implement relational data models.

Let's look at two tables called Employee and Employee Info:

Figure 1.6 – Employee tables showing the column names

Here, Employee ID is the common field or column between the Employee and
Employee Info tables. The Employee table is responsible for ensuring that a given
Employee ID is unique, while Employee Info is responsible for more detailed
information about a given employee.

Object-relational model
The object-relational model, as the name suggests, combines the best of the relational
and object data models. The concept of objects, classes, and inheritance are directly
supported as first-class citizens as part of the database and in queries. SQL:1999, the
fourth revision of SQL, introduced several features for embedding object concepts into the
relational database. One of the main features was to create structured user-defined types
with CREATE TYPE to define an object's structure.

Over time, relational databases have added more support for objects. There is a varying
degree of support for object concepts in Oracle database, IBM DB2, PostgreSQL, and
Microsoft SQL Server.

Given the scope of this book, we will not discuss the entity-relational model, object
model, document model, star schema, snowflake schema, and many other less well-
known models.

Now, let's look at how databases can be classified based on what kinds of workload they
can be used for.

Database concepts 11

Processing models
Based on how you want to consume and process data, databases can be categorized into
four different processing systems. Let's take a look.

Online transaction processing (OLTP)
OLTP systems support the concept of transactions. A transaction refers to the ability to
atomically apply changes (insert, update, delete, and read) to a given system. One popular
example is a bank, where withdrawing or depositing money to a given bank account must
be done atomically to ensure data is not lost or incorrect. So, the main purpose here is to
maintain data integrity and consistency. Also, these systems are generally suited for fast-
running queries.

Online analytical processing (OLAP)
OLAP focuses mostly on running queries to analyze multi-dimensional data and
to extract some intelligence or patterns from it. Typically, such systems support
generating some sort of report that can be used for marketing, sales, financing,
budgeting, management, and many more. Data mining and data analytics applications
would typically have to have an OLAP system in some form. OLAP doesn't deal with
transactions, and the emphasis is more on analyzing large amounts of data from different
sources to extract business intelligence. Some databases also provide built-in support for
MapReduce to run queries across a large set of data.

A data warehouse is a piece of software that's used for reporting and data analysis.
Warehouses are typically developed for OLAP. It is also very common to retrieve the data
from OLTP in batches or bulk, run it through an Extract, Load, and Transform (ELT)
or Extract, Transform, and Load (ETL) data transformation pipeline, and store it in an
OLAP system.

Online event processing (OLEP)
OLEP guarantees strong consistency without the traditional atomic commit protocols
or distributed locking. OLEP also focuses on high performance, larger scales, and
fault tolerance.

12 CockroachDB – A Brief Introduction

Hybrid transaction/analytical processing (HTAP)
As the name suggests, this system tries to provide the best of both transactions and
analytical processing. Most of the NoSQL and NewSQL databases provide support for
managing both transactional and analytical workloads. Vitess is a database clustering
system that can be used to scale and shard MySQL instances. Vitess provides HTAP
features on top of MySQL by allowing a given MySQL instance to be configured as master
or read-only, where read-only can be used for analytical queries and MapReduce. It is
possible to use CockroachDB as HTAP by propagating changes with the help of change
data capture (CDC) in the OLTP cluster or primary cluster to a separate cluster, which is
solely used for analytical processing.

Now, let's learn a bit about embedded and mobile databases, including why they exist and
some of the most popular ones in this space.

Embedded and mobile databases
Embedded databases usually refer to databases that can be tightly integrated into an
application, without needing separate hardware to support them. Also, they don't have to
be managed separately. Some of the most popular embedded databases include SQLite,
Berkeley DB from Oracle Corporation, and SQL Server Compact from Microsoft
Corporation. Embedded databases are also very useful for testing purposes as they can be
started within test suites.

Mobile database refers to the class of databases that work with very limited memory
footprint and compute and can be deployed within a mobile device. They are typically
used for storing user data for apps running on mobile devices. SQLite, SQL Server
Compact, Oracle database Lite, Couchbase Lite, SQL Anywhere, SQL Server Express,
and DB2 Everyplace belong to this category,

Database storage engines
A database storage engine is a component within a database management system that
is responsible for Create, Read, Update, Delete (CRUD) operations and transferring
data between disk and memory, without compromising data integrity. Some of the
most popular ones include Apache Derby, HSQLDB, InfinityDB, LevelDB, RocksDB,
and SQLite. CockroachDB initially started with RocksDB as its database engine, but
from release 20.2 onward, Pebble will be the database engine by default. Pebble, as per
Cockroach Labs, is a RocksDB-inspired and RocksDB-compatible key-value store focused
on the needs of CockroachDB. RocksDB was implemented in C++, whereas Pebble was
implemented in Golang. This makes it easier to manage and maintain as CockroachDB
itself was written in Golang. This means that we only have to deal with one language now.

CAP theorem 13

CAP theorem
Eric A. Brewer gave a keynote talk in 2000 titled Towards Robust Distributed Systems at
a symposium on Principles of Distributed Computing, summarizing his years of learning
about distributed systems. Brewer talked about key aspects of a distributed system:
consistency, availability, and tolerance toward network partition. Consistency refers to
the fact that every read should see the data from the most recent write; otherwise, it
should error out. Availability means every requested read or write should receive
a non-error response. Partition tolerance indicates that the system should continue to
serve, irrespective of delays and communication failures between nodes in the system.
Consistency, Availability, and Partition Tolerance (CAP) theorem claims that, at most,
you can only have two of these three properties in a distributed system.

Consistency and partition tolerance (CP)
A CP database provides consistency and partition tolerance but cannot provide
availability. This is also called a CAP-consistent system. Let's understand this by looking
at an example:

Figure 1.7 – CP system

14 CockroachDB – A Brief Introduction

Let's consider the system shown in the preceding diagram, where two servers are serving
read and write traffic. For this example, let's say writes only land on Server 1 and reads
only land on Server 2. So long as Server 1 can talk to Server 2, all the writes that come to
Server 1 can be propagated synchronously to Server 2. This ensures that any reads that
come to Server 2 are always consistent, which means they see the latest data written by the
latest write in Server 1:

Figure 1.8 – CP system during a communication failure

Now, let's say that, as shown in the preceding diagram, the communication between
Server 1 and Server 2 has broken down and now Server 1 is no longer able to propagate
the writes synchronously. This results in partitioning. Since the data cannot be propagated
between the two servers, read or write traffic cannot be served until we resolve the
partition issue as we have to ensure data consistency.

Some of the most popular databases that have CP characteristics are HBase, Couchbase,
and MongoDB. CockroachDB also falls into this category.

Availability and partition tolerance (AP)
In this case, a database is guaranteed to always be available and it can tolerate partitioning,
but at the cost of consistency. This is also known as a CAP-available system. Here, the
application is expected to deal with data consistency:

CockroachDB 15

Figure 1.9 – AP system during a communication failure

Similar to the previous example, if the communication between Server 1 and Server 2
breaks down, Server 1 and Server 2 continue to serve the traffic but reads to Server 1 and
Server 2 might return different versions of the data, based on when the communication
has failed and whether there was any change to that data, after the communication failure.
Cassandra, Riak, and CouchDB are popular examples of AP databases.

Consistency and availability (CA)
In the case of a CA database, the system cannot tolerate partitioning but can guarantee
consistency and availability. Traditional databases with single-server deployments with no
replication or slaves can be classified as CA. Now, many traditional RDBMS databases can
be configured in various ways to have CA, CP, or AP as desired.

CockroachDB
The name CockroachDB was inspired by the insect that goes by the same name. Just
like how cockroaches have been surviving for millions of years and colonizing the entire
planet and thriving, CockroachDB instances are supposed to replicate and repair data,
spread naturally across multiple availability zones, and survive total regional failures.
Also, once CockroachDB becomes part of a given software ecosystem, it's impossible to
get rid of or replace it, just like cockroaches. Here, we will discuss why there is a need
for yet another database, known as Inspiration, and provide a high-level overview of
CockroachDB.

16 CockroachDB – A Brief Introduction

Why yet another database?
As more companies shift from on-premises to the cloud, they are looking for SQL
datastores on various cloud platforms to manage their transactional data. Most of the
traditional databases such as MySQL, Postgres, and Oracle are not built for the cloud. This
necessitates a cloud-native, consistent, distributed SQL that can scale with the growth of
data. CockroachDB fills this gap.

Inspiration
As we previously discussed in the NewSQL section, in 2012, Google published a seminal
paper on Google Spanner: a globally distributed database service and storage solution.
Although Google Spanner combined the best of both SQL and NoSQL and was very
useful for a lot of applications, it was not available for public usage. Also, Google Spanner
was and still is not an open source project and has only been available on Google Cloud
Platform since 2017. So, this created a necessity for an open source Spanner-like database
that can be used in different cloud providers and on-premises. Around 2012, Spencer
Kimball, Peter Mattis, and Ben Darnell were working at Google on the Google File System
and Google Reader projects. They also got acquainted with both Bigtable and Spanner
during their tenure at Google. They decided to build something very similar to Spanner
to make it available for everyone and started an open source project on GitHub in 2014.
After a year, they decided to leave Google and founded Cockroach Labs in 2015 before
officially working on CockroachDB in June 2015.

Key terms and concepts
Before we look at the various functional layers, let's look at some of the key concepts and
terms. A CockroachDB cluster refers to a group of nodes that act as a single logical unit.
A node is a single machine that runs an instance of CockroachDB. CockroachDB stores
all the data as sorted key-value pairs. These keys are divided into ranges. CockroachDB
replicates each range and stores each replica on a different node. For each range, there
will be a leaseholder, which acts as a primary owner of a given range and receives and
coordinates all the traffic for that range. For each range, one of the replicas acts as a leader
for write requests and ensures that the majority of the replicas are in consensus, before
committing a given write. For each range, there will be a time-ordered log of writes, called
a raft log, for which the majority of replicas agreed upon.

CockroachDB 17

High-level overview
CockroachDB is a cloud-native, consistent, highly scalable relational database. Some of
the primary goals of CockroachDB are to provide strong consistency, geo-distribution
of data, high availability, SQL support, easy deployment, and less maintenance. Since we
will be dealing with CockroachDB internals in detail in subsequent chapters, we will just
provide a high-level overview here:

Figure 1.10 – High-level overview of the CockroachDB architecture

18 CockroachDB – A Brief Introduction

CockroachDB exposes a SQL interface, using which clients can interact with the database.
Client requests can land on any node within a given cluster and work just fine since all the
nodes are symmetrical.

CockroachDB can be divided into five functional layers:

•	 SQL

•	 Transactional

•	 Distribution

•	 Replication

•	 Storage

The SQL layer is responsible for receiving SQL queries and converting them into
key-value operations. The transactional layer ensures that all CRUD operations that
happen on multiple key-value pairs are transactional. The distribution layer is responsible
for ensuring ranges are evenly distributed among all the available nodes in a cluster. The
replication layer ensures that ranges are replicated synchronously, whenever there is a
change. Finally, the storage layer is responsible for managing key-value data on the disk.

Summary
In this chapter, we learned about the evolution of databases, how databases can be
categorized based on various criteria, CAP theorem, and a brief introduction to
CockroachDB. By now, you should also be familiar with database and processing models,
what the CP, CA, and AP systems in CAP theorem offer, and the functional layers of
CockroachDB.

In the next chapter, we will take a deep dive into CockroachDB's architecture and
design concepts.

2
How Does

CockroachDB
Work Internally?

In the previous chapter, we learned about the evolution of databases and the high-level
architecture of CockroachDB. In this chapter, we will go a bit deeper into each of the
layers of CockroachDB and explore how CockroachDB works internally. We will also
discuss some of the core design aspects that form the basic pillars of CockroachDB.

CockroachDB can be broadly divided into five main layers, as outlined here:

•	 Structured Query Language (SQL)

•	 Transactional

•	 Distribution

•	 Replication

•	 Storage

20 How Does CockroachDB Work Internally?

Each of these layers will be explained as the main topics of this chapter, in the
following order:

•	 Installing a single-node CockroachDB cluster using Docker

•	 Execution of a SQL query

•	 Managing a transactional key-value store

•	 Data distribution across multiple nodes

•	 Data replication for resilience and availability

•	 Interactions with the disk for data storage

Since we will be trying out some commands in this chapter, it's important to have a
working environment for them. So, we will start with the technical requirements, where
we will go over how to set up a single-node CockroachDB cluster.

Technical requirements
To try out some of the commands in this chapter, you will need a single-node
CockroachDB cluster. There are several ways of installing CockroachDB on a computer,
as outlined here:

•	 Use a package manager such as Homebrew to install it, but this option only works
on a Mac.

•	 Download binaries, extract it, and set it in the PATH variable.

•	 Use Kubernetes to orchestrate CockroachDB pods.

•	 Build from source and install.

•	 Download a Docker image and run it.

In the current chapter, we will just go over how to run CockroachDB using Docker since
the steps are common, irrespective of the operating system that you are using.

To use CockroachDB with Docker, you need a computer with the following:

•	 At least 4 gigabytes (GB) of random-access memory (RAM)

•	 250 GB of disk space

•	 Docker installed

In the next section, we will learn about installing CockroachDB.

Installing a single-node CockroachDB cluster using Docker 21

Installing a single-node CockroachDB cluster
using Docker
Let's take a look at how to install a single-node CockroachDB cluster, which will be
required to try out some of the commands that will be introduced in this chapter. Here are
the steps you need to follow:

1.	 Ensure the Docker daemon is running with the following command:

docker version

Pull the most recent stable version with tag v<xx.y.z> from https://hub.
docker.com/r/cockroachdb/cockroach/. Take a look at the following
example:

docker pull cockroachdb/cockroach:v20.2.4

2.	 Make sure this image is available and the version is correct with the help of the
following command:

docker images | grep cockroach

cockroachdb/cockroach v20.2.4 d47481b0b677
2 days ago 329MB

If running docker on windows, then replace grep with findstr:
docker images | findstr cockroach

3.	 Create a bridge network. A bridge network allows multiple containers to
communicate with each other. Here's the code you'll need to create one:

$ docker network create -d bridge crdb_net

4.	 Create a volume. Volumes are used for persisting data generated and used by
Docker containers. Since CockroachDB is a database, it needs a place to store the
data, and hence we should attach a volume to the container. You can do this by
running the following command:

$ docker volume create crdb_vol1

https://hub.docker.com/r/cockroachdb/cockroach/
https://hub.docker.com/r/cockroachdb/cockroach/

22 How Does CockroachDB Work Internally?

5.	 Start a CockroachDB node using the following command:

$ docker run -d \

--name=crdb1 \

--hostname=crdb1 \

--net=crdb_net \

-p 26257:26257 -p 8080:8080 \

-v "crdb_vol1:/cockroach/cockroach-data" \

cockroachdb/cockroach:v20.2.4 start \

--insecure \

--join=crdb_vol1

	� Here is an explanation of what each of these options means:

	� docker run: This starts a Docker container.

	� --name: Name of the container.

	� --hostname: Hostname of the container. This will be useful if you are running
multiple containers and want to join them to form a cluster.

	� --net: Bridge network. This will be useful if you have more than one container
that wants to communicate with other containers.

	� -p 26257:26257: Port mapping for inter-node or SQL client for node
communication.

	� -p 8080:8080: Port mapping used for HyperText Transfer Protocol (HTTP)
requests to the CockroachDB console.

	� -v "crdb_vol1:/cockroach/cockroach-data": Mounts the host
directory as a data volume.

	� cockroachdb/cockroach:v20.2.4 start: Command to start the
CockroachDB node.

	� --insecure: Option to start the node in insecure mode.

	� --join=crdb_vol1: Here, you can specify multiple hostnames of
CockroachDB nodes that will form a cluster. For the current chapter, we just need
a single-node cluster.

6.	 Initialize the cluster with the following command:

$ docker exec -it crdb1 ./cockroach init --insecure

Cluster successfully initialized

Installing a single-node CockroachDB cluster using Docker 23

7.	 To ensure that the CockroachDB node is functional, we can create a database and
a table, insert some data, and run a query.

The following command is used for starting the SQL shell:
docker exec -it crdb1 ./cockroach sql -–insecure

The following command is used for creating a database:
root@:26257/defaultdb> CREATE DATABASE testdb;

The following command is used for creating a table:
root@:26257/defaultdb> CREATE TABLE testdb.testtable (id
INT PRIMARY KEY, string name);

8.	 Verify the columns by running the following code:

root@:26257/defaultdb> SHOW COLUMNS from testdb.
testtable;

 column_name | data_type | is_nullable | column_default
| generation_expression | indices | is_hidden

--------------+-----------+-------------+----------------
+-----------------------+-----------+------------

 id | INT8 | false | NULL
| | {primary} | false

 string | NAME | true | NULL
| | {} | false

(2 rows)

Time: 134ms total (execution 133ms / network 1ms)

9.	 Insert some data, as follows:

root@:26257/defaultdb> INSERT INTO testdb.testtable
VALUES (1,'Spencer Kimball'), (2,'Ben Darnell'),
(3,'Peter Mattis');

Run a query to fetch the contents of the table:
root@:26257/defaultdb> SELECT * FROM testdb.testtable;

 id | string

-----+------------------

 1 | Spencer Kimball

 2 | Ben Darnell

 3 | Peter Mattis

24 How Does CockroachDB Work Internally?

(3 rows)

Time: 5ms total (execution 3ms / network 2ms)

Next, we will learn about each of the layers, starting with the SQL layer.

Execution of a SQL query
Any application that talks to CockroachDB can use Postgres-compatible drivers to talk to
CockroachDB. If you prefer object-relational mappers (ORMs), Golang ORM (GORM),
go-pg, and SQLBoiler can be used to interact with CockroachDB. Irrespective of where
the actual data resides, you can issue a query to any of the nodes in the cluster. Whichever
node the query lands in, that node acts as a gateway.

Requests from SQL clients are received as SQL statements. The SQL layer is responsible
for converting these SQL statements into a plan of key-value operations and passing it
to the transaction layer. CockroachDB, as of version 21.2, supports both native drivers
and the Postgres wire protocol. A wire protocol defines how two applications can
communicate over a network.

CockroachDB has support for most American National Standards Institute (ANSI) SQL
standards to change table structures and data. Next, we will look at the various stages of
query execution.

SQL query execution
As with any other database, there are standard steps involved in processing incoming SQL
requests and serving the data.

Before going through the different steps of a SQL layer, it's important to get ourselves
familiar with some terms related to SQL, as follows:

•	 An SQL parser is software that scans a given SQL statement in its string form and
tries to make sense of it. This involves lexical analysis, which is extracting the
tokens or the keywords, and syntactic analysis, where you make sure the entire
query is valid and can be represented in a form that makes it easier to execute the
query. Lex is a popular lexical analyzer and Yacc (which stands for Yet Another
Compiler-Compiler) is software that processes grammar and generates a parser.

Execution of a SQL query 25

•	 An abstract syntax tree (AST) or a syntax tree is a tree representation of a given
domain-specific language. Nodes in the tree represent constructs in that language.
ASTs are essential for deciding on how to execute a given query.

Some of the main steps in a SQL layer include query parsing, logical planning, physical
planning, and query execution. Vectorized query execution is enabled by default, which
gives much better performance.

Parsing
CockroachDB uses Goyacc, Golang's equivalent of the famous C Yacc to generate a SQL
parser from a grammar file located at pkg/sql/parser/sql.y. This parser then
converts the input into an AST comprising of tree nodes, where the node types are defined
under the pkg/sql/sem/tree package.

Logical planning
Once we have an AST, it then has to be transformed into a logical plan. A logical plan
defines how various clauses can be logically ordered. As part of this transformation,
semantic analysis is initially done for type checking, name resolution, and to ensure the
query is valid. Later, this logic plan is simplified without changing the overall semantics
and is optimized based on the cost. Here, cost refers to the total time taken to return
the results of a query. Cost optimization involves picking the right indexes, query
optimization, and selecting the best strategies for sorting and joining. We can view the
logical plan using EXPLAIN <SQL Statement>.

The following example shows the output of a sample EXPLAIN query:

root@:26257/defaultdb> EXPLAIN SELECT * FROM testdb.testtable;

 tree | field | description

-------+---------------------+--------------------

 | distribution | full

 | vectorized | false

 scan | |

 | estimated row count | 1

 | table | testtable@primary

 | spans | FULL SCAN

(6 rows)

Time: 11ms total (execution 10ms / network 1ms)

26 How Does CockroachDB Work Internally?

Physical planning
In this phase, all the participating nodes are determined based on where the data resides
and also who is the primary owner for a given range, which is also known as a range's
leaseholder. Typically, partial result sets are gathered from various nodes that are then
sent to the coordinator or the gateway node, which aggregates all the results and sends
a single response back to the SQL client. Let's look at an example of what this looks like
for a sample query for the testdb.testtable table that we created in step 8 in the
Installing a single node CockroachDB cluster using Docker section.

Let's assume we have six names that are distributed across four nodes in a cluster. The
following table shows information about the leaseholder nodes, key ranges, and user data:

Figure 2.1 – Table showing information about key ranges

Now, let's assume that a SQL client sends a query to fetch all the names from the
testdb.testtable table. In this example, this request lands in node 1, so it acts as
a gateway node that is responsible for collecting the data required to serve this request
after coordinating with all relevant leaseholder nodes, getting a partial result, aggregating
the data, and sending it back to the SQL client. This process is illustrated in the following
screenshot:

Execution of a SQL query 27

Figure 2.2 – How a given query is served from the gateway node

At Gateway Node, the main challenge is to identify whether a given computation
should be pushed down to nodes where the data resides or to do the same computation
within the coordinator node on an aggregated result. The physical plan aims to make
the best use of parallel computing and at the same time reduce the overall data that gets
transferred between data and coordinator nodes. Also, table joins bring in an added
layer of complexity. We can view the physical plan using EXPLAIN(DISTSQL) <SQL
statement>. DISTSQL generates a Uniform Resource Locator (URL) for a physical
query plan, which includes high-level information about how the query will be executed.

28 How Does CockroachDB Work Internally?

The following example shows the output of a sample EXPLAIN(DISTSQL) query:

root@:26257/defaultdb> EXPLAIN(DISTSQL) SELECT * FROM testdb.
testtable where id > 1;

 automatic | url

------------+--

 false | https://cockroachdb.github.io/distsqlplan/decode.
html#eJyMj0FLxDAQhe_-ivBOKtFt9ZaTohULdXdtCwraQ7YZlkK3qZkUl
NL_Lm1A8SDsKbz3Mu-bGcEfLRSS1212m67F6X1alMVzdiaKJEvuSnEuHvLNk_
DE3uwu58frXUvi5THJE9EY8T5E0TWJGBKdNbTWB2KoN8SoJHpna2K2brbG5UNq
PqEiiabrBz_blURtHUGN8I1vCQrljMhJG3KrCBKGvG7apfZng5
veNQftviBR9LpjJVZXF6gmCTv432r2ek9Q8SSPx-fEve2Y_pD_
a46mSoLMnsKJbAdX09bZesEEuVnmFsMQ-5DGQaRdiKZqOvkOAAD__6E0gSw=

(1 row)

Time: 21ms total (execution 16ms / network 4ms)

As you can see, the output is a downloadable URL for the actual physical plan. If you click
on that URL, it will take you to the physical plan, as shown in the following screenshot:

Figure 2.3 – Visual representation of a physical plan in a single-node cluster

The EXPLAIN ANALYZE statement (https://www.cockroachlabs.com/docs/
v21.1/sql-statements) executes a SQL query and generates a statement plan with
execution statistics, as illustrated in the following code snippet:

root@:26257/testdb> EXPLAIN ANALYZE SELECT * FROM testdb.
testtable;

 automatic | url

https://www.cockroachlabs.com/docs/v21.1/sql-statements
https://www.cockroachlabs.com/docs/v21.1/sql-statements

Execution of a SQL query 29

------------+---
--
--
--
--

--

 true | https://cockroachdb.github.io/distsqlplan/decode
.html#eJyMUE1L60AU3b9fMZzVe4-xNhZdzMqqEQKxrU0XfpDFNHMpgSQT596i
peS_SxJUXAiuhvMx5xzuEfxSwSB-WKXzZKHmi3n6-BSrvzdJtsnu038qi9P4eq
P-q9v18k4JsbjtpH_EbiuCRuMdLWxNDPOMCLlGG3xBzD701HEwJO4NZqpRNu1ee
jrXKHwgmCOklIpgsOkD12QdhdMpNByJLash9rPvsg1lbcMBGllrGzbq
BBrBv7IKZJ1RM2iw2KpSUtZkVDSZXcxqhsb2IPThis7O1RXyTsPv5WsRi90RTNT
p369eE7e-Yfo2-KfkaZdrkNvReBn2-1DQKvhiqBnhcvg3EI5YRjUaQdKMUpd3f9
4DAAD__yWSjvw=

(1 row)

Time: 4ms total (execution 3ms / network 1ms)

The output is shown here:

Figure 2.4 – Statement plan with execution statistics

EXPLAIN ANALYZE (DEBUG) executes a query and generates a link to a ZIP file that
contains the physical statement plan (https://www.cockroachlabs.com/docs/
stable/explain-analyze.html#distsql-plan-viewer), execution statistics,
statement tracing, and other information about the query. The code is illustrated in the
following snippet:

root@:26257/testdb> EXPLAIN ANALYZE (DEBUG) SELECT * FROM
testdb.testtable;

 text

https://www.cockroachlabs.com/docs/stable/explain-analyze.html#distsql-plan-viewer
https://www.cockroachlabs.com/docs/stable/explain-analyze.html#distsql-plan-viewer

30 How Does CockroachDB Work Internally?

 Statement diagnostics bundle generated. Download from the
Admin UI (Advanced

 Debug -> Statement Diagnostics History), via the direct link
below, or using

 the command line.

 Admin UI: http://crdb1:8080

 Direct link: http://crdb1:8080/_admin/v1/
stmtbundle/676836398188756993

 Command line: cockroach statement-diag list / download

(6 rows)

Time: 92ms total (execution 91ms / network 1ms)

Query execution
During query execution, the physical plan is pushed down to all the data nodes that
would be involved in serving a given query. CockroachDB uses work units called logical
processors, which will be responsible for executing relevant computations. Logical
processors across data nodes also communicate with each other so that data can be sent
back to the coordinator or the gateway node.

There are two types of query execution, as outlined here:

•	 Non-vectorized or row-oriented query execution

•	 Vectorized or column-oriented query execution

Vectorized query execution (column-oriented query execution) is more suited to
analytical workloads, whereas non-vectorized query execution (row-oriented query
execution) is preferred for transactional workloads. By default, vectorized query
execution is enabled on CockroachDB.

Now, let's take a look at how CockroachDB provides a transactional key-value store.

Managing a transactional key-value store 31

Managing a transactional key-value store
A transactional layer involves implementing a concurrency control protocol, as
multiple transactions can try to update the same data at the same time, which can
result in a conflict. In concurrency control, there are two different ways of dealing with
conflicts, as outlined here:

•	 Avoid conflicts altogether with pessimistic locking—for example, a read/write lock.

•	 Let the conflict happen but detect it with optimistic locking and resolve it—for
example, multi-version concurrency control (MVCC).

CockroachDB uses MVCC. In MVCC, there can be multiple versions of the same record,
but you resolve the conflicts before committing the changes.

In CockroachDB, a given transaction is executed in three phases, outlined next:

1.	 A transaction is started with a target range that will participate in the transaction.
A new transaction record is created to track the status of the transaction. It will
have the initial state as PENDING. At the same time, a write intent is created.
In CockroachDB, instead of directly writing the data to the storage layer, data
is written to a provisional state called write intent. Here, the intent flag
indicates that the value will be committed once the transaction is committed.
CockroachDB uses MVCC for concurrency control. The transaction identifier (ID)
is used to resolve conflicts for write intents. Each node involved in the transaction
returns the timestamp used for the write, and the coordinator node selects the
highest timestamp among all write timestamps and uses it in the final commit
timestamp.

2.	 The transaction is marked as committed by updating its transaction record. The
commit value also contains the candidate timestamp. The candidate timestamp is a
temporary timestamp to denote when the transaction is committed and is selected
as the actual node coordinating the transaction. Once the transaction is completed,
control is returned to the client.

3.	 After the transaction is committed, all written intents are updated in parallel by
removing the intent flag. The transaction coordinator does not wait for this step
to be completed before returning the control to the client.

We will learn more about conflict resolution, atomicity, consistency, isolation, and
durability (ACID), logical clocks, and transaction management in the next chapter. Next,
we will go over the distributed layer.

32 How Does CockroachDB Work Internally?

Data distribution across multiple nodes
A table in CockroachDB can be partitioned, and this is discussed in Chapter 4,
Geo-Partitioning, where we talk about geo-partitioning. CockroachDB stores the data
in a monolithic sorted key-value store (MSKVS). Key-space is all the data you have
in a given cluster, including information about its location. Key-space is divided into
contiguous batches, called ranges. The MSKVS makes it easy to access any data from
any node, which makes it possible for any node in the cluster to act as a gateway node,
coordinating one or more data nodes while serving client requests.

The MSKVS
The MSKVS contains two categories of data, as outlined here:

•	 System data, which contains meta ranges, where the data of each range can be
found within the cluster.

•	 User data, which is the actual table data.

Meta ranges
The location of ranges is maintained in two-level indexes, known as meta ranges. The first
level (a.k.a. meta1) points to the second level (a.k.a. meta2) and the second-level indexes
point to the actual data. This is shown in the following screenshot:

Figure 2.5 – Meta-range management in two levels

Every node in the cluster has complete information of meta1 and that range is never split.
meta2 data is cached on nodes. These are invalidated whenever ranges change, and the
cache gets updated with the latest value.

Let's look at an example.

Here, we will understand what meta1 and meta2 data looks like for an alphabetically
sorted column. When we write ranges, square brackets '[' and ']' indicate that the number
is included in the range, and parentheses '(' and ')' mean that the number is excluded.

Data distribution across multiple nodes 33

Let's look at some examples here:

•	 [1,10]—range starts from 1 and ends at 10 as both numbers are included

•	 [1,5)—range starts from 1 and ends at 4, as 5 is excluded

•	 (1, 8)—range starts from 2, as 1 is excluded and it ends at 7, as 8 is excluded

Let's now understand what meta1 and meta2 look like for an alphabetically sorted
column, as follows:

1.	 meta1 contains addresses of nodes that contain meta2 replicas. Let's assume there
are two meta1 entries for simplicity.

The first meta1 entry points to the meta2 range for keys [A-M), and the second
meta1 entry points to the meta2 range for keys [M-Z]. Here, maxKey indicates
the rest of the range till the maximum available key. Since we are talking about an
alphabetically sorted column, that would start at M, as the previous range excluded M
and ends at Z, which is the last letter of the alphabet. The code is illustrated here:

meta1/M -> node1:26257, node2:26257, node3:26257

meta1/maxKey -> node4:26257, node5:26257, node6:26257

2.	 meta2 contains addresses of the nodes containing actual user data for that
alphabetically sorted column. The first entry in the value always refers to the
leaseholder, which is the primary owner of a given range. The code is illustrated
here:

meta2 entry for the range [A-G)

meta2/G -> node1:26257, node2:26257, node3:26257

meta2 entry for the range [G-M)

meta2/M -> node1:26257, node2:26257, node3:26257

meta2 entry for the range [M-Z)

meta2/Z -> node4:26257, node5:26257, node6:26257

meta2 entry for the range [Z-maxKey)

meta2/maxKey-> node4:26257, node5:26257, node6:26257

34 How Does CockroachDB Work Internally?

Table data
When a new table is created, the table and its secondary indexes all point to a single
range. Once the range size exceeds 512 megabytes (MB), the range is split into two.
This continues as the data grows. Table ranges are replicated to multiple nodes for
survivability so that even if some nodes in the cluster shut down or crash, there will
not be any data loss.

Next, we will learn about replication and Raft, a distributed consensus algorithm.

Data replication for resilience and availability
This layer is responsible for ensuring that the table data is replicated to more than one
node and also keeps the data consistent between replicas.

The replication factor indicates how many replicas of a specific table's data should be
kept—for example, if the replication factor is 3, CockroachDB keeps three copies of all
the table data. The number of node failures that can be tolerated without data loss =
(replication factor – 1) / 2; for example, if the replication factor is 3, then (3 – 1) / 2 = 1
node failure can be tolerated. Whenever a node goes down, CockroachDB automatically
detects it and works toward making sure the data in the node that went down is replicated
to other nodes, in order to honor the replication factor and also to increase survivability.

CockroachDB uses the Raft distributed consensus algorithm, which ensures a quorum of
replicas agree on changes to ranges before those changes are committed.

What is consensus?
Consensus is a concept in distributed systems that is used for fault-tolerance and
reliability when some nodes either go down or will not be reachable because of network
issues. Consensus involves multiple nodes agreeing to changes before they are committed.
If all the nodes involved in the consensus are not available, then an agreement can still be
made, as long as a majority of the nodes are available—for example, in a cluster of nine
nodes, we need at least five nodes that are able to communicate with each other in order
to reach an agreement. Paxos, Multi-Paxos, Raft, and Blockchain are some of the
popular consensus algorithms.

The Raft distributed consensus protocol
The word Raft is supposed to be the combination of R (which stands for reliable,
replicated, and redundant), A (which stands for and), and FT (which stands for fault
tolerance). Although it's not an acronym, the word Raft is supposed to be a system that
provides reliability, replication, redundancy, and fault tolerance.

Data replication for resilience and availability 35

In Raft, all nodes that have a replica of a given range will be part of a Raft group. Each
node can be in one of the following states:

•	 Leader—Acts as a leader of the Raft group. Responsible for managing data
mutations and ensuring that data is consistent between the leader and its followers
using log replication.

•	 Follower—Follows a leader and works with the leader in order to keep the data
consistent.

•	 Candidate—In the absence of a clear leader, any participating node can try to
become a leader. A node that is trying to become a leader is called a candidate.

There are mainly two types of remote procedure call (RPC) requests, as listed here:

•	 RequestVote—Used for requesting votes by candidate node to other participating
nodes

•	 AppendEntries—Used for log replication and heartbeat

Let's now understand how leader election happens within Raft.

Leader election
Initially, all nodes of a Raft group start as followers. If they don't hear from a leader,
they become a candidate. The candidate votes for itself and requests votes by sending
a RequestVote message to other participating nodes. Any candidate with a majority
of votes becomes the leader. This process is called leader election. If two nodes end up
with the same number of votes, then there will be re-election. Also, election timeout is
randomized among the nodes of a Raft group, which ensures each participating node
becomes a candidate at different points of time. This reduces the chance of a split vote.

After the election, the leader keeps sending heartbeats through an AppendEntries
message to all its followers, and the followers keep responding. This ensures that the
election term is maintained.

There will be re-election when one or more nodes don't hear from the leader for a certain
period of time. This is called election timeout.

36 How Does CockroachDB Work Internally?

Log replication
Once a leader is elected, all changes to the data go through the leader. Every change is
first recorded in the leader node's log. The actual node's value is not updated till the
change is committed. In order to commit the change, the leader first broadcasts it via an
AppendEntries message to all its followers. After this, the leader waits for a majority of
the nodes to reply back. The followers respond back once they make an entry in their own
logs. Once the leader receives a response from a majority of the nodes, it then commits
the change and modifies the node value. After this, the leader notifies all the followers that
the change is committed.

Let's take a look at an example of how changes go through the leader and are replicated
to all the nodes in a Raft group. In this example, there are three nodes in a Raft group.
Node 2 is the leader, and Node 1 and Node 3 are followers, as shown in the following
diagram:

Figure 2.6 – Raft group with Node 2 as the leader and node value set to 10

Let's look at the changes through the following steps:

1.	 Now, a client makes a request to the Raft leader to change the value from 10 to 30,
as illustrated in the following screenshot:

Data replication for resilience and availability 37

Figure 2.7 – Client requesting the node leader to change the value from 10 to 30

2.	 When the leader receives this request, it appends this new entry of changing the
value from 10 to 30 in its replication log, as illustrated in the following screenshot:

Figure 2.8 – Node 2 appends the entry to change the value from 10 to 30 in its replication log

38 How Does CockroachDB Work Internally?

3.	 After making an entry in its replication log, it is broadcast to all its followers, as
illustrated in the following screenshot:

Figure 2.9 – Node 2, the leader, broadcasts this entry of changing the value from 10 to 30
to all its followers

Data replication for resilience and availability 39

4.	 All the followers now make an entry in their replication log and acknowledge to the
leader that they have done so, as illustrated in the following screenshot:

Figure 2.10 – Followers acknowledge appending the new entry in their own replication logs

40 How Does CockroachDB Work Internally?

5.	 Once the leader receives an acknowledgment from a majority of the followers, it
commits this entry locally and changes the actual node value from 10 to 30, and
later broadcasts to all its followers that the entry is committed. This is illustrated in
the following screenshot:

Figure 2.11 – Once a majority of the followers acknowledge, the leader commits the changes locally and
sends a notification to all its followers about the commit.

Interactions with the disk for data storage 41

6.	 In the last step, all the followers also commit the entry by changing their node
values from 10 to 30, as illustrated in the following screenshot:

Figure 2.12 – All the followers acknowledge appending the new entry in their own replication logs

This completes the process of log replication for a single change. This process is replayed
for all the changes.

If the leader crashes during this negotiation, the replication log can be in an inconsistent
state. The new leader fixes this inconsistency by forcing its followers to replicate its own
log. Specific details on how this is done are beyond the scope of this book.

Next, we will understand how CockroachDB interacts with the disk.

Interactions with the disk for data storage
The storage layer is responsible for reading from and writing to the disk. Each node in
a CockroachDB cluster should have at least one storage attachment. Data is stored as
key-value pairs on the disk using a storage engine.

42 How Does CockroachDB Work Internally?

Storage engine
A database management system (DBMS) uses a storage engine to perform CRUD
(which stands for create, read, update, and delete) operations on the disk. Usually, the
storage engine acts as a black box, so you get more options to choose from based on your
own requirements, and also, storage engines evolve independently of the DBMSes that are
using them.

Storage engines use a variety of data structures to store data. The popular ones are
listed here:

•	 Hash table

•	 B+ tree

•	 Heap

•	 Log-structured merge-tree (LSM-tree)

Storage engines also work with a wide range of storage types, including the following:

•	 Solid-state drive (SSD)

•	 Flash storage

•	 Hard disk

•	 Remote storage

CockroachDB primarily supports Pebble as the storage engine, as of version 21.1.
Previously, it also supported RocksDB.

Let's look at Pebble.

Pebble
Pebble is primarily a key-value store that provides atomic write batches and snapshots.
Starting from version 20.2, CockroachDB uses the Pebble storage engine by default.
Pebble was developed to address two concerns, which are outlined here:

•	 Focusing the storage engine's features to primarily address the requirements of
CockroachDB.

•	 Improving the performance by bringing in certain optimizations that are not part
of RocksDB.

Summary 43

Also, since it's developed by Cockroach Labs engineers, it's easy to maintain and control
its roadmap. This has also increased the overall productivity as Pebble is written in
Golang, just as is CockroachDB itself.

Summary
In this chapter, we learned about all the layers of CockroachDB and how a given request
is processed through these layers. We also went through how queries are handled; how
a transactional key-value store works; Raft, a distributed consensus algorithm; and a bit
about storage engines.

In the next chapter, we will understand ACID and how it's implemented in CockroachDB.

Section 2:
Exploring the

Important Features
of CockroachDB

In this section, we will go over several important features of CockroachDB. This should
give you a better insight with respect to when to use CockroachDB as a datastore.

This section comprises the following chapters:

•	 Chapter 3, Atomicity, Consistency, Isolation, and Durability (ACID)

•	 Chapter 4, Geo-Partitioning

•	 Chapter 5, Fault Tolerance and Auto-Rebalancing

•	 Chapter 6, How Indexes Work in CockroachDB

3
Atomicity,

Consistency,
Isolation, and

Durability (ACID)
In the Chapter 2, How Does CockroachDB Work Internally, we learned about the different
layers of CockroachDB. In this chapter, we will learn about what ACID is, its importance,
and what the ACID guarantees that CockroachDB provides are.

ACID guarantees the following things:

•	 Atomicity: This is achieved through the notion of a transaction, in which all the
statements within a transaction are executed as a single unit. So, either all of them
succeed or fail together.

•	 Consistency: The database state should be consistent before and after a transaction
is executed and should ensure that the database constraints are never violated.

48 Atomicity, Consistency, Isolation, and Durability (ACID)

•	 Isolation: Multiple transactions can get executed independently at the same time,
without running into each other.

•	 Durability: Changes, once committed, always remain intact, irrespective of any
system or network failures.

The following topics will be covered in this chapter:

•	 An overview of ACID properties

•	 ACID from CockroachDB's perspective

An overview of ACID properties
In this section, we will discuss each of the ACID properties and understand their
importance in avoiding data loss and corruption. First, we will take a look at atomicity.

Atomicity
Atomicity refers to the integrity of a given transaction, which means if a transaction
comprises multiple statements, atomicity ensures that either all of them succeed or none
of them succeed. Atomicity is important to make sure that there is no data inconsistency
because of a transaction getting partially executed.

Let's try to understand this with an example:

BEGIN TRANSACTION

Read Foo's Account

Debit $100 from foo's Account

Read Bar's Account

Credit $100 to bar's Account

COMMIT

Here, you have a transaction in which you are debiting the money from Foo's
Account and crediting it to bar's Account. Here, it's important that these two
activities happen as a single unit of work. Otherwise, it can result in data inconsistency.
Consider a case in which you are able to debit the money from Foo's Account, but not
able to credit it to bar's Account – you will lose track of the money that was deducted
from Foo's Account. So, either all of them should succeed, or none of them should.

Next, we will learn about consistency.

An overview of ACID properties 49

Consistency
Consistency in ACID is an overloaded term and can mean several things, including
the following:

•	 Ensuring that the transactions in the future see the effects of transactions that are
already committed

•	 Ensuring database constraints are not violated once a given transaction is
committed

•	 Ensuring that all the operations in a transaction are executed correctly

Basically, consistency is responsible for ensuring the database always moves from one
valid state to another, which doesn't result in any data inconsistency or corruption.

In the context of a Consistency, Availability, and Partition Tolerance (CAP) theorem,
consistency indicates that in a distributed system, all the reads receive the most recent
write, or it will error out. As per the CAP theorem, you can only have two of consistency,
partition tolerance, and availability. Since consistency will be important to most of the
applications, you have to choose between availability and partition tolerance.

Next, we will go through various isolation levels and try to understand the implication of
each on a transaction.

Isolation
Isolation deals with the guarantees a database provides when multiple clients are
interacting with the same set of data.

Some of the popular isolation levels are as follows:

•	 Serializable: This is the highest isolation level which requires acquiring a lock on
the data you are operating. Transactions in CockroachDB implement the highest
isolation level which is serializable. This means that transactions will never result in
inconsistent or corrupt data. In the case of CockroachDB, this is provided by using
range-level locks called write intents.

•	 Snapshot: This is a non-lock-based concurrency control, so no locks are not used,
however, if a conflict is detected between concurrent transactions, then only one of
them is allowed to commit.

•	 Read uncommitted: This is the lowest isolation level which allows dirty reads,
which means changes made by live transactions that are not yet committed.

50 Atomicity, Consistency, Isolation, and Durability (ACID)

•	 Repeatable read: Repeatable read guarantees that you only read a committed value
and also already read data cannot be changed by some other transaction. However,
it does allow a phantom read. A phantom read happens when, between two reads of
the same data, some other parallel transaction adds new data and they show up in
subsequent reads, once they are committed.

•	 Read committed: This isolation level guarantees that any read you do is already
committed.

With an example, let's try to understand the difference between read committed,
repeatable read, and serializable:

Figure 3.1 – Two transactions, T1 and T2, happening in parallel

In the previous example, there are two parallel transactions, T1 and T2.

For the discussion, let's assume that the following figure is the sequence of events:

Figure 3.2 – Ordering of operations for transactions T1 and T2

Here, serializable guarantees that the T1 transaction sees the exact same value in Steps
3 and 8, although there are new rows added and some rows got deleted by the T2
transaction.

ACID from CockroachDB's perspective 51

With read committed, Step 9 will see new rows added by the T2 transaction and it will
not see the rows deleted by the T2 transaction, since all the changes by T2 are already
committed.

In the case of a repeatable read, Step 9 will only see the new data committed by T1.

Durability
Durability guarantees that any changes that are committed are permanent, irrespective of
failures related to nodes, memory, storage, or the network. Databases achieve durability
by flushing out the transactional log to non-volatile storage like solid-state drives and
magnetic storage devices.

Many of the database management systems (DBMS) use the concept of a transaction
log to ensure they can recover from system crashes. The transaction log is also called
a binary log, database log, or audit trail. The transaction log is usually stored on an
external storage device.

Let's say a database node crashes while executing a bunch of transactions. Now, whenever
it comes back, it goes through the transaction log to determine which transactions were
committed and which were uncommitted at the time of the crash. If a transaction is
committed, all the changes made during that transaction are replayed. If a transaction was
uncommitted, all the changes made by the transaction are rolled back.

Next, we will learn about how ACID properties are supported in CockroachDB.

ACID from CockroachDB's perspective
In this section, we will go over how each of the ACID properties is implemented in
CockroachDB and what guarantees they provides. Like in the previous section, we will
start with atomicity.

Atomicity
As we learned in the first section, atomicity ensures that all the statements in a given
transaction are executed as a single unit – that is, either all of them succeed or all of them
fail. This condition should be guaranteed irrespective of machine, network, and memory
failures. This is essential to make sure multiple queries don't run into each other.

CockroachDB allows you to have ACID transactions that can span the entire cluster,
touching multiple nodes and geographical locations. CockroachDB supports this using
an atomic protocol called parallel commits.

52 Atomicity, Consistency, Isolation, and Durability (ACID)

In the previous chapter, we learned about transaction records and write intent.
A transaction record keeps track of the current state of the transaction and is maintained
in the range where the first write occurs. Whenever we are changing a value, they are not
directly written to the storage layer. Instead, a value is written to an intermediate state
known as write intent. Write intent acts on a multiversion concurrency control
(MVCC) record, with a link to the transaction record. Write intent acts as a replicated
lock, which houses a replicated provisional value.

Write intent has been shown in the following figure with a sample transaction with
two writes:

Figure 3.3 – Transaction timeline without parallel commit

Any transaction that comes across a write intent should also go through corresponding
transaction records and, based on its state, decide how to treat the write intent. A commit
flips the transaction record state to committed. Once the transaction is committed, write
intents are cleaned up asynchronously.

Now, let's take a look at how traditional atomic transactions worked in CockroachDB
without parallel commits and later with parallel commits.

Atomic transactions without parallel commits
Prior to version 19.2, there was no parallel commit concept and transactions worked
similar to a two-phase commit protocol. Let's explore this with an example.

ACID from CockroachDB's perspective 53

Let's say there is a transaction with three writes, as shown in the following example:

BEGIN

write Tesla

write GameStop

write Amazon

COMMIT

This entire flow has been depicted in Figure 3.4:

Figure 3.4 – Transaction timeline without parallel commit

54 Atomicity, Consistency, Isolation, and Durability (ACID)

Consider the following:

1.	 The transaction record is created in the first range where the write happens. In this
case, that happens to be the Tesla value. So, along with the provisional Tesla
value, a write intent is created with the transactional record in a PENDING state.

2.	 As and when the rest of the writes are received, they create their own write intents.
All these write intents are said to be pipelined because CockroachDB doesn't wait
until they succeed before receiving the next statement within the same transaction
from the SQL client.

3.	 Once the COMMIT is issued in the transaction, CockroachDB waits for all the write
intents to succeed with replication.

4.	 Once all of them succeed, the transaction record state is changed to COMMITTED.
Again, this is replicated for durability and the transaction is considered committed
once the replication is completed.

5.	 At this time, CockroachDB sends back an acknowledgment that the transaction is
committed.

6.	 Later, the rest of the write intents are resolved and are eventually cleaned up.

This mechanism is similar to a two-phase commit protocol, in which write intents can
be compared to the prepare phase and marking the transaction record as committed
is similar to the commit phase. The main problem here is that it is blocking, since
CockroachDB waits for all the write intents to succeed before marking the transaction
record as committed. If the coordinator node crashes, then it's impossible to recover
from that.

CockroachDB overcomes this problem by implementing a two-phase commit on top of a
consensus protocol, RAFT, which we discussed in the previous chapter. This ensures that
the transaction records themselves are replicated and highly available, and can recover
from a coordinator crash.

Having a two-phase commit protocol on top of RAFT introduces more latency. This is
because CockroachDB first waits for all the write intents to succeed before changing the
transaction status to committed. Later, it has to wait until changing the transaction status
itself has succeeded, as that involves one more round of consensus.

Now, let's see how an atomic transaction with parallel commit avoids this added
transactional latency.

Atomic transactions with parallel commits
Parallel commit was introduced to reduce the transaction latency observed in the
previously discussed two-phase commit like protocol

ACID from CockroachDB's perspective 55

In the previous protocol, the transaction record has to wait until all the write intents have
succeeded to change the status to committed. In parallel commit, there is a new status
called STAGING. The transaction record also includes the list of all the keys for which
there are write operations in the current transaction. A transaction can be implicitly
assumed to be committed if all the writes that are listed in the transaction record have
succeeded and reached consensus.

Let's go over the same transaction with three writes:

BEGIN

write Tesla

write GameStop

write Amazon

COMMIT

This entire flow has been depicted in Figure 3.5:

Figure 3.5 – Transaction timeline with parallel commit

56 Atomicity, Consistency, Isolation, and Durability (ACID)

Here, the key difference is that the logic of a transaction being committed depends on
the status of all the writes involved in that transaction. Also, if we know the status of all
the writes, we don't have to wait until the transaction record status is explicitly updated
to committed after reaching consensus. Because of this, the transaction's coordinator
node can acknowledge that a given transaction has been committed successfully to the
SQL client once the coordinator observes that all the writes in that transaction have
succeeded. The other important change in this protocol is that the initiation of pipelining
of the write to the transaction record with the STAGING status is done after a COMMIT for
a given transaction is received from the SQL client. Pipelining the write to the transaction
record is done in parallel with pipelining the write intents, in order to speed up the entire
process.

Now, let's take a look at how a transaction status is recovered whenever a transaction
coordinator crashes in the middle of a transaction.

Transaction status recovery
Now, let's see what happens if the coordinator crashes before it can update the transaction
record to either COMMITTED or ABORTED. In this case, whenever there is a transaction
with a conflicting write intent, it looks up that write intent's transaction record. Once
it sees that the status is STAGING, it cannot decide whether that transaction was
COMMITTED or ABORTED. So, now it starts the status recovery process.

During transaction status recovery, each write intent involved in that transaction is
consulted to see if it succeeded. If all the write intents have succeeded, the transaction
is assumed to be COMMITTED, and if not, to be ABORTED. After this, the appropriate
status is updated so that any other conflicting transaction in the future doesn't have to
go through the status recovery process again.

Status recovery can be very expensive, especially if it involves multiple writes with ranges
that do not share leaseholders. If multiple leaseholders are involved in status recovery,
there will be multiple roundtrips to several nodes, before we can recover the status. To
avoid this, CockroachDB does two things:

1.	 The transaction coordinator node marks the transaction record as COMMITTED or
ABORTED as soon as it can.

2.	 Transaction coordinators periodically send heartbeats to their transaction
records. This helps the conflicting transactions to determine if a transaction
is still alive or not.

In the next section, we will learn about how consistency is ensured within CockroachDB.

ACID from CockroachDB's perspective 57

Consistency
As discussed earlier, consistency deals with two things:

1.	 Ensuring no database rules are violated
2.	 Making sure that transactions that are executed in parallel on the same set of data

do not conflict with each other, which is necessary to avoid data consistency issues

For the first one, it boils down to making sure that the database doesn't have any bugs and
does whatever it claims. Jepsen is an effort to improve the safety of distributed databases,
queues, and consensus systems. During Jepsen testing, a given system is verified for
whether it lives up to its documentation's claims. CockroachDB passed Jepsen testing
in 2017.

In CAP theorem, which we discussed in the first chapter, consistency means every read
sees the latest write or errors out. CockroachDB is a consistent and partition tolerant
(CP) system, which means its highly consistent and, whenever there are partitions, the
system becomes unavailable rather than ending up with inconsistent data.

Let's now learn about isolation and what kind of isolation CockroachDB provides.

Isolation
CockroachDB uses something called a serializable snapshot, which is an optimistic,
multi-version, timestamp-ordered concurrency control system.

It's a distributed, lockless, recoverable, and serializable protocol. Distributed, as multiple
nodes can be involved. Lockless, as operations are performed without locks and
correctness is ensured by aborting transactions that violate serializability. Recoverable,
since aborted transactions don't have any effect on the state of the database, which is
ensured by the atomic commit protocol. Serializable, since CockroachDB guarantees a
consistent database state by ensuring serial execution of composite transactions is correct.

Next, we will learn about durability in CockroachDB.

Durability
Durability guarantees that any changes that are committed are permanent. CockroachDB
uses the RAFT consensus algorithm to ensure that all writes for a transaction record and
write intents are durable. We have already discussed RAFT at length in Chapter 2, How
Does CockroachDB Work Internally?

58 Atomicity, Consistency, Isolation, and Durability (ACID)

CockroachDB replicates each range three times by default and ensures that each replica
is stored on different nodes. If a minority of the nodes fail, CockroachDB continues to
operate and does not result in inconsistency or loss of data.

Let's take a look at how durability works in a three-node cluster:

Figure 3.6 – Transaction timeline with parallel commit

As you can see, node 1 is the lease holder for data1 and node 2 has the replica. Similarly,
node 3 is the lease holder for data3, and node 1 has the replica. Next, node 2 is the lease
holder for data2, and node 3 has the replica. Here, node 1 is also acting as a gateway
node, where the initial request from the SQL client lands, and it also coordinates other
nodes in the cluster to serve the request:

ACID from CockroachDB's perspective 59

Figure 3.7 – Transaction timeline with parallel commit

Now, let's say node 2 is not available due to a system failure. Since node 2 was the lease
holder of data2, now the coordinator is unable to get the data for data2 from node 2,
since it's not available. Now, the RAFT group for data2 will hold an election and the lease
holder will be reassigned. In this case, it has to be node 3, as that's the only other node
that has the replica of data2:

Figure 3.8 – Transaction timeline with parallel commit

60 Atomicity, Consistency, Isolation, and Durability (ACID)

As you can see in Figure 3.8, node 3 acts as the lease holder for both data2 and data3 and
the cluster is still fully functional, in spite of a node failure.

Now, if node 3 also goes down for some reason, since we don't have any lease holder for
data2, if a request involves serving the data for data2, it cannot be completed, affecting
the availability of data2 on a given CockroachDB cluster.

As you can see, CockroachDB can tolerate certain node failures, as long as there are lease
holders for all the data. Otherwise, availability takes a hit. In either case, there won't be
any data loss.

Users can also configure replication zones for databases, tables, rows, indexes, and
system data. We will discuss these configurations in Chapter 5, Fault Tolerance and
Auto-Rebalancing, where we will discuss fault tolerance and auto-recovery.

Summary
In this chapter, we learned about the four basic pillars of any database: Atomicity,
Consistency, Isolation, and Durability. As a recap, atomicity ensures that a transaction
is executed as a single unit of work. Consistency involves making sure that any database
operation doesn't violate any of the database constraints. In the context of a CAP theorem,
consistency refers to the fact you will never read stale or uncommitted data. CockroachDB
provides both serializable and snapshot isolation levels. CockroachDB uses the RAFT
protocol for transaction records and write intents to guarantee that all committed data is
durable and permanent, irrespective of node failures.

In the next chapter, we will go over fault tolerance and auto-recovery, and what some of
the configurations are in CockroachDB.

4
Geo-Partitioning

In the Chapter 3, Atomicity, Consistency, Isolation, and Durability (ACID), we learned
about what ACID is, why we need it, and how it's supported in CockroachDB. Here,
we will learn all about geo-partitioning. Geo-partitioning is one of the most important
reasons why you will want to use
a distributed SQL database such as CockroachDB.

In this chapter, you will get a basic understanding of what geo-partitioning is and why
this feature is useful for you. We will also go over some cloud jargon and some of the
options provided by various cloud providers to distribute your data geographically for
better resiliency, performance, and availability. At the end of the chapter, we will go over
different ways of geo-partitioning your data in CockroachDB.

The following topics will be covered in this chapter:

•	 Introduction to geo-partitioning

•	 Cloud regions and zones

•	 Geo-partitioning in CockroachDB

62 Geo-Partitioning

Technical requirements
For executing the examples in this chapter, you will need to install CockroachDB. If
you still haven't done so, please refer to the Technical requirements section in Chapter
2, How Does CockroachDB Work Internally? All the queries in this chapter are available
at https://github.com/PacktPublishing/Getting-Started-with-
CockroachDB.

Introduction to geo-partitioning
As the word geo-partition suggests, the data is partitioned based on geographical locations.
Geo-partitioning refers to the mechanism of storing the data in various geographical
locations, based on where the data is being consumed.

For example, let's say you are maintaining a database for an airlines company that has
international and domestic travelers as its users from every continent. Since they have a
global presence, it would be beneficial to keep the users' data close to where they live. This
will help in serving the data locally and quickly.

Figure 4.1 shows an example of a table whose rows are partitioned based on geo-location
across three different continents. Rows are stored in specific databases based on their
locality. This locality can be mapped to the user's location based on their activity:

Figure 4.1 – An example of a geo-partitioned table

https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB

Introduction to geo-partitioning 63

Geo-partitioning will be useful, even within smaller regions, where you provide services
locally. An example would be, let's say, you are managing a database for a company that has
to serve lots of data very frequently, which is highly localized to users living in that area.
This example fits companies such as Instacart, DoorDash, Uber Eats, Uber, Lyft, and Ola.

For the sake of discussion, let's consider DoorDash. In the case of DoorDash, its users
search for restaurants and grocery stores, usually within 10–15 miles of where they
live, and place an order on their app. In this case, we can house the data regarding user
purchase orders and delivery status close to the users. This not only helps us in serving
the data faster for local users, but we can also easily apply local compliance rules only
on a specific subset of CockroachDB clusters.

If we consider the state of California for this example, we can strategically deploy
CockroachDB nodes in San Francisco and Los Angeles. For restaurants, menus, and
grocery items, which don't change often, we can create duplicate indexes that will help
reduce read latencies when browsing.

Also, now, if you want to incorporate the California Consumer Privacy Act of 2018
(CCPA) for all the purchase orders that happen within California, it would be much easier
to restrict it to the databases in California that manage this information. The following
figure illustrates this aspect:

Figure 4.2 – Geo-partitioning for cities in California State, USA

64 Geo-Partitioning

Some of the main advantages of geo-partitioning are as follows:

•	 It helps serve data quickly, as we reduce the number of network hops.

•	 Failures in a given geolocation only affect a small set of users.

•	 It provides data compliance as per local rules and standards, for example, the
California Consumer Privacy Act of 2018 (CCPA) and the European Union's
General Data Protection Regulation (GDPR).

•	 It helps provide better disaster recovery and resiliency if an entire geolocation
experiences a natural or human-triggered calamity.

Let's now learn about cloud regions and availability zones, which is essential to
understand how geo-partitioning can be realized on various cloud providers.

Cloud, regions, and zones
In this section, we will learn about some jargon related to the cloud. We will also learn
about regions and zones, and how they have been realized by various cloud providers.
These concepts are important to understand to decide how you want to distribute your
data and what sort of guarantees you want to provide:

•	 Cloud: A cloud is nothing but a bunch of servers on multiple data centers that
are positioned in strategic locations across the globe. These data centers provide
resources such as storage, network, and compute on demand, and they belong to a
specific cloud provider.

•	 Cloud provider: A cloud provider is an organization that provides various services
on its public or private cloud platform.

•	 Public cloud: In a public cloud, resources that you consume are hosted on the cloud
provider's data center. The cloud provider is responsible for maintaining, upgrading,
and operating cloud resources. Since you are consuming resources maintained by a
third party, there are additional security risks here.

•	 Private cloud: In the case of the private cloud, the resources are usually hosted on
a company's own data center, but they can also be hosted by a cloud provider. In a
private cloud, all the resources are dedicated to a single organization and isolated
from other organizations; hence it's more controlled and secured.

•	 Multi-cloud: A given platform is called multi-cloud where you consume resources
from multiple public cloud providers.

•	 Hybrid cloud: In a hybrid cloud, you will be combining resources from a public
cloud along with resources from a private cloud and/or on-premises.

Cloud, regions, and zones 65

Region
A region refers to an actual physical location where your cloud resources are housed.
Each cloud provider has different notions of a region.

It's very important to understand how regions are implemented by different cloud
providers, as it determines the following things:

•	 Cloud cost: Resources in some regions are cheaper than in others.

•	 Multi-cloud and hybrid cloud strategy: This includes disaster recovery, high
availability, data replication, data migration, data sharing, failover, and so on.

•	 Latency: The whole idea of geo-partitioning is about reducing the latency by
keeping the data close to the customer. So, it becomes apparent that there is a need
to select a region in strategic locations, which reduces overall latency.

•	 Data compliance: Depending on where the region is located, you might have
different data compliance requirements. Also, some countries might insist that the
data of their citizens cannot leave the country, in which case you will be forced to
pick some regions in that country.

•	 Services and features: Not all services and features are available in all regions. So,
this sometimes reduces the choice of regions.

Zone
A region consists of multiple zones. A zone refers to a more specific location within a
given region.

Availability zone
An availability zone is an isolated data center that doesn't share any resources with other
zones within the same region. All the communication between availability zones happens
through a high-speed network. A region is supposed to have at least two availability zones
that help in implementing redundancy, failover, and high availability.

Now, let's understand the definitions of region and zone by some of the top cloud
providers.

66 Geo-Partitioning

Regions and zones on various cloud providers
In this section, we will briefly go over what region and zone mean on the top four cloud
providers. We will be covering the following cloud providers in this section:

•	 Amazon Web Services

•	 Google Cloud Platform

•	 Microsoft Azure

•	 Oracle Cloud

Let's get started!

Amazon Web Services
Region: A Region is a physical location that consists of multiple data centers.

Availability Zone: A group of discrete data centers that provide redundancy to cloud
resources is called an Availability Zone. Availability Zones help in implementing features
such as high availability, fault tolerance, reliability, and scale.

AWS Local Zone: Local Zones provide resources that are located close to your end users.
These will be useful in services such as gaming and streaming, which require low latency,
high throughput, and elastic services.

Google Cloud Platform
Region: A region is a collection of zones.

Zones: A zone is a deployment within a region. You should use multiple zones to provide
high availability and fault tolerance.

Microsoft Azure
Region: A region is a set of data centers connected within a perimeter determined by the
latency and connected through a fast network.

Geography: An area of the world containing at least one Azure region. A geography spans
multiple regions and is fault-tolerant, even in the event of a complete regional failure.

Availability zones: Unique physical locations within a region. Each availability zone
comprises one or more data centers with resources that are not shared with other zones.

Geo-partitioning in CockroachDB 67

Oracle Cloud
Region: A region is a localized area and is made of several availability domains.

Availability domains: Availability domains are made of one or more data centers, they do
not share any resources amongst them, and are connected through a fast network.

Each availability domain has three fault domains. Fault domains ensure your resources
are from different availability domains, which offers improved resiliency.

Next, we will learn about how to achieve geo-partitioning with CockroachDB.

Geo-partitioning in CockroachDB
CockroachDB provides two topology patterns, which provide two levels of data resiliency,
latency and availability.

Single region
Here, the entire data is in a single region.

CockroachDB defines two variations of single-region topology, development and
production, as follows:

•	 Development: This pattern is very straightforward, where you just have a single
node in an availability zone, with multiple clients talking to it. This pattern is useful
for testing purposes. This topology can also be used on your laptop or desktop.

As part of your Continuous Integration/Continuous Deployment (CI/CD)
pipeline, you can have a dedicated stage in which you provision a single-node
cluster and later can run a bunch of system tests that interact with a real database.
Since the clients will be local to the data, reads and writes will be much faster,
although there is no resiliency.

68 Geo-Partitioning

The following is an example of a single-region deployment:

Figure 4.3 – Single-node deployment in the US-West (Northern California) region, where all the clients
are also deployed in the same region

•	 Basic production: Here, you can have nodes deployed in more than one availability
zone within the same region. It is ideal to have at least three nodes in three different
availability zones within the same region for consensus purposes. This pattern takes
advantage of many CockroachDB features, such as replication, rebalancing, and
resiliency.

This topology can withstand up to a single-node failure. If two nodes fail, then some
ranges might not have any leaseholders due to a lack of consensus and will become
unavailable. You would also need a load balancer to spread the traffic from clients
across three nodes evenly.

Geo-partitioning in CockroachDB 69

The following is a single-region deployment with three nodes:

Figure 4.4 – Single-region three-node deployment in the US-West (Northern California) region, where
all the clients are also deployed in the same region

In basic production topology, client requests hit a load balancer first, and later they are
forwarded to one of the nodes, which acts as a gateway node. The gateway node then
coordinates with relevant leaseholders, gathers all the data, and serves the data back to
the client.

70 Geo-Partitioning

Multi-region
Here, the data is spread across multiple regions. You can use row-level control to
distribute the rows geographically. The following figure shows a multi-region deployment,
which spans three different regions in the US:

Figure 4.5 – Multi-region nine-node deployment covering the US-East, US-Central, and
US-West regions

You can choose the following topologies based on your requirement:

•	 Geo-partitioned replicas

•	 Geo-partitioned leaseholders

•	 Duplicate indexes

•	 Follower reads

•	 Follow-the-workload

Geo-partitioning in CockroachDB 71

Geo-partitioning options are only available with the enterprise license of CockroachDB.
If you try to use enterprise features without the enterprise license, you will see the
following message:

ERROR: use of partitions requires an enterprise license. see
https://cockroachlabs.com/pricing?cluster=65244c3a-2d63-432c-
a8b4-c70a53459ca1 for details on how to enable enterprise
features

SQLSTATE: XXC02

You can visit the URL mentioned in the error message and get an enterprise license for
a specific trial period.

Applying an enterprise license to your cluster would involve the following steps:

root@localhost:26258/defaultdb> SET CLUSTER SETTING cluster.
organization = 'Self';

SET CLUSTER SETTING

Time: 166ms total (execution 165ms / network 0ms)

root@localhost:26258/defaultdb> SET CLUSTER SETTING enterprise.
license = 'crl-0-EKD0mYsGGAIiBFNlbGY';

SET CLUSTER SETTING

Time: 191ms total (execution 191ms / network 0ms)

Now, let's take a deeper look at each one of these topologies. All these topologies would
need a multi-region deployment. The easiest way to create a multi-region cluster for
experiment purposes is to create an account at https://cockroachlabs.cloud and
request a three-region, nine-node cluster.

Geo-partitioned replicas
In the case of geo-partitioned replicas, you have to have a column for the geolocation. It
then has to be combined with the table's unique identifier to form a compound primary
key. For example, let's say you have an ID, which is a Universally Unique Identifier
(UUID) – you can combine that with the city or the state to form a compound primary
key. Then, you have to partition the table and all the secondary indexes based on that
column, and each partition will have its own replicas. Once you have this, you can ask
CockroachDB to place data belonging to each partition in a specific region.

https://cockroachlabs.cloud

72 Geo-Partitioning

For example, let's say you have users from California and Ohio. All the rows belonging to
users from California can be stored in the US-West region and users in Ohio can be stored
in the US-East region. Here, the assumption is that data will be consumed locally, so both
read and write latencies will be reduced.

For example, if you operate a food delivery service, your users will place orders from the
city they live in, and also the food will be delivered within the same city. So, in this case, it
makes total sense to use a geo-partitioned replica for your users. Since all the data and its
replica are housed in the same region, if an entire region goes down, the data will not be
available.

Let's see an example in which we are going to create a geo-partitioned replicas topology.
Basically, the replicas will be pinned to a particular region so that local reads and writes
are faster:

1.	 Create a table called users, where you have city as one of the columns. This will
help in partitioning this table by city:

CREATE TABLE users (

 id UUID NOT NULL DEFAULT gen_random_uuid(),

 first_name STRING NOT NULL,

 last_name STRING NOT NULL,

 city STRING NOT NULL,

 PRIMARY KEY (city ASC, id ASC));

2.	 Now, create a secondary index as follows:

CREATE INDEX users_first_name_last_name_index ON users
(city, first_name, last_name);

3.	 Create partitions for the table based on city. Let's consider three different cities
that are in the west, east, and central parts of the USA:

ALTER TABLE users PARTITION BY LIST (city) (

 PARTITION sfo VALUES IN ('san francisco'),

 PARTITION aus VALUES IN ('austin'),

 PARTITION ny VALUES IN ('new york')

);

Geo-partitioning in CockroachDB 73

4.	 Create partitions for the secondary index based on city:

ALTER INDEX users_first_name_last_name_index PARTITION BY
LIST (city) (s

 PARTITION sfo VALUES IN ('san francisco'),

 PARTITION aus VALUES IN ('austin'),

 PARTITION ny VALUES IN ('new york')

);

5.	 For the table and its secondary index, create a replication zone, which will pin the
replica of a given partition to its relevant region. The <table>@* syntax lets you
create zone configurations for all identically named partitions of a table, saving you
multiple steps:

ALTER PARTITION sfo OF INDEX users@* CONFIGURE ZONE USING
constraints = '{"+region=us-west":1}', num_replicas=3;

ALTER PARTITION aus OF INDEX users@* CONFIGURE ZONE USING
constraints = '{"+region=us-central":1}', num_replicas=3;

ALTER PARTITION ny OF INDEX users@* CONFIGURE ZONE USING
constraints = '{"+region=us-east":1}', num_replicas=3;

6.	 Now, let's execute the SHOW CREATE TABLE query to see how the partitions are
created for the table and the secondary index:

SHOW CREATE TABLE users;

The sample output is as follows:
SHOW CREATE TABLE users;

 table_name
| create_
statement

-------------+---

 users | CREATE TABLE public.users (

 | id UUID NOT NULL DEFAULT gen_random_
uuid(),

 | first_name STRING NOT NULL,

 | last_name STRING NOT NULL,

74 Geo-Partitioning

 | city STRING NOT NULL,

 | CONSTRAINT "primary" PRIMARY KEY (city
ASC, id ASC),

 | INDEX users_first_name_last_name_index
(city ASC, first_name ASC, last_name ASC) PARTITION BY
LIST (city) (

 | PARTITION sfo VALUES IN (('san
francisco')),

 | PARTITION aus VALUES IN
(('austin')),

 | PARTITION ny VALUES IN (('new
york'))

 |),

 | FAMILY "primary" (id, first_name,
last_name, city)

 |) PARTITION BY LIST (city) (

 | PARTITION sfo VALUES IN (('san
francisco')),

 | PARTITION aus VALUES IN (('austin')),

 | PARTITION ny VALUES IN (('new york'))

 |);

 | ALTER TABLE defaultdb.public.users
CONFIGURE ZONE USING

 | num_replicas = 3;

 | ALTER PARTITION sfo OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-west: 1}';

 | ALTER PARTITION sfo OF INDEX defaultdb.
public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-west: 1}';

 | ALTER PARTITION aus OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-central:
1}';

 | ALTER PARTITION aus OF INDEX defaultdb.

Geo-partitioning in CockroachDB 75

public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-central:
1}';

 | ALTER PARTITION ny OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-east: 1}';

 | ALTER PARTITION ny OF INDEX defaultdb.
public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-east: 1}'

(1 row)

Time: 278ms total (execution 278ms / network 0ms)

Here, you can see that replicas are constrained to relevant regions. So, if an entire region
goes down, a partition in that region becomes unavailable.

Next, we will go through the geo-partitioned leaseholders topology.

Geo-partitioned leaseholders
Like in the case of a geo-partitioned replica, you still need a column that has geolocation.
You will also need a compound primary key, which is a combination of a unique ID and
geolocation.

Here, the main difference is that you only pin the leaseholder to a specific location, but the
replicas can be stored in different regions. Since we are only pinning the leaseholder, reads
will always be faster but writes take more time, since data is replicated across regions,
which takes more time as replication also involves consensus.

76 Geo-Partitioning

Let's see an example, in which we are going to create a geo-partitioned leaseholders
topology. Basically, the leaseholder will be pinned to a particular region, so that local
reads are faster:

1.	 Create a table called users, where you have city as one of the columns. This will
help in partitioning this table by city:

CREATE TABLE users (

 id UUID NOT NULL DEFAULT gen_random_uuid(),

 first_name STRING NOT NULL,

 last_name STRING NOT NULL,

 city STRING NOT NULL,

 PRIMARY KEY (city ASC, id ASC));

2.	 Now, create a secondary index as follows:

CREATE INDEX users_first_name_last_name_index ON users
(city, first_name, last_name);

3.	 Create partitions for the table based on city. Let's consider three different cities
that are in the west, east, and central parts of the USA:

ALTER TABLE users PARTITION BY LIST (city) (

 PARTITION sfo VALUES IN ('san francisco'),

 PARTITION aus VALUES IN ('austin'),

 PARTITION ny VALUES IN ('new york')

);

4.	 Create partitions for the secondary index based on city:

ALTER INDEX users_first_name_last_name_index PARTITION BY
LIST (city) (

 PARTITION sfo VALUES IN ('san francisco'),

 PARTITION aus VALUES IN ('austin'),

 PARTITION ny VALUES IN ('new york')

);

Geo-partitioning in CockroachDB 77

5.	 For the table and its secondary index, create a replication zone, which will pin the
leaseholder of a given partition to its relevant region:

ALTER PARTITION sfo OF INDEX users@*

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-west":1}',

 lease_preferences = '[[+region=us-west]]';

ALTER PARTITION aus OF INDEX users@*

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-central":1}',

 lease_preferences = '[[+region=us-central]]';

ALTER PARTITION ny OF INDEX users@*

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-east":1}',

 lease_preferences = '[[+region=us-east]]';

6.	 Now, let's execute SHOW CREATE TABLE to see how the partitions are created for
the table and the secondary index:

SHOW CREATE TABLE users;

The sample output is as follows:
SHOW CREATE TABLE users;

 table_name
| create_
statement

-------------+---

 users | CREATE TABLE public.users (

 | id UUID NOT NULL DEFAULT gen_random_
uuid(),

78 Geo-Partitioning

 | first_name STRING NOT NULL,

 | last_name STRING NOT NULL,

 | city STRING NOT NULL,

 | CONSTRAINT "primary" PRIMARY KEY (city
ASC, id ASC),

 | INDEX users_first_name_last_name_index
(city ASC, first_name ASC, last_name ASC) PARTITION BY
LIST (city) (

 | PARTITION sfo VALUES IN (('san
francisco')),

 | PARTITION aus VALUES IN
(('austin')),

 | PARTITION ny VALUES IN (('new
york'))

 |),

 | FAMILY "primary" (id, first_name,
last_name, city)

 |) PARTITION BY LIST (city) (

 | PARTITION sfo VALUES IN (('san
francisco')),

 | PARTITION aus VALUES IN (('austin')),

 | PARTITION ny VALUES IN (('new york'))

 |);

 | ALTER TABLE defaultdb.public.users
CONFIGURE ZONE USING

 | num_replicas = 3;

 | ALTER PARTITION sfo OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-west: 1}',

 | lease_preferences = '[[+region=us-
west]]';

 | ALTER PARTITION sfo OF INDEX defaultdb.
public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-west: 1}',

 | lease_preferences = '[[+region=us-
west]]';

Geo-partitioning in CockroachDB 79

 | ALTER PARTITION aus OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-central:
1}',

 | lease_preferences = '[[+region=us-
central]]';

 | ALTER PARTITION aus OF INDEX defaultdb.
public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-central:
1}',

 | lease_preferences = '[[+region=us-
central]]';

 | ALTER PARTITION ny OF INDEX defaultdb.
public.users@primary CONFIGURE ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-east: 1}',

 | lease_preferences = '[[+region=us-
east]]';

 | ALTER PARTITION ny OF INDEX defaultdb.
public.users@users_first_name_last_name_index CONFIGURE
ZONE USING

 | num_replicas = 3,

 | constraints = '{+region=us-east: 1}',

 | lease_preferences = '[[+region=us-
east]]'

(1 row)

Time: 37ms total (execution 37ms / network 0ms)

Here, you can see that the lease preference is restricted to relevant regions, which will
ensure that the leaseholders are always pinned to a specific region.

Next, we will go through the duplicate indexes topology.

80 Geo-Partitioning

Duplicate indexes
The duplicate indexes topology is useful in cases where you write once and read it from
various locations. For example, let's say you are managing the credit cards of folks who
travel throughout the US very often. If you pin the data to a single region, whenever the
user moves out of that region, it will slow down the reads. So, duplicate indexes come in
handy to solve this issue.

Just like the previous two cases, you will have a compound primary key with a
combination of an ID and geolocation. Here, you can create a partition based on that
column, but you only pin the leaseholder to a specific region.

In our example, it can be the primary address of the user. Here, the credit card
information can be replicated in different regions to cover the entire US. Since only the
leaseholder is responsible for writes and reads, your reads will always be routed to the
pinned region of the leaseholder. This again introduces latency.

Now, you can create secondary indexes for the credit card. For example, assuming that
your leaseholder is pinned to the west coast, you can create secondary indexes, such as
id_creditcard_east and id_creditcard_central, which can be constrained
to the US-East and US-Central regions respectively. This will also guarantee that there are
local leaseholders for secondary indexes in all the regions, which drastically reduces the
read latency, as they were served locally always.

Since we already have multiple copies of the original data and we are creating secondary
indexes that are also replicated, now there are a lot of copies of the same data in multiple
regions. So, this increases the write latencies, as all these copies have to be updated and a
multi-region consensus has to be reached:

1.	 Let's say you are maintaining local attractions of the USA, which can be accessed by
users throughout the USA:

CREATE TABLE local_attractions (

 id UUID NOT NULL DEFAULT gen_random_uuid(),

 name STRING NOT NULL,

 address STRING NOT NULL,

 city STRING NOT NULL,

 PRIMARY KEY (id ASC)

);

Geo-partitioning in CockroachDB 81

2.	 Create a replication zone and pin the leaseholder to a specific region:

ALTER TABLE local_attractions

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-central":1}',

 lease_preferences = '[[+region=us-central]]';

3.	 Create secondary indexes for the other two regions. Here, storing a column
improves the performance of queries that retrieve its values, but you cannot use
these stored columns in the filtering logic:

CREATE INDEX idx_west ON local_attractions (city)

 STORING (name);

CREATE INDEX idx_east ON local_attractions (city)

 STORING (name);

4.	 For these secondary indexes, define the replication zone, once again pinning the
leaseholder to the relevant region:

ALTER INDEX local_attractions@idx_west

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-west":1}',

 lease_preferences = '[[+region=us-west]]';

ALTER INDEX local_attractions@idx_east

 CONFIGURE ZONE USING

 num_replicas = 3,

 constraints = '{"+region=us-east":1}',

 lease_preferences = '[[+region=us-east]]';

5.	 Now, let's execute SHOW CREATE TABLE to see how the partitions are created for
the secondary indexes:

SHOW CREATE TABLE local_attractions;

82 Geo-Partitioning

The sample output is as follows:
SHOW CREATE TABLE local_attractions;

 table_name | create_statement

--------------------+------------------------------------

 local_attractions | CREATE TABLE public.local_
attractions (

 | id UUID NOT NULL DEFAULT gen_
random_uuid(),

 | name STRING NOT NULL,

 | address STRING NOT NULL,

 | city STRING NOT NULL,

 | CONSTRAINT "primary" PRIMARY
KEY (id ASC),

 | INDEX idx_west (city ASC)
STORING (name),

 | INDEX idx_east (city ASC)
STORING (name),

 | FAMILY "primary" (id, name,
address, city)

 |)

(1 row)

Time: 28ms total (execution 28ms / network 0ms)

Here, you can see that there are multiple identical indexes for multiple regions. So,
whenever there are queries involving city and name, they can be served locally, hence
reducing the latency of reads. Since we are maintaining identical indexes in multiple
regions, the writes are much slower. This topology is useful where the data doesn't change
much but is accessed frequently in all the regions.

Next, we will go through the follower reads topology.

Geo-partitioning in CockroachDB 83

Follower reads
If you want low-read latency but don't care about slightly older data, you can use this
topology. In this case, you add the AS OF SYSTEM TIME clause in your reads, which
then avoids the round trip to the leaseholder, and data is served locally. Writes would
still need a multi-region consensus. You should not use this topology if you need strong
consistency. Please refer to the CAP theorem section in Chapter 1, CockroachDB – A Brief
Introduction, if you want to understand what consistency here means.

Let's create a sample table to understand how this works:

CREATE TABLE local_attractions (

 id UUID NOT NULL DEFAULT gen_random_uuid(),

 name STRING NOT NULL,

 address STRING NOT NULL,

 city STRING NOT NULL,

 PRIMARY KEY (id ASC)

);

Here, in the SELECT query, you should use AS OF SYSTEM TIME follower_
read_timestamp(). The follower_read_timestamp() function returns
the TIMESTAMP data type with statement_timestamp() – the 4.8s value:

SELECT city FROM local_attractions

 AS OF SYSTEM TIME follower_read_timestamp()

 WHERE city = 'san francisco';

Since the data is always retrieved locally, without involving the leaseholder, you might get
stale or older data. Once again, do not use this topology if you need strong consistency.

Next, we will look at the follow-the-workload topology.

Follow-the-workload
This is the default topology if you don't use any of the previous ones. This topology works
well if a given table is active in a single region, which means clients are doing reads and
writes that are in the same region. Here, the read latency will be low in the active region
and it will be higher in non-active regions, as the leaseholder will be in the active region.
Writes still need a multi-region consensus and can be slower.

84 Geo-Partitioning

The following is a table that should help you to decide which topology might be relevant
for your database workload:

Figure 4.6 – Topology cheat sheet

In this section, we learned about various geo-partitioning topologies and how to configure
them in CockroachDB. Based on latency, data consistency, and resiliency requirements,
we should select the appropriate topology.

Summary
In this chapter, we learned what geo-partitioning is and why it is useful to geo-partition
your data. Then, we covered all the important jargon in the cloud world, especially how
each major cloud provider has defined regions and availability zones. We later discussed
how to configure various multi-region topologies based on your application requirements.

In the next chapter, we will go over fault tolerance and auto-recovery with CockroachDB.

5
Fault Tolerance and

Auto-Rebalancing
In Chapter 4, Geo-Partitioning, we learned about what geo-partitioning is, why we need
it, and how it's supported in CockroachDB.

In this chapter, we will discuss what fault tolerance and auto-rebalancing are and
how CockroachDB provides these features. We will also learn about multi-node failure
scenarios and how to recover from them.

Fault tolerance refers to how CockroachDB copes with various types of failures.
Auto-rebalancing in general is the ability to adapt and increase or decrease the number
of nodes in a cluster to avoid hotspots. We will discuss auto-rebalancing with specific
examples that you can also try.

The following topics will be covered in this chapter:

•	 Achieving fault tolerance

•	 Automatic rebalancing

•	 Recovering from multi-node failures

86 Fault Tolerance and Auto-Rebalancing

Technical requirements
We are going to discuss fault tolerance using an experiment in this chapter that will
require you to have CockroachDB installed. If you still haven't done so, please refer to the
Technical requirements section in Chapter 2, How Does CockroachDB Work Internally?.

Achieving fault tolerance
Fault tolerance is the ability to continue to operate even in the case of a system, network,
or storage failure. This feature is critical to avoid data loss and for the continuity of
your business. Whenever a node goes down or becomes incommunicado, the cluster
automatically rebalances the number of replicas among remaining active nodes and
continues to serve read and write traffic.

It is important to understand how many node failures you want to withstand, as based on
that, you must decide how many nodes should be in your cluster. For example, in a cluster
of three nodes, the cluster can withstand one node failure when the replication factor is
three. In a cluster of seven nodes, the cluster can withstand two node failures when the
replication factor is five.

Next, we will learn about having fault tolerance at the storage layer. After that, we will go
over an example to understand fault tolerance using a six-node CockroachDB cluster.
Finally, we will observe how CockroachDB rebalances data whenever a new node is added
to the cluster.

Achieving fault tolerance at the storage layer
Although CockroachDB can help with fault tolerance and recovery at the database level,
it is also very important to have the same at the storage layer as well.

Disk corruption, the spread of corruption to replicas, and data loss are some of the issues
you might see at the storage layer. Fortunately, many cloud providers already provide
storage options to avoid this.

For example, Amazon Elastic Block Store (EBS) provides persistent block storage
volumes that can be used with Amazon Elastic Compute Cloud (EC2) instances. EBS
volumes are automatically replicated within an availability zone, which provides high
durability and availability.

Achieving fault tolerance 87

Similarly, you can use persistent disks on Google Cloud Platform (GCP). Data on
each persistent disk is distributed onto several physical disks. Compute Engine is
responsible for managing these physical disks. Compute Engine is also responsible for
data distribution, data redundancy, and increased performance. Make sure you pick the
right option for storage, one that provides high availability and durability with optimal
performance.

Now, let's look at an example offered by Cockroach Labs in order to understand how
CockroachDB continues to operate in case of failures.

Working example of fault tolerance at play
All the commands used in this chapter will also be shared in the following GitHub
repository: https://github.com/PacktPublishing/Getting-Started-
with-CockroachDB:

1.	 Setting up a six-node cluster: The following is the command for starting the
first node:

Start node 1

$ cockroach start \

--insecure \

--store=fault-node1 \

--listen-addr=localhost:26257 \

--http-addr=localhost:8080 \

--join=localhost:26257,localhost:26258,localhost:26259 \

--background

Start another five nodes in the same cluster with unique listening addresses
and ports.

For example, you can use the following combinations of listening addresses and
HTTP ports for the rest of the nodes: 26258/8081, 26259/8082, 26260/8083,
26261/8084, 26262/8085. Please refer to https://github.com/
PacktPublishing/Getting-Started-with-CockroachDB if you want
complete commands to start the rest of the five nodes.

https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB

88 Fault Tolerance and Auto-Rebalancing

2.	 Initializing the cluster: You can initialize the cluster with the following command:

$ cockroach init \

--insecure \

--host=localhost:26257

Output

Cluster successfully initialized

3.	 Setting up the load balancer: The load balancer helps with spreading the requests
between all the nodes. Cockroach Labs recommend using HAProxy as the load
balancer. The following are the instructions for installing HAProxy on the different
operating systems:

Mac

$ brew install haproxy

Ubuntu

$ sudo apt-get update

$ sudo apt-get install haproxy

Linux

$ yum install haproxy

The following command generates an haproxy.cfg file that you can use to
provide load balancing for your CockroachDB cluster:

$cockroach gen haproxy \

--insecure \

--host=localhost \

--port=26257

You can view the contents of the generated file using the following command:
$ cat haproxy.cfg

In haproxy.cfg, change bind :26257 to bind :26000. This port is used by
HAProxy to accept requests and it should not coincide with any of the previously
used ports.

Achieving fault tolerance 89

Before you change the port to 26000, please make sure that no other process is
already using it with the help of the following command:

$ lsof -i -P -n | grep 26000

The preceding command will return empty output if there are no other processes
using port 26000. If 26000 is already occupied, pick some other port for
HAProxy:

$ sed -i.saved 's/^ bind :26257/ bind :26000/'
haproxy.cfg

4.	 Next, start HAProxy by providing the haproxy.cfg file in the input as follows:

$ haproxy -f haproxy.cfg &

Now you can check port 26000 to make sure it's used by HAProxy:
$ lsof -i -P -n | grep 26000

haproxy 26517 kishen 5u IPv4 0x4067c1a3fa14b465
0t0 TCP *:26000 (LISTEN)

5.	 Running a sample workload: You can use the cockroach workload command
to run CockroachDB's built-in version of the Yahoo! Cloud Servicing Benchmark
(YCSB), which simulates multiple client connections that perform a combination of
read and write operations.

6.	 Load the ycsb schema and data through HAProxy as follows:

$ cockroach workload init ycsb --splits=50 \

'postgresql://root@localhost:26000?sslmode=disable'

Output

I210516 10:00:04.066268 1 workload/workloadsql/dataload.
go:140 imported usertable (5s, 10000 rows)

I210516 10:00:04.084302 1 workload/workloadsql/
workloadsql.go:113 starting 50 splits

This workload creates a new ycsb database and a usertable table in that
database and inserts data into the table. The --splits flag tells the workload to
manually split ranges at least 50 times.

90 Fault Tolerance and Auto-Rebalancing

Now, let's run the ycsb workload as follows:
$ cockroach workload run ycsb \

--duration=30m \

--concurrency=5 \

--max-rate=500 \

--tolerate-errors \

'postgresql://root@localhost:26000?sslmode=disable'

The preceding command initiates 5 concurrent client workloads for 30 minutes but
limits the total load to 500 operations per second.

Per-operation statistics are printed to standard output every second.

After the specified duration, the workload will stop, and you will see the summary
printed in the standard output, as shown here:

_elapsed___errors_____ops(total)___ops/sec(cum)__
avg(ms)__p50(ms)__p95(ms)__p99(ms)_pMax(ms)__total

 1200.0s 0 567529 472.9 1.5
1.0 2.9 5.5 436.2 read

_elapsed___errors_____ops(total)___ops/sec(cum)__
avg(ms)__p50(ms)__p95(ms)__p99(ms)_pMax(ms)__total

 1200.0s 0 29755 24.8 81.0
75.5 151.0 192.9 486.5 update

_elapsed___errors_____ops(total)___ops/sec(cum)__
avg(ms)__p50(ms)__p95(ms)__p99(ms)_pMax(ms)__result

 1200.0s 0 597284 497.7 5.4
1.0 41.9 109.1 486.5

Open the CockroachDB web UI at http://localhost:8080. This web UI can
also be opened at ports 8081, 8082, 8083, 8084, and 8085.

To check the SQL queries being executed, click on Metrics on the left, and hover
over the SQL Queries graph at the top, as shown in the following screenshot:

Achieving fault tolerance 91

Figure 5.1 – Overview Dashboard showing query statistics
In the CockroachDB web UI, to check the client connections from the load
generator, select SQL Dashboard and hover the cursor over the SQL Connections
graph, as shown in the following screenshot:

Figure 5.2 – SQL Dashboard showing SQL Connections metrics

92 Fault Tolerance and Auto-Rebalancing

You will notice three client connections from the load generator.

To see more details about the ycsb database and the usertable table, click
Databases in the top left and then check ycsb:

Figure 5.3 – Databases dashboard showing tables

Achieving fault tolerance 93

You can also view the schema of usertable by clicking the table name as follows:

Figure 5.4 – Viewing the table schemas

94 Fault Tolerance and Auto-Rebalancing

By default, CockroachDB replicates all data three times and balances it across all
nodes. To see this balance, go to Overview and check the replica count across all
nodes as follows:

Figure 5.5 – Overview dashboard showing Node Status and Replication Status
Next, we will look at simulating a single-node failure.

7.	 Simulating a single-node failure: By default, a node is considered dead when it
doesn't respond for at least 5 minutes. After that, CockroachDB starts replicating
any replicas that were on the dead node to other active nodes. In this setup, since
we no longer want to wait for 5 minutes, we can change the time to 75 seconds, as
shown in the following command:

$ cockroach sql \

--insecure \

--host=localhost:26000 \

--execute="SET CLUSTER SETTING server.time_until_store_
dead = '1m15s';"

Output

SET CLUSTER SETTING

Time: 278ms

Achieving fault tolerance 95

To permanently bring a node down, we can use the quit command:
$ cockroach quit \

--insecure \

--host=localhost:26261

Output

Command "quit" is deprecated, see 'cockroach node drain'
instead to drain a

server without terminating the server process (which can
in turn be done using

an orchestration layer or a process manager, or by
sending a termination signal

directly).

node is draining... remaining: 38

node is draining... remaining: 0 (complete)

ok

8.	 Keep checking the cluster health: Go back to the CockroachDB console, click
on Metrics, and check that the cluster continues to service data, despite one of
the nodes being unavailable. Also, keep an eye on Unavailable ranges 0 on the
right-hand side panel, which should be zero throughout this setup.

Figure 5.6 – Metrics dashboard

96 Fault Tolerance and Auto-Rebalancing

The current setup shows that when all the ranges are replicated three times, a
three-node cluster can withstand a single-node failure without affecting overall
availability.

9.	 Watch the cluster self-heal: Here you can see that data has been replicated from
the unhealthy node to all the healthy nodes. So, now there are 0 under-replicated
ranges and 0 unavailable ranges. This means the cluster is now ready to accept
requests for any range, although one of the nodes is dead, as can be seen in the
following screenshot:

Figure 5.7 – Overview dashboard showing five live nodes and one dead node

As discussed in step 7, once a given node is considered dead, replicas from the dead node
are moved to other active nodes. So, you should see an increase in the replication count
for the active nodes. A CockroachDB cluster heals itself by re-replicating the replicas from
the dead node to active nodes.

In the next section, we will learn about how CockroachDB automatically rebalances the
replicas when we add more nodes.

Automatic rebalancing
Automatic rebalancing is the process of rebalancing the replicas from currently active
nodes to newly added ones.

Automatic rebalancing 97

Now, let's take the cluster from the previous section, which had five active nodes and
one dead node. In this section, we are going to observe how data is rebalanced once we
add a new node to a cluster. The following screenshot shows the node replication status:

Figure 5.8 – Overview dashboard showing Node Status and Replication Status

In this cluster of five active nodes, let's add two more nodes as follows:

$ cockroach start \

--insecure \

--store=fault-node5 \

--listen-addr=localhost:26261 \

--http-addr=localhost:8084 \

--join=localhost:26257,localhost:26258,localhost:26259 \

--background

cockroach start \

--insecure \

--store=fault-node7 \

--listen-addr=localhost:26263 \

--http-addr=localhost:8086 \

--join=localhost:26257,localhost:26258,localhost:26259 \

--background

98 Fault Tolerance and Auto-Rebalancing

After some time, you should see that now there are 7 active nodes. The replication count
should also come down for all the previous nodes, since the replicas are rebalanced
between all the nodes in the cluster. The following figure shows the CockroachDB cluster
with 7 active nodes:

Figure 5.9 – Overview dashboard showing seven live nodes

In the next section, we will learn about multi-node failures.

Recovering from multi-node failures
If you want your cluster to withstand multi-node failures while continuously serving
all the ranges, then you should ensure that you have enough active nodes available for
all the replicas.

For example, in the previous section, we created a seven-node cluster and the replication
count was three. If two nodes go down simultaneously, then some ranges will become
unavailable, as there will not be a majority consensus if a given range is replicated in
the two nodes that went down. So, if you want this seven-node cluster to withstand two
node failures, you must increase the replication factor to five, so that there will still be
a majority of 3/5 for some ranges that had replicas in the two nodes that went down. In
general, a cluster can continue to serve all the ranges when (replication factor – 1) / 2
nodes go down.

Summary 99

You can use the following command to change the replication factor to 5:

$ cockroach sql --execute="ALTER RANGE default CONFIGURE ZONE
USING num_replicas=5;" --insecure --host=localhost:26000

After the replication factor of five is consumed by the cluster and five replicas are created
for each range, you can use cockroach quit to bring down any two nodes. After a few
minutes, you can check that all the ranges are still available.

When you are trying the various configurations provided in this chapter, if things don't go
as discussed, please refer to Chapter 10, Troubleshooting Issues, in order to understand the
failure and how to fix it.

Note
Please refer to the cleanup.sh script at https://github.com/
PacktPublishing/Getting-Started-with-CockroachDB in
order to clean up your cluster. You can also use SIGKILL to kill the processes
of CockroachDB instances and HAProxy, and later you can manually delete the
data folders.

Summary
In this chapter, we learned about fault tolerance, auto rebalancing, and how to recover
from multi-node failures. We also went through a few configurations to understand how
CockroachDB provides these features. Basically, fault tolerance gives us enough time for
the Site Reliability Engineering (SRE) and DevOps teams to deal with node failures
without any service disruption.

In the next chapter, we will learn about indexes and how they are implemented in
CockroachDB.

https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB

6
How Indexes Work

in CockroachDB
In Chapter 5, Fault Tolerance and Auto-Rebalancing, we learned about fault-tolerance and
auto-recovery strategies in CockroachDB. In this chapter, we will learn everything about
indexes, what they are, and how they improve query times.

Although indexes help improve the read performance, a wrong index can slow down
the queries, including the writes, and take up more storage space. So, it is important to
identify the query pattern and create appropriate indexes.

The following topics will be covered in this chapter:

•	 Introduction to indexes

•	 Different types of indexes

•	 Best practices while using indexes

Technical requirements
We will try creating various types of indexes in this chapter which would require you
to have CockroachDB installed. If you still haven't done so, please refer to the Technical
requirements section in Chapter 2, How Does CockroachDB Work Internally?.

102 How Indexes Work in CockroachDB

Introduction to indexes
An index or a database index helps with returning the query results quickly, by avoiding
full table scans. An index can be created for a specific table and can include one or more
keys. Keys refer to the columns in the table. However, there will be extra space used to
keep a separate sorted copy of indexed columns.

Let's take a simple example and see how an index works.

Consider a population table with the following columns and some sample values:

Figure 6.1 – Population table

Now, let's say you just want to retrieve the list of populations for specific continents, for
example:

SELECT population_in_millions, country FROM population WHERE
continent = "Asia";

Here, in order to find rows 1 and 4, which are countries in Asia, you would have to iterate
through each of the rows in the table, which is called a full table scan.

Now, if you want to avoid a full table scan, you can create an index on the continent as
follows:

CREATE INDEX ON population (continent);

Internally, CockroachDB keeps track of all the continents and keeps a mapping from a
given continent to all its relevant rows, as shown here:

Africa -> (3)

Asia -> (1, 4)

Europe -> (5)

North America -> (2)

Different types of indexes 103

Now, if you run the same query, SELECT population_in_millions, country
FROM population WHERE continent = "Asia", once again, CockroachDB will
identify that the filtering condition has the column continent and there is an index
already available for that. So, in this case, based on the value Asia, it will directly retrieve
rows (1 , 4) from the continent index and get relevant column values and return them.
In this case, it has avoided a full table scan. Although this example only has five rows, the
same concept is applicable even when a table contains millions of rows. So, in such cases,
avoiding a full table scan can significantly improve the query performance. At the same
time, writes tend to get a little slower as, with each write, even the index must be updated.

When you create an index on a column or a set of columns, CockroachDB internally
makes a copy of the values of that column or columns and sorts them. So, whenever you
execute a query that involves filters on indexed columns, a subset of rows is selected from
the index first, rather than scanning the entire table. This improves the overall query
performance.

Next, we are going to discuss various types of indexes that are available in CockroachDB.

Different types of indexes
Based on the query pattern and columns in the table, you should decide what kind of
index is going to help with the performance.

The following are the types of indexes available in CockroachDB:

•	 Primary index

•	 Secondary index

•	 Hash-sharded index

•	 Duplicate indexes

•	 Inverted indexes

•	 Partial indexes

•	 Spatial indexes

•	 Table joins and indexes

•	 Best practices while using indexes

In the next set of subsections, we are going to discuss each type of index and when to use
them, starting with the primary index.

104 How Indexes Work in CockroachDB

Primary indexes
A primary key uniquely identifies a given row in a table. This means that the primary key
is unique for a given row and duplicate values or NULLs are not allowed. An index created
for a primary key is called a primary index.

Whenever you create a table in CockroachDB, it's recommended to have an explicit
primary key, so that CockroachDB automatically creates an index for it, which can be
used to filter the rows for better performance. Even if you don't create a primary key
during table creation, CockroachDB by default creates a primary key called rowid, which
will have a unique value for each row, but its performance will not be as good as that of
the primary key.

Let's understand how indexes work with an example, where we are going to create
a database and a table with a primary key:

1.	 Create a database called test:

root@localhost:26257/defaultdb> CREATE DATABASE IF NOT
EXISTS test;

CREATE DATABASE

Time: 279ms total (execution 279ms / network 0ms)

Switch to the database 'test'.

root@localhost:26257/defaultdb> use test;

SET

Time: 116ms total (execution 115ms / network 0ms)

2.	 Create a table called accounts with id being the primary key:

root@localhost:26257/test> CREATE TABLE accounts (

 id UUID PRIMARY KEY,

 name string,

 balance INT8

);

CREATE TABLE

Time: 195ms total (execution 195ms / network 0ms)

Different types of indexes 105

3.	 Now, we will look at the indexes created for the accounts table using the SHOW
INDEXES command:

SHOW INDEXES FROM accounts;

 table_name | index_name | non_unique | seq_in_index |
column_name | direction | storing | implicit

-------------+------------+------------+--------------+--
-----------+-----------+---------+-----------

 accounts | primary | false |
 1 | id |
ASC | false | false

(1 row)

Time: 7ms total (execution 7ms / network 0ms)

In the next section, we will learn about hash-sharded indexes that are used in relation
to sequences.

1.	 In order to understand how this primary key index helps with query performance,
we can use EXPLAIN to look at the statement plans.

2.	 If you are retrieving all the accounts without any filters, obviously a full scan is
required as we must return all the rows:

root@localhost:26257/test> explain select * from
accounts;

 tree | field | description

------------+-----------------------+-----------------

 | distribution | full

 | vectorized | false

 scan | |

 | estimated row count | 1

 | table | accounts@primary

 | spans | FULL SCAN

(6 rows)

3.	 Now if you want to retrieve just one row based on the ID, you can avoid a full table
scan, since CockroachDB has already indexed the id column.

106 How Indexes Work in CockroachDB

4.	 As you can see in the following explain statement, within the spans, now we no
longer do a full table scan:

root@localhost:26257/test> explain select * FROM accounts
where id = '123e4567-e89b-12d3-a456-426655440000';

 tree | field | description

----------+-----------------------+-------------------

 | distribution | local

 | vectorized | false

 scan | |

 | estimated row count | 1

 | table | accounts@primary

 | spans | [/'123e4567-
e89b-12d3-a456-426655440000' - /'123e4567-e89b-
12d3-a456-426655440000']

(6 rows)

If multiple columns are used in queries, you should also consider creating a composite
primary key that includes all the columns that are often used together.

In the next section, we will learn about secondary indexes.

Secondary indexes
A secondary index is an index that you create on non-primary columns. If your query
involves retrieving a column that's not a primary key and you want to improve the
query performance, you can create secondary indexes. Any index that you create on
a non-primary key is called a secondary index, and duplicate values are allowed for
secondary indexes. For the test.accounts table, if the query contains a non-primary
column such as name, then we would still need a full table scan. Let's try this with an
example, where we will just use a non-primary column in the query:

root@localhost:26257/test> explain select name FROM accounts
where name = 'crdb' ;

 tree | field | description

--------------+-----------------------+-------------------

 | distribution | full

 | vectorized | false

 filter | |

 │ | filter | name = 'crdb'

Different types of indexes 107

 └── scan | |

 | estimated row count | 1

 | table | accounts@primary

 | spans | FULL SCAN

(8 rows)

Since we are now filtering on a non-primary column, CockroachDB must inspect each
row and apply a filtering condition, and the index on the primary key id doesn't help
here. So, let's create one more index on the column name:

root@localhost:26257/test> CREATE INDEX on accounts (name);

CREATE INDEX

Time: 2.053s total (execution 0.256s / network 1.797s)

Whenever you create a secondary index, CockroachDB automatically creates a composite
index including the primary key. Also, the index on the column name is called a
secondary index:

root@localhost:26257/test> show indexes from accounts;

 table_name | index_name | non_unique |
seq_in_index | column_name | direction | storing | implicit

-------------+-------------------+------------+--------------+-
------------+-----------+---------+-----------

 accounts | primary
| false | 1
| id |
ASC | false | false

 accounts | accounts_name_idx
| true | 1
| name |
ASC | false | false

 accounts | accounts_name_idx
| true | 2
| id |
ASC | false | true

(3 rows)

108 How Indexes Work in CockroachDB

Now if you run the previous query, you should see that the full table scan is avoided
because of the new index that we have created:

root@localhost:26257/test> explain select name from accounts
where name = 'crdb' ;

 tree | field | description

----------+--------------------+--------------------

 | distribution | local

 | vectorized | false

 Scan | |

 | estimated row count| 1

 | table | accounts@accounts_name_idx

 | spans | [/'crdb' - /'crdb']

(6 rows)

Time: 1ms total (execution 1ms / network 0ms)

Hash-sharded indexes
Hash-sharded indexes can improve query performance when you must create an index
on a column that's a sequence. Hash-sharded indexes evenly spread the traffic to a
sequential range across multiple ranges to avoid hotspots for any given range. Since this
is a new experimental feature, the implementation and overall performance might change
over time. Let's begin:

1.	 Within the client session, you have to first enable this feature as shown in the
following code block:

root@localhost:26257/test> set experimental_enable_hash_
sharded_indexes = ON;

SET

Time: 1ms total (execution 0ms / network 0ms)

Different types of indexes 109

2.	 Let's create a table called customers with integer and string data types. Here, the
id column is supposed to be a sequence:

root@localhost:26257/test> create TABLE customers (id
int PRIMARY KEY, name string);

CREATE TABLE

Time: 160ms total (execution 160ms / network 0ms)

3.	 Now, let's create the hash-sharded index for this primary key, as shown in the
following code:

root@localhost:26257/test> ALTER TABLE customers ALTER
PRIMARY KEY USING COLUMNS (id) USING HASH WITH BUCKET_
COUNT = 10;

NOTICE: primary key changes are finalized asynchronously;
further schema changes on this table may be restricted
until the job completes

ALTER TABLE

Time: 4.551s total (execution 0.297s / network 4.253s)

When you create a hash-sharded index, CockroachDB creates n_
buckets computed columns, shards the primary index ID into n_
buckets number of shards, and then stores each index shard in the underlying
key-value store with one of the computed column's hashes as its prefix.

4.	 Let's look at how the indexes on the customers table look now:

root@localhost:26257/test> show indexes from customers;

 table_name | index_name | non_
unique | seq_in_index | column_
name | direction | storing | implicit

-------------+------------------+------------+-----------
---+-----------------------------+-----------+---------+-

 customers | primary |
 false | 1
| crdb_internal_id_shard_5000 |
ASC | false | false

 customers | primary
| false | 2 | id

110 How Indexes Work in CockroachDB

 | ASC | false | false

 customers | customers_id_key
| false | 1 |
id
 | ASC | false | false

 customers | customers_id_key
| false | 2
| crdb_internal_id_shard_5000 |
ASC | false | true

(4 rows)

Time: 34ms total (execution 26ms / network 8ms)

You can create a hash-sharded secondary index as well.

Duplicate indexes
Duplicate indexes improve the read performance. Please refer to Chapter 4,
Geo-Partitioning, where we discussed duplicate indexes and how they work internally.

Next, we will learn about inverted indexes.

Inverted indexes
Inverted indexes store the mapping of values within JSONB, arrays, and spatial data to
the row that holds that value. For example, if you have a column where you are storing a
JSON document, and let's say that JSON document contains a key called country, then
you can add a WHERE clause in your query, where you can say get me all the rows that
have country:USA and country:Canada.

Inverted indexes filter on components of tokenizable data. The JSONB data type is built on
two structures that can be tokenized:

•	 Objects – Collections of key and value pairs where each key-value pair is a token

•	 Arrays – Lists of values where every value in the array is a token

Different types of indexes 111

Let's look at the following JSON document:

 "student": [

 {

 "id":"01",

 "firstname": "Steve",

 "lastname": "Jobs"

 },

 {

 "id":"02",

 "firstname": "Steve",

 "lastname": "Wozniak"

 }

]

Now, the inverted index for the preceding JSON will have an entry for each component,
which maps to the original document as follows:

"student" : "id" : "01"

"student" : "firstname" : "Steve"

"student" : "lastname" : "Jobs"

"student" : "id" : "02"

"student" : "lastname": "Wozniak"

Now you can search the JSON document based on student ID, student first name, student
last name, and so on.

Partial indexes
A partial index is typically created based on a Boolean expression. CockroachDB
internally indexes the columns and rows that evaluate to true for a given expression.

Let's understand partial indexes with an example:

1.	 First, we will create the table books with a few columns:

root@localhost:26257/test> create table books (id int,
title string, author string, price float);

CREATE TABLE

Time: 270ms total (execution 269ms / network 1ms)

112 How Indexes Work in CockroachDB

2.	 Let's create the partial index based on the price of the book. Here, we are creating an
index for all the books that are priced more than $50:

root@localhost:26257/test> CREATE INDEX ON books (id,
title, author) WHERE price > 50.00;

CREATE INDEX

Time: 2.596s total (execution 0.314s / network 2.282s)

3.	 Now, whenever you use a filtering condition that matches with the one in the partial
index, a partial index will be used to retrieve a subset of rows:

root@localhost:26257/test> explain select id, name,
author from books where price > 50.0;

 tree | field
 |
 description

-------+---------------------+---------------------------

 | distribution | full

 | vectorized |
false

 scan |
 |

 | estimated row count | 1

 | table
 | books@books_id_name_author_idx (partial
index)

 | spans
 | FULL SCAN

(6 rows)

Time: 2ms total (execution 1ms / network 1ms)

Different types of indexes 113

Partial indexes improve the query performance in the following ways:

•	 They contain fewer rows than full indexes. During read queries, only rows in the
partial index are scanned, if there is a match in the filtering condition. Since partial
indexes contain fewer rows compared to regular indexes, we will be scanning fewer
rows, so it performs better than a regular index.

•	 Write queries on tables with a partial index only perform an index write when the
rows inserted satisfy the partial index predicate, unlike regular indexes, which are
updated during every write.

In the next section, we will learn about spatial indexes.

Spatial indexes
Spatial indexes were introduced in the v20.2.16 version, are used to store information
about spatial objects, and mostly work with two-dimensional data types such as
GEOMETRY and GEOGRAPHY. A spatial object holds information about a geographical
location in the form of an object. Here, an object can be a point, a line, a polygon, or an
area.

A spatial index is a special type of inverted index. A spatial index maps from a cell in a
quadtree to one or more shapes whose coverings include that cell. Each cell can be part of
multiple shapes, where a given cell represents a location.

Spatial indexes are useful in the following situations:

•	 We are filtering based on spatial predicate functions, for example, ST_COVERS(*),
ST_CONTAINS, ST_Equals, ST_Overlaps, and so on.

•	 Joins that involve columns that store spatial objects.

CockroachDB uses the S2 geometry library (https://s2geometry.io/) to divide the
space being indexed and stores the information in a quadtree data structure.

https://s2geometry.io/

114 How Indexes Work in CockroachDB

A quadtree is a tree data structure in which each internal node has exactly four children.
Each cell in a quadtree has information about four child cells in the next level. In the
following diagram, you can see an example of how an image can be represented using
a quadtree data structure:

Figure 6.2 - Image representation using a Quadtree data structure

Following are some examples of creating spatial indexes.

First, let's create a table with GEOGRAPHY and GEOMETRY columns:

root@localhost:26258/test> CREATE TABLE geo_table (

 id UUID PRIMARY KEY,

 geog GEOGRAPHY(GEOMETRY,4326) NULL,

 geom GEOMETRY(GEOMETRY,3857) NULL

);

CREATE TABLE

Time: 151ms total (execution 149ms / network 2ms)

Following is an example of creating a spatial index on a GEOMETRY object with
default settings:

root@localhost:26258/test> CREATE INDEX geom_idx_1 ON geo_table
USING GIST(geom);

CREATE INDEX

Time: 1.647s total (execution 0.137s / network 1.511s)

Different types of indexes 115

Following is an example of creating a spatial index on a GEOGRAPHY object with default
settings:

root@localhost:26258/test> CREATE INDEX geog_idx_1 ON geo_table
USING GIST(geog);

CREATE INDEX

Time: 1.709s total (execution 0.144s / network 1.564s)

Fine-tuning spatial indexes is beyond the scope of this book and will be covered in
subsequent editions.

Next, we will learn how to improve the performance of queries that involve table joins.

Table joins and indexes
Indexes are useful even when you are joining tables. You can inspect the fields that are
used in filtering conditions and create appropriate indexes to avoid a full scan of other
indexes.

For example, let's look at two tables: customers and purchase_orders.

The customers table stores the information about the customers as follows:

root@localhost:26258/test> CREATE TABLE customers (

 id UUID PRIMARY KEY,

 name STRING,

 email STRING,

 phone STRING

);

CREATE TABLE

Time: 209ms total (execution 209ms / network 0ms)

The purchase_orders table stores information about the purchase orders made
by the customers. Here, the customer_id column references the id column of the
customers table:

root@localhost:26258/test> CREATE TABLE purchase_orders (

 id UUID PRIMARY KEY,

 customer_id UUID NOT NULL REFERENCES customers (id

116 How Indexes Work in CockroachDB

),

 n_of_items INT,

 total_price DECIMAL(10,2)

);

CREATE TABLE

Time: 843ms total (execution 264ms / network 579ms)

Now, let's say you want to know the name of all the customers who have purchased more
than five items. Following is the explain plan for this:

root@localhost:26258/test> explain select n_of_items, name from
purchase_orders INNER JOIN customers ON purchase_orders.
customer_id = customers.id and n_of_items > 5;

 tree | field
 | description

-----------------+---------------------+----------------------

 |
distribution | full

 |
vectorized | false

 hash join |
 |

 │ |
equality | (customer_id) = (id)

 │ | right cols are key |

 ├── filter |
 |

 │ │ |
filter | n_of_items > 5

 │ └── scan
| |

 │ | estimated row count | 1

 │ |
table | purchase_orders@
primary

 │ |
spans | FULL SCAN

Different types of indexes 117

 └── scan |
 |

 | estimated row count |
1

 |
table | customers@primary

 |
spans | FULL SCAN

As you can see, we are making use of primary indexes on both the customers and
purchase_orders tables. But we also have a filtering condition for which we are using
the column n_of_items. We can further improve the query performance by adding one
more index for the n_of_items column:

CREATE INDEX ON purchase_orders (n_of_items) STORING (customer_
id);

Now, let's once again look at the explain plan for the previous query:

root@localhost:26258/test> explain select n_of_items, name from
purchase_orders INNER JOIN customers ON purchase_orders.
customer_id = customers.id and n_of_items > 5;

 tree | field
 | description

------------+---------------------+--------------------

 | distribution |
full

 |
vectorized | false

 hash join
| |

 │ |
equality | (customer_id) = (id)

 │ | right cols are key |

 ├── scan
| |

 │ | estimated row count | 1

 │ |
table | purchase_orders@
purchase_orders_n_of_items_idx

118 How Indexes Work in CockroachDB

 │ |
spans | [/6 -]

 └── scan
| |

 | estimated row count | 1

 |
table | customers@primary

 |
spans | FULL SCAN

As you can see, now we no longer do a full scan of the purchase_orders@primary
index. So, based on the columns used in filtering conditions during table joins, you can
create appropriate indexes.

Next, we will go over some of the best practices to consider related to indexes that can
improve the query performance.

Best practices while using indexes
Whenever you are using indexes, you can follow certain guidelines to make sure you get
the best performance for your queries. Following are some of the key points to remember:

•	 Avoid creating an index on a sequence. Due to the nature of how the columns are
sharded, sometimes we can have range hotspots, where most of the requests are
coming for the same range, which can slow down the query. It would be best to use
UUIDs or randomly generated keys. If you must create an index on a column that
is sequential in nature, you should use hash-sharded indexes, as discussed in the
Hash-sharded indexes section.

•	 If you are using multiple columns in your WHERE clause or in your ORDER BY
clause, you should consider creating an index for all these columns.

•	 In your WHERE clause, make sure to have filters that are more restrictive before
the ones that are a bit more generic. For example, = and IN should come before
LIKE, >, !=, and so on.

•	 You should drop the indexes that are not getting used. This will improve the write
performance, as fewer indexes will have to be updated. Right now, there is no easy
way to know the unused indexes. This requires manually going through the logical
plans and identifying the indexes that are not getting used.

You can use DROP INDEX to drop a specific index.

Best practices while using indexes 119

For example, let's drop an index created previously, in the Partial indexes section:

root@localhost:26258/test> DROP INDEX books@books_id_name_
author_idx;

NOTICE: the data for dropped indexes is reclaimed
asynchronously

HINT: The reclamation delay can be customized in the zone
configuration for the table.

DROP INDEX

Time: 1.659s total (execution 0.178s / network 1.482s)

After this, if you execute SHOW INDEXES, you should not see the books@books_id_
name_author_idx index:

root@localhost:26258/test> SHOW INDEXES FROM books;

 table_name | index_name | non_unique | seq_in_index |
column_name | direction | storing | implicit

-------------+------------+------------+--------------+--------
-----+-----------+---------+-----------

 books | primary | false
 | 1 | rowid |
ASC | false | false

(1 row)

Time: 17ms total (execution 17ms / network 0ms)

We have discussed various types of indexes other than primary and secondary. Make sure
you understand these specialized indexes and use them appropriately. If a given query
is using an index but is still slow, perhaps you should investigate further to see if that
index makes sense for the query or if some other type of index would better improve the
performance.

You can also select a specific index in the query if you think that's going to improve the
performance.

120 How Indexes Work in CockroachDB

Summary
In this chapter, we learned about indexes, several special types of indexes, how they work
internally, and the best practices for maximum query performance. It is important to
understand the columns in your tables and query patterns and pick relevant indexes for
maximum query performance.

In the next chapter, we will learn about high availability and how to deploy CockroachDB
in order to achieve zero downtime and to make it highly available.

Section 3:
Working with
CockroachDB

This section introduces you to the practical aspects of managing CockroachDB as
a database service. Managing schemas, monitoring the CockroachDB cluster using the
UI, securing CockroachDB workloads, troubleshooting issues, conducting performance
benchmarks, and migrating from a traditional database to CockroachDB will all be
covered in this section.

This section comprises the following chapters:

•	 Chapter 7, Schema Creation and Management

•	 Chapter 8, Exploring the Admin User Interface

•	 Chapter 9, An Overview Of Security Aspects

•	 Chapter 10, Troubleshooting Issues

•	 Chapter 11, Performance Benchmarking and Migration

•	 Appendix: Bibliography and Additional Resources

7
Schema Creation

and Management
In Chapter 6, How Indexes Work in CockroachDB, we learned what indexes are, how
they are useful in improving query performance, the various types of indexes that are
supported in CockroachDB, and the best practices while using indexes.

In this chapter, we will go through the syntax for various Structured Query Language
(SQL) operations. Though we have learned some of the syntaxes throughout other
chapters, it's useful to have all of them in a single place. Throughout this chapter,
only commonly used query options are included, and some of the experimental and
enterprise-only features have been left out.

The following topics will be covered in this chapter:

•	 DDL

•	 DML

•	 DQL

•	 Supported data types

•	 Column-level constraints

•	 Table joins

124 Schema Creation and Management

•	 Using sequences

•	 Managing schema changes

Technical requirements
We will need at least a single-node CockroachDB cluster to try some of the queries
discussed in this chapter. So, please refer to the Technical requirements section of Chapter
2, How Does CockroachDB Work Internally?

If you want to try this on a larger CockroachDB cluster, then please refer to the Working
example of fault tolerance at play section of Chapter 5, Fault Tolerance and Auto-
Rebalancing, where we create a six-node cluster.

Also, if you are not sure about some SQL operations and how to use them, you can just
use the CockroachDB Help option to get more information.

For example, if you want to know about all the options available with CREATE TABLE,
you can just try \h CREATE TABLE in the SQL client console, as shown in the following
code snippet:

root@localhost:26258/test> \h CREATE TABLE

You can try \h with any of the commands to get more detailed information.

In the first section, we will learn about DDL statements.

DDL
DDL statements are mainly responsible for creating, altering, and dropping tables,
indexes, and users. DDL statements typically comprise CREATE, ALTER, and DROP
operations. In this section, we will go over various DDL operations and their syntax,
starting with CREATE.

CREATE
CREATE is the keyword used for creating something new such as a database, schema,
table, view, or user.

A CREATE DATABASE statement accepts the following parameters:

•	 IF NOT EXISTS: Creates a new database, only if the database with the same name
does not exist previously

•	 database_name: Name of the database to be created

DDL 125

The following databases are created by default and are used internally by CockroachDB:

•	 postgres: Empty database that is provided for compatibility with Postgres clients

•	 system: A database that contains CockroachDB metadata and that is read-only

The following default database is used for default connections:

•	 defaultdb: Used when a client doesn't specify a database in connection
parameters

The following default databases are used for demonstration purposes:

•	 movr: Sample database with users, vehicles, and rides for vehicle-sharing apps

•	 startrek: A database that contains quotes from Star Trek episodes

Some of these databases are used internally by CockroachDB, and some are there with the
sample schema maintained by Cockroach Labs, so it is advisable not to use any of these
preloaded databases and to instead create separate ones for your application.

Let's look at a specific example of creating a database. You can view the code here:

CREATE DATABASE users PRIMARY REGION "us-central1" REGIONS
"us-east1", "us-central1", "us-west1" SURVIVE REGION FAILURE;

The preceding statement will create a database with the primary region being
"us-central1" and with "us-east1", "us-central1", and "us-west1"
database regions.

Next, we will look at the syntax of the CREATE TABLE statement.

CREATE TABLE syntax
The CREATE TABLE statement accepts the following parameters:

•	 IF NOT EXISTS: Creates a table if a table with the same name doesn't exist
already.

•	 table_name: Name of the table.

•	 column_def: Column definition that includes a column name and a data type.
Please refer to the Column-level constraints section to explore all the constraints you
can provide for a column.

•	 index_def: Comma-separated list of index definitions.

126 Schema Creation and Management

•	 family_def: List of column family definitions. A comma is used as a separator.
A Column family is stored as a single key-value pair.

•	 table_constraint: List of table-level constraints. A comma is used as
a separator.

For complete options, please check out the CREATE TABLE documentation by Cockroach
Labs at the following link: https://www.cockroachlabs.com/docs/stable/
create-table.html.

Here is an example of the CREATE TABLE statement being deployed:

CREATE TABLE users (

id INT NOT NULL,

name STRING NOT NULL,

age INT NOT NULL,

PRIMARY KEY (id)

);

Optionally, you can also create a schema. In the naming hierarchy, a cluster can have
multiple databases, a database can have multiple schemas, and a schema can contain
multiple tables, views, and sequences. A schema can be created using the CREATE
SCHEMA <schema_name> statement.

CREATE VIEW
CREATE VIEW is used for creating views. A view is a virtual table that stores the result
of a query. Whenever there is a change in the data in the original table, it is automatically
updated. Views don't take up additional physical storage space.

A materialized view is similar to a view but it's physically stored separately. When the data
is changed in the original table, materialized views don't get updated automatically. You
can use REFRESH MATERIALIZED VIEW <view_name> to refresh the contents of
a materialized view.

Views are useful for the following reasons:

•	 They're helpful if you don't want to expose all the columns in the original table due
to security concerns.

•	 Views can contain query results of complex queries, which you don't have to
execute explicitly every time.

•	 A single view can have data from multiple tables and databases.

https://www.cockroachlabs.com/docs/stable/create-table.html
https://www.cockroachlabs.com/docs/stable/create-table.html

DDL 127

•	 They provide meaningful aliases for column names.

•	 Materialized views can be used for better performance.

CREATE VIEW accepts the following parameters:

•	 MATERIALIZED: Creates a materialized view.

•	 IF NOT EXISTS: Creates a view if a view with the same name doesn't already
exist.

•	 OR REPLACE: Creates a view if it doesn't already exist and replaces the view if it
already exists. When replacing an existing view, columns in the previous view must
appear in the same order as a prefix. However, additional columns are allowed.

•	 view_name: Name of the view to be created.

•	 column_name_list: Comma-separated list of column names.

•	 AS select_statement: A SELECT query, whose results are stored in the view.

Let's look at example of how views are helpful. Let's first insert some records into the
users table that was created previously, as follows:

INSERT INTO users(id, name, age) values (1, 'foo', 13);

INSERT INTO users(id, name, age) values (2, 'bar', 24);

INSERT INTO users(id, name, age) values (3, 'alice', 14);

INSERT INTO users(id, name, age) values (4, 'bob', 29);

> select * from users;

 id | name | age

-----+-------+------

 1 | foo | 13

 2 | bar | 24

 3 | alice | 14

 4 | bob | 29

(4 rows)

Now, let's say you want to track all users who are in the age group of 12-17.

128 Schema Creation and Management

You can run this query on the users table itself and get the result, as follows:

> SELECT * FROM users where age > 12 AND age < 17;

 id | name | age

-----+-------+------

 1 | foo | 13

 3 | alice | 14

Now, let's say you don't want to run any query directly on the users table. Then, you can
create a view with that condition and query the view, like this:

> CREATE VIEW vaccine_big_kids_group

 AS SELECT id, name, age

 FROM users

 WHERE age > 12 AND age <17;

Let's query the view and check the results, as follows:

> select * from vaccine_big_kids_group;

 id | name | age

-----+-------+------

 1 | foo | 13

 3 | alice | 14

(2 rows)

Let's insert one more record that falls under the same age group of 12-17, as follows:

INSERT INTO users(id, name, age) values (5, 'john', 15);

Since the view directly refers to the original table, it's automatically updated, as shown
here:

> select * from vaccine_big_kids_group;

 id | name | age

-----+-------+------

 1 | foo | 13

 3 | alice | 14

 5 | john | 15

(3 rows)

DDL 129

Instead of a view, if you had created a materialized view, you would have had to explicitly
refresh in order to get the latest data. Here is an example of creating a materialized view
and refreshing it:

> CREATE MATERIALIZED VIEW vaccine_big_kids_group_materialized

 AS SELECT *

 FROM users

 WHERE age > 12 AND age <17;

REFRESH MATERIALIZED VIEW vaccine_big_kids_group_materialized;

CockroachDB also supports session-scoped temporary views, which are automatically
dropped at the end of a session. You can use CREATE VIEW TEMP <view_
definition> to create a temporary view.

ALTER
The ALTER statement is used to modify an existing schema object. You can alter the
definition of several schema objects such as DATABASE, SCHEMA, TABLE, COLUMN,
TYPE, USER, INDEX, VIEW, and so on. We will go over ALTER TABLE and ALTER
INDEX in this subsection.

ALTER TABLE takes the following parameters:

•	 ADD COLUMN: Adds one or more columns

•	 ADD CONSTRAINT: Adds a constraint to a column

•	 ALTER COLUMN: Modifies an existing column

•	 ALTER PRIMARY KEY: Changes the primary key (PK)

•	 DROP COLUMN: Removes a column or multiple columns

•	 DROP CONSTRAINT: Removes column-level constraints

ALTER INDEX takes the following parameters:

•	 CONFIGURATION ZONE: Configures replication zones for the index

•	 RENAME: Renames the index

130 Schema Creation and Management

Here is an example of a column being added:

ALTER TABLE users ADD COLUMN new_column INT;

> SHOW COLUMNS from users;

 column_name | data_type | is_nullable | column_default |
generation_expression | indices | is_hidden

--------------+-----------+-------------+----------------+-----
------------------+-----------+------------

 id | INT8 | false |
NULL | | {primary} | false

 name | STRING | false |
NULL | | {} | false

 age | INT8 | false |
NULL | | {} | false

 new_column | INT8 | true |
NULL | | {} | false

(4 rows)

Here is an example of a constraint being added:

> ALTER TABLE users ADD CONSTRAINT age_check CHECK (age > 0);

INSERT INTO users(id, name, age) values (0, 'cindy', -1);

ERROR: failed to satisfy CHECK constraint (age > 0:::INT8)

SQLSTATE: 23514

CONSTRAINT: age_check

DROP
The DROP statement is used to delete a schema object and all the data within it.

The general syntax for DROP is DROP <SCHEMA TYPE> name.

You can see an example here:

DROP DATABASE <database_name>;

DROP ROLE <role_name>;

DROP TABLE <table_name>;

DML 131

DROP TABLE takes the following parameters:

•	 IF EXISTS: Drops the table if it exists; if not, it doesn't return any error

•	 table_name: Name of the table to drop

•	 CASCADE: Drops all schema objects that depend on the table, such as views
and constraints

•	 RESTRICT: Restricts the table from getting dropped, if any objects depend on it

Now, let's look at DML statements in the next section.

DML
DML statements are used for managing data within schema objects. They consist of
INSERT, UPDATE, UPSERT, and DELETE statements and are generally referred to as
statements that insert, update, or delete the data in a database. We will go over the syntax
of INSERT, UPDATE, UPSERT, and DELETE statements used for a table in this section.

The INSERT statement takes the following parameters:

•	 common_table_expression: Common table expressions (CTEs) provide
a shorthand for a subquery, to improve the readability.

•	 table_name: Name of the table into which the data is inserted.

•	 AS table_alias: Alias for the table name.

•	 column_name: Name of the column that is being populated.

•	 select_statement: A selection query, whose result is used to insert the data.
The column order and column data types of the SELECT query result should match
that of the table into which the data is getting inserted.

Here is an example of INSERT INTO:

INSERT INTO users(id, name, age) values (0, 'cindy', 15);

132 Schema Creation and Management

The UPDATE statement updates the existing rows of a table and takes the following
parameters:

•	 common_table_expression: CTEs provide a shorthand for a subquery,
to improve the readability.

•	 table_name: Name of the table in which the rows are updated.

•	 AS table_alias: Alias for the table name.

•	 column_name: Name of the column that is being updated.

•	 a_expression: A new value you want to update, an aggregate function, or
a scalar expression used to derive the value.

•	 FROM table_reference: Specifies a table to reference, but not update.

•	 select_statement: A selection query, whose result is used to update the data.
The column order and column data types of the SELECT query result should match
that of the table where the data is getting updated.

•	 WHERE a_expression: An expression that should evaluate to a Boolean value.
A row is updated if this expression returns TRUE.

•	 sort_clause: An ORDER BY clause.

•	 limit_clause: A LIMIT clause.

Here is an example of the UPDATE statement being deployed, and also the table data
before and after the update:

> select * from users;

 id | name | age | new_column

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 24 | NULL

 3 | alice | 14 | NULL

 4 | bob | 29 | NULL

 5 | john | 15 | NULL

(6 rows)

> UPDATE users SET age = 39 WHERE id = 4;

> select * from users;

 id | name | age | new_column

DML 133

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 24 | NULL

 3 | alice | 14 | NULL

 4 | bob | 39 | NULL

 5 | john | 15 | NULL

(6 rows)

The UPSERT statement inserts rows if they don't violate uniqueness constraints, and it
updates rows if the values violate uniqueness constraints. UPSERT only looks at PKs for
uniqueness.

The UPSERT statement takes the following parameters:

•	 common_table_expression: CTEs provide a shorthand for a subquery, to
improve the readability.

•	 table_name: Name of the table into which the data is upserted.

•	 AS table_alias: Alias for the table name.

•	 column_name: Name of the column that is being populated during the upsert.

•	 select_statement: A selection query, whose result is used to upsert the data.
The column order and column data types of the SELECT query result should match
that of the table into which the data is getting upserted.

•	 DEFAULT VALUES: Used to fill a column with its default value, instead of
a SELECT query. Here's an example of this:

> select * from users;

 id | name | age | new_column

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 24 | NULL

 3 | alice | 14 | NULL

 4 | bob | 39 | NULL

 5 | john | 15 | NULL

(6 rows)

> UPSERT INTO users(id, name, age) VALUES (2, 'bar', 34);

> select * from users;

134 Schema Creation and Management

 id | name | age | new_column

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 34 | NULL

 3 | alice | 14 | NULL

 4 | bob | 39 | NULL

 5 | john | 15 | NULL

(6 rows)

The DELETE statement deletes rows from a table. It takes the following parameters:

•	 common_table_expression: CTEs provide a shorthand for a subquery, to
improve the readability.

•	 table_name: Name of the table in which the data is deleted.

•	 AS table_alias: Alias for the table name.

•	 WHERE a_expression: An expression that should evaluate to a Boolean value.
A row is updated if this expression returns TRUE.

•	 sort_clause: An ORDER BY clause.

•	 limit_clause: A LIMIT clause.

Have a look at the following example:

> select * from users;

 id | name | age | new_column

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 34 | NULL

 3 | alice | 14 | NULL

 4 | bob | 39 | NULL

 5 | john | 15 | NULL

(6 rows)

> DELETE from users where id = 4;

> select * from users;

 id | name | age | new_column

DQL 135

-----+-------+-----+-------------

 0 | cindy | 15 | NULL

 1 | foo | 13 | NULL

 2 | bar | 34 | NULL

 3 | alice | 14 | NULL

 5 | john | 15 | NULL

(5 rows)

In the next section, we will go through some examples of DQL.

DQL
DQL is used for reading or querying data or table metadata. SQL statements involving
SELECT and SHOW fall under this category.

SELECT is a very commonly used SQL syntax to read table data. It takes the following
parameters:

•	 ALL: Doesn't eliminate duplicate rows.

•	 DISTINCT: Eliminates duplicate rows.

•	 DISTINCT ON (a_expression): Eliminates duplicate rows based on a scalar
expression.

•	 target_element: A scalar expression to determine a column in each result row,
or to retrieve all columns in case of an asterisk (*).

•	 table_expression: A table expression from which the data has to be retrieved.

•	 AS OF SYSTEM TIME timestamp: Retrieves data as it existed at the time of
this timestamp, where timestamp refers to a specific time in the past. This can
return historical data, which can be stale.

•	 WHERE a_expression: Only retrieves rows that return TRUE for
a_expression.

•	 GROUP BY a_expression: Groups results on one or more columns.

•	 HAVING a_expression: Only retrieves aggregate function groups that return
TRUE for a_expression.

•	 WINDOW window_definition_list: List of window definitions. The
window function computes values by operating on one or more rows returned
by a SELECT query.

136 Schema Creation and Management

SHOW SQL syntax is commonly used to retrieve the table metadata.

You can use the following queries to list down databases, tables in a database, and columns
for a given table respectively:

SHOW DATABASES;

SHOW TABLES;

SHOW COLUMNS FROM <table_name>;

SHOW STATISTICS FOR TABLE <table_name>; is useful for looking at table
statistics. This data is used by the cost-based optimizer to improve query performance.
This also comes in handy when debugging slow queries.

SHOW can be combined with keywords such as COLUMNS, DATABASES, TABLES,
CREATE, RANGES, STATISTICS, TYPES, USERS, ROLES, REGIONS, and so on to
retrieve the metadata associated with a given schema object.

Next, we will go over the list of data types supported by CockroachDB.

Supported data types
In this section, we will go through a list of data types that CockroachDB supports. Here is
a list of data types and their descriptions:

•	 ARRAY: Single-dimensional, homogenous array of any non-array data type—for
example, {"cockroachdb", "spanner", "yugabytedb"}.

•	 BIT: String of binary digits.

•	 BOOL: Boolean value.

•	 BYTES: String of binary characters.

•	 DATE: Date.

•	 ENUM: User-defined data type that consists of a list of static values—for example,
ENUM ('earth', 'mars', 'venus').

•	 DECIMAL: Exact, fixed-point number.

•	 FLOAT: A 64-bit, inexact, floating-point number.

•	 INET: Internet Protocol version 4 (IPv4) and version 6 (IPv6) address.

•	 INT: Signed integer.

•	 INTERVAL: Span of time—for example, INTERVAL '5h39m23s'.

Column-level constraints 137

•	 JSONB: JavaScript Object Notation (JSON) data. Here is an example of JSON data:

'{

 "id": 12345,

 "name": "elan",

 "isAlien": "true"

 }'

•	 SERIAL: Pseudo data type that combines an integer with a DEFAULT expression. A
DEFAULT expression generates different values every time it is evaluated. It ensures
a given column gets a value if the INSERT statement doesn't specify a value for it,
instead of populating it as NULL.

•	 STRING: String of Unicode characters.

•	 TIME: Time in Coordinated Universal Time (UTC).

•	 TIMETZ: Time value with a specified time zone offset from UTC.

•	 TIMESTAMP: Stores time and date in UTC.

•	 TIMESTAMPTZ: Time and date, with a specified time zone offset from UTC.

•	 UUID: 128-bit hexadecimal value.

In the next section, we will learn about database constraints and various types of
constraints in CockroachDB.

Column-level constraints
Constraints are rules that are enforced on data columns in a table. Whenever there is any
change in data within a table, all the constraints are verified to make sure none is violated.
If violated, the changes are rejected with the appropriate error message. Here is a list of
column-level constraints:

•	 CHECK <condition>: A given condition is checked whenever a value is being
inserted into the table. The condition is a Boolean expression that should evaluate to
TRUE or NULL. If it returns FALSE for any value, the entire statement is rejected. It
is possible to have multiple checks for the same column.

Here's an example to illustrate this:
CREATE TABLE user (

id INT NOT NULL,

name STRING NOT NULL,

138 Schema Creation and Management

age INT NOT NULL CHECK (age > 18) CHECK (age < 65),

PRIMARY KEY (id)

);

•	 DEFAULT: The DEFAULT value constraint is exercised whenever the INSERT
statement doesn't explicitly insert a specific value or NULL for the column that has a
DEFAULT constraint. A data type of a DEFAULT value should be the same as that of
the original column.

Here's an example to illustrate this:
CREATE TABLE employees (

id INT NOT NULL,

name STRING NOT NULL,

salary FLOAT NOT NULL,

bonus FLOAT DEFAULT 0.0,

PRIMARY KEY (id)

);

Now, if you insert a row without providing any value for the bonus column (for
example, INSERT INTO employee (id, name, salary) VALUES (1,
'foo', 10000.00);), CockroachDB inserts the default value 0.0 for the
bonus column.

•	 FOREIGN KEY: This refers to columns in some other table.

Let's look at an example whereby we create an employees table, as shown in the
following code snippet, followed by an employee_info table in which the emp_
id column refers to the id column of the employees table:

CREATE TABLE employees (

id INT NOT NULL,

name STRING NOT NULL,

salary FLOAT NOT NULL,

bonus FLOAT DEFAULT 0.0,

PRIMARY KEY (id)

);

Here is an example where the emp_id column references the id column in the
previous employees table:

CREATE TABLE employees_info (

emp_id INT NOT NULL,

Column-level constraints 139

address STRING NOT NULL,

CONSTRAINT fk_emp_id FOREIGN KEY (emp_id) REFERENCES
employees (id)

);

Alternatively, an employees_info table can also be created, as follows:
CREATE TABLE employees_info (

emp_id INT NOT NULL REFERENCES employees(id),

address STRING NOT NULL

);

•	 NOT NULL: Use this if you don't want a column to have NULL values. Any INSERT
or UPDATE statement that tries to insert a NULL value will be rejected.

•	 PRIMARY KEY: The PRIMARY KEY constraint specifies that a column or set of
columns that are part of a PK must uniquely identify each row in a table. Tables can
have only one PK.

Here's an example to illustrate this:
CREATE TABLE employees (

id INT NOT NULL,

name STRING NOT NULL,

salary FLOAT NOT NULL,

bonus FLOAT DEFAULT 0.0,

PRIMARY KEY (id)

);

•	 UNIQUE: The UNIQUE constraint, shown in the following code snippet, ensures that
any non-NULL column has a unique value:

CREATE TABLE user (

id INT NOT NULL,

email STRING UNIQUE,

name STRING NOT NULL,

age INT NOT NULL CHECK (age > 18) CHECK (age < 65),

PRIMARY KEY (id)

);

In the next section, we will go over various types of joins.

140 Schema Creation and Management

Table joins
Table joins are used to combine data from more than one table based on certain
conditions on a certain column or columns.

For example, let's assume the following two tables exist:

CREATE TABLE customers (

 id UUID PRIMARY KEY,

 name STRING NOT NULL

);

CREATE TABLE purchase_orders (

 id UUID PRIMARY KEY,

 customer_id UUID,

 n_of_items INT,

 total_price DECIMAL(10,2)

);

Now, let's look at each of the JOIN types with an example, as follows:

•	 INNER JOIN: Returns rows from the left and right operands that match the
condition.

Let's look at the following example involving an inner join between the customers
and purchase_orders tables:

SELECT a.id as customer_id, a.name AS customer_name, b.id
AS purchase_order_id FROM customers AS a

INNER JOIN purchase_orders AS b ON a.id = b.customer_id;

This returns all customers and their purchase orders that have matching
customers.id values with that of purchase_orders.customer_id.

•	 LEFT OUTER JOIN: All values from the left table, and for every left row where
there is no match on the right, NULL values are returned for the columns on the
right.

Let's look at the following example involving a left outer join between the
customers and purchase_orders tables:

SELECT a.id as customer_id, a.name AS customer_name, b.id
AS purchase_order_id FROM customers AS a

LEFT OUTER JOIN purchase_orders AS b ON a.id =
b.customer_id;

Using sequences 141

The preceding query will return all customers, whether they have any purchase
orders or not.

•	 RIGHT OUTER JOIN: All values from the right table, and for every right row
where there is no match on the left, NULL values are returned for the columns on
the left.

Let's look at the following example involving a right outer join between the
customers and purchase_orders tables:

SELECT a.id as customer_id, a.name AS customer_name, b.id
AS purchase_order_id FROM customers AS a

RIGHT OUTER JOIN purchase_orders AS b ON a.id =
b.customer_id;

The preceding query will return all purchase_orders values, whether they have
a corresponding customer in the customers table or not.

•	 FULL JOIN: For every row on one side of the join where there is no match on the
other side, NULL values are returned for the columns on the non-matching side.

Have a look at the following example to illustrate this:
SELECT a.id as customer_id, a.name AS customer_name, b.id
AS purchase_order_id FROM customers AS a

FULL OUTER JOIN purchase_orders AS b ON a.id =
b.customer_id;

The preceding query will return all the rows from both tables.
Next, we will learn about sequences and the syntax for creating a sequence.

Using sequences
Sequences are helpful when you need an auto-increment integer sequence in a table.

Let's look at the following example in which we create a sequence with the default setting:

root@localhost:26258/test> CREATE SEQUENCE customer_id_seq;

CREATE SEQUENCE

Time: 158ms total (execution 158ms / network 0ms)

root@localhost:26258/test> SHOW CREATE customer_id_seq;

 table_
name | create_

142 Schema Creation and Management

statement

------------------+--

 customer_id_seq | CREATE SEQUENCE public.customer_id_seq
MINVALUE 1 MAXVALUE 9223372036854775807 INCREMENT 1 START 1

(1 row)

Time: 136ms total (execution 135ms / network 1ms)

Here is an example of using the previously created sequence in a table column:

CREATE TABLE customers (

 id INT,

 row_id INT DEFAULT nextval('customer_id_seq'),

 name STRING

);

Here, whenever a row is inserted, DEFAULT will call nextval, which will generate
increments in the customer_id_seq sequence and use that as the value for the row_
id column.

Next, we will go through the benefits of online schema changes.

Managing schema changes
CockroachDB supports online schema changes, which don't require any downtime.
An existing schema can be changed using statements that include ALTER and CREATE
INDEX operations.

CockroachDB internally maintains a consistent distributed schema cache, along with
consistent table data that works with multiple versions of the schema concurrently.
This enables the rolling out of a new schema while the older schema is still being used.
CockroachDB backfills the table data into the newer schema without holding locks. So,
online schema changes don't affect the current read/write operations on the cluster on a
particular table whose schema is being modified.

Summary 143

Here are some of the benefits of online schema changes:

•	 Zero downtime.

•	 Schema changes happen without holding any table-level locks, so application
workloads on the cluster can continue to operate without performance degradation.

•	 Data is kept consistent throughout the schema upgrade.

Here are some of the known limitations of schema changes:

•	 If you are using a multi-statement transaction in which you combine DDL and
non-DDL statements, DDL statements can fail at COMMIT, while non-DDL
statements might have been committed. This can result in an inconsistent state,
whereby some of the statements in a transaction are committed and some of them
are aborted. It's important to look for appropriate error codes and handle them
correctly.

•	 You have to pay extra attention if you are using prepared statements on a table
whose schema is changed before the prepared statement is executed. This can result
in inconsistencies.

Please refer to a complete list of known limitations here: https://www.
cockroachlabs.com/docs/stable/known-limitations.html.

Some of these limitations might get fixed in future releases, and there might also be
new ones.

With that, we have reached the end of this chapter.

Summary
In this chapter, we learned about the SQL syntax for DDLs, DMLs, and DQLs. We also
went over other popular features such as indexes, joins, and sequences. We have left out
some of the experimental and enterprise-only features. Also, whenever you are not sure
about the syntax of a given SQL operation, please use /h to get detailed information about
the SQL operation.

In the next chapter, we will go over the admin user interface (UI) and learn how to use it
to manage a CockroachDB cluster.

https://www.cockroachlabs.com/docs/stable/known-limitations.html
https://www.cockroachlabs.com/docs/stable/known-limitations.html

8
Exploring the Admin

User Interface
In Chapter 7, Schema Creation and Management, we learned about various SQL syntaxes
and how to manage schema changes. In this chapter, we will learn what information is
available in the admin user interface (UI) for monitoring a CockroachDB cluster.

The admin UI is useful in monitoring the health of a CockroachDB cluster as it provides
the statistics, metrics, and status of all the nodes in the cluster. The admin UI mainly
provides information about the metrics, database and table definitions, sessions,
transactions, network latencies, active jobs, and advanced debugging information.
Network latency is important when debugging query latencies, just to rule out slowness
due to the network. Also, if you have multi-cloud or hybrid cloud CockroachDB clusters,
it is important to understand the latencies across various cloud providers. Schema
changes, backup and restore jobs, data imports, and changefeed are covered on the
Jobs tab.

Network latency and advanced debugging will be covered in Chapter 10, Troubleshooting
Issues.

146 Exploring the Admin User Interface

The following topics will be covered in this chapter:

•	 Introducing the admin UI

•	 Cluster overview

•	 Metrics deep dive

•	 Database and table definitions

•	 Understanding sessions

•	 Transactions

•	 Tracking jobs

Technical requirements
Although we are not going to execute any examples in this chapter, we still need a cluster
to access the admin UI. If you still haven't installed a CockroachDB cluster, please refer to
the Technical requirements section in Chapter 2, How Does CockroachDB Work Internally?

We will first start with a general introduction on how to access the UI and how to read
the metrics.

Introducing the admin UI
The CockroachDB admin UI comes by default, and you don't need any special setup to
configure one. The admin UI can be accessed from any node within the cluster using
the IP address or the hostname of the node and the port that's configured using the
--http-addr flag, for example, --http-addr=localhost:8080. If this flag is not
configured, then the admin UI is available through the IP address or hostname specified
in --listen-addr and the default port 8080.

The cluster overview is the landing page in the UI, as shown in the following screenshot:

Introducing the admin UI 147

Figure 8.1 – Landing page in the UI – Cluster overview

With regard to the metrics, all the information in the UI can be viewed at either the
individual node level or at the cluster level. You can see that there is a dropdown in the
UI that lets you select individual nodes or the cluster itself, as shown in the following
screenshot. In the case of a cluster, the stats and metrics are averaged down or aggregated
across all the participating nodes in the cluster. You can look at the top-right corner to
find out whether the cluster is running in insecure mode.

Figure 8.2 – Dropdown for selecting individual nodes for the node view or cluster view

148 Exploring the Admin User Interface

Also, the UI lets you customize the time window, as shown in the following screenshot:

Figure 8.3 – Dropdown for selecting various time windows

Next, we will discuss the cluster overview, where we will cover monitoring the health of all
nodes in a CockroachDB cluster.

Cluster overview
This is the page you see when you open the admin UI. The cluster overview provides a
high-level overview of the CockroachDB cluster. Figure 8.4 is a screenshot that shows the
cluster overview for a cluster with three nodes. Some of the links on the side panel don't
show up if there is no data. For example, you might not see Sessions, Transactions, and
Statements until a session has been established with the CockroachDB cluster and you
execute some queries.

Cluster overview 149

Figure 8.4 – UI for the cluster overview

You can find the following set of information in the cluster's Overview tab:

•	 Capacity Usage: This is the total disk space used by all the nodes in the
CockroachDB cluster. It classifies the usage further into USED and USABLE. USED
indicates the current disk space by all the nodes, and USABLE is the maximum
capacity that can eventually be used by all the nodes in the cluster. You can set
the maximum capacity for a given node by using the --store option. So, if the
--store option is provided, the total usage space cannot exceed this configured
value.

•	 Node Status: This shows the number of live, dead, and suspect nodes. A live node
is alive and healthy. If a node is shut down, it is considered dead. A suspect status
indicates that either the node cannot be reached to ascertain its status or that the
node is getting decommissioned.

•	 Replication Status: This shows information about the total number of ranges in the
cluster. It also shows under-replicated and unavailable ranges. A range would be
under-replicated if the number of replicas of that range is less than the configured
replication factor. If the majority of replicas of a given range are unavailable, then
that range itself becomes unavailable as you cannot have consensus. If a range is
unavailable, all the queries involving that range will fail.

150 Exploring the Admin User Interface

The following screenshot shows the node list, where you can see some details about each
of the nodes in that cluster:

Figure 8.5 – Cluster overview showing the node list

Node List provides the list of nodes with individual node-level information. Node-level
information includes the following:

•	 Region/Node Address: If you have configured different regions, then the nodes are
grouped by regions. Under each region, you will see the IP address and port of the
nodes in that region. If the regions are not configured, you would just see the node
IP address and the port.

•	 Uptime: The duration for which the node is running.

•	 Replicas: The number of replicas.

•	 Capacity Usage: How much of the disk space has been used up.

•	 Memory Use: How much of the memory has been used up.

•	 vCPUs: The number of CPUs.

•	 Version: The version of CockroachDB running on this node.

•	 Logs: The logs relevant to all the operations on that node. Logs are useful for
debugging issues and for ascertaining whether the node is healthy.

Metrics deep dive 151

•	 Status: This tells us the health of a node. LIVE means the node is healthy
and serving traffic, while DEAD means the node is down and is no longer
serving traffic.

In the next section, we will go through the various types of metrics and how they can be
useful in understanding query latencies.

Metrics deep dive
Metrics are very useful for measuring the general health of individual nodes and provide
better insights into the overall cluster when we are debugging performance-related issues.
Metrics can also be filtered based on different time windows.

The Metrics dashboard comes with a lot of useful metrics that are shown in the
following screenshot:

Figure 8.6 – Metrics dashboard showing various options in the dropdown

The Metrics dashboard includes the following categories:

•	 Hardware: Here, you can find the following pieces of information:

	� CPU Percent: The percentage of the CPU being consumed by the CockroachDB
process

152 Exploring the Admin User Interface

	� Memory usage: The memory used by the CockroachDB process

	� Disk Read Mebibytes / second: The average number of bytes read from the disk
by all the processes, expressed in Mebibytes per second

	� Disk Write Mebibytes / second: The average number of bytes written to the disk
by all the processes, expressed in Mebibytes per second

	� Disk Read IOPS: The number of disk read operations by all the processes per
second, averaged for 10 seconds

	� Disk Write IOPS: The number of disk write operations by all the processes per
second, averaged for 10 seconds

	� Disk Ops In Progress: The number of read and write operations in the queue
from all processes

	� Available Disk Capacity: Available storage capacity

	� Network Bytes Received: The number of bytes received over the network per
second for all processes, averaged for 10 seconds

	� Network Bytes Sent: The number of bytes sent over the network per second for all
processes, averaged for 10 seconds

•	 Runtime:

	� Live Node Count: Number of active nodes in the cluster

	� Memory Usage: Detailed memory usage, which is broken down further into the
following items:

	� Resident Set Size (RSS): RSS indicates the size of the subset of the memory
occupied by a process in the RAM (short for Random Access Memory).
This doesn't include the swap memory. Swap memory is a portion of the
process's runtime memory that is swapped out into the disk. In the context
of CockroachDB, RSS indicates the total memory used by the CockroachDB
process.

	� Go Allocated: Memory allocated by GoLang.

	� Go Total: Total memory managed by GoLang.

	� CGo Allocated: Memory allocated by C. CGo enables Go packages to
call C code.

	� CGo Total: Total memory managed by C.

Metrics deep dive 153

Note
CGo enables GoLang packages to call C code as it was originally required when
CockroachDB was using RocksDB as its storage engine, which was primarily
written in C and C++. CGo usage might have reduced after CockroachDB
moved to Pebble. Pebble is written in GoLang.

	� Goroutine Count: Number of Go routines.

	� Runnable Goroutines per CPU: Number of Goroutines waiting for the CPU.

	� GC Runs: Number of times GoLang's garbage collector has run per second.

	� GC Pause Time: CPU time per second used by GoLang's garbage collector.
During garbage collection, CockroachDB's regular database operations are
paused.

	� CPU Time: CPU time used by the CockroachDB process for user- and system-
level operations.

	� Clock Offset: In node view, it shows the mean clock offset of a given node against
the rest of the nodes in the cluster. In cluster view, it shows the mean clock offset
of each node against other nodes in the cluster.

•	 SQL:

	� Open SQL Sessions: In node view, this is the number of SQL connections open
from CockroachDB client(s) to a given CockroachDB node. In cluster view, this
is the total number of SQL connections open from CockroachDB client(s) to all
the CockroachDB nodes in the cluster. In node view, this is the number of bytes/
second transferred between the clients and the node.

	� Open SQL Transactions: Number of open SQL transactions.

	� Active SQL Statements: Number of SQL statements that are currently getting
executed.

	� SQL Byte Traffic: SQL client network traffic in bytes per second.

	� SQL Statements: 10-second average of the SELECT, INSERT, UPDATE, and
DELETE statements.

	� SQL Statement Errors: Number of SQL statements that resulted in an error.

	� SQL Statement Contention: Number of SQL statements that experienced
contention.

	� Active Flows for Distributed SQL Elements: Number of flows on each node in
the cluster that are participating in active, distributed SQL statements.

154 Exploring the Admin User Interface

	� Service Latency: SQL, 99th and 90th percentiles: Within the last minute, 99% and
90% of the queries are executed within this time, respectively.

	� KV Execution Latency: 99th and 90th percentiles: This is the latency between the
query request and response times, for 99% and 90% of the queries, respectively.

	� Transactions: Total number of transactions per second.

	� Transaction Latency: 99th and 90th percentiles: Total transaction time within the
last minute, for 99% and 90% of the transactions, respectively.

	� SQL Memory: Current allocated SQL memory.

	� Schema Changes: Total number of Data Definition Language (DDL) statements
per second.

	� Statement Denials: Cluster settings: Total number of statements that were rejected
due to a cluster setting.

•	 Storage:

	� Capacity: Storage capacity is further classified into the following categories:

	� Max: Maximum storage size

	� Available: Free storage space available

	� Used: Storage space currently used

	� Live Bytes:

	� Live: Number of logical bytes stored in active key-value pairs

	� System: Number of physical bytes stored in system key-value pairs

	� Log Commit Latency: 99th and 50th percentiles: Raft log commit latency in the
99th and 50th percentiles

	� Command Commit Latency: 99th and 50th percentiles: Latency of the raft
commit commands in the 99th and 50th percentiles

	� Read Amplification: The average number of real read operations executed per
logical read operation across all nodes

	� SSTables: Number of Sorted Strings Tables (SSTable) in use

	� File Descriptors: Number of open file descriptors

	� Compactions/Flushes: Number of compaction and memtable flushes per second.

Metrics deep dive 155

	� Time Series Writes: Number of time series writes per second, including the
attempts that errored out

	� Time Series Bytes Written: Number of bytes written by time series per second

•	 Replication:

	� Ranges: This provides the following information:

	� Ranges: Total number of ranges.

	� Leaders: Number of leaders.

	� Lease Holders: Number of lease holders.

	� Leaders w/o lease: Exclusive raft leaders that are not lease holders.

	� Unavailable: Unavailable ranges due to the majority of replicas being
unavailable.

	� Under-replicated: Under-replicated ranges that are replicated less than the
replication factor.

	� Over-replicated: Over-replicated ranges. This usually happens when more
nodes are added.

	� Replicas Per Node: Number of replicas on each node.

	� Leaseholders Per Node: Number of leaseholders per node.

	� Average Queries Per Node: Exponentially weighted moving average of the
number of KV batch requests processed by leaseholder replicas on each node
per second. Tracks roughly the last 30 minutes of requests. Used for load-based
rebalancing decisions.

	� Logical Bytes Per Node: Number of logical bytes stored in key-value pairs on each
node.

	� Replica Quiescence:

	� Replicas: Number of replicas

	� Quiescent: Number of replicas that have not been accessed recently

	� Range Operations:

	� Splits: Number of range splits.

	� Merges: Number of range merges.

	� Adds: Number of newly added ranges.

156 Exploring the Admin User Interface

	� Removes: Number of ranges removed.

	� Lease Transfers: Number of transfers of a lease for a given range between
nodes.

	� Load-based Lease Transfers: Number of transfers of a lease, to ensure even
load balancing across all the nodes.

	� Load-based Range Rebalances: Number of range rebalances, to ensure all
nodes get equal traffic. Can happen when there are hot ranges. A range is
considered hot if it's getting more read/write requests compared to other ranges.

	� Snapshots: Snapshots are used when some of the nodes in a Raft group are lagging
considerably. In such cases, instead of sending individual messages to nodes that
are lagging, a cluster can send a snapshot of the range, which can be directly
applied locally. The following are some of the snapshots metrics that are available
in the UI:

	� Generated: Number of snapshots generated per second

	� Applied (Voters): Number of snapshots applied to nodes per second that were
initiated by Raft

	� Applied (Initial Upreplication): Number of snapshots applied to newly joining
nodes in order to bring it up to speed

	� Applied (Non-voters): Number of snapshots applied to lagging nodes identified
by the cluster

	� Reserved: Number of slots reserved per second for incoming snapshots that
will be sent to a lagging node

The next three dashboards contain metrics mostly internal to CockroachDB. You
can look into them if you are familiar with the internal architecture and code of
CockroachDB.

•	 Distributed: This dashboard shows the latency of various types of distributed
transactions within CockroachDB and includes the following set of metrics:

	� Batches

	� RPCs

	� RPC Errors

	� KV Transactions

	� KV Transaction Restarts

Metrics deep dive 157

	� KV Transaction Durations

	� Node Heartbeat Latency

•	 Queues: This dashboard provides metrics related to different types of queues used
within CockroachDB. You can see the following set of metrics related to different
queues:

	� Queue Processing Failures

	� Queue Processing Times

	� Replica GC Queue

	� Replica Queue

	� Split Queue

	� Merge Queue

	� GC Queue

	� Raft Log Queue

	� Raft Snapshot Queue

	� Consistency Checker Queue

	� Time Series Maintenance Queue

•	 Slow Requests: This dashboard shows metrics related to various internal activities
that are being performed slower than expected. The following set of metrics are
included as part of slow requests:

	� Slow Raft Proposals

	� Slow DistSender RPCs

	� Slow Lease Acquisitions

	� Slow Latch Acquisitions

•	 Changefeed: Change data capture (CDC) provides a mechanism for tracking all
the row-level changes in CockroachDB and feeding the changes to a configurable
sink. This is useful for external replication, reporting, caching, and searching. The
following are some of the metrics related to changefeed:

	� Max Changefeed Latency: Maximum latency for resolved timestamps of any
running changefeed

	� Sink Byte Traffic: Number of bytes emitted by CockroachDB into the sink

158 Exploring the Admin User Interface

	� Sink Counts:

	� Messages: Number of messages sent by CockroachDB to the sink

	� Flushes: Number of flushes that the sink has done for changefeeds

	� Sink Timings:

	� Message Emit Time: The time in milliseconds required by CockroachDB to
send the messages to the sink

	� Flush Time: The time CockroachDB spent waiting for the sink to flush the
message

	� Changefeed Restarts: The number of changefeed restarts due to retryable errors.

In the next section, we will go over the Databases dashboard.

Database and table definitions
The Databases dashboard contains the list of databases, with a list of tables in them. You
can also view grants given to various users.

In the following screenshot, you can see the Databases dashboard, with options to view
Tables and Grants:

Figure 8.7 – Databases dashboard showing the tables and grants options in the dropdown

Database and table definitions 159

If you select the Tables option, you will see a list of tables for all the databases with some
stats. If the stats are not loaded, you can click on the Load stats for all tables option to
populate the table-level stats, as can be seen in the following screenshot:

Figure 8.8 – Databases dashboard showing tables

From this dashboard, you can also view the DDLs for all the tables, as shown in the
following screenshot:

Figure 8.9 – Databases dashboard showing the DDLs of tables

160 Exploring the Admin User Interface

Grants will show user-level permissions with respect to a given database, as shown in the
following screenshot:

Figure 8.10 – Databases dashboard showing user grants

The Databases dashboard is useful for quickly going through the tables and grants, instead
of using a SQL client and executing some queries.

In the next section, we will go over sessions.

Understanding sessions
The Sessions dashboard gives information about all the active client sessions within the
CockroachDB cluster. In the following screenshot, you can see the Sessions dashboard
showing an active session:

Understanding sessions 161

Figure 8.11 – Sessions dashboard showing an active session

The Sessions dashboard displays the following information:

•	 Session Duration: Amount of time for which the session is open

•	 Transaction Duration: Amount of time of the current active transaction, if any

•	 Statement Duration: Amount of time of the current, active SQL statement, if any

•	 Memory Usage: The current allocated memory for this session/maximum memory
allocated during this session

•	 Statement: The SQL statement that's currently active

•	 Actions: Options to end an active query that is part of this session:

	� Terminate Statement: Ends the SQL statement

	� Terminate Session: Ends the session

In the next section, we will go over the Transactions dashboard.

162 Exploring the Admin User Interface

Transactions
The Transactions dashboard lists all the current transactions and provides additional
information, including transaction time, contention, and retries, which help identify
slow transactions. The following screenshot is of a Transactions dashboard showing
transaction details:

Figure 8.12 – Transactions dashboard showing transaction details

The Transaction dashboard shows the following details:

•	 Transactions: SQL statements that are part of the transaction

•	 Execution Count: Total number of executions for a given transaction

•	 Rows Read: Average number of rows read from disk during the transaction

•	 Bytes Read: Total number of bytes read across all the statements in a transaction

•	 Transaction Time: Average planning and execution time

•	 Contention: Average time a given transaction was in contention with other
transactions

Tracking jobs 163

•	 Max Memory: Maximum memory used by a given transaction

•	 Network: Amount of data transferred over the network during this transaction

•	 Retries: Total number of retries during this transaction

•	 Statements: Number of SQL statements in the transaction

In the last section, we will learn about the Jobs dashboard.

Tracking jobs
A job can be one of these activities: backups, restores, imports, schema changes,
changefeed, statistics creation, and auto-statistics creation. The following screenshot is of a
Jobs dashboard:

Figure 8.13 – Jobs dashboard

164 Exploring the Admin User Interface

You can filter jobs based on the job type, as shown in the following screenshot:

Figure 8.14 – Jobs dashboard showing a dropdown for various job types

You can also filter jobs by their status, as shown in the following screenshot:

Figure 8.15 – Jobs dashboard showing a dropdown for various job statuses

Summary 165

The following are the various statuses of a job:

•	 PENDING: Job has been created, but not yet started

•	 PAUSED: Job is paused

•	 FAILED: Job has failed during execution

•	 SUCCEEDED: Job has completed successfully

•	 CANCELED: Job was canceled before it could complete

The following information is available for each job:

•	 Description: SQL statement

•	 Job ID: Unique ID assigned to a job for tracking purposes

•	 Users: User who created the job

•	 Creation Time: Date and time when the job was created

•	 Status: Current status of the job

We looked at several metrics that are available on the admin user interface. Although it
can be overwhelming to understand and observe all of them, you should at least start with
a cluster overview and the metrics dashboard and move on to others once you become an
advanced user of CockroachDB.

Summary
In this chapter, we learned about the admin user interface, various dashboards, and all the
information available for us to better understand the health of a cluster and also the query
latencies. It is very important to get yourself familiarized with the admin UI so that you
can easily navigate to the right places when debugging issues. We did not cover network
latency and advanced debugging dashboards as these will be covered in detail in Chapter
10, Troubleshooting Issues.

In the next chapter, we will cover security.

9
An Overview Of

Security Aspects
In Chapter 8, Exploring the Admin User Interface, we learned about the admin user
interface, which provides several features to help manage the cluster. The admin user
interface is also very useful in debugging issues as it provides metrics about the health
of the cluster, transactions, and queries.

In this chapter, we will learn about security. The increase in cloud usage has given rise to
an enormous amount of surface attacks. Now, hackers have various ways to compromise
a given system and leak its data. Ransomware, phishing, malware, spyware, and threatware
are some of the most popular programs that intend to cause harm to your systems and
leak their data, either to gain popularity or money. Cloud cybersecurity experts are the
most sought-after in today's world. Since a transactionally distributed SQL database will
be at the heart of any core infrastructure, it's of the utmost importance to pay attention to
the security aspects.

In this chapter, we will start by providing a brief introduction to various aspects of
security, followed by a deeper discussion of each of those aspects and various options that
are available when using CockroachDB. To do this, we will cover the following topics:

•	 Introduction to security concepts

•	 Client and node authentication

•	 Authorization mechanisms

168 An Overview Of Security Aspects

•	 Data encryption at rest and in flight

•	 Audit logging

•	 RTO and RPO

•	 Keeping the network secure

•	 Security best practices

Technical requirements
The examples in this chapter require you to have CockroachDB installed. If you still
haven't done so, please refer to the Technical requirements section of Chapter 2, How Does
CockroachDB Work Internally?.

Introduction to security concepts
Authentication is required for a SQL client that executes queries against a CockroachDB
cluster and for nodes in a cluster that communicate with each other. In this section, we
will go over some of the available options for client and node authentication.

Authorization is about deciding who can access what resources. In this section, we will
discuss users, roles, and configuring privilege access to various schema objects.

Data at rest refers to data when it's stored on a physical storage device. Encrypting the
data that's on a storage device renders it unreadable, even when a hacker gets hold of the
encrypted data. Data in flight refers to the data that's on-wire when it's being transferred
between the client and the CockroachDB cluster or between the nodes in a CockroachDB
cluster. It is important to encrypt the data on-wire as it makes it useless when some
middleman manages to sniff the data.

Audit logging is a log collection process that keeps track of all the activities that were
performed on the data, including the time, the client's device information, the query, the
operation, the event, and the user. This information is very useful if a data leak occurs and
we want to investigate or ensure our system is compliant with certain standards.

The recovery time objective (RTO) and recovery point objective (RPO) are two
important parameters when it comes to disaster recovery and data protection. RTO refers
to how soon we can resume operations, after a given failure, while RPO refers to the
maximum allowed time when we can restore the data. We will discuss these terms while
providing examples and learn how to prepare for disaster recovery later in this chapter.

Client and node authentication 169

With deployments that involve on-premises, multi-cloud, and hybrid cloud environments,
network security is key to denying hackers from gaining access to the data. In this section,
we will briefly cover some of the options for providing maximum network security.

In the last section, we will list some of the best security practices.

In the next section, we will learn about authentication and some of the options we can use
to provide authentication in CockroachDB.

Client and node authentication
Authentication is the process of verifying the identity of a system that is making
a request. In the context of CockroachDB, this can be a client executing queries
on a CockroachDB cluster or the nodes in a cluster that are talking to each other.
Authentication can be achieved by using certificates and keys. Let's look at an example.
Let's assume that foo and bar want to talk to each other and that before they start talking,
they want to ensure they are talking to each other. First, we must understand the concept
of public-private keys. Any message that you encrypt with a public key can be decrypted
using its corresponding private key. This pair is supposed to be unique in that no other
key can be used for decryption. Also, they have to be different. The following diagram
shows how public key encryption works:

Figure 9.1 – Public key encryption

170 An Overview Of Security Aspects

So, going back to our example, foo and bar have a pair of public and private keys. At the
beginning of their communication, their public keys should be exchanged. During this
exchange, both parties need a way to know if the public key is coming from an intended
recipient, not an imposter, and that the public key is authentic. For example, if foo shares
its public key with bar, then bar should have a way to ensure that it's coming from foo and
that the public key belongs to foo. This is where a certificate authority (CA) comes into
the picture. The following diagram shows how a digital certificate is generated by the CA
once a CSR request is received from the applicant:

Figure 9.2 – Digital certificate generation by CA

A CA is an entity that issues certificates for other entities. Let's say that baz is a CA. Now,
baz can issue a certificate on behalf of foo, which contains foo's public key and some more
identity information about foo. This certificate is signed by baz's private key. foo and bar
both have the CA's (baz's) public key. So, we now have baz's certificate, which is used to
sign foo and bar's certificates. We also have the certificates of foo and bar that have been
signed by the CA, which contain their public keys. When the communication between
foo and bar starts, they can exchange these certificates and also verify their authenticity as
they are issued by the same CA, by using CA's public key. After that, they can securely talk
to each other.

First, let's look at some of the CockroachDB commands that can be used to generate
certificates and keys.

Client and node authentication 171

Generating certificates and keys
The following are some of the options you have to generate certificates and keys that can
be used for authentication:

•	 create-ca: Creates the self-signed CA. This can be used to create and
authenticate certificates for all the nodes within the cluster. You can also use an
external CA for this.

•	 create-node: Creates a certificate and key for a specific node in the cluster. You
can specify all the addresses (IP address or hostname) to reach this node.

•	 create-client: Creates a certificate and key for a user accessing the cluster from
a client. If you have multiple users, you should generate a separate certificate for
each user.

•	 list: Lists the certificates and keys that were found in the CA. These are passed in
the input argument.

The following commands can be used to generate a certificate and key for the CA, node,
and client:

Generate CA certificate.

$ cockroach cert create-ca \

--certs-dir=<certs_directory> \

--ca-key=<CA_key_directory>

The following commands can be used to generate the node's certificate and key. Any
number of hostnames or addresses can be used to reach the node:

$ cockroach cert create-node \

<hostname_1_of_node> \

<hostname_2_of_node> \

--certs-dir=<certs_directory> \

--ca-key=<CA_key_directory>

The following commands can be used to generate the client's certificate and key:

$ cockroach cert create-client <user_name> \

--certs-dir=<certs_directory> \

--ca-key=<CA_key_directory>

172 An Overview Of Security Aspects

The following command lists the certificates and keys in a given directory:

$ cockroach cert list \

--certs-dir=<certs_directory>

You can also use the OpenSSL tool to generate the certificates and keys. This tool can
be downloaded from https://www.openssl.org/source/. Please refer to the
documentation on the aforementioned website to learn how to use this tool.

Next, we will learn how these certificates and keys can be used to provide client and node
authentication.

Client authentication
Whenever a SQL client sends a request to a CockroachDB cluster, it's important to
authenticate the client before serving the request. In the following subsections, we will
look at some of the ways in which we can ensure client authentication.

Password authentication without TLS
This option is what we have used in all of our examples in this book. It's useful in cases
where both the client and server are within a secured perimeter that doesn't need further
transport layer security. However, you still need a user to identify yourself. Let's learn how
to create a password for a user:

1.	 First, create a user with a password, as follows:

> CREATE USER kishen WITH LOGIN PASSWORD
'oldmacdonaldhadafarm(I(Io'

2.	 Then, you can use that user from the client:

$ cockroach sql --user=kishen --insecure

#

Welcome to the CockroachDB SQL shell.

All statements must be terminated by a semicolon.

To exit, type: \q.

#

Enter password:

Next, we will learn how to perform password authentication using transport layer security.

https://www.openssl.org/source/

Client and node authentication 173

Password authentication with TLS
If you wish to perform password authentication with Transport Layer Security (TLS),
you must provide the certificate directory in the input, as follows:

$ cockroach sql --user=<user_name> \

 --certs-dir=<certs_directory>

Single sign-on (SSO) authentication
Single sign-on (SSO) is an Enterprise-only feature that needs an external OAuth 2.0
identity provider. This requires the user to log in to an external identity provider in the
admin user interface. Once authenticated, the user is redirected to the CockroachDB
cluster through a callback URL. An ID token is used to authorize the callback. This ID
token is a security token that contains claims about the authentication of a user by an
OAuth 2.0 identity provider. The ID token will be in JSON Web Token (JWT) form,
which is a JSON containing details about the authentication, including the expiry time of
the token, the unique subject identifier, and the issuer identifier. CockroachDB can match
the ID token to a SQL user and subsequently create a web session for that SQL user. With
the web session, the user can access the admin user interface.

Generic Security Services API (GSSAPI) using Kerberos authentication
This is an Enterprise-only feature. You would typically need a Kerberos environment,
a GSSAPI-compatible PostgreSQL client, a service principal, and a Kerberos client
to be installed to provide this authentication mechanism. Please refer to the GSSAPI
setup guide at https://www.cockroachlabs.com/docs/stable/gssapi_
authentication.html for specific guidelines.

Node authentication
We learned how to generate certificates and keys in the Generating certificates and keys
section. Once we've generated the node's certificates, we just have to make sure they are
configured correctly when we start the node. If they're not, you will see communication
errors around the TLS connection when the nodes are trying to talk to each other. You
can provide the certificate directory when you start a node like so:

$ cockroach start \

--certs-dir=<certs_directory> \

--store=node1 \

--listen-addr=localhost:26257 \

https://www.cockroachlabs.com/docs/stable/gssapi_authentication.html
https://www.cockroachlabs.com/docs/stable/gssapi_authentication.html

174 An Overview Of Security Aspects

--http-addr=localhost:8080 \

--join=localhost:26257, localhost:26258, localhost:26259

You can also use a tool such as Vault (https://www.vaultproject.io/) to
dynamically generate short-lived certificates. This will make them available for all the
nodes in a cluster and automatically rotate the certificates.

In the next section, we will learn about authorization and how to give granular
permissions to schema objects.

Authorization mechanisms
Authorization involves controlling access to schema objects and giving the minimum
required permissions and privileges for users and roles. Authorization becomes critical
when the data's size, number of nodes, number of clients, number of clusters, and use
cases grow in size.

In the context of CockroachDB, a user and role can be used interchangeably as there is
no technical distinction between them. Even when executing CockroachDB commands,
role and user can be used interchangeably in some cases. An example of this is as
follows:

1.	 First, we must execute SHOW ROLES:

$ SHOW ROLES;

 username | options | member_of

-----------+---------+------------

 admin | | {}

 root | | {admin}

(2 rows)

Time: 13ms total (execution 12ms / network 1ms)

2.	 Next, we must execute SHOW USERS:

$ SHOW USERS;

 username | options | member_of

-----------+---------+------------

 admin | | {}

 root | | {admin}

https://www.vaultproject.io/

Authorization mechanisms 175

(2 rows)

Time: 9ms total (execution 9ms / network 0ms)

As you can see, both the preceding outputs are identical. Henceforth, we will only use the
term user for simplicity.

A user can be allowed to perform specific actions on specific schema objects. Also, if a
user is a member of another user, all their privileges will be inherited.

A user can be created with the CREATE USER command, as shown in the following code:

CREATE USER 'kishen' WITH LOGIN PASSWORD
'oldmacdonaldhadaform(I(I0' VALID UNTIL '2021-12-25';

Make sure that you start your cluster by configuring the certificate's directory, without the
insecure flag. Otherwise, you will see the following error message:

ERROR: setting or updating a password is not supported in
insecure mode

SQLSTATE: 28P01

Next, let's look at giving privileges to specific objects.

Roles
You can create roles that perform specific functions. For example, you can create a role for
just creating other roles, like so:

$ CREATE ROLE can_create_role WITH CREATEROLE CREATELOGIN;

When you run SHOW ROLES, the new role should appear:

$ SHOW ROLES;

 username | options | member_
of

------------------+----------------------------------+--------

 admin | | {}

 can_create_db | CREATEDB, NOLOGIN | {}

 can_create_role | CREATELOGIN, CREATEROLE, NOLOGIN | {}

 root | | {admin}

(4 rows)

176 An Overview Of Security Aspects

You have the following options for roles:

•	 CREATEROLE: Allows the role to CREATE, ALTER, and DROP non-admin roles

•	 LOGIN: Allows the role to log in using client authentication

•	 CONTROLJOB: Allows the role to pause, resume, and cancel jobs

•	 CONTROLCHANGEFEED: Allows the role to create CHANGEFEED on tables where it
has the SELECT privilege

•	 CREATEDB: Allows the role to create or rename a database

•	 VIEWACTIVITY: Allows the role to execute SHOW STATEMENTS and SHOW
SESSIONS, including queries that are executed by other roles

•	 CANCELQUERY: Allows the role to cancel a query

•	 MODIFYCLUSTERSETTING: Allows the role to modify cluster settings

•	 PASSWORD <password>: Allows a role to use a given password to authenticate
itself

•	 VALID UNITL <timestamp>: Specifies the validity of a given password

You can prepend the NO keyword to many of these roles to take away a given role. For
example, NOCREATEROLE will not allow a role to create or manage non-admin roles.
Similarly, NOCREATEDB will not allow a role to create or rename a database.

Privileges
You can use the GRANT command to give specific privileges to a given role. In the
following example, we are providing complete privileges to the admin role on the
startrek database:

$ GRANT ALL ON DATABASE startrek TO admin;

Now, you can look at all the grants on the startrek database and see that the admin
role has ALL access:

$ SHOW GRANTS ON DATABASE startrek;

 database_name | grantee | privilege_type

----------------+---------+-----------------

 startrek | admin | ALL

 startrek | root | ALL

Data encryption at rest and in flight 177

There are various levels where grants can be given, such as the database, schema, table,
and type level. The ALL keyword specifies all the levels in the schema hierarchy.

Privilege can be given on the following constructs:

•	 CREATE

•	 DROP

•	 SELECT

•	 INSERT

•	 DELETE

•	 UPDATE

•	 USAGE

•	 ZONECONFIG

•	 CONNECT

You can also manage users in the admin console in the cluster's SQL Users page.

In the next section, we will discuss data encryption at rest and in flight and how to
configure the same.

Data encryption at rest and in flight
Encryption is the process of encoding plain text into an alternative unreadable format
known as ciphertext. Decryption is the process of decoding the ciphertext back into its
original plain text readable format. It is important to encrypt stored data, as well as the
data that's being transferred between the client and nodes. In this section, we will learn
how to achieve this.

Encryption at rest
Data at rest indicates the data that is stored on a physical storage system, such as a disk.
Encryption at rest is an Enterprise-only feature. This feature allows you to encrypt all the
files on the physical storage using Advanced Encryption Standard (AES).

Two types of keys are involved:

•	 Store keys: These are provided by the user and are used to encrypt data keys.

•	 Data keys: These are generated by CockroachDB and are used to encrypt all the files
on disk. They are persisted in a registry file and are encrypted using the store key.

178 An Overview Of Security Aspects

You can generate an AES-128 encryption key using the following command:

 $ cockroach gen encryption-key -s 128 encr-keys/encryption.key

successfully created AES-128 key: encr-keys/encryption.key

Now, you can use the encryption key that you generated in the previous step in the input
when you are starting the node:

$ cockroach start \

--insecure \

--store=node4,attrs=encrypt \

--enterprise-encryption=path=node4,key=encr-keys/encryption.
key,old-key=plain \

--listen-addr=localhost:26259 \

--http-addr=localhost:8082 \

--join=localhost:26257,localhost:26258,localhost:26259 \

--locality=region=us-west

--background

Here, when the node is started, it uses the old key to read the data and then rewrites
the data using the new key. If you want to disable the encryption, you can specify
key=plain as the encryption configuration.

Now, let's look at encryption in flight.

Encryption in flight
CockroachDB uses TLS 1.2 to encrypt the client-node and inter-node communication.
Please refer to the Client and node authentication section to learn how to configure
certificates and keys for the TLS. If you don't need encryption for client-node
communication, you can use the --accept-sql-without-tls flag when you are
starting the node. This lets the node accept connections from clients without TLS.

In the next section, we will learn how to enable SQL audit logging to monitor activities on
a table.

Audit logging
SQL audit logging is an important security feature that you can use to track all the
activities that are occurring in a given CockroachDB cluster. Specifically, you can select
tables whose activity must be tracked and only enable audit logging on them.

Audit logging 179

The following information gets logged during auditing:

•	 Full query text.

•	 The date and time of the query.

•	 The client's IP address.

•	 The application's name.

•	 The user.

•	 The event type, which will be SENSITIVE_TABLE_ACCESS. This indicates that it's
an event related to SQL audit logging.

•	 The name of the table that was queried.

Now, let's look at an example. We will enable audit logging for one of the tables in the
default databases. startrek is a database that comes by default with the open source
CockroachDB:

$ show databases;

 database_name | owner | primary_region | regions | survival_
goal

----------------+-------+----------------+---------+----------

 defaultdb | root | NULL | {} | NULL

 postgres | root | NULL | {} | NULL

 startrek | root | NULL | {} | NULL

 system | node | NULL | {} | NULL

Let's enable SQL audit logging for the episodes table, as shown here:

$ ALTER TABLE startrek.episodes EXPERIMENTAL_AUDIT

SET READ WRITE;

ALTER TABLE

180 An Overview Of Security Aspects

Now, if you look at one of the latest entries in the CockroachDB SQL audit log, you should
see an entry that indicates that SQL audit logging has been enabled for the startrek.
episodes table. Usually, this SQL audit log can be found under the logs directory and
the log file will be cockroach-sql-audit.log. The following is an entry from the
SQL audit log that shows the ALTER TABLE statement that enabled SQL audit logging:

I211129 01:03:01.155934 25421 8@util/log/event_log.go:32
⋮ [n1,client=‹127.0.0.1:58274›,hostnossl,user=root] 3
={"Timestamp":1638147781150167000,"EventType":"sensitive_
table_access","Statement":"‹ALTER TABLE startrek.public.
episodes EXPERIMENTAL_AUDIT SET READ WRITE›","Tag":"ALTER
TABLE","User":"root","DescriptorID":53,"ApplicationName":"$
cockroach sql","ExecMode":"exec","Age":5.706,"TxnCounter":
16,"TableName":"‹startrek.public.episodes›","AccessMode":"rw"}

Now, let's execute a SELECT statement against the same table:

$ select * from startrek.episodes;

Now, if you go back to the logs/cockroach-sql-audit.log file once more and
look at the latest entries, you should see an entry for the SELECT statement that you
executed:

I211129 01:03:38.010291 25421 8@util/log/event_log.go:32
⋮ [n1,client=‹127.0.0.1:58274›,hostnossl,user=root] 4
={"Timestamp":1638147818007255000,"EventType":"sensitive_
table_access","Statement":"‹SELECT * FROM \"\".startrek.
episodes›","Tag":"SELECT","User":"root","DescriptorID":53,
"ApplicationName":"$ cockroach
sql","ExecMode":"exec","NumRows":79,"Age":2.01,"FullTableScan
":true,"TxnCounter":18,"TableName":"‹startrek.public.
episodes›","AccessMode":"r"}

If you no longer need SQL audit logging for a particular table, it's possible to turn it off,
like so:

ALTER TABLE startrek.episodes EXPERIMENTAL_AUDIT SET OFF;

RTO and RPO 181

You can confirm that audit logging has been turned off by going through the entries in the
SQL audit log file; that is, logs/cockroach-sql-audit.log:

I211129 01:15:32.779808 25421 8@util/log/event_log.go:32
⋮ [n1,client=‹127.0.0.1:58274›,hostnossl,user=root] 9
={"Timestamp":1638148532758348000,"EventType":"sensitive_
table_access","Statement":"‹ALTER TABLE startrek.public.
episodes EXPERIMENTAL_AUDIT SET OFF›","Tag":"ALTER
TABLE","User":"root","DescriptorID":53,"ApplicationName":"$
cockroach sql","ExecMode":"exec","Age":12.184,"TxnCounter":30,
"TableName":"‹startrek.public.episodes›","AccessMode":"rw"}

In the next section, we will learn about RTO and RPO, two of the key parameters in
defining your stance for data protection, data loss, and business disruption.

RTO and RPO
RTO determines how soon you can recover from a disaster and start serving requests.
It's almost impossible to have zero RTO, which means there will be some amount of
application downtime whenever things go wrong. RPO determines how much data you
can lose during a failure without causing any major business impact.

Technically, having a very low RTO and zero RPO is the dream of any team that manages
the database, but it's incredibly hard to achieve. Also, having no data loss is an important
requirement for many mission-critical applications that can never lose any committed
data. Since we are talking about data at scale, including several nodes where data is
being replicated multiple times, nodes that are sitting in different cloud regions, and
infrastructure spread across heterogeneous systems, it's very challenging to achieve
desirable RTO and RPO numbers.

There is an Enterprise-only feature that you can use to take full and incremental backups.
Incremental backups determine your RPO number as you can always restore to the
previous incremental backup. Also, if your data becomes corrupted, you can use
a point-in-time restore to restore your cluster to a specific timestamp. You can also pay
extra attention to the storage layer and make it highly redundant and highly available so
that there is absolutely no data loss at the storage layer. You can achieve zero RPO with a
full and incremental backup strategy and having enough replicas across availability zones
and regions.

182 An Overview Of Security Aspects

Whenever we have a non-zero RTO, this means that there is some amount of downtime.
Depending on the nature of the business, we can significantly lose income during such
disruptions. It also affects the overall reputation of the company. Luckily, with the cloud,
it's relatively easier to provide redundancy in terms of compute, network, memory, and
storage. If everything is automated correctly, we should achieve a few seconds of RTO.

In the next section, we will discuss network security.

Keeping the network secure
Networks are the most popular places for hackers to perform targeted attacks. With
today's modern infrastructure being comprised of on-premises, private, public cloud, and
multi-cloud environments, there are ample opportunities for hackers to get into insecure
networks. First, we should ensure that all the communication that goes in and out of the
CockroachDB cluster is completely secured and encrypted. It's always a good idea to turn
on TLS for inter-node and client-node communication. Once the data becomes larger,
we will end up having a dedicated Site-Reliability Engineering (SRE) organization that
ensures CockroachDB is up and running at all times. We should ensure that the right set
of folks has the right access to the data. DDLs such as DROP and ALTER should be much
more restrictive in production. Also, at any given time, only the folks on production
on-call rotation should have access to bastion hosts.

Wherever we have deployed the CockroachDB instances, whether it's directly on a virtual
machine, a bare-metal server, or a Docker container, we have to make sure that only the
relevant ports can be accessed and that only secured connections are allowed. Also, if you
are using a service mesh such as Istio, it already provides out-of-the-box mTLS and TLS
termination proxy services.

It's important to only authorize specific application networks that can access the
CockroachDB cluster. This can be achieved through IP allowlisting and virtual
private cloud (VPC) peering. In IP allowlisting, you provide the IP addresses of all the
applications that need to access the CockroachDB cluster.

In VPC peering, you connect two virtual private clouds so that all the traffic between
them can be routed using private IP addresses. The advantages of VPC peering are as
follows:

•	 Improved network latency as the traffic between two virtual private clouds doesn't
have to go through the public internet

•	 More secure as the traffic is isolated from the public internet

•	 More cost savings as we will avoid using external IP addresses, which reduces the
egress cost

Security best practices 183

In the next section, we will look at some of the security best practices that should be
followed to get maximum security.

Security best practices
Let's go over some of the best security practices:

•	 Certification and key rotation: It is important to rotate certificates and keys from
time to time and keep their expiration times shorter. We should also automate a way
to rotate certificates and keys, which will be useful whenever we come across any
attacks. There are secret management tools such as Vault that can make it easy to
automate dynamic certificate generation and rotation.

•	 Client password: We should ensure that we follow all the necessary rules to
generate a very strong password. Weak passwords are easier to predict, which makes
them more vulnerable.

•	 Planning for disaster recovery: We should be diligent about our backup and restore
strategy, ensuring that none of the backups are missed and that they are stored in
multiple different regions.

•	 Automation: It's always a good practice to automate most of the routine work
around security. This will allow us to quickly respond without too much manual
intervention when things go wrong.

•	 Data encryption: It's important to encrypt data at rest as hackers constantly try to
get access to the storage devices.

•	 Transport layer security (TLS): Unless both the client and cluster nodes are behind
a firewall or within a secure perimeter, it's always a good idea to enable TLS.

•	 Secret management: Several tools are available for managing secrets. So, please
make use of any of the well trusted solutions, rather than reinventing the wheel.

•	 Production access: Production access should be highly restricted and should
be done on an as-needed basis. We must make sure that only the folks who are
currently on production on-call rotation have access, not everyone. Setting up
bastion hosts to access SQL clients is a must.

•	 Backups and archived data: We must make sure that even the backups and
historically archived data are encrypted.

•	 Personally identifiable information (PII): We should make sure that the PII and
sensitive information doesn't show up in some database logs or audit logs.

With that, we have come to the end of this chapter.

184 An Overview Of Security Aspects

Summary
In this chapter, we looked at several aspects of security, including authentication,
authorization, encryption, disaster recovery, auditing, and network security. Since a given
CockroachDB infrastructure can be spread across on-premises environments and various
private and public cloud providers, it's important to ensure maximum security and be
prepared to quickly recover in case things go wrong. Hackers and ransomware attacks
are increasing every day, so being educated about security and constantly improving our
security posture is the only way to prevent attacks.

In the next chapter, we will discuss debugging various performance-related issues in
CockroachDB.

10
Troubleshooting

Issues
In Chapter 9, An Overview Of Security Aspects, we learned about various mechanisms
for securing SQL workloads on CockroachDB. The ever-increasing presence of software
running on the cloud has led to increased attack surfaces. So, it is important to carefully
examine your security posture and to take measures to fill any security gaps.

In this chapter, we will go over how to troubleshoot issues that you come across while
using CockroachDB. Since this is a very broad topic, we will cover a few examples
from each category. Debug logs can help in narrowing down possible trouble areas and
eventually finding the root cause. In the first section, we will learn about collecting debug
logs. Next, we will go through some of the common causes of connection issues. In the
later sections, we will cover various topics that can cause a query to execute slowly or fail
completely. We will also go over ideal resource allocation and general guidelines to be
followed during an upgrade and advanced debugging options.

The following topics will be covered in this chapter:

•	 Collecting debug logs

•	 Connection issues

•	 Tracking slow queries

•	 Capacity planning

186 Troubleshooting Issues

•	 Configuration issues

•	 Network latency

•	 Guidelines to avoid issues during upgrade

•	 Advanced debugging options

Technical requirements
There are some commands discussed in this chapter that require you to have
CockroachDB installed. If you still haven't done so, please refer to the Technical
requirements section in Chapter 2, How Does CockroachDB Work Internally?

We will first start with a discussion on collecting debug logs.

Collecting debug logs
Whenever we debug issues, it's very helpful to have aggregated logs. There are tools such
as Datadog that provide a single pane of glass for monitoring a CockroachDB cluster.
Node logs and the admin UI provide helpful information for troubleshooting issues.
Please refer to Chapter 8, Exploring the Admin User Interface, to get yourself familiar with
the user interface. Logs provide detailed information about all the activities happening
in a cluster. CockroachDB provides various types of log files based on the intent.
CockroachDB also supports log levels and log channels. It is also possible to emit certain
log messages to an external destination for further processing.

In this section, we will first discuss various log files and what information each file
contains, then move on to understanding the log levels that determine how much
information you want to log based on their severity. Later, we will learn about the concept
of log channels, sending logs to an external resource for further processing, and collecting
all the logs.

Log files
CockroachDB provides various node-level log files that specialized in certain things, such
as the health of nodes, storage engine logs, or security-related logs. Following is the list of
various log files that are available in CockroachDB:

•	 cockroach.log: A general log that contains information about all the major
events occurring within the cluster.

•	 cockroach-health.log: The health of the cluster.

Collecting debug logs 187

•	 cockroach-security.log: SQL security log.

•	 cockroach-sql-audit.log: SQL access audit log.

•	 cockroach-sql-auth.log: SQL authentication log.

•	 cockroach-sql-exec.log: SQL execution log.

•	 cockroach-sql-slow.log: SQL slow query log.

•	 cockroach-sql-schema.log: SQL schema change log.

•	 cockroach-pebble.log: Pebble key-value store log. Pebble is the default
storage engine in CockroachDB.

•	 cockroach-telemetry.log: Telemetry log, which contains event information
about feature usage.

Next, we will discuss log levels.

Log levels
Log levels indicate the severity of a log message and based on the severity you have to
decide whether they should be handled or not. In general, the log levels ERROR and
FATAL should be handled in your application logic and it should take appropriate action
based on the error type. Following are the four log levels in CockroachDB:

•	 INFO: This indicates general informational log messages. It might be prudent to
turn these off in a production environment as they can occupy a lot of space and are
not that relevant when debugging issues.

•	 WARNING: This indicates that a normal operation might have failed but will recover
automatically. Based on each case and the impact, we have to decide whether to
handle this or not.

•	 ERROR: This indicates that a normal operation cannot be performed. We should pay
attention to these errors and make sure they are handled properly.

•	 FATAL: Fatal errors need immediate attention and action as they will be of the
highest severity.

Next, we will learn about a concept called log channels.

188 Troubleshooting Issues

Log channels
Log channels are distinguished based on the type of operation rather than the severity.
A log channel is useful when you have multiple teams that have to look at different sets
of logs based on the team's responsibilities. For example, logs related to configuration
changes done by an admin user in production will be more useful to an infosec or security
team than an application developer team. Log channels are very useful when integrated
with a sink such as Slack. A sink is an external resource that is capable of receiving data.
For example, all OPS and HEALTH messages can go to a Site Reliability Engineering
(SRE) channel, whereas USER_ADMIN, PRIVILEGES, and SENSITIVE_ACCESS can go
to the infosec channel. Following is a list of available log channels in CockroachDB:

•	 DEV: This channel is used during development and everything gets logged.

•	 OPS: This channel is related to cluster relation operations, configurations, and jobs.

•	 HEALTH: This channel logs resource usage, connection errors, range availability, and
leasing events.

•	 STORAGE: This is used to log Pebble storage engine related events.

•	 SESSIONS: This covers sessions, connections, and authentication events.

•	 SQL_SCHEMA: This is used to track schema changes involving database, schema,
table, sequence, view, and type; metadata changes.

•	 USER_ADMIN: This is used to track changes in users and roles.

•	 PRIVILEGES: This is used to track changes in grants and object ownership.

•	 SENSITIVE_ACCESS: This is used to access data access audit events, SQL
statements by admin, and operations that write to system tables.

•	 SQL_EXEC: This channel logs SQL executions and errors during execution.

•	 SQL_PERF: This channel records events that affect performance and slow
query logs.

•	 SQL_INTERNAL_PERF: This logs internal details of CockroachDB that will be
useful during troubleshooting.

•	 TELEMETRY: This is used to log telemetry events.

Next, we will discuss sending logs to an external sink.

Collecting debug logs 189

Emitting logs to an external sink
A sink is an external resource that is capable of receiving data. This external resource
sits outside of CockroachDB and is deployed and maintained separately. It is possible to
route messages of one or more log channels to an external log sink, which can be used for
alerting, providing an aggregated view of the logs across all the nodes in the cluster, and
further analyzing the log data, which can be useful in automating responses to unexpected
or fatal events. Sinks include log files, Fluentd compatible servers, HTTP servers, and
standard error streams. With appropriate configuration, it is possible to redact sensitive
data while sending it to the sink. Sinks support the following parameters:

•	 filter: The minimum severity level.

•	 format: The log format.

•	 redact: If true, redacts sensitive data such as personally identifiable information
(PII) from log messages.

•	 redactable: Retains redaction markers around sensitive fields.

•	 exit-on-error: If true, stops the CockroachDB node if it's unable to send log
messages to the sink.

•	 auditable : If true, enables exit-on-error and disables buffered-writing and hence
enforces stopping the CockroachDB node.

•	 If it's unable to send logs to the sink, it flushes each entry and synchronizes the writes.

Additionally, it is advisable to go through technical advisories that report major
issues in CockroachDB related to security and correctness. These can be accessed
at https://www.cockroachlabs.com/docs/advisories/index.html.
Also, Cockroach Labs keeps updating newly seen issues and resolution details at
https://www.cockroachlabs.com/docs/stable/cluster-setup-
troubleshooting.html#.

Gathering Cockroach debug logs
cockroach debug zip connects to the cluster and collects the debug information
from all the nodes in the cluster. So, when you start troubleshooting, it would be helpful to
run this to collect all the relevant logs. Following is the syntax of the debug command:

cockroach debug zip <path_to_store_the_zip_file> { flags }

The following is an example of the debug command:

$ cockroach debug zip ./cockroach-db/logs/debug.zip --insecure
--host=locahost:26258

https://www.cockroachlabs.com/docs/advisories/index.html
https://www.cockroachlabs.com/docs/stable/cluster-setup-troubleshooting.html#
https://www.cockroachlabs.com/docs/stable/cluster-setup-troubleshooting.html#

190 Troubleshooting Issues

Following are some of the important options that you have with the cockroach debug
zip command:

•	 --redact-logs: Redacts sensitive information from the logs.

•	 --timeout: Times out the command with an error message if it doesn't complete
within the stipulated time.

•	 --files-from and --files-until: You can filter the logs based on the
time. For example, --files-from='2021-01-01 12:00' and files-
until='2021-06-30 12:00'.

For complete options, please check cockroach debug zip --help.

Information such as CPU usage, metrics, schema metadata, node health, stack trace,
events, and jobs are collected from all the nodes.

Next, we will learn about connection issues and how to ensure we don't run into one.

Connection issues
Connection refused is one of the common connection issues when a PostgreSQL-
compatible SQL client is unable to connect to a CockroachDB node. There can be
many things that can go wrong here, such as expired certificates or firewall settings.
Following are some general guidelines on what to look for in terms of connection related
configurations:

•	 Check that the CockroachDB node is running and listening on the correct port.

•	 Check the connection details, especially the hostname and port number.

•	 If the node is running in secure mode, you have to make sure appropriate
certificates and keys are generated and are being passed correctly during the
connection.

•	 Make sure the client certificate is present and not expired.

•	 If the node is already running and the host and port are correct, you can try
restarting the node and see if that helps with the connection issue.

•	 Check for firewall rules that prohibit specific inbound and outbound traffic.

•	 Make sure the node is reachable using ping and the port can be accessed using
debugging tools such as netcat or telnet.

Tracking slow queries 191

In case of connection issues, we have to make sure that the client and the nodes of a
cluster can talk to each other securely.

In the next section, we will go over some of the recommended hardware and software
configurations for CockroachDB nodes.

Tracking slow queries
It is important to know which queries are not performing as expected so that we can
further investigate to find the actual cause for the slowness. Some queries can become
slow when the data grows. So, it is important to benchmark some of the critical queries
over time to make sure they are getting executed within the expected time. There are three
major ways to identify and debug slow queries:

•	 Use EXPLAIN and see if the query involves full scans and if so, see what kind of
indexes you can create to avoid it. This holds true for table joins as well.

•	 Turn on the slow query log for a specific latency threshold. In the following
example, all queries whose latency is greater than or equal to 500 milliseconds will
be logged in the slow query log:

> SET CLUSTER SETTING sql.log.slow_query.latency_
threshold = '500ms';

SET CLUSTER SETTING

Time: 120ms total (execution 120ms / network 0ms)

•	 Integrate CockroachDB logging with tools such as OpenTelemetry and Jaeger
that provide advanced tracing and spanning capabilities. This helps us with
understanding all the network hops that happen during a query and also how much
time individual units of work are taking. Whichever function or network hop takes
more time could be a potential candidate to investigate further.

A slow query can be caused by various issues that are discussed in the rest of the sections
in this chapter. So, once you identify a slow query, you have to identify which part of the
query is slow and investigate further till you find all possible reasons.

Next, we are going to go over general guidelines for upgrading a CockroachDB cluster.

192 Troubleshooting Issues

Capacity planning
We have to make sure individual nodes and the entire cluster has optimal hardware and
software configuration in order to perform better. Following is a set of recommended
configurations for CockroachDB:

•	 Operating system: Container-optimized OSs such as Ubuntu, Red Hat Linux,
and CentOS are the preferred operating systems. A container-optimized OS, as
the name suggests, is an operating system that is optimized for running Docker
containers.

•	 Node configuration: Following are node configurations for optimal performance:

	� CPU: At least four vCPUs per node. For more throughput per node, you can
increase the number of vCPUs.

	� Memory: 4 GiB RAM per vCPU.

	� IOPS (input/output operations per second): 500 per vCPU.

	� Disk I/O in MiB/second: 30 MiB/second per vCPU.

•	 Storage

	� 150 GiB per vCPU.

	� 2.5 TiB max per node.

	� Dedicated volumes only used for CockroachDB are preferred.

VM capacities differ between cloud providers. So, based on the preceding
recommendations, you can choose the appropriate VM for your workloads.

It's important to monitor the CPU and storage metrics for all the nodes and to have some
automation in place in order to expand the cluster by adding more nodes. Although
there is no hard limit, you might be better off keeping the maximum number of nodes
in a cluster to 50. Once you hit this threshold, you can add a second separate cluster and
introduce an external sharding mechanism to decide which cluster to redirect to for
a given query.

In the next section, we will go through configuration-related issues.

Configuration issues 193

Configuration issues
Things can go wrong because of misconfigurations such as using unavailable ports and
configuring the incorrect storage directory at the start. CockroachDB provides several
cluster-level settings. In most cases, leaving the default values might work better. If you
are modifying any default value, please ensure it's tested at scale in a pre-production
environment. Following are some of the commonly seen configuration-related issues:

•	 Storage directory already exists: This happens when you try to start a node with
a storage directory that has been used for some other CockroachDB process. In
this case, you can either choose a different directory or delete the contents of that
current directory.

•	 Port is already in use: This happens when there is some other process that is
already using a given port with which you are trying to start a CockroachDB
process. You can either kill the process that is using that port, provided that process
is no longer required, or you can also pick a different port that is available.

•	 Clock synchronization error: Whenever the clock of some node goes out of sync
with at least half of the other nodes in the cluster by more than 500 milliseconds
(the default threshold), the node shuts itself down. In order to avoid this, you can
try using an external network time protocol (NTP) service.

•	 Open file descriptor limit: Since CockroachDB opens a large number of file
descriptors, it expects a node to have a certain threshold limit, which is 1,956. The
recommendation is to set the limit to unlimited.

There are many other issues that you can face related to configuration. Based on the error
message, you have to further investigate and decide the appropriate solution.

In the next section, we will discuss slow queries.

Guidelines to avoid issues during an upgrade
When upgrading your cluster, the following are some general guidelines:

•	 Before you upgrade to a new version, it would be good to wait at least 2–3
months to make sure it's stable enough, doesn't contain too many bugs, and is not
withdrawn for security or functional issues.

•	 Once you decide the version you want to upgrade to, you have to make sure
you can upgrade to that version from the current version after going through the
release notes. Sometimes you might have to upgrade multiple times to reach the
desired version.

194 Troubleshooting Issues

•	 For certain versions, it's not possible to downgrade back to the previous version if
things go wrong and the upgrade is auto-finalized. In that case, your only option is
to discard the current cluster and create a new cluster from the backups. So make
sure all the data is backed up before you start the upgrade. Also, as an alternate
solution, you can disable auto-finalization with the following command:

SET CLUSTER SETTING cluster.preserve_downgrade_option =
'<current_cluster_version>';

However, you have to make sure you manually re-enable auto-finalization after
ensuring the cluster is stable and there is no data corruption. The following
command can be used for re-enabling auto-finalization:

RESET CLUSTER SETTING cluster.preserve_downgrade_option;

•	 You can perform a rolling upgrade by upgrading one node at a time and letting the
upgraded node rejoin the original cluster. Before you upgrade the next node, make
sure the cluster is healthy.

•	 Make sure you are not decommissioning any nodes during the upgrade. This can
result in multiple failures.

•	 It is also advisable not to do any schema changes.

•	 After the upgrade is complete, you can execute the Show Cluster Setting
version to ensure it shows the latest upgraded version.

•	 If anything goes wrong during the upgrade, your best option is to run the
'cockroach debug zip' command in order to gather all the information
about the cluster and go through the failures.

In the next section, we will discuss network latency.

Network latency
In the admin user interface, you have a page that shows network latencies within the
cluster. It has information about the round-trip latencies between each pair of nodes in the
cluster as shown in the following screenshot.

Network latency 195

Figure 10.1 – Network latency page in the admin user interface

Network latency plays an important role when you are deciding on your replication
strategy and topology patterns. Please refer to Chapter 4, Geo-Partitioning, to go over all
the topology patterns available in CockroachDB. Based on the criticality of the data, you
also have to decide whether you can tolerate zonal or regional failures.

Also, even before you decide the region and availability zone for CockroachDB nodes,
it would be good to go through inter-region network latencies for different cloud
providers. If you are planning to have your CockroachDB cluster span across multiple
cloud providers, you may want to choose the same region for your second and third
cloud provider in order to ensure the least network latency as they will be geographically
co-located. Companies such as Aviatrix also provide inter-cloud latencies for various
regions.

In the last section, we will go over some of the advanced debugging options.

196 Troubleshooting Issues

Advanced debugging options
In the admin user interface, you have a page for advanced debugging, which, as the
name indicates, shows advanced information about a cluster that can be useful in
troubleshooting issues. The Advanced Debugging page has the following sections:

•	 Reports

•	 Configuration

•	 Even more advanced debugging

The following screenshot shows how the Advanced Debugging page looks on the user
interface:

Figure 10.2 – Advanced Debugging page in the admin user interface

Under Reports you can get a report for the following items:

•	 Custom Time Series Chart: You can create a custom chart of the time series data.

•	 Problem Ranges: You can view ranges in your cluster that are unavailable, under-
replicated, slow, or have other problems.

Summary 197

•	 Data Distribution and Zone Configs: You can view the distribution of table data
across nodes and verify the zone configuration.

•	 Statement Diagnostics History: You can view the history of statement diagnostics
requests.

The Configuration section shows the following items:

•	 Cluster Settings: You can check all the cluster-level configurations here.

•	 Localities: This shows node locality, including address and location.

The Even More Advanced Debugging section is meant for the developers of
CockroachDB who understand the internal implementation. It has a lot of information, is
too detailed, and in general, can be avoided while debugging issues unless you understand
the internal implementations of CockroachDB.

Summary
In this chapter, we went through several resources that are available for debugging and
troubleshooting issues. Getting yourself familiarized with the debug logs and admin user
interface is an important step if you want to quickly diagnose and root cause the issues.
Also, being aware of cluster configurations, deployment strategies, network latencies,
and security settings comes in handy while troubleshooting issues. Using tools for log
aggregation, distributing tracing, tracking spans, alerting, and advanced metrics can
further aid you.

In the next chapter, we will learn about performance benchmarking and migration from
other databases to CockroachDB.

11
Performance

Benchmarking
and Migration

In Chapter 10, Troubleshooting Issues, we learned how to troubleshoot issues with the
help of metrics and logs. In this chapter, we will go over some important parameters
that we should consider during performance benchmarking, how to do performance
benchmarking, and important things to consider during migration. Finally, we will
look at some specific examples of migrating from some traditional databases, such as
PostgreSQL.

The following topics will be covered in this chapter:

•	 Performance—Things to consider

•	 Performance benchmarking for CockroachDB

•	 Migration—Things to consider

•	 Migrating from traditional databases

200 Performance Benchmarking and Migration

Technical requirements
There are some commands discussed in this chapter that require you to have
CockroachDB installed. If you still haven't done so, please refer to the Technical
requirements section of Chapter 2, How Does CockroachDB Work Internally?.

Performance – Things to consider
In this section, we will discuss general factors related to the infrastructure that affect
performance, some standard benchmarking suites, and running a benchmark for your
specific needs in CockroachDB.

Infrastructure
It is important to know the ideal configuration for your infrastructure as that significantly
influences the performance of CockroachDB that runs on top of it. Here are some key
factors to consider in this regard:

•	 Central processing unit (CPU): It would be a cliché to say that the CPU plays
an important role in performance. We have to ensure each node gets at least four
virtual CPUs (vCPUs). You should constantly monitor the CPU usage in all nodes
to quickly identify hot nodes that might be receiving more traffic than other nodes.
This can make the node's CPU reach its maximum capacity, which can slow down
query response times.

•	 Memory: Pebble key-value store, table metadata, and CockroachDB internal data
structures all use memory. It is recommended that each node should have at least
4 gibibytes (GiB) of random-access memory (RAM). Also, you should keep track
of the memory usage of all nodes. If a node or bunch of nodes start to reach their
full memory capacity, you can either increase the memory of the affected node/s or
scale out the cluster by adding more nodes. Resharding the ranges ensures that each
node now handles fewer ranges, and hence their memory usage can go down. Also,
ideally, 20% of the memory should always be empty, so you should treat reaching
80% memory usage as the full capacity and start readjusting the cluster if any nodes
reach that threshold.

•	 Operating system: Any Linux-based operating system would be ideal. Container-
optimized operating systems, Ubuntu, Red Hat Enterprise Linux (RHEL), and
CentOS are among the popular choices for an operating system for running
CockroachDB.

Performance – Things to consider 201

•	 Storage input/output (I/O): Many cloud providers offer storage options that are
highly available. You can also choose specific configurations to ensure the storage
layer withstands zonal and regional failures. Solid-state drives (SSDs) are preferred
for faster I/O. You should not exceed 2.5 tebibytes (TiB) per node and 150 gigibytes
(GiB) per vCPU for optimal performance, as per the recommendation from
Cockroach Labs..

•	 Network: Since more than one node is involved in a distributed Structured
Query Language (SQL) query and SQL clients can also consume data from
various geographies, network performance is critical in determining the overall
performance. If a cluster is spread across multiple regions and supports regional
failures, then the overall query-response time can be slower, as each commit would
have to be communicated between at least two regions. So, pay attention to network
hops between the nodes, client, and cluster.

•	 Cloud provider: We now have several cloud providers that offer compute, memory,
storage, and network resources on the cloud. Also, you get several options to
choose from for each of these resources. There is also an increasing use of hybrid
cloud and multi-cloud architectures, which further complicates the deployments.
Cloud providers also refresh their hardware; so, when you are benchmarking across
multiple cloud providers, you might see inconsistencies in performance if you
repeat the same benchmarks every 6 months.

Next, we will learn about some popular benchmark suites.

Popular benchmark suites
Several popular benchmark suites are used to benchmark databases and data warehouses.
Here is a list of some commonly used ones:

•	 TPC-C (http://www.tpc.org/tpcc/): TPC-C is a short form of Transaction
Processing Performance Council Benchmark C, which is a benchmark used
to compare the performance of online transaction processing (OLTP) systems.
The TPC-C benchmark defines a set of functional requirements that can be run
on a given transaction processing system. This benchmark requires reporting
performance, which is the same as transaction throughput, and price/performance,
which is the overall infrastructure cost/throughput.

•	 TPC-H (http://www.tpc.org/tpch/): TPC-H is a decision support
benchmark. It involves running ad hoc queries and concurrent data modification
and measuring performance.

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/

202 Performance Benchmarking and Migration

•	 YCSB (https://github.com/brianfrankcooper/YCSB): Short for Yahoo!
Cloud Serving Benchmark, YCSB is an open source benchmark suite used for
evaluating retrieval and maintenance capabilities of databases. It is often used to
measure the performance of NoSQL databases and workloads involving simple
database operations.

•	 Sysbench (https://github.com/akopytov/sysbench): Sysbench is
a benchmark suite used for measuring system performance, especially when you
are running a database.

It takes a lot of effort and resources to run these benchmarks. Fortunately, Cockroach
Labs conducts extensive benchmarking across multiple cloud providers every year that
includes the performance of CPU, network, storage, and TPC-C, and provides the results
in its annual cloud report. Benchmarks for 2020 and 2021 can be accessed at https://
www.cockroachlabs.com/guides/2020-cloud-report/ and https://www.
cockroachlabs.com/guides/2021-cloud-report/. So, unless you want to
measure the performance for some specific use cases and workload patterns, these cloud
reports should serve as a great starting point to decide which cloud provider to pick and if
CockroachDB's performance is acceptable.

Benchmarking your specific use cases
In any benchmark, you should also pay attention to whether you want to conduct a
synthetic benchmark or a real-world benchmark. Synthetic benchmarking involves
simulating the traffic with dummy data. Real-world benchmarking is much closer to
what you already have in production, benchmarking the real workloads with the real
data. Real-world benchmarks can give a much better indication of how CockroachDB is
going to perform when put in production. Although there are standard suites available
for performance benchmarks, it's always handy to do your own benchmarking for specific
needs. Here are some categories that can fall under this:

•	 Large data: When the data is large, you would need a greater number of nodes to
manage the data—so, the performance of a 3-node cluster might vary from the
performance of a 17-node cluster. So, based on the specific volume of data that you
have in your mind, you can benchmark CockroachDB against it. You should also
ensure that the read-and-write queries are similar to what you would expect in
production, in order to keep it close to the real world.

•	 High traffic: Your workload might have to be more skewed toward high read or
high write traffic, or both. So, based on what is relevant to your query patterns, it's
important to benchmark for high traffic workloads tailored to your needs.

https://github.com/brianfrankcooper/YCSB
https://github.com/akopytov/sysbench
https://www.cockroachlabs.com/guides/2020-cloud-report/
https://www.cockroachlabs.com/guides/2020-cloud-report/
https://www.cockroachlabs.com/guides/2021-cloud-report/
https://www.cockroachlabs.com/guides/2021-cloud-report/

Performance – Things to consider 203

•	 Scaling with an increase in data volume: If you are using a database in a year-
old start-up with very few customers, the volume of data will obviously be much
less. But as the company grows and there are more use cases and customers start
consuming more data, the data volume can explode. So, it is good to prepare your
infrastructure for 5-10X growth, both in terms of data volume and traffic, and
see how many resources you would need to scale out. As part of this exercise, you
will also know where you stand with respect to automation. By automating all the
repeatable tasks, you can be better prepared to handle failures and scale out the
infrastructure.

•	 Failover: Some businesses are more sensitive to downtime than others. For
example, if your database is supporting some application used by doctors and
health specialists to view patient records in real time or if your database supports an
application that is used for online booking, your database is expected to be available
maybe with six nines of availability. This means the database can be unavailable
only for 31.56 seconds in the entire year. So, in such cases, it's important to simulate
failures to see how quickly you can recover from the node, zonal, regional failures,
or any kind of failures that can result in the disruption of your database service.

•	 Multi-tenancy: There are a couple of different ways to implement multi-tenancy
with CockroachDB. For example, you can have a dedicated small cluster for each
customer. Although this is great from a security perspective as workloads from
other customers can be completely isolated, practically, this is not cost-effective.
So, it would be ideal to just introduce tenant-id (tenant identifier (ID)) and
shard the data based on that. But with this approach, it can become tricky to keep
the service-level agreement (SLA) the same for all customers, as it's more prone
to creating hotspots as the tenants will not be equally active in consuming the data.
In such cases, you can also benchmark resharding ranges or try resharding the data
into multiple clusters, and see how long that takes.

•	 Migration: Before you migrate the real data in production, you can benchmark how
much time the entire process takes from exporting the schema and data from the
source database to importing the same into the target database. You might have to
do this for various data volumes to get an idea of how much time it might take in
production for the complete migration.

In the next section, using an example, we will learn how to conduct performance
benchmarking for CockroachDB.

204 Performance Benchmarking and Migration

Performance benchmarking for CockroachDB
In this section, we will go over the process of performing TPC-C benchmarking on
CockroachDB. Here are the steps for running a TPC-C workload and getting the statistics
for the run:

1.	 Import the TPC-C dataset into your local CockroachDB cluster, as follows:

$ cockroach workload fixtures import tpcc –warehouses=5
'postgresql://root@localhost:26257?sslmode=disable'

I220127 06:46:52.189260 1 ccl/workloadccl/fixture.go:342
[-] 1 starting import of 9 tables

2.	 After loading the tables, you should see the following statistics at the end:

I220127 06:47:31.384005 1 workload/tpcc/tpcc.go:485 [-]
13 check 3.3.2.1 took 152.063ms

I220127 06:47:31.664548 1 workload/tpcc/tpcc.go:485 [-]
14 check 3.3.2.2 took 280.468ms

I220127 06:47:31.719888 1 workload/tpcc/tpcc.go:485 [-]
15 check 3.3.2.3 took 55.281ms

I220127 06:47:32.796841 1 workload/tpcc/tpcc.go:485 [-]
16 check 3.3.2.4 took 1.076892s

I220127 06:47:33.218333 1 workload/tpcc/tpcc.go:485 [-]
17 check 3.3.2.5 took 421.432ms

I220127 06:47:34.706096 1 workload/tpcc/tpcc.go:485 [-]
18 check 3.3.2.7 took 1.487671s

I220127 06:47:35.142591 1 workload/tpcc/tpcc.go:485 [-]
19 check 3.3.2.8 took 436.435ms

I220127 06:47:35.503616 1 workload/tpcc/tpcc.go:485 [-]
20 check 3.3.2.9 took 360.963ms

You can verify whether data for TPC-C is loaded or not by browsing the tpcc
database and the tables, as shown in the following code snippet:

root@localhost:26257/defaultdb> show databases;

 database_name | owner | primary_region | regions |
survival_goal

----------------+-------+----------------+---------+-----

 defaultdb | root | NULL | {} | NULL

 postgres | root | NULL | {} | NULL

 system | node | NULL | {} | NULL

Performance benchmarking for CockroachDB 205

 tpcc | root | NULL | {} | NULL

(4 rows)

Here are the tables in the tpcc database:
root@localhost:26257/defaultdb> use tpcc;

SET

Time: 1ms total (execution 1ms / network 0ms)

root@localhost:26257/tpcc> show tables;

 schema_name | table_name | type | owner | estimated_
row_count | locality

--------------+------------+-------+-------+-------------
--------+-----------

 public | customer | table | root |
150000 | NULL

 public | district | table | root |
50 | NULL

 public | history | table | root |
150000 | NULL

 public | item | table | root |
100000 | NULL

 public | new_order | table | root |
45000 | NULL

 public | order | table | root |
150072 | NULL

 public | order_line | table | root |
1500459 | NULL

 public | stock | table | root |
500000 | NULL

 public | warehouse | table | root |
5 | NULL

(9 rows)

Once this is done, you can run a sample workload with the following command:
$ cockroach workload run tpcc --warehouses=5
--ramp=3m --duration=3m 'postgresql://root@
localhost:26257?sslmode=disable'

206 Performance Benchmarking and Migration

Here is a description of some of the options used in the preceding command:

	� --warehouse is the number of warehouses that will be used for loading the data.

	� --ramp is the duration for which the load will be ramped up, which will warm
the cluster.

	� --duration is the total duration to run the workload.

For both ramp and duration, time units can be specified in h, m, s, ms, us, and ns.

You will see statistics getting emitted every second on the console. Here is an example
snapshot of statistics you might see:

_elapsed___errors__ops/sec(inst)___ops/sec(cum)__p50(ms)__
p95(ms)__p99(ms)_pMax(ms)

 145.0s 0 0.0 0.1 0.0
0.0 0.0 0.0 delivery

 145.0s 0 0.0 0.4 0.0
0.0 0.0 0.0 newOrder

 145.0s 0 0.0 0.1 0.0
0.0 0.0 0.0 orderStatus

 145.0s 0 1.0 0.5 176.2
176.2 176.2 176.2 payment

 145.0s 0 0.0 0.0 0.0
0.0 0.0 0.0 stockLevel

 146.0s 0 0.0 0.1 0.0
0.0 0.0 0.0 delivery

Once the workloads are done running, you will see a performance metrics summary at the
end. Here is a sample summary:

_elapsed_______tpmC____efc__avg(ms)__p50(ms)__p90(ms)__
p95(ms)__p99(ms)_pMax(ms)

 180.0s 62.0 96.4% 179.5 176.2 243.3 260.0
352.3 469.8

This metrics summary includes an average of per-operation statistics. Similarly, you
can run several other types of workloads that are provided out of the box. Please visit
https://www.cockroachlabs.com/docs/stable/cockroach-workload.
html to learn more.

In the next section, we will go over key aspects to consider before and during database
migration.

https://www.cockroachlabs.com/docs/stable/cockroach-workload.html
https://www.cockroachlabs.com/docs/stable/cockroach-workload.html

Migration – Things to consider 207

Migration – Things to consider
In this section, we will go over some important factors that affect your migration strategy.
Migrating between databases is always a tedious, error-prone, and complicated endeavor.
It is also possible to get into nightmarish situations if you are not thorough and careful.
Also, if your business is sensitive to downtime during this migration, you should find a
mechanism for doing continuous migration. It is important to make sure you do your own
benchmarking for the current schema, workload, and queries on CockroachDB before
you decide to migrate your production data and workloads.

Here are some key aspects you should pay attention to before deciding on migration:

•	 Cost: You should be asking yourself whether the overall cost is going to go down or
increase once you move to CockroachDB. Since the cost of maintaining a database
can be significant, you should do a back-of-the-envelope calculation to see the cost
difference.

•	 Learning curve: Although CockroachDB supports most SQL constructs, it's not
100% compatible with traditional databases. This requires modifying some existing
queries and also doing benchmarking for those queries. If there are many features
missing in CockroachDB that you are using in the current database, then all your
application teams have to be educated about how to rewrite those queries.

•	 Security: When you are moving to CockroachDB, if the resources allocated for
CockroachDB are within the same infrastructure as that of the previous database,
then you will have fewer things to worry about in terms of security. For example,
migrating to CockroachDB within your on-premises cluster is very different from
migrating to CockroachDB-as-a-Service hosted by some third-party vendor. In
the first case, all your security configurations can remain the same, whereas in the
latter case, you will just get an endpoint to talk to and there is always a chance that
the third-party infrastructure gets compromised and potentially exposes your data
to bad players. So, it's always a good idea to run the migration plan through the
information security (InfoSec) team and get their opinion.

•	 Vendor lock-in: Vendor lock-in happens when you are forced into using a specific
product or a service, either because there are no other vendors who provide the
same service or because you are already deeply invested in one. Vendor lock-in is a
tricky subject, and it can happen in several ways. Here are some situations that can
lead to vendor-lock-in:

A.	 Completely relying on an as-a-service offering by a third-party vendor
B.	 Extensively using all the enterprise-only features

208 Performance Benchmarking and Migration

C.	 Not having in-house expertise to deal with fires or to develop new features
D.	 Getting into long-term contracts with vendors because of an initial discount

I am sure there are plenty more points to discuss here, but the intention is to only
highlight the important ones.

Once you have finalized that you are definitely going to migrate to CockroachDB, here are
some key items you should plan for:

•	 Capacity planning: The number of nodes, memory, and storage space can all vary
from what's allocated to a traditional database. So, make sure you provision enough
resources upfront in order to avoid any issues arising from a lack of resources.

•	 Downtime: Although you will have tried the migration several times in
a pre-production environment before proceeding to production, you can always
encounter new issues if the scale and data of production and pre-production
are different. So, just be prepared for all sorts of failures, keep the stakeholders
informed, and line up the necessary human resources before you start the
migration.

•	 Migrating data in smaller chunks: Instead of dumping the entire database at once,
you can just migrate one table at a time. This can finish relatively faster compared to
the entire database import, and you can also avoid timeouts.

•	 Maintaining data in source and target databases for some time: It would be
advisable to maintain the data in both source and target databases for several
months till you are comfortable with CockroachDB. Maintaining the data in the
source database will allow you to switch back to the source database if things don't
go as expected after the migration. But this definitely creates additional complexity,
as you now have to maintain the data in two different databases and make sure the
data is still consistent between them.

In the next section, we will learn how to migrate from traditional databases into
CockroachDB.

Migrating from traditional databases
In this section, we will outline a few generic steps that are involved in migrating data
between any two databases. After that, we will go over a specific example of migrating data
from PostgreSQL into CockroachDB.

Migrating from traditional databases 209

Migrating from other databases into CockroachDB usually involves the following
generic steps:

1.	 Export the schema from the source database.
2.	 Export the data from the source database.
3.	 Transform the data into a desirable format. In most cases, comma-separated values

(CSV) should work just fine.
4.	 Compress and transfer the schema and the data to the desired location where it can

be imported into CockroachDB.
5.	 Do the data type mapping in the schema from the source to the CockroachDB

database.
6.	 Import the schema, along with the data, into CockroachDB.
7.	 Manually create users and privileges.
8.	 All the application teams also have to map current queries from the source database

to CockroachDB.

Now, let's look at a specific example of how this migration looks when we migrate from
PostgreSQL into CockroachDB.

Migrating from PostgreSQL to CockroachDB
Here are the steps to take to migrate from PostgreSQL:

1.	 Dump the database: pg_dump is a utility used for taking backups for a PostgreSQL
database. You can use the following command to dump a given database:

 pg_dump my_database > my_database.sql

2.	 Map the required data types in the schema. For example, any new types of data
that are created in PostgreSQL using CREATE TYPE will not be supported in
CockroachDB as they are not the standard data type. So, these should be manually
mapped to CockroachDB data types in the previously dumped file.

3.	 Compress and move the dump to a place where it can be imported into a
CockroachDB cluster.

4.	 Import the schema and data using the following command:

IMPORT PGDUMP 'nodelocal:///my_database.sql.gz' WITH
ignore_unsupported_statements;

210 Performance Benchmarking and Migration

5.	 Once this is done, you can list the databases and tables and run sample queries on
the imported database to make sure it's imported correctly.

6.	 The final step is to verify that the entire data is imported without any missing data.
For this, you can compare all the tables and row counts of the imported tables with
the source database. For critical tables, you can dump it from the source and target
database and compare the byte size and contents.

Data migration is always tedious and can fail for various reasons. So, instead of making
it a one-time activity, you can also explore the option of continuous migration and
keeping the previous database in tandem with CockroachDB. This is required till you are
completely confident that CockroachDB is performing well for all your use cases and all
the data is migrated to CockroachDB cluster. For continuous migration, you can publish
the change data capture from a traditional database into Kafka and consume the events to
make relevant updates in CockroachDB.

Summary
In this chapter, we discussed aspects that contribute to performance. We also looked at
popular benchmark suites and went over the process of benchmarking a CockroachDB
cluster. Next, we learned about important things we should consider before and during
migration. Lastly, we familiarized ourselves with generic steps for migrating from some
other database to CockroachDB and discussed a specific example of migrating from
PostgreSQL to CockroachDB.

With that, we have come to the end of this book. All the code used in this book has been
shared at https://github.com/PacktPublishing/Getting-Started-with-
CockroachDB. Please make sure you are using the latest version of CockroachDB when
trying out these examples. All the examples have been tried with v21.2.0. Please reach
out to the author if you find any mistakes. Thank you for reading this book— I hope you
enjoyed the contents of this book and are now ready to start exploring CockroachDB as
a potential database for your use cases.

https://github.com/PacktPublishing/Getting-Started-with-CockroachDB
https://github.com/PacktPublishing/Getting-Started-with-CockroachDB

Appendix:
Bibliography

and Additional
Resources

Here is a list of references used in the book:

•	 Brian W. Kernighan and Alan A. A. Donovan: "The Go Programming
Language", 2015

•	 Eric Brewer: "CAP twelve years later: How the 'rules' have changed", Computer,
Volume 45, Issue 2, pg. 23–29, 2012

•	 Ongaro, Diego and John K. Ousterhout: "In Search of an Understandable Consensus
Algorithm." USENIX Annual Technical Conference, 2014

•	 Ramez Elmasri and Shamkant B. Navathe: "Fundamentals of Database Systems", 7th
edition, 2016

•	 Rebecca Taft et al.: "CockroachDB: The Resilient Geo-Distributed SQL Database." In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (SIGMOD'20), Portland, OR, USA, June 2020

212 Bibliography and Additional Resources

•	 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein:
"Introduction to Algorithms", 3rd edition. MIT Press, ISBN 978-0-262-03384-8,
pp. I-XIX, 1-1292, 2009

Here is a list of additional resources that you can refer to:

•	 https://www.cockroachlabs.com

•	 https://www.cockroachlabs.com/docs/v21.2/

•	 https://github.com/cockroachdb/cockroach

•	 https://s2geometry.io/

•	 https://www.royans.net/2010/02/brewers-cap-theorem-on-
distributed.html

•	 http://blog.thislongrun.com/2015/03/the-confusing-cap-and-
acid-wording.html

https://www.cockroachlabs.com
https://www.cockroachlabs.com/docs/v21.2/
https://github.com/cockroachdb/cockroach
https://s2geometry.io/
https://www.royans.net/2010/02/brewers-cap-theorem-on-distributed.html
https://www.royans.net/2010/02/brewers-cap-theorem-on-distributed.html
http://blog.thislongrun.com/2015/03/the-confusing-cap-and-acid-wording.html
http://blog.thislongrun.com/2015/03/the-confusing-cap-and-acid-wording.html

Index

A
abstract syntax tree (AST) 25
ACID properties

about 48
atomicity 48
consistency 49
durability 51
isolation 49, 50

advanced debugging options
about 196
advanced debugging 197
configuration 197
reports 196

Advanced Encryption Standard (AES) 177
ALTER INDEX

parameters 129
ALTER statement

about 129
example 130

ALTER TABLE
parameters 129

Amazon Elastic Block Store (EBS) 86
Amazon Elastic Compute Cloud (EC2) 86
Amazon Web Services 66
American National Standards

Institute (ANSI) 24

Apache Derby 12
arrays 110
atomicity 48
atomicity, consistency, isolation,

and durability (ACID) 31
atomic transactions

without parallel commits 52, 54
with parallel commits 55, 56

audit logging 168-181
authentication 169
authorization 168
authorization mechanisms

about 174, 175
privileges 176, 177
roles 175, 176

automatic rebalancing 96-98
availability and partition

tolerance (AP) 14
availability zones 64, 65

B
Berkeley DB 12
Bigtable 16
bridge network 21

214 Index

C
C++ 12
California Consumer Privacy

Act of 2018 (CCPA) 63
capacity planning 192
CAP-available system

about 14
example 15

CAP-consistent system
about 13
example 14

CAP theorem (Consistency, Availability,
and Partition Tolerance)

about 13, 49
availability and partition

tolerance (AP) 14
consistency and availability (CA) 15
consistency and partition

tolerance (CP) 13
cardinality

about 6
many-to-many relationship 7
one-to-many relationship 6, 7
one-to-one relationship 6

Cassandra 5, 15
central processing unit (CPU) 200
certificate authority (CA) 170
certificates and keys

generating 171, 172
change data capture (CDC) 12, 157
ciphertext 177
cleanup.sh script

reference link 99
client authentication

about 169, 170, 172
Generic Security Services API (GSSAPI),

with Kerberos authentication 173

password authentication,
without TLS 172

password authentication, with TLS 173
single sign-on (SSO) authentication 173

cloud 64
cloud computing 5
cloud provider 64, 201
cloud regions 64
cluster upgrade

issues, avoiding 193, 194
COBOL language 4
CockroachDB

about 5, 15
atomicity 51, 52
consistency 57
databases 125
durability 57-60
functional layers 18
high-level overview 17
inspiration 16
interacting, with disk 41
isolation 57
key concepts and terms 16
layers 19
migrating, from PostgreSQL 209, 210
migrating, from traditional

databases 208, 209
need for 16
performance benchmarking 204-206
used, for achieving geo-partitioning 67

CockroachDB admin user
interface 146-148

CockroachDB-as-a-Service 207
CockroachDB cluster

overview 148-151
CockroachDB cluster setup

reference link 189

Index 215

CockroachDB configurations
node configuration 192
operating system 192
storage 192

CockroachDB features
rebalancing 68
replication 68
resiliency 68

CockroachDB, log channel
DEV 188
HEALTH 188
OPS 188
PRIVILEGES 188
SENSITIVE_ACCESS 188
SESSIONS 188
SQL_EXEC 188
SQL_INTERNAL_PERF 188
SQL_PERF 188
SQL_SCHEMA 188
STORAGE 188
TELEMETRY 188
USER_ADMIN 188

CockroachDB, log levels
ERROR 187
FATAL 187
INFO 187
WARNING 187

CockroachDB, technical advisories
reference link 189

CockroachDB, topology patterns
multi-region 70, 71
single region 67

Cockroach debug logs
obtaining 189, 190

cockroach debug zip command
options 190

CODASYL (Conference/Committee
on Data Systems Languages) 4

column-level constraints
about 137
CHECK <condition> 137
DEFAULT constraint 138
FOREIGN KEY 138, 139
NOT NULL 139
PRIMARY KEY 139
UNIQUE constraint 139

comma-separated values (CSV) 209
common table expressions (CTEs) 131
Compute Engine 87
configuration-related issues

about 193
clock synchronization error 193
open file descriptor limit 193
port, using 193
storage directory exist 193

connection issues 190
connection refused 190
consensus 34
consistency 49
consistency and availability (CA) 15
consistency and partition

tolerance (CP) 13, 14, 57
Continuous Integration/Continuous

Deployment (CI/CD) 67
Coordinated Universal Time (UTC) 137
Couchbase 5
Couchbase Lite 12
CouchDB 15
CREATE DATABASE statement

parameters 124
create, read, update, and delete

(CRUD) 12, 42
CREATE statement 124

216 Index

CREATE TABLE syntax
about 125
parameters 125, 126
reference link 126

CREATE VIEW
about 126
example 127, 128
parameters 127

C Yacc 25

D
data at rest 168, 177
database

about 3
evolution 4
history 4
NewSQL 5
NoSQL 5
object-oriented databases 4
SQL 4

database concepts
about 6
cardinality 6
database models 8
database storage engine 12
embedded databases 12
mobile database 12
processing models 11

database index 102
database management system

(DBMS) 3, 42, 51
database migration

considerations 207, 208
database models

about 8
hierarchical database model 8
network model 9

object-relational model 10
relational model 9

Databases dashboard 158-160
database storage engine 12
data definition language (DDL)

about 124, 154
ALTER statement 129
CREATE statement 124

data distribution
across multiple nodes 32

Datadog 186
data encryption at rest 177, 178
data encryption in flight 177, 178
data keys 177
data manipulation language (DML) 131
data query language (DQL)

about 135
SELECT statement 135

data replication
for resilience and availability 34

data types 136
DB2 Everyplace 12
debug logs

collecting 186
decryption 177
default connections

database 125
default database

demonstration purposes 125
DELETE statement

about 134
example 134
parameters 134

distribution layer 18
Docker

used, for installing single-node
CockroachDB cluster 21-23

document model 10

Index 217

Dropbox 5
DROP statement

about 130
example 130

DROP TABLE
parameters 131

duplicate indexes 80, 81
durability 51
Dynamo 5

E
Edgestore 5
election timeout 35
embedded databases 12
encryption 177
entity-relational model 10
external sink

logs, sending to 189
Extract, Transform, and Load (ETL) 11

F
Facebook 5
fault domains 67
fault tolerance

achieving 86
achieving, at storage layer 86
working example 87-96

follower reads 83
follow-the-workload 83, 84
FORTRAN language 4
FoundationDB 5
FULL JOIN 141
full table scan 102
functional layers, CockroachDB

distribution layer 18
replication layer 18

SQL layer 18
storage layer 18
transactional layer 18

G
General Data Protection

Regulation (GDPR) 64
geo-partitioned leaseholders 75-79
geo-partitioned replicas 71-75
geo-partitioning

about 62, 63
achieving, with CockroachDB 67
advantages 64

gibibytes (GiB) 200
GitHub 16
Golang 12, 43
Golang ORM (GORM) 24
Google 5
Google Cloud Platform (GCP) 66, 87
Google Spanner 5
Goyacc 25
GreenPlum 5
GSSAPI setup

reference link 173

H
hash-sharded indexes 109, 110
Hbase 5
hierarchical database model

about 8
example 8

high-level overview 17
hot ranges 156
HSQLDB 12
hybrid cloud 64

218 Index

hybrid transaction/analytical
processing (HTAP) 12

HyperText Transfer Protocol
(HTTP) requests 22

I
IBM DB2 4, 8
IDMS (Integrated Database

Management Systems) 9
indexes

about 102
best practices 118, 119
duplicate indexes 110, 111
hash-sharded indexes 108-110
inverted indexes 110
partial indexes 111-113
primary indexes 104-106
secondary indexes 106, 107
spatial indexes 113-115
table joins 115-118
types 103
working 102, 103

InfinityDB 12
Information Management

System (IMS) 4, 8
information security (InfoSec) 207
infrastructure

configuring, considerations 200, 201
INNER JOIN 140
INSERT statement

parameters 131
Integrated Data Store (IDS) 4, 9
Interactive Graphics Retrieval

System (INGRES) 4
Internet Protocol version 4 (IPv4) 136
Internet Protocol version 6 (IPv6) 136

inverted indexes 110, 111
IP allowlisting 182
isolation 49
isolation levels

read committed 50
read uncommitted 49
repeatable read 50
serializable 49
snapshot 49

J
Jepsen 57
Jobs dashboard

jobs, tracking 163-165
JOIN types

about 140
FULL JOIN 141
INNER JOIN 140
LEFT OUTER JOIN 140
RIGHT OUTER JOIN 141

JSON Web Token (JWT) 173

K
key concepts and terms, CockroachDB

cluster 16
leader 16
leaseholder 16
node 16
raft log 16
ranges 16

keys 102
known limitations

reference link 143

Index 219

L
leader election 35
leaseholder 26
LEFT OUTER JOIN 140
LevelDB 12
lexical analysis 24
log channel 188
log files 186, 187
logical plan 25
logical processors 30
log levels 187
log replication 36-41
logs

sending, to an external sink 189

M
many-to-many relationship 7
MariaDB 4
memory 200
meta ranges 32, 33
metrics

about 151
categories 151-158

Microsoft Azure 66
mobile databases 12
MongoDB 5
monolithic sorted key-value

store (MSKVS)
about 32
system data 32
user data 32

multi-cloud 64
multi-node failures

recovering from 98, 99
multi-region

about 70, 71

duplicate indexes 80-82
follower reads 83
follow-the-workload 83, 84
geo-partitioned leaseholders 75-79
geo-partitioned replicas 71-75

Multiversion concurrency
control (MVCC) 31, 52

MySQL 4, 8

N
navigational databases 4
Neo4j 5
network 201
network latency 194, 195
network model

about 9
example 9

network security 182
network time protocol (NTP) 193
NewSQL 5
node authentication 169-173
non-vectorized query execution 30
NoSQL 5

O
object model 10
object-oriented database systems

(OODBMSes) 4
object-relational mappers (ORMs) 24
object-relational model 10
objects 110
one-to-many relationship 6, 7
one-to-one relationship 6
online analytical processing (OLAP) 11
online event processing (OLEP) 11

220 Index

online transaction processing
(OLTP) 11, 201

on-premises cluster 207
OpenSSL tool

about 172
download link 172

operating system 200
Oracle 8
Oracle Cloud 67
Oracle database Lite 12

P
parallel commits 51
partial index 111-113
Pebble 12, 42
performance, considerations

about 200
infrastructure 200, 201
popular benchmark suites 201, 202
specific use cases,

benchmarking 202, 203
personally identifiable

information (PII) 189
phantom read 50
point-in-time restore 181
PostgreSQL

migrating, to CockroachDB 209, 210
Post Ingres (Postgres) 4, 24
primary indexes 104-106
primary key (PK) 104, 129
private cloud 64
processing models

about 11
hybrid transaction/analytical

processing (HTAP) 12
online analytical processing (OLAP) 11
online event processing (OLEP) 11

online transaction processing
(OLTP) 11

public cloud 64
public-private keys 169

Q
quadtree data structure 113
QUEL 4

R
Raft 34, 54
raft log 16
Raft nodes

candidate 35
follower 35
leader 35

Raima Database Manager (RDM) 9
random-access memory (RAM) 152, 200
ranges 32
real-world benchmarking 202
recovery point objective

(RPO) 168, 181, 182
recovery time objective

(RTO) 168, 181, 182
Red Hat Enterprise Linux (RHEL) 200
region 65
region and zone, cloud providers

Amazon Web Services 66
defining 66
Google Cloud Platform 66
Microsoft Azure 66
Oracle Cloud 67

region, cloud providers
cloud cost 65
data compliance 65
latency 65

Index 221

multi-cloud and hybrid
cloud strategy 65

services and features 65
relational model

about 9
example 10

remote procedure call (RPC) requests 35
replication factor 34, 86
replication layer 18
resharding 200
Riak 15
RIGHT OUTER JOIN 141
RocksDB 12

S
S2 geometry library

reference link 113
schema 126
schema changes

benefits 143
limitations 143
managing 142

secondary index 106, 107
security, best practices

about 183
automation 183
backups and archived data 183
certification and key rotation 183
client password 183
data encryption 183
disaster recovery, planning 183
personally identifiable

information (PII) 183
production access 183
secret management 183
Transport Layer Security (TLS) 183

security concepts 168, 169
SELECT statement

about 135
parameters 135

sequences
example 141, 142
using 141, 142

serializable snapshot 57
service-level agreement (SLA) 203
Sessions dashboard 160, 161
SHOW SQL syntax 136
single-node CockroachDB cluster

installing, with Docker 21-23
single region

about 67
basic production 68, 69
development 67

single sign-on (SSO) 173
sink

about 189
parameters 189

Site Reliability Engineering
(SRE) 182, 188

slow queries
tracking 191

Snowflake Schema 10
solid-state drives (SSDs) 201
Sorted Strings Tables (SSTable) 154
Spanner. See Google Spanner
spatial indexes 113-115
SQL Anywhere 12
SQLBoiler 24
SQLite 12
SQL layer

about 18
logical planning 25
parsing 25
physical planning 26, 27

222 Index

SQL parser 24
SQL query execution 24, 30
SQL Server Compact 12
SQL Server Express 12
SQL statements 24
Star Schema 10
storage engine 42
storage input/output (I/O) 201
storage layer 18
store keys 177
Structured English Query

Language (SEQUEL) 4
Structured Query Language (SQL) 4, 201
swap memory 152
Sybase 4
synthetic benchmarking 202
sysbench 202

T
table 158-160
table data 34
table joins

about 140
indexes 115-118

TAO 5
tebibytes (TiB) 201
TPC-H 201
traditional databases

migrating, to CockroachDB 208, 209
transaction

phases 31
transactional key-value store

managing 31
transactional layer 18, 31
transaction identifier (ID) 31

transaction log 51
Transaction Processing Performance

Council Benchmark C (TPC-C) 201
transaction records 52
Transactions dashboard 162, 163
transaction status recovery 56
Transport Layer Security (TLS) 173

U
Uniform Resource Locator (URL) 27
Universally Unique Identifier (UUID) 71
UPDATE statement

example 132
parameters 132

UPSERT statement
about 133
parameters 133

V
Vault

reference link 174
vectorized query execution 30
view 126
virtual CPUs (vCPUs) 200
virtual private cloud (VPC) 182
Vitess 5
volumes 21
VPC peering

advantages 182

W
write intent 49, 52

Index 223

Y
Yahoo! Cloud Serving Benchmark

(YCSB) 89, 202
Yet Another Compiler-

Compiler (Yacc) 24
Youtube 5
YugabyteDB 5

Z
zone 65

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt
books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

226 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering PostgreSQL 13 - Fourth Edition

Hans-Jürgen Schönig

ISBN: 9781800567498

•	 Get well versed with advanced SQL functions in PostgreSQL 13

•	 Get to grips with administrative tasks such as log file management and monitoring

•	 Work with stored procedures and manage backup and recovery

•	 Employ replication and failover techniques to reduce data loss

•	 Perform database migration from Oracle to PostgreSQL with ease

•	 Replicate PostgreSQL database systems to create backups and scale your database

•	 Manage and improve server security to protect your data

•	 Troubleshoot your PostgreSQL instance to find solutions to common and
not-so-common problems

https://www.packtpub.com/product/mastering-postgresql-13-fourth-edition/9781800567498

 227

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Getting Started with CockroachDB, we'd love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to
the Amazon review page for this book and share your feedback or leave a review on
the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-56065-6
https://packt.link/r/1-800-56065-6

	Cover
	Title page
	Copyright and Credits
	Dedications
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting to Know CockroachDB
	Chapter 1: CockroachDB – A Brief Introduction
	The history and evolution of databases
	SQL
	Object-oriented databases
	NoSQL
	NewSQL

	Database concepts
	Cardinality
	Overview of database models
	Processing models
	Embedded and mobile databases
	Database storage engines

	CAP theorem
	Consistency and partition tolerance (CP)
	Availability and partition tolerance (AP)
	Consistency and availability (CA)

	CockroachDB
	Why yet another database?
	Inspiration
	Key terms and concepts
	High-level overview

	Summary

	Chapter 2: How Does CockroachDB
Work Internally?
	Technical requirements
	Installing a single-node CockroachDB cluster using Docker
	Execution of a SQL query
	SQL query execution
	Parsing
	Logical planning
	Physical planning
	Query execution

	Managing a transactional key-value store
	Data distribution across multiple nodes
	The MSKVS
	Meta ranges
	Table data

	Data replication for resilience and availability
	What is consensus?
	The Raft distributed consensus protocol

	Interactions with the disk for data storage
	Storage engine

	Summary

	Section 2:
Exploring the Important Features of CockroachDB
	Chapter 3: Atomicity, Consistency, Isolation, and Durability (ACID)
	An overview of ACID properties
	Atomicity
	Consistency
	Isolation
	Durability

	ACID from CockroachDB's perspective
	Atomicity
	Consistency
	Isolation
	Durability

	Summary

	Chapter 4: Geo-Partitioning
	Technical requirements
	Introduction to geo-partitioning
	Cloud, regions, and zones
	Region
	Zone
	Regions and zones on various cloud providers

	Geo-partitioning in CockroachDB
	Single region
	Multi-region

	Summary

	Chapter 5: Fault Tolerance and Auto-Rebalancing
	Technical requirements
	Achieving fault tolerance
	Achieving fault tolerance at the storage layer
	Working example of fault tolerance at play

	Automatic rebalancing
	Recovering from multi-node failures
	Summary

	Chapter 6: How Indexes Work in CockroachDB
	Technical requirements
	Introduction to indexes
	Different types of indexes
	Primary indexes
	Secondary indexes
	Hash-sharded indexes
	Duplicate indexes
	Inverted indexes
	Partial indexes
	Spatial indexes
	Table joins and indexes

	Best practices while using indexes
	Summary

	Section 3:
Working with CockroachDB
	Chapter 7: Schema Creation and Management
	Technical requirements
	DDL
	CREATE
	ALTER
	DROP

	DML
	DQL
	Supported data types
	Column-level constraints
	Table joins
	Using sequences
	Managing schema changes
	Summary

	Chapter 8: Exploring the Admin User Interface
	Technical requirements
	Introducing the admin UI
	Cluster overview
	Metrics deep dive
	Database and table definitions
	Understanding sessions
	Transactions
	Tracking jobs
	Summary

	Chapter 9: An Overview Of Security Aspects
	Technical requirements
	Introduction to security concepts
	Client and node authentication
	Generating certificates and keys
	Client authentication
	Node authentication

	Authorization mechanisms
	Roles
	Privileges

	Data encryption at rest and in flight
	Encryption at rest
	Encryption in flight

	Audit logging
	RTO and RPO
	Keeping the network secure
	Security best practices
	Summary

	Chapter 10: Troubleshooting Issues
	Technical requirements
	Collecting debug logs
	Log files
	Log levels
	Log channels
	Emitting logs to an external sink
	Gathering Cockroach debug logs

	Connection issues
	Tracking slow queries
	Capacity planning
	Configuration issues
	Guidelines to avoid issues during an upgrade
	Network latency
	Advanced debugging options
	Summary

	Chapter 11: Performance Benchmarking
and Migration
	Technical requirements
	Performance – Things to consider
	Infrastructure
	Popular benchmark suites
	Benchmarking your specific use cases

	Performance benchmarking for CockroachDB
	Migration – Things to consider
	Migrating from traditional databases
	Migrating from PostgreSQL to CockroachDB

	Summary

	Appendix: Bibliography and Additional Resources
	Index
	Other Books You May Enjoy

