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Preface

The goal of this book is to convey the institutional, conceptual, and quan-
titative frameworks used by sophisticated fixed income market practi-

tioners. The overview chapter is a broad survey of markets, market partic-
ipants, and some intermediate-term trends (monetary policy in a regime of
abundant reserves; negative rates in Europe and Japan; and the changing
nature of liquidity). Chapters 1 through 6 present the basic language and
toolbox of the fixed income cosmos: arbitrage pricing; rates and spreads;
DV01, duration, and convexity; and multi-factor and empirical hedging.
Chapters 7 through 9 explain how term structure models are used for better
understanding the shape of the term structure of interest rates; for pricing
fixed income derivatives; and for relative value and even macro-style trad-
ing. Chapters 10 through 16 then delve into the details of several large and
important markets: repurchase agreements or repo; note and bond futures;
short-term rates and their derivatives; interest rate swaps; corporate bonds
and credit default swaps; mortgages and mortgage-backed securities; and
fixed income options.

While fixed income is an inherently quantitative subject, this book takes
a very applied approach. All ideas are presented through examples, using
market prices, events, or meaningful applications whenever possible. (A list
of particularly extensive applications is given on the next page.) There is a
lot of emphasis on orders of magnitude (e.g., “About how big is the interest
rate swap market?” or “Approximately what is the DV01 or duration of a
10-year par Treasury?) and on fundamental concepts (e.g., “What does it
mean for a position to be negatively convex?” or “What sorts of trades and
positions have financing risk?).

This fourth edition is a comprehensive revision. All data on markets
and market participants have been updated; all examples and applications
updated; and all of the in-depth market presentations rewritten to reflect
contemporary issues (e.g., variation margin of cleared interest rate swaps
changed to “settled-to-market”). The timing of the edition is deliberate with
respect to the transition away from LIBOR. While SOFR and other replace-
ments are relatively young, it is time for a textbook treatment of these new
reference rates and their associated derivatives.

We would like to thank Bill Falloon, who has enthusiastically sup-
ported this textbook for two decades, and Purvi Patel, for her patient and

ix
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x PREFACE

expert shepherding of this edition through the production process; Judy
DiClemente, for her deeply thoughtful editing of the manuscript; Sienna
Sihan Zhu for excellent and careful research assistance; Kristi Bennett for
diligent copy editing; and the people who kindly and generously gave of
their expertise and time to enrich the contents of this book: Viral Acharya,
Amitabh Arora, Richard Cantor, Jonathan Cooper, Richard Haynes, David
Lohuis, Lihong McPhail, Greg Perez, David Sayles, James Streit, and Regis
Van Steenkiste.

EXTENDED EXAMPLES, APPLICATIONS, AND CASES

■ Idiosyncratic Pricing of US Treasury STRIPS (Section 1.5)
■ Relative Value Spreads of High-Coupon Treasuries (Section 3.6)
■ P&L Attribution for an Outright Long in a High-Coupon Treasury

(Section 3.8)
■ Hedging a Century Bond (Sections 4.3 and 4.6)
■ Hedging Stylized Pension Liabilities (Sections 4.8 and 5.4)
■ Regression Hedge of the Johnson & Johnson 2.45s of 09/01/2060 with

a 30-Year US Treasury (Section 6.1)
■ Estimation of the Gauss+ Model over the Period January 2014 to

January 2022 (Section 9.2)
■ MF Global’s Repo-to-Maturity Trades (Section 10.7)
■ US Treasury Futures Basis Trades in March 2020 (Section 11.13)
■ Extracting an Implied Path of Short-Term Rates from Fed Fund Futures,

October 2021 versus January 2022 (Section 12.3)
■ Tranche Structure of a CLO Issued in May 2019 (Section 14.1)
■ Hertz CDS Settlement Auction, June 2020 (Section 14.11)
■ The London Whale (Section 14.13)
■ Three 30-Year FNMA Pools, 2018–2021 (Sections 15.5 through 15.7)
■ Structure of a Credit Risk Transfer Security Issued in 2020

(Section 15.12)
■ Pricing a Callable Bank of America Bond with Black-Scholes-Merton,

August 2021 (Section 16.1)
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CHAPTER O
Overview

O.1 GLOBAL F IXED INCOME MARKETS

Fixed income markets are large and global. Figure O.1 shows the outstand-
ing amounts of debt securities, by residence of issuer. Debt securities are
instruments designed to be traded, like bonds issued by corporations or by
governments. Grouping by residence of issuer means, for example, that US
Treasury bonds held by China’s central bank are included in the total for
the United States. As of March 2021, the global total of outstanding debt
securities was about $123 trillion. For reference, the total capitalization of
global equity markets at the time was $110 trillion, although stock market
values are significantly more volatile.

Figure O.1 shows that the five largest issuers, in terms of amounts out-
standing, are in the United States, the Eurozone, China, Japan, and the
United Kingdom, which together comprise nearly 90% of the total. The
Eurozone includes countries that both belong to the European Union (EU)
and use the euro as a national currency. Some individual members of the
Eurozone, indicated with asterisks in the figure, are significant issuers of
debt securities on their own. Note that the figure displays their amounts
outstanding with gray bars, but their contributions to the cumulative total
are included once, with the Eurozone total.

Figure O.2 decomposes debt outstanding in the five largest regions by
sector. The large fraction of government debt in Japan reflects decades of
government borrowing and spending intended to stimulate the economy.
The fraction of government debt in the United States, the Eurozone, and
the United Kingdom is lower, at about 50%, but has increased significantly
since the financial crisis of 2007–2009. Corporations in the United States
are relatively more likely to issue bonds directly to the public, while cor-
porations in the Eurozone, Japan, and the United Kingdom are relatively
more likely to borrow funds from intermediaries, like banks, which, in turn,
raise money from the public. While Figure O.2 includes the breakdown for
debt in China, the relatively large role of the government in financial and
nonfinancial enterprises makes comparisons across sectors and regions less
meaningful.

1
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2 FIXED INCOME SECURITIES
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F IGURE O.1 Global Debt Securities Outstanding, by Residence of Issuer, as of
March 2021. Countries with an Asterisk Are in the Eurozone.
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Table O.1 and Figure O.3 show the notional amounts of outstanding
interest rate derivatives across the globe. These derivatives are described
in later chapters, but derivatives essentially allow market participants to
take positions on interest rates, whether for hedging, investment, or specu-
lative purposes. The notional amount of a derivative is used to calculate the
cash flows that one of the derivative’s counterparties pays the other. Adding
together all notional amounts, however, can significantly overstate market
size. First, the largest market participants, namely dealers, tend to be simulta-
neously long and short nearly identical derivatives. Second, options are actu-
ally equivalent to only fractions of the notional amounts of their underlying
securities. Later chapters elaborate on these points, but, for the purposes of
this overview, this table and figure are reported in notional amounts.

While derivatives may trade in a particular locality, there is no sense in
which derivatives are issued in one place or another: local regulations aside,
any entity, residing anywhere, can enter into these derivatives contracts.
A typical classification, therefore, is the currency in which the cash flows
of the derivative are denominated. The first two columns of Table O.1 show
notional amounts for swaps, options, and forward rate agreements. Most
of the outstanding amounts are denominated in US Dollars (USD) and Euro
(EUR). The quantities in the table hint at the overstatement of market size
by notional amount: if the sizes of the markets for these USD derivatives
were really $150 trillion, they would be larger than the combined size of all
global debt securities markets. The second two columns of the table show
the notional amounts of standardized, exchange-traded interest rate futures

TABLE O.1 Notional Amounts of Interest Rate
Derivatives. Swaps, Options, and FRAs, as of June 2020;
Futures and Futures Options, as of December 2020.
Entries in $Trillions.

Swaps, Options, FRAs Futures and Futures Options

Currency Amount Currency Amount

USD 152.1 USD 41.5
EUR 132.6 GBP 10.4
Other 67.1 EUR 9.5
GBP 54.3 BRL 1.6
JPY 37.1 CAD 1.0
CAD 14.3 AUD 0.9
SEK 5.3 Other 0.6
CHF 3.6

USD: United States Dollar; EUR: Euro; GBP: British Pound;
JPY: Japanese Yen; CAD: Canadian Dollar; SEK: Swedish
Krona; CHF: Swiss Franc; BRL: Brazilian Real; AUD:
Australian Dollar.
Source: BIS.
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F IGURE O.3 Credit Default Swaps, Notional Amounts Outstanding, by Sector and
Type, as of June 2020.
Source: BIS.

and options. Amounts outstanding of USD-denominated contracts are by
far the greatest, with those denominated in British Pounds (GBP) and EUR
making up most of the rest of the overall market.

Finally, Figure O.3 gives the notional amount of credit default swaps
(CDS) outstanding. These are discussed in detail in Chapter 14, but, roughly
speaking, CDS allow investors to take positions that are equivalent to lever-
aged long or short positions in bonds with credit risk. The figure divides
the market into credit sectors: CDS can be written on nonfinancial com-
panies, financial companies, sovereigns, asset-backed securities (ABS), and
mortgage-backed securities (MBS). Within each sector, a single-name CDS
references a single credit (e.g., the government of Spain), while an index
CDS references a portfolio of credits (e.g., 25 European financial compa-
nies). Note that the CDS market is much smaller in notional amount than
the derivatives markets depicted in Table O.1.

O.2 US MARKETS

This section describes debt and loan instruments in the United States, catego-
rized as in Figure O.4. The total amount outstanding across all instruments,
as of June 2021, was $76.4 trillion.1 By way of comparison, the market

1The data sources are different, but the inclusion of nontraded instruments here is
the main discrepancy between this $76.4 trillion total and the $48 trillion total of
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F IGURE O.4 Debt Securities and Loans in the United States, Amounts Outstanding,
as of June 2021. GSE: Government-Sponsored Enterprise.
Sources: Financial Accounts of the United States, Board of Governors of the Federal
Reserve System; and Author Calculations.

capitalization of US equities at the same time was about $45 trillion. Trea-
sury securities and municipal securities are discussed in this section in some
detail, while sectors discussed in later chapters of the book are treated very
briefly here.

Treasury Securit ies

In less than a decade, Treasury securities have grown from the third largest
category, behind mortgages and corporate and foreign bonds, to the largest
category, at $24.3 trillion. When the US government spends more than
it collects in taxes and fees, which has been the case for most of the last
50 years, it needs to borrow money to fund its deficit spending. It does so
through the array of instruments shown in Figure O.5. Treasury bills or
T-bills mature in one year or less and are discount securities, which means
that they sell for less than, or at a discount from, their promised payment
at maturity. Treasury notes and bonds are coupon-bearing securities; that
is, they earn a fixed coupon or interest rate on their principal, face, or
par amounts through maturity, and then repay that principal amount at

US debt securities in Figures O.1 and O.2. In particular, adding to that $48 trillion
the $6.8 trillion of nonmarketable Treasury securities, $7.8 trillion of nonsecuritized
mortgages, $9.0 trillion of loans and advances, and $4.3 trillion of consumer credit
gives a total of about $76 trillion.
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F IGURE O.5 US Treasury Obligations, Amounts Outstanding, as of June 2021.
Source: US Treasury Bulletin.

maturity. Strictly speaking, and in the accounts of the government, notes are
issued with 10 or fewer years to maturity, while bonds are issued with more
than 10 years to maturity. The distinction had more meaning historically,
when bonds were subject to a maximum, statutory rate of interest. In
common parlance today, however, the words “notes” and “bonds” are used
interchangeably. In any case, Chapter 1 describes the cash flows of Treasury
notes and bonds in more detail.

Treasury Inflation Protected Securities (TIPS) protect investors against
inflation with principal amounts that increase or decrease with changes
in the consumer price index (CPI). Consider, for example, a TIPS with a
principal amount of $100 and a coupon rate of 1% per year. If CPI has
increased by 10%, the principal amount of the TIPS will have increased
to $110, and the investor earns 1% on that higher principal amount. This
investor is just as well off having $100 and earning $1 per year at the
original price level as having $110 and earning 1%× $110 or $1.10 per
year at a price level that is 10% higher. Hence, TIPS earn a fixed real or
inflation-adjusted return, while coupon-bearing Treasuries earn a fixed
nominal or dollar return.2 For this reason, by the way, in discussions that
include both TIPS and Treasury bonds, the latter are often referred to as
nominal bonds. In any case, while comprising only 5.6% of the total in

2Over a period of deflation, TIPS principal amount may fall below original principal
for the purposes of calculating interest, but, at maturity, TIPS return at least the
original principal amount.
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Figure O.5, TIPS have an outsized importance as measuring the market’s
perception of inflation and the price of inflation risk. As of January 2022,
for example, the rate on five-year nominal Treasury bonds was about 2.8%
higher than the rate on five-year TIPS. Roughly expressed, therefore, the
market expects an average inflation rate of 2.8% over the subsequent
five years. More precisely expressed, given inflation expectations and risk
preferences, investors require a premium of 2.8% to buy five-year nominal
bonds and to assume inflation risk over that horizon.

Figure O.5 next lists floating-rate notes (FRNs). These are relatively
new, having been first issued in January 2014. FRNs are sold with two years
to maturity, and they pay a variable rate of interest equal to the going rate on
13-week T-bills plus a fixed spread. This spread entices some investors, who
might otherwise roll investments of short-term T-bills, to sacrifice some
liquidity and buy two-year FRNs instead. From the perspective of the
Treasury, FRNs lock in funding for two years, but at a cost only slightly
above that of short-term bills.3 In fact, over 2021, FRNs were sold at a
spread of less than five basis points.4 In addition, somewhat cynically, FRNs
seem to cost less than two-year notes, because government accounting of
interest rate cost does not penalize the risk of rates increasing in the future.
In any case, the issuance of FRNs has remained limited, comprising about
2% of the total in Figure O.5.

US Treasury issues are among the most actively traded securities in the
world. This is due, in good part, to the significant role of the US dollar in
international markets and to the perception of US government debt as among
the best stores of value available. An additional explanation, however, is
the careful management of Treasury debt issuance. More specifically, the US
Treasury sets a regular auction schedule that lets investors know, in advance,
which securities will be sold when and in what quantities. Furthermore, the
Treasury has gradually modulated this schedule over many years to suit both
the borrowing needs of the government and changing market conditions.
To appreciate these points, Table O.2 describes the auction schedule as of
January 2022.

“Issue frequency” describes how often new securities of each type are
issued. The Treasury has settled, for example, on issuing new notes with
two, three, five, and seven years to maturity every month, while issuing new

3While there would seem to be no particular need to lock in longer-term funding,
because the US Treasury has never had a problem rolling over its short-term borrow-
ings, prudent debt management avoids scenarios in which too much debt matures
and needs to be refinanced over a relatively short period of time.
4A basis point is 0.01%. The difference between a rate of 1.01% and 1.00% is one
basis point, and a rate of 1% might be referred to as a rate of 100 basis points. The
spread of five basis points in the text, therefore, is a spread of 0.05%.
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TABLE O.2 US Treasury Auction Schedule, as of January 2022.

Security Issue Frequency Reopenings

4-, 8-, 13-, and 26-week bills Weekly
52-week bills Every 4 weeks
2-, 3-, 5-, and 7-year notes Monthly
10-, 20- and 30-year notes/bonds Quarterly Monthly
5-year TIPS Semiannually 2 months after issuance
10-year TIPS Semiannually Every 2 months
30-year TIPS Annually Semiannually
2-year FRNs Quarterly Monthly

TIPS: Treasury Inflation Protected Securities; FRNs: Floating Rate Notes.
Source: US Department of the Treasury.

10-year notes, along with new 20- and 30-year bonds, every quarter. Both
the set of issues and their frequency have changed over time, however. For
example, issuance of the 20-year bond was eliminated in 1986 and brought
back in May 2020, while issuance of 30-year bonds was stopped after August
2001 and resumed in February 2006. And in 2000, the US Treasury intro-
duced the concept of reopenings, which means auctioning or selling more
of an existing issue. For example, Table O.2 reports that 10-year notes are
issued quarterly and reopened monthly. In August 2021, the Treasury sold
about $59 billion of a new 1.25% 10-year note, that is, a note that had
not been issued before, that pays interest on principal at an annual rate
of 1.25%, and that matures on August 15, 2031. The following month, in
September 2021, the Treasury sold another $42 billion of that same issue,
that is, more notes with a coupon of 1.25% that mature on August 15,
2031. And again the next month, in October 2021, the Treasury sold another
$41 billion of that same issue. In November 2021, however, a quarter after
the first issuance of the 1.25% 10-year notes, the Treasury sold $62 billion
of a new 10-year note, with a coupon of 1.365% and a maturity date of
November 15, 2031.

One result of the auction schedule is that the most recently issued bonds
of each type and maturity tend to be the ones most actively traded. In the
previous example, as of November 15, 2021, the just-issued 1.365% notes
maturing on November 15, 2031, are called the 10-year on-the-run notes
and are likely to become the most actively traded of notes with approxi-
mately 10 years to maturity. The 1.25% notes maturing on August 15, 2031,
which had been the 10-year on-the-run notes, become the old notes, and over
time, as even newer 10-year notes are issued, become the double-old notes,
the triple-old notes, etc.

Returning to Figure O.5, nonmarketable securities is another small cat-
egory of Treasury issuance. Included in this category are about $140 billion
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of savings bonds, which are discount securities sold directly to individual
investors, and about $120 billion of State and Local Government Series
bonds, commonly known as SLUGs, which are mentioned later in the con-
text of municipal bonds.

The final category in Figure O.5 refers to Treasury bonds sold into
government accounts. These bonds are also nonmarketable and represent
debt that the US government owes itself. The social security trust funds, for
example, at the end of 2020, held about $3 trillion in Treasury bonds. Most
people argue that these bonds do not represent any additional Treasury
indebtedness, or, in other words, that there is no difference between social
security benefits being paid by the Treasury directly or being paid indirectly
through the payment of interest and principal on bonds in the social security
trust funds. By this logic, Treasury bonds held in government accounts
are excluded from most descriptions of government indebtedness. More
specifically, in terms of Figure O.5, US government debt is usually equated
to “Total Debt Held by the Public,” or $22.3 trillion, rather than to “Public
Debt Securities,” which adds the $6.2 trillion held in government accounts,
for a grand total of $28.5 trillion.

In discussing the magnitude of government debt, and in comparing gov-
ernment indebtedness across countries, debt held by the public is usually
normalized by gross domestic product (GDP), which measures the value of
the goods and services produced in a country in a single year. The idea here is
that countries with greater GDPs can safely carry greater levels of debt. With
US GDP at about $22 trillion as of June 2021, the ratio of debt to GDP in
the United States is about 100%, which is extremely high by historical stan-
dards. The ratio was over 100% during World War II; subsequently declined
to between 20% and 50%; climbed to about 80% in the aftermath of the
financial crisis of 2007–2009; and then shot up to above 100% in the wake
of the COVID pandemic and economic shutdowns. For comparison pur-
poses, the ratio of debt to GDP in Japan is currently over 230%; in Greece
about 175%; in France about 100%; in the United Kingdom about 85%; in
Germany and China, less than 60%; and in Switzerland, less than 40%.

Despite the historically high ratio of US debt to GDP, foreign investors
continue to find US Treasuries attractive and hold a large fraction of the
amount outstanding. As of June 2021, investors outside the United States
held $7.2 trillion Treasuries, or 33% of the $21.8 trillion marketable secu-
rities shown in Figure O.5. These holdings include $1.28 trillion (5.9%)
in Japan, $1.06 trillion in China (4.9%), and $0.53 trillion (2.4%) in the
United Kingdom.

Munic ipa l Securit ies

The $4 trillion municipal securities market includes more than 50,000
issuers and approximately one million individual bond issues. Municipal
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bonds, sometimes called municipals or simply munis, are issued by states
and local governments to fund their expenditures. Unlike most fixed income
markets, the muni market is dominated by retail investors: as of June
2021, over 70% of principal outstanding was held directly by individuals,
or indirectly by individuals through mutual funds and other investment
vehicles.

Interest payments from munis are exempt from federal tax so long as
funds raised from selling those munis are used for public projects. Therefore,
investors who pay federal taxes are willing to accept lower rates of inter-
est from munis than they would from bonds whose interest is taxed at the
federal level, like corporates and Treasuries, controlling, of course, for differ-
ences in credit quality. And municipal issuers can raise funds at rates below
what they would otherwise have to pay. The story is somewhat more compli-
cated, however, because capital gains on price appreciation from munis is not
exempt from federal tax. To avoid this tax, however, the market has evolved
to minimize the proportion of return in the form of (taxed) price appreci-
ation rather than (untaxed) interest. More specifically, most munis – in the
current low-rate environment – are issued at a coupon rate of 5% and, con-
sequently, at a premium to par, that is, at a price greater than face amount. In
this way, these munis are unlikely to trade at a discount and thus subject sub-
sequent buy-and-hold purchasers to taxes on capital gains. With respect to
state taxes, the treatment of municipal interest varies by state. Most states
tax bonds issued in other states and exempt their own bonds, while some
states tax both their own and other states’ bonds. Washington, D.C., does
not tax any municipal bond interest, and Utah exempts municipals issued in
states that exempt Utah’s bonds! Utah’s exemption is more significant than it
may seem, because states with no income tax automatically qualify. The final
piece of the tax story is that about $500 billion of municipals do not qualify
for the federal tax exemption, because their proceeds are used for working
capital, for funding private business development, or for refinancing exist-
ing debt through particular kinds of transactions.5 These taxable munis pay
interest at rates comparable to those in the corporate and Treasury markets,
again controlling for differences in credit quality.

Muni bonds can be divided into three broad groups. General obliga-
tion (GO) bonds, which constitute about 25% of the market, are backed by
the taxing power of the issuing municipality. Revenue bonds, which consti-
tute about two thirds of the market, are backed by revenues from particular

5Historically, municipalities had been allowed to refinance existing tax-exempt debt
in advance of maturity or any call option with the proceeds of new, tax-exempt debt,
but this practice was outlawed in 2017. For a full treatment of this and other related
issues, see Kalotay, A. (2021), Interest Rate Risk Management of Municipal Bonds,
Andrew Kalotay Associates, Inc.
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projects, like tolls from a bridge or highway. And within revenue bonds is a
$600 billion subset of industrial revenue bonds, through which municipal-
ities issue (tax-exempt) debt to raise funds for private enterprises engaged
in qualifying projects. The third group consists of prerefunded or defeased
bonds. A muni in this category has been canceled as a municipal liability
by the setting aside of sufficient cash and Treasury securities to fund all of
its remaining payment obligations. These prerefunded or defeased bonds
continue to exist and trade, but with their credit risk improved to that of
Treasuries.6

Default rates on municipal securities have been very low. From 1970
to 2020, Moody’s reports a five-year cumulative default rate for the sector
of 0.08%, which is much lower than the equivalent for corporate bonds,
as discussed in Chapter 14. Nevertheless, credit risk is an important
consideration for investors in the muni market, with underfunded pension
obligations a particularly significant and perennial cause for concern.
Historically, GO bonds, which are backed by the issuer’s taxing power,
were perceived as safer than revenue bonds, which are backed by particular
sources of revenue that could diminish or disappear over time. This per-
ception changed significantly, however, with the bankruptcy of Detroit in
the summer of 2013. The settlement provisions that emerged in November
2014 were a combination of law, political forces, and negotiations across
many interested parties. The results can be roughly summarized as follows.
First, while a court ruled that state laws protecting pension benefits were
trumped by federal bankruptcy law, Detroit pensions recovered over
95% of their value, although cost of living adjustments were reduced or
eliminated. Health and life insurance benefits, however, recovered only
10% of value. Second, holders of water and sewer bonds, which had strong
legal claims to the associated revenue streams, suffered no loss of principal.
Third, GO bonds suffered significant losses, depending on their exact
provisions. Unlimited tax bonds carry a pledge by issuers to raise taxes,
if necessary, to pay bondholders. The unlimited tax bonds involved in the
Detroit bankruptcy were, in addition, backed by specific, segregated, and
voter-approved tax receipts. Nevertheless, these bonds recovered only 74%
of principal, and this negotiated, less-than-full recovery was attributed to
the dwindling of their dedicated tax receipts due to deteriorating economic

6When a municipality defeases a tax-exempt bond issue, it needs to purchase Trea-
sury securities, but is prohibited – to prevent tax arbitrage at the expense of the
federal government – from investing at a higher rate than the rate on the defeased,
tax-exempt issue. This problem is solved by purchasing SLUGs directly from the
Treasury, which are mentioned earlier in the chapter. SLUGs are the same credit qual-
ity as other Treasuries but pay a lower interest rate to suit the needs of the particular
defeasance.
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conditions in Detroit. Worse off, however, were Detroit’s limited tax GO
bonds, which had neither a pledge of unlimited tax increases nor dedicated
tax receipts. They recovered only 34% of principal. The revelation that
GO bonds can be treated like unsecured claims changed credit analysis and
pricing in the muni market.

Before the financial crisis of 2007–2009, a majority of muni bonds were
insured against default, for a fee, of course, by private insurers. In fact, most
of Detroit’s GO bonds were insured, which meant that insurers, rather than
investors, suffered the losses described in the previous paragraph. In any
case, muni insurers suffered massive losses during the financial crisis, not
from their muni businesses, but from having insured mortgage-related prod-
ucts. The ensuing damage to the industry ultimately resulted in less than 5%
of new muni issues being insured. More recently, perhaps in part due to the
Detroit bankruptcy, and perhaps in part due to the COVID pandemic and
shutdowns, there has been a resurgence of muni insurance, rising to perhaps
10% of new issues.7

Other US Markets

Mortgages. The second largest sector in Figure O.4 contains mortgages,
at $17.3 trillion. Mortgage loans are used to purchase properties and are
collateralized by those same properties. Mortgage balances finance the pur-
chase of one- to four-family residences (70%); commercial property (18%);
multi-family residences (10%); and farms (2%). A remarkable feature about
the US mortgage market is that only about 45% of mortgage loan balances
are held by the original lenders. The remaining 55% of balances are securi-
tized, that is, sold by the original lenders; packaged into securities; and then
sold to investors. Chapter 15 describes this market in much greater detail.8

Corporate and Foreign Bonds. The third largest sector in Figure O.4
comprises corporate and foreign bonds, at $14.7 trillion, which includes
bonds sold by US nonfinancial corporations (45%); by US financial corpo-
rations (31%); and by foreign corporations to US investors (24%), all to
raise money to fund their operations and corporate transactions. Chapter
14 describes this market in detail.

7See Gillers (2020), “Bond Insurance Returns to the Muni Market in a Big Way,” The
Wall Street Journal, October 22; and Moran, D. (2020), “Municipal Bond Insurance
Busier Than Ever After Decade-Long Slump,” Insurance Journal, June 26.
8Because many of the MBS issued by the Federal National Mortgage Associa-
tion (FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC) have
been consolidated on to their balance sheets, the Financial Accounts of the United
States include these as part of the debt of government-sponsored enterprises (GSEs).
Figure O.4 and the numbers in this paragraph exclude these MBS from Agency/GSE
debt so as not to double count the underlying mortgages.
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Loans and Advances. Continuing counterclockwise in Figure O.4, a lit-
tle less than half of the $9.0 trillion of Loans and Advances are made by
banks, and the rest by an assortment of nonfinancial and financial entities.
An important feature of this sector is the securitization and trading of bank
loans, which is described in Chapter 14. Consumer credit, at $4 trillion, is
discussed in the next section, in the context of household balance sheets.

Agency/GSE Debt. The penultimate category of instruments in
Figure O.4 includes “agencies” or “agency bonds,” which are issued by
government agencies and GSEs. These entities span a range of associations
with the federal government, and their debt issues enjoy varying levels of
support from the federal government. At one extreme are the Federal Hous-
ing Administration (FHA), the Small Business Administration (SBA), and
the Government National Mortgage Association (GNMA). These agencies
are part of the government, and their debt issues are backed by the “full
faith and credit” of the United States. Moving from the full-faith-and-credit
framework, the Tennessee Valley Authority (TVA), which provides elec-
tricity for local power companies in Tennessee and surrounding states, is
considered a federal agency. Formally, however, it is a corporation that is
wholly owned by the US government, and its debt is backed by its own
revenues, not – at least explicitly – by the federal government. Further away
from full-faith-and-credit are the Federal National Mortgage Association
(FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC).
They are known as GSEs, but are owned by private shareholders and,
having failed during the financial crisis of 2007–2009, are now under
government conservatorship. Leading up to the crisis, their debt was not
explicitly backed by the government, but the market expectations for full
government support of their bonds was fully realized during and after the
crisis. These two entities are discussed in great detail in Chapter 15.

Commercial Paper. The final category in Figure O.4 is Commercial Paper
(CP), through which the most highly rated corporations borrow short-term
funds from the public. CP is discussed further in Chapter 14.

O.3 US MARKET PARTIC IPANTS

This section describes sectors of market participants. The volumes of debt
securities and loans that appear as assets on the financial balance sheets
of various sectors are shown in Figure O.6, while the volumes that appear
as liabilities are shown in Figure O.7. Households, nonfinancial business,
and general government (i.e., federal and municipal) hold a combined
$10.0 trillion of debt securities and loans for their own savings or cash
management purposes. Banks, various fund vehicles, insurance companies,
pension funds, and other financial entities hold debt securities and loans
as intermediaries, investing and managing funds for the ultimate benefit of
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F IGURE O.6 Financial Assets of Various Sectors, as of June 2021. ETF:
Exchange-Traded Fund; MMF: Money Market Fund.
Sources: Financial Accounts of the United States, Board of Governors of the Federal
Reserve System; and Author Calculations.
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Reserve System; and Author Calculations.
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others. The Monetary Authority, that is, the Federal Reserve, holds assets
in the implementation of monetary policy. And the rest of the world, or
foreign entities, invest $14.0 trillion in US debt securities and loans on
their own or as intermediaries. On the liability side, the federal government
borrows $24.3 trillion, and municipalities borrow $3.2 trillion to finance
government expenses that are not covered by taxes and fees. Households
borrow $17.3 trillion mostly to finance consumption, and nonfinancial
businesses borrow $18.0 trillion to finance investments and acquisitions.
The remaining financial sectors borrow as intermediaries, using funds
borrowed from some sectors to lend or invest elsewhere. And finally, the
rest of the world borrows $4.9 trillion through US debt securities and loans.
The text now discusses several of these sectors in greater detail.

Households

Table O.3 gives the financial assets and liabilities of the household sec-
tor.9 The financial assets of the sector far exceed its financial liabilities,

TABLE O.3 Financial Assets and Liabilities of Households, as of June 2021.
Amounts are in $Trillions.

Instrument Amount Percent of Total

Total Financial Assets 113.1 100

Pension Entitlements 31.0 27.4
Corporate Equities 30.5 26.9
Deposits and MMFs 17.1 15.1
Equity in Noncorporate Business 13.7 12.1
Mutual Funds 12.3 10.9
Debt Securities and Loans 5.1 4.5
Life Insurance Reserves 1.9 1.7
Other 1.7 1.5

Total Liabilities 17.7 100

Home Mortgages 11.3 63.8
Consumer Credit 4.3 24.1
Other 2.1 12.1

Sources: Financial Accounts of the United States, Board of Governors of the Federal
Reserve System; and Author Calculations.

9The household sector, in this data set, includes private equity funds, domestic hedge
funds, personal trusts, and nonprofits, with combined assets that could easily exceed
$10 trillion. Their inclusion here results in some overstatement of the extent to which
individuals invest directly in equity and debt markets.
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meaning that the sector, as a whole, has significant net worth. The sector
invests significant amounts directly in equity and debt markets, although a
greater fraction of assets is invested through intermediaries, like pensions,
mutual funds, and the savings components of life insurance policies.
A large fraction of financial assets is also held in near cash equivalents,
that is, in deposits and shares of money market funds. On the liability side,
households borrow mostly through mortgages, which are the subject of
Chapter 15, or through consumer credit.

The primary components of consumer credit are home equity loans, auto
loans, credit card loans, and student loans. The outstanding credit balances
of these sectors over time are depicted in Figure O.8. Home equity loan bal-
ances grew rapidly with the run-up of housing prices preceding the financial
crisis of 2007–2009 and have declined steadily since.10 Credit card loans
also grew going into the crisis, though not as dramatically, and also declined
after the crisis, but had then recovered, until declining again with the COVID
pandemic and shutdowns. Auto loans, while also declining through the cri-
sis, seemingly emerged as taking the place of declining home equity loans and
relatively flat credit card loans. Student loans have increased independently
of the economic cycle, which is a policy result: the federal government has
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10Home equity loans are second liens, which are subordinate to first home mortgages
with respect to creditor priority.
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been guaranteeing student loans for decades and, since 2010, directly owns
all of its student loans. As of March 2021, government student loan balances
comprised over 92% of the total.11

Figure O.9 reports balances that are 90 or more days delinquent, that is,
balances on which the borrower has not made payments for 90 or more days.
Not surprisingly, home equity delinquencies increased during and for several
years after the financial crisis, as falling housing prices made it impossible
for many homeowners to recover their outstanding mortgage and loan bal-
ances by selling their homes. Home equity delinquencies have since steadily
declined, perhaps reflecting more careful underwriting in the aftermath of
the crisis. Credit card delinquencies also increased after the crisis, perhaps
reflecting weakened consumer balance sheets, but have since declined to
pre-crisis levels. Auto loan delinquencies increased after the crisis as well,
then fell, and increased again, perhaps an expected consequence of the rapid
growth in balances. Student loan delinquencies have been increasing for
many years, which has raised a number of policy concerns, from the perspec-
tive of both students and the federal government. Note that the precipitous
decline in student loan delinquencies in the second half of 2020 is an artifact
of federal COVID forbearance programs.
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Source: Quarterly Report on Household Debt and Credit, Federal Reserve Bank of
New York.

11See, for example, Amir, E., Teslow, J., and Borders, C. (2021), “The MeasureOne
Private Student Loan Report,” June 15.
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Nonfinancia l Business

Figure O.10 shows the composition of liabilities for nonfinancial businesses,
separated into corporate businesses, which are likely to be relatively large,
and noncorporate businesses, which are likely to be relatively small. Cor-
porate businesses, which are more likely to have track records of earnings
and established creditworthiness, have broader access to markets. They can
sell debt securities to raise 30% of their financial liabilities, while noncor-
porate businesses sell essentially none. The “Other” source for corporate
businesses includes direct investment from abroad, which is not at all a part
of small business liabilities. Noncorporate businesses, then, rely mostly on
mortgages, for which they need only unencumbered property. The differ-
ences in the liability structures of these two groups reflect the life cycle of
business borrowings, from “family and friends,” to bank loans, to investor
groups, to private placements of debt, and finally – for the largest and most
established companies – to public debt securities. Chapter 14 discusses pri-
vate placements and public debt issues in more detail.

Commercia l Banks

Commercial banks accept deposits from their customers, pay them inter-
est, and offer them safety – in part through federal deposit insurance – and
immediacy or liquidity, that is, the ability to withdraw funds whenever nec-
essary. Deposits, which are not classified as debt securities or as loans, are not
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F IGURE O.10 Nonfinancial Business Liabilities, Corporate and Noncorporate, as of
June 2021.
Source: Financial Accounts of the United States, Board of Governors of the Federal
Reserve System.
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included in Figure O.7, but constituted 93% of commercial bank liabilities.
Other liabilities include investments by the bank’s parent company, long-term
debt, commercial paper, assorted loans, and repurchase agreements, or repo,
which are loans collateralized by debt securities, as discussed in Chapter 10.

While deposits are certainly the main source of funding for bank invest-
ments, they are actually a product or output of banking, just like business
loans and mortgages are bank products. Depositors value the safety and
immediacy of deposits, and they incorporate deposits into their manage-
ment of cash and liquidity. Furthermore, banks actively manage the liquidity
they offer to depositors, in part by having some fraction of liabilities in
longer-term debt, and in part by investing some fraction of assets in liq-
uid products that can be sold quickly and easily to meet any unexpected
withdrawals of deposits.

Turning to assets, Figure O.11 shows the asset composition of large and
small commercial banks. Commercial and industrial (C&I) loans, real estate
loans, and consumer loans are all considered the main business of banking.
In addition to these assets, however, along the lines of the previous para-
graph, banks hold liquid assets. The most liquid, of course, are cash, reserves
or deposits at the Federal Reserve, and other money market (MM) instru-
ments. But these assets have the disadvantage of earning very low rates of
return. Therefore, to earn higher rates of return while maintaining satis-
factory liquidity profiles, banks also hold Treasuries, agency securities, and
MBS, which can be sold relatively easily should the need arise.
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Figure O.11 also reveals some differences between large and small
banks. First, commercial bank assets are highly concentrated. There are
over 4,000 commercial banks in the United States, but $12.5 trillion of
the sector’s $19 trillion of assets, or 66%, are held by the largest 25
banks.12 As an aside, the number of banks in the country has been declining
gradually but swiftly: there were over 14,000 banks in 1984. This decline
is likely an adjustment from historical restrictions on interstate banking
and branching that prevented larger banks from satisfying market demand.
In any case, a second difference between the largest and smaller banks is
the difference in the fractions of their assets in real estate loans: 17.4% for
the largest banks and 36.7% for the smaller banks. The concentration of a
small bank’s assets in real estate loans, which are often local, can challenge
the bank’s viability through regional economic downturns.

L i fe Insurance Companies

Life insurance products often pay death benefits, of course, but they are also
often savings vehicles, through which policy holders invest funds with the
advantages of tax deferral. Life insurance companies are, therefore, financial
intermediaries that collect and invest premiums so as to meet their obliga-
tions under policies sold and to earn additional returns for their sharehold-
ers. Furthermore, long-term fixed income assets are natural hedges to the
long-term nature of their policy liabilities. Reflecting these considerations,
the asset portfolios of life insurance companies contain large fractions of
corporate bonds and equities, 36.4% and 8.5%, respectively, with an addi-
tional 18.8% in mutual fund shares that are some mix of bonds and equities.
In fact, their corporate bond investments make life insurers very significant
players in that market: their direct holdings of $3.5 trillion of corporate
bonds comprise about 24% of the total $14.7 trillion outstanding. While
Treasuries are theoretically useful as a match for long-term liabilities, they
do not earn enough to meet insurer return hurdles. As a result, Treasuries
comprise only 2.4% of life insurance company assets. Finally, life insurance
companies also use derivatives to achieve their return and hedging objectives.

Pension Funds

Historically, the majority of pensions were defined benefit (DB) plans, in
which the sponsor promises to pay retirees according to a formula that
depends on the number of years worked, contributions to the plan, salary

12With respect to competitiveness, note that concentration within the banking sector
does not, on its own, account for competition with nonbanking entities, like money
market funds, nonbank mortgage lenders, and some fintech firms.
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history, etc. Sponsors collect employee and their own contributions into a
pension fund, and then invest the assets of that fund so as to be able to honor
promised obligations. A low-risk strategy combines relatively high contri-
butions to the pension fund with low-risk investments, while a high-risk
strategy combines relatively low contributions with aggressive investments.
In any case, investment risk in DB plans resides with the sponsor, which, in
the end, is responsible for paying the promised benefits. For decades now,
however, defined contribution (DC) plans have become more important.
In these plans, employees and employers contribute to individual employee
accounts, and each employee can typically choose among a few investment
options. Upon retirement, employee benefits are determined completely by
the funds accumulated in their respective accounts. Hence, in DC plans,
investment risk resides with employees. Employers can, of course, offer both
types of plans or a hybrid of the two types.

Government employees, at the federal, state, and local levels, nearly
always have DB plans or an option to participate in a DB plan. In the private
sector, however, the trend has been for corporations and other employers
to avoid the risks and costs of managing pension funds, that is, to migrate
from DB to DC plans. In 1975, there were about 33.0 million participants
in private DB plans and 11.5 million in private DC plans. In 2019, the
numbers were 32.8 million and 109.1 million, respectively.13 Furthermore,
corporations are actively shedding DB pension fund risk through pension
risk transfer transactions, in which they pay insurance companies to assume
their pension liabilities. In any case, for any portfolio manager of a DB plan,
long-term debt instruments naturally hedge the present value of fixed lia-
bilities. On the other hand, allocations to equities hold out the prospect of
having to make smaller contributions to the fund. A study of the largest
100 DB plans offered by US public companies in 2020 found that 50% of
assets were invested in fixed income, 32% in equity, and 18% in other cat-
egories (e.g., real estate, private equity, hedge funds).14

Money Market Funds

As mentioned earlier, in the context of deposits, there exists significant
demand for assets that provide both safety and immediacy. Money market
funds, created in the 1970s, were designed to offer safety and immediacy,
while paying higher rates than banks at the time were allowed to pay on
deposits. Money market funds are divided into three broad categories:

13Employee Benefits Security Administration (2021), “Private Pension Plan Bulletin
Historical Tables and Graphs, 1975–2019,” September.
14Wadia, Z., Perry, A., and Clark, C. (2021), “2021 Corporate Pension Study,”
Milliman White Paper, April.
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government funds, which purchase only short-term, government-backed
debt; prime funds, which invest predominantly in short-term, high-quality
corporate debt, like commercial paper; and tax-exempt funds, which invest
in short-term, high-quality, tax-exempt municipal debt. Before changes
implemented after the financial crisis of 2007–2009, investors could buy
money market fund shares for $1 per share; their money was invested in
relatively safe and liquid assets; and, except in extraordinary circumstances,
they could sell their shares at any time for $1 per share. More specifically,
a fund that i) complied with Securities and Exchange Commission (SEC)
rules governing the safety and liquidity of fund investments, known as 2a-7
rules; and ii) had a portfolio or net asset value (NAV) corresponding to a
value per share of between 99.5 cents and $1.005, could offer and redeem
shares at a “fixed NAV” or “stable NAV” of $1 per share. But if the value
of the fund fell such that the value per share fell below 99.5 cents, the
fund would “break the buck” and shares would no longer be redeemed at
$1, but rather at a value corresponding to the fund’s NAV. Hence, money
market fund shares were very similar to bank deposits, but did not have the
benefit of an explicit government guarantee, like federal deposit insurance.
Instead, money market shareholders had to rely on their fund sponsors
or management companies to make up for any NAV shortfalls. Only one
money market fund had ever broken the buck, in 1994, but it was to
happen a second time during the financial crisis of 2007–2009.

In September 2008, a few days after the failure of the mortgage
government-sponsored enterprises, FNMA and FHLMC, and a few days
before the failures of the investment bank, Lehman Brothers, and the
insurer, AIG, money market fund investors embarked on a flight-to-safety,
through which they withdrew huge volumes of cash from prime funds
and deposited huge volumes into government funds. Relatively suddenly,
investors came to believe that financial entities might not be able to pay
off their maturing commercial paper, which comprised a significant part
of prime money market fund portfolios. And, in fact, the day after the
bankruptcy of Lehman Brothers, the Reserve Primary Fund became the
second fund in history to break the buck: the value of its sizable holdings
of Lehman Brothers commercial paper had fallen so precipitously that the
fund’s NAV fell to 97 cents per share.15 Fearing that investor flight from
prime money market funds would exacerbate already stressed conditions in
money markets, including the ability of financial entities to continue bor-
rowing in CP markets, the Treasury instituted a program through which it
guaranteed money market fund shares for one year, and the Federal Reserve
created a facility that extended nonrecourse loans to banks collateralized
by asset-backed commercial paper bought from money market funds.

15Reserve Primary Fund shareholders eventually received 99.1 cents per share.
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After the crisis, the SEC changed several rules governing money market
funds.16 First, 2a-7 rules were tightened to increase the safety and improve
the liquidity profiles of money market fund portfolios. Second, institutional
prime and tax-exempt money market funds, as opposed to funds with
only retail investors, must allow share price to float with the fund’s NAV.
Proponents of this change argue that floating NAVs raise awareness that
fund values can fluctuate and may discourage withdrawals timed to precede
a fund’s breaking the buck. Opponents argue that money market fund
investors, particularly institutional investors, are well aware of the risks;
that floating NAVs have little to no bearing on flights-to-safety away from
prime funds; and that floating NAVs significantly increase the accounting,
operational, tax, and legal complexities of using money market funds
for cash management. The third post-crisis change was that prime and
tax-exempt money market funds had to have the power, under various stress
conditions, to impose redemption fees of up to 2% and gates that prevent
withdrawals for up to 10 business days in any 90-day period. Redemption
fees, which are paid into the fund, are intended both to discourage investor
withdrawals in a crisis and to recover losses from liquidating assets in a
crisis to meet those withdrawals. Gates are intended to give funds a grace
period in which to manage through stressed market conditions. If, however,
a fund cannot restore stability by the end of its grace period, the fund is
liquidated. Government funds, by the way, may choose to include the power
to impose fees and gates, but very few have done so. While redemption
fees and gates are intended to increase fund stability, they might actually
encourage earlier, preemptive redemptions. In any case, both the floating
NAV rule on institutional prime funds and the inclusion of redemption fees
and gates on all prime funds went into effect in October 2016.

Figure O.12 shows the balances of money market funds over time, by
sector. The timing of the steep drops in the balances of both prime and
tax-exempt funds corresponds closely to the October 2016 effective date
just mentioned. The inconvenience of floating NAVs and the potential loss
of immediacy from redemption fees and gates clearly reduced the attractive-
ness of prime funds. In 2020, as part of a broad flight-to-quality brought
on by the COVID pandemic and economic shutdowns, balances in govern-
ment money market funds increased markedly. Over the whole of 2020,
institutional prime fund balances stayed relatively constant at $600 billion,
while retail prime fund balances fell gradually from about $500 billion to
$200 billion. Prime balances did fall dramatically, however, in March 2020,

16As an aside, the Dodd-Frank Act of 2010 forbade the Treasury’s use of its Exchange
Stabilization Fund to guarantee money market funds. In March 2020, Congress
lifted this ban through the end of 2020. Dodd-Frank also required that the Fed-
eral Reserve’s emergency facilities for nonbanks have “broad-based eligibility” and
be approved by the Secretary of the Treasury.
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F IGURE O.12 Balances in Money Market Funds, by Sector.
Source: US Money Market Fund Monitor, Office of Financial Research, US Depart-
ment of the Treasury.

and institutional balances fell more than retail balances, but, due to swift
action by the Treasury and Federal Reserve in support of financial markets
in general and money market funds in particular, balances recovered rela-
tively quickly. In any case, it seems that the possibility of redemption fees
and gates in March 2020 did encourage preemptive withdrawals by prime
investors and sales of assets by prime fund managers, who raised liquidity
in order to avoid triggering fees and gates. Consequently, at the time of this
writing, the SEC is revisiting fees and gates and considering other changes
to the regulation of institutional prime funds.17

O.4 MONETARY POLICY WITH ABUNDANT
RESERVES

To introduce the roles of the Federal Reserve system or “the Fed” as a mod-
ern central bank, Table O.4 shows its pre-crisis balance sheet, as of December
2007. One role, the creation and maintenance of a widely accepted national
currency, is achieved by purchasing government bonds with that currency.
The currency of the United States is comprised of green bills labeled as liabil-
ities of the Federal Reserve, that is, as “Federal Reserve Notes.” In terms of
the balance sheet, therefore, outstanding currency is a liability and Treasury
securities are assets. Put another way, currency is “backed” by government

17See Sidley (2022), “SEC Proposes New Rule Amendments for Money Market
Funds,” January 3.
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TABLE O.4 Balance Sheet of the Federal Reserve Banks, December 31, 2007, in
$Billions.

Assets Liabilities

Currency Outside Banks 773.9
Discount Window Loans 48.6 Bank Reserves and Vault Cash 75.5
Treasury Securities 740.6 Due to US Treasury 16.4
Repo 46.5 Repo 44.0
Other 115.2 Other 25.2

Total 950.9 Total 935.0

Sources: Board of Governors of the Federal Reserve System; and Author
Calculations.

bonds. As shown in the table, $773.9 billion of currency outstanding was
about 83% of Federal Reserve liabilities.

A second role of the central bank is to provide liquidity to banks under
short-term distress. As mentioned earlier, bank assets, like loans, are rela-
tively illiquid, while bank liabilities, like deposits or short-term borrowings
from other financial institutions, may be due immediately. Therefore, a bank
may find itself solvent but illiquid, that is, with assets of sufficient value to
pay off its liabilities but without enough cash on hand to meet its immediate
obligations. In these situations, a bank can borrow from the Fed through
the discount window on any acceptable collateral. The discount window
borrowings of a well-managed bank are expected to be infrequent and of
relatively limited duration.

The third role discussed here, as set out in the Federal Reserve Act, is
to “maintain long run growth of the monetary and credit aggregates . . . so
as to promote effectively the goals of maximum employment, stable prices,
and moderate long-term interest rates.” Despite the three objectives, by the
way, the Fed is often said to have a “dual mandate” of full employment and
low inflation. In any case, two points are made before proceeding:

1. To ensure that banks have the resources to honor all requests to with-
draw deposits that they are likely to receive, banks have been required to
maintain cash and reserves, which are deposits held at a Federal Reserve
bank. Until 2008, banks did not earn interest on their reserve balances.18

2. The Fed sets the total amount of reserves in the banking system. To
add to reserves, the Fed might buy a Treasury bond from a bank. The
bank’s account at its Federal Reserve Bank is credited with the purchase

18The Federal Reserve System includes 12 Federal Reserve banks, spread around the
country, and the Board of Governors, in Washington, D.C.
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price – which increases bank reserves and the liabilities of the Fed – and
the Treasury bond is added to the assets of the Fed. The Fed can also
add to reserves by lending money to a bank through a repurchase agree-
ment or repo.19 The money is credited to the bank’s account at the Fed,
which is a reserve liability of the Fed, and the loan obligation is added
to the Fed’s assets. To reduce reserves, the Fed can do the opposite of
these two transactions, that is, sell a bond to a bank or borrow money
from a bank through a repo. In light of this discussion, the quantity of
Treasury assets and net repo assets on the Fed’s balance sheet enter into
the determination of the total amount of reserves in the banking system.

Before the financial crisis of 2007–2009, reserves were scarce in the
sense that banks traded reserves among themselves in the interbank fed funds
market. Banks that needed reserves to satisfy their reserve requirements bor-
rowed fed funds, while banks that had excess reserves, on which they did
not earn interest, loaned fed funds at the market-determined fed funds rate.
In this setting, if the Fed wanted to ease monetary conditions, to stimulate
the economy (i.e., growth was too low and inflation not a threat), it would
add reserves to the banking system, which – by increasing supply relative to
demand in the market for reserves – would decrease the fed funds rate and
likely increase the volume of bank loans to commercial enterprises. Simi-
larly, if the Fed wanted to tighten monetary conditions, to slow the economy
(e.g., growth was too inflationary), it would remove reserves from the sys-
tem, which would increase the fed funds rate and likely decrease bank loans
to commercial enterprises. Finally, the means by which the Fed changed
reserves were called open market operations and consisted almost exclusively
of lending and borrowing money through repurchase agreements.

In response to the financial crisis and ensuing Great Recession, the Fed
tried to stimulate the economy as just described, by reducing the fed funds
rate from 5.25% in September 2007 to a range of between 0% and 0.25%
by December 2008. But having reduced interest rates to nearly zero and
wanting to stimulate the economy even more forcefully, the Fed began what
became known as quantitative easing (QE): it purchased great quantities of
US Treasury securities and “agency MBS,” which are MBS issued by gov-
ernment agencies and GSEs. At the start of the program, purchases of MBS
directly eased stresses arising from the overleveraged positions in mortgages
and mortgage products that were at the heart of the crisis. Experts do not
agree, however, on the mechanism by which the subsequent massive pur-
chases of both Treasuries and MBS were to stimulate the economy, although

19As mentioned earlier, a repo is a loan collateralized by a security. In the con-
text of the text, repos with the Fed are all collateralized by government-guaranteed
securities.
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possibilities include lowering intermediate- and long-term interest rates
(rather than just the fed funds rate); pushing investors out of relatively safe
Treasuries and agency MBS and into riskier products like corporate bonds
and loans; and flooding banks with reserves. In fact, the chairman of the
Fed at the time said a few years later that “the problem with QE is that it
works in practice, but it doesn’t work in theory.”20

Figure O.13 shows the composition of the asset side of the Fed’s balance
sheet from June 2006 to June 2021. Note that the total of Fed assets is often
referred to by market participants simply as the Fed’s “balance sheet.” In
any case, during the financial crisis itself, from 2007 to 2009, assets were
elevated by expanded repo lending, lending through the discount window,
loans through emergency facilities that the Fed put in place at the time, and
through swap lines, through which the Fed lends US dollars to foreign central
banks, collateralized by foreign currency. While small in hindsight, this bal-
ance sheet expansion before QE was unprecedented, increasing from about
$900 billion at the start of 2007 to over $2 trillion by the end of 2008.
From then, the Fed fully engaged in QE by purchasing Treasuries and agency
MBS, and the balance sheet grew dramatically. By the end of 2014, however,
the Fed decided that economic conditions had improved enough to discon-
tinue further stimulus. It stopped buying new assets, though it continued to
roll over principal repayments from its holdings. From December 2015 to
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F IGURE O.13 Assets of Federal Reserve Banks, by Instrument.
Source: Board of Governors of the Federal Reserve System.

20Interview of Ben Bernanke by Liaquat Ahamed, “Central Banking after the Great
Recession,” Brookings, January 16, 2014.
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summer 2019, it raised the target Fed funds rate from a range of 0% to
0.25% to a range of 2.25% to 2.50% and, in what was named the “nor-
malization” of the balance sheet, began allowing assets to decline with prin-
cipal repayments. The Fed was clear to point out, however, that the balance
sheet would not decline to anywhere near its size before the financial cri-
sis, because, as explained later, post-crisis monetary policy requires greater
levels of reserves. Along these lines, in summer 2019, the Fed resumed the
reinvestment of principal payments to maintain the size of the balance sheet.
Then, in response to turmoil in the repo market in September 2019, further
described later, the Fed started growing the balance sheet again. The Fed also
judged that “implications of global developments for the economic outlook
as well as muted inflation pressures” warranted lowering rates and reduced
the Fed funds target range to 1.50% to 1.75% by November 2019. Finally,
with the onset of the COVID pandemic and economic shutdowns, the Fed
reduced rates back to the range of between 0% and 0.25% and aggressively
bought Treasuries and MBS. As of June 2021, the Fed’s balance sheet stood
at $8.25 trillion, more than nine times its size before the financial crisis.

QE not only increased the size of the Fed’s balance sheet but also
changed its nature in a way that necessitated a new approach to implement-
ing monetary policy. This is best described in terms of the liability side of
the balance sheet, which is shown in Figure O.14 for three dates: the end of
2007, before the financial crisis; the end of 2019, before the pandemic; and,
most recently, the end of the second quarter of 2021. At the end of 2007, con-
sistent with the pre-crisis implementation of monetary policy, about 2% of
the Fed’s liabilities were bank reserves, and reserves were scarce. After years
of QE, however, with Fed asset purchases adding to bank reserves, bank
reserves rose to 37% of Fed liabilities by the end of 2019 and 43% by June
2021. Reserves had become abundant, and banks essentially stopped bor-
rowing from and lending reserves to each other.21 Consequently, in this new
regime of abundant reserves, the Fed could no longer influence short-term
rates by adding to or subtracting reserves from the banking system.

The Fed currently sets interest rates through two administrative rates,
the interest on reserve balances (IORB) and the reverse repo facility (RRP)
rate. The IORB is the rate that the Fed pays banks on their reserve deposits.
Focusing on overnight, safe rates, that is, putting aside spreads due to longer
terms, riskier investments, and fees, the IORB fixes the rate at which banks
are willing to borrow and lend. No bank would borrow at a rate above the
IORB: it would be less costly to use reserves and sacrifice earnings at the
IORB. And no bank would lend at a rate below the IORB: it would be more
profitable to keep reserves on deposit and earn the IORB.22

21Chapter 12 describes the current, limited trading in the fed funds market.
22The Fed recently substituted Interest on Excess Reserves (IOER) with IORB. Also,
the system of setting rates described in the text is sometimes called a “floor” system,
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F IGURE O.14 Liabilities of Federal Reserve Banks, by Instrument.
Source: Board of Governors of the Federal Reserve System.

If banks were the only participants in money markets, then setting the
IORB would set overnight, safe rates in the system. But nonbanks with funds
to lend might very well lend at rates below the IORB. First, only banks hold
reserves and, therefore, only banks can lend to the Fed directly at the IORB.
Second, because of post-crisis regulations, discussed later, banks are not will-
ing to accept deposits from all comers and then hold those funds as their own
reserves at the Fed. Therefore, other significant market participants, partic-
ularly money market funds, might very well lend funds at rates below the
IORB. To prevent these lenders from pushing market rates below Fed tar-
gets, the Fed offers to pay a minimum rate to these participants through its
RRP. More specifically, through the RRP, money market funds and some
other entities can lend money to the Fed, taking Treasury securities as col-
lateral, at the Fed’s administered RRP rate.23 It has turned out, in fact, that
the facility has had to grow very large and very quickly to keep rates in the
Fed’s policy range. Figure O.14 shows that, as of June 2021, the Fed’s repo
liabilities of $1.3 trillion constituted 16% of the Fed’s total liabilities.

because reserves are so plentiful that, between the relatively high discount window
rate at which banks can borrow from the Fed, and the relatively low IORB at which
banks can lend to the Fed, the market interest rate equals the lower IORB. In a
“corridor” system, by contrast, reserves would be calibrated such that the market
interest rate settles between the discount window rate and the IORB.
23In a reverse repo, a counterparty lends money and “reverses in” securities (see
Chapter 10). Hence, the counterparties that are lending money to the Fed are doing
reverse repo.
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Putting these pieces together, the Fed sets rates in the regime of abundant
reserves as follows: the Fed sets a target range for the market-determined fed
funds rate; it sets the IORB to determine the rate at which banks are willing
to borrow and lend; and it sets the RRP rate as a floor to the rate at which
money market funds and others will lend. At the time of this writing, the fed
funds target range is between 0% and 0.25%; the RRP rate is 0.05%; and
the IORB is 0.15%. This means of implementing monetary policy has been
successful in that the weighted-average of fed funds transactions has most
recently been between 0.06% and 0.10%.

Policy implementation with abundant reserves has not been as success-
ful, however, with respect to banks responding to market conditions with-
out Fed assistance. Put another way, it has not been clear at what level
reserves really are abundant. In mid-September 2019, reserves dropped by
about 9% somewhat suddenly, from a variety of causes, including corpo-
rate tax payments and the settlement of new Treasury issues, both of which
move funds from banks to the government. Banks might have been expected,
with their abundant reserves, to supply funds to any market participant
needing funds. But that did not happen. Instead, in the ensuing scramble
for funds, when the Fed’s target range was between 2% and 2.25%, the
transaction-weighted repo rate on a particular day averaged 5.25%, and
one trade was done at 10%. As mentioned earlier, the Fed responded swiftly
by adding reserves, but the episode demonstrated that the determination of
the quantity of reserves in a system of abundant reserves was not necessarily
straightforward.

The reasons that reserves proved inadequate were traced to the inter-
actions of monetary policy with bank regulation. First, since the financial
crisis, banks have been subject to a leverage ratio, which requires that capi-
tal equal a minimum fraction of assets, regardless of the risk of those assets.
In particular, reserves at the Fed, which are safer than any other instrument
in the system, and repo lending on Treasury securities, which is extremely
safe, are now both subject to capital requirements. Second, since the financial
crisis, banks must hold enough high-quality liquid assets (HQLA) to meet
certain scenarios of cash withdrawals and funding needs. Furthermore, while
Treasury securities can be used to meet HQLA requirements, there appears
to be a bank examiner preference for reserves. Third, a stigma remains for
banks that have daylight overdrafts, that is, temporary negative balances at
Fed accounts that have to be resolved by the end of the day. Returning to
September 2019, then, banks were not willing to make additional repo loans,
despite the relatively high rates available, because the loans would increase
assets and capital requirements; use reserves; and risk daylight overdrafts.24

24For a fuller discussion of monetary policy with abundant reserves and repo markets
in September 2019, see Copeland A., Duffie, D., and Yang, Y. (2021), “Reserves Were
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A similar episode occurred in March 2020. News of the COVID pan-
demic and economic shutdowns resulted in disorder in Treasury markets,
manifested through high costs of trading and high spreads between other-
wise similar securities. These disturbances were much more severe than those
in September 2019, but banks again seemed unwilling to use their resources,
and the Fed again intervened by reducing the fed funds target range, offer-
ing unlimited repo loans, purchasing Treasuries and MBS, and temporarily
excluding reserves, Treasuries, and Treasury repo from leverage ratio calcu-
lations.25 As a more permanent response to the episodes of both September
2019 and March 2020, the Fed instituted a standing repo facility (SRF) in
July 2021, through which primary dealers and bank counterparties can bor-
row money overnight from the Fed on government-backed collateral. To
discourage the use of the facility except under stressed conditions, the bor-
rowing rate is set above market rates. At the time of this writing, with the
RRP rate at 0.05% and the IORB at 0.15%, the rate on the SRF is 0.25%.

Several policy issues arise with QE and the implementation of mone-
tary policy in a regime of abundant reserves. First, the Fed was established
and has traditionally accepted deposits only from banks. The idea was that
the public deposits funds into banks, and banks decide to whom to make
loans. In other words, the private banking sector was responsible for capital
allocation decisions. The Fed has always held some quantity of government
bonds, of course, because, in the current monetary system, as explained ear-
lier, government bonds are the assets against which circulate the liability
of central bank currency. But the purchase of much greater quantities of
Treasuries – currency has fallen to only 26% of Fed liabilities – and the
purchase of MBS by the Fed, are effectively capital allocation decisions.
Furthermore, the acceptance by the Fed of large deposits from the public
through the RRP has disintermediated banks as well. A second policy issue
is that the existence of the RRP may encourage the public, in a crisis, to with-
draw funds from banks and buy money market fund shares, to be deposited
in the RRP. While withdrawing money from banks in cash has always been
an option during crises, before the RRP this was very inconvenient for large
sums. Third, to the extent that there is some limit on the size of a central
bank’s balance sheet, maintaining a large balance sheet in relatively normal
times limits room for action in future times of stress. Fourth, the Fed is now
paying banks interest on their reserves, which it was not doing before 2008.

Not So Ample After All,” Staff Report Number 974, Federal Reserve Bank of New
York, July; and Nelson, B. (2022), “The Fed Is Stuck on the Floor: Here’s How It
Can Get Up,” Bank Policy Institute, January 11.
25With respect to this episode, see, for example, Baer, J. (2020), “The Day Coron-
avirus Nearly Broke the Financial Markets,” The Wall Street Journal, May 20; and
Duffie, D. (2020), “Still the World’s Safe Haven?” Hutchins Center Working Paper
#62, May.
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This can be viewed as a cost to taxpayers when, for example, the Treasury is
borrowing through three-month T-bills – and the Fed is investing some of its
assets in those same T-bills – at five or six basis points, while the Fed is bor-
rowing from banks through reserves at 15 basis points. And this issue could
become more acute when the Fed eventually increases rates by increasing the
IORB. In fact, one of the reasons that the Treasury has been keeping more
of its cash balances or deposits at the Fed is to avoid the situation in which
Treasury holds stores of cash as deposits at banks, earning a relatively low
rate of interest, while the banks are depositing those fund at the Fed and
earning the IORB.26 Figure O.14 shows that Treasury deposits have grown
to about 11% of Fed liabilities.

O.5 NEGATIVE RATES AND QE IN EUROPE
AND JAPAN

Lending €1 at a negative rate means receiving less than €1 when the loan
matures. Conversely, borrowing €1 at a negative rate means paying back
less than €1 at maturity. Buying a bond at a negative yield means purchasing
the bond for more than its face amount, receiving no interest over the life
of the bond, and receiving only face amount at maturity.27 Individuals with
relatively small amounts of money can avoid lending at negative rates by
keeping money in cash. For individuals and corporations with larger sums,
however, holding cash is very cumbersome, and depositing funds at a bank
at a modestly negative rate of interest may be the best available choice.
There are also reasons to buy long-term bonds trading at a negative yield,
despite their being guaranteed to lose money in nominal or euro terms.
First, if bank deposit rates are negative, say at −0.50%, then purchasing
a bond yielding −0.25% might be preferable to a deposit. Second, if the
future is characterized by falling prices, that is, by deflation, then a negative
yielding bond can offer a positive real return. For example, a bond yielding
−1% when prices are falling at a rate of 2% is actually gaining 1% in
real terms, that is, in purchasing power. Third, from a short-term trading

26And one of the reasons the Treasury has been holding greater cash balances is its
wanting a cushion against the occasional political stalemates with respect to raising
the debt ceiling, which, by limiting new borrowing, can leave the Treasury scrambling
for cash.
27In theory, an investor could buy a negative yielding bond by paying its face amount,
paying a periodic coupon, and then receiving the face amount at maturity. It is not
feasible, however, for a government or corporate issuer to track down individual
investors to collect coupon payments. Therefore, bonds with negative yields are sold
as described in the text, with an initial price above par, a coupon of zero, and a return
of par.
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perspective, negative yielding bonds increase in price if yields fall. In other
words, a trader makes money by buying a bond at a yield of −1% if market
yields subsequently fall to −1.5%.

The Fed never lowered its target interest rate below zero as part of its
easing program, but the European Central Bank (ECB) combined negative
rates with QE starting in 2014, and the Bank of Japan did so in 2016. These
policy decisions contributed to a peak of more than $18 trillion of global
debt trading at negative yields in December 2020, and nearly as much as
recently as summer 2021, with more than 50% of that volume in European
bonds and about a third in Japanese bonds.28 At the time of this writing,
with central banks around the world expected to increase rates in response
to inflation, the volume of negative yielding bonds is significantly lower, at
less than $5 trillion in early 2022.

The Eurosystem refers to the ECB and the collection of national cen-
tral banks in the euro area. Individual banks conduct transactions with and
keep reserves at their respective national central banks, which, in turn, inter-
act with the ECB. For simplicity, however, the discussion here is written as
if banks trade directly with the ECB. The ECB targets interest rates by set-
ting a deposit facility rate, which banks earn on their reserve deposits at the
ECB, and a rate on main refinancing operations, which banks pay to borrow
from the ECB through short-term repo transactions.29 In its easing of mone-
tary conditions, the ECB lowered these policy rates from 3.25% and 4.25%,
respectively, in July 2008, to −0.50% and 0%, respectively, in September
2019. An individual bank might try to avoid earning a negative interest rate
on its reserve deposits by lending out its reserves, which essentially passes
them on to another bank. The banking system as a whole, however, can-
not reduce the total amount of reserves supplied by the ECB and, therefore,
cannot collectively avoid the negative rates on reserves. While the logic of
reducing rates to stimulate economic activity can be extended to negative or
even significantly negative rates, policymakers around the world have not
been eager to go far along that path. Banks quickly passed negative rates
on to their corporate depositors but have been reluctant or unable to do
so for the vast majority of their retail depositors. Consequently, contrary to
policy objectives, extended periods of negative rates seem to have reduced
both bank profitability and lending activity.30

28See, for example, Flood, C. (2021), “In Charts: Bonds with Negative Yields Around
the World,” Financial Times, September 27.
29The ECB also sets a rate for borrowing through its marginal lending facility, which
is the equivalent of the discount window at the Fed.
30See, for example, Beauregard, R., and Spiegel, M. (2020), “Commercial Banks
Under Persistent Negative Rates,” FRBSF Economic Letter 2020–29, Federal Reserve
Bank of San Francisco, September 28; and Kowsmann, P. (2021), “Banks in Germany
Tell Customers to Take Deposits Elsewhere,” The Wall Street Journal, March 1.
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To ease monetary conditions beyond reducing interest rates, the ECB
turned both to loans to banks and to QE. Figure O.15 shows the assets
of the ECB or, more precisely, the consolidated assets of the ECB and the
national banks in the Eurosystem. Over the whole period, the multiplicative
expansion of the balance sheet was similar to that at the Fed, shown in
Figure O.13. The ECB began at a slower pace, however, and, at the start,
placed a heavier reliance on bank loans. Before the financial crisis, the
ECB loaned money to banks on a collateralized basis for a week through
its main refinancing operations (MROs) and for three months through its
longer-term refinancing operations (LTROs). As the ECB wanted to ease
monetary conditions, it offered longer-maturity LTROs, first up to a year
and then up to three years. The logic was that banks have more flexibility to
expand their lending if they are more certain of their source of funds. Then,
starting in 2014, with the aim of making its loans even more stimulative,
the ECB began targeted long-term refinancing operations (TLTROs), which
made four-year loans to banks in amounts based on the amounts that
banks, in turn, loaned to their customers. At the time of this writing, MROs
are for a week, LTROs for three months, and TLTROs for terms up to four
years. As evident from Figure O.15, however, the ECB eventually expanded
its balance sheet less through loans and more through QE, that is, through
the purchase of securities. While government debt issues comprise the vast
majority of these purchases, the ECB began purchasing nonbank corporate
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obligations in early 2016, and, as of early 2022, owns more than €350
billion of these securities.31

The ECB faces a unique challenge in implementing QE. European law
prevents the ECB from funding individual European governments, or more
broadly, from encouraging any unsound budget policies. In this spirit, to pre-
serve ECB purchases as purely monetary rather than fiscal interventions, the
ECB has aimed to purchase the bonds of various national governments in
proportions to their capital keys, which reflect the sizes of their populations
and economies. Furthermore, in 2015, the ECB limited itself to purchas-
ing at most one third of the outstanding amount of any country’s bonds.
As QE purchases grew, however, keeping within these constraints has been
difficult, and the ECB faced court challenges with respect to some of its deci-
sions. One obstacle of growing significance has been that Germany has the
greatest capital key, but a relatively small amount of debt outstanding. The
ECB gave itself more leeway, therefore, for purchases under the Pandemic
Emergency Purchase Programme in March 2020: the one-third limit would
not be applied; the shortest eligible maturity would be 28 days rather than
one year, which allowed for the purchase of short-term German government
bills; bonds with less than investment-grade ratings would be eligible, which
allowed for the purchase of Greek government debt; and some flexibility
would be tolerated with respect to the capital keys constraint.32

Apart from allocating purchases across countries, the sheer magnitudes
of ECB purchases have become challenging. For example, in June and July
2021, the ECB purchased €134.7 billion of government bonds from France,
Germany, Italy, and Spain, while, over the same time period, the net issuance
of those countries was only €89 billion. Furthermore, by the end of 2021,
the ECB was expected to own more than 40% of all German and 40% of
all Italian government bonds outstanding.33

One development that has made QE easier for the ECB is the relatively
recent, large-scale issuance of debt by the European Commission (EC). EC

31These include €318 billion held under the Commercial Sector Purchase Programme
(CSPP), as of early February 2022, and €50 billion under the Pandemic Emergency
Purchase Programme (PEPP), as of the end of November 2021.
32“For purchases under the PEPP . . . the benchmark allocation . . . will be guided by
the [capital] key[s] . . . A flexible approach to the composition of purchases . . . is
nonetheless essential . . . ” Source: Decision (EU) 2020/440 of the European Central
Bank of 24 March 2020 on a temporary pandemic emergency purchase programme
(ECB/2020/17), paragraph (5).
33Ainger, J. (2020), “One of the World’s Top Bond Markets Slowly Capitulating to
QE,” December 9; Reuters (2021), “UPDATE-1-ECP Buys More Bonds Than Coun-
tries Sell to Cap Yields,” August 2.
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debt is an obligation of the European Union as a whole, and not the obliga-
tion of any particular country. While not unprecedented, such supranational
European debt has never before been issued on the scale planned from 2020
to 2026. The EC is issuing €100 billion of SURE (Temporary Support to
mitigate Unemployment Risks in an Emergency) bonds and €800 billion of
NextGenerationEU bonds to finance expenditures aimed at supporting eco-
nomic recovery from the COVID pandemic and economic shutdowns.34 The
total of these supranational issues is a modest, but not insignificant, fraction
of the roughly €12.5 trillion of European government debt outstanding in
2021. From the perspective of the ECB, the debt issues of the EC not only
provide more eligible bonds for purchase, but also bonds that are not sub-
ject to the cross-country purchase allocation constraints described earlier. EC
debt purchases do face other constraints, however: at the time of this writ-
ing, the ECB can invest at most 10% of its portfolio in supranational debt
and can hold no more than 50% of the debt of any one supranational issuer.

The Bank of Japan (BOJ) was the first central bank to introduce QE.
Reacting to low growth and deflation, the BOJ had already, by 2001, pushed
TONAR (Tokyo Overnight Average Rate), the Japanese interbank rate,
to nearly zero. Looking for additional means of stimulus, the BOJ began
its QE operations by purchasing Japanese government bonds (JGBs) with
maturities greater than two years. Various additional lending and purchase
programs were subsequently introduced, which included the purchase of
corporate obligations, but, as shown in Figure O.16, its balance sheet did not
increase at anything like the trajectory pursued by the Fed and ultimately the
ECB until 2013, with the BOJ’s Quantitative and Qualitative Monetary Eas-
ing (QQE). This program committed not only to massive asset purchases,
which were to include long-term JGBs, corporate bonds, exchange-traded
funds, and equities, but also to lowering yields on long-term JGBs. QQE
showed some promising economic results at first, but by 2016 the BOJ took
further action. First, it “went negative,” lowering the rate on some bank
reserves to −0.10%. Second, it began yield curve control or yield curve
targeting, in which it committed to buy (or sell) 10-year JGBs so as to keep
their yields at approximately 0%. Yield curve control was effective in that
the BOJ did not have to purchase so great a volume of bonds as previously
to keep rates low. In other words, the mere threat of central bank trading to
keep yields at 0% is enough to keep market-determined yields at that level.
The effectiveness of this threat is manifested in Figure O.16 as a slower
increase in BOJ assets from 2016 until the outbreak of the COVID pandemic

34The SURE bonds are “social bonds,” or an environmental, social, and governance
(ESG) debt instrument, and €250 billion of the NextGenerationEU bonds will be
green bonds, used to fund eligible projects. This issue of green bonds will make the
EC the world’s largest issuer of green bonds.
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F IGURE O.16 Assets of the Bank of Japan.
Source: Bank of Japan.

in 2020. While inflationary pressures in the United States and Europe, at
the time of this writing, have pushed the Fed and ECB into more restrictive
monetary postures, economic conditions and continued low inflation in
Japan are keeping the BOJ committed to its expansionary policies.

O.6 TRADING AND LIQUID ITY

An important feature of any market is liquidity, loosely defined as the extent
to which a market participant can trade a desired volume of securities at
close to a prevailing market price. This section begins with some defini-
tions of liquidity and some summary statistics across fixed income markets.
Several trends impacting liquidity are discussed next, including electronifica-
tion; dealer regulation and risk taking; the growth of principal trading firms
(PTFs); the growth of exchange-traded funds (ETFs); and the growing con-
centration of asset managers. The section concludes with the implications
of these trends with respect to liquidity and recent concerns about systemic
fragility.

Because liquidity is hard to define precisely, there are many ways to mea-
sure it. The following are among the most common metrics:

■ Bid–ask spread gives the difference between the higher ask price, at
which a small amount of a security can be immediately purchased, and
the lower bid price, at which a small amount of a security can be imme-
diately sold. A market maker might expect to earn the bid–ask spread,
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on average, by buying securities from customers at the bid and selling
to other customers at the ask. Equivalently, defining the mid price as the
average of the bid and ask prices, and assuming the mid represents the
fair market price, a customer can conceive of the cost of trading as half
the bid–ask spread: buying at the ask instead of the mid and selling at
the bid instead of the mid.

■ Volume and turnover measure the amount of a security that trades over
some time interval, as an absolute amount or as a percentage of the
total outstanding amount of that security, respectively. A particular vol-
ume measure is average daily volume (ADV), which averages realized
daily volumes over some observation period. Volume and turnover both
give insight into the size of a trade being contemplated. For example, it
should not be too difficult to sell $1 million face amount of a bond when
its ADV is $500 million. On the other hand, it will likely be quite chal-
lenging to sell 10% of an outstanding bond issue when its daily turnover
is 2%.

■ Market depth is a measurement of liquidity used in connection with a
central limit order book (CLOB). Through a CLOB, traders submit limit
orders to buy a certain volume of a bond at a particular price (or less), or
to sell a certain volume of a bond at a particular price (or more). Market
depth is then defined in terms of the sum of the volumes of limit orders
placed at prices from the mid to some level above or below the mid. For
example, if the mid price is 100 and there are limit orders to buy $10
million face amount of bonds at prices of 99 or less, then a seller could
immediately sell $10 million at 99. Unlike the bid–ask spread, therefore,
market depth measures liquidity for orders of different sizes.

■ Price impact or implementation shortfall. A buyer of a significant vol-
ume of a particular security can expect the market price to increase in the
course of executing the purchases, as a seller of a significant volume can
expect the market price to fall. Price impact measures the extent to which
the market price can be expected to change as a result of a large transac-
tion, and implementation shortfall measures the difference between the
realized purchase or sale price on a large transaction relative to the mar-
ket price before the transaction. Both price impact and implementation
shortfall are typically estimated using data from past transactions. Asset
managers and traders use the resulting models to estimate the transac-
tion costs of their proposed trades. Dealers also use these models to
quote prices at which they are willing to guarantee execution of large
client orders.

The liquidity of fixed income securities varies dramatically across asset
classes, across subclasses of those broader classes, and across individual
securities within those subclasses. Using ADV, Table O.5 illustrates the
variation of liquidity across broad asset classes. The ADVs in the table range
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TABLE O.5 Average Daily Volumes (ADV) of
Trading in Selected Markets, Fourth Quarter
2021, in $Billions.

Market ADV

Treasuries 651.8
Agency MBS 251.2
Corporates 34.5
Munis 8.9
Agencies 2.4
ABS 1.3
Non-Agency MBS 1.0

Source: SIFMA (2022), “SIFMA Research
Quarterly – 4Q21: US Fixed Income Mar-
kets – Issuance & Trading,” January.

from over $650 billion for Treasuries and over $250 billion for agency
MBS to about $9 billion for munis and even less for agency securities,
asset-backed securities, and non-agency MBS. Variation of liquidity within
these asset classes depends on the individual markets. In the Treasury
market, for example, the most recently issued bonds in each maturity range
are by far the most liquid (see, for example, Figure 11.1). In the corporate
bond market, liquidity varies with age, credit quality, and issue size. Like
Treasuries, the most recently issued corporates are the most liquid: one study
reported that the monthly turnover of corporate bond issues declined from
about 45% in the first month after issuance to about 13.5% in the second
month and continues to decline thereafter. With respect to credit quality,
investment-grade bonds are more liquid than less creditworthy high-yield
bonds. In fact, 51.1% of the ADV of corporates in Table O.5 is due to
trading in investment-grade bonds and only 17.5% to high-yield bonds.
(The remaining ADV is from private placements, 25.8%, and convertibles,
5.6%.) Finally, with respect to issue size, one study showed that larger issues
traded on a greater number of days in a year than smaller issues. To cite a
few statistics, investment-grade bonds from issues greater than $1 billion
trade, on average, on about 170 days a year. By contrast, investment-grade
bonds from issues less than $250 million trade, on average, on fewer than
20 days in a year. Note, by the way, that describing liquidity in terms of
the number of days on which a particular bond trades at all indicates the
illiquidity of corporate bonds, at least relative to Treasuries. As a final
example, the liquidity of muni issues also declines rapidly with age. Over
the whole of 2019, the volume of munis that traded within a month of
their issuance was about $585 billion. But the volume of munis that traded
between one and three months of their issuance was only $138 billion, and
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between three and six months only $77 billion, etc. Furthermore, the total
2019 trading volume of all munis that had been issued 10 or more years
previously was only about $91 billion.35

The text now turns to a discussion of trends affecting liquidity in fixed
income markets.

E lectronificat ion

Equity and futures markets, which comprise relatively few distinct secu-
rities, migrated to electronic trading much more quickly than did bond
markets, which comprise a vastly greater number of distinct issues. Tradi-
tionally, bonds were traded by voice. Customers traded with dealers, and
dealers traded with each other, either directly or anonymously through
interdealer brokers (IDBs). While a lot of bond trading is still by voice,
electronic trading has been growing steadily. Dealer-to-customer (D2C)
trades can take place on single-dealer or multi-dealer platforms, mostly
through request-for-quotes (RFQ). In this process, a customer requests
dealers to provide price quotes to trade a particular size of a particular
security or portfolio of securities. The customer then chooses with which
dealer to trade.36 A customer can also receive direct streams from dealers,
through which dealers continuously send bid and offer prices for partic-
ular securities. The customer can then decide if and when to trade at the
streamed prices. Dealer-to-dealer (D2D) trades can take place on interdealer
electronic platforms, usually through a CLOB. Through a CLOB, traders
submit limit orders to buy or sell a security, as described earlier, or they
buy or sell that security immediately by lifting the offers or hitting the
bids of other dealers who have submitted limit orders. PTFs have become
more important in recent years and are discussed presently. PTFs often
participate directly on interdealer platforms and also set up direct streams
from individual dealers.

In the Treasury market, from February 2019 to May 2020, 65%
of all trades were electronic. This percentage breaks up into 33% D2D
trades, which nearly all trade electronically, and 67% DTC trades, of which
48% trade electronically. The electronic trades over this time period were
54% through CLOBs, 33% through RFQ, and 13% through streaming.

35Statistics cited in this paragraph are from: Blackrock (2017), “The Next Genera-
tion Bond Market;” Theisen, S. (2018), “Developments in Credit Market Liquidity,”
SEC FIMSAC Meeting, Citi, January 11; and MSRB (2019), “Municipal Securities
Rulemaking Board 2019 Fact Book.”
36Customers and dealers participating in RFQs have typically known each other’s
identities. Recently, however, anonymous RFQ platforms have gained traction.



Trim Size: 6in x 9in Tuckman835554 c00.tex V1 - 07/12/2022 11:20am Page 41�

� �

�

Overview 41

In the corporate bond market, electronic trading of investment-grade
bonds increased from 10% in 2011, to 19% in 2017, and 31% in 2020,
and reached 38% in December 2020. Lower but growing percentages of
high-yield bonds trade electronically, from 11% in 2017, to 21% in 2020,
and to more than 25% in December 2020. Electronic trading of corporates
is further ahead in Europe, growing from 39% of the market in 2017 to
47% in 2020.37

Dealer Regulat ion and Risk Taking

Dealers traditionally take risk in order to make markets. Customers can buy
securities in significant size from dealers, because dealers are willing to bear
the risks of buying and holding significant inventories in those securities.
Customers can sell securities in significant size to dealers, because dealers are
willing to bear the risks of holding and subsequently selling those securities.
There are really two distinct risks here: market risk and execution risk. With
respect to market risk, a dealer holding an inventory of corporate bonds can
pretty easily hedge the risk of general interest rate changes, and even the risk
of general changes to credit spreads, but hedging the unique credit risk of
individual bonds can be difficult and expensive. With respect to execution
risk, a dealer must typically “work out” of a large position. For example,
after buying a large block of securities from a customer, the dealer cannot
usually sell that whole block at once: the loss from the resulting price impact
would likely wipe out any spread or fee that the dealer had charged the
customer. Therefore, the dealer usually sells the larger position gradually,
in smaller pieces, running the risk that other market participants happen to
jump in to sell the same security at the same time, and also extending any
idiosyncratic market risks of the position.

Dealers in banking entities were subjected to more stringent regulation
after the financial crisis of 2007–2009. In particular, capital requirements
were increased, both adjusted for risk and as a raw percentage of assets; liq-
uidity requirements were formally added; and trading purely for the account
of the bank, rather than for facilitating customer transactions, was – with the
exception of Treasury bond trading – severely restricted by the Volcker rule.

37Mackenzie, M. (2021), “Pandemic’s Digital Push Shows Future of Bond Trading,”
Financial Times, November 7; McPartland, K. (2021), “All-to-All Trading Takes
Hold in Corporate Bonds,” Greenwich Associates, Second Quarter; McPartland, K.,
Monahan, K., and Swanson, S. (2020), “US Capital Markets Performance During
COVID,” Greenwich Associates, December 22; Wiltermuth, J. (2021), “Electronic
Trading in US Corporate Bonds Is Finally Taking Off,” MarketWatch, July 14; and
Author Calculations.
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Because of this new regulatory regime, and perhaps also because of their
own choices to reduce risk, banking entities are less willing to hold securities
inventory and less willing to bear the risks of making markets. Figures O.17
and O.18 illustrate this point in the US Treasury and corporate bond mar-
kets, respectively.

Figure O.17 shows that the amount of 10-year Treasury notes sold
at auction has been increasing steadily, and particularly rapidly in recent
years, while, at the same time, dealers – who are mostly within banking
entities – have been purchasing lower and lower percentages of those sales.
Both the issue sizes and allotments to dealers, given in the figures by the very
light gray lines, vary significantly from month to month, mostly because
of the auction cycle of new and reopening sales described previously.
To show the trend more clearly, therefore, the solid lines are centered
seven-month averages of the underlying series. In any case, in the last few
month of the observation window, the allotment to dealers is well under
15%. Figure O.18 shows that primary dealers are holding much smaller net
positions in corporate bonds than before the crisis, while the total amount
of corporate bonds outstanding has increased dramatically.38
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Sources: Investor Class Auction Allotments, US Department of the Treasury; and
Author Calculations.

38Primary dealers commit to participate in Treasury auctions and are trading coun-
terparties and market makers for the Fed.
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Growth of PTFs

In the Treasury market, the reduction of dealer market making has been
made up, at least in part, by PTFs. These firms typically trade to make
money on their accounts and try to make relatively small amounts of money
on each of very many trades. They are often high-frequency trading firms
(HFTs) as well, but do not have to be. In any case, the PTF business model
or trading style relies heavily on electronification, and the advance of elec-
tronification is in good part due to demand from PTFs. Market participants
were shocked in 2015 by an inadvertent leak of the top 10 firms by trad-
ing volume on the largest platform for the electronic trading of Treasuries:
only two were banks. Figure O.19 uses more recent data to show how PTFs
have grown in prominence in the Treasury market. Over the sample period,
PTFs and dealers each comprised 48% of trading in the interdealer broker
market (with buy-side firms, like asset managers, comprising the remainder).
Furthermore, true to their usual nature, about 93% of PTF trades were elec-
tronic, compared with 58% of dealer trades. Note, by contrast, that only
18% of buy-side trades were electronic.

Growth of ETFs

Shares of an ETF represent fractional holdings of the fund’s underlying port-
folio and trade on an exchange. Authorized Participants (APs) of an ETF can
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F IGURE O.19 Percentages of Trading Volume in the Interdealer Broker Markets for
Treasuries, by Participant Type and Trading Protocol, April to December 2019.
Source: Harkrader, J., and Puglia, M. (2020), “Principal Trading Firm Activity in
Treasury Cash Markets,” FEDS Notes, Board of Governors of the Federal Reserve
System, August 4.

create ETF shares by buying underlying assets, adding them to the fund’s
portfolio, and selling ETF shares against those additional assets. APs can
also reduce the number of outstanding ETF shares by taking assets from
the underlying portfolio, selling them, and purchasing existing ETF shares
corresponding to the sold assets. An ETF has a NAV, usually expressed as
a value per share, which is an estimate of the value of the underlying port-
folio. However, investors buy or sell shares of an ETF on an exchange at a
market-determined price, which may be greater than, equal to, or less than
the NAV. Unlike APs, investors cannot exchange their shares for securities
in the underlying portfolio, nor can they deliver securities in exchange for
new ETF shares.

ETFs in general, including fixed income ETFs, have experienced phe-
nomenal growth. The first fixed income ETF was listed in 2002, and, by
the end of 2020, assets under management in global bond ETFs exceeded
$1.5 trillion.39 An important motivation for bond ETFs is the creation of
liquid trading vehicles from relatively illiquid assets. As discussed earlier, in
part because there are so many distinct corporate bond issues, individual
corporate bonds are relatively illiquid, particularly as they age. By contrast,

39iShares by Blackrock (2021), “By the Numbers: New Data Behind the Bond ETF
Primary Process.”
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a small number of large and diversified portfolios, traded on exchanges and
traded electronically in the form of ETFs, can be very liquid. Furthermore,
growing liquidity and electronic trading in ETFs drive more electronic trad-
ing of corporate bonds, which further improves ETF liquidity, and so forth.
In fact, a market has developed for trading portfolios comprising bonds that
are all or mostly all held by ETFs.40 In any case, Figure O.20 illustrates
the liquidity advantages of ETFs. For each asset class shown, ETF assets
under management (AUM) are a small fraction of total amounts outstand-
ing. At the same time, however, ETF ADV is a large fraction of total ADV. For
example, ETFs hold only 4.8% of high-yield corporate bonds outstanding,
but the ADVs of these ETFs comprise 24.3% of the ADV of all such bonds.
In other words, high-yield corporate bond ETFs are significantly more liquid
than high-yield corporate bonds.

Skeptics have argued that day-to-day ETF liquidity lulls investors into
a false sense of security, in the sense that, under stressed market condi-
tions, ETF liquidity will revert to the liquidity of the underlying bonds and
essentially disappear. This theory was tested in March 2020, when mar-
kets roiled from the COVID pandemic and economic shutdowns. Under-
lying bond market liquidity did evaporate, with even primary issues of both
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F IGURE O.20 Exchange-Traded Fund AUM and ADV as a Percentage of Market
AUM and ADV.
Source: State Street Global Advisors (2020), “Fixed Income ETFs: Fact versus Fiction
(Answers on Fund Structure, Liquidity, Trading and Performance),” June.

40Mackenzie, M. (2021), “Pandemic’s Digital Push Shows Future of Bond Trading,”
Financial Times, November 7.
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investment-grade and high-yield bonds coming to a halt. Over the same
time, however, ETF trading volumes increased dramatically. In other words,
investors could not trade individual bonds, but could trade ETFs. The pricing
of ETFs over the period, however, surprised some observers. As bond prices
plummeted, ETFs traded at significant discounts from NAV; that is, the prices
of the ETFs were very much below the estimated value of their underlying
portfolios. Similarly, when bond prices rapidly recovered, ETFs traded at
significant premiums to NAV, that is, at prices well above estimated portfo-
lio values. Critics took this pricing behavior as evidence that ETFs were not
working well, in the sense that investors could not trade shares at their true
values. But by the definition of illiquidity during stress events, “true values”
of individual bonds cannot be accurately determined at those times. It is most
likely, therefore, that observed discounts from NAV resulted from stale bond
prices: as prices swiftly fell with nearly no liquidity, bond prices recorded for
the purposes of estimating NAV were stale, higher prices. Similarly, as prices
rebounded quickly with little liquidity, NAV was estimated with stale, lower
prices, making it seem that ETFs traded at a premium. Supporting this nar-
rative was the fact that when prices were falling and ETFs were selling at a
discount to NAV, investors were nevertheless giving bonds to APs to create
new ETFs. Despite the apparent loss in value, investors could sell their bonds
most efficiently by first exchanging them into ETFs.41

Growing Concentrat ion of Asset Managers

Concentration in the asset management industry has been growing for
some time. Assets under management at the top 20 global managers were
29% of total assets in 1995, 38% in 2000, and 43% in 2020. Furthermore,
in 2020, the top 10 global managers managed 31% of total assets, and
the top five, 21%. With respect to flows, a 2018 study found that 42% of
asset management trading in investment-grade corporate bonds came from
the top five managers.42 Increasing concentration in asset management
implies a growing demand in the market for larger trades or, equivalently,

41For accounts of ETFs during March 2020, see, for example: Aramonte, S. and
Avalos, F. (2020), “The recent distress in corporate bond markets: cues from ETFs,”
BIS Bulletin No. 6, April 14; Levine, M. (2020), “Money Stuff: The Bull Market
Caught a Virus,” Liquidity Illusion Illusion, Bloomberg, March 12; and S&P Global
Ratings (2020), “Credit Trends: How ETFs Contributed to Liquidity and Price Dis-
covery in the Recent Market Dislocation,” July 8.
42McPartland, K. (2019), “The Challenge of Trading Corporate Bonds Electroni-
cally,” Greenwich Associates, Q2; Thinking Ahead Institute (2020), “Global Asset
Manager AuM tops US$100 Trillion for the First Time,” Willis Towers Watson,
October 19; and Author Calculations.
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a growing amount of execution risk from having to break up large orders
into smaller transactions.

Summary of Trends

The trends just presented can be combined into the following narrative.
Dealers are allocating less risk to market making, while asset managers need
to execute larger and larger trades. Therefore, dealers focus on their largest
and best clients, pushing others to electronic platforms. The growth of PTFs
makes up for some of the liquidity withdrawn by dealers, but by providing
frequent liquidity on small trades rather than by assuming the execution risk
of larger orders. The net results of these intersecting trends, therefore, are as
follows:

■ Liquidity has become plentiful for small trades in relatively liquid, elec-
tronic markets.

■ Liquidity can still be challenging for larger trades, even in relatively liq-
uid markets, and, of course, for trades in less liquid markets.

■ More customers must bear the execution risk of their own trades, instead
of paying dealers to assume this risk.

L iqu id i ty and Fragi l i ty

The changing nature of liquidity in bond markets has raised the issue of
market resilience or, its reverse, market fragility. In particular, some believe
that liquidity provision by PTFs is less stable than by dealers. The argument
is that PTFs will shut down in stress conditions, so as to avoid any losses on
their own accounts, while dealers will continue to make markets for their
clients, with whom they have ongoing and valuable business relationships.
The “flash rally” in the Treasury market on October 15, 2014, provided a
case study in which to examine this argument.

On that day, there was a release of retail sales data at 8:30am, but it
is generally agreed that the news was not particularly surprising. Neverthe-
less, Treasury yields dropped relatively steeply over the next hour or so.
Then, over the 12 minutes from 9:33am to 9:45am, the yield on the 10-year
Treasury fell by 16 basis points and then rose by 16 basis points (i.e., prices
rose by a lot and then fell by a lot). This was an extremely large move for
such a short time period – the daily standard deviation of the 10-year yield
was perhaps four or five basis points per day. Was any particular group of
market participants to blame for this flash rally? Does the event forewarn of
worse occurrences to come?

Subsequent analysis showed that over the 12 minutes in question, trad-
ing volume increased dramatically and market depth dropped precipitously.
In other words, trading continued throughout the interval, and in large
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quantities, but through very many small orders and a consistent replenish-
ment of limit orders. Market depth provided by both PTFs and dealers fell
during the window. While market depth supplied by PTFs fell by a much
larger percentage, PTFs supplied much more of the total throughout. Fur-
thermore, PTFs did not change their bid–ask spreads by much, while dealers
did at times. A joint study of regulators concluded that: “In very broad
terms . . . PTFs, as a group, reacted . . . primarily by reducing limit order
quantities, while the bank-dealers reacted by widening bid–ask spreads and,
for brief periods of time, removing their offers to sell securities.”43 Evidence
from the flash rally, therefore, is consistent with the different nature of
liquidity provision by PTFs and dealers; is not consistent with PTFs closing
shop during a stress event; and is consistent with a liquidity regime that is
shifting execution risk to the buy side.

There was a similar flash event on February 25, 2021, though this time
Treasury prices fell significantly and then recovered in a short amount of
time. The event was again characterized by sharply reduced market depth
and sharply elevated trading volumes, that is, by rapid replenishment of limit
orders.44 The extent to which markets are susceptible to similar and perhaps
worse occurrences remains a topic of concern.

43Joint Staff Report (2015), “The US Treasury Market on October 15, 2014,” p. 28.
44Aronovich, A., Dobrev, D., and Meldrum, A. (2021), “The Treasury Market Flash
Event of February 25, 2021,” FEDS Notes, Board of Governors of the Federal
Reserve System, May 14.
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CHAPTER 1
Prices, Discount Factors,

and Arbitrage

This chapter begins by introducing the cash flows of fixed-rate, government
coupon bonds. It shows that prices of these bonds can be used to extract

discount factors, which are the market prices of one unit of currency to be
received on various dates in the future.

Relying on a principle known as the law of one price, discount factors
extracted from a particular group of bonds can be used to price bonds
that are not part of that original group. Furthermore, a particularly
persuasive relative pricing methodology, known as arbitrage pricing, turns
out to be mathematically identical to pricing with discount factors. Hence,
discounting can rightly be used and regarded as shorthand for arbitrage
pricing.

Market prices on a single, fixed date are used to illustrate that the law
of one price and arbitrage pricing describe the US Treasury market relatively
well, but not perfectly. Bonds are not commodities: their prices reflect sup-
ply and demand characteristics that are not fully captured by their scheduled
cash flows. The US Treasury’s Separate Trading of Registered Interest and
Principal of Securities (STRIPS) are introduced next, both as a topic of inde-
pendent interest and as an additional illustration of the complex realities of
pricing in bond markets.

The chapter concludes with accrued interest and day-count conventions,
which are used throughout fixed income markets and throughout this book.

For clarity of exposition, prices and examples in this chapter are all as
of the close of business on Friday, May 14, 2021. Also, because transactions
in the US Treasury market typically settle “T+1,” that is, bonds and cash are
exchanged one business day after the trade date, all trades in the examples
settle on Monday, May 17, 2021.

49
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1.1 GOVERNMENT COUPON BONDS

The cash flows from government coupon bonds are defined by coupon rate;
maturity date; and, synonymously, face amount, principal amount, or par
value. For example, in May 2014 the US Treasury sold a bond with a coupon
rate of 2.5% and a maturity date of May 15, 2024. Purchasing $1 million
face amount of these “2.5s of 05/15/2024” entitles the buyer, as of settle-
ment in mid-May 2021, to the schedule of payments depicted in Table 1.1.
More specifically, the Treasury promises to make a coupon payment every
six months equal to half the bond’s annual coupon rate of 2.5% times the
face amount, that is, 2.5%∕2 × $1,000,000 = $12,500. Finally, on the matu-
rity date of May 15, 2024, in addition to the coupon payment on that date,
the Treasury promises to pay the bond’s face amount of $1,000,000.1

This chapter restricts attention to US Treasury bonds, but the analytics
presented here apply easily to bonds issued by other countries, because cash
flows across sovereign bonds differ mostly with respect to the frequency of
coupon payments. Government bonds in France and Germany, for example,
make annual coupon payments, while those in Italy, Japan, and the United
Kingdom pay semiannually, as in the United States.

Returning to the US Treasury market, Table 1.2 reports the prices of
selected US Treasury bonds as of May 14, 2021. Per market convention,
bond prices are always quoted per 100 face amount. Also, each price in the
table is a full or invoice ask price, that is, the total price at which traders
stand ready to sell that particular bond. (The division of full price into a flat
or quoted price and accrued interest will be explained later in the chapter.)
From the third row of the table, then, for example, purchasing the 1.625s

TABLE 1.1 Cash Flows of $1 Million Face Amount of the 2.5s
of 05/15/2024. Entries Are in Dollars.

Date Coupon Payment Principal Payment

11/15/2021 12,500
05/15/2022 12,500
11/15/2022 12,500
05/15/2023 12,500
11/15/2023 12,500
05/15/2024 12,500 1,000,000

1Scheduled bond payments that do not fall on a business day are made the following
business day. For example, because May 15, 2022, is a Sunday, the coupon payment
due that day would actually be paid on Monday, May 16, 2022.
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TABLE 1.2 Prices of Selected US Treasury Bonds Maturing on
November 15 or May 15 of a Given Year, as of May 14, 2021.
Coupons Are in Percent.

Coupon Maturity Price

2.875 11/15/2021 101.4297
2.125 05/15/2022 102.0662
1.625 11/15/2022 102.2862
0.125 05/15/2023 99.9538
0.250 11/15/2023 100.0795
0.250 05/15/2024 99.7670
2.250 11/15/2024 106.3091

of 11/15/2022 costs 102.2862 per 100 face amount or $102,286,200 for
$100,000,000 face amount.

The bonds in Table 1.2 are selected from the broader list of US Trea-
suries for two reasons. First, it is convenient for the computations in the
next section that bonds mature in approximate six-month intervals. Second,
when two or more Treasury bonds mature on a given date, the most recently
issued bond is chosen because it is likely to be more liquid and, consequently,
its quoted price more reliable. For example, the 0.25s of 05/15/2024, which
were issued in 2021, are chosen over the 2.5s of 05/15/2024, which were
featured in Table 1.1 and issued in 2014.

1.2 DISCOUNT FACTORS

The discount factor for a particular term gives the value today, or the present
value, of one unit of currency to be received at the end of that term. Denote
the discount factor for t years by d(t). Then, for example, if d(3.0) = 0.99,
the present value of $1 to be received in three years is 99 cents.

Because Treasury bonds promise future cash flows, discount factors can
be extracted from Treasury bond prices. In fact, the rows of Table 1.2 can be
used to write equations that relate bond prices to discount factors. Starting
with the first row of the table, that is, with the bond maturing in six months,

101.4297 =
(

100 + 2.875
2

)
d(0.5) (1.1)

In words, the price of the 2.875s of 11/15/2021 equals the present value
of its future cash flows, or, more precisely, the sum of its principal and
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coupon cash flows multiplied by the discount factor for funds to be received
in six months. Solving, d(.5) = 0.999923.2

By the same reasoning, the equations relating prices to discount factors
can be written for the other bonds in Table 1.2. For the next two bonds,
which mature in one year and in 1.5 years, respectively,

102.0662 = 2.125
2

d(0.5) +
(

100 + 2.125
2

)
d(1.0) (1.2)

102.2862 = 1.625
2

d(0.5) + 1.625
2

d(1.0) +
(

100 + 1.625
2

)
d(1.5) (1.3)

Given the solution for d(0.5), from Equation (1.1), Equation (1.2) can
be solved for d(1). Then, given the solutions for both d(0.5) and d(1.0),
Equation (1.3) can be solved for d(1.5). Continuing in this way through the
rows of Table 1.2 solves for the discount factors, in six-month intervals,
out to three and one-half years. Table 1.3 reports these results. That these
discount factors fall as term increases reflects the time value of money: the
longer a payment of $1 is delayed, the less it is worth today.3

Figure 1.1 shows discount factors, in six-month intervals, from the
bonds listed in Table 1.2 and other bonds, not shown here, which have
maturity dates on November 15 and May 15 out to 10 years. Discount
factors can again be seen to decrease with term, with the value of $1 to be
received in 10 years worth less than 85 cents as of the pricing date.

TABLE 1.3 Discount Factors
Derived from Bonds Listed in
Table 1.2.

Term Discount Factor

0.5 0.999923
1.0 0.999419
1.5 0.998504
2.0 0.997041
2.5 0.994558
3.0 0.990195
3.5 0.984742

2For ease of exposition, this section assumes that the coupon and maturity dates of
the bonds listed in Table 1.2 are exactly 0.5 years apart. A more precise construction
of discount factors would use the exact number of days between cash flow dates.
3Discount factors will not necessarily fall with term if interest rates are negative.
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F IGURE 1.1 Discount Factors Derived from Selected US Treasury Bonds, as of
May 14, 2021.

1.3 THE LAW OF ONE PRICE

The US Treasury 1.75s of 05/15/2022 mature in mid-May, approximately
one year from the settlement date of the examples of this chapter but are not
included among the bonds in Table 1.2. How should the 1.75s of 05/15/2022
be priced? A natural answer is to apply the discount factors of Table 1.3 even
though the 1.75s of 05/15/2022 are not used to construct those discount fac-
tors. After all, because all of these bonds are obligations of the US Treasury,
it seems reasonable to assume as a first approximation that the present value
of receiving $1 from the Treasury on some future date does not depend on
which particular bond pays that $1. This reasoning is known as the law of
one price: absent confounding factors (e.g., liquidity, financing, taxes, credit
risk), identical cash flows should sell for the same price.

According to the law of one price, then, the price of the 1.75s of
05/15/2022 should be,

1.75
2

× 0.999923 +
(

100 + 1.75
2

)
× 0.999419 = 101.691 (1.4)

where the bond’s present value is calculated as the sum of each cash flow
multiplied by its corresponding discount factor from Table 1.3. As it turns
out, the market price of this bond is 101.693, which is nearly equal to the
prediction of the law of one price in Equation (1.4).

Table 1.4 compares market prices with present values for all US Treasury
bonds that mature on November 15 or May 15 out to November 15, 2024.
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TABLE 1.4 Treasury Bond Prices Versus Present Values Using the Discount Factors
of Table 1.3. Bonds in Bold Are Used to Derive those Discount Factors. Coupons
Are in Percent.

Market Present Rich(+)/ Issue
Term Coupon Maturity Price Value Cheap(−) Date

0.5 2.875 11/15/2021 101.4297 101.4297 0.0000 11/15/2018
0.5 2.000 11/15/2021 100.9952 100.9922 0.0030 11/15/2011
0.5 8.000 11/15/2021 104.0904 103.9920 0.0984 11/15/1991
1.0 2.125 05/15/2022 102.0662 102.0662 0.0000 05/15/2019
1.0 1.750 05/15/2022 101.6931 101.6914 0.0017 05/15/2012
1.5 1.625 11/15/2022 102.2862 102.2862 0.0000 11/15/2012
1.5 7.625 11/15/2022 111.3969 111.2797 0.1172 11/16/1992
2.0 0.125 05/15/2023 99.9538 99.9538 0.0000 05/15/2020
2.0 1.750 5/15/2023 103.1970 103.1997 −0.0026 05/15/2013
2.5 0.250 11/15/2023 100.0795 100.0795 0.0000 11/16/2020
2.5 2.750 11/15/2023 106.3040 106.3163 −0.0123 11/15/2013
3.0 0.250 05/15/2024 99.7670 99.7670 0.0000 05/17/2021
3.0 2.500 05/15/2024 106.5448 106.4941 0.0508 05/15/2014
3.5 2.250 11/15/2024 106.3091 106.3091 0.0000 11/17/2014
3.5 7.500 11/15/2024 124.8220 124.5906 0.2314 08/15/1994

The “Present Value” column is computed along the lines of Equation (1.4),
giving the prices of the bonds as predicted by the law of one price. The
column “Rich (+) / Cheap (−)” is the difference between the market price
and the present value. Bonds with prices greater than that predicted by a
model, like the law of one price, are said to be trading rich, while bonds
with prices less than predicted by the model are said to be trading cheap.

The bonds in bold in Table 1.4 are those listed in Table 1.2 and used to
compute the discount factors in Table 1.3. Therefore, these bonds are fair,
that is, neither rich nor cheap, relative to those discount factors. The prices
of the other bonds in Table 1.4, however, can be either rich or cheap relative
to those discount factors or, equivalently, relative to the prices of the bonds
in bold.

The table, as a whole, more or less supports the law of one price. Most
of the deviations of present values from market prices are very small, and
even the largest deviation, the 23-cent richness of the 7.5s of 11/15/2024, is
less than 0.2% of the bond’s market price.

Across the bonds in Table 1.4, those with the largest deviations are the
older, high-coupon bonds, for example, the 8s of 11/15/2021, issued in 1991;
and the 7.625s of 11/15/2022, issued in 1992. Furthermore, these bonds all
trade rich relative to the bonds in bold. This is somewhat surprising because,
historically, older bonds, which tend to be relatively illiquid, have tended to
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trade cheap relative to other bonds. Perhaps in the current, low-rate envi-
ronment, some investors have a strong preference for income and are willing
to pay more than fair value for bonds paying high coupons.

While the law of one price is generally supported by Table 1.4, it is
natural to ask whether a trader or investor could profit by buying cheap
bonds and simultaneously selling fairly priced bonds; by selling rich bonds
and simultaneously buying fairly prices bonds; or – so as to profit on both
sides of the trade – by buying cheap bonds and simultaneously selling rich
bonds. The next section addresses this question.

1.4 ARBITRAGE AND THE LAW OF ONE PRICE

While the law of one price is intuitive, its real justification rests on a stronger
foundation. It turns out that a deviation from the law of one price implies
the existence of an arbitrage opportunity, that is, a trade that generates profit
without any chance of losing money.4 But because arbitrageurs would flock
toward any such trade, market prices can be expected to adjust quickly so as
to rule out any significant deviations from the law of one price. Put another
way, arbitrage activity can be expected to enforce the law of one price.

To make this argument more concrete, consider an arbitrage trade based
on the richness of the 7.625s of 11/15/2022, as reported in Table 1.4. More
specifically, sell or short5 the 7.625s of 11/15/2022 and simultaneously buy
a portfolio of bonds, from among the bonds in bold in Table 1.4, which
perfectly replicates the cash flows of the 7.625s of 11/15/2022. Because the
7.625s of 11/15/2022 are rich relative to the bonds in bold, selling the former
and buying a portfolio of the latter, in a way that generates no future cash
flows, should generate a riskless profit. Table 1.5 describes this replicating
portfolio and this arbitrage trade in more detail.

Columns (2) through (4) of Table 1.5 correspond to the three bonds cho-
sen from Table 1.2 to construct the replicating portfolio. Row (iii) gives the
face amount of each bond in the replicating portfolio, that is, the portfolio is
long about 2.90 face amount of the 2.875s of 11/15/2021; about 2.94 of the
2.125s of 05/15/2022; and about 102.98 of the 1.625s of 11/15/2022. Rows
(iv) through (vi) show the cash flows from those face amounts of each bond.
For example, 102.97582 face amount of the 1.625s of 11/15/2022 gener-
ates coupon payments of 102.97582 × 1.625%∕2 = 0.83668 on November

4Market participants often use the term arbitrage more broadly to encompass trades
that could conceivably lose money but promise large profits relative to risks.
5Shorting a bond means selling a bond one does not own. The mechanics of short
selling bonds is discussed in Chapter 10. For now, assume that a trader shorting a
bond receives the price of the bond at the time of sale and is obliged to pay all of its
coupons and its principal amount on their respective due dates.
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TABLE 1.5 An Arbitrage Trade: Selling the 7.625s of 11/15/2022 and Buying a
Replicating Portfolio from Bonds in Table 1.2. Coupons Are in Percent.

(1) (2) (3) (4) (5)

Replicating Portfolio

(i) Coupon 2.875 2.125 1.625 7.625
(ii) Maturity 11/15/2021 05/15/2022 11/15/2022 11/15/2022
(iii) Face 2.90281 2.94454 102.97582 100

Date Cash Flows

(iv) 11/15/2021 2.94454 0.03129 0.83668 3.8125
(v) 05/15/2022 2.97583 0.83668 3.8125
(vi) 11/15/2022 103.8125 103.8125

(vii) Price 101.4297 102.0662 102.2862 111.3969
(viii) Cost 2.94431 3.00538 105.33005 111.3969
(ix) Total Cost 111.2797 111.3969
(x) Net Proceeds 111.3969 − 111.2797 = 0.1172

15, 2021, and on May 15, 2022, and coupon plus principal payments of
102.97582 × (1 + 1.625%∕2) = 103.8125 on November 15, 2022. Row (vii)
gives the price of each of the bonds, simply copied from Table 1.2, and row
(viii) gives the cost of purchasing the face amount of each bond given in row
(iii). As an example of the latter, the cost of purchasing 2.94454 face amount
of the 2.125s of 05/15/2022 at a price of 102.0662 (per 100 face amount)
is 2.94454 × 102.0662% = 3.00538.

Column (5) of Table 1.5 gives details of the rich bond to be sold, namely,
the 7.625s of 11/15/2022. Its cash flows on the three payment dates are
given in rows (iv) through (vi). And, most importantly, note that the sums
of the cash flows of the three replicating bonds for each date equal the cash
flows of the 7.625s of 11/15/2022. More specifically, 2.94454 + 0.03129 +
0.83668 = 3.8125; 2.97583 + 0.83668 = 3.8125; and trivially, 103.8125 =
103.8125. Hence, the replicating portfolio, as defined by the three bonds
and their respective face amounts in row (iii), do indeed replicate the cash
flows of the 7.625s of 11/15/2022. Section A1.1 in the appendix to this
chapter shows how to derive the face amounts of the bonds in this or any
such replicating portfolio.

The discussion now returns to the arbitrage trade. According to row
(ix) of Table 1.5, an arbitrageur can sell 100 face amount of the 7.625s of
11/15/2022 for 111.3969 and buy the replicating portfolio for 111.2797,
which is just the sum of the costs of the three bond positions given in row
(viii). The net proceeds of this trade, given in row (x), is 0.1172, or about
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12 cents. But, by definition of the replicating portfolio, this trade will neither
generate nor require cash on any of the three future payment dates. Hence,
through this trade, the arbitrageur receives 12 cents today without incur-
ring any future obligations. While these proceeds may seem small, the trade
described in Table 1.5 can, at least in theory, be scaled up dramatically. For
example, selling $500 million of the 7.625s of 11/15/2022 and buying the
appropriately sized replicating portfolio would generate a riskless profit of
$500,000,000 × 0.1172% = $586,000.

As discussed at the start of this section, if a riskless and profitable trade
like the one just described were readily available, arbitrageurs would col-
lectively rush to do the trade and, in so doing, force prices to relative levels
that admit no further arbitrage opportunities. In the present example, arbi-
trageurs would drive the price of the 7.625s of 11/15/2022 lower and the
price of the replicating portfolio higher until the two were equal.

The crucial link between arbitrage and the law of one price can now
be explained. The total cost of the replicating portfolio, 111.2797, given
in row (ix) of Table 1.5, exactly equals the present value of the 7.625s
of 11/15/2022 as reported in Table 1.4. In other words, exactly the same
value for the 7.625s of 11/15/2022 is computed through the law of one
price (i.e., applying discount factors derived from the prices of bonds in the
replicating portfolio) and through arbitrage pricing (i.e., finding the price
of the replicating portfolio). This is not a coincidence. Section A1.2 in the
appendix proves that these two pricing methodologies are mathematically
identical. Hence, applying the law of one price, that is, pricing with discount
factors, is identical to relying on the activity of arbitrageurs to eliminate rel-
ative mispricings. Put another way, discounting cash flows can be justifiably
regarded as shorthand for the more complex and persuasive arbitrage pricing
methodology.

Despite the theory, of course, as of mid-May 2021, the market price of
the 7.625s of 11/15/2022 is quoted at about 12 cents more than the value
of the replicating portfolio. This can be attributed to one or a combination of
factors. First, there are transaction costs in doing arbitrage trades that could
significantly lower or even wipe out any arbitrage profit. In particular, all of
the prices in this chapter are ask prices, whereas, in reality, an arbitrageur
might have to buy bonds at ask prices but sell other bonds at lower bid
prices. Second, transaction costs in the financing markets (see Chapter 10),
which are incurred when borrowing money to buy bonds and when borrow-
ing bonds to short them, might similarly overwhelm any arbitrage profit.
Third, it is only in theory that US Treasury bonds are commodities, that is,
fungible collections of cash flows. In reality, bonds have idiosyncratic char-
acteristics that manifest themselves in prices. The discussion of Table 1.4
mentions the richness of older, high-coupon bonds, and the next section
will show idiosyncratic differences in the pricing of Treasury STRIPS.
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1.5 APPLICATION: ID IOSYNCRATIC PRIC ING
OF TREASURY STRIPS

In contrast to coupon bonds that make payments every six months, zero
coupon bonds make no payments until maturity. Zero coupon bonds
issued by the US Treasury are called STRIPS. For example, $1,000,000
face amount of STRIPS maturing on May 15, 2030, promises only one
payment: $1,000,000 on that date. STRIPS are created when a particular
coupon bond is delivered to the Treasury in exchange for claims on its
future coupon and principal components. Table 1.6 illustrates the stripping
of $1,000,000 face amount of the 0.625s of 05/15/2030. As of mid-May
2021, the bond has nine years remaining to maturity, which means it will
make 18 coupon payments, from November 15, 2021, to May 15, 2030,
and one principal payment, on May 15, 2030. STRIPS received in exchange
for coupon (interest) payments are called TINTs, INTs, or C-STRIPS, while
STRIPS received in exchange for principal payments are called TPs, Ps,
or P-STRIPS. Table 1.6 shows that stripping $1,000,000 face amount of
the 0.625s of 05/15/2030 generates $1,000,000 × 0.625%∕2 = $3,125
face amount of C-STRIPS maturing on each coupon payment date
and $1,000,000 face amount of P-STRIPS maturing on the bond’s
maturity date.

The Treasury not only creates STRIPS but retires them as well. For
example, upon delivery of all of the STRIPS in Table 1.6, the Treasury would
reconstitute the $1,000,000 face amount of the 0.625s of 05/15/2030. It is
critical to note, however, that C-STRIPS are fungible while P-STRIPS are
not. When reconstituting a bond, any C-STRIPS maturing on a particular
date may be applied toward the coupon payment of that bond on that date.
By contrast, only P-STRIPS that were stripped from a particular bond may

TABLE 1.6 STRIPS Created from $1 Million Face Amount of the 0.625s of
05/15/2030, as of Mid-May 2021. Entries Are in Dollars.

Date C-STRIP Face Amount P-STRIP Face Amount

11/15/2021 3,125
05/15/2022 3,125
11/15/2022 3,125
. . . . . .
05/15/2029 3,125
11/15/2029 3,125
05/15/2030 3,125 1,000,000
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be used to reconstitute the principal payment of that bond.6 This feature of
the STRIPS program implies that P-STRIPS, and not C-STRIPS, are likely to
inherit the cheapness or richness of the bonds from which they are stripped.

STRIPS prices are essentially discount factors. If the price of C-STRIPS
maturing on May 15, 2030, is 85.9453 per 100 face amount, then the
implied discount factor to that date is 0.859453.

As of mid-May 2021, the STRIPS market provides another illustration
of the idiosyncratic pricing of US Treasury bonds, that is, of the occasional
failures of the law of one price to describe prices accurately. Table 1.7 iso-
lates one such case by reporting the prices of three STRIPS that all mature on
May 15, 2030. In theory, because each of these zero coupon bonds pay $1
on May 15, 2030, they should all sell for the same price. But they don’t. The
C-STRIPS maturing on that date are priced at 85.95, while two P-STRIPS,
one from stripping the 0.625s of 05/15/2030 and the other from stripping
the 6.25s of 05/15/2030, are priced at 86.85 and 87.04, respectively. Reit-
erating the discussion earlier, these price discrepancies do not necessarily
imply an arbitrage opportunity of buying the C-STRIPS and shorting one of
the P-STRIPS because of likely significant market frictions. An investor plan-
ning to buy and hold one of these zero coupon bonds to maturity, however,
would certainly be most attracted to the C-STRIPS.

Figure 1.2 shows a broader pattern of the idiosyncratic pricing of
STRIPS. The thick, round data points are C-STRIPS prices, and the plus
signs are P-STRIPS prices, where prices are on the left axis. As an aside,
because STRIPS prices are discount factors times 100, the C-STRIPS data
points depict a collection of discount factors out to 30 years, down to a
value of 48.60 at 30 years. But returning to the main point, many P-STRIPS
prices are clearly not identical to C-STRIPS prices of identical maturity.
To highlight this point, the difference between P-STRIPS and C-STRIPS

TABLE 1.7 Prices of STRIPS Maturing on May 15, 2030, as
of May 14, 2021.

STRIPS Price

C-STRIPS 85.9453
P-STRIPS of 0.625s of 5/15/2030 86.8549
P-STRIPS of 6.25s of 5/15/2030 87.0412

6Making P-STRIPS fungible with C-STRIPS would not affect either the total or the
timing of cash payments by the Treasury but could change the amount outstanding
of particular bonds.
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F IGURE 1.2 Prices of US Treasury C-STRIPS and P-STRIPS, as of May 14, 2021.

prices of the same maturity are graphed as short dashes against the right
axis. A few of the differences are negative, but most are positive, and some
significantly so, reaching a peak of 1.91 per 100 face amount at a term of
18.5 years.

1.6 ACCRUED INTEREST

This section describes the market practice of separating the full or invoice
price of a bond, which is the price paid by a buyer to the seller, into two
parts: a flat or quoted price, which appears on trading screens and is used
when negotiating transactions; and accrued interest. Full and flat prices are
also known as dirty and clean prices, respectively.

For concreteness, consider an investor who purchases $10,000 face
amount of the US Treasury 0.625s of 08/15/2030, for settlement on May
17, 2021. The bond last made a coupon payment of $10,000 × 0.625%∕2 =
$31.25 on February 15, 2021, and makes its next coupon payment of
$31.25 on August 15, 2021. See the timeline in Figure 1.3.

Assuming that the buyer holds the bond through August 15, 2021, the
buyer collects the semiannual coupon on that date. But it can be argued
that the buyer is not really entitled to the whole coupon because the buyer
will have held the bond for only three months, that is, from May 17,
2021, to August 15, 2021. More precisely, using what is known as the
actual/actual day-count convention, and referring again to Figure 1.3, the
buyer should receive only 90 of the 181 days of the coupon payment, that is,



Trim Size: 6in x 9in Tuckman835554 c01.tex V1 - 07/12/2022 11:20am Page 61�

� �

�

Prices, Discount Factors, and Arbitrage 61

2/15/2021
Previous

Coupon Date

5/17/2021
Settlement

Date

8/15/2021
Next Coupon

Date

91 Days 90 Days

181 Days

F IGURE 1.3 Timeline for Computing the Accrued Interest on the 0.625s of
08/15/2030 for Settlement on May 17, 2021.

$31.25 × 90∕181 = $15.539. The seller, on the other hand, who presumably
held the bond from the previous coupon date to the settlement date, should
collect the rest of the coupon, namely, the accrued interest from February
15, 2021, to May 17, 2021, which is $31.25 × 91∕181 = $15.711.

A conceivable institutional arrangement would be for the seller and the
buyer to divide the coupon payment on the next payment date, but this
would undesirably require additional arrangements to ensure compliance.
Instead, market convention dictates that the buyer pay the seller the $15.711
of accrued interest on the settlement date, and that the buyer keep the entire
coupon of $31.25 on the coupon payment date.

The flat or quoted price of the 0.625s of 08/15/2030 on May 14,
2021, for settlement on May 17, is 91.78125. The full or invoice price,
which is defined as the flat or quoted price plus accrued interest, is
91.78125 + 0.15711 = 91.93836. For the particular trade just described,
of $10,000 face amount, the invoice amount is $10,000 × (91.78125% +
0.15711%) = $9,178.125 + $15.711 = $9,193.836, or, equivalently,
$10,000 ×91.93836% = $9,193.836.

At this point, it becomes clear why earlier in the chapter it is noted that
prices are full prices. With bonds paying coupons on May 15 and November
15, and with trades settling on Monday, May 17, 2021, buyers have to pay
sellers two days of accrued interest.

The full price of a bond, the amount a buyer actually pays to purchase a
bond, should equal the present value of a bond’s cash flows. Mathematically,
denote the flat price of the bond by p, accrued interest by AI, the present
value of the cash flows by PV, and the full price by P. Then,

P = p + AI = PV (1.5)

Equation (1.5) reveals that the particular market convention used to
calculate accrued interest does not really matter. For example, the accrued
interest convention just described is conceptually too generous to the
seller because, instead of being made to wait until the next coupon date,
the seller receives a share of the coupon at settlement. But the accrued
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interest convention changes neither the present value of all cash flows,
PV, in Equation (1.5), nor the full price, P, which is the amount actually
exchanged at settlement. The convention only changes the quoted market
price, p, relative to the calculated amount of accrued interest. If accrued
interest is in any sense too high, the market reduces p accordingly.

Having made this argument, why bother with the accrued interest con-
vention in the first place; that is, why not just quote bonds using the full
price? The answer is told in Figure 1.4, which draws the full and flat prices
of the 0.625s of 08/15/2030 from February 15, 2021, to September 15,
2021, under the simplifying assumption that interest rates are constant at
the approximate market rate of 1.60% over the entire period.7

Figure 1.4 shows that the full price changes dramatically over time –
including a sudden drop on August 15, 2021 – even though the market, in
terms of interest rates, is unchanged. The flat price, by contrast, changes only
gradually over time. Therefore, when trading bonds day to day, it is more
intuitive to follow flat prices and negotiate transactions in those terms.

The behavior of the prices in Figure 1.4 can be understood readily. First,
as of February 2021, the price of the bond is below 100, because its coupon
rate is below the market rate for its maturity. But as the bond matures, its flat
price approaches 100. (The dynamics of prices at below and above market
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92.25

2/15/2021 3/17/2021 4/16/2021 5/16/2021 6/16/2021 7/16/2021 8/15/2021
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F IGURE 1.4 Full and Flat Prices for the 0.625s of 08/15/2030, Assuming Constant
Interest Rates.

7More specifically, it is assumed that the continuously compounded interest rate for
all terms is constant at 1.60%.
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rates are discussed further in Chapter 3.) Second, within a coupon period,
the full price of a bond increases over time as its cash flows get closer to
being paid, that is, as their present values increase. But from just before the
coupon payment date to just after, the full price falls by the coupon payment:
the coupon is included in the present value just before the payment, but not
included just after. The flat price, by contrast, which equals the full price
minus accrued interest, rises more gradually than the full price and does not
fall precipitously just after the coupon payment. Because accrued interest just
before the coupon payment nearly equals that coupon payment, subtracting
accrued interest from the full price leaves the flat price essentially without
that coupon – both just before and just after its payment date.

1.7 DAY-COUNT CONVENTIONS

As mentioned in the previous section, accrued interest is calculated using
the actual/actual convention, that is, by dividing the actual number of days
from the last coupon payment by the actual number of days between coupon
payments. Hence the term “actual/actual” for this day-count convention.

The actual/actual convention is commonly used in government bond
markets, but, in other markets, different conventions are used. Two of the
most common are actual/360 and 30/360. The actual/360 convention divides
the actual number of days between two dates by 360. The 30/360 conven-
tion calculates the difference between two dates under the assumption that
there are 30 days in each month, and then divides that difference by 360.
To illustrate, there are 75 actual days between June 1 and August 15: there
are 29 days from June 1 to the end of June; 31 days in July; and 15 days to
August 15. The 30/360 convention, however, assumes that there are 30 days
in every month, including July, giving a total of 29 + 30 + 15 or 74 days.
Money markets typically use the actual/360 convention; swap markets use
either actual/360 or 30/360; and corporate bond markets typically use the
30/360 convention.
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CHAPTER 2
Swap, Spot, and Forward Rates

Chapter 1 showed that discount factors fully describe the time value of
money as embedded in market prices. Investors and traders, however,

often find it more intuitive to quote the time value of money in terms of
interest rates and, in particular, in terms of either swap rates or par rates,
spot rates, and forward rates.

This chapter begins by explaining that interest rates are always quoted
as annual rates, that interest is conceptualized as being paid over a number
of periods of fixed length (e.g., 90 days, three semiannual periods), and that
interest rate quotations indicate the payment of either simple or compound
interest. The chapter then introduces interest rate swaps (IRS) as context
for the material. Swaps and bonds together comprise a significant portion
of fixed income markets, and swaps, because they are relatively liquid,
have become benchmarks against which to evaluate other fixed income
instruments.

At the time of this writing, interest rate swap markets are in transition
away from LIBOR (London Interbank Offered Rate), which has dominated
floating-rate indexes for decades. Chapter 12 discusses this transition, but
this chapter briefly introduces the leading candidates for replacing LIBOR
(e.g., Secured Overnight Financing Rate (SOFR) in the United States) and
their associated swaps. Chapter 13 discusses why and how market partici-
pants use interest rate swaps.

2.1 INTEREST RATE QUOTATIONS

An investment with fixed cash flows is completely described by its price
and cash flows. It seems enough to know, for example, that a bond paying
102 in six months costs 101.4925 today, or that a $100,000,000 1.5-year
loan made six months from today will return $103,030,100 in two years.
Nevertheless, investors and traders often prefer to quote and think about
valuations in terms of interest rates. As shown herein, the bond and loan
just described earn semiannually compounded rates of 1% and 2% per year,

65
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respectively. Rates are more intuitive than prices and cash flows because
rates automatically normalize for the amount invested and for the invest-
ment horizon. The bond costs 101.4925 and matures in six months, while
the loan invests $100,000,000 in six months for 1.5 years, but their respec-
tive interest rates can be sensibly and intuitively compared.

Interest rates are always quoted as annual rates over a term or tenor,
which is described as a number of periods of fixed length. A money market
instrument, for example, might offer 1% per year for 90 days on an invest-
ment of $100,000. If this 1% is quoted as a simple rate of interest, under the
actual/360 convention described in Section 1.7, then the interest payment at
the end of the 90 days is,

$100,000 × 1% × 90
360

= $250.00 (2.1)

If the 1% interest rate on the money market instrument is quoted not
as a simple rate, but as a daily compounded rate, then interest is computed
differently: the investment earns simple interest daily, but interest is earned
on accumulated balances, which include interest already earned. After the
first day, then, the balance includes one day of simple interest,

$100,000
(

1 + 1%
360

)
= $100,002.78 (2.2)

Over the second day, the entire balance at the end of the first day, given
in Equation (2.2), earns another day of simple interest. This implies that
interest is compounded, that is, the $2.78 of interest earned over the first
day itself earns interest on the second day. As a result, the total balance at
the end of the second day is,

$100,002.78
(

1 + 1%
360

)
= $100,000

(
1 + 1%

360

)2

= $100,005.56 (2.3)

where the first equality comes from substituting the left-hand side of (2.2)
for the $100,002.78 in (2.3).

Continuing in this fashion, the total balance at the end of the 90 days,
which is the amount paid by the money market instrument at maturity, is,

$100,000
(

1 + 1%
360

)90

= $100,250.31 (2.4)

Comparing the interest component of Equation (2.4), that is, $250.31, with
that of (2.1), that is, $250.00, shows the effect of compound interest in this
example. A daily compounded rate of 1% on $100,000 earns 31 cents more
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than a simple interest rate of 1%. When rates are higher, and when the term
of the investment is longer, the difference can be much larger.

Return now to the bond and loan examples given at the start of this
section. In these cases, interest is likely to be semiannually compounded,
where, by convention, a semiannual period is exactly one half of a year.
Therefore, the six-month bond, which costs 101.4925 today and pays 102
after six months, earns 1% in the sense that,

$101.4925
(

1 + 1%
2

)
= 102 (2.5)

The loan invests $100 million six months from today and, three semi-
annual periods (i.e., 1.5 years) later, returns $103,030,000. This investment
earns a semiannually compounded rate of 2% in the sense that,

$100,000,000
(

1 + 2%
2

)3

= $103,030,100 (2.6)

This section illustrates concepts with daily and semiannual periods.
Daily periods are common in money markets and in the swap market
discussed in the next section. Semiannual periods are common in many
government and corporate bond markets, like the US government bond
market, discussed in Chapter 1. Different periods are used in other contexts,
however. Mortgage markets use monthly periods, for example, because
mortgage payments are typically paid monthly.

More generally, then, let n be the number of periods per year; let N be
the number of periods; and let r̂ be the interest rate to be compounded n
times per year. Then, investing F at the rate r̂ grows, after N periods, to a
total balance of,

F
(

1 + r̂
n

)N

(2.7)

Markets should ensure that the final proceeds from identical investments
of the same term are the same, regardless of the compounding convention.
If, for example, the market offers 102 on a 1-year investment of 100, that
investment might be quoted as earning 2% annually; 1.9901% semiannually
compounded; or 1.9819% compounded monthly, because,

100(1 + 2%) = 100
(

1 + 1.9901%
2

)2

= 100
(

1 + 1.9819%
12

)12

= 102

(2.8)
Note that the greater the frequency of compounding, the lower the quoted
interest rate. These rates are set such that more frequent compounding, that
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is, paying more interest on interest, exactly offsets the lower rate earned on
the initial investment.

This section concludes by noting that some contexts use continuous
compounding, in which interest is conceptualized as being paid every
instant. This quoting convention can appear in money markets; is fre-
quently used at financial firms, because rates and discount factors have
to be calculated at irregular intervals; and is used almost exclusively by
researchers for mathematical convenience. Continuous compounding is
presented in Appendix A2.1.

2.2 INTEREST RATE SWAPS

In an interest rate swap, two parties agree to exchange a series of interest
payments. Consider first the solid arrows in Figure 2.1, which are the only
contractual cash flows of the depicted swap. Counterparty A agrees to pay
Counterparty B the fixed swap rate of 0.1120% annually for two years on
a notional amount of $100 million. In return, Counterparty B agrees to pay
to Counterparty A daily compounded SOFR annually for two years on this
same notional amount. No cash is exchanged on the trade or settlement date.
Counterparty A is said to pay fixed and receive floating, while Counterparty
B is said to receive fixed and pay floating.

As is explained in Chapter 12, SOFR on any given day is the
volume-weighted median rate at which market participants borrow and
lend overnight funds secured by US Treasury collateral. Conceptually, daily
SOFR represents the rate on extremely safe, overnight loans made that day.

The $100 million in the swap of Figure 2.1 is called the notional amount
of the swap, rather than the face, par, or principal amount of the swap,
because it is used only to compute the fixed- and floating-rate payments.
The notional amount is never paid or received by either counterparty. The
dashed arrows in Figure 2.1, which portray a final exchange of notional
amount, will be convenient later for pricing the swap, but this exchange is
fictional: it is not part of the swap contract and never actually takes place.

Counter-
party

A

Counter-
party

B

0.1120% on $100 million, annually for 2 years

$100 million at maturity (fictional)

Daily Comp. SOFR on $100mm, annually for 2 years

$100 million at maturity (fictional)

F IGURE 2.1 A SOFR Swap.
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Payments on both sides of a SOFR swap follow the actual/360 day-count
convention. The annual interest payment on the fixed leg of the swap, there-
fore, over any 365-day year, is,

$100,000,000 × 0.1120% × 365
360

= $113,556 (2.9)

Over 366-day years, of course, the fraction in Equation (2.9) would be
366∕360 instead.

The annual payment on the floating side can be computed only after
every daily SOFR rate that year has been realized. To illustrate, assume a
very simple scenario in which, over a 365-day year, SOFR was 0.10% for
five days; 0.50% for 170 days; and 0.01% for 190 days. In that scenario,
an investment of $100 million compounded daily at SOFR rates would
grow to,

$100,000,000
(

1 + 0.10%
360

)5(
1 + 0.50%

360

)170(
1 + 0.01%

360

)190

= $100,243,071 (2.10)

Therefore, the payment on the floating leg at the end of the year, representing
the interest on a daily compounded SOFR investment over that year, is,

$100,243,071 − $100,000,000 = $243,071 (2.11)

In this particular scenario, Counterparty A receives $243,071 on the
floating leg, but pays only $113,556 on the fixed leg. Had realizations of
SOFR over the year been lower, the reverse could have easily been true, with
Counterparty A receiving less on the floating leg than it paid on the fixed leg.

SOFR swaps that mature in an exact number of years, like the example
in Figure 2.1, make annual payments. SOFR swaps that mature in less than
one year make one payment at maturity. And SOFR swaps that mature in
more than one year, but not in an exact number of years, typically make one
stub payment followed by annual payments to maturity. A 1.5-year swap,
for example, would likely make a stub payment after six months and another
payment one year later.

Figure 2.2 shows the term structure of swap rates in different currencies
as of mid-May 2021. The SOFR curve, for example, gives the fixed rates that
can be exchanged for SOFR for various terms. As highlighted in Figure 2.1,
in a two-year US dollar (USD) swap, 0.1120% fixed can be exchanged for
floating SOFR. Figure 2.2 shows additional USD swap rates, for example,
1.352% for a 10-year swap and 1.758% for 30 years.

The other rates and currencies shown are SONIA (Sterling Overnight
Interbank Average) in British Pounds (GBP); TONAR (Tokyo Overnight
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Term

SOFR (USD) SONIA (GBP) TONAR (JPY)
ESTER (EUR) SARON (CHF)

F IGURE 2.2 Term Structures in Different Currencies, as of May 14, 2021.

Average Rate) in Japanese Yen (JPY); ESTER, also written as €STR
(Euro Short-Term Rate) in Euro (EUR); and SARON (Swiss Average Rate
Overnight) in Swiss Franc (CHF). These rates, which are discussed further
in Chapter 12, are often called “risk-free” rates to distinguish them from
LIBOR rates, but only SOFR and SARON are rates on loans collateralized
by government bonds. SONIA, TONAR, and ESTER, by contrast, are all
rates on interbank loans. In any case, Figure 2.2 illustrates that the term
structures of these rates vary across currencies and, of course, though not
shown, over time as well.

2.3 PRIC ING INTEREST RATE SWAPS

As mentioned before, it is convenient for pricing purposes to assume the
fictional exchange of notional amounts depicted in Figure 2.1. First, an
exchange of notional amount does not change the value of the swap to
either counterparty: paying $100 million and receiving $100 million at
exactly the same moment has no value. Second, including the receipt of the
fictional notional amount, Counterparty B’s position very much resembles
buying a fixed-rate bond: B receives an annual coupon and then, at maturity,
receives a final “principal” payment. Third, including the receipt of the
fictional notional amount, Counterparty A’s position very much resembles
buying a floating-rate bond, receiving interest that depends on interest rates
as they evolve, and then receiving a final “principal” payment.

The value of a floating-rate bond that always pays the fair market rate
is worth par, or face amount, today. In terms of Figure 2.1, the value to
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Counterparty A of receiving floating, including the fictional notional
amount, is $100,000,000. Intuitively, by the definition of SOFR as a money
market rate, Counterparty A can lend $1 to a dealer on any day and
the next day collect that $1 plus SOFR interest. Therefore, Counterparty
A and the dealer would similarly be willing to exchange $100,000,000
today for a floating-rate bond that pays compounded SOFR over some term
and $100,000,000 at the end of that term.

With the floating leg of the swap – including the fictional notional
amount – worth par, Counterparty B’s position can be recast as buying
a two-year, 0.1120% bond for par, that is, for $100,000,000, where par
happens to take the form of the floating leg of the swap. In terms of the
bond pricing methodology of Chapter 1, the present value of the payments
on the fixed leg of the swap, including the fictional notional amount, must
equal par. This insight is so useful and commonplace that the phrase, “fixed
leg of a swap,” is almost always meant to include the fictional notional
amount, and the text will adopt this convention from here on.

Counterparty B’s position can also be recast as buying a two-year,
0.1120% for par, and financing that position by borrowing at the floating
rate. To elaborate, the cash flows from receiving fixed in swap very much
resemble those from a leveraged long position in a bond. At initiation,
Counterparty B neither receives nor pays cash: the swap has no initial cash
flow, and the bond is purchased with borrowed money. Over the life of
the trade, Counterparty B receives a fixed rate and pays a floating rate:
fixed minus floating on the swap, and the coupon rate minus the short-term
financing rate on the bond. And, at maturity, Counterparty B neither
receives nor pays a final amount: the swap does not exchange notional
amount, and the principal of the bond is used to repay the original loan. In
a similar fashion, Counterparty A’s position can be recast as borrowing a
bond to short it. This perspective on swaps is very useful for understanding
how market participants use swaps to adjust their interest rate exposures,
which is discussed in Chapter 13.

Given the discussion to this point, it is clear that swap rates can also be
called par rates. A par rate of a certain term is defined as the rate paid on
an investment that costs par and promises to repay par at maturity. If, for
example, a 10-year US Treasury bond has a coupon of 1.625% and costs
100, then 1.625% is the 10-year par rate in the Treasury market. While, in
actuality, there is neither “investment” in a swap nor a repayment of par,
thinking of a swap with an exchange of fictional notional amounts allows
for the interpretation of the swap rate as the rate “earned” on the fixed leg,
that is, on a par investment.

The text now turns to applying the pricing insights of this section to
extract discount factors from SOFR swap rates. To illustrate, the first and
second columns of Table 2.1 list SOFR swap rates of terms 0.5 through 2.0
years, as of May 14, 2021, and Table 2.2 lists the payment dates of these
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TABLE 2.1 Swap Rates, Spot Rates, and Forward Rates Implied by USD SOFR
Swaps, as of May 14, 2021. Rates Are in Percent.

Term Swap Rate Spot Rate Forward Rate Discount Factor

0.5 0.0340 0.0348 0.0348 0.999826
1.0 0.0460 0.0466 0.0585 0.999534
1.5 0.0670 0.0681 0.1111 0.998979
2.0 0.1120 0.1136 0.2500 0.997732

TABLE 2.2 Days from Settlement or Previous Payment Date
for SOFR Swaps Settling on May 18, 2021.

Term 11/18/2021 05/18/2022 11/18/2022 05/18/2023

0.5 184
1.0 365
1.5 184 365
2.0 365 365

swaps and the number of days between payments. (Note that prices are as
of Friday, May 14, and settlement occurs two business days later, on Tuesday,
May 18.) Using these tables, the following equations link discount factors
to quoted SOFR swap rates,

100
(

1 + 0.0340%184
360

)
d(0.5) = 100 (2.12)

100
(

1 + 0.0460%365
360

)
d(1) = 100 (2.13)

0.0670184
360

d(0.5) + 100
(

1 + 0.0670%365
360

)
d(1.5) = 100 (2.14)

0.1120365
360

d(1) + 100
(

1 + 0.1120%365
360

)
d(2) = 100 (2.15)

In words, Equations (2.12) through (2.15) say that the present value of
the fixed leg of each SOFR swap equals par. Equation (2.12) says that, for
100 notional amount of the 0.5-year swap, which matures in 184 days, the
fixed leg pays 100 plus interest on 100 at the 0.5-year swap rate of 0.0340%.
Furthermore, that payment times the six-month discount factor equals par,
or 100. Equation (2.13) says the same for the one-year swap, with its single
payment, at the one-year swap rate of 0.0460%, payable in 365 days.
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The fixed leg of the 1.5-year swap makes two payments. Following the
rule explained in the previous section, the first payment is made in six months
so that the subsequent payment can be made exactly one year later. Accord-
ing to Tables 2.1 and 2.2, the payment in six months, in this case 184 days,
on 100 face amount of the 1.5-year swap, is 0.0670 times 184/360. The
payment one year later, which is 1.5 years from settlement, includes interest
over that 365-day year plus the notional amount, for a total of 100 plus
0.0670 times 365/360. Equation (2.14) takes the present value of these two
payments, multiplying the first by d(0.5) and the second by d(1.5), and sets
the sum equal to par.

Lastly, the fixed leg of the two-year swap makes two payments, the first
in 365 days and the next 365 days later. Each interest payment, therefore,
on 100 face amount, is 0.1120 times 365/360, and the notional amount is
assumed paid at the end of the second year. Hence, Equation (2.15) sets the
present value of the fixed leg of this swap equal to par.

Solving Equations (2.12) through (2.15) for the unknown discount fac-
tors, analogously to the solution for discount factors in the US Treasury
market in Section 1.2, gives the discount factors in Table 2.1. Chapter 1
introduced discount factors as an expression of the time value of money,
and this chapter, so far, has added swap or par rates. The next two sections
continue with other popular expressions of the time value of money, namely
spot and forward rates.

2.4 SPOT RATES

The word spot in finance typically refers to transactions for immediate or
imminent settlement, as opposed to forward transactions, which settle fur-
ther in the future. Consistent with this usage, a spot rate is the rate on a
spot loan, an agreement in which a lender gives money to the borrower
at or around the time of the agreement and, furthermore, expects repay-
ment at some single, specified time in the future. For example, along the
lines of Equation (2.7), a two-year investment of 100, at a semiannually
compounded spot rate of 0.1136%, grows over those two years or four
semiannual periods to a final payment of,

100
(

1 + 0.1136%
2

)2×2

= 100.2274 (2.16)

More generally, denote the semiannually compounded t-year spot rate
by r̂(t). With semiannual compounding and an investment period of t years,
or 2t semiannual periods, investing one unit of currency from now to year t
generates final proceeds of,

(
1 + r̂(t)

2

)2t

(2.17)
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To link spot rates and discount factors, note that if one unit of currency
grows to the quantity in (2.17) in t years, then the present value of that
quantity, by definition, is one. Using discount factors to compute that present
value, (

1 + r̂(t)
2

)2t

d(t) = 1 (2.18)

or, solving for d(t),
d(t) = 1(

1 + r̂(t)
2

)2t
(2.19)

Either of these two equations can be used to solve for a spot rate of term
t given the discount factor of that term. To illustrate, consider the discount
factors implied by SOFR swap rates in Table 2.1. The two-year discount fac-
tor is 0.997732, which, by either (2.18) or (2.19), implies that the two-year
spot rate is 0.1136%. Along the same lines, Table 2.1 computes spot rates
of terms 0.5 to 2.0 years from the respective discount factors.

2.5 FORWARD RATES

A forward rate is the rate on a forward loan, which is an agreement today to
lend money at some time in the future and to be repaid some time after that.
The agreement today specifies the forward rate, which means that the rate
on the loan is set today even though the loan itself will not be made until
a later date. There are many possible forward rates: the rate on a 1.5-year
loan given six months from today; the rate on a six-month loan given in five
years; etc. This section, however, focuses on forward rates over sequential,
six-month periods. Let f (t) denote the forward rate on a loan from year
t − 0.5 to year t. Then, investing one unit of currency from year t − 0.5 for
six months generates proceeds, at year t, of 1 + f (t)∕2.

To link forward rates to spot rates, note that a spot loan from now
to year t − 0.5, combined with a forward loan from year t − 0.5 to year
t, covers the same investment period as a spot loan from now to year t.
Consistent quoting of rates, therefore, ensures that the proceeds from these
two alternatives are the same. Mathematically, noting that t − 0.5 years is
2(t − 0.5) or 2t − 1 semiannual periods,

(
1 + r̂(t)

2

)2t

=
(

1 + r̂(t − 0.5)
2

)2t−1 (
1 +

f (t)
2

)
(2.20)

Extending this logic to say that a spot loan to year t is equivalent to a
series of six-month forward loans, spot rates and forward rates can also be
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linked as follows,

(
1 + r̂(t)

2

)2t

=
(

1 +
f (0.5)

2

)(
1 +

f (1.0)
2

)
· · ·

(
1 +

f (t)
2

)
(2.21)

Note that f (0.5), the rate on a “forward” loan from zero years to 0.5 years,
is the same as the 0.5-year spot rate, r̂(0.5).

Forward rates can also be expressed in terms of discount factors.
Use Equation (2.19) to substitute discount factors for spot rates in
Equation (2.20) to see that,

1 +
f (t)
2

= d(t − 0.5)
d(t)

(2.22)

Applying the analytics of this section to the SOFR swaps in Table 2.1
allows for the computation of implied forward rates in that market. To illus-
trate with just one example, substitute the 1.5- and 2-year discount factors
in the table into Equation (2.22) to derive the 2-year forward rate,

1 +
f (2)

2
= 0.998979

0.997732
(2.23)

f (2) = 0.2500% (2.24)

2.6 RELATIONSHIPS BETWEEN SWAP, SPOT,
AND FORWARD RATES

Table 2.1 gives the term structure of interest rates from the SOFR swap mar-
ket in terms of swap, spot, and forward rates. This section describes several
relationships between these curves that highlight their individual meanings.
The discussion here is intuitive, while Appendix A2.2 takes a more mathe-
matical approach.

The first relationship to be highlighted is that the t-year spot rate approx-
imately equals the average of all the forward rates from today through year t.
Taking one example from the table, the two-year spot rate is approximately
equal to the average of the four forward rates from term 0.5 to 2 years,

0.0348% + 0.0585% + 0.1111% + 0.2500%
4

≈ 0.1136% (2.25)

This result makes sense because a two-year loan is equivalent to a combina-
tion of a six-month loan; a six-month loan six months forward; a six-month
loan one year forward; and a six-month loan 1.5 years forward.
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The second relationship, which is evident from Table 2.1, is that spot
rates increase with term when forward rates are greater than spot rates. To
take one specific example, the two-year spot, 0.1136%, is greater than the
1.5-year spot rate, 0.0681%, because the two-year forward rate, 0.2500%,
is greater than the 1.5-year spot rate. Intuitively, it has just been established
that spot rates are essentially an average of forward rates. But adding a num-
ber to an average increases that average if and only if the added number is
larger than the previous average. Therefore, r̂(t) > r̂(t − 0.5) if and only if
f (t) > r̂(t − 0.5).

This relationship between spot and forward rates can also be seen from
Figures 2.3 and 2.4. Figure 2.3 displays forward, spot, and swap curves in
the SOFR market, and Figure 2.4 displays curves from the SARON mar-
ket, which, as mentioned earlier, is a rate in Swiss Franc. The curves in both
figures are based on market rates, as of May 14, 2021. SOFR rates are uni-
formly above SARON rates, which are actually negative over a significant
range of terms.

The forward SOFR curve in Figure 2.3 increases to about the 12-year
term and then declines, but it is always above the spot rate curve. Consis-
tent with the previous paragraphs, the spot rate curve has to increase over
the entire range of terms shown because forward rates are above spot rates.
But the spot rate curve increases very mildly when forward rates are declin-
ing. True, spot rates have to continue to increase, but with forward rates
exceeding spot rates by less and less, spot rates increase relatively slowly.

The forward SARON curve illustrates this relationship more dramat-
ically. Until the 22-year term, forward rates exceed spot rates and, as
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F IGURE 2.3 SOFR Rate Curves, as of May 14, 2021.
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F IGURE 2.4 SARON Rate Curves, as of May 14, 2021.

expected, spot rates are increasing. From then on, however, forward rates
are below spot rates and, although it is somewhat hard to see from the
figure, spot rates begin to decline with term.

The third and final relationship between rates to be highlighted in this
section is the following: when spot rates are increasing with term, swap
or par rates are slightly below spot rates. This effect can be seen in both
Figures 2.3 and 2.4, though the effect is more noticeable for the SOFR than
for the SARON curves. To understand the intuition here, recall that the t-year
spot rate is the return on an investment from today to year t, while the swap
or par rate is the rate on an investment that pays every period from today
to year t. The fair market swap rate, therefore, must reflect all of the spot
rates from today to year t, though the t-year spot rate must be weighted most
heavily as it is used to discount the by-far-and-away largest cash flow, that
is, the fictional notional amount. When the term structure of spot rates is
upward-sloping, then, all of the shorter-term spot rates are lower than the
t-year spot rate, and the t-year par rate – which reflects all those spot rates –
must be less than the t-year spot rate. But with the t-year spot rate weighted
particularly heavily, the par rate is not very much below that spot rate.
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CHAPTER 3
Returns, Yields, Spreads, and

P&L Attribution

Chapter 2 showed how swap or par rates, spot rates, and forward rates are
used to describe the interest rates that can be earned in various markets,

like the Treasury bond market or the interest rate swap market. While these
rates are derived from the prices of individual financial instruments, they are
intended to describe the time value of money in a market as a whole. This
chapter, by contrast, focuses on rates that are specific to individual bonds
and then uses both market-wide and security-specific rates for P&L (profit
and loss) attribution.

The first section of the chapter defines the realized return on a bond over
a given horizon. Ex-post bond returns have to account for interim coupon
payments and the reinvestment of those payments and are often computed
on both a gross basis and net of financing, but are otherwise calculated like
the returns on any other asset.

The next sections present yield to maturity. Bonds are often quoted
and traded in terms of yield rather than price; yields are widely thought
of as indicative of ex-post returns; and differences in bond yields are
commonly regarded as indicative of differences in value. The discussion
reveals, however, that yields can be misleading with respect to both ex-post
returns and relative values.

The chapter continues with bond spreads. Because there are so many
related but distinct fixed income products, spreads are used to quote,
trade, and value one instrument relative to another. This part of the
chapter describes various ways to compute spreads, explains their uses and
limitations, and presents a detailed example of using spreads to assess the
relative value of high-coupon US Treasury bonds.

The last sections of the chapter are devoted to attribution. In order
to understand the performance of their trades and investments, traders
and asset managers often divide their ex-post P&L or return into various

79
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components, for example, the passage of time; changing interest rates; and
changing spreads. The text describes how to define the “passage of time,”
holding rates or spreads constant, and then illustrates P&L attribution with
a detailed example of breaking into components the return on a particular
US Treasury bond.

3.1 REALIZED RETURNS

The gross horizon return of a bond depends on the price at which the bond
was bought; the coupon payments it earns over the horizon; the interest on
the reinvestment of those coupon payments over the horizon; and the price
of the bond at the end of the horizon. The net horizon return of the bond
adjusts its gross return for the cost of financing its purchase.

Begin with a simple example. An investor buys $1 million face amount
of the US 7.625s of 11/15/2022 at 114.8765 in mid-November 2020. Six
months later, in mid-May 2021, the price of the bond is 111.3969.1 The
gross return of the bond over the horizon is, therefore,

$1,113,969 + $38,125 − $1,148,765
1,148,765

= 0.2898% (3.1)

In words, the six-month holding period return in this example equals
the value of the bonds at the end of the six months, or $1,113,969; plus the
coupon payment at that time of half 7.625% on the $1 million face amount,
or $38,125; minus the initial cost of the bonds, or $1,148,765, all divided
by that initial cost. Note that the coupon income of the bond is sufficient to
overcome the fall in price and result in a positive horizon return.

Realized return over a horizon that extends past a coupon payment
depends on the rate at which coupon payments have been reinvested. If a
bond makes a coupon payment in one month, but the horizon is two months,
the horizon return depends on the one-month reinvestment rate, from the
coupon payment date to the end of the horizon. For the purposes of illustra-
tion, consider the simple case of an investment in the 7.625s of 11/15/2022
over a horizon of one year. If the price of the bond at the end of the year
is $1,080,000, and if the coupon payment of $38,125 after six months is
reinvested for the subsequent six months at a money market rate of, say,

1For consistency with discussions later in the chapter, note that the two dates are
actually November 13, 2020, and May 14, 2021. These two dates are Fridays, and
the prices given here are full prices for settlement on November 16, 2020, and May
17, 2021, respectively, which means that the investor does not receive the coupon
paid on November 15, 2020, but does receive the coupon paid on May 15, 2021.
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0.05%, then the realized return of the investment over the year is,

$1,080,000 + $38,125
(

1 + 0.05%
2

)
+ $38,125 − $1,148,765

1,148,765

= 0.6524% (3.2)

The discussion now turns to the return net of the cost of financing the
purchase of a bond. This might be an explicit cost; that is, a trader or investor
might borrow the purchase price of the bond for six months at an interest
rate of 0.05%. In that case, the interest cost of the borrowing over the invest-
ment horizon, $1,148,765 × 0.05%∕2 = $287, would be subtracted from the
numerator of Equation (3.1) to give a return net of financing of,

$1,113,969 + $38,125 − $1,148,765 − $287
1,148,765

= 0.2648% (3.3)

Not surprisingly, the net return of 0.2648% is the gross return, 0.2898%,
minus the half-year borrowing cost of 0.05%∕2, or 0.025%.

There are actually several subtleties in describing the net return on
a bond investment in this way. First, market participants do fund bond
purchases using the purchased bonds as collateral in the repurchase or repo
market, which is the subject of Chapter 10. Second, only a portion of the
purchase price can typically be funded in this market. In the present case,
for example, an investor might be able to borrow only $1,125,790, or only
98%, of the total purchase price. In this case, the interest cost would only
be half of 0.05% on that $1,125,790, or $281, and the net return would be
0.2653%, which is very slightly higher than the result from Equation (3.3).
Third, regardless of how much is actually borrowed, the net return is
calculated with the total purchase price as the denominator of (3.3). This
formulation of net return, therefore, can be thought of as a return on balance
sheet, that is, on the value that can be considered and reported as an asset.
Fourth, return on capital would be computed differently. If a hedge fund
borrows 98% of the value of the bond in the repo market, while putting
up 2%, or $22,975 of its own capital, then this investment’s return on
capital – abstracting from any additional allocations of risk capital to the
trade – would be,

$1,113,969 + $38,125 − $1,148,765 − $281
$22,975

= 13.27% (3.4)

The 13.27% return on capital is 50 times the net balance sheet return of
0.2653%. This high return on capital is due to the fact that the trade, as
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described, has a leverage of 50, that is, an asset value of $1,148,765 pur-
chased with capital of only $22,975.

The fifth and final subtlety with respect to net returns is that financing
costs should most likely be considered even without any explicit repo bor-
rowing. Any money used to purchase a bond had to have been raised at
some cost (e.g., a bank paying money to attract deposits; a life insurance
company compensating investors for the savings portions of their policies; a
hedge fund offering a return on its assets under management). Furthermore,
any money invested in a particular bond has an opportunity cost in the sense
that this money might have been used to fund a different investment.

3.2 YIELD TO MATURITY

Chapter 2 made the point that rates are often more intuitive than prices in
describing bond valuation. But, along the lines of that chapter, to describe
the pricing of a 10-year bond in terms of semiannually compounded spot
rates or forward rates requires 20 of those spot or forward rates. It is hardly
surprising, therefore, that market participants prefer to quote the price of a
bond and to think about its valuation with a single rate, namely, its yield to
maturity.

The yield to maturity of a bond is the single rate such that discounting
the bond’s cash flows by that rate gives the bond’s market price. Table 1.4
reported the price of the US Treasury 7.625s of 11/15/2022 for settlement in
mid-May 2021 as 111.3969. Recalling that US Treasury bonds pay coupons
semiannually so that this bond had three remaining payment dates, and not-
ing the Treasury bonds are quoted with semiannually compounded yields,
the yield to maturity of this bond, y, is defined as,2

111.3969 = 3.8125(
1 + y

2

) + 3.8125(
1 + y

2

)2
+ 103.8125(

1 + y
2

)3
(3.5)

Equation (3.5) can be solved for y by some numerical method or with a
financial calculator, giving a result of 0.0252%. Hence, trades of this bond
could be quoted and consummated either at a price of 111.3969 or at a yield
of 0.0252%.

More generally, let y denote the yield of a bond; let c denote its annual,
dollar coupon payment; let T denote its maturity in years, which means

2This is only approximately correct because the settlement date is actually May 17,
2021. Hence, there is slightly less than one semiannual period to the first coupon
payment date. Appendix A3.1 defines yield in this more general case.
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there are 2T semiannual payments remaining; and let P denote its price, per
100 face amount, for settlement on a coupon payment date. To illustrate
notation, note that for the 7.625s of 11/15/2022 settling in mid-May 2021,
c = 7.625, T = 1.5, P = 111.3969, and y = 0.0252%. Returning to the gen-
eral case, then, P is given by,

P =
1
2
c(

1 +
y
2

) +
1
2
c

(
1 +

y
2

)2
+ · · · +

100 + 1
2
c

(
1 +

y
2

)2T
(3.6)

P = c
2

2T∑
t=1

1(
1 +

y
2

)t +
100(

1 +
y
2

)2T
(3.7)

P = c
y

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
+ 100(

1 +
y
2

)2T
(3.8)

where Equation (3.7) just re-expresses (3.6) with summation notation, and
Equation (3.8) follows from (3.7) and Equation (A2.16) of Appendix A2.2.

Equation (3.8) reveals three immediate implications about the
price–yield relationship. First, when c = 100y, P = 100: when the coupon
payment is the face amount times the yield, or, more simply, when the
coupon rate equals the yield, the bonds sells for its face amount, or par.
Second, when c > 100y, P > 100: when the coupon rate exceeds the yield,
the bond sells at a premium to par. Third, when c < 100y, P < 100: when
the yield exceeds the coupon rate, the bond sells at a discount to par.

Figure 3.1 illustrates the relationship between price and yield as
described by Equations (3.6) to (3.8). Every point along the curves in the
figure represents a bond with a particular coupon and maturity, and all
bonds in the figure are priced at a yield of 1.5%. The thick black line, then,
shows that bonds with a coupon rate of 1.5%, of any maturity, have a price
of 100. Investors are willing to pay 100 for a bond that pays the going
market coupon rate over time and then returns par at maturity.

Bonds with a coupon rate greater than the fixed yield of 1.5%, rep-
resented by the 3% and 6% gray, dashed lines in the figure, sell at a pre-
mium to par. With 30 years to maturity, the price a 6% bond yielding 1.5%
is about 208, while the price of a 3% bond at that yield is about 136.
Investors are willing to pay much more than par for these bonds because
they pay above-market coupon rates for many years. Bonds with the same
coupon rates but shorter maturities still command premiums, but smaller
ones. For example, the prices of the 15-year bonds in the figure with 6%
and 3% coupon rates are about 160 and 120, respectively. And, as matu-
rities get very short, prices approach 100: while the 6% and 3% bonds do
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F IGURE 3.1 Prices of Bonds with Different Coupons and Maturities. All Yields
Equal 1.5%.

pay above-market coupon rates, they do so for such a short time that their
prices are not much above 100.

Following similar reasoning, the lines in Figure 3.1 representing bonds
with coupon rates of 0% and 0.75% show prices all below par. The dis-
count is greatest for the longest maturity bonds, for which investors receive
below-market coupon rates for the longest times, with the prices of 30-year
0% and 0.75% bonds being about 64 and 82, respectively. Price is less
discounted for shorter maturity bonds, to about 80 and 90 at 15 years,
respectively, until bonds very near maturity sell for just under par. The trend
of premium and discount bond prices to approach par as they mature is
known as the pull to par. This behavior, of course, is only the trend, at a
fixed yield of 1.5%. The actual price paths of these bonds as they mature
are determined by their realized market yields.

3.3 YIELD AND RETURN

As mentioned earlier, yield to maturity is a convenient way to express price
in terms of a single rate of interest. And the definition of yield as the single
rate that equates the present value of a bond’s cash flows to its price means
that yield is a bond’s internal rate of return. But how does yield relate to a
bond’s realized return?

As it turns out, yield is only weakly related to realized returns. Appendix
A3.2 shows that a bond’s ex-post return is equal to its initial yield if i) all of
the coupons are reinvested at the initial yield, and ii) if the yield at the end of
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the investment horizon is the same as the initial yield. These very restrictive
conditions significantly weaken the interpretation of yield as a predictor of
holding period return.

To demonstrate this point with a concrete example, consider the return
on the 7.625s of 11/15/2022 from mid-May 2021 to mid-May 2022. Begin
with Equation (3.5), which gives that bond’s yield as of the start of that
period, and multiply both sides by (1 + y∕2)2,

111.3969
(

1 +
y
2

)2
= 3.8125

(
1 +

y
2

)
+ 3.8125 + 103.8125(

1 +
y
2

) (3.9)

The left-hand side is the proceeds from an investment of the price of the
bond, 111.3969, for one year – or two semiannual periods – at the semi-
annually compounded rate y. The right-hand side is the value of the bond
position at the end of the one-year horizon, which is the sum of three parts:
the proceeds from the first coupon, received on November 15, 2021, and
invested for six months to May 15, 2022; the coupon received on May 15,
2022; and the price of the bond on May 15, 2022, if its yield is y. In words
then, Equation (3.9) says that the one-year return on the initial investment
will be y if the first coupon is reinvested at y and if the bond, at the end of
the year, is priced at a yield of y. If y in every term of (3.9) is the initial yield
of the bond, that is, 0.0252%, then the bond earns that initial yield over
the year. But if the coupon reinvestment rate or the yield of the bond at the
end of year have changed over time, and are not equal to 0.0252%, then the
bond likely does not earn that rate over the one-year horizon.

To see that a bond may not earn its initial yield even if held to maturity,
multiply both sides of Equation (3.5) by (1 + y∕2)3 to get,

111.3969
(

1 +
y
2

)3
= 3.8125

(
1 +

y
2

)2
+ 3.8125

(
1 +

y
2

)
+ 103.8125

(3.10)

Now, the left-hand side is the proceeds from an investment of 111.3969
for 1.5 years. The right-hand side is the value of the bond position at matu-
rity, that is, November 15, 2022, which is, again, the sum of reinvested
coupons and the final coupon and principal payments. If y in every term
of (3.10) is the initial yield, then the bond earns that initial yield to maturity.
But if coupons are invested at a different rate, the bond does not earn its
initial yield over its life.

The 7.625s of 11/15/2022 are useful in making the point that yield
does not coincide with horizon return, but its short maturity, along with its
low yield, may give a misleading impression of orders of magnitude. Con-
sider, therefore, buying the US Treasury 2.375s of 5/15/2051 in mid-May
2021, at a price of 100.6875 or yield of 2.343%, and holding it to matu-
rity. Along the lines of the previous paragraphs, if all coupons are reinvested
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at 2.343%, then the return on the initial investment over the 30 years is
2.343% per year. But if rates were to fall suddenly and remain low, so that
all coupons are invested at 0%, or if the investor holds all coupon payments
in a non-interest-bearing account, the return on the bond to maturity falls
to 1.778% per year. If, on the other hand, rates were to rise suddenly and
remain high, so that all coupons were reinvested at 5%, then the bond return
rises to 3.207% per year. Reproducing these results is left as an exercise to
the reader.

3.4 YIELD AND RELATIVE VALUE

This section argues that yield is not a reliable measure of relative value. In
fact, if two bonds have the same maturity but different yields, it is not nec-
essarily true that the bond with a higher yield is a superior investment. To
explain this, the discussion turns to the coupon effect, starting with a simple
numerical example and finishing with an empirical demonstration from the
US Treasury bond market.

Say that the one-year spot rate is 0% and the two-year spot rate is 10%.
Using the analytics of Chapter 2 and of this chapter, Table 3.1 gives the prices
and yields of three two-year bonds with annual coupons of 0%, 5%, and
9.5023%.

For example, for the 5% bond,

91.7769 = 5
(1 + 0%)

+ 105
(1 + 10%)2

(3.11)

= 5
(1 + 9.7203%)

+ 105
(1 + 9.7203%)2

(3.12)

where Equation (3.11) uses the assumed spot rates to discount cash flows
and Equation (3.12) follows from the definition of yield to maturity.

According to Table 3.1, the yield of the zero coupon bond is 10%.
Because this bond makes only one payment at maturity, its market price
can be found by discounting at either the two-year spot rate or at the bond’s
yield. Hence, those two must be equal at 10%.

TABLE 3.1 Prices and Yields of Two-Year Bonds When the
One- and Two-Year Spot Rates are 0% and 10%,
Respectively. Coupons and Yields Are in Percent.

Coupon Price Yield

0.0000 82.6446 10.0000
5.0000 91.7769 9.7203
9.5023 100.0000 9.5023
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The yield of the 5% bond, however, is 9.7203%. Equations (3.11) and
(3.12) show that the yield of 9.7203% has to summarize the term structure
of spot rates, or, in other words, that discounting at the yield has to have
the same effect as discounting the first cash flow by 0% and the second by
10%. The result of 9.7203% is between the two spot rates, but a lot closer to
10%: most of the bond’s cash flow comes from the second payment, which
includes principal, and that second payment is discounted at 10%.

Table 3.1 also reports that the 9.5023% bond, which sells for par, has a
yield of 9.5023%. This yield is also between the spot rates of 0% and 10%,
and is also a lot closer to 10% but not as close as for the 5% bond. Because
the 9.5023% bond pays out relatively more of its value in the first cash flow,
its yield is closer to 0% than is the yield of the 5% bond.

In general, the coupon effect can be summarized as follows: when the
term structure of spot rates is upward sloping, bonds with higher coupons,
which have more of their value discounted at shorter-term, lower spot rates,
have lower yields to maturity. While not part of the discussion here, it is also
true that when the term structure of spot rates is downward sloping, bonds
with higher coupons have higher yields.

The coupon effect makes it very clear that spot rates are meant to
describe pricing in a bond market as a whole, while yields are meant to
describe the pricing of individual bonds. Furthermore, even though all of
the bonds in the table are fairly priced relative to the term structure of spot
rates, each bond has a different yield. Put another way, the fact that the
0% bond has the highest yield does not mean that it is the best investment.
The fact that the par bond has the lowest yield does not mean that it is the
worst investment.

Figures 3.2 and 3.3 show the coupon effect at work in the US Treasury
market as of mid-May 2021. Figure 3.2 graphs the yields of all Treasury
coupon bonds against their maturity dates. Some bond yields are clearly off
the curve. The four points above the curve with maturities from 2040 to
2041 are relatively newly issued 20-year bonds. The Treasury stopped issu-
ing new 20-year bonds in 1986 but started to do so again in May 2020.
These four bonds, therefore, have coupons that reflect the current, low-rate
environment. The other outstanding bonds with similar maturities were orig-
inally issued about 10 years ago as 30-year bonds, and, therefore, have
relatively high coupons, which reflect the interest rate environment at the
time they were issued.

Table 3.2 shows the coupons and yields of these four newly issued
20-year bonds, each paired with the coupons and yields of old 30-year
bonds of the same maturity. As expected, because of the coupon effect and
the upward-sloping term structure of rates, the high-coupon, old 30-year
bonds have lower yields than the low-coupon, newly issued 20-year bonds.
More analysis is needed, of course, to say that any one bond in this table is
cheap or rich relative to another. But, because of the coupon effect, the fact
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F IGURE 3.2 Yields of US Treasury Bonds, as of May 14, 2021.

TABLE 3.2 Yields of Selected US Treasury Bonds Maturing Between May 15,
2040, and February 15, 2041, as of May 14, 2021. Coupons and Yields Are in
Percent.

New 20-Year Bonds Old 30-Year Bonds

Maturity Coupon Yield Coupon Yield

05/15/2040 1.125 2.237 4.375 2.107
08/15/2040 1.125 2.245 3.875 2.138
11/15/2040 1.375 2.245 4.250 2.140
02/15/2041 1.875 2.236 4.750 2.133

that the new 20-year bonds have higher yields does not necessarily imply
that they are better investments.

Returning to Figure 3.2, there are several bonds that mature on or before
May 2031 that have yields noticeably below the curve.3 To examine these
bonds, Figure 3.3 zooms in on maturities on or before May 2031. The dots
represent bonds with coupon rates less than or equal to 5%, while the plus
signs represent bonds with coupon rates greater or equal to 5.25%. Once
again, as expected because of the coupon effect and the upward-sloping term
structure, the bonds with the higher coupons have lower yields.

3There are no bonds with maturities between May 2031 and February 2036 because
the Treasury stopped issuing new 30-year bonds after May 2001 and started issuing
them again in February 2006.
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F IGURE 3.3 Yields of US Treasury Bonds Maturing in Less than 10 Years, as of
May 14, 2021.

3.5 SPREADS

There are many fixed income securities. Their prices all depend in some way
on market-wide interest rates, but also on idiosyncratic factors, like credit
risk, tax treatment, and unique supply and demand considerations. To make
sense of pricing in this context, market participants often quote spreads of
one instrument or set of instruments relative to others.

Consider the European sovereign debt market. Because the market per-
ceives the credit characteristics of each country’s bond issues differently, some
countries typically pay higher interest rates on their bonds than other coun-
tries. These differences could be described by comparing individual prices
and yield. As of May 2021, for example, the Italian government bond or BTP
(Buoni del Tesoro Poliennali) 0.60s of 08/1/2031 (issued in February 2021)
sold at a price of 95.502, or a yield of 1.066%. At the same time, the German
government bond or Bund 0.00s of 02/15/2031 (issued in January 2021) sold
at a price of 101.300, or a yield of −0.132%. Market participants often find
it more intuitive, however, to describe the market by saying that the 10-year
BTP-Bund spread – in this case just the difference between the two yields –
is 1.198%, or about 120 basis points. Note that one basis point is defined as
0.01%, so that 120 basis points is 1.20%. In any case, spreads of government
bonds in many countries are often quoted against a Bund benchmark because
Germany is widely regarded as having the strongest credit in the region.

Yield spreads can also be convenient for trading bonds that are less
liquid than benchmark bonds. For example, in August 2020, Johnson &
Johnson (JNJ) issued a number of long-term bonds, including its 20-year
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2.10s due 09/1/2040. The pricing of this new issue was quoted as 75
basis points above the on-the-run 30-year Treasury bond, the 1.25s of
05/15/2050. Quoting yield against a Treasury benchmark is not only
intuitive, but also facilitates trading in fast-moving markets. A fixed yield
spread over a liquid Treasury bond allows the offering price of the JNJ
bond to change smoothly and predictably with market levels until the new
issue is actually sold.

While yield spreads are particularly easy to calculate and use, they are
actually difficult to interpret carefully for two reasons. First, in many situ-
ations there is no liquid, benchmark bond with exactly the same maturity
as the less-liquid bond. Taking the differences in yields, therefore, mixes dif-
ferences in term with other differences, like credit. In the 20-year JNJ issue,
for example, the spread of 75 basis points includes not only the credit risk
of JNJ relative to the US Treasury, but also the difference between 20- and
30-year yields. Second, spreads of yields, even of the same maturity, inherit
the weakness of yield described earlier and expressed as the coupon effect.
Put another way, the yield spread between bonds of the same maturity can be
misleading if their coupons are different and their underlying term structures
have different shapes.

Bond spreads are a more careful and more meaningful formulation of
expressing price differences as a spread of rates.4 To illustrate, consider
again the US Treasury 7.625s of 11/15/2022. Table 1.3 derives discount fac-
tors from a set of newly issued, benchmark Treasury bonds, which did not
include the 7.625s of 11/15/2022. Table 1.4 then shows that the 111.3969
market price of the 7.625s of 11/15/2022 is 11.72 cents rich relative to
its 111.2797 present value, which is computed using the discount factors
derived from the benchmark bonds. The point of a bond spread is to express
this 11.72 cents of richness as a spread of rates. Bond spreads can be com-
puted relative to par, spot, or forward rates, but this section works with
forward rates. The forward rates implied from the discount factors in Table
1.3 are 0.0154%, 0.1008%, and 0.1833%, for terms of 0.5, 1.0, and 1.5
years, respectively. Therefore, the 111.2797 present value of the 7.625s of
11/15/2022 is given by,

111.2797 = 3.8125(
1 + 0.0154%

2

) + 3.8125(
1 + 0.0154%

2

)(
1 + 0.1008%

2

)

+ 103.8125(
1 + 0.0154%

2

)(
1 + 0.1008%

2

)(
1 + 0.1833%

2

) (3.13)

4In the case of a bond with no embedded options, bond spreads are the same as
option-adjusted spreads, which are described in Chapter 7.
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The bond spread with respect to forward rates is defined as the spread
that, when added to each forward rate, sets the bond’s present value equal
to its market price. In this case, denoting the spread by s,

111.3969 = 3.8125(
1 + 0.0154% + s

2

)

+ 3.8125(
1 + 0.0154% + s

2

)(
1 + 0.1008% + s

2

)

+ 103.8125(
1 + 0.0154% + s

2

)(
1 + 0.1008% + s

2

)(
1 + 0.1833% + s

2

)

(3.14)

Solving, s = −0.0727%, or about minus seven basis points. The spread is neg-
ative because the bond is rich; that is, the market price is above the present
value as computed with the benchmark curve. In other words, the bench-
mark forward curve has to be shifted down to recover the relatively high
market price.5

A bond’s spread can be interpreted as its extra return, relative to
the benchmark bonds, if rates “stay the same,” or if interest rate risk is
hedged away. This interpretation is developed in the next section and in
Chapter 7.

Because bond spread can be interpreted as an indicator of relative value,
many practitioners routinely compute bond spreads, whether it be spreads
of various European government bonds to German Bunds, spreads of cor-
porate bonds to government bonds or swaps, spreads of government bonds
to benchmark government bonds, or even spreads of government bonds to
swaps. With respect to the last of these, it had once been standard to compute
spreads of government bonds only to the most liquid government bonds.
But as LIBOR swaps became more and more liquid, and as the idiosyncratic
pricing of individual government bonds became more apparent, market par-
ticipants began to compute spreads of government bonds to LIBOR swaps
as well. SOFR swaps, which are now replacing LIBOR swaps, may take on
the same role in the future.

5In some contexts, like the corporate bond market, practitioners often define a term
structure of spreads; that is, unlike in Equation (3.14), they allow a different spread
to be added to each forward rate. This could capture, for example, the long-term
bonds of a particular corporation selling at a higher spread to Treasury bonds than
its short-term bonds. The discussion continues here, however, with a single spread.
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3.6 APPLICATION: SPREADS OF HIGH-COUPON
TREASURIES

To illustrate the use of bond spreads in assessing relative value, the top panel
of Table 3.3 and the gray lines in Figure 3.4 report the bond spreads of
selected Treasury bonds relative to benchmark Treasury bonds and also rel-
ative to SOFR swaps. The benchmark Treasuries, by definition, have zero
spreads relative to themselves. Consistent with the analysis of high-coupon
bonds in terms of the law of one price in Chapter 1, high-coupon bonds
are rich relative to benchmark Treasuries, with bond spreads ranging from
−0.8 to −18.9 basis points. Traders and investors can use these spreads in
their investment decisions. Because these bonds are rich, buying them sacri-
fices return relative to buying benchmark bonds, implying that there needs
to be some reason, not considered here, to purchase these bonds. Conversely,
because these bonds are rich, selling or shorting them picks up return relative
to benchmark bonds, absent some factor not considered in this analysis.

As mentioned already, market practitioners sometimes use swaps as a
benchmark against which to compute government bond spreads. For the
bonds in this example, spreads to SOFR swaps are reported in the bottom

TABLE 3.3 Spreads of Selected US Treasury Bonds to Benchmark Treasuries and
to SOFR Swaps, as of May 14, 2021. Coupons Are in Percent, and Spreads Are in
Basis Points.

Benchmark Treasuries High-Coupon Treasuries

Maturity Coupon Spread Coupon Spread

Spreads to Benchmark Treasuries

11/15/2021 2.875 0.0 8.000 −18.9
11/15/2022 1.625 0.0 7.625 −7.3
11/15/2024 2.250 0.0 7.500 −5.8
11/15/2026 2.000 0.0 6.500 −0.8
11/15/2027 2.250 0.0 6.125 −2.4
11/15/2028 3.125 0.0 5.250 −2.1

Spreads to SOFR Swaps

11/15/2021 2.875 −1.9 8.000 −20.8
11/15/2022 1.625 3.1 7.625 −4.2
11/15/2024 2.250 5.9 7.500 −0.2
11/15/2026 2.000 16.0 6.500 14.4
11/15/2027 2.250 22.6 6.125 19.0
11/15/2028 3.125 26.4 5.250 23.5

Source: Author Calculations.
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F IGURE 3.4 Spreads of Selected US Treasury Bonds to Benchmark Treasuries and
to SOFR Swaps, as of May 14, 2021.

panel of Table 3.3 and with the black lines in Figure 3.4. With respect
to the relative pricing of high-coupon bonds, the SOFR spreads tell the
same story as the Treasury spreads: high-coupon bonds have lower (and
more negative) spreads and, therefore, are rich to benchmark Treasury
bonds. In fact, the differences between the spreads of high-coupon bonds
and of benchmark bonds are about the same whether measured against
benchmark bonds or SOFR swaps. With respect to relative pricing across
term, however, the results are quite different. Measured against SOFR
swaps, longer-term bonds – both high-coupon and benchmark – are much
cheaper than shorter-term bonds. Consider, for example, the spreads of
the 5.25s of 11/15/2028 and the 8s of 11/15/2021. The difference in their
SOFR spreads is 23.5 − (−20.8) or 44.3 basis points, while the difference
in their Treasury spreads is −2.1 − (−18.9) or only 16.8 basis points. And
the difference in SOFR spreads between the 3.125s of 11/15/2028 and
the 2.875s of 11/15/2021 is 26.4 − (−1.9) or 28.3 basis points, while the
difference in their Treasury spreads, because they are both benchmark
bonds, is, by definition, zero. Hence, longer-term bonds look much cheaper
relative to short-term bonds when measured against SOFR than against
Treasuries.

To understand this difference in relative valuations, Figure 3.5 graphs
the two forward curves. Past a term of 2.5 years, the SOFR forward curve
is not as steep as the Treasury forward curve. This means that the SOFR
curve assigns relatively high prices to longer-term Treasury bonds and,
consequently, makes their market prices look relatively cheap. Equivalently,
SOFR spreads at longer terms need to be larger to get pricing back up to
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F IGURE 3.5 Benchmark Treasury and SOFR Forward Rate Curves, as of May
14, 2021.

the levels of Treasury forwards. The lesson here to practitioners is that
using spreads against a curve from another market may have liquidity
advantages, as mentioned earlier, but can complicate the interpretation of
spreads and trades based on those spreads. In the present case, the relative
cheapness of longer-term, high-coupon Treasuries, as indicated by their
relatively large SOFR spreads, is actually a combination of their relative
cheapness against the Treasury curve and the relative flatness of the SOFR
curve. Furthermore, trades that attempt to lock in these spreads of Treasury
bonds against SOFR spreads, called asset swaps, require trades not only
in Treasuries but in matched-maturity SOFR swaps as well. Chapter 14
discusses asset swap trades in greater detail.

3.7 UNCHANGED RATE SCENARIOS FOR P&L
ATTRIBUTION

This section and the next describe how ex-post P&L or returns can be broken
down into components so as to understand the sources of profits or losses
from a trade or investment. One of these components, carry–roll-down,
is the change in value or the return of a bond or portfolio of bonds over
time, assuming that “rates do not change” over the P&L or return horizon.
The purpose of this section is to present two commonly assumed scenarios
to represent rates not changing: realized forwards and an unchanged term
structure.
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TABLE 3.4 Realized Term Structure of Treasury Forward Rates on Various Dates,
as of November 13, 2020. Rates Are in Percent.

Term 11/13/20 05/14/21 11/15/21 05/14/22

0.5 0.1013 0.1746 0.2429 0.2185
1.0 0.1746 0.2429 0.2185
1.5 0.2429 0.2185
2.0 0.2185

Table 3.4 illustrates realized forward scenarios as of November 13,
2020, with sequential six-month horizons. The 11/13/2020 column gives
the then-prevailing US Treasury term structure of six-month forward rates.
Using the notation of Chapter 2, the first six-month forward rate, f (0.5),
is 0.1013%; the six-month rate, six months forward, f (1), is 0.1746%; the
six-month rate, one year forward, f (1.5), is 0.2429%; etc. The next three
columns give the assumed term structures of forward rates on subsequent
dates. Note that the 11/13/2020 date is selected as a business day approxi-
mately six months before 05/14/2021, which is the pricing date for many of
the examples in this text. The 11/15/2021 and 05/14/2022 dates are some-
what arbitrarily chosen as business days approximately six months apart.

Realized forward scenarios assume that today’s six-month rate, t years
forward, will be the six-month rate t years from now. In terms of the table,
the November 13, 2020, six-month rate, six months forward, 0.1746%, is
assumed to be the six-month rate in six months, that is, on May 14, 2021.
The November 13, 2020, six-month rate, one year forward, 0.2429%,
is assumed to be the six-month rate on November 15, 2021; and the
November 13, 2020, six-month rate, 1.5 years forward, 0.2185%, is
assumed to be the six-month rate on May 14, 2022. Furthermore, all along
the way, the forward rates slide down the curve. The November 13, 2020,
six-month rate, one-year forward, 0.2429%, becomes the six-month rate,
six months forward, on May 14, 2021, before becoming the six-month rate
on November 15, 2021. And the November 13, 2020, six-month rate, 1.5
years forward, 0.2185%, becomes the six-month rate, one year forward, on
May 14, 2021, and the six-month rate, six months forward, on November
15, 2021, before becoming the six-month rate on May 14, 2022.

The scenario of an unchanged term structure assumes that all forward
rates remain the same period after period. In terms of Table 3.4, this scenario
assumes that the term structure of forward rates on November 13, 2020,
is the same as the term structure on May 14, 2021, November 15, 2021,
and May 14, 2022. In terms of rates, f (0.5) stays at 0.1013%; f (1) stays at
0.1746%; and so forth.
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TABLE 3.5 Return on a T-Year Zero Coupon Bond Under the Scenarios of
Realized Forward Rates and an Unchanged Term Structure, with Annual Periods.

Realized Forwards Unchanged Term Structure

P0
1

(1+f (1))(1+f (2))···(1+f (T−1))(1+f (T))
1

(1+f (1))(1+f (2))···(1+f (T−1))(1+f (T))

P1
1

(1+f (2))···(1+f (T−1))(1+f (T))
1

(1+f (1))(1+f (2))···(1+f (T−1))
P1

P0
− 1 f (1) f (T)

Chapter 8 characterizes the realized forward scenario as the pure expec-
tations hypothesis and the unchanged term structure scenarios as the pure
risk premium hypothesis. For now, however, Table 3.5 gives some insight
into bond returns under the two scenarios by deriving the annual return on
a zero coupon bond of maturity T, with annual periods. The price of the
bonds today, P0, are both given by discounting their maturing face value
of one unit of currency by the annual forward rates f (1) through f (T). In
one year, the bonds are both (T − 1)-year zeros, and their prices, P1, differ
according to the assumed scenario. Under realized forwards, the first for-
ward rate becomes f (2), etc., out to f (T), giving the P1 value in that column
of the table. Under an unchanged term structure, the appropriate forward
rates are f (1) through f (T − 1): f (T) drops out, because the bond matures in
T − 1 years. The last row of the table gives the one-year return of the bond,
which is simply (P1 − P0)∕P0, or P1∕P0 − 1.

The table shows that, under realized forwards, the one-year return on
the T-year zero is the one-year rate, f (1). Appendix A3.3 shows that this
result is very general: under realized forwards, the return on any bond
equals the short-term rate. And if the bond trades at a constant spread to
the benchmark curve, the return equals the short-term rate plus that spread.
To the extent the scenario is considered reasonable, this result is useful for
P&L attribution, because any return different from the short-term rate is
attributable not to the passage of time, but to other factors, like changes in
rates or spreads.

Under the assumption of an unchanged term structure, the one-year
return on the T-year zero is the initial forward rate from T − 1 to T. This
result does not generalize as easily as the return under realized forwards, and
the intuition behind both results becomes clear in Chapter 8. For the pur-
pose of this section, however, suffice it to say that if a trader or investment
manager finds the unchanged term structure scenario a more reasonable
expression of “rates stay the same,” then returns under that scenario can be
considered a baseline, and return deviations from that baseline are attributed
to other factors.
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3.8 P&L ATTRIBUTION

As mentioned earlier, breaking down P&L or return into component parts
is extremely useful for understanding how money is being made or lost in
a trading book or investment portfolio. In addition, attribution reports can
often catch errors of many sorts (e.g., buying or selling the wrong bond;
buying instead of selling or vice versa; incorrect market or position data
feeds).

P&L attribution can be quite detailed, but, for the purposes of this
chapter, the focus is on a single bond rather than a portfolio; the holding
period is fixed at a coupon payment period; and attribution is to four factors:
cash carry, carry–roll-down, changes in rates, and changes in spreads.6

Cash carry captures interim cash flows from a bond investment, typically
from coupons and from financing arrangements (i.e., borrowing funds to
buy bonds or borrowing bonds to short them). The example of this section
ignores financing, however, which is the subject of Chapter 10.

Carry–roll-down captures the P&L or return from changes in price when
neither rates nor spreads change. The previous section described how rates
not changing might be modeled as realized forwards or as an unchanged
term structure. The example of this section assumes realized forwards.

Because “carry” and “roll-down” are used differently by different prac-
titioners, the nomenclature adopted here requires some elaboration. Broadly
speaking, carry is meant to convey how much a position earns due to the pas-
sage of time, holding everything else constant. A clean example is a par bond
when the term structure of interest rates is flat and unchanging. In that case,
because the bond’s price is always par, its carry is clearly its coupon income
minus costs of financing. Another clean example is a premium bond when
the term structure, again, is flat and unchanging. In that case, because the
bond’s price is pulled to par over time (Figure 3.1), its carry is clearly its
coupon income minus the decline in price minus costs of financing.

Roll-down, broadly speaking, is meant to convey how much a position
earns as it matures and is valued at a different part of the term structure,
holding everything else constant. A clean example of this concept is a
forward loan. Referring to the rates in Table 3.4, say that, on November

6More detailed analyses, instead of considering rates changes as a single change from
one term structure to the next, consider, for instance, changes to the level of rates
and the steepness of the term structure separately, or consider changes to individual
segments of the term structure separately. These choices can be understood more fully
in the context of the multi-factor risk metrics in Chapters 5 and 6. More detailed
analyses can also include more spreads, for example, the spread of Treasury rates to
repo or financing rates; the spread of swap rates to Treasury rates; and the spread of
various corporate rates to swap rates.
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13, 2020, an investor makes a six-month loan, one year forward, at
0.2429%, and has adopted the unchanged term structure scenario for P&L
attribution. Six months later, the investor’s position will have matured to a
six-month loan, six months forward to be valued at the “unchanged” rate of
0.1746%, which is the six-month rate, six months forward, on November
13, 2020. Hence, holding everything else constant, the forward loan has
gained in value: the investor had locked in a loan rate of 0.2429% on
November 13, 2020, and, six months later, the loan is valued at 0.1746%.
In other words, the loan increased in value because it rolled down the curve.

While there are some cases in which it is clear how to separate carry
from roll-down, there are many cases in which it is not so clear. Consider a
premium bond when the term structure is upward sloping and unchanging.
The resulting P&L would be a combination of carry – coupon, pull-to-par,
and financing costs – and roll-down, as the bond’s cash flows are discounted
at lower rates.

This text takes the position that the important division in P&L attribu-
tion is between what happens due solely to the passage of time and what
happens when rates and spreads change. Furthermore, to be consistent with
the nomenclature in forwards and futures markets, discussed in Chapter 11,
the phrase cash carry is preserved to mean coupon income minus financing
costs. Therefore, carry–roll-down here denotes P&L or return due to the pas-
sage of time excluding cash carry. The name reflects carry–roll-down’s being
a mix of what might otherwise be classified as either carry or roll-down.

The remaining two components of P&L or return described in this
chapter, those due to changes in rates and to changes in spreads, are
relatively self-explanatory and are discussed presently.

The text now turns to a detailed P&L attribution for the US Treasury
7.625s of 11/15/2022 over the period November 13, 2020, to May 14, 2021.
Note that both of these pricing dates are Fridays, so that settlement is on
November 16, 2020, and May 17, 2021, respectively. Therefore, full prices
given here include one and two days of accrued interest, respectively, and
an investor over this holding period does not receive the coupon paid on
November 15, 2020, but does receive the coupon paid on May 15, 2021.

The computation and results of the P&L attribution are given in
Tables 3.6, 3.7, and 3.8. The first row of Table 3.6 gives the market price
and spread of the 7.625s of 11/15/2022 as of the beginning of the period,
November 13, 2020. This spread of −1.16 basis points is relative to the
benchmark Treasury term structure on November 13, 2020, which is
reported in the second column of Table 3.7. The computation of spread
from market price is not shown here but can be computed along the same
lines as Equation (3.14).

The second row of Table 3.6 computes a price for the bond as of the
end of the period, May 14, 2021, assuming realized forwards – given in the
third column of Table 3.7 – and an unchanged spread of −1.16 basis points.
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TABLE 3.6 Data for the P&L Attribution of the 7.625s of 11/15/2022 from
November 13, 2020, to May 14, 2021. Spreads Are in Basis Points, and Percent
Change Is Relative to Price on November 13, 2020.

Pricing Term Percent
Date Structure Spread Price Change Change

11/13/2020 11/13/2020 −1.16 114.87654
5/14/2021 Realized Forwards −1.16 111.11555 −3.76099 −3.2739%
5/14/2021 5/14/2021 −1.16 111.29847 0.18292 0.1592%
5/14/2021 5/14/2021 −7.27 111.39690 0.09843 0.0857%

TABLE 3.7 Term Structures of Forward Rates for the P&L
Attribution of the 7.625s of 11/15/2022 from November 13,
2020, to May 14, 2021. Rates Are in Percent.

Term Structures of Forward Rates

Term 11/14/20 Realized Forwards 5/14/21

0.5 0.1013 0.1746 0.0154
1.0 0.1746 0.2429 0.1008
1.5 0.2429 0.2185 0.1833
2.0 0.2185

Once again, this spread calculation can be done along the lines of
Equation (3.14). The change in price from 114.88, in the first row of
Table 3.6, to 111.12, in the second row of the table, represents what
happens to the bond price due to the passage of time alone: the realized
forwards scenario is taken here to mean no change in rates, and the spread
is also unchanged. Therefore, the dollar difference in these prices, −3.76,
and the difference as a percentage of the initial price, −3.27%, is attributed
to carry–roll-down and reported as such in Table 3.8. The carry–roll-down
is large and negative because the bond has a coupon rate very much above
the market rate and, consistent with the discussion in Section 3.2, its price
is pulled down to par over time.

The third row of Table 3.6 computes a price for the bond as of May
14, 2021, assuming the actual Treasury term structure on that date, given
in the fourth column of Table 3.7, and a still-unchanged spread from the
beginning of the period. Yet again, this price can be computed along the lines
of Equation (3.14). The difference between the resulting price of 111.30 and
the price of 111.12 in the second row represents the P&L due to a change in
rates – from the realized forwards scenario of “no change” to the actual term
structure on May 14, 2021. The differences of 0.18 and 0.16% are reported
in Table 3.8 as the rates component row of the attribution. This component
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TABLE 3.8 P&L Attribution of the 7.625s of 11/15/2022
from November 13, 2020, to May 14, 2021. Returns Are in
Percent.

Component P&L Return

Cash Carry 3.81250 3.3188
Carry–Roll-Down −3.76099 −3.2739
Rates 0.18292 0.1592
Spread 0.09843 0.0857
Total 0.33286 0.2898

of the attribution is positive because, as is clear from Table 3.7, rates fell
from the realized forwards scenario to the actual rates on May 14, 2021.

The fourth and final row of Table 3.6 gives the market price of the bond
on May 14, 2021, along with its −7.27 basis-point spread relative to the
benchmark Treasury term structure on that date. This spread is actually
computed in Equation (3.14). The difference between the May 14, 2021,
market price and the price in the third row of the table represents the spread
component of the attribution, as the only change from the third to the fourth
rows is the spread. The differences of 0.10 and 0.09% are reported as such
in Table 3.8. This component is positive because the bond’s spread fell from
November 13, 2020, to May 14, 2021; that is, the bond became richer rel-
ative to the benchmark Treasury curve.

Table 3.8 summarizes the P&L and return attribution of the 7.625s of
11/15/2022 over the six-month period from November 13, 2020, to May 14,
2021. The first row, which has not yet been discussed, is the cash carry of
3.8125, that is, the coupon payment on May 15, 2021. (Recall that because
the pricing date is on May 14 and the settlement date on May 17, the investor
receives the May 15 coupon payment.) As a whole, the table breaks down
the total dollar P&L of 0.33 and the total return 0.2898% into the com-
ponent parts of cash carry, carry–roll-down, rates, and spread. Note that
the sum of the cash carry and carry–roll-down return components equals
0.0449%, which is the six-month rate plus the bond spread on May 14,
2021, all divided by two, that is (0.1013% − 0.0116%)∕2. This is, of course,
no coincidence. As highlighted in the previous section, the annual return of
any bond under the realized forward scenario is the short-term rate plus the
spread, or half of that over a six-month horizon.

A trader or investor can use P&L and return attribution in several ways.
First, as mentioned earlier, any surprises here might be due to errors in build-
ing positions, booking positions, or data feeds. Second, because cash carry
and carry–roll-down can be computed at the beginning of the period, the
trader or investor can decide whether the cash flow properties of the posi-
tion are acceptable. More specifically, a trade or investment that is expected
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to do well in the long run but expected to bleed cash in the short run may or
may not be acceptable in all institutional settings. In the present example, it
is known at the beginning of the period that the “no change” case will result
in a positive cash flow of 3.81250 − 3.76099 or about 0.05 cents before
financing costs. Once financing costs are considered, this central case might
be negative and might, in that case, be unacceptable.

A third use of P&L and return attribution is as an ex-post check on
performance. Did the investor or trader have an ex-ante view on rates and,
if so, how did realized rate changes compare with that view? Was there a
view about how the spread of the bond would evolve and, again, if so, how
did that view compare with the realized spread? Many traders and investors
like to ask the following, when setting up a position: What could happen
to this position that would convince me that I don’t understand the relevant
market forces? They would then promise themselves to exit the position if it
turned out that their understanding was flawed. P&L and return attribution
is a valuable tool in that discipline by revealing exactly where money is made
or lost.
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CHAPTER 4
DV01, Duration, and Convexity

This chapter, along with Chapters 5 and 6, are about measuring and hedg-
ing interest rate risk. Market participants need to understand how fixed

income prices change when interest rates change to take a view on the future
level or term structure of interest rates, to ensure that a portfolio of assets
keeps pace with a portfolio of liabilities, or to hedge one fixed income instru-
ment or portfolio with another. But how exactly should a “change” in rates
be defined? Chapters 1 through 3 show that pricing in fixed income markets
can be expressed in terms of discount factors, par rates, spot rates, forward
rates, yields, and spreads. Which of these quantities should be assumed to
change and by how much?

In answering this question, there are two overarching trade-offs: simplic-
ity versus empirical reality, and robustness versus model dependence. With
respect to the first trade-off, a market maker who is hedging a long position
in a 9.75-year bond with a short position in a 10-year bond over a short time
period might reasonably rely on the simplest of frameworks, namely, that the
yields of the two bonds will move up or down by the same number of basis
points, that is, in parallel. A swap desk, by contrast, which is managing the
risk of a portfolio of long and short swap positions of different terms, has
to account for the reality that changes in rates across the term structure do
not move perfectly in sync. With respect to robustness versus model depen-
dence, a pension fund, which hedges the present value of its liabilities relative
to the value of its assets, tends to prefer frameworks that are not very sensi-
tive to assumptions about how rates of different terms vary relative to one
another. An actively managed fixed income mutual fund, exchange-traded
fund, or hedge fund, by contrast, which is in the business of taking views
on the level of rates and on the shape of the term structure, might gravitate
toward frameworks designed to incorporate subjective views.

The one-factor metrics and hedges described in this chapter are relatively
simple along the lines just discussed, because they assume that rates of all
terms move up and down together in some fixed relation. For example, if
the 30-year par rate changes by one basis point, it might be assumed that
the 10-year par rate changes by 0.99 basis points, in the same direction,

103
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while the five-year rate changes by 0.8 basis points, in the same direction.
The parallel-shift assumption for bond yields is another simple framework
described in this chapter.

The first several sections of this chapter introduce the metrics most often
used to describe interest rate risk, namely, DV01, duration, and convex-
ity, and illustrate these metrics by showing how to hedge Norfolk South-
ern Company’s 100-year or century bond with a shorter-maturity Treasury
bond. The next sections specialize the discussion to yield-based versions
of these metrics, which, while more restrictive in terms of their underly-
ing assumptions, are very intuitive and widely used in practice. The final
section presents a stylized case of asset–liability management at a pension
fund, which requires choosing between barbell and bullet asset portfolios.
Chapters 5 and 6 continue the discussion of risk metrics and hedges with
multi-factor and explicitly empirical approaches, respectively.

4.1 PRICE–RATE CURVES

The three bonds in Table 4.1 are used in this and subsequent sections to
illustrate concepts. First, the Norfolk Southern Company (NSC) issued
$600 million of the 4.10s of 05/15/2121 in May 2021 with a maturity of
100 years. Sales of century bonds are rare, but, with rates at historically
low levels, bonds with very long maturities are being issued more often. The
second and third bonds are the US Treasury 1.625s of 05/15/2026, issued
in May 2016 with a bit less than $70 billion outstanding, and the 1.625s of
11/15/2050, issued in May 2020 with about $86 billion outstanding. The
yields of these three bonds as of mid-May 2021 are given in the table, along
with their spreads to the High-Quality Market-Weighted (HQM) corporate
bond yield curve. The HQM curve, published by the US Treasury, is designed
to be representative of corporate bonds rated A or above and is intended
for use by pension funds in computing the present value of their liabilities.

As discussed in the introduction, a “change” in rates has to be defined
in order to compute interest rate risk metrics. For current purposes, the fol-
lowing assumptions are made. First, the base curve is the HQM par rate

TABLE 4.1 Selected Bonds with Indicative Levels as of Mid-May 2021. Spreads
Are Versus Par Rates from the High-Quality Market-Weighted Corporate Bond
Curve, as of May 2021. Coupons and Yields Are in Percent. Spreads Are in Basis
Points.

Issuer Coupon Maturity Yield Spread

Norfolk Southern Company 4.10 05/15/2121 4.103 66
US Treasury 1.625 05/15/2026 0.823 −41
US Treasury 1.625 11/15/2050 2.363 −97



Trim Size: 6in x 9in Tuckman835554 c04.tex V1 - 07/12/2022 11:21am Page 105�

� �

�

DV01, Duration, and Convexity 105

curve. Second, the spreads of the NSC and US Treasury bonds relative to the
HQM curve, as listed in Table 4.1, do not change as the HQM curve changes.
Third, the change in the HQM par rate of any term is a fixed proportion of
the change in the 30-year par rate. For example, if the 30-year par rate moves
up by one basis point, the 10-year rate moves up by 0.99 basis points; the
five-year rate by 0.80 basis points; the two-year rate by 0.37 basis points.
These proportions are meant to capture the broad empirical fact, discussed
further in Chapter 6, that short-term rates are less volatile than long-term
rates. Figure 4.1 graphs the assumed shifts to the HQM par curve, which,
for visibility, are scaled to a change of plus or minus 50-basis points in the
30-year par rate. It can easily be seen that, as intended, short-term rates move
by less than long-term rates, and that the shift is close to a parallel shift for
terms greater than 10 years.

Equipped with these assumptions, the prices of the bonds in Table 4.1
can be computed after the 30-year HQM par rate changes by, say, one basis
point. More specifically: i) given the one-basis-point change in the 30-year
par rate, calculate the change in par rates of all other terms along the lines
of the previous paragraph; ii) for each bond, add its spread to the shifted
par rates; iii) for each bond, convert the shifted par plus spread curve into
discount factors; and iv) reprice each bond.

Figure 4.2 shows the results of these calculations. The horizontal axis
gives changes in the 30-year HQM par rate, and the vertical axis gives
corresponding bond prices. Note that each rate change is assumed to be
instantaneous; that is, no time passes as the rate changes from its current
to its new level. In any case, as expected, prices increase as rates fall and
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F IGURE 4.2 Price–Rate Curves for the Bonds in Table 4.1, as of Mid-May 2021.

decrease as rates rise. But the figure also shows that the three bonds do
not have the same sensitivity to changes in rates. The price of the Treasury
1.625s of 05/15/2026, which has five years remaining to maturity, declines
relatively mildly as rates increase; that is, its price is least sensitive to changes
in rates. By the same token, the price of the Treasury 1.625s of 11/15/2050,
which matures in 29.5 years, is more sensitive to rates, and the NSC century
bond is the most sensitive of all. These differences in price sensitivities are
quantified in the next sections as differences in DV01 or duration. Finally,
the figure shows that the five-year Treasury price–rate curve is not far
from a line, whereas the price–rate curve of the 29.5-year Treasury, and
even more so of the NSC century bond, have noticeable curvature. These
differences are quantified in subsequent sections as differences in convexity.

4.2 DV01

DV01 is an acronym for the dollar value of an ’01, that is, the change in
the price of a bond for a change in rates of 0.01%, or one basis point.
As described in this section, DV01 can be applied in the context of any
one-factor model of changes in rates across the term structure. Practitioners
typically use the term DV01, however, to mean yield-based DV01, which is
a narrower concept described in Section 4.7.

Table 4.2 illustrates the calculation of DV01 for the three bonds intro-
duced in Table 4.1. Three prices are given for each bond. The price in column
three is as of the pricing date in mid-May 2021. The prices in columns two
and four are the prices after a change in the 30-year HQM par rate of
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TABLE 4.2 Calculating DV01 for Bonds in Table 4.1, as of Mid-May 2021.

Bond Price Price Price Slope DV01
−1bp +1bp

NSC of May 2121 100.1801 99.9390 99.6990 −2,406 0.241
Treasury of May 2026 103.9621 103.9219 103.8817 −402 0.040
Treasury of Nov. 2050 84.5899 84.3906 84.1919 −1,990 0.199

−1 or +1 basis point, respectively. All other par rates fall or rise as well,
of course, as discussed in the previous section. Given these prices, the first
step in computing DV01 is to compute the slope of the price–rate curve, that
is, the change in price divided by the change in rate. For the NSC 4.10s of
05/15/2021, the slope around the current market level is,

99.6990 − 100.1801
0.02%

= −2,406 (4.1)

The left-hand side of (4.1) is the difference between the bond prices at +1
and −1 basis point divided by the change in rates of +1 − (−1) = 2 basis
points, or 0.02%. Note that the current price – corresponding to a shift of 0
basis points – is not used in this calculation. From a numerical perspective,
it is more accurate to estimate the slope of the curve at the current rate with
shifts of +1 and −1 basis point, which are centered around the current rate,
rather than with shifts of −1 and 0 basis points, which are centered slightly
below the current rate, or with shifts of 0 and +1 basis point, which are
centered slightly above the current rate.

While Equation (4.1) gives −2,406 as the slope of the price–rate curve,
its scale – the change in price per unit change in rates, that is, a change of 1.0
or 100% or 10,000 basis points – is not very intuitive. Much more intuitive
and useful is the change in price for a one-basis-point change in rates. To this
end, the slope can be divided by 10,000 to give, rounded to three decimal
places, −0.241. Furthermore, because the prices of almost all fixed income
products fall as rates increase, it is conventional to drop the minus sign as
understood. These two adjustments to the slope calculated in Equation (4.1)
give the bond’s DV01,

− 1
10,000

99.6990 − 100.1801
0.02%

= 0.241 (4.2)

In words, a DV01 of 0.241 means that 100 face amount of the bond
increases in price by 0.241 dollars or 24.1 cents when rates decrease by one
basis point. Note that DV01 measures a price change per 100 face amount
because the prices in Table 4.2 are per 100 face amount. While DV01, like
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price, is typically quoted per 100 face amount, it is occasionally useful to
quote the DV01 of particular position. In these situations, DV01 is explicitly
quoted in units of currency. For example, because the DV01 of the NSC
century bond is 0.241 per 100 face amount, a position of $10 million has a
DV01 of,

$10,000,000 × 0.241
100

= $24,100 (4.3)

To generalize the discussion here, let P denote the price of a fixed income
instrument and let y denote the single factor that determines rate changes
across the term structure, which, in the context of this chapter, is the 30-year
HQM par rate. Finally, let Δy denote the change in the factor y and ΔP the
change in the price given that change in y. With this notation, the DV01 of
a fixed income instrument is estimated by,

DV01 ≈ − 1
10,000

ΔP
Δy

(4.4)

The slope of the NSC bond’s price–rate curve at the current rate is esti-
mated in Equations (4.1) and (4.2) with prices at levels one basis point below
and one basis point above the current rate. A more accurate estimate might
be obtained by shifting the current rate up and down by 0.5 basis points,
or 0.1 basis points, etc. In the calculus, the limit of the resulting estimates
of the slope, as the size of the shift shrinks to zero, is known as the deriva-
tive and denoted dP∕dy. In some cases, like the yield-based metrics discussed
later in this chapter, the derivative of the price–rate function can be written
in closed form, that is, with a relatively simple mathematical formula. More
generally, however, prices and the slope of the price–rate function have to be
calculated numerically. In any case, the limit of Equation (4.4) as the size of
the shift shrinks to zero gives DV01 in terms of the derivative instead of the
slope,

DV01 = − 1
10,000

dP
dy

(4.5)

The derivative of a curve at a particular point is often illustrated with
tangent lines. In Figure 4.3, the solid black line is the price–rate curve of the
NSC century bonds, which is also shown in Figure 4.2. The dashed line is
the tangent line of the curve at the current market rate. This means that the
slope of the line equals the derivative of the curve at the current market rate,
and that the line just touches the curve at that rate. Figure 4.3 also shows the
tangent line to the curve at a rate 150 basis points below the current market
rate. The slope of this tangent line is clearly steeper than the other, which
means that the NSC 4.10s of 05/15/2121 are more sensitive to rates at 150
basis points below the current rate than they are at the current rate.
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F IGURE 4.3 Tangent Lines to the Price–Rate Curve of the NSC 4.10s of 05/15/2121,
as of Mid-May 2021.

DV01 is said to be a local measure of interest rate sensitivity because the
slope of the price–rate curve, and, therefore, DV01, change as rate changes.
This property of price–rate curves is known as convexity and is introduced
later in the chapter.

This section concludes by noting that the DV01 of a portfolio of fixed
income instruments is equal to the sum of the DV01s of its component instru-
ments. A portfolio with 100 face amount of the NSC bonds – with a DV01
of 0.241 – and 500 face amount of the Treasury 1.625s of 05/15/2026 –
with a DV01 of 5 × 0.040 = 0.200 – has a total DV01 of 0.241 + 0.200, or
0.441. This very intuitive rule is proved formally in Appendix A4.1.

4.3 HEDGING A CENTURY BOND: PART I

Say that a market maker buys from a client $10,000,000 face amount of the
NSC 4.10s of 05/15/2121 at the going bid price. The market maker does not
turn around and immediately sell those bonds at market, because that would
likely mean selling at the same bid price, leaving no overall profit from the
trades. Instead, the market maker waits until other clients appear, who are
willing to pay the higher ask price. In this way, the market maker earns the
bid–ask spread for providing immediacy or liquidity both to the client who
originally sells the bonds and to the clients who later buy the bonds.

This strategy, however, exposes the market maker to the risk that the
price of the corporate bond falls before it can be sold. The typical solution is
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to hedge that risk by selling a liquid Treasury bond when buying the corpo-
rate, and then buying back that Treasury bond when selling the corporate.
Because a liquid Treasury bond, by definition, has a very narrow bid–ask
spread, this strategy protects the market maker against falling prices at the
cost of that narrow bid–ask spread, which leaves much of the wider, corpo-
rate bid–ask spread as profit.

The next question, therefore, is which Treasury bond to sell. Because,
as mentioned earlier, rates of different terms can behave differently, a rea-
sonable choice is to sell a Treasury bond with about the same maturity as
the corporate bond being hedged. In the particular situation at hand, how-
ever, there is no Treasury bond with a maturity anywhere near 100 years.
The best the market maker can do, therefore, is to sell one of the longest
maturity Treasuries outstanding, like the 1.625s of 11/15/2050.

The final question, then, is what face amount of Treasury bonds to sell
against the purchase of $10 million face amount of the NSC bonds. One
common solution is to ensure that the net DV01 of the combined position
is zero. In other words, choose the face amount of Treasuries such that, if
rates change by one basis point, the value of the net position is unchanged.
Denoting the face amount of the Treasury hedge by F, and using the DV01s
of the two bonds computed in Table 4.2, F is determined by the following
equation,

F
0.199
100

+ $10,000,0000.241
100

= 0 (4.6)

The first term of (4.6) gives the change in the value of F face amount
of Treasury bonds if rates fall by one basis point – 19.9 cents per 100 face
amount, and, therefore, F times 0.199/100 for F face amount. The second
term, along the same lines, gives the change in the value of the $10 million
face amount of NSC bonds if rates fall by one basis point. The equation
as a whole, therefore, requires that the combined, hedged position neither
gains nor loses value when rates fall by one basis point. And because the
hedged profit and loss (P&L) when rates fall by some other number of basis
points is just that number of basis points times the left-hand side of (4.6), the
equation holds for that number of basis points as well (subject, of course, to
the limitation of DV01 as a local measure of interest rate sensitivity).

Solving Equation (4.6) for F,

F = −$10,000,0000.241
0.199

= −$12,110,553 (4.7)

Hence, the market maker can hedge its $10 million face amount of the NSC
bonds by selling about $12.1 million face amount of the Treasury bond.
Intuitively, because the price of the NSC bonds changes by 24.1 cents per
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100 face amount per basis point, while the Treasury bonds change by only
19.9 cents, the market maker has to sell a larger face amount of Treasuries
than it buys of NSC bonds to achieve a DV01-neutral position.

To elaborate on how the hedge works, say that rates rise by five basis
points after the market maker established the position. The NSC bonds fall
in value, losing approximately $10,000,000 × (0.241∕100) × 5 = $120,500.
At the same time, the Treasury bonds also fall in value, gaining – because the
market maker is short – approximately $12,110,553 × (0.199∕100) × 5 =
$120,500. Hence, as intended, the overall, hedged position does not gain or
lose money.

In general, if the DV01s of bonds A and B are DV01A and DV01B, then
FA face amount of bond A is hedged with FB face amount of bond B such
that,

FA DV01A

100
+ FB DV01B

100
= 0 (4.8)

FB = −FA DV01A

DV01B
(4.9)

Equation (4.8) is the generalization of Equation (4.6). The general solu-
tion, Equation (4.9), reveals two intuitive points about DV01 hedging. First,
a long position in bond A is hedged by a short position in bond B. Second,
the bond with the higher DV01 is traded in smaller quantity. In the market
making example, a long position in the NSC bonds is hedged by a short posi-
tion in Treasury bonds, and, because the DV01 of the NSC bonds is greater
than that of the Treasury bonds, $10 million of NSC bonds is hedged by
$12.1 million of Treasury bonds.

The section concludes with a reminder of the assumptions behind the
DV01 hedge constructed here. First, rate shifts across terms are assumed
to be proportional to those illustrated in Figure 4.1. If it turns out that
the 100-year and 29.5-year par rates move differently than as assumed, the
hedge will not work as intended. To the extent that this is a concern, the
hedges described in Chapters 5 and 6 might be more appropriate. Second,
the spreads of the NSC and Treasury bonds to the base curve are assumed to
be constant. If it turns out that these spreads behave differently, then, again,
the hedge will not work as intended. This concern is not as easily addressed.
A safer hedge would be to sell a corporate bond, whose spread is more highly
correlated with the NSC bond spread than is the Treasury bond spread. But
hedging with a relatively illiquid corporate bond instead of an extremely liq-
uid Treasury bond is likely to wipe out any market making P&L. Therefore,
bearing spread risk for short periods of time may be an integral part of cor-
porate bond market making and, in turn, may enter into the determination
of bid–ask spreads in that market.
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4.4 DURATION

Another popular metric for interest rate sensitivity is duration. Whereas
DV01 measures the change in price for a change in rates, duration measures
the percentage change in price for a change in rates. Like DV01, duration
can be defined in any one-factor framework, but practitioners often use the
term duration to mean yield-based duration (described in Section 4.7) and
use the term effective duration to mean the more general case presented here.

Using the same notation as in Section 4.2, duration, D, is estimated in
terms of the slope as,

D ≈ −
ΔP∕P
Δy

= −1
P
ΔP
Δy

(4.10)

and given in terms of the derivative as,

D = −
dP∕P

dy
= −1

P
dP
dy

(4.11)

Because ΔP∕P and dP∕P both represent percentage change in price,
Equations (4.10) and (4.11) express duration as the percentage change
in price for a change in rates. Also, for intuition, it is useful to rewrite
Equation (4.10) as,

ΔP
P

≈ −DΔy (4.12)

Table 4.3 shows the calculation of duration for the three bonds intro-
duced in Table 4.1. Estimating the duration of the NSC 4.10s of 05/15/2121
with Equation (4.10),

− 1
99.9390

99.6990 − 100.1801
0.02%

= 24.1 (4.13)

Applying Equation (4.12), the percentage change in the price of the
NSC bond for a decline in rates of 100 basis points, or 1%, is −24.1 ×
(−1%) = 24.1%. Hence, a duration of 24.1 roughly means that a fall in rates
of 100 basis points increases bond price by 24.1%. This interpretation is
only roughly correct because duration, like DV01, is based on the slope of
the price–rate curve and, therefore, is a local measure of price change.

TABLE 4.3 Calculating Duration for Bonds in Table 4.1, as of Mid-May 2021.

Bond Price Price Price Slope Duration
−1bp +1bp

NSC of May 2121 100.1801 99.9390 99.6990 −2,405.5 24.1
Treasury of May 2026 103.9621 103.9219 103.8817 −402.00 3.9
Treasury of Nov. 2050 84.5899 84.3906 84.1919 −1,990 23.6
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While traders tend to rely on DV01, asset managers tend to rely on
duration. As in the market-making example of the previous section, traders
typically want to ensure that the dollar changes in the value of long and
short positions offset each other. Also, because the sizes of their positions
can fluctuate rapidly, and because they typically borrow money to buy
bonds, they tend to focus on dollar P&L rather than on returns on fixed
amounts of invested cash. Asset managers, in contrast, typically invest a
slowly changing pool of funds and focus on rates of return. Looking at the
durations in Table 4.3, an asset manager immediately sees that the NSC
bond has the most interest rate risk, in that an investment in that bond
loses 2.41% for a 10-basis point increase in rates. An investment in the
Treasury 1.625s of 11/15/2050 has slightly less risk, losing 2.36% for that
10-basis-point increase in rates, while an investment in the Treasury 1.625s
of 05/15/2026 has the least risk, losing only 0.39% in that scenario. The
asset manager can weigh these risks against expected returns and other
factors in making a final investment decision.

This section concludes by noting the duration of a portfolio is equal to
the weighted sum of the durations of its component holdings, where the
weights are percentages of portfolio value. For example, the duration of
a portfolio with 25% of its value in the NSC bonds – with a duration of
24.1 – and 75% of its value in the Treasury 1.625s of 05/15/2026 – with a
duration of 3.9 – is 25% × 24.1 + 75% × 3.9 = 8.95. The DV01 of a portfolio
is the sum of its component DV01s, while the duration of a portfolio is the
value-weighted sum of its component durations, because DV01 represents
a change in price, while duration represents a percentage change in price.
A formal proof is in Appendix A4.1.

4.5 CONVEXITY

As can be seen from the tangent lines in Figure 4.3, the interest rate sensitivity
of a bond falls as rates increase. Making this point more directly, Figure 4.4
graphs the DV01 of the Treasury 1.625s of 11/15/2050, a 29.5-year bond,
and of the Treasury 1.625s of 05/15/2026, a five-year bond. DV01 falls as
rates increase, but the rate of decline is much faster for the 29.5-year bond
than for the five-year bond.

A curve is said to have a convex shape if a line connecting two points
on that curve lies above the curve. The price–rate curves of coupon bonds
are convex, and Figure 4.3 makes it clear that the convex shape of the
price–rate curve is tantamount to DV01 falling as rates increase. For this rea-
son, the relationship between DV01 and the level of rates is called convexity.
The property of DV01 falling as rates increase is called positive convex-
ity, while the property of DV01 rising as rates increase is called negative
convexity.
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F IGURE 4.4 DV01s of the Treasury 1.625s of 11/15/2050 and of the Treasury
1.625s of 05/15/2026, as of Mid-May 2021.

Mathematically, convexity, C, is defined as,

C = 1
P

d2P
dy2

(4.14)

the second derivative of the price–rate function divided by price. To summa-
rize, all of these statements are equivalent: the price–rate curve is convex;
its second derivative is positive; its first derivative becomes less negative as
rates increase; and its DV01 falls as rates increase.

Table 4.4 calculates the convexity of the NSC bond and of the two Trea-
sury bonds as of mid-May 2021. For each bond, three prices are given: the
current market price, the price after the 30-year par rate falls by one basis
point, and the price after the 30-year par rate rises by one basis point. Then,
two first derivatives, or slopes, are computed for each bond. These slopes are
computed just as in Equation (4.1), but the slopes here are centered around
the 30-year par rate plus and minus 0.5 basis points.

The final step in Table 4.4 is to estimate the convexity as defined in
Equation (4.14). The second derivative centered at the current rate (i.e., a
“change” of 0.0) is estimated as the change in the first derivatives from +0.5
to −0.5 basis points divided by the change in rates of +0.5 − (−0.5), or 1
basis point. Dividing the result by price gives the estimate of convexity cen-
tered at current market levels. For the NSC bond,

C = 1
99.939

−2,399.67 − (−2,410.67)
0.01%

= 1,101 (4.15)
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TABLE 4.4 Calculating Convexity for Bonds in Table 4.1, as of Mid-May 2021.
Rate Changes Are in Basis Points.

Rate Change Price 1st Derivative Convexity

NSC 4.10s of 05/15/2121

−1.0 100.180067
−0.5 −2,410.67

0.0 99.939000 1,101
0.5 −2,399.67
1.0 99.699033

Treasury 1.625s of 11/15/2050

−1.0 84.589932
−0.5 −1,993.08

0.0 84.390624 648
0.5 −1,987.61
1.0 84.191863

Treasury 1.625s of 05/15/2026

−1.0 103.962050
−0.5 −401.75

0.0 103.921875 12
0.5 −401.63
1.0 103.881712

As expected from the curvatures of the price–rate curves in Figure 4.2, the
convexity measure is largest for the NSC century bond, smaller for the
29.5-year Treasury bond, and yet smaller for the five-year Treasury bond.

Convexity values are not as easily interpreted as DV01 and duration
values, but consider the following. Equation (4.12) showed that the per-
centage change in a bond’s price approximately equals the negative of its
duration times the change in rate. However, Appendix A4.2 shows that a
better approximation uses both the bond’s duration and convexity,

ΔP
P

≈ −DΔy + 1
2

CΔy2 (4.16)

Because duration appears in the first term of (4.16) and convexity in the sec-
ond, using duration alone is called a first-order approximation, while using
both duration and convexity is called a second-order approximation.

Illustrating with the NSC bonds, which have a duration of 24.1
(Table 4.3) and a convexity of 1,101 (Table 4.4), estimates of the percentage
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change in price after rates fall by 100 basis points, or 1%, are,

−24.1 × (−1%) = 24.1% (4.17)

using duration alone, and,

−24.1 × (−1%) + 0.5 × 1,101 × (−1%)2 = 29.6% (4.18)

using both duration and convexity. The actual price of the bond after rates
decline by 100 basis points is 130.898, which translates into a true percent-
age price change of (130.898 − 99.939)∕99.939, or 30.978%. Therefore,
adding the convexity term in Equations (4.16) and (4.18) does result in a
more accurate approximation.

Figure 4.5 makes the same point graphically. The actual price of the NSC
bonds is given by the solid curve. The approximation to prices after various
changes in rates using just duration or DV01 is given by the dashed line,
which is the same dashed tangent shown in Figure 4.3. And the approxima-
tion using both duration and convexity is given by the dotted line. Because
both duration and convexity are local estimates, using derivatives at cur-
rent market levels to estimate prices, both the dashed and dotted lines are
less and less accurate as rates move further from current levels. It is clear to
the eye, however, that the approximation using both duration and convex-
ity is relatively close to the true price for larger changes in rates than is the
approximation using duration alone.
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F IGURE 4.5 Price–Rate Curve of the NSC 4.10s of 05/15/2121, as of Mid-May
2021, with Price Approximations Using Duration and Using both Duration and
Convexity.
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Returning now to interpreting convexity numbers, the difference
between approximating percentage price change with both duration and
convexity [Equation (4.18)] and with duration alone [Equation (4.17)] is
the term,

0.5 × 1,101 × (1%)2 = 5.5% (4.19)

Therefore, noting that (1%)2 equals one basis point, the correction of 5.5% in
(4.19) is half the convexitydividedby10,000. Inother words, for a1% change
in rates, the second-order correction to the duration approximation of price
change is half the convexity divided by 10,000 (i.e., 0.055), or equivalently,
the percentage correction is half the convexity divided by 100 (i.e., 5.5).

The section concludes by noting that the convexity of a portfolio equals
the weighted sum of the convexities of its component holdings, where the
weights are percentages of portfolio value. The convexity of a portfolio with
25% of its value in the NSC bonds – with a convexity of 1,101 – and 75%
of its value in the Treasury 1.625s of 05/15/2026 – with a convexity of
12 – is 25% × 1,101 + 75% × 12 = 284.25. Portfolio convexity is a weighted
sum, as is portfolio duration, because both metrics divide by price: dura-
tion divides the change in price by price, and convexity divides the second
derivative divided by price. A formal proof is given in Appendix A4.1.

4.6 HEDGING A CENTURY BOND: PART I I

Section 4.3 explained why and how a market maker hedges the DV01 from
$10 million face amount of the NSC 4.10s of 05/15/2121 by selling $12.1
million face amount of the Treasury 1.625s of 11/15/2050. This section
shows that this hedge leaves the market maker with a long convexity position
and describes the resulting risk and P&L implications.

Figure 4.6 shows the P&L of $100 million face amount of the NSC
century bond and of $121 million face amount of the 29.5-year Treasury
bond. For example, the prices of these bonds in mid-May 2021 were
99.939 and 84.391, respectively, and if rates fell by 100 basis points,
their prices would be 130.898 and 107.309, respectively. Hence, the P&L
from $100 million of the one and $121 million of the other is $100
million × (130.898 − 99.939)∕100, or $30.96 million, and $121 million ×
(107.309 − 84.391)∕100, or $27.7 million, respectively.

Section 4.3 showed that, with these face amounts, the two positions
have the same DV01 at current market levels. Figure 4.6 reflects this fact
in that the two P&L curves are tangent to each other, that is, they have the
same slope, at current rates. Both bonds are positively convex, of course, but,
because the NSC bonds are more convex (Table 4.4), their P&L exceeds the
P&L on the Treasury bonds whether rates fall or rise. This result is empha-
sized by the dotted line in the figure, graphed against the right axis, which is
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F IGURE 4.6 P&L of a Long Position of $100 Million Face Amount of the NSC
4.10s of 05/15/2121, a DV01-Equivalent Long Position in the Treasury 1.625s of
11/15/2050, and a Position Long the NSC Bonds and Short the Treasury Bonds, as
of Mid-May 2021.

the P&L of the NSC bonds minus the P&L of the Treasury bonds and which,
in turn, is the net P&L of the market maker in this application. This net P&L
is zero, of course, at current market levels but is positive for both negative
and positive rate changes, and particularly large for large, negative changes.

Expanding on the results of the previous paragraph, for unchanged
rates and prices, the P&L of both bond holdings is clearly zero. If rates fall,
both bonds increase in price and – because they are both positively convex –
both their DV01s increase as well. But because the NSC bonds are more
convex, their DV01 increases by more, which, for falling rates, means higher
profits. Instead, if rates rise, both bonds decrease in price and in DV01. But
because the NSC bonds are more convex, their DV01 falls by more, which,
for rising rates, means lower losses. Therefore, whether rates fall or rise, the
P&L on the NSC bonds exceeds the P&L on a DV01-equivalent amount of
Treasury bonds.

The market maker is said to have a positively convex position and to
be long convexity because the convexity of its long position (NSC bonds) is
greater than the convexity of its short position (Treasury bonds) and because
its P&L seems to be positive whether rates fall or rise. But is it really the case
that the market maker profits from the position no matter what? If so, why
don’t arbitrageurs initiate positions that are long the century NSC bonds and
short the 29.5-year Treasury bonds?

These questions can be answered by noting that Figure 4.6 omits an
important variable: time. As mentioned earlier, all of the figures in this
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chapter assume an instantaneous change in rates, that is, with no passage
of time. As it turns out, however, bonds or portfolios that are more convex
tend to earn less over time. Therefore, the full story of a positively convex
position, or of being long convexity, is that the position profits if rates
move down or up by a sufficient amount. If rates change by less than
that, or stay the same, the position loses money. In this sense, a long
convexity position is also long volatility. In any case, this is a fundamental
property of asset pricing, applicable to both stock options and coupon
bonds. Section 4.8 explores the topic further in the context of pension
asset–liability management, and Chapter 8 shows how convexity fits into a
general framework of returns.

4.7 YIELD-BASED DV01, DURATION,
AND CONVEXITY

Previous sections described DV01, duration, and convexity in a general,
one-factor framework: specify the way changes in a rate or factor change
the entire term structure, re-price bonds after the change, and compute
risk metrics. This section is about yield-based metrics, for which a change
in rates means a fixed change in bond yields. These metrics have two
significant weaknesses. One, they are defined only for bonds with fixed
cash flows, but not, for example, for a callable bond or a mortgage. Two,
their use implicitly assumes parallel shifts in bond yields, which is not an
empirically sound assumption. Nevertheless, there are several reasons to
study and understand yield-based metrics. First, they are simple to compute
and easy to understand, and, in many situations, are perfectly reasonable
to use. Second, these metrics are widely used across the financial industry.
Third, much of the intuition gained from understanding these metrics
carries over to more general frameworks.

The reason that yield-based metrics are easy to compute is that price can
be written as a function of yield, in the forms of Equations (3.7) and (3.8).
Recalling that c is the annual coupon payment and T is the number of years
to maturity, these equations are repeated here for convenience,

P = c
2

2T∑
t=1

1(
1 +

y
2

)t +
100(

1 +
y
2

)2T
(4.20)

P = c
y

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
+ 100(

1 +
y
2

)2T
(4.21)

With these expressions, DV01 and duration, as defined in Equations (4.5)
and (4.11), can be solved explicitly. Calculate the derivative of the previous
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price-yield relationships and then divide by −10,000 to find DV01 or by −P
to find duration. The resulting formulas for yield-based DV01 are,

DV01 = 1
10,000

1

1 +
y
2

⎡⎢⎢⎢⎣
c
2

2T∑
t=1

t
2

1(
1 +

y
2

)t + T
100(

1 +
y
2

)2T

⎤⎥⎥⎥⎦
(4.22)

DV01 = 1
10,000

⎡⎢⎢⎢⎣
c
y2

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
+ T

(
1 − c

100y

)
100(

1 +
y
2

)2T+1

⎤⎥⎥⎥⎦
(4.23)

and for yield-based duration are,

D = 1
P

1
1 + y

2

⎡⎢⎢⎢⎣
c
2

2T∑
t=1

t
2

1(
1 +

y
2

)t + T
100(

1 +
y
2

)2T

⎤⎥⎥⎥⎦
(4.24)

D = 1
P

⎡⎢⎢⎢⎣
c
y2

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
+ T

(
1 − c

100y

)
100(

1 +
y
2

)2T+1

⎤⎥⎥⎥⎦
(4.25)

This formulation of yield-based duration is also known in the industry as
modified and adjusted duration.1

The terms inside the square brackets of Equations (4.22) and (4.24) have
an intuitive interpretation that sheds light on these risk metrics. The terms
t∕2 and T represent the times to receipt of each cash flow, that is, 0.5 years,
1 year, 1.5 years, and so forth, out to T years, the years to maturity. And
each of these terms is multiplied by the present value of the cash flow to be
received at that time, that is, (c∕2)∕(1 + y∕2)t for the coupon payments and
100∕(1 + y∕2)2T for the principal payment. Putting this all together, the sum
of the terms in brackets can be described as the weighted sum of the times at
which cash flows are received, with each weight equal to the present value
of the cash flow received at that time. Furthermore, in the case of duration,

1This terminology is a historical artifact. The first metric of this sort was Macaulay
duration, which equals the expressions in (4.24) or (4.25) × 1 + y∕2. Over time,
however, the definitions in the text became the industry standard. Macaulay duration
has the advantage that the resulting duration of a zero coupon bond is exactly equal
to its years to maturity. The definitions in the text, however, have the advantage that
they are exactly equal to the percentage change in price for a change in rates.
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where the bond price can be moved inside the brackets, each weight can be
described as the present value of the cash flow received at that time divided
by the bond price, which is the sum of all the present values. Therefore,
this weight is simply the proportion of the bond’s value contributed by that
cash flow.

Table 4.5 illustrates this interpretation by calculating the yield-based
DV01 and duration of the Treasury 1.625s of 05/15/2026 as of mid-May
2021. The first column gives the term of each cash flow; the second column
gives the cash flows; and the third column gives the present value of each cash
flow discounted at 0.82277%, the bond’s yield at the time. For example, the
present value of the coupon payable in 2.5 years is,

0.8125(
1 + 0.82277%

2

)5
= 0.7960 (4.26)

The sum of the present values of the cash flows is just the market price, in this
case, 103.9219. The fourth column gives the present value of each cash flow
as a percentage of the market price. Not surprisingly, for a bond maturing in
five years and trading at a small premium, the principal accounts for a large
share of the bond’s value, in this case, over 93%.

TABLE 4.5 Calculating the Yield-Based DV01 and Duration of the Treasury
1.625s of 05/15/2026 at a Yield of 0.82277%, as of Mid-May 2021.

(1) (2) (3) (4) (5) (6)
Cash Present PV/Price Term × Term-Wtd

Term Flow Value (%) PV/Price PV

0.5 0.8125 0.8092 0.779 0.0039 0.4046
1.0 0.8125 0.8059 0.775 0.0078 0.8059
1.5 0.8125 0.8026 0.772 0.0116 1.2038
2.0 0.8125 0.7993 0.769 0.0154 1.5985
2.5 0.8125 0.7960 0.766 0.0191 1.9900
3.0 0.8125 0.7927 0.763 0.0229 2.3782
3.5 0.8125 0.7895 0.760 0.0266 2.7632
4.0 0.8125 0.7862 0.757 0.0303 3.1450
4.5 0.8125 0.7830 0.753 0.0339 3.5236
5.0 100.8125 96.7575 93.106 4.6553 483.7877

Sum 103.9219 100.000 4.8267 501.6005

Duration: 4.8069
DV01: 0.0500
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The fifth column of the table multiplies each present value proportion by
its term: 0.5 weighted by 0.779%, 1.0 weighted by 0.775%, and so forth,
and 5.0 weighted by 93.106%. In this way, the sum of the column is the
weighted average of the payment times, with weights equal to the value
proportion of each payment. In terms of Equation (4.24), this weighted
average, 4.8267, is the sum of the terms in brackets divided by price. Dura-
tion, therefore, is 4.8267∕(1 + 0.82277%∕2), or 4.8069. This interpretation
explains why many market participants say that this bond has a duration of
4.83 years: the value of the bond is paid, on average, in 4.83 years.2 This
interpretation also explains why the duration of a coupon bond is somewhat
less than its maturity: while most of a bond’s value is paid at maturity, some
portion is paid earlier.

Lastly, the sixth column of the table gives term times present value. The
sum of this column is the sum of the terms in brackets in Equation (4.22),
which means that DV01 is (1∕10,000) × 501.6005∕(1 + 0.82277%∕2) =
0.0500.

As mentioned earlier, the intuition derived from yield-based measures
is often useful for understanding more general risk metrics. A lot of this
intuition arises from the relatively simple expressions for yield-based DV01
and duration in Equations (4.23) and (4.25), and from the extremely simple
expressions in the case of zero coupon bonds and par bonds. To derive these
latter expressions, simply substitute c = 0 and then c = 100y into the price
equation, (4.21), and into the DV01 and duration equations just referenced,
to obtain the following. For a zero coupon bond,

DV01c=0 = T

100
(

1 +
y
2

)2T+1
(4.27)

Dc=0 = T(
1 +

y
2

) (4.28)

And for a par bond,

DV01c=100y = 1
100y

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
(4.29)

Dc=100y = 1
y

⎛⎜⎜⎜⎝
1 − 1(

1 +
y
2

)2T

⎞⎟⎟⎟⎠
(4.30)

2A purely mathematical reason that the units of duration is years is that duration is
a percentage change divided by a change in interest rate per year.
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F IGURE 4.7 Yield-Based Duration for Bonds with Coupons of 0%, 2%, and 5%.
Yield Equals 2%.

The discussion now turns to using these simple expressions to under-
stand how yield-based duration and DV01 depend on a bond’s maturity,
coupon, and yield. Figure 4.7, fixing yield for all bonds at 2%, graphs the
duration of bonds of terms out to 40 years with coupons of 0%, 2%, and
5%. Several lessons can be taken from this figure.

First, the duration of a zero coupon bond is approximately equal to its
term, which can also be seen from Equation (4.28). Second, the duration
of a par bond, in this case, of all bonds with a coupon of 2%, increases
with term, which can also be deduced from Equation (4.30).3 In addition,
however, the figure illustrates how the duration of par bonds increases less
than linearly with term. Out to terms of five years, duration approximately
equals term, but, for longer terms, duration falls more and more below term.
The duration of a 10-year par bond is about 9.0; of a 20-year bond, 16.4; of
a 30-year bond, 22.5; and of a 40-year bond, 27.4. Third, the duration of a
premium bond, with a coupon of 5%, is less than the duration of a par bond.
More generally, looking at the figure as a whole, bonds with higher coupons
have lower durations. The intuition here is that higher-coupon bonds pay a

3While usually the case, it is not true that duration of any bond always increases
with term. The durations of deeply discounted coupon bonds increase with term,
arbitrarily close to the zero coupon line in Figure 4.7, but can then decline, with
further increases in term, as the duration falls to that of a perpetuity. The duration
of a perpetuity is the reciprocal of the yield, which can be shown letting T approach
infinity in Equations (4.21) and (4.25).
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greater fraction of their value earlier, which, in turn, means that the lower
terms are more heavily weighted in the calculation of duration. Put another
way, higher-coupon bonds are effectively shorter-term bonds and, therefore,
have lower durations.

Figure (4.8) graphs the DV01s of the same set of bonds, continuing to
hold the yields of all bonds equal to 2%. The DV01s of par bonds increase
with maturity, which follows directly from inspection of Equation (4.29).
As with duration, however, the increase is less than linear. The DV01s of par
bonds with terms of five years or less are about equal to term divided by
100. The DV01 of a five-year bond at a yield of 2%, for example, is 0.047,
which is slightly less than 0.05, or 5 cents per 100 face amount. But, for
longer terms, the difference is larger: the DV01 of the 10-year par bond in
the figure is 9 cents; of the 20-year bond, 16 cents; of the 30-year bond,
22 cents; and of the 40-year bond, 27 cents.

Unlike duration, however, Figure (4.8) shows that DV01 increases with
coupon. To understand this, combine the definitions of DV01 and duration
in Equations (4.5) and (4.11) to see that,

DV01 = P × D
10,000

(4.31)

In thinking about how DV01 changes with term, therefore, there is a
price effect in addition to a duration effect. The duration effect almost always
causes DV01 to increase with term, along the lines of the previous discussion.
The price effect, however, can reinforce or counter this duration effect. For
par bonds, whose prices are always 100, there is no price effect. For premium
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bonds, whose prices increase with term (recall Figure 3.1), the price effect
reinforces the duration effect and, therefore, as shown in Figure (4.8), the
DV01s of 5% bonds increase much more rapidly with term than do the
DV01s of par bonds. For discount bonds, by contrast, whose prices decrease
with term, the price effect works against the duration effect and, therefore, as
shown in the figure, the DV01s of zero coupon bonds increase more slowly
with term than those of par bonds. In fact, inspection of Equation (4.27)
reveals that, at large enough terms, the DV01s of zero coupon bonds fall
as term increases further, that is, the price effect, (1 + y∕2)2T+1, eventually
dominates the duration effect, T.

Having described how DV01 and duration vary with term and coupon
rate, the discussion turns to the effect of yield. It is clear from Equation (4.22)
that DV01 falls as yield increases. This fact was introduced earlier, as an
implication of the convex shape of the price–rate curve. As it turns out,
increasing yield also lowers duration. Intuitively, increasing yield lowers the
present value of all payments, but lowers the present value of the longer
payments the most. This, in turn, lowers the proportions of bond value in
the longer payments, lowers their weights in the duration calculation, and,
therefore, lowers the duration of the bond.

Figure 4.9 illustrates how duration changes with yield, graphing the
duration of par bonds of various terms at yields of 0.5%, 2%, and 5%.
As just discussed, duration is lower at higher yields, significantly so for
longer terms. Furthermore, the difference between duration and term, dis-
cussed earlier, is greater at higher yields. At a yield of 0.5%, the durations of
10- and 30-year par bonds are 9.7 and 27.8, respectively, while, at a yield
of 5%, those durations are 7.8 and 15.5, respectively.
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The section turns now to yield-based convexity. Given the general defini-
tion of convexity in Equation (4.14), an expression for yield-based convexity
can be found by taking the second derivative of Equation (4.20) and dividing
by price. The resulting formula is,

C = 1

P
(

1 +
y
2

)2

⎡⎢⎢⎢⎣
c
2

2T∑
t=1

(t∕2)((t + 0.5)∕2)(
1 +

y
2

)t + 100T(T + 0.5)(
1 +

y
2

)2T

⎤⎥⎥⎥⎦
(4.32)

As in the formula for yield-based duration, Equation (4.24), the terms
inside the brackets of (4.32) multiply the present value of payments by some
function of the term of those payments. The big difference between the two,
however, is that, in the duration formula, that function of term is linear (i.e., t
and T), while in the convexity formula, the function is quadratic, (t∕2)((t +
0.5)∕2) and T(T + 0.5). The implication is that convexity increases much
faster with term than duration. This can be seen in the more general case
from Tables 4.3 and 4.4. The durations of the 5- and 29.5-year Treasuries,
and the 100-year NSC bonds are 3.9, 23.6, and 24.1, respectively, while
their convexities are 12, 648, and 1,101, respectively.

For completeness, the convexity formulas for zero coupon and par
bonds are included here. For zero coupon bonds,

Cc=0 = T(T + 0.5)(
1 +

y
2

)2
(4.33)

and for par bonds,

Cc=y = 2
y2
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)2T
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− 2T

y
(

1 +
y
2

)2T+1
(4.34)

The section concludes with a note about the assumptions underlying the
use of yield-based metrics. The yield-based DV01, duration, and convexity
for each bond are determined by shifting the yield of that bond. Therefore,
any risk management strategy across bonds implicitly assumes that yields
of all included bonds move up and down together, in parallel. For example,
if one bond has a yield-based DV01 of 0.05 and a second of 0.10, then
hedging 100 face amount of the second by selling 200 face amount of the
first is perfectly successful only if the yields of both bonds move by the same
amount. If a trader hedges a 9.5-year bond with a 10-year bond over a short
period of time, the assumption of parallel shifts in yield might be reasonable
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enough. Hedging a two-year bond with a 10-year bond, however, assuming
that those yields move in parallel, is not likely to produce the desired, hedged
outcome.

4.8 THE BARBELL VERSUS THE BULLET

This section presents a stylized example of asset–liability management for
defined-benefit pension liabilities; applies the concepts of duration and con-
vexity to hedging in this context, and explains how a choice arises between
barbell and bullet asset portfolios, or, more generally, across asset portfolios
with different convexities.

Figure 4.10 shows the liabilities of a stylized defined-benefit pension
plan. Each black dot represents the total expected payment of the fund to
retirees over a six-month period. The first total payment, in six months, is
$2 million. Subsequent total payments increase, as more existing employ-
ees retire and become eligible for benefits, reaching a peak of $4 million in
10 years. From then on, deaths of retirees gradually reduce total payments,
which fall to zero in 60 years. The gray dots represent the present value of
each total payment, where liabilities are discounted at the HQM curve as of
mid-May 2021.

The total present value of the liabilities in the figure is about $140 mil-
lion. For simplicity, assume that this pension fund is fully funded, so that the
pension fund has $140 million cash on hand. The asset–liability management
problem of the fund, therefore, is to invest the $140 million so as to be able

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60

Li
ab

ili
ty

 (
$m

m
)

Term

Liabilities PV Liabilities

F IGURE 4.10 Liabilities of a Stylized Defined-Benefit Pension Fund. Present Values
Are Computed by Discounting at the HQM Curve, as of May 2021.
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to make good on pension liabilities over time, or even to earn some excess
over those liabilities. Since discounting is done at the HQM corporate curve,
the pension fund would break even by realizing investment returns equal to
HQM rates. If the pension fund earned lower rates, likely, for example, if it
were to invest in Treasuries, then there would not be enough cash available
over the 60-year horizon to meet all of the pension obligations. And if the
pension earned higher rates, perhaps by investing in stocks, then it would
have more than enough to fulfill its pension obligations. In this case, how-
ever, there would be a significant risk that stocks perform relatively poorly
over the period and leave the pension without enough funds to meet its obli-
gations.

Because many pension funds make future payment commitments in
line with returns on corporate bonds, the considerations in the previous
paragraph lead many funds to invest a significant portion of their funds
in corporate bonds. For the purposes of this section, it is assumed that
all of the $140 million of pension assets are invested in corporate bonds.
More specifically, it is assumed that the pension fund can invest in one
or two of the Johnson & Johnson (JNJ) bonds listed in Table 4.6. As
mentioned in Chapter 3, all of these bonds were issued by JNJ in August
2020. For expository purposes, these bonds are referred to by their original
terms, which are not that different from their terms as of mid-May 2021.
For example, the 0.55s of 09/1/2025 are called the five-year bonds, while
the 2.45s of 09/1/2060 are called the 40-year bonds. The durations and
convexities in the table are all yield-based metrics.

The duration and convexity of the pension liabilities, computed by a
parallel shift in the HQM par rate curve, are 16.66 and 211.37, respectively.
To hedge against the risk that rates fall, which would increase the present
value of the liabilities, the pension fund decides to invest in an asset portfolio
with a duration of 16.66, the duration of the liabilities. But in which of the
JNJ bonds should the fund invest?

Perhaps the most straightforward answer is to invest in the 20-year
bonds, which have a duration of 15.56. With its assets invested in this bond,

TABLE 4.6 Selected Johnson & Johnson Bond Issues. Yields, Durations, and
Convexities Are as of Mid-May 2021. Coupons and Yields Are in Percent.

Coupon Maturity Yield Duration Convexity

0.55 09/1/2025 0.717 4.23 10.06
0.95 09/1/2027 1.238 6.08 20.33
1.30 09/1/2030 1.846 8.69 41.31
2.10 09/1/2040 2.686 15.56 141.49
2.25 09/1/2050 2.849 20.72 269.41
2.45 09/1/2060 2.962 24.09 393.17
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the fund would have an asset duration equal to that of the bond, 15.56, and
a liability duration, given already, of 16.66. Were rates to fall by 100 basis
points, then, along the lines of previous sections, assets would increase in
value by approximately 15.56% and liabilities by approximately 16.66%.
The result is close to hedged, but not quite. On the initial portfolio value
of $140 million, the present value of the liabilities would then exceed the
value of the assets by (16.66% − 15.56%) × $140 million, or 1.1% of value,
or $1,540,000.

To clean up that hedge, the pension fund might use cash. Denote the
amount held in cash by M, so that the fund’s remaining funds, $140 − M, are
invested in the 20-year bond. Then, as mentioned in Section 4.4, the duration
of this portfolio is the weighted average of its component durations. Note,
too, that the duration of cash equals zero: its present value always equals its
amount, no matter how rates change. Therefore, setting the duration of this
asset portfolio equal to the duration of the liabilities,

M
140

× 0 + 140 − M
140

× 15.56 = 16.66 (4.35)

Solving, M = −9.90, meaning that the pension fund would borrow
$9.90 million, or about 7% of the $140 million, and invest $140 − (−9.90) =
$149.90 or about 107% in the 20-year bond.

The asset portfolio just described hedges the duration risk of the liabil-
ities. But how does the convexity of the asset portfolio compare with the
convexity of the liabilities? As mentioned in Section 4.5, the convexity of a
portfolio is the weighted average of the convexity of its components. Here,
with the convexity of cash equal to zero and the convexity of the 20-year
bond equal to 141.49, the convexity of the asset portfolio is,

−9.90
140

× 0 + 149.90
140

× 141.49 = 151.50 (4.36)

which is less than the convexity of the liabilities, given earlier as 211.37.
Hence, this asset portfolio results in the pension fund having an overall neg-
atively convex position. Figure 4.11 graphs the P&L of this asset portfolio
and of the liabilities, where the P&L of the bond is calculated as a shift in
its yield, and the P&L of the liabilities by parallel shifts in the HQM par
rate curve. As rates fall, the values of both the liabilities and the asset port-
folio increase, as envisioned by the duration hedge. Because of the duration
hedge, in fact, the values of both increase by about the same amount for rela-
tively small rate changes. But because the liabilities have a higher convexity,
the duration of the liabilities increases more as rates decline. Therefore, for
large declines in rates, the increase in value of the liabilities is greater than
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F IGURE 4.11 P&L of the Pension Fund Liabilities in Figure 4.10 and of a Portfolio
Borrowing $9.90 Million and Investing $149.90 Million in the Johnson & Johnson
2.10s of 09/1/2040. The P&L of the Liabilities Is Computed Under a Parallel Shift
of HQM Par Rates. The P&L of the Bond Is Computed by a Shift in Its Yield.

the increase in value of the assets, which leaves the pension fund with a net
loss in value.

As rates increase, the values of both the liabilities and the asset portfolio
fall, again as envisioned by the duration hedge. But because the liabilities
have a higher convexity, the duration of the liabilities falls more as rates
increase. Therefore, for large increases in rates, the fall in the value of the
liabilities is less than the fall in value of the assets, which, again, leaves the
pension fund with a net loss in value.

The pension fund could manage this negative convexity by adjusting
its hedge as rates change. As rates fall, and the duration of the liabilities
increases more than the duration of the assets, the fund could increase its
asset duration by borrowing more cash and buying more bonds. As rates
rise, and the duration of the liabilities falls more than that of the assets, the
fund could lower its asset duration by selling bonds and paying off some of
its borrowing. This solution is fine in theory and sometimes in practice, but it
is costly in the sense of requiring potentially frequent portfolio rebalancing.

Another approach is to find an asset portfolio that not only matches the
duration of the liabilities, but that also has a convexity equal to or greater
than that of the liabilities. There are, of course, many such portfolios that
can be formed from cash and the JNJ bonds listed in Table 4.6. For discus-
sion purposes, Table 4.7 lists the portfolio already discussed, along with two
additional, two-asset portfolios.
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TABLE 4.7 Selected Portfolios of JNJ Bonds Listed in Table 4.6 That Match the
Duration of the Liabilities in Figure 4.10, as of Mid-May 2021. Bond Duration and
Convexity Are Calculated with Parallel Shifts in Yields. Proportions and Yields Are
in Percent.

Wtd-Avg
Asset Proportion Asset Proportion Yield Duration Convexity

Cash −7.05 2.10s of 2040 107.05 2.87 16.66 151.47
0.55s of 2025 24.66 2.25s of 2050 75.34 2.32 16.66 205.47
Cash 30.86 2.45s of 2060 69.14 2.06 16.66 271.84

Each row gives the two assets in the portfolio; the proportion of value in
each asset; the weighted-average yield of the portfolio, with weights equal to
the proportions of value; the duration of the portfolio; and the convexity of
the portfolio. The weighted-average yield of the portfolio is far from a perfect
measure of ex-ante portfolio return, but will serve for the purposes of this
section. Cash, consistent with market levels at the time, is assumed to have a
yield of 0.05%. Portfolio duration and convexity equals the weighted aver-
age of the duration and convexity of the components, as explained earlier in
the chapter.

The first row of the table corresponds to the asset portfolio already ana-
lyzed. Its duration equals 16.66, which equals the duration of the liabilities,
but its convexity is significantly less than 211, the convexity of the liabilities.
The second row gives a portfolio invested in the five-year and 30-year bonds,
with the proportions such that the duration of the asset portfolio matches
that of the liabilities. The convexity of the portfolio is 205.47, which is quite
close to the 211.37 convexity of the liabilities. The third row gives an asset
portfolio that once again matches the duration of the portfolio, this time
by investing much more in cash and the residual in the 40-year bond. This
portfolio has a convexity of 271.84, which exceeds that of the liabilities.

The relative convexities of the asset portfolios in Table 4.7 illustrate
the following general principle: among portfolios with the same duration,
the more spread out the cash flows of a portfolio, the greater its convexity.
All portfolios in the table are constructed to have the same duration, but
the first portfolio is essentially all in the 20-year bond. In the asset–liability
management context, this portfolio is called a bullet portfolio: the liability
cash flows, which are spread over many years, are being hedged by a single
bond with matching duration. The second asset portfolio in the table is split
between five-year and 30-year bonds, while the third is split between cash –
essentially a zero-year bond – and 40-year bonds. These two portfolio are
called barbell portfolios, because they are hedging liabilities using one bond
with less duration than the liabilities and one bond with more.
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Matched-duration portfolios with cash flows that are more spread out
have greater convexities because, as explained earlier, duration is roughly
linear in term, while convexity is quadratic. Consider a 10-year zero coupon
bond at a yield of zero, which, according to Equations (4.28) and (4.33),
has a duration of 10 and a convexity of 10 × 10.5 = 105. By contrast, a
portfolio with 50% of its value in a five-year zero coupon bond and 50%
in a 15-year zero, using the same equations, also has a duration 10, but a
convexity of 50% times the convexity of the five-year zero, 22.5, plus 50%
times the convexity of the 15-year zero, 232.5, which equals 127.5. Because
convexity is quadratic in term, the convexity of the 15-year zero dominates.
Hence, the portfolio with the more spread-out cash flows – the one with the
longest-term bond – has the greatest convexity.

Given the calculations in Table 4.7, how should the pension fund choose
among the alternatives? Figure 4.12 graphs the net P&L of the liabilities
and each of the asset portfolios. The net P&L of the liabilities and the bullet
portfolio, −7% in cash and 107% in the 20-year bond, is clearly negatively
convex: it loses value whether rates fall or rise. The barbell portfolio with
25% in the five-year bond and 75% in the 30-year bond, which matches the
duration and approximately matches the duration of the liabilities, gives rise
to a net P&L that is very small over a wide range of rates. In other words, a
pension fund with this portfolio need not rebalance its asset portfolio unless
rates fall significantly. Lastly, the barbell portfolio with 31% in cash and
69% in the 40-year, gives rise to an overall, positively convex position. The
combination of assets and liabilities gains value whether rates fall or rise.
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of HQM Par Rates. The P&L of the Bond Is Computed by a Shift in Its Yield.
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Does Figure 4.12 prove that the pension fund should always choose the
most convex asset portfolio? The answer is no. As mentioned in Section 4.6,
evaluating P&L purely as a function of changes in rates does not account for
the passage of time. As a rough proxy for return as time passes with rates
unchanged, consider the weighted-average yields in Table 4.7, which fall
with convexity. In other words, markets recognize the contribution of con-
vexity to P&L as rates change, as shown in Figure 4.12, and, therefore, offer
lower yields for highly convex portfolios. As a result, a portfolio with rela-
tively low convexity and relatively high yield underperforms if rates change
a lot but outperforms if rates stay about the same. By contrast, a portfolio
with relatively high convexity and relatively low yield outperforms if rates
change a lot but underperforms if rates stay about the same.

Figure 4.13 illustrates the trade-off between yield and convexity by
graphing the yields of the JNJ bonds from Table 4.6 against their durations.
The curve has a concave shape, meaning that any line connecting two
points on the curve is below the curve. Now, in the context of this graph,
compare the second portfolio from Table 4.7 – the barbell of the five-year
and 30-year bonds – versus the bullet 20-year bond portfolio. The barbell
portfolio, with a duration of 16.66 and a weighted-average yield of 2.32%,
corresponds to the point on the dotted line at a duration of 16.66. By the
concavity of the yield-duration curve, this yield is very much below the
yield of the 20-year bond, which has a similar duration.4 More generally,
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F IGURE 4.13 Yields of the Johnson & Johnson Bonds in Table 4.6 Against Their
Durations.

4This is a bit imprecise: the duration of the 20-year bond is actually 15.56, while the
bullet portfolio has a duration of 16.66.
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the concavity of the duration-yield curve implies that the weighted-average
yield on portfolios with more spread-out component bonds, which are
more convex portfolios, is lower than the yield of bullet portfolios and also
of less spread-out – less convex – portfolios. Chapter 8 demonstrates more
formally how the shape of the term structure ensures that the benefits of
convexity are fairly offset by lower return.

Given the discussion in the last several paragraphs, a pension fund man-
ager who decides to match the duration of assets and liabilities has to decide
whether to trade yield for positive convexity. An asset portfolio with a rela-
tively low yield but convexity exceeding that of the liabilities does not have
to be rebalanced often to avoid losses, does relatively well when rates move a
lot, and does relatively poorly when rates do not move much. An asset port-
folio with a relatively high yield but convexity less than that of the liabilities
has to be rebalanced often to avoid losses, does relatively poorly when rates
move a lot, and does relatively well when rates do not move much. To sum-
marize, then, the choice actually depends on whether rates will change by
much or not, that is, on future interest rate volatility!
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CHAPTER 5
Key-Rate, Partial, and

Forward-Bucket ’01s and
Durations

The assumption in Chapter 4 that changes in the entire term structure can
be described by one interest rate factor may be convenient and appro-

priate in certain situations, but applications with exposures across the term
structure require more realistic foundations. Consider a life insurance com-
pany that has liabilities spread out over many years in the future. The insurer
could make assumptions about how rates across the term structure typically
vary with the 10-year par rate and then hedge all of its liabilities by buying
10-year bonds. But what if, over a particular period, the 30-year rate falls
and the 10-year rate stays the same? The present value of liabilities would
increase, asset value would be unchanged, and the insurer would experience
a net loss in value.

Given that a one-factor framework cannot reliably describe rate changes
across the term structure, market participants have pursued three broad
strategies. First, build a multi-factor term structure model, based on a com-
bination of data and market analysis. Many active hedge funds and asset
managers, who build such models for investment purposes anyway, pursue
this path for hedging as well. The Gauss+ model presented in Chapter 9 is
an example of this approach. Second, hedge based on empirical analyses of
relationships across rates of various terms. Examples of this approach are
given in Chapter 6. Third, adopt a robust approach to hedging, which per-
forms well regardless of how the term structure evolves but which leaves
little room for subjective views and gives no guidance as to investment deci-
sions. Many asset–liability managers and market makers, who do not see
themselves in the business of taking views on term structure movements,
pursue this path, which is the subject of this chapter.

The extreme of robust approaches to hedging is immunization, that is,
hedging away the risk of every single cash flow. An example would be buying
eight zero coupon bonds to fund eight semesters of college tuition payments.

135
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No matter what happens to interest rates and the term structure, the matur-
ing zero coupon bonds will fund the assumed payments. Immunization is
not practical, however, in many institutional contexts. An insurance com-
pany has too many liabilities on too many future dates for each of them
to be funded – and therefore hedged – individually. Aside from the oper-
ational costs of such a program, the transaction costs of buying relatively
small quantities of so many different fixed income securities is likely to be
prohibitive.

Practical approaches to robust hedging, therefore, incorporate enough
factors to ensure acceptable performance under a wide range of term
structure scenarios but limit the number of factors to maintain tractability
and contain transaction costs. The three approaches described in this
chapter – key-rate ’01s and durations, partial ’01s – and forward-bucket
’01s, have proved popular as striking a sensible balance between hedging
effectiveness and practicality or cost. The final section of the chapter briefly
connects multi-factor exposures with portfolio volatility.

5.1 KEY RATES: MOTIVATION

The main motivation for multi-factor hedging is to control curve risk, that is,
the risk that rates across the term structure do not move in parallel or in any
fixed relationship. Figure 5.1 illustrates this phenomenon using changes in
the term structure of on-the-run US Treasury yields on selected days in June
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F IGURE 5.1 Changes in the Term Structure of On-the-Run US Treasury Yields,
Selected Days, June 2021.
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2021. (On-the-run bonds are the most recently issued bonds – and usually
the most liquid – in their respective maturity ranges.) Each point on each
curve represents a change in an on-the-run Treasury yield over a business
day. The 20-year term point on the June 18, 2021, curve, for example, shows
that the yield of the on-the-run 20-year Treasury bond fell by 9.7 basis points
from June 17, 2021, to June 18, 2021.

The June 16, 2021, curve shows a significant change in the curvature of
the term structure: short-term rates rose some; intermediate-term rates rose
a lot; and long-term rates rose very little. The June 18, 2021, curve is an
example of a flattening of the term structure: short-term rates rose, interme-
diate rates fell some, and long-term rates fell a lot. The June 21, 2021, curve
is an example of a steepening: short-term rates stayed about the same, while
longer-term rates rose significantly. And finally, the June 22, 2021, curve can
be very roughly categorized as a parallel shift. From Figure 5.1 as a whole,
hedges constructed with the single-factor metrics of Chapter 4 would not
have performed reliably over several days in the second half of June 2021.

5.2 KEY RATES: OVERVIEW

Key-rate ’01s, or key-rate DV01s, along with key-rate durations, are
designed: i) to describe how the risks of a bond portfolio are distributed
along the term structure, and ii) to hedge those risks using some set of
bonds, usually the most liquid government bonds of various maturities.
To introduce the topic, Table 5.1 shows the key-rate durations for the
JPMorgan Government Bond Fund and its benchmark portfolio, the
Bloomberg-Barclays US Government Bond Index, as of May 31, 2021. The
“Total” durations, in the last row of the table, have similar interpretations
as the yield-based durations of Chapter 4. The JPM fund’s total duration
of 5.73 means that its value increases by approximately 5.73% for a
parallel decline in par rates of 100 basis points. The JPM fund, therefore,
has less duration risk than its benchmark, which has a duration of 6.78.
The other rows of the table give the key-rate durations of these two bond
portfolios. From the “5yr” row, for example, the JPM fund increases in
value by approximately 0.80% when the five-year par rate declines by 100
basis points, but all other par rates remain unchanged. Similarly, from the
20-year row, the benchmark portfolio increases in value by approximately
1.67% when the 20-year par rate declines by 100 basis points, but all other
par rates remain unchanged.

The key-rate duration profile of a portfolio, therefore, decomposes its
total duration, that is, its sensitivity to parallel shifts in par rates, into sepa-
rate durations or sensitivities to changes in individual par rates. Consistent
with key-rate durations as a decomposition of total duration, the sum of all
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TABLE 5.1 Key-Rate Durations of JPMorgan Government
Bond Fund and Its Benchmark Portfolio, the Bloomberg-Barclays
US Government Bond Index, as of May 31, 2021.

JPM Government Bloomberg-Barclays
Key Rate Bond Fund Government Bond Index

6mo 0.03 –
1yr 0.11 0.11
2yr 0.19 0.34
3yr 0.40 0.60
5yr 0.80 0.88
7yr 1.19 0.86

10yr 1.31 0.57
20yr 1.05 1.67
30yr 0.65 1.75

Total 5.73 6.78

key-rate durations of a portfolio is equal or very nearly equal to the total
duration of the portfolio.

The key-rate duration profiles in the table say a lot about the exposures
of the two portfolios to par rates of different terms. The interest rate risk of
the JPM fund is somewhat concentrated in seven- to 20-year par rates, while
the risk of the index is concentrated in five- to seven-year and, even more
so, in 20- to 30-year rates. Part of the reason for the relative differences in
these exposures is that the JPM fund invests in US agency mortgage-backed
securities, which are particularly sensitive to seven- to 10-year rates, while
the benchmark index contains only government bonds. In any case, as a
result of these key-rate duration differences, the two portfolios will perform
differently as the shape of the term structure fluctuates.

The JPM fund reports exposures to the nine key rates listed in Table 5.1.
The index fund reports only eight key rates, leaving out the six-month rate.
The number of key rates chosen involves a trade-off, along the lines of the
introduction. With too few key rates, the term structure is likely to move
in a way not captured by the framework. With too many, risk management
becomes cumbersome and costly.

Along with the number of key rates, the terms of the key rates need be
chosen. Because key-rate DV01s and durations are designed to be hedged
with a relatively small set of liquid bonds, the most popular choices for key
rates are those that correspond to the maturities of on-the-run Treasuries.
Including the Treasury’s regular issuance of six-month and one-year bills,
along with its regular issuance of two-, three-, five-, seven-, 10-, 20-, and
30-year bonds, the JPM and index funds in Table 5.1 have clearly made this
popular choice.
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5.3 KEY RATES: SHIFTS

The next section applies key-rate metrics and hedging to the problem of the
pension fund introduced in Section 4.8. To keep the exposition simple, and to
dovetail with the pension fund’s long-term liabilities and intention to invest
in the Johnson & Johnson (JNJ) bonds listed in Table 4.6, the analysis here
is restricted to four key rates with terms of 10, 20, 30, and 40 years.

The key-rate framework imposes no restrictions on how any key rate
changes relative to another. But in order to reprice any bond after any shift of
key rates, the framework must specify how all par rates move, not just how
key rates move. To that end, key-rate analysis makes the following assump-
tions: i) each key-rate shift leaves all other key rates unchanged; ii) each
key-rate shift changes only those par rates that are between adjacent key
rates; and iii) changes in par rates due to a key-rate shift decline linearly
from the change in that key rate to zero at adjacent key rates. The resulting
shifts, in the current example, are shown in Figure 5.2.

The 20-year key-rate shift, depicted by the black, dashed line in the
figure, equals one basis point at a term of 20 years. That shift has no effect
on par rates with terms less than 10 years – the term of the previous key
rate – or on par rates with terms greater than 30 years – the term of the next
key rate. Between 10 and 30 years, however, the impact of the shift declines
linearly from the 20-year term, which, since the adjacent key rates are both
10 years distant, means a decline of 0.1 basis points per year. For example,
the shift increases the 19- and 21-year par rates by 0.9 basis points each;
the 18- and 22-year rates by 0.8 basis points each; etc., the 11- and 29-year
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F IGURE 5.3 The HQM Par Rate Curve, as of May 2021, with and Without a
20-Year Key-Rate Shift.

rates by 0.1 basis points each; and the 10- and 30-year par rates, which are
the adjacent key rates, by 0.0 basis points each.

When computing the 20-year key-rate DV01 or key-rate duration of
a bond or portfolio, all prices are recomputed after shifting the existing
par rate curve by the 20-year key-rate shift. Figure 5.3 shows the start-
ing High-Quality Market-Weighted (HQM) corporate par-rate curve as the
gray, dotted line, and the 20-year key-rate shift, just described, added to that
par-rate curve. The shifted par-rate curve, therefore, is the dotted line out to
10 years, the black line from 10 to 30 years, and the dotted line again from
30 to 60 years. As an aside, while this shifted par-rate curve looks reason-
able enough, spot and forward rates implied by this shifted curve may not
look as natural or reasonable.

The 30-year key-rate shift in Figure 5.2 is constructed like the 20-year
shift. The shift equals one basis point at 30 years and declines linearly on
both sides, at 0.1 basis points a year, because the adjacent key rates – at 20
and 40 years – are each 10 years distant. The 10-year and 40-year shifts are
constructed somewhat differently, because there is no key-rate at a term less
than 10 years or greater than 40 years. The 10-year shift, therefore, equals
one basis point for all par rates with terms less than 10 years, and the 40-year
shift equals one basis point for all par rates with terms greater than 40 years.

Were all the shifts in Figure 5.2 to occur simultaneously, the result would
be a parallel shift of one basis point. This is obvious for par rates of terms
less than or equal to 10 years. For terms between 10 and 20 years, which
are affected by the 10- and 20-year shifts, note the following. The 10-year
shift, which starts at one basis point at 10 years, decreases by 0.1 basis points
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per year. At the same time, the 20-year shift, which starts at zero at 10 years,
increases by 0.1 basis points per year. Hence, the decrease and increase can-
cel, leaving the shift at one basis point. With similar logic, it is easy to see
that simultaneous shifts of all the key rates do result in a parallel shift. This
observation explains the sense in which key-rate ’01s and key-rate durations
decompose the DV01 and duration of Chapter 4: each key-rate exposure is
that part of the overall exposure arising from a change in that key rate,
holding all other key rates constant.

This section concludes by emphasizing that the assumptions invoked
to compute the shifts of par rates between key rates are for convenience
rather than to capture market or empirical realities. Most obviously, there
is no reason to think that par rates respond linearly to changes in adjacent
key rates. More subtly, the assumption that par rates are affected only by
adjacent par rates is restrictive as well. If, for example, the 10-year rate falls,
while the 20- and 30-year rates stay the same, the 25-year rate might very
well change so that the overall shape of the term structure continues to be
reasonable. In any case, despite these objections, the formulation of key-rate
shifts described here has been widely accepted as a sensible trade-off between
reality and tractability.

5.4 KEY RATES: ’01S, DURATIONS, AND HEDGING

Unlike their one-factor equivalents in Chapter 4, key-rate DV01s and dura-
tions are based on change in price, or percentage change in price, for a change
in a single key rate. Mathematically, the DV01 and duration with respect to
key rate k are defined as,

DV01k = − 1
10,000

𝜕P
𝜕yk

(5.1)

Dk = −1
P

𝜕P
𝜕yk

(5.2)

where 𝜕P∕𝜕yk denotes the partial derivative of price with respect to that one
key rate. For example, the price of the JNJ 2.10s of 09/1/2040 is 91.2209,
at which price its spread to the HQM par-rate curve is −0.514%. After a
20-year key-rate increase of one basis point, the price of the bond – at the
same spread – falls to 91.0790. Therefore, the bond’s 20-year key-rate ’01 is,

DV0120 = − 1
10,000

91.0790 − 91.2209
0.01%

= 0.1419 (5.3)

and its 20-year key-rate duration is,

D20 = − 1
91.2209

91.0790 − 91.2209
0.01%

= 15.56 (5.4)
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TABLE 5.2 Key-Rate DV01s and Hedging of the Pension Liabilities in Figure 4.10
with Par Bonds as of Mid-May 2021.

Pension 2.560s of 3.215s of 3.309s of 3.365s of
Liabilities 05/15 05/15 05/15 05/15

($) 2031 2041 2051 2061

PV/Price 139,786,479 100 100 100 100
10yr Shift 33,192 0.09125 0 0 0
20yr Shift 52,969 0 0.15282 0 0
30yr Shift 57,786 0 0 0.19508 0
40yr Shift 88,766 0 0 0 0.22437

Total 232,713 0.09125 0.15282 0.19508 0.22437

Hedge Face
Amount ($millions) 36.375 34.661 29.622 39.562

Table 5.2 takes a preliminary step in using key rates for asset – liability
management in the context of the pension fund introduced in Section 4.8.
The first column gives the key-rate DV01s of the pension liabilities in
Figure 4.10. The total present value of the pension liabilities is about
$140 million, and the DV01 of those liabilities is $232,713. The key-rate
DV01s decompose that total DV01 into exposures to the four key rates.
A 10-year shift of minus one basis point increases the present value of the
liabilities by $33,192; a 20-year shift of minus one basis point increases
value by $52,969; and so forth. The exposure to the 10-year shift is
relatively low because, as evident from Figure 4.10, the liabilities build
up gradually over the first 10 years and because the values of cash flows
of relatively near terms have relatively low interest rate sensitivities. The
exposure to the 40-year key-rate shift is relatively high because, unlike the
other shifts, it affects 30 years of cash flows – from 30 to 60 years out – and
because the values of those distant cash flows have relatively high interest
rate sensitivities.

For expositional purposes, four fictional bonds are created for the rest
of the table. (After these results are discussed, the analysis returns to the JNJ
bonds.) The maturities of these fictional bonds are chosen to match the terms
of the key rates exactly, that is, 10, 20, 30, and 40 years, and their coupons
are chosen so that their prices are all par under the HQM par-rate curve in
May 2021.

Given the careful selection of these bonds, each has exposure only to
the key rate corresponding to its maturity. The 2.560s of 05/15/2031, for
example, as of May 15, 2021, are exactly 10-year par bonds. Their price
changes only if the 10-year par rate changes. But, by construction, the
20-year, 30-year, and 40-year shifts do not change the 10-year par rate.
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Therefore, the 2.560s have exposure only to the 10-year shift, and that
exposure also equals the bond’s total exposure. With the same logic applying
to the other three bonds, key-rate ’01s are nonzero only when the term of
the key rate equals the maturity of the bond.

Because each of the bonds has such a simple key-rate ’01 profile, com-
puting the key-rate hedge of the pension liabilities is correspondingly simple.
The objective of the hedge is to purchase an asset portfolio that offsets the
key-rate exposures of the liabilities. More specifically, the asset portfolio
must have a DV01 exposure to the 10-year shift of $33,192; to the 20-year
shift of $52,969; etc. But because the only bond that has any exposure to
the 10-year shift is the 2.560s of 05/15/2031, the full exposure to that shift
has to come from that bond. Mathematically, denoting the face amount of
the 10-year bond by F10,

F10 × 0.09125
100

= $33,192 (5.5)

Solving, F10 is about $36.375 million, which is listed in the bottom row of
Table 5.2. Proceeding analogously to hedge the next three key-rate expo-
sures, the equations are,

F20 × 0.15282
100

= $52,969 (5.6)

F30 × 0.19508
100

= $57,786 (5.7)

F40 × 0.22437
100

= $88,766 (5.8)

Each of these equations can be solved on its own to find the hedge face
amounts recorded in the table.

To summarize, because the hedging bonds are par bonds with matu-
rities equal to the terms of the key rates, key-rate hedges can essentially
be read off the table. The pension fund must purchase $33,192 in DV01
from 10-year par bonds; $52,969 in DV01 from 20-year par bonds; and so
forth. In this way, the pension fund will be hedged against any combina-
tion of key-rate shifts. The four key rates do not need to move according
to any model or predetermined pattern. The 10-year key rate might move
by +8 basis points, the 20-year by +2 basis points, the 30-year by 0 basis
points, and the 40-year by −2 basis points (i.e., something like the May 16,
2021, shift in Figure 5.1), and the hedge should perform relatively well. The
caveat, of course, is that the performance can be eroded to the extent that
rates between the key rates change in a way markedly different from the
shapes of the shifts in Figure 5.2. This caveat, however, is more of an issue
in this simplified example, with only four key rates over a maturity range of
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TABLE 5.3 Key-Rate DV01s and Hedging of the Pension Liabilities in Figure 4.10
with Johnson & Johnson Bonds. Indicative Prices Are as of Mid-May 2021.

Pension 1.30s of 2.10s of 2.25s of 2.45s of
Liabilities 09/01 09/01 09/01 09/01

($) 2030 2040 2050 2060

PV / Price 139,786,479 95.357 91.221 88.154 88.157
HQM Sprd (bps) 0 −56.4 −51.4 −45.4 −39.2

10yr Shift 33,192 0.08577 0.00597 −0.00393 −0.00250
20yr Shift 52,969 0 0.14191 0.00707 −0.00473
30yr Shift 57,786 0 0 0.18494 0.00871
40yr Shift 88,766 0 0 0 0.21548

Total 232,713 0.08577 0.14788 0.18808 0.21695

Hedge Face
Amount ($millions) 38.647 37.239 29.306 41.195

60 years, than it is in practice, for example, with the eight or nine key rates
over a maturity range of 30 years used by the JPM Government Bond Fund
and the Bloomberg-Barclays US Government Bond Index in Table 5.1.

With the basics of key-rate hedging understood, the fictional par bonds
created for Table 5.2 are replaced by the approximately 10-year, 20-year,
30-year, and 40-year JNJ bonds listed in Table 4.6. The updated analysis is
presented in Table 5.3. The row “HQM Sprd” gives the spread of each of the
JNJ bonds to the HQM par-rate curve as of mid-May 2021. These spreads
are all negative, because, with its triple-A rating, JNJ bonds sell at lower
rates than HQM par-rates, which represent double- and single-A credits. In
any case, the bond spreads in the table are kept constant as key-rate shifts
are applied. No spread is attached to the pension fund liabilities, because, by
assumption, their present value is computed directly from the HQM par-rate
curve.

A major difference between Table 5.2, which features fictional, par
bonds, and Table 5.3, which features the JNJ bonds, is that the key-rate
DV01 profile of the JNJ bonds is more complex. As of mid-May 2021, the
1.30s of 09/1/2030 mature in less than 10 years, which means that only
the 10-year key-rate shift affects their valuation. Their key-rate profile,
therefore, is completely concentrated in the risk of a 10-year shift. The other
bonds, however, which do not mature in exactly 20-, 30-, and 40-years and
which are not priced at par, have small positive or negative exposures to
key rates other than those corresponding most closely to their maturities.

Because the bulk of each bond’s exposure is still at the key rate closest
to its maturity, the hedging problem in Table 5.3 is not conceptually differ-
ent from the earlier table. Solving for the hedging portfolio is more tedious,
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however, because no key-rate exposure of the liability can be handled in
isolation. All of the bonds have exposures to the 10-year shift; three have
exposures to the 20-year shift; and so forth. Consequently, the following
equations (with key-rate ’01s rounded for readability) need to be solved
together,

F10 0.086
100

+ F20 0.006
100

+ F30−0.004
100

+ F40−0.003
100

= $33,192 (5.9)

F20 0.142
100

+ F30 0.007
100

+ F40−0.005
100

= $52,969 (5.10)

F30 0.185
100

+ F40 0.009
100

= $57,786 (5.11)

F40 0.215
100

= $88,766 (5.12)

Equation (5.9) says that the combined 10-year key-rate ’01 of the asset port-
folio must offset the 10-year key-rate ’01 of the liabilities. Equation (5.10)
says the same for the 20-year key rate; Equation (5.11) for the 30-year key
rate; and Equation (5.12) for the 40-year key rate. The solution, given in the
bottom row of Table 5.3, is not the same as that in Table 5.3 but is certainly
of the same order of magnitude.

5.5 PARTIAL ’01S AND PV01

Interest rate swap trading desks are firmly in the category of market partici-
pants that require robust, multi-factor frameworks for hedging. These desks
are mostly market makers in swaps, regularly paying fixed to and receiving
fixed from customers, while trying to hedge any residual interest rate and
curve risk. In order to value these trading books, swap rate curves are con-
structed to fit or pass through rates of all terms that trade with significant
liquidity. There are typically quite a few of these fitting rates or fitting points,
perhaps between 15 to 25, depending on the application and currency. In any
case, swap desks often leverage their curve-building machinery to compute
PV01s (i.e., present value of an ’01) and partial ’01s or partial PV01s. The
term PV01 is standard in swap markets, but it is really a synonym for the
general conception of DV01 described in the early sections of Chapter 4. The
term is likely preferred so as to differentiate between that general conception
and yield-based DV01, which is particularly widespread in bond markets.1

1While this section focuses on swaps trading desks, any business that trades heavily
in swaps, whether to take positions or to hedge, may choose to use partial ’01s as
well. One example would be a hedge fund that specializes in relative value trades
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The PV01 of a portfolio of swaps is found as follows: compute its present
value with the current swap rate curve; shift all fitted rates by one basis
point; refit the curve; recompute the present value; and subtract one present
value from the other. The sign convention for PV01 is the same as for DV01:
positive numbers mean that value increases when rates fall.

A partial ’01 of a portfolio is defined for each rate used to fit the swap
curve. To find a partial ’01 with respect to a particular fitted rate, compute
the present value of the portfolio with the current swap curve; shift that fitted
rate, keeping all other fitted rates the same; refit the curve; recompute the
present value; and subtract one present value from the other, again observing
the usual sign convention.

The advantages and caveats of using key-rate ’01s apply to partial PV01s
as well. Partial ’01s decompose the overall PV01 into exposures to the indi-
vidual fitted swap rates. Hedging is simple by construction: given a portfo-
lio’s partial ’01 with respect to a particular fitted rate, offset that exposure
by receiving or paying fixed in a swap whose term corresponds to that fitted
rate. In this respect, hedging is actually simpler with partial ’01s than with
key-rate ’01s. Because new, hedging swaps are always at par (see Chapter 2),
each partial ’01 can be hedged individually, as in the simplified example of
Table 5.2, where key-rate exposures are hedged with par bonds.

With respect to caveats, refitting a curve after shifting one fitted swap
rate, keeping all other fitted rates the same, can result in oddly shaped term
structures of swap rates and even more so, of spot and forward rates. Fur-
thermore, additional problems can arise if the curve-fitting methodology is
not local enough, that is, for example, if shifting the 10-year swap rate,
keeping other rates the same, unintentionally moves rates between the fitted
five- and seven-year rates. In that case, the present value of a six-year swap
would show an unintended sensitivity to the 10-year swap rate, and, even
though five- and seven-year swap rates are included as hedging instruments,
the methodology would call for hedging six-year swaps not only with five-
and seven-year swaps, but also with some amount of 10-year swaps. This
outcome is fine if intended, but not fine if just an artifact of the curve-fitting
methodology. Because the success of using partial ’01s is very dependent on
the properties of the curve fitting methodology, many market participants
are careful to use robust curve fitting methodologies or use forward-bucket
’01s, which are described in the next section.2

Before concluding this section, it is noted that the term CV01 denotes
the change in value of a swap for a one-basis-point decrease in its coupon or

across the swaps curve. Another would be a credit hedge fund or asset manager that
hedges away some or all of the interest rate risk of bond positions with swaps. In
that case, it is typically convenient to use the swap curve for all discounting and
interest rate risk metrics and to handle the idiosyncrasies of individual issuers and
bond issues with spreads against the swap curve.
2There is a brief discussion of robustness in curve fitting in Section 12.3.
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fixed swap rate. CV01 is particularly easy to compute, because a moment’s
reflection reveals that it is proportional to the sum of the discount factors
used to discount the fixed payments of the swap. CV01 and PV01 are quite
different conceptually, with the former shifting the coupon and the latter
shifting discount rates. The two are sometimes used interchangeably and
confused, however, perhaps because they are essentially equal for par swaps,
which constitute the bulk of swaps trading activity.3

5.6 FORWARD-BUCKET ’01S

Key-rate and partial ’01s are particularly convenient in that they translate
directly into hedging with liquid instruments, whether on-the-run or near
on-the-run Treasuries or swaps of the most liquid terms. But the shifts them-
selves are not very intuitive. Shifting the 10-year par rate by a basis point
does not mean that the 10-year segment of the term structure shifts, while all
other segments stay constant: shifting the 10-year par rate has implications
for discounting all cash flows out to 10 years. Furthermore, as mentioned
earlier, shifting one par rate, while holding all other rates constant, can imply
odd shifts in spot or forward rates. Forward-bucket ’01s, by contrast, are
more easily interpretable in terms of changes in the shape of the term struc-
ture. They do not, however, provide the same direct visibility into hedging
with liquid instruments as do key-rate and partial ’01s.

This section illustrates the use of forward-bucket ’01s with reference
to the general obligation bonds of the Town of Wellesley, Massachusetts,
issued in May 2020.4 Table 5.4 lists the first nine bond series sold at that
time. Note that, for the tax reasons explained in Section O.2, it is common
for municipalities to issue bonds with a coupon of 5% even though market
yields are much lower.

Using the yields in Table 5.4, the analytical tools of Part One can be
used to calculate a term structure of forward rates, which is graphed in
Figure 5.4.5 The idea behind forward-bucket ’01s is to shift “buckets,” that
is, individual segments of the forward term structure, directly. For purposes
of exposition, this section breaks the term structure into three segments:
one to two years; three to five years; and six to nine years. Figure 5.4 shows,

3For a rough understanding of this equality, note from Equation (4.21) that, with a
curve flat at the rate y, the change in the price of a bond for a one-basis-point change
in coupon (e.g., from a dollar coupon of 2 to 2.01), is (1∕100y)(1 − (1 + y∕2)−2T ,
which is exactly the same as the DV01 of a par bond in Equation (4.29).
4General obligation bonds are discussed in Chapter O.
5For simplicity, it is assumed that bonds pay annually rather than semiannually.
Absent this assumption, other assumptions would have to be made about discount
factors on September 1 of each year.
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TABLE 5.4 Selected General Obligation Refunding Bonds Issued by the Town
of Wellesley, Massachusetts, in May 2020. Coupons and Yields Are in Percent.

Maturity Principal Coupon Yield

06/01/2021 1,175,000 5.00 0.75
06/01/2022 1,205,000 5.00 0.80
06/01/2023 1,210,000 5.00 0.84
06/01/2024 1,225,000 5.00 0.90
06/01/2025 1,235,000 5.00 0.96
06/01/2026 1,250,000 5.00 1.01
06/01/2027 1,255,000 5.00 1.06
06/01/2028 1,265,000 5.00 1.11
06/01/2029 1,270,000 5.00 1.18
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F IGURE 5.4 Town of Wellesley General Obligation Forward Rate Curve with a
10-Basis-Point Shift of the Three- to Five-Year Forward Bucket, as of June 1, 2020.

for example, a +10-basis-point shift of the three- to five-year segment. In
practice, practitioners choose buckets most suitable to their businesses.
A money-market desk, for example, which trades very heavily in short-term
instruments, might have many buckets in the short end of the curve and few
further on. A swaps desk, on the other hand, which trades evenly across
maturities from one to 30 years, might not have nearly as many buckets in
the short end but many more evenly spaced buckets across the rest of the
curve.

Forward-bucket ’01s are computed analogously to any other inter-
est rate risk metric: price the bond or portfolio with the current term
structure; shift a forward-bucket by one basis point; reprice the bond or
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TABLE 5.5 Forward-Bucket Exposures and Hedging of Selected Town of Wellesley
General Obligation Refunding Bonds, as of June 1, 2020. The 5s of 06/01/2029 are
Hedged with the 1.205s of 06/01/2029.

(1) (2) (3) (4) (5) (6)
Hedged

5s of 5s of 5s of 1.205s of 5s of
06/01 06/01 06/01 06/01 06/01
2022 2025 2029 2029 2029

1-2yr Shift 0.02099 0.02324 0.02578 0.01972 0.00239
3-5yr Shift 0 0.03112 0.03492 0.02862 0.00098
6-9yr Shift 0 0 0.03983 0.03642 −0.00337

Total 0.02099 0.05437 0.10053 0.08475 0

portfolio with the new term structure; and subtract one price from another,
observing the usual sign convention. Table 5.5 reports forward-bucket
’01 profiles computed along these lines. The second to fourth columns
give the forward-bucket ’01s for three of the Wellesley bonds, a two-year
bond, a five-year bond, and a nine-year bond, all as of June 1, 2020. For
expositional purposes, the fifth column gives the forward-bucket ’01s of a
fictional nine-year par bond, discounted with the same curve. The final row
of the table sums all the forward-bucket ’01s, which gives the increase in
price after shifting all forward rates down by one basis point. Hence, the
forward-bucket ’01s in the table decompose these totals into exposures to
individual segments of the term structure.

The two-year bond, which has no cash flows past two years, has no
exposure to the three- to five-year and the six- to nine-year forward-bucket
shifts. Similarly, the five-year bond has no exposure to the six- to nine-year
shift. As intended, forward-bucket ’01s clearly convey exposures to individ-
ual segments of the term structure. For example, if forward rates in the three-
to five-year segment of the curve fall by one basis point, the price of the 5s
of 06/1/2029 increases by 3.5 cents per 100 face amount.

The usefulness of forward-bucket ’01s to assess curve risk is illustrated
in the sixth column of Table 5.5. Say that a market maker hedged the 5s of
06/01/2029 with the hypothetically liquid, fictional 1.205s of 06/01/2029
using the parallel shift, that is, the total ’01s in the last row of the table.
Against a purchase of 100 face amount of the 5s of 06/01/2029, the market
maker would sell 100 × 0.10053∕0.08475 = 118.62 of the 1.205s. By defi-
nition, the total ’01 of this hedged portfolio is zero, but it does have curve
risk, which is computed in the last column of the table.

The exposure of the hedged portfolio to each forward bucket is the sum
of the exposures of the two bond positions. For the one- to two-year forward
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bucket, for example, the portfolio exposure is,

1000.02578
100

− 118.620.01972
100

= 0.00239 (5.13)

The other two bucket exposures are computed similarly. Taken as a whole,
the forward-bucket ’01 profile of the hedged portfolio, with the first two
exposures positive and the third negative, shows that the market maker’s
position loses money if the forward curve flattens. For example, in a par-
ticular flattening scenario, if one- to five-year forward rates increase, while
six- to nine-year forward rates decrease, the position will lose money due to
each of the three forward rate shifts. With curve risk quantified in this way,
the market maker can choose between hedging out all curve risk, at some
cost, or bearing the risk until the position can be unwound.

Hedging a bond or portfolio with forward-bucket ’01s follows along the
same lines as hedging with key-rate ’01s. If there are five forward buckets, for
example, then five hedging instruments are required. The five unknowns are
the face amount of the five hedging instruments, and each of five equations
sets the net ’01 of its corresponding forward bucket to zero. While this
procedure is perfectly straightforward, an approximate solution is not as
immediately apparent as in the case of key-rate ’01s. Inspection of the sixth
column of Table 5.5 does not reveal the approximate position of a bond
or portfolio of bonds that hedges out the residual curve risk. By contrast,
inspection of the dollar key-rate DV01s in the second column of Table 5.3
readily reveals the approximate trades required in the hedging bonds.

5.7 MULTI-FACTOR EXPOSURES AND PORTFOLIO
VOLATIL ITY

As discussed in this chapter and Chapter 4, risk metrics are useful for quan-
tifying the effect of a change in rates on prices and for hedging interest rate
risk. This section makes the point that risk metrics are also useful for quan-
tifying portfolio volatility.

Say that a portfolio has a DV01 of $10,000 and that interest rates have
a volatility of 100 basis points per year. It follows that the portfolio has an
annual volatility of $10,000 times 100, or $1 million. This, of course, is a
one-factor formulation of interest rate volatility.

The motivation for multi-factor exposures, however, is that portfolios
are exposed to changes in interest rates all along the curve and that these
changes are not perfectly correlated. The discussion here quantifies portfolio
volatility in the simple, multi-factor setting of two key rates. The ideas,
however, are easily extended to additional key rates and to partial and
forward-bucket ’01s.
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To estimate portfolio volatility with two key rates, follow these steps.
First, empirically estimate the volatility of changes in each key rate and the
correlation between them. Second, compute the key-rate ’01s of the portfo-
lio. Third, compute the variance or volatility of the portfolio. To illustrate
this third step, denote the change in the value of the portfolio by ΔP; the
change in the two key rates by Δy1 and Δy2; and the key rates of the portfolio
by KR011 and KR012. Then, by the definition of key-rate ’01s,

ΔP ≈ KR011 × Δy1 + KR012 × Δy2 (5.14)

Furthermore, denoting the volatility of changes in portfolio value and
changes in the two key rates by 𝜎P, 𝜎1, and 𝜎2, respectively, and the corre-
lation between changes in the key rates by 𝜌, Equation (5.14) and the rules
for computing variances and standard deviations imply that,

𝜎P ≈
√

KR012
1𝜎

2
1 + KR012

2𝜎
2
2 + 2KR011KR012𝜌𝜎1𝜎2 (5.15)

Of course, as the number of key rates or, more generally, factors, increases,
more volatility and correlation inputs are required.
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CHAPTER 6
Regression Hedging and

Principal Component Analysis

The risk metrics and hedges of Chapters 4 and 5 assume relationships
across rates of different terms. The assumptions are typically motivated

by a combination of economic theory, empirical analysis of historical data,
and views about future economic and financial developments. This chapter
introduces approaches that rely explicitly on historical data. It would be an
oversimplification, however, to categorize the techniques of Chapters 4 and
5 as subjective, while categorizing the approaches of this chapter as objec-
tive. Empirical methods also require assumptions, such as the number of
rates or instruments used in the analysis, the particular rates or instruments
chosen, and the historical time period selected for estimation.

The first section of this chapter describes single-variable regression hedg-
ing in the context of hedging a 40-year Johnson & Johnson (JNJ) bond with a
30-year Treasury. The second section describes two-variable regression hedg-
ing in the context of a relative value trade of 20-year versus 10- and 30-year
Treasuries. The third and fourth sections discuss two other issues that arise
in the context of regression hedging, namely, the choice between level and
change regressions, and reverse regressions.

One conceptual problem with using regression hedging in practice is
that each regression is essentially a different model of the term structure of
interest rates with different underlying assumptions. Consider, for example,
the manager of a trading desk in which some traders are using single-
variable regressions and some two-variable regressions, or some are esti-
mating regressions from one month of historical data and others from six
months.

The final section of the chapter introduces a unified empirical description
of how the entire term structure evolves, namely, principal component anal-
ysis (PCA). PCA provides both an empirical hedging methodology, which
can be used consistently across the term structure, along with easily inter-
preted descriptions of how the term structure fluctuates over time. While
presentations of PCA tend to be highly mathematical, great effort has been
made in this chapter to make the material more broadly accessible.

153
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6.1 SINGLE-VARIABLE REGRESSION HEDGING

This section considers the problem of a market maker or a relative value
trader on May 14, 2021, who purchases $100 million face amount of the
JNJ 2.450s of 09/01/2060 and hedges the resulting interest rate risk by selling
the US Treasury 1.625s of 11/15/2050. Because there is no 40-year Treasury
bond outstanding, the 1.625s of 11/15/2050, with about 30 years to matu-
rity, are selected as the best alternative. Table 6.1 gives the coupons, maturity
dates, yields, and DV01s of these two bonds, along with those of two other
bonds that are referenced in the next section.

The trader can choose the face amount of the Treasury bond in the
hedge using the ratio of DV01s, along the lines of Chapter 4. In this case, the
trader sells $100 million × 0.2124∕0.1910, or $111.2 million. As discussed
in Chapter 4, however, this hedge assumes that the yields of the JNJ and
Treasury bonds move up or down in parallel. But because the JNJ bonds sell
at a changing corporate spread to Treasuries, and because 40- and 30-year
rates are not perfectly correlated, as emphasized in Chapter 5, there is good
reason to question the assumption of parallel yield shifts in this case.

The scatter plot in Figure 6.1 shows the daily changes in yield of the JNJ
bonds against those of the Treasury bond from January 19, 2021, to May 14,
2021, which is a window of about four months before the date of the hedge.
The line in the figure is the regression line fitted through the data, which
is discussed presently. The figure teaches two lessons. First, there is a lot of
variation in the relationship between these changes. Some days, the Treasury
yield changes by more (e.g., the point on the graph at (−18.2, −11.1)); some
days by less (e.g., the point (−3.3, −7.7)); and some days even in opposite
directions (e.g., the point (2.0, −2.2)). Second, from the slope of the line, the
average relationship between yield changes is less than one-to-one; that is,
the change in the yield of the JNJ bonds tends to be less than the change in
the yield of the Treasury bonds.

Figure 6.1 implicitly assumes that the most relevant period for designing
an empirical hedge is the recent, immediate past. This assumption is often
reasonable, but there are times and situations in which some earlier period
seems more relevant. For example, if the Federal Reserve is expected to raise

TABLE 6.1 Yields and Yield-Based DV01s for the JNJ 2.450s
of 09/01/2060 and Selected US Treasury Bonds, as of May 14,
2021. Yields Are in Percent.

Issuer Bond Yield DV01

JNJ 2.450s of 09/01/2060 2.962 0.2124
Treasury 0.875s of 11/15/2030 1.601 0.0847
Treasury 1.375s of 11/15/2040 2.246 0.1446
Treasury 1.625s of 11/15/2050 2.364 0.1910
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F IGURE 6.1 Regression of Daily Changes in Yields of the JNJ 2.450s of 09/01/2060
on Daily Changes in Yields of the Treasury 1.625s of 11/15/2050, from January 19,
2021, to May 14, 2021.

short-term rates in the immediate future, a similar episode in the past might
be more relevant to the future than the recent past, in which the Federal
Reserve left rates unchanged or lowered them. Choosing the length of the
observation or estimation window is also part of the art of regression hedg-
ing. Too short a window might fail to furnish statistically reliable estimates,
but too long a window might include less relevant historical data.

In light of the empirical evidence in Figure 6.1, the trader might very well
choose to: i) adjust the hedge ratio to account for the less than one-to-one
relationships between changes in yields; and ii) measure the variation around
the average relationship to gain a better understanding of the risk of the
hedged position. Regression analysis is a tool with which to achieve both of
these objectives.

Let ΔyJNJ
t and Δy30

t be the changes in yields of the JNJ and 30-year
Treasury bonds on date t, respectively. A regression model linking these
changes is,

ΔyJNJ
t = 𝛼 + 𝛽Δy30

t + 𝜖t (6.1)

Equation 6.1 says that the dependent variable, here the change in the
yield of the JNJ bond, equals: a constant or intercept, 𝛼; plus a slope, 𝛽, times
the independent variable, here the change in the yield of the 30-year Treasury
bond; plus an error term, 𝜖t. The unknown constant and slope parame-
ters are estimated from the data, in a manner explained presently. These
estimated parameters, denoted �̂� and ̂

𝛽, respectively, can then be used for pre-
diction. Given the change in the Treasury bond yield on date t, the predicted
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change in the yield of the JNJ bonds on that date, denoted Δŷ JNJ
t , is,

Δŷ JNJ
t = �̂� + ̂

𝛽Δy30
t (6.2)

and the realized error or residual on that day, 𝜖t, is given by,

𝜖t = ΔyJNJ
t − �̂� − ̂

𝛽Δy30
t (6.3)

= ΔyJNJ
t − Δŷ JNJ

t (6.4)

For example, say that the estimated constant and slope parameters are
0 and 0.84, respectively, and that the Treasury bond yield changes by −18.2
basis points. Then, by Equation (6.2), the predicted change in the yield of
the JNJ bond is 0 + 0.84 × (−18.2) = −15.3 basis points. If, furthermore,
the actual change in the JNJ bond is −11.1 basis points, then, by (6.3) or
(6.4), the realized error or residual is −11.1 − (−15.3) or 4.2 basis points.
In Figure 6.1, this residual can be thought of as a vertical line dropped from
the data point, (−18.2, −11.1), to the regression line.

Least-squares estimation of the unknown parameters finds �̂� and ̂
𝛽 to

minimize the sum of the squares of the residuals over the observation period,

∑
t

𝜖

2
t =

∑
t

(
ΔyJNJ

t − �̂� − ̂
𝛽Δy30

t

)2
(6.5)

where the equality follows from Equation (6.3). Squaring of the errors
ensures that offsetting positive and negative errors are not considered
as acceptable as zero errors, and that large errors in absolute value are
penalized heavily relative to smaller errors.

Least-squares estimation assumes that the regression model is a true
description of the dynamics of the dependent and independent variables, that
the errors across time have the same probability distribution, that they are
independent of each other, and that they are uncorrelated with the indepen-
dent variable. Under these assumptions, least-squares parameter estimates
are linear, unbiased, consistent, and efficient.1

Least-squares estimation is available in many statistical packages and
spreadsheets. Table 6.2 gives a typical summary output from estimating
Equation (6.1) using the data shown in Figure 6.1. The estimate of the slope

1A linear estimator is linear in the observations of the dependent variable. The expec-
tation of an unbiased estimator of a parameter equals the true value of that parameter.
A consistent estimator of a parameter, with enough data, becomes arbitrarily close to
the true value of the parameter. And an efficient estimator has the minimum possible
variance among linear estimators.
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coefficient, ̂
𝛽, is 0.842, which says that, on average, the change in the yield of

the JNJ bond is only 0.842 times the change in the yield of the Treasury bond,
which is very different from a parallel shift. The estimate of the constant, �̂� is
not very different from zero, which is typically the case in regressions of this
sort. From an economic perspective, it would be odd if, over an extended
period of time, changes in the yield of the JNJ bond tended to be positive
or negative when there is no change in the yield of the Treasury bond. The
line in Figure 6.1 is the fitted regression line, which is Equation (6.2) with
its estimated coefficients,

Δŷ JNJ
t = 0.060 + 0.842Δy30

t (6.6)

Table 6.2 also gives the standard errors of the constant and slope coeffi-
cients, which provide confidence intervals around the estimates: the interval
of each estimate plus or minus two standard errors falls around the true
parameter values approximately 95% of the time. In this regression, the con-
fidence intervals are 0.060 plus or minus 2 times 0.223, or (−0.386,0.446),
and 0.842 plus or minus 2 times 0.051, or (0.740,0.944). Hence, because the
confidence interval around the estimated constant includes zero, the hypoth-
esis that 𝛼 = 0 cannot be rejected with 95% confidence. But, because the
confidence interval for the slope coefficient does not include one, the hypoth-
esis that 𝛽 = 1 can be rejected with 95% confidence. Hence, the hypothesis
of parallel shifts in the yields of the two bonds is rejected by the data.

Table 6.2 reports that the R-squared of the regression is 77.5%, meaning
that 77.5% of the variance of changes in the JNJ yield can be explained by
the model, that is, by changes in the yield of the 30-year Treasury bond. In
a one-variable regression, the R-squared is just the square of the correlation
between the dependent and independent variables, which gives a correlation
here of

√
77.5%, or 88.0%. That these statistics are well below 1.0 indi-

cates that hedging in this case does not come close to eliminating all interest
rate risk.

TABLE 6.2 Regression of Daily Changes in Yields of
the JNJ 2.450s of 09/01/2060 on Daily Changes in
Yields of the Treasury 1.625s of 11/15/2050, from
January 29, 2021, to May 14, 2021.

No. of Observations 82
R-Squared 77.5%
Standard Error 2.00

Regression Coefficients Value Std. Error

Constant (�̂�) 0.060 0.223
Chg 30yr Treasury Yield ( ̂𝛽) 0.842 0.051
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The remaining statistic to be discussed in Table 6.2 is the standard error
of the regression, which is essentially the standard deviation of the realized
errors or residuals, as defined in Equations (6.3) and (6.4).2 This standard
error is a measure of how well the model fits the data and is in the same
units as the dependent variable, in this case, basis points. Roughly speaking,
then, the standard deviation of the errors in explaining daily changes in the
yield of the JNJ bond with daily changes in the yield of the Treasury bond
is two basis points. This statistic is particularly useful in describing the risk
of a regression-based hedge, as discussed presently.

All the results in Table 6.2 are in-sample; that is, they are computed from
the particular data sample used to estimate the regression model. Relying
on these results for hedging assumes that the future will be sufficiently like
this particular historical period. The success or failure of this assumption is
discussed at the end of the section.

Turning now to regression hedging, assume for the moment that the
yield of the JNJ bonds changes by exactly ̂

𝛽 basis points for every one-basis-
point change in the yield of the Treasury bonds. Let FJNJ, DV01JNJ, F30, and
DV0130 be the face amounts and DV01s of the JNJ and 30-year Treasury
bonds, respectively. Then, the position is hedged against changes in yields if,

FJNJ DV01JNJ

100
̂
𝛽 + F30 DV0130

100
= 0 (6.7)

F30 = −FJNJ DV01JNJ

DV0130
̂
𝛽 (6.8)

Plugging in numbers, $100 million for the face amount of the JNJ bonds
to be hedged, DV01s from Table 6.1, and ̂

𝛽 from Table 6.2,

F30 = −$100mm
0.2124
0.1910

0.842 = −$93.6mm (6.9)

The yield-based DV01 hedge for the JNJ bonds, which is given by
Equation (6.9), is given earlier without the slope coefficient of 0.842 as
$111.2 million. The regression hedge of (6.9) sells only $93.6 million
because it recognizes that the yield of the JNJ bonds does not move as much
as the yield of the 30-year Treasury bond. Hence, fewer Treasury bonds
need be sold to hedge the interest rate risk of the JNJ bonds.

2A standard error is actually the sum of the squared residuals divided by the number
of observations minus two, while a standard deviation divides by the number of
observations minus one. Note than, in a regression with a constant, the average of
the residuals is zero by construction.
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Regression hedges are sometimes described in terms of risk weights.
Rearranging terms in Equation (6.7) or (6.8),

−F30 × DV0130∕100

FJNJ × DV01JNJ∕100
= ̂
𝛽 = 84.2% (6.10)

In words, the left-hand side of the equation is the DV01 of the hedge as
a fraction of the DV01 of the bonds being hedged. The risk weight of a
yield-based DV01 hedge is always 100% – the DV01s of the two sides of
the trades are, by construction, equal. In this regression hedge, however, the
DV01 of the Treasury bonds is only 84.2% of the DV01 of the JNJ bonds.
In general, as Equation (6.10) shows, the risk weight of a regression hedge
exactly equals the estimated slope coefficient, ̂

𝛽.
The best argument for the regression hedge is actually not the earlier

assumption that bond yields change exactly according to the regression
model. Write the P&L of the position as,

P&L = −FJNJ DV01JNJ

100
ΔyJNJ

t − F30 DV0130

100
Δy30

t (6.11)

where the negative signs reflect that a positive face amount with a posi-
tive change (i.e., increase) in yield lowers P&L. It can then be shown that
the regression hedge in Equation (6.8) minimizes the variance (6.11). (See
Appendix A6.1.) In other words, to the extent that P&L variance is an
appropriate measure of risk, the regression hedge minimizes the risk of the
hedged position.

Appendix A6.1 also derives the standard deviation of the regression-
hedged P&L. Denote this standard deviation by 𝜎P&L and the standard devi-
ation of the residuals by 𝜎

𝜖

. Then,

𝜎P&L =
|||||F

JNJ DV01JNJ

100

||||| 𝜎𝜖 (6.12)

where | ⋅ | is the symbol for absolute value, so that the standard deviation is
positive whether the original position is long (positive FJNJ) or short (neg-
ative FJNJ). In words, the P&L of the hedged position is the DV01 of the
position being hedged times the standard error of the regression residuals.
Intuitively, the hedged P&L on any given day is exactly zero if the yield of
the JNJ bonds moves by 0.842 basis points times the change in the Treasury
yield. But if the residual is one basis point, so that the yield of the JNJ bond
increases by one basis point more than that, the hedged position loses the
DV01 of the JNJ bonds; and if the residual is minus two basis points, then
the hedged position gains twice the DV01 of the JNJ bonds; etc. Hence, the
volatility of the hedge is proportional to the variability of the residuals.
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Applying Equation (6.12) to the case at hand, the DV01 of the JNJ bond
position is $100 million × 0.2124∕100, or $212,400, and the standard error
of the regression, reported in Table 6.2, is two basis points per day. There-
fore, the standard deviation of the hedged P&L in the sample is $212,400 × 2
or $424,800 per day. Whether this is too much risk or not depends on how
much and how fast the trader is making money buying the JNJ bonds and
hedging them. If the trader is making five basis points on the position and
holding it for a day, then a standard deviation of two basis points per day
likely represents a reasonable risk–return trade-off. If, on the other hand,
the trader is making 1.5 basis points and holding the position for a week, a
standard deviation of two basis points per day likely ruins the trade from a
risk–return perspective.

This section concludes with an out-of-sample analysis of the estimated
regression model. Figure 6.2 shows the same regression line as estimated
in Table 6.2 and graphed in Figure 6.1. The plus signs, however, are the
changes in yields over the period May 17, 2021, to July 19, 2021. The
regression model, estimated over the earlier period, January 29, 2021, to
May 15, 2021, holds up quite well. In fact, the standard error of the residu-
als of the out-of-sample data against the original regression line is 1.5 basis
points, which is actually smaller than the in-sample equivalent. The trader
hedging as of May 14, 2021, cannot, of course, run this analysis. But other
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F IGURE 6.2 Yield Changes of the JNJ 2.450s of 09/01/2060 and the Treasury
1.625s of 11/15/2050 from May 17, 2021, to July 19, 2021, and the Regression
Line Estimated over the Period January 19, 2021, to May 14, 2021.
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out-of-sample tests can be informative. A trader might see how a regres-
sion model performed over a period before the estimation period, perhaps a
period right before that window or perhaps an even earlier period that might
be more likely to resemble the future. In any case, poor out-of-sample perfor-
mance should raise questions about the stability of the regression coefficients
over time and, therefore, the reliability of the resulting hedge.

6.2 TWO-VARIABLE REGRESSION HEDGING

The hedging approaches of Chapter 5 generalize those of Chapter 4 to
account for the fact that rates across the term structure are not perfectly
correlated. Similarly, two-variable regression hedges account for the fact
that changes in a bond’s yield might be better explained by changes in
the yields of two other bonds, rather than just one, as in a one-variable
regression.

To illustrate two-variable regression hedging, consider a relative value
trader who believes that yields in the 20-year US Treasury bond sector are
too high – or prices too low – relative to the 10- and 30-year sectors. Imple-
menting this trade idea by buying a 20-year bond outright is too risky: if
rates increase across the board, the trade loses money even if the trader is
right, that is, even if the 20-year bond does outperform 10- and 30-year
bonds. But buying a 20-year bond and hedging the interest rate risk by sell-
ing a 10-year bond also bears too much risk that is unrelated to the trade
idea: if the curve steepens (e.g., 30-year yields increase more than 20-year
yields, which increase more than 10-year yields), the trade may lose money
even if the 20-year bonds outperform. And, finally, buying a 20-year bond
and hedging with a 30-year bond can lose money if the curve flattens even
if the 20-year bonds outperform. In practice then, this trade idea is typi-
cally implemented with a butterfly: buy 20-year bonds and sell both 10- and
30-year bonds: both shorts defend against general rate increases; the 10-year
short defends against flattening; and the 30-year short defends against steep-
ening. The trader’s problem then becomes to choose the face amount of the
10- and 30-year bonds to sell against, say, $100 million face amount of the
20-year bond.

In this illustration, the trader chooses the three Treasury bonds listed
in Table 6.1: the 1.375s of 11/15/2040 as the 20-year; the 0.875s of
11/15/2030 as the 10-year; and the 1.625s of 11/15/2050 as the 30-year.
The two-variable regression model of changes in yields of these bonds is,

Δy20
t = 𝛼 + 𝛽

10Δy10
t + 𝛽

30Δy30
t + 𝜖t (6.13)
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where the notation is analogous to that of the one-variable regression. Here
there are two slope coefficients, describing how changes in the 20-year yield
are related to changes in each of the 10-year and 30-year yields.

Continuing as in the case of one-variable regression, least-squares esti-
mation finds the regression coefficients so as to minimize the sum of the
squared residuals,

∑
t

(
Δy20

t − �̂� + ̂
𝛽

10Δy10
t + ̂

𝛽

30Δy30
t

)2
(6.14)

And, with these estimated coefficients, the predicted change of the 20-year
rate is,

Δŷ20
t = �̂� + ̂

𝛽

10Δy10
t + ̂

𝛽

30Δy30
t (6.15)

Table 6.3 gives the results of the regression, estimated with data from
January 29, 2021, to May 14, 2021. The R-squared is quite high relative
to that of the single-variable regression, in Table 6.2, in part because two
explanatory variables are used, rather than one, and in part because all of the
bonds in this regression are Treasuries, whereas the single-variable regression
mixes a corporate bond with a Treasury bond. The standard error is also sig-
nificantly lower here, at 1.15 basis points per day. Again, however, as usual
for regressions of this sort, the estimate of �̂� is small and not significantly
different from zero.

The slope coefficients say that a one-basis-point increase in the 10-year
yield increases the 20-year yield by 0.465 basis points, while a one-basis-
point increase in the 30-year yield increases the 20-year yield by 0.669 basis
points. With 95% confidence intervals for these coefficients of (0.329, 0.601)
and (0.535, 0.803), respectively, both coefficients are significantly different
from zero; that is, changes in the yields of both bonds are useful in explaining
changes in the yield of the 20-year bond.

TABLE 6.3 Regression of Daily Changes in Yields of the
Treasury 1.375s of 11/15/2040 on Daily Changes in
Yields of the Treasury 0.875s of 11/15/2030 and 1.625s of
11/15/2050, from January 29, 2021, to May 14, 2021.

No. of Observations 82
R-Squared 94.7%
Standard Error 1.15

Regression Coefficients Value Std. Error

Constant (�̂�) 0.019 0.129
Chg 10yr Treasury Yield ( ̂𝛽30) 0.465 0.068
Chg 30yr Treasury Yield ( ̂𝛽10) 0.669 0.067
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To derive the hedge based on these regression results, write the P&L of
the hedged position as,

P&L = −F20 DV0120

100
Δy20

t − F10 DV0110

100
Δy10

t − F30 DV0130

100
Δy30

t (6.16)

and then substitute for Δy20
t from (6.15) to see that,

P&L =
[
−F20 DV0120

100
̂
𝛽

10 − F10 DV0110

100

]
Δy10

t

+
[
−F20 DV0120

100
̂
𝛽

30 − F30 DV0130

100

]
Δy30

t (6.17)

Next, to ensure that P&L is zero, under the assumption that the change in the
20-year rate follows the regression model, set each of the terms in brackets
in Equation (6.17) equal to zero. Solving,

F10 = −F20 DV0120

DV0110
̂
𝛽

10 (6.18)

F30 = −F20 DV0120

DV0130
̂
𝛽

30 (6.19)

or, in terms of risk weights,

−F10 × DV0110

F20DV0120
= ̂
𝛽

10 (6.20)

−F30 × DV0130

F20DV0120
= ̂
𝛽

30 (6.21)

Assuming a trade size of $100 million face amount in the 20-year Trea-
sury, substituting the DV01s of the bonds from Table 6.1 and the results of
the regression from Table 6.3, the hedging face amounts and risk weights are
$79.44 million and 46.5% for the 10-year, along with $50.69 million and
66.9% for the 30-year. Note that the sum of the risk weights is 113.4%,
which means that the DV01 of the hedging position is 13.4% greater than
the DV01 of the position being hedged. This follows immediately from the
slope coefficients of the regression: a simultaneous one-basis-point change
in both the 10- and 30-year yields is associated with a 1.134-basis-point
increase in the 20-year yield. Hence, the hedging portfolio requires an extra
13.4% in DV01.

Figure 6.3 compares in-sample and out-of-sample residuals from the
regression in Table 6.3. The out-of-sample residuals are very well behaved, in
fact, better behaved than the in-sample residuals: the standard error is 1.15
in-sample, and only 0.70 out-of-sample. Traders are not always so fortunate!
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F IGURE 6.3 Residuals Using the Regression Coefficients in Table 6.3, in-Sample –
from January 19, 2021, to May 14, 2021 – and Out-of-Sample – from May 17, 2021,
to July 19, 2021.

6.3 LEVEL VERSUS CHANGE REGRESSIONS

When estimating regression-based hedges, most practitioners regress
changes in yields on changes in yields, as in the previous sections, but
some regress yields on yields. Mathematically, in the single-variable case,
the level-on-level regression with dependent variable y and independent
variable x is,

yt = 𝛼 + 𝛽xt + 𝜖t (6.22)

while the change-on-change regression is,3

yt − yt−1 = 𝛽(xt − xt−1) + 𝜖t − 𝜖t−1 (6.23)

Δyt = 𝛽Δxt + Δ𝜖t (6.24)

If the assumptions of least-squares estimation, mentioned earlier, hold
true for the level model (6.22), then they also hold for the change model
(6.24), and least-squares estimates from both specifications are unbiased,
consistent, and efficient. If, however, the assumption about the independence
of the error terms is violated in either specification, then the least-squares

3While it is usual to include a constant term in the change-on-change regression, the
constant is omitted here for expositional purposes.
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estimates from that specification may not be efficient, but they are still unbi-
ased and consistent.

To discuss the economics behind the assumption that error terms are
independent, say that 𝛼 = 0, that 𝛽 = 1, and that y and x are the yields of
two different bonds. Say further that the yield of the x-bond is constant at
5%, while the yield of the y-bond was 1% yesterday. The level regression,
in Equation (6.22), predicts that the yield of the y-bond will be 5% today,
despite its having been 1% yesterday. It is more likely, however, that the
yield of the y-bond today will be closer to 1% than to 5%, and that the
model error today will be closer to its value yesterday, of −4%, than to zero.
In other words, the error terms of the level regression are not likely to be
independent of each other, but rather persistent, correlated over time, or
serially correlated.

In this same scenario, because the change in the yield of the x-bond is
zero, the change-on-change regression in Equation (6.24) predicts that the
change in the yield of the y-bond is zero as well and that its yield remains
at 1%. While more plausible than the level-on-level prediction that the yield
of the y-bond suddenly jumps to 5%, it is more likely that the yield of the
y-bond will gradually trend from its current value of 1% to its model value
of 5%. Hence, the error terms in the change-on-change regression are likely
to be positive for some time, and, as such, serially correlated.

This discussion suggests an alternate model, which would capture, in the
scenario just discussed, that the yield of the y-bond moves gradually from
1% to 5%. In particular, assume the level-on-level model, but with error
dynamics,

𝜖t = 𝜌𝜖t−1 + 𝜈t (6.25)

for some 𝜌 < 1. In this model, with say, 𝜌 = 75%, yesterday’s error of −4%
would fall, on average, to an error of 75% times −4%, or −3% today, thus
giving an expected y-bond yield today of 2%. In this way, the error structure
in Equation (6.25) gradually pushes the yield of the y-bond up from its start-
ing point of 1% to its model value, that is, the 5% yield of the x-bond. The
procedure for estimating (6.22) with the error structure in (6.25) is given in
many statistical texts.

6.4 REVERSE REGRESSIONS

In Section 6.1, a trader regresses changes in yields of the JNJ 2.450s of
09/01/2060 – with a DV01 of 0.2124 – on changes in yields of the Trea-
sury 1.625s of 11/15/2050 – with a DV01 of 0.1910; obtains a regression
coefficient of 0.842; and, against $100 million of the JNJ bonds, calcu-
lates a regression hedge to sell $100 million × (0.2124∕0.1910) × 0.842, or
$93.6 million Treasury bonds.
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What if another trader runs the reverse regression, that is, regresses
changes in yield of the Treasury bond on changes in yield of the JNJ bond?
Table 6.4 compares the slope coefficients and standard errors of the original
regression and the reverse regression. With a reverse regression ̂

𝛽 of 0.921,
this second trader hedges $93.6 million Treasury bonds with $93.6 million
× (0.1910∕0.2124) × 0.921, or $82.8 million JNJ bonds.

These hedges are clearly different. The same $93.6 million of Treasuries
are hedged with a different amount of JNJ bonds. Or, in terms of risk
weights, both quoted as the DV01 of the Treasury bond position as a
percent of the DV01 of the JNJ position, the risk weight of the regression
is 84.2%, while the risk weight of the reverse regression is 1∕0.921, or
108.6%. Is one of these hedges right and the other wrong?

This question actually reveals the importance of the trader’s decision in
Section 6.1 to hedge $100 million face amount of JNJ bonds. Choosing this
face amount actually sets the risk of the trade. As shown earlier, the volatility
of the hedged position is $100 million × 0.2124∕100 × the two-basis-point
standard error of the regression, or about $425,000. However, the risk of
the reverse regression, which sets the face amount of the Treasury bonds at
$93.6 million, is $93.6 million × 0.1910∕100 × the 2.09 standard error of
the reverse regression, or about $374,000. These trades, therefore, are not
comparable.

Choosing to hedge $100 million face amount of the JNJ bonds, however,
is not just about the risk of the hedged position. There are many combina-
tions of positions in the JNJ and Treasury bonds that have the same volatil-
ity.4 For example, a scaled-up reverse regression hedge, with $106.37 mil-
lion Treasury bonds and $88 million JNJ bonds (i.e., $106.37 million ×
(0.1910∕0.2124) × 0.921), has the same $425,000 volatility as the regres-
sion hedge ($106.37 million × 0.1910∕100 × 2.09). But while this and other

TABLE 6.4 Regression: Daily Changes in Yields of the JNJ
2.450s of 09/01/2060 on Daily Changes in Yields of the
Treasury 1.625s of 11/15/2050. Reverse Regression: Daily
Changes in Yields of the Treasury 1.625s of 11/15/2050 on
Daily Changes in Yields of the JNJ 2.450s of 09/01/2060.
Observations Are from January 29, 2021, to May 14, 2021.

Regression Reverse Regression

̂
𝛽 0.842 0.921
Standard Error 2.00 2.09

4See Equation (A6.15) in Appendix A6.1, which expresses the variance of the P&L
as a quadratic in the DV01s of each position.
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positions might have the same volatility, because they do not hold $100 mil-
lion in JNJ bonds, they are different trades. Most obviously, they do not
satisfy the objective of buying $100 million of JNJ bonds from a client. Less
obviously, to the extent that the return profile of the JNJ and Treasury bonds
differ, different portfolios of the two bonds have different return character-
istics as well.

In short, the regression hedge in Section 6.1 minimizes the variance of
hedging $100 million face amount of the JNJ bonds. Trades with other objec-
tives, like holding a fixed amount of Treasuries or holding a fixed amount
of volatility risk with particular return characteristics, are constructed
differently.

6.5 PRINCIPAL COMPONENT ANALYSIS

As mentioned in the introduction to this chapter, regression hedging tends
to be ad hoc, because the relevant bonds and estimation periods are cho-
sen separately for each application. Principal component analysis is useful,
by contrast, in providing a single, empirical description of the behavior of
the term structure that can be applied across a portfolio of fixed income
instruments.

To illustrate PCA, this section uses daily data on fixed versus three-
month US Dollar (USD) LIBOR swap rates from June 1, 2020, to July 16,
2021.5 The data set consists of 13 times series, one for each of the terms
from one to 10 years, as well as three with terms of 15, 20, and 30 years.
These data can be summarized by the variances or standard deviations of
changes in each rate and with their pairwise covariances or correlations.
Another way to describe the data, however, is with 13 interest rate factors
or components, where each factor represents a particular pattern of changes
across the 13 rates. One factor, for example, might represent a simultane-
ous change of 0.2 basis points in the one-year rate, 0.6 basis points in the
two-year rate, 1.2 basis points in the three-year rate, etc., up to 3.7 basis
points in the 20-year rate, and 3.8 basis points in the 30-year rate. PCA is a
way to construct 13 factors, or principal components (PCs), such that they
have the following properties:

1. The sum of the variances of the PCs equals the sum of the variances of
the individual rates. In this sense, the PCs capture the volatility of the
set of interest rates.

5LIBOR swaps are being phased out at the time of this writing, but a sufficiently
long time series of liquid SOFR swap rates is not yet available for the analysis of this
section.
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2. The PCs are uncorrelated with each other. While changes in rates of one
term are highly correlated with changes in rates of another term, the PCs
are constructed so that they are uncorrelated.

3. Subject to (1) and (2), each PC is chosen to have the maximum possible
variance given all earlier PCs. Therefore, the first PC explains the largest
fraction of the sum of the variances of the rates; the second PC explains
the next largest fraction; and so forth.

PCs of rates are particularly useful because of an empirical regularity:
the sum of the variances of the first three PCs is usually an overwhelming
fraction of the sum of the variances across all rates. Therefore, the variances
and covariances of all rates are not necessary to describe how the term struc-
ture fluctuates: the structure and volatilities of only three PCs suffice. In the
simplified context of three rates, Appendix A6.2 describes the construction
of PCs in more detail. The text continues with a discussion of computed PCs
for USD LIBOR swaps from the data set described earlier.

Figure 6.4 graphs the first three principal components, while Table 6.5
provides similar information in tabular form. Columns (2) to (4) corre-
spond to the three PC curves in the figure, which can be interpreted as
follows. A one standard deviation increase in the “level” PC, given both
in Column (2) and the solid line in the figure, is a simultaneous increase
in the one-year rate of 0.23 basis points; in the two-year rate of 0.59 basis
points; in the 10-year rate of 3.44 basis points; and in the 30-year rate of
3.77 basis points. On a particular day, the change in the term structure
might be best explained as a 1.5 standard deviation move in the first PC,
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F IGURE 6.4 The First Three Principal Components of USD LIBOR Swap Rates,
Estimated from June 1, 2020, to July 16, 2021.
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TABLE 6.5 Principal Component Analysis of USD LIBOR Swap Rates from
June 1, 2020, to July 16, 2021. Columns (2)-(6) Are in Basis Points; Columns
(7)-(10) Are in Percent.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

PCs % of PC Variance

Short PC Total Short (5)/
Term Level Slope Rate Vol Vol Level Slope Rate (6)

1 0.23 −0.16 0.29 0.41 0.55 32.7 15.0 52.3 74.54
2 0.59 −0.51 0.47 0.91 0.93 42.3 31.5 26.2 97.47
3 1.18 −0.99 0.42 1.59 1.60 54.5 38.5 7.0 99.63
4 1.77 −1.16 0.23 2.13 2.13 69.1 29.7 1.2 99.72
5 2.28 −1.12 0.02 2.54 2.54 80.6 19.4 0.0 99.78
6 2.64 −0.89 −0.13 2.79 2.79 89.7 10.1 0.2 99.91
7 2.94 −0.60 −0.20 3.01 3.01 95.6 4.0 0.4 99.97
8 3.14 −0.36 −0.24 3.17 3.17 98.2 1.3 0.6 99.96
9 3.31 −0.13 −0.25 3.32 3.32 99.3 0.2 0.6 99.92

10 3.44 0.07 −0.23 3.44 3.45 99.5 0.0 0.4 99.87
15 3.65 0.71 0.00 3.72 3.72 96.3 3.7 0.0 99.98
20 3.73 1.02 0.17 3.87 3.87 92.8 7.0 0.2 99.98
30 3.77 1.35 0.36 4.02 4.02 87.9 11.3 0.8 99.93

Total 9.99 2.92 0.96 10.45 10.47 91.3 7.8 0.8 99.84

that is, as adding 1.5 times each element of the first PC to corresponding
swap rates. On another day, the change in the term structure might best be
described as a −0.75 standard deviation move in the first component, that
is, as subtracting 0.75 times each element of the first PC from current rates.
In any case, the first PC has been traditionally called the “level” component
because it has typically represented an approximately parallel shift over
much of its range. In the empirical results presented here, however, the
component is not particularly level for terms from one to seven years.

A one standard deviation increase in the “slope” PC, given both in
Column (3) of the table and the dashed line in the figure, is a simultaneous
fall in the one-year rate of 0.16 basis points; a fall in the two-year rate of
0.51 basis points; an increase in the 10-year rate of 0.07 basis points; and an
increase in the 30-year rate of 1.35 basis points. This PC is said to represent
a “slope” change in rates because shorter-term rates fall while longer-term
rates increase, or vice versa.

Lastly, a one standard deviation increase in the “short-rate” PC, given
both in Column (4) of the table and the dotted line in the figure, is a
simultaneous small increase of very short-term rates; a small decrease in
intermediate-term rates, and a small increase in long-term rates. Because of
its shape across terms, this PC is often named “curvature” as well, but, in



Trim Size: 6in x 9in Tuckman835554 c06.tex V1 - 07/12/2022 11:21am Page 170�

� �

�

170 FIXED INCOME SECURITIES

light of the full discussion in this section, this PC is particularly useful for
adding explanatory power to variations in shorter-term rates.

To reiterate the sense in which the PCs describe changes in the term
structure, on a given day, changes across terms might be described – picking
numbers at random – as the combination of: a +1.5 standard deviation
change in the first PC; a −0.4 standard deviation change in the second PC;
and a −1.8 standard deviation change in the third PC. The term structure at
the end of that day, therefore, would approximately equal the term structure
at the end of the previous day plus the contributions from the multiples of
each of the three PCs. In this way, as explained shortly, these three PCs can
indeed explain an overwhelmingly large proportion of realized term struc-
ture volatility.

The small values of the PCs at very short-term rates reflect the low
volatility of these rates. In the current financial environment, with the Fed-
eral Reserve promising to keep short-term rates low for an extended period
of time, current economic shocks are not envisioned as impacting short-term
rates until some time in the future. As a result, economic volatility is not
reflected in very short-term rates but seeps gradually into intermediate- and
longer-term rates as expectations of reactions to future Federal Reserve pol-
icy actions.6

Column (5) of Table 6.5 gives the combined standard deviation or
volatility from the three principal components for each rate, while Column
(6) gives the total, empirical volatility of each rate over the sample period.
For the five-year rate, for example, recalling that PCs are, by construction,
uncorrelated, the volatility from the three PCs is,

√
2.282 + (−1.12)2 + 0.022 = 2.54 (6.26)

The total volatility of the five-year rate in the sample is also, to two decimal
places, 2.54, but Column (10) – using more decimal places than shown in
Columns (5) and (6) – reports that the ratio of five-year PC volatility to
total volatility is 99.78%. Hence, the empirical variation of the five-year rate
is almost completely explained by the first three PCs. Considering Column
(10) as a whole, three PCs explain over 99% of the variation of rates of all

6For many years before the financial crisis of 2007–2009, the first PC was
hump-shaped, increasing to a peak at about five years or so, and then declining grad-
ually over longer terms. This shape was interpreted as the Federal Reserve pegging
very short-term rates but responding in the relatively near term to economic volatil-
ity. Also, because current economic volatility affects views on longer-term rates less
and less with term, volatility eventually begins to decline with term. Current Federal
Reserve policy, however, as discussed in the text, seems to have changed dramatically
this empirical feature of rates markets.
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terms greater than three years, 97.47% of the variation in the two-year rate,
and 74.54% of the variation in the one-year rate. Hence, although there are
13 rates in the data series, three factors alone – three fixed combinations of
changes in rates across terms – go a very long way in explaining the variation
in all 13 rates. This is possible, intuitively, because changes in rates across
terms are highly correlated; that is, nowhere near 13 factors are actually
necessary to explain the variation in 13 rates. The performance of the three
factors is less impressive, however, for rates of the shortest term.

Columns (7) through (9) of Table 6.5 give the variance explained by each
of the first three PCs as a fraction of the total variance explained by those
three PCs. For the two-year rate, for example, those fractions are calculated
as follows,

0.59162

0.90912
= 42.3% (6.27)

(−0.5101)2

0.90912
= 31.5% (6.28)

0.46502

0.90912
= 26.2% (6.29)

Note that, to avoid confusion, the values in these equations are reported to
greater accuracy than those in the table.

Looking at Columns (7) to (9) across terms, the level PC dominates
the other two as the main contributor to variations in the term structure.
The short-rate PC, and then the slope PC, are significant contributors at
the short end, however, as is the slope PC for the longest rates. These find-
ing have significant implications for risk management. A trader of eight- to
10-year swaps, or perhaps even seven- to 15-year swaps, can defend using the
one-factor metrics and hedging approaches of Chapter 4 and one-variable
regression hedging described in this chapter: according to Table 6.5, in this
range of terms, term structure variation can be well described by a one-factor
model, like the level PC. On the other hand, traders in the three- to six-year
sector or the long end might very well require two factors, while traders in
the very short end may not be comfortable without a three-factor frame-
work.

The last row of Table 6.5 computes the various statistics just discussed
across the whole term structure of rates. More specifically, Columns (2) to (6)
give the square root of the sum of variances across terms, and Columns (7)
to (9) give the respective ratios for these totals. While the sum of variances
is not a particularly interesting economic quantity – it does not represent
the variance of any particularly interesting portfolio – the last row of the
table does summarize two overall results of the PCA. First, 99.84% of the
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volatility of the 13 rates in the study is explained by the first three PCs.
Second, the level PC explains over 90% of that variance, the slope PC about
8%, and the short-rate PC less than 1%.

The overall lessons from PCA are often similar across global markets.
Estimated over the same time period as the USD PCs in Figure 6.4,
Figures 6.5 and 6.6 graph the first three PCs of British Pound Sterling
(GBP) LIBOR and Euribor swap rates, respectively.7 The GBP PCs are
extremely similar to their USD equivalents, with respect to both shape and
magnitude. The biggest difference seems to be that the slope PC in USD is
more volatile. The shapes of the EUR PCs are qualitatively similar to those
in USD and GBP, but volatility in EUR is significantly lower. The EUR level
PC, for example, flattens in the long end at a bit above 2.5 basis points per
day, whereas the USD and GBP level PCs flatten at over 3.5. This lower
volatility might be explained by the current aggressiveness of the European
Central Bank, relative to the Federal Reserve and the Bank of England, to
keep short-term rates low over an extended period of time.

Hedges based on PCA are constructed like the multi-factor approaches
of Chapter 5. Using the current term structure, calculate the current price
of the portfolio being hedged; shift the current term structure by each PC,
in turn, to get new term structures and new portfolio prices; with these new
prices, calculate a portfolio ’01 with respect to each PC; and find a portfolio
of hedging securities that neutralizes these ’01s.
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F IGURE 6.5 The First Three Principal Components of GBP LIBOR Swap Rates,
Estimated from June 1, 2020, to July 16, 2021.

7For a description of these floating-rate indexes, see Chapter 12.
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F IGURE 6.6 The First Three Principal Components of Euribor Swap Rates, Esti-
mated from June 1, 2020, to July 16, 2021.

TABLE 6.6 USD LIBOR Par Swap Rates and DV01s, as of July 16, 2021, and PC
Elements from Table 6.5. Rates Are in Percent, and PC Elements Are in Basis Points.

Term Rate DV01 Level Slope Short Rate

10 1.303 0.09347 3.44 0.07 −0.23
15 1.501 0.13387 3.65 0.71 0.00
20 1.596 0.17064 3.73 1.02 0.17
30 1.646 0.23600 3.77 1.35 0.36

This section illustrates hedging with PCA in a context described earlier,
namely, hedging a relative value 10s-20s-30s butterfly, but this time in swaps.
Specifically, a trader believes that USD 20-year swap rates are too high rel-
ative to 10- and 30-year swap rates, and plans, therefore, to receive fixed in
20s and pay in 10s and 30s.8 Par swap rates and DV01s of par swaps are
given in Table 6.6. Also, corresponding to rates of the listed terms, the table
gives the elements of each of the three PCs from Table 6.5. By definition, a
one standard deviation shift in each PC changes these swap rates by these
PC elements. The inclusion of the 15-year swap rate is discussed later.

Assume that the trader plans to receive fixed on 100 notional amount
of the 20-year swap and on F10 and F30 notional amount of 10- and 30-year

8From the material presented in Chapter 2, the reader can think of this trade as
“buying” 20-year bonds and “selling” 10- and 30-year bonds.
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swaps, respectively. Paying fixed is reflected, in this notation, with negative
notional amounts. In any case, from the data in Table 6.6, the exposure of
this overall relative value portfolio is hedged against a one standard devia-
tion shift of the level and slope PCs, respectively, if the following equations
obtain,

−F10 0.09347
100

× 3.44 − F30 0.23600
100

× 3.77 − 1000.17064
100

× 3.73 = 0

(6.30)
−F10 0.09347

100
× 0.07 − F30 0.23600

100
× 1.35 − 1000.17064

100
× 1.02 = 0

(6.31)

The first two terms of Equation (6.30) give the change in the value of the
hedge position under a one standard deviation shift of the first PC, that is,
a shift of +3.44 basis points in the 10-year and +3.77 basis points in the
30-year swap rate. The third term gives the change in the value of the posi-
tion being hedged under the same PC shift, which is +3.73 basis points in
the 20-year swap rate. Note that the negative signs indicate that receiving
fixed (i.e., positive notional amounts) when rates increase results in posi-
tion losses. The equation as a whole, therefore, sets the total position gain
or loss under a one standard deviation shift of the first PC equal to zero.
Equation (6.31) can be interpreted similarly, but under a one standard devi-
ation shift of the second PC. Note, of course, that if these two equations
hold for a one standard deviation shift, they hold for any size shift: to see
this, simply multiply both sides of each equation by the intended number of
standard deviations.

Solving Equations (6.30) and (6.31) reveals that F10 = −49.56 and F30 =
−53.60. Or, in terms of risk weights relative to the DV01 of the 20-year swap,

49.56 × 0.09347
100

0.17064
= 27.1% (6.32)

53.60 × 0.23600
100

0.17064
= 74.1% (6.33)

Intuitively, most of the risk of the 20-year swap – 74% – is hedged with
30-year swaps, because the exposures of 20-year swaps to both the level
and slope PCs more closely resemble those of 30-year swaps than of 10-year
swaps. Note also that the sum of the risk weights is 101.2%, so that the
DV01 of the hedge position is greater than the DV01 of the position being
hedged. Only under the assumption of parallel shifts do the risk weights
always sum to 100%. In the present case, more DV01 risk is needed in the
hedge because the hedge includes a significant amount of 10-year swaps,
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which are much less sensitive to the level and slope shifts than the 20-year
swaps.

In this illustration, the trader chooses to hedge with 10- and 30-year
swaps. But, with only two hedging securities, the risks of only two PCs can
be hedged. What is the risk of the hedged position just derived to the next
most important PC, that is, the short-rate or curvature PC? Following the
same logic as in Equations (6.30) and (6.31), the exposure of the hedged
position to the third PC (adding a significant digit to avoid confusion) is,

− (−49.6)0.09347
100

× (−0.228) − (−53.6)0.23600
100

× 0.360

− 1000.17064
100

× (0.166) = 0.007 (6.34)

which is less than one cent per 100 face amount. The trader might very well
decide, therefore, that it is not worth the transaction costs of trading an addi-
tional swap to hedge out this residual risk from the third PC. Also, because
this is a relative value trade, the trader wants to pay fixed only in swaps with
rates that are believed to be too low. In any case, if hedging out the residual
risk is desired, a 15-year swap can be added to the hedging portfolio; an
equation for exposure to the third PC can be added to Equations (6.30) and
(6.31); and, using the data from Table 6.6, the notional amounts for the 10-,
15-, and 30-year swaps can be determined. This is left as an exercise for the
reader.



Trim Size: 6in x 9in Tuckman835554 c06.tex V1 - 07/12/2022 11:21am Page 176�

� �

�



Trim Size: 6in x 9in Tuckman835554 c07.tex V1 - 07/12/2022 6:05pm Page 177�

� �

�

CHAPTER 7
Arbitrage Pricing with Term

Structure Models

Principal components analysis reveals that the term structure of interest
rates is determined by relatively few factors or random processes. There-

fore, assumptions about how these few factors evolve over time, combined
with arbitrage arguments, can deliver strong predictions about the prices
and interest rate sensitivities of bonds and other interest rate contingent
claims (i.e., securities with cash flows that depend on interest rates, like bond
options). Formulating assumptions about the evolution of interest rate fac-
tors, pricing fixed income securities, and determining hedge ratios comprise
the art and science of term structure models.

Term structure models are presented in three chapters. This chapter
uses a very simple setting to show how assumptions about the evolution of
the short-term rate over time allows for the arbitrage pricing of bonds of all
maturities and of interest rate contingent claims. Option-adjusted spread
(OAS) is introduced both as a metric of a security’s mispricing relative to
a model and as the spread that can be earned – if the model is correct – by
trading that security. Chapter 8 shows how the shape of the term structure is
determined by: expectations about future short-term rates, the risk premium
required by investors to bear interest rate risk, and convexity, whose effect
is a result of interest rate volatility. Chapter 9 then illustrates the art of
modeling the evolution of short-term rates by presenting two term structure
models: the classic Vasicek model and the two-factor Gauss+ model, which
has proven popular in industry for both relative value and macro-style
trading.

7.1 RATE AND PRICE TREES

Assume that the six-month and one-year spot rates are 2% and 2.15%,
respectively. Taking these market rates as given is equivalent to taking the
prices of a six-month bond and a one-year-bond as given. Securities with

177
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assumed prices are called underlying securities to distinguish them from the
contingent claims priced by arbitrage arguments.

Next, assume that six months from now the six-month rate is either
2.50% or 1.50% with equal probability. This very strong assumption is
depicted at the top of Figure 7.1 by means of a binomial tree, where “bi-
nomial” means that only two future values are possible. The columns in the
tree represent dates. The six-month rate is 2% today, which is called date 0.
Six months from now, on date 1, there are two possible outcomes or states
of the world. The 2.50% state is called the upstate while the 1.50% state is
called the downstate.

Given the current term structure of spot rates (i.e., the current six-month
and one-year rates), trees can be computed for the prices of six-month and
one-year zero coupon bonds. The price tree for $1,000 face value of the
six-month zero, depicted at the bottom left of Figure 7.1, shows that the
date-0 price is $1,000∕ (1 + 0.02∕2) = $990.099. (For readability, currency
symbols are not included in price trees.) Note that, in a tree for the value of
a particular security, the maturity of the security falls over time. On date 0
of the tree just discussed, the security is a six-month zero, while on date 1
the security is a maturing zero.

The price tree for $1,000 face value of a one-year zero is depicted at the
bottom right of Figure 7.1. The three prices on date 2 are all $1,000, which
is the face value of the one-year zero. The two prices on date 1 are found
by discounting this certain $1,000 at the then-prevailing six-month rate.
Hence, the date 1 upstate price is $1,000∕ (1 + 0.025∕2), or $987.654, and

2.50%

2.00%

1.50%

0.50

0.50

1,000

987.654

978.842 1,000

992.556

1,000

0.50

0.50

1,000

990.099

1,000

0.50

0.50

F IGURE 7.1 Pricing Six-Month and One-Year Zero Coupon Bonds with a Binomial
Rate Tree.
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the date 1 downstate price is $1,000∕ (1 + 0.015∕2), or $992.556. Finally,
the date 0 price is computed using the given, date 0, one-year rate of 2.15%:
$1,000∕(1 + 0.0215∕2)2, or 978.842.

The probabilities of moving up or down the tree may be used to compute
average or expected values. As of date 0, the expected value of the one-year
zero price on date 1 is,

0.5 × $987.654 + 0.5 × $992.556 = $990.105 (7.1)

Discounting this expected value to date 0, at the date 0, six-month rate gives
an expected discounted value of,

0.5 × $987.654 + 0.5 × $992.556

1 + .02
2

= $980.302 (7.2)

Note that the one-year zero’s expected discounted value of $980.302
is not equal to its market price of $978.842. These two numbers need not
be equal, because investors do not price securities by expected discounted
value. Over the next six months, the one-year zero is a risky security, worth
$987.654 half of the time and $992.556 the other half of the time, for an
average or expected value of $990.105. If investors do not like this price
uncertainty, they would prefer a security worth $990.105 on date 1 with
certainty. More specifically, a security worth $990.105 with certainty after
six months would sell for $990.105∕(1 + .02∕2), or $980.302, as of date 0.
By contrast, investors penalize the risky one-year zero coupon bond with an
average price of $990.105 in six months by pricing it today at $978.842.
Chapters 8 and 9 elaborate further on investor risk aversion.

7.2 ARBITRAGE PRIC ING OF DERIVATIVES

This section prices an interest rate contingent claim or derivative, in partic-
ular, a call option that expires in six months to purchase $1,000 face value
of a then six-month zero at $990. Figure 7.2 starts the price tree for this call
option based on the rates and prices in Figure 7.1. If on date 1 the six-month
rate is 2.50%, and a six-month zero sells for $987.654, the right to buy
that zero at $990 is worthless. On the other hand, if the six-month rate is
1.50%, and the price of a six-month zero is $992.556, then the right to
buy the zero at $990 is worth $992.556 − $990, or $2.556. This descrip-
tion of the option’s terminal payoffs emphasizes the contingent claim nature
of the option: its value depends on interest rates through the value of an
underlying bond.



Trim Size: 6in x 9in Tuckman835554 c07.tex V1 - 07/12/2022 6:05pm Page 180�

� �

�

180 FIXED INCOME SECURITIES

0

???

2.556

0.50

0.50

F IGURE 7.2 Pricing a 990 Six-Month Call Option on a Six-Month Zero Coupon
Bond.

Chapter 1 showed that a security is priced by arbitrage by finding and
pricing its replicating portfolio. In that context, because all bond cash flows
are fixed or constant, the construction of the replicating portfolio is rela-
tively simple. The present context is more difficult, because cash flows do
depend on the level of rates, and the replicating portfolio must replicate the
contingent claim for any possible interest rate scenario.

To price the call option of this section by arbitrage, construct a portfo-
lio on date 0 of underlying securities, namely six-month and one-year zero
coupon bonds, such that the portfolio is worth $0 in the upstate on date 1
and $2.556 in the downstate. Let F.5 and F1 be the face values of six-month
and one-year zeros in this replicating portfolio, respectively, and recall that
the possible values of these bonds on date 1 are shown in Figure 7.1. These
face amounts, therefore, must satisfy the following two equations,

F.5 + .987654F1 = $0 (7.3)

F.5 + .992556F1 = $2.558 (7.4)

Equation (7.3) may be interpreted as follows. In the upstate, the value
of the replicating portfolio’s now maturing six-month zero is its face value.
The value of the once one-year zeros, now six-month zeros, is .987654 per
dollar face value. Hence, the left-hand side of Equation (7.3) denotes the
value of the replicating portfolio in the upstate. This value must equal $0,
the value of the option in the upstate. Similarly, Equation (7.4) sets the value
of the replicating portfolio in the downstate equal to the value of the option
in the downstate.

Solving Equations (7.3) and (7.4) gives F.5 = −$515.0000 and
F1 = $521.4375. In words, the option can be replicated by buying
$521.4375 face value of one-year zeros and shorting $515.0000 face
amount of six-month zeros on date 0. Therefore, by the law of one price,
the price of the option equals the price of the replicating portfolio, which,
using the bond prices given earlier, is equal to,

.990099F.5 + .978842F1 = −.990099 × $515.0000 + .978842 × $521.4375

= $0.504 (7.5)



Trim Size: 6in x 9in Tuckman835554 c07.tex V1 - 07/12/2022 6:05pm Page 181�

� �

�

Arbitrage Pricing with Term Structure Models 181

Recall that pricing based on the law of one price is enforced by arbi-
trage. If the price of the option were less than $0.504, arbitrageurs could
buy the option, short the replicating portfolio, keep the difference, and have
no future liabilities. Similarly, if the price of the option were greater than
$0.504, arbitrageurs could short the option, buy the replicating portfolio,
keep the difference, and, once again, have no future liabilities. Thus, ruling
out profits from riskless arbitrage implies an option price of $0.504.

It is important to emphasize that the option cannot be priced by expected
discounted value, which gives an option price of,

.5 × $0 + .5 × $2.555831

1 + .02
2

= $1.2653 (7.6)

The true option price is lower, because investors dislike the risk of the call
option and, as a result, will not pay as much as its expected discounted
value. Put another way, the risk penalty implicit in the call option price is
inherited from the risk penalty of the one-year zero, that is, from the property
that the price of the one-year zero is less than its expected discounted value.
Once again, the pricing of risk is discussed in the next two chapters. While
this section illustrates arbitrage pricing with a call option, it should be clear
that the framework can be used to price any security with cash flows that
ultimately depend on the six-month rate. For example, because the price of
a five-year bond over time depends on the evolution of the six-month rate,
an option on that five-year bond can be priced in this framework as well.

A remarkable feature of arbitrage pricing is that the probabilities of up-
and down-moves never enter into the calculation of the arbitrage price. See
Equations (7.3) through (7.5). The explanation for this somewhat surprising
result follows from the principles of arbitrage. Arbitrage pricing requires
that the value of the replicating portfolio be the same as the value of the
option in both the up- and the down-states. Therefore, the composition of
the replicating portfolio is the same whether the probability of the upstate
is 20%, 50%, or 80%. But if the composition of the portfolio does not
depend directly on the probabilities, and if the prices of the securities in the
portfolio are given, then the price of the replicating portfolio and the price
of the option cannot depend directly on the probabilities either.

Despite the fact that the option price does not depend directly on the
probabilities, these probabilities must have some impact on the option price.
After all, as it becomes more and more likely that rates will rise to 2.50%
and that bond prices will be low, the value of options to purchase bonds
must fall. The resolution of this apparent paradox is that the option price
depends indirectly on the probabilities through the price of the one-year zero.
Were the probability of an up move to increase suddenly, the current value
of a one-year zero would decline. And since the replicating portfolio is long
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one-year zeros, the value of the option would decline as well. In summary, a
derivative like an option depends on the probabilities only through current
bond prices. Given bond prices, however, probabilities are not needed to
derive prices determined by arbitrage.

7.3 RISK-NEUTRAL PRIC ING

Risk-neutral pricing is a technique that modifies an assumed interest rate
process, like the one assumed at the start of this chapter, so that any contin-
gent claim can be priced without having to construct and price its replicating
portfolio. Because the technique requires that the original interest rate pro-
cess be modified only once, and because this modification requires no more
effort than pricing a single contingent claim by arbitrage, risk-neutral pric-
ing is an extremely efficient way to price many contingent claims under the
same assumed rate process.

In the example of this chapter, the price of a one-year zero does not
equal its expected discounted value: its price is $978.842, computed from
the given one-year spot rate of 2.15%, while its expected discounted value is
$980.302, as derived in Equation (7.2). The probabilities of 0.5 for the up-
and down-states are the assumed true or real-world probabilities. But there
are other probabilities, called risk-neutral probabilities, which do cause the
expected discounted value to equal the market price. To find these probabil-
ities, let the risk-neutral probabilities in the up- and down-states be p and
(1 − p), respectively. Then, solve the following equation,

$987.654p + $992.556(1 − p)(
1 + .02

2

) = $978.842 (7.7)

to find that p = .8009. Hence, under the risk-neutral probabilities of .8009
and .1991, the expected discounted value does equal the market price.

Risk-neutral probabilities can also be described in terms of the drift in
interest rates. Under the true probabilities, there is a 50% chance that the
six-month rate rises from 2% to 2.50%, and a 50% chance that it falls from
2% to 1.50%. Hence, the expected change in the six-month rate, or the drift
of the six-month rate, is zero. Under the risk-neutral probabilities, there is
an 80.09% chance of a 50-basis point increase and a 19.91% chance of a
50-basis point decrease, for an expected change of 30.09 basis points. Hence,
the drift of the six-month rate under these probabilities is 30.09 basis points.

As pointed out in the previous section, the expected discounted value
of the option payoff is $1.2653, while the arbitrage price is $0.504. But if
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expected discounted value were computed using the risk-neutral probabili-
ties, the resulting option value would equal its arbitrage price,

.8009 × $0 + .1991 × $2.555831(
1 + .02

2

) = $0.504 (7.8)

The fact that the arbitrage price of the option equals its expected
discounted value under the risk-neutral probabilities is not a coincidence.
In general, to value contingent claims by risk-neutral pricing, proceed as
follows. First, find the risk-neutral probabilities that equate the prices of
the underlying securities to their expected discounted values. (In the simple
example here, the only risky, underlying security is the one-year zero.)
Second, price the contingent claim by expected discounted value under
these risk-neutral probabilities. The remainder of this section describes
intuitively why risk-neutral pricing works. Since the argument is a bit
complex, it is broken up into four steps:

1. Given trees for the underlying securities, the price of a security that is
priced by arbitrage does not depend on investors’ risk preferences. The
reasoning is as follows.

A security is priced by arbitrage if its cash flows can be replicated
by some portfolio of underlying securities. Under the assumed process
for interest rates in this chapter, the bond option is priced by arbitrage.
By contrast, it is unlikely that a specific common stock can be priced by
arbitrage, because no portfolio of underlying securities can mimic the
idiosyncratic fluctuations of a single common stock’s market value.

If a security is priced by arbitrage, and if everyone agrees on the price
evolution of the underlying securities, then everyone agrees on the repli-
cating portfolio. In the option example, both an extremely risk-averse,
retired investor and a professional gambler agree that a portfolio of
$521.4375 face of one-year zeros and -$515.0000 face of six-month
zeros replicates the option. And because they agree both on the com-
position of the replicating portfolio and on the prices of the underlying
securities, they must also agree on the price of the option.

2. Imagine an economy that has the same current bond prices and
possible future values of the six-month rate as the true economy. The
imaginary economy is different, however, in that its investors are risk
neutral. Unlike investors in the true economy, then, investors in the
imaginary economy do not penalize securities for risk: they price
securities by expected discounted value. In particular, under the prob-
abilities in the imaginary economy, the expected discounted value of
the one-year zero equals its market price. But, by Equation (7.7), the
expected discounted value of the one-year zero does equal its market
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price under the risk-neutral probabilities of .8009 and .1991. Hence,
these risk-neutral probabilities are the probabilities in the imaginary
economy.

3. The price of the option in the imaginary economy, like any other security
in that economy, is computed by expected discounted value. Since the
probability of the upstate in that economy is .8009, the price of the
option in that economy is given by Equation (7.8) and is $0.504.

4. Step 1 implies that, given the prices of the six-month and one-year zeros,
as well as possible values of the six-month rate, the price of an option
does not depend on investor risk preferences. Therefore, because the
real and imaginary economies have the same bond prices and the same
possible values for the six-month rate, the option price must be the same
in both economies. In particular, the option price in the real economy
must also equal $0.504. More generally, the price of a derivative in the
real economy may be computed by expected discounted value under the
risk-neutral probabilities.

7.4 ARBITRAGE PRIC ING IN A MULTI-PERIOD
SETTING

Maintaining the binomial assumption, Figure 7.3 extends the tree from the
previous section for another six months. This tree is called a recombining tree,
because an up-move followed by a down-move, to the up–down state, lands
in the same place as a down-move followed by an up-move, to the down–up
state. Trees for which this is not the case are said to be nonrecombining. While
nonrecombining trees might represent economically reasonable dynamics,
they tend to be avoided as difficult or even impossible to implement. After six
months there are two possible states, after one year there are four, and after
N semiannual periods there are 2N possibilities. A tree with enough semian-
nual steps to price 10-year securities has, in its rightmost column alone, over
500,000 nodes, and to price 20-year securities, over 500 billion. Furthermore,
as discussed later in the chapter, it is often desirable to reduce the time interval
between dates substantially. In short, even with modern computers, trees that
grow this quickly are computationally unwieldy. This does not mean that the
effects that seem to give rise to nonrecombining trees – like volatilities that
change across states – cannot be modeled. It does mean, however, that such
effects have to be implemented in more efficient ways.

Returning to the recombining format, as trees grow it becomes conve-
nient to develop a notation with which to refer to particular nodes. One
convention is as follows. The dates, represented by columns of the tree, are
numbered from left to right starting with 0. The states, represented by rows
of the tree, are numbered from bottom to top, also starting from 0. For
example, in Figure 7.3, the six-month rate on date 2, state 0 is 1%. The
six-month rate on state 1 of date 1 is 2.50%.
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3.00%

2.50%

2.00% 2.00%

1.50%

1.00%

F IGURE 7.3 A Recombining Binomial Rate Tree.

Continuing where the option example left off, having derived the
risk-neutral tree for pricing a one-year zero, the goal is to extend the tree
to price a 1.5-year zero assuming that the 1.5-year spot rate is 2.25%.
Ignoring the probabilities for a moment, several nodes of the 1.5-year zero
price tree can be written down immediately, as shown in Figure 7.4. On
date 3, the zero with an original term of 1.5 years matures and is worth its
face value of $1,000. On date 2, the value of the then six-month zero equals
its face value discounted for six months at the then-prevailing spot rates of
3%, 2%, and 1%, in states 2, 1, and 0, respectively,

$1,000

1 + .03
2

= $985.22 (7.9)

$1,000

1 + .02
2

= $990.10 (7.10)

$1,000

1 + .01
2

= $995.02 (7.11)

985.222

P1,1 1,000

966.995 990.099

1,000

P1,0 1,000

995.025

1,000

F IGURE 7.4 Price Tree for a 1.5-Year Zero Coupon Bond.
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Finally, on date 0, the 1.5-year zero equals its face value discounted at the
given, 1.5-year spot rate,

$1,000(
1 + .0225

2

)3
= $966.9954 (7.12)

The prices of the zero on date 1 in states 1 and 0 are denoted in
Figure 7.4 by P1,1 and P1,0, respectively. These one-year zero prices are not
known at this point.

The previous section showed that the risk-neutral probability of an
up-move on date 0 is 0.8009. Letting q be the risk-neutral probability of
an up-move on date 1, and, for the purposes of this section, making the
simplifying assumption that the probability of moving up from state 0 is the
same as the probability of moving up from state 1, the resulting tree is shown
in Figure 7.5.

By definition, the expected discounted value under risk-neutral proba-
bilities recovers market prices. With respect to the 1.5-year zero price on
date 0, this requires that,

.8009P1,1 + .1991P1,0

1 + .02
2

= $966.995 (7.13)

And with respect to the prices of a then one-year zero on date 1,

P1,1 =
$985.222q + $990.099(1 − q)

1 + .025
2

(7.14)

P1,0 =
$990.099q + $995.025(1 − q)

1 + .015
2

(7.15)

985.222

P1,1 1,000

990.099966.995

1,000

P1,0 1,000

995.025

1,000

0.8024

0.1991

q

1‐q

q

1‐q

F IGURE 7.5 Price Tree for a 1.5-Year Zero Coupon Bond, with Probabilities.
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Substituting Equations (7.14) and (7.15) into Equation (7.13) results in
a linear equation in the one unknown, q, which can be solved to find that
q = 0.6520. Therefore, the risk-neutral interest rate process is summarized
by the tree in Figure 7.6. Furthermore, any contingent claim that depends on
the six-month rate in six months and in one year may be priced by computing
its discounted expected value along this tree. An example is given in the next
section.

The difference between the true and risk-neutral probabilities may once
again be described in terms of drift. From dates 1 to 2, the drift under the true
probabilities is zero. Under the risk-neutral probabilities, the drift is com-
puted from a 65.20% chance of a 50-basis-point increase in the six-month
rate and a 34.80% chance of a 50-basis-point decline in the rate. These num-
bers give a drift or expected change of 15.20 basis points.

Substituting q = 0.6520 back into Equations (7.14) and (7.15) com-
pletes the tree for the price of the 1.5-year zero, which is shown in Figure 7.7.
It follows immediately from this tree that the one-year spot rate in six months
may be either 2.5754% or 1.5754%, because,

$974.735 = $1,000(
1 + 2.5754%

2

)2
(7.16)

$984.430 = $1,000(
1 + 1.5754%

2

)2
(7.17)

The fact that the possible values of the one-year spot rate can be
extracted from the tree is at first surprising. The starting point of the
example is the date 0 values of the 0.5-, 1-, and 1.5-year spot rates, along
with assumptions about the evolution of the six-month rate over the
next years. But because this information, in combination with arbitrage
or risk-neutral arguments, is sufficient to determine the price tree of the
1.5-year zero, it is also sufficient to determine the possible values of the
one-year spot rate in six months. Put another way, having specified initial

3.00%

2.50%

2.00% 2.00%

1.50%

1.00%

0.8009

0.1991

0.6520

0.3480

0.6520

0.3480

F IGURE 7.6 Risk-Neutral Process for the Six-Month Rate.
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985.222

974.735 1,000

966.995 990.099

1,000

984.430 1,000

995.025

1,000

0.8024

0.1991

0.6520

0.3480

0.6520

0.3480

F IGURE 7.7 Final Price Tree for a 1.5-Year Zero Coupon Bond, with Probabilities.

spot rates and the evolution of the six-month rate, a modeler may not make
any further assumptions about the behavior of the one-year rate.

The six-month rate process completely determines the one-year rate pro-
cess here, because the model presented has only one factor. Writing down a
tree for the evolution of the six-month rate alone implicitly assumes that
prices of all fixed income securities can be determined by the evolution of
that rate. A multi-factor term structure model is presented in Chapter 9.

This section concludes with two additional observations about
multi-period settings. First, extending the tree to any number of dates
requires assumptions about the future possible values of the short-term rate
and the calculation of risk-neutral probabilities that recover a given set of
bond prices. Second, the composition of replicating portfolios depends on
date and state. For example, the replicating portfolio of a derivative as of
date 0 is usually different from its replicating portfolio on date 1, state 0,
and different again from its replicating portfolio on date 1, state 1. From a
trading perspective, this means that replicating portfolios must be adjusted
as time passes and as interest rates change. These adjustments are known as
dynamic replication, in contrast to the static replication strategies of earlier
chapters, like replicating a coupon bond with an unchanging portfolio of
two other coupon bonds of the same maturity.

7.5 PRIC ING A CONSTANT-MATURITY
TREASURY SWAP

Equipped with the tree in Figure 7.7, this section prices a $1,000,000 stylized
constant-maturity Treasury (CMT) swap struck at 2%. This swap pays,

$1,000,000
yCMT − 2%

2
(7.18)
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every six months until it matures, where yCMT is the semiannually com-
pounded yield – of a predetermined maturity – on the payment date. This
example prices a one-year CMT swap on the six-month yield, though, in
practice, CMT swaps trade most commonly on the yields of the most liquid
bonds, for example, on two-, five- and 10-year Treasury yields.

Because six-month semiannually compounded yields equal six-month
spot rates, rates from the tree of the previous section can be substituted into
Equation (7.18) to calculate the payoffs of the CMT swap. On date 1, the
state 1 and state 0 payoffs are, respectively,

$1,000,0002.50% − 2%
2

= $2,500 (7.19)

$1,000,0001.50% − 2%
2

= −$2,500 (7.20)

Similarly on date 2, the state 2, 1, and 0 payoffs are, respectively,

$1,000,0003% − 2%
2

= $5,000 (7.21)

$1,000,0002% − 2%
2

= $0 (7.22)

$1,000,0001% − 2%
2

= −$5,000 (7.23)

The possible values of the CMT swap at maturity, on date 2, are given
by Equations (7.21) through (7.23). The possible values on date 1 are given
by the expected discounted value of the date 2 payoffs under the risk-neutral
probabilities plus the date 1 payoffs given by (7.19) and (7.20). The resulting
date 1 values in states 1 and 0 are, respectively,

.6520 × $5,000 + .3480 × $0

1 + .0250
2

+ $2,500 = $5,719.52 (7.24)

.6520 × 0 + .3480 × (−$5,000)

1 + .0150
2

− $2,500 = −$4,227.29 (7.25)

Finally, the value of the swap on date 0 is the expected discounted
value, under the risk-neutral probabilities, of the date-1 payoffs, given by
Equations (7.24) and (7.25),

.8009 × $5,719.52 + .1991 × (−$4,227.29)

1 + .0200
2

= $3,702.11 (7.26)
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5,000

5,719.52

3,702.11 5,000

–4,227.29

5,000

F IGURE 7.8 Price Tree for a Stylized CMT Swap.

The tree in Figure 7.8 summarizes the value of the stylized CMT swap
over dates and states. A value of $3,702.11 for the CMT swap might seem
surprising at first. After all, the cash flows of the CMT swap are zero at
a rate of 2%, and 2% is, under the true probabilities, the average rate on
each date. The explanation, of course, is that the risk-neutral probabilities,
not the true probabilities, determine the arbitrage price of the swap. The
expected discounted value of the swap under the true probabilities can be
computed by following the steps leading to Equations (7.24) through (7.26)
but using the probability 0.5 for all up- and down-moves. The result of these
calculations does give a value close to zero, namely, −$6.07.

7.6 OPTION-ADJUSTED SPREAD

Option-adjusted spread is a widely used measure of the relative value of a
security, that is, of its market price relative to its model value. OAS is defined
as the spread such that the market price of a security is recovered when that
spread is added to discount rates in the model. To illustrate, say that the
market price of the CMT swap in the previous section is $3,699.18, $2.92
less than the model price. In that case, the OAS of the CMT swap turns out
to be 10 basis points. To see this, add 10 basis points to the discounting rates
of 2.5% and 1.5% in Equations (7.24) and (7.25), respectively, to get new
swap values of,

.6520 × $5,000 + .3480 × $0

1 + .0260
2

+ $2,500 = $5,717.93 (7.27)

.6520 × 0 + .3480 × (−$5,000)

1 + .0160
2

− $2,500 = −$4,226.43 (7.28)

Note that, when calculating value with an OAS spread, rates are only shifted
for the purpose of discounting. Rates are not shifted for the purposes of
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computing cash flows. In the CMT swap example, cash flows are still com-
puted using Equations (7.19) through (7.23).

Completing the valuation with an OAS of 10 basis points, use the results
of (7.27) and (7.28) and a discount rate of 2% plus the OAS spread of 10
basis points, or 2.10%, to obtain an initial CMT swap value of,

.8009 × $5,717.93 + .1991 × (−$4,226.43)

1 + .0210
2

= $3,699.18 (7.29)

Hence, as claimed, discounting at the risk-neutral rates plus an OAS of
10 basis points in the model recovers the given market price of $3,699.18. If
a security’s OAS is positive, its market price is less than its model price, which
means that the security trades cheap. If the OAS is negative, the security
trades rich.

Another perspective on the relative value implications of an OAS spread
is the fact that the expected return of a security with an OAS, under the
risk-neutral process, is the short-term rate plus the OAS per period. Very
simply, discounting a security’s expected value by a particular rate per period
is equivalent to that security’s earning that rate per period. In the example
of the CMT swap, the expected return of the fairly priced swap under the
risk-neutral process over the six months from date 0 to date 1 is,

.8009 × $5,719.52 − .1991 × $4,227.29 − $3,702.11
$3,702.11

= 1.00% (7.30)

which is six months’ worth of the initial rate of 2%. On the other hand, with
an OAS of 10 basis points, the expected return of the cheap swap is,

.8009 × $5,717.93 − .1991 × $4,226.43 − $3,699.18
$3,699.18

= 1.05% (7.31)

which is six months’ worth of the initial rate of 2% plus the OAS of 10 basis
points, or half of 2.10%.

7.7 PROFIT AND LOSS ATTRIBUTION WITH AN OAS

Chapter 3 introduced profit and loss (P&L) attribution. This section gives
a mathematical description of attribution in the context of term structure
models and of securities that trade with an OAS. While the notation of this
chapter is quite formal, the presentation remains intuitive.

By the definition of a one-factor model, and by the definition of OAS,
the market price of a security at time t and a factor, r, which is often a rate,
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can be written as Pt(r,OAS). Using a first-order Taylor approximation, the
change in the price of the security is,

dP = 𝜕P
𝜕r

dr + 𝜕P
𝜕t

dt + 𝜕P
𝜕OAS

dOAS (7.32)

where 𝜕P∕𝜕r gives the change in the price of the security for a change in r,
holding t and OAS constant; 𝜕P∕𝜕t gives the change in price for a change
in t holding r and OAS constant; and the same for 𝜕P∕𝜕OAS. In words,
Equation (7.32) breaks down the total change in price to components of
change due to changes in r, t, and OAS.

Dividing both sides of Equation (7.32) by price and taking expectations,

E
[

dP
P

]
= 1

P
𝜕P
𝜕r

E[dr] + 1
P
𝜕P
𝜕t

dt (7.33)

Note that dP∕P is the change in price divided by price, or the percentage
change in price. Because the OAS calculation assumes that OAS is constant
over the life of the security, moving from (7.32) to (7.33) assumes that the
expected change in the OAS is zero.

As mentioned in the previous section, if expectations are taken with
respect to the risk-neutral process, then, for any security priced according to
the model,

E
[

dP
P

]
= r0dt (7.34)

But Equation (7.34) does not apply to securities that are not priced according
to the model, that is, to securities with an OAS not equal to zero. For these
securities, by definition, the cash flows are discounted not at the short-term
rate, but at the short-term rate plus the OAS. Equivalently, as argued in the
previous section, the expected return under the risk-neutral probabilities is
not the short-term rate, but the short-term rate plus the OAS. Hence, the
more general form of Equation (7.34) is,

E
[

dP
P

]
= (r0 + OAS)dt (7.35)

Combining these pieces, substitute for (1∕P)𝜕P∕𝜕t from (7.33) and then for
E[dP∕P] from (7.35) into Equation (7.32) and rearrange terms, which breaks
down the return of a security into its component parts,

dP
P

= (r0 + OAS)dt + 1
P
𝜕P
𝜕r

(dr − E[dr]) + 1
P

𝜕P
𝜕OAS

dOAS (7.36)
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Finally, multiplying through by P,

dP = (r0 + OAS)Pdt + 𝜕P
𝜕r

(dr − E[dr]) + 𝜕P
𝜕OAS

dOAS (7.37)

In words, the return of a security or its P&L may be divided into a
component due to the passage of time; a component due to changes in the
factor; and a component due to the change in the OAS. In the language of
Chapter 3, the terms on the right-hand side of (7.37) represent, in order,
carry–roll-down, gains or losses from rate changes, and gains or losses from
spread change.1 For models with predictive power, the OAS converges or
trends to zero; that is, the security price converges or trends toward its fair
value according to the model.

The decompositions of Equations (7.36) and (7.37) highlight the useful-
ness of OAS as a measure of value. If a model is correct, a long position in
a cheap security earns superior returns in two ways. First, it earns the OAS
over time intervals in which the security does not converge to its fair value.
Second, it earns its sensitivity to OAS times any convergence of that OAS
to zero.

The decompositions also provide a framework for relative value trad-
ing. When a cheap or rich security is identified, a relative value trader buys
or sells the security and hedges out all interest rate or factor risk. Math-
ematically, 𝜕P∕𝜕r = 0. In that case, the expected return or P&L depends
only on the short-term rate, the OAS of the securities traded, and any OAS
convergence. If the trader finances the trade at the short-term rate, that is,
borrows P at rate r0 to purchase the security, then the expected return is sim-
ply equal to the OAS plus any convergence return. If the hedge itself costs
or generates funds, then the P&L also includes a return on those funds at
the short-term rate. If the hedging securities are not fairly priced relative to
the model, but have an OAS of their own, then the P&L also includes an
OAS on the hedge. Finally, Chapter 8 explains that bearing interest rate or
factor risk may earn a risk premium, in which case there would be an addi-
tional term in Equations (7.34) through (7.37) that depends on the amount
of factor risk borne. But, in the relative value context, where factor risk is
hedged away, any risk premium terms cancel out, and the P&L of the trade
is as described in this paragraph.

7.8 REDUCING THE TIME STEP

This chapter has so far assumed that the time elapsed between dates of the
tree is six months. The methodology outlined, however, adapts easily to any

1For expositional simplicity no explicit coupon or other direct cash flows have been
included in this discussion.
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time step of Δt years. For monthly time steps, for example, Δt = 1∕12 or
.0833, and one-month rather than six-month interest rates appear on the
tree. Furthermore, discounting is done over the appropriate time interval. If
the rate of term Δt is r, then discounting means dividing by 1 + rΔt. In the
case of monthly time steps, discounting with a one-month rate of 2% means
dividing by 1 + 0.02∕12.

In practice there are two reasons to choose time steps smaller than six
months. First, a security or portfolio of securities rarely makes all of its pay-
ments in even six-month intervals from the starting date. Reducing the time
step to a month, a week, or even a day can ensure that all cash flows are
sufficiently close in time to some date in the tree. Second, assuming that the
six-month rate can take on only two values in six months, three values in
one year, and so on, produces a tree that is too coarse for many practical
pricing problems. Reducing the step size can fill the tree with enough rates
to price contingent claims with sufficient accuracy.

While smaller time steps generate more realistic interest rate distribu-
tions, they require that more attention be paid to numerical issues, and they
may make computations too slow for their intended uses. The choice of step
size ultimately depends, therefore, on the problem at hand. When pricing a
30-year callable bond, for example, a model with weekly or even monthly
time steps may provide a realistic enough interest rate distribution to gener-
ate reliable prices. By contrast, pricing a one-month bond option with any
precision would require a much smaller time step. While the trees in this
chapter assume that the step size is the same throughout the tree, this need
not be the case. Sophisticated implementations of trees allow step size to
vary across dates in order to achieve a balance between realism and compu-
tational concerns.

7.9 F IXED INCOME VERSUS EQUITY DERIVATIVES

The famous Black-Scholes-Merton (BSM) pricing analysis of stock options
can be summarized as follows. Under the assumptions that the stock price
evolves according to a particular random process and that the short-term
interest rate is constant, it is possible to form a portfolio of the underlying
stock and short-term bonds that replicates the option. Therefore, by arbi-
trage arguments, the price of the option equals the price of the replicating
portfolio.

Consider applying this logic to price an option on a five-year bond. The
starting point might be an assumption about how the price of the five-year
bond evolves over time, but the task is considerably more complicated than
for the price of a stock. First, the price of a bond converges to its face value
at maturity, while the stock price has no similar constraint. Second, because
of the maturity constraint, the volatility of a bond’s price must decline as the
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bond approaches maturity. Hence, the simple assumption that the volatility
of a stock is constant is not as appropriate for bonds. Third, because stock
volatility is very large relative to short-term rate volatility, it is often accept-
able to assume that the short-term interest rate is constant. By contrast, it
seems inconsistent to assume that bond prices – which depend on interest
rates – follow some random process, while assuming that the short-term
interest rate is constant.

These objections led researchers to make assumptions about the random
evolution of the interest rate rather the bond price. In that way, bond prices
naturally approach par, price volatilities naturally approach zero, and no
interest rate is assumed to be constant. But this approach raises another set
of questions. Which interest rate is assumed to evolve in a particular way?
Assumptions about the five-year spot rate, for example, are not sufficient
for two reasons. First, five-year coupon bond prices depend on shorter-term
spot rates as well. Second, an option on a particular five-year bond soon
depends on the prices of a bond that is no longer a five-year bond, but a
bond with slightly less time to maturity. Therefore, assumptions usually have
to be made about the evolution of the entire term structure of interest rates
to price bond options and other derivatives. This chapter shows that, in a
one-factor model, assumptions about the evolution of the short-term rate
are sufficient to model the evolution of the entire term structure.

In short, there are several arguments to move beyond BSM in the fixed
income context. Nevertheless, for simplicity, practitioners do use versions of
BSM to price and hedge several classes of fixed income derivatives. These
methodologies are described at length in Chapter 16.
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CHAPTER 8
Expectations, Risk Premium,

Convexity, and the Shape of the
Term Structure

Chapter 7 shows how bonds and other interest rate contingent claims can
be priced given the evolution of the short-term rate. This chapter shows

how the shape of the term structure of interest rates is determined by assump-
tions about the evolution of the short-term rate and by assumptions about
the risk premium demanded by investors for bearing interest rate risk. The
first few sections of the chapter present concepts by way of example, in the
simple, binomial tree framework of the previous chapter. The last section of
the chapter presents the same ideas in more general setting, though at the
cost of some higher-level mathematics. Chapter 9 concludes the presenta-
tion of term structure models with a detailed description of two well-known
models.

8.1 EXPECTATIONS

Consider a simple framework with annual periods. Assume for the moment
that the current one-year rate is 8%, and that investors know with certainty
that the one-year rate in one year will be 7% and in two years will be 6%.
Then, the prices of one-, two-, and three-year zero coupon bonds with a unit
face value, P(1), P(2), and P(3), are priced such that,

P(1) = 1
1.08

P(2) = 1
1.08 × 1.07

P(3) = 1
1.08 × 1.07 × 1.06

(8.1)

But by the definition of forward rates (see Chapter 2), Equations (8.1)
say that the first three forward rates are 8%, 7%, and 6%. Hence, with

197
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investor certainty as to future interest rates, that is, without any volatil-
ity around those expectations, the term structure of interest rates – here
expressed in terms of forward rates – is completely determined by expec-
tations. Consequently, depending on expectations, the term structure can
take on any shape: flat, upward-sloping, downward-sloping, or some com-
bination of these.

In practice, expectations cannot sensibly take on any arbitrary pattern.
The financial community can have very specific views about short-term
rates over short horizons, derived, for example, from anticipation of policy
changes on central bank meeting dates and from the supply and demand
conditions for funds (e.g., tax payment dates, the bond issuance calendar,
quarterly balance sheet management). Over longer horizons, however,
expectations are not as granular. Analysis of money market conditions is
unlikely to reveal, for example, that the expected one-year rate in 29 years
is very different from the expected one-year rate in 30 years. On the other
hand, macroeconomic analysis might argue that the long-run expectation
of the short-term rate is 4%: 1% due to the long-run real-rate of interest
and 3% due to long-run inflation.

8.2 VOLATIL ITY AND CONVEXITY

While investors have expectations about future short-term rates, they recog-
nize the limits of their analyses, that is, realized rates are assumed to fluctuate
randomly around expectations. Continuing with the framework of the pre-
vious chapter, consider the binomial tree for the one-year rate in the top part
of Figure 8.1. The step size is one year, and the probabilities of all transitions
are 50% (not shown). The level of rates and their volatility is exaggerated
in this tree to illustrate the concepts of this chapter. Note that the expected
value of the short-term rate in one year is 9%, as is the expected short-term
rate in two years,

50% × 13% + 50% × 5% = 9% (8.2)

50%[50% × 17% + 50% × 9%] + 50%[50% × 9% + 50% × 1%] = 9% (8.3)

Note also that the volatility of the change in rate at any transition is 4%, or
400 basis points. For example, with the mean of the first transition calculated
in Equation (8.2) to be 9%, the volatility of that transition is,

√
50%[13% − 9%]2 + 50%[5% − 9%]2 = 4% (8.4)

The price of a one-year zero in this model is simply 1∕1.09, or 0.917431.
Assuming, for the moment, that investors are risk neutral, the price trees
of the two- and three-year zeros can be calculated by expected discounted
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1

F IGURE 8.1 Binomial Rate Tree and Price Trees for Two- and Three-Year Zero
Coupon Bonds. Steps Are Annual, and the Probabilities of All Transitions Are 50%.

TABLE 8.1 Prices of Zero Coupon Bonds
and Their Associated Forward Rates from the
Rate Tree in Figure 8.1. Rates Are in Percent.

Term Price Forward Rate

1 0.917431 9.0000
2 0.842815 8.8532
3 0.776366 8.5590

value, as explained in the previous chapter. These trees are shown in the
bottom of Figure 8.1, with the supporting calculations left to the reader.
Table 8.1 collects the prices of the three zero coupon bonds, along with
the associated forward rates. The striking feature of the table is that the
term structure of forward rates is downward sloping, despite the fact that
interest rate expectations are flat at 9%. This result can be explained by the
interaction of interest rate volatility with the convexity of bond prices.

A short detour is required at this point to present and explain Jensen’s
inequality as applied to bond pricing. For a random variable, like the
one-year rate, r,

E
[

1
1 + r

]
>

1
E[1 + r]

= 1
1 + E[r]

(8.5)

In words, the expected price of a bond is greater than the price of a bond at
the expected interest rate.
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1
E

1 + r

1 + E [r]

E [r]rd ru

1

Rate

Price

F IGURE 8.2 An Illustration of Jensen’s Inequality as Applied to Bond Pricing.

This inequality is easily explained by Figure 8.2. In the figure, the rate
can take on two values, rd and ru, with equal probability, resulting in an
expected value just between them, E[r]. Each possible value of r has an asso-
ciated price, and the expected value of that price, E[1∕(1 + r)], is graphically
depicted as the vertical-axis coordinate of the dotted line connecting the
points {rd

,1∕(1 + rd)} and {ru
,1∕(1 + ru)}. Because of the curvature or con-

vexity of the price–rate curve, however, this expected price exceeds the price
at a rate of E[r], which is 1∕(1 + E[r]). And this is exactly the relationship
described in Equation (8.5).

Returning to the role of volatility and convexity, let f denote the one-year
rate, one year forward, and consider the date-0 price of a two-year zero
coupon bond, as expressed in Equation (8.6). By definition, the price of
the two-year zero equals its unit face amount discounted by 9% over the
first year and by f over the second year. By the logic of pricing along the
tree, this price also equals the discounted expected value of the date-1 price
of the bond. Multiplying both sides of (8.6) by 1.09 and invoking Jensen’s
inequality in Equation (8.5), gives (8.7). And from this equation, (8.8) fol-
lows directly: the one-year rate, one year forward, is less than the expected
one-year rate in one year,

0.8428 ≡
1

(1.09)(1 + f )
= 1

1.09

[
50% × 1

1.13
+ 50% × 1

1.05

]
(8.6)

1
1 + f

>

1
50% × 1.13 + 50% × 1.05

= 1
1.09

(8.7)

f < 9% (8.8)
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8.3 AN ANALYTICAL DECOMPOSIT ION OF
FORWARD RATES

This section derives a general decomposition of forward rates in terms of
expectations, convexity, and risk premium. The level of mathematics here is
higher than used in most of the book, but the discussion still aims at intu-
ition.

Assume that all bond prices are determined by the instantaneous rate, r,
which takes on the value of rt at time t. Let Pt(rt,T) be the price of a T-year
zero coupon bond at time t. By Ito’s lemma, a discussion of which is beyond
the scope of this book,

dP = 𝜕P
𝜕r

dr + 𝜕P
𝜕t

dt + 1
2
𝜕

2P
𝜕r2

𝜎

2dt (8.9)

where dP, dr, and dt are the changes in price, rate, and time over the next
instant, respectively, and 𝜎 is the volatility of changes in r. The two first-order
partial derivatives in Equation (8.9) denote the instantaneous change in the
bond price for a unit change in the rate (with time unchanged) and for a unit
change in time (with rate unchanged), respectively. Finally, the second order
partial derivative in the equation gives the instantaneous change in 𝜕P∕𝜕r
(with time unchanged). Dividing both sides of (8.9) by price,

dP
P

= 1
P
𝜕P
𝜕r

dr + 1
P
𝜕P
𝜕t

dt + 1
2

1
P
𝜕

2P
𝜕r2

𝜎

2dt (8.10)

Equation (8.10) breaks down the instantaneous return on the zero
coupon bond into three components, but this decomposition can be written
more intuitively by invoking several ideas from earlier chapters.

First, in terms of instantaneous compounded forward rates, f (t), the
price of a T-year zero coupon bond is (from Section A2.1),

P = e− ∫ T
0 f (s)ds (8.11)

Then, differentiating both sides of (8.11) with respect to t, recognizing
that increasing t decreases T one-for-one,

𝜕P
𝜕t

= − 𝜕P
𝜕T

= f (T)P (8.12)

Second, by the definitions of duration, D, and convexity, C,

D ≡ −1
P
𝜕P
𝜕r

(8.13)

C ≡
1
P
𝜕

2P
𝜕r2

(8.14)
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Now, substituting Equations (8.12) through (8.14) into the return
decomposition (8.10),

𝜕P
P

= f (T)dt − Ddr + 1
2

C𝜎

2dt (8.15)

Equation (8.15) gives the return decomposition in terms of the following
three components. The first is the return due to the passage of time, which,
in this case, is the forward rate, f (T).1 The second and third components are
returns due to changes in the rate. The second term says that increases in rate
reduce bond return in proportion to duration. The third term says that the
volatility of rates – movement of rates either up or down – increases return in
proportion to convexity. To appreciate this term, recall from Chapter 4 that,
across portfolios with the same duration, more convex portfolios increase
more in value as rates change (at a fixed moment in time), whether rates rise
or fall.

To draw conclusions about expected returns, take the expectation of
both sides of (8.15),

E
[
𝜕P
P

]
= f (T)dt − DE[dr] + 1

2
C𝜎

2dt (8.16)

The intuition of this decomposition is the same as for Equation (8.15), but
with the duration component depending not on the change in rate but on
the expected change in rate.

The next step in the analysis introduces the concept of a risk premium.
Risk-neutral investors, who do not require a risk premium, demand that
each bond offer an expected return equal to the short-term rate of interest.
Mathematically,

E
[

dP
P

]
= r0dt (8.17)

Risk averse investors, however, demand higher expected returns for
bonds with greater interest rate risk. The appendix to this chapter shows
that the interest rate risk of a bond over the next instant may be measured
by its duration with respect to the interest rate factor, and that risk-averse
investors demand a risk premium proportional to duration. This risk
premium may depend on time and on the level of rates, but not on the
characteristics of any individual bond. The discussion proceeds here,

1Note that the result here is related to the result in Chapter 3 that the T-year
zero coupon bond earns the forward rate corresponding to its term, f (T), under
the assumption of an unchanged term structure and, implicitly, no change in the
short-term rate and no interest rate volatility.
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however, as if the risk premium were constant and denoted by 𝜆. In that
case, the expected return equation for risk-averse investors is,

E
[

dP
P

]
= r0dt + 𝜆Ddt (8.18)

Say, for example, that the short-term rate is 1%, that the duration of a
bond is five, and that the risk premium is 10 basis points per year of duration
risk. Then, according to Equation (8.18), the bond’s expected return is 1% +
5 × 0.1% = 1.5% per year.

Another useful way to think of the risk premium is in terms of the
Sharpe ratio (SR) of a security, defined as its expected excess return (over
the short-term rate) divided by the standard deviation of its return. Because
the random part of a bond’s return comes from its duration times the change
in rate, as in Equation (8.15), the standard deviation of the return equals the
duration times the standard deviation of rates. Therefore, the SR of a bond
may be written as,

SR =
E[dP∕P] − r0dt

𝜎Ddt
= 𝜆

𝜎

(8.19)

where the second equality follows from Equation (8.18). For example, if the
risk premium is 10 basis points per year, and if the standard deviation of
rates is 100 basis points per year, then the Sharpe ratio of bond investments
is 10%.

The decomposition of returns can now be combined with the economics
of the risk premium to draw conclusions about the shape of the term struc-
ture of forward rates. Equating the expressions for expected returns in the
right-hand sides of Equations (8.16) and (8.18),

f (T) =
{

r0 + E
[

dr
dt

]
D
}

+ 𝜆D − 1
2

C𝜎

2 (8.20)

Equation (8.20) mathematically describes the determinants of forward
rates. The three terms represent the impacts of expectations, risk premium,
and convexity, respectively. The first term says that the forward rate is com-
posed of the instantaneous interest rate plus the expected change in that rate
times the duration of the zero coupon bond corresponding to the term of the
forward rate. In other words, the higher the instantaneous rate, the higher
the forward rate; the more rates are expected to increase, the higher the for-
ward rate; and the greater the corresponding duration, the greater the effect
of expected rate changes on the forward rate.

The second term on the right-hand side of (8.20) says that the forward
rate increases with the risk premium in proportion to the corresponding
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duration. In other words, the greater the corresponding interest rate risk
and the greater the risk premium, the greater the forward rate.

Chapter 7 noted that a drift in the short-term rate of a certain number
of basis points has the same effect on bond pricing as a risk premium of that
number of basis points per year of duration risk. Equation (8.20) formal-
izes this statement. Increasing the risk premium or increasing the expected
short-term rate by the same amount are indistinguishable from the obser-
vation of forward rates. This means that the term structure of interest rates
cannot, on its own, be used to separate expectations of rate changes from risk
premium. From a modeling perspective, this means that only the risk-neutral
process is relevant for pricing. Dividing the risk-neutral drift into expecta-
tions and risk premium might be very useful for economic perspectives and
for macro-style trading (see Chapter 9), but this division is not observable
from a cross section of bond prices alone.

The first two terms of Equation (8.20) can also be cast in terms of theo-
ries of the term structure of interest rates. (Put aside the convexity term for
the moment.) Under the pure expectations hypothesis, the risk premium, 𝜆, is
zero, and the term structure of forward rates is determined by expectations,
E[dr∕dt]. In this view of the world, the most natural “no-change” scenario,
in the terms of Chapter 3, is that short-term rates evolve as expected and
that forward rates are realized. At the opposite extreme, under the pure risk
premium hypothesis, the market has no expectations about rates, that is,
E[dr∕dt] = 0, and the term structure of forward rates is determined by the
risk premium. In this view of the world, the most natural “no-change” sce-
nario is that short-term rates stay the same, as expected, which, in terms
of Chapter 3 is an unchanged term structure. The reality, of course, can be
between the two extremes, such the the term structure is determined by a
mix of expectations and risk premium.

To conclude the discussion of Equation (8.20), the third term shows
that the forward rate is reduced because of volatility and the convexity of
the zero corresponding to the term of the forward rate by 0.5C𝜎

2. Using this
to reinterpret Equation (8.16), the indirect reduction in return through the
forward rate, because of convexity, is exactly offset by the direct increase in
return, because of convexity. Put another way, the expected return condition
of Equation (8.18) ensures that there is no net advantage of convexity. The
significance of this reasoning for investment and hedging decisions is intro-
duced in Chapter 4 in the context of establishing long- and short-convexity
positions.
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CHAPTER 9
The Vasicek and Gauss+ Models

This chapter, the last of the three on term structure models, presents the
well-known Vasicek and Gauss+ models. The Vasicek model started the

literature on short-term rate models;1 remains an extremely good starting
point for learning about these models; and can still be used in some applied
contexts. The Gauss+ model has proven very popular for proprietary trad-
ing, for both relative value and macro-style trading. The presentation of this
model here is directed toward determined readers who would like to imple-
ment a term structure model for their own trading purposes.

9.1 THE VASICEK MODEL

The Vasicek model assumes mean reversion to set the expected path of the
short-term rate. When below its long-term value, the short-term rate is
expected to increase; when above its long-term value, the short-term rate
is expected to decrease. Mathematically, the risk-neutral dynamics for the
short-term rate, r, are given by,

dr = k(𝜃 − r)dt + 𝜎dw (9.1)

In words, the instantaneous change in the short-term rate, dr, is
determined by a trend or drift plus a random fluctuation or shock. The
drift is equal to the parameter of mean reversion, k, times the distance
between the long-run value of the short-term rate, 𝜃, and its current value.
Because all variables are expressed in annualized terms, the dt factor adjusts
for the actual passage of time. Say, for example, that r = 2%; k = 0.0165,
and 𝜃 = 11%. Then the drift of the short-term rate in Equation (9.1) is
0.0165(11% − 2%) or 0.1485% or 14.85 basis points per year. The drift over
a month, therefore, with dt = 1∕12, would be 14.85∕12 or about 1.2 basis
points per month. The shock around the drift in Equation (9.1) is 𝜎dw, where
dw is a normally distributed random variable with mean equal to zero and

1Vasicek, O. (1977),“An Equilibrium Characterization of the Term Structure,” Jour-
nal of Financial Economics 5.

205
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standard deviation equal to
√

dt. The shock, therefore, is normally dis-
tributed with mean zero and standard deviation 𝜎

√
dt. For example, if 𝜎 is

0.95%, or 95 basis points per year, then the volatility of the shock over a
month is 95 ×

√
1∕12 = 27.4 basis points.

As explained in the previous chapter, fixed income security prices may
incorporate a risk premium that is indistinguishable from a drift in the evolu-
tion of the short-term rate. Along these lines, Equation (9.1) can be viewed
as containing a drift due to a risk premium. Assume for the purposes of
this section that the risk premium is a known constant of 𝜆 basis points per
year, and that the long-run value of the short-term rate under the true or
real-world probabilities is r∞. In that case, the true process of the short-term
rate with the addition of a drift due to the risk premium is,

dr = k(r∞ − r)dt + 𝜆dt + 𝜎dw

= k
([

r∞ + 𝜆

k

]
− r

)
dt + 𝜎dw (9.2)

𝜃 ≡ r∞ + 𝜆

k
(9.3)

Equation (9.3) neatly emphasizes the inability to distinguish expectations
from risk premium by observing security prices: an infinite number of com-
binations of r∞ and 𝜆 give the same 𝜃 and, therefore, the same risk-neutral
price process in Equation (9.1).

One reason that the Vasicek model is useful, both for learning about
term structure models and for some simple pricing and hedging applications,
is that most rates and prices from the model can be expressed through simple
formulae. For the most complex securities, numerical methods, like binomial
trees, are needed, and Appendix A9.1 explains how the model’s dynamics
might be captured in a binomial tree. The text, however, continues by pre-
senting analytic solutions of the model, of which some of the most useful are,

E[rt] = r0e−kt + 𝜃(1 − e−kt) (9.4)

V[rt] = 𝜎

2 1 − e−2kt

2k
(9.5)

f (t) = 𝜃 + e−kt(r0 − 𝜃) − 𝜎

2

2k2
(1 + e−2kt − 2e−kt) (9.6)

r̂(t) = 𝜃 + 1 − e−kt

kt
(r0 − 𝜃) − 𝜎

2

2k2

(
1 + 1 − e−2kt

2kt
− 21 − e−kt

kt

)
(9.7)

where E[rt] gives today’s expectation of the short-term rate at time t,
V[rt] gives the variance of the short-term rate at time t, f (t) is the contin-
uously compounded forward rate of term t; and r̂(t) is the continuously
compounded spot rate of term t.
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Figures 9.1 through 9.3 illustrate these formulae with the parameter val-
ues given earlier. The expected short-term rate, according to Equation (9.4)
and the solid line in Figure 9.1, moves gradually from r0 today (t = 0) to 𝜃

in the very distant future (t = ∞). The mean reversion parameter governing
the speed of that adjustment, k = 0.0165, is sometimes quoted instead as a
half-life. From Equation (9.4), a shock to r0 decays according to the factor
e−kt. And half of such a shock decays away after time h, such that,

e−kh = 1
2

h = ln(2)∕k (9.8)

For the relatively small mean reverting parameter, k = 0.0165, h is over
42 years, which means that any shock to r affects rate expectations over
a very long period of time. Equivalently, the expected rate takes a very long
time to revert from the current rate to 𝜃.

The standard deviation of the short-term rate around its expectations is
given by the square root of (9.5) and shown by the dashed lines in Figure 9.1.
With a volatility parameter of 95 basis points per year and a very slow mean
reversion, the standard deviation around expectations is quite wide. The
figure does show, however, that mean reversion narrows this standard devi-
ation. Without mean reversion, the standard deviation of the short-term rate
is greater, at 𝜎

√
t. Put another way, the pull of the short-term rate to the con-

stant value 𝜃 reduces the standard deviation of the short-term rate as of any
future date.
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F IGURE 9.1 Expectations of the Continuously Compounded Short-Term Rate in
the Vasicek Model, with One-Standard-Deviation Bands. Light Dotted Lines Give
Bands Without Any Mean Reversion. Model Parameters Are r0 = 2%, 𝜃 = 11%,
k = 0.0165, and 𝜎 = 0.95%.
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Equations (9.6) and (9.7), illustrated in Figure 9.2, give the continuously
compounded forward and spot rates in the model. The shape of the forward
curve is discussed presently. Recall, however, as discussed in Chapter 2, so
long as the forward curve is above the spot curve, spot rates are increasing.

Figure 9.3 shows the term structure of forward rate volatility in the
model, that is, the instantaneous volatility of forward rates of different
terms. Because the only volatility in the model is the volatility of changes
in the short-term rate, the volatility of f (t) – from Equation (9.6) – is just
𝜎e−kt. The mean reversion feature of the model, therefore, captures the
empirical regularity that, for longer terms, the term structure of volatility
is downward sloping. Empirical volatilities of short-term rates are much
lower than indicated in this figure, however, because the central bank pegs
short-term rates. The Gauss+ model, discussed next, has the flexibility to
capture both a low short-term rate volatility and an ultimately declining
term structure of volatilities. In any case, note from Equation (9.6) that the
sensitivity of each forward rate to changes in the short-term rate is e−kt.
Hence, these sensitivities across terms have the same shape as in Figure 9.3.

Figure 9.4, the last presented on the Vasicek model, decomposes the
forward rate curve into expectations, risk premium, and convexity using
the values 𝜆 = 0.125%, which – given 𝜃 = 11% and Equation (9.3) – means
that r∞ = 3.424%. In this decomposition, expectations are mildly increasing
over the coming years. Forward rates out to 10 year or so increase much
more rapidly than expectations, however, due to the risk premium of 12.5
basis points per year. For longer terms, however, the (negative) convexity
term grows rapidly, not only moderating the impacts of expectations and
convexity but also actually causing forward rates to decline with term.
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F IGURE 9.2 Continuously Compounded Forward and Spot Rates in the Vasicek
Model. Model Parameters Are r0 = 2%, 𝜃 = 11%, k = 0.0165, and 𝜎 = 0.95%.
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F IGURE 9.3 Term Structure of Forward Rate Volatilities in the Vasicek Model.
Parameters Are r0 = 2%, 𝜃 = 11%, k = 0.0165, and 𝜎 = 0.95%.
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tations, Risk Premium, and Convexity. Model Parameters Are r0 = 2%, 𝜆 = 0.125%,
r∞ = 3.424%, k = 0.0165, and 𝜎 = 0.95%.

The Vasicek model has some limited uses for practitioners. It is a rela-
tively simple model, which is a great advantage. Furthermore, as explained
in Chapter 6, a single factor can explain a large fraction of term structure
variability, particular across longer maturities. The parameters r0, k, and 𝜃

can be jointly calibrated to approximate both the shape of the term struc-
ture and the shape of rate sensitivities to the factor (i.e., Figure 9.3). The
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parameter 𝜎 can be used to approximate an implied option volatility at one
point of the term structure. With these considerations in mind, the model
can reasonably be used, for example, to price, compare values, and hedge
long-term bonds that are first callable after some intermediate number of
years. The model is flexible enough to match the prices of noncallable bonds
from 10 to 30 years, and also to match the most relevant volatility, namely,
the volatility of 10-year rates. Bond sensitivities to changes in interest rates,
defined in the model as changes in r, can be computed by shifting r0, recom-
puting prices, and computing DV01s or durations. To the extent that bonds
of one maturity are hedged with bonds of another maturity, the effectiveness
of the resulting hedges depend on the reliability of the shape in Figure 9.3.

The model might also be used for trading and hedging relatively
long-term bonds. The value of r0 might be set each day so that the model
10-year rate matches the market 10-year rate. Deviations of calculated
prices of longer-term bonds from model predictions might then be taken
as signals of relative value, with hedge ratios calculated as described in
the previous paragraph. The success of relative value trading along these
lines depends on the extent to which the model captures the equilibrium
or steady state of the shape of the term structure. Also, as before, hedging
effectiveness depends on the reliability of the term structure of sensitivities
to the factor.

The Vasicek model is not very widely used, however, because it is
too simple for most applications. First, the model is not flexible enough
to approximate the wide variety of observed market term structures. Or,
put another way, calibrating the model to match one point on the term
structure relies too heavily on the model to approximate all other points
on the term structure. Second, while one factor does explain a lot of
term structure variability, a second factor can capture significantly more
variability. In terms of the discussion in Chapter 6, more than one factor is
needed to hedge intermediate- and shorter-term bonds. Third, the Vasicek
model cannot capture the empirical regularity, mentioned already, that the
term structure of volatilities and, therefore, the term structure of factor
sensitivities, typically rises quickly with term and then flattens or declines.
This limitation means that the model cannot simultaneously handle options
or other volatility-sensitive products that are spread out across the term
structure, nor can it reliably hedge bonds most sensitive to one segment
of the term structure with bonds most sensitive to another segment. With
these caveats, the text turns to a much more flexible term structure model.

9.2 THE GAUSS+ MODEL

The Gauss+ model is well-known among practitioners as a tool for pro-
prietary trading and hedging. The assumptions of the model are intuitively
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appealing, and they reasonably balance the goals of tractability and of
capturing the empirical complexity of term structure dynamics. The goal of
the text is to introduce the model, both in theory – through its equations and
solution – and in application – through a full estimation of its parameters
using recent data. Introducing a detailed estimation procedure here is
noteworthy, because methodologies across the industry vary widely. The
goal of the extensive appendix to this section is to enable a determined
reader to estimate and implement the model independently.

The dynamics of the cascade form of the model are given in
Equations (9.9) through (9.12). The factors r, m, and l denote the short-
term rate of interest, a medium-term factor, and a long-term factor,
respectively. The parameters 𝜇 and 𝜌 are discussed presently. The mean
reversion parameters of the factors are, 𝛼r, 𝛼m, and 𝛼l, respectively, and the
volatility parameters for the medium- and long-term factors are 𝜎m and 𝜎l,
respectively. The two random variables in the model are dW1 and dW2.
The subscript t denotes time-t observations of the factors, of changes in the
factors, and of the random variables. Finally, then, the equations are,

drt = −𝛼r(mt − rt)dt (9.9)

dmt = −𝛼m(lt − mt)dt + 𝜎m(𝜌dW1
t +

√
1 − 𝜌

2dW2
t ) (9.10)

dlt = −𝛼l(𝜇 − lt)dt + 𝜎ldW1
t (9.11)

E[dW1
t dW2

t ] = 0 (9.12)

Given the structure of the model, it turns out that the medium- and
long-term factors can be thought of as rates. The short-term rate mean
reverts to the medium-term factor, which is meant to reflect business
cycles and monetary policy factors. The medium-term factor reverts to the
long-term factor, which is meant to reflect long-term expectations of infla-
tion and the real interest rate, which ultimately depend on long-term trends
in demographics, production technology, and so forth. And the long-term
factor reverts to a constant, 𝜇, which, as in the Vasicek model, can be
thought of as including both a long-term expectation of the short-term
rate and a risk premium. The mean reversion parameters are expected to
be consistent with these economic interpretations; that is, the short-term
rate reverts quickly to the medium-term factor; the medium-term factor
reverts more slowly to the long-term factor; and the long-term factor reverts
slowest of all to its target.

While the medium- and long-term factors trend as described in the pre-
vious paragraph, they also fluctuate around these trends. With respect to
the evolution of the long-term factor in Equation (9.11), the fluctuation
over a short time dt is 𝜎ldW1

t . Because dW1
t is normally distributed with

mean zero and standard deviation
√

dt, the instantaneous fluctuation of
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the long-term factor around its trend has mean zero and volatility 𝜎l

√
dt.

The random terms in Equation (9.10) look complicated, but they simply
ensure that the instantaneous fluctuation of the medium-term factor around
its trend has a volatility of 𝜎m

√
dt and a correlation of 𝜌 with the fluctuation

of the long-term factor around its trend. To see this, note that dW2
t also has

mean zero and standard deviation
√

dt, and, from Equation (9.12), zero cor-
relation with dW1

t . It then follows from Equation (9.10) that the standard
deviation of dmt is,

√
𝜎

2
m(𝜌2dt + [1 − 𝜌

2]dt) = 𝜎m

√
dt (9.13)

that the covariance of dm and dl is,

Cov[𝜎m(𝜌dW1 +
√

1 − 𝜌
2dW2), 𝜎ldW1] = 𝜌𝜎m𝜎ldt (9.14)

and, therefore, that the correlation of dm and dl is,

𝜌𝜎m𝜎ldt

𝜎m

√
dt × 𝜎l

√
dt

= 𝜌 (9.15)

The evolution of the short-term rate in the model, Equation (9.9), is
meant to reflect how central banks conduct rate policy. The Fed, for example,
keeps the short-term policy rate pegged or fixed at a target, but moves that
target over time in a manner deemed appropriate for the state of the busi-
ness cycle and monetary conditions. Mathematically, in Equation (9.9), the
short-term rate is fixed over the very short time interval, dt, in the sense
that there is no random variable shocking the dynamics of r. The rate, r,
is pushed gradually, however, toward the medium-term factor, m, which in
turn reverts to the long factor, l.

The medium- and long-term factors move expectations of the short-term
rate as of future dates. Because these expectations move smoothly over time,
the medium- and long-term factors are assumed to move in a continuous
fashion. The short-term rate, by contrast, changes in the real world by dis-
crete amounts, on a set of fixed dates, according to central bank policy deci-
sions. The model approximates the future outcomes of this process, however,
by a continuous process starting at today’s short-term rate.

The lack of a volatility term in Equation (9.9) is an important feature of
the Gauss+ model. As pointed out in the discussion of the Vasicek model,
mean-reverting factors generate a downward-sloping term structure of
volatility. Largely because of central banks, however, empirical and implied
term structures of volatility tend to have a hump; that is, volatility is low
for very short-term rates before increasing to a peak at intermediate-term
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or longer rates. In the Gauss+ model, the lack of a random shock in the
dynamics of r keeps short-term rate volatility low. In this way, the Gauss+
model can match empirically observed hump-shaped term structures of
volatility.

In passing, the Gauss+ model gets its name from the lack of a volatility
term in Equation (9.9). The “Gauss” part of the name indicates that interest
rates have a normal or Gaussian distribution. But while most one-, two-, or
three-factor normal models have a corresponding number of sources of risk,
the Gauss+ model, strictly speaking, has three factors, but only two sources
of risk. The model has three state variables in the sense that describing the
state of the world in the model requires knowing the three factors, r, m,
and l. There are only two sources of risk, however, namely, dW1 and dW2.
The “+” in the name, therefore, indicates the somewhat unusual presence
of a factor or state variable that is not also a source of risk.

As a final comment on the structure of the model, Equations (9.9)
through (9.12) are the risk-neutral dynamics of the model. Additional
assumptions allow for the identification of an implicit risk premium. An
application of the model developed next shows how this may be done,
assuming that only the long-term factor earns a risk premium.2

Appendix A9.2 gives a detailed account of how the parameters of the
Gauss+ model might be estimated from bond or swap data. A simplified
overview is presented here, using daily data from January 2014 to January
2022 on the fed funds target rate (see Chapter 12) and on zero coupon bond
prices of various maturities, which are derived from the prices of US Trea-
sury bonds. The time series of zero coupon bond prices are published by the
Federal Reserve Bank of New York and are publicly available.3

Consistent with the interpretation of the model, the short-term rate, r, is
taken each day as equal to the fed funds target rate on that day. While a gen-
eral collateral repo rate is theoretically more consistent with a term structure
of Treasury interest rates, repo rates exhibit occasional idiosyncratic jumps
that complicate the estimation without significant offsetting advantages.

Once estimated, the model factors are chosen to “fit” or match, each day,
the one-year rates, two and 10 years forward, and the fed funds target rate.
Furthermore, as discussed presently, with these two- and 10-year forward
rates fair by construction, the model becomes a tool for trading value in
other parts of the curve relative to these fitted points. For ease of exposition,
by the way, all forward rates mentioned from this point denote one-year
rates some number of years forward.

2See, for example, Cochrane, J., and Piazzesi, M. (2009), “Decomposing the Yield
Curve,” AFA 2010 Atlanta Meetings Paper, January 26.
3See Gürkaynak, R., Sack, B., and Wright, J. (2006), “The US Treasury Yield Curve:
1961 to the Present.” Data are available at https://www.federalreserve.gov/data/
nominal-yield-curve.html.

https://www.federalreserve.gov/data/nominal-yield-curve.html
https://www.federalreserve.gov/data/nominal-yield-curve.html
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Although the model ultimately fits the two- and 10-year forward rates,
note that the factors m and l are in no way those forward rates themselves,
in the way that r equals the fed funds rate. The relationships of all forward
rates to m and l depend on the estimated model parameters and, in particular,
on the mean reversion parameters. More specifically, the larger 𝛼r, the faster
changes to the factors m and l make their way into the term structure of rates.
The larger 𝛼m, the faster m converges to l, and the less m affects longer-term
yields. And the smaller 𝛼l, the slower l converges to 𝜇, and the more similar
or parallel is the effect of l on all longer-term yields.

9.3 A PRACTICAL ESTIMATION METHOD

The estimation method presented here proceeds in stages, with each stage
estimating a subset of the model’s parameters.4

Figure 9.5 shows the coefficients of regressing the changes in the zero
yields of various terms on changes in the two-year zero yield – the dark gray
bars – and on changes in the 10-year zero yield – the light gray bars. For
example, the regression of the three-year yield gives a coefficient of 0.91 on
the two-year yield and 0.22 on the 10-year yield. By contrast, the regres-
sion of the 15-year yield gives a coefficient of −0.20 on the two-year yield
and 1.10 on the 10-year yield. In any case, as explained before, all these
regression coefficients implicitly describe the mean reversion parameters of
the model. This stage of the estimation, therefore, chooses the parameters
𝛼r, 𝛼m, and 𝛼l so that the model captures the empirically observed regression
coefficients as closely as possible. This staging is possible, because, as shown
in the appendix, the model regression coefficients depend only on the mean
reversion parameters, not on the volatility parameters. In any case, the mot-
tled dark and light gray bars in Figure 9.5 show the success of this stage of
the estimation. There are a set of mean reversion parameters, given hereafter,
such that implied regression coefficients from the model very closely match
the empirically observed regression coefficients. And, while not reported
here, these matches are within statistical confidence intervals.

The next stage of the estimation is to find the volatility and correlation
parameters, 𝜎m, 𝜎l, and 𝜌, so that the term structure of volatilities in the
model matches the term structure of volatilities in the data as closely as pos-
sible. The result of this optimization is shown in Figure 9.6. Once again,
the model is flexible enough to do an excellent job of matching empirical
properties of the term structure of interest rates.

4This approach is significantly easier to implement than the maximum likelihood
methods that are standard in the term structure literature.



Trim Size: 6in x 9in Tuckman835554 c09.tex V1 - 07/12/2022 11:21am Page 215�

� �

�

The Vasicek and Gauss+ Models 215

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 12 15 17 20 25 27 30

C
o

e
ff

ic
ie

n
t

Term

2yr (empirical) 2yr (model)

10yr (empirical) 10yr (model)

F IGURE 9.5 Coefficients of Regressing Zero Coupon Bond Yields of Various Terms
on Two- and 10-Year Zero Coupon Bond Yields, from Empirical Analysis and as
Implied by the Estimated Gauss+ Model.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 12 15 17 20 25 27 30

Term

V
o
la

ti
lit

y
 (

b
p
s
)

Empirical Model

F IGURE 9.6 Yield Volatility in Annual Basis Points, from Empirical Analysis and as
Implied by the Estimated Gauss+ Model.



Trim Size: 6in x 9in Tuckman835554 c09.tex V1 - 07/12/2022 11:21am Page 216�

� �

�

216 FIXED INCOME SECURITIES

The last remaining parameter to be estimated is 𝜇, the value to which the
short-term rate reverts, over the very long-term. The estimation procedure
suggested here finds the 𝜇 that minimizes the sum of the squared errors of
observed yields relative to model yields across the whole data sample.

Following the estimation procedure described, Table 9.1 reports the
resulting Gauss+ parameter values. The mean reversion parameters are in
the order expected, with the central bank reaction fastest, the speed of the
medium-term factor’s reversion to the long-term factor next, and the speed
of the long-term factor’s reversion to 𝜇 slowest. Alternatively, the time for
each process to converge halfway to its target, given in the half-life column,
is about eight months for r, 13 months for m, and 42 years for l. Because of
the mean reverting nature of the factors, the volatility parameters of 109 and
96 basis points for the medium- and long-term factors, respectively, translate
into the lower zero yield volatilities shown in Figure 9.6. The parameter 𝜇,
as the very long-run target for the short-term rate, might seem high at over
10%, but the long-term factor reverts very slowly to this target, and that
target includes a risk premium, which is discussed further next.

The term-structure properties of the estimated model are well described
by Figure 9.7, which graphs the change in forward rates for a change in each
of the factors as a function of term. For example, the seven-year forward,
changes by 0.9 basis points for every basis point change in the long-term
factor. Taken as a whole, the figure shows that short-term factor affects only
the very short end of the curve. The medium-term factor, which drives the
two- to three-year part of the curve, can be thought of as capturing monetary
policy in the sense of encapsulating where the market believes the short-term
rate will be in two to three years. The long-term factor has its biggest impact
in six to eight years and, beyond 10 years, is the sole factor driving forward
rate changes and volatilities.

The time series properties of the model can be described by graphing its
factors over time. As mentioned already, the short-term rate is set each day to

TABLE 9.1 Estimated Parameters of the Gauss+
Model from US Treasury Zero Coupon Yields,
January 2014 to January 2022. Half-Life Is in Years.

Parameter Estimate Half-Life

𝛼r 1.0547 0.66
𝛼m 0.6358 1.09
𝛼l 0.0165 42.01
𝜎m 109.2 bps
𝜎l 96.4 bps
𝜌 0.212
𝜇 10.555%
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the fed funds target rate, and the medium- and long-term factors are set so as
to match the model and market two- and 10-year forward rates. Figure 9.8
graphs these empirically recovered market factors from January 2007 to
January 2022.5 The two-year forward rate is included in the graph to focus
the interpretation of the medium-term factor. When rates are high, this factor
closely tracks the two-year forward rate, confirming that the medium-term
factor loosely corresponds to where the market expects the short-term rate to
be in two years. When rates are low, however, near the zero lower bound, the
medium-term factor can fall into deeply negative territory. In this sense, the
medium-term factor is a “forward shadow rate” that reflects future expecta-
tions of the short-term rate and that can be traded explicitly in the Gauss+
model. This interpretation differs from models in which the “shadow rate”
is what the short-term rate would be now if it were not bounded above zero.6

5The model is estimated using data from January 2014, but the resulting parameters
are used to extract model factors back through 2007. Also, instead of the long-term
factor itself, the figure graphs the long-term factor shifted forward 10 years. This
allows the series to be more easily interpreted as an approximation for expectations
of the short-term rate in 10 years. See Appendix A9.2 for further details.
6See, for example, Wu, J., and Xia, F. (2016), “Measuring the Macroeconomic
Impact of Monetary Policy at the Zero Lower Bound,” Journal of Money Credit
and Banking 48, March-April; Bauer, M., and Rudebusch, G. (2016), “Monetary
Policy Expectations at the Lower Bound,” Journal of Money Credit and Banking
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In any case, the nature of the medium-rate factor as a leading indicator of
the short-term rate can be seen by comparing those two series in Figure 9.8.
Particularly striking is the steep increase in the medium-term factor starting
in early 2014, a couple of years before the Federal Reserve began raising
rates.

9.4 RELATIVE VALUE AND MACRO-STYLE TRADING
WITH THE GAUSS+ MODEL

In the context of a term structure model, a relative value trade is one that
is not exposed to or hedged against changes in the factors. Ideally, a trader
would find an individual security that is cheap relative to the model and,
from various analyses, is expected to revert soon to being fair to the model.
The trader would then buy that security; hedge some or all of its factor
exposure by selling fair or rich securities in the same part of the curve; and
earn the resulting profits. In practice, however, individual securities are often
persistently cheap or rich to the model, so that convergence is not expected

48, October; and Kim, D., and Singleton, K. (2012), “Term Structure Models and
the Zero Bound: An Investigation of Japanese Yields,” Journal of Econometrics 170,
September.
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in the short run, and securities neighboring in term are often all fair or rich
together. Most of the time, therefore, relative value opportunities arise in
which a trader receives forward rates in one part of the curve that are high
relative to the model but expected to converge promptly to the model; pays
forward rates in another part of the curve that are too low, but expected to
converge promptly; and structures trades to minimize factor exposures. In
this synopsis, the speed at which any detected mispricing is likely to correct
itself is an important trading consideration.

As an example of using the Gauss+ model along these lines, consider
the following framework. Compute the time series of the nine-year forward
rate minus the model-predicted equivalent rate, where each observation can
be called a fitting error. Then construct a signal from this times series as the
difference between its five-day and 40-day moving averages. If the demeaned
fitting error at a given time is positive, so that the nine-year forward is too
high relative to the model, and if the signal is negative, so that fitting errors
have started to fall, that is, they have started to converge to the model, then
receiving at that forward rate might be considered an attractive trade.

The problem with receiving or paying the nine-year forward in isolation,
however, is that it has significant exposure to the medium- and long-term
factors, which is not consistent with the spirit of relative value trading. One
solution is to pool together and size several attractive relative value trades
so that their exposure to the factors is minimal. In addition, traders can
diversify across mean reverting trades. It turns out, for example, that nine-
and five-year fitting errors tend to be positively correlated. This fact makes
it attractive to pay in one rate and receive in the other. Figure 9.9 shows, in
fact, that the difference between the nine- and five-year signals is strongly
mean reverting, which is one of the most important properties of relative
value trades.

Unlike relative value trading, which finds value in the absence of factor
exposure, macro trading takes direct or indirect views on the factors. Simple
examples include positions based on predictions of changes in rates or in
the slope of the term structure that differ from what is priced in the market.
A more complex example, which has attracted more interest over time, is
trying to trade the long-run level of the short-term rate. As explained earlier,
long-term forward rates are a combination of expectations, risk premium,
and convexity. Within the structure of the Gauss+ model, with the help of
a strategic assumption, long-term forward rates can be separated into these
three components. A macro trader can then decide that long-term forwards
are too low or too high and position accordingly. The details of this decom-
position of forward rates are complex and, therefore, appear in the appendix
to this chapter. The text continues with an intuitive approach.

In the context of any term structure model, it is relatively straightfor-
ward to determine the effect of convexity on forward rates. It is much more
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difficult, however, to separate expectations from risk premium. A number of
approaches appear in the academic literature, but these are not without vari-
ous shortcomings.7 The method proposed here relies on one key assumption:
expectations of future short-term rates do not change past some point in the
future. Anyone with a view of the short-term rate in 15 years, for example,
has the same view of the short-term rate in 20 or in 30 years. Consequently,
any difference in forward rates beyond some term is attributable not to rate
expectations, but solely to risk premium and convexity. In this way, expec-
tations and risk premium can be separated and calculated from observable
rates.

Using the assumption just described and the parameters of the Gauss+
model estimated previously, Figure 9.10 graphs the risk premium on the

7See, for example, Adrian, T., Crump, R., and Moench, E. (2013), “Pricing the Term
Structure with Linear Regressions,” Journal of Financial Economics 110(1), October;
Ang, A., and Piazzesi, M. (2003), “A No-Arbitrage Vector Autoregression of Term
Structure Dynamics with Macroeconomic and Latent Variables,” Journal of Mone-
tary Economics 50(4); Cieslak, A. (2018), “Short-Rate Expectations and Unexpected
Returns in Treasury Bonds,” Review of Financial Studies 31(9); and Kim, D., and
Orphanides, A. (2012), “Term Structure Estimation with Survey Data on Interest
Rate Forecasts,” Journal of Financial and Quantitative Analysis 47(1).
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10-year forward rate over time, measured along the left axis. A value of
60 basis points on any day, for example, means that, on that day, 60 basis
points of the 10-year forward rate is attributable to risk premium. The lighter
line is the level of the 10-year forward rate, measured along the right axis.
The risk premium often moves in the opposite direction of rates. As rates
decline, the term structure typically steepens, which the model interprets as
an increase in risk premium. This observed behavior is consistent with the
low-inflation regime over the last several decades, in which government bond
prices increase as other risky assets fall in value. In that environment, as rates
fall, and have less room to fall even further, bonds are less able to hedge the
declining value of other assets and, as a result, are worth less themselves.

The flip-side of identifying the risk premium, of course, is identifying the
long-run expectation of the short-term rate in the estimated Gauss+ model,
more specifically, the 10-year forward rate minus the term-appropriate risk
premium plus the term-appropriate convexity. The time series of this expec-
tation is shown in Figure 9.11, along with a different estimate, formed from
real rate forecasts and inflation estimates at the Federal Reserve Bank of
Cleveland.8 While the model and outside series track each other quite well
over time, there are trading opportunities to use the difference between the
two series as a measure of value. Put another way, the difference between the
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8The construction of the Cleveland Fed series is described further in the appendix to
this chapter.
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Gauss+ market-implied view – the long-run rate priced in the market – and
the exogenous, economist-generated, fundamental view – what one thinks
the long-run rate should be – can be used as a basis for taking outright long
or short positions in bonds.
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CHAPTER 10
Repurchase Agreements and

Financing

The repurchase agreement or repo market might be the most important
market about which most people know little or nothing. Money market

funds (MMFs) and other investors rely on repo as a short-term, liquid asset;
broker–dealers and other financial entities use repo to fund their inventory of
securities; repo enables market participants to take short positions in fixed
income markets; and, as described in Chapter O, the Federal Reserve has
historically and continues presently to use repo to conduct monetary policy.
Finally, and most recently, interest rate derivatives and many loan products
are transitioning from the London Interbank Offered Rate (LIBOR) indexes
to the Secured Overnight Financing Rate (SOFR), which is derived from
rates on repo transactions.

The first few sections of the chapter describe repurchase agreements, the
uses of repo, and the structure and size of the market. A short section then
describes the computation of the recently prominent SOFR, a rate featured
in Chapters 2, 12, and 13. The subsequent section explains some of the deter-
minants of the interest rates on both general collateral (GC) and special repo
transactions. The penultimate section discusses repo in the context of financ-
ing risk, along with relevant changes in banking regulation. The final section
is a case study of how MF Global fell in large part due to its inappropriately
sized “repo-to-maturity” trades.

10.1 REPURCHASE AGREEMENTS

The most straightforward description of a repurchase agreement or repo is
as a secured loan with bonds or other financial instruments as collateral.
Figures 10.1 and 10.2 depict an example in which one counterparty – the
“repo seller” – borrows $109,898,438 for 44 days at a rate of 0.015%, while
giving $100 million of the 2.75s of 02/15/2028 as collateral. At the time of
the trade, the price of the bond is 109-28 3/4, that is, 109 + 28.75∕32 =
109.898438 per 100 face amount, which means that the value of the col-
lateral at the start of the trade equals the amount loaned. In practice, the

223
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F IGURE 10.2 Unwind of a Repurchase Agreement.

value of the collateral typically exceeds the amount loaned, and this feature
of repo is discussed next. Continuing with the present example, however,
Figure 10.1 shows the flows of cash and bonds at the initiation of the trade,
and Figure 10.2 shows the flows at the expiration or unwind of the trade. In
the latter, the repo seller pays principal plus interest, $109,898,438 × (1 +
0.015% × 44∕360), or $109,900,452, to discharge the loan, and then takes
back its $100 million face amount of bonds.

The lender of cash in Figures 10.1 and 10.2 is protected by the bonds
taken as collateral against the loans: if the borrower of cash defaults, the
lender of cash has a claim on those bonds. But lenders of cash in the repo
market are protected even further by a safe harbor from the bankruptcy
code, by a haircut or initial margin, and by variation margin.

With respect to the safe harbor, if the borrower of cash defaults on its
loan, the lender may immediately liquidate the bonds held as collateral to
recover the loan amount, returning any realized excess cash to the borrower.
This is very different from the general treatment of secured loans, in which
lenders are stayed or prevented from liquidating the collateral of default-
ing borrowers until given permission to do so by a bankruptcy court. It is
for this reason, in fact, that repo trades are legally structured as repurchase
agreements and not as secured loans. Legally, the borrower of cash, that is,
the repo seller, sells the bonds to the repo buyer at the start of the trade and
agrees, at unwind, to repurchase the bonds at a slightly higher, prespecified
price. While economically the same as a secured loan, this legal structure
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casts the unwind as the settlement of a securities trade, which enjoys a safe
harbor from bankruptcy rules.1

In addition to the safe harbor, lenders of cash in the repo market are typi-
cally protected by haircuts or initial margin. At a haircut of 3% for example,
collateral value is reduced by 3% when considered against the loan amount.
Therefore, a repo seller can borrow only $97 against a bond worth $100,
leaving a margin of $3, that is, an excess of collateral value over loan value
of $3. In the example of this section, with a haircut of 3%, the cash borrower
raises only 97% of $109,898,438, or $106,601,485, against the $100 mil-
lion of the 2.75s of 02/15/2028, leaving initial margin of $3,296,953. With
this buffer, if the borrower of cash defaults and the bonds fall in value from
$109.9 million to, say, $108 million, the lender still has more than enough
collateral value to cover the outstanding loan amount of $106.6 million.

Variation margin, the last of the protections mentioned earlier, requires
borrowers to maintain collateral value as prices change so as to keep margin
constant. Continuing with the example in the previous paragraph, if the
bonds’ value falls from $109.9 million to $108 million against the $106.6
million loan, the cash borrower receives a margin call to post additional
bonds with a value of $1.9 million to restore margin to the original $3.3
million. Alternatively, the borrower can satisfy the call by paying the lender
$1.8 million in cash, which reduces the loan amount from $106.6 million
to $104.8 million, which is appropriately collateralized by $108 million of
bond value at a haircut of 3%. If, on the other hand, bond value increases,
the cash borrower can take back posted collateral or cash in excess of
margin requirements. Variation margin calls in the repo market are typically
issued daily.

Summarizing the protections in a repo agreement, a lender of cash suf-
fers a loss only if the borrower defaults at the same time that collateral
declines in value by more than posted margin.2

1To understand the logic of the general bankruptcy stay, consider the case in which a
manufacturer of goods has borrowed money on the collateral of machines in its plant.
If, in the event of a default, secured creditors could immediately seize those machines,
all other creditors and equity holders would likely be irreparably harmed, whereas
a limited delay could easily result in an orderly reorganization that maximizes the
ongoing or liquidation value of the manufacturer. In contrast, it has been argued that
financial markets are best served by the safe harbor, which minimizes the uncertainty
of settlement.
2With government bond collateral, it can be argued that this exposure is right-way
risk: government bonds tend to do well during the market upheavals that typically
characterize counterparty defaults. On the other hand, with corporate or certain
mortgage collateral, it can be argued that repo exposure to default is wrong-way risk
because counterparty defaults tend to happen in exactly those scenarios in which
collateral values fall.
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10.2 USES OF REPURCHASE AGREEMENTS

This section describes the four major uses of repurchase agreements: invest-
ing and cash management, long financing, shorts or short financing, and
collateral swaps.

Repo is popular as a short-term investment and as a place to park cash
for a short period of time. Not only is lending cash through repo particu-
larly safe, as explained in the previous section, but lenders can calibrate the
default risks they are willing to bear by choosing haircuts (e.g., 2% for Trea-
suries, 5% for investment-grade corporates), the set of acceptable collateral
(e.g., government bonds with maturities less than two years, any govern-
ment bond, government bonds and investment-grade corporates), and their
repo counterparties. Furthermore, by choosing the term of the repo agree-
ment (e.g., overnight, 30 days), lenders can choose their desired liquidity,
that is, the time after which they will again have use of their cash. Along
these lines, repo is an important alternative to bank deposits. Both repo and
bank deposits are highly liquid, but, while bank deposits of up to $250,000
are federally insured, larger deposits at many banks might not be considered
as safe as secured repo investments.

Because of repo’s popularity as a short-term investment, many repo buy-
ers are called repo investors. The most important class of such investors are
money market funds, which are described in detail in Chapter O. Because
shareholders in these funds can easily redeem their shares for cash except,
perhaps, in times of great stress, managers of money market funds maintain
liquidity by investing a large portion of their assets in particularly liquid
products, like repo. Mutual funds, which must also plan for some amount
of shareholder redemptions, also invest in repo as a liquid investment. Other
repo investors, like municipalities and nonfinancial corporations, are moti-
vated by the need to manage cash inflows and outflows. A municipality
receives tax payments and makes expenditures throughout the year, but the
timing of receipts generally does not match the timing of outlays. Therefore,
cash on hand needs to be invested in short-term, safe products, like repo.
Similarly, because the receivables and payables of nonfinancial corporations
do not generally coincide, repo is often used to park excess cash on hand.

A second common use of repo is long financing, which refers to the pur-
chase of financial instruments with mostly borrowed money. An important
example, illustrated in Figure 10.3, is the use of repo by broker–dealers to
facilitate market making in bonds. As shown in the top panel of the figure, a
customer sells bonds to the trading desk, for which the desk pays cash. But
the business model of trading desks is to earn relatively small fees relatively
frequently using a minimum of scarce capital. Therefore, rather than using
capital to purchase the customer’s bonds, the trading desk chooses to raise
funds in the repo market, that is, to repo out the bonds, or sell the repo, to
a repo buyer. Note that, because of haircuts, the trading desk cannot raise
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F IGURE 10.3 Long Financing.

the full value of the bonds it bought in the repo market. Consequently, the
trading desk does use a small amount of its own capital to fund margin, that
is, to pay the customer that portion of the purchase price that is not funded
with repo. In short, a fixed income market-making desk funds its inventory
predominantly with repo, but in small part with capital.

The bottom panel of Figure 10.3 shows how the trading desk exits its
cash and repo market positions. At some point after the desk’s original pur-
chase of the bonds, another customer comes along wanting to buy those
same bonds. The trading desk sells the bonds to the customer, uses the pro-
ceeds to pay off its repo borrowings and takes back the bonds for delivery
to the customer. At this point it can be pointed out that purchases and sales
of a particular bond on a given day cancel, and do not require repo funding.
It is only the residual inventory carried from one day to the next that needs
to be funded.3

Another example of long financing would be a trader or investor who
wants to lever returns by buying a bond with borrowed money. At initiation,
the investor buys the bond in the cash market and repos it out to raise most
of the purchase price. To terminate the trade, the investor sells the bond in
the cash market and uses the proceeds to pay off the repo loan. Of course, if
the bond price falls in the interim, the investor must raise cash elsewhere to
discharge the loan. While the market-making desk described in the previous
paragraph also seems to bear the risk of falling prices, market makers tend

3To be even more precise, the cash required for the settlement of trades on a given
day is funded that day. For example, in the case of the Treasury market, which settles
T+1, a bond purchased from a customer on Monday has to be paid for on Tuesday.
Therefore, if that bond were not sold on Monday, the trading desk would need to
raise funds on Tuesday morning to pay the customer later that day.
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to hedge the interest rate risk of their inventory. Therefore, any loss on the
long position, which leaves a deficit with respect to the repo loan, can likely
be covered by the corresponding profits of a hedging, short position.

Sometimes the purchaser of a bond knows the exact term over which
the bond needs to be financed. In most cases, however, the term of financ-
ing is not known. In the case of the market-making desk, the customer that
ultimately purchases the bond from inventory may appear very soon after
the desk itself purchases the bond or days later. In the case of the leveraged
investor, market conditions might cause the investor to terminate the posi-
tion sooner or later. Therefore, the repo agreement in long financing trades
may expire before the end of the trade. In that case, the repo seller needs
to roll the repo. Consider a repo seller who has financed the purchase of
$100 million face amount of the 2.75s of 02/15/2028 with an overnight repo
along the lines of Figure 10.1. If the repo seller wants to stay in the trade for
an additional day, that is, if the repo seller does not yet want to repay the
repo loan, the repo buyer would have to agree to roll the loan for another
day. If the repo buyer does agree, collateral or cash is adjusted to maintain
the appropriate amount of margin, and the repo seller can keep the money
for another day. If the repo buyer does not agree, the repo seller must find
another counterparty to finance the position and use the money borrowed
from that counterparty to repay the loan due to the original repo buyer. The
process of rolling a repo is depicted in Figure 10.4. Note that, because the
price of the bonds may have changed over the day, the repo seller may receive
more or less cash from the new repo buyer than is needed to discharge the
loan due to the original repo buyer.

The duration of repo agreements can be overnight,4 term (i.e., any fixed
duration greater than one day), or open. Open repos are overnight repos
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F IGURE 10.4 Roll of a Repurchase Agreement.

4Market participants say “overnight repo” rather than one-day repo, because, his-
torically, cash was available to borrowers from the end of one day to the beginning
of the next day. However, given reforms since the financial crisis of 2007–2009, these
agreements are, in fact, be more accurately described as one-day repo.
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that roll automatically for an additional day until cancelled by the lender of
cash. The popularity of this contractual form reflects the many instances in
which counterparties are unsure of how long financing will be needed.

At this point, it can be noted that operational aspects of repo markets
are complex. Consider the roll in Figure 10.4. The repo seller needs to post
its bonds to the new repo buyer to get cash, but the original repo buyer is
unlikely to release those bonds until its loan is repaid – that is, after all, the
whole point of holding collateral. Issues like this are resolved through the
services of a third-party agent, as described in the next section.

A third common use of repo is the establishment of short positions or
short financing. A short position is initiated by selling a bond without own-
ing it, whether as a bet that its price will fall or as part of a larger trade to
hedge a particular long position. In the top panel of Figure 10.5, a hedge
fund sells bonds that it does not have to some buyer in the cash market. The
hedge fund then takes the bonds it sold from a broker–dealer in the repo
market, delivers those bonds to the buyer, receives the proceeds of the bond
sale, and then lends those proceeds to the broker–dealer. To unwind its short
position, as shown in the bottom panel of Figure 10.5, the hedge fund buys
the bonds in the cash market, returns the bonds to the broker–dealer, collects
its loan proceeds from the broker dealer, and uses those proceeds to pay for
its purchase of the bonds in the cash market.

Using the language of this chapter, the hedge fund does buy the repo,
but its motivation is very different from cash managers or investors who
buy repo: the hedge fund’s motivation is not to park or invest cash, but
to borrow the bonds. For this reason, it is more commonly said that the
hedge fund does a reverse repo or that it reverses in the bonds. Note that
this industry jargon is such that a single transaction – the repo agreement
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between the broker–dealer and the hedge fund – changes names depending
on the counterparty: the broker–dealer does a repo or repos out the bonds,
while the hedge fund does a reverse repo or reverses in the bonds.

The different motivations for buying repo introduce another aspect of
the repo market. As mentioned already, when cash managers and investors
buy repo, they choose the general asset classes and maturities they are willing
to accept as collateral. But they do not care about which particular bonds
they receive. For this reason, these trades are called general collateral or GC
trades, and the repo seller chooses which bonds to deliver subject to some
set of general parameters. By contrast, a market participant who shorts a
bond and does a reverse repo requires the exact bond that was sold in the
cash market. These trades, therefore, are called special collateral or specials
trades. The pricing of GC and special spreads is discussed later in the chapter.

The fourth and final use of repo discussed here is a collateral swap, which
is described in Figure 10.6. A broker–dealer might choose to hold an inven-
tory of corporate bonds but would like its overall holdings to be more liquid,
that is, more easily and at a lower cost turned into cash, should the need arise.
This preference for additional liquidity might result from prudent manage-
ment, regulatory requirements, or both. In any case, at the same time, an
insurance company or pension fund with long-term holdings of Treasury
bonds might be happy to sacrifice liquidity temporarily in order to earn
some extra return. The broker–dealer and the insurance or pension company,
therefore, might agree on a collateral swap: the broker–dealer exchanges its
corporates for Treasuries over the term of the trade, paying a fee to do so
(e.g., 25 basis points on the value exchanged).
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10.3 MARKET STRUCTURE AND SIZE

Table 10.1 summarizes the structure and size of the repo market, as of July
2021.5 A main division of the market is between the tri-party and bilat-
eral markets. In tri-party trades, an agent provides various collateral man-
agement services. In bilateral trades, the two counterparties to each repo
transaction manage all of the operational details.

One of the key services of the tri-party system is to eliminate the risk that
collateral is sent without cash being received or that cash is sent without
collateral being received. At the initiation of a trade, this is accomplished
as follows. The repo buyer sends cash and the repo seller sends collateral
not to each other, but to a tri-party repo agent. The agent, after verifying
receipt of both cash and collateral, moves the cash into the seller’s account
and the collateral into the buyer’s account. Similarly, at the expiration of the
repo, the agent verifies that appropriate amounts of cash and collateral are
available and, only then, moves the cash into the buyer’s account and the
collateral into the seller’s account.

A second significant tri-party service ensures that repo margin is
enforced along the lines described earlier in the chapter. More specifically,
for every transaction, the tri-party agent verifies that the collateral received
is acceptable relative to parameters set by the repo buyer, values that
collateral at current market prices, and issues daily variation margin calls
as required by the haircut schedule of the repo buyer.

The third significant tri-party service is to optimize the use of general
collateral. As mentioned earlier, each repo buyer accepts collateral that con-
forms with, for example, customized constraints on asset class, credit rating,
and maturity. At the same time, each repo seller has a portfolio of diverse

TABLE 10.1 Structure of the US Repo
Market, as of July 2021, in $Billions.

Tri-Party Bilateral

Uncleared 2,964 ??

Cleared 238 1,181
(GCF) (DVP)

Sources: Federal Reserve Bank of New
York; Office of Financial Research;
SIFMA; and Author Calculations.

5Tri-party entries in Table 10.1 are outstanding collateral values; DVP entries are
outstanding loan amounts.
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securities it wants to post as collateral. Furthermore, not surprisingly, repo
loans earn a higher rate when extended against less desirable collateral. The
tri-party agent, then, accounting for the constraints across its customers,
their repo trades on a particular day, and current market prices and repo
rates, suggests to each repo seller an optimal allocation of its available col-
lateral, that is, a schedule of which collateral should be posted to which repo
buyer.

Table 10.1 shows that the tri-party repo market is divided into two seg-
ments. The larger segment, with nearly $3 trillion of outstanding collateral
value, consists predominantly of GC trades between repo investors (e.g.,
money market funds) and dealers, who fund their securities positions with
repo. The smaller segment, at $238 billion, is the General Collateral Finance
or GCF repo service. In this “blind-brokered” market, dealers trade anony-
mously with each other to redistribute funds received from repo investors.
GCF repo trades are cleared by the Fixed Income Clearing Corporation
(FICC), which means that each counterparty to a GCF repo trade faces the
FICC, instead of its original trade counterparty.6 This segment of the mar-
ket also includes sponsored repo, in which non-member repo counterparties
that are backed by members can trade GCF repo on their own accounts.7

The bilateral repo market is summarized in the rightmost column of
Table 10.1. Because tri-party is particularly focused on managing the collat-
eral of GC trades, the bilateral market is used for the GC trades of those who,
for various reasons, do not participate in tri-party, and for specials trades.
Like the tri-party market, the bilateral market is divided into an uncleared
and a cleared segment. Relatively little aggregated data is available about the
uncleared segment precisely because its transactions are completely managed
by the individual counterparties. The bilateral, cleared market comprises the
delivery-for-payment or DVP service of FICC. The trades in this inter-dealer
market can be arranged or blind-brokered, and they are cleared by the FICC.
The size of the DVP market is about $1.2 trillion in loan value.

Figure 10.7 considers the repo market from the perspective of various
sectors of market participants. Note that, in accounting terms, lending cash
or buying repo is an asset, and borrowing cash or selling repo is a liability.
While broker–dealers do sell repo to finance security holdings, they also run

6Note that clearing is much stronger than tri-party guarantees, which ensure that if
the repo seller sends collateral and the repo buyer sends cash, then the collateral and
cash will be exchanged.
7One advantage of sponsored repo is the reduction of the size of broker–dealer bal-
ance sheets. If a broker–dealer sells repo to a money market fund and then buys
repo from an asset manager, the broker–dealer incurs a liability and an asset. If the
broker–dealer sponsors the fund and asset manager, however, so that they can trade
with each other, their trades do not appear on the broker–dealer’s balance sheet. The
costs and risks of sponsorship, however, may have negative accounting implications.
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F IGURE 10.7 US Repo Market as Assets and Liabilities, by Sector, as of March
2021. Source: Financial Accounts of the United States, Board of Governors of the
Federal Reserve System.

large matched books through which they make markets in repo, that is, they
buy repo from some customers and sell to others in a balanced way. The com-
bination of a matched book and long financing leads to the profile shown in
the figure, namely, a large quantity of repo assets offset by repo liabilities and
an additional quantity of repo liabilities. Money market funds, as discussed,
are in the business of investing short-term funds and use repo to do so. The
foreign sector (excluding foreign bank offices in the United States) is approx-
imately balanced in repo assets and liabilities, while bank repo liabilities
are somewhat greater than their repo assets. The Federal Reserve borrows
cash in the repo market through its reverse-repo facility, as explained in
Chapter O. Real Estate Investment Trusts (REITs) borrow money through
repo, while the remaining sectors shown – municipals; GSEs, like FNMA
and FHLMC; and mutual funds (MFs) – invest in repo as a liquid, short-term
investment.

Continuing the discussion of repo market structure, Table 10.2 gives
the composition of collateral in tri-party repo, ex-GCF. Underlining the
safety of repo transactions, a large portion of collateral is government
guaranteed, with 62% in Treasuries and 21% in government-guaranteed
mortgage-backed securities (MBS). Furthermore, although not shown
in the table, the $238 billion of GCF repo consists entirely of Treasury,
Agency, and GSE MBS. Some of the tri-party market, however, as shown in
Table 10.2, does include repo using riskier collateral.

To conclude this section, Table 10.3 gives the median haircut on col-
lateral in tri-party, ex-GCF. Recalling that a cash lender loses money only
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TABLE 10.2 Collateral Composition of Tri-Party Repo (ex-GCF), as of July 2021.
Collateral Value Is in $Billions.

Asset Class Collateral Value Percent

Treasuries 1,847 62.3
Agency and GSE MBS 627 21.1
Equities 209 7.1
Corporates, Investment Grade 74 2.5
Agency and GSE CMOs 52 1.8
Corporates, High Yield 42 1.4
Agency and GSE Debt 33 1.1
Other 80 2.7

Total 2,964 100

Sources: Federal Reserve Bank of New York; SIFMA; and Author Calculations.

TABLE 10.3 Median Tri-Party Repo Haircuts (ex-GCF), as of July 2021. Haircuts
Are in Percent.

Asset Class Haircut

Treasuries; Agency Debt and MBS 2
Agency and GSE CMOs 4
Corporates (IG); Money Mkt; Private CMO (IG); Int’l 5
ABS (IG) 7
Equities; Corporates (HY); ABS(HY); Private CMO (HY); Munis 8

Sources: Federal Reserve Bank of New York; and SIFMA.

if its counterparty defaults and the collateral falls in value by more than
the haircut, cash lenders demand higher haircuts for riskier collateral. Risk
in this context is measured not only by price volatility and the possibili-
ties of large price declines but also by illiquidity: in the event of a default,
lenders recover only what they can realize through the sale of the collat-
eral they hold. Consistent with these considerations, the median haircuts in
Table 10.3 do increase with risk. The most liquid, government-guaranteed
collateral requires a haircut of only 2%, while the riskiest and least liquid
securities require a haircut of 8%.

10.4 SOFR

In the transition away from LIBOR in the United States, discussed in detail
in Chapter 12, regulators and others have advocated for a transition to the
Secured Overnight Financing Rate, or SOFR. Intended to represent the rate
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TABLE 10.4 SOFR and Treasury Repo Rates, as of May 14, 2021. Rates Are in
Basis Points.

1st 25th Median/ 75th 99th Volume
%ile %ile SOFR %ile %ile ($billions)

−4 −1 1 1 15 865

Source: Federal Reserve Bank of New York.

of secured, overnight borrowing, the Federal Reserve Bank of New York cal-
culates SOFR using daily repo transactions in the tri-party and DVP markets.
However, DVP repo transactions are trimmed so as to exclude the lower-rate,
presumably specials trades, which reflect the idiosyncrasies of lending on
individual bond issues. In particular, the 25% of DVP repo trade volume
with the lowest rates are excluded from the data used to calculate SOFR.

Given all included transactions on a given day, SOFR that day is cal-
culated as the “volume-weighted median” rate. This means that SOFR is
determined such that 50% of the volume of loan amounts are at a lower
rate and 50% at a higher rate. Table 10.4 provides information about the
calculation of SOFR on May 14, 2021. From $865 billion of trades on that
day, SOFR is set to the volume-weighted median rate, which is one basis
point. Trades representing 50% of the volume – from the 25th to the 75th
percentiles – include rates between minus one and plus one basis point.

10.5 GC AND SPECIAL REPO RATES

This section discusses the interest rates on repo loans. Conceptually, there is
a distinct rate for every repo term and for every type of collateral: one rate
for overnight repo on investment-grade corporate collateral; another rate for
one-month repo on government-guaranteed mortgage-backed securities; etc.
There is, however, a benchmark repo rate, called “the GC rate,” which is the
overnight rate earned by lenders willing to accept any Treasury collateral.

Some insight into the determination of the GC rate can be gained by
comparing the effective federal funds rate (EFFR) with the GC rate. The
interbank EFFR is a highly creditworthy, overnight, unsecured rate, which
can be compared with the GC rate, a highly creditworthy, overnight, secured
rate. To this end, Table 10.5 shows percentiles of the differences between
effective fed funds and the GC rate, from January 2001 to July 2021.

The median, or 50th percentile, of the difference is one basis point. It
is not surprising that an overnight unsecured rate, EFFR, tends to be above
an overnight secured rate, GC. It is also not surprising that the spread is
relatively small, because, as an overnight rate between banks, EFFR is a rate
on a very high-quality loan. What is surprising and instructive, however,
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TABLE 10.5 Percentiles of Daily Spreads of the
Federal Funds Effective Rate over the General
Collateral Treasury Repo Rate, from January 2,
2001, to July 12, 2021. Spreads Are in Basis Points.

Percentile Spread

0.5 −37.4
5.0 −13.0

25.0 −4.0
50.0 1.0
75.0 5.0
95.0 15.0
99.5 112.6

Sources: Federal Reserve Bank of New York; Bar-
clays Capital; and Author Calculations.

is by how much these two rates can diverge, in either direction. The 95th
percentile of the spread, for example, has EFFR 15 basis points above GC,
while the 5th percentile has EFFR 13 basis points below GC. And at greater
extremes, for the 0.5 and 99.5 percentiles, EFFR is 113 basis points above
and 37 basis points below GC, respectively.

To explore these large deviations, Figure 10.8 graphs the EFFR–GC
spread over time. There are five particularly large and sudden increases in the
GC rate, which result in large, negative spreads. In general, these episodes
are all manifestations in the Treasury repo market of a relatively desperate
need to raise cash and a willingness to pay high rates to do so. The first was
in September 2001, shortly after the terrorist attack on the World Trade
Center. Damage to infrastructure in downtown New York City temporarily
disrupted the normal flow of funds and sent market participants, including
banks, scrambling for cash. Liquidity provision by the Federal Reserve and
infrastructure repair restored market order in a couple of weeks.

The next events, September 30, 2016, and December 31, 2018, are
at quarter end and year end, respectively. Many market participants are
believed to engage in “window dressing” at the end of reporting periods,
possibly to impress investors and possibly to meet various regulatory
requirements. This entails temporary measures such as increasing liquidity
and cutting back on loans, which, if prevalent enough, push up repo
rates as borrowers hunt for cash among willing lenders. Quarter- and
year-end market disruptions have become less frequent over the decades,
as the Federal Reserve has successfully anticipated and accommodated the
resulting scarcities of cash. As the two highlighted events suggest, however,
quarter- and year-end disruptions are not extinct.
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F IGURE 10.8 Daily Spreads of the Federal Funds Effective Rate over the General
Collateral Treasury Repo Rate, from January 2, 2001, to July 12, 2021. Sources:
Federal Reserve Bank of New York; Barclays Capital; and Author Calculations.

Continuing with the next negative spread events in Figure 10.8, in
September 2019, a number of cash-draining incidents happened at about
the same time: quarterly corporate tax payments; settlement of newly
issued Treasuries; and a holiday in Japan, which temporarily sidelined some
Japanese investors in US repo. But the magnitudes of these incidents seem
small relative to the realized cash scarcity and to the Federal Reserve’s
subsequent large and long-lasting injections of liquidity. Furthermore, banks
did not lend to take advantage of the resulting abnormally high repo rates
despite having significant reserves. Another, though smaller, negative spread
event occurred in March 2020, when banks also refrained from lending
at seemingly advantageous rates and from purchasing seemingly mispriced
Treasuries, which was the larger dislocation at the time. The reluctance of
banks to commit funds during these market dislocations is discussed later
in the chapter.

In addition to large negative spreads, Figure 10.8 shows several instances
of very large positive spreads, particularly through the financial crisis of
2007–2009. The two largest such events were in the second half of August
2007, which marked the beginning of the subprime mortgage crisis, and
mid-September 2008, when Lehman Brothers filed its bankruptcy. During
credit events, when market participants worry about each other’s ability to
satisfy their obligations, there is a rush out of risky assets and into safe assets,
including GC repo. As a result, GC repo rates decline and the EFFR-GC
spreads become large.
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TABLE 10.6 Treasury Special Spreads, as of May 27, 2021. Entries Are in Basis
Points.

2yr 3yr 5yr 7yr 10yr 20yr 30yr

On-the-Run 5 1 13 9 3 2 4
Old 2 2 2 1 11 2 12
Double-Old 2 10 6 8 10 2 3
Triple-Old 2 12 2 3 3 2 2

Source: Citi.

Having completed an overview of the GC rate, the discussion turns to
special rates, the rates earned on loans when particular bonds are required
as collateral, usually to facilitate short sales. While any bond can “trade
special,” that is, be required as collateral in a special repo trade, the most
common specials in the US repo market are recently issued Treasuries bonds.
As mentioned in earlier chapters, the most recently issued Treasuries tend to
be the most liquid, and, for this reason, often trade at a premium to otherwise
similar bonds. Similarly, market participants who want to short bonds prefer
to trade in these bonds and are willing to pay to do so. And the way they
pay more to short these bonds is to lend at a relatively low repo rate when
taking these bonds as collateral.

The special spread of a bond to a given term is defined as the differ-
ence between the GC rate and the special rate on that bond to that term.
Table 10.6 shows the overnight special spreads of various recently issued
bonds. The on-the-run (OTR) bond of each maturity is the most recently
issued bond of that maturity, the old bond is the second most recently issued,
and so forth. The overnight special rate for the on-the-run five-year bond,
for example, is 13 basis points below the GC rate, while the old 10-year
special rate is 11 basis points below GC. The special spread for each bond
is idiosyncratic and time varying, depending on supply and demand for that
bond as collateral, which, by the way, often involves a different set of market
participants than the supply and demand for sale or purchase of the bond
outright. Despite the idiosyncratic nature of special spreads, more can be
said about them in terms of the Treasury auction cycle.

Figure 10.9 graphs the overnight special spread of the OTR 10-year
Treasury note over time. Recall from Chapter O that a new 10-year note is
issued every February, May, August, and November and is reopened after
one month and again after two months. The special spreads in the figure,
therefore, correspond to different bonds as new 10-year notes are issued.
The dotted, vertical, gray lines mark the dates of these new issues; the solid,
gray lines mark their first reopenings; and the dashed, gray lines mark
their second reopenings. The first lesson from the figure is that, as men-
tioned in the previous paragraph, the behavior of the special spread is very
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F IGURE 10.9 On-the-Run 10-Year Treasury Special Spread. Sources: Barclays Cap-
ital; and Author Calculations.

idiosyncratic: some OTR 10-year notes become very special, and some do
not.8 The second lesson is that the OTR notes tend to become particularly
special into their first reopening. Of the bonds shown in the graph, only
one clearly violates this rule: its specialness peaks in January 2021, which
corresponds to its second reopening.

Figure 10.10 describes the average behavior of special spreads over the
auction cycle from November 2008, when the Treasury auction cycle first
settled into quarterly issuance and monthly reopenings, through July 2021.
This period of time spans the issuance of 51 10-year notes. The thick, black
line in the figure gives the average special spread across these 51 notes as
a function of the number of days to the first reopening. For example, with
13 days to the first reopening, the average special spread across the 10-year
notes in the sample is 85 basis points. The thick, dark gray line in the figure
gives the average special spread as a function of the days to the second
reopening, and the thick, light gray line gives the average special spread as
a function of the days to the next new issue.9

8The extremely large special spreads in March 2020 actually entail negative special
rates. Since May 2009, there has been a penalty for failing to deliver bonds that had
been sold at a rate equal to the maximum of zero and the difference between 3% and
the fed funds rate. Therefore, traders can be willing to lend cash at negative rates to
borrow bonds so as to avoid failing to deliver and so as to avoid the penalty.
9More precisely, the number of days is to the settlement date of the bonds sold at the
first reopening, second reopening, or new issue.
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2021. Sources: Barclays Capital; and Author Calculations.

The figure shows that, on average, the special spread is relatively low
right after an auction, but then increases into the next auction. Furthermore,
the increase into the first reopening is highest, reaching 156 basis points the
day before the first reopening. The increase into the second reopening is
smaller, reaching 48 basis points the day before the second reopening. And
the increase into the new issue is smallest, reaching less than 20 basis points
in the days before the new issue.

The market behavior behind these results is as follows. When a note is
first issued, the previously issued note is still the most liquid in the matu-
rity range and the most popular choice as a short. As the first reopening
approaches, two things happen. First, liquidity shifts from the previously
issued note to the new OTR note. Second, dealers increase shorts in the
OTR note to hedge their market-making purchases of notes issued in the
next auction. This segment of short demand disappears just after the first
reopening but builds up again into the second reopening. The special spread
does not increase as much as into the first reopening, however, because the
supply of the OTR notes is now significantly larger. The cycle then repeats
once more, into the issue of the next OTR note, but the supply of the current
OTR notes is now too large for the special spread to increase by very much.

While the story in the previous paragraph describes average behavior,
Figure 10.9 illustrates how the behavior of special spreads varies across
bond issues. Figure 10.10 emphasizes this point by showing, with dotted
lines around the averages, two-standard-deviation confidence intervals. For
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example, while the average special spread of an OTR 10-year one day
before its first reopening is 156 basis points, the two-standard-deviation
range around that average is from 116 to 196 basis points.

To conclude the discussion of special spreads, recently issued bonds can
command a price premium not only because they are relatively liquid but
also because they have value as collateral in the repo market. Put another
way, not only can holders of recent issues trade out of their holdings easily,
but they can borrow money cheaply by posting these issues as collateral. In
fact, along the lines of Figure 10.10, traders can model the special spread
of an individual issue over time and thereby estimate the value, over its life,
which arises from its expected repo specialness.

10.6 L IQUID ITY MANAGEMENT AND CURRENT
REGULATORY ISSUES

A financial institution can borrow funds in many ways, some of which are
more stable than others, that is, some of which can be easily maintained
under financial stress and some of which cannot. The most stable source of
funds is equity capital, because equity holders do not have to be paid on
any schedule and because they cannot compel a redemption of their shares.
Slightly less stable is long-term debt, because bondholders are paid interest
and principal as set out in bond indentures. At the other extreme of funding
stability is short-term unsecured funding, like commercial paper: these bor-
rowings have to be repaid in a matter of weeks or months, as they mature,
when the institutions, under adverse conditions, might not be able to bor-
row money elsewhere. Not surprisingly, the more stable sources of funds
are usually more expensive in terms of the expected return required by the
providers of funds. Through liquidity management, firms balance the costs
of funding against the risks of finding themselves without enough funding
to survive.

In the spectrum of financing choices, repo borrowing is cheap, but rel-
atively unstable. This instability is evident with respect to short-term repo
on credit-sensitive and relatively illiquid assets. In times of financial stress,
many market participants sell these low-quality assets, both to reduce risk
and to raise liquidity. Meanwhile, in the repo market, lenders both raise hair-
cuts and reduce lending on low-quality collateral. This makes it difficult for
repo sellers of that collateral – like trading desks funding inventory or hedge
funds leveraging trades – to raise cash. And if it turns out that they cannot
find sufficient funding, they might be forced to unload their holdings in fire
sales that result in significant losses.

The instability of repo borrowing on high-quality collateral, like Trea-
suries, is less evident. Before the financial crisis of 2007–2009, it was widely
believed that a firm could always fund its Treasuries. First, in times of stress,
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lenders are looking for liquid and safe investments. Second, even if the cred-
itworthiness of the cash borrower is called into question, the cash lender has
Treasury collateral, which, if necessary, can be liquidated relatively easily.
The financial crisis dispelled this complacency. Lenders sought to minimize
their connections to troubled financial institutions, including their buying of
Treasury repo. While they could, indeed, legally liquidate those Treasuries
in the event of a default, the timing and manner of their doing so could be
questioned in bankruptcy proceedings and could drag them into years of
litigation.

The financial crisis of 2007–2009 found many financial institutions with
highly leveraged positions in mortgage-related assets. As these assets lost
value, an overreliance on wholesale funding,10 from various forms of com-
mercial paper to repo, accelerated the onset of distress. In response, the bank
regulatory regime has changed in ways that significantly impact repo partic-
ipants and markets.

First, banks have become subject to liquidity ratios, namely, the liq-
uidity coverage ratio (LCR) and the net stable funding ratio (NSFR). The
LCR requires that banks hold enough high-quality, liquid assets (HQLA) to
meet net cash outflows over a 30-day stress scenario. Reserves held in the
Federal Reserve System and Treasuries receive full credit as HQLA, while
lower-quality assets may fulfill part of the requirement at a haircut. The
NSFR requires that bank funding of relatively illiquid assets be stable over
a one-year horizon. The direct and intended effect of these ratios is to limit
the amount of short-term, wholesale funding, including repo. Less directly
and perhaps less intended, regulators’ implementation of the LCR, combined
with their additional stress tests of bank liquidity, have pushed banks to rely
heavily on reserves to satisfy HQLA requirements.11 This implies that regu-
lation, as currently implemented, discourages using reserves to lend money
and take Treasury collateral.

Second, banks have become subject to a leverage ratio, called the sup-
plementary leverage ratio (SLR) in the United States. Unlike risk-based cap-
ital requirements, which require banks to hold capital in proportion to the
perceived risks of their assets, the leverage ratio requires that bank capi-
tal exceed a certain percentage of the value of all assets, regardless of risk.
But penalizing large positions regardless of risk discourages large repo posi-
tions, which have very little risk per dollar and commensurately low return
per dollar. Consider, for example, a matched book business in Treasury repo,

10The term wholesale funding refers to funding provided by institutional, profes-
sional, and particularly sophisticated investors, in contrast with retail funding, like
deposits.
11See, for example, Nelson, B., and Covas, F., (2019), “Bank Regulations and Tur-
moil in Repo Markets,” Bank Policy Institute, September 26.
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mentioned previously, which lends and borrows money on Treasury collat-
eral. This market-making business in extremely safe transactions can make
money and cover fixed costs only in large size, but the leverage ratio discour-
ages size.

These two sets of rules may have been partly responsible for the afore-
mentioned September 2019 and March 2020 episodes in which banks did
not use their abundant reserves to lend in the Treasury repo market at abnor-
mally high rates. Or, put another way, regulators are still calibrating the
necessary quantity of reserves in the context of a relatively new regulatory
regime. In fact, one of the ways the Federal Reserve and other regulators
addressed the March 2020 disruption was to exclude reserves and Treasuries
from the SLR temporarily, from May 15, 2020, to March 31, 2021.

10.7 CASE STUDY: MF GLOBAL’S
REPO-TO-MATURITY TRADES

In March 2010, MF Global was a broker–dealer and futures commission
merchant, in the business of making markets in exchange-traded and
over-the-counter derivatives.12 Experiencing poor performance, in partic-
ular, a fiscal-year loss of $195 million in its core businesses, the company
hired Jon Corzine as CEO. Corzine worked for Goldman Sachs from 1976
to 1999 and was chair and CEO from 1994 to 1999. He was a US senator
from New Jersey from 2001 to 2006 and the governor of New Jersey from
2006–2010.

Corzine was told by the ratings agencies that MF Global would need to
increase earnings to avoid a ratings downgrade, with Moody’s specifying a
target of between $200 million and $300 million pretax annual profits by
September 30, 2011. Faced with this timeline, and pursuing part of a larger
vision for the company, Corzine focused on proprietary trading and discov-
ered a particularly attractive opportunity in European government bonds.

Europe was in the throes of its sovereign debt crisis, with rising concerns
about the solvency of countries in weaker fiscal positions. As one way of
dealing with the situation, the European Union created the European Finan-
cial Stability Facility (EFSF), in which all of the countries in Europe, as of
May 2010, essentially guaranteed each other’s debt until the end of June
2013.

12This account draws heavily on Skyrm, S. (2013), The Money Noose, Brick Tower
Press; and Freeh, L. (2013), “Report and Investigation of Louis J. Freeh,” United
States Bankruptcy Court for the Southern District of New York. The case also
appears in the broader context of liquidity risk management in Tuckman, B. (2017),
“Survive the Droughts, I Wish You Well: Principles and Cases of Liquidity Risk Man-
agement,” Financial Markets, Institutions & Instruments.



Trim Size: 6in x 9in Tuckman835554 c10.tex V1 - 07/12/2022 6:10pm Page 244�

� �

�

244 FIXED INCOME SECURITIES

TABLE 10.7 European Short-Term Government Bond
Rates, as of December 2010. Rates Are in Percent.

Country Short-Term Bond Rate

Germany 0.70
Italy 2.25
Spain 3.32
Portugal 4.50
Ireland 6.00

In this setting, Corzine proposed repo-to-maturity (RTM) trades in the
short-term bonds of the weaker European sovereigns. More specifically, MF
Global would buy the short-term debt of the weaker sovereigns and sell
repo to the maturity of the bonds. Table 10.7 gives the prevailing rates
on short-term government bonds at that time. Term repo rates on these
bonds were essentially risk-free rates, and approximately equal to Germany’s
short-term bond rate. Furthermore, haircuts on European sovereign repo
were about 3%. Hence, in these RTM trades, MF Global could earn the
rates in Table 10.7 on its bond purchases, funded at a repo interest rate cost
of about 0.70%.

These RTM trades were designed to minimize risk. First, no invest-
ments were to be made in the government bonds of Greece, the weakest
sovereign at the time. Second, by investing in short-term bonds only, specif-
ically those that mature before the earliest possible expiration of the EFSF
in June 2013, default risk was minimal: bondholders would lose principal
only if Europe as a whole reneged on its EFSF commitments, which was
considered extremely unlikely. Third, by selling the repo to the maturity of
the bonds, there was no risk of losing funding in the middle of the trade.13

Funding the trades with overnight repo, by contrast, runs the risk that fun-
ders refuse to roll as sovereign creditworthiness deteriorates and prices fall.
In that scenario, instead of realizing the full principal amount at maturity,
MF Global could be forced into selling the bonds early at a loss in order to
pay off the repo loans.

The RTM trades were also attractive from an accounting perspective.
Assume that MF Global owns a bond today. Then, by selling the repo today,
the firm receives money today and extinguishes future cash flows: the bond’s
principal payment at maturity is used to pay off the repo loan. By this rea-
soning, accounting rules at the time regarded selling the repo as equivalent
to selling the bond today. Therefore, when MF Global bought a bond and

13The repo term was actually two days before maturity, a detail not discussed further
in the text.
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sold the repo, it could immediately book the profits from the trade (i.e., the
difference between the bond coupon and repo interest) and did not have to
disclose the trades to investors. The immediate booking of profit was par-
ticularly appealing to Corzine, who was under pressure to show earnings to
the rating agencies. But the failure to disclose the trades would contribute to
the firm’s problems later on. In any case, MF Global quickly grew its posi-
tion in RTM trades, from which it booked $15 million in profits in the third
quarter of 2010; $47 million in the fourth quarter; $25 million in the first
quarter of 2011; and more than $38 million in the second quarter.

MF Global’s risk manager, Michael Roseman, understood one signifi-
cant risk of the RTM trades. Had the repo counterparty been a dealer, the
haircut would likely have been fixed over the term of the repo. There would
be variation margin calls, of course, but those are limited to restoring the
initial haircut. MF Global’s repo, however, was with the London Clearing
House (LCH), which has the right to change haircuts at any time. Rose-
man recognized that, if the sovereign credit situation worsened and LCH
increased haircuts, MF Global might not have enough cash on hand to stay
in the trades. That is, bonds might have to be sold at a loss to raise cash
to post as additional margin. He therefore supported a position limit of
$4.75 billion, because, at that size and at an assumed worst-case scenario of
average haircuts at 15%, MF Global would be able to meet future margin
requirements with readily available cash.

MF Global grew its RTM positions rapidly, reaching the $4.75 billion
limit by year-end 2010. MF Global wanted to increase its position further,
however, and fired Roseman at the end of January 2011. The trajectory of
MF Global’s position is shown in Figure 10.11. Positions increased dramat-
ically in 2011, reaching a peak of $11.5 billion in June. This peak position
included a significant volume of reverse RTM trades, in which MF Global
shorted French government bonds and loaned the proceeds in repo. These
reverse RTM trades were expected to reduce margin requirements and the
volatility of variation margin calls, because, to the extent that the prices of
weaker sovereign bonds and French bonds move together, changes in the
collateral value of the weaker sovereigns posted by MF Global are offset
by changes in the collateral value of French bonds held by MF Global. To
the extent that weaker sovereign bond prices fall more than French bonds,
of course, the reverse RTM trades do not hedge the RTM trades. And, in
any case, the reverse RTM trades do not reduce the risk of repo haircuts
increasing for the weaker sovereigns.

Along with MF Global’s position size, Figure 10.11 shows haircuts
over time for repo on the bonds of two of the more challenged European
sovereigns, namely, Ireland (IE) and Portugal (PT). Haircuts were increased
several times, from 3%, when MF Global first put on its trades, to 80%
in July 2011. In other words, for these sovereigns, required margin on a
repo of 100 of collateral value rose from 3 to 80. These dramatic increases
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F IGURE 10.11 MF Global Repo-to-Maturity Positions and Margin.

TABLE 10.8 MF Global Repo-to-Maturity Positions and Margin.

Position Margin Margin
Date ($billions) ($millions) (%)

06/06/11 >=5.8 170 2.9
06/20/11 11.5 550 4.8
09/30/11 6.3 417 6.6
10/27/11 6.3 665 10.6

Source: Skyrm, S. (2013), The Money Noose, Brick Tower Press.

in margin were likely due partially to deteriorating sovereign credits and
partially to the size and perceived precariousness of MF Global’s position.

The cash implications for MF Global are summarized in Table 10.8,
which shows – across all sovereigns – RTM positions, dollar margin, and per-
cent margin over time. As position size increased to its peak in June 2011, the
percent margin rose somewhat from its initial value. From then on, however,
as LCH raised haircuts on the weaker sovereigns, the percent margin kept
increasing despite MF Global’s having reduced positions dramatically. Cor-
respondingly, the dollar margin required for a position of about $6 billion
increased from $170 million in early June to $665 million in late October.
The table also shows that MF Global would have done well to stay within
Roseman’s position limit, which was sustainable even if average haircuts
increased to 15%.
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In the second and third quarters of 2011, problems in addition to the
cash drain from rising haircuts caused counterparties and creditors to with-
draw support from MF Global. First, regulators and accountants decided
that selling repo did not constitute the sale of a bond.14 This change led
regulators to increase MF Global’s capital requirements significantly and
forced MF Global to disclose its RTM positions, which, in the midst of the
European sovereign debt crisis, surprised the market unfavorably. Second,
MF Global lost $192 million in its core businesses, that is, unrelated to the
RTM trades. MF Global was downgraded to below investment grade, and
it filed for Chapter 11 at the end of October 2011.

MF Global lost over $400 million in the liquidation of its RTM posi-
tions, a huge number relative to the profits given earlier. Particularly pro-
voking is the fact that 50% of the RTM portfolio, and, for example, over
90% of its position in Italian sovereign bonds, matured within two months
of the bankruptcy. And, as shown in Figure 10.11, haircuts on Ireland and
Portugal sovereign bond repo fell back to 15% by the end of November. In
short, had MF Global sized its position to account for the financing risk of
increased haircuts, it might have profited rather than have been destroyed
by its RTM trades.

14This change was partly because the repo expired two days before the expiration of
the bond, as mentioned in footnote 13.
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CHAPTER 11
Note and Bond Futures

Futures on government bonds are among the most liquid fixed income
products around the world, used to hedge interest rate risk and to take

positions on changes in bond prices. Figure 11.1 shows how the total DV01
traded across all US Treasury bonds and futures is divided across instru-
ments.1 By this metric, the 10-year note futures contract is the single instru-
ment with the greatest volume, and volumes traded in other futures contracts
rival those of on-the-run Treasury securities. Futures contracts are appealing
because of their liquidity, and also because relatively little cash is required to
establish sizable positions. The US Treasury futures discussed in this chapter
trade on the CBOT (Chicago Board of Trade), which is part of the CME
Group.

A forward contract on a bond is an agreement that fixes the price at
which a bond is to be bought and sold on some future date. Forward con-
tracts on bonds are rarely traded in the United States, because, as is shown
next, the same economics can be achieved by trading bonds and repo. Under-
standing forward contracts is important, however, because futures are essen-
tially forwards with the complexities of daily settlement and various delivery
options. This chapter, therefore, first describes forward contracts and then
adds these features of futures contracts. The exposition includes a discussion
of basis trades, in which futures are traded against synthetic forward bond
positions, and the chapter concludes with a case study about basis trades
through the volatility of March 2020, at the start of the COVID pandemic
and economic shutdowns.

For concreteness in explaining concepts, this chapter focuses on the
10-year US Treasury note contract. Other US bond futures are similar, as
are many government bond futures around the world. Contracts on UK and
Chinese government bonds, for example, are particularly similar to those

1This graph is Figure 1 of Baker, L., McPhail, L., and Tuckman, B. (2018), “The
Liquidity Hierarchy in the US Treasury Market,” Commodity Futures Trading Com-
mission, December 3.

249
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F IGURE 11.1 Percent of Total DV01 Traded in US Treasury Bonds and in US Trea-
sury Note and Bond Futures, by Instrument, from July 10, 2017, to June 1, 2018.
“Fut” Denotes Futures Contracts on Bonds of Various Maturities; and “U30yr
Fut” and “U10yr Fut” Are the “Ultra” 30- and 10-year Futures Contracts. “OTR”
Denotes the On-the-Run or Most Recently Issued Treasury Bond at a Given Matu-
rity; “Old” Denotes the Next Most Recent; and “Dbl Old” Denotes the Most Recent
After the Old. “CTDs” Denote the Cheapest-to-Deliver Bonds into Futures Con-
tracts. “Other Cash” Denotes All Other Treasury Bonds.

in the United States in that they embed both quality and timing options.
Contracts on government bonds in Europe and Japan are also similar, but
simpler, in that they do not have a timing option.

Appendix A11.2 outlines the pricing of forward and futures contracts
on bonds in a term structure model.

11.1 FORWARD CONTRACTS AND FORWARD
PRICES

In a forward bond contract, the counterparties agree on a price at which to
trade a bond at some time in the future. Consider a forward contract, traded
on May 14, 2021, to purchase $100,000 face amount of the US Treasury
2.875s of 05/15/2028 for 109.72 on September 30, 2021. In this example,
the initiation or trade date is May 14, 2021; the underlying security is the
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TABLE 11.1 A Forward Contract on the US Treasury 2.875s of 05/15/2028.

Underlying Security 2.875s of 05/15/2028
Principal Amount $100,000
Trade Date 05/14/2021
Spot Settlement Date 05/17/2021
Spot Price 110.77344
Accrued Interest, Spot Settlement (2/184 days) 0.01562
Forward Settlement Date 09/30/2021
Accrued Interest, Forward Settlement (138/184 days) 1.07813
Repo Rate to Forward Settlement Date 0.015%
Days from Spot to Forward Settlement 136

Forward Price 109.71721

2.875s of 05/15/2028; the forward date, expiration date, delivery date, or
maturity date is September 30, 2021; and the forward price is 109.72. The
counterparty committing to purchase the bond on the forward date is the
buyer of the contract and is long the forward, while the counterparty on the
other side is the seller of the contract and is short the forward. Table 11.1
summarizes the terms of this forward trade and gives other data that are
used presently.

By definition, the forward price is such that the buyer and seller are
willing to enter into the forward agreement without any exchange of cash.
This implies that the initial value of the forward contract is zero. Over time,
however, the value of the forward position may rise or fall. Continuing with
the example, say that, just after the agreement was struck, the market for-
ward price increases to 110. The contract to buy the bond at 109.72 now
has positive value to the buyer and negative value to the seller. The buyer
could immediately sell the bond through a new forward contract at 110,
which makes the contract worth 110 − 109.72, or 0.28, as of 09/30/2021,
or the present value of 0.28 as of today. The seller of the original contract,
however, having locked in a forward price of 109.72, would have to pay the
buyer to exit the contract. In any case, note that the “value of a forward
contract” denotes the value of an existing contract under current market
conditions, while the “forward price” denotes the price at which the under-
lying bond is to be traded on the forward date.2

2This terminology can be confusing because it differs from that of spot settlement.
Most notably, the “value of a bond” is typically used interchangeably with the “bond
price.”
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Coupon Date

11/15/21

Trade Date

05/14/21

Spot Settlement Date

05/17/21

05/15/21
Coupon Date

184 days (05/15 to 11/15)

Forward

Date

09/30/21

136 days (05/17 to 09/30)

F IGURE 11.2 A Forward Contract on the US Treasury 2.875s of 05/15/2028.

Forward bond prices can be determined by arbitrage arguments. To
demonstrate, consider the following strategy in the context of the example,
using the data in Table 11.1 and referring to the timeline in Figure 11.2:

On May 14, 2021:

■ Buy $100,000 face amount of the 2.875s of 05/15/2028 for 110.77344
plus accrued interest of 0.01562, for settlement on May 17, 2021, for
an invoice price of 110.78906 and a dollar invoice of $110,789.06.

■ Sell the repo to the forward date, that is, borrow $110,789.06 from May
17, 2021, to September 30, 2021, at the repo rate of 0.015%, and post
the 2.875s of 05/15/2028 as collateral.

■ Note: no cash is generated or required on this date.

On September 30, 2021:

■ Repay the repo loan, now grown to 110,789.06 × (1 + 0.015% ×
136∕360) = $110,795.34.

■ Take back the $100,000 face amount of the 2.875s of 05/15/2028.
■ Note: the bonds have effectively been purchased at a full price of

110.79534, which, after subtracting the accrued interest of 1.07813 as
of this date, equates to a flat price of 109.71721.

This strategy buys the bond and sells the repo, which establishes a posi-
tion equivalent to a long forward and, therefore, is called a synthetic forward
position: there is no cash flow on the trade date and the bond is effectively
purchased on the forward date. By arbitrage, therefore, the forward price,
that is, the price at which the bond is bought through the forward contract,
must equal the price at which the bond is bought through this synthetic
forward, that is, 109.71721. More formally, if the forward price, F, were
greater than 109.71721, an arbitrageur could sell the forward at F and buy
the bond forward through the strategy at 109.71721, thus locking in a risk-
less profit of F − 109.7172 as the forward date. Similarly, if F were less
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than 109.71721, the arbitrageur could buy the forward and sell the bond
forward through the strategy to lock in a riskless profit of 109.71721 − F.
Hence, the only forward price consistent with no arbitrage opportunities is
= 109.71721.

Algebraically, the full forward price can be written as,

109.71721 + 1.07813 = (110.77344 + 0.01562)
(

1 + 0.015% × 136
360

)

(11.1)

In words, the full forward price equals the future value of the full spot price
to the forward delivery date at the bond’s repo rate.

The derivation of the arbitrage-free forward price requires an extra step
when there is an intermediate coupon payment, that is, a coupon payment
between the spot and forward settlement dates. To illustrate, consider a for-
ward contract on the 1.125s of 02/15/2031 over the same dates as the previ-
ous example, except, of course, the coupon payment dates differ. Table 11.2
and Figure 11.3 give the data for this example.

To replicate this long forward contract, implement the following
strategy:

On May 14, 2021:

■ Buy $100,000 face amount of the 1.125s of 02/15/2031 for 95.50781
plus accrued interest of 0.28280, for settlement on May 17, 2021, for
an invoice price of 95.79061 and a dollar invoice of $95,790.61.

■ Sell the repo to the forward date, that is, borrow $95,790.61 from May
17, 2021, to September 30, 2021, at the repo rate of 0.015%, and post
the 1.125s of 02/15/2031 as collateral.

TABLE 11.2 A Forward Contract on the US Treasury 1.125s of 02/15/2031.

Underlying Security 1.125s of 02/15/2031
Principal Amount $100,000
Trade Date 05/14/2021
Spot Settlement Date 05/17/2021
Spot Price 95.50781
Accrued Interest, Spot Settlement (91/181 days) 0.28280
Forward Settlement Date 09/30/2021
Accrued Interest, Forward Settlement (46/184 days) 0.14063
Repo Rate to Forward Settlement Date 0.015%
Days from Spot to Forward Settlement 136

Forward Price 95.09290
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Coupon Date

02/15/22

Spot

Settlement Date

05/17/21

Trade

Date

05/14/21

Coupon Date

02/15/21
Coupon Date

08/15/21

184 days (08/15/21 to 02/15/22)

91 days

(02/15 to 05/17)

181 days (02/15 to 08/15)

46 days

(08/15 to

09/30)

136 days (5/17 to 9/30)

90 days

(05/17 to 08/15)

Forward

Date

09/30/21

F IGURE 11.3 A Forward Contract on the US Treasury 1.125s of 02/15/2031.

■ Note: no cash is generated or required on this date.

On August 15, 2021:

■ Use the bond’s coupon payment of $100,000 × 1.125%∕2 = $562.50
to reduce the repo borrowing. More specifically, over the 90 days
from May 17, 2021, to August 15, 2021, the repo loan balance grows
to $95,790.61(1 + 0.015% × 90∕360) = $95,794.20. Reducing this
balance by the coupon payment leaves a balance of $95,231.70.

■ Note: no cash is generated or required on this date.

On September 30, 2021:

■ Repay the repo loan, which, over the period August 15, 2021, to
September 30, 2021, grows to 95,231.70 × (1 + 0.015% × 46∕360) =
$95,233.53.

■ Take back the $100,000 face amount of the 1.125s of 02/15/2031.
■ Note: the bonds have effectively been purchased at a full price of

95.23353, which, subtracting the accrued interest of 0.14063 as of this
date, equates to a flat price of 95.09290.

Algebraically, then, the full forward price of the 1.125s of 02/15/2031,
95.23353 can be written as,

95.23353 =
[
(95.50781 + 0.28280)

(
1 + 0.015% × 90

360

)
− 1.125

2

]

×
(

1 + 0.015% × 46
360

)
(11.2)
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Rearranging terms, and noting that the product of two interest rates is typ-
ically very small, gives the following approximation,

95.23353 ≈
⎡⎢⎢⎢⎣
(95.50781 + 0.28280) −

1.125∕2(
1 + 0.015%×90

360

)
⎤⎥⎥⎥⎦

×
(

1 + 0.015% × 136
360

)
(11.3)

In words, in the case of an intermediate coupon, the full forward price
approximately equals the future value to the forward date of the full spot
price less the present value of the coupon payment. More generally, were
there more than one intermediate coupon payment, the full forward price
would approximately equal the future value of the full spot price minus the
present values of all those intermediate coupons.

In both of these examples, forward bond prices are less than spot prices:
for the 2.875s of 05/15/2028, the forward price of 109.72 is less than the
spot price of 110.77, and for the 1.125s of 02/15/2031, the forward price
of 95.09 is less than the spot price of 95.51. This relationship is typical and
is commonly known as the forward drop.

To understand the intuition behind the forward drop, imagine that a
trader has funds equal to the spot price and wants to own the bond as of the
forward date. There are two possible strategies, which, by arbitrage, have to
be equally appealing: i) use the funds to buy the bond spot and earn coupon
interest to the forward date; and ii) buy the bond forward and invest the
funds at the repo rate. If the coupon interest from strategy i) exceeds the repo
interest from strategy ii), then the two strategies can be equally appealing
only if the forward price is less than the spot price. But coupon interest
on bonds typically does exceed the repo rate, because the term structure of
interest rates is typically upward sloping. Hence, the forward price is usually
less than the spot price, and there is usually a forward drop. Of course, if the
repo rate exceeds the coupon rate, the argument reverses, and the forward
price exceeds the spot price.

Consistent with this intuitive discussion, Appendix A11.1 shows that
the forward drop of a bond approximately equals the difference between the
interest earned on the bond and the cost of financing its purchase from the
settlement date to the forward date. Following the terminology of Chapter 3,
then, in which this difference is called cash carry, it follows that the for-
ward drop approximately equals cash carry, or, in the jargon of forward
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and futures markets, simply “carry.” This point is illustrated here for these
two examples. For the 2.875s of 05/15/2028, the difference between the spot
and forward prices is 110.77344 − 109.71721, or about 1.06. At the same
time, because the bond earns an actual/actual 2.875% semiannual coupon
and finances at an actual/360 repo rate of 0.015%, the difference between
the interest earned and the financing cost is about the same: (2.875∕2) ×
136∕184 − 0.015 × 136∕360 = 1.06. For the 1.125s of 02/15/2031, the for-
ward drop is 95.50781 − 95.09290, or 0.41. The difference between the
coupon interest and financing cost is about the same: (1.125∕2) × 136∕184 −
0.015 × 136∕360 = 0.41.

11.2 FORWARD BOND YIELD

As covered in Chapter 3, the yield to maturity of a bond is the single rate such
that discounting the bond’s cash flows at that rate, from spot settlement to
maturity, gives the bond’s (full) market price. The forward yield of a bond is
defined analogously as the single rate such that discounting the bond’s cash
flows from forward settlement to maturity by that rate gives the bond’s (full)
forward price.

Figure 11.4 diagrams the relationship between the spot yield, the repo
rate, and the forward yield, and Table 11.3 reports the spot and forward
yields of the 2.875s of 05/15/2028 and the 1.125s of 02/15/2031, which are
computed using Equation (A3.5) and the data given in the tables of previ-
ous section. As explained in that section, when the coupon rate exceeds the
repo rate, market prices align such that investors are indifferent between i)
buying a bond at its spot price, and ii) investing in repo to the forward date
and buying the bond at its lower, forward price. Figure 11.4 and Table 11.3
make the same point in terms of yield: investors are indifferent between i)
investing at the spot yield, and ii) investing in repo to the forward date and
then at the higher, forward yield. Put another way, the spot yield is a com-
plex weighted average of the relatively low repo rate and the relatively high
forward yield, where the weights reflect the lengths of the relative holding
periods, as indicated in Figure 11.4.

Repo

Rate Forward Yield

Forward

Settlement
Spot

Settlement

Bond

Maturity

Spot Yield

F IGURE 11.4 Spot Yields, Repo Rates, and Forward Yields.
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TABLE 11.3 Spot and Forward Yields for the US Treasury 2.875s of
05/15/2028 and 1.125s of 02/15/2031, as of May 14, 2021, for Spot
Settlement on May 17, 2021, and for Forward Settlement on
September 30, 2021. The Repo Rate is 0.015%. Yields Are in Percent.

Bond Spot Yield Forward Yield

2.875s of 05/15/2028 1.260 1.337
1.125s of 02/15/2031 1.625 1.693

11.3 THE INTEREST RATE SENSIT IV ITY OF A
FORWARD CONTRACT

What is the interest rate sensitivity or DV01 of a forward contract? With
respect to DV01, and with reference to Figure 11.4, should DV01 be com-
puted by shifting the spot yield, the forward yield, the repo rate, or some
combination of the three? Table 11.4 shows the DV01s of the forward con-
tracts in the examples of this chapter with respect to each of these rates. To
compute the DV01 with respect to the spot yield, shift the spot yield down
one basis point; calculate a new spot price; calculate a new forward price
using the new spot price; and take the difference between the new and origi-
nal forward prices. To compute the DV01 with respect to the forward yield,
shift the forward yield down by one basis point; compute a new forward
price using the new forward yield; and take the difference between the new

TABLE 11.4 DV01 Metrics for the Forward Prices of
the US Treasury 2.875s of 05/15/2028 and 1.125s of
02/15/2031, as of May 14, 2021, for Spot Settlement
on May 17, 2021, and Forward Settlement on
September 30, 2021. The Repo Rate Is 0.015%.

2.875s of 05/15/2028

Yield or Rate Shifted DV01

Spot Yield 0.0708
Forward Yield 0.0666

Repo Rate −0.0042

1.125s of 02/15/2031

Yield or Rate Shifted DV01

Spot Yield 0.0876
Forward Yield 0.0841

Repo Rate −0.0036
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and original forward prices. Finally, to compute the DV01 with respect to
the repo rate, shift the repo rate down by one basis point; compute a new
forward price using the new repo rate; and take the difference between the
new and original forward prices.

The DV01s of the two bonds with respect to the spot yields are con-
sistent with their respective maturities of 7.0 and 9.75 years. The DV01s
with respect to the repo rates are negative and small. They are negative,
because – from the determination of the forward price in Equation (11.1),
(11.2) or (11.3) – the forward price increases as the repo rate increases. And
they are small, because the term of the underlying repo between the spot
and forward settlement dates is 136 days, or a bit more than 0.37 years.
Finally, the DV01s with respect to the forward yields can be understood as
follows. A long forward position is equivalent to a long spot position and a
short – borrowing cash – repo position. Therefore, the DV01 with respect to
the forward yield is the sum of the (positive) DV01 with respect to the spot
rate and the (negative) DV01 with respect to the repo rate.

Return now to the question of which of these DV01s should be used,
keeping Figure 11.4 in mind. If the spot yield changes while the repo rate
is constant, then a shift of the spot yield curve makes sense. If the spot
yield and repo rate change together, by the same amount, then a shift of
the forward yield makes sense. Taking this thinking a step further, some
practitioners – recognizing the empirical regularity that longer-term rates
are more volatile than shorter-term repo rates – assume that the repo rate
changes by a fixed percentage of the spot yield change. At a percentage of
30%, for example, the DV01 of the forward contract is estimated as 30%
times the (negative) DV01 with respect to the repo rate plus the (positive)
DV01 with respect to the spot yield, which comes to 0.0695 for the forward
on the 2.875s of 05/15/2028 and 0.0865 for the forward on the 1.125s of
02/15/2031. Varying this percentage from 0% to 100%, of course, gives
estimates ranging from the DV01s given in Table 11.4 with respect to the
spot yields to those with respect to the forward yields, respectively. The best
approach, however, is to accept that the repo rate and long-term yields can
move independently and, therefore, to hedge in a two-factor framework.
Repo rate exposure should be hedged with other short-term, fixed income
instruments, and forward yield exposure should be hedged with longer-term
instruments.

11.4 MECHANICS OF US TREASURY NOTE
AND BOND FUTURES

As mentioned at the start of the chapter, futures and forwards are essen-
tially similar, in that they require the purchase or sale of bonds in the future,
but futures embed various delivery options and require daily settlement.
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TABLE 11.5 The Deliverable Basket into TYU1.

Conversion
Coupon Maturity Factor

2.875 05/15/28 0.8338
2.875 08/15/28 0.8286
1.250 04/30/28 0.7474
1.250 03/31/28 0.7474
3.125 11/15/28 0.8376
2.625 02/15/29 0.8039
2.375 05/15/29 0.7836
1.625 08/15/29 0.7320
1.750 11/15/29 0.7331
1.500 02/15/30 0.7105
0.625 05/15/30 0.6462
0.625 08/15/30 0.6382
0.875 11/15/30 0.6476
1.125 02/15/31 0.6577

To present this material, the text focuses on the 10-year US Treasury note
futures contract maturing in September 2021, with the symbol “TYU1.” The
“TY” is the code for the 10-year contract; “U” is the code for September;
and “1” denotes the last digit of the maturity year, here, 2021. The seller,
or short, of one contract commits to sell or deliver $100,000 face amount
of one of the deliverable Treasury notes listed in Table 11.5 at some time in
the delivery month, in this case, September 2021. The buyer, or long, com-
mits to buy or take delivery of $100,000 face amount of the Treasury note
chosen by the seller at the time chosen by the seller. It is the seller, there-
fore, that has these two delivery options: the quality option, which is the
option to choose which note to sell, or deliver, and the timing option, which
is the option to choose when in the delivery month to sell. There are, in
fact, two other delivery options, which are discussed later in the chapter: the
end-of-month option, which arises because the last trading day of the futures
contract (September 21, 2021, for TYU1) is seven business days before the
last delivery date (September 30, 2021, for TYU1); and the wild-card option,
which arises because the futures settlement price on a given day is set hours
before an intention to deliver has to be declared.

Once a seller has chosen which bond to deliver and when to deliver it,
the price at which the bond is sold is the futures price at the time of delivery
times the bond’s conversion factor, as listed in Table 11.5. These conversion
factors are fixed over the life of the futures contract. The reason for and
computation of conversion factors is discussed next. For now, to focus on
the mechanics, say that the futures price at expiration is 133.86. If the seller
delivers the 2.875s of 05/15/2028, with a conversion factor of 0.8338, the
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TABLE 11.6 Settlement Prices of TYU1, from May 10, 2021, to May 28,
2021, and the Daily Settlement to a Long Position of One Contract.
Changes Are in Ticks (32nds) and Daily Settlement Payments Are in
Dollars.

Daily
Date Price Change Settlement

05/10/2021 131–24
05/11/2021 131–19 −5 −156.25
05/12/2021 131–01 −18 −562.50
05/13/2021 131–10 9 281.25
05/14/2021 131–17+ 7.5 234.38
05/17/2021 131–15+ −2 −62.50
05/18/2021 131–16+ 1 31.25
05/19/2021 131–04 −12.5 −390.63
05/20/2021 131–19 15 468.75
05/21/2021 131−17+ −1.5 −46.88
05/24/2021 131–23+ 6 187.50
05/25/2021 132–02+ 11 343.75
05/26/2021 132–01 −1.5 −46.88
05/27/2021 131–25 −8 −250.00
05/28/2021 131–30 5 156.25

price received is 133.86 × 0.8338 = 111.61 per 100 face amount. If the seller
delivers the 1.125s of 02/15/2031, with a conversion factor of 0.6577, the
price received is 133.86 × 0.6577 = 88.04. Also, as with any bond sale, the
seller through a futures contract receives accrued interest as of delivery.

Futures contracts are subject to daily settlement. Throughout a trading
day, market forces determine futures prices, and, at the end of each day, the
exchange on which the futures trade determines a settlement price. For liq-
uid contracts, like Treasury futures, the settlement price is usually the last
traded price of the day. For some contracts, however, in exceptional circum-
stances, the exchange may substitute its judgment so that the daily settlement
price reflects the end-of-day market level. In any case, Table 11.6 reports
daily settlement prices for TYU1 from May 10, 2021, to May 28, 2021, per
100 face amount of the underlying bonds. Note that prices are reported in
terms of “ticks” or 32nds, so that 131-24 denotes a price of 131 + 24∕32,
or 131.75. Note too, that “+” means one half, so that 131-17+ denotes a
price of 131 + 17.5∕32, or 131.546875. The third column in the table shows
the change in the daily settlement price, also measured in ticks, so that the
settlement price fell by five ticks from May 10, 2021, to May 11, 2021.

The daily settlement feature of futures contracts requires that changes
in the price of the contract be settled daily. These daily payments, for a long
position of one contract in TYU1, are given in the last column of Table 11.6.
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From May 10, 2021, to May 11, 2021, for example, because the price of
TYU1 falls by five ticks (per 100 face amount), the buyer loses value and
must pay (5∕32)% × $100,000 = $156.25, which the exchange passes on to
the seller. From May 12, 2021, to May 13, 2021, on the other hand, the set-
tlement price increases by nine ticks, which means that the seller loses value
and must pay (9∕32)% × $100,000 = $281.25, which the exchange passes
on to the buyer. All futures market participants must post maintenance mar-
gin, usually in the form of a fixed number of dollars per contract, to protect
the exchange against their defaulting on daily settlement payments.

With these mechanics explained, the differences between forward and
futures contracts can be summarized as follows. First, forward contracts
require the purchase and sale of a particular underlying security on a par-
ticular date, while futures contracts give the seller the right to choose the
security (from a basket of deliverables) and to choose the date (in the deliv-
ery month). Second, the profit or loss from a forward contract is realized at
the expiration of the contract, while the profit or loss from a futures contract
is realized over time. Consider the futures prices in Table 11.6, which, over
the period, increase a total of six ticks, from 131-24 to 131-30. Were this a
forward contract, the buyer’s profit would have increased by six ticks as of
the expiration date, in this case, September 30, 2021. But because this is a
futures contract with daily settlement, the buyer receives these six ticks as
the price changes – some days receiving cash, some days paying cash, but
cumulatively, from May 10, 2021, to May 28, 2021, receiving a total of six
ticks. A related implication of this reasoning is that, as of May 28, 2021, the
forward contract has value – it is a claim on six ticks at expiration – while
the futures contract is worth zero – its value has already been fully paid. Put
another way, after the settlement payment on May 28, 2021, the buyer of
the futures contract on May 10, 2021, at 131-24 has a zero-value position,
as does a new buyer of the contract on May 28, 2021, at 131-30.3

11.5 PRIC ING AND HEDGING IMPLICATIONS
OF DAILY SETTLEMENT

Daily settlement has implications for the pricing of futures relative to for-
wards and for hedging using futures rather than forwards. This section con-
siders these two issues in turn.

3An historical reason for daily settlement is the mitigation of counterparty risk.
Because forwards can accumulate value over time, there can be significant expo-
sure to a counterparty default. With futures, by contrast, exposure is limited to one
daily settlement payment, because the contracts of a counterparty that defaults on a
settlement payment are canceled. However, with modern practice usually requiring
appropriate margin against forward contracts, the two types of contracts no longer
differ qualitatively with respect to counterparty risk.
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Consider a forward contract and a futures contract on the same, sin-
gle underlying bond, and assume for the moment that the initial forward
and futures prices are the same. From the discussion in the previous section,
changes in the prices of the forward contract are realized as profit and loss
(P&L) cumulatively, as of expiration, while changes in the prices of the
futures contract are realized as P&L daily. Which pattern of P&L realization
is preferable to the buyer of a contract?

Because bond prices increase when interest rates fall, and vice versa, the
buyer of a futures contract realizes profit early when rates fall, that is, when
reinvestment opportunities are relatively poor. Similarly, the buyer realizes
losses early when rates rise, that is, when the costs of financing those losses
are relatively high. In other words, whether rates fall or rise, the early realiza-
tion of P&L from a long bond futures position is undesirable. Hence, buyers
are willing to pay less to purchase bonds through futures than through for-
wards, and, therefore, the futures price of a bond is less than its forward
price. Appendix A11.3 formally proves this result.

In practice, the difference between futures and forward bond prices
tends to be small. As evident from the previous paragraph and the appendix
to this chapter, the magnitude of the difference depends on the covariance
of the underlying bond price with the reinvestment or financing rate to
contract expiration.4 But for note and bond futures, this covariance tends
to be low: the time to contract expiration is typically short relative to the
maturity of the underlying bonds; short-term rates have relatively low
volatility; and short-term rates are imperfectly correlated with long-term
rates.

While the futures-forward price difference tends to be small, traders nor-
mally do account for the difference in the timing of P&L cash flows when
calculating hedge ratios. This is called tailing the hedge and is particularly
common and useful for basis trades, which, as discussed presently, are trades
of futures against synthetic bond forwards.

Consider a forward and futures contract on the same underlying security
for delivery in d days, when the term repo rate is r. Assume for simplic-
ity that, over a given day, the forward and futures prices increase by the
same amount, Δ. The futures contract, then, through daily settlement, pays
Δ immediately to the long. The value to the long of the forward contract, by
contrast, increases by Δ as of the delivery date, or, in present value terms, by
Δ∕(1 + rd∕360). Hence, for positive r, less than one futures contract hedges
the change in value of one forward contract. More specifically, to hedge Nfwd

4The covariance of two random variables is the product of their correlation and their
two standard deviations. For the covariance to be high, therefore, the variables must
be both highly correlated and highly volatile.
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forward contracts with Nfut futures contracts,

Nfut = Nfwd

1 + rd
360

(11.4)

where the difference between Nfwd and Nfut is known as the tail of the hedge.
This section closes with a comment on terminology. The terms

“mark-to-market,” “variation margin,” and “daily settlement” are often
used interchangeably, although, strictly speaking, they have distinct and dif-
ferent meanings. Mark-to-market is the process of adjusting security prices
in an accounting framework to match market values. For example, securities
in the trading book of a bank have to be marked-to-market when reported
on its balance sheet, while securities designated as “held-to-maturity” can
be reported at cost. The term mark-to-market, therefore, does not imply
any exchange of cash. Variation margin refers to cash or securities that
have to be posted as collateral to secure obligations under a contract. For
example, as discussed in Chapter 10, borrowers of cash in the repo market
have to make variation margin payments in the form of additional cash or
securities as the value of their existing collateral declines. Counterparties
posting collateral maintain ownership of that collateral, which means that
i) interest is earned on the collateral either by being paid interest on cash
collateral or by keeping interest earned on securities posted as collateral,
and ii) collateral is returned when the associated contractual obligations
have been fulfilled. Daily settlement, as described in this section, refers to
the payment of gains or losses. These payments are irrevocable; that is, they
do not earn interest and are never returned.5

11.6 COST OF DEL IVERY AND THE F INAL
SETTLEMENT PRICE

The cost of delivery measures how much it costs a short to fulfill the commit-
ment to deliver a bond through a futures contract. Having decided to deliver
bond i, the short first has to buy the bond at its market price plus accrued
interest and then deliver it through the futures contract for the futures price
times the conversion factor plus accrued interest. Denoting the time-t flat
price of bond i at time t by pi

t; its accrued interest by AIi
t; its conversion

factor by cf i; and the futures price by Ft, the cost of delivery is,

pi
t + AIi

t − (cf i × Ft + AIi
t) = pi

t − cf i × Ft (11.5)

5The terminology has become even more confusing with interest rate swaps being
either collateralized-to-market or settled-to-market. See Chapter 13.
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TABLE 11.7 Prices of TYU1 and Notes in Its Deliverable Basket as of the Last
Trading Date, September 21, 2021.

TYU1 Price: 133.85938

Conversion Cost of Price /
Coupon Maturity Factor Price Delivery Conv. Fac.

2.875 05/15/2028 0.8338 111.61719 0.00524 133.86566
2.875 08/15/2028 0.8286 111.82813 0.91225 134.96032
1.250 04/30/2028 0.7474 101.14063 1.09413 135.32329
1.250 03/31/2028 0.7474 101.17969 1.13319 135.37555
3.125 11/15/2028 0.8376 113.76563 1.64501 135.82333
2.625 02/15/2029 0.8039 110.50000 2.89045 137.45491
2.375 05/15/2029 0.7836 108.82813 3.93592 138.88224
1.625 08/15/2029 0.7320 103.34375 5.35869 141.17999
1.750 11/15/2029 0.7331 104.33594 6.20363 142.32156
1.500 02/15/2030 0.7105 102.20313 7.09604 143.84676
0.625 05/15/2030 0.6462 94.89063 8.39070 146.84405
0.625 08/15/2030 0.6382 94.64844 9.21938 148.30529
0.875 11/15/2030 0.6476 96.57031 9.88298 149.12031
1.125 02/15/2031 0.6577 98.58594 10.54663 149.89499

The short will choose which bond to deliver to minimize the cost of delivery.
The bond that minimizes the cost of delivery is called the cheapest-to-deliver,
or the CTD. Table 11.7 shows the price of TYU1, the prices of the bonds in
its deliverable basket, and the costs of delivery for each of those bonds, as of
the last trading date, September 21, 2021. For example, the cost of delivery
of the 2.875s of 05/15/2028 is,

111.61719 − 0.8338 × 133.85938 = 0.00524 (11.6)

Because this is the lowest cost of delivery in the table, these bonds are CTD
into TYU1.

To focus on the quality option, assume for the moment that date T is
both the last trading date and the last delivery date. Arbitrage arguments
can then be used to show that,

pCTD
T − cf CTD × FT = 0 (11.7)

and,

FT =
pCTD

T

cf CTD
≤

pi
T

cf i
(11.8)
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Equation (11.7) says that the cost of delivery of the CTD at expiration
is zero. Equation (11.8) says that the futures price at expiration, that is, the
last settlement price, equals the ratio of the price of the CTD bond to its
conversion factor and that this ratio is less than or equal to the ratios of all
other bond prices to their conversion factors. These theoretical predictions
are extremely good approximations for TYU1 as of its last trading date, as
can be seen from Table 11.7. The cost of delivery of the CTD is very close
to zero; the ratio of its price to its conversion factor very nearly equals the
futures price; and the ratio of all other bond prices to their CTDs are larger.
This section concludes with the arbitrage proofs of Equations (11.7) and
(11.8).

Say that (11.7) is not true, and that, instead, FT > pCTD∕cf CTD. In that
case, an arbitrageur could buy the CTD, sell the futures, and deliver the CTD,
earning a profit of,

cf CTD × FT − pCTD
T (11.9)

which is positive by the starting assumption that FT > pCTD∕cf CTD. Hence,
ruling out market prices that admit riskless arbitrage opportunities rules out
this assumed pricing relationship. Next, assume that FT < pCTD∕cf CTD. In
this case, an arbitrageur could sell the CTD, buy the futures, and take deliv-
ery of the bond delivered by the short. If the short delivers the CTD, then
the arbitrageur’s profit is,

pCTD
T − cf CTD × FT (11.10)

which is positive by the starting assumption that FT < pCTD∕cf CTD. If the
short delivers some other bond i, the trader buys back the CTD just sold
and sells bond i instead, for a total profit of,

pi
T − cf i × FT ≥ pCTD

T − cf CTD × FT > 0 (11.11)

where the first inequality follows from the definition of the CTD – the cost
of delivering any bond other than the CTD is at least as great as the cost
of delivering the CTD – and the second inequality follows from the starting
assumption that FT < pCTD∕cf CTD. Hence, the arbitrageur’s profit is even
greater if the short (suboptimally) delivers a bond other than the CTD. But
if the arbitrageur’s profit is positive for whatever bond the short delivers,
then the assumption FT < pCTD∕cf CTD is ruled out as admitting riskless
arbitrage opportunities. Finally, ruling out both FT > pCTD∕cf CTD and FT <

pCTD∕cf CTD proves the equality in (11.8) and (11.7). The inequality of (11.8)
follows from combining (11.7) with the condition that the CTD has the
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lowest cost of delivery,

pi
T − cf i × FT ≥ pCTD

T − cf CTD × FT = 0

pi
T − cf i × FT ≥ 0

FT ≤
pi

T

cf i
(11.12)

11.7 MOTIVATIONS FOR A DEL IVERY BASKET
AND CONVERSION FACTORS

Historically, the design of bond futures contracts purposely avoided a single
underlying security. One reason is to ensure that the liquidity of the futures
contract does not depend on the liquidity of a single, underlying bond, which
might lose its liquidity for idiosyncratic reasons, for example, through being
accumulated by a few large, buy-and-hold investors. A second reason is to
avoid losing liquidity to the threat of a squeeze. A trader squeezes a con-
tract by simultaneously buying many contracts and a large fraction of the
deliverable bond, hoping to sell the position at a profit when traders who
had sold contracts – but cannot find bonds to deliver – have to pay up to
buy the deliverable bond or to buy back the contracts from the perpetrator
of the squeeze. The threat of a squeeze, which makes shorts hesitant to take
positions, can prevent a contract from attracting volume and liquidity.

A deliverable basket avoids the problems of a single deliverable so long
as some bonds can be delivered at a cost not too much greater than the cost
of delivering the CTD. In Table 11.7, delivering the 2.875s of 08/15/2028 is
about 91 cents per 100 face amount more costly than delivering the CTD,
and the 1.250s of 04/30/2028 are about 18 cents more costly than that. The
relatively inexpensive substitutability of these near CTD bonds limits the
profit potential of a squeeze. After going to all the trouble, expense, and
risk of buying many contracts and a large fraction of the outstanding CTD
bonds, shorts would refuse to pay a premium of more than about 100 cents
per 100 face amount of the CTD, because the two bonds just mentioned can
be delivered instead.

Limiting the costs of delivery of at least some bonds other than the CTD
is accomplished by conversion factors. In Table 11.7, the costs of delivering
the five bonds with the lowest costs of delivery range from about zero to
1.65. This range would be a lot wider, however, if there were no conversion
factors, or, more precisely, if all conversion factors were implicitly equal to
1.0. In that case, sellers would receive the futures price for delivering any
bond; would choose to deliver the bond with the lowest price; and, there-
fore, the market futures price would equal that lowest price. Referring back
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to Table 11.7, the CTD bond would be the 0.625s of 08/15/2030, which
has the lowest price of about 94.65, and the futures price would be 94.65.
Furthermore, the five lowest bond prices, which range from that 94.65 to
the 101.14 price of the 1.25s of 04/30/2028, would imply costs of delivery
that range from zero to 101.14 − 94.65 or 6.49, which is a lot wider than
the range with the conversion factors of TYU1.

Conversion factors reduce the difference in delivery costs by adjusting
delivery prices for the differences across bond coupon rates. Given the lim-
ited maturity range of bonds deliverable into TYU1, a major determinant of
the price differences across bonds is coupon rate. The most expensive bond
in Table 11.7 is the bond with the highest coupon, the 3.125s of 11/15/2028,
with a price of 113.77. The least expensive deliverable bond is one of the
bonds with the lowest coupon, the 0.625s of 8/15/2030, with a price of
94.65. Conversion factors essentially recognize that sellers are delivering
expensive, high-coupon bonds rather than inexpensive, low-coupon bonds.
For example, the conversion factor of the 3.125s of 11/15/2028 is 0.8376,
while the conversion factor of the 0.625s of 08/15/2030 is 0.6382. A glance
at the table reveals that bonds with higher coupons tend to have higher con-
version factors.

Conversion factors are computed by the exchange and are easily avail-
able. The basic idea can be explained most simply, however, with the fol-
lowing approximation: the conversion factor of a bond equals its price, per
dollar face amount, at a yield equal to the notional coupon rate, for set-
tlement on the last delivery date. At present, the notional coupon for US
Treasury futures is 6%. Therefore, to take one example, the conversion fac-
tor of the 1.25s of 03/13/2028 deliverable into TYU1 is approximated using
the price-yield Equation (3.8) for a face amount of one dollar, at a yield of
6%, and for settlement on 09/30/2021, which leaves 13 remaining coupon
payments,6

1.25%
6%

⎛⎜⎜⎜⎝
1 − 1(

1 + 6%
2

)13

⎞⎟⎟⎟⎠
+ 1(

1 + 6%
2

)13
= 0.7474 (11.13)

This calculation rule clearly assigns higher conversion factors to higher
coupon bonds. But the justification for the rule is stronger than that. Assume
that the term structure of yields is actually flat at 6%. In that case, the conver-
sion factor of each bond equals the market price of one dollar face amount
of the bond, and the ratio of the market price (per 100 face amount) to the

6This bond was chosen as the example because it matures in an exact number of semi-
annual periods. For the other deliverable bonds, use the price-yield Equation (A3.5).
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conversion factor equals 100 for every bond. Furthermore, by the arguments
of the previous section, the futures price is 100; the cost of delivery of each
bond is zero; and all bonds are jointly CTD. In short, if market yields are flat
at the notional coupon, conversion factors make every bond as attractive to
deliver as any other, thus lessening the dependence of the contract’s liquidity
on the liquidity of any one bond and also reducing, if not eliminating, the
potential profits of a squeeze.

Because the yield curve is not flat at the notional coupon rate, however,
conversion factors limit but do not eliminate differences in the costs of deliv-
ery across bonds, as evident from Table 11.7. The resulting emergence of a
unique CTD is the subject of the next section.

11.8 THE QUALITY OPTION AT EXPIRATION

To illustrate how the quality option works at expiration of the futures con-
tract, assume for the moment that the 2.875s of 05/15/2028 and the 1.125s
of 02/15/2013 are the only deliverable bonds into TYU1. Figure 11.5 graphs
the ratio of price to conversion factor against yield for these two bonds as of
the last trading date, September 21, 2021. The figure assumes that the term
structure of yields is flat, that is, that the two bonds have the same yield at
the indicated level. At a yield of 6%, the price-conversion factor ratio of each
of the bonds is about 100: as explained in the previous section, the conver-
sion factor is approximately equal to the price of the bond (per dollar face
amount) at a yield of the notional coupon rate – here 6% – as of the last
delivery date (which is only a few days different from the last trading date).
Hence, the ratio of each bond’s price (per 100 face amount) to its conver-
sion factor is about 100. Furthermore, the futures price is 100, the costs of
delivering either bond is zero, and the two bonds are jointly CTD.

As rates move away from 6%, however, the costs of delivering the two
bonds diverge. Conversion factors are fixed to equate the price-conversion
factor ratio of the two bonds at a yield of 6%. But as yields fall below
6%, the price and price-conversion factor ratio of the shorter-maturity
and shorter-duration 2.875s of 05/15/2028 increase more slowly than
the price and price-conversion factor ratio of the longer-maturity and
longer-duration 1.125s of 02/15/2031. Therefore, for yields below 6%, the
2.875s of 05/15/2028 are CTD. On the other hand, as yields rise above
6%, the price-conversion factor ratio of the longer-duration 1.125s of
02/15/2031 falls more quickly, and that bond is CTD.

The futures price equals the lowest price-conversion factor ratio across
deliverable bonds. Graphically, in the present example, the price of TYU1 is
the minimum or lower envelope of the two price-conversion factor curves,
depicted in Figure 11.5 by a semi-transparent, gray band. At expiration, the
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F IGURE 11.5 Quality Option for TYU1 with a Flat Term Structure of Yields, as of
the Last Trading Date.

futures price tracks the price of the low-duration bond when rates are low
and the price of the high-duration bond when rates are high.

Figure 11.5 is stylized in two ways. First, because there are many deliv-
erable bonds, several distinct ranges of yield at expiration might each deter-
mine a different CTD. Along the lines of the discussion here, however, the
deliverable bond with the shortest duration is typically CTD at the lowest
range of yields; deliverable bonds with intermediate durations might be CTD
at intermediate ranges of yield; and the deliverable bond with the longest
duration is typically CTD at the highest range of yields.

The second way Figure 11.5 is stylized is in assuming that the yields of
the two bonds are equal and move up or down in parallel. In reality, the
term structure of interest rates and individual bond yields can move in many
ways that affect the determination of the CTD. Most generally, a bond is
more likely to be CTD after any change that cheapens it relative to other
bonds in the deliverable basket. If the term structure flattens, shorter-term
bonds are more likely to be CTD. If the term structure steepens, longer-term
bonds are more likely to be CTD. And if the yield of any bond increases
idiosyncratically relative to yields of other deliverable bonds, that bond is
more likely to be CTD.

11.9 GROSS AND NET BASIS AND BASIS TRADES

The gross basis and net basis of a deliverable bond measure the difference
between the price of that bond and the relevant futures contract. The gross
basis of a bond is convenient for quoting the prices of packages, that is,
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the terms at which traders can buy a futures contract and short a deliverable
bond, or vice versa. The net basis is a measure of a bond’s proximity to being
CTD, and changes in a bond’s net basis give the P&L of a basis trade. Lastly,
a basis trade is the purchase of a futures contract and the forward sale of
a deliverable bond, or vice versa, usually to take advantage of a perceived
mispricing of futures relative to the deliverable bonds.

Let pi
t denote the spot price of bond i at time t; pi

t(T) its forward price
at time t to the last delivery date, T; and cf i its conversion factor. Let Ft be
the futures price at time t. Then, the gross basis and net basis of bond i at
time t, GBi

t and NBi
t, respectively, are defined as,

GBi
t = pi

t − cf i × Ft (11.14)

NBi
t = pi

t(T) − cf i × Ft (11.15)

Table 11.8 gives the futures price and the spot and forward prices of
each bond deliverable into TYU1, along with its gross basis, carry, and net
basis.7 For example, the gross basis of the 2 7/8s of 05/15/2028 is,

(110 − 24 3∕4) − 0.8338 × 131 − 17+

= 110.7734 − 0.8338 × 131.5469

= 1.0896 (11.16)

which is 32 times 1.0896, or 34.9 ticks. The net basis of that bond is,

109.7172 − 0.8338 × 131 − 17+

= 0.0334 (11.17)

or 1.1 ticks.
As defined, the difference between the gross basis and the net basis of

a bond equals the difference between its spot and forward prices, which, as
shown earlier, equals its carry. This explains the terminology: the net basis
is the gross basis net of carry. Continuing with the example, the carry of the
2.875s of 05/15/2028 – from May 17, 2021 (spot settlement), to September
30, 2021 (last delivery date) – is calculated earlier in the chapter as 1.057 or
33.8 ticks. Hence, the bond’s gross basis of 34.9 ticks minus its carry of 33.8
ticks equals its net basis of 1.1 ticks. It similarly follows from the definitions
that, as of contract expiration – when the forward price for settlement on

7As noted already, “carry” in the futures context is “cash carry” as defined in
Chapter 3.
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TABLE 11.8 Gross and Net Basis of Deliverable Notes into TYU1 as of May 14,
2021. Repo Rate from Spot Settlement to the Last Delivery Date is 0.015%. Gross
Basis, Carry, and Net Basis Are in Ticks (32nds).

TYU1 Price: 131-17+

Conv. Spot Gross Fwd Net
Coupon Maturity Factor Price Basis Price Carry Basis

2.875 05/15/2028 0.8338 110-24 3/4 34.9 109.7172 33.8 1.1
2.875 08/15/2028 0.8286 110-27 59.0 109.7759 34.2 24.8
1.250 04/30/2028 0.7474 99-26 1/4 48.1 99.3615 14.7 33.4
1.250 03/31/2028 0.7474 99-29 1/4 51.1 99.4578 14.6 36.5
3.125 11/15/2028 0.8376 112-22 1/4 80.4 111.5468 36.8 43.6
2.625 02/15/2029 0.8039 109-03+ 107.5 108.1348 31.2 76.3
2.375 05/15/2029 0.7836 107-07 1/4 132.7 106.3549 27.9 104.8
1.625 08/15/2029 0.7320 101-13+ 164.1 100.8205 19.2 144.9
1.750 11/15/2029 0.7331 102-07+ 185.5 101.5934 20.5 165.0
1.500 02/15/2030 0.7105 99-27 1/4 204.4 99.2968 17.8 186.6
0.625 05/15/2030 0.6462 92-05 1/4 229.1 91.9383 7.2 221.8
0.625 08/15/2030 0.6382 91-24 3/4 250.2 91.5451 7.3 242.9
0.875 11/15/2030 0.6476 93-20 1/4 270.2 93.3147 10.2 260.0
1.125 02/15/2031 0.6577 95-16 1/4 287.7 95.0929 13.3 274.4

contract expiration is the same as its spot price at contract expiration – gross
and net basis are equal to each other and to the bond’s cost of delivery, as
defined in Equation (11.5). Furthermore, because the cost of delivery at expi-
ration of the CTD is zero, its gross and net basis at expiration are also zero.

Gross and net basis are particularly useful in the context of basis trades.
To buy or be long a bond’s basis, a trader buys a bond forward to con-
tract expiration and sells a conversion-factor weighted number of futures
contracts. To sell or be short a bond’s basis, a trader sells a bond forward
to contract expiration and buys a conversion-factor weighted number of
futures contracts. In the US Treasury market, where spot and repo mar-
kets are much more liquid than forward markets, forward purchases and
sales of bonds are typically synthetic, as described earlier in the chapter.
A conversion-factor weighted number of contracts is the number of contracts
corresponding to the face amount of the bonds times the bond’s conver-
sion factor. For example, a trader buying $100 million of the 2.875s of
05/15/2028 TYU1 basis buys $100 million face amount of the bonds for-
ward and sells 0.8338 times $100 million divided by $100,000, or about
834 contracts.

Gross basis is often used to quote a package trade of bonds against
futures. A trader might put in an order, for example, to buy $100 million
face amount of the 2.875s of 08/15/2028 and sell 834 TYU1 contracts at
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a gross basis of 34.9 ticks or less. If prices subsequently line up such that
the bond price minus 0.8338 times the futures price is less than or equal to
34.9 ticks, the trade is executed. The trader then sells the repo to TYU1’s
expiration date to complete the basis trade.

Abstracting for a moment from interest on daily settlement payments,
the P&L of a long basis position is the sum of the profit or loss from the
forward bond position and from the futures position. Algebraically, with Gi

face amount of bond i and a trade from time t to time s, the P&L is,

Gi × [Pi
s(T) − Pi

t(T)] − Gi × cf i × [Fs − Ft] (11.18)

But, from the definition of the net basis in Equation (11.15), (11.18) can be
rewritten as,

Gi × [NBi
s(T) − NBi

t(T)] (11.19)

In words, the P&L of a long basis trade is the face amount of bonds
times the change in the bond’s net basis. The P&L of a short basis trade is
the negative of that. Consider, then, a trader who is sure that a particular
bond will be CTD at expiration but sees that the net basis of the bond is
trading at five ticks. This trader might very well sell the basis in the hope of
making five ticks: if the bond does turn out to be CTD, its net basis will be
zero at expiration, and the trader’s profit will be the difference between the
initial net basis of five ticks and the final net basis of zero ticks. Along these
lines, therefore, the net basis of a bond is an indicator of a bond’s becoming
CTD. With respect to TYU1 as of May 14, 2021, the net bases in Table 11.8
strongly indicate that the 2.875s of 05/15/2028 will be CTD at expiration.
Price are such that traders cannot make much money by betting that the
2.875s of 05/15/2028 will be CTD, that is, by selling its basis at only 1.1
ticks. But they can make a lot of money by taking a contrarian view that
turns out to be right, for example, by selling the 2.875s of 08/15/2028 basis
at 24.8 ticks in the hope that this bond will turn out to be CTD.

The interpretation of net basis in the previous paragraph implicitly
assumes that the futures price is fair, or valued correctly, relative to the
prices of the underlying bonds and their volatility. In terms of TYU1 as of
May 14, 2021, assuming that the futures price is fair is equivalent to saying
that the net basis of the 2.875s of 05/15/2028 is 1.1 ticks – rather than
zero – because there is still some chance that another bond will turn out to
be CTD at delivery. But some trader might believe that bond price volatility
from May 14, 2021, to September 30, 2021, is much too small for a change
in the CTD to be possible. From that trader’s perspective, the market’s net
basis of the 2.875s of 05/15/2028, at 1.1 ticks, is too high; that is, the price
of the 2.875s of 05/15/2028 is too high relative to the futures price. In this
sense, net basis can be an indicator of relative value.
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This section closes with two details about gross and net basis and basis
trades. First, Equations (11.18) and (11.19) are not completely accurate
expressions of the P&L of basis trades as described, because interest is paid
or earned on daily settlements of the futures contract. As mentioned earlier,
however, tailing the hedge does account for daily settlements. Therefore,
these P&L equations are accurate representations of P&L for basis trades
with a tail hedge, that is, not with a conversion-factor weighted number of
futures contracts, but with a conversion-factor weighted and tailed num-
ber of futures contracts. Second, some traders, instead of selling or buying
the repo to the term of the futures contract, sell or buy overnight repo.
These traders are not really buying or selling the bonds forward against
their futures positions, and the resulting P&L is not equal to that given in
Equations (11.18) and (11.19). The case study at the end of this chapter
discusses the risks of a “basis” trade with overnight rather than term repo.

11.10 IMPLIED REPO RATES

Table 11.1 and Equation (11.1) compute the forward price of the 2.875s
of 05/15/2028 given its price for spot settlement and its term repo rate from
spot to forward settlement. The same relative pricing formula can be applied,
of course, to compute the repo rate given a bond’s forward and spot prices.
Under the assumption that a particular bond will be CTD into a futures con-
tract, a repo rate computed in this way is called that bond’s implied repo rate.

To illustrate, consider, once again, the 2.875s of 05/15/2028 and the
data in Table 11.8. If that bond will be CTD with certainty, the ratio of its
forward price to its conversion factor should equal the futures price; that is,
its forward price should equal 131 − 17 + ∕0.8338, or 109.68379.8 Then,
following the logic of Equation (11.1), the relationship between the bond’s
spot and forward prices and the repo rate, r, is,

109.68379 + 1.07813 = (110.77344 + 0.01562)
(

1 + r × 136
360

)
(11.20)

which gives an implied repo rate of r = −0.065%.
It is evident from Equations (11.1) and (11.20) that a lower repo rate

generates a lower forward price. Therefore, if a bond will be CTD with
certainty, and if its implied repo rate is less than its actual repo rate, then
the futures price is cheap relative to the bond’s spot price. Similarly, if a
bond will be CTD with certainty, and if the implied repo rate of a bond is
greater than its actual repo rate, then the futures price is rich relative to the

8The definition of implied repo ignores the futures-forward price difference.
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bond’s spot price. In the example, under the assumption that the 2.875s of
05/15/2028 will be CTD, an implied repo rate of −0.065% and an actual
repo rate of 0.015% imply that TYU1 is cheap relative to the CTD’s spot
price.

Another way to think about implied repo is as the rate earned by
buying a bond spot and selling it through the futures contract. Rewriting
Equation (11.1), with a spot price of 110.77344 and a forward price of
109.71721, the return from buying spot and selling forward is just the repo
rate,

109.71721 + 1.07813 − (110.77344 + 0.01562)
(110.77344 + 0.01562)

360
136

= 0.015% (11.21)

Similarly, the return from buying spot and selling forward – this time with a
forward price implied by the futures price of 109.68379 – is −0.065%. From
this perspective as well, then, TYU1 is too low relative to the spot price of
the 2.875s of 05/15/2028, so long as that bond is CTD. Implied repo as a
measure of relative value will be revisited in the case study at the end of the
chapter.

11.11 FUTURES PRICE AND THE QUALITY OPTION
BEFORE EXPIRATION

It is shown earlier, and illustrated in Table 11.7, that the futures price at expi-
ration is the minimum ratio of price to conversion factor across deliverable
bonds. This section analyzes the futures price before expiration. The basic
idea is as follows. If the CTD were known with certainty, then (abstracting
from the futures-forward difference) the futures price would equal the for-
ward price of the CTD divided by its conversion factor. But because the CTD
is not known with certainty, and because the seller of the futures contract
has the option to choose which bond to deliver, the futures price is reduced
by the value of that delivery option.

To illustrate this idea graphically, Figure 11.6 shows a yield-price curve
for TYU1, as of May 14, 2021, along with the ratios of forward prices to
conversion factors for two deliverable bonds – the shortest-duration bond
in the basket, the 2.875s of 05/15/2028, and the longest-duration bond in
the basket, the 1.125s of 02/15/2031. The horizontal axis gives the assumed
yield of the 2.875s of 05/15/2028 as of May 14, 2021, which for graphical
clarity, is limited to the range of 4.00% to 5.50%. The yield of the 1.125s
of 02/15/2031 and the repo rate are assumed to be at fixed spreads to the
yield of the 2.875s of 05/15/2028.9 The futures price corresponding to each

9On May 14, 2021, the yield of the 2.875s of 05/15/2028 was 1.26%; the yield of
the 1.125s of 02/15/2031 was 36.5 basis points higher, at 1.625%; and the repo rate
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yield of the 2.875s of 05/15/2028 is calculated using a very simple model,
which assumes that i) changes in the yield of the 2.875s of 05/15/2028 from
its starting value along the horizontal axis to the expiration date, September
30, 2021, are normally distributed with a volatility of 100 basis points per
year; ii) spreads of the yield of the 1.125s of 02/15/2031 and the repo rate
to the yield of the 2.875s of 05/15/2028 are fixed; and iii) delivery occurs
on September 30, 2021; that is, only the quality option is considered. The
appendix to this chapter describes the pricing of futures in a term structure
model in more detail.

There are only four and a half months from the pricing date of the figure,
May 14, 2021, to the last delivery date, September 30, 2021. Therefore,
when yields are very low on May 14, 2021, it is extremely likely that the rel-
atively low-duration 2.875s of 05/15/2028 will be CTD at expiration. Or,
put differently, it is extremely unlikely that rates will rise enough for the rela-
tively high-duration 1.125s of 02/15/2031 to become CTD. Recognizing this,
the market assumes that the 2.875s of 05/15/2028 will be delivered and sets
that bond’s net basis very close to zero, or, equivalently, sets the futures price
very near the ratio of that bond’s forward price to its conversion factor. This
can be seen in Figure 11.6: for low rates, the semi-transparent, gray band rep-
resenting the futures price converges to the forward price-conversion factor
ratio of the 2.875s of 05/15/2028. Analogously, when rates are very high on

was 124.5 basis points below, at 0.015%. These are the spreads kept fixed in the
figure.
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May 14, 2021, it is extremely likely that the relatively high-duration 1.125s
of 02/15/2031 will be CTD; its net basis is near zero; and the futures price
converges to the ratio of its forward price to its conversion factor.

For intermediate rates shown in the figure, the futures price is less than
the forward price-conversion factor ratio of both bonds. Buyers will not
price the futures under the assumption that the 2.875s of 05/15/2028 are
delivered with certainty, because the sellers – who minimize the value of the
futures – will switch from delivering the 2.875s of 05/15/2028 to delivering
the 1.125s of 02/15/2031 exactly in those scenarios that hurt the buyers.
Hence, the futures price must be lower than it would be under the assump-
tion that the 2.875s of 05/15/2028 will be delivered with certainty. By the
same logic, the futures price must be lower than it would be under the
assumption that the 1.125s of 02/15/2031 will be delivered with certainty.
In fact, the distance between either bond curve and the futures price curve
at a given yield represents the value of the seller’s option to switch from
delivering one bond to delivering the other. That value is low when rates are
very high or very low, because one bond or the other is almost certain to
be delivered. Furthermore, if the assumed volatility of yields were higher, so
that yields are more likely to move far from their levels as of the pricing date,
the option to switch would increase in value, and the futures curve would
be even more below the bond curves.

Figure 11.7 illustrates the value of the quality option as of May 14, 2021,
for yields as of that pricing date ranging from 0% to 7%, in terms of the net
basis of three bonds: the low- and high-duration bonds described earlier,
and an intermediate-duration bond in the basket, the 3.125s of 11/15/2028.
These curves are computed using the same model as in Figure 11.6.

The net basis of the low-duration bond, the 2.875s of 05/15/2028, is
near zero for low yields, because at those levels of yields on May 14, 2021,
it will almost certainly be the CTD at expiration. As rates increase, however,
because it becomes more likely that the 1.125s of 02/15/2031 will be CTD,
the net basis of the 2.875s of 05/15/2028 increases. Put another way, this net
basis increases because the value of the seller’s option to switch away from
delivering the 2.875s of 05/15/2028 increases. In contrast, the net basis of the
high-duration bond, the 1.125s of 02/15/2031, is near zero for high yields,
when it will almost certainly be CTD at expiration. As yields fall, however,
its becoming CTD is less of a certainty, and its net basis increases.

The net basis of the 3.125s of 11/15/2028 is never close to zero, because
it is never likely to become CTD. While the set of deliverables can, in gen-
eral, lead to ranges of yields in which intermediate-duration bonds are CTD
at expiration, for TYU1 as of May 14, 2021, and under the assumption
of parallel shifts, the CTD at expiration is heavily likely to be either the
lowest-duration bond, the 2.875s of 05/15/2028, or the highest-duration
bond, the 1.125s of 02/15/2031. Nevertheless, at a yield level of about 4%
as of the pricing date, the 3.125s of 11/15/2028 are as close as they ever are
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to being CTD at expiration, and their net basis falls to a minimum of about
nine ticks. For lower yields and for higher yields, the 3.125s of 11/15/2028
are even less likely to wind up as the CTD, as their net basis increases accord-
ingly.

The net basis graphs in Figure 11.7, as manifestations of the quality
option, can be described more directly in terms of option terminology.
The net basis of the low-duration bond resembles a call option on
rates, or, equivalently, a put option on bond prices; the net basis of the
intermediate-duration bond resembles a straddle on rates and bond prices;
and the net basis of the high-duration bond resembles a put on rates or a
call option on bond prices.

The price-yield curve of TYU1 in Figure 11.6, which incorporates the
seller’s quality option, can be used to derive the DV01 of the futures con-
tract, as defined in Chapter 4: the change in price for a one-basis-point
decline in rates. The DV01s of the 2.875s of 05/15/2028 and 1.125s of
02/15/2031, divided by their respective conversion factors, along with the
DV01 of TYU1, are graphed Figure 11.8. As expected, the DV01 of the
shorter-maturity bond is relatively low and flat, with the flatness indicative
of its lower convexity, while the DV01 of the longer-maturity bond is rela-
tively high and steep, with the steepness indicative of its higher convexity.
The futures price-yield relationship, however, differs markedly from that of a
coupon bond. At low yields as of the pricing date, the futures DV01 resem-
bles the DV01 divided by conversion factor of the bond most likely to be
CTD at expiration, namely the shorter-maturity 2.875s of 05/15/2028. Anal-
ogously, at high yields as of the pricing date, the futures DV01 resembles that
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of the 1.125s of 02/15/2031 divided by its conversion factor. At intermediate
yields, the DV01 of the futures contract gradually changes from following
that of the short-maturity bond to following that of the high-maturity bond.
Therefore, its DV01 increases as yields increase, which means that TYU1 is
negatively convex over that region of intermediate yields. This negative con-
vexity is also visible, of course, in the shape of the TYU1’s price-yield curve
in Figure 11.6.

As of May 14, 2021, the yield of the 2.875s of 05/15/2028 was, in fact,
1.26%. In this low-rate environment, it is clear from Figures 11.6, 11.7, and
11.8 that the 2.875s of 05/15/2028 are solidly CTD: the quality option is
worth very little; the futures contract – apart from daily settlement consid-
erations – is essentially a forward contract on the 2.875s of 05/15/2028;
and the futures price is approximately equal to the forward price of that
bond divided by its conversion factor. These conclusions are all evident in
Table 11.8, which shows that, as of May 14, 2021, the net basis of the 2.875s
of 05/15/2028 is 1.1 ticks, and, therefore, the futures price of 131-17+, or
about 131.55, is very close to the ratio of that bond’s forward price to its
conversion factor, 109.7172∕0.8338, or 131.59.

These observations raise the question of why the notional coupon of
the contract has not been lowered from 6%. As discussed already, when the
yield curve is flat at 6%, conversion factors make all bonds equally deliv-
erable, which, in turn, lowers liquidity dependence on a single CTD and
reduces the profitability of a squeeze. That the term structure is not flat, and
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that bonds sell at idiosyncratically variable yields means that conversion fac-
tors are not perfect with respect to these objectives, but setting the notional
coupon close to prevailing market levels does significantly reduce differences
in deliverability across bonds. Again, then, why has the notional coupon not
been set closer to market levels, that is, at somewhere between 1% and 2%?
After all, the current notional coupon of 6% was reduced from its previous
level of 8% in response to lower market rates.

A likely answer has two parts. First, with the increase of volumes and
liquidity of both Treasury bonds and Treasury futures, the risks of a fall in
liquidity or a squeeze have diminished. Second, as evident from the discus-
sions in this chapter, valuing the quality option is quite complex. Overall,
market participants – apart from basis arbitrage traders – seem to prefer a
simpler contract, one effectively without delivery options, which is, there-
fore, easier to price and hedge.

11.12 THE TIMING, END-OF-MONTH,
AND WILD-CARD OPTIONS

As mentioned earlier, the timing option allows the seller to deliver at any
time during the delivery month. For TYU1, for example, delivery is allowed
at any date between September 1, 2021, and September 30, 2021. To under-
stand whether sellers should deliver late or early, consider a trader who is
long the bond and short the futures. Delivering late earns carry on the bond
coupon until delivery and preserves full use of the quality option. Deliver-
ing early and investing the proceeds at the repo rate gives up carry on the
bond and any remaining value of the quality option. Therefore, so long as
carry is positive, it is optimal to delay delivery. Because coupon rates are
typically greater than repo rates, carry is typically positive and late deliv-
ery typically optimal. If carry is negative, however, which is most likely for
shorter-maturity contracts when the short end of the term structure is down-
ward sloping, then the carry advantage of early delivery has to be weighed
against the lost option value.

Before analyzing the end-of-month option, the discussion turns to the
fact that the last trading date of Treasury note and bond futures is seven
business days before the last delivery date. For TYU1, for example, the
last trading date is September 21, 2021, while the last delivery date is
September 30, 2021. This feature of the contract requires an adjustment
to futures hedges just after the last trading date. To see this, consider a
basis position on the last trading date. For simplicity, continuing with
TYU1, assume that the 2.875 of 05/15/2028 is almost certain to be CTD,
and that, with the delivery date so near, its forward and spot prices are
approximately equal. Now consider a $1 billion long basis position in that
CTD, which is long $1 billion face amount of the bond and short 8,338
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TYU1 contracts. This position is hedged because the futures price equals the
CTD bond price divided by its conversion factor, 0.8338. If, for example,
the price of the bond falls from 111.62 to 110.62, causing a loss on the
(long) bond side of the trade of $1 billion × (111.62% − 110.62%), or $10
million, the futures price falls 8,338 × $100,000 × (111.62%/0.8338 −
110.62%/0.8338), for a gain on the (short) futures side of the trade of an
offsetting $10 million. After the last trading date, however, the futures price
is frozen at its last settlement price, say of 111.62∕0.8338, or 133.8690,
and the delivery price of the CTD is frozen at 133.8690 × 0.8338 = 111.62.
If the CTD now falls in price to 110.62, the value of the long bond position
again falls by $10 million, but the short futures position gains nothing.
Put another way, because the basis trader is short 8,338 contracts, only
8,338 times $100,000, or $833.8 million face amount of the CTD can be
sold at the fixed futures settlement price of 111.62. The remaining $166.2
million long face amount of the CTD suffers a loss from its fall in price of
$166,200,000 × (111.62% − 110.62%), or $1.662 million.

Given the impact of freezing the futures price as of the last trading date,
the futures hedge has to be changed from a conversion-factor weighted num-
ber of contracts to a matching notional amount of contracts. In the example,
after the last daily settlement on September 21, 2021, at a futures price of
133.8690, the long basis trader can sell an additional 1,662 TYU1 contracts
for a total short of 1,000 contracts. From then on, the position is hedged
because the trader can sell all $1 billion face amount of the bonds through
the futures contract at a fixed price of 133.8690 × 0.8338 = 111.62.10

Returning now to the end-of-month option, say that, after the last trad-
ing date, the futures price is frozen at Fs and that a long basis trader is long
bond i and short a matching notional amount of contracts. This trader, plan-
ning to deliver bond i, has locked in a delivery price of cf i times Fs. But a
profit can be earned by switching to bond j, that is, by selling bond i, buying
bond j, and delivering bond j, if there is a bond j such that,

pi − pj + cf j × Fs > cf i × Fs (11.22)

pi − cf i × Fs > pj − cf j × Fs (11.23)

Equation (11.22), which says that the switch is profitable, is equivalent to
Equation (11.23), which says that bond j is cheaper to deliver than bond i.

10To avoid confusion in terminology, note that many practitioners refer to the dif-
ference between the matching notional amount and the conversion-factor weighted
number of contracts as a “tail,” but this hedging adjustment is not at all related to
“tailing the hedge” to account for the timing of daily settlement payments.
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The end-of-month option – switching from bond i to bond j in the previ-
ous paragraph – is potentially valuable, but it often turns out not to be worth
much in practice. First, since the time between the last trading and last deliv-
ery dates is relatively short, relative bond prices do not tend to change very
much. Second, traders who are long the basis actively monitor opportuni-
ties to profit by switching into bonds that are cheaper to deliver. As a result,
any time a deliverable bond does cheapen relative to others, many traders
have an incentive to buy that bond to switch and the cheapening comes to
an abrupt halt.

The last of the delivery options, the wild-card option, arises because
futures prices settle every day at 2 p.m. CT, but notice of delivery is due
a few hours later. Consider a long $1 billion CTD basis (i.e., the 2.875s
of 05/15/2028) into TYU1 sometime during the delivery month, but before
the last trading date. As discussed before, before the last trading date, the
long CTD position of the basis trade is hedged against changes in its price
by a short of 8,338 contracts. Now, if on a particular day the price of the
CTD rises significantly between the time the futures price settles and the
time notice of delivery is due, that is, if the bond price rises while the futures
settlement price from 2pm is still applicable, the trader can profit by selling
$166.2 million face amount of the CTD at its now higher price and giv-
ing notice to deliver the remaining $833.8 million face amount through the
futures at the now stale settlement price. The profit from this liquidation
of the position is the increase in the value of the $166.2 million CTD face
amount. Whether exercising the wild-card option is worthwhile depends on
how much the price of the CTD increases relative to how much carry is
sacrificed by exercising the timing option early.

11.13 CASE STUDY: BASIS TRADES IN
MARCH 2020

In the wake of the COVID pandemic and economic shutdown, US Trea-
sury yields fell during the second half of February and early March 2020, in
a relatively orderly flight to safety. Starting March 9, however, many mar-
ket participants sold Treasury bonds to raise cash, temporarily reversing the
decline in yields and ushering in a period of heightened market volatility.
These market movements are illustrated in Figure 11.9, which shows yields
of the CTD bonds into the June 2020 two-year (TUM0), five-year (FVM0),
and 10-year (TYM0) Treasury note futures contracts.

For a couple of years before the pandemic, Treasury futures had often
traded somewhat rich to their underlying bonds. Many attributed this rela-
tive mispricing to a preference for futures over bonds by regulated financial
institutions seeking to limit the sizes of their balance sheets: long futures
positions do not appear on the balance sheet, while purchased bonds do. In
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F IGURE 11.9 Yields of CTD Bonds into TYM0, FVM0, and TUM0, from February
3, 2020, to April 1, 2020.

any case, Figure 11.10 shows that, through much of February 2020, TYM0
traded a bit rich to its CTD, in that the net basis of the CTD into TYM0 fluc-
tuated between zero and minus five ticks. Figure 11.11 shows that TUM0
and FVM0, along with TYM0, traded slightly rich in that the implied repo
rate of the CTD bonds into these contracts exceeded the actual repo rate,
represented by SOFR.11

Responding to the chronic richness of futures contracts, hedge funds and
their relative value traders consistently bought the CTD basis. To understand
the attractiveness of this trade, consider a hedge fund that on February 10,
2020, buys $1 billion face amount of the TYM0 CTD basis at −4.0 ticks,
which is consistent with the levels shown in Figure 11.10. Given that interest
rates are almost certainly not going to rise enough to change the CTD, the
net basis will be zero at expiration, and the profit on the trade would be
(4/32)% times $1 billion, or $1.25 million. If levered 20-to-1, which many
believe was typical for trades of this type, the hedge fund would assign $50
million of capital to the trade and earn a return on capital, from February 10
to June 30 (141 days), of $1.25 million/$50 million or 2.5%, which is about
6.5% annualized. If levered 40-1, which has been characterized as common

11Note that the net basis in Figure 11.10 and the implied repo rate in Figure 11.11
assume that the term repo rate on each day equals the overnight repo that day. This
is not a great assumption but is necessitated in this case by the lack of data on term
repo rates.
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for these trades, assigned capital would be $25 million and the annualized
return would be about 13%.12

Buying the basis at a negative price and holding the position until the
net basis converges to zero had indeed, for some time, been a relatively reli-
able and stable money machine. From March 9, however, when Treasury
yields became much more volatile, so did the P&L of long basis trades. The
newfound volatility of the trade can be seen from the net and gross basis
of TYM0 in Figure 11.10 and from the implied repo of TYM0, FVM0, and
TUM0 in Figure 11.11. The market dislocations at that time can also be seen
from rising spreads between CTD yields and the yields of nondeliverable, but
otherwise comparable bonds. The TUM0 line in Figure 11.12 shows the dif-
ference between the yields of the 1.875s of 02/28/2022 and the CTD into
TUM0, that is, the 2.375s of 03/15/2022. While these two bonds traded at
a low and stable spread through February and early March, that spread rose
and became much more volatile over the rest of March. Similarly behaved
are the FVM0 and TYM0 spreads, that is, the spread between the 1.875s
of 08/31/2024 and the CTD into FVM0, that is, the 1.25s of 08/31/2024,
and the spread between the 2s of 11/15/2026 and the CTD into TYM0, that
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F IGURE 11.12 Richness of CTD Bonds into TYM0, FVM0, and TUM0 Relative to
Comparable, Non-Deliverable Bonds, from February 3, 2020, to April 1, 2020.

12Assigned capital in this context is an allocation from a fund’s scarce risk and fund-
ing resources to one of its various trading or investment strategies. As the following
discussion shows, capital assigned in this way must be available in ready funds should
the need arise.
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TABLE 11.9 A $1 Billion Long TYM0 CTD Basis Trade, from March 6, 2020, to
March 12, 2020. Net Basis Is in Ticks (32nds). All Other Columns Are in Dollars.

Net Daily Cumulative Margin per Margin Cumulative
Date Basis P&L P&L Contract Call Cash

03/06/2020 −8.33 1,275 –10,171,597
03/09/2020 –18.48 –3,172,148 –3,172,148 1,375 –797,772 –14,141,517
03/10/2020 –11.22 2,268,613 –903,535 1,375 0 –11,872,904
03/11/2020 –5.70 1,725,636 822,101 1,600 –1,794,988 –11,942,256
03/12/2020 –0.47 1,633,228 2,455,330 1,600 0 –10,309,028

is, the 2.25s of 02/15/2027. Generally speaking, liquidity is in high demand
when markets are volatile, and the most liquid bonds tend to trade at a pre-
mium. CTD bonds, which inherit the liquidity of their associated futures
contracts, trade in volatile markets at a premium relative to bonds that – in
normal times – are comparable. This premium, however, like the demand
for liquidity, can be quite volatile, as evident from Figure 11.12.

Long basis trades seem riskless, so long as they can be held to expiration.
Through volatile markets, however, traders might not actually be able to
maintain their positions. To illustrate, Table 11.9 describes a $1 billion long
TYM0 CTD basis trade initiated at −8.33 ticks on March 6, 2020, and held
through March 12, 2020. The table assumes that a trader buys $1 billion face
amount of the bonds; sells a conversion-factor weighted and tailed number
of futures contracts, in this case, 7,978 contracts;13 and sells the CTD repo to
the expiration of the contract. For this trade, therefore, as explained earlier
in the chapter, the daily P&L, measured as of the delivery date, equals the
change in the net basis times the $1 billion face amount of the bond position.

The net basis closed at about −18.5 ticks on March 9, generating a loss
of about $3.2 million. This is a sizable loss given that the target horizon
profit of the trade is only the original 8.33 ticks, that is, (8/32)% times $1
billion, or $2.5 million. Many hedge funds manage risk, at least in part, by
loss limits, and a loss of this magnitude might result in a trader being forced
to exit the position. From then on, Table 11.9 reports that the trade makes
money, as the net basis rises to nearly zero. By reporting only daily closes,
however, the table minimizes the true volatility of the trade: a trader might
be forced out of the positions because of a large, adverse intraday change in
the net basis.

13At $100,000 face amount per contract, 10,000 contracts is equivalent to the $1 bil-
lion face amount of bonds. The conversion factor of the CTD into TYM0 is 0.8006,
the repo rate is 1.10%, and there are 116 days from March 6, 2020, to June 30,
2020. Therefore, the conversion-factor weighted and tailed number of contracts is
10,000 × 0.8006∕(1 + 1.10% × 116∕360) = 7,978.
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Another way a trader might be forced out of the basis trade is the need
to come up with cash. As of March 6, with maintenance margin at $1,275
per contract, the short of 7,978 contracts requires posting a bit more than
$10 million to the exchange.14 With the trade losing money on March 9, the
hedge fund needs to make daily settlement payments on the futures contracts
and variation margin payments on the term repo positions, which essen-
tially sum to the P&L for the day, that is, to about $3.2 million. In addition,
because of increased market volatility, the exchange increased the margin
requirement from $1,275 to $1,375 per contract, generating a margin call
of nearly $800,000. In total, then the hedge fund has to come up with an
additional $4 million on March 9. This is a very large number relative, once
again, to the target profit of $2.5 million. These cash requirements also clar-
ify the concreteness of allocated capital, because that capital really does need
to be available to meet the cash requirements of the trade. In any case, as the
trade makes money after March 9, cash requirements fall, but not as quickly
as indicated by the P&L; the exchange increased margin requirements once
again on March 11.

A final way a trader might be forced out of a basis trade applies only
to those that finance the bond purchases with overnight rather than term
repo. In calm markets, rolling over overnight repo is nearly equivalent to
term repo. More precisely, if the term repo rate reflects future, unchanging
overnight rates, and if financing is plentiful, then there is no important differ-
ence in borrowing overnight and borrowing term. In more volatile markets,
however, borrowing overnight adds two significant sources of risk.

First, the overnight rate can rise or fall relative to what could have
been locked in to term. In March 2020, as shown in Figure 11.13, the
overnight repo rate, as represented by SOFR, declined precipitously as the
Federal Reserve lowered rates to accommodate market conditions. Bearing
this risk actually worked in favor of traders who had not locked in term
repo rates – with one caveat to be discussed presently – as they could roll
overnight repo at lower and lower rates. Another way to express the advan-
tage of not locking in term rates is to compare the gross and net basis of
TYM0 in Figure 11.10. As the repo rate falls, the carry of the CTD increases,
which means that its gross basis increases relative to its net basis.

Second, in stressed markets, prime brokers might reduce risk by limiting
lending to hedge funds in the basis trade, or, with similar effect, by increasing

14Treasury repo does typically require margin, given in Table 10.3 at about 2%.
However, because the risks of futures and bond positions in a basis trade are largely
offsetting, a prime broker might very well – at least in normal times – not require
a hedge fund to post much more than exchange-required futures margin. The text
assumes this even though, for some clients, prime brokers will require a cushion
above exchange margin.
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F IGURE 11.13 SOFR and 1st and 99th Percentile Repo Rates, from February 3,
2020, to April 1, 2020.

repo haircuts. In that case, basis traders who did not lock in term repo might
have to reduce position size or even exit a position at a loss. Some evidence
of this funding risk through March 2020 can be seen from the difference
between the 99th percentile repo rate and SOFR in Figure 11.13. Through
February, the spread of the highest rate percentile of repo transactions over
the median SOFR rate was typically only 10 or 11 basis points. In March,
however, that spread was between 20 and 50 basis points on several days
and hit a peak of 174 basis points on March 16. These data strongly imply
that at least some overnight repo borrowers had trouble borrowing money
against Treasuries. Furthermore, basis traders who had not locked in term
rates might very well have had to roll over borrowing at rates very much
above term rates they might have locked in at an earlier date.
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CHAPTER 12
Short-Term Rates and Their

Derivatives

Short-term funds trade in money markets in significant volumes and at a
variety of interest rates. Interest rates vary across currencies, of course,

but even within a single currency there are typically several rates that reflect
differences in collateral, market participants, and term. This chapter intro-
duces some of the most important short-term interest rates across currencies
and describes the global transition away from LIBOR. The chapter then
describes a number of interest rate derivatives contracts – one-month SOFR
futures, fed funds futures, three-month SOFR futures, Euribor FRAs, and
Euribor futures – and explains their use in hedging exposures to short-term
interest rates. A detour shows how combining fed funds futures prices with
Federal Reserve Board meeting dates is used to imply expectations of the
Federal Reserve’s target rate and to construct benchmark interest rate curves
for general use. The chapter concludes with a brief discussion on the differ-
ence between futures and forward rates. Notes on pricing rate forwards and
futures on rates with term structure models can be found in the appendix to
Chapter 12.

12.1 SHORT-TERM RATES AND THE TRANSIT ION
FROM LIBOR

Since a first trade in 1969,1 LIBOR (London Interbank Offered Rate) grew
to become the dominant set of reference rates for short-term interbank bor-
rowing. Across a wide variety of loans and derivatives, huge volumes of cash
flows were set based on LIBOR. LIBOR rates were published daily for five
currencies (CHF, EUR, GBP, JPY, USD) and for seven maturities (overnight,
one week, one month, two months, three months, six months, 12 months),
although the three-month and to a much lesser extent the one-month terms
were the most popular. For each currency, a panel of 16 banks was surveyed

1Reuters (2012),“Insight: A Greek Banker, the Shah and the Birth of LIBOR,”
August 7.

289
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with the question, “At what rate could you borrow funds, were you to do
so by asking for and then accepting interbank offers in a reasonable size just
prior to 11 a.m. (London time)?” The LIBOR fixing for each currency and
term was then set equal to a trimmed mean of the survey responses.

In the wake of the quantitative easing policies of central banks after the
financial crisis of 2007–2009, the survey methodology began to lose cred-
ibility. First, because banks with abundant reserves do not need to borrow
reserves from other banks, the volume of interbank transactions fell so dra-
matically that survey responses became more subjective. Second, from 2012
to 2016, investigations revealed that traders at the panel banks colluded to
manipulate LIBOR fixes to their advantage. Some traders were sentenced to
prison, and banks collectively paid more than $9 billion in fines.

In 2017, regulators decided to terminate LIBOR and its use by the end
of 2021. Furthermore, after consultations with industry representatives, it
was decided that financial contracts in the future should reference a set of
overnight, “risk-free rate” (RFR) benchmarks, which can be set objectively
based on large volumes of transactions data. The phrase “risk-free rates” is
somewhat of a misnomer, as only two of the new benchmarks – SARON in
CHF and SOFR in USD – are based on collateralized repo rates, while the
other three – €STR in EUR, SONIA in GBP, and TONAR in JPY – remain
interbank rates. And although all of the new benchmarks are overnight
rates, regulators have permitted the continued use of two term rate indexes,
after methodological reforms, namely, Euribor in EUR and TIBOR in JPY.
Table 12.1 and the following discussions outline the rates used before the
transition and the RFRs compliant with post-transition regulatory princi-
ples. The table highlights in bold the overnight benchmarks in each currency
that are preferred by the regulators.

TABLE 12.1 Global Market Short-Term Interest Rates, Pre- and Post- the
Transition Away from LIBOR.

Post-Transition

Interbank (Unsecured)

Currency Pre-Transition Repo Overnight Term

CHF LIBOR SARON (2009)
EUR EONIA, Euribor €STR (2019) Euribor
GBP LIBOR, SONIA SONIA
JPY LIBOR, TIBOR, TONAR (2016) TIBOR

Euroyen TIBOR
USD fed funds, LIBOR SOFR (2017) fed funds Ameribor

BSBY

CHF: Swiss franc; EUR: euro; GBP: British pound; JPY: Japanese yen; USD: US dollar.
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Swiss Franc (CHF). The CHF benchmark moved from LIBOR to
SARON (the Swiss Average Rate ON, where ON stands for
overnight). SARON is a volume-weighted average of the rates
on general collateral, fixed income repo transactions. SARON is
calculated a few times per day, along with indexes for several other
terms (e.g., SAR1W for one week, and SAR3M for three months),
but SARON at each day’s close is the main benchmark rate.

Euro (EUR). EONIA (Euro ON Index Average) was a volume-weighted
average of rates on overnight interbank loans, which was computed
from transactions supplied by a panel of banks. Over time, the
total volume of transactions, along with the number of banks in the
panel with significant volumes, had fallen too much for the index
to remain tenable. Euribor (Euro Interbank Offered Rate) had
been a set of five term rates (one week, one month, three months,
six months, 12 months) based on submitted quotations by panel
banks, like LIBOR, although with a different administrator. As part
of the transition away from LIBOR, Euribor was reformed in 2019
to follow a “hybrid methodology,” which, to the extent available,
uses Level 1 contributions, which consist of wholesale funding
transactions of panel banks – 18 at the time of this writing – on a
given day and for a given term. To the extent such transactions are
not available, Euribor may rely on Level 2 contributions, which
are recent transactions at other terms, or, if necessary, on Level 3
contributions, which are relevant transactions from other, closely
related markets. Perhaps not surprisingly, given the monetary
regime of abundant reserves, a significant fraction of contributions
are, indeed, Level 3.2 ESTR, ESTER, or €STR (Euro Short-Term
Rate) is the index favored by regulators. It is a volume-weighted
trimmed mean of sizable, overnight funding transactions by – at
the time of this writing – 32 euro-area banks.

British Pound (GBP). SONIA (Sterling ON Index Average) has existed
since 1997, has a history of use as a reference rate for derivatives
transactions, and was reformed in 2018. Like €STR, the reformed
SONIA is a volume-weighted trimmed mean of sizable overnight
bank funding transactions.

Japanese Yen (JPY). There were two versions of TIBOR (Tokyo Inter-
bank Offered Rate), both based on submissions by Japanese banks:
Euroyen TIBOR, representing interbank JPY rates outside Japan
(like JPY LIBOR), and JPY TIBOR or simply TIBOR, represent-
ing interbank JPY rates inside Japan. While Euroyen TIBOR has

2See, for example, Amor, J. (2021), “The New EURIBOR Gets Through a Challeng-
ing 2020,” Funcas SEFO 10(1), pp. 49-61, January.
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been abandoned, TIBOR was reformed in various ways in 2017,
including – along the lines of the Euribor reforms – a waterfall of
submission priorities, from actual interbank call or funding trans-
actions, through data from similar or relevant markets, down to
“Expert judgment,” though this last resort has not yet been neces-
sary. TIBOR is published for five terms: one week, one month, three
months, six months, and 12 months. TONAR (Tokyo ON Average
Rate), also called TONA, was created in 2016 as a volume-weighted
average of transactions in the overnight call market.

US Dollar (USD). fed funds is the overnight rate at which banks trade
reserves at the Federal Reserve System. A further description of this
market is given below. SOFR (Secured Overnight Financing Rate)
is a trimmed, volume-weighted median of overnight repo rates. Its
calculation is described in more detail in Chapter 10. The other USD
rates listed in Table 12.1 are discussed presently.

Given the enormous volume of loans and derivatives that had been refer-
encing LIBOR, the transition to new rates, from an operational perspective,
was time-consuming and costly. Changes to derivatives markets were orga-
nizationally straightforward, in that regulators could push changes through
a small number of clearinghouses and large dealers. By contrast, changes in
loan markets required action by a large number of smaller banks. Particu-
larly challenging in both markets, however, are legacy or existing contracts
that reference LIBOR, but are difficult to change for various reasons, ranging
from their being in structures that are hard to amend to their somewhat unre-
sponsive counterparties. The resulting backlog of legacy contracts eventually
forced regulators to postpone the cessation of a subset of LIBOR indexes.
Five USD LIBOR tenors (overnight, one month, three months, six months,
and 12 months) will continue to be published until June 30, 2022, for use by
certain legacy contracts only. Three GBP and JPY LIBOR tenors (one month,
three months, and six months) will continue to be published for legacy con-
tracts for some time in synthetic form, which means that, instead of being
calculated from survey results, as in the past, these LIBOR rates are now set
as some fixed function of the preferred, post-transition benchmarks, namely,
SONIA and TONAR, respectively.

More substantive challenges to the transition, particularly in the loan
market, arise from two key features of the new benchmarks. First, they are
overnight rather than term rates. Second, they are rates with little to no
bank credit risk. The challenge of moving from term to overnight rate bench-
marks is described in Figure 12.1. Panel a) depicts the historical use of one-
month LIBOR as part of a longer-term, floating-rate loan. A borrower of
$1 million from October 1 to November 1, 2021, knows the rate of interest
at the start of the period and, therefore, can compute the interest due at the
end of the period, in this case, $1,000,000 × 0.07525% × 31∕360 = $64.80.
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a) Term Rate Set in Advance, Paid in Arrears

1mo Libor = 0.07525% Interest = $64.80
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Interest = $41.11
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Interest = $43.06

c) ON Rate Set in Advance, Paid in Arrears

b) ON Rate Set in Arrears, Paid in Arrears

SOFR: all days @5bps

SOFR:
3 days @3bps
1 day @4bps

27 days @5bps

F IGURE 12.1 Examples of Monthly Interest Payment Conventions for a $1 Million
Monthly Resetting Floating-Rate Loan, September to November 2021.

In this convention, interest is said to be set in advance of the loan period
and paid in arrears of the loan period. With overnight rather than term
benchmarks, however, borrowers typically do not know the final amount
of interest at the start of the period. Panel b) shows the most straightfor-
ward structure for term loans with an overnight rate benchmark, namely,
set in arrears and paid in arrears. Over the 31 days – October 1, 2021, to
October 31, 2021 – SOFR was three basis points on three days, four basis
points on one day, and five basis points on 27 days. On a $1 million loan,
therefore, with daily compounding, the interest payment due at the end of
the period is,

$1,000,000

[(
1 + 0.03%

360

)3 (
1 + 0.04%

360

)(
1 + 0.05%

360

)2

− 1

]

= $41.11 (12.1)

But the borrower does not know this amount until the end of the period,
when all relevant SOFR rates have been observed. Many financial institu-
tions, whose business is the money markets, might be perfectly comfortable
with this uncertainty. Nonfinancial corporate borrowers, however, might not
be comfortable with uncertain interest payments at the end of one-month,
three-month, or longer reset periods.

There exist several operational fixes designed to give borrowers time to
compute and make interest payments. A payment delay simply gives the bor-
rower an extra day or so to make the payment. A lockout allows for earlier
computation of interest payments by not using the very last rate settings.
For example, a one-day lockout might use the rate for October 30 for both
October 30 and October 31. And a lookback uses earlier rather than the
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latest rates. In the present example, the observation period might be shifted
from October 1 through October 31 to September 30 through October 30.
These minor tweaks, however, do not change the fact that borrowers do not
know how much they will pay in interest until sometime near the end of the
period.

One proposed solution to this more significant challenge, depicted in
Panel c) of Figure 12.1, is to use overnight rates in a set in advance, paid
in arrears structure. For example, to determine the payment on November
1, 2021, use the interest rates from September 1 to October 1 (inclusive).
Over this period, SOFR was five basis points every day, giving an interest
payment of $1,000,000 ×

[
(1 + 0.05%∕360)31 − 1

]
= $43.06. In this way,

the borrower does know the interest due on November 1 as of October 1.
The reference interest rates, however, do not correspond to the borrowing
period, which may or may not be important depending on the situation and
on the structure of any complementary positions.

The most natural solution, from a theoretical perspective, is for the mar-
ket to develop term rates, based on the benchmark overnight rates, for use in
loans to borrowers who want payment certainty. Some such term rates are,
in fact, in use for some purposes, including the synthetic versions of GBP and
JPY LIBOR mentioned already. And the CME, a major US derivatives clear-
inghouse, has been encouraged to create term SOFR rates for limited use.
For now, however, regulators are discouraging – as a return to the recent
weaknesses of LIBOR – the broad use of term rates that are not directly
observable from significant volumes of market transactions. In the future,
perhaps, the rate derivatives described later in the chapter will trade with
enough liquidity to provide acceptable term rates.

The second substantive challenge to the LIBOR transition is that the
new RFR benchmarks embed little to no bank credit risk. In the heyday of
LIBOR, banks would borrow funds at LIBOR or at a spread to LIBOR and
would lend funds to customers at LIBOR plus a spread. Banks were naturally
hedged, therefore, against increases in the cost of funds of the banking sector.
Some of the new overnight benchmarks are interbank rates, namely, €STR,
SONIA, and TONAR, but overnight interbank rates – as opposed to term
interbank rates – do not typically fluctuate much with credit conditions until
well into a financial crisis. And the other two new benchmarks, SARON
and SOFR, are based on repo rates, which, if anything, might fall as credit
conditions worsen, as flight-to-quality trades flock to safer lending havens.
The question for the transition, therefore, is whether banks will benchmark
large volumes of their customer loans to RFRs, and even if they do so in
normal times, will they continue to do so in times of stress.

In EUR and JPY, the continued use of term Euribor and TIBOR enables
the use of credit-sensitive rates (CSRs). In the United States, there are two
suites of rates that have been deemed by independent auditors as com-
pliant with international regulatory principles pertaining to benchmarks.
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Ameribor (American Interbank Offered Rate) is computed for a range
of terms from the funding transactions and executable quotes of a large
number of small to regional US banks on the American Financial Exchange
(AFX). BSBY (Bloomberg Short-Term Bank Yield Index) is computed for a
range of terms from the funding transactions and executable quotes of large
banks across the Bloomberg trading platform. Futures contracts are listed
on both Ameribor and BSBY rates. AXI (Across-the-Curve Credit Spread
Index) is not listed in Table 12.1, because, at the time of this writing, it
had not yet been deemed compliant with regulatory benchmark principles.
This index is intended as a credit spread to be added to SOFR, is available
for a range of terms, and is based on unsecured bank funding transactions.
Ameribor, BSBY, and AXI, from a commercial perspective, face not only
the normal challenges in bringing new products to market but also the
regulatory headwinds that support broad adoption of SOFR.3

12.2 ONE-MONTH SOFR FUTURES

The one-month SOFR futures contract, which trades on the CME (Chicago
Mercantile Exchange), is designed to take and hedge exposure to SOFR or to
other rates believed to be highly correlated with SOFR. Selected one-month
SOFR contracts, along with their prices and rates as of January 14, 2022,
are given in Table 12.2. Each ticker is composed of the code “SER,” a letter
indicating the contract month, and a digit corresponding to the last digit of
the contract year. For example, with “G” standing for February, SERG2 is
the ticker for the one-month SOFR contract of February 2022. Its current
price is 99.935, which corresponds to a percentage rate of 100 − 99.935, or
0.065. Expressing the percentage rate as 100 minus price is just a convention:
there is no sense in which the price of a particular bond or other instrument
at a rate of 0.065% equals 99.935.4

3For example, the OCC (Office of the Comptroller of the Currency) noted that
“While banks may use any replacement rate [for LIBOR] they determine to be
appropriate for their funding model and customer needs, OCC supervisory efforts
will initially focus on non-SOFR rates.” OCC (2021), “LIBOR Transition: Updated
Self-Assessment Tool for Banks,” OCC Bulletin 2021-46, October 18. And an exec-
utive vice president and general counsel at the Federal Reserve Bank of New York
said that “If your firm is moving to a rate other than SOFR, that means extra work
for you to make sure you’re demonstrably making a responsible decision. Because
you are going to be asked about that decision.” Held, M. (2021),“Prepare for Land-
ing,” Remarks at the ISDA Benchmark Strategies Forum, Federal Reserve Bank of
New York, September 15.
4The minimum price increment and, therefore, the precision or number of decimal
places in the price of each contract, depends on the day of the week of the first day
in the settlement month and on the remaining time to contract expiration.
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TABLE 12.2 Selected One-Month SOFR Futures
Contracts, as of January 14, 2022. Rates Are in Percent.

Ticker Month Price Rate

SERF2 Jan 99.9475 0.0525
SERG2 Feb 99.935 0.065
SERH2 Mar 99.815 0.185
SERJ2 Apr 99.685 0.315
SERK2 May 99.585 0.415

Each contract trades until the last business day of the month in which it
expires, known as its delivery month. The word “delivery” here is a carry-
over from other futures contracts, which, at expiration, require the delivery
of an underlying commodity or financial instrument in exchange for some
payment. SOFR contracts, however, are cash settled; that is, they require no
physical delivery at expiration.

The final settlement rate of a one-month SOFR contract equals the aver-
age SOFR rate over that month. Each day of the month is included in the
average, and non-business days take the rate of the previous business day.
For example, the SOFR rate for Friday, February 4, 2022, is counted three
times in the February average: once for Friday, February 4; once for Satur-
day, February 5th; and once for Sunday, February 6th. The final settlement
price of a contract equals 100 minus the percentage rate. If, for example,
the average SOFR rate over the month of February 2022 is 0.09%, then the
final settlement price is 100 − 0.09, or 99.91.5

The one-month SOFR contract is scaled to hedge a $5 million 30-day
investment. More specifically, the P&L (profit and loss) on one contract from
a one-basis-point decrease in the contract’s rate is set equal to,

$5,000,000 × 0.01% × 30
360

= $41.67 (12.2)

To elaborate on the P&L from buying, holding, and selling this futures
contract, consider a trader that buys one February contract on January 14,
2022, at a price of 99.935, which corresponds to a rate of 0.065%. Say
further that the price falls to 99.910, or equivalently, that the rate rises
to 0.09%, and that the trader either sells the contract or that the contract
expires at those levels. Because the trader bought the contract and the price

5The Federal Reserve Bank of New York releases the SOFR of a given day on the
morning of the next business day, which determines the earliest availability of the
monthly average. February 28, 2022, for example, is a Monday, which means that
the February average is available on March 1.
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fell, the trader loses money. The actual loss is determined with reference to
Equation (12.2). Because the contract rate rose from 0.065% to 0.09%, that
is, by 2.5 basis points, the trader loses 2.5 times $41.67, or $104.175. If, the
price rises instead, the buyer of a contract makes money. More specifically,
if the price rises from 99.935 to 99.995, or, equivalently, the rate falls by six
basis points, then the P&L from the purchase of one contract is six times
$41.67, or $250.02.

Like other futures contracts, one-month SOFR contracts are subject
to daily settlement payments. Futures prices fluctuate throughout the day,
according to market forces, and, at the end of each day, the exchange
sets a settlement price, which usually equals the price of the last trade.
All market participants then settle up their gains and losses over the day.
Those who were long one-month SOFR contracts over the day pay $41.67
for every one-basis-point increase in rates over the day or receive $41.67 for
every one-basis-point decrease in rates over the day. Correspondingly, those
who are were short over the day receive $41.67 for every one-basis-point
increase in rates or pay $41.67 for every one-basis-point decrease in rates.6

Because of daily settlement payments, the P&L of a futures position is
realized over its holding period rather than all at unwind or at final settle-
ment. In one of the previous examples the February contract is bought on
January 14 at a rate of 0.065% and expires or is sold at a rate of 0.005%,
for a six-basis-point or $250.02 gain. That gain is realized over time: daily
settlement payments are made on days when rates rise and are received on
days when rates fall. The sum of all those daily settlement payments, how-
ever, corresponds to the overall six-basis-point decline in rates, that is, to
an overall profit of $250.02. The exact pattern of gains and losses over the
holding period does not matter much when interest rates are very low, as
they have been for several years. In higher rate environments, however, the
pattern does matter. For winning positions, early gains, which can be rein-
vested, can be worth significantly more than later gains. Similarly, for losing
positions, early losses, which have to be financed, can cost significantly more
than later losses. The implications of daily settlement are discussed further
presently.

The stage is now set for a simple example of hedging with one-month
SOFR contracts. Consider a money market fund that plans to invest $50
million from January 14 to March 14, 2022, in overnight repo. The fund
chooses overnight repo because of its liquidity, that is, its ready availability in
the contingency of larger than anticipated requests to redeem shares. At the
same time, however, the fund decides to hedge the interest rate risk of falling
repo rates with one-month SOFR futures. More specifically, to offset losses

6For more on the operations and risk management of the exchange and its associated
clearinghouse, see Chapter 13.
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from falling repo rates, the fund buys one-month SOFR futures contracts,
which profit from falling repo rates. The question for the fund then, is which
contracts and how many to buy.

Focusing first on hedging the risk of falling repo rates over the month
of February, the fund can buy February contracts. Because each contract is
scaled to hedge a $5 million 30-day investment, while the fund is investing
$50 million over the 28-day month of February, the fund needs to buy,

$50,000,000 × 28
$5,000,000 × 30

= 10 × 28
30

= 9.33 (12.3)

contracts. Under a few simplifying assumptions, discussed presently, the per-
formance of this hedge is described in Table 12.3. The first column gives the
average realized rate over the month of February. The second column gives
the investment proceeds from earning simple interest in repo over the month
of February. At an average repo rate of 0.09%, for example, the fund earns
$50 million × 0.09% × 28∕360 = $3,500. The third column gives the P&L
from being long 9.33 contracts. Taking again the realized average rate of
0.09%, which is 2.5 basis points above the purchase rate of 0.065%, the
long futures position loses 9.33 × 2.5 × 41.67 = $971.95. The fourth col-
umn gives the net proceeds, that is, the sum of the investment proceeds
and the P&L from the SOFR futures hedge. The hedge works well in the
sense that, no matter what the realized average rate, net proceeds are about
the same. To elaborate, buying SOFR futures at a rate of 0.065% approx-
imately locks in a net P&L of $2,528. If the realized repo rate is less than
0.065%, investment proceeds are less, but futures P&L profits compensate
for the difference. If the realized repo rate is greater than 0.065%, invest-
ment proceeds are greater, but futures P&L losses offset the difference. The
reader can verify that the hedge works perfectly, that is, net proceeds always
equal $2,527.78, under the contrafactual assumptions that: i) the fund buys
exactly 9 1/3 contracts, which is the exact solution of Equation (12.3); and
ii) the P&L of the futures contract is exactly $41 2/3 per basis point, which
is the exact expression in Equation (12.2).

TABLE 12.3 Hedging a $50 Million Overnight Repo Investment with
9.33 One-Month February SOFR Futures Contracts, Purchased at a
Rate of 0.065%, as of January 14, 2022. Rates and in Percent. Other
Entries Are in Dollars.

Realized Investment Futures Net
Avg. Rate Proceeds P&L Proceeds

0.050 1,944.44 583.17 2,527.62
0.065 2,527.78 0.00 2,527.78
0.090 3,500.00 −971.95 2,528.05
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The depiction of the hedge in Table 12.3 is simplified in several ways.
First, the fund has to buy a whole number of contracts, that is, nine (or 10)
rather than 9.33. This is less of an issue, of course, for larger hedges, and
another practical solution to this rounding problem is discussed presently.
Second, the table ignores interest on daily settlement payments, which is
negligible when rates are very low and the time horizon is short. Third, it
is assumed that investment proceeds earn simple interest, whereas interest
is more likely to compound. This effect, too, is small when rates are low
and the horizon short. Fourth, the table assumes that the average repo rate
that determines the fund’s investment proceeds is exactly the same as the
average SOFR rate that determines the final settlement rate of the futures
contract. While extremely reasonable, this assumption may not hold exactly
in practice. SOFR on any day is the trimmed median rate of all transactions
that day. The fund, on the other hand, executes its own repo transactions
each day at a particular time with a particular dealer.

Stepping back to the full example, the money market fund wants to
hedge its overnight repo investments from January 14 to March 14. The
hedge over February is described above. Turning to the hedge over the
month of January, note that SOFR observations for the first 13 days of
January have already been set. Therefore, a one-basis-point change to repo
rates over each of the remaining 18 days of January moves average SOFR
for the month by only 18/31 basis points. Similarly, the fund is investing in
repo over only 18 days in January. The correct number of contracts for the
hedge is, therefore,

$50,000,000 × 0.01% × 18
360

$5,000,000
(

0.01% × 18
31

)
× 30

360

= 10 × 31
30

= 10.33 (12.4)

In words, because the number of remaining days in the month affects the
investment proceeds and the futures contract in the same way, the fact that
the hedge starts in the middle of the month can be ignored. Therefore, just
as in Equation (12.3) for the February hedge, the number of contracts for
the January hedge is the investment of $50 million for 31 days divided
by the contract’s effective hedge of $5 million for 30 days, which equals
10 times 31/30, or 10.33. Table 12.4 illustrates the January hedge, noting
that SOFR over each of the first 13 days of January was five basis points.
The format of the table is similar to that of Table 12.3, but the first column
is the average repo rate over the whole month, which determines the
futures P&L, while the second column is the average repo rate over the
last 18 days of the month, which determines the investment proceeds.
From the first row, for example, the first 13 days at five basis points and
the last 18 days at 2.85 basis points give an average over the month of
(5 × 13 + 2.85 × 18)∕31 = 3.75 basis points.
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TABLE 12.4 Hedging a $50 Million Overnight Repo Investment with 10.33
One-Month January SOFR Futures Contracts, Purchased at a Rate of 0.0525%, as
of January 14, 2022. SOFR Was 0.05% on Every Day from January 1 to 13. Rates
Are in Percent. Other Entries Are in Dollars.

Jan 1-31 Jan 14-31
Realized Realized Investment Futures Net
Avg. Repo Avg. Repo Proceeds P&L Proceeds

0.0375 0.0285 711.81 645.68 1,357.48
0.0525 0.0543 1,357.64 0.00 1,357.64
0.0775 0.0974 2,434.03 −1,076.13 1,357.90

Table 12.4 shows that the January hedge performs as expected. The Jan-
uary SOFR futures price is at a rate of 0.0525%, which implies a rate of
0.0543% over the last 18 days of the month. The money market fund can
lock in the investment proceeds at this rate, that is, $50 million × 0.0543%
× 18/360, or about $1,358. At lower realized rates, investment proceeds
are lower, but futures gains compensate. At higher realized rates, investment
proceeds are higher, but are given back through futures losses. Note that, as
in the previous table, the hedge would work exactly for 10 1/3 contracts and
a futures profit or loss of $41 2/3 per basis point.

The discussion of this January hedge reveals, more generally, that hedges
with one-month SOFR futures from any date within a month to the end of
that month require no special handling. Hedge ratios are computed as if
the entire month were being hedged, and, consequently, hedge ratios do not
change over the course of the contract month. Applying this conclusion to
the February part of the hedge, described earlier, the fund maintains its initial
long of 9.33 contracts throughout the entire month of February, after which
time those contracts expire.

The remaining piece of the overall money market fund hedge is using the
March contract to hedge repo rates from March 1 to 13, which rates deter-
mine the fund’s investment proceeds from March 1 to the assumed horizon
date of March 14. Proceeding in the same way as for January and February,
the fund would hedge its $50 million investment over 13 days with contracts
that hedge $5 million over 30 days by buying 10 times 13/30, or 4.33 March
contracts. With the rate of the March contract at 0.185% as of January 14,
this approach would seemingly lock in a repo investment rate of 0.185%. It
is left to the reader to construct a table like Tables 12.3 and 12.4 to illustrate
this point. The March hedge is actually more complicated than the January
and February hedges, however, for two reasons. First, 4.33 contracts are
appropriate from January 14 until before the setting of SOFR on March 1,
but not for the rest of March. Consider, for example, the hedge on March 4,
before the setting of SOFR on that day. There are 10 days left of exposure
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to the investment – March 4 to March 13, inclusive of both dates – and 28
days left of exposure to the contract – March 4 to March 31, inclusive of
both dates. The hedge ratio, therefore, is given by,

$50,000,000 × 0.01% × 10
360

$5,000,000
(

0.01% × 28
31

) = 10 × 31
28

10
30

= 3.69 (12.5)

In short, the appropriate number of contracts falls gradually over March
from 4.33 before the setting of repo on March 1 to zero on March 14. More
generally, the number of one-month SOFR contracts hedging exposure from
the beginning of the month to sometime within the month declines over the
course of the month.

The second and more serious problem with the proposed March hedge
is its implicit assumption that repo rates in the first 13 days of March move
in parallel with rates over the whole month. In fact, the Federal Reserve
announces on March 16, 2022, whether it is or is not raising its short-term
policy rates. The problem for the money market fund in the example, then,
is the scenario in which the market raises its expectation for a policy rate
increase on March 16. In that case, rate expectations for the second half of
March rise; the SOFR March contract rate rises and its price falls; the money
market fund loses money on its futures hedge; but, because repo rates do
not rise before the policy change, in the first half of March, fund investment
proceeds do not rise.

In this particular example, there is a reasonable solution to the problem
of the March hedge: hedge the exposure to repo interest rates from March 1
to March 13 with February SOFR contracts! The prior scheduled announce-
ment of Federal Reserve policy rates is on January 26. Much of the fund’s
exposure to repo rates in the first part of March, therefore, is captured by
February SOFR contracts, which incorporate expectations and realized pol-
icy decisions from the January meeting. Therefore, instead of purchasing
4.33 March contracts at the start of the hedge, on January 14, the fund can
purchase an additional 4.33 February contracts. Of course, at the end of
February, when the contracts expire, the fund is faced with another decision.
It can essentially roll the hedge from February to March contracts, by pur-
chasing 4.33 March contracts as the 4.33 February contracts expire. Or the
fund might decide that the basis risk between changes in rates over the first
part of March relative to changes in rates over the whole of March is large
relative to the risk of repo rates moving much before the scheduled March
policy meeting. In that case, the fund might choose not to hedge. In any case,
the strategy of stacking the fund’s March risk into February contracts is not
a cure-all: some economic and financial surprises might affect repo rates in
February, but not in the first part of March, while other surprises might
affect repo rates in the first part of March, but not in February. All in all,
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TABLE 12.5 Two Hedging Strategies for a $50 Million Overnight Repo
Investment with One-Month SOFR Futures Contracts, as of January 14, 2022.
There Is a Scheduled Federal Reserve Target Rate Policy Announcement on March
16, 2022.

Month-by-Month Stacking Mar into Feb
Ticker Contract Month Number of Contracts Number of Contracts

SERF2 Jan 10.33 = 10 × 31
30

10.33

SERG2 Feb 9.33 = 10 × 28
30

13.67

SERH2 Mar 4.33 = 10 × 13
30

0.00

Total 24.00 24.00

however, the risk of rates changing over the policy meeting is likely the most
important consideration, which argues for stacking into February contracts.

By way of summary, Table 12.5 describes the overall hedge strategies
of the money market fund in this example. The $50 million amount
being hedged and the number of days in each month, set against the
$5 million 30-day SOFR futures contract, give the number of contracts in
the “Month-by-Month” strategy. Avoiding the basis risk of hedging the
first part of March with all of March, and relying on the assumption that
almost all repo rate variability arises from changes to policy target rates,
the “Stacking Mar into Feb” strategy uses February contracts to hedge the
risk from the first part of March.

The notion of stacking contracts with risks from other periods allows
the discussion to circle back to the question of dealing with a fractional
number of contracts. Table 12.5 shows that the total number of contracts
required in either hedge is 24. To avoid fractional contracts, then, while
keeping overall exposure correct, stack the fractional amounts from some
months into others. In the Month-by-Month strategy, for example, the fund
might divide the total 24 contracts into 10 January contracts, 10 February
contracts, and 4 March contracts. In the “Stacking Mar into Feb” strat-
egy, the fund might – to avoid too much idiosyncratic February risk – buy
11 January contracts and 13 February contracts. Any stacking strategy does
expose the fund, however, to any idiosyncratic changes in rates that appear
in one month, but not in another.

12.3 FED FUND FUTURES

Banks that have accounts at the Federal Reserve system can trade these
fed funds with each other; that is, they can borrow from and lend to each
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other, at market-determined rates, in the fed funds market. These trades are
predominantly for overnight borrowing and lending, and the effective fed
funds rate, calculated each day, is the volume-weighted average of the
overnight rates on fed funds traded that day.

Before the financial crisis of 2007–2009, under the monetary policy
regime of scarce reserves, domestic commercial banks actively traded in
the fed funds market to manage their individual shortages or surpluses of
reserves. Furthermore, the Federal Reserve conducted monetary policy by
adding or subtracting reserves from the system so as to keep effective fed
funds at or very close to a policy target rate. More recently, however, in
the regime of abundant reserves, domestic commercial banks do not need
to borrow funds from each other; they face various regulatory incentives to
hold reserve balances; and they earn interest on reserves held at the Fed-
eral Reserve. The resulting transformation of the fed funds market has been
dramatic, both in terms of a significant decline in volumes and in terms of
a change in the composition of market participants. Lending is now domi-
nated by Federal Home Loan Banks (FHLBs) – that do not earn interest on
their accounts at the Federal Reserve – and borrowing is now dominated by
US subsidiaries of foreign banks – that typically do not take US deposits and
are not constrained by the full range of US bank regulations. The fed funds
market has thus become a means through which FHLBs can earn interest
on their surplus cash in the Federal Reserve system, and foreign banks can
earn a spread by borrowing from the FHLBs and depositing those borrowed
funds into interest-bearing accounts at the Federal Reserve.7

While the Federal Reserve no longer changes the quantity of reserves
in the system to influence short-term rates, it uses other policy tools to keep
effective fed funds within a target range, defined by an upper and lower limit.
Figure 12.2 graphs these upper and lower limits, along with the effective fed
funds rate itself, from January 2010 to January 2022. Effective fed funds is
somewhat volatile, but nearly always within the policy target range.

The fed funds effective rate is of interest to participants in the fed funds
market; to those who borrow and lend at a spread over fed funds effec-
tive; to those who trade derivatives tied to fed funds effective; and to anyone
taking positions on future Federal Reserve policy. For these groups, fed fund
futures can be used to manage exposures to fed funds effective. These futures
contracts can be explained concisely here, because one-month SOFR futures,
described in the previous section, are designed along the same lines. The final
settlement rate of a fed fund futures contract in a particular delivery month
is the average of fed funds effective over that month, with non-business days

7For additional institutional details, see, for example, Craig, B., and Millington, S.
(2017), “The Federal Funds Market Since the Financial Crisis,” Economic Commen-
tary 2017–07, Federal Reserve Bank of Cleveland, April 5.
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F IGURE 12.2 Fed Funds Effective Rate and Target Range, January 2010 to January
2022.

taking on the previous business day’s rate. Like one-month SOFR futures
contracts, price is quoted as 100 minus the percentage rate; contracts are sub-
ject to daily settlement; and contracts are scaled such that a one-basis-point
change in the rate results in a daily settlement flow of $41.67. With all
of these similarities to one-month SOFR contracts, hedging with fed fund
futures proceeds along the same lines as in the previous section. The text
continues, therefore, with the use of fed fund futures to infer market expec-
tations of Federal Reserve rate policy decisions.

Table 12.6 lists fed fund futures contracts, prices, and rates as of two
dates: October 1, 2021, and January 17, 2022. The rightmost column of
the table lists the meeting dates of the Federal Open Market Committee
(FOMC), which, on the second day of each set of meetings, announces
any monetary policy changes, including changes to the federal funds target
rate. As explained in Chapter 8, forward interest rates are a combination of
expected rates in the future and a risk premium, but the risk premium over
a year is likely to be relatively small. Also, as explained later in this chapter,
near-term forward rates and futures rates are very similar. Therefore,
roughly speaking, the one-month fed fund futures rates in Table 12.6 can
be viewed as market expectations of future monthly average effective fed
funds. In this light, the main lesson from the table is that expectations
of Federal Reserve policy changed significantly from October 1, 2021, to
January 17, 2022. As of October 1, fed fund futures anticipated effective
fed funds rising from eight basis points to 28 basis points by the end of
2022. As of January 17, 2022, however, by which time surging inflation
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TABLE 12.6 Prices and Rates of Selected Fed Funds Futures Contracts, as of
October 1, 2021, and January 17, 2022, and 2022 FOMC Meeting Dates. Rates
Are in Percent.

10/1/2021 1/17/2022 FOMC

Ticker Month Price Rate Price Rate Meeting

FFV1 Oct (2021) 99.920 0.080
FFX1 Nov 99.920 0.080 11/2-3
FFZ1 Dec 99.920 0.080 12/14-15
FFF2 Jan (2022) 99.925 0.075 99.9175 0.0825 1/25-26
FFG2 Feb 99.920 0.080 99.9050 0.0950
FFH2 Mar 99.920 0.080 99.7800 0.2200 3/15-16
FFJ2 Apr 99.920 0.080 99.6450 0.3550
FFK2 May 99.915 0.085 99.5500 0.4500 5/3-4
FFM2 Jun 99.900 0.100 99.4500 0.5500 6/14-15
FFN2 Jul 99.885 0.115 99.3450 0.6550 7/26-27
FFQ2 Aug 99.865 0.135 99.2800 0.7200
FFU2 Sep 99.845 0.155 99.2350 0.7650 9/20-21
FFV2 Oct 99.800 0.200 99.1450 0.8550
FFX2 Not 99.775 0.225 99.0650 0.9350 11/1-2
FFZ2 Dec 99.720 0.280 99.0050 0.9950 12/13-14

had begun to worry Federal Reserve officials, fed fund futures anticipated
effective fed funds rising from 8.25 basis points to 99.5 basis points by the
end of 2022.

Many market participants, in fact, use fed fund futures rates together
with the FOMC meeting dates to build a market term structure of fed funds
effective. The key assumption is that the Federal Reserve changes its tar-
get rate only at its scheduled meetings. This has been a good description
of recent history, with only rare exceptions, like after the terrorist attacks
on September 11, 2001, during the financial crisis in 2008, and in response
to the COVID pandemic and economic shutdowns in March 2020. In any
case, given this assumption, the idea is to find a set of forward rates, from
one meeting to the next, that are more or less consistent with fed fund futures
prices.

To illustrate the procedure, focus on January 17, 2022. Note that the
fed funds effective rate was eight basis points from January 1 to January 17
(not shown in the table). The FOMC could announce a new target rate the
afternoon of January 26 and, because there is no FOMC meeting in Febru-
ary, the rate set by the FOMC on January 26 will be the average fed funds
effective rate in February. But the February contract rate is 0.095%. Hence,
the market’s expectation of fed funds effective after the January 26 meeting
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is 0.095%.8 To flesh out the meaning of this expectation, assume further,
consistent with recent history, that the Federal Reserve will change the target
rate by either zero or 25 basis points. Then, given a post-meeting expected
rate of 0.095%, the implied probability, p, of a 25-basis-point increase in
rate on January 26, from 8 to 8+25 or 33 basis points, is given by,

0.095% = p × (0.08% + 0.25%) + (1 − p) × 0.08%

p = 6% (12.6)

In words, with a 6% probability of the Federal Reserve increasing fed funds
effective from eight to 33 basis points, and a 94% probability of leaving fed
funds effective at eight basis points, the expected fed funds effective rate is
9.5 basis points, as implied by the February contract price.

Moving to the next meeting, because there is a possible rate target
announcement on March 16, but no meeting in April, the April futures
rate of 0.355% indicates a market expectation of 0.355% after the
announcement on March 16. Implying the results of the May meeting is
more complex, because there is a meeting in June. Hence, to calculate the
market’s expectation of the May meeting, let f May be expected fed funds
effective after the May meeting, which takes effect starting and including
May 5. The May fed futures rate of 0.450%, therefore, is an average of four
days at the expectation of 0.355% coming out of the previous meeting, and
27 days at f May. Mathematically,

0.450% =
4 × 0.355% + 27 × f May

31

f May = 0.4641% (12.7)

Continuing along these lines, the expected fed funds effective rate can
be computed for each date. Figure 12.3 shows the results of this exercise,
as of October 1 and as of January 17, using fed fund futures rates from
Table 12.6. This figure graphically conveys the same message as the futures
rates themselves, namely, that the market revised its rate expectation upward
from October 1 to January 17. The figure, however, relying on the meeting
dates, explicitly shows the path of expected rates.

This section concludes with an aside about curve building, that is, about
mathematically representing the term structure of interest rates. Putting aside

8There is another way to back out rate expectations of the January meeting, namely,
to match the January futures rate as an average of 26 days at eight basis points and
five days at the expected result of the January meeting. The purpose of the text,
however, is merely to illustrate the procedure, not to recommend a specific approach
for this particular point in time.
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the small differences between short-term futures and forward rates, dis-
cussed next, Figure 12.3 can be read as a flat-forward-rate representation
of the term structure. In other words, the term structure of forward rates
is represented as a sequence of constant forward rates. While this structure
may seem odd from a purely economic perspective, because forward rates
might be expected to change smoothly over time, flat forwards often repre-
sent all available market information. Fed fund futures, for example, provide
only one rate per month. Furthermore, while flat forwards are discontinu-
ous; that is, they jump at particular terms, they lead to relatively smooth
spot rates and discount factors. To illustrate, using the relationships from
Chapters 1 and 2, Figure 12.4 constructs weekly spot rates, discount fac-
tors, and forward rates from the flat forwards of Figure 12.3. These curves
can reasonably be used to discount cash flows from other short-term instru-
ments of equivalent credit risk, or as a base curve above which spreads can
be added to discount riskier cash flows.

In building curves, there is always a trade-off between stability and
smoothness. Flat forwards are very stable. Small changes in fed fund futures
rates, for example, move flat forwards and corresponding spot rates or dis-
count factors by small amounts and in sensible ways. Smooth represen-
tations of interest rate curves, however, like cubic splines, which are not
described in this book, are notoriously unstable. Small changes in market
rates in one part of the curve often lead to larger changes in other, rela-
tively distant parts of the curve. Current industry practice favors more stable
methodologies, like flat forwards, combined with an effort to collect as many
market data points as possible, particularly in the short end of the curve.
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of January 17, 2022.

In general, the more market data, the less significant the discontinuities or
jumps in the flat forward curve. Jumps between meeting dates, however, as
in Figure 12.3, are actually a feature of the methodology, as they capture the
financial reality of short-term rates jumping after FOMC meetings.

12.4 THREE-MONTH SOFR FUTURES

Like one-month SOFR futures, three-month contracts are designed to hedge
exposure to SOFR and are subject to daily settlement. There are three
differences, however. First, and most obviously, three-month contracts
hedge exposure over three months, with the exact determination of dates
described presently. Second, the settlement rate of the three-month contract
is based not on average SOFR over the reference period, but rather on daily
compounded SOFR. Third, the three-month contract is scaled to hedge a
$1 million 90-day investment, which means that the P&L on one contract
from a one-basis-point decrease in the final settlement rate is set equal to,

$1,000,000 × 0.01% × 90
360

= $25 (12.8)

Table 12.7 lists the first four three-month contracts, along with their
prices and rates, as of January 14, 2022. The first three letters of the
ticker, “SFR,” denote the three-month SOFR contract, while the following
letter and digit, as for other futures contracts, denote the delivery month
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TABLE 12.7 Selected Three-Month SOFR Futures Contracts, as of January 14,
2022. Rates Are in Percent.

Delivery Start Date Last Trade Valuation
Ticker Month (inclusive) Date Date Price Rate

SFRZ1 Dec 12/15/2021 03/15/2022 03/16/2022 99.940 0.060
SFRH2 Mar 03/16/2022 06/14/2022 06/15/2022 99.640 0.360
SFRM2 Jun 06/15/2022 09/20/2022 09/21/2022 99.350 0.650
SFRU2 Sep 09/21/2022 12/20/2022 12/21/2022 99.125 0.875

and last digit of the year. The “Start Date” of the reference period is the
IMM (International Monetary Market) date corresponding to the contract
month, where IMM dates are defined as the third Wednesday of March,
June, September, and December. The “Last Trade Date” of a contract,
which is also the last day of the reference period, is the business day before
the next IMM date. And the “Valuation Date,” which is the day of the last
daily settlement payment, is the business day after the last trade date. For
the June three-month SOFR contract, for example, the reference period for
the calculation of the final settlement rate is from the June IMM date, or
June 15, 2022, inclusive, to the September IMM date, or September 20,
2022, inclusive. The contract stops trading on September 20, 2022, and the
last daily settlement payment is on September 21, 2022, which is the date
that SOFR for September 20, 2022, is published.

Let ri denote SOFR for date i, and let D denote the total number of days
in the reference period. As in the cases of one-month SOFR futures and fed
fund futures, SOFR for any non-business day is taken as the value of SOFR
on the previous business day. The final settlement rate of a three-month
SOFR futures contract, R, is then defined such that,

1 + RD
360

=
(

1 +
r1

360

)(
1 +

r2

360

)
· · ·

(
1 +

rD

360

)
(12.9)

R =
[(

1 +
r1

360

)(
1 +

r2

360

)
· · ·

(
1 +

rD

360

)
− 1

] 360
D

(12.10)

The right-hand side of Equation (12.9) gives the value of an investment
of one unit of currency, compounded daily at realized SOFR rates, from
days one to D. The left-hand side is the value of an investment of one unit
of currency at the term rate R for D days. Equating the two sides of this
equation, therefore, means that R is the realized term rate that summa-
rizes daily compounded SOFR over the reference period. Solving for R gives
Equation (12.10). To illustrate with an extremely simple example, note that
there are 98 days in the reference period of the June three-month SOFR
contract. Assume that SOFR over the 42 days from June 15 to July 26,
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inclusive of both, is 0.51%, while SOFR over the 56 days from July 27 to
September 20, inclusive of both, is 0.76%. (Note that these two periods cor-
respond to periods between FOMC meetings listed in Table 12.6.) Then,
using Equation (12.10),

R =

[(
1 + 0.51%

360

)42(
1 + 0.76%

360

)56

− 1

]
360
98

R = 0.653% (12.11)

The final settlement price would be 100 minus the percentage rate, or
100 − 0.653 = 99.347. This price and the rate in Equation (12.11) are, as
it turns out, nearly equal to the price and rate of the June contract given in
Table 12.7.

To illustrate hedging with three-month SOFR futures, consider the
following simple example. As of January 14, 2022, a company plans to
borrow $10 million from its bank for the 98 days between June 15, 2022,
to September 21, 2022, at daily compounded SOFR plus a spread. To hedge
the risk that SOFR is higher over that time period, the company can sell
June contracts. Because the loan is for $10 million over 98 days, while each
contract is scaled to a $1 million 90-day loan, the number of contracts to
be sold is,

$10,000,000 × 98
$1,000,000 × 90

= 10.89 (12.12)

The top panel of Table 12.8 describes the performance of the hedge
in three interest rate scenarios. Consider the scenario in which the real-
ized contract rate turns out to be 0.35%. By the definition of that rate in
Equations (12.9) and (12.10), the interest in this scenario on the SOFR
component of the bank loan (i.e., ignoring the spread) over the 98-period
ending September 21, is −$10,000,000 × 0.35% × 98∕360 = −$9,527.78.
The P&L from the hedge, that is, from selling 10.89 contracts at 0.65%
that expire at 0.35%, for a loss of 30 basis points per contract, is −30 ×
$25 × 10.89 = −$8,167.50. Ignoring daily settlement payments, this panel
assumes that this futures P&L is realized on the June contract’s valuation
date, which is also September 21. Summarizing this scenario, then, the com-
pany’s relatively low interest cost and its loss on its futures hedge gives a total
obligation of about $17,695. In the scenario in which the final settlement rate
is 0.65%, the interest cost is about $17,694, and the futures P&L is zero.
And if the final settlement rate is 0.95%, then the realized interest cost is
relatively high, but, offset by futures gains, again giving a net cost of about
−$17,694. Hence, with the three-month SOFR futures hedge, the interest
cost is successfully locked in at 0.65%, that is, the rate at which the futures
contracts are initially sold. (The net amount would be exactly $17,694.44
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TABLE 12.8 Hedging the Interest Cost of Borrowing $10 Million from June 15,
2022, to September 21, 2002, as of January 14, 2022, with June Three-Month
SOFR Contracts, Priced Initially at 0.650%. The Hedge, Not Tailed, Sells
10.89 Contracts. The Tailed Hedge Sells 10.84 Contracts. Rates Are in Percent.
Other Entries in Dollars.

Final Settle- Loan Futures
ment Rate Interest P&L Net

Futures P&L Realized at End – Hedge Not Tailed

0.35 −9,527.78 −8,167.50 −17,695.28
0.65 −17,694.44 0.00 −17,694.44
0.95 −25,861.11 8,167.50 −17,693.61

Futures P&L Realized at Start – Hedge Not Tailed

0.35 −9,527.78 −8,187.35 −17,715.13
0.65 −17,694.44 0.00 −17,694.44
0.95 −25,861.11 8,221.38 −17,639.73

Futures P&L Realized at Start – Hedge Tailed

0.35 −9,527.78 −8,149.76 −17,677.54
0.65 −17,694.44 0.00 −17,694.44
0.95 −25,861.11 8,183.64 −17,677.48

in every scenario, by the way, if the number of contracts in Equation (12.12)
were taken to more decimal places.)

The second and third panels of the table return to the discussion earlier
in the chapter on the impact of daily settlement payments. The second panel
illustrates the issue with the extreme assumption that, immediately after the
June contracts are sold on June 14 at a rate of 0.65%, the futures rate jumps
to its final settlement value and remains at that level until the end of the loan
period on September 21. In the 0.35% scenario, the P&L of −$8,167.50 is
fully realized with the daily settlement payment at the close of business on
June 14 and has to be financed over the 250 days to September 21 at 0.35%.
This brings the total futures loss to −$8,167.50(1 + 0.35% × 250∕360) =
−$8,187.35. In the 0.65% scenario, there is no futures P&L, so nothing
changes from the first panel. And in the 0.95% scenario, the futures gain
of $8,167.50 is fully realized on June 14 and can be reinvested at 0.95%
to September 21, bringing the total gain to $8,221.38. The sums of each
of these accumulated P&L numbers and the respective loan interest num-
bers in the second panel of the table give three net quantities that are no
longer virtually the same. The cost of financing the daily settlement loss in
the first scenario and the interest on the daily settlement gain in the third sce-
nario result in net positions that are not so well hedged as in the first panel.
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The differences are not particularly large, because rates are low. But the text
continues by describing how to adjust the hedge: interest rates may eventu-
ally return to higher levels.

The second panel of Table 12.8 reveals that, incorporating daily
settlement payments, selling 10.89 contracts is too many. When rates
fall and futures P&L is negative, financing costs drive overall losses too
high. And when rates rise and futures P&L is positive, interest earned
drives overall gains too high. Roughly speaking then, the daily settlement
feature grows any P&L from a futures contract today into that P&L × (1 +
R0D∕360) as of the expiration date, where R0 is the futures rate today. To
offset this growth, a correction used in practice, called tailing the hedge,
is simply to divide the number of contracts by (1 + R0D∕360). In the
present example, tail the hedge by reducing the number of contracts from
10.89 to 10.89∕(1 + 0.65% × 250∕360) = 10.84. The third panel shows
the P&L of this tailed hedge. In the 0.95% scenario, for example, the
futures P&L of 30 × $25 × 10.84 = $8,130.00, which is assumed to be
realized immediately, is invested at a rate of 0.95% to grow to a total gain
of $8,130.00(1 + 0.95% × 250∕360) = $8,183.64. All in all, comparing
the net quantities in the second and third panels of the table, the tail does
reduce the variance of the outcome. The correction is not perfect, of course,
because the tail reduces the number of contracts by today’s futures rate,
whereas daily settlement grows by the rate in the relevant horizon. Note
also that the tail needs to be adjusted over time, as the prevailing futures
rate changes and as the number of days to contract expiration falls.

The hedging example of this section is very simple in that the com-
pany’s borrowing dates coincided exactly with the reference period of the
June futures contract. If, instead, the company were borrowing for the same
number of days, but over a different calendar period, say from April 15 to
July 22, the futures hedge still calls for about 11 contracts, but split between
March and June. With no view on the relative amount of interest rate risk
over the 61 days covered by the March contract (April 15 to June 14, inclu-
sive of both) and the 37 days covered by the June contract (June 15, inclusive,
to July 22, not inclusive), the most straightforward split is 11 times 61/98,
or about seven in March, and 11 times 37/98, or about four in June.

12.5 EURIBOR FORWARD RATE AGREEMENTS
AND FUTURES

As mentioned earlier, Euribor is a set of term rates that continue to be used
after the LIBOR transition. In particular, the three-month Euribor quote
on a particular date represents the rate on a three-month interbank loan
that settles in two business days. Furthermore, a term of “three months” in
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this market refers to the same calendar day three months later. Three-month
Euribor quoted on June 13, 2022, therefore, represents the rate earned over
the 92 days from June 15, 2022, to September 15, 2022.

Forward rate agreements or FRAs are over-the-counter agreements
that are used to hedge the interest rate risk of future borrowing or lending.
Table 12.9 gives the terms, as of January 14, 2022, of a €10 million notional
amount Euribor FRA at a fixed rate or contract rate of −0.47% from June
15 to September 15, 2022. The borrower or fixed-rate payer agrees to pay
the lender or fixed-rate receiver on June 15 the quantity listed in the table.
The fixed rate of a FRA is set equal to the Euribor forward rate at the time
of the trade, as defined in Chapter 2. In this example, this means that, as of
January 14, market participants are willing to commit to borrow or lend
from June 15 to September 15 at a rate of −0.47%. To see that the FRA is
fairly priced at this fixed rate, note that a commitment to borrow or lend
for three months on June 15 at the then-prevailing market rate, R, is also
fair. Therefore, committing to lend on June 15 at −0.47% and to borrow
on June 15 at R is fair, and the resulting September 15 interest payments
from those commitments sum to €1 million × (92/360) × (−0.47% − R).
Finally, the present value of that sum as of June 15 equals the quantity in
Table 12.9. Hence, the FRA described is fairly priced.

To illustrate how FRAs can be used for hedging, consider a corpora-
tion that, as of January 14, 2022, has a line with its bank to borrow €10
million from June 15, 2022, to September 15, 2022, at Euribor flat, that
is, at no spread. If Euribor on June 13 turns out to be R, then that will be
the rate applied to the loan, and the corporation will owe €10 million ×
[1 + (92∕360)R] on September 15. The corporation, therefore, is exposed
to the risk that rates rise from January 14 to June 13.

The corporation can hedge this risk by locking in the forward rate
of −0.47% as follows. On January 14, 2022, the corporation agrees to pay
fixed on the FRA in the table. Then, on June 15, the corporation borrows

TABLE 12.9 A €10 Million Euribor Forward Rate Agreement
from June 15, 2022, to September 15, 2022, at −0.47%, as of
January 14, 2022.

Date Description

1/14/2022 Trade Date
6/13/2022 3-Month Euribor Observed to be R
6/15/2022 Borrower Pays (net):

€10,000,000 × 92
360

(−0.47% − R)

1 + 92
360

R



Trim Size: 6in x 9in Tuckman835554 c12.tex V1 - 07/12/2022 11:22am Page 314�

� �

�

314 FIXED INCOME SECURITIES

the €10 million it needs plus the quantity it owes on the FRA for three
months at the then-prevailing rate, R. In total then, the corporation owes,

⎛⎜⎜⎝
€10,000,000 +

€10,000,000 × 92
360

(−0.47% − R)

1 + 92
360

R

⎞⎟⎟⎠
(

1 + 92
360

R
)

(12.13)

= €10,000,000
(

1 + 92
360

R + 92
360

(−0.47% − R)
)

(12.14)

= €10,000,000
(

1 + 92
360

× (−0.47%)
)

(12.15)

on September 15, which is exactly the same as if it had borrowed €10 million
at a rate of −0.47%. Intuitively, if realized Euribor on June 15 is less than
−0.47%, the corporation borrows at relatively low rates, but owes money on
the FRA. On the other hand, if realized Euribor is greater than −0.47%, the
corporation borrows at relatively high rates but collects money on the FRA.9

An exchange-traded alternative to Euribor FRAs are Euribor futures
contracts, some of which are listed in Table 12.10, as of January 14, 2022.
The tickers begin with “ER,” followed by the month and year indicators.
The contracts are subject to daily settlement, and the final settlement rate is
set to three-month Euribor on the last trade date. The final settlement rate
of the June contract, for example, is three-month Euribor on June 13, 2022,
which as mentioned earlier, represents the rate on a loan from June 15 to
September 15. Three-month Euribor futures are scaled to hedge the change
in interest on a €1 million, 90-day loan. Equivalently, a one-basis-point
change in rate translates into a daily settlement flow of €1,000,000 × 0.01%
× 90/360, or €25.

The corporation in the FRA example hedges a €10 million, 92-day loan
from June 15 to September 15, 2022. This time period corresponds exactly
to that covered by Euribor set on June 13, which is also the expiration of
the June three-month Euribor contract. Furthermore, with the market at the
levels in Table 12.10 – a rate of −0.47% – the corporation can sell the June
contract to lock in a rate of −0.47% on its planned borrowing. The number
of contracts required to hedge the €10 million, 92-day loan with a contract
scaled to a €1 million, 90-day loan, is,

$10,000,000 × 92
$1,000,000 × 90

= 10.22 (12.16)

9The most creditworthy corporations might be able to borrow at Euribor flat, as
in the example. Less creditworthy entities borrow at Euribor plus a spread, which,
despite negative Euribor, might result in an overall positive interest payment. In any
case, to the extent the bank can set the spread at the time of the loan, the corporation
is exposed to spread risk.
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TABLE 12.10 Selected Three-Month Euribor Futures
Contracts, as of January 14, 2022. Rates Are in Percent.

Delivery Last Trade
Ticker Month Date Price Rate

ERH2 Mar 03/14/22 100.540 −0.540
ERM2 Jun 06/13/22 100.470 −0.470
ERU2 Sep 09/19/22 100.375 −0.375
ERZ2 Dec 12/19/22 100.260 −0.260

TABLE 12.11 Hedging the Interest Cost of Borrowing
€10 Million from June 15, 2022, to September 15, 2022, as of
January 14, 2022, with June Three-Month Euribor Contracts,
Priced Initially at −0.47%. The Hedge, Not Tailed, Sells 10.22
Contracts. Rates Are in Percent. Other Entries Are in Euro.

Final Settle- Loan Futures
ment Rate Interest P&L Net

−0.77 19,677.78 −7,665.00 12,012.78
−0.47 12,011.11 0.00 12,011.11
−0.17 4,344.44 7,665.00 12,009.44

The results of the hedge are given in Table 12.11. If rates rise, so that
Euribor on June 13 turns out to be −0.17%, the corporation receives interest
of €10 million × (92/360) × negative 0.17%, or €4,344.44; experiences a
futures gain of 30 basis points per contract, for a total gain – ignoring the
small effects of daily settlement – of 30 × €25 × 10.22, or €7,665.00; which
together gives an overall gain of €12,009.44. Looking at the table as a whole,
the futures position successfully hedges the cost of borrowing in the sense
of locking in the receipt of about €12,011. The hedge would be exact if the
number of contracts in Equation (12.16) were taken to more decimal places.

This hedging example is simple in that the corporation plans to borrow
over the same period as covered by three-month Euribor relevant for the June
contract. Along the same lines as the discussion in the context of hedging
with SOFR futures, if the borrowing period were shorter or longer than that
covered by the June Euribor contract, fewer or more contracts would be
needed, and contracts other than June might be used.

The example in this section is constructed to show the similarity between
Euribor FRAs and futures, but there are significant differences as well.
FRAs may be subject to bilateral margin agreements, but are not subject to
daily settlement, like futures. FRAs, as over-the-counter products, can be
customized for individual trades with respect to dates covered and with
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Last Trade
Date
6/13

9/21
Last Valuation
Date

6/15 9/15

9/20
Last Trade

Date

3-Month SOFR Reference Period, 6/15 (inclusive) to 9/21 (not inclusive)

SFRM2

ERM2

3-Month Euribor Term Rate, 6/15 to 9/15

F IGURE 12.5 A Comparison of the June 2022 Euribor and the June 2022 SOFR
Futures Contracts.

respect to notional amount, while the terms of futures contracts are
highly standardized. In part because they are customized, however, FRAs
are less liquid than futures. Hedgers typically need to decide, therefore,
whether customization or liquidity is more important in their particular
circumstances.

This section concludes with a comparison of futures on a forward-
looking term rate benchmark, like Euribor, and futures on a backward-
looking compounded overnight benchmark, like SOFR. The top half of
Figure 12.5 depicts the June three-month Euribor contract, ERM2, while
the bottom half depicts the June three-month SOFR contract, SFRM2. Both
contracts cover realized interest rates from mid-June to mid-September,
though the terminal date differs somewhat, as detailed earlier. The big dif-
ference, however, is that ERM2, which references a term rate set on June 13,
expires on that date. SFRM2, which references a compounded daily rate
that is not known until September 21, does not expire until that later date.

12.6 THE FUTURES-FORWARD DIFFERENCE

By definition, borrowers and lenders can lock in market forward rates, and
earlier sections of this chapter show that, ignoring daily settlement, borrow-
ers and lenders can also lock in market futures rates. This section explains
that, because of daily settlement, market futures rates exceed market for-
ward rates. However, the magnitude of the difference turns out to be small
except for contracts of the longest terms.

If a trader receives fixed at 2% through a forward agreement, all of
the P&L from the agreement is realized at its expiration. But if the trader
buys an otherwise identical futures contract at 2%, that same total P&L is
realized over time. More specifically, when rates are falling and the futures
contract is making money, daily settlement profits are reinvested at rela-
tively low rates. And when rates are rising and the futures contract is losing
money, daily settlement losses have to be financed at relatively high rates.
Therefore, averaging across scenarios of both falling and rising rates, receiv-
ing daily settlement payments over time is worse than receiving all of the
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P&L at the end. Hence, traders require a higher rate when buying a futures
contract than when receiving fixed in a forward agreement. Or, in reverse,
other traders willingly accept a higher rate when selling a futures contract
than when paying fixed in a forward agreement. In this example, the futures
rate exceeds the forward rate of 2%. Furthermore, based on the logic of that
result, the difference between the two rates increases with the length of time
to expiration of the contracts and with the volatility of interest rates.

Appendix A12 proves, in general, that the futures rate exceeds the
forward rate.10 For the purposes of understanding orders of magnitude,
however, Table 12.12 presents some results, without proof, from a normal
one-factor term structure model with a constant drift and with a constant
volatility of 80 basis points per year. This volatility is chosen to be roughly
consistent with the levels shown in Chapter 16. In any case, the rows of the
table in the first and second panels correspond to the three different kinds of
futures contracts described in this chapter: three-month contracts on a term
rate (Euribor futures); one-month contracts on an average of overnight rates
(fed funds and SOFR futures); and three-month contracts on compounded
overnight rates. The first panel gives the formulas for the differences
between futures and forward rates in the model just described, where 𝜎

denotes the annual normal volatility (e.g., 0.8% for 80 basis points); 𝛽

denotes the term of the underlying rate, in years, which, for the contracts

TABLE 12.12 The Futures-Forward Rate Difference for Selected Contracts in a
One-Factor Model with a Volatility of 80 Basis Points per Year.

Underlying Contract
Rate Examples Formula 𝜷

Term 3m Euribor 𝜎

2t2

2
+ 𝜎

2t𝛽
2

0.25

Avg. ON 1m FF/SOFR 𝜎

2t2

2
+ 𝜎

2t𝛽
2

+ 𝜎

2
𝛽

2

6
1
12

Comp. ON 3m SOFR 𝜎

2t2

2
+ 𝜎

2t𝛽
2

+ 𝜎

2
𝛽

2

3
0.25

Fut-Fwd Difference (bps)
t =𝟏 t =𝟐 t =𝟓 t =𝟏𝟎

Term 3m Euribor 0.4 1.4 8.4 32.8
Avg. ON 1m FF/SOFR 0.3 1.3 8.1 32.3
Comp. ON 3m SOFR 0.4 1.5 8.4 32.8

10This result is analogous to the result in Chapter 11 that the futures price is less than
the forward price.
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shown, is either 0.25 or 1/12; and t denotes the time to the beginning of the
rate reference period. As an illustration of t from the examples in the text,
the beginning of the reference period of the three-month June Euribor and
three-month June SOFR contracts depicted in Figure 12.5 – June 15 – is
152 days or about t = 0.42 years from the trade date of January 14.

The second panel of Table 12.12 gives the differences between the
futures and forward rates in the model for each of the contract types
and for four values of t, in basis points. The first point to notice is that
futures-forward rate differences for a given t do not vary much across
contracts. The reason for this can be seen from the formulas in the first
panel. With 𝛽 relatively small, the dominant term in all the formulas is the
common term 𝜎

2t2∕2. The second point to notice is that the futures-forward
rate difference is relatively small except for the longest times to the begin-
ning of the reference period. This is again explained by the dominant term,
𝜎

2t2∕2, which increases with the square of t. That term alone, in fact, is a
good approximation for all of the terms in the given formulas: for t = 10,
for example, 𝜎2t2∕2 equals 32 basis points, which approximately equals the
exact solution for all of the contract types.
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CHAPTER 13
Interest Rate Swaps

I nterest rate swaps (IRS) are contracts in which two counterparties agree
to exchange a sequence of interest payments on some notional amount

of currency. In an overnight index swap (OIS), payments based on a fixed
rate of interest are exchanged for payments based on a floating, overnight
rate, which changes daily with market conditions. The swaps introduced
in Chapter 2 are OIS, in which the floating rate is the Secured Overnight
Financing Rate (SOFR) defined and discussed in Chapters 10 and 12.
A fixed-for-floating swap is similar, but the floating rate is a term rate,
rather than an overnight rate. Euribor swaps are fixed-for-floating swaps, in
which the floating rate is typically the three-month Euribor rate described
in Chapter 12. Historically, the most common IRS across currencies were
fixed-for-floating London Interbank Offered Rate (LIBOR) swaps, in
which the floating rate was LIBOR of some term. However, with the
transition away from LIBOR, as described in Chapter 12, these swaps are
disappearing. OIS and fixed-for-floating swaps are the main focus of this
chapter.

There are several classes of derivatives closely related to IRS, includ-
ing forward-rate agreements (FRAs) (see Chapter 12), caps and floors, and
swaptions (see Chapter 16). While traditionally not called “swaps” by the
financial industry, these products are defined as “swaps” in the Dodd-Frank
Act, which can cause some terminological confusion. In any case, these prod-
ucts are discussed elsewhere in this book but are included in the market size
statistics presented in this chapter.

The first section of this chapter describes the size of the IRS market and
how various market sectors use swaps. The second section builds on the
introduction of IRS in Chapter 2 and of short-term rates in Chapter 12 to
present more detail on cash flows, pricing, and risk metrics. The third section
uses several examples and cases to illustrate how IRS are used to manage risk.
The fourth section addresses the risk that a swap counterparty defaults on
contractual obligations, that is, counterparty credit risk, and describes the
posting of collateral or margin to mitigate this risk. The fifth section explains
swaps clearing, through which the two counterparties to a swap legally face

319
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a clearinghouse instead of each other. The sixth section introduces basis
swaps and basis swap spreads and explains how swaps that reference nearly
risk-free, floating-rate indexes, like SOFR, are priced differently from swaps
referencing other floating-rate indexes.

13.1 MARKET SIZE AND PARTIC IPANTS

Table 13.1 shows outstanding amounts of interest rate swaps.1 Products
include OIS, fixed-for-floating swaps, FRAs, interest rate caps and floors,
and swaptions. Counterparties include all those that report positions to the
US Commodity Futures Trading Commission (CFTC), that is, US entities, US
subsidiaries of foreign entities, and foreign swap dealers that register with
the CFTC so as to do business with US persons. The first column of the
table divides these reporting entities into selected sectors. The second and
third columns give the total long and short notional amounts in each sector.
As explained in Chapter 2, the notional amount of a swap is the amount
on which payments are based. And, to be consistent with bond terminol-
ogy, “long” positions are those that increase in value when interest rates fall
(e.g., receiving fixed), while “short” positions are those that increase in value
when interest rates rise (e.g., paying fixed). Because every swap contract has
one counterparty long and the other short, total longs must equal total shorts
across the whole market. According to Table 13.1, the total notional amount
of the market is $210.7 trillion. This is an enormous number compared to
the sizes of markets as presented in Chapter O: the total amount of debt and
loans outstanding in the United States in Figure O.4 is only $76 trillion. As
it turns out, however, notional amount outstanding vastly exaggerates the
size of the IRS market.

The fourth and fifth columns of the table give a long and short “five-year
equivalent” notional amount, which is the notional amount of five-year
swaps that has the same risk as the raw notional amount. The risk sensitivity
of swaps is discussed in the next section, but say, for example, that one sec-
tor was long $100 million of 10-year swaps, which have a DV01 of 0.090;
that is, a one-basis-point decline in rates increases the value of the position
by $100 million times 0.090/100, or $90,000. Say also that five-year swaps
have a DV01 of 0.045. Then, the actual swap position – $100 million of
10-year swaps – has the same risk as $200 million of five-year swaps, and its
“five-year equivalent” notional amount is $200 million. On the other hand,
a position of $100 million two-year swaps, which has a DV01 of 0.018, has

1The discussion of this section is motivated by Baker, L., et al. (2021), “Risk Trans-
fer with Interest Rate Swaps,” Financial Markets, Institutions & Markets 30(1),
New York University Salomon Center and Wiley Periodicals.
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TABLE 13.1 Entity-Netted Notionals (ENNs) of Interest Rate Swaps, US
Reporting Entities, as of September 2020, in $Trillions.

5-Year

Notionals Equivalents ENNs

Long Short Long Short Long Short
ENNs
Net

(1) (2) (3) (4) (5) (6) (7) (8)

Swap Dealer 158.7 158.8 100.6 98.9 9.3 7.6 −1.7
Hedge Fund 19.5 16.8 6.3 6.2 0.9 0.7 −0.1
Bank 18.2 19.5 15.2 17.2 1.3 3.2 −1.9
Other Financial 6.3 6.2 5.4 5.2 0.8 0.6 −0.2
Asset Manager 2.6 2.8 1.9 2.2 0.7 1.0 −0.2
Pension 1.6 1.2 3.0 2.1 1.2 0.3 −0.9
Gov’t/Quasi-Gov’t 1.6 1.7 1.4 1.7 0.4 0.7 −0.3
Nonfinancial 0.3 1.4 0.2 1.0 0.2 1.0 −0.8
Insurance 1.1 0.9 2.4 1.7 1.0 0.3 −0.7
Other 0.9 1.4 0.8 1.1 0.5 0.8 −0.4

Total 210.7 210.7 137.1 137.1 16.1 16.1 −0.0

Products include fixed-for-floating swaps, forward-rate agreements, overnight index
swaps, swaptions, and interest rate caps and floors. Source: Baker, L., and Mixon, S.
(2020), “Introducing ENNs: A Measure of the Size of Interest Rate Swap Markets,”
Update as of September 11, Office of the Chief Economics, Commodity Futures Trad-
ing Commission, September.

a five-year equivalent notional amount of $100 million times 0.018/0.045,
or $40 million. Returning to Table 13.1, the total five-year equivalents in the
market are $137.1 trillion, which is significantly less than the total notional
amount of $210.7 trillion. First, the options on swaps included here have
lower risk than the risk of their underlying notional amounts.2 Second, a
large proportion of swaps have terms less than five years. In fact, because
bond markets, like the US Treasury and corporate bonds markets, have
maturities concentrated in the five- to 10-year range, five-year swap equiva-
lents are better than raw notional amounts for comparing market sizes.

The sixth and seventh columns of Table 13.1 report entity-netted
notionals (ENNs), which net long and short five-year equivalents that are
denominated in the same currency between each pair of counterparties.
For example, if Counterparty A is receiving fixed from Counterparty B
on $100 million five-year equivalents and simultaneously paying fixed to
Counterparty B on $60 million five-year equivalents, then Counterparty

2The interest rate sensitivity of an option on a swap is the risk of the notional amount
of the underlying swap times the option’s delta, which is always less than one except
for some exotic products, which are not included in this analysis.
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A is long $40 million ENNs against Counterparty B and, symmetrically,
Counterparty B is short $40 million ENNs against Counterparty A.
Summing long or short ENNs across all counterparty pairs in a sector
or across the market as a whole gives the corresponding elements of the
table. Total market ENNs are $16.1 trillion, which are much less than
five-year equivalents. As explained in the next section, participants in the
IRS market often take off risk by taking on new, risk-offsetting positions,
not by unwinding existing trades. As a result, pairs of counterparties are
often both long and short to each other, and their ENNs are much less than
their five-year equivalents. In any case, at $16.1 trillion, the size of the IRS
market is comparable to that of other US fixed income markets, as reported
in Chapter O.

Swap dealers, whose business is to make markets in swaps, are very
likely to accumulate both long and short positions with their clients and
are even more likely to do so with swaps clearinghouses, which are the legal
counterparties to all cleared trades. In fact, the reduction of dealers’ approxi-
mately $100 trillion long and short five-year equivalents to $9.3 trillion long
and $7.6 trillion short ENNs accounts for most of the reduction of total
five-year equivalents to total ENNs. Significant reductions also characterize
hedge funds, which are in the business of trading swaps, and banks, which,
as described later, use hedged swap positions to facilitate their customer loan
businesses.

The final column of Table 13.1 is just the difference between long and
short ENNs, which reveals whether a sector, as whole, is long or short swaps.
(Differences are not exact because of rounding.) There is probably too much
variation across hedge funds and asset managers, with each entity pursuing
its own investment strategies, to explain the signs of these sectors’ net ENNs.
Banks as a sector are short, perhaps as a result of hedging the interest rate
risk of their mortgage assets, although, as discussed next, banks and other
financial companies receive fixed to transform their long-term fixed-rate debt
into synthetic floating-rate debt. Pension funds and insurance companies are
likely overall long, as discussed below, to hedge the interest rate risk of their
long-term liabilities. Finally, also as discussed presently, nonfinancial compa-
nies pay fixed both to transform their floating-rate bank loans into synthetic
fixed-rate loans and to hedge the risk of increasing rates before anticipated
sales of long-term debt.

13.2 IRS CASH FLOWS AND ANALYTICS

Chapter 2 describes the cash flows and pricing of a SOFR swap, and
Chapter 12 explains the difference between borrowing or lending at rolling
overnight rates versus term rates. This section builds on those foundations.



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 323�

� �

�

Interest Rate Swaps 323

Cash Flows of OIS versus Fixed- for-F loat ing Swaps

Figure 13.1 illustrates the cash flows of a $100 million three-year 1.64%
versus SOFR swap, which is an OIS, while Figure 13.2 illustrates the cash
flows of a €100 million three-year 0.36% versus six-month Euribor swap,
which is a fixed-for-floating swap. Both swaps settle on February 16, 2022,
and both figures are from the perspective of the fixed receiver. The SOFR
swap makes annual cash flows using the actual/360 convention on both its
fixed and floating legs. Therefore, the fixed interest earned after each 365-day
year, from February 16, 2022, to February 16, 2023, and from February
16, 2023, to February 16, 2024, is $100,000,000 × 1.64% × 365∕360 =
$1,662,778. Similarly, the fixed interest earned after the 366-day year from
February 16, 2024, to February 16, 2025, is $100,000,000 × 1.64% ×
366∕360 = $1,667,333.3 The floating cash flow of the SOFR swap over a
given year, as explained in Chapter 2, equals the daily-compounded interest

Fixed

Floating

SOFR

2/16/22 2/16/23 2/16/24 2/16/25

$1,662,778 $1,662,778 $1,667,333

F IGURE 13.1 Receiving Fixed at 1.64% on a $100 Million Three-Year SOFR Swap.

Fixed

Floating

6-month
Euribor

2/16/22 2/16/23 2/16/24 2/16/25

€360,000 €360,000 €360,000

8/16/22 8/16/23 8/16/24

–[–€231,278]

F IGURE 13.2 Receiving Fixed at 0.36% on a €100 Million Three-Year Fixed versus
Six-Month Euribor Swap. Initial Euribor Setting Is −0.46%.

3This presentation somewhat simplifies payment conventions. For example, because
February 16, 2025, is a Sunday, the payments scheduled for that day are actually paid
on the following business day, February 17, 2025, with additional interest for that
extra day.



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 324�

� �

�

324 FIXED INCOME SECURITIES

earned on $100 million at realized SOFR rates over that year. Because each
year on this swap starts and ends on February 16, the relevant SOFR rates
are those from and including February 16 of one year through February 15 of
the next year. Furthermore, because SOFR on February 15 is not published
until the morning of February 16 (see Chapter 12), swap counterparties are
given until February 17 to make payments on both legs of the swap. This
payment delay is indicated in the figure by the light vertical lines to the right
of February 16 of each year and by floating payment arrows pointing slightly
past February 16.

Fixed-for-floating swaps use realized term rates to determine floating-
rate payments. The payment frequency on the fixed leg of these swaps can
be annual or semiannual, while the payment frequency on the floating leg
usually matches the tenor of the index rate. Figure 13.2 illustrates the cash
flows of a swap of a fixed rate of 0.36% against six-month Euribor. The
fixed side of this swap pays annually and follows the 30/360 convention.
Recalling that there are always 360 “30/360 days” in a year, the annual
payment on the fixed leg is simply €100 million × 0.36% × 360/360, or
€360,000. The floating side of the swap follows the actual/360 convention
and pays semiannually to match the tenor of the floating-rate index, namely,
six-month Euribor. The rate used to determine each floating-rate payment is
the Euribor setting two business days before the beginning of the payment
period.4 Because six-month Euribor on February 14, 2022, was −0.46%,
and because there are 181 days between February 16 and August 16, 2022,
the first floating-rate payment of the swap in Figure 13.2 is €100,000,000
× (−0.46%) × 181/360, or −€231,278. This means that the fixed receiver
actually receives €231,278 from the floating leg of the swap. Note that there
is no payment delay in fixed-for-floating swaps, because the cash flows are
known well in advance of each payment date.

Swap Valuat ion: More on the F loat ing Leg

Chapter 2 explains the trick in valuing SOFR swaps, that is, adding a fic-
tional payment of the notional amount at maturity to both legs of the swap.
This trick is so much a part of swap valuation that the terms “fixed leg” and
“floating leg” typically include these fictional notional amounts. In any case,
the fixed leg of a swap now looks like a coupon bond, which makes periodic
interest payments and a final “principal” payment and can be priced with
the tools of the early chapters of this book. The floating leg of a swap now
looks like a floating-rate bond. In terms of valuation, this means that the
floating leg is worth par or notional amount on all reset dates.

4Euribor is meant to represent the rate on a Euro deposit settling in two days. There-
fore, the appropriate floating rate for any six-month period is the six-month Euribor
published two days before the beginning of that period.
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To elaborate on this last point, in the example of Figure 13.1, the float-
ing leg is worth $100 million on each February 16 of 2022, 2023, and
2024. Intuitively, because SOFR is the fair, risk-free market rate of inter-
est, investors are willing to pay exactly $100 million at the beginning of
each annual period for a “floating-rate bond” that pays compounded SOFR
interest at the end of each year. Between reset dates, the value of the float-
ing leg of the swap equals the accrued value of its notional amount at the
already realized SOFR rates. Say, for example, that SOFR over the first 100
days of the swap was 0.05%, giving an accrued value of $100,000,000 ×
(1 + 0.05%∕360)100 = $100,013,890. From that point on, the floating leg
continues to accrue at the fair market rate, which is SOFR, and will be
worth $100 million, after interest is paid out, on February 16, 2023. Hence,
after those 100 days, investors are willing to pay exactly $100,013,890 for
the hypothetical floating-rate bond. To summarize, inclusive of the fictional
notional amount, the floating leg of the SOFR swap is like a deposit that
pays the fair market rate of interest. It accrues value until all interest earned
is withdrawn (i.e., on reset dates), at which point its value falls back to the
original deposited amount.

Valuing the floating leg of the Euribor swap is somewhat different. Unlike
OIS, fixed-for-floating swaps determine floating-rate payment amounts at the
beginning of each period. This does not affect valuations on reset dates – with
an important caveat given next – but does change valuations between reset
dates. To explain, turn again to the swap in Figure 13.2. The cash flow of the
floating leg of the swap on February 16, 2025, is €100 million plus interest
at six-month Euribor effective from August 16, 2024. But if Euribor is
appropriate for discounting swap cash flows, then, by definition, the present
value of that cash flow as of August 16, 2024, is €100 million. Now step
back to February 16, 2024. On August 16, 2024, the floating leg is worth
€100 million, as just shown, plus interest at six-month Euribor effective
from February 16, 2024. Once again, then, by definition, the present value
of the floating leg as of February 16, 2024, is €100 million. Proceeding
backward along these lines shows that the floating leg is worth €100 million
on each reset date. Between reset dates, however, the value of the floating
leg is the discounted value of €100 million plus the interest payment already
determined as of the previous reset date. In other words, the value of the
floating leg between reset dates equals the value of a zero coupon bond
that matures on the next reset date, paying par plus the interest set on the
previous reset date. Another difference between pricing SOFR and six-month
Euribor swaps, however, is that six-month Euribor is not a risk-free rate:
as an interbank term rate, it includes a spread due to the credit risk of the
banking sector. Therefore, discount factors and rates derived from Euribor
swaps may not be appropriate for valuing the cash flows of these swaps.
This point is ignored for the present but revisited in the last section of the
chapter.



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 326�

� �

�

326 FIXED INCOME SECURITIES

Net Present Value (NPV)

At initiation of a swap, its value is zero. The fixed rate in the market at any
moment, in fact, is such that the value of the fixed and floating legs are equal
or, equivalently, such that the initiation of the swap requires no exchange of
money upfront. As time passes, however, a swap increases in value to one
counterparty and decreases to another. To illustrate, return to the three-year
SOFR swap in Figure 13.1. At initiation, it has a fixed rate of 1.64%, which
sets the present value of both its fixed and floating legs to $100 million. Say
that, one year later, just after the first interest payments on each leg of the
swap, the fair two-year SOFR swap rate is 1%. Because rates have declined,
the present value of the remaining cash flows of the fixed leg of the 1.64%
swap increases, say to $101,280,000. The value of the floating leg of the
swap, on a reset date, is $100,000,000. Therefore, the NPV of the swap to
the fixed receiver is $101,280,000 minus $100,000,000, or $1,280,000. The
fixed receiver of 1.64% is in-the-money on the now two-year swap, because
traders initiating new two-year swaps are receiving only 1%. Conversely,
the NPV of the swap to the fixed payer is −$1,280,000: the fixed payer of
1.64% is out-of-the-money, because new traders are paying only 1%.

With NPV defined, the text can mention gross market value, which is
defined as the sum of the absolute values or positive NPVs across swaps in a
given market. Gross market value is sometimes used as a measure of expo-
sure in a market but suffers from two weaknesses along these lines. First,
positive and negative NPVs within counterparty pairs are added in absolute
value, rather than netted. Second, to the extent that margin is posted against
NPV, gross market value can significantly overstate counterparty exposure.

DV01 of a Swap

With the fixed leg conceptualized as a coupon bond, its DV01 can be
computed along the lines of Chapter 4, that is, by shifting the appropriate
rate curve down by one basis point and revaluing. Because the value of the
floating leg of a SOFR swap at any time equals its accrued value, no matter
how rates might move at that moment, its DV01 is zero. And because the
value of the floating leg of a Euribor swap is equal to that of a bond paying
interest and “principal” and maturing at the next reset date, its DV01 can
also be computed along the lines of Chapter 4. To clarify with some orders
of magnitude, at a flat term structure of 2%, the DV01 of the fixed leg of a
2% 10-year swap is like that of a 10-year bond, or about 0.09; the DV01
of the floating leg of the SOFR swap is zero; and the DV01 of the floating
leg of the fixed versus six-month Euribor swap is like that of a zero coupon
bond with six months to maturity, or about 0.005. In the case of the Euribor
swap, it could be said that the DV01 of receiving fixed is the DV01 of the
fixed leg minus the DV01 of the floating leg, or, in the numerical example,
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0.09 − 0.005 = 0.085. As argued in Chapter 5, however, bonds subject to
different parts of the term structure are far from perfectly correlated. There-
fore, the 10-year fixed leg and the essentially six-month floating leg should
be hedged separately, the former with other instruments having about
10 years to maturity, and the latter with other instruments having about
six months to maturity. Recall, by the way, that Section 5.5 discusses PV01
and partial ’01s, which specifically address the interest rate sensitivities of
swap books.

Unwinding IRS Risk Posit ions

Say that the counterparties of the three-year SOFR swap in Figure 13.1
are Counterparty A, who is receiving fixed, and Counterparty B, who is
paying fixed. Say further that Counterparty A decides to take off the inter-
est rate risk of the swap one year later, in the scenario described already,
in which the prevailing two-year SOFR swap rate is 1% and the NPV to
Counterparty A of the existing swap is $1,280,000. There are typically three
ways in which Counterparty A can proceed. First, Counterparty A can ask
Counterparty B to unwind the trade. Because the NPV is positive to Coun-
terparty A, Counterparty B would pay Counterparty A that NPV and the
two would then tear up the trade. An advantage of this approach is that the
trade really disappears, just like a particular bond or futures contract that
is bought and subsequently sold. Unfortunately for Counterparty A, how-
ever, Counterparty B might want to keep the trade alive: this swap might
be part of a larger trading portfolio; paying the NPV immediately might
entail funding costs; and the trade’s removal might increase overall coun-
terparty risk exposure to Counterparty A. Also, because only Counterparty
B can unwind this particular trade, Counterparty B has negotiating lever-
age and might offer to pay less than the theoretically fair NPV. In any case,
in practice, counterparties like Counterparty A find it difficult to unwind
existing trades.

A second way for Counterparty A to take off the interest rate risk of
the swap with Counterparty B is to pay 1.64% for two years to another
counterparty, receiving at initiation $1,280,000 as the NPV of paying
1.64% in a 1% rate environment. This trade would flatten the interest rate
risk of the existing swap: paying 1.64% to and receiving SOFR from this
new counterparty exactly offsets receiving 1.64% from and paying SOFR
to Counterparty B. This approach has problems too, however. It may be
difficult to find a counterparty who wants to receive 1.64% on a two-year
swap and is willing to pay some NPV to do so, when the market rate is 1%.
Put another way, the most liquid two-year swap contracts have a fixed rate
equal to the prevailing market rate and are worth zero at initiation. Another
problem with the approach is that the original swap does not disappear.
Over the next two years, both the swap with Counterparty B and the swap
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with the new counterparty coexist, and Counterparty A has to manage or
bear the counterparty risk on both.

The third way for Counterparty A to take off the interest rate risk of
the swap, which is the most common in practice, is to pay 1.0% on a new
two-year swap, but adjust its notional amount so as to hedge the risk of the
existing swap. In this example, with these two-year swaps differing only in
the fixed rates, and those only by 0.64%, the adjustment will be extremely
small. To illustrate the general point, therefore, say that Counterparty
A was offsetting the risk of receiving fixed on an existing $100 million
25-year swap, which has a DV01 of 0.196, by paying fixed on a new 30-year
swap, which has a DV01 of 0.225. In that case, Counterparty A would
pay fixed on $100 million times 0.196/0.225, or on about $87.1 million of
the 30-year swap. The advantage of this approach is that, by choosing to
trade the most liquid swap, Counterparty A can relatively easily obtain a
competitive rate. The problems with the approach are that the two swaps
are not quite risk offsetting, that is, the hedge might have to be adjusted
over time, and that, as in the second approach, both the original swap and
the new swap remain in existence with their respective counterparty risks.

The practice of taking off swap interest rate risk not by unwinding
trades, but by initiating offsetting trades, gives rise to notional amounts that
exaggerate interest rate risk, as described in the previous section, and to
a heightening of operational complexities in the IRS market. Furthermore,
to the extent that net long positions are held against different counterpar-
ties than net short positions, counterparty risk must be managed or borne
on both the long and short sides. The industry does mitigate the prolifera-
tion of trades by regular compression programs, which cancel trades across
the system, accompanied by relatively minor cash payments, in a way that
minimally changes the risk profiles of participating counterparties. The pre-
dominance of IRS clearing mitigates the counterparty risk implications of the
proliferation of trades, as trades are transformed so that each counterparty
faces the clearinghouse as its legal counterparty.

A fundamental question is why the industry has not migrated to
practices that better facilitate the unwinding of swaps. As explained in
Chapter 14, the proliferation of credit default swaps was significantly
reduced by meaningful standardization of contract coupon and maturity.
Similarly standardized IRS do exist, in the form of Market Agreed Coupon
(MAC) swaps, but volumes are low. Standardized swap futures are another
possibility, and they do exist, but also trade in relatively limited volumes.
One explanation for why the IRS market has not moved in these directions
is that market participants actively want specific coupons and maturities.
And there are hedging applications – some discussed herein – in which
customized swaps are preferable. A recent study, however, argued that
between about 60% and 80% of IRS trading volume can be considered
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standardized, which implies that significant volumes could be migrated to
practices that reduce trade proliferation.5

13.3 USES OF INTEREST RATE SWAPS

IRS can be conceptualized in two ways: as a leveraged position in a bond
(see Chapter 2) and as an exchange of interest payments. The first inter-
pretation best explains the actions of market participants in increasing or
decreasing their interest rate exposures. An asset manager deciding to pay
fixed, either as a bet that interest rates will rise or as a hedge against the inter-
est rate risk of a corporate bond portfolio, is more interested in the DV01
of the swap than in the particular cash flows being exchanged. The first
three use cases described in this section – pensions, Greece, and Brunswick
Corporation – fall into this category. The second interpretation of swaps
best explains the actions of market participants wanting to alter particular
streams of cash flows. In the asset swap transactions described in Chapter 14,
the owner of a corporate bond specifically wants to substitute the receipt of
bond coupon with the receipt of a floating rate plus a spread. The last two
use cases described here – bank loans and synthetic floating-rate debt – fall
into this category.

Pension L iab i l i t ies

Say that a pension fund has long-term liabilities with a present value of
$1 billion and a DV01 of $2 million. At the same time, based on its research
across corporate credits, it has invested $1 billion in a portfolio of corpo-
rate bonds. However, because the universe of corporate bonds lies mostly
in the five- to 10-year maturity range, and because the process of choos-
ing credits does not focus on maturity, the selected portfolio has a DV01
of only $500,000. This configuration exposes the pension fund to the risk
that interest rates fall: for every one-basis-point decline in rates, the value
of the liabilities increase by $2 million and the value of the assets increase
by $500,000, causing a funding gap of $1.5 million. To hedge, the pension
fund can receive fixed in a portfolio of long-term IRS with a total DV01 of
$1.5 million. The exact distribution of swaps across maturities is likely to
be chosen to hedge against changes in different parts of the term structure
of rates, as explained in Chapter 5. In any case, note that receiving fixed

5Haynes, R., Lau, M., and Tuckman, B. (2020), “How Customized Are Interest
Rate Swaps?” Office of the Chief Economist, Commodity Futures Trading Com-
mission, June.
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in swaps does not require cash from the pension fund, except for posting
margin, as described presently. In other words, the pension fund uses its
cash to buy the assets it really wants, in this example corporate bonds, and
then adjusts the resulting risk profile by trading swaps.

Greece Hedges Float ing-Rate Debt

During the sovereign debt crisis in 2010, Greece had borrowed money from
other Eurozone countries at Euribor plus a spread.6 Toward the end of 2018,
the loan balance was over €50 billion, and 10-year swap rates had fallen to
around 1.60%. Greece chose, therefore, to hedge the risk of future increases
in Euribor by paying fixed in 10-year Euribor swaps. The problem, how-
ever, was that Greece had a below investment-grade credit rating and, as a
sovereign, did not post collateral. This meant that Greece was not a particu-
larly attractive swap counterparty, particularly to dealers who had positive
NPVs on existing swaps with Greece. More specifically, i) without collat-
eral, the positive NPVs of dealers translated into outright credit exposures
to Greece; and ii) these dealers had negative NPV on the hedges of their
IRS with Greece, against which they typically had to post collateral and
incur funding costs.7 To overcome the reluctance of these dealers, Greece
allowed them to novate their positive NPV swaps to dealers with negative
NPV swaps. For example, if Dealer X had a swap with Greece with an NPV
of €1 million, and Dealer Y had a swap with Greece with an NPV of −€1
million, then Dealer Y could pay Dealer X €1 million and take over its swap.
Both dealers would then have no current exposure to Greece; Dealer X could
unwind its hedge and its associated funding cost; and, consequently, Dealer
X would no longer be reluctant to trade new swaps with Greece.8

Hedging Future Debt Issuance

This use case starts by describing a forward swap or a forward-starting swap,
with Figure 13.3 illustrating a three-year swap, one year forward. Through
this forward swap, one counterparty agrees to pay fixed and receive floating
for three years starting in one year, while the other agrees to receive fixed
and pay floating. Importantly, the fixed rate is agreed on as of the trade date.

6The facts of this case can be found in Becker, L. (2018), “Greece Slashes Rates
Exposure with €35 Billion Swap Programme,” Risk.net, November 28.
7This is a typical example of why a funding value adjustment (FVA) is needed to
evaluate swap positions. The net costs or benefits of posting and receiving collateral
must be considered alongside the cash flows of the swap.
8Dealer Y, representative of those with negative NPV to Greece, might require addi-
tional incentives to do this novation. It might not mind owing money to Greece, and,
as it likely has positive NPV on its hedges against which it has collected collateral,
might be saving on overall funding costs.
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F IGURE 13.3 A Three-Year Swap, One-Year Forward, with Annual Interest
Payments.

Now consider a corporation that plans to sell $100 million of three-year
bonds, but in one year’s time. Assume that the corporation will be able to
sell these bonds at a rate 1.5% over the then-prevailing three-year swap
rate, and that the current three-year swap rate, one year forward is 1.0%.
The corporation can then lock in a borrowing cost of 1% + 1.5% = 2.5%
by paying fixed today on $100 million of the 1.0% three-year swap, one
year forward. Table 13.2 shows how the hedge works. Say that, one year
later, the three-year swap rate has risen to 1.5%. The corporation then issues
$100 million of three-year bonds at 3.0% and receives fixed at 1.5% on
a $100 million three-year swap. The net interest from the existing 1.0%
forward swap, which has become a three-year swap, the debt issue, and
the new swap is −1.0% − 3.0% + 1.5% = −2.5%. Alternatively, say that, one
year later, the three-year swap rate has fallen to 0.5%. The corporation then
issues at 2.0% and receives in a three-year swap at 0.5% for the same net
of −1.0% − 2.0% + 0.5% = −2.5%. Essentially, if rates rise, the corporation
pays more on its debt, but wins on having locked in payment of a now low
rate on the forward-starting swap. Conversely, if rates fall, the corporation
pays less on its debt, but loses on having locked in payment of a now high
rate on the forward-starting swap.

TABLE 13.2 Debt Is Sold at 1.5% over the Swap Rate.
Hedge Future Debt Issuance by Paying Fixed at 1% on a
Three-Year Swap, One Year Forward. The Three-Year Swap
Rate in One Year Is Either 1.5% or 0.5%.

3-Year Swap Rate 1.5% 0.5%

Trade Cash Flow Cash Flow

Issue Debt −3.0% −2.0%
Receive Fixed 1.5% 0.5%
Pay Fixed on Fwd Starting Swap −1.0% −1.0%

Total −2.5% −2.5%
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In practice, instead of receiving fixed on a new swap at the time of issue,
the corporation can unwind the forward-starting swap and apply its realized
NPV to the debt issue. A positive NPV would reduce the higher cost of debt,
perhaps by using that positive NPV as proceeds and selling less debt, while
a negative NPV would increase the lower cost of debt, perhaps by selling
more debt to pay off that negative NPV.

Debt issuers sometimes find that forward swaps are expensive to trans-
act relative to spot-starting swaps. In that case, an issuer might pay fixed
in a spot-starting swap on a notional amount set so the DV01 of the hedg-
ing swap matches the DV01 of the forward sale of corporate bonds. Hedges
with spot-starting swaps do entail some curve risk, however. For example,
in the scenario of the previous paragraph, paying fixed on a spot-starting
three-year swap leaves the debt, but not the hedge, exposed to changes in
the one-year rate, three years forward. And paying fixed on a spot-starting
four-year swap leaves the hedge, but not the debt, exposed to changes in
the one-year rate. In any case, note that swap hedges protect only against
changes in the swap rate. Any increases in corporate borrowing rates relative
to the swap rate, which was assumed away in the example of the previous
paragraphs, are clearly not hedged by swap positions.

The Brunswick Corporation, which manufactures boats and other prod-
ucts, planned to issue $300 million of fixed-rate debt in mid-2023. In January
2021, it entered into $150 million of forward-starting swaps to hedge half
of that issuance. Furthermore, it seems to have structured its hedges with
various starting dates and maturities to account for uncertainty about the
actual issuance dates. The treasurer indicated that the volume of hedges
might increase over time as, presumably, the dates of issuance become firmer.
In short, figuring out what needs to be hedged can be much more difficult
than figuring out how to hedge.9

Bank Loans

Banks prefer to make floating-rate loans to customers. First, from the per-
spective of asset–liability management, floating-rate assets naturally hedge
deposits, which are floating-rate liabilities (and which constitute the over-
whelming majority of bank funding). Second, as discussed in Chapter 14,
floating-rate loans are much easier to sell in the secondary market than are
fixed-rate loans. Many borrowers, however, want to lock in a fixed inter-
est rate over some term of their borrowings. The reconciliation of bank and
borrower objectives is achieved with IRS, as illustrated in Figure 13.4. The

9The description of Brunswick’s hedging program is from Turnstead, R. (2021),
“Corporates Pre-hedge Future Bond Sales as Inflation Rises,” Risk.net, August 17.
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Borrower Bank Swap DealerFloating

Fixed

Floating (Loan)

Floating

Fixed

F IGURE 13.4 Facilitating a Bank Loan with an Interest Rate Swap.

bank makes a floating-rate loan to the borrower, on which the borrower
pays a floating rate. At the same time, the bank receives fixed from the bor-
rower and, in a back-to-back swap, pays fixed to a dealer. The net result
for the customer is a fixed-rate loan: paying floating on the loan is offset by
receiving floating on the swap, leaving only the fixed payments on the swap.
The net result to the bank is the original floating-rate loan: the cash flows
from the two swaps, by design, exactly offset each other. While many banks
do facilitate their customer loan business as illustrated in the figure, with
back-to-back swaps, some hedge the aggregate risk of their customer swap
portfolio with relatively few larger swaps.

Synthet ic F loat ing-Rate Debt

As just discussed, banks borrow at floating rates through deposits and make
floating-rate loans. Banks usually do want some amount of long-term fund-
ing, however, because an overreliance on short-term funding creates a vulner-
ability to withdrawals of that funding, either because of generally stressed
financial conditions or because of concerns with that particular bank.
A bank might, therefore, choose to issue some long-term, floating-rate
debt, thus obtaining some cushion of floating-rate funding that is much less
subject to withdrawals. As it turns out, however, the market for such debt
is extremely limited. A practical solution, therefore, is to create synthetic
long-term, floating-rate debt, as illustrated in Figure 13.5. The bank sells
long-term debt in the more traditional, fixed-rate market, and then receives
fixed and pays floating in an IRS. The net result is long-term floating-rate
debt, as desired.

Public Bank Swap Dealer
Fixed

Fixed

Floating

F IGURE 13.5 Synthetic Issue of Floating-Rate Debt.
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13.4 COUNTERPARTY CREDIT RISK

Each counterparty to a swap contract bears the risk that the other will
default on its obligations. A crucial mitigant of this risk is the safe harbor
of swaps agreements from the bankruptcy code. In the event of a default,
most creditors cannot immediately act to recover amounts owed to them.
For example, a bank with an outstanding commercial loan that is secured
by production machinery cannot, upon default, seize the collateral and sell it,
and so recover the loan amount. Instead, the bank is subject to a bankruptcy
stay. Under bankruptcy protection, the defaulting company is given time
to reorganize, during which it may continue to use its machinery. At some
point, with the permission of the bankruptcy court, the bank’s loan will be
paid off or restructured, possibly but not necessarily through the sale of the
bank’s collateral. Swap agreements, however, under their safe harbor, are
not subject to the bankruptcy stay.10 More specifically, if one counterparty
defaults on its obligations under a swap contract, the other counterparty
may terminate that contract and any others included in a master agreement
with the defaulting counterparty; may net receivables and payables under all
contracts included in the master agreement; and may liquidate any posted
collateral under the agreement to cover swap closeout costs.

Without the safe harbor, then, the surviving counterparty would have to
continue making the payments it owes, while no longer receiving payments
from the defaulting counterparty, until a court settled the matter. With the
safe harbor, however, the surviving counterparty may terminate contracts
and stop making payments. Hence, the exposure to the surviving counter-
party in the event of a default is the total NPV across all of the contracts with
the defaulting counterparty. Put another way, any net positive NPV the sur-
viving counterparty has against the defaulting counterparty is jeopardized by
the default and termination of all trades. Furthermore, under the safe harbor,
the surviving counterparty may recover potentially lost NPV by selling any
collateral posted by the defaulting counterparty and, to the extent those pro-
ceeds are insufficient, may pursue an unsecured claim against the defaulting
party through the courts. By the way, after a closeout, the surviving party
must pay to settle any net negative NPV it has against the defaulting party.
The policy justification behind the derivatives safe harbor is that financial
institutions, which are typically highly leveraged, could suffer great losses
through a bankruptcy process in which they did not know their risk, because
they did not know which of their contracts would ultimately be honored

10Other financial transactions with a safe harbor include agreements to purchase
or sell securities; various forward contracts for physical delivery; and repurchase
agreements (repo) on government-guaranteed securities.
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and which would not.11 Since the financial crisis of 2007–2009, the safe
harbor has been narrowed somewhat to give a governmental authority time
to liquidate a failing, systemically important financial institution before its
derivatives contracts are terminated, but that process is not explored further
in this chapter.

One way dealers have managed the counterparty credit risk from deriva-
tives customers is by collecting a fee, or insurance premium, sometimes called
a credit valuation adjustment (CVA) charge, that incorporates the likeli-
hood of default and the potential exposure of the position. These fees, often
imposed on the customer as a higher rate when paying fixed or as a lower
rate when receiving fixed, constitute a reserve that can make up for losses
from the few defaults that actually occur. This means of managing credit
risk is particularly suitable for a diversified group of creditworthy clients
that have neither ready sources of cash nor the operational infrastructure to
post and monitor collateral.

The predominant way dealers have managed counterparty credit risk,
however, particularly when trading with professional investment firms, like
asset managers and hedge funds, and with other dealers, is by taking col-
lateral through variation margin (VM) and initial margin (IM).12 Calls for
VM ensure that the counterparty with a positive NPV always holds sufficient
collateral to cover a loss of that NPV, which, in this context, is sometimes
called the current exposure of the swap. As an example, consider an IRS in
which Counterparty A agrees to receive fixed from Counterparty B. At initi-
ation, as discussed earlier, the NPV of a swap is zero. Now say that market
interest rates fall such that Counterparty A has a positive NPV of $1 million
against Counterparty B. In that case, Counterparty B must post $1 million
of collateral to Counterparty A. Subsequently, however, rates rise dramati-
cally, such that the NPV of the swap is positive $2 million to Counterparty
B. Counterparty A must then return the $1 million that Counterparty B had
posted and send an additional $2 million, so that now Counterparty B holds
total net collateral from Counterparty A equal to its positive NPV or cur-
rent exposure. VM calls are typically made daily, though they can be more
frequent in times of heightened market volatility.

The VM arrangement described in the previous paragraph is now called
VM collateralized-to-market (CTM), because of a recent change in margin

11Derivatives markets in other countries have struggled without legal clarity on these
matters. In fact, both India and China have recently taken steps to establish closeout
netting in their systems. See Davis, C. (2021), “ISDA Poised to Issue India Netting
Opinion,” Risk.net, April 27, and ISDA (2021), “A Netting Milestone in China,”
ISDA, May 4.
12This discussion is similar to the discussion of collateral against repo transactions
in Chapter 10.



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 336�

� �

�

336 FIXED INCOME SECURITIES

arrangements for cleared IRS. For positions against a clearinghouse, IRS
VM is now settled-to-market (STM), which means that VM flows are not
collateral postings, but irrevocable cash settlements of daily profit or loss
on the position, just like the daily settlement payments of futures contracts
described in Chapter 11. Recasting the example in the previous paragraph
under VM STM, after rates fall, Counterparty B pays $1 million outright
to Counterparty A. After rates subsequently rise, Counterparty A pays $3
million outright to Counterparty B. At that point, the NPV of the swap to
Counterparty B is positive $2 million, but Counterparty B has already col-
lected a net of $2 million from the VM STM payments.13

To complete the explanation of how VM protects the counterparty
with positive NPV, continue the example by assuming that Counterparty
A defaults right after its last VM payment. Under the safe harbor, Coun-
terparty B tears up the swap with Counterparty A and, therefore, no
longer receives or makes payments under that contract. Counterparty B
needs to replace the contract, however, to restore the economics of the
position before the default. Under VM CTM, Counterparty B relies again
on the safe harbor to seize the net $2 million of collateral collected from
Counterparty A through the VM arrangement, and pays that $2 million to
some Counterparty C to enter into a swap at the same terms as the swap just
canceled. By the definition of NPV – ignoring transactions costs, which are
discussed further presently – Counterparty C is willing to receive fixed at a
below-market rate in a swap with a negative NPV of $2 million in exchange
for a payment of $2 million. Lastly, Counterparty C immediately sends that
$2 million back to Counterparty B as collateral against its newly acquired
negative NPV. To emphasize that it is fair for Counterparty C to enter into
this swap, note that, while Counterparty C is receiving a below-market rate
of interest, if rates remain constant, the NPV of the swap to Counterparty
C will gradually increase from −$2 million to 0, and Counterparty C will
get back $2 million of collateral that it never paid for. Put another way, by
entering into this swap, Counterparty C essentially takes a position in a
bond with a below-market coupon at a price of 98. The coupon is below
market, but the price will increase to 100 at maturity.

Under VM STM, Counterparty B collected a total of $2 million over
time as the NPV of the swap rose to $2 million, but holds no collateral at
the time of default. Some Counterparty C again steps into the replacement
swap, which receives a below-market rate and, consequently, has a nega-
tive NPV. Under VM STM, however, Counterparty C is responsible only for
making payments arising from subsequent changes in NPV. Hence, there is
no exchange of cash or collateral when Counterparty C enters into the swap

13The change from CTM to STM allowed the interest rate risk exposure of IRS of
any maturity to be considered a one-day exposure for capital purposes.
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under VM STM. Again, Counterparty C receives a below-market rate over
time, but, on average, settlement payments are positive as the NPV rises from
−$2 million to zero.

While VM is sufficient to protect a positive NPV immediately after each
VM call, it does not protect changes in NPV between VM calls. Contin-
uing with the example, say that rates rise again so that Counterparty B’s
NPV increases from $2 million to $3 million, and Counterparty A defaults
before meeting its VM call. Counterparty B then has an exposure and pos-
sible loss of $1 million. To protect against value changes between VM calls,
each counterparty holds a certain amount of IM posted by the other. The
amount of IM is typically set so as to cover a large market move plus the
transaction and liquidity costs of replacing the defaulting positions. For
example, statistical analysis might indicate that, with 99% statistical con-
fidence, the swap between Counterparty A and Counterparty B will move
by less than $5 million before it can be replaced, and market expertise might
indicate that replacing a swap of its notional amount incurs an additional
$250,000 in transaction and market impact costs. The IM for the trade,
therefore, might be set at $5,250,000. In this way, so long as the change in
NPV between VM calls is less than posted IM, each counterparty has enough
collateral to replace defaulted positions. Continuing with the example in a
VM CTM arrangement, Counterparty B seizes $1 million of IM collateral,
which, together with the VM of $2 million is enough to pay Counterparty
C to take on the now negative $3 million NPV position. The remaining
$4,250,000 of IM is returned to Counterparty A, the defaulting counter-
party. In a VM STM arrangement, Counterparty B seizes $1 million of IM
collateral, bringing the total collected to $3 million, which is now the NPV
of the swap to Counterparty B. The remaining IM is returned to Counter-
party A. Some Counterparty C steps into the swap, facing a negative NPV,
but with obligations to make only future VM STM payments.

In general, collateral is posted in cash, in which case it earns some rate
of interest, or in safe securities, like government bonds, in which case the
counterparty posting the collateral keeps the interest. Securities posted as
collateral might be accepted only at a haircut, that is, at less than their market
value, so as to reflect the price risk should they have to be liquidated in
the event of a default. At a haircut of 3%, for example, $100 of securities
count only as $97 against collateral requirements. For cleared trades, the
amount of IM to be posted is set and computed by the clearinghouse, and, for
non-cleared trades, either using internal firm models or the industry standard
initial margin model (SIMM). An important quantity in the determination of
IM is the margin period of risk (MPOR), which is the assumed time interval
over which a defaulted swap can be hedged or replaced. After a default, it
is usual to hedge the replacement of the defaulted swap first and then – if
desired – replace the actual swap with a willing counterparty and unwind
the hedge. For example, say that Counterparty A defaults on its obligation
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to pay Counterparty B fixed at 2.34% on a swap with a remaining maturity
of 12.3 years. Because it is likely to take some time to replace that particular
swap, Counterparty B should first hedge the exposure it lost on account
of the default by receiving fixed on a DV01-neutral amount of a 10-year
swap at the prevailing market rate. Then, if desired, Counterparty B can
find a counterparty to replace the original swap – along the lines previously
discussed – and then, when the replacement swap is in place, unwind the
hedge. In any case, the longer the MPOR, the greater the assumed possible
changes in NPV before hedging or replacement, and the greater the required
IM to ensure that sufficient funds are available for hedging and replacing the
defaulted swap.

Before the financial crisis of 2007–2009, nearly all IRS were traded over-
the-counter (OTC) and managed bilaterally. OTC trading means that the
parties arrange transactions on their own, without a third-party platform or
exchange. And in bilateral trades, each pair of counterparties sets margin
rules, exchanges collateral, and bears the risk of each other’s default. While
IRS played no appreciable role in the financial crisis,14 the Dodd-Frank Act
required that all relatively liquid swaps be traded on a swaps execution facil-
ity and be cleared. The clearinghouse then sets margin rules and manages col-
lateral, as is described in greater detail in the next section. Dodd-Frank fur-
ther required that margin be exchanged by counterparties to any swaps that
are not cleared, and that all swaps transactions and positions be reported to
regulators through swap data repositories. Dodd-Frank and its implement-
ing regulations exempt nonfinancial, commercial end users, who are using
swaps to hedge, from clearing and margin requirements. This means, for
example, that a nonfinancial corporation, which has neither the ability to
fund margin calls nor the operational ability to manage the exchange of
margin, can use a bilaterally arranged swap to hedge a debt issue, so long as
it can find a willing dealer. As an aside, the business models of certain finan-
cial entities, like insurance companies and pension funds, are very suited to
using IRS, but not to the liquidity demands of margin requirements.15 These
entities, however, unless they are very small, are not exempt from clearing
and margin requirements.

14See Tuckman, B. (2015), “In Defense of Derivatives: From Beer to the Financial
Crisis,” Cato Institute Policy Analysis, Number 781, September 29.
15Consider a pension fund that receives fixed in IRS to hedge its long-term liabilities.
With this hedge, the pension fund might very well be a safe swap counterparty, even
without making VM payments. In fact, VM might increase the risk of the fund:
suddenly rising rates would not change the net value of the fund – because it is
hedged – but would result in VM calls that could require the pension to liquidate
securities in a stressed environment. The fund could, of course, hold larger cash bal-
ances in readiness for such an eventuality, but those balances would result in a drag
on returns.
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The clearing requirement of Dodd-Frank resulted in the clearing of the
vast majority of IRS, which, until recently, were dominated by LIBOR swaps.
At the time of this writing, SOFR swaps are relatively new and have not yet
been deemed liquid enough for the clearing requirement to apply. Neverthe-
less, over 70% of SOFR swaps are being cleared anyway, and the clearing
requirement is likely to be applied to them in 2022 or soon thereafter.16

13.5 CLEARING AND CENTRAL COUNTERPARTIES

Figure 13.6 illustrates the difference between bilateral and cleared swaps.
The top section of the figure shows a bilateral swap, in which Counterparty
A pays fixed to and receives floating from Counterparty B. All aspects of
the trade, from its execution to the ongoing exchange of cash flows and
margin, are arranged between the two counterparties, and each counter-
party bears all of the risk should the other default. While the diagram looks
simple when there are only two counterparties, managing a large book of
swaps trades with many counterparties is very complex. Every day, each
counterparty has to send VM to or collect VM from each of its counterpar-
ties, in addition to sending or collecting any contractual interest payments
due that day. Furthermore, each counterparty must track its exposure to
each of its counterparties and perform ongoing due diligence as to their
creditworthiness.

The middle section of Figure 13.6 illustrates a cleared swap between
two firms that are members of the clearinghouse. Members 1 and 2 first
execute a swap with each other, which is not shown in the figure, in which
Member 1 pays fixed to Member 2. That swap is then given up for clearing,
which means that it is canceled and replaced with the two swaps shown in
the figure: one in which Member 1 pays fixed to the clearinghouse, acting in
its capacity as a central counterparty (CCP), and one in which the CCP pays
fixed to Member 2. Note that the CCP takes no cash flow risk or market
risk: the amounts received from Member 1 are simply passed to Member 2,
and the amounts received from Member 2 are simply passed to Member 1.
In any case, each member now legally faces the CCP and posts collateral to
the CCP. If either member defaults, the CCP manages the default and suffers
losses. However, as discussed further presently, large losses might have to
be covered by the broader membership. This backstopping of losses by the
membership is represented in the figure as the light gray circles surrounding
the swap cash flows. On the other hand, if the CCP defaults, Members 1
and 2 have recourse only to the CCP, not to each other.

16St. Clair, B. (2021), “No Mandate, No Problem: SOFR Swaps Embrace Clearing,”
Risk.net, July 21.
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F IGURE 13.6 Bilateral versus Cleared Swaps.

The bottom section of Figure 13.6 illustrates a cleared swap between a
member of the clearinghouse and a client of that member. The original swap
between the two (not shown), as before, is transformed into two swaps, each
facing the clearinghouse. And, as before, a default by the member is back-
stopped by the CCP and the broader membership. However, a default by the
client, who is sponsored by Member 1 to face the CCP, is backstopped first
by Member 1. This backstopping is represented in the figure by the dark gray
circle around the cash flows of this swap. But if Member 1 defaults as well,
then, as before, losses are backstopped by both the CCP and the broader
membership. This fallback is represented in the figure by the light gray circle
surrounding the darker one. While this section of the figure illustrates a trade
between Member 1 and its client, the logic of this paragraph can be extended
to other trading permutations: member trades are backstopped by the CCP
and the broader membership, while client trades are backstopped first by the
sponsoring member and then by the CCP and the broader membership.

Relative to bilateral trading of IRS, clearing greatly simplifies operations.
Regardless of the number of positions and the history of who traded with
whom, at the end of each day, each counterparty to the CCP makes only
one net payment to or receives one net payment from the CCP. Clearing also
greatly simplifies counterparty risk management in that each counterparty
need be satisfied only with the creditworthiness of the CCP, although that
creditworthiness – while extremely high – can be challenging to evaluate
precisely. While clearing confers significant and extensive advantages, these
come at some opportunity costs. Clearing nets positions within the same
product class, but sacrifices netting across product classes. For example,



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 341�

� �

�

Interest Rate Swaps 341

a dealer who has IRS, repo, and credit default swap positions with one
particular client might very well prefer to net the cash flows across those
positions in-house instead of holding the IRS position against one CCP, the
repo directly against the client, and the credit default swaps against a dif-
ferent CCP. The legal requirement to clear, however, outlaws this in-house
netting option. Clearing also outsources margin methodologies and default
management to the CCP, which, while advantageous to smaller counterpar-
ties, might not be optimal for those with broader operations.

Risk management at a CCP subsumes many functions. First, the CCP
must set criteria for admitting members and monitoring their creditworthi-
ness over time. Second, the CCP must set margin requirements. As discussed
already, the amount of VM calls is conceptually straightforward, as they
reflect changes in NPV. The appropriate amounts of IM, however, depend
on complex analyses of market volatility and liquidity conditions. Third, the
CCP must establish procedures for default management and execute them
well as defaults occur. When a client of a member defaults, the sponsoring
member is responsible, and when a member defaults, the CCP is respon-
sible. More specifically, the CCP must make VM STM payments to the
non-defaulting sides of the swap and replace the defaulting swaps along the
lines described earlier. Note that, while a dealer may decide to replace lost
exposure with similar exposure, the business model of the CCP is not to take
any market risk at all. The swap lost must ultimately be replaced with a swap
of exactly the same terms. In any case, the CCP’s first source of funds is the
IM posted by the defaulting member, along the aforementioned lines. If that
proves insufficient, however, the CCP gathers the necessary funds according
to a prespecified default waterfall.

Figure 13.7 illustrates a waterfall but is not drawn to the scale of the
underlying resources. The first resource, just discussed, is the IM posted by
the defaulting member. In addition to posting IM, however, members have
to contribute to a default fund or guarantee fund, in proportion to the size of
their positions against the CCP. One rule of thumb is that the total default
fund should be large enough to withstand the simultaneous default of the
two members with the largest positions. In any case, if the defaulter’s IM is
not sufficient to cover the CCP’s losses, the defaulter’s default fund contri-
bution is tapped.17 If that is insufficient as well, capital contributed by the
CCP is tapped. Relative to the size of the total of all members default fund

17In managing defaults on cleared IRS, the margin of non-defaulting customers of
members is not legally at risk. Their margin is legally separated operationally com-
mingled (LSOC). This means that, while their margin might be mixed with that of
other customers for operational convenience, if the member defaults with an out-
standing obligation to the CCP, the margin of the non-defaulting customers of that
member are not legally available to the CCP. This treatment differs from that of
customers in the futures market, where, should their futures commission merchant
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Defaulter’s IM

Defaulter’s Default Fund Contribution

CCP Capital

Surviving Members’
Default Fund Contributions 

(Unfunded) Member Assessments

VM Haircutting

Voluntary Actions

CCP Closes

F IGURE 13.7 Example of a CCP Default Waterfall. Steps Are Not Drawn to Scale.

contributions, CCP capital is typically quite small. This buffer is sometimes
referred to as the CCP skin-in-the-game, and its size is the subject of much
debate. To oversimplify that debate, CCPs argue that, because almost all
of the risk comes from member positions, almost all of the waterfall pro-
tections should come from members. Members, on the other hand, argue
that, because CCPs manage risk with the profits of their shareholders as an
important consideration, they should contribute a significant buffer as well.
In any case, if CCP capital is exhausted with losses still needing to be cov-
ered, the default fund from the surviving members is tapped. The waterfall to
this point explains the sense in which the membership as a whole backstops
member contracts. It is also the sense in which CCPs mutualize losses. Loose
descriptions of clearing say that CCPs “eliminate” counterparty credit risk,
but that is not accurate. When a swap is cleared, its counterparty credit risk
moves from the original counterparty to the CCP and its membership as a
whole.

With VM covering daily market moves, IM covering all but the largest
of market moves between VM calls, and the default fund sized to withstand
the default of the two members with the largest positions – who are almost
certainly large and heavily regulated financial institutions themselves – only
a record-breaking financial tsunami could generate losses that require step-
ping further down the waterfall. The next sources of funds, however, are
as follows. Members agree to comply with certain assessments or call for

(FCM) default with an obligation to the futures clearinghouse, bankruptcy proceed-
ings could make non-defaulting customer margin available to the clearinghouse. This
possibility is known as fellow customer risk.
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funds should the waterfall get to this point. These assessments are called
unfunded, because the CCP does not hold them in reserve, as it does IM
and default fund contributions. While legally binding, there is always some
concern that, in a crisis, assessments might not be honored promptly and in
full. If assessments are insufficient to cover losses, then some fraction of VM
owed to market participants would not be paid, in a process known as VM
haircutting. After that, the sources of last recourse include voluntary con-
tributions and other actions taken by members. If that proves insufficient,
CCP ceases operations.

This section concludes with a brief mention of three topical public
policy issues. First, the shift to clearing the vast majority of IRS may or may
not have significantly reduced systemic risk relative to various alternatives,
but it has certainly concentrated that risk. Nearly all GBP-denominated
IRS are cleared at the London Clearing House (LCH); the vast majority
of USD-denominated IRS are cleared at LCH as well, with the Chicago
Mercantile Exchange (CME) a distant second; the vast majority of
EUR-denominated swaps are cleared at LCH, with the exception of the
smaller but growing segment of €STR swaps, in which Eurex has a growing
market share; and clearing of JPY-denominated swaps is shared between
LCH and the Japanese Securities Clearing Corporation (JSCC).18 From a
systemic risk perspective, legislators and regulators seem to have followed
the advice of Andrew Carnegie: “put all your eggs in one basket and then
watch that basket.”

A second policy issue pertains to CCP margin. Margin, along with other
risk management practices of a CCP, are designed to make it extremely
unlikely that any counterparty loses money from counterparty risk. Part
of this outcome, however, is due to the ability of CCPs to set IM and also
to raise required IM when market volatility or financial stress increases. In
this sense then, reducing counterparty risk increases liquidity risk. Many
are concerned with how increasing IM might exacerbate financial stress,
known as margin procyclicality, but there are no easy solutions. Raising
margin in a crisis is an important risk management tool at a CCP but might
make it challenging for members and other market participants both to
meet their increasing obligations to the CCP and to continue meeting their
non-derivatives obligations.

The third policy issue relates to CCP governance. Before clearing was
required, market participants could consider clearing as one of several

18Khwaja, A. (2021), “2020 CCP Volumes and Market Share in IRD,” clarusft.com,
January 13. As an aside, clearing of credit default swaps is also concentrated, with
nearly all of USD volume at the Intercontinental Exchange (ICE) and EUR volume
split with very roughly 80% at ICE and 20% at LCH. Khwaja, A. (2022), “2021
CCP Volumes and Shares in CRD,” clarusft.com, February 1.
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choices and could decide to clear or not to clear. With required clearing
and the concentration of clearing in very few CCPs, market participants,
including members, have much less leverage with respect to CCP risk
management and other practices. The resolution of this issue is also far
from straightforward.

13.6 BASIS SWAPS

Both OIS and fixed-for-floating swaps pay interest at a fixed rate on one leg
and at a floating rate on the other leg. A basis swap, by contrast pays inter-
est at one floating rate on one leg and interest on a different floating rate on
another leg. Before the transition away from LIBOR, basis swap volumes
were particularly large in exchanging LIBOR of one term against LIBOR
of another term, and swaps of effective fed funds (see Chapter 12) against
LIBOR of various terms were common as well. In US dollar markets, swaps
of SOFR against LIBOR are trading actively in the transition period but will
fade with the disappearance of LIBOR. Cross-currency basis swaps have
been and continue to be extremely popular. These swaps exchange inter-
est at a short-term rate in one currency for interest at a short-term rate in
another currency, for example, SOFR versus €STR. This section focuses on
basis swaps of €STR versus three-month Euribor to explain concepts, both
because Euribor is still an active rate and because foreign exchange rates
are outside the scope of this edition of the book.

Consider a bank that funds itself at €STR flat (i.e., without a spread) and
lends money to customers at three-month Euribor plus 1%. This bank has
the basis risk that €STR, compounded over a relevant time period, rises rela-
tive to three-month Euribor, compounded over that same period. In general,
by the way, the term “basis risk” refers to the risk that two rates or prices,
which usually change together in some fixed or predictable relationship,
diverge in an unusual and unfavorable way. In any case, Figure 13.8 shows
how the bank can hedge its basis risk with an €STR versus three-month Euri-
bor basis swap. As of February 2022, the two-year €STR versus three-month
Euribor basis swap spread was 13.8 basis points, which means that the bank,
as shown in the figure, can receive €STR plus 13.8 basis points and pay
three-month Euribor on some notional amount for two years. More specif-
ically, at the end of every quarter during those two years, the bank receives
interest at daily compounded €STR plus 13.8 basis points over that quarter
(along the lines of Figure 13.1), and the bank pays interest at three-month
Euribor set at the start of the quarter (along the lines of Figure 13.2). Overall
then, with its basis swap hedge, the bank in Figure 13.8 locks in a fixed rate
of 1.138%, so long as its customers do not default. Put another way, the
customers pay a credit and liquidity spread of 1.138% over the near-riskless
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Customers /
Borrowers 

€STR

€

3m Euribor + 1%

€
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Dealer

3m Euribor€STR + 13.8 bps

F IGURE 13.8 Hedging Basis Risk with an €STR versus Three-Month Euribor Basis
Swap.

€STR: 1% as a spread over three-month Euribor and 13.8 basis points as a
spread of three-month Euribor over €STR.

From the swap dealer’s perspective, there is virtually no credit risk: the
bank itself is probably a good credit and the basis swap is collateralized.
Because Euribor is a riskier rate than €STR, however, compounded €STR
over a quarter will normally be less than three-month Euribor. It makes
sense, therefore, that paying a spread over €STR is fair against receiving
three-month Euribor, although the market determination of the exact spread
can certainly be the subject of further analysis.

The existence of basis swap spreads shows that not all swaps can be
valued using the methodology for pricing swaps that is given in Chapter
2 and earlier in this chapter. That methodology argued that the floating
leg (including the fictional notional amount) is worth par when the float-
ing rate is considered to be the risk-free rate, that is, the rate at which
funds can be moved without risk across time. And it is reasonable to clas-
sify both overnight SOFR and overnight €STR as risk-free rates.19 The same
is not true, however, for three-month Euribor. Or, to put it another way, it

19This sentence means that swaps in USD price the floating leg of a SOFR swap at
par and that swaps in EUR price the floating leg of an €STR swap at par. However,
in a cross-currency basis swap of SOFR versus €STR, only one of the floating legs
can be worth par. Furthermore, there is a cross-currency basis swap spread added to
one of the floating legs to make the swap fair. Conceptually, if the collateral posted
against the swap earns SOFR, then SOFR is the risk-free rate for valuation purposes,
and the SOFR floating leg is worth par.



Trim Size: 6in x 9in Tuckman835554 c13.tex V1 - 07/12/2022 6:13pm Page 346�

� �

�

346 FIXED INCOME SECURITIES

cannot be simultaneously true that i) a floating leg paying €STR is worth
par; ii) €STR plus 13.8 basis point is fair against three-month Euribor for
two years; and iii) a floating leg paying three-month Euribor for two years
is worth par.

The appropriate methodology for valuing a fixed-for-floating swap
when the floating index is not a risk-free rate, like Euribor, is the following.
First, discount the fixed cash flows (including the fictional notional amount)
at the discount factors implied by swaps against the risk-free rate index,
like €STR. These calculations are described in Chapter 2. Second, the value
of the floating leg is equal to par plus the present value of payments of
the basis swap spread, where discounting is again done using the risk-free
rates. For example, the basis swap in Figure 13.8 shows that the value
of receiving three-month Euribor equals the value of receiving €STR plus
13.8 basis points. But the value of receiving €STR (including the fictional
notional amount) is par. Therefore, the value of receiving three-month
Euribor quarterly for two years is par plus the present value of receiving
13.8 basis points, paid quarterly, for two years.

Appendix A13.1 illustrates the calculations outlined in the previous
paragraph with representative market rates toward the end of February
2022, when the fixed rate on a two-year, fixed versus three-month Euribor
swap was 0.078% and, as already mentioned, the two-year €STR versus
three-month Euribor basis swap spread was 13.8 basis points. The values
of both the fixed and floating sides are calculated to be 100.281. To
summarize, when the floating index is a risk-free rate, both sides of a
fixed-for-floating swap at initiation are worth par. When the floating index
is not a risk-free rate, but trades with a positive basis swap spread against
the risk-free rate, both sides of the swap at initiation are equal in value, of
course, but each side is worth more than par. Note that traders may just
accept that rates on newly initiated swaps are fair and, therefore, may not
care about the value of each side separately. Nevertheless, a methodology is
required to compute the NPVs of existing swaps in a trading book, which
are not observable in the market.

The pricing methodology just described can take rates on €STR swaps
and spreads on €STR versus three-month Euribor basis swaps as given to
price fixed versus three-month Euribor swaps. Alternatively, the methodol-
ogy can take rates on €STR swaps and on fixed versus three-month Euribor
swaps as given to imply fair basis swap spreads. The latter approach, called
two-curve pricing, is often preferred when basis swaps of all terms are insuffi-
ciently liquid. In fact, two-curve pricing typically does not explicitly calculate
basis swap spreads at all. A brief description of this methodology is given in
Appendix A13.2.
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CHAPTER 14
Corporate Debt and Credit

Default Swaps

Corporations borrow money to fund their operations, transactions (e.g.,
mergers and acquisitions), and changes to capital structure (e.g., refinance

existing debt, stock repurchases). The loans and bonds used to raise these
funds are subject to credit risk, because corporations may not make good on
their promises to pay interest and repay principal. Lenders, in turn, require
compensation for bearing credit risk in the form of higher returns. The cash
flows of credit default swaps (CDS) also depend on the payment or non-
payment of debt obligations but are not themselves obligations of corporate
issuers. In other words, through CDS contracts, market participants trade
corporate credit risks with each other. While this chapter focuses mostly on
corporate debt, much of the discussion applies to sovereign and municipal
debt as well, because the debt obligations of many governments have at times
been perceived as subject to nontrivial probabilities of default.

Many market participants rely to some extent on rating agencies to mea-
sure the credit risk of borrowers and their loans and bonds. The long-term
debt ratings classifications of the three major rating agencies in the United
States are given in Table 14.1. More granular breakdowns of each of these
broad ratings classifications are also available, and short-term debt has its
own, separate scales.1

1Moody’s Aa ratings, for example, are divided into Aa1, Aa2, and Aa3, and its
B ratings into B1, B2, and B3. S&P and Fitch AA ratings are divided into AA+,
AA, and AA-, and their B ratings into B+, B, and B-. Short-term debt ratings are P-1,
P-2, P-3, and “Not Prime” by Moody’s; A-1+, A-1, A-2, and A-3 by S&P; F1+, F1,
F2, and F3 by Fitch; followed by B, C, and D for both S&P and Fitch.

347
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TABLE 14.1 Long-Term Debt Ratings Classifications. The Ratings in Each Entry
Are Listed in Decreasing Order of Creditworthiness.

Speculative Grade/
Agency Investment Grade High Yield Default

Moody’s Aaa, Aa, A, Baa Ba, B, Caa, Ca C
S&P, Fitch AAA, AA, A, BBB BB, B, CCC, CC, C D

14.1 CORPORATE BONDS AND LOANS

Large and highly creditworthy corporations in the United States tend to bor-
row money for fixed terms in public markets through commercial paper
(CP), medium-term notes (MTNs), and corporate bonds. CP is typically a
discount (i.e., zero coupon) instrument that is either unsecured, backed by a
letter of credit from a bank, or secured by assets. CP is exempt from Securi-
ties and Exchange Commission (SEC) registration, along with its associated
costs, so long as the paper matures in less than 270 days and its proceeds are
used for short-term purposes (rather than, for example, building a factory).
With its high credit quality and short-term maturity, CP is a particularly
inexpensive and liquid way for the most creditworthy corporations to raise
short-term funds. CP borrowing does, however, expose a corporation to the
funding or liquidity risk of having to roll outstanding CP as it matures into
new CP issues.

Corporations sell MTNs in public markets to raise money with cus-
tomized payment terms. Historically, MTNs primarily filled the maturity gap
between CP and longer-term bonds but are now better characterized as debt
instruments customized to suit the needs of individual issuers and investors.
MTNs first became popular in the United States in the early 1980s, with
the introduction of SEC shelf registrations. These programs allow issuers to
register once to sell notes opportunistically, over time, at terms that can be
adjusted at the time of each sale.

For longer-term borrowing in public markets with relatively standard
payment terms, corporations sell bonds, which, in the United States, have to
be registered with the SEC. Corporate bonds are typically coupon-bearing,
fixed-rate securities, but there is a much smaller market for floating-rate
notes (FRNs). The interest rate on FRNs is typically set equal to a short-term
reference rate plus a fixed spread, although a reference rate might be mul-
tiplied by a factor or leverage, and the spread might vary over time with
the credit rating of the issuer. The short-term reference rate for FRNs had
traditionally been the London Interbank Offered Rate (LIBOR) but is now
transitioning to the Secured Overnight Financing Rate (SOFR) and other
non-LIBOR alternatives (Chapters 12 and 13).
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Smaller and less creditworthy corporations, which cannot typically raise
funds in public markets, tend to borrow money through private placements
of bonds and through bank loans. In a privately placed bond issue, the
borrower tailors terms to satisfy its own requirements and those of a rel-
atively small group of lenders. Insurance companies are the most significant
investors in this market, though other asset managers participate as well.
Privately placed bonds are exempt from SEC registration precisely because
they may be sold only to investors deemed “sophisticated.”

Bank loans tend to be floating-rate instruments, although borrowers
sometimes convert their debt into a fixed rate by paying fixed to and receiv-
ing floating from a bank in an accompanying interest rate swap, which the
bank, in turn, hedges with a dealer (Chapter 13). From the bank perspective,
floating-rate loans have the advantage of matching floating-rate liabilities,
which are mostly deposits, but also include wholesale funding like commer-
cial paper. Also, floating-rate loans are the easiest to sell in the secondary
market for bank loans.

Traditionally, banks made loans and held them to term. And if a single
borrower needed a loan that was too large for one bank, either because funds
were not readily available or, more likely, because the resulting credit risk
would be too significant for one bank, several banks would form a group or
syndicate in which each would make and hold a smaller loan to that large
borrower. The last few decades, however, have seen phenomenal growth in
the secondary market for loans, which allows banks to sell loans they have
made to institutional investors. In this way, banks can earn fees on mak-
ing, servicing, and monitoring loans without having to warehouse all of
the associated credit risk. At present, in fact, the overwhelming majority
of relatively low-quality or leveraged loans are held not by banks, but by
institutional investors. While some leveraged loans are bought from banks
directly by insurance companies, mutual funds, and hedge funds, much of
the growth of the secondary market for bank loans has been through the
indirect sale of loans to institutional investors through collateralized loan
obligations (CLOs).

Col lateral i zed Loan Obl igat ions

A CLO is a vehicle that purchases a portfolio of leveraged loans financed by
the sale of several debt classes or tranches and equity or subordinated notes.
Table 14.2 lists the debt tranches of a particular CLO issued in May 2019.
Essentially, interest and principal payments from the underlying portfolio
of leveraged loans flow to the tranches from the top down, while any credit
losses are allocated from the bottom up.2 Senior Secured Floating-Rate Note

2The principal of maturing loans in this CLO is reinvested through April 2024. From
then on, however, maturing loan principal is passed to the tranche holders. CLO
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TABLE 14.2 Tranches of Apidos CLO XXXI, May 2019. All Tranches Mature in
April 2031.

Amount Rating Spread over
Class Description ($millions) S&P/Moody’s LIBOR (bps)

X Sr. Secured FRNs 4.725 AAA/– 65
A-1 Sr. Secured FRNs 370.150 AAA/Aaa 133
A-2 Sr. Secured FRNs 39.350 –/Aaa 165
B Sr. Secured FRNs 64.600 AA/– 190
C Mezzanine Secured Deferrable FRNs 40.300 A/– 255
D Mezzanine Secured Deferrable FRNs 36.200 BBB–/– 365
E Mezzanine Secured Deferrable FRNs 27.400 –/Ba3 675
– Subordinated Notes 51.400 – –

Total 634.125

Classes X, A-1, A-2, and B are paid interest and principal from the under-
lying loans, while Mezzanine Secured Deferrable classes C, D, and E are
paid to the extent that additional cash flows from the underlying loans are
available. Any credit losses from the underlying loans are first applied to
the equity or Subordinated Notes, then to the Mezzanine tranches, and only
then, if necessary, to the Senior Secured tranches. Furthermore, CLO debt
tranches are protected by constraints imposed on the creditworthiness of
the underlying loans and on the concentration of loans to a particular bor-
rower or industry, along with various ongoing tests as to the sufficiency of
interest and collateral. In short, this CLO, from an underlying portfolio of
$634,125,000 leveraged loans, created $414,225,000 of X, A-1, and A-2
tranches with AAA or Aaa ratings; an additional $64,600,000 B tranches
with an AA rating; and so forth.

Compensation for buying lower-rated tranches comes in the form of
earning a higher spread. As shown in the last column if Table 14.2, spreads
range from 65 basis points for the AAA-rated X Class to 675 basis points for
the Ba3-rated Class E tranche.3 The return on equity, of course, is determined
by whatever is left over after paying all of the more senior claims.

The different credit risk profiles of the different tranches in a CLO tend
to attract different groups of investors. Banks tend to hold or purchase
the AAA/Aaa and AA/Aa tranches; insurance companies and pension funds
invest in a range of tranches; and hedge funds and alternative asset managers

managers here, therefore, reinvest loan principal so that loans in the portfolio as of
April 2024 mature at or somewhat before the maturity of the tranches in April 2031.
3In the case of this CLO, the X Class is particularly short term and safe, because its
principal begins to amortize soon after issuance.
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buy the lower-rate tranches. Outside investors and the CLO originators hold
the equity.

By way of summarizing trends over the last few decades, the growth of
the secondary market for leveraged loans, abetted by the CLO market, has
blurred the distinction between leveraged loans and high-yield bonds. Cor-
porations have greater flexibility to borrow in one market or the other, and
asset managers actively decide to invest in one market or the other, with all
choices depending on individual preferences or requirements and on market
conditions.

Seniori ty, Covenants, and Cal l Provis ions

When selling a debt issue, a corporation enters into a contract with bond-
holders, called an indenture, which is enforced by a trustee. Aside from
payment terms (e.g., interest, principal, and maturity), the indenture speci-
fies the priority of the issue in the event of default. For example, one bond
issue might be secured by a particular set of assets; a second might be unse-
cured, but “senior” to other issues; and a third might be “subordinated” to
higher-ranking issues. In this example, should a corporation be reorganized
or liquidated through bankruptcy according to “strict priority,” proceeds
from selling ring-fenced assets would be applied first to satisfy the claims
of the secured bondholders. Any remaining proceeds, together with other
assets of the corporation, would be applied next to satisfy the claims of the
senior bondholders. Finally, whatever value remains would be used to satisfy
the claims of the subordinated bondholders. In practice, because reorganiza-
tions involve negotiation and include equity holders, strict priority may not
always precisely predict the settlement of debt claims.

Indentures also include covenants to protect the claims of bondhold-
ers. Examples include maintaining various financial ratios; restricting the
amount of cash that can be paid to stockholders; requiring a corporation to
repurchase a debt issue after a change of control; limiting the total amount
of new debt incurred by the corporation; and preventing the sale of debt
with higher seniority than that of an outstanding debt issue.

As a final point of discussion, indentures often include call provisions or
embedded call options, which allow a corporation to repurchase bonds from
bondholders at some fixed schedule of prices. A simple example would be a
20-year bond that the company can repurchase at par or face value anytime
after 10 years. A more complex example would be a 4% 30-year bond that
the company can repurchase after 10 years at a price of 102 (100 plus half
the coupon); at a price of 101.90 after 11 years; at a price of 101.80 after
12 years.

The original purpose of call provisions was to enable corporations to
extinguish a bond issue – without having to track down and purchase every
outstanding bond – perhaps to remove covenants that prohibited what had
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TABLE 14.3 Call Provision of the Hertz 6s of 01/15/2028. The Bond Was Issued
in November 2019.

Dates Call Price

Before 01/15/2023 Make-Whole Price @Yield of the
Treasury 2.75s of 02/15/2028 +50bps

01/15/2023 to 01/14/2024 103.00
01/15/2024 to 01/14/2025 101.50
On or after 01/15/2025 100.00

become value-added activities, or perhaps to change the corporation’s exist-
ing capital structure. As interest rates became more volatile in the early
1980s, these call provisions became valuable as interest rate options: the
value of the right to purchase a bond at some fixed price increases as rates
decline (bond prices increase) and also as rate volatility increases. At the
same time, of course, corporations issuing debt with call provisions have
to pay investors for that option through a higher coupon rate. Chapter 16
describes the pricing of these call provisions.

Since the mid-1990s, however, the most common call provision has
become the make-whole call. For example, in a private placement in
November 2019, Hertz sold the 6s of 01/15/2028, with the make-whole
call provision described in Table 14.3. Before January 15, 2023, Hertz can
repurchase the bonds from investors at a yield 50 basis points above the
yield of the US Treasury 2.75s of 02/15/2028. From January 15, 2023,
on, the call is at the schedule of fixed prices shown in the table. The idea
behind the make-whole call is to give the issuer flexibility to manage its debt
without its having to purchase an expensive interest rate option. Unlike the
case of a call price that is fixed, when yields fall, the yield of the Treasury
benchmark falls too, and the make-whole call price increases. Hence, the
interest rate option value of the make-whole call is extremely limited. In
fact, in theory, the make-whole call has option value only if the market
spread of the Hertz bonds over Treasuries falls: in that scenario, the value
of the Hertz bond increases without a corresponding fall in the yield of the
Treasury bond and a corresponding increase of the make-whole price. In
practice, however, the value of this spread option is mitigated by setting
the make-whole spread out-of-the-money. For example, when Hertz issued
the 6s of 01/15/2028 in November 2019, its spread over the Treasury
benchmark was 423 basis points. This means that its bond spread would
have to fall a very large 423 − 50 or 373 basis points before the make-whole
provision was in-the-money as an option on spread. Overall, of course, the
call provision of the Hertz 6s of 01/15/2028 derives option value from the
schedule of fixed call prices from January 15, 2023.
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14.2 DEFAULT RATES, RECOVERY RATES,
AND CREDIT LOSSES

While investors in nearly risk-free government bonds can focus exclusively
on interest rate risk, investors in corporate securities have to focus on credit
risk as well, often expressed in terms of default rates, recovery rates, and
credit losses. After analysis, an investor might estimate that, over a five-year
horizon, a particular portfolio of bonds will experience a default rate of
10%, meaning that, for every $100 of face amount, $10 will default. Further-
more, the investor might estimate that the defaulting bonds in the portfolio
will experience a recovery rate of 40% of face amount, or, equivalently, will
suffer a loss equal to the remaining 60% of face amount. Putting these two
estimates together, the investor expects, over a five-year horizon, that credit
losses on the portfolio will be 10% × (1 − 40%) = 6%.

Table 14.4 shows average historical values for these quantities, over
the period 1983–2020, for senior unsecured bonds, by rating. The results
are useful for appreciating the average magnitude of credit risk. For
investment-grade senior unsecured bonds, the average five-year default
rates and recovery rates are 0.9% and 44.5%, respectively, giving an
average credit loss of 0.5%. For speculative-grade senior unsecured bonds,
the average default rate is much higher, at 19.6%, though the average
recovery rate is only marginally lower, at 38.3%. Combining these two
averages gives a much higher credit loss of 12.2%. The standard assumption
in the industry that recovery rates are about 40% is justified by historical
data like those presented in Table 14.4.4

While historical averages are useful in thinking about credit risk, credit
conditions can vary dramatically over time. For example, extending the sam-
ple of Table 14.4 to include the years after the Great Depression raises the
five-year default rate on investment-grade debt from 0.9% to 1.4%. And

TABLE 14.4 Average Five-Year Default Rates, Senior Unsecured Bond Recovery
Rates, and Credit Losses, 1983–2020. All Entries Are in Percent.

Default Recovery Credit
Rating Rate Rate Loss

Investment Grade 0.9 44.5 0.5
Speculative Grade 19.6 38.3 12.2
All 7.4 38.9 4.6

Source: Moody’s Investors Service

4These data calculate recovery rates from bond prices just after default, as opposed
to ultimate recovery rates at the conclusion of reorganizations or liquidations.
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F IGURE 14.1 Credit Losses for Senior Unsecured Bonds, 1983–2020. Source:
Moody’s Investors Service.

within the sample period of the table, Figure 14.1 shows the variability of
credit losses for investment-grade and high-yield bonds. High-yield losses
were particularly high in the late 1980s, following the rapid growth in that
market; in 2000–2002, which included the “dot-com” crash and the failures
of Enron and WorldCom; in the financial crisis of 2007–2009; in 2016, from
stresses caused by low prices in energy markets; and, most recently, during
the pandemic and economic shutdowns of 2020.

Table 14.4 and Figure 14.1 report credit losses for senior unsecured
bonds. Investment outcomes vary significantly, however, across loans and
bonds of different seniority. Over the same sample period as in the table and
figure, Moody’s reports that bond recovery rates were 22% for junior sub-
ordinated; 38% for senior unsecured; and 54% for first lien (i.e., the highest
priority secured claim). For bank loans, average recovery rates were 46%
for senior unsecured; 65% for first lien; and 32% for second lien.

A recent example of the impact of seniority, illustrated in Table 14.5, is
the price behavior of Hertz bonds through its bankruptcy filing on May 22,
2020. Before the pandemic, as of February 21, 2020, when default was a
remote contingency, the prices of Hertz’ secured and unsecured bonds were
above par, with the higher price of the unsecured reflecting its longer matu-
rity at an above-market coupon. By May 14, 2020, after the pandemic and
shutdowns devastated the rental car business, the prices of Hertz bonds
plummeted, with the price of the secured bond now significantly higher:
with default imminent, the seniority of the secured bonds was much more
important than the seemingly distant prospect of the unsecured bond’s cash
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TABLE 14.5 Hertz Corporation, Selected Bond Prices on Three Dates in 2020.

Priority Coupon Maturity Feb 21 May 14 Jun 15

Sr. Secured 2nd Lien 7.625 06/01/2022 103.10 19.97 77.00
Sr. Unsecured 6.000 01/15/2028 104.29 11.25 43.50

flows through 2028. Soon after, however, in the wake of the economy’s rapid
recovery, Hertz’s bond prices recovered dramatically as well. There was still
much uncertainty as to the bonds’ creditworthiness, however. The June 15,
2020, prices in the table show that the secured bonds still sold at a signif-
icant premium to the unsecured. By way of epilogue, Hertz emerged from
bankruptcy at the end of June 2021, and its bonds recovered their full prin-
cipal value.

Potential credit losses are directly relevant for investors expecting to
hold bonds to maturity. Investors with shorter horizons, however, are also
concerned about credit deterioration, which causes bond prices to fall before
a realized default and credit loss. One manifestation of credit changes are rat-
ing transitions, in which a rating agency upgrades or downgrades a rating.
Table 14.6 gives average historical one-year transition rates, or, more specifi-
cally, the rates at which bonds starting at a particular rating, over the follow-
ing year, are upgraded, experience no change, are downgraded (including
defaults), or become unrated. Becoming unrated may be a negative credit
event but could also indicate a credit-neutral event like an acquisition. In
any case, the table shows that downgrades over a one-year horizon are not
uncommon, averaging from about 4% to 10% for bonds rated B or above,
and over 28% for CCC/C-rated bonds. Upgrades occur as well, but with less
frequency. Though not shown in the table, upgrades and downgrades vary
with the business cycle, like the credit losses in Figure 14.1.

TABLE 14.6 Average One-Year Transition Rates, 1981–2020. All Entries Are in
Percent.

Rating Upgrade No Change Downgrade No Rating

AAA 0.0 87.1 9.8 3.1
AA 0.5 87.2 8.4 3.9
A 1.6 88.6 5.4 4.4
BBB 3.3 86.5 4.3 5.9
BB 4.7 77.8 8.0 9.5
B 4.8 74.6 8.3 12.3
CCC/C 13.3 43.1 28.3 15.3

Source: S&P Global Ratings; and Author Calculations
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14.3 CREDIT SPREADS

Credit spreads are the differences between the relatively high rates earned
on fixed income instruments that are subject to credit risk and the relatively
low rates on instruments with little or no credit risk. The simplest measure
of credit spread is the yield spread, which is the difference between the yield
on a bond and the rate or yield on a similar maturity interest rate swap or
highly creditworthy government bond. Yield spreads, however, suffer from a
number of drawbacks. First, a sufficiently liquid government bond or swap
with a similar maturity might not exist. Second, yields reflect not only credit
risk, but also the structure of a bond’s cash flows. (See the discussion of
the “coupon effect” in Chapter 3.) Third, yields reflect the value of embed-
ded options, like the fixed-price call provisions discussed earlier, which have
nothing to do with credit risk.

A better measure of credit spread is referred to in this chapter as the bond
spread. This term includes the spread defined in Chapter 3 and the more
general option-adjusted spread (OAS) defined in Chapter 7. In the credit
context, a bond spread is computed by assuming no default and finding
the spread over a benchmark curve that prices a bond as it is priced in the
market. Because the market price incorporates the risk of default while this
pricing methodology does not, the bond spread is a metric of credit risk.
Unlike yield spreads, bond spreads properly account for maturity and the
structure of cash flows. This approach, therefore, is suitable for bonds with-
out embedded options. For bonds with embedded options, OAS is more
appropriate: by design, its computation of price accounts for the value of
embedded options and, therefore, any remaining spread to the benchmark
curve can be reasonably attributed to credit risk. Furthermore, as explained
in Chapters 3 and 7, the bond spread and OAS can be interpreted as the extra
spread earned by a bond if interest rates are unchanged or hedged against;
if the spread is unchanged; and if the bond does not default.

The measures of credit spread in this section are illustrated with the Gen-
worth 4.90s of 08/15/2023, a speculative-grade bond issued by an insurance
company. Table 14.7 gives various measures of credit spread for this bond, as
of August 15, 2021, when the 4.90s of 08/15/2023 have exactly two years to
maturity. Given the market yield of 5.596% and the two-year LIBOR swap
rate of 0.288%, the yield spread is the difference between those two rates, or
530.8 basis points. The bond spread, given the bond’s market price of 98.70
and the term structure of forward swap rates as of the pricing date, is 531.1
basis points.5 Then, in the sense of the previous paragraph, the Genworth
bond earns an annual rate of LIBOR plus 531.1 basis points.

5For readers wanting to follow these calculations, the first four six-month for-
ward rates from the swap curve were taken to be 0.154%, 0.154%, 0.4225%, and
0.4225%.
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TABLE 14.7 Selected Credit Spreads for the Genworth
4.90s of 08/15/2023, as of August 15, 2021. The Price
of the Bond is 98.70; Its Yield is 5.596%; and the Par
Swap Rate Is 0.288%. Spreads Are in Basis Points.

Spread Type Spread

Yield Spread 530.8
Bond Spread 531.1
Par-Par Asset Swap Spread 526.4
Market Value Asset Swap Spread 533.3

Other popular measures of spread are asset swap spreads. The point of
an asset swap is to transform a fixed-rate, coupon bond into an asset that
earns a spread over a short-term rate, like LIBOR. In the context of this
chapter, asset swaps enable investors to earn credit spreads without having
to bear the interest rate risk of long-term, fixed-rate bonds.

Figure 14.2 illustrates one type of asset swap, the par-par asset swap,
or, more simply, the par asset swap. Thin lines indicate cash flows at the
initiation of the asset swap; heavy lines indicate intermediate cash flows; and
dashed lines indicate cash flows at the maturity of the swap. At initiation, the
asset swapper buys the bond for P per 100 face amount, earning a periodic
coupon payment of c. The purchase price is financed with 100 from the
repo desk and P − 100 from the swap desk.6 Finally, through an interest rate
swap to the maturity of the bond, in addition to the up-front payment just
mentioned, the asset swapper periodically pays c in exchange for receiving
LIBOR plus the spread, spar, on 100. Note that this trade requires no cash
at initiation; earns LIBOR plus spar minus the repo rate over the life of the
bond, so long as the bond does not default; and requires no cash at maturity,
again, so long as the bond does not default. Hence, as desired, the investor
has converted the fixed coupon payments of a bond into floating payments
of LIBOR plus spar. Of course, there are losses if the bond defaults: in that
case, the asset swapper has to make coupon payments to the swap desk and,
at maturity, pay 100 to the repo desk, even though these payments will not
be fully realized from the defaulted bond.

The par asset swap spread, spar, can be determined by the condition
that the interest rate swap with the swap desk is fair, that is, that the initial
payment plus the present value of the floating leg equals the present value of
the fixed leg, where discounting is at market swap rates.7 Mathematically,

6This discussion abstracts from haircuts and collateral agreements on both the repo
and swap legs of the asset swap.
7This condition implicitly assumes that collateral arrangements eliminate any coun-
terparty risk from the swap. See Chapter 13.
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F IGURE 14.2 A Par-Par Asset Swap with Financing.

let Afixed and Afloating be the factors such that cAfixed gives the present value
of the payments of c on the fixed side of the swap and such that sparAfloating

gives the present value of the payments of spar on the floating side.8 Let d
be the discount factor for cash flows at maturity. Also, along the lines of
Chapter 13, include a fictional notional amount of 100 at maturity on both
legs of the swap, and note that the present value of receiving LIBOR and the
final notional amount is par. Then, the fair pricing condition for the swap is,

(P − 100) + 100+100sparAfloat = cAfixed + 100d

spar = cAfixed + 100d − P
100Afloat

(14.1)

From Equation (14.1), for a given swap rate curve, as the credit risk of the
bond increases, P decreases, which, in turn, increases the asset swap spread,
spar. Table 14.7 reports that, as of August 15, 2021, the par asset swap spread
of the Genworth 4.90s of 08/15/2023 is 526.4 basis points.

A second flavor of asset swaps, namely, a market value asset swap, is
illustrated in Figure 14.3. The market value asset swap differs from the
par asset swap in that P is borrowed from the repo desk, rather than 100;
P − 100 is paid by the swap desk at the maturity rather than the initiation
of the swap; and, as a result, LIBOR plus the spread, smkt, is earned on
P rather than 100. Following the same notation and logic as in the case of
the par asset swap, the fair market value asset swap spread is given by,

P + smktPAfloat + (P − 100)d = cAfixed + Pd

smkt = cAfixed + 100d − P
PAfloat

= 100spar

P
(14.2)

8Afixed and Afloating do not equal each other when the frequency of payments on the
fixed and floating sides differ.
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F IGURE 14.3 A Market Value Asset Swap with Financing.

where the final equality uses Equation (14.1). According to Table 14.7, the
market value asset swap spread of the Genworth 4.90s of 08/15/2023, as of
August 15, 2021, is 533.3 basis points. The relationship between the two
asset swap spreads is quite intuitive: an investor can earn spar on 100 or
smkt on P, which, from Equation (14.2), gives the same result. The choice
between the two asset swap trades, therefore, depends not on earnings, but
on collateral and counterparty risk considerations.9

The final measure of credit spread considered in this section is an effec-
tive spread for corporate FRNs no longer priced at par. When an FRN is
priced at par, its spread is particularly easy to interpret as a spread over the
short-term rate benchmark received in exchange for bearing credit risk. Over
time, however, as the credit quality of the issuer changes, the price of an FRN
with a fixed spread changes. As a result, because an investor pays a premium
or gets a discount to face amount when buying the FRN, in addition to its
spread, that spread is no longer as easily interpreted.

The effective spread converts an FRN’s premium or discount into a run
rate and adds it to the actual spread. Let the actual spread be sfloat; the price
of the floater P; the present value factor, as before Afloat; and the effective
spread seff . Then, investors are indifferent between receiving sfloat for a price
of P and seff for a price of 100 if,

100seff Afloat − 100 = 100sfloatAfloat − P

seff = sfloat + 100 − P
100Afloat

(14.3)

9Begin with the case of a premium bond, that is, P > 100. In a par asset swap, the
swap desk advances money to the asset swapper, which typically requires the asset
swapper to post collateral. Over time, however, as the asset swapper makes coupon
payments, the counterparty risk and collateral requirements decline. In the market
value asset swap, there is no initial swap payment and, therefore, no initial collateral
requirements. Over time, however, as the asset swapper makes payments, the obliga-
tions of the swap desk to pay P − 100 at maturity gives rise to collateral obligations
from the swap desk to the asset swapper. In the case of a discount bond, that is,
P < 100, the collateral implications are reversed.
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This section concludes by noting that the trades described here for earn-
ing the credit spread are subject not only to the risk of default, but also
to financing risk. Whenever a bond is purchased for a relatively long-term
holding period, but is financed with short-term repo, there is the risk that the
repo rate will increase by more than the discounting or benchmark rates. In
that case, the bond will earn less than the benchmark short-term rate (e.g.,
LIBOR) plus the spread. An even more extreme risk is that repo lenders will
refuse to roll positions, because they no longer wish to lend to the borrower,
because they no longer wish to lend against a particular bond, or because
they need the cash themselves. In that scenario, corporate bond investors
with short-term repo financing will have to sell their bonds, most likely at a
loss, to repay outstanding repo loans. Financing risk in the context of credit
risk appears again, later in this chapter, as a key difference between bonds
and credit default swaps.

14.4 CREDIT RISK PREMIUM

If credit spreads, on average, just compensated for credit losses, then
risk-averse investors would just as soon buy safe government bonds at the
same average return, but without the downside risk. For corporate debt to
be attractive, therefore, spreads must not only compensate for credit losses,
but also provide an additional credit risk premium. This section reviews
some evidence that, on average, corporate bond spreads do, indeed, more
than compensate for credit losses.

One study estimates that the average corporate yield spread over
default-free bonds in the United States from 1866 to 2008 was 153 basis
points, while the average credit loss was only 75 basis points. This long-term
evidence indicates a substantial credit risk premium, in that average spreads
are about twice average credit losses.10

Another study, over the more recent period 2002–2015, also finds a sig-
nificant credit risk premium. Defining the premium as credit spread minus
expected losses, the second column of Table 14.8 reports the median ratio
of premium to credit spread, and the third column reports the median ratio
of premium to expected loss, by rating. To interpret these numbers, consider
a Baa-rated bond at a spread of 200 basis points. At the premium to spread
ratio of 76% given in the second column, 76% of 200 or 152 basis points
are due to a risk premium, while only the remaining 48 basis points are

10Giesecke, K., Longstaff, F., Schaefer, S., and Strebulaev, I. (2011), “Corporate
Bond Default Risk: A 150-Year Perspective,” Journal of Financial Economics 102,
pp. 233–250. The credit loss estimate comes from a 1.5% calculated default rate and
an assumed 50% recovery rate.
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TABLE 14.8 Median Ratios of Premium to Credit Spread and
to Expected Loss by Rating, 2002–2015.

Rating Premium/Spread (%) Premium/Expected Loss

Aaa 59 1.43
Aa 65 1.83
A 68 2.11
Baa 76 3.12
Ba 80 4.01
B 77 3.37
Caa 71 2.49
Ca-C 68 2.12

Source: Berndt, Douglas, Duffie, and Ferguson (2018).

compensation for expected losses. Expressed in terms of the third column
of the table, these 152 basis points of credit risk premium are over three
times the expected loss of 48 basis points. Over the sample period of this
study, bonds with Baa to B ratings are an investor sweet spot in the sense of
providing the highest premium for the amount of risk borne.11

14.5 CREDIT DEFAULT SWAPS

In a single-name credit default swap (CDS), a protection buyer or CDS
buyer pays a fee, premium, or coupon to a protection seller or CDS seller in
exchange for a compensation payment in the event that an issuer defaults.
Bonds and CDS together comprise the markets for trading credit risk.

A CDS contract is defined by a reference entity, a list of credit events,
a term or maturity, reference obligations, and a notional amount. As an
example, consider a five-year CDS on a notional amount of $1 million of
Genworth Senior Unsecured 6.5s of 06/15/2034. A payment by the seller
of this CDS would be triggered if, before its maturity, Genworth is deter-
mined by an industry-led determinations committee to have experienced a
credit event, like a bankruptcy filing or a failure to pay outstanding obli-
gations.12 In that scenario, the protection seller must make the protection
buyer whole with respect to $1 million face amount of the underlying bonds.

11Berndt, A., Douglas, R., Duffie, D., and Ferguson, M. (2018), “Corporate Credit
Risk Premia,” Review of Finance, pp. 419–454. The credit spreads in this study are
measured using CDS spreads.
12Credit events for North American CDS typically do not include restructurings,
which are usually part of the bankruptcy process. Restructurings are significant,
however, to the determination of credit events in European CDS.
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More specifically, through physical settlement of the contract, the protection
buyer delivers $1 million face amount of the bond to the protection seller in
exchange for $1 million. Alternatively, through cash settlement of the con-
tract, if the price of the bond were determined to be, for example, $400,000,
the protection seller pays $600,000 to the protection buyer, again making
the protection buyer whole on the $1 million face amount. (The existence
of several reference obligations and the CDS delivery option, along with
the auction mechanism by which protection sellers compensate protection
buyers, is discussed presently.)

In exchange for the compensation payment in the event of default, the
protection buyer pays a quarterly premium until the earlier of the maturity
of the CDS or the event of default, in addition to paying or receiving an
upfront amount at the initiation of the contract. The details of the premium
and the upfront amount are discussed herein. For now, however, note that
the CDS spread refers to the actual or hypothetical annualized premium on
a CDS with an upfront payment of zero. In other words, a protection buyer
can be thought of as paying the CDS spread in exchange for compensation
in the event of default.

Table 14.9 gives selected sovereign and corporate five-year CDS spreads
as of November 2021. For example, the cost of compensation for a credit
event in Greece over the subsequent five years is 112.3 basis points or
1.123% annually. (For sovereigns, which do not file for bankruptcy, credit
events include a moratorium on or a repudiation of debt obligations in
addition to a failure to pay.) The CDS spread for Genworth, at 378.3 basis
points, implies a cost of $37,830 per year to insure against a default of the
$1 million face amount of the 6.5s of 06/15/2034 mentioned already. The
cost of insuring $1 million face amount of bonds for five years ranges in the
table from a low of $910 per year for German government bonds to a high
of $62,450 per year for the bonds of MBIA Insurance.

TABLE 14.9 Selected Sovereign and Corporate Five-Year CDS Spreads, as of
November 2021. Spreads Are in Basis Points.

Sovereign Spread Corporate Spread

Germany 9.1 Marsh & McLennan 25.3
United States 16.0 JPMorgan Chase 53.8
Spain 35.2 BBVA Bancomer 70.3
China 48.9 Ally Financial 105.7
Italy 89.6 Fairfax Financial 154.5
Greece 112.3 Banco do Brasil 218.5
Brazil 265.8 Genworth 378.3
Turkey 469.6 MBIA Insurance 624.5
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Whereas single-name CDS allow market participants to trade the
credit of a single name, index CDS allow for the trading of broader credit
portfolios. The five most popular index CDS are: CDX.NA.IG, which
represents a portfolio of 125 single-name CDS on North American (NA),
investment-grade (IG) names; CDX.NA.HY, on 100 single-name CDS on
North American, high-yield (HY) names; iTraXX Europe Main, on 125
single-name CDS on European, investment-grade names; iTraXX Europe
Crossover, on 50 single-name CDS on European, high-yield names; and
iTraxx Europe Senior Financials, on senior debt of 25 names in that sector.
The detailed workings of CDS indexes are described in the London Whale
case study presented later. Note that industry jargon is different for index
than for single-name CDS. The buyer of index CDS receives the premium
and pays compensation in the event of default – just like the buyer of a
portfolio of bonds – while the seller of index CDS pays the premium and
receives compensation in the event of default – just like the short seller of a
portfolio of bonds.

Figure 14.4 graphs historical CDS spreads for the 10-year iTraxx Europe
Main and iTraxx Europe Crossover (XO) indexes. The cost of protection
for the XO index spiked during the financial crisis of 2007–2009, during
the height of the European sovereign debt crisis in 2011–2012, and at the
start of the pandemic and economic shutdowns in early 2020. (The behavior
of CDX.NA.HY, not shown, was qualitatively similar, though it spiked to
significantly higher levels during the financial crisis.) The fluctuations of the
iTraxx Europe Main have been comparatively modest, reaching 200 basis
points during the sovereign debt crisis, but settling in recent years at about
100 basis points.

Figure 14.5 shows the slope of the term structure of CDS spreads for the
iTraxx Europe XO index, in particular, the difference between the 10- and
three-year index CDS spreads. In normal times, the annual cost of protection
is higher for 10 years than for three years, because greater possibilities of dis-
ruption arise in the more distant future. During the financial crisis and at the
height of the European sovereign debt crisis, however, the cost of three-year
protection was greater than or equal to the cost of 10-year protection. In
particularly stressful financial times, near-term events are the most uncer-
tain, after which – at least for all surviving entities – credit risk is likely to
have returned to levels that prevail in calmer times.

Uses of CDS

This introduction to CDS now turns to market participants. An often cited
use case is a corporate bond investor hedging the default risk of a bond by
buying CDS protection. This case does not really stand on its own, however,
because an investor is likely to give up most if not all of the bond’s credit
spread by buying protection. Or, put another way, an investor not wanting
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to bear the credit risk of a particular bond can just sell that bond. Other use
cases, therefore, are worth exploring.

As mentioned earlier and discussed presently, selling CDS protection
very much resembles buying a bond: both the protection seller and the
investor receive coupons over time and lose money in the event of a default.
Many sellers of protection, therefore, choose to bear credit risk through



Trim Size: 6in x 9in Tuckman835554 c14.tex V1 - 07/12/2022 11:22am Page 365�

� �

�

Corporate Debt and Credit Default Swaps 365

CDS rather than bonds. One reason might be that the relatively few CDS
contracts on a particular name (e.g., a five- and 10-year) are more liquid
than that name’s many outstanding bond issues. Similarly, selling protection
on an index might be a lot less costly than assembling a similarly diversified
portfolio by buying individual corporate bonds. Even if an asset manager
ultimately wants to hold the bonds, the fastest way to put on the position
might be to sell protection and then, over time, buy the bonds and unwind
the protection sold. A second reason to prefer selling protection over
buying bonds might be to isolate credit risk from interest rate risk. Many
insurance companies, for example, engage in replication synthetic asset
transactions (RSATs), in which, for example, they buy government bonds
of a maturity that suits their asset–liability management requirements and
then sell protection on a credit that they like for investment purposes.
A third reason, also discussed in this chapter, is that selling protection
allows an investor to take risk with relatively little capital, whereas buying
a bond requires that cash be available or explicitly borrowed.

Protection buyers, on the other hand, very much resemble short sellers:
both pay coupons over time and win money in the event of a default. One
reason to short corporate credit in CDS form is that it may be most efficient
to do so, given the relatively significant trouble and expense of borrowing
corporate bonds to short them. A second reason, paralleling a discussion in
the previous paragraph, is that an investor might want to sell a corporate
bond, but its liquidity would require a gradual, relatively slow unwind. In
that case, if urgency is important, the best strategy might be to buy protec-
tion immediately in the more liquid CDS market, and then gradually sell
the bond and unwind the purchased protection. A third reason to buy CDS
protection is to hedge against risks that are not traded at all. For example,
an entity doing business with Italian firms that have no publicly traded debt
or related CDS might want to hedge against deteriorating credit conditions
in that country by buying protection on Italian banks. This example has
important consequences, as it implies that market participants might pur-
chase protection on credits to which they have no direct exposure. And this,
in turn, means that the amount of CDS outstanding on particular credits
might exceed their outstanding debt. Back to the example, if many market
participants want to hedge financial risk in Italy, the amount of CDS protec-
tion bought on Italian banks could exceed the amount of Italian bank debt
outstanding.

A recent study puts the global outstanding notional amount of CDS at
$9.4 trillion, split 62% in index CDS and 38% in single-name CDS. Notional
amounts are misleading indicators of outstanding risk, however, for the same
reasons that apply to interest rate swaps, which are discussed in Chapter
13. Net notional outstanding then, from the same study, which nets each
entity’s long and short positions, is only $1.5 trillion, with two-thirds of that
in index CDS and one-third in single-name CDS. CDX.NA.IG and iTraxx
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Europe account for about 70% of traded index amounts, and the top five
aforementioned CDS contracts account for more than 90% of index activity.
With respect to the single-name market, about 800 distinct names are ref-
erenced in each quarter of trading, but only about 550 of those names are
referenced in every quarter. This implies that the single-name market consists
of a core group of names that are traded consistently over time and other
names that trade when interest is high in their particular credit situations.13

14.6 CDS UPFRONT AMOUNTS

Before the financial crisis of 2007–2009, CDS traded like interest rate swaps;
that is, the coupon changed every moment with market conditions, and stan-
dard maturities were fixed terms from the settlement date. For example,
buying $1 million notional of five-year CDS on Genworth at a spread of
558.92 basis points on August 16, 2006, was a commitment to pay $55,892
annually in exchange for compensation in the event of a Genworth default
through August 16, 2011. Consequently, as is still true for interest rate swaps
today (see Chapter 13), unwinding CDS trades was relatively difficult. For
example, to unwind the CDS just described after one month, a trader would
most like to sell protection at a fee of 558.92 basis points through August
16, 2011. But at the time of the unwind, on September 16, 2006, the most
liquid or on-the-run five-year CDS would mature on September 16, 2011,
and might carry a spread of 490 basis points. The trader, therefore, would
have to incur relatively high transaction costs to unwind the existing CDS, or
would have to sell protection through the on-the-run CDS and manage the
maturity and spread mismatch between the original and the hedging CDS.

Since the financial crisis, as part of a broader push by regulators to
improve operations in this market, CDS have become more standardized.
First, maturity dates are limited to pseudo-IMM (international money mar-
ket) dates, that is, the 20th days of March, June, September, or December.
Thus, for example, all five-year contracts traded between June 21, 2021,
and September 20, 2021, mature on September 20, 2021; all five-year con-
tracts traded between September 21, 2021, and December 20, 2021, mature
on December 20, 2021; etc. Second, all contracts have annual coupons of
either 100 or 500 basis points, with a market determined upfront amount
to compensate for the difference between the market CDS spread and the
standardized coupon. Upfront amounts are described in greater detail later,
but, for the present, note how these two changes in market conventions sim-
plify the unwind of CDS. Buying a $1 million five-year CDS on Genworth

13ISDA (2019), “Global Credit Default Swaps Market Study,” September. The sample
period is from January 2014 to June 2019.
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on August 16, 2021, at a spread of 558.92 actually requires making annual
payments of 500 basis points or $50,000, and – as shown next – an upfront
payment of $23,190. Furthermore, the contract matures on September 20,
2021. Therefore, to unwind this contract after one month, the trader can
sell a still on-the-run CDS, that is, a CDS with a coupon of 500 basis points
that matures on September 20, 2021, which exactly offsets the future cash
flows of the original CDS.14 If the market upfront payment fell over the
month to $13,000, then the trader suffers a loss of $10,190 relative to the
original purchase price. Unwinding the contract after more time has passed
can be more difficult, because the on-the-run contract may have changed, but
some liquidity is likely still available: many market participants likely traded
Genworth CDS between June 21, 2021, and September 20, 2021, and, there-
fore, have contracts with a coupon of 500 basis points and a maturity of
September 20, 2021.

A short mathematical prelude is needed here before moving to the cal-
culation of upfront amounts. Simple credit risk models assume a constant
hazard rate, 𝜆, defined such that the probability of default over a short time
interval, dt years, equals 𝜆dt. If the hazard rate is 10% and that time interval
is six months, then the probability of default over the six months is 10%/2 or
5%, and the probability of “survival,” meaning no default, is 95%. To sur-
vive over a year requires survival over both the first and second six months,
which has a probability of 95% × 95% = 90.25%. And this survival proba-
bility, in turn, implies that the probability of default over the year, whether
in the first or the second six months, is 1 − 90.25%, or 9.75%. Note that
breaking the one-year time frame into two six-month periods makes the
probability of survival over the year, 90.25%, greater than 90% (100%
minus the annual hazard rate of 10%): with 95% survival over the first
six months, only that 95% – not the full 100% – is subject to default over
the second six months. Correspondingly, the probability of default over the
year, 9.75%, is less than the annual hazard rate of 10%.

More generally, Appendix A14.1 shows that if the hazard rate is applied
continuously, then the cumulative survival probability over T years, CS(T),
and the cumulative default probability over T years, CD(T), are,

CS(T) = e−𝜆T (14.4)

CD(T) = 1 − e−𝜆T (14.5)

14If the CDS is cleared, as most are today, then the buy and sell described in the
text actually cancel, leaving no position with the central counterparty. If the trades
are not cleared, and the buy is with a different counterparty than the sell, then the
promised cash flows cancel, but the two contracts remain in force and are subject to
counterparty risk.
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TABLE 14.10 Calculating the Upfront Amount for 100 Notional Amount of an
Annual Pay Five-Year CDS on Genworth at a Coupon of 500 Basis Points and a
CDS Spread of 558.92 Basis Points, as of August 16, 2021. The Recovery Rate Is
40%. Probabilities and the Hazard Rate Are in Percent.

Discount Cumulative Survival Default
Year Factor Probability Probability

1 0.998462 91.099 8.901
2 0.994257 82.991 8.109
3 0.985062 75.604 7.387
4 0.973167 68.875 6.729
5 0.959797 62.744 6.130

Hazard Rate 9.322
Value of Fee Leg 21.995
Value of Contingent Leg 21.995
Upfront Amount 2.319

To illustrate the use of these equations with the same annual hazard
rate of 10%, the cumulative survival probability over four years is e−10%×4 =
67.0%, and the cumulative default probability is one minus that, or 33.0%.
Note again that, because of the compounding of survival probabilities over
many short time intervals, the four-year survival rate of 67.0% is signifi-
cantly greater than one minus four years at 10%, or 60%, and, correspond-
ingly, the four-year default rate of 33.0% is significantly less than 40%.

Appendix A14.2 gives general, algebraic formulae for the market con-
vention of calculating a CDS upfront amount given a quoted CDS spread.
The text, however, continues with an example described in Table 14.10: 100
notional amount of a five-year Genworth CDS as of August 16, 2021. The
CDS coupon is 500 basis points; the market CDS spread is 558.92 basis
points; and the assumed recovery rate is 40%.15 For simplicity, it is assumed
that premium payments are annual (instead of quarterly).

The basic idea behind the market convention is as follows. First, find
the hazard rate that makes the Genworth CDS “fair” in the sense that
the expected discounted value of paying for protection with the CDS
spread – here 558.92 basis points per year – is equal to the expected
discounted value of receiving compensation in the event of default – here
100 × (1 − 40%) = 60. This hazard rate turns out to be 9.322%. Second,

15Market conventions assume a recovery rate of 40% for many, but not all, CDS
contracts. For example, contracts on North American subordinated debt assume a
recovery rate of 20%, and contracts on European emerging market debt assume a
recovery of 25%.
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using that hazard rate, find the expected discounted value to the protection
buyer of paying the actual CDS coupon – here 500 basis points – instead of
the CDS spread of 558.92 basis points. That value turns out to be 2.319.
Hence, to buy 100 face amount of Genworth protection at a coupon of 500
basis points, when the CDS spread is actually 558.92, the protection buyer
has to pay an additional 2.319 upfront.

The first column of Table 14.10 lists the years of the five annual pay-
ments. The second column gives the discount factors from the LIBOR swap
curve as of the pricing date. The third and fourth columns give the cumu-
lative survival and default probabilities at the end of each year, computed
with Equations (14.4) and (14.5) and a hazard rate of 9.322%. This hazard
rate is shown in the table, and its derivation is given presently.

Like all CDS, the Genworth CDS in the example can be described as
having two legs: a fee leg and a contingent leg. The fee leg comprises the pay-
ments of the premium from the buyer to the seller of protection. At the end of
any year in which there has not been a default, the buyer in the current calcu-
lation has to pay the CDS spread of 558.92 basis points on the 100 notional
amount, or 5.5892. If there is a default over the year, then the buyer has
to pay the accrued coupon from the start of the year to the time of default.
If, for example, the default occurred after three months, or one-quarter of
a year, the buyer would have to pay one-fourth of the coupon, or 1.3973;
if the default occurred in the middle of the year, the buyer would have to
pay 2.7946. For simplicity, however, the market convention for calculating
upfront amounts assumes accrual for half the period, or, in this example,
for half of the year. (This assumption has less impact on the calculations in
practice, because coupons are actually paid quarterly.)

Continuing with the example, then, the buyer’s payment on the fee leg
at the end of the first year is 5.5892 if there is no default over the year, and
2.7946 if there is. The probability of these two contingencies are reported in
the table as 91.099% and 8.901%, respectively. Hence, the expected present
value of this payment is,

0.998462[91.099% × 5.5892 + 8.901% × 2.7946] = 5.332 (14.6)

Analogous calculations can be repeated for each of the next four years,
using the appropriate survival and default probabilities and discount factors.
Then, summing the results gives the present value of the fee leg, reported in
Table 14.10, as 21.995.

With respect to the contingent leg, the seller of protection pays the buyer
60 in any year that Genworth experiences a default. The expected discounted
value of that contingent payment in the third year, for example, is,

0.985062 × 7.387% × 60 = 4.366 (14.7)
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Performing this calculation for each of the five years and summing the results
gives the present value of the contingent leg, reported in Table 14.10, as
21.995.

Because the discounted expected values of the fee and contingent legs are
equal, the hazard rate of 9.322% correctly reflects the market CDS spread
of 558.92 basis points. Solving for this hazard rate in the first place requires
iterating through the calculations just described. For example, after setting
up the calculations in Table 14.10 as an Excel spreadsheet, the built-in solver
can be used to find the hazard rate that results in equal values for the fee and
contingent legs.

The stage is now set for calculating the upfront amount such that paying
this upfront amount at the initiation of the CDS and then paying a running
premium of 500 basis points has the same discounted expected value as pay-
ing nothing upfront and then a running premium of 558.92 basis points. As
derived previously, the expected discounted value of the fee leg making pay-
ments of 5.5892 is 21.995. It follows, then, that the value of payments of the
standardized coupon of five in the fee leg is 21.995 × 5∕5.5892 = 19.676.
Therefore, the required upfront payment is just the difference, 21.995 −
19.676, or 2.319: an upfront payment of 2.319 and a running premium
of five (which is worth 19.676) has the same value as no upfront payment
and a running premium of 5.5892 (which is worth 21.995).

A moment’s reflection reveals that the upfront amount is positive
whenever the CDS spread is greater than the standardized coupon. If the
market CDS spread of Genworth were 450 on August 16, 2021, then the
upfront amount turns out to be −2.051. Buying protection by receiving
2.051 upfront and paying a running premium of five has the same value as
no upfront amount and paying a running premium of 4.50.16

This section concludes by emphasizing that the quoting of an upfront
amount from a CDS spread is only a convention, like the relationship
between price and yield-to-maturity. Market participants form their own
views on upfront amounts at which they are willing to trade CDS. They
may not be willing, for example, to assume a particular recovery rate or that
the hazard rate is constant over time. But they all use the accepted market
conventions to calculate upfront amounts from a quoted CDS spread or
vice versa.

16As an exercise, the reader might want to verify in a table analogous to Table 14.10
that, at a CDS spread of 450, the hazard rate is 7.504%; the expected discounted
value of each leg is 18.462; and therefore, as reported in the text, the upfront amount
per 100 face amount is −2.051.
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14.7 CDS-EQUIVALENT BOND SPREAD

The credit spreads defined earlier in the chapter are all measures of bond
return assuming no default. An alternative approach, the CDS-equivalent
bond spread, accounts for default and recovery and is computed along the
lines of the previous section. The basic idea is to find the hazard rate such
that the market price of the bond equals the expected discounted value of
its cash flows. Then, the bond’s CDS-equivalent spread is the CDS spread
corresponding to that hazard rate. To illustrate, say that the market price of
a five-year, 5% (annual pay) bond on Genworth is 94.561 as of August 16,
2021. It is shown next that the expected discounted value of that bond’s cash
flows equals that market price if the hazard rate is 9.322%. Furthermore,
from Table 14.10, the five-year CDS spread at a hazard rate of 9.322% is
558.92 basis points. Therefore, the CDS-equivalent spread of this five-year,
5% bond is 558.92 basis points. In other words, the credit risk implied by the
bond’s market price is the same as that implied by a five-year CDS at a spread
of 558.92 basis points. This spread depends on the restrictive assumption
that the hazard rate is constant. The calculation of expected discounted val-
ues, while seeming to imply risk neutrality, is not as restrictive as it seems: the
hazard rate can be considered “risk-neutral” so that it prices fixed income
securities without necessarily reflecting real-world probabilities. (This dis-
tinction is discussed in Chapter 7.)

Appendix A14.4 gives the algebra for calculating the expected discount
value of a bond’s cash flows given a hazard rate. The text, however, continues
with pricing 100 face amount of an annual pay, five-year, 5% Genworth
bond as of August 16, 2021, and the results are summarized in Table 14.11.
Because the bond’s assumed market price is consistent with a hazard rate of
9.332%, which is the hazard rate in Table 14.10, the cumulative survival
and default probabilities from that table can be used here. Also, because the
pricing dates are the same, the discount factors from that table can be used
here as well.

Along the lines of the previous section, the expected value of a bond’s
coupon in a given year is half of its value times the probability of default over
the year plus its value times the probability of no default over the year. The
discounted expected value of the first coupon of the 5% Genworth bond,
for example, is as in Equation (14.6), but with the bond coupon of 5.00
replacing the CDS spread payment of 5.5892,

Expected PV = 0.998462[8.901% × 2.50 + 91.099% × 5.00]

= 0.222 + 4.548 = 4.770 (14.8)

The two components of this coupon’s expected discounted value are given
in the second and third columns of the first row of Table 14.11. The next
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TABLE 14.11 Calculating the Expected Discounted Value of 100 Face Amount of
an Annual Pay Five-Year 5% Genworth Bond as of August 16, 2021, at a Hazard
Rate of 9.322% and a Recovery Rate of 40%.

Expected PV Coupon Expected PV Principal

Year Default No Default Default No Default

1 0.222 4.548 3.555
2 0.202 4.126 3.225
3 0.182 3.724 2.911
4 0.164 3.351 2.620
5 0.147 3.011 2.354 60.222

Total 0.916 18.760 14.663 60.222
Bond Price 94.561

rows of the table repeat this calculation for subsequent coupon payments,
using the appropriate discount factors, cumulative survival probabilities,
and cumulative default probabilities from Table 14.10. Summing the
results, the total discounted expected value of the bond’s coupons is
0.916 + 18.760 = 19.676.

With respect to principal, if there is a default in any year, then the prin-
cipal received is the face amount times the recovery rate. The discounted
expected value of principal received in the third year, for example, is the
three-year discount factor times the probability of default in year three times
the recovery on 100 face amount,

0.985062 × 7.3787% × 40 = 2.911 (14.9)

which is the value given in the fourth column, third row, of Table 14.11.
(Note that, in Equation (14.9), the bondholder receives 40, while in
Equation (14.7), the buyer of protection receives a default compensation of
60.) The table uses the equivalents of Equation (14.9) to calculate the rest
of the fourth column.

If there is no default up to and including maturity, the bond pays its full
principal amount. The expected discounted value of this cash flow is,

0.959797 × 62.744% × 100 = 60.222 (14.10)

and is given in the year five row and in the rightmost column of Table 14.11.
Finally, adding together the four components of the bond’s expected dis-

counted value from the table, the bond’s price is 94.561. Hence, because the
bond is fairly priced using a hazard rate of 9.322%, and because that hazard
rate corresponds to a CDS spread of 558.92 basis points (from the previous
section), this bond’s CDS equivalent spread is 558.92 basis points.
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This section now compares the CDS-equivalent bond spread just
explained with the bond spread discussed already. First, Appendix A14.3
shows that the CDS spread is approximately equal to the hazard rate times
one minus the recovery rate. Mathematically, letting sCDS denote the CDS
spread; letting 𝜆 denote the hazard rate, as before; and letting R denote the
recovery rate,

sCDS ≈ 𝜆(1 − R) (14.11)

In the context of Table 14.10, for example, the approximation predicts a
CDS spread of 9.322% times (1 − 40%), or 559.32 basis points, while the
actual spread is a very close 558.92 basis points.

Second, Appendix A14.5 shows that,

sBond ≈ 𝜆(1 − Rm) (14.12)

where s is the bond spread, and Rm is the recovery rate as a percentage of
market value. To this point the chapter has assumed par recovery, that is,
bond recovery rates are best modeled as a fixed percentage of face amount.
Market recovery, by contrast, which is used to derive Equation (14.12),
assumes that recovery is a fixed percentage of market value. Say that two
bonds were sold by the same issuer with the same seniority, but one of the
bonds has a much longer maturity and trades at a larger price discount
or premium, depending on the level of rates and spreads. In the event of
default, will the two bonds recover the same amount – as assumed by
par recovery – or will the longer-term bond’s recovery reflect its greater
discount or premium – as assumed by market recovery? Par recovery is the
more common assumption and is better supported by empirical evidence.17

In short, CDS and bond spreads are not equivalent, and the consensus in
favor of the par recovery assumptions argues in favor of preferring the CDS
spread. Furthermore, at high hazard rates and low bond prices, the CDS
spread is significantly greater than the bond spread. To illustrate, recall from
Tables 14.10 and 14.11 that the five-year 5% Genworth bond, at a hazard
rate of 9.322% and a price of 94.561, has a CDS spread of 559 basis points.
From the data in these tables, it can also be computed that its bond spread
is a similar 551 basis points.18 However, if the hazard rate is a much higher

17See Guha, R., Sbuelz, A., and Tarelli, A. (2020), “Structural Recovery of Face Value
at Default,” European Journal of Operational Research 283, pp. 1148–1171; and
Bakshi, G., Madan, D., and Zhang, F. (2006), “Understanding the Role of Recovery
in Default Risk Models: Empirical Comparisons and Implied Recovery Rates,” FDIC
Center of Financial Research Working Paper, September 6.
18Use the discount factors in Table 14.10 to compute forward rates. Then, find the
spread that, when added to these forward rates, recovers – by simple discounting – the
market price of 94.561.
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16.70%, then the bond price is 80.688; the CDS spread is 1,000 basis points;
and the bond spread is a much lower 932 basis points. (These computations
are also left as an exercise for the reader.) Intuitively, by assuming too low
a recovery for discount bonds, bond spreads have to be lower to reproduce
seemingly high market prices.

14.8 CDS-BOND BASIS

Credit risk today is traded in both the corporate debt market and in the CDS
market. It is natural to ask, therefore, whether a particular credit trades at
the same price in both markets or is cheaper in one market than the other.
If the latter, then there might be relative value trading opportunities to buy
in one market and sell in the other.

Table 14.12 sets the stage with a simplified relationship between sell-
ing CDS protection on a particular credit and buying a bond of that same
credit, financed in the repo market.19 The table is a simplification by assum-
ing that i) the CDS contract has an upfront payment of zero, that is, the
CDS coupon equals the CDS spread; ii) the corporate bond is priced at par;
and iii) the CDS and the underlying bond mature on the same date. Under
these assumptions, the table shows that selling CDS protection is equivalent
to buying a bond and financing its purchase with term repo to the bond’s
maturity. More specifically, the cash flows from selling 100 notional of CDS
are: zero today; the spread s on 100 until the earlier of default or maturity;
− 100(1 − R) if and when the bond defaults; and zero if the bond matures
without a default. The cash flows from buying 100 face amount of the bond
at a price of par are − 100 today; the coupon rate c on the face amount to
the earlier of default or maturity; 100R if and when the bond defaults; and

TABLE 14.12 A Simplified Arbitrage Relationship Between Selling Protection on a
Credit and Buying a Bond on That Same Credit, Financed by Repo.

Today Interim (%) Default Maturity/No Default

Sell CDS Protection 0 s −100(1 − R) 0

Buy Par Bond −100 c 100R 100
Sell Repo 100 −r −100 −100
Total 0 c − r −100(1 − R) 0

19For a more general discussion relating derivative positions to financed cash posi-
tions, see Tuckman (2013), “Embedded Financing: the Unsung Virtue of Deriva-
tives,” Journal of Derivatives, Fall, pp. 73–82.
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100 if the bond matures without a default. Finally, the cash flows from bor-
rowing the bond’s purchase price through repo are 100 today; −r on 100
until the earlier of default or maturity; and −100 at the earlier of default
or maturity. (To clarify these repo cash flows, note that, if a bond defaults,
the borrower has to unwind the repo position by paying off the 100 loan
amount, which then ends interest payments on the loan.) Finally, adding the
cash flows from purchasing the bond and selling the repo gives the “Total”
row, which exactly matches the cash flows of selling CDS protection so long
as s = c − r.

The CDS-bond basis refers to the difference between the CDS spread
and some measure of the bond’s spread over riskless rates. In the simpli-
fied setting of Table 14.12, where the bond spread is the difference between
the par coupon and the matching-term repo rate, the CDS-bond basis is
s − (c − r). If the basis is positive, then s > c − r, which means that the bond
is rich, or that it has a low spread relative to the CDS spread. Put another
way, selling CDS protection earns more than buying the bond. If the basis is
negative, then s < c − r, which means that the bond is cheap relative to the
CDS spread, and that buying the bond earns more than selling CDS protec-
tion. In either case, when the basis is not zero, an arbitrage opportunity is
available. If positive, execute a positive basis trade, that is, sell protection,
short the bond, and buy the repo, to lock in s − (c − r) > 0 per period until
the earlier of default or maturity. And if the basis is negative, execute a neg-
ative basis trade, that is, buy protection, buy the bond, and sell the repo, to
lock in (c − r) − s > 0 per period.

Crucial to these arbitrage arguments is that the term of the repo equal the
maturity of the bond and the CDS. In a negative basis trade, for example,
selling overnight – rather than term – repo exposes a trader to financing
risk: the overnight repo rate might increase dramatically or repo funding
might be withdrawn completely, either because the bond’s creditworthiness
has deteriorated, because general financing supply has tightened, or because
the trader’s own credit has come under stress. In any of these scenarios,
the trader might very well be forced to unwind the position at a loss, that
is, when the bond has become even cheaper relative to CDS. Similarly, in
executing a positive basis trade with overnight repo, the financing risk is not
being able to continue to borrow the bonds in order to maintain the short
position.

In practice, because there is no market for very long-term corporate
repo, it is nearly impossible to execute a basis trade without bearing financ-
ing risk. Therefore, despite arbitrage arguments like Table 14.12, there is a
fundamental difference between CDS and levered bond positions: CDS posi-
tions have implicit financing to maturity, while levered bond positions are
inherently subject to financing risk.

Outside the simplified setting of Table 14.12, market participants com-
pute the CDS-bond basis using different measures of a bond’s spread, like
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yield spread, bond spread, asset swap spread, and CDS-equivalent bond
spread. The advantages and disadvantages of each of these is discussed pre-
viously, but all of these measures can be misleading in the context of the
CDS-bond basis. Without a term-repo rate, any measure of the basis ignores
the financing risk in a CDS versus levered bond arbitrage trade.

A lot of money was lost in negative basis trades through the financial cri-
sis of 2007–2009. As funding conditions became more difficult, CDS-bond
bases moved negative, reflecting the difficulty of going long credit risk with
levered bond positions relative to selling CDS protections. Some traders,
however, saw these negative bases as trading opportunities, which turned
into nightmares as funding conditions deteriorated even further. Over the
crisis, in fact, the investment-grade index CDS-bond basis fell from about
zero to negative 250 basis points.

Figure 14.6 shows the CDS-bond basis for French and Italian govern-
ment bonds from January 2006 to October 2021. The basis is defined here
as the difference between the five-year CDS spread and the five-year govern-
ment bond yield spread over Germany. By way of economic backdrop, the
European sovereign debt crisis ran from the end of 2009 to 2012, during
which time the finances of both banks and governments in the so-called
“peripheral” countries (e.g., Greece, Italy, Portugal, and Spain) came under
pressure. Later, in the fall 2018, European Union and Italian government
officials squabbled over Italy’s proposed budget, which did not comply with
existing fiscal rules. The figure shows that the sovereign Italian CDS-bond
basis became significantly negative during both of these stressful periods.
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F IGURE 14.6 CDS-Bond Basis for French and Italian Sovereign Debt, January 2006
to October 2021.
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As in the financial crisis of 2007–2009, repo lenders became reluctant
to fund Italian government bonds, pushing up their spreads and pushing
their CDS-bond basis into negative territory. In fact – though not shown in
the figure – spreads of Italian to German government bonds rose to over
600 basis points during the sovereign debt crisis, and to nearly 300 basis
points during the budget standoff. By contrast, French government credit
exhibited a positive CDS-bond basis during the sovereign debt crisis. French
over German spreads did rise to a peak of about 100 basis points at that
time, but the bigger story was the difficulty of borrowing and shorting
French government bonds, at least in part because the European Central
Bank was aggressively buying European sovereign debt. In any case, the
resulting upward pressure on French government bond prices resulted in
a significantly positive CDS-bond basis.20 Finally, more recently, funding
stresses during the COVID pandemic and economic shutdowns drove both
Italian and French government CDS-bond bases somewhat negative.

14.9 HAZARD-ADJUSTED DURATION AND DV01

The durations of bonds with credit risk are often calculated along the lines
of Chapter 4, that is, cash flows are assumed to be paid on schedule, but
are discounted at higher rates, typically at benchmark rates plus a credit
spread or a term structure of credit spreads. Calculated this way, however,
duration can be misleading for bonds with significant credit risk. For these
bonds, expected cash flows are much earlier than scheduled cash flows and,
consequently, their durations are correspondingly shorter.

The simple hazard-rate framework presented earlier can be used to cal-
culate a hazard-adjusted duration (HAD) that accounts for the expected
timing of cash flows given default. Along the lines of Table 14.11, given a
benchmark rate curve and a recovery rate, find the hazard rate for which the
expected discounted value of the bond’s cash flows equals its market price.
Then, shift the benchmark rate curve down and reprice the bond, using the
same recovery and hazard rates. Finally, use the resulting price difference or
percentage price difference to compute the hazard-adjusted DV01 or dura-
tion, respectively.

To illustrate the difference between the conventional and hazard-adjusted
approaches, Figure 14.7 graphs conventional and hazard-adjusted durations
for bonds of various terms at two different hazard rates. The benchmark

20For a rigorous discussion of funding and short-selling frictions during the European
sovereign debt crisis, see Fontana, A., and Scheicher, M. (2016), “An Analysis of
Euro Area Sovereign CDS and Their Relation with Government Bonds,” Journal of
Banking and Finance 62, pp. 126–140.
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rate curve is flat at 2%, and the recovery rate is fixed at 40%. The hazard
rate is either 5% or 10%, which, given the 40% recovery rate, corresponds
approximately to CDS spreads of 300 and 600 basis points, respectively.
All bonds are priced using the constant hazard-rate model, and HADs are
computed as described in the previous paragraph. Conventional durations
are calculated by finding the fixed spread to the benchmark curve that
correctly prices each bond, and then shifting the benchmark curve and
repricing each bond, keeping its spread constant.

Bonds with a higher hazard rate have higher spreads and, therefore,
lower durations than bonds with a lower hazard rate. The striking message
of Figure 14.7, however, is that HADs can be significantly below conven-
tional durations, particularly for larger hazard rates and longer terms. For
10-year bonds at a hazard rate of 5%, the conventional duration is 7.7 and
the HAD is 7.3, while at a hazard rate of 10%, the durations are 7.3 con-
ventional and 6.4 HAD. For 30-year bonds at a hazard rate of 5%, the
conventional duration is 15.3 and the HAD is 12.8, while at a hazard rate
of 10%, the durations are 13.2 conventional and 8.7 HAD.

14.10 SPREAD DURATION AND DV01

When trading or investing in credit portfolios, it is natural to measure the
sensitivity of bond prices to changes in credit spreads. The standard mea-
sures, spread duration and spread DV01, shift the spread, keeping the bench-
mark curve and cash flows the same, calculate a new price, and then calculate
a duration or DV01. Because rates used for discounting in this context are
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the sum of the benchmark rates and spreads, shifting the benchmark rate
by one basis point results in the same price sensitivity as shifting the spread
by one basis point, that is, spread durations and DV01s are the same as
durations and DV01s with respect to interest rate changes. These spread
sensitivities can still be useful, however, in a portfolio context. In a port-
folio of government bonds, interest rates swaps, and corporate bonds, for
example, spread DV01 with respect to swap spreads can be found by shift-
ing spreads for swaps and corporate bonds only, while spread DV01 with
respect to corporate spreads can be found by shifting spreads for corporate
bonds only.

It is very common in the corporate bond setting to measure spread
risk with duration times spread, or DTS, instead of spread duration. This
methodology is based on the empirical regularity that changes in the spread
of a corporate bond are proportional to the spread itself. Consider, for
example, bonds A and B, which have spread durations of five and four
years, and which trade at spreads of 100 and 250 basis points, respectively.
Under the usual duration assumptions of parallel shifts, bond B has spread
risk of 4/5 or 80% of that of bond A. But empirical evidence suggests
that if the spread of bond A increases by 10%, that is, 10 basis points
from 100 to 110, then the spread of bond B also increases by 10%,
that is, 25 basis points from 250 to 275. In this case, after these spread
changes, by the definition of duration, the percentage change of bond A is
5 × 10∕100 = 0.5, and the percentage change of bond B is 4 × 25∕100 = 1.
Hence, bond B is actually twice as risky as bond A. This is reflected in their
DTS: 5 × 100 = 500 for bond A, and 4 × 250 = 1,000 for bond B.

Price sensitivity to spreads can also be computed using the hazard-rate
model described in this chapter. Risky DV01 refers to the change in the value
of a CDS contract for a one-basis-point change in the CDS spread. This can
be computed, of course, by finding the hazard rate that changes the CDS
spread by one basis point, recomputing the value of the CDS, and calculating
the risky DV01. An equivalent bond metric can be computed similarly: find
the hazard rate that changes the CDS-equivalent bond spread by one basis
point, recompute its price, and calculate a DV01.

14.11 CDS SETTLEMENT AUCTIONS

Two challenges typical in the settlement of derivatives trades apply just as
well to CDS. First, requiring that all protection buyers physically settle con-
tracts leaves them open to a squeeze. As discussed earlier, protection buyers
do not necessarily own the underlying bonds and the supply of bonds eligi-
ble for delivery might be subject to manipulation. Second, bond prices may
not be readily observable for the purpose of cash settlement, because cor-
porate bond liquidity – even if satisfactory in normal times – may be quite
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TABLE 14.13 List of Deliverables for Hertz
Corporation CDS Auction, June 23, 2020.

Description Maturity

4.125% Sr. Notes 10/15/2021
7.625% Sr. Secured 2nd Priority Notes 06/01/2022
6.250% Sr. Notes 10/15/2022
5.500% Sr. Notes 03/30/2023
Letter of Credit Disbursements 12/18/2023
5.500% Sr. Notes 10/15/2024
7.125% Sr. Notes 08/01/2026
6.000% Sr. Notes 01/15/2028

limited through a default. Industry-run settlement auctions are designed to
cope with both of these fundamental challenges.

Hertz filed for bankruptcy on May 22, 2020, and, on June 24, 2020, an
auction was held to settle CDS referencing Hertz. Some physical settlement
took place as part of the auction, and the final auction price of 26.375 was
used for cash settlement. This section describes the CDS auction process in
the context of this Hertz CDS auction.21

A single-name CDS contract specifies reference obligations of the refer-
ence entity, together with a set of rules, that determine whether an event of
default has occurred and, if so, which bonds are deliverable, or eligible to be
delivered, for the purposes of physical settlement. The final list of deliverable
obligations into the Hertz CDS auction is given in Table 14.13.

The auction itself is divided into two phases. In phase one, participating
dealers submit i) bids and offers for purchase and sale of deliverable obliga-
tions, with a predefined quotation size and maximum bid-offer spread; and
ii) physical settlement requests. Table 14.14 lists the bids and offers of the
dealers in the Hertz auction, with the bids sorted in descending order and the
offers in ascending order. An inside market midpoint (IMM) is determined
from these bids and offers as follows. First, discard all rows with crossing or
touching markets (i.e., where the bid price exceeds or equals the offer price).
In Table 14.14, the first four rows constitute crossing or touching markets,
and are discarded. Second, using the top half of the remaining rows (rounded
up, if necessary), compute the average of the bids and offers and round to
the nearest eighth per 100 face amount. In Table 14.14, the bottom six rows
remain. Therefore, using only the top three rows, the average of the bids and

21A more detailed description of the process can be found in Credit Suisse (2011),
“A Guide to Credit Events and Auction,” Fixed Income Research, January 12; and
Markit (2010), “Credit Event Auction Primer,” February.
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TABLE 14.14 Dealer Initial Markets, Hertz Corporation CDS Auction, June 24,
2020.

Dealer Bid Offer Dealer

Citigroup 26.0 22.5 Morgan Stanley
Credit Suisse 26.0 24.0 Barclays
Deutsche Bank 26.0 24.5 Goldman Sachs
RBC Capital Markets 25.5 25.5 Bank of America
BNP Paribas 24.5 26.0 J.P. Morgan Securities
J.P. Morgan Securities 24.0 26.5 BNP Paribas
Bank of America 23.5 27.5 RBC Capital Markets
Goldman Sachs 22.5 28.0 Citigroup
Barclays 22.0 28.0 Credit Suisse
Morgan Stanley 20.5 28.0 Deutsche Bank

Inside Market Midpoint 25.375

offers, which are bolded, is 25.333, which, rounded to the nearest eighth,
gives an IMM of 25.375.

Turning to the second part of phase one of the auction, Table 14.15
shows the physical settlement requests of the participating dealers. These
requests must match the direction and size of their respective net CDS
positions. Goldman Sachs and its clients, for example, by offering to deliver
140.0 million face amount of deliverable obligations, must, on net, have
bought protection on at least 140.0 million CDS notional amount. Put
another way, Goldman and its clients are requesting to collect on their
having bought a net of 140.0 million notional amount of CDS by deliv-
ering 140.0 million face amount of deliverable obligations and receiving
$140 million. J.P. Morgan Securities and its clients, on the other side, by
bidding to take 20.0 million of deliverable obligations, must, on net, have
sold protection on at least 20.0 million CDS notional amount. They are
requesting to settle their CDS obligations by taking delivery of 20.0 million
of deliverable obligations and paying $20 million. Taking the physical
settlement requests all together, there are total requests to sell or deliver
$143.525 million face amount and total requests to buy or take delivery on
$42 million, leaving a net open interest (NOI) to sell of $111.525 million.

Before proceeding to phase two of the auction, a note is made of adjust-
ment amounts. To provide an incentive for dealers to submit competitive
bids and offers, dealers are penalized for submitting off-market bids and
offers, where “off-market” is judged relative to the IMM and NOI. More
specifically, in the case of the Hertz auction, there was a NOI to sell and
the IMM was 25.375. It follows from Table 14.14 that the bids and offers
of Citigroup, Credit Suisse, and Deutsche Bank at 26.0–28.0, and those of
RBC Capital Markets at 25.5–27.5, were too high in a market where there
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TABLE 14.15 Physical Settlement Requests, Hertz Corporation
CDS Auction, June 24, 2020. Amounts Are in $Millions.

Dealer Size

Offers

Bank of America 0.0
BNP Paribas 3.525
Citigroup 10.0
Deutsche Bank 0.0
Goldman Sachs 140.0
Morgan Stanley 0.0
RBC Capital Markets 0.0

Total Sell Requests 143.525

Bids

Barclays 7.0
Credit Suisse 15.0
J.P. Morgan Securities 20.0

Total Buy Requests 42.0

Net Open Interest (Sell) 111.525

were more sellers than buyers. Therefore, these dealers had to pay adjust-
ment amounts equal to the difference between their above-market bids and
the IMM times the quotation amount: $2 million × (26.0 − 25.375)/100 or
$12,500 for Citigroup, Credit Suisse, and Deutsche Bank, and $2 million
× (25.5 − 25.375)/100, or $2,500 for RBC Capital Markets. In phase one
auctions with NOI to buy, adjustment amounts are levied on dealers with
bids and offers below the IMM.

Phase two of the auction takes place a few hours after the results of
phase one. The purpose of phase two is to determine a final auction price,
defined as the clearing price for the NOI established in phase one. In phase
two, market participants – including, but not limited to the participating
dealers in phase one – submit limit orders to buy, if the NOI was to sell,
or limit orders to sell, if the NOI was to buy. Furthermore, to ensure the
sensible result that the final auction price not be too high relative to the
IMM if the NOI is to sell, or not be too low relative to the IMM if the NOI
is to buy, limit order prices are constrained by a cap amount, usually set to
half the maximum bid-offer spread in phase one. In the Hertz auction, the
cap amount was half of two, or one. And, because there was a NOI to sell,
the limit orders to buy in phase two were constrained to be less than or equal
to the IMM of 25.375 plus the cap amount of one, or 26.375.
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TABLE 14.16 Goldman Sachs Limit
Orders, Hertz Corporation CDS Auction,
June 24, 2020. Amounts Are $Millions.

Bid Price Size

26.375 42
25.000 10
24.000 10
23.750 5
23.500 24
23.250 10
23.000 23
22.500 2
20.000 14

Table 14.16 shows the limit orders to buy submitted by Goldman Sachs
in phase two of the Hertz auction. On behalf of itself and its customers,
Goldman Sachs bid to purchase $42 million face amount at a price of
26.375; an additional $10 million at a price of 25.000; and so forth. Note
that bids from the initial market in phase one of the auction carry over into
this phase, so that Goldman Sachs’ bid at 22.5 for the predefined size of $2
million in Table 14.14 appears as the penultimate row of Table 14.16.22

All of the limit orders to buy Hertz bonds are collected and ordered
by price, from high to low. Then, following the rules of a Dutch auction,
the final auction price is set such that the quantity of limit orders to buy
at that price or above matches the $111.525 million NOI to sell. In the
Hertz auction, at the highest allowable bid price of 26.375, there were
limit orders to purchase $118.50 million face amount, which is more than
the NOI available for sale. Therefore, the final auction price was set at
26.375 and all bidders at that price were allocated a pro rata amount of
the available $111.525 million. Goldman Sachs, for example, with its limit
order to buy $42 million at 26.375, was able to purchase $42 million ×
$111.525/$118.50, or $39.528 million face amount through the auction.

To summarize, the auction had two outcomes. First, $143.525 million
face amount of deliverable Hertz bonds were sold by the dealers or their
customers in the “Offers” part of Table 14.15 at a price of 26.375 to the
dealers or their customers in the “Bids” part of the table – $42 million – and
to the market participants awarded allocations in phase two of the
auction – $111.525 million. Second, all Hertz CDS settled at the final
auction price of 26.375. CDS counterparties who chose cash settlement

22When NOI is to sell, crossing and touching bids are carried over at the IMM. In
the Hertz example, then, Citigroup, Credit Suisse, Deutsche Bank, and RBS Capital
Markets all carry over a limit buy order for $2 million at 25.375.
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used this final price as the recovery amount, that is, protection buyers
received from protection sellers the notional amount of their CDS × (100%
− 26.375%), or 73.625%. Counterparties who chose physical settlement
worked through their dealers as follows. Protection buyers delivered deliv-
erable obligations of their choice for 26.375 and received a cash settlement
of 73.625, for total proceeds of 100. Protection sellers paid 26.375 for any
bond delivered to them and paid a cash settlement of 73.625, again, for
total proceeds of 100.

This section concludes by noting that, while CDS auctions have gen-
erally been successful in settling at reasonable final prices, success is not
assured. A recent example of failure was the auction to settle Europcar
Mobility Group CDS on January 13, 2021. Just before the auction, deliver-
able bonds were trading at about 70, and phase one of the auction resulted
in an IMM of 73 and a NOI to buy €43.3 million. But in phase two, limit
orders to sell totaled only €35.9 million. Hence, with no price high enough to
match limit sell orders to the NOI to buy, the final auction price, by rule, was
set to 100. Buyers of CDS protection received nothing. Some commentators
attributed the lack of limit sell orders to the fact that Europcar restructuring
agreements prevented many bondholders from selling their bonds through
the CDS auction. Other commentators, however, claimed that there were
more than enough bonds available to cover the NOI, but potential sellers
simply did not show up at the auction.23

14.12 OPPORTUNISTIC CDS STRATEGIES

In theory, CDS traders take the behavior of debt issuers as given, and debt
issuers essentially ignore CDS trading on their obligations. In practice, how-
ever, because of the complexities of CDS contracts (e.g., specifying events of
default; defining reference entities and deliverable obligations; setting rules
for settlement auctions), both CDS traders and issuers have occasionally
tried to profit from crossing the lines separating their respective markets.
These instances have been called opportunistic CDS strategies.

A particularly well-known example is the case of the real estate com-
pany, Hovnanian, and its “manufactured default.” In February 2018, Hov-
nanian and an asset manager that had bought over $300 million of protec-
tion on Hovnanian conducted the following transactions:

1. The asset manager loaned Hovnanian a significant sum at below-market
rates.

2. Hovnanian conducted a bond exchange offer, in which it issued new,
very long-term debt that would sell at a significant discount, given its
relatively low credit rating; and in which some of its higher-priced out-
standing bonds were purchased by one of its own subsidiaries.

23Levine, M. (2021), “Europcar,” Money Stuff, Bloomberg, January 15.
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3. Hovnanian committed to skip the coupon payment on its bonds owned
by that subsidiary. This default would not trigger cross-default provi-
sions, but would trigger a credit event with respect to Hovnanian CDS.24

Through these transactions, Hovnanian was able to borrow at advan-
tageous rates, and the asset manager, if the credit event occurred, would
benefit not only from the triggering of its long CDS position, but also from
the issuance of the low-priced bond issue, which, because it was deliverable
into the CDS, would lower the CDS settlement auction price and increase
the payout to protection buyers. While Hovnanian did skip the coupon pay-
ment per its commitment, the company ultimately reversed course and paid
before the end of the 30-day grace period. Pressure from regulators and from
asset managers who had sold protection on Hovnanian, along with a set-
tlement between the asset managers on both sides of the CDS, led to the
abandonment of this manufactured default.

The Hovnanian case threatened confidence in the integrity of the defi-
nition of “default” in the CDS market. In response, ISDA changed the defi-
nition of “failure to pay” to include the language, “it shall not constitute a
Failure to Pay if such failure does not directly or indirectly either result from,
or result in, a deterioration in the creditworthiness of financial condition of
the Reference Entity.”25

While this change in definition is likely to eliminate some opportunistic
CDS strategies, other possibilities remain. With respect to the buyers of
CDS protection influencing default, consider the case of the telecommuni-
cations company, Windstream. In 2015, in the course of a restructuring,
the company seems to have violated an existing bond covenant. No one
objected until 2017, however, when a hedge fund bought some of the
bonds and sued to put the company into default. Many market participants
believe that the hedge fund bought CDS protection on Windstream, bought
the bonds, and then sued to collect on the CDS. And the hedge fund did
prevail in court, despite other bondholders’ willingness to waive the alleged
covenant violation. In this case then, not only did the event of default not
reflect underlying credit conditions, but CDS buyers also seem to have
precipitated that default.26

24Cross-default provisions say that a default on one issue triggers a default on many
or all of an issuer’s other obligations. These provisions protect the holders of one
bond issue, who happen to have not yet experienced a default, from being disadvan-
taged by the cure of another issue’s default. A simple example is the case of one issue
defaulting before another, simply because of a relatively early payment due date.
25ISDA (2019), “2019 Narrowly Tailored Credit Event Supplement to the 2014 ISDA
Credit Derivatives Definition,” July 15, p. 3.
26For one account of these events, see Levine, M. (2019), “Windstream,” Money
Stuff, Bloomberg, February 19.
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Opportunistic strategies seem also to have been pursued by sellers of
CDS protection. In 2018, an asset manager, widely believed to have sold pro-
tection on the publishing company, McClatchy, made the following agree-
ment with the company. The asset manager would buy newly issued bonds
from a subsidiary of McClatchy, with the proceeds used to refinance (and
extinguish) the existing bonds of McClatchy itself. Because outstanding CDS
included McClatchy, but not its subsidiary, as reference entities, McClatchy
CDS would be “orphaned” – without any underlying debt, McClatchy could
not possibly default. Furthermore, protection buyers would still have to
make premium payments. News of this agreement dramatically reduced the
value of protection, generating profits for sellers of protection. As it turned
out, the proposed deal did not go through and, in early 2020, McClatchy
filed for bankruptcy. And, in the subsequent CDS auction, the final price was
two; that is, McClatchy CDS eventually paid 98 cents on the dollar.27

As a final example of opportunistic CDS strategies, in this instance with
the issuer as first mover, consider the case of Sears Holding Corp. At the
time of its bankruptcy, in late 2018, there was a lot of CDS outstanding not
on the holding company, but on its subsidiary, Sears Roebuck Acceptance
Corp (SRAC). But relative to SRAC CDS, there was relatively little SRAC
debt outstanding, perhaps about $200 million. Therefore, CDS buyers were
willing to pay a premium to buy SRAC debt: they could thus ensure having
enough bonds to sell into the settlement auction, which, in turn, would keep
the final auction price low and default compensation high. Recall that in the
Europcar auction, with too few submitted limit sell orders, the final auction
price was 100 and protection buyers received nothing. In any case, Sears
realized that – because of the CDS market – the market value of SRAC bonds
far exceeded the expected discounted value of their cash flows and offered to
sell a previously overlooked $900 million of intercompany SRAC notes. CDS
buyers were outbid in this sale, however, by CDS sellers – who wanted to
prevent these SRAC bonds from being delivered into the settlement auction.
In the end, however, to stop the back-and-forth litigation, CDS buyers and
sellers came to a settlement on their own.

There are several examples of opportunistic CDS strategies other than
the ones described here, but at least two lessons emerge. First, market partic-
ipants need to be aware of special situations that could cause final recovery
to differ from expectations. Second, if opportunistic strategies were ever
to dominate trading, many market participants might very well abandon
the market, believing that it no longer offered straightforward transfers of
credit risk.

27For more detail on these events, see Carruzzo, F., and Zide, S. (2018), “Oppor-
tunistic CDS Strategies Available to CDS Protection Sellers Part II: McClatchy and
Sears,” Debt Dialogue, Karmer Levin, June 6.
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14.13 CASE STUDY: THE LONDON WHALE

In the first half of 2012, JPMorgan Chase (JPM) lost more than $6 billion on
its “London Whale” trades. With assets at the time of over $2 trillion and
2012 income of $21 billion, the loss in no sense endangered the bank, but it
was large and embarrassing. In this chapter, the case is used to explain more
fully the workings of index CDS and CDS tranches, though other lessons
include the need to define the purpose and scope of hedging programs and
the importance of sizing trades so as not to “become the market.”28

Index CDS and Tranches

The important instruments for understanding the events of the case
are CDX.NA.IG.9 and its tranches. As described earlier in the chapter,
CDX.NA.IG is an equally weighted index of 125 investment-grade North
American entities. The “.9” indicates a particular series of this index, which
came out in the third quarter of 2007. Hence, 10-year protection on this
index expired in December 2017 and five-year protection in December
2012. As the London Whale events unfolded in the first quarter of 2012,
10-year CDS on this index matured in just under six years, and five-year
CDS on the index matured in just under a year.

As of April 2012, four of the 125 names in CDS.NA.IG.9 had experi-
enced credit events during the financial crisis of 2007–2009 and, therefore,
had dropped out of the index: CIT, a subprime mortgage lender; WAMU,
a Savings and Loan Association; Fannie Mae, a government sponsored
mortgage agency; and Freddie Mac, a government sponsored mortgage
agency. Table 14.17 shows the impact of these four credit events on the
index. The second column shows the final price in the CDS auction for
each of the names. To understand the third column, consider $125 million

28The presentation here relies on the following sources: Childs, M., Ruhle, S.,
and Harrington, S. (2012), “Blue Mountain Said to Help Unwind JPMorgan’s
Whale Trades,” Bloomberg Business, June 21; Tyler, D. (2012), “Behind ‘the Iksil
Trade‘ – IG9 Tranches Explained,” Zero Hedge, April 10; JPMorgan Chase (2013),
“Report of JPMorgan Chase & Co. Management Task Force Regarding 2012 CIO
Losses,” January 16; Pollack, L. (2012), “Recap and Tranche Primer,” FT Alphav-
ille, May 16; Pollack, L. (2012), “The High Yield Tranche Piece,” FT Alphaville,
May 17; Pollack, L. (2012), “Unwind? What Unwind? – Part 2,” FT Alphaville,
June 27; Protess, B., Sorkin, R., Scott, M., and Popper, N. (2012), “In JPMorgan
Chase Trading Bet, Its Confidence Yields to Losses,” The New York Times, May 11;
Ruhle, S., Keoun, B., and Childs, M. (2012), “JPMorgan Trader’s Positions Said to
Distort Credit Indexes,” Bloomberg Business, April 6; US Senate (2013), “JPMorgan
Chase Whale Trades” and “Exhibits,” March 15; and Zuckerman, G., and Burne,
K. (2012), “London Whale Rattles Debt Market,” The Wall Street Journal, April 6.
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TABLE 14.17 Names Dropped from CDX.NA.IG.9, as
of April 2012. Index Loss in Percent.

Name Price in CDS Auction Index Loss

CIT 68.125 0.255
WAMU 57.000 0.344
Fannie Mae 91.510 0.068
Freddie Mac 94.000 0.048

Total 0.715

original notional amount of the index, which would include $1 million
notional amount in each of the underlying 125 names. Given an auction
price of 68.125 for CIT obligations, $1 million notional amount of CDS on
CIT lost (100% − 68.125%) × $1 million, or $318,750, which is 0.255%
on the index notional amount of $125 million. Similar calculations for the
rest of the names give the rest of the third column, which sum to a total
index loss of 0.715%, or $893,750 on the original $125 million index
notional amount. In summary then, over the life of $125 million notional
amount of this index, protection sellers paid protection buyers $893,750
for four credit events, and the remaining notional amount fell to $121
million. Additionally, of the remaining names in the index, five had CDS
spreads of over 500 basis points and four has spreads of about 400 basis
points. In other words, while issued as an investment-grade index, this
series experienced significant credit deterioration.

As for CDS index tranches in the context of CDX.NA.IG.9, Table 14.18
describes compensation payments and Table 14.19 describes premium pay-
ments and pricing. Starting with Table 14.18, note that the index notional

TABLE 14.18 Structure of Tranches on CDX.NA.IG.9, as of April 2012.
Attachment and Detachment Points Are in Percent. Notional Amounts Are in
Dollars.

Before Losses After Losses

Tranche Attach Detach Notional Attach Detach Notional

Equity 0 3 3,750,000 0 2.361 2,856,250
Jr. Mezz. 3 7 5,000,000 2.361 6.493 5,000,000
Sr. Mezz. 7 10 3,750,000 6.493 9.592 3,750,000
Sr. 10 15 6,250,000 9.592 14.757 6,250,000
1st Super Sr. 15 30 18,750,000 14.757 30.253 18,750,000
2nd Super Sr. 30 100 87,500,000 30.253 100.00 84,393,750

Index 125,000,000 121,000,000
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in this example is fixed at $125 million, and consider the Senior Mezzanine
tranche. Its original, “Before Losses” attachment point of 7% means that
sellers of protection on this tranche do not have to make any compensation
payments unless losses on the index exceed 7%, or $8.75 million on the
$125 million index notional. If losses are 8%, for example, sellers of pro-
tection on the Senior Mezzanine tranche have to pay protection buyers on
this tranche (8% − 7%) × $125,000,000, or $1.25 million. The tranche’s
“Before Losses” detachment point of 10% means that sellers of protection
stop making compensation payments when losses exceed 10% or $12.5 mil-
lion. In fact, the original notional amount of the Senior Mezzanine tranche
is $3.75 million, precisely because sellers of protection on this tranche have
no further responsibilities after paying protection buyers (10% − 7%) ×
$125,000,000, or $3.75 million.

Now consider the equity tranche. From the “Before Losses” columns,
protection sellers on this tranche have to pay protection buyers from the
first loss – the attachment point of 0% – until losses reach 3%. The “After
Losses” column shows what happened to the equity tranche given the losses
to CDX.NA.IG.9 through April 2012, as described in Table 14.17. With
the index losing 0.715%, sellers of protection on the equity tranche had
to pay protection buyers 0.715% of $125 million, or $893,750. Hence,
the notional amount of the equity tranche was reduced from its original
$3,750,000 to the ‘After Losses” notional of $3,750,000 minus $893,750, or
$2,856,250. Furthermore, with these losses arising from credit events in four
names, each with $1 million notional amount, the notional of the index ref-
erenced by the tranches fell from the original $125 million to $121 million.
Finally, because sellers of protection on the equity tranche can be obliged to
pay no more than their remaining notional amount of $2,856,250, the “After
Losses” detachment fell from the original 3% to $2,856,250/$121,000,000,
or 2.361%.

With protection sellers of the equity tranche paying compensation
as just described, the attachment and detachment points of the rest of
the tranches shifted as well. Protection sellers on the Junior Mezzanine
tranche start paying where the equity tranche leaves off, at 2.361%,
and stop at 6.493%, when their notional of $5 million is exhausted:
(6.493% − 2.361%) × $121,000,000 = $5,000,000. The new attachment
and detachment points of the remaining tranches are determined similarly.
As for the “After Losses” notional amounts, that of the equity tranche
falls, as explained, while all others, which have not yet experienced losses,
remain the same, except for the most senior tranche. With only $121 million
notional amount of the index remaining, and with the notional amounts
of all the other tranches set as just described, the absolute worst-case
loss for the Second Super Senior tranche is a loss of the residual notional
amount of $84,393,750. (While the attachment point of this tranche
increases from 30% to 30.253%, it starts to bear losses at the same dollar
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amount as before: 30% × $125,000,000 = $37,500,000 is the same as
$893,750 – the losses already incurred – plus the new dollar attachment
point of 30.253% × $121,000,000 = $36,606,250.)

Table 14.18 includes all tranches so as to compare their cash flows given
credit events, but tranches exist independently of each other. A particular
tranche with a particular notional amount is created when a protection seller
trades that tranche with a protection buyer. CDS index tranches are synthetic
in the sense that there is no underlying portfolio of actual index CDS. The
underlying CDS index is used solely to determine the compensation pay-
ments of the tranches.

Moving to premium payments and pricing, Table 14.19 repeats the
tranche names and original attachment points and gives the coupon and
upfront amounts for each as of mid-May 2021. Not surprisingly, protection
buyers pay more, and protection sellers receive more, for the more junior
tranches, which experience losses earlier. A buyer of protection on $1
million notional of the 3–7% or Junior Mezzanine tranche, for example,
pays a running 500 basis points or $50,000 per year plus an upfront
amount of 29.43% or $294,300. By contrast, a buyer of protection on
$1 million notional of the 15–30% or First Super Senior tranche pays a
running $10,000 plus an upfront amount of $6,700.

Table 14.19 also reports the delta of each tranche, expressed in index
equivalents. For example, the sensitivity of the 7–10% tranche to changes
in credit spreads is 5.18 times the sensitivity of the underlying index. The
15–30% tranche, on the other hand, is 1.30 times as sensitive as the index.
The delta of the tranches tend to decline with seniority, from the 3–7% to
the 30–100% tranche: the higher the seniority, the less likely losses are to
impact the tranche, and the lower the delta. The delta of the equity tranche,
however, is less than that of the 3–7% and 7–10% tranches. Imagine for a
moment that the remaining equity tranche notional was almost certain to
be wiped out by future losses. In that case, marginal increases or decreases
in credit spreads would not change the price of the equity tranche by much.

TABLE 14.19 Pricing of Tranches on CDX.NA.IG.9 Maturing in December 2017,
as of Mid-May 2012. Attachment, Detachment, and Upfront Amounts Are in
Percent. Coupon Is in Basis Points.

Tranche Attach Detach Upfront Coupon Delta

Equity 0 3 72.71 500 3.92
Jr. Mezzanine 3 7 29.43 500 6.58
Sr. Mezzanine 7 10 6.85 500 5.18
Sr. 10 15 9.80 100 2.96
1st Super Sr. 15 30 0.67 100 1.30
2nd Super Sr. 30 100 −3.88 100 0.29



Trim Size: 6in x 9in Tuckman835554 c14.tex V1 - 07/12/2022 11:22am Page 391�

� �

�

Corporate Debt and Credit Default Swaps 391

Those same marginal changes to credit spreads would, by contrast, have a
significant impact on the as yet untouched 3–7% tranche. The situation in
Table 14.19, although not nearly as extreme, is analogous: the high coupon
and the high upfront payment of the equity tranche indicate a very high
expectation of large losses in the future. Part of this, by the way, is due to
the nine high-spread names in the index at the time, as mentioned earlier.

While not directly evident from the table, the market’s views on the cor-
relations of defaults across names in the index is a significant determinant
of relative tranche value. Given the probabilities of default for each name,
higher correlations of those defaults imply more defaults and a higher likeli-
hood of wiping out the more junior tranches and of inflicting some losses on
more senior tranches. Moving from low to moderate correlations, therefore,
would impact the prices of the junior tranches most. Moving from moderate
to high correlations, however, might have a particularly large impact on the
prices of the senior tranches, which had before seemed untouchable.

The Synthet ic Credit Portfo l io (SCP)

With this introduction to CDS indexes and tranches complete, the text turns
to the case proper, beginning with the chief investment office (CIO) of JPM as
of the end of 2011. The job of the CIO was to invest funds in a wide range
of high-quality fixed income products, with the objectives of meeting the
future liquidity needs of the bank and of earning a reasonable rate of return.
The amount of funds available to the CIO had increased dramatically, from
$76.5 billion in 2007 to $365 billion in 2011, with the greatest increase
during the financial crisis of 2007–2009 as JPM, with its “fortress balance
sheet,” attracted about $100 billion of deposits.

The CIO launched its Synthetic Credit Portfolio (SCP) in 2007 to protect
the bank’s investments and loans from adverse credit scenarios. The SCP was
often short credit (i.e., taking positions that do well when credit conditions
deteriorate), but sometimes sold CDS protection and was sometimes overall
long credit. In hindsight, the CIO can be criticized for not identifying a par-
ticular portfolio of assets it was hedging with SCP and for not articulating
a particular hedging policy. In any case, SCP did earn profits: somewhere
between $200 million and $625 million in 2007; $170 million in 2008;
$1.05 billion in 2009, primarily from a bet on General Motors’ bankruptcy;
$149 million in 2010, while consciously shrinking the book; and $453 mil-
lion in 2011, mostly due to having bought protection on American Airlines
that expired just three weeks after its bankruptcy.

With this history, the SCP ended 2011 with $51 billion of net CDS
notional. It was overall short credit, though it was both long and short par-
ticular indexes and tranches, and it had on the relative value trade of being
long investment-grade credits and short high-yield credits. Various docu-
ments and correspondence made clear that SCP intended to trade credit risk
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actively, as opposed to hedging exposures held elsewhere in the bank. It had
developed a bullish view on the economy and planned, in 2012, to establish
a long credit position. It also planned to continue to trade opportunistically,
for example: to maintain “smart” shorts on credit; it “likes cheap options”;
profit from defaults without paying “too much”; and repeat the success-
ful trade on American Airlines but avoid losses like the $50 million lost on
Kodak’s default in January 2012. Finally, going into 2012, the CIO real-
ized that its positions were becoming so large that unwinds would incur
extremely large transaction costs.29

The four active strategies pursued by SCP in 2012 all performed poorly:

1. SCP went long credit, changing its sensitivity to credit spreads from a
relatively mild short in late 2011 to a long of $60 million per basis
point. This positioning did well as credit spreads fell through the end
of March, but spreads then rose dramatically, which inflicted significant
losses. SCP expressed its long position mostly by buying CDX.NA.IG.9.
Because this index contained several high-yield names, as mentioned
before, its purchase would also hedge some of SCP’s existing high-yield
shorts. While in some ways logical, this was a dangerous choice. First,
as mentioned previously, SCP positions were already becoming too large
relative to the liquidity of the market. Therefore, buying CDX.NA.IG.9
to hedge shorts, instead of just buying back those shorts, made the
portfolio even larger and more unwieldy. Second, SCP’s oversized posi-
tion in CDX.NA.IG.9 exposed it to predatory trading by other market
participants. As a result, as discussed further presently, CDX.NA.IG.9
underperformed its constituent CDS so that SCP lost more money from
the increase in credit spreads than it might have otherwise.

2. SCP continued its relative value trade of being long investment-grade
risk and short high-yield risk. This strategy lost money as the differ-
ence between high-yield and investment-grade yields fell from 560 basis
points in December 2011 to 480 basis points in March 2012, though
the difference recovered to 527 basis points by mid-April.

3. SCP put on an investment-grade flattener, betting that the differ-
ence between long-term investment-grade spreads and short-term
investment-grade spreads would narrow. SCP chose to implement this
strategy with IG.9 as well, using the once 10-year and once five-year
expirations mentioned already. This strategy lost money too, with the
spread between the 10- and five-year CDS indexes rising from 16 basis
points in December 2011 to 48 basis points by mid-April.

29SCP attributed a $15 million loss in January 2012 to trying to unwind high-yield
shorts. It was estimated that reducing risk-weighted assets by $25 billion would cost
between $400 million and $590 million and that reducing positions by 25–35%, pro
rata, would cost of more than $500 million, including lost revenues.
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4. SCP sold the “belly” of CDS index tranches and bought the equity
tranche and the index itself. Again SCP favored IG.9 tranches, because
they had historically traded with relatively high liquidity. SCP lost
money here as well. Focusing on IG.9, SCP was short mostly in the
10–15% and the 15–30% tranches, while long the index and the
30–100% tranche. As credit spreads rose, both the index and all the
tranches fell in value. But the relative price changes were surprising.
The price of the 30–100% tranche fell a lot, as if the names in the index
were highly correlated, while the 10–15% and 15–30% tranches fell
less, as if there were limited increases in correlation. SCP lost money,
therefore, because it was long the tranche that underperformed and
short the tranches that outperformed. As discussed presently, this price
action may very well have been due to SCP having an oversized position
in IG.9 and its tranches.

Losses across these strategies were $718 million in the first quarter of
2012 and an additional $1.5 billion loss in April. Management of the SCP
portfolio was taken away from the CIO at the end of April, but the positions
continued to lose money, mounting to a cumulative loss through the end of
June 2012 of $5.8 billion. At this point, many of the positions were moved to
other parts of the bank, which made it impossible for the public to determine
the ultimate losses from the portfolio.

The raw size of SCP positions magnified its losses. SCP’s total CDS
notional amount rose from $51 billion at the end of 2011 to $157.1 at the
end of March 2012. These positions were also very large relative to trading
volume. Its position in IG.9 indexes at that time was over 10 days of average
daily trading volume, and its position in one of the iTraax series was over
eight times average daily volume. The impact of these large positions can be
seen both from market prices and from the behavior of market participants
at that time.

With respect to market prices, consider the 10-year IG.9 skew, which
is defined as the difference between the spread of the underlying CDS and
the 10-year IG.9 CDS spread. The more positive the spread, the richer the
IG.9 spread relative to its constituents. This skew rose from about 10 basis
points in July 2011, reached a high of 35 basis points in fall 2011, and was
about 25 basis points at the start of 2012. In hindsight, the richness of the
IG.9 index skew was likely caused by SCP’s aggressive buying of the index.

With respect to the behavior of market participants, hedge funds had
noticed the skew and, into 2012, bought the cheap constituents and sold
the rich IG.9. They knew, however, that SCP’s large index purchases might
very well keep the skew high, which turned out to be the case. News arti-
cles appeared in early April, likely encouraged by these funds, mentioning
the large positions of JPM’s CIO, attributing the persistent skew to these
positions, and questioning whether the incoming Volcker rule would force
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JPM to liquidate these positions. These articles, together with some efforts
by SCP to reduce positions, encouraged market participants to bet on an
upcoming liquidation, that is, to sell IG.9, which SCP would ultimately have
to sell, and to buy the constituent CDS as a hedge. This activity, narrowed
the skew, of course, causing IG.9 to underperform and to inflict additional
losses on SCP’s portfolio. At first, JPM responded to the news articles by
saying that the CIO’s positions could be held indefinitely. But with credit
spreads rising, SCP losses mounting, and the market increasingly aware of
SCP’s predicament, the hedge funds won. SCP’s portfolio would be at least
partially unwound, and the skew fell to zero by July 2012. In fact, some
hedge funds unwound their IG.9 shorts – at a profit – by buying IG.9 directly
from SCP as part of its unwind.
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CHAPTER 15
Mortgages and

Mortgage-Backed Securities

Amortgage is a loan collateralized by property. This chapter focuses on
residential mortgages, through which prospective homeowners borrow

money to purchase a home on the collateral of that home.
The most common mortgage loans in the United States are for 30 years

and carry fixed rates of interest. They require equal monthly payments, with
each allocated in part to interest (which in many cases is tax deductible)
and in part to paying down principal. Mortgages also give homeowners the
option to pay off or prepay all or part of the outstanding balance at any time.
An implication of these contractual features is that, when mortgage rates fall,
homeowners can profitably refinance their existing, high-rate mortgages by
prepaying them with money raised from new, lower-rate mortgages. Home-
owners also have to prepay when they sell a property, because the property
is the collateral behind the mortgage. Details are discussed throughout the
chapter, but the extent to which homeowners prepay is a key risk factor for
lenders and investors: mortgages that carry an above-market rate lose value
when homeowners prepay, while those that carry a below-market rate gain
value with prepayments.

Another key risk factor is default. While mortgages are collateralized by
homes, lenders can lose principal if a homeowner defaults when the value
of the home is less than the outstanding balance on the mortgage. Lenders
protect themselves against this scenario by lending less than the value of
the home at the time of purchase, that is, by requiring that the original
loan-to-value (LTV) ratio be less than some amount, typically 80%. The
resulting buffer may not turn out to be sufficient, however, if the value of the
home falls dramatically. Furthermore, with respect to any residual mortgage
liability above the value of the home, lenders may or may not have recourse
to the homeowner’s other assets, depending on the laws of the relevant state.

The first section of the chapter describes the mortgage market in
the United States, and the large role played by government agencies.
Sections 15.2 to 15.4 introduce the payment conventions of mortgage

395
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loans, both fixed and floating rate, and the value of the prepayment option
for fixed-rate loans. Sections 15.5 to 15.7 discuss mortgage pools, the most
basic mortgage-backed security (MBS), along with their pricing and risk
profiles. Sections 15.8 to 15.10 present the TBA and specified pools markets,
and how they are used for hedging and financing. Section 15.11 deals with
other types of MBS and Section 15.12 explains credit risk transfer (CRT)
securities.

15.1 THE MORTGAGE MARKET IN THE
UNITED STATES

Historically, banks dominated mortgage lending. They had existing rela-
tionships with potential borrowers (i.e., depositors, business owners) and
their deposit base provided a relatively stable source of funds for making
and holding mortgage loans. Since the Great Depression, however, US
government policy has cultivated a secondary market in mortgages. The
1930s saw the creation of the Federal Housing Administration (FHA) and
the Federal National Mortgage Administration, or Fannie Mae (FNMA).
The FHA was created to insure lenders – for a fee – against the loss of
principal or interest on approved mortgages, and FNMA was created to
trade and hold FHA-insured loans. The Veterans Administration (VA)
was created in the 1940s to offer veterans federally insured mortgages,
which were added to FNMA’s remit. The Government National Mortgage
Association – Ginnie Mae (GNMA) – and the Federal Home Loan Mort-
gage Corporation – Freddie Mac (FHLMC) – were created in 1968 and
1970, respectively. GNMA’s mission is to package FHA-, VA-, and other
government-insured mortgages into MBS; to collect fees to insure those
MBS; and to sell those MBS to investors. FHLMC’s original purpose was
to create, insure, and sell MBS from mortgages purchased from savings and
loan associations.1

In their simplest form, MBS are large portfolios or pools of individ-
ual mortgages that pass through payments of interest and principal from
borrowers to investors. There were several ideas behind the securitization
of mortgages through MBS. First, enabling lenders to sell their mortgage
loans facilitates the movement of investment funds from where they are to
where they are needed. Second, a large and diversified pool of mortgages
trades with much greater liquidity than would individual mortgages. Third,
the guarantees described in the previous paragraph significantly increase the

1For a concise history, see, for example, Federal Housing Finance Agency (2011),
“A Brief History of the Housing Government-Sponsored Enterprises,” in Inaugural
Semiannual Report to the Congress, March 31, pp. 47–54.
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attractiveness of mortgages, because investors do not have to research the
creditworthiness of individual homeowners nor bear that credit risk. Fourth,
government can use its role in insurance and securitization to direct mort-
gage capital according to various policy goals, like affordable housing.

In the decades preceding the financial crisis of 2007–2009, FNMA and
FHLMC were transformed into government-sponsored enterprises (GSEs):
they became privately owned, publicly traded corporations, but were heavily
regulated, received many benefits from their quasi-government status, and
were required to pursue various public policy objectives. They had two busi-
ness lines: the guarantee business, which made money by charging fees to
package and insure MBS; and the portfolio business, which made money by
borrowing in public debt markets at relatively low rates – available because
of their quasi-government status – and investing in mortgages and MBS.

GNMA, FHLMC, and FNMA are collectively called “the agencies,” and
their MBS are all called “agency MBS,” even though GNMA is the only
one of the three that is actually a government agency and explicitly backed
by the “full faith and credit” of the federal government. In any case, from
about 2000 to the financial crisis of 2007–2009, private banks, investment
banks, and other mortgage lenders dramatically increased their issuance of
non-agency or private-label MBS, particularly to pool together mortgages
that were larger or less creditworthy than those acceptable for agency MBS.
In fact, just before the crisis, non-agency MBS issuance exceeded agency
issuance.

During the financial crisis of 2007–2009, housing prices collapsed and
many homeowners defaulted on their mortgages. Private-label MBS, which
held particularly low-quality mortgages, suffered devastating losses, but the
GSEs suffered as well. With losses on their guarantee and portfolio busi-
nesses threatening their viability, they were rescued by the US Treasury and
put into conservatorship, in which state they remain to this day. Before the
crisis, claims on the GSEs were not legally backed by government, but it was
widely believed – and market prices reflected – that, in a crisis, the govern-
ment would back those claims. And that belief was fulfilled: no holder of
GSE debt or MBS lost principal or interest in the crisis.2 In this sense, the
situation today is as it was before the crisis: even in conservatorship, GSE
claims are not explicitly backed by the government but, should the need
arise, markets expect these claims to be honored by the government.

Under conservatorship, the GSEs have continued to grow in overall size,
but have been subject to a number of policy changes. First, their portfolio
businesses are limited in size and scope to the facilitation of their guarantee

2The establishment of the conservatorship itself did trigger a credit default swap
auction on GSE debt, and final auction prices were less than par. Nevertheless, bonds
issued by the GSE made timely payments of all interest and principal.
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TABLE 15.1 First-Lien Mortgages, Gross Issuance, in $Trillions.

2020 Q1–Q3 2021

Issuance % Issuance %

GSE MBS 2.390 59.2 2.06 55.5
GNMA MBS 0.742 18.4 0.57 15.4
Bank Portfolio 0.869 21.5 1.02 27.5
Private-Label MBS 0.038 0.9 0.06 1.6

Source: Ginnie Mae (2021), “Global Markets Analysis Report,” various months.

businesses. Second, they offload some of their credit risk to the private sector
through the sale of credit risk transfer securities, which are the subject of
the last section of this chapter. Third, to increase liquidity, they are directed
to keep their MBS similar enough to be fungible. In particular, since June
2019, MBS forward contracts, namely, TBAs, are written on uniform MBS
(UMBS), which designation allows for the delivery of both FHLMC and
FNMA MBS. Fourth, and most recently, provisions have been made for the
GSEs to build capital in preparation for an exit from conservatorship. There
are no plans in place, however, for actually effecting such an exit.

This brief history sets the stage for describing the US mortgage market
as it stands today. Tables 15.1 and 15.2 show the extent to which agency
MBS dominate the US residential mortgage market. Table 15.1 reports the
gross issuance of first-lien mortgages in 2020 and in the first three quarters of
2021.3 Starting with 2021, 70.9% of new mortgages are sold through agency

TABLE 15.2 Residential Mortgages Outstanding (1–4 Family), as of September
2021, in $Trillions.

Outstanding % %

Agency MBS 8.18 66.7 FNMA 40
FHLMC 34
GNMA 26

Unsecuritized 1st Lien 3.30 26.9
Private-Label MBS 0.39 3.2
Home Equity Loans (2nd Lien) 0.40 3.3
Total 12.27 100.0 100

Sources: Federal Reserve Board, Financial Accounts of the United States; and Ginnie
Mae (2021), “Global Markets Analysis Report,” December 2021.

3“Gross” issuance includes refinancings. But because refinancings extinguish exist-
ing mortgages, they do not necessarily add to net outstanding mortgage principal.
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MBS; 27.5% are made and held by banks; and only 1.6% are sold through
private-label MBS. The dominance of agency MBS was even greater in 2020,
perhaps due to the pandemic and economic shutdowns, during which time
private credit conditions were strained. Table 15.2 shows the prevalence of
agency MBS with respect to amounts outstanding. About 67% of mortgages
are held in agency MBS, and only 3.2% in private-label MBS. The rightmost
columns of the table separate outstanding agency MBS volumes by agency.

Because the agencies play such a large role in the mortgage market,
their underwriting criteria play an outsized role as well. Government-insured
mortgages, like those made by the FHA and VA, are called government
loans. All other loans are called conventional loans. Mortgages eligible to
be included in agency MBS are called conforming mortgages, while those
not eligible are called nonconforming. For the GSEs, for example, at the
time of this writing, conforming mortgages must have a FICO score greater
or equal to 620; an LTV less than 97%; a debt-to-income ratio (DTI) no
greater than 45%; and, for most geographical areas, a loan amount less than
$647,200.4 The requisite characteristics for FHA and VA mortgages are dif-
ferent. In any case, jumbo mortgages, which have loan amounts greater than
the “conforming balance limit,” along with mortgages of lower than con-
forming credit quality, have to be funded outside the agency ecosystem.5

In addition, to the extent that the GSEs limit purchases of mortgages with
certain characteristics, like those funding second homes or investment prop-
erties, private markets have the opportunity to satisfy the residual demand.

Table 15.3 shows averages of selected characteristics of loans to
first-time homebuyers for the purposes of purchasing a home (rather than
refinancing an existing mortgage). Loan characteristics do not vary much
across FNMA and FHLMC, because, as mentioned before, their business
models are converging. GNMA loans are smaller and, by standard metrics,
less creditworthy, with significant variation across FHA, VA, and other
government-guaranteed loans.

Deposit franchises give banks competitive advantages in making and
holding mortgage loans. These advantages are much less pronounced, how-
ever, for originating conforming mortgages, that is, for arranging mortgages

In a first-lien mortgage, the lender has first or senior rights to the property. A home-
owner’s primary mortgage is a first lien, while any additional loans taken on the same
property, like loans to make the required down payment and home equity loans, are
second liens and junior to the first lien.
4FICO is a credit metric created by the Fair Isaac Corporation that increases with
measured borrower creditworthiness, to a maximum of 850. DTI is defined as
monthly debt payments divided by monthly income.
5Jumbo loans were between 3% and 4% of all loans from 2018 through the first half
of 2020. See Federal Housing Finance Agency (2021), “What Types of Mortgages
Do Fannie Mae and Freddie Mac Acquire?” April 14, pp. 2–3.
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TABLE 15.3 Average Characteristics of First-Time Homebuyer Purchase Loans, as
of December 2020.

Within GNMA MBS

FNMA FHLMC GNMA FHA VA Other

Loan Amount ($) 305,134 264,303 245,013 237,630 299,448 174,011
FICO Score 750.4 744.7 688.5 678.6 713.3 701.1
LTV (%) 87.7 88.0 96.8 95.5 99.6 99.4
DTI (%) 34.1 34.4 41.5 43.1 39.5 34.9

Source: Ginnie Mae (2021), “Global Markets Analysis Report,” February.

with borrowers and then selling those mortgages into agency MBS. With the
increasing dominance of agency MBS, therefore, the market share of non-
bank originators has steadily increased, from less than 25% in 2007 to more
than 75% toward the end of 2021.6 In fact, a rough calculation assuming a
25% bank share of agency MBS originations, and mortgage gross issuance
as described in Table 15.1, that is, 71% for agency MBS and 27.5% for bank
loan portfolios, gives an overall bank participation in mortgage issuance of
25% times 71% plus 27.5%, or about 45%.

Nonbank origination channels are classified into three groups: retail,
broker, and correspondent. Retail originators contact borrowers directly.
Broker originators provide various services to independent brokers who seek
out and find potential borrowers. And correspondent originators buy loans
from smaller banks and credit unions.

This market overview concludes with mortgage servicers. Servicers
receive ongoing fees to administer mortgage loans; keep in touch with
borrowers; pass payments from borrowers to investors; help borrowers
through loan modifications or forbearance; and, in the case of missed
payments, temporarily advance funds to investors. Lenders can either keep
the servicing rights to a loan or sell the rights to another entity. Arguments
for keeping the rights include their performing as a hedge to an origination
business. First, servicing provides steady income through periods of slow
origination. Second, when refinancings decrease servicing income (by
extinguishing existing mortgages), income from refinancing originations
increases. Another reason originators keep servicing rights is to keep in
touch with borrowers who may be contemplating refinancing. In that way,
lenders can recapture refinancing, that is, market their own refinancing
products with the goal of preventing borrowers from refinancing with a
different originator.

6See Fritzdixon, K. (2019), “Bank and Nonbank Lending over the Past 70 Years,”
FDIC Quarterly 13(4), pp. 31–39; and Ginnie Mae (2021), “Global Markets Anal-
ysis Report,” December, p. 26.
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15.2 F IXED-RATE MORTGAGE LOANS

Though terms of 10, 15, and 20 years are also available, the most common
mortgage is a 30-year, fixed-rate, level payment mortgage. For example, a
homeowner might borrow $100,000 from a bank at 4.5% and agree to make
payments of $506.6853 every month for 30 years. (The extra decimal places
are given to help the reader reproduce the calculations to follow.) The loan
rate and the monthly payment are related by,

$506.6853
360∑
n=1

1(
1 + 4.50%

12

)n = $100,000 (15.1)

$506.6853 12
4.50%

⎡⎢⎢⎢⎣
1 − 1(

1 + 4.50%
12

)360

⎤⎥⎥⎥⎦
= $100,000 (15.2)

where Equation (15.2) follows by applying Equation (A2.16).
These equations say that, at a rate of 4.5%, the present value of the

monthly payments on the mortgage over its 30-year or 360-month life equals
the initial loan amount of $100,000. This relationship is simply a market
convention to define a monthly payment from a mortgage rate, just as price
is quoted given yield to maturity or vice versa. Truly pricing a mortgage loan
is much more complicated, of course, with the need to account for a term
structure of risk-free rates, the value of the prepayment option, and a spread
or term structure of spreads to reflect credit risk.

The market convention of a single rate to describe a mortgage loan
is also used to divide its monthly payments into interest and principal
components. Table 15.4 gives selected rows of the amortization table
for the mortgage just described, with the monthly payment rounded to
$506.69. The starting balance is $100,000. The interest component of the
first payment is the interest on that starting balance at a rate of 4.50%, that
is, $100,000 × 4.50%∕12 = $375.00. The principal component of the first
payment is simply the total monthly payment, fixed at $506.69, minus the
interest component of $375.00, or $131.69. Given this breakdown, the
ending balance of the loan at the end of the first month is the starting
balance minus the first principal payment, that is, $100,000 minus $131.69,
or $99,868.31. For the second payment, interest on the outstanding balance
at the end of the first month is $99,868.31 × 4.50%∕12 = $374.51; the
principal payment is $506.69 − $374.51 = $132.18; and the ending balance
is $99,868.31 − $132.18 = $99,736.14. Subsequent payments are handled
analogously.

Appendix A15.1 shows that, using this method of amortizing principal,
the ending balance at any time equals the present value of all remaining
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TABLE 15.4 Selected Rows of a Mortgage Amortization Table for
a 30-Year $100,000 Mortgage at 4.5%. The Total Monthly
Payment Is $506.69. Entries Are in Dollars.

Payment Interest Principal Ending
Month Payment Payment Balance

100,000.00
1 375.00 131.69 99,868.31
2 374.51 132.18 99,736.14
3 374.01 132.67 99,603.46
4 373.51 133.17 99,470.29
5 373.01 133.67 99,336.62

60 342.46 164.23 91,157.92

120 301.11 205.58 80,089.43

358 5.66 501.03 1,007.70
359 3.78 502.91 504.79
360 1.89 504.79 0.00

payments discounted at the original interest rate. Applied to the example, the
balances at the end of five years, or 60 months (300 months remaining), and
at the end of 10 years, or 120 months (240 months remaining), are shown
in the table and can be computed, respectively, by the following equations,

$506.6853 12
4.50%

⎡⎢⎢⎢⎣
1 − 1(

1 + 4.50%
12

)300

⎤⎥⎥⎥⎦
= $91,157.92 (15.3)

$506.6853 12
4.50%

⎡⎢⎢⎢⎣
1 − 1(

1 + 4.50%
12

)240

⎤⎥⎥⎥⎦
= $80,089.43 (15.4)

Figure 15.1 depicts the amortization of this mortgage graphically. For
each month, against the left axis, the height of the dark-shaded area repre-
sents the principal component of that month’s payment; the height of the
light-shaded area represents the interest component; and the total height, or
sum, equals the fixed total payment of $506.69. The black curve, against
the right axis, gives the ending balance or principal outstanding at the end
of each month. The figure clearly illustrates the banker’s adage that “interest
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F IGURE 15.1 Amortization of a 30-Year $100,000 Mortgage at 4.5%.

lives off principal,” that is, as principal is paid off, interest payments decline.
Interest constitutes $375.00/$506.69 or 74.0% of the first monthly pay-
ment; $342.46/$506.69 or 67.6% of the 60th payment; $301.11/$506.69 or
59.4% of the 120th payment; etc.; and $1.89/$506.69 or 0.4% of the final
payment. While not shown in the figure, the higher the loan rate, the greater
the monthly payment, and the greater the proportion of each payment that
is dedicated to interest.

15.3 ADJUSTABLE-RATE MORTGAGES

While the overwhelming majority of mortgages are fixed-rate mortgages,
adjustable-rate mortgages (ARMs) are available as well. The distinguishing
feature of an ARM is that the mortgage interest rate can vary over time,
but the details of the loan contract can be relatively complex. To illustrate,
consider one relatively common variety of ARMs, a 30-year 5/1 hybrid ARM
with a 2/2/5 cap structure.

The phrase “hybrid ARM” means that the mortgage rate is fixed for
some number of years before it begins to vary according to some set of
rules. In a 5/1 hybrid ARM, for example, i) the mortgage rate is fixed
for the first five years; and ii) at the end of that time, and every one year
thereafter, the mortgage rate is reset. The new mortgage rate at each reset
equals some rate benchmark, like the one-year rate on US Treasury bonds,
plus a gross margin, which is set and fixed at the initiation of the mortgage.
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To put some numbers on this, say that the gross margin is 2.75%, the index
is the one-year Treasury rate, and the one-year Treasury rate applied to the
reset is 0.25%. In that case, the mortgage rate over the subsequent year
is set to 3.00%. The Treasury rate is typically observed with a lookback,
perhaps 45 days, so that the borrower knows the applicable mortgage rate
sometime before it goes into effect.

Once the mortgage rate of an ARM is set, the monthly payments are
calculated as in the case of a fixed-rate mortgage. To be more specific,
consider the 30-year 5/1 hybrid ARM example at the end of year five. Say
that the outstanding balance is $80,000 (computed based on the mortgage
rate over the first five years) and that the mortgage rate is to be reset to 3%.
The remaining maturity, of course, is 25 years. The mortgage payment is
then computed such that the present value of that monthly payment over
the next 25 years or 300 months equals $80,000. It is as if a new fixed-rate
mortgage for the outstanding balance and the remaining term is being
offered at the new mortgage rate.

The 2/2/5 cap structure of the example limits the extent to which the
mortgage rate can change over the life of the ARM. The three numbers refer
to the initial adjustment rate cap, the periodic adjustment rate cap, and the
lifetime adjustment rate cap, respectively. The initial adjustment rate cap of
2% says that the mortgage rate for the sixth year of the mortgage, set at the
end of year five, cannot increase or decrease the rate by more than 2% (i.e.,
a rate of 3% can neither rise above 5% nor fall below 1%). The periodic
adjustment rate cap of 2% says that, at the end of any year, the rate cannot
increase or decrease by more than 2%. And the lifetime adjustment cap of
5% says that, over the life of the mortgage, the rate cannot increase by more
than 5%. Furthermore, the mortgage rate is typically constrained to remain
above the gross margin rate.

ARMs typically offer lower initial interest rates than fixed-rate mort-
gages but expose homeowners to the risk that rates increase. The average
loan size of ARMs is significantly higher than that of fixed-rate mortgages,
perhaps because wealthier, larger borrowers have more tolerance for inter-
est rate risk. In recent years, the volume of ARMs, as a percentage of all
mortgages, has fallen to the single digits. Perhaps, with mortgage rates near
historic lows, borrowers perceive the risk of higher rates as exceeding the
potential benefit of lower rates. Also, ARMs are still held in some disrepute
from the financial crisis of 2007–2009. In the years leading up to the crisis,
many people were tempted to buy into the housing boom by the relatively
low initial payments of ARMs, accentuated by teaser rates, a practice at
the time of offering particularly low rates over the first year or two of the
ARM. Many homebuyers overextended themselves through these products
and faced default as the rates on their ARMs reset higher and the housing
market collapsed.
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15.4 PREPAYMENTS

The prepayment option allows a homeowner to pay off or prepay a mort-
gage, in whole or in part, at any time, by paying the bank the outstanding
balance. In the example of Table 15.4, the homeowner may pay the bank
$80,089.43 at the end of 10 years and has no further obligations under
the mortgage. But if the mortgage rate has fallen over those 10 years, say
to 3.50%, then – using 3.50% instead of 4.50% in Equation (15.4) – the
present value of the remaining payments will have risen to $87,365.60.
Hence, in that scenario, the prepayment option is in-the-money: the home-
owner may pay the bank $80,089.43 to extinguish a liability with a present
value of $87,365.60. On the other hand, if the mortgage rate has stayed the
same or risen above 4.50% after those 10 years, then the present value of
the mortgage liability will be less than $80,089.43, and the homeowner will
have no incentive to prepay.

In practice, of course, most homeowners with mortgages do not have
the cash to pay off an existing mortgage. They can take advantage of
an in-the-money prepayment option, however, by refinancing an existing
mortgage. Continuing with the example, the homeowner might borrow
$80,089.43 at the then-prevailing mortgage rate of 3.50%, and then use
that cash to prepay the existing 4.50% mortgage. In that case, one way
to describe the savings to the homeowner is in terms of the reduction in
monthly mortgage payments: using the math given earlier, the monthly
payment on a 20-year $80,089.43 mortgage at 3.50% is $464.48, which
is $42.21 a month less than the $506.69 on the existing mortgage. Note
that the homeowner is not constrained to refinance with the bank that
extended the original mortgage. Another originator might have brought the
refinancing opportunity to the attention of the homeowner and might be
offering a lower rate or lower transaction costs.

Refinancing activity is usually constrained by the value of the home.
Assume, in the example, that the homeowner can economically borrow only
80% of the value of the home; that is, the LTV has to be less than or equal
to 80%. In that case, the value of the home when the existing $100,000
mortgage was extended had to have been greater or equal to $125,000, and
10 years later, at the time of the $80,089.43 refinancing, has to be above
$100,112. In fact, if the value of the home after 10 years is greater than that
$100,112, the homeowner might do a cash-out refinancing, which means
borrowing more money than the outstanding balance of the existing mort-
gage. In the example, if the home is still worth $125,000 at the time of the
refinancing, the homeowner could borrow $100,000 in the refinancing mort-
gage, pay off the existing mortgage with $80,089.43, and take the residual
$19,910.57 in cash to be used for other purposes. Increasing leverage in this
way can, of course, be dangerous. Rising property values in the run up to
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the financial crisis of 2007–2009 encouraged significant volumes of cash-out
refinancings that left many homeowners with negative home equity when
home values subsequently plummeted. In fact, in response to that experi-
ence, the GSEs currently do not accept cash-out refinancing loans with LTVs
greater than 80%.

When interest rates are low, refinancings can generate significant mort-
gage volumes. Over the most recent period of falling rates, refinancings as
a percentage of residential mortgage originations increased from 33% in
2018, to 46% in 2019, and to 65% in the first half of 2020.7

Homeowners sometimes exercise prepayment options with curtailments,
but these are not nearly so significant as refinancings. These prepayments take
place mostly when homeowners pay off very old, low-balance mortgages,
simply to own a home free and clear of debt. Financial considerations, like the
existing mortgage rates relative to market mortgage rates become secondary,
lost in the excitement of literal or figurative mortgage-burning parties.

Prepayments occur for other reasons as well, most notably turnover and
defaults. Turnover refers to the ongoing economic activity of selling and
buying homes. Turnover generates prepayments, because homes, which are
the collateral for mortgages, cannot be sold until the mortgages are paid off.
Disasters that destroy homes also generate turnover prepayments, because
mortgages become due in those situations as well.

Defaults refer to cases in which homeowners fail to make contractual
mortgage payments. In these cases, for mortgages packaged into MBS, inter-
est and principal are advanced by the servicer and ultimately paid by the
insurer. Hence, from the perspective of mortgage investors, defaults are eco-
nomically equivalent to early payments of principal, rather than as losses to
principal invested.

15.5 MORTGAGE POOLS

The simplest form of an MBS is a mortgage pool, which is a portfolio of
individual mortgages through which payments of interest and principal are
passed from borrowers to investors. Borrowers make payments by the first
of each month, which servicers pay to investors on the 25th of each month,
or on the first business day thereafter.8

Table 15.5 presents descriptive statistics as of December 2021 for three
30-year FNMA pools, that is, portfolios of mortgages with approximately

7Federal Housing Finance Agency (2021),“What Types of Mortgages Do Fannie Mae
and Freddie Mac Acquire?” April 14.
8The rest of this chapter ignores this payment delay, but practitioners do account for
it, of course, when pricing MBS.
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30 years to maturity securitized by FNMA. Consider first the two pools,
CA2797 and MA3538, which were both issued in November 2018 and
mature 30 years and one month later, in December 2048. Metrics in the
table can be shown as “current,” that is, as of the report date, in this case
December 2021, or as “original,” that is, as of the issue date, in this case,
November 1, 2018. The table shows the WAM or weighted-average matu-
rity of the loans in the pool and the WALA or weighted-average loan age,
where each loan is weighted by its balance or principal outstanding as a
percentage of total pool balance. In the simplest possible case, every loan
in a pool would mature in exactly 30 years or 360 months as of the date
of issue – giving an original pool WAM of 360 and WALA of zero – and,
as of the report date, 37 months later, a current WAM of 360 − 37 = 323
and WALA of 37. Reality is more complex, however, because 30-year pools
may be issued containing mortgages ranging in maturity from 181 to 361
months, and many mortgages prepay and drop out of pools between the
issue and report dates.9

The next row of Table 15.5 gives the coupons of the CA2797 and
MA3538 pools as 4.5% and 5.0% respectively. The coupon of a pool
is the mortgage rate paid to investors. As a pass-through security, pool
interest from the borrowers is paid to the investors, but only after sub-
tracting a guarantee fee or g-fee for the insurer, in this case FNMA, and a
servicing fee for the servicer. The next row in the table, gives the WAC, or
weighted-average mortgage rate of the loans in the pool. As of the issue
date, the WAC of CA2797 was 4.924%, leaving 42.4 basis points worth of
fees above the 4.500% coupon paid to investors. The acronym WAC stands,
for “weighted-average coupon” and is unfortunate: the word “coupon”
most often refers to the rate on a pool paid to investors, while WAC, as just
mentioned, is a weighted average of the rates on the underlying loans. In
any case, the current WAC of CA2797, at 4.198%, is marginally lower than
the original WAC, which means that, on average, loans with marginally
higher rates prepaid faster between the issue and report dates. For MA3538,
however, the original WAC is slightly less than the current WAC, which
means that loans with marginally lower rates prepaid faster.

The next section of Table 15.5 describes the principal amount of the
pools, their underlying loans, and experienced prepayments. At issue,

9By way of illustration, the WAMs and WALA of CA2797 can conceivably be
reproduced as follows. Say that, at issue, the pool has 90% of its balance in new
loans maturing in 361 months and 10% of its balance in new loans – perhaps used
for refinancing – maturing in 351 months. Then assume that, by the report date,
all of the 361-month loans prepaid and none of the 351-month loans prepaid. That
would leave, as of the report date, a pool with a WAM of 351 − 37 = 314 and a
WALA of 37.
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TABLE 15.5 Descriptive Statistics for Three 30-Year FNMA Pools, as of
December 2021.

CA2797 MA3538 AI4813

Pool Current Original Current Original Current Original

Payment Terms

Issued 11/1/2018 11/1/2018 6/1/2011
Maturity 12/1/2048 12/1/2048 6/1/2041
WAM (months) 314 360 319 359 214 359
WALA (months) 37 37 126
Coupon (%) 4.500 5.000 4.500
WAC (%) 4.918 4.924 5.772 5.768 4.935 4.942

Loans and Prepayments

Amount ($mm) 43.654 130.995 105.011 594.633 29.374 266.801
Number 339 943 422 2,050 311 2,037
Avg. Size ($) 128,773 138,913 248,841 290,065 94,451 130,977
1mo CPR (%) 24.6 46.9 21.9

Credit Quality

WAOCS 740 678 758
SATO (bps) −6 78 −6
WAOLTV (%) 79 80 70

Additional Statistics

Own/2nd/Inv (%) 91/6/3 86/3/11 86/9/5
Buy/Refi (%) 75/25 42/58 53/47
R/C/B (%) 63/25/13 42/46/12 38/58/4
State (%UPB) TX: 9.0 CA: 20.6 CA 10.6

FL: 8.7 TX: 13.5 TX 10.0
PA: 6.5 FL: 13.4 FL 6.4

Pricing

Price 109.783 108.963 110.309
OAS 90.1 113.0 86.5
OAD 3.98 3.18 4.26

WAM: weighted-average maturity; WALA: weighted-average loan age; WAC:
weighted average coupon; CPR: conditional prepayment rate; WAOCS: weighted-
average original credit score; SATO: spread at origination; WAOLTV: weighted-
average original loan-to-value ratio; Own/2nd/Inv: owner-occupied, second home,
investment property; R/C/B: retail, correspondent, broker; UPB: unpaid balance.
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CA2797 had 943 loans at an average size or loan principal amount of
$138,913, for a total pool balance of about $131 million. As of the report
date, the number of loans had fallen to 339, and the pool balance to about
$44 million. These numbers reveal a significant rate of prepayment. Using
the formulae presented earlier, a $100,000 30-year mortgage at a rate of
5% amortizes down to an outstanding balance after 37 months of $95,204.
This scheduled amortization can be summarized with a factor, or remaining
fraction of original principal, of $95,204∕$100,000 or 0.952. The factor of
CA2797 after 37 months, however, is $43.654∕$130.995 or 0.333. That
CA2797 prepaid heavily is not particularly surprising, as mortgage rates
fell significantly between November 2018 and December 2021. That the
average loan size fell from $138,913 to $128,773 indicates that larger loans
prepaid more rapidly than smaller loans. This aspect of prepayments is
accepted as broadly applicable: homeowners with larger loan amounts are,
on average, wealthier and more financially sophisticated and, therefore,
more able to take advantage of refinancing opportunities.

The MA3538 pool could reasonably be expected to prepay faster than
CA2797. First, the loans underlying MA3538 have higher loans rates,
which – subject to a caveat discussed next – increase the incentive to
refinance. Second, the average loan size of MA3538 is much higher and, as
just mentioned, larger loans tend to prepay faster. And, indeed, MA3538
has prepaid much faster. Its factor of $105.011∕$594.633 or 0.177 is a lot
lower than the 0.333 factor of CA2797.

The next row of the table gives the CPR, the conditional prepayment
rate or the constant prepayment rate, over the most recent month. CPR is
an annualized measure of the speed of prepayments, which is intricately
related to another measure, the SMM or single monthly mortality rate.
Define SMMn as the percentage of principal outstanding that is prepaid
during month n. Note that prepaid principal does not include scheduled or
amortized principal payments, like those described in Table 15.4. CPR then
annualizes SMM by assuming that SMM is constant over the year. Under
that assumption, the principal not prepaid over one month is 1 − SMMn;
principal not repaid over 12 months is (1 − SMMn)12, and prepayments
over 12 months are given by,

CPRn = 1 − (1 − SMMn)12 (15.5)

While CPR is an annualized rate, it is reported monthly based on the prepay-
ments during that month. For example, if a pool prepaid 2% of its outstand-
ing principal above its amortizing principal in a given month, it is prepaying
at an annualized speed or CPR given by Equation (15.5), that is, 21.53%.
CPR is less than 12 times the monthly rate of 2%, or 24%, because of the
compounding in Equation (15.5): the amount remaining each month is not
98% of the original principal balance, but only of the principal balance after
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some number of months of prepayments. A CPR can be computed over sev-
eral months as well. Say, for example, that the SMMs for a particular pool
over three months were 2%, 2.5%, and 3%. Then the CPR of that pool over
that three-month period is,

1 − [(1 − 2%)(1 − 2.5%)(1 − 3%)]4 = 26.21% (15.6)

where raising the product of the three monthly survival rates to the fourth
power gives the annual survival rate. Finally, then, returning to Table 15.5,
the most recent monthly CPR of MA3538, at 46.9%, is much greater than
the 24.6% CPR of CA2797.

The next three rows of the table relate to pool credit quality. The first,
WAOCS (weighted-average original credit score), gives the weighted-average
credit or FICO scores of the borrowers with loans in the pool. The sec-
ond, SATO or spread at origination, gives the weighted-average spread of
the loan rates over a mortgage index rate at the time of origination. By
these two metrics, the loans in MA3538 are significantly less creditworthy
than those in CA2797. In fact, the 84.4-basis-point difference between the
original WACs of the pools is approximately equal to the 84-basis-point dif-
ference in their SATOs. This, then, is the caveat in attributing faster prepay-
ments of MA3538 to its higher coupon rate. Because that higher coupon is
most likely due to inferior credit, refinancing the loans in MA3538 will likely
require a higher rate as well, meaning that the incentive to refinance – which
is closely related to the difference between the existing mortgage rate and the
available refinancing rate – may not be much greater for MA3538 than for
CA2797. Furthermore, lower credit loans are thought to prepay relatively
slowly, because homeowners with lower credits might find it more difficult
to obtain refinancing loans. In any case, with respect to the other metric of
loan quality, WAOLTV (weighted-average original LTV), the two pools are
quite similar, at 79% and 80%.

The next several rows of Table 15.5 report a selection of additional
pool statistics. These and other statistics, not shown here, are studied in
great detail by market participants in an attempt to determine the speed at
which a pool will prepay. The first row of this section of the table gives
the percentages of loans for owner-occupied homes, for second homes, and
for investment properties. The second gives the percentage of loans used to
purchase the home and the percentage used to refinance. The third gives
the percentages in each of origination channels described earlier, and the
fourth gives the largest percentages of unpaid balance by state. Exactly how
these statistics predict prepayments is part of the art of prepayment model-
ing, but some broad outlines are described here. Rates on loans for invest-
ment properties are typically higher than for owner-occupied properties,
reflecting the greater propensity of investors to walk away from distressed



Trim Size: 6in x 9in Tuckman835554 c15.tex V1 - 07/12/2022 11:22am Page 411�

� �

�

Mortgages and Mortgage-Backed Securities 411

situations. Across mortgages with the same coupon, therefore, investor prop-
erties, which have to be refinanced at relatively high rates, face a lower refi-
nancing incentive and, consequently, refinance at lower speeds. With respect
to turnover, however, investor properties prepay relatively fast: investors are
on the lookout for opportunities to sell properties at a profit, and they do
not bear the costs of changing residences to do so. Loans for the purpose of
refinancing might prepay faster, because homeowners who have refinanced
already might have greater propensity to do so. Brokered originations might
refinance faster, because, with no stake in the servicing fees, that is, with
no losses from extinguishing existing mortgages, brokers might have the
greatest incentive to generate new refinancing originations. This effect is
countered, however, by the efforts of originators, mentioned earlier, to recap-
ture refinancings. Finally, loans in some states seem to prepay faster than
others, controlling for the other effects discussed so far. These differences
across states are usually attributed to differences in the costs of closing mort-
gages, which are composed of various taxes and fees. For example, average
closing costs in New York are among the highest, and prepayments there are
particularly slow, while average closing costs in California are relatively low
and prepayment speeds there are particularly fast.

15.6 PREPAYMENT MODELING

The complex behavior of prepayments, combined with their importance in
mortgage valuation, has given rise to a large industry of building models to
predict prepayments as a function of interest rates and other variables. While
some highlights are presented in this section, and Appendix A15.2 presents
some of the more technical issues encountered, a fuller description is beyond
the scope of this chapter.

Prepayment models are often divided into separate modules, one for
each driver of prepayments. The most notable drivers, mentioned earlier,
are refinancing, turnover, defaults, and curtailments. Traditionally, a mod-
ule makes a set of assumptions that depend on various parameters. These
parameters are then estimated historically, using the vast amount of data
available on the prepayment behavior of mortgage pools. Some parameters
might also be implied from prevailing market prices of various pools. Most
recently, artificial intelligence and machine learning technologies have also
been brought to bear on the problem of predicting prepayments.

At the heart of most refinancing modules is an S-curve, which describes
refinancings, often in terms of CPR, as a function of some incentive func-
tion. The incentive function might be the difference between the existing
mortgage rate and the current mortgage rate; the ratio of the existing rate to
the current rate; the present value of the savings from refinancing; or even
the monthly savings from such a refinancing. The S-curve than maps the
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F IGURE 15.2 Refinancing S-Curves for Three Mortgage Pools.

refinancing incentive into a CPR. Figure 15.2 shows the S-curves of a par-
ticular model for the three pools summarized in Table 15.5. The horizontal
axis here is simply the change in the current mortgage rate. Because existing
mortgage rates are fixed, of course, rising current mortgage rates imply less
of an incentive to prepay, while falling current mortgage rates imply more
of an incentive to prepay.

The name “S-curve” comes from the shape of the functions. For large
increases in rates, or, equivalently, very low incentives and high current mort-
gage rates, CPR is very low, while for large decreases in rates, or very high
incentives and low current mortgage rates, CPR is very high. The curves
in the figure do not look much like an “S,” but the faster a curve moves
from low to high CPR, the more the curve looks like something like an “S.”
In any case, the shape of the S-curve is different for each pool, and can
depend on all of the characteristics discussed in the context of Table 15.5
(e.g., average loan size, creditworthiness). According to the models behind
Figure 15.2, MA3538 prepays faster than CA2979, but, for a large enough
decrease in mortgage rates, the CPR of CA2797 comes close to catching up.
Figure 15.3 shows some empirical evidence with which these two S-curves
might have been estimated. As the current coupon mortgage rate (which is
defined herein) declined dramatically from between 3.50% and 4.00% at
the time of origination to less than 1.50% in fall 2020, the CPR of both
pools rose dramatically. But MA3538 prepaid faster. As rates stayed low
and increased somewhat, prepayments on both remained relatively high,
but MA3538, on average, continued to prepay faster. By the way, this figure
also shows why refinancing models are not cast as an optimization problem.
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F IGURE 15.3 One-Month CPR for FN MA3538 and FN CA2797 and the
30-Year Current Coupon Rate.

If homeowners exercised their prepayment options with the efficiency of
bond issuers exercising their call options, the pools in the figure would have
experienced such dramatic prepayments through September 2020 that little
to no principal would remain outstanding.

Returning to Figure 15.2, the CPR of AI4813 is much lower than that of
the other pools and picks up relatively slowly as rates decline. Contrasting
its characteristics with those of CA2797 and MA3538, Table 15.5 reports
that AI4813 was issued in June 2011, with a correspondingly shorter cur-
rent WAM and WALA than the other pools. Its current WAC is essentially
the same as that of CA2797. The current average loan size of AI4813 is
significantly smaller than that of either of the other pools, while its credit-
worthiness is marginally higher than that of CA2797. AI4813 is between the
other two pools with respect to loan purpose, and the percentage of brokered
originations is somewhat lower. The most likely explanation for the lower
S-curve of AI4813, therefore, is not these loan characteristics but rather a
prepayment phenomenon known as burnout.

When a seasoned or older pool has been through a period of relatively
low rates and experienced significant prepayments, it is most likely that the
homeowners with the greatest propensity to prepay have already prepaid
and are no longer in the pool. With the remaining loans in the pool less likely
to prepay, the pool experiences some degree of burnout. Figure 15.4 illus-
trates burnout in the case of AI4813. As the mortgage rate fell from about
4.00% at the time of origination to between less than 2.00% and about
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F IGURE 15.4 One-Month CPR for FN AI4813 and the 30-Year Current
Coupon Rate.

2.50% from late 2012 through the first half of 2013, CPR increased dra-
matically, to a peak of about 34%. Rates then rose and fell again to between
2.00% and 2.50%, and CPR reached a similar peak of over 30% in fall
2016. Rates subsequently rose a second time, peaking in November 2018,
before starting on a third and more dramatic decline. This time, however,
even when rates fell to 2.00%, CPR never rose above 20%. As a burned-out
pool, it was not until sometime after mortgage rates has fallen to new lows of
below 1.50% that prepayments rose again, this time to a peak above 40%.
From a modeling standpoint, burnout introduces the significant complica-
tion that the S-curve depends not only on the current characteristics of a
pool but also on the history of rates experienced by the pool.

Mortgage professionals might also take the surge of AI4813 prepay-
ments in 2021, as depicted in Figure 15.4, as evidence of a media effect. After
a precipitous decline in mortgages rates, or after a decline in which mortgage
rates reach new lows, media reports and party conversations encourage even
those borrowers with low propensities to refinance to do so. Once again, this
effect considerably complicates the determination of the S-curve.

Another module of prepayment modeling captures turnover. A com-
mon approach to these modules is to start, at issue, from some base rate
of turnover, which increases over time according to a seasoning ramp. This
choice reflects the empirical regularity that homeowners are unlikely to move
soon after taking out a mortgage. The exact specification of the seasoning
ramp can depend on factors other than mortgage age, most obviously the
season, as homeowners are more likely to move at certain times of the year,
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like soon before schools open rather than soon after. While prepayments
due to turnover are for the most part independent of mortgage rates, there
is a significant interaction. Borrowers are less likely to move if they have
below-market mortgage rates, that is, if they would pay significantly higher
mortgage rates after selling their homes and buying new ones. This phe-
nomenon is known as the lock-in effect.

As for modules for default, only a few observations are recorded here.
Investors in agency MBS experience defaults as prepayments, but defaults
are nevertheless tracked and modeled separately, as involuntary rather than
voluntary prepayments. Inputs to these models include credit scores at the
time of origination, because credit scores are typically not updated after
issuance. While LTVs are not updated either, they can be estimated over time,
at the loan level, by using data on home prices in a relevant region. Home
prices are important in determining defaults, because a homeowner without
cash – but with a home valued in excess of its mortgage balance – can sell
the home and pay off the mortgage rather than default.

15.7 MORTGAGE PRIC ING, SPREADS,
AND DURATION

Combining a prepayment model with a risk-neutral model of the term struc-
ture, MBS can be computed as the expected discounted value of their cash
flows. Because the model price of a given MBS typically does not perfectly
match its market price, an option-adjusted spread (OAS) is defined as the
spread that, when added to the initial, benchmark term structure, results in
a model MBS price that equals the market price. OAS is the equivalent of
bond spread introduced in Chapter 3 and discussed in Chapter 7. In particu-
lar, the OAS can be interpreted as the extra return earned when interest rate
risk is correctly hedged by the model with securities that are fairly priced by
the model.

A straightforward use of OAS is to buy cheap securities, those with high
OAS; to sell rich securities, those with low OAS; and, more aggressively, to
engage in relative value trades that simultaneously buy high-OAS and short
low-OAS securities. A practical challenge to investing and trading with OAS
is model error or misspecification. It is unusual for a model to find that a
particular MBS is cheap or rich, while other MBS, with similar character-
istics, are fair. More usual is to find that a particular sector, for example,
pools with high loan balances, is cheap or rich relative to other MBS. In
that case, the success of any trades based on those OAS depends crucially
on whether the model is really better than the market at valuing pools with
different loan sizes. Another challenge, particularly for relative value trades,
is whether OAS are mean reverting. A model may be correctly specified in
concluding that a sector is cheap, so that buying and holding MBS in that
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sector outperforms other sectors over time. But if the sector stays cheap for
an extended period of time, a relative value strategy of buying that sector
and shorting another might not profit quickly enough to compensate for the
use of capital and the costs of financing over time.

Another important use of mortgage pricing models is to estimate
the risk sensitivities of MBS. Calculating the duration of the mortgage in
Table 15.4 as if its cash flows were fixed, that is, by shifting the discount rate
alone, along the lines of Chapter 4, gives a duration of about 11.7. But this
fixed cash flow or static duration greatly overstates the extent to which the
value of a 30-year MBS increases as rates fall. While the value of surviving
cash flows does increase as rates fall, all balances prepaid by homeowners
are worth only par. To illustrate, Figure 15.5 graphs the price of CA2797
as a function of the five-year Treasury rate from November 30, 2018, to
December 21, 2021, excluding the worst of the market turmoil from the
pandemic and economic shutdowns, from March 2, 2020, to May 15,
2020.10 For intermediate and higher rates in the graph, the price of the
pool behaves like that of a fixed-rate security: price falls with rates in a
close to linear or slightly positively convex manner. But as rates fall, price
does not rise monotonically, but levels off at between about 111 and 112
per 100 face amount. Price does not increase further, despite the 4.500%
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F IGURE 15.5 Prices of FN CA2797 Versus the Five-Year Treasury Rate, from
November 30, 2018, to February 28, 2020, and from May 18, 2020, to December
21, 2021.

10In the excluded period, mortgage prices fell dramatically – and their OAS relative to
Treasuries increased dramatically – because of market stress and increased volatility
rather than because of changes in the level of interest rates.
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coupon, because of prepayments. But the price does rise significantly about
100, because many homeowners do not prepay, and the present values of
their 4.500% cash flows increase significantly in the markedly lower rate
environment. Note too that the price–rate curve implicit in Figure 15.5 is
negatively convex when rates are below 1.25% or so, that is, as defined in
Chapter 4, interest rate sensitivity falls as rates fall.

A mortgage model, with its prepayment modules, can calculate duration
meaningfully by shifting both discount factors and cash flows in response to
a shift in the benchmark curve. In other words, as benchmark rates increase,
discount factors decrease, and prepayments decrease. Along these lines, the
percentage change in price scaled for a 100-basis-point decrease in rates
gives an option-adjusted duration or OAD.11 Using one particular model,
Figure 15.6 graphs the OAD of an index of 30-year FNMA MBS, along
with the five-year Treasury rate, over a 10-year period. The OAD in the
graph averages 4.3 and ranges from 1.5 to 6.3. As expected, all of these
values are significantly less than the static duration of a 30-year 4.5% mort-
gage, calculated earlier as 11.7. The negative convexity of MBS can be seen
clearly from this graph as well. For most time periods, OAD increases as the
five-year Treasury rate increases, and OAD decreases as the five-year rate
decreases.
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December 21, 2011, to December 21, 2021.

11As explained in Chapter 4, duration is computed using smaller rate perturba-
tions, but quoted in units that correspond to a percentage change in price for a
100-basis-point decrease in rate.
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15.8 TBA AND SPECIF IED POOLS MARKETS

The vast majority of secondary trading of pass-through securities takes place
in the very liquid TBA market, while the rest takes place in the less liquid
specified pools market. The TBA market is a forward market in securitized
mortgage pools, in which the seller has a delivery option. Table 15.6 shows a
snapshot of TBA prices for UMBS 30-year pools from late December 2021.
The rows correspond to different delivery months, the columns correspond
to different mortgage pool coupons, and the entries give the corresponding
forward prices. Most of the liquidity in the TBA market is concentrated in
a few coupons, although a fuller stack of coupons do trade. Most of the liq-
uidity is also in the front or first contract and the second contract, but later
delivery months trade as well. The front contract with the greatest price
less than par is called the current contract. The current coupon, or current
coupon rate, which is often quoted as a description of the prevailing mort-
gage rate, is defined as the coupon that would give a TBA contract priced
at par, calculated by interpolating the coupon of the current contract and
the coupon of the front-month contract with a price just above par. From
Table 15.6, the current contract is the January 2.0% TBA, and the current
coupon, calculated from the coupons and prices of the January 2.0% and
January 2.5% TBAs, is about 2.11%.

A seller of $1 million face amount of the January UMBS 30-year 2.5%
TBA commits to sell $1 million principal amount of a 30-year 2.5% UMBS
pool (i.e., one issued by FNMA or FHLMC) at 101–28 for settlement or
delivery in January 2022. The TBA buyer commits to buy the pool delivered
by the seller. The exact settlement date is published well in advance, and is
always in the stated delivery month, but varies over time and by product.12

With respect to Table 15.6, the settlement dates for the three months are
January 13, 2022, February 14, 2022, and March 14, 2022.

TABLE 15.6 Bid Prices for UMBS 30-Year TBAs as of December 30, 2021.

Coupon 1.5% 2.0% 2.5% 3.0%

Jan 96−13 99−15+ 101−28 103−13
Feb 96−08 99−08+ 101−20 103−08+
Mar 96−03 99−02 101−12+ 103−03+

Prices are given as a handle and a number of ticks or 32nds; for example, 101–12+
is a price of 101 + 12.5∕32, or 101.390625.

12“Class A” settlement dates apply to 30-year UMBS TBAs; “Class B” to 15-year
UMBS and GNMA; “Class C” to 30-year GNMA; and “Class D” to an assortment
of other products.
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The seller of a TBA has a delivery option in the sense of being able to
deliver any pool that falls within the general parameters just described.13

For this purpose, a “30-year” pool is defined as one with a remaining matu-
rity of between 15 years and one month to 30 years and one month. The
name TBA is an acronym for to be announced, and comes from the seller’s
option to choose the pool to be delivered after the trade date. More specif-
ically, the seller must notify the buyer of the exact pool to be delivered on
the notification date or 48-hour day, which is two business days before the
settlement date. For the contracts in the table, the notification dates are
January 11, 2022, February 10, 2022, and March 10, 2022. Note, by the
way, that market practitioners always say TBA, never to be announced.

Chapters 11 and 14 describe how the pricing of Treasury note and bond
futures and of credit default swaps (CDS) reflect seller choices to deliver
the least valuable or “cheapest-to-deliver” (CTD) securities. Similarly, TBA
prices reflect seller choices to deliver the least valuable eligible mortgage
pools, which are typically those that refinance with the greatest speed and
least predictability. The analogy to Treasury futures and CDS is not perfect,
however. There is typically one security that is clearly CTD into a Treasury
futures or CDS contract, while many mortgage pools might be delivered into
a TBA. In fact, an important part of trading in this market is forecasting the
pools likely to be delivered into TBAs given the supply and characteristics
of deliverable pools outstanding. In the case of the January 2.5% TBA, for
example, one dealer forecasts the delivery of pools with a WAC of 3.35%, a
WALA of three months, and an average loan size of $340,000. While much
analysis is needed to explain the precision of this prediction, it makes sense
that pools with these characteristics have less value than other 30-year 2.5%
pools: higher WACs typically prepay faster (with the credit score caveat
mentioned previously); relatively new pools typically prepay faster and have
more prepayment uncertainty than seasoned, somewhat burned-out pools;
and pools with high average loan balances prepay faster as well. (Note that
an average loan balance of $340,000 is large relative to the averages pre-
sented in Table 15.3.)

The other secondary market for pass-through trading is the specified
pools market. Because the least valuable pools are delivered into TBAs,
which is reflected in TBA prices, sellers with more valuable collateral, along
with buyers wanting more valuable collateral, prefer to trade particular or
specified pools. Prices of pools traded in this market are quoted as a pay-up
relative to the comparable TBA. Table 15.7 shows a sample of pay-ups for
UMBS 30-year specified pools as of December 2021. The first four rows
are pools with loan balances in particular ranges. Pools with a coupon

13Some TBA trades include stipulations or stips that add restrictions on deliverable
pools.
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TABLE 15.7 Representative Pay-ups for Selected Specific UMBS 30-Year Pools,
in Ticks (32nds), as of December 2021.

Coupon
Specified Pool
Description 2.0% 2.5% 3.0%

Average Loan Balance

Less than $85,000 36 58 109
Between $85,000 and $110,000 31 49 88
Between $125,000 and $150,000 23 37 71
Between $200,000 and $225,000 10 16 44

100% NY Loans 9 28 75

100% Investor Property 3 14 34

Jumbo −14 −18 −38

of 2.5% and average loan balances between $125,000 and $150,000, for
example, sell at a pay-up of 37 ticks, that is, for 37∕32 or 1.15625 over
the price of the UMBS 30-year 2.5% front contract TBA. The pay-ups
in each of the three coupon columns decrease with average loan balance,
consistent with the empirical regularity that pools with higher loan balances
refinance faster. That pools with average loan balances between $200,000
and $250,000 command a pay-up reflects the expectation, mentioned in
the previous paragraph, that CTD pools have an even larger average loan
balance of $340,000. For any given balance range, the pay-up increases with
coupon: relatively low loan balances and slower refinancing speeds are more
valuable the higher the coupon, that is, the greater the incentive to prepay
and the greater the loss in value to investors as a result of refinancings.

The next row of Table 15.7 gives the pay-ups for pools made up of loans
in New York State, which, as mentioned earlier, refinance slowly relative to
loans in other states. And, once again, those lower refinancing speeds are
worth more the greater the coupon. The next row is for pools composed
of loans for investor property. As discussed already, investor properties face
higher refinancing rates, and, therefore, refinance more slowly, resulting in
positive pay-ups that increase with coupon.

The last row of the table gives pay-ups for pools containing jumbo loans,
that is, loans of size greater than agency conforming limits. This row differs
from others in that jumbo pools are not deliverable into TBAs. In any case,
jumbo pools trade at a negative pay-up, that is, at lower prices than TBAs,
because these extremely large loans are expected to prepay faster than any
conforming pool delivered into TBAs.

Table 15.7 gives only a sample of specified pools. Other specified pools,
with other defining characteristics, trade as well, like low FICO loans, high
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SATO loans, and loans serviced by certain banks. As for this last category,
certain origination channels and servicing arrangements are more aggressive
than others in encouraging homeowners to refinance. As a result, a pool of
loans in less aggressive settings, like those serviced by certain banks, are
expected to prepay more slowly and, therefore, command a pay-up in the
specified pools market.

15.9 RISK FACTORS AND HEDGING AGENCY MBS

Participants in agency MBS face and have to manage a number of risks:
interest rate risk, which includes convexity and volatility risks; mortgage
spread risk; prepayment risk; and credit risk. Interest rate risk is discussed
extensively in earlier chapters of the book. Mortgages are clearly exposed
to the risk that rates rise and fall, and, as described before, exhibit negative
convexity. Furthermore, negatively convex positions are also short interest
rate volatility.14

Mortgage spread risk refers to the risk of changes in the spread between
mortgage rates and benchmark rates, that is, Treasury or swap rates. If
an MBS is hedged by selling Treasury futures and then mortgage spreads
increase, the MBS falls in value relative to the Treasury hedge and the overall
position loses money. If, on the other hand, one MBS is hedged by another,
perhaps a TBA, then changes in value due to mortgage spreads can offset.
Prepayment risk, following earlier discussions, is the risk that prepayments
are higher than anticipated for premium mortgages or lower than antici-
pated for discount mortgages. Finally, the credit risk from agency MBS, the
risk of interest and principal loss due to homeowner default, is borne by the
agencies that guarantee the underlying mortgages or the MBS.

Various groups of market participants face these risks in different per-
mutations. Originators, who make mortgage loans in order to sell them into
MBS, are exposed to pipeline risk. Originators offer firm rates to borrowers,
called rate locks, but it then takes time to close or complete the mortgage
deal. A possible hedge against the risk that rates rise before the mortgage
can be sold is to short Treasuries or pay fixed in swaps, with hedge ratios
calculated as OADs to account for prepayment risk. But this strategy has
three problems. First, borrowers can walk away from rate locks at their
discretion. While a deal might not close for many reasons, borrowers do
tend to abandon offers when rates subsequently decline, while they tend
to close on mortgages when rates subsequently increase. Accurate hedging
of pipeline risk, therefore, has to account for the exercise of this borrower
option. Second, because mortgages are negatively convex, hedging them with

14The discussions about interest rate risk in this section rely heavily on the material
about convexity from Chapter 4 and material about swaptions in Chapter 16.



Trim Size: 6in x 9in Tuckman835554 c15.tex V1 - 07/12/2022 11:22am Page 422�

� �

�

422 FIXED INCOME SECURITIES

positively convex Treasuries or swaps leaves an overall negatively convex
and short volatility position. One solution is to buy short-term payer swap-
tions to manage convexity and to buy longer-term swaption straddles to
hedge the volatility.15 Third, because mortgage values and this borrower
option depend on prevailing mortgage rates, rather than on Treasury or swap
rates, hedges with Treasuries or swaps are subject to mortgage spread risk.

An alternative hedge of originator pipeline risk is to sell TBAs rather
than Treasuries or swaps. Prepayment models are still needed to calculate
hedge ratios, and the problem of modeling rate-lock optionality remain. But
because TBAs are also negatively convex and short volatility, selling them
can offset the negative convexity and short volatility properties of the mort-
gages being originated. In that case, swaptions are necessary only to address
any residual exposures. Furthermore, because both TBAs and the mortgages
being originated clearly depend on mortgage spreads, that risk can be miti-
gated by the TBA hedge as well.

Originators that hedge pipeline risk by selling TBAs have another deci-
sion to make when the originated pools are ready for sale. If the pools are
significantly more valuable than TBA prices, the originator can buy back the
TBA hedge and sell the pools in the specified pool market. If the pools are
about as valuable as TBA prices, the originator can deliver the pools into
the short TBA hedges. And if the pools are worth somewhat more than TBA
prices, there is a trade-off of value and liquidity: the pools may be worth
somewhat more if sold as specified pools, but they can be sold with more
liquidity in the TBA market.16

Mortgage servicers lose revenue when mortgage rates decline and home-
owners refinance. This effect tends to dominate the increase in value of the
remaining servicing flows due to discounting at lower rates. Mortgage servic-
ing rights, therefore, usually have significant negative duration. They are also
negatively convex. Their interest rate sensitivity increases as rates increase:
from very negative at low rates, when homeowners are prepaying fast, to less
negative at high rates, when homeowners are prepaying slowly. One possible
hedge of servicing revenue is to buy Treasuries or receive fixed in swaps. The
determination of hedge ratios requires a prepayment model, of course, but
the resulting, overall position is negatively convex, short volatility, and sub-
ject to mortgage spread risk. The alternative of hedging by buying TBAs is
not as appealing a solution as it is for originators. True, buying TBAs across

15Swaptions are discussed in Chapter 16. Like any option, a swaption has a positively
convex price–rate profile, which can be used to manage the convexity of other posi-
tions. Also, like any options, swaptions increase in value with volatility. Shorter-term
swaptions, however, are less exposed to volatility than long-term options.
16An originator can also sell pools into other securitizations, like CMOs, discussed
in a later section.
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the stack of coupons can increase the effectiveness of prepayment hedging.
And true, buying TBAs against servicing rights hedges mortgage spread risk.
But with both mortgage servicing rights and long TBA positions negatively
convex and short volatility, the overall “hedged” position is even more neg-
atively convex and short volatility. If that result is unacceptable from a risk
management perspective, swaptions can be bought – at a cost – to flatten
out the exposure.

As mentioned earlier in the chapter, some servicers are also originators,
and servicing and origination businesses, at least to some extent, hedge each
other. It might be cheapest, at least in theory, for entities with both busi-
nesses to rely on this operational hedge and hedge only residual risk with
Treasuries or swaps, TBAs, and swaptions. In practice, however, organiza-
tional efficiencies might lead each business to hedge its risk independently. In
that case, a middle ground might be to save on transaction costs by crossing
hedging trades internally.

The various market participants that invest in mortgages can decide
which risks to bear and which risks to hedge. A mortgage exchange-traded
fund is likely to buy MBS and take all of the associated risks, in the expec-
tation of earning commensurate return. A more actively managed mortgage
portfolio might hedge out interest rate risk with Treasuries or swaps, and
even negative convexity and volatility with swaptions, but keep mortgage
spread risk and prepayment risk, possibly to earn appropriate compensation
for bearing those risks over time, or possibly to take advantage of perceived
skill in timing exposures to those risks. Finally, a relative value mortgage
desk might bet on prepayment speeds alone, essentially depending on its
prepayment model outperforming the market consensus and implied pricing.
This strategy is most likely implemented by buying relatively cheap specified
pools and selling relatively rich TBAs, or vice versa, or by trading one TBA
coupon against another in the stack.

Last but not least are the agencies. They manage the default risk arising
from their guarantees in two ways. First, they collect g-fees that are designed
to be sufficient, in aggregate, to make up for experienced losses. Second,
agencies sell off some of their default risk to the private sector through credit
risk transfer securities, which are discussed presently. The extent to which
the agencies bear other mortgage risks depends on the method by which the
MBS are issued. In lender swap transactions, which are the most common,
an agency exchanges mortgage loans from originators for MBS made up of
those loans. The loans move directly into a trust backing the MBS with-
out ever residing on the agency’s balance sheet. Therefore, in this kind of
issuance, all risks (other than default) remain with the originator. In port-
folio securitization transactions, by contrast, an agency buys mortgages for
its own portfolio, packages them into MBS, and sells those MBS in the sec-
ondary market. In this method of issuance, the agency bears interest rate
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risk, prepayment risk, and mortgage spread risk from the time the mort-
gages are purchased until the time they are sold through MBS. Along the
lines of the earlier discussion about private originators, an agency can hedge
these risks by selling Treasuries or swaps, or by selling TBAs, and by sup-
plementing these hedges with the purchases of swaptions. Also, like other
originators, agencies can decide whether to buy back TBA hedges and sell
originated pools in the specified pools market or to deliver originated pools
into their short TBA hedges.

This section concludes with a further observation about the TBA and
specified pools markets. On the one hand, the TBA delivery option means
that TBA prices track those of the least valuable pools. But on the other
hand, from a primary market that produces a huge number of distinct pools,
the TBA delivery option creates extremely liquid secondary market trading
in a handful of TBA contracts. This liquidity allows market participants to
hedge their specified pool exposures with TBAs; that is, the liquidity of the
TBA market easily compensates for any basis risk arising from differences
between changes in specified pool prices and changes in TBA prices. Fur-
thermore, the liquidity of the TBA market is so attractive that many pools
are, in fact, physically delivered – and thus sold – through TBA contracts,
despite relatively low TBA prices due to the delivery option, and despite the
general preference of derivatives users to unwind derivatives hedges and to
trade physical or cash product with their regular business counterparties.

15.10 DOLLAR ROLLS

Because TBA liquidity is concentrated in contracts that mature in one of the
next several months, market participants often need to roll their positions in
maturing contracts to contracts that mature at later dates. For example, orig-
inators and investors that are short January 2022 TBAs to hedge exposures
but wish to keep those short positions past the January settlement date, can
buy the roll, that is, buy (back) the front month contract (January) and sell
contracts expiring in later months, perhaps in February. Similarly, servicers
and investors who are long January 2022 TBAs, but wish to maintain those
longs past January, can sell the roll, that is, sell (out of) the front month con-
tract (January) and buy contracts expiring in later months. These TBA rolls
are also called dollar rolls.

A natural question that arises in the context of dollar rolls is whether
TBA prices are fair relative to one another. Because TBAs are forward con-
tracts, several of the insights of Chapters 10 and 11 apply here. First, a
long TBA position is similar to a long position in the underlying pool and
a short repo position (i.e., borrowing money on the collateral of the pool).
Second, TBA prices will exhibit forward drops so long as the carry on the
pool exceeds the repo rate. This is illustrated, in fact, in Table 15.6. The repo
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rate at the time is 10 basis points; all the TBA coupons shown significantly
exceed that repo rate; and TBA prices are lower for later expiration months.
Third, just as each TBA has implicit financing from the trade date to settle-
ment, a TBA roll embeds implicit financing from the expiration of the front
contract to the expiration of the deferred contract.

Market practitioners calculate the value of a roll and the implied
financing rate or breakeven financing rate of a roll along the lines of the
cash-and-carry arbitrage for forward contracts on coupon bonds discussed
in Chapter 11. In that context, however, the forward contract is on a
particular bond and that bond’s coupon is known with certainty. In the
TBA context, because of the delivery option, the forward contract is on an
unknown pool. Furthermore, because of prepayments, the cash flows of
pools are not known with certainty. An industry standard roll analysis puts
these issues aside, essentially assuming that rolls are perfectly equivalent
to mortgage repo. After presenting this analysis, the text returns to the
differences between TBA and repo financing.

Consider an investor who holds $1,000,000 of a 30-year 2.5% pool in
early January 2022. Assume that TBA prices are as in Table 15.6 and that
the mortgage repo rate of 10 basis points is the relevant risk-free rate. Also,
consistent with the discussion in the previous paragraph, assume for the pur-
poses of this analysis that the February cash flow from the pool (payable to
investors on February 25) is known and equal to $10,850.00, which includes
$8,800.00 of principal (both scheduled payments and prepayments).

The investor holding the pool is considering two strategies, both of
which leave the investor with the same outstanding balance of the pool on
2/14: i) hold the pool to February 14, the settlement date of the February
TBA, at which point the principal outstanding balance is $1,000,000 minus
$8,800.00, or $991,200; ii) sell the pool through the January TBA for
101–28 (101.875) and buy back $991,200 of the pool through the February
TBA at 101-20 (101.625). The assumption that the investor will get back
the same pool that had been sold in January is again consistent with the
simplifications of this analysis. Figure 15.7 summarizes these two strategies:
holding the pool, below the line, and ii) rolling, above the line.

The cash flows from holding the pool are very simple. The February
payment of $10,850.00 is received on 2/25, but, for comparison purposes,
is discounted 11 days, back to 2/14, for a present value of $10,850.00∕(1 +
11 × 0.10%∕360) = $10,849.67.

The cash flows from rolling are as follows. The pool is sold through the
January TBA for flat proceeds of $1,000,000 × 101.875 = $1,018,750.00,
plus 12 days of accrued interest, that is, $1,000,000 × 2.50% × 12∕360 =
833.33, for total proceeds of $1,019,583.33. These proceeds are invested
at the repo rate from 1/13 to 2/14, that is, for 32 days, to earn interest of
$1,019,583.33 × 0.10% × 32∕360 = $90.63. The next part of this strategy
is to buy $991,200.00 face amount of the pool through the February TBA at
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1/13 2/14 2/25

Sell $1,000,000 pool through Jan TBA
Proceeds (flat): $1,018,750.00
Accrued Interest: $833.33
Proceeds (full): $1,019,583.33 
Buy $991,200.00 Face of Feb TBA

Proceeds with Interest: $1,019,673.96
Interest on proceeds: $90.63

Buy $991,200.00 Face through Feb TBA
Cost(flat): $1,007,307.00
Accrued Interest: $894.83
Cost (full): $1,008,201.83

Net proceeds: $11,472.13

Hold Pool PV of Payment: $10,849.67 Payment: $10,850.00
Principal: $8,800.00

F IGURE 15.7 Dollar Roll Example, UMBS 30-Year 2.5% Jan−Feb TBAs, as of
January 2022.

a flat cost of $991,200.00 × 101.625% = $1,007,307.00, plus accrued inter-
est of 13 days of $991,200.00 × 2.50% × 13∕360 = $894.83, for a total cost
of $1,008,201.83. Finally, subtracting this cost from the invested proceeds
of the January sale leaves a net of $11,472.13.

Putting the pieces together, both the hold and roll strategies leave the
investor with $991,200 of the pools as of 2/14. But the roll strategy also
leaves the investor with net proceeds of $11,472.13 on 2/14, while the hold
strategy leaves the investor with $10,849.67. The value of the roll, defined
as the difference between these two amounts, is $622.46. Hence, according
to this analysis, the January TBA is rich relative to the February TBA, or, in
other words, investors are willing to pay up to have the 2.5% pools now.

The advantage of the roll is often expressed as an implied or breakeven
financing rate, which, replacing the repo rate, sets the value of the roll to
zero. In this example, the implied financing rate is −58.4 basis points. The
difference between the actual repo rate of 10 basis points and this implied
rate, or about 68 basis points, is known as the specialness of the pools. From
a rates perspective, owners of the 2.5% pools can earn 68 basis points over
repo by giving up their pools for a month.

While the numbers in this example are rounded for easy reading, the
implied financing rate of −58 basis points is consistent with the analysis
circulated by market professionals at the time. The discussion circles
back then, to the simplifying assumptions behind the standard dollar roll
analysis. First, the assumption that the same pool will be returned to the
owner in February overstates the desirability of the roll to the owner of the
pool: the TBA delivery option opens the roll seller to the risk of receiving
a pool of lower value. Second, the prepayment assumption is critical in the
calculation of the breakeven rate. Slower prepayments make holding the
pool more valuable, or equivalently, reduce the value of the roll and increase
the implied financing rate. Third, the assumption of known prepayments
overstates the desirability of holding the pool, or equivalently, understates
the value of the roll, because prepayments are, in fact, uncertain, and
prepayment risk is borne by the holder of the pool.
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In summary, financing in the mortgage market is available directly,
through repo, and indirectly, through TBAs. The liquidity of the TBA
market is a factor in its favor. Repo financing keeps the prepayment risk
of intermediate payments with the owner of the collateral, while TBA
positions avoid that risk. Repo financing keeps control of the collateral;
long TBA positions give up control of collateral; and short TBA positions
are long a delivery option.

15.11 OTHER MBS

This section briefly describes MBS other than individual pools. As mentioned
earlier, because pass-through securities are relatively large, diversified, and
insured portfolios of mortgages, they are owned by a broader investor base
and trade with more liquidity than individual mortgages. Taking this another
step, the agencies combine pools into larger MBS, to create even more diver-
sified and, if successful, more liquid securities. These conglomerated MBS
with FNMA collateral are called Megas; with FHLMC collateral, Giants;
and with collateral from both agencies, Supers.

Another type of MBS of significant size are REMICs (Real Estate
Mortgage Investment Conduits) or CMOs (Collateralized Mortgage
Obligations). While pass-through MBS have proved popular with many
investors, others are less comfortable with prepayment risk, that is, with
securities whose duration can fluctuate widely, as illustrated in Figure 15.6.
Some CMO and REMIC classes or tranches address this problem. SEQs
(sequential pay classes), for example, are structured as follows. The cash
flows from an underlying portfolio of pools are passed through to a number
of distinct SEQ classes. All classes receive monthly interest payments, but
principal payments from the underlying pools are directed first to pay off
the A class. Once the principal amount of the A class is fully paid off,
principal payments from the pools are directed to the B class, and so forth.
While SEQ classes still bear significant prepayment risk, their effective
maturities can be bucketed with somewhat more granularity than standard
pass-through MBS.

PACs, or planned amortization classes, are further along in the spec-
trum of creating more complicated structures so as to create some securi-
ties with less prepayment risk. Once again, the cash flows of an underlying
portfolio of pools are divided across a number of classes. PAC classes, how-
ever, promise fixed schedules of principal payments so long as prepayment
rates stay within set ranges. Making this possible are support or companion
classes that absorb prepayment fluctuations within these ranges. If prepay-
ments are relatively fast, then the support classes get paid principal quickly,
enabling the PAC classes to maintain their fixed payment schedule. Con-
versely, if prepayments are relatively slow, the support classes absorb the
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shock by being paid principal particularly slowly. If prepayment rates move
outside the set ranges, however, the PAC bonds will experience faster or
slower principal payments as well. Similar to PACs are TACs (targeted amor-
tization classes), which protect only against faster prepayments, and which
are usually included in structures that include PACs as well. The issuance of
CMOs offering PACs and TACs is viable, because their classes can be sold
for more than the underlying pools. In other words, some investors are will-
ing to pay up enough for MBS with prepayment protection so as to more
than compensate the investors who buy and take on the amplified risks of
the support classes.

Interest-only (IO) and principal-only (PO) strips are another well-
known set of MBS products. The cash flows of an underlying portfolio
of pools are directed into these two classes by a simple rule: all interest
payments are paid to the IOs and all principal payments to the POs. The
price sensitivities of these strips are larger than many other fixed income
products. As rates fall and prepayments increase, the cash flows of the IOs
begin to vanish. This loss of value more than offsets any gains from higher
discount factors on remaining cash flows, and IO prices decline. Hence
IOs, like mortgage servicing rights, have negative durations at low levels
of rates. Conversely, POs gain dramatically in value as rates decline. They
have the relatively high interest rate sensitivity of zero coupon bonds, with
the added effect of early repayment of principal when rates are low.

15.12 CREDIT RISK TRANSFER SECURIT IES

One reform following the 2008 government rescue of the GSEs was to have
the GSEs sell some of the mortgage default risk from their MBS guarantees
to the private sector. To this end, GSEs started to offer credit risk transfer
(CRT) securities to the public in 2013, called Connecticut Avenue Securities
(CAS) at FNMA and Structural Agency Credit Risk (STACR) securities at
FHLMC.17 The basic idea is that investors buy bonds at par; earn a spread
over a short-term rate; and, in exchange for that spread, bear some of the
default risk on a reference pool of mortgages. More specifically, as defaults
on that pool reach certain thresholds, investors lose some or even all of the
principal on their bonds. A somewhat simplified explanation of how CRTs
work is presented in this section, with reference to a recent offering, CAS
2020-R01, summarized in Table 15.8. The notes actually offered to the pub-
lic through CAS 2020-R01 are highlighted in bold, namely, the M1, M2, and

17The GSEs have additional programs, not discussed in the text, through which
they sell off default risk to insurance companies, called credit insurance risk transfer
(CIRT) at FNMA and agency credit insurance structure (ACIS) at FHLMC.
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TABLE 15.8 Connecticut Avenue Securities (CAS) 2020-R01, Issued in January
2020 and Maturing in January 2040. Spread Is Over One-month LIBOR.

Reference-Pool Balance ($mm): 28,996

Class Notes FNMA Credit Support Thickness Rating Spread
($mm) ($mm) (%) (%) (Fitch) (bps)

A 27,851 3.95
M1 303 16 2.85 1.10 BBB- 80
M2 523 28 0.95 1.90 B 205
B1 207 11 0.20 0.75 NR 325
B2 58 0.00 0.20

Total 1,033

B1 classes. The A and B2 classes, along with the M1, M2, and B1 amounts
in the FNMA column, are fictional: they are included in the description of
CRTs only to explain how the cash flows of the actual notes are determined.

The first step in creating a CRT is to select a group of mortgage loans
for inclusion in the reference pool. All candidate loans are conforming but
are further scrutinized to exclude those with “underwriting defects” and
“performance deficiencies.” This screening is one of several ways the GSEs
seek to assure CRT investors that they are taking representative mortgage
default risk, rather than default risk of a particularly weak group of loans. In
any case, the reference pool chosen for CAS 2020-R01, at the time of issue,
had over 100,000 loans and a total balance of about $29 billion.

At issuance, investors buy a total of $1.033 billion principal amount of
notes at par, $303 million in the M1 class, $523 million in the M2 class, and
$207 million in the B1 class. The proceeds from this sale are deposited into a
trust that earns enough to pay investors a short-term rate on their principal,
here one-month LIBOR. In addition, the GSE commits to contribute some
of the g-fees it earns to pay the CRT investors a spread over that short-term
rate, in particular, 80, 205, and 325 basis points on the M1, M2, and B1
classes, respectively. In exchange for that spread, the investors bear some
of the default risk of the reference pool of mortgages, in a manner to be
described presently.

The return of principal to CRT noteholders depends on the principal
cash flows of the reference pool. It is important to emphasize, however,
that cash flows from the reference pool do not, in any sense, flow to CRT
investors. The owner of each loan in the reference pool, whether a GSE or
some MBS investor, receives all of the interest and principal cash flows from
that loan. The interest and principal paid to CRT investors comes from
the CRT trust, with the interest supplemented by the GSE contributions
mentioned in the previous paragraph.
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As the reference pool makes voluntary principal payments (i.e., sched-
uled principal payments and prepayments that are not due to default), prin-
cipal is returned to the CRT notes. The A or senior class receives principal
in proportion to its outstanding balance relative to the remaining balance of
the reference pool. At issuance, for example, the A class is $27,851/$28,996,
or about 96% of the outstanding reference-pool balance. Therefore, the
A class is allocated 96% of the voluntary principal payments from the refer-
ence pool. Of course, as mentioned earlier, the A class does not really exist,
and is just used for calculating cash flows due to the actual notes. But, along
those lines, the principal balance of the A class is reduced by these fictional
returns of principal. The remainder of principal payments from the reference
pool, or about 4% at the time of issuance, is allocated to the M1, M2, B1,
and B2 or subordinate classes, in order of seniority. This means that, so long
as the M1 class has an outstanding principal balance, all of the principal pay-
ments to the subordinate classes are allocated to M1. When the M1 notes
are completely paid off, these principal payments are allocated to M2 and
so on. Note that the principal payments to the M1, M2, and B1 classes are
real. The calculation of the payments are as described, based on the princi-
pal payments of the reference pool, but the payments themselves come from
the CRT trust into which the original sale proceeds were deposited.

The text now turns to the crux of the structure, namely, the allocation
of default losses in the reference pool to CRT note investors. Once again, to
assure CRT investors, the issuing agency holds the first-loss tranche, which,
for CAS 2020-R01, is the fictional B2 class. According to Table 15.8, FNMA
held $58 million of this class, which is assigned losses starting from a credit
support of 0% to a total thickness of 0.20% of the original $28.996 billion
reference-pool balance, which is also $58 million.18 If the reference pool
suffers $1 million of losses, the principal of the B2 class falls from its original
$58 million to $57 million. If the pool experiences another $5 million of
losses, another $5 million of B2 principal is written down, to $52 million,
and so forth. If cumulative losses ever reach $58 million, the B2 class is
written down to zero.19

If losses are large enough to burn through the first-loss tranche, the real
CRT investors start to lose principal. According to Table 15.8, the original
principal of the B1 class was $218 million, of which 95% or $207 mil-
lion was held by private investors, and 5% or $11 million was assigned to

18The assignment of losses in CRTs is similar to that of collateralized loan obliga-
tions, described in Chapter 14, but the nomenclature is different. The “attachment
point” of CLOs corresponds to the credit support percentage here, and the “detach-
ment point” of CLOs equals the sum of the credit support and thickness percent-
ages here.
19The text abstracts from the fact that recoveries in the event of default are uncertain.
Therefore, losses assigned to tranches can be subsequently reversed if recoveries are
greater than anticipated.
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FNMA. FNMA holds 5% of the B1 class, as well as 5% of the M1 and
M2 classes, as “skin-in-the-game,” to assure investors of each class that
their interests and FNMAs are aligned. These 5% holdings of each class are
examples of vertical slices, because they are treated just as investor holdings
in the same class. Horizontal slices, by contrast, are treated better or worse
than other classes, like the B2 and A classes.

With credit support of 0.2%, B1 does not suffer any principal
write-downs until reference-pool losses exceed 0.2% or $58 million, or,
equivalently, until the B2 class has been wiped out. Any further losses,
however, are for the most part borne by B1 noteholders. If the reference
pool experiences $1 million of losses beyond $58 million, 95% of those
losses or $950,000 result in a write-down of B1 principal from the original
$207 million to $206,050,000, and 5% or $50,000 of those losses result
in a write-down of FNMA’s fictional B1 principal from $11 million to
$10,950,000. Operationally, the CRT trust sends $950,000 to FNMA,
which uses those funds either to compensate MBS investors, or, if the loans
are held in its own portfolio, to avoid suffering losses on its own account.

The B1 class is wiped out itself if losses beyond $58 million equal the
class thickness of 0.75% of the original reference pool, that is, 0.75% times
$28.996 billion, or $218 million. In that case, further losses hit first the M2
and then the M1 classes, in the same way as just described for the more
junior classes. All in all, FNMA’s B2 class bears the first 0.2% of losses; the
B1, M2, and M1 classes bear the next 3.75% of losses, with $1.033 billion
borne by private investors and $55 million by FNMA; and any further losses
are retained by FNMA. With long-term, historical losses rarely exceeding
4.00%, this structure, which resembles that of most other CRTs, is designed
to protect FNMA against losses other than those from its first-loss class and
its skin-in-the-game vertical slices.

Finally, circle back to the relative ratings and spreads of the various
CRT classes in Table 15.8. The more junior the class, the more exposed the
principal to loss, the lower the rating, and the higher the spread. CRTs are
bought mostly by money managers and hedge funds, with money managers
favoring the more senior and hedge funds the more junior classes. Across
some recent issues, about 80% to 95% of M1 classes were bought by money
managers, and between about 60% and 75% of B2 classes were bought by
hedge funds.20

The pandemic and economic shutdowns starting in 2020, bringing
heightened concerns about homeowner defaults and the effects of for-
bearance programs, have challenged the CRT market. Both GSEs, in fact,
stopped issuance for a time, but FHLMC re-entered the market in summer
2020, as did FNMA in the last quarter of 2021.

20Freddie Mac (2021), “Credit Risk Transfer Handbook,” October, p. 23.
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CHAPTER 16
Fixed Income Options

This chapter describes some of the more common fixed income options,
namely: callable bonds, which have embedded options; Euribor futures

options, which are futures-style options; bond futures options, which are
equity-style options; caps and floors; and swaptions. The reader is assumed
to have some familiarity with the basics of options and options pricing. Also,
with the transition to LIBOR replacements still in process at the time of this
writing, caps and floors and swaptions are presented in terms of LIBOR.

While fixed income options are sometimes priced using term structure
models, along the lines of Chapters 7 through 9, this chapter focuses on
pricing with variations of the Black-Scholes-Merton (BSM) option pricing
model. This simpler approach is often used by practitioners when the objec-
tive is not to determine which options among many are relatively cheap or
rich, but rather to interpolate the prices of some options from the prices of
similar, but more liquid options, and to calculate usefully accurate deltas or
hedge ratios. An extensive appendix justifies the use of BSM in each case
with mathematically simplified versions of modern asset pricing techniques.

16.1 EMBEDDED BOND CALL OPTIONS

There is not much of a market for stand-alone options on bonds, but many
corporate bonds include call provisions that give the issuer the right to call
or buy back its bonds at some fixed schedule of prices. These provisions
are called embedded options, because they do not trade separately or inde-
pendently of the bonds. In any case, the relevant institutional background
is given in Chapter 14. This section, for purposes of discussion, takes as
an example the Bank of America (BoA) 2.305s of 02/22/2039, which were
issued in February 2019. They are callable by BoA on February 22, 2029,
at par, or 100% of face value. Table 16.1 lists this bond, along with two
others that are used in this section as reference bonds. All three bonds are
denominated in euros, and they were issued by banks that, as of the pricing
date, are rated A2 by Moody’s. Only the BoA bonds, however, are callable.

433
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TABLE 16.1 Callable Bank of America Bond and Two Reference Noncallable
Bonds. All Cash Flows Are Denominated in Euros. Prices Are as of August 23,
2021. Coupons Are in Percent.

Issuer Coupon Maturity Call Provisions Price

Bank of America 2.305 02/22/2039 Callable on
02/22/29 @100

113.296

DZ Bank 0.75 02/22/2029 Noncallable 104.566
Banco Santander 2.28 02/28/2039 Noncallable 118.044

The DZ Bank bonds mature on the date the BoA bonds are callable, and the
Banco Santander bonds mature on the same date as the BoA bonds.

BoA will exercise its call option if rates on the call date are low relative
to BoA’s cost of funds. For example, if BoA can issue new 10-year debt at
1.75% as of the call date, it will likely call the 2.305s of 02/22/2039 at a price
of 100 and raise the funds to do so by selling new, 10-year debt at 1.75%.
In this way, BoA reduces its interest cost over the subsequent 10 years from
2.305% to 1.75%. On the other hand, if BoA’s cost of new 10-year debt
is 2.50% on the call date, it will not exercise its option, and it will leave
outstanding its 2.305s of 02/22/2039. Return then to Table 16.1. If rates
are low as of the pricing date, it is more likely that the BoA bonds will be
called in 2029, which is the maturity of the DZ Bank bonds. If, on the other
hand, rates are high as of the pricing date, it is less likely that the BoA bonds
will be called in 2029, that is, more likely that they will remain outstanding
until 2039, which is the maturity of the Banco Santander bonds. Hence, the
effective maturity and duration of the BoA bonds changes from that of a
7.5-year bond, when rates are low and the call is very likely to be exercised,
to that of a 17.5-year bond, when rates are high and the call is very unlikely
to be exercised.

Because the BoA embedded call is a European-style option, it is partic-
ularly suitable for pricing by BSM.1 More specifically, consider a fictional,
noncallable BoA bond with a coupon of 2.305% and a maturity of Febru-
ary 22, 2039. The embedded call provision is then a call option on that
fictional, underlying bond struck at par, and the value of the BoA callable
bond equals the value of the underlying bond minus the value of the option.
Essentially, bondholders own the underlying noncallable bond and have sold
a call option to the issuer to buy that bond at par.

The BSM approach to pricing the BoA embedded call option is laid out
in Table 16.2. Under the assumption that the forward underlying bond price

1A European option is exercisable at expiration. An American option is exercisable
at any time between a first exercise date and expiration. And a Bermudan option is
exercisable on a discrete set of dates.
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TABLE 16.2 Pricing the Embedded Call Option of the Bank
of America 2.305s of 02/22/2039, as of August 23, 2021.

Quantity Value

S0 103.732
T 7.496
K 100
𝜎 5.238%
d0(T) 0.990
𝜉

LN(S0,T,K, 𝜎) 7.877
VBondCall

0 = d0(T)𝜉LN(S0,T,K, 𝜎) 7.797

Forward Rate: August 2021 to Feb 2029 0.137%
Forward Rate: Feb 2029 to Feb 2039 2.050%
Spread −0.158%
(Fictional) Noncallable Price 122.347
Callable Price 114.551

is lognormally distributed, Appendix A16.3 shows that the value of a call
on a bond is,

d0(T)𝜉LN(S0,T,K, 𝜎) (16.1)

where d0(T) is the discount factor to the option expiration date, T; S0 is
the forward price of the underlying bond for delivery on date T; K is the
strike price; and 𝜎 is the volatility, which, under the lognormal assumption,
is expressed as a percentage of price. The function 𝜉

LN is as given in
Appendix A16.4.

Two of the required inputs of (16.1) are not easily available, namely
the forward price to the call date of the fictional, underlying bond, and
the volatility. There are several ways to estimate these missing values, but
Table 16.2 takes the following approach. First, find the two forward rates –
one from the pricing date to the BoA bond’s call date, and one from the
call date to the BoA bond’s maturity date – that recover the prices of the
DZ Bank and Banco Santander reference bonds. Then, using these rates,
calculate that the forward price of the underlying BoA bond is 102.29.
Second, assume that the relevant volatility is 59.8 basis points, which is
that of an at-the-money (ATM) EUR swaption with an option expiration of
seven years and an underlying tenor of 10 years, which terms are close to
that of the embedded call option. Then, convert this basis-point volatility
to a percentage volatility. The DV01 of the underlying forward bond, using
the term structure just described, is 0.0896. Therefore, a volatility of 59.8
basis points corresponds to a price volatility of 59.8 times 0.0896, or 5.36,
which, in turn, corresponds to a percentage price volatility of 5.36∕102.29,
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or 5.24%. Not surprisingly, pricing the callable bond with this forward
price and volatility does not exactly match the observed market price of
114.551 (including accrued interest). The third and final step, therefore, is
to add a spread to the constructed forward rates that recovers the market
price of the BoA callable bond. More precisely, for any spread, calculate
the price of the underlying bond; calculate the value of the call option; and
calculate the value of the callable bond as the difference between those two
values. Iterate on the spread until the callable bond value equals its market
price. Through this iteration, by the way, the percentage price volatility is
kept constant at the 5.24% calculated previously. In any case, Table 16.2
reports the final numbers. The resulting spread is about minus 16 basis
points, which increases the previously calculated underlying forward price
to 103.732, and the resulting option value is 7.797. Within this framework,
of course, a trader could calculate the DV01 of the callable bond, which
can be used quantify, manage, or hedge its interest rate risk.

Figure 16.1 illustrates the interest rate behavior of callable bonds by
graphing the prices of the three bonds in Table 16.7 against the yield of the
Banco Santander bonds. The start of the pandemic and economic shutdowns
is omitted, leaving pre-pandemic data, from April 30, 2019, to February
28, 2020, and post-pandemic data from May 4, 2020, to September 17,
2021. The Banco Santander and DZ Bank bonds, which are not callable,
have price–yield relationships that are close to linear. These curves are
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F IGURE 16.1 Prices of the Banco Santander 2.28s of 02/28/2039, the Bank of
America 2.305s of 02/22/2039, and the DZ Bank 0.75s of 02/22/2029, Against
the Yield of the Santander Bonds. The “Pre-Pandemic” Period Is April 30, 2019, to
February 28, 2020, and the “Post-Pandemic Period” Is May 4, 2020, to September
17, 2021. The DZ Bank Bonds Were Issued in February 2021.
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actually positively convex, of course, like all fixed-coupon bonds, but the
nonlinearities are too small to be seen in the figure. Prices of the DZ Bank
bond are relatively low, because of its low coupon. The price–yield curves
of both the DZ Bank bond and the Banco Santander bond are downward
sloping, of course, but the DZ curve is relatively flat, while the Santander
curve is relatively steep, because the former matures in 7.5 years and the
latter in 17.5 years. The price behavior of the callable BoA bond, however,
is quite different, as it displays sharp and noticeable negative convexity.
At high yield levels, where the likelihood of its being called in the future is
low, its price–yield behavior resembles that of the similar-maturity Banco
Santander bond. On the other hand, at low yield levels, where the likelihood
of its being called in the future is high, its price sensitivity to rates declines:
investors are likely to enjoy the now relatively high-coupon of the bond for
only another 7.5 years, not for another 17.5 years. Hence, the slope of the
BoA bond’s price-yield curve flattens and approaches that of the 7.5-year
DZ Bank bond. The BoA bonds seem to have experienced a particularly
large price drop relative to Banco Santander bonds after the pandemic. This
might be a divergence of issuer-specific spreads, or it might be that increased
rate volatility increased the value of the embedded call and reduced the
price of the callable bond.

Many callable bonds have more complex call provisions that that of the
BoA bonds. For example, a new 30-year bond with a coupon of 5% might be
callable in 10 years at a price of 102.50, and callable thereafter at prices that
decline gradually each year until reaching 100. When this bond is issued, and
the first call date is 10 years distant, most of the value of the call is at that
first date and the BSM approach described in this section might be perfectly
adequate. To elaborate, if the bond is unlikely to be called in 10 years at a
price of 102.50, it is also unlikely to be called in 11 years at a price of, say,
102.375. Closer to the period over which the call provision is live, however,
its American or Bermudan features can become more important, and the
European-style assumption of BSM becomes less suitable. In these situations,
it is more appropriate to apply a term structure model along the lines of
Chapters 7 through 9:

1. Create an appropriate risk-neutral tree of short-term rates. In some cases
the short-term rate process is designed to price bonds of the issuer selling
the callable bond, but in most cases the process would correspond to a
swap or government bond benchmarks. A firm- or bond-specific spread
or option-adjusted spread (OAS) would then be added to rates for bond
valuations.

2. Using the risk-neutral tree methodology, calculate the value along the
tree of an otherwise identical, noncallable bond, that is, a noncallable
bond with the same scheduled coupon and principal payments as the
callable bond being priced.
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3. Calculate the value along the tree of the call option embedded in the
callable bond. Consistent with the well-known methods for pricing
American- or Bermudan-style options along a tree, start from the
maturity date of the option and work backwards, using the rules that
i) the value of the option at any node equals the maximum of the
value of immediately exercising the option and the value of holding
the option for another period; and ii) the value of holding the option
for another period at any node is its expected discounted value in the
risk-neutral tree.

4. The value of the callable bond equals the value of the otherwise identical
noncallable bond minus the value of the option.

With this valuation procedure in place, other computations are straight-
forward. Given a market price for the callable bond, an OAS can be com-
puted along the lines of Chapter 7. Also, an option-adjusted duration (OAD)
or DV01 can be calculated by perturbing the short-term rate factor and
repeating steps 1 to 4 or, for a metric more similar to yield-based sensi-
tivities, by perturbing the initial term structure and repeating the valuation
procedure.

16.2 EURIBOR FUTURES OPTIONS

Euribor futures contracts are discussed in Chapter 12. Options on Euribor
futures are futures-style options, because, like futures, all of their profits or
losses are in the form of daily settlement payments. To explain the workings
of this kind of option, consider a futures-style call option with a strike of
97.0 on some underlying futures contract. If the futures price at the expira-
tion of the option is 99.0, then the final settlement price of the call option
is 99.0 minus 97.0, or 2.0. If the futures price at expiration of the option is
95.0, then the final settlement price of the call option is zero. In other words,
the final settlement price of the call option is its intrinsic value, that is, the
maximum of zero and the difference between the underlying price and the
strike.2

2The final option settlement price is actually determined through the following
mechanics. Exercising a call option results in having to pay the final settlement price
of the option in exchange for a position in the underlying futures contract – priced at
99 in the example – at an assigned price equal to the strike of 97. That futures posi-
tion and assignment results in an immediate settlement payment of 2.0. By arbitrage,
then, the final settlement price of the option must be 2.0. Through these mechanics,
the option is physically settled with a position in the underlying futures contract that
can be kept or sold.



Trim Size: 6in x 9in Tuckman835554 c16.tex V1 - 07/12/2022 11:22am Page 439�

� �

�

Fixed Income Options 439

Now say that a trader buys the 97 call sometime before expiration at a
price of 0.20. Because this is a future-style option, the trader does not pay
that 0.20 as a premium. Instead, the trader enters into the option contract
like any other futures contract: the current contract price is 0.20, and all
subsequent changes in the option price trigger daily settlement payments.
If, at expiration, the underlying futures price is 99, the final settlement of
the 97 call is 2.0, and the total of the trader’s daily settlement payments will
have been 2.0 minus 0.20, or 1.80. Hence, the total profit of the trader is the
same 1.80 as that of a traditional call option – the final underlying price of
99, minus the strike of 97, minus the premium of 0.20. But in the case of the
futures-style option, that 1.80 is realized as a sequence of daily settlement
payments. Similarly, if, at expiration, the underlying futures price is 95.0, the
final settlement price of the 97 call is zero, and the total of the trader’s daily
settlement payments will have been negative 0.20. Again, the total payoff is
the same as that of a traditional call option that finishes out-of-the-money,
that is, the loss of the premium, but this loss is realized in the form of daily
settlement payments.

As explained in Chapter 12, the price of a Euribor futures contract is set
to 100 minus its percentage rate. In the example of the previous paragraph,
the strike price of 97 corresponds to a rate of (100 − 97)/100, or 3%, and the
final underlying futures settlement price of 99 corresponds to a rate of 1%.
Furthermore, as also explained in Chapter 12, Euribor futures contracts are
scaled so that a decline of one basis point in rate is worth €25. Hence, the
difference between the strike and final settlement rates, which is 3% minus
1% or 200 basis points, is worth 200 times €25, or €5,000. More generally,
if the call option strike in terms of rate is K, and the final settlement rate of
the underlying futures contract is R, then the final settlement price of the call
option is,

[K − R]+ × 10,000 × €25 = €250,000 × [K − R]+ (16.2)

where [K − R]+ is shorthand for the maximum of K − R and 0, and the factor
of 10,000 simply converts the rate gain, if any, to basis points, so as to be
multiplied by €25. Analogously, the payoff of a put option on a rates futures
contract is,

[R − K]+ × 10,000 × €25 = €250,000 × [R − K]+ (16.3)

Equations (16.2) and (16.3) show that a call option on the futures price
can be expressed as a put option on its rate, and a put option on the price can
be expressed as a call option on its rate. With this insight and the assumption
that futures rates are normally distributed, Appendix A16.3 shows that the
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TABLE 16.3 A 100.25 Call on September 2022
Three-Month Euribor Futures, as of February 28,
2022. The Futures Price Is 100.235. The Contract
and Option Mature on September 19, 2022.

Quantity Value

S0 −0.2350%

T
203
365

= 0.5562

K −0.25%
𝜎 0.6842%
𝜋

N(S0,T,K, 𝜎) 0.1961%
V0 = €250,000 × 𝜋

N €490.34

prices of call and put options on Euribor futures are given by the following
expressions, respectively,

€250,000 × 𝜋

N(S0,T,K, 𝜎) (16.4)

€250,000 × 𝜉

N(S0,T,K, 𝜎) (16.5)

where S0 is the current futures rate; T is the time to option expiration in
years; K is the strike, in terms of rate; and 𝜎 is the basis-point volatility of
the futures rates. The functions 𝜋N and 𝜉

N are as given in Appendix A16.4.
Note that these formulae are not preceded by a discount factor, because
these options are themselves futures: their prices equal their expected value
under the risk-neutral measure, or equivalently, there is no initial premium
on which a return need be earned. Also, the BSM model is readily applied
here, because American futures-style options are not optimally exercised
early: with daily settlement of the option value, there is no intrinsic value to
be realized by exercise and, therefore, no reason to sacrifice the remaining
time value of the option.

Table 16.3 applies Equation (16.4) to a call on the September 2022
Euribor futures contract with a strike of 100.125. As of the pricing date,
the futures price is 100.235, which corresponds to a rate of −0.2350%. The
futures contract and the option both mature on September 19, 2022, which
is 203 days from the pricing date.

16.3 BOND FUTURES OPTIONS

Bond futures in the United States are discussed in Chapter 11. Options on
these futures contracts are traditional or equity-style options, which means
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that, like options on stocks, purchasers of options pay a premium at the time
of purchase and, if exercised, realize their intrinsic values.

Options on bond futures can be valued with term structure models.
In a one-factor model, for example, after creating a risk-neutral tree for the
futures price, the value of a futures option can be computed by starting from
the maturity date of the option and working backwards, using the rule that
the value of the option at each node is the maximum of the value of holding
the option and of exercising it immediately. Of course, because the deliv-
ery options embedded in bond futures may not be modeled adequately by a
one-factor model, multi-factor approaches might be preferred.

While simple conceptually, it is apparent from Chapter 11 that build-
ing a futures model takes a good deal of effort. Therefore, practitioners
who do not otherwise need such a model tend to use a BSM approach
for bond futures options. The required assumptions are that: the option is
European; the discount factor to option expiration is uncorrelated with the
underlying futures price; and the futures price is lognormal with constant
volatility. The assumption that the option is European, that is, that early
exercise is not optimal, is reasonable in practice. Early exercise of an equity-
style futures option may be optimal if interest earned on the realized intrin-
sic value exceeds the time value of the option, but this is rarely the case.
For some intuition on this point, note that early exercise of a put on a
stock may be optimal, because of the potential of earning interest on the
entire strike price, not just on its intrinsic value. The assumption that the
discount factor is uncorrelated with the bond futures price is not bad in
practice. Bond futures options typically mature in a few months or less,
while the bond underlying the futures contract typically matures in many
years. Hence, the correlation is typically weak between the discount factor,
which depends on very short-term rates, and the bond futures price, which
depends on longer-term rates. The assumption of constant price volatility,
however, essentially assumes away the delivery options of bond futures: as
rates change and the cheapest-to-deliver bond changes, the DV01 and, there-
fore, the price volatility of the futures changes as well. (See Chapter 11.)
While perhaps acceptable when interest rates are low relative to the con-
tract’s notional coupon, ignoring the delivery option seems to undercut one
of the main motivations for using BSM in the first place, namely, to obtain
accurate deltas. Nevertheless, BSM is used in practice in this context.

Under the assumptions listed in the previous paragraph, Appendix
A16.3 shows that calls and puts on US Treasury note and bond futures
contracts are given by, respectively,

$N × d0(T) × 𝜉

LN(S0,T,K, 𝜎)∕100 (16.6)

$N × d0(T) × 𝜋

LN(S0,T,K, 𝜎)∕100 (16.7)
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TABLE 16.4 A Call Option on the June 10-Year
Treasury Note Futures Contract, as of February 28,
2022. The Futures Contract and Option Mature on
June 21, 2022.

Quantity Value

S0 126.3438

T
113
365

= 0.3096

K 126.5
𝜎 5.655%
d0(T) 0.9979%

𝜉

LN(S0,T,K, 𝜎) 1.50996

V0 = $100,000 × d0(T) × 𝜉

LN/100 $1,509.96

where N is the face amount of bonds per contract; S0 is the futures price;
T is the time to option expiration; K is the strike price; 𝜎 is the lognormal
or percentage price volatility; and d0(T) is the discount factor to option
expiration. Table 16.4 applies Equation (16.6) to a call option on the June
10-year US Treasury note futures contract as of the end of February 2022,
where both the futures and option contracts expire on June 21, 2022. Note
that there are 113 days from February 28, 2022, to June 21, 2022.

16.4 CAPS AND FLOORS

The easiest way to describe caps is to start with caplets, even though caps
are the more traded derivative. At the end of a given accrual period, a caplet
pays the greater of zero and of LIBOR minus a strike, where LIBOR is set
at the beginning of the accrual period. Consider, for example, a caplet with
a three-month LIBOR reset date of February 14, 2022, a payment date of
May 14, 2022, and a strike of .181%. Note that there are 89 days over this
accrual period. If LIBOR on February 14, 2022, turns out to be L, then a
unit notional of the caplet will pay, on May 14, 2022,

89
360

[L − .181%]+ (16.8)

where, as mentioned already, [L − .181%]+ is another way of writing max
[L − 0.181%,0]. Note that the payoff of a caplet looks like that of an option,
but the maximum is a feature of the contract rather than a result of optimal
exercise behavior.

Caplets are typically valued by practitioners under the assumption that
forward LIBOR rates are normally distributed. Under this assumption,
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Appendix A16.3 shows that the value of a caplet with a reset at time T and
payment at time T + 𝜏 is given by,

𝜏d0(T + 𝜏)𝜉N(S0,T,K, 𝜎) (16.9)

where 𝜏 is the term of the reference rate; d0(T + 𝜏) is the discount factor
to the payment date; S0 is today’s forward rate from T to T + 𝜏; K is the
strike; 𝜎 the basis-point volatility of the forward rate; and 𝜉

N the BSM-style
formula defined in Appendix A16.4. Table 16.5 applies Equation (16.9) to
100 notional of the caplet introduced previously, as of May 14, 2021. Note
that there are 276 days from the pricing date, May 14, 2021, to the reset
date, February 14, 2022.3 The appropriate discount factor to the payment
date, derived from the swap curve, is .998191. Finally, a volatility of 12.09
basis points, which comes from the discussion, is used to derive the price of
.0129 cents per 100 notional amount.

A cap is a portfolio of caplets, with the value of the cap being the sum
of the value of its component caplets. The implied volatility of a cap is the
volatility that, when used to value every component caplet, results in the
market price of the cap. This leads to some complexities, as will be discussed
presently, because the term structure of caplet volatility is not flat. In other
words, every caplet is properly valued at its own volatility even though, when
quoting the price of a cap, all of its component caplets are valued at a single,
cap volatility.

TABLE 16.5 Pricing a Caplet with a LIBOR
Reset on February 14, 2022, and a Payment Date
on May 14, 2022, as of May 14, 2021.

Quantity Value

S0 .200%

T
276
365

= .7562

𝜏

89
360

= .2472

K .181%
𝜎 .1209%
d0(T + 𝜏) .998191

𝜉

N(S0,T,K, 𝜎) .00052

VCaplet
0 = 100 × 𝜏d0(T + 𝜏)𝜉N .0129

3For simplicity, this presentation does not distinguish between business and
non-business days.
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Table 16.6 illustrates the structure of a cap and cap pricing with a
one-year US dollar ATM cap as of May 14, 2021. This cap is ATM because
its strike of 0.181% equals the rate of the corresponding swap, which, in
this case, is the one-year swap. The cap strike of 0.181% means that every
component caplet has a strike of 0.181%. The cap volatility of 12.09 basis
points means that the price of the cap is the sum of the component caplet
values when each caplet is valued at a volatility of 12.09 basis points. The
forward rates are derived from the swap curve, and the caplet premiums
are calculated from the normal BSM formula, with: each respective forward
rate; a strike of 0.181%; a volatility of 12.09 basis points; and appropriate
date parameters and discount factors along the lines of Table 16.5. In fact,
the caplet in Table 16.6 that pays on May 14, 2022, is the same caplet that
is valued in Table 16.5.

Note that what might have been the first caplet in Table 16.6, with a
LIBOR reset at the start of the cap initiation and a payment on August 14,
2021, is omitted from the table. The payment from such a caplet is known as
of the start of the cap and, as such, has no option-like premium: it is simply
worth its present value. In fact, in this example, where the initial LIBOR
setting is below the strike, at .155%, the payment from this caplet is zero. In
any case, along these lines, the first caplet payment is usually omitted from
a cap.

The one-year cap in the example is a spot starting cap; that is, putting
aside the skipping of the first payment, the schedule of payments starts imme-
diately. There is also an active market, however, in forward starting caps. In
a 5 × 5 cap, the first reset is in five years, the first payment in five years plus
the length of the accrual period (e.g., five years and three months), and the
last payment in 10 years.

As mentioned before, if caplets traded individually, they would be priced
at individual volatilities, not at a single, cap volatility. In other words, there

TABLE 16.6 The Structure and Pricing of a One-Year Cap as of
May 14, 2021. Rates Are in Percent.

Cap Strike .181%

Cap Volatility .1209%

Dates

Reset Payment Forward Rate Caplet Premium

05/14/2021 08/14/2021 .155
08/14/2021 11/14/2021 .160 .0039
11/14/2021 02/14/2022 .200 .0114
02/14/2022 05/14/2022 .200 .0129
Sum .0281
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is a term structure of caplet volatilities. This term structure is interesting for
use as another perspective on the market price of volatility and for com-
parison with – and perhaps trading opportunities against – other volatility
instruments. In theory, the term structure of caplet volatility could be recov-
ered from caps of sequential terms. The problem is complicated, however,
by the fact that the most traded and useful volatilities are ATM volatilities,
which, in the case of caplets, correspond to caplets with strikes equal to their
underlying forward rates. But the strikes of caplets that are part of caps all
have a single strike that cannot, in general, equal the underlying forward rate
for every component cap. Furthermore, as discussed presently, the volatilities
of options that are and are not ATM can be significantly different from each
other. Hence, the extraction of caplet volatilities from caps is often combined
with some adjustment for the caplet strikes not being ATM.

Floorlets and floors are analogous to caplets and caps. The payment of
a floorlet at time T + 𝜏, determined by the LIBOR rate set at time T, is,

𝜏[K − L]+ (16.10)

Assuming normal forward rates, the value of a floorlet is given by,

𝜏d0(T + 𝜏)𝜋N(S0,T,K, 𝜎) (16.11)

where the function 𝜋

N is given in Appendix A16.4. The value of a floor is
the sum of the values of its component floorlets.

Applying put-call parity, the prices of an ATM caplet and an ATM floor-
let with the same expiration are equal, as are the prices of matched-date ATM
caps and floors. Say, for example, that the five-year swap rate, five years for-
ward, is 5%. Then paying fixed on this forward starting swap and buying a
5 × 5 floor with a strike of 5% has exactly the same cash flows as a 5 × 5
cap with a strike of 5%. But, by definition, the value of the forward swap is
zero. Hence, the values of the cap and the floor must be the same.

16.5 SWAPTIONS

A swaption is an over-the-counter (OTC) contract that gives the buyer the
right, at expiration, to enter into a fixed-for-floating interest rate swap of
a prespecified maturity and strike rate. For example, a “2-year-5-year” or
“2y5y” swaption is a two-year option to enter into a five-year swap at some
prespecified strike. A receiver swaption gives the buyer the right to receive
fixed and pay floating, while a payer swaption gives the buyer the right to
pay fixed and receive floating.

For presenting the pricing of swaptions, consider a $100 million 2.36%
5y5y receiver swaption traded on May 14, 2021. This option gives the buyer
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the right, in five years, on May 14, 2026, to receive 2.36% and pay LIBOR
on $100 million for five years, that is, until May 14, 2031. To write down
the value of this swaption at expiration, let C5(5,10) denote the five-year
par swap rate, five years from today (which matures in 10 years), and let
A5(5,10) denote the value five years from today of an annuity of $1 per year,
paid on each of the fixed-rate payment dates of a five-year swap starting in
five years (and ending in 10 years). Then, in five years, at the expiration of
the swaption, the value of receiving 2.36% for five years is,

$100 mm × [2.36% − C5(5,10)]+ × A5(5,10) (16.12)

Inspection of the payoff (16.12) reveals that a 5y5y receiver swaption
is a put on the five-year par swap rate, five year forward. More generally,
a T-year-𝜏-year receiver swaption is a T-year put option on the 𝜏-year par
swap rate, T-years forward. Similarly, a T-year-𝜏-year payer swaption is a
T-year call option on the 𝜏-year par swap rate, T-years forward.

Table 16.7 applies BSM to the example of this section. As just discussed,
the rate underlying the 2.36% 5y5y receiver option traded on May 14, 2021,
is the forward par rate on a swap from May 14, 2026, to May 14, 2031.
Hence S0 of BSM is 2.36%, and the swaption of the example, with its strike
at 2.36%, is ATM.4 For the 2.36% 5y5y, the other parameters are clearly
T = 5, 𝜏 = 5, and K = 2.36%. The value of the annuity on the swap from
May 14, 2026, to May 14, 2031, as of May 14, 2021, is 4.287. Finally,
the market price of this receiver option on the pricing date is 3.03 per 100
notional amount or $3.03 million on $100 million. Appendix A16.3 shows
that, when the underlying forward swap rate is normally distributed, the
value of a receiver swaption per unit notional is,

A0(T,T + 𝜏) × 𝜋

N(S0,T,K, 𝜎) (16.13)

where 𝜋

N is once again from Appendix A16.4. Setting the market price of
$3.03 million equal to $100 million times (16.13), Table 16.7 shows that
the implied volatility of this swaption is 0.793%.

The analogous formula for a payer swaption per unit notional is,

A0(T,T + 𝜏) × 𝜉

N(S0,T,K, 𝜎) (16.14)

The prices of ATM swaptions, which are by far the most commonly
traded swaptions, are quoted in a matrix of either premia or implied normal
volatilities. Table 16.8 is an example of the latter for US dollar swaptions

4A higher strike would make the receiver swaption in-the-money, while a lower strike
would make it out-of-money
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TABLE 16.7 A 5y5y Receiver Swaption per 100 Notional
Amount of Swaps, as of May 14, 2021.

Quantity Value

S0 2.36%
T 5
𝜏 5
K 2.36%
𝜎 0.793%
A0(T,T + 𝜏) 4.287
𝜋

N(S0,T,K, 𝜎) 0.007074
VReceiver

0 = $100 mm ×A × 𝜋

N 3.03 mm

TABLE 16.8 USD ATM Swaption Normal Volatilities in Basis Points, as of May
14, 2021.

Swap Tenor
Option
Exp. 1y 2y 3y 4y 5y 7y 10y 12y 15y 20y 30y

1m 12.1 18.6 34.1 45.9 57.1 64.7 70.7 71.0 71.1 71.3 71.5
3m 14.1 23.3 39.8 51.7 62.5 69.2 74.4 74.5 74.4 74.3 74.3
6m 16.7 29.4 45.5 56.0 66.4 72.0 76.3 76.2 75.8 75.6 75.3
1y 29.3 44.1 57.0 64.1 70.3 73.9 76.8 76.5 75.8 75.0 74.2
2y 59.2 68.9 73.3 76.0 77.2 77.5 77.7 77.0 75.7 74.1 72.9
3y 76.7 79.6 79.5 79.4 79.3 78.6 77.6 76.7 75.1 72.8 71.2
4y 81.4 81.2 80.7 80.2 79.8 78.4 76.6 75.5 73.7 71.3 69.4
5y 82.3 81.2 80.5 79.9 79.3 77.7 75.4 74.1 72.2 69.9 67.5
10y 73.5 72.3 71.8 71.2 70.8 69.2 66.8 65.6 63.8 61.6 59.4

as of May 14, 2021. For example, the ATM 2y10y options is priced with
an implied volatility of 77.7 basis points.5 The price of the 5y5y option
introduced previously is quoted at a volatility of 79.3 basis points.

Swaption skew, discussed in the next section, refers to the fact that
implied volatilities for ATM swaptions in Table 16.8 are valid only for
ATM swaptions. The broader swaptions market, therefore, actually trades
a volatility cube, where the third dimension represents strike, usually in 50
basis-point increments away from the forward swap rate corresponding to
each entry of the swaption matrix. For a 5y5y as of May 14, 2021, with
the underlying par forward swap at 2.36%, a volatility cube would show

5ATM calls and puts have the same BSM values. This is easy to verify from
Equations (A16.60) through (A16.66).
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volatilities for the 5y5y at higher strikes of 2.86%, 3.36%, and so forth,
and for lower strikes of 1.86%, 1.36%, etc.

The skew applies not only for trading swaptions that are not ATM but
also for valuing or marking existing swaptions that were initiated as ATM
options. Consider the 2.36% 5y5y receiver swaption traded on May 14,
2021. The underlying swap of this swaption, from initiation to expiration,
is a 2.36% swap from May 14, 2025, to May 14, 2031. As of May 14, 2021,
this swap is a par swap, but over time this will no longer be the case. Say,
for example, that one month later, on June 14, 2021, the rate of the forward
par swap corresponding to those dates is 2.50%. In that case, the 2.36%
receiver swaption can be characterized as a 4-year-11-month-5-year that is
14 basis points out-of-the-money. Valuing the option, therefore, requires an
interpolation between the ATM and the 50 basis-point, out-of-the-money
volatilities, as well as an interpolation between the 4y5y and 5y5y option
expirations. In practice, these interpolations are carried out by means of a
stochastic volatility model, discussed later in this chapter.

This section describes swaptions as if they are physically settled, mean-
ing that, at expiration, the counterparties enter into a swap at the appro-
priate rate and maturity. In fact, however, swaptions in the United States
are almost always cash settled and, in Europe, can be physically or cash
settled. In the United States, the cash settlement is found by multiplying the
appropriate annuity factor, evaluated along the swap curve, by the difference
between the par rate and the strike, in the case of payers, or the difference
between the strike and the par rate, in the case of receivers. In Europe, the
annuity factor is computed at a flat rate equal to the appropriate par swap
rate, which can lead to very minor valuation differences between the two
forms of settlement. As a final note, for some swaptions in Europe, the pre-
mium is paid at the expiration date rather than the trade date, which changes
valuations accordingly.

16.6 SWAPTION SKEW

The BSM normal model, as applied in the previous section, has a single
and constant volatility parameter. Taking the model literally, this would
imply that all swaptions can be priced with a single basis-point volatility.
Figure 16.2 illustrates, however, that this is not the case: even across swap-
tions with the same expiration and underlying tenor, like either the 2y2y
and 5y10y swaptions in the figure, implied volatilities vary significantly with
strike. As of the pricing date, the two-year swap rate, two years forward is
1.11% (not shown in the figure), which is the ATM strike for 2y2y swap-
tions. The darker gray curve shows, therefore, that 2y2y implied volatilities
increase mostly linearly from 56 basis points at a strike of 0.11%, which
is 100 basis points below the ATM strike, to 125 basis points at a strike
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F IGURE 16.2 Implied Basis-Point Volatilities of 2y2y and 5y10y US Dollar Swap-
tions Across Strikes, as of May 14, 2021.

of 4.11%, which is 300 basis points above the ATM strike. At the same
time, the 10-year swap rate, five years forward is 2.43%. The lighter gray
curve of the figure shows, therefore, that implied volatilities of 5y10y swap-
tions are roughly 75 basis points for strikes below that ATM strike, and then
increase along the curve shown to 95 basis points at a strike 300 basis points
over the ATM strike. The phenomenon that basis-point volatility is not con-
stant across strikes is known as the volatility skew. The phenomenon that
basis-point volatility is higher for both in- and out-of-the-money options
than for at-the-money options, as seen here for 5y10y swaptions, is known
as the smile, or, to the extent this effect is not symmetric, the smirk.

The existence of a skew does not prevent traders from quoting swap-
tion prices in terms of normal BSM volatility or vice versa, so long as the
volatilities vary with strike. But practitioners rely on BSM not just to quote
a price or volatility, but also to compute delta, that is, to compute how the
value of a swaption changes as its underlying forward rate changes. And
the usefulness of BSM for this purpose is cast into doubt by Figure 16.2.
Without getting into great detail here, the implied volatility of an option at
a given strike can be thought of as the expected gamma-weighted average of
instantaneous volatilities over possible paths of the underlying forward rate
as it changes from its current level to the strike. From this perspective, the
implied volatility curves in Figure 16.2 mean that instantaneous volatilities
vary in a complex way with the level the forward rate. In that case, however,
the value of an option changes with the level of rates in two ways: a direct
effect, that is, the change in the underlying forward; and an indirect effect,
that is, the change in volatility as a result of the change in the level of rates.
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But the BSM delta, which is traditionally computed as the change in option
value for a change in the underlying at a given volatility, captures only the
direct effect.

The search for a model that can capture the underlying dynamics of
volatility as a function of forward rates has taken two very broad paths.
The first is to change the distribution of the forward rate away from nor-
mal. For example, a constant-volatility lognormal model of rates assumes
that volatility is proportional to rates, which might be useful in explaining
some manifestations of the skew, like parts of the 2y2y curve in Figure 16.2.
In any case, along these lines, the shifted lognormal model allows for the
distribution of the underlying forward rate to be between normal and log-
normal. The defining dynamics of the forward rate, S, in this model are,

dSt = 𝜙(St)𝜎𝜖t

√
dt (16.15)

𝜖t ∼ N(0,1) (16.16)

𝜙(St) = a + St (16.17)

with a ≥ 0. When a = 0, 𝜙(St) = St, the basis-point volatility in Equation
(16.15) is just 𝜎St, that is, a constant proportion of the forward rate. There-
fore, the distribution of the rate is lognormal. At the other extreme, as a
approaches infinity, 𝜙(St) in (16.17) approaches the constant a, which means
that the volatility in (16.15) approaches a constant and, therefore, that the
distribution approaches normality.

The second approach to finding a model that captures the relationship
between rates and volatility is to allow volatility itself to be a random vari-
able. This approach leads to stochastic volatility models, in which class
the SABR model had proven particularly popular. As originally formulated,
however, the model could not handle the negative rates that recently charac-
terized markets in Europe. An adjusted model then emerged, known as the
shifted-SABR model, which assumes the following dynamics,

dSt = (St + h)𝛽𝜎t𝜖t

√
dt (16.18)

𝜖t ∼ N(0,1) (16.19)

d𝜎t = 𝛼𝜎t𝜈t

√
dt (16.20)

𝜈t ∼ N(0,1) (16.21)

E[𝜖t𝜈t] = 𝜌 (16.22)

with h ≥ 0, 0 < 𝛽 < 1, 𝛼 ≥ 0, and 0 ≤ 𝜌 ≤ 1. There are several features to
note about this formulation. First, the only difference between this model
and the original SABR model is the shift parameter, h. With this shift, the
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forward rate St can be as negative as −h with the basis-point volatility of the
model – (St + h)𝛽𝜎t – still positive. Second, the SABR model approaches the
normal model as both 𝛼 and 𝛽 approach 0, and it approaches the lognormal
model as 𝛼 approaches 0 and as 𝛽 approaches 1. Third, the initial volatil-
ity, 𝜎0, is most naturally used to match ATM swaption volatility. Fourth,
𝛽 is typically less than one, because basis-point volatilities, as illustrated in
Figures 16.2, do not increase as quickly for high strikes as in a lognormal
model. Fifth, the parameters 𝛽 and 𝜌 control the skew through controlling the
relationship between the level of rates and volatility. From Equation (16.18),
a higher 𝛽 increases the responsiveness of volatility to the level of the for-
ward rate. And from Equation (16.22), a higher 𝜌 increases the correlation
between changes in rates and changes in volatility. Sixth, the parameter 𝛼

controls the smile, or fat tails of the rates distribution, as a higher 𝛼 increases
volatility when volatility is high, that is, 𝛼 increases volatility when rates
are either higher or lower. Seventh, in practice, because the flexibility of the
model enables many different sets of parameters to fit the observed skew, the
parameters can also be constrained to fit empirical regularities. One popular
choice, for example, is to constrain the parameters to match the empiri-
cal backbone, that is, the empirical relationship between ATM basis-point
volatilities and forward rates. Eighth, note that, in practice, a different set of
parameters are typically chosen for every swaption expiration and under-
lying tenor. In other words, no BSM-style model can describe the entire
volatility cube.
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Prices, Discount Factors,

and Arbitrage

A1.1 DERIV ING REPLICATING PORTFOLIOS

To replicate the 7.625s of 11/15/2022, Table 1.5 uses the 2.875s of
11/15/2021, the 2.125s of 05/15/2022, and the 1.625s of 11/15/2022.
Number these bonds from 1 to 3, and let Fi be the face amount of bond
i in the replicating portfolio. Then, the following equations express the
requirement that the cash flows of the replicating portfolio equal those of
the 7.625s on each of the cash flow dates. For the cash flows on November
15, 2021,

(
100% + 2.875%

2

)
F1 + 2.125%

2
F2 + 1.625%

2
F3 = 7.625%

2
(A1.1)

For the cash flows on May, 15, 2022,

0 × F1 +
(

100% + 2.125%
2

)
F2 + 1.625%

2
F3 = 7.625%

2
(A1.2)

And for the cash flows on November 15, 2022,

0 × F1 + 0 × F2 +
(

100% + 1.625%
2

)
F3 = 100% + 7.625%

2
(A1.3)

Solving equations (A1.1), (A1.2), and (A1.3) for F1, F2, and F3 gives the
replicating portfolio’s face amounts reported in Table 1.5. Note that, because
one bond matures on each date, these equations can be solved one-at-a-time
instead of simultaneously.

453
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Replicating portfolios are easier to describe and manipulate using matrix
algebra. To illustrate, equations (A1.1) through (A1.3) can be written as
follows,

⎡⎢⎢⎢⎢⎣

1 + 2.875%
2

2.125%
2

1.625%
2

0 1 + 2.125%
2

1.625%
2

0 0 1 + 1.625%
2

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

F1

F2

F3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

7.625%
2

7.625%
2

1 + 7.625%
2

⎤⎥⎥⎥⎥⎦
(A1.4)

Note that each column of the leftmost matrix describes the cash flows
of one of the bonds in the replicating portfolio; the elements of the vector
to the right of the matrix gives the face amounts of each bond for which the
equation has to be solved; and the rightmost vector gives the cash flows of
the bond to be replicated. Equation (A1.4) can easily be solved.

In general, suppose that the bond to be replicated makes payments on T
dates. Let C be the T × T matrix of cash flows, principal plus interest, with
the T columns representing the T bonds in the replicating portfolio and the
T rows the dates on which those bonds make payments. Let f be the T × 1
vector of face amounts in the replicating portfolio, and let c be the vector
of cash flows, principal plus interest, of the bond to be replicated. Then, the
equation to be solved is,

Cf = c (A1.5)

with solution,
f = C−1c (A1.6)

The only complication in constructing replicating portfolios is to ensure
that the matrix C does have an inverse. Essentially, any set of T bonds will
do so long as there is at least one bond in the replicating portfolio making
a payment on each of the T dates. All T bonds maturing on the last date
would work, for example, but all T bonds maturing on the second-to-last
date would not. In the latter case, there would be no bond in the replicating
portfolio making a payment on date T.

A1.2 THE EQUIVALENCE OF DISCOUNTING
AND ARBITRAGE PRIC ING

Proposition: Pricing a bond according to either of the following methods
gives the same price:

1. Derive a set of discount factors from some set of spanning bonds
and price the bond in question using those discount factors.
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2. Find the replicating portfolio of the bond in question using that same
set of spanning bonds and calculate the price of the bond as the price
of this portfolio.

Proof: Continue with the notation introduced at the end of Appendix A1.1.
In addition, let d be the T × 1 vector of discount factors for each date and
let p be the vector of prices of each bond in the replicating portfolio, which
is the same as the vector of prices used to compute the discount factors. Also
note that a set of spanning bonds is such that the matrix C has an inverse.

Generalizing the derivation of discount factors in this chapter, discount
factors can be determined from the following equation,

d = C
′−1

p (A1.7)

where the ′ denotes the transpose. Then, the price of the bond according
to the first method is c

′
d. The price according to the second method is p′f,

where f is as derived in Equation (A1.6).
Hence, the two methods give the same price if,

c′d = p′f (A1.8)

Expanding the left-hand side of Equation (A1.8) with (A1.7) and the
right-hand side with (A1.6),

c′(C′)−1p = p′C−1c (A1.9)

Finally, since both sides of (A1.9) are numbers, take the transpose of the
left-hand side to show that the equation is true.
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APPENDIX TO CHAPTER 2
Swap, Spot, and Forward Rates

A2.1 CONTINUOUS COMPOUNDING

Equation (2.7) gives the proceeds of investing F for N periods at the rate r̂,
which is compounded n times per year. By the definition of n, there are nT
periods over T years. Therefore, with F = 1, (2.7) becomes,

(
1 + r̂

n

)nT

(A2.1)

Under continuous compounding, interest is paid every instant, so that
the proceeds of an investment that is continuously compounded over T years
grows to the limit of Equation (A2.1) as n approaches infinity. Taking the
logarithm of (A2.1) and rearranging terms,

nT ln
(

1 + r̂
n

)
=

T ln(1 + r̂
n
)

1
n

(A2.2)

Using l’Hôpital’s rule, the limit of the right-hand side of (A2.2) as n becomes
large is r̂T. Hence, the limit of (A2.1) is er̂T , where e is the base of the natural
logarithm. Therefore, if interest is continuously compounded at the rate r̂,
an investment of one unit of currency will grow after T years to,

er̂T (A2.3)

Equivalently, the present value of one unit of currency to be received in T
years is,

e−r̂T (A2.4)

This section now defines discount factors, spot rates, and forward rates
under continuous compounding. Let r̂(t) be the t-year continuously com-
pounded spot rate. Let f (t − Δ, t) be the forward rate from t − Δ to t, and
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define f (t) to be the continuously compounded forward rate at time t, that
is, the limit of f (t − Δ, t) as Δ approaches zero.

By Equation (A2.4), spot rates and discount factors are related such that,

d(T) = e−r̂(T)T (A2.5)

Linking forward rates and spot rates is the continuously compounded
analog of Equation (2.21),

er̂(T)T = e∫
T

0 f (s)ds (A2.6)

r̂(T)T =
∫

T

0
f (s)ds (A2.7)

r̂(T) = 1
T ∫

T

0
f (s)ds (A2.8)

To link forward rates and discount factors, note that the continuously
compounded analogue of Equation (2.20) is,

er̂(t−Δ)×(t−Δ)ef (t−Δ,t)Δ = er̂(t)t (A2.9)

Then substitute from Equation (A2.5) for each of the two spot rates and
rearrange terms to get,

ef (t−Δ,t)×Δ = d(t − Δ)
d(t)

(A2.10)

Then take the natural logarithm of both sides and rearrange terms,

f (t − Δ, t) = − ln[d(t)] − ln[d(t − Δ)]
Δ

(A2.11)

Finally, take the limit of both sides of this equation, recognizing that the
limit of the right-hand side is the derivative of ln[d(t)], to obtain,

f (t) = −d′(t)
d(t)

(A2.12)

where d′(t) is the derivative of the discount function with respect to term.
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A2.2 RELATIONSHIPS BETWEEN SWAP OR PAR,
SPOT, AND FORWARD RATES

This section will work with semiannually compounded rates, though it could
easily be cast in terms of other compounding intervals.

Approximation: The t-year spot rate is approximately equal to the average
of all forward rates to year t.

Start from Equation (2.21), noting that, because interest rates them-
selves are small numbers, the product of two or more interest rates is par-
ticularly small. To illustrate, take the case of the one-year spot rate, though
the argument generalizes easily to longer-term rates,

(
1 + r̂(1.0)

2

)2

=
(

1 +
f (0.5)

2

)(
1 +

f (1)
2

)
(A2.13)

1 + 2
r̂(1.0)

2
+
(

r̂(1.0)
2

)2

= 1 +
f (0.5)

2
+

f (1.0)
2

+
f (0.5)

2
f (1.0)

2
(A2.14)

r̂(1.0) ≈
f (0.5) + f (1.0)

2
(A2.15)

where the approximation from (A2.14) to (A2.15) comes from dropping the
terms that multiply two rates.

Proposition 1:
b∑

t=a

zt = za − zb+1

1 − z
(A2.16)

Proof: Define S as the left-hand side of (A2.16). Then,

zS =
b+1∑

t=a+1

zt

and it follows that,

S − zS =
b∑

t=a

zt −
b+1∑

t=a+1

zt

S(1 − z) = za − zb+1

S = za − zb+1

1 − z

as was to be shown.
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Proposition 2: If the term structure of spot rates is flat, then the term struc-
ture of par rates is flat at that same rate.

Proof: Denote the semiannually compounded par rate of maturity T as
C(T). If spot rates are flat at the rate r̂, then, by definition of C(T),

C(T)
2

2T∑
t=1

1(
1 + r̂

2

)t +
1(

1 + r̂
2

)2T
= 1 (A2.17)

Applying Equation (A2.16) of Proposition 1 with z = 1∕(1 + r̂∕2),

C(T)
r̂

[
1 − 1

(1 + r̂
2
)2T

]
+ 1(

1 + r̂
2

)2T
= 1 (A2.18)

But solving (A2.18) for C(T) shows that C(T) = r̂. Hence, the term struc-
ture of par rates is flat at r̂, as was to be shown.

Proposition 3: f (t) > r̂(t − 0.5) if and only if r̂(t) > r̂(t − 0.5).

Proof: The condition f (t) > r̂(t − 0.5) is equivalent to,

(
1 + r̂(t − 0.5)

2

)2t−1 (
1 +

f (t)
2

)
>

(
1 + r̂(t − 0.5)

2

)2t−1 (
1 + r̂(t − 0.5)

2

)

>

(
1 + r̂(t − 0.5)

2

)2t

(A2.19)

But, using Equation (2.20) to rewrite the left-hand side of (A2.19),

(
1 + r̂(t)

2

)2t

>

(
1 + r̂(t − 0.5)

2

)2t

(A2.20)

r̂(t) > r̂(t − 0.5) (A2.21)

as was to be shown.

Proposition 4: f (t) < r̂(t − 0.5) if and only if r̂(t) < r̂(t − 0.5).

Proof: Reverse the inequalities in the proof of Proposition 3.

Proposition 5: If r̂(0.5) < r̂(1.0) < · · · < r̂(T), then C(T) < r̂(T).
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Proof: By the definition of the par rate, C(T),

C(T)
2

2T∑
t=1

1(
1 + r̂(t)

2

)t +
1(

1 +
̂r(T)
2

)2T
= 1 (A2.22)

It is easy to show from Equation (A2.16), setting z = 1∕(1 + C(T)∕2),
that,

C(T)
2

2T∑
t=1

1(
1 + C(T)

2

)t +
1(

1 + C(T)
2

)2T
= 1 (A2.23)

And, because the term structure of spot rates is assumed to be increasing,

C(T)
2

2T∑
t=1

1

(1 + r̂(t)
2
)t
+ 1

(1 + r̂(T)
2
)2T

>

C(T)
2

2T∑
t=1

1

(1 + r̂(T)
2
)t
+ 1

(1 + r̂(T)
2
)2T

(A2.24)

Note that the spot rates in the summation on the top line are r̂(t), while
those in the summation in the bottom line are all r̂(T).

Now, because the left-hand sides of Equations (A2.22), (A2.23), and
(A2.24) are all equal to one, the left-hand side of (A2.23) can replace the
left-hand side of (A2.24), that is,

C(T)
2

2T∑
t=1

1(
1 + C(T)

2

)t +
1(

1 + C(T)
2

)2T
>

C(T)
2

2T∑
t=1

1(
1 + r̂(T)

2

)t +
1(

1 +
̂r(T)
2

)2T
(A2.25)

which implies that C(T) < r̂(T), which was to be proved.

Proposition 6: If r̂(0.5) > r̂(1.0) > · · · > r̂(T), then C(T) > r̂(T).

Proof: Reverse the inequalities of Equations (A2.24) and (A2.25) in the pre-
vious proof to conclude that C(T) > r̂(T), as was to be proved.
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Returns, Yields, Spreads, and

P&L Attribution

A3.1 YIELD TO MATURITY FOR SETTLEMENT
DATES OTHER THAN COUPON PAYMENT DATES

Equations (3.6), (3.7), and (3.8) express the relationship between price
and yield to maturity when settlement is on a coupon payment date. This
appendix generalizes this relationship to other settlement dates. First,
because accrued interest is zero when settlement falls on a coupon payment
date, the full price in the equations in the text do not include any accrued
interest. In this section, however, because settlement can fall on other dates,
P is taken to include accrued interest.

Second, the market convention for discounting cash flows that do not
occur in regular six-month intervals, using a semiannually compounded rate,
is as follows. Let y denote the semiannually compounded yield, and let 𝜏

denote the fraction of a semiannual period until the next coupon payment.
For example, if the next coupon payment is in one month, taken to mean
one-sixth of a semiannual period, then 𝜏 = 1∕6. By convention, then, the
present value of a unit of currency at that time is,

1(
1 + y

2

)
𝜏

(A3.1)

Note that, while reasonably intuitive, this convention cannot really be
justified by the logic of compounding conventions. As discussed in the text,
(1 + y∕2)N represents the final proceeds of an investment of one unit of cur-
rency semiannually compounded N times. There is no such interpretation
for an exponent that is not a whole number of semiannual periods. In any
case, continuing along these lines, the present value of a unit of currency to
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be paid after 𝜏 + i semiannual periods is,

1(
1 + y

2

)
𝜏+i

(A3.2)

Finally, then, consider a bond with 2T remaining coupon payments of
c∕2, the first of which is paid after 𝜏 semiannual periods, the second after
𝜏 + 1 semiannual periods, the third after 𝜏 + 2 semiannual periods, etc., and
the last, along with a principal payment of 100, after 𝜏 + 2T − 1 semiannual
periods. Its price is given by,

P =
1
2
c(

1 + y
2

)
𝜏

+
1
2
c

(
1 + y

2

)
𝜏+1

+ · · · +
100 + 1

2
c

(
1 + y

2

)
𝜏+2T−1

(A3.3)

P = c
2

2T−1∑
t=0

1(
1 + y

2

)
𝜏+t +

100(
1 + y

2

)
𝜏+2T−1

(A3.4)

P =
(

1 +
y
2

)1−𝜏
⎡⎢⎢⎢⎣

c
y

⎛⎜⎜⎜⎝
1 − 1(

1 + y
2

)2T

⎞⎟⎟⎟⎠
+ 100(

1 + y
2

)2T

⎤⎥⎥⎥⎦
(A3.5)

where (A3.5) can be derived from Equation (A2.16) in Appendix A2.2.

A3.2 YIELD TO MATURITY AND EX-POST RETURNS

For simplicity, this section assumes annual coupons and annual compound-
ing.

Proposition: A T-year coupon bond priced at a yield of y earns y per year
over n years if its coupons are all reinvested at y and if the bond’s yield at
the end of n years is y.

Proof: Let P0 and Pn be the prices of the bond at time 0 (T years to maturity)
and after n years (T − n years to maturity) when its yield is y.

Starting with the definition of yield to maturity,

P0 = c
(1 + y)

+ c
(1 + y)2

+ · · · + c
(1 + y)n−1

+ c
(1 + y)n

+ c
(1 + y)n+1

+ c
(1 + y)n+2

+ · · · + 100 + c
(1 + y)T

(A3.6)
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P0(1 + y)n = c(1 + y)n−1 + c(1 + y)n−2 + · · · + c(1 + y) + c

+ c
(1 + y)

+ c
(1 + y)2

+ · · · + 100 + c
(1 + y)T−n

(A3.7)

P0(1 + y)n = c(1 + y)n−1 + · · · + c(1 + y) + c + Pn (A3.8)

(1 + y)n − 1 =
c(1 + y)n−1 + · · · + c(1 + y) + c + Pn − P0

P0
(A3.9)

where (A3.7) simply multiplies both sides of (A3.6) by (1 + y)n; (A3.8) rec-
ognizes that the second line of (A3.7) is just Pn, the price of the bond after n
years, with a remaining maturity of T − n years and a yield of y; and (A3.9)
simplifies terms.

By inspection, the right-hand side of Equation (A3.9) is the n-year return
of the bond if all coupons are reinvested at y and if the yield after n years is
y. Breaking that down, the numerator gives the reinvested coupon payments
at a yield of y; plus Pn, the price of the bond after n years if the yield is y;
minus P0 the initial price of the bond at the yield y. Hence, the numerator
divided by the initial price equals the n-year return.

But if the right-hand side of the bond is the n-year return under the
conditions stated, then, by the left-hand side, that return is equivalent to
earning y per year for n years.

Note that the proposition is not an “if and only if,” because it is
possible – though very unlikely – to have some combination of returns on
coupons and a final yield that also result in a holding-period return of y
per year.

A3.3 REALIZED FORWARD SCENARIO

For simplicity, this section assumes annual coupons and annual
compounding.

Proposition: Under the realized forward scenario, the n-year return of a
T-year coupon, with coupon income reinvested at the initial forward rates
f (1), f (2), . . . f (n), is the same as from rolling over a unit of currency at those
forward rates.

Proof: Let P0 and Pn be the prices of the bond at time 0 (T years to matu-
rity) and after n years (T − n years to maturity) under the realized forward
scenario.
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Starting with the definition of forward rates,

P0 = c
(1 + f (1))

+ c
(1 + f (1))(1 + f (2))

+ · · ·

+ c
(1 + f (1)) · · · (1 + f (n))

+ c
(1 + f (1)) · · · (1 + f (n + 1))

+ · · ·

+ 100 + c
(1 + f (1)) · · · (1 + f (T))

(A3.10)

P0(1 + f (1)) · · · (1 + f (n)) = c(1 + f (2)) · · · (1 + f (n)) + · · · + c

+ c
(1 + f (n + 1))

+ · · ·

+ 100 + c
(1 + f (n + 1)) · · · (1 + f (T))

(A3.11)

P0(1 + f (1)) · · · (1 + f (n)) = c(1 + f (2)) · · · (1 + f (n)) + · · · + c + Pn
(A3.12)

(1 + f (1)) · · · (1 + f (n)) − 1 =
c(1 + f (2)) · · · (1 + f (n)) + · · · + c + Pn − P0

P0
(A3.13)

where (A3.11) simply multiplies both sides of (A3.10) by (1 + f (1)) · · · (1 +
f (n)); (A3.12) recognizes that the second and third lines of (A3.11) are Pn,
the price of the bond after n years, with discounting under the assumption
of realized forwards; and (A3.13) simplifies terms.

By inspection, the right-hand side of Equation (A3.13) is the n-year
return of the bond if all coupons are reinvested at the short-term rate of
the realized forward scenario and if, after n years, the bond is priced under
that scenario. But if the right-hand side is the bond’s n-year return under
the conditions stated, then, by the left-hand side, that return is equivalent to
rolling over a unit of currency at the initial forward rates for n years.

Corollary: Under the realized forward scenario, the one-year return of any
coupon bond is the short-term rate, f (1).

Proof: Following the proof of the previous proposition with n = 1,
Equation (A3.13) becomes,

f (1) =
c + P1 − P0

P0
(A3.14)

which was to be proved.
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A4.1 DV01, DURATION, AND CONVEXITY
OF PORTFOLIOS

Let Pi denote the price of asset i and P the price of a portfolio of those assets.
By definition,

P =
∑

Pi (A4.1)

Let y be the single factor generating changes in rates. Then, taking the deriva-
tive of both sides of (A4.1) with respect to y,

dP
dy

=
∑ dPi

dy
(A4.2)

Then, divide both sides of (A4.2) by −10,000 and apply Equation (4.5) of
the text to see that,

DV01 =
∑

DV01i (A4.3)

Or, in words, the DV01 of a portfolio equals the sum of the individual asset
DV01s.

To derive the duration of a portfolio, start from Equation (A4.2), divid-
ing both sides by −P,

−1
P

dP
dy

=
∑

−1
P

dPi

dy
(A4.4)

−1
P

dP
dy

=
∑

−Pi

P
1
Pi

dPi

dy
(A4.5)

D =
∑ Pi

P
Di (A4.6)

Equation (A4.5) multiplies each term in the summation by one, in the form
of Pi∕Pi. Equation (A4.6) follows from the definition of duration in the text,
Equation (4.11). In words, Equation (A4.6) says that the duration of a port-
folio equals the weighted average of the durations of the individual assets,
where the weights are the fraction of value of each asset in the portfolio.
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The proof for the convexity of a portfolio can be derived along the same
lines as the duration of a portfolio. The result, given here without proof, is,

C =
∑ Pi

P
Ci (A4.7)

A4.2 ESTIMATING PRICE CHANGE WITH DURATION
AND CONVEXITY

Let P(y) be the price of an asset as a function of the single factor that
describes changes in rates. Then, a second-order Taylor approximation of
the price rate function is given by,

P(y + Δy) ≈ P(y) + dP
dy

Δy + 1
2

d2P
dy2

Δy2 (A4.8)

Subtracting P(y) from both sides of (A4.8) and denoting the change in price,
P(y + Δy) − P, by ΔP,

ΔP ≈ dP
dy

Δy + 1
2

d2P
dy2

Δy2 (A4.9)

ΔP
P

≈ 1
P

dP
dy

Δy + 1
2

1
P

d2P
dy2

Δy2 (A4.10)

ΔP
P

≈ −DΔy + 1
2

CΔy2 (A4.11)

where (A4.11) – which is Equation (4.16) – follows from the definitions of
duration and convexity, that is, from Equation (4.10) and a discrete version
of Equation (4.14).
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Regression Hedging and

Principal Component Analysis

A6.1 REGRESSION HEDGES AND P&L VARIANCE

This section proves that i) the regression hedge minimizes the variance of the
P&L of the hedged portfolio; and ii) the volatility of the regression-hedged
portfolio equals the DV01 of the position being hedged times the standard
deviation of the regression residuals.

Begin with least-squares estimation, which finds the parameters �̂� and ̂
𝛽

to minimize, ∑
t

(Δyt − �̂� − ̂
𝛽Δxt)2 (A6.1)

To solve this minimization, differentiate (A6.1) with respect to each of the
parameters, set each result to zero, and obtain the following two equations,

−2
∑

t

(Δyt − �̂� − ̂
𝛽Δxt) = 0 (A6.2)

−2
∑

t

(Δyt − �̂� − ̂
𝛽Δxt)Δxt = 0 (A6.3)

These equations can be solved to show that,

�̂� = Δy − ̂
𝛽Δx (A6.4)

̂
𝛽 =

𝜎xy

𝜎

2
x

=
𝜌𝜎y

𝜎x
(A6.5)

where Δx and Δy are the sample averages; 𝜎x and 𝜎y the standard deviations;
𝜎xy the covariance; and 𝜌 the correlation. The solutions (A6.4) and (A6.5)
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are not derived step-by-step here, but are easily found by noting that, with
N observations, the summary statistics needed are defined as follows,

Δx =
∑

tΔxt

N
(A6.6)

Δy =
∑

tΔyt

N
(A6.7)

𝜎

2
x =

∑
tΔx2

t

N
−
(∑

tΔxt

N

)2

(A6.8)

𝜎

2
y =

∑
tΔy2

t

N
−
(∑

tΔyt

N

)2

(A6.9)

𝜎xy =
∑

tΔytΔxt

N
−

∑
tΔyt

N

∑
tΔxt

N
(A6.10)

𝜌 =
𝜎xy

𝜎x𝜎y
(A6.11)

The discussion now turns to minimizing the P&L of the hedged position.
That P&L, given in Equation (6.11), is repeated here for convenience,

P&L = −F JNJ DV01JNJ

100
ΔyJNJ

t − F30 DV0130

100
Δy30

t (A6.12)

To simplify notation, write the DV01s of the bond positions as,

DV01
JNJ

≡
FJNJDV01JNJ

100
(A6.13)

DV01
30

≡
F30DV0130

100
(A6.14)

Then, with the obvious notations for variance and covariance, the variance
of the P&L in (A6.12), denoted 𝜎

2
P&L, is,1

𝜎

2
P&L =

(
DV01

JNJ)2
𝜎

2
JNJ +

(
DV01

30
)2

𝜎

2
30

+ 2DV01
JNJ

DV01
30
𝜎JNJ,30 (A6.15)

1Recall that for two random variables, w and z, and two constants, a and b, the
variance of aw + bz equals a2

𝜎

2
w + b2

𝜎

2
z + 2ab𝜎wz.
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To minimize this variance by choosing the DV01 in the hedging bonds,

differentiate (A6.15) with respect to DV01
30

, set the result to zero, and solve

for DV01
30

,

2DV01
30
𝜎

2
30 + 2DV01

JNJ
𝜎JNJ,30 = 0

DV01
30

= −DV01
JNJ 𝜎JNJ,30

𝜎

2
30

(A6.16)

But, by inspection of Equation (A6.5), the fraction in (A6.16) is just the
estimated slope coefficient in a regression of JNJ yields on 30-year Trea-
sury yields. Hence, the regression hedge given in Equations (6.8) or (6.10)
minimizes the variance of the P&L of the hedged position.

The minimized P&L variance of the hedged portfolio can be written
explicitly by substituting Equation (A6.16) into Equation (A6.15) and rear-
ranging terms,

𝜎

2
P&L =

(
DV01

JNJ)2
𝜎

2
JNJ +

(
DV01

JNJ)2 𝜎
2
JNJ,30

𝜎

2
30

− 2
(

DV01
JNJ)[

DV01
JNJ 𝜎JNJ,30

𝜎

2
30

]
𝜎JNJ,30 (A6.17)

=
(

DV01
JNJ)2

𝜎

2
JNJ

[
1 −

𝜎

2
JNJ,30

𝜎

2
30𝜎

2
JNJ

]
(A6.18)

=
(

DV01
JNJ)2

𝜎

2
JNJ[1 − 𝜌

2] (A6.19)

where 𝜌 denotes the correlation between changes in the JNJ and Treasury
bond yields.

The last step for this section is to show that the variance of the hedged
P&L, now given in (A6.19), is equal to the squared DV01 of the bonds
being hedged times the variance of the regression residuals. Starting with
the definition of the regression residuals in the general regression context of
(A6.1), their variance, denoted 𝜎

2
𝜖

, can be expressed as follows,

𝜖t = Δyt − 𝛼 − 𝛽Δxt (A6.20)

𝜎

2
𝜖

= 𝜎

2
y + 𝛽

2
𝜎

2
x − 2𝛽𝜎xy (A6.21)

= 𝜎

2
y +

(
𝜌𝜎y

𝜎x

)2

𝜎

2
x − 2

(
𝜌𝜎y

𝜎x

)
𝜎xy (A6.22)

= 𝜎

2
y (1 − 𝜌

2) (A6.23)
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But applying Equation (A6.23) to the regression of the JNJ bonds on the
30-year Treasury bonds, and multiplying by the DV01 of the JNJ bonds,
gives exactly the right-hand side of Equation (A6.19), which was to be
proved.

A6.2 CONSTRUCTION OF PRINCIPAL COMPONENTS

The goal of this section is to illustrate how PCs are constructed with a min-
imum of mathematics. A slightly more rigorous mathematical treatment is
given in Section A6.3. For illustration, this section uses the data from the
text on daily, basis-point changes in the five-, 10-, and 30-year swap rates
only. The covariance matrix, or the variance-covariance matrix of these rate
changes is,

V =
⎛⎜⎜⎜⎝

6.46 7.71 7.10

7.71 11.89 12.95

7.10 12.95 16.19

⎞⎟⎟⎟⎠
(A6.24)

The diagonal of the matrix in (A6.24) gives the variances of the three
rates, or, taking square roots, the standard deviations. The off-diagonals give
the pairwise covariances of rates, from which the correlations can be derived.
For example, the volatilities of the five- and 10-year rates are the square
roots of 6.46 and 11.89, or 2.54 and 3.45 basis points per day, respectively,
and the correlation between them is 7.71∕(2.54 × 3.45) = 88.0%. Note, in
passing, that the sum of the variances is 6.46 + 11.89 + 16.19 = 34.54, a
number that appears again below.

Now consider portfolio weights or loadings of −0.5, 1.0, and −0.6 on
the five-, 10-, and 30-year rates, respectively. By the properties of variance
and covariance, and with the specific covariance matrix (A6.24), the vari-
ance of this portfolio, denoted 𝜎

2
p , is,

𝜎

2
p = (−0.5)2 × 6.46 + 1.02 × 11.89 + (−0.6)2 × 16.19

+ 2 × (−0.5) × (1.0) × 7.71

+ 2 × (−0.5) × (−0.6) × 7.10

+ 2 × (1.0) × (−0.6) × 12.95

= 0.58602 (A6.25)

Computations like this are more conveniently written with matrix nota-
tion. Let the vector of portfolio weights be w, which, in the present example,
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is w′ = (−0.5,1.0,−0.6), where the apostrophe denotes the transpose. Then,
the same variance as computed in Equation (A6.25) can be written as,

w′Vw =
(
−0.5 1.0 −0.6

) ⎛⎜⎜⎜⎝

6.46 7.71 7.10

7.71 11.89 12.95

7.10 12.95 16.19

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

−0.5

1.0

−0.6

⎞⎟⎟⎟⎠
(A6.26)

Turning to the creation of the PCs, denote the first principal component
by the vector of weights a = (a1, a2, a3)′. Then, solve for the elements of a
by maximizing the variance of this PC, a’Va, such that a’a = 1. Maximiza-
tion ensures that, among all the PCs, the first explains the largest fraction
of the sum or total variance across all rates. But there has to be some limit
on the vector a, or the maximization would find portfolios with arbitrarily
large variances. Enter the constraint a’a = 1, which – along with similar con-
straints on other PCs – limits the risks of the PCs in a way that equates the
sum of the variances of all PCs to the total variance. (See Section A6.3 for
more details.) The maximization just described can be solved with the solver
in Excel or some other tool to obtain that a = (0.3846,0.6090,0.6937)′. The
variance of this PC is a’Va = 31.4977, which is 91.2% of the total variance
of 34.54 given above.

The second principal component, denoted by b = (b1,b2,b3)′, maxi-
mizes b’Vb such that b’b = 1 and b’a = 0. This last constraint ensures that
the portfolio represented by the second PC is uncorrelated with the portfolio
represented by the first. (Again, see Section A6.3 for more details.) Solving
this maximization, b = (−0.7851,−0.1793,0.5928)′. The variance of this
PC is b’Vb = 2.8626, which is 8.3% of the total variance of 34.54.

Finally, the third PC, denoted by c = (c1, c2, c3)′, satisfies c’c = 1,
c’a = 0, and c’b = 0. Solving, c = (0.4854,−0.7726,0.4092)′. No maxi-
mization is needed here because, by construction, this third PC explains all
of the remaining total variance. The variance of this PC is c’Vc = 0.1797,
which is the remaining 0.5% of the total variance of 34.54.

The maximizations just described constrain the sum of squares of the
elements of each PC to equal one. But a different scaling turns out to be
convenient for interpreting the PCs: multiply each element of a PC by the
volatility of that PC. In that case, the sum of squares of the elements of a
PC equals its variance. In addition, after this scaling, the elements of each
PC can be interpreted as the number of basis points corresponding to a
one standard deviation shift in that PC. (Section A6.3 gives a more pre-
cise explanation of this point.) In the current example, the volatilities of the
three PCs, from their variances computed above, are

√
31.4977 = 5.6123,√

2.8626 = 1.6919, and
√

0.1797 = 0.4239, respectively. Multiplying the
elements of the respective raw PCs by these numbers gives the scaled PCs in
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TABLE A6.1 Principal Components of USD LIBOR Swap
Rates, from June 1, 2020, to July 16, 2021, Using Only
Five-, 10-, and 30-Year Rates. Entries Are in Basis Points.

Term Level Slope Curvature

5-Year 2.158 −1.328 0.206
10-Year 3.418 −0.303 −0.328
30-Year 3.893 1.003 0.173

Table A6.1. It can then be said that a one standard deviation shock of the
level PC is a 2.158-basis-point shift in the five-year rate, a 3.418-basis-point
shift in the 10-year rate, and a 3.893-basis-point shift in the 30-year rate.
The scaled slope and curvature PCs can be interpreted analogously.

A6.3 CONSTRUCTION OF PCs: MATHEMATICAL
DETAILS

This section is more precise on a few claims made in the previous section
at the cost of some extra mathematics. Let V denote the 3 × 3 variance-
covariance matrix of rates with elements Vij; let P denote the 3 × 3 matrix of
principal components, with elements pij, or, alternatively, with three 3 × 1
column vectors pi corresponding to PC i; let D denote the 3 × 3 diagonal
matrix with diagonal elements 𝜎

2
i , each equal to the variance of PC i; and

let I denote the 3 × 3 identity matrix. Then, though not proved here, the
construction of the PCs in the previous section guarantees that,

V = PDP′ (A6.27)

P′P = PP′ = I (A6.28)

P′VP = P′PDP′P = D (A6.29)

where (A6.29) follows from (A6.27) and (A6.28).

Lemma 1: The PCs are uncorrelated.

Proof: In terms of its columns, P = (p𝟏,p𝟐,p𝟑). With this, rewrite Equ-
ation (A6.29) as,

P′VP =

⎛⎜⎜⎜⎜⎝

p′
𝟏Vp𝟏 p′

𝟏Vp𝟐 p′
𝟏Vp𝟑

p′
𝟐Vp𝟏 p′

𝟐Vp𝟐 p′
𝟐Vp𝟑

p′
𝟑Vp𝟏 p′

𝟑Vp𝟐 p′
𝟑Vp𝟑

⎞⎟⎟⎟⎟⎠
= D (A6.30)
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Because D is diagonal, the numbers p′
𝟏Vp𝟐, p′

𝟏Vp𝟑, p′
𝟐Vp𝟑 are all zero.

This means that the pairwise covariances of the PCs are zero, or, equivalently,
that the PCs are uncorrelated with each other.

Lemma 2: The variance of rate j equals the sum of the variance of each PC
times the square of its jth component. Mathematically,

Vjj = p2
1j𝜎

2
1 + p2

2j𝜎
2
2 + p2

3j𝜎
2
3 (A6.31)

Proof: For i = 1, pre-multiply each side of Equation (A6.27) by the 1 × 3
vector (1,0,0) and post-multiply by the 3 × 1 vector (1,0,0)′. Then,

(
1 0 0

)
V

⎛⎜⎜⎝
1
0
0

⎞⎟⎟⎠
=
(
1 0 0

)
PDP′

⎛⎜⎜⎝
1
0
0

⎞⎟⎟⎠
(A6.32)

Equation (A6.31) then follows by algebra. For i = 2, the proof is the
same but with the vector (0,1,0) and its transpose, and for i = 3 with (0,0,1).

Lemma 3: The sum of the variances of the PCs equals the sum of the vari-
ances of the rates.

Proof: Adding together Equations (A6.31) for each j and rearranging terms,

V11 + V22 + V33 = p2
11𝜎

2
1 + p2

21𝜎
2
2 + p2

31𝜎
2
3

+ p2
12𝜎

2
1 + p2

22𝜎
2
2 + p2

32𝜎
2
3

+ p2
13𝜎

2
1 + p2

23𝜎
2
2 + p2

33𝜎
2
3 (A6.33)

= 𝜎

2
1 (p

2
11 + p2

12 + p2
13)

+ 𝜎

2
2 (p

2
21 + p2

22 + p2
23)

+ 𝜎

2
3 (p

2
31 + p2

32 + p2
33) (A6.34)

But by Equation (A6.28), the sum of squares of the elements of each PC
in the brackets, p′

i pi, equals 1, thus proving the lemma.

Lemma 4: Defined a scaled principal component matrix, ̃P, with elements
̃pij = 𝜎ipij. Then, √

Vjj =
√

̃p2
1j + ̃p2

2j + ̃p2
3j (A6.35)
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Proof: This lemma follows directly from the definition of the ̃pij and
Equation (A6.31).

To understand the significance of Lemma 4, interpret the element ̃pij
as the standard deviation of changes in the jth rate, in basis points, due to
the scaled ith PC. Then, because the PCs are uncorrelated, the standard
deviation of the jth rate, with contributions from all three scaled PCs,
equals the right-hand side of Equation (A6.35). But the left-hand side of the
equation is exactly the volatility of the jth rate. Hence, taken as a whole,
Equation (A6.35) supports the interpretation of the elements of each scaled
PCs as one standard deviation shifts in the three rates.
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Expectations, Risk Premium,

Convexity and the Shape of
the Term Structure

This appendix proves Equation (8.18) along the lines of Ingersoll (1987).1

Assume that r, the single, instantaneous rate factor, follows the process,

dr = 𝜇dt + 𝜎dw (A8.1)

Let P be the full price of some security that depends on r and time. Then, by
Ito’s lemma,

dP = Prdr + Ptdt + 1
2

Prr𝜎
2dt (A8.2)

where Pr, Pt, and Prr denote the partial first derivatives with respect to r and
t and the second partial derivative with respect to r. Dividing both sides of
(A8.2) by P, taking expectations, and defining 𝛼P to be the expected return
of the security,

𝛼Pdt ≡ E
[

dP
P

]
=

Pr

P
𝜇dt +

Pt

P
dt + 1

2
Prr

P
𝜎

2dt (A8.3)

Combining (A8.1), (A8.2), and (A8.3),

dP
P

− 𝛼Pdt =
Pr

P
𝜎dw (A8.4)

Because Equation (A8.4) applies to any security, it also applies to some
other security Q,

dQ
Q

− 𝛼Qdt =
Qr

Q
𝜎dw (A8.5)

1Ingersoll, J. (1987), Theory of Financial Decision Making, Rowman & Littlefield.

477
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Now consider the strategy of investing one unit of currency in security P
and −PrQ∕PQr in security Q. From Equations (A8.4) and (A8.5), the return
on this portfolio is,

dP
P

−
PrQ

PQr

dQ
Q

= 𝛼Pdt −
PrQ

PQr
𝛼Qdt (A8.6)

Note that terms with the random variable dw have fallen out of
Equation (A8.6). This particular portfolio is chosen, in fact, so as to hedge
completely the risk of P with Q. In any case, because the portfolio has no
risk, it must earn the instantaneous rate, r0,

𝛼Pdt −
PrQ

PQr
𝛼Qdt =

(
1 −

PrQ

PQr

)
r0dt (A8.7)

Rearranging terms,

𝛼P − r0

−Pr∕P
=

𝛼Q − r0

−Qr∕Q
≡ λ(r0, t) (A8.8)

Equation (A8.8) says that the expected return of any security above the
instantaneous rate divided by its duration with respect to that rate must
equal some function λ. This function cannot depend on any characteristic
of the security, because (A8.8) is true for all securities. The function
may depend, however, on the interest rate factor and time. Rewriting
Equation (A8.8), for any security P,

E
[

dP
P

]
≡ 𝛼Pdt = r0dt + λDdt (A8.9)
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The Vasicek and Gauss+ Models

A9.1 THE VASICEK MODEL IN A BINOMIAL TREE

This section illustrates the implementation of the Vasicek model in a
binomial tree. The parameters are r0 = 2%; 𝜃 = 11%; k = 0.0165; and 𝜎 =
0.95%. The step size is one year. The first stages of construction are shown
in Figure A9.1. The starting short-term rate, by definition is 2%. By a
discrete time approximation to the dynamics of the risk-neutral process in
Equation (9.1) of the text, the expected short-term rate after one year is,

r0 + k(𝜃 − r0)dt = 2% + 0.0165(11% − 2%) × 1 = 2.1485% (A9.1)

Note that, if the time step were one month, instead of one year, the dt factor
would be 1∕12 instead of 1. In any case, adding a volatility of 0.95% up and
down around the expectation from (A9.1) gives the date-1 up- and down-
states in Figure A9.1.

Because of the mean reversion in the Vasicek model, computing the evo-
lution of the short-term rate over the next date is more complicated than
the examples in Chapter 7. More specifically, because the drifts from the
two states on date 1 are different from the drift from date 0, the tree does
not necessarily recombine. One methodology for constructing a recombin-
ing tree is the following, though a full analysis of numerical issues is beyond
the scope of this treatment.

Given that the expected short-term rate on date 1 is 2.1485%, as
calculated in (A9.1), the expected short-term rate on date 2 is,

2.1485% + 0.0165(11% − 2.1485%) × 1 = 2.2945% (A9.2)

which is the short-term rate assigned to the date-2, state 1 node of
Figure A9.1.

479
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ruu

3.0985%

2.00% 2.2945%

1.1985%

rdd

0.50

0.50

p

1-p

q

1-q

F IGURE A9.1 Binomial Tree Setup for Three Dates of the Vasicek Model.

The next stages of the construction are to find the missing rates and
probabilities in Figure A9.1. From the date-1 up-state, the unknowns, ruu

and p, must result in the drift and volatility specified by the model. Mathe-
matically, the drift condition is,

3.0985% + 0.0165(11% − 3.0985%) = 3.2289%

= p × ruu + (1 − p) × 2.2945% (A9.3)

and the volatility condition is,

0.95% =
√

p(ruu − 3.2289%)2 + (1 − p)(3.2289% − 2.2945%)2 (A9.4)

Solving Equations (A9.3) and (A9.4) simultaneously shows that p =
.4917 and ruu = 4.1949%. These values are given in Figure A9.2 along with
solutions to the analogous equations for q and rdd.1

4.1949%

3.0985%

2.00% 2.2945%

1.1985%

0.3943%

0.50

0.50

0.4917

0.5083

0.5083

0.4917

F IGURE A9.2 Binomial Tree Solution for Three Dates of the Vasicek Model.

1The values of p and 1 − q are the same to four decimal places but are not identically
equal.
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A9.2 THE GAUSS+ MODEL

A9.2.1 Model Solut ion

Recall the dynamics of the short rate in cascade form presented in the text,
where the cascade form means that each factor mean reverts to another fac-
tor, which mean reverts to another factor, in order of persistence. In order to
solve the model (where “solving” means solving for the mapping from fac-
tors to forward rates), it will be convenient to work with the factors written
in reduced form (where “reduced form” means that each factor mean reverts
to a constant). After we have solved the model, we will write it back in cas-
cade form in order to proceed to the estimation of its parameters. It will
be convenient to partition the parameter vector P = (𝛼s, 𝛼m, 𝛼l, 𝜎l, 𝜎m, 𝜌, 𝜇)
in three blocks as 𝛼 = (𝛼s, 𝛼m, 𝛼l) and 𝜎 = (𝜎l, 𝜎m, 𝜌) and 𝜇. In the reduced
form, we have rt = 𝜇 + 𝟏′Xt and the relationship between the reduced form
expression and cascade form expression of the factors is,

xt = A(𝛼)Xt + 𝜇 (A9.5)

where,

A(𝛼) =
⎡⎢⎢⎢⎣

1 1 1
0 𝛼r−𝛼m

𝛼r

𝛼r−𝛼l
𝛼r

0 0 (𝛼r−𝛼l)(𝛼m−𝛼l)
𝛼r

⎤⎥⎥⎥⎦
(A9.6)

The dynamics of the reduced form factors are then given by,

dXt = −diag(𝛼)Xtdt + A(𝛼)−1ΩdWt (A9.7)

where for convenience we have appended a zero to the two-dimensional
random process dWt and,

Ω(𝜎) =
⎡⎢⎢⎢⎣

0 0 0

𝜌𝜎m

√
1 − 𝜌

2
𝜎m 0

𝜎l 0 0

⎤⎥⎥⎥⎦
(A9.8)

Let Pt(𝜏) denote the zero coupon bond price at time t with time-to-expiry 𝜏.
Taking the usual expectation of exponential of future short rate path condi-
tional on the factors expressed in reduced form, one can show that,

Pt(𝜏) = EQ
(

e− ∫ 𝜏

0 rs ds
)
= exp(−yt(𝜏)𝜏) (A9.9)
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where the yield of a zero coupon bond with maturity 𝜏 at time t is given by,

yt(𝜏) = 𝜇 − C(𝜏, 𝛼, 𝜎) + B(𝜏, 𝛼)Xt (A9.10)

where B(𝜏, 𝛼) is a three-dimensional vector with Bi(𝜏) = (1 − exp(−𝛼i𝜏))∕𝛼i𝜏

for i = 1,2,3, and the term C(𝜏, 𝛼, 𝜎) can be written as,

C(𝜏, 𝛼, 𝜎) =
3∑

i=1

3∑
j=1

𝜎ij

2𝛼i𝛼j

(
1 − Bi(𝜏) − Bj(𝜏) −

1 − exp(−(𝛼i + 𝛼j)𝜏)
(𝛼i + 𝛼j)𝜏

)

(A9.11)

where 𝜎ij stands for the ith row and jth column of matrix, A(𝛼)−1Ω(𝜎)Ω(𝜎)′
A(𝛼)−1 with,

A(𝛼)−1 =

⎡⎢⎢⎢⎢⎣

1 − 𝛼r
𝛼r−𝛼m

𝛼r𝛼m
(𝛼r−𝛼m)(𝛼r−𝛼l)

0 𝛼r
𝛼r−𝛼m

𝛼r𝛼m
(𝛼r−𝛼m)(𝛼m−𝛼l)

0 0 𝛼r𝛼m
(𝛼r−𝛼l)(𝛼m−𝛼l)

⎤⎥⎥⎥⎥⎦
(A9.12)

Mapping reduced form factors in (A9.10) to factors in cascade form, we
finally have,

yt(𝜏) = 𝜇(1 − Υ(𝜏, 𝛼)𝟏) − C(𝜏, 𝛼, 𝜎) + Υ(𝜏, 𝛼)xt (A9.13)

where 1 is a three-dimensional column vector of ones and we have defined,

Υ(𝜏, 𝛼) = B(𝜏, 𝛼)A(𝛼)−1 (A9.14)

where Υ(𝜏, 𝛼) = (Υs(𝜏, 𝛼),Υm(𝜏, 𝛼),Υl(𝜏, 𝛼), ) where Υs, Υm and Υl represent
the partial derivatives (a.k.a. loadings) of the changes of the zero coupon
yield of maturity 𝜏 on the short, medium and long rate factors. A similar rep-
resentation for the (continuously compounded) forward rate of tenor 𝜏

′ as
an affine function of the factors in cascade form can be obtained as follows,

ft(𝜏) = 𝜇(1 − Υ′(𝜏, 𝛼, 𝜏′)𝟏) + Υ′(𝜏, 𝛼, 𝜏′)xt − C′(𝜏, 𝛼, 𝜎, 𝜏′) (A9.15)

where,

Υ′(𝜏, 𝛼, 𝜏′) = (B(𝜏 + 𝜏

′
, 𝛼) − B(𝜏, 𝛼))A(𝛼)−1∕𝜏′ (A9.16)

C′(𝜏, 𝛼, 𝜎, 𝜏′) = (C(𝜏 + 𝜏

′
, 𝛼, 𝜎) − C(𝜏, 𝛼, 𝜎, 𝜏′))∕𝜏′ (A9.17)

Expression (A9.15) can be interpreted as follows: The time t forward
rate with maturity 𝜏 and tenor 𝜏′ can be decomposed into a component that
represents the risk-neutral expectation of the 𝜏

′ maturity yield prevailing at
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time t + 𝜏 (first two terms of the right-hand side) minus a component that
represents the convexity advantage of receiving (i.e., being long) rates (third
term of the right-hand side). The first on the right-hand side component can
be shown to be null for 𝜏 = 0 and converges to 𝜇 as 𝜏 grows toward infinity.
For maturities between zero and infinity, the risk-neutral expectation of the
zero yield prevailing at that maturity will depend on the value that the fac-
tors take at time t, namely, xt = (rt,mt, lt), and this is what the second term
on the right-hand side captures. We can also think of the sum of the first
two components on the right-hand side as the fair futures rate at time t for
a mark-to-market futures contract on the zero coupon yield that will pre-
vail at time t + 𝜏. The shape of the slopes Υ′(𝜏, 𝛼, 𝜏′), evaluated at estimated
parameter values, are displayed in Figure 9.7.

The last term on the right-hand side of (A9.15) is null for 𝜏 = 0 and
grows at speed equal to the square of maturity 𝜏. This convexity term drives
a wedge between the futures rate and the forward rate. Imagine that an
investor can bet on the yield that will prevail at time t + 𝜏 in two different
contracts: the first is a daily-settled futures contract. Any increase (decrease)
in the market expected future rate will be paid (received) today by the long
(short) investor. The second is a standard forward contract. Any increase
(decrease) in the market expected future rate will be paid (received) by the
long (short) investor not today, but at time t + 𝜏. Now, if the futures rate and
the forward rate were equal, the long investor would be at an advantage in
transacting via the forward contract rather than the futures contract: when
the market future rate expectation increases (decreases) their future losses
(gains) will be discounted to today at a relatively higher (lower) rate, hence
yielding a relatively smaller (larger) present value loss (gain). Therefore, to
prevent an arbitrage between forward and futures rates, today’s forward rate
should be somewhat lower than today’s futures rate. The difference between
the two is what we call the convexity correction or convexity advantage term,
that is, the last term on the right hand side.

A9.2.2 A Pract ica l Est imat ion Method

There exists a large literature on estimating gaussian term structure models,
of which the Gauss+ model is a particular case. The methods typically rely
on maximum-likelihood estimation procedures which are not easy to imple-
ment in general. In the next section we discuss a procedure that is fast and
intuitive for the purpose of finding reasonable values for the Gauss+ param-
eter vector P = (𝛼, 𝜎, 𝜇). Given this parameter vector, and for any time t, we
will then extract the factors xt = (rt,mt, lt) in order to have the model zero
yields be close to the market zero yields. The short rate rt will not need to
be filtered because it will be set equal to the observed short policy rate.

In order to estimate parameters 𝛼, 𝜎, 𝜇, we first obtain a time series of
zero coupon bond prices (discount factors) at different maturities. These can
be obtained by using an external curve construction bootstrap method using



Trim Size: 6in x 9in Tuckman835554 bapp09.tex V1 - 07/12/2022 11:23am Page 484�

� �

�

484 FIXED INCOME SECURITIES

bonds or par swap rates. For the purpose of fitting the Gauss+ model, it does
not matter whether these discount factors come from a swap curve (index
or discount curves) or from a bond curve. Here we will use the time series
of zero coupon bonds published by the New York Fed, which is based on
applying the well-known Nelson-Siegel-Svensson smooth curve construction
procedure to US Treasury notes and bonds.2

There is always a trade-off when it comes to selecting the sample for the
estimation of the model. Longer samples will lead to more robust estimates
in a statistical sense but will also reflect different market conditions from the
ones in which we intend to use the model. We have found that, in practice, a
good compromise is to use a sample size of eight years and a decay factor of
0.8. (This means that in the loss-functions associated with the optimization
problems that follow we will give a weight of 1 to the last observation, a
weight of 0.8 to an observation that is one year old relative to the last obser-
vation, a weight of 0.64 to an observation that is two years old relative to
the last observation, and so forth.) Our sample thus begins on January 5,
2014, and ends on January 21, 2022.

While the Gauss+ model involves three factors, only two are genuine
factors as we will equal the short rate to a given observed short rate, which
tends to change at predictable dates. For this reason, we will take the short
rate rt to be the fed funds target. While taking the general collateral repo
rate would be closer to the actual overnight funding rate for US Treasury
bonds, this series also exhibits spikes that reflect circumstantial funding con-
ditions and are generally unrelated to monetary policy, and hence unrelated
to expectations of future paths of the short rate.

In what follows we will denote by Y the T × N matrix of observed zero
coupon yields for T periods and N maturities, and by Yt the vector of N
maturity yields observed at time t. Similarly, we will denote by y the vector
of model implied zero coupon yields for T periods and N maturities. y is a
function of x, the T × 3 vector of factors in cascade form. In addition, let and
yt, as described in (A9.13), stand for the vector of yields for the N maturities
as a function of the cascade form factors at time t, namely, xt = (rt,mt, lt).
Finally, let yt(𝜏) stand for the yield of maturity 𝜏 at time t, as a function of
the factors and the parameter vector P.

Estimation involves one step for data preparation, and three steps for
parameter optimization. Data preparation consists of netting the effect of
the (observed) short rate factor from the observed zero coupon yields. This
works as follows. Take a candidate parameter value for 𝛼r. Then, given the
structure of Υ(𝜏, 𝛼), subtract Υs(𝜏, 𝛼) × rt from both sides of (A9.13). With
an abuse of notation, we will denominate yt(𝜏) the zero coupon yield netted

2See Gürkaynak, R., Sack, B., and Wright, J. (2006), “The US Treasury Yield
Curve: 1961 to the Present,” and https://www.federalreserve.gov/data/nominal-yield-
curve.html

https://www.federalreserve.gov/data/nominal-yield-curve.html
https://www.federalreserve.gov/data/nominal-yield-curve.html
https://www.federalreserve.gov/data/nominal-yield-curve.html
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out of the short rate, and we will drop the short rate rt from the vector of
factors in cascade form, so from now on we have xt = (mt, lt). Incidentally,
one could show that Υs(𝜏, 𝛼) depends only on parameter 𝛼r.

The next step consists of inverting (A9.13) and expressing the factors xt
as a linear function of the observed two- and 10-year yields (henceforth 2y
and 10y). We will assume that the yields of these two maturities are priced
exactly by the model, unlike other maturities. Denote these benchmark yields
at time t as ybt = (yt(2), yt(10)). We can then invert (A9.13) for the 2y and
10y maturity and express the factors in cascade form as linear functions of
the vector of benchmark yields. Then we replace the resulting expression for
the factors in (A9.13). Finally, write the resulting expression of benchmark
yields as a function of factors, in changes,

Δybt(𝜏) = Υb(𝛼)Δxt (A9.18)

where Υb(𝛼) stands for a matrix formed by the vectors (A9.14) correspond-
ing to maturities 𝜏 = 2,10, and dropping the column. Now, solving for
Δxt and plugging the resulting expression into equation (A9.13) written
in changes, we obtain a linear expression relating the yield changes at any
maturity to the yield changes of the two benchmark maturities, where the
slopes are a nonlinear function of just the parameter 𝛼,

Δy(𝜏) = Υ(𝛼)Υb(𝛼)−1Δybt(𝜏) (A9.19)

we can then compute an estimate for 𝛼 by solving,

min
𝛼

∥Υ(𝛼)Υb(𝛼)−1 − ̂
𝛽∥ (A9.20)

where ∥∥ stands for the L2 norm and ̂
𝛽 is the ordinary least square estimate

of regressing Δy(𝜏) onto Δybt(𝜏), namely,

̂
𝛽 = (Δyb′Δyb)−1Δyb′Δy (A9.21)

Figure 9.5 in the text shows the estimated OLS parameters of regress-
ing yield changes at different maturities on the changes in the two- and
10-year yield. It also shows the values of the model slopes Υ(𝛼)Υb(𝛼)−1,
evaluated at the optimal solution of (A9.20). The parameter 𝛼 allows one to
examine the impact of a change in the factors rt,mt, lt on the instantaneous
forward rates and yields. This allows a clear interpretation of each of the
factors: the medium rate mt has maximum impact around the 2y to 3y
maturities; hence it can be interpreted as a monetary policy factor (as
has been argued in the text). On the other hand, the long factor exhibits
maximum impact around the 7y forward maturity (and 15y for zero yield
maturity).
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Armed with the estimated parameter �̂� that solves (A9.20), we proceed
to estimate the vector 𝜎 that minimizes the distance between model implied
yield volatilities and realized volatilities of constant maturity yields by
solving,

min
𝜎

∥Υb(�̂�)Ω(𝜎)Ω(𝜎)′Υb(�̂�)′ − diag(Δy′Δy)252∕T∥ (A9.22)

where Δy is a T × N vector of yield changes for all maturities. Figure 9.6 in
the text shows the fitted zero yield volatilities, versus the volatilities com-
puted directly from observed, constant maturity yield changes.

Finally, using �̂� that solves (A9.20) and �̂� that solves (A9.22), we deter-
mine the parameter 𝜇 by minimizing the sum of squares of yield fitting errors,
namely,

min
𝜇

T∑
t=1

∥Yt − yt∥ (A9.23)

where yt is the vector of model yields for all maturities, at time t. The esti-
mated parameters are shown in Table 9.1 in the text.

Once the parameter vector P has been estimated, we can solve for the
factors (mt, lt) to ensure that the model fits exactly the two- and 10-year
forward rates (with tenor one year) on each date. (Filtering methods such as
least-squares or Kalman filtering could be employed to extract fitted factors,
but we find exact fitting of two points in the curve is preferable in practical
trading applications.) We show the fitted factors in Figure 9.8 in the text,
along with the 2y forward rate.3

Note that in the text we plot the affine function of lt, L(lt) below rather
than lt itself, so that we can interpret the derived long factor as an approx-
imation of the expectation of what the short rate will be in 10 years’ time.
This is necessary because the extreme persistence (or large half-life, or low
mean-reversion parameter) of the factor lt makes the interpretation of the fit-
ted level of lt less intuitive. As you can see, the long factor closely tracks the
10y forward rate from before (the difference between the two is explained
by the convexity correction adjustment),

L(lt) = 𝜇(1 − e−10𝛼l ) + lte
−10𝛼l (A9.24)

The time series properties of the model can be described by graphing its
fitted factors over time. As mentioned already, the short-term rate is set each
day to the fed funds target rate, and the medium- and long-term factors

3While the sample we used for parameter estimation starts in January 2014, we
expanded the period for which we extract the filtered factors backward to cre-
ate Figure 9.8 – holding the estimated parameters constant – in order to facilitate
interpretation.
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are set so as to match the model and market two and 10 years forward.
Figure 9.8 in the text graphs these empirically recovered market factors from
January 2007 to January 2022.4

A9.2.3 Impl ied Risk Premia Calculat ion

Denote by P(t, 𝜏) the price at time t of a zero coupon bond that matures at
time 𝜏 and let p(t, 𝜏) = log(P(t, 𝜏)). Note that here 𝜏 stands for a fixed date
in the future, and not a date interval.

We will assume henceforth that only the risk of the long factor is priced.
This is reasonable for the application we have in mind, which will involve
extracting expectations about the 10-year maturity and, at that maturity, the
loadings of the forward relative to the short and medium rate are negligible.
Now, applying Ito’s lemma to the zero coupon bond price as an exponential
affine function of the cascade form factors (A9.9) using (A9.13), and passing
to the true measure, we can write the dynamics of the instantaneous return
of a zero coupon bond as follows,

dP(t, 𝜏)
P(t, 𝜏)

= (rt + λt(𝜏 − t)Υ3(𝜏 − t, 𝛼)𝜎l)dt − (𝜏 − t)Υ(𝜏 − t, 𝛼)ΩdW∗
t (A9.25)

where the loadings vector Υ(𝜏, 𝛼) was defined in (A9.14), and Υ3(𝜏, 𝛼) stands
for its last element, i.e., the loading of a zero coupon yield with maturity 𝜏 − t
on the long rate factor. Also, Ω was defined in (A9.8) and W∗

t stands for the
Wiener process under the true measure.

The term multiplying dt on the right-hand side of (A9.25) has a clear
interpretation: the expected return at time t of holding 𝜏 maturity zero
coupon bond from time t to time t + dt is equal to the riskless rate prevailing
at time t, plus a risk-premium term that is equal to the duration of the zero
coupon bond (its maturity) times the loading of the yield of a zero coupon
bond with maturity 𝜏 − t, times the volatility of the long rate, times the
price of risk prevailing at time t, namely, λt. We will assume that the price
of risk does change over time. We will not specify its dynamics, but we will
assume that λt is a very persistent process, so that Et(λt+Δt) ≈ λt for Δt = 1,
i.e. one price of risk next-year is expected to be equal to this year’s. If we
changed measure to the risk-neutral measure, this term would disappear
from the right-hand side of (A9.25), that is, the expected instantaneous
return of our zero coupon bond would equal the riskless rate.

4The model is estimated using data from January 2014, but the resulting parameters
are used to extract model factors back through 2007. Also, instead of the long-term
factor itself, the figure graphs the long-term factor shifted forward 10 years. This
allows the series to be more easily interpreted as an approximation for expectations
of the short-term rate in 10 years.
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Recall as well the definition of the forward rate at time t with maturity
𝜏 and tenor Δ𝜏: ft(𝜏) = (p(t, 𝜏) − p(t, 𝜏 + Δ𝜏))∕Δ𝜏 – we will omit the tenor as
an explicitly argument of ft(). Now, consider the following strategy: At time
t, buy one zero coupon bond with maturity 𝜏 + Δ𝜏, and simultaneously sell
one zero coupon bond with maturity 𝜏. First, we claim that the return of
this strategy is equal to the forward rate with tenor Δ𝜏 prevailing at time t,
minus the Δ𝜏 maturity yield prevailing at time 𝜏. To see this, denote by R𝜏

t
the cumulative realized return between time t and time 𝜏. We then have,

R𝜏

t = (p(𝜏, 𝜏 + Δ𝜏) − p(t, 𝜏 + Δ𝜏)) − (p(𝜏, 𝜏) − p(t, 𝜏))

= (p(t, 𝜏) − p(t, 𝜏 + Δ𝜏)) − (0 − p(t, 𝜏))

= (ft(𝜏) − f
𝜏

(𝜏))Δ𝜏

(A9.26)

where f
𝜏

(𝜏) is equal to the zero coupon yield with maturity Δ𝜏 prevailing at
time 𝜏 which, for a sufficiently small Δ𝜏, approximately equals the spot rate
prevailing at time 𝜏. Hence, the expected return (under the true measure)
of this strategy at time t is equal to the forward rate at time t, minus the
expected short rate at time 𝜏. Let’s keep this result aside for a moment.

We will now compute the expected return of this strategy (again, under
the true measure). Note that the expected return of the long and short side
cancel out for entire the holding period except for the segment (t, t + Δ𝜏)
and (𝜏 − Δ𝜏, 𝜏), because in the model the risk premia depends on time to
maturity only. Applying Ito’s lemma to (A9.25), canceling the short rate,
integrating and taking expectations, and dismissing the contribution of the
segments (𝜏 − Δ𝜏, 𝜏) because only the long factor is priced, we get,

Et(R𝜏

t ) = ∫

Δ𝜏

0
λt(𝜏 + Δ𝜏 − t − s)Υ3(𝜏 + Δ𝜏 − t − s, 𝛼)𝜎l

− 1
2
(𝜏 + Δ𝜏 − t − s)2Υ(𝜏 + Δ𝜏 − t − s, 𝛼)ΩΩ′Υ(𝜏 + Δ𝜏 − t − s, 𝛼)′ds

= λtRP(t, 𝜏,Δ𝜏) (A9.27)

Note that the expected risk premium (A9.27) is the product of the yet
unknown λt and an amount of risk term RP(t, 𝜏,Δ𝜏) that can be easily com-
puted. As we mention in the text, in order to imply λt from the observed
forward rates and the parameters of the model, we will assume that there is
a maturity 𝜏 such that the (true) expectation of what the short rate will be
at maturity 𝜏 is equal to the (true) expectation of the short rate will be at
any maturity 𝜏

′
> 𝜏. With this assumption, we can specialize this reasoning

to two long maturities 𝜏′ > 𝜏, subtract the resulting equations and solve for
the price of risk λt as follows,

λt =
ft(𝜏′) − ft(𝜏)

RP(t, 𝜏′,Δ𝜏)∕Δ𝜏 − RP(t, 𝜏,Δ𝜏)∕Δ𝜏
(A9.28)
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Armed with an estimate for λt, we can then take expectations on both
sides of the equation (A9.26) at maturity 𝜏 − Δ𝜏 and use (A9.27) to solve
for the expected rate for a long enough maturity 𝜏 − Δ𝜏. We finally get,

Et(r𝜏) = ft(𝜏) − λtRP(t, 𝜏,Δ𝜏) (A9.29)

To get an intuition for (A9.29), say that the price of risk λt that we solved
before is 0.09. The loading of the 10-year zero coupon bond yield on the long
factor is 0.7, and the volatility of the long factor is about 100 basis points,
then the 10-year risk premium would be approximately 0.09 × 0.01 × 10 ×
0.7 = 63bps. The convexity advantage term for the 10-year rate is about
24bps. These numbers are very close to the ones obtained by evaluating
the model at estimated parameters, and 0.09 is the average price of risk in
the sample.5 If we assume that the 10-year forward rate is 3%, the implied
expected one-year rate, nine years rate under the true measure would then
be 0.03 + 0.0024 − 0.0063 = 2.61%

We computed the price of risk in the manner described already for using
the 14- and 15-year forwards to extract λ for every day in our sample,
and then using this estimate to imply the expectation of the 10-year rate
using the 10-year forward rate. Results are not sensitive to using other, longer
maturities.

The implied 10-year rate expectation computed in this manner is plotted
in the text against an estimate of the long run expected short rate obtained
outside the model, just by just adding the real rate forecast produced by
the Cleveland Fed, to a measure of long run inflation, which we took as the
average of the 10-year inflation rate forecast produced by the Cleveland Fed,
the 10-year forecast produced by the ATSIX model of the Philadelphia Fed,
and an estimate of trend inflation obtained with a simple exponential moving
average rule with a decay parameter of 0.987, a value used elsewhere in the
literature.6 Other procedures to assess long rate expectations are possible
(for example, the Survey of Market Participants conducted by the New York
Fed several times a year, or the long-standing Bluechip Financial Forecast
survey).

5This value may look low for the usual estimates of Sharpe ratio obtained for risky
assets. Note, however, that bonds prices have been negatively correlated with
risky assets for the last decades, and thus a lower price of interest rate risk rela-
tive to risky asset in positive supply (e.g., the stock market), even negative at times,
should be expected.
6See for example, Cieslak, A., and Povala, P. (2015), “Expected Returns in Treasury
Bonds,” Review of Financial Studies 28(10).
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APPENDIX TO CHAPTER 11
Note and Bond Futures

A11.1 FORWARD DROP APPROXIMATELY EQUALS
CASH CARRY

Define the following notation, all for 100 face amount of a bond:

■ p0: flat price for spot settlement
■ c: annual coupon payment
■ d1: number of days from spot settlement to the coupon payment date
■ d2: number of days from the coupon payment date to forward settlement
■ d = d1 + d2: number of days from spot to forward settlement
■ AI0,AId: accrued interest as of spot and forward settlements,

respectively
■ r: repo rate from spot to forward settlement
■ p0(d): flat price for forward settlement

With this notation, the forward price of the bond, based on the dis-
cussion in the text, can be written as,

p0(d) =
[
(p0 + AI0)

(
1 +

rd1

360

)
− c

2

](
1 +

rd2

360

)
− AId (A11.1)

p0 − p0(d) ≈
c
2
+ AId − AI0 − (p0 + AI0)

rd
360

(A11.2)

Equation (A11.2) follows from Equation (A11.1) by dropping terms that are
small, because they represent interest-on-interest. In particular, the following
approximations are made: (1 + rd1∕360)(1 + rd2∕360) ≈ (1 + rd∕360); and
(c∕2)(1 + rd2∕360) ≈ c∕2.

A11.2 FORWARD VERSUS FUTURES PRICES IN A
TERM STRUCTURE MODEL

This section highlights the differences between pricing forward and futures
contracts in a term structure model. To focus on this difference, it is assumed

491
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here that the futures contract has one delivery date and one deliverable bond
and that its conversion factor is one. Section A11.4 discusses the pricing of
delivery options in a term structure model. Also, for simplicity, it is assumed
here that there are no intermediate coupon dates between the spot and for-
ward settlement dates.

Using the methodology of Chapter 7, begin with a recombining, bi-
nomial tree with three dates, labeled 0, 1, and 2, where the forward and
futures contracts expire on date 2. Set the following notation:

■ r0, ru
1, and rd

1 : the initial one-period rate, and the one-period rates on
date 1, in the up and down states, respectively.

■ P0, Puu
2 , Pud

2 , and Pdd
2 : the initial full price of the underlying bond, and

the date-2 full prices in the “up–up,” “up–down,” and “down–down”
states, respectively.

■ p0, puu
2 , pud

2 , and pdd
2 : flat prices at the indicated dates and states.

■ P0(2): the initial full forward price.
■ p0(2): the initial flat forward price.
■ F0, Fu

1 , Fd
1 : the initial futures price, and the date-1 futures prices in the

up and down states, respectively.
■ q, 1 − q: the risk-neutral transition probabilities on all dates to move up

and down from the current state, respectively.

By the definition of a risk-neutral tree, the initial price of the bond can
be computed as,

P0 = 1
1 + r0

[
q ×

qPuu
2 + (1 − q)Pud

2

1 + ru
1

+ (1 − q) ×
qPud

2 + (1 − q)Pdd
2

1 + rd
1

]

(A11.3)
or, rearranging terms,

P0 = q2
Puu

2

(1 + r0)(1 + ru
1)

+ q(1 − q)
Pud

2

(1 + r0)(1 + ru
1)

+ q(1 − q)
Pud

2

(1 + r0)(1 + rd
1 )

+ (1 − q)2
Pdd

2

(1 + r0)(1 + rd
1 )

(A11.4)

Each term of Equation (A11.4) is the probability of a particular path
through the tree times the discounted value of the bond price at the end
of that path, where discounting is done using the short-term rates along
the path. Taking all terms together, therefore, P0 is the expected discounted
bond price. More generally, then, letting n be the number of periods, Pn the
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random full price of the bond at period n, and ri the random short-term rate
over period i to i + 1,

P0 = E

[
Pn∏n−1

i=0 (1 + ri)

]
(A11.5)

The discount factor to period n, d(n), is just a special case of (A11.5)
when the terminal price equals one in all states. Hence,

d(n) = E

[
1∏n−1

i=0 (1 + ri)

]
(A11.6)

Following the discussion in the text, the forward full price of the bond
is just the future value, to the forward delivery date, of the full spot price of
the bond. Therefore, using Equations (A11.5) and (A11.6),

Pfwd
0 =

P0

d(n)
(A11.7)

Turning to the futures price, start again with the recombining, risk-
neutral binomial tree. At expiration on date 2, the futures price equals the
flat bond price. (At contract expiration, the bond is delivered at the futures
price plus accrued interest.) In the up state of date 1, the futures price is
Fu

1 , which means that the daily settlement payment for a long position of
one contract on date 2 is puu

2 − Fu
1 in the up-up state and pud

2 − Fu
1 in the

up-down state. But because the value of a futures contract initiated at any
date is zero, the expected discounted value of the daily settlement payments
from the date 1 up state must be zero. Hence,

q(puu
2 − Fu

1) + (1 − q)(pud
2 − Fu

1 )
1 + ru

1

= 0 (A11.8)

And, solving for the futures price,

Fu
1 = qpuu

2 + (1 − q)pud
2 (A11.9)

Analogously, the futures price in the date 1 down state is,

Fd
1 = qpud

2 + (1 − q)pdd
2 (A11.10)
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On date 0, the futures price is F0, and the expected discounted value of
the date 1 settlement payment must be zero. Hence,

q(F u
1 − F0) + (1 − q)(F d

1 − F0)
1 + r0

= 0 (A11.11)

Or,
F0 = qF u

1 + (1 − q)F d
1 (A11.12)

Finally, substituting Equations (A11.9) and (A11.10) into (A11.12),

F0 = q2puu
2 + 2q(1 − q)pud

2 + (1 − q)2pdd
2 (A11.13)

Hence, in a risk-neutral tree, the futures price is the expected value of the
bond price on the contract expiration date. More generally,

F0 = E[pn] (A11.14)

This result is proved more formally in Section A16.5.

A11.3 THE FUTURES-FORWARD DIFFERENCE

Recall that for any two random variables, X and Y, their covariance can be
written as,

Cov(X,Y) = E[XY] − E[X]E[Y] (A11.15)

Applying this to two random variables from the previous section, namely,
Pn and

∏n−1
i=0 (1 + ri),

Cov

(
Pn,

1∏n−1
i=0 (1 + ri)

)
= E

[
Pn∏n−1

i=0 (1 + ri)

]

− E[Pn]E

[
1∏n−1

i=0 (1 + ri)

]
(A11.16)

Let AIn be the accrued interest on the bond as of date n. Because accrued
interest is not a random variable, E[Pn] = E[pn] + AIn. Next, substitute
the definitions of P0, d(n), and F0 from Equations (A11.5), (A11.6), and
(A11.14) into Equation (A11.16) to see that,

Cov

(
Pn,

1∏n−1
i=0 (1 + ri)

)
= P0 − (F0 + AIn)d(n) (A11.17)
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Rearranging terms, substituting in the forward price from Equation (A11.7),
and recognizing that Pfwd

0 = p fwd
0 + AIn,

F0 + AIn =
P0

d(n)
− 1

d(n)
Cov

(
Pn,

1∏n−1
i=0 (1 + ri)

)

= Pfwd
0 − 1

d(n)
Cov

(
Pn,

1∏n−1
i=0 (1 + ri)

)

F0 = p fwd
0 − 1

d(n)
Cov

(
Pn,

1∏n−1
i=0 (1 + ri)

)
(A11.18)

Finally, because bond prices are negatively correlated with interest rates,
the covariance term in Equation (A11.18) is negative and, therefore,

F0 < p fwd
0 (A11.19)

The futures price is less than the forward price.

A11.4 FUTURES DEL IVERY OPTIONS IN A TERM
STRUCTURE MODEL

Having set up a term structure model in the form of a tree, the quality option
can be priced as follows. Start at the delivery date. At each node, compute
the ratio of the price to conversion factor for each deliverable bond. Find the
bond with the minimum ratio and set the futures price equal to that ratio.
Then, given these terminal values of the futures price, prices on earlier dates
can be computed along the lines described in Section A11.2. In the case of
the timing, end-of-month, and wild-card options, which are American-style
options exercisable by the short, the futures price at each node in the tree
is the minimum of the futures price with the option exercised and with the
option not exercised.

The previous paragraph assumes that the prices of the bonds are avail-
able on the tree as of the last delivery date. These bond prices can be com-
puted in one of two ways. If a model with a closed-form solution for spot
rates is being used, then these rates can be used to compute the bond prices
as needed. Otherwise, the tree has to be extended to the maturity date of
the longest bond in the basket and bond prices have to be computed using
the usual tree methodology. The first solution is faster and less subject to
numerical error, but a model with a closed-form solution may or may not
be suitable for the problem at hand.
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Arbitrage-free pricing models usually assume that some set of securities
is fairly priced. In the case of futures, the standard assumption is that the
forward prices of all bonds in the deliverable basket are fair. Technically,
this calibration can be accomplished by assigning a spread to each bond
such that its forward price in the model matches the forward price in the
market. The assumption that bond prices are fair is in the spirit of pricing
the futures relative to cash. Another approach can be used to decide whether
the underlying bonds are fairly priced or not.

Term structure models commonly used for pricing futures fall into two
main categories. First are one- or two-factor short-rate models along the
lines of those described in Chapters 7–9. These models are relatively easy to
implement and, for the most part, flexible enough to capture the yield curve
dynamics driving futures prices. With only one or two factors, however, these
models cannot capture the idiosyncratic price movements of any deliverable
bond relative to another.

The second type of model allows for a richer set of relative price move-
ments across bonds in the deliverable basket. These models essentially allow
each bond to follow its own price or yield process. There are costs to this
flexibility, however. First, ensuring that these models are arbitrage free takes
some effort. Second, the user must specify the parameters that describe the
stochastic behavior of all bond prices in the basket, for example, a volatility
for each of the bonds in the basket along with correlations between each
pair of bonds.

Futures traders often describe their models in terms of the beta of each
bond in the basket relative to a benchmark bond in the basket. The beta
of a bond represents the expected change in yield of that bond given a
one-basis-point change in the yield of the benchmark. A bond with a beta
of 1.02, for example, implies that the bond’s yield is assumed to change 2%
more than the yield of the benchmark bond. The beta of a particular bond
can be thought of as the coefficient from a regression of changes in its yield
on changes in the benchmark’s yield. Note that in a one-factor model the
beta of a bond is simply the ratio of the volatility of that bond yield to the
volatility of the benchmark’s yield.
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Short-Term Rates and

Their Derivatives

This appendix builds on Appendixes A11.2 and A11.3 to explain the pric-
ing of forward and futures rates and the futures-forward rate difference

in term structure models. All expectations here are also with respect to some
risk-neutral or pricing probabilities.

The first step in this Appendix is to show that the futures rate with
respect to a term rate, like a Euribor futures rate in the text, is greater than
the corresponding forward term rate.

The 𝛽-year rate, t years forward, r fwd
t , is the rate that equates the present

value at time t of receiving a unit of currency at time t + 𝛽 with the price of
a 𝛽-year zero coupon bond, t-years forward, pfwd

0 (t). Using continuously
compounded rates,

pfwd
0 (t) = e−𝛽r fwd

t (A12.1)

Furthermore, by Equation (A11.19),

pfwd
0 (t) = e−𝛽r fwd

t
> F0 (A12.2)

where F0 is the futures price of that zero coupon bond.
Let rt be the realized 𝛽-year rate at time t. Then, by definition, the 𝛽-year

zero coupon bond price at that time, pt, is,

pt = e−𝛽rt (A12.3)

and, by Equation (A11.14),

F0 = E[pt] = E[e−𝛽rt ] (A12.4)

Because of daily settlement payments of futures contracts, and following
the same argument as in Appendix A11.2, which leads to Equation (A11.14),

497
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it can be shown that the futures rate, r fut
t , corresponding to the 𝛽-year zero

coupon bond rate, is simply today’s expectation of that bond rate at time t,

r fut
t = E[rt] (A12.5)

By Jensen’s inequality and Equation (A12.5),

E[e−𝛽rt ] > e−𝛽E[rt] = e−𝛽r fut
t (A12.6)

Stringing together Equations (A12.2), (A12.4), and (A12.6),

e−𝛽r fwd
t

> F0 = E[e−𝛽rt ] > e−𝛽r fut
t (A12.7)

Finally, focusing on the leftmost and rightmost terms of Equation (A12.7),

r fut
t > r fwd

t (A12.8)

as was to be proved.
The next step in this appendix is to show that the futures rate with

respect to an average rate, like a one-month SOFR (Secured Overnight
Financing Rate) futures rate or a fed funds futures rate, is greater than the
futures rate with respect to a term rate. This fact, combined with the result
just proved, implies that futures rates with respect to average rates are also
greater than the corresponding forward rates.

Let R(t, t + 𝛽) be the integral of the continuously compounded overnight
rates from t to t + 𝛽, so that the average rate is R(t, t + 𝛽)∕𝛽. Once again,
because of the daily settlement of futures contracts, today’s futures rate on
the average rate, Afut

t , is today’s expectation of the average at time t,

Afut
t = E

[
1
𝛽

R(t, t + 𝛽)
]

(A12.9)

By definition of the 𝛽-year term rate at time t, rt,

e−𝛽rt = Et[e−R(t,t+𝛽)] (A12.10)

where Et[⋅] gives the expectation as of time t. Applying Jensen’s inequality
to (A12.10) and rearranging terms,

e−𝛽rt
> e−Et[R(t,t+𝛽)]

rt <
1
𝛽

Et[R(t, t + 𝛽)]

r fut
t <

1
𝛽

E[R(t, t + 𝛽)] = Afut
t (A12.11)
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where the third equation takes expectations of the second as of today, and
the last equality follows from Equation (A12.9). Equation (A12.11) says that
the futures rate on the average is greater than the futures rate on the term
rates, as was to be proved.

The final step in this appendix is to show that the futures rate with
respect to a compounded rate, like a three-month SOFR futures rate, is
greater than the futures rate with respect to an average rate. Once again,
because of daily settlement, today’s futures rate on a compounded rate, Cfut

t ,
is the expectation of that compounded rate in the future. Mathematically, in
a continuously compounded version of Equation (12.10) in the text,

Cfut
t = 1

𝛽

(E[eR(t,t+𝛽)] − 1) (A12.12)

By Jensen’s inequality and the properties of the exponential function,

E[eR(t,t+𝛽)] − 1 > eE[R(t,t+𝛽)] − 1 > E[R(t, t + 𝛽)] (A12.13)

Finally, combining Equations (A12.12), (A12.13), and the definition of the
futures rate on the average in (A12.9),

C fut
t = 1

𝛽

(E[eR(t,t+𝛽)] − 1) > 1
𝛽

E[R(t, t + 𝛽)] = Afut
t (A12.14)

Hence, as was to be proved, the futures rate on a compounded rate is greater
than the futures on an average rate.

To summarize, the financial insight is that, because of daily settlement,
the forward price on a zero coupon bond is greater than the futures price on
that bond. This result, from Chapter 11, plus a convexity effect in moving
from price to rate, shows that the futures rate with respect to a term rate
exceeds the corresponding forward term rate. Then, accounting for the con-
vexity effects of moving to a futures rate with respect to an average rate or
with respect to a compounded rate, these futures rates exceed the futures rate
with respect to the term rate. The bottom line, then, is that all of the futures
rates discussed in the chapter exceed the corresponding term forward rate.
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Interest Rate Swaps

A13.1 PRIC ING A EURIBOR SWAP AS OF
FEBRUARY 24, 2022

This section prices a two-year fixed-for-floating swap, where the floating
rate is three-month Euribor. The inputs are the term structure of €STR OIS
given in Table A13.1, the two-year Euribor swap rate of 0.078%, and the
two-year €STR–Euribor basis swap spread of 0.138%. All cash flows are
assumed to follow the actual/360 convention, and all of the relevant dates
are assumed to be business days.

The OIS rates in the fourth column of the table are observed in the
market. The discount factors are calculated by setting the present value of
the fixed payments on each OIS (including the fictional notional amount at
maturity) equal to par, which is the value of the floating legs that pay com-
pounded daily €STR. Letting d(t) denote the discount factor for t years, the

TABLE A13.1 €STR OIS Rates as of February 24, 2022.

Term Term Term Rate Discount Fwd Rate
(years) (date) (days) (%) Factor (%)

0.25 05/24/2022 89 −0.5695 1.0014099 −0.1408
0.50 08/24/2022 181 −0.5580 1.0028134 −0.1400
0.75 11/24/2022 273 −0.5110 1.0038902 −0.1073
1.00 02/24/2023 365 −0.4380 1.0044606 −0.0568
1.25 05/24/2023 454 −0.3380 1.0042784 0.1081
1.50 08/24/2023 546 −0.2330 1.0035455 0.0730
1.75 11/24/2023 638 −0.1400 1.0024888 0.1054
2.00 02/24/2024 730 −0.0600 1.0012201 0.1267
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equations determining the discount factors, along the same lines as for SOFR
swaps explained in Chapter 2, are the following,

1 = (1 − 0.5695% × 89∕360)d(0.25)

1 = (1 − 0.5580% × 181∕360)d(0.50)

1 = (1 − 0.5110% × 273∕360)d(0.75)

1 = (1 − 0.4380% × 365∕360)d(1.00)

1 = −0.3380% × 89∕360 × d(0.25)

+ (1 − 0.3880% × (454 − 89)∕360)d(1.25)

1 = −0.2330% × 181∕360 × d(0.50)

+ (1 − 0.2330% × (546 − 181)∕360)d(1.50)

1 = −0.1400% × 273∕360 × d(0.75)

+ (1 − 0.1400% × (638 − 273)∕360)d(1.75)

1 = −0.0600% × 365∕360 × d(1.00)

+ (1 − 0.0600% × (730 − 365)∕360)d(2.00) (A13.1)

Solving this set of equations gives the discount factors in Table A13.1.
The resulting forward rates are shown in the table as well but are not
needed for the remaining calculations. In any case, with these discount
factors, the two-year Euribor swap rate of 0.078% and the two-year €STR
versus three-month Euribor basis swap spread of 0.138% are related by
equating the present value of the fixed side of the Euribor swap payments
(including the fictional notional amount) to one (i.e., the value of floating
€STR, including the fictional notional amount) plus the present value of the
basis swap spread payments. Mathematically,

0.078% × 365∕360 × d(1.00) + (1 + 0.078 × (730 − 365)∕360) × d(2.00)

= 1 + 0.138% × 89∕360 × d(0.25)

+ 0.138% × (181 − 89)∕360 × d(0.50) + · · ·

+ 0.138% × (730 − 638)∕360 × d(2.00) (A13.2)

Note that Equation (A13.2) is the pricing condition. Given the 0.078%
swap rate, it can be used to solve for the 0.138% basis swap spread. Or,
conversely, given the 0.138% basis swap spread, it can be used to solve for
the 0.078% swap rate.
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A13.2 TWO-CURVE PRIC ING

For the purposes of this section, assume for simplicity that payments are
annual at times t = 1, . . . ,T. For ease of exposition, say that the risk-free
rate index is €STR and that the non-risk-free rate index is Euribor. Given a
set of discount factors, d(t), derived from €STR OIS; a set of Euribor swap
rates, c(t); and €STR versus Euribor basis swap spreads, x(t), the fair pric-
ing conditions for the Euribor swaps, discussed in the text and the previous
section are, for every t,

c(t)
t∑

s=1

d(s) + d(t) = 1 + x(t)
t∑

s=1

d(s) (A13.3)

Now define a set of adjusted Euribor forward rates, L′(t), such that the
present values of the floating legs of the Euribor swaps equal their correct
values, which are given by the right-hand side of (A13.3),

t∑
s=1

L′(s)d(s) + (1 + L′(t))d(t) = 1 + x(t)
t∑

s=1

d(s) (A13.4)

Given the basis swap spreads, Equation (A13.4) could be used to solve
for all of the adjusted Euribor forward rates, one at a time, starting with t = 1
and continuing through to t = T. These L′(t) could then be used to price
payments that depend on Euribor. However, noticing that the right-hand
sides of Equations (A13.3) and (A13.4) are the same, these two equations
can be combined,

c(t)
t∑

s=1

d(s) + d(t) =
t∑

s=1

L′(s)d(s) + (1 + L′(t))d(t) (A13.5)

But given all of the swap rates, c(t), Equation (A13.5) can be used itera-
tively to solve for the L′(t). In other words, so long as the Euribor swaps are
priced fairly relative to €STR OIS, there is no need to know the basis swap
spreads.

In summary, then, the two-curve methodology for pricing Euribor
swaps is as follows. First, solve for the adjusted forward rates, L′(t), as just
described. Second, project those adjusted forward rates as future Euribor
floating rates to set floating-leg payments. Third, discount both fixed- and
floating-leg payments using the €STR discount factors.
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Corporate Debt and Credit

Default Swaps

A14.1 CUMULATIVE DEFAULT AND
SURVIVAL RATES

Proposition: If the hazard rate is constant at λ, then the cumulative survival
probability to time t, CS(t), is e−λt, and the cumulative default probability,
CD(t), is 1 − e−λt.

Proof: The probability of no default to time t + Δt, CS(t + Δt), is the prob-
ability that there is no default to time t and no default from then to time
t + Δt. Mathematically,

CS(t + Δt) = CS(t) × (1 − λΔt) (A14.1)

λCS(t) = −CS(t + Δt) − CS(t)
Δt

(A14.2)

Taking the limit of the right-hand side of (A14.2) as Δt approaches zero
is the derivative of CS(t), denoted CS′(t). Therefore,

λCS(t) = −CS′(t) (A14.3)
CS(t) = e−λt (A14.4)

where Equation (A14.4) is the solution to Equation (A14.3). The cumula-
tive default probability is just one minus the cumulative survival probability,
which gives CD(t) = 1 − e−λt.
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A14.2 UPFRONT AMOUNTS

Continue with the notation of the previous section, and add the following:

■ sCDS: CDS spread
■ cCDS: CDS coupon
■ T: maturity of the CDS, in years
■ n: number of CDS premium payments per year
■ ti: time of CDS premium payment i, i = 1, . . . ,nT, with t0 ≡ 0
■ d(ti): discount factor at time ti, at risk-free or benchmark rates
■ R: recovery rate
■ UF: upfront amount

Then, following the logic described in the text, with the detail that pre-
mium payments follow the actual/360 day-count convention, the expected
discounted value of the fee leg, Vfee, is,

Vfee = sCDS
nT∑
i=1

ti − ti−1

360
CS(ti)d(ti)

+ 1
2

sCDS
nT∑
i=1

ti − ti−1

360
[CS(ti−1) − CS(ti)]d(ti) (A14.5)

The value of the contingent leg, Vcont, again following the logic des-
cribed in the text, is,

VCont = (1 − R)
nT∑
i=1

[CS(ti−1) − CS(ti)]d(ti) (A14.6)

A CDS with a premium of sCDS is fair if the hazard rate is such that
the values of the fee and contingent legs, as given in Equations (A14.5) and
(A14.6), are equal.

The upfront amount, following the logic of the text, equals the expected
discount value of paying the CDS coupon as a premium payment rather than
the CDS spread. Essentially, the upfront amount is computed like the fee leg,
with −(cCDS − sCDS) or (sCDS − cCDS) replacing sCDS. Hence,

UF = (sCDS − cCDS)
nT∑
i=1

ti − ti−1

360
CS(ti)d(ti)

+ 1
2
(sCDS − cCDS)

nT∑
i=1

ti − ti−1

360
[CS(ti−1) − CS(ti)]d(ti) (A14.7)
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A14.3 AN APPROXIMATION FOR CDS SPREADS

For the purposes of this section, assume that premium payments of the CDS
are all Δt years apart, that is, ti − ti−1 = Δt for all ti. Substituting that rela-
tionship into Equations (A14.5) and (A14.6) and setting the two equations
equal, gives the following,

sCDSΔt
nT∑
i=1

CS(ti)d(ti) +
1
2
sCDSΔt

nT∑
i=1

[CS(ti−1) − CS(ti)]d(ti)

= (1 − R)
nT∑
i=1

[CS(ti−1) − CS(ti)]d(ti) (A14.8)

Substituting in from Equation (A14.4), each term of (A14.8) can be sim-
plified as follows,

0 = sCDSΔte−λti

+ 1
2

sCDSΔt[e−λti−1 − e−λti ]

− (1 − R)[e−λti−1 − e−λti ] (A14.9)

Furthermore, because ti − ti−1 = Δt for all ti, it is easy to show that,
if Equation (A14.9) holds for ti, then it also holds for ti+1. Hence, in this
special case, sCDS can be solved from any one date. Proceeding then from
Equation (A14.9), multiply through by e−λti and simplify to see that,

sCDSΔt
[
1 + 1

2
(eλΔt − 1)

]
= (1 − R)[eλΔt − 1] (A14.10)

sCDSΔt
[1 + eλΔt]

2
= (1 − R)[eλΔt − 1] (A14.11)

sCDS = (1 − R)
[

2
Δt

eλΔt − 1
eλΔt + 1

]
(A14.12)

Finally, take the limit as Δt approaches zero of the terms in the hard
bracket on the right-hand side of (A14.12) to obtain,

sCDS ≈ λ(1 − R) (A14.13)

A14.4 CDS-EQUIVALENT BOND SPREADS

Following the logic of the text and this appendix, the expected discounted
value of a bond’s coupons can be computed along the lines of the fee leg of a
CDS. Similarly, the expected discounted value of a bond’s principal payment
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can be computed along the lines of the contingent leg, except that the pay-
ment from the bond upon default is R times the principal amount, while the
payment due to the buyer of protection upon default is 1 − R times the prin-
cipal amount. Therefore, using Equations (A14.5) and (A14.6) – simplified
here to assume that coupon payments are exactly one-half years apart – the
price of a bond, P, with a coupon rate, c, given a hazard rate, is given by,

P = c
2

nT∑
i=1

CS(ti)d(ti)

+ c
2

nT∑
i=1

[CS(ti−1) − CS(ti)]d(ti)]

+ R
nT∑
i=1

[CS(ti−1) − CS(ti)]d(ti) (A14.14)

To solve for the CDS-equivalent bond spread, find the hazard rate
that solves Equation (A14.14). Then, using that hazard rate, find the sCDS

that sets the fee leg in Equation (A14.5) equal to the contingent leg in
Equation (A14.6).

A14.5 BOND SPREAD WITH MARKET RECOVERY

From the definition of bond spread, if the bond does not default (and rates do
not change), then the return on the bond equals the risk-free or benchmark
rate, r, plus the spread. If the bond defaults and recovers Rm of its market
price, then the return over the moment of default is (RmP − P)∕P or (Rm − 1).
Therefore, over a short time interval dt years, over which the probability of
no default and default are 1 − λdt and λdt, respectively, the expected return
on the bond is,

(1 − λdt) × (r + s)dt + λdt × (Rm − 1)

≈ (r + s)dt + λdt(Rm − 1) (A14.15)

where the approximation follows from ignoring the very small terms, that
is, those that are multiplied by (dt)2.

Assuming that investors are risk neutral or that the hazard rate is a
risk-neutral pricing rate, investors are indifferent between buying a corpo-
rate bond and buying a bond without default risk if the expected return of
the former, given in Equation (A14.15), is equal to the risk-free rate. Math-
ematically, then,

rdt = (r + s)dt + λdt(Rm − 1)

s = λ(1 − Rm) (A14.16)
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Mortgage-Backed Securities

A15.1 MONTH-END BALANCES

This section shows that, under the principal amortization schedule described
in the text, the balance outstanding at any time equals the present value of
the remaining payments at the original mortgage rate. Let N be the term of
the mortgage, in months; let r be the mortgage rate; let X be the monthly
payment, and let B(i) be the balance outstanding at the end of month i,
i = 0,1, . . .N. By definition, as discussed in the text,

B(0) = X
12
r

[
1 −

(
1 + r

12

)−N
]

(A15.1)

If the balance outstanding at the end of month i does equal the present
value of the remaining payments at the rate r, then,

B(i) = X
12
r

[
1 −

(
1 + r

12

)i−N
]

(A15.2)

B(i + 1) = X
12
r

[
1 −

(
1 + r

12

)i+1−N
]

(A15.3)

According to the logic of the amortization table, the interest component
of the payment for month i + 1 is (r∕12)B(i), and the principal component
is X − (r∕12)B(i). Because B(0) is, by definition, the present value of the
remaining payments at the start of the mortgage, this section needs to prove
that, for any i > 0,

B(i) − B(i + 1) = X − r
12

B(i) (A15.4)

509
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To prove this, rearrange terms and then substitute for B(i) and B(i + 1)
from Equations (A15.2) and (A15.3), respectively,

(
1 + r

12

)
B(i) − B(i + 1)

?
=X (A15.5)

X
12
r

[
1 + r

12
−
(

1 + r
12

)i+1−N
− 1 +

(
1 + r

12

)i+1−N
]

?
=X (A15.6)

X
12
r

[ r
12

] ?
=X (A15.7)

X = X (A15.8)

which is clearly true for any parameters of the problem.

A15.2 PRIC ING MBS WITH TERM STRUCTURE
MODELS

This section very briefly discusses three problems that arise in the context
of pricing MBS in term structure models: path dependence, proxies for the
mortgage rate, and factors apart from interest rates.

As for path dependence, the burnout and media effects imply that the
value of an MBS depends not only on the current term structure of inter-
est rates, but also on the history of the term structure. Pricing by backward
induction, however, described in earlier chapters of the book, does not nat-
urally accommodate path dependence: at any node of a binomial tree, for
example, there is no memory of how the interest rate process moved from
its current state to that particular node of the tree.

A popular solution for pricing path-dependent claims is Monte Carlo
simulation. To price a security in this framework, in a one-factor setting,
proceed as follows. First, generate a large number of paths of interest rates
at the frequency and to the horizon desired. For this purpose, paths are gener-
ated using a particular risk-neutral process for the short-term rate. Second,
calculate the cash flows of the security along each path. In the mortgage
context, this would include the security’s scheduled payments along with
its prepayments. Burnout and the media effect can be implemented in this
framework, because each path is available in its entirety as cash flows are
calculated. Third, starting at the end of each path, calculate the discounted
value of the security’s cash flows along each path using the interest rates
along that path. Fourth, compute the value of the security as the average of
the discounted values across paths.
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To connect Monte Carlo simulation with the pricing approach used
elsewhere in the book, recall Equation (A11.5), reproduced here for
convenience,

P0 = E

[
Pn∏n−1

i=0 (1 + ri)

]
(A15.9)

where ri is the short-term rate in period i, Pn is the value of a claim in n
periods, and P0 is the price of the claim today. In light of the discussion
in this section, the term inside the hard brackets is analogous to the dis-
counted value of a security along one path. The expectation is analogous to
the average of those discounted values across paths.

In the Monte Carlo framework, measures of interest rate sensitivity can
be computed by shifting the initial term structure in some manner, repeat-
ing the valuation process, and calculating the difference between the initial
and shifted prices. As a numerical matter, paths should not be regenerated
between the initial and shifted valuations, as that would introduce noise into
the sensitivity calculations.

A general drawback of Monte Carlo simulation is that is does not natu-
rally accommodate the valuation of American- or Bermudan-style options,
because the value of holding an option at any state typically requires pric-
ing by backward induction. While methodological advances are now used
to overcome this problem,1 the issue does not really arise when valuing the
prepayment option. As it is generally accepted that homeowner behavior
is not well explained as the optimal exercise of a fixed income option, a
path-dependent prepayment function, which is well-suited to Monte Carlo
simulation, is the preferred approach.

The second problem addressed in this section relates to the mortgage
rate. Valuing an MBS along a path requires both the benchmark of discount-
ing rates as well as the mortgage rate. Discounting can be done at benchmark
rates plus a spread, but the incentive of a prepayment model depends on the
current mortgage rate. The difficulty is that calculating the fair mortgage rate
at a single date on a single path of a Monte Carlo simulation is a problem of
the same order of magnitude as the original problem of pricing a particular
MBS as of the current state! Common practice, therefore, is to build a simple
model of the mortgage rate as a function of benchmark rates and, perhaps,
volatility, for example, an estimated regression model of the mortgage rate
as a function of one or more benchmark rates and rate volatility. It may not
be trivial to compute long-term benchmark rates along a path of short-term

1Longstaff, F., and Schwartz, E. (2001), “Valuing American Options by Simula-
tion: A Simple Least-Squares Approach,” Review of Financial Studies 14(1), Spring,
pp. 113-147.
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rates, but this difficulty can usually be overcome with a closed-form solution
for long-term rates or with a numerical approximation consistent with the
short-term rate process.

The third problem is that defaults and turnover depend on variables
other than interest rates, like housing prices, which are not traditionally
included in the pricing of fixed income securities. Incorporating these vari-
ables, including their correlations with interest rates, is yet another challenge
of pricing MBS.
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A16.1 THEORETICAL FOUNDATIONS FOR APPLYING
BLACK-SCHOLES-MERTON (BSM) TO SELECTED
FIXED INCOME OPTIONS

The justification for applying BSM in each of the cases of the text takes the
following form:

1. Given the functional form of a probability distribution (e.g., normal,
lognormal), there exist parameters of that distribution such that V0, the
arbitrage-free price of any asset today, is given by,

V0

N0
= E0

[
Vt

Nt

]
(A16.1)

where Nt is the price at time t of an asset chosen as the numeraire; Vt is
value at time t of an asset being priced today, including reinvested cash
flows; and Et[⋅] gives expectations as of time t under the appropriately
parameterized probability distribution. Equation (A16.1) is known as
the martingale property of asset prices. This claim is proved in a special
case in Section A16.2 but used more generally here.

2. Say that the rate or security price underlying an option at time t is St.
It follows from the previous point that the value of a call option with
strike K and time to expiry T is,

VCall
0 = N0E0

[
(ST − K)+

NT

]
(A16.2)

while the value of a put is,

VPut
0 = N0E0

[
(K − ST)+

NT

]
(A16.3)
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3. In the contexts of the text, it is possible to choose the numeraire such
that,

S0 = E0[ST] (A16.4)

and such that Equations (A16.2) and (A16.3) can be written as,
respectively,

VCall
0 = h0E0[(ST − K)+] (A16.5)

VPut
0 = h0E0[(K − ST)+] (A16.6)

for some h0 that is known as of time 0. This is proven in Section A16.3.
4. If St has a normal distribution with volatility parameter 𝜎, then

Section A16.4 shows that (A16.4) through (A16.6) become the normal
BSM-style formulae,

VCall
0 = h0𝜉

N(S0,T,K, 𝜎) (A16.7)

VPut
0 = h0𝜋

N(S0,T,K, 𝜎) (A16.8)

for the functions 𝜉

N(⋅) and 𝜋

N(⋅) defined in that section. On the other
hand, if St has a lognormal distribution with volatility parameter 𝜎,
Section A16.4 shows that (A16.4) through (A16.6) become the lognor-
mal BSM-style formulae,

VCall
0 = h0𝜉

LN(S0,T,K, 𝜎) (A16.9)

and

VPut
0 = h0𝜋

LN(S0,T,K, 𝜎) (A16.10)

for the functions 𝜉LN(⋅) and 𝜋

LN(⋅) defined in that section.

A16.2 NUMERAIRES, PRIC ING MEASURES,
AND THE MARTINGALE PROPERTY

Define the following:

■ Gains process. The gains process of an asset at any time equals the value
of that asset at that time plus the value of all its cash flows reinvested to
that time. For this purpose, all cash flows are reinvested and then rolled
at prevailing short-term interest rates.
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■ Numeraire asset. Given a particular numeraire asset, the gains process
of any other asset can be expressed in terms of the numeraire asset by
dividing that gains process by the gains process of the numeraire asset.
The gains process of a security in terms of the numeraire asset is called
the normalized gains process of that asset.

For concreteness, Table A16.1 gives an example of these concepts. The
asset under consideration is a long-term, 4% coupon bond with a face
amount of 100. The numeraire is a two-year zero coupon bond with a unit
face amount. The gains process is observed today, after one year, and after
two years.

The realization of the short-term rate, which in this example is the one-
year rate, is given in row (i). The realization of the bond price over time is
given in row (ii). A 4% coupon on 100 is paid on dates 1 and 2 and shown
in row (iii) and row (iv). The payment on date 1 is reinvested for one year
at the short-term rate on date 1, that is, 2%. The gains process of the bond
given in row (v) is the sum of its price and reinvested cash flows, i.e., the
sums of rows (ii) through (iv). The price realization of the two-year zero
coupon bond, which is the chose numeraire, is given in row (vi). Finally, the
normalized bond gains process, given in row (vii), is the bond gains process
divided by the price of the numeraire, i.e., row (v) divided by row (vi).

These definitions allow for the statement of the main result of this
section: in the absence of arbitrage opportunities, there exists a parameter-
ization of a given probability distribution, or a pricing measure, such that
the normalized gains of any asset today equals the expected value of that
asset’s normalized gains in the future. Technically, there exist probabilities
such that the normalized gains process is a martingale. As the goal here is
intuition rather than mathematical generality, this result is proven in the
context of a single-period, binomial process.

TABLE A16.1 Example of the Calculation of a Normalized Gains Process

End-of-Year Realizations

0 1 2

(i) Short-Term/1-Year Rate 1% 2% 1.5%
(ii) Bond Price 100 95 97.50
(iii) Date 1 Reinvested Coupon 4 4(1.02)=4.08
(iv) Date 2 Reinvested Coupon 4
(v) Gains Process 100 99 105.58
(vi) Price of 2-Year Zero/Numeraire 0.9612 0.9804 1.0
(vii) Normalized Bond Gains Process 104.04 100.98 105.58



Trim Size: 6in x 9in Tuckman835554 bapp16.tex V1 - 07/12/2022 6:24pm Page 516�

� �

�

516 FIXED INCOME SECURITIES

The starting point is state 0 of date 0, after which the economy moves
to either state 0 or state 1 of date 1. Three assets will be considered, A, B,
and C, with current prices A0, B0, and C0, and date 1, state i prices of
Ai

1, Bi
1, and Ci

1. Without loss of generality here, the date 1 prices include
any cash flows of the securities on date 1.

In this framework, any asset can be priced by arbitrage relative to the
other two assets. The method is just as in Chapter 7. To price asset C by
arbitrage, construct its replicating portfolio, in particular, a portfolio with 𝛼

of asset A and 𝛽 of asset B such that,

C0
1 = 𝛼A0

1 + 𝛽B0
1 (A16.11)

C1
1 = 𝛼A1

1 + 𝛽B1
1 (A16.12)

Then, to rule out risk-free arbitrage opportunities, it must be the case
that,

C0 = 𝛼A0 + 𝛽B0 (A16.13)

Now let asset A be the numeraire and rewrite equations (A16.11)
through (A16.13) in terms of the normalized gains processes of assets B
and C. To do this, simply divide each of the equations by the corresponding
value of the numeraire asset A, that is, divide (A16.11) by A0

1, (A16.12) by
A1

1, and (A16.13) by A0. Furthermore, denote the normalized gains process

of the assets by B and C. Then, equations (A16.11) through (A16.13)
become,

C
0
1 = 𝛼 + 𝛽B

0
1 (A16.14)

C
1
1 = 𝛼 + 𝛽B

1
1 (A16.15)

C0 = 𝛼 + 𝛽B0 (A16.16)

Furthermore, solving (A16.14) and (A16.15) for 𝛼 and 𝛽,

𝛼 =
B

1
1C

0
1 − B

0
1C

1
1

B
1
1 − B

0
1

(A16.17)

𝛽 =
C

1
1 − C

0
1

B
1
1 − B

0
1

(A16.18)

In the framework just described, it is now shown that there exists a
pricing measure such that the expected normalized gains process of each
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security is a martingale. More specifically, there is a probability p of moving
to state 1 of date 1 (and 1 − p of moving to state 0 of date 1) such that the
expected value of the normalized gain of each security on date 1 equals its
normalized gain on date 0. Mathematically, it has to be shown that there is
a p such that,

C0 = pC
1
1 + (1 − p)C

0
1 (A16.19)

B0 = pB
1
1 + (1 − p)B

0
1 (A16.20)

Solving (A16.20) for p gives,

p =
B0 − B

0
1

B
1
1 − B

0
1

(A16.21)

But this value of p also solves (A16.19). To see this, start by substituting
p from (A16.21) into the right-hand side of (A16.19),

pC
1
1 + (1 − p)C

0
1 =

B0 − B
0
1

B
1
1 − B

0
1

C
1
1 −

B0 − B
1
1

B
1
1 − B

0
1

C
0
1 (A16.22)

= B0
C

1
1 − C

0
1

B
1
1 − B

0
1

+
B

1
1C

0
1 − B

0
1C

1
1

B
1
1 − B

0
1

(A16.23)

= B0𝛽 + 𝛼 (A16.24)

= C0 (A16.25)

Equation (A16.23) just rearranges the terms of (A16.22); combining
(A16.23) with (A16.17) and (A16.18) gives (A16.24); and (A16.24) with
(A16.16) gives (A16.25). Hence, as was to be shown, there is a pricing mea-
sure, in this case the probability p, such that the normalized gains processes
of B and C are martingales. And, of course, since nothing distinguishes A
from the other assets, a probability with the same properties could have
been found had B or C been chosen as the numeraire instead.

A16.3 CHOOSING THE NUMERAIRE AND BSM
PRICING

In the contexts of this chapter, it is possible to choose a numeraire
such that the underlying is a martingale and such that the value of a
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call is given by h0𝜉
N(S0,T,K, 𝜎) or h0𝜉

LN(S0,T,K, 𝜎), in the normal or
lognormal cases, respectively, and the value of a put by h0𝜋

N(S0,T,K, 𝜎) or
h0𝜋

LN(S0,T,K, 𝜎) in the normal or lognormal cases, where those functions
are defined in Section A16.4. This section gives the appropriate definition
of the underlying, the appropriate numeraire, and the resulting quantity h0.

A16.3.1 Bond Opt ions

Start with a European-style option, expiring on date T, written on a longer-
term bond. The underlying of this option is a forward position in the bond
for delivery on date T. It is first shown that taking the zero coupon bond
maturing at time T to be the numeraire makes this forward bond price a
martingale. Proving this is somewhat complex, because the gains process
of a bond includes reinvested coupons. Therefore, to keep the presentation
simple, the martingale result is derived in a three-date, two-period setting.
The current date is date 0, and the expiration or forward delivery date is
date 2. The bond is assumed to pay a coupon c on each of dates 1 and 2,
and its price at time t is denoted Bt. The numeraire is the zero coupon bond
maturing on date 2 with a price, on date t, of dt(2). Lastly, let r1 denote
the current one-period rate; r2 the one-period rate, realized one period from
now; and f the current one-period rate, one-period forward.

Under these assumptions, and the expression of the zero coupon bond
price on various dates in terms of the prevailing one-period rates, the gains
process of the bond on the three dates is given by the expressions,

■ Date 0: B0
d0(2)

= B0(1 + r1)(1 + f );

■ Date 1: B1+c
d1(2)

= (B1 + c)(1 + r2);

■ Date 2: B2+c(1+r2)+c
d2(2)

= B2 + c(1 + r2) + c

Therefore, the martingale property for the bond says that,

B0

d0(2)
= E0

[
B2 + c(1 + r2) + c

d2(2)

]

B0(1 + r1)(1 + f ) = E0[B2 + c(1 + r2) + c]
(A16.26)

The term c(1 + r2) in the expectation on the right-hand side of (A16.26)
requires some attention, because r2 is not known as of date 0. The date-0
value of a payment of c(1 + r2) on date 2 is, however, by the definition of
forward rates,

c(1 + f )
(1 + r1)(1 + f )

= c
1 + r1

(A16.27)
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So, applying the martingale property under the numeraire to a payment of
c(1 + r2) on date 2 requires that,

c
1+r1

d0(2)
= E0

[
c(1 + r2)

d2(2)

]

c(1 + f ) = E0[c(1 + r2)]

(A16.28)

With this result, the discussion returns to the martingale property of the
bond in (A16.26). Substituting (A16.28) into (A16.26),

B0(1 + r1)(1 + f ) − c(1 + f ) − c = E0[B2][
B0 − c

1 + r1
− c

(1 + r1)(1 + f )

]
(1 + r1)(1 + f ) = E0[B2]

B0(2) = E0[B2]

(A16.29)

The left-hand side of the second line of (A16.29) is the date 0 forward
price of the bond for delivery on date 2. The third line, then, simply denotes
this forward price by B0(2). Hence, taking the zero coupon bond of maturity
T as a numeraire, the forward price of a bond for delivery on date T is a
martingale.

Turning now to the price of an option on the bond, consider a call with
payoff (BT − K)+. Applying the martingale property to the option price and
assuming that the forward bond price is lognormal with volatility parameter
𝜎, the call option is priced as,

VBondCall
0

d0(T)
= E0

[
(BT − K)+

dT(T)

]
(A16.30)

= E0[(BT − K)+] (A16.31)

VBondCall
0 = d0(T)𝜉LN(B0(T),T,K, 𝜎) (A16.32)

An analogous argument for a put shows that,

VBondPut
0 = d0(T)𝜋LN(B0(T),T,K, 𝜎) (A16.33)

A16.3.2 Euribor Futures Opt ions

The terminal payoff of a Euribor futures call option with strike K and expi-
ration time T is, per unit notional,

[K − fT(T,T + 𝜏)]+ (A16.34)
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Given the daily settlement feature of Euribor futures options, the
numeraire of choice is the money market account, the value of one unit of
currency invested and then rolled every period, at the prevailing short-term
rate. Denoting the money market account by M(t) and the short-term rate
from time t − 1 to t by rt,

M(0) = 1 (A16.35)

M(T) = (1 + r1)(1 + r2) · · · (1 + rT) (A16.36)

The first point to make about the money market account is that it is the
numeraire of the risk-neutral short-term rate process used in the term struc-
ture models presented earlier in the book. To see this, apply the martingale
property with the numeraire to an arbitrary gains process Vt at time t,

V0

M(0)
= E0

[
VT

M(T)

]

V0 = E0

[
VT

(1 + r1)(1 + r2) · · · (1 + rT)

] (A16.37)

But the second line of (A16.37) is just the condition that the value of a claim
today equals its expected discounted value.

The second point to make about the money markets as numeraire is
that futures prices are martingales under this numeraire. This is proved in
Section A16.5.

Turning now to Euribor futures options, because they are subject to daily
settlement and are futures contracts, their prices are also martingales with
the money market account as numeraire. Furthermore, if Ft is the underlying
futures price at time t, then at the expiration of a put option on the futures
price (call on rates) at time T, the option is worth (FT − K)+. Putting together
the martingale property of the futures, (A16.38), the martingale property
of futures options, (A16.39), and the final settlement price of the futures
options, (A16.40), results in the price of the Euribor futures put option at
time t, denoted VEBPut

t ,

F0 = E[FT] (A16.38)

VEBPut
0 = E0[VEBPut

T ] (A16.39)

= E0[(FT − K)+] (A16.40)

Assuming now that FT is normally distributed, applying Section A16.4
to Equations (A16.38) and (A16.40) shows that,

VEBPut
0 = 𝜉

N(F0,T,K, 𝜎) (A16.41)
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Similarly, for the Euribor futures call option (put on rates),

VEBCall
t = 𝜋

N(F0,T,K, 𝜎) (A16.42)

A16.3.3 Bond Futures Opt ions

As shown in Section A16.5, futures prices are a martingale in the risk-neutral
measure, that is, when the numeraire is the money market account, M(t).
Hence, with Ft the underlying bond futures price at time t,

F0 = E[FT] (A16.43)

By the martingale property, the price of a put option on the futures is,

VFutPut
0

M(0)
= E0

[
(K − FT)+

M(T)

]
(A16.44)

Then, by the definition of the money market account,

VFutPut
0 = E0

[
(K − FT)+

(1 + r1)(1 + r2) · · · (1 + rT)

]
(A16.45)

To continue, make the assumption – defended in the text – that the dis-
count factor is uncorrelated with the futures price. Then, Equation (A16.45)
becomes,

VFutPut
0 = E0

[
1

(1 + r1)(1 + r2) · · · (1 + rT)

]
E0[(K − FT)+] (A16.46)

= d0(T)E0[(K − FT)+] (A16.47)

where (A16.47) follows from the risk-neutral pricing of a zero coupon bond.
Finally, applying Section A16.5 to (A16.43), (A16.47) with the assump-

tion that the bond futures price has a lognormal distribution,

VFutPut
0 = d0(T)𝜋LN(F0,T,K, 𝜎) (A16.48)

For calls, the analogous result is,

VFutCall
0 = d0(T)𝜉LN(F0,T,K, 𝜎) (A16.49)
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A16.3.4 Caplets

Caplets that mature at time T are written on a forward rate from time T
to T + 𝜏, whose value, at time t, is denoted by ft(T,T + 𝜏). It is first shown
that taking a T + 𝜏-year zero coupon bond as the numeraire makes this for-
ward rate a martingale. Let dt(T) be the time-t price of a zero coupon bond
maturing at time T. By the definition of a forward rate of term 𝜏,

ft(T,T + 𝜏) = 1
𝜏

(
dt(T)

dt(T + 𝜏)
− 1

)

= 1
𝜏

(
dt(T) − dt(T + 𝜏)

dt(T + 𝜏)

) (A16.50)

Next, consider a portfolio that is long a T-year zero and short a
T + 𝜏-year zero. Taking the T + 𝜏-year zero as the numeraire, the normalized
gains process of this portfolio is a martingale. Mathematically,

1
𝜏

(
dt(T) − dt(T + 𝜏)

dt(T + 𝜏)

)
= 1

𝜏

Et

[
dT(T) − dT(T + 𝜏)

dT(T + 𝜏)

]

= 1
𝜏

Et

[
dT(T)

dT(T + 𝜏)
− 1

]

= Et[fT(T,T + 𝜏)]

(A16.51)

where the last line of (A16.51) just uses the definition of the forward rate.
Combining (A16.50) and (A16.51) shows that the forward rate is a martin-
gale under the chosen numeraire,

ft(T,T + 𝜏) = Et[fT(T,T + 𝜏)] (A16.52)

Turning to the valuation of the caplet, its normalized gains process is
a martingale as well. Hence, taking expectations of its normalized gain as
of T + 𝜏,

VCaplet
0

d0(T + 𝜏)
= E0

[
𝜏(fT(T,T + 𝜏) − K)+

dT+𝜏 (T + 𝜏)

]
(A16.53)

= E0[𝜏(fT(T,T + 𝜏) − K)+] (A16.54)

Finally, assuming that the forward rate fT(T,T + 𝜏) is normal with
variance 𝜎

2T, and knowing from (A16.52) with t = 0 that its mean is
f0(T,T + 𝜏), the results of Section A16.4 apply and,

VCaplet
0 = d0(T + 𝜏)𝜏𝜉N(f0(T,T + 𝜏),T,K, 𝜎) (A16.55)
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A16.3.5 Swapt ions

The underlying of a T-year into 𝜏-year swaption is the forward par swap rate
from T to T + 𝜏, which, at time t, is denoted by Ct(T,T + 𝜏). It is first shown
that taking an annuity from T to T + 𝜏 as the numeraire makes this forward
par swap rate a martingale. Denote the price of this annuity by At(T,T + 𝜏).

Consider receiving the fixed-rate K on a swap from T to T + 𝜏. Its value
at time t is,

[K − Ct(T,T + 𝜏)]At(T,T + 𝜏) (A16.56)

Applying the martingale property with this annuity as numeraire,

[K − Ct(T,T + 𝜏)]At(T,T + 𝜏)
At(T,T + 𝜏)

= Et

[
[K − CT(T,T + 𝜏)]AT(T,T + 𝜏)

AT(T,T + 𝜏)

]

Ct(T,T + 𝜏) = Et[CT(T,T + 𝜏)] (A16.57)

Hence, as claimed, the forward par swap rate is a martingale under this
numeraire.

To price a receiver swaption, note that the payoff is [K − CT(T,T + 𝜏)]+
× AT(T,T + 𝜏). Therefore, its value can be calculated as the expectation of
its normalized payoff using the same numeraire,

VReceiver
0

A0(T,T + 𝜏)
= E0

[
(K − CT(T,T + 𝜏))+AT(T,T + 𝜏)

AT(T,T + 𝜏)

]

= E0[(K − CT(T,T + 𝜏))+]

VReceiver
0 = A0(T,T + 𝜏)𝜋N(C0(T,T + 𝜏),T,K, 𝜎)

(A16.58)

The last line of (A16.58) follows from (A16.57), the assumption that the
forward par swap rate is normal with variance 𝜎

2T, and the appropriate
result from Section A16.4.

Similarly, a payer option under the assumption of normality has the
value,

VPayer
0 = A0(T,T + 𝜏)𝜉N(C0(T,T + 𝜏),T,K, 𝜎) (A16.59)

A16.4 EXPECTATIONS
FOR BLACK-SCHOLES-MERTON STYLE OPTION
PRICING

As the results in this section are part of the option pricing literature, they are
presented here for easy reference but without proof. Let EN[⋅] and ELN[⋅]
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denote the expectations operators under the normal and lognormal distri-
butions, respectively, and let N(⋅) denote the standard normal cumulative
distribution.

If ST is normally distributed with means S0 and variance 𝜎

2T, then,

𝜉

N(S0,T,K, 𝜎) ≡ EN
0 [(ST − K)+]

= (S0 − K)N(d) + 𝜎

√
T√

2𝜋
e−

1
2 d2 (A16.60)

𝜋

N(S0,T,K, 𝜎) ≡ EN
0 [(K − ST)+]

= (K − S0)N(−d) + 𝜎

√
T√

2𝜋
e−

1
2 d2

(A16.61)

d =
S0 − K

𝜎

√
T

(A16.62)

If ST is lognormally distributed with mean S0 and variance S2
0(e

𝜎

2T − 1),
then,

𝜉

LN(S0,T,K, 𝜎) ≡ ELN
0 [(ST − K)+]

= S0N(d1) − KN(d2)
(A16.63)

𝜋

LN(S0,T,K, 𝜎) ≡ ELN
0 [(K − ST)+]

= KN(−d2) − S0N(−d1) (A16.64)

d1 =
ln( S0

K
) + 1

2
𝜎

2T

𝜎

√
T

(A16.65)

d2 = d1 − 𝜎

√
T (A16.66)

A16.5 FUTURES PRICES ARE MARTINGALES
WITH THE MONEY MARKET ACCOUNT AS A
NUMERAIRE

The initial value of a futures contract is zero; subsequent cash flows are
from daily settlements; and at maturity, the futures price is determined by
some final settlement rule. Consider a two-period, three-date framework for
simplicity, and let the futures price on date t be Ft. Then, the normalized
gains process is,

■ Date 0: V0
M(0) = 0;
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■ Date 1: V1
M(1) =

F1−F0
1+r1

;

■ Date 2: V2
M(2) =

(F1−F0)(1+r2)+F2−F1
(1+r1)(1+r2)

Since the value of a futures contact on date 0 is zero, the martingale
property implies that the expectation of the normalized gains at any future
date is zero. In particular, for date 1,

0 = E0

[
F1 − F0

1 + r1

]
(A16.67)

But since r1 is known as of date 0, it follows from (A16.67) that,

F0 = E0[F1] (A16.68)

As of date 2, the martingale property says that

0 = E0

[ (F1 − F0)(1 + r2) + F2 − F1

(1 + r1)(1 + r2)

]
(A16.69)

Using the law of iterated expectations, and the fact that r1 is known as
of date 0,

0 = E0

[
1

1 + r2
E1[F2 − F1]

]
(A16.70)

But, since F1 is known as of date 1, (A16.70) implies that,

F1 = E1[F2] (A16.71)

Finally then, combine (A16.68) and (A16.71) to see that,

F0 = E0[E1[F2]] = E0[F2] (A16.72)

Together with (A16.68), (A16.72) shows that the futures price is a martin-
gale under the money-market account or risk-neutral measure, as desired.
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This book is accompanied by a companion website for instructors:
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The website includes:

■ PowerPoint and PDF of figures and tables that appear in the text, with
which instructors can create their own lecture slides

■ A sample syllabus
■ Sample problems and solutions
■ Spreadsheets with calculations supporting sample problems, which can

also be used to create additional problems
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Accrued interest, 50, 60–63

Credit default swaps (CDS),
369

Forward contracts,
251–254

Futures contracts, 260, 263
Mortgages, 425–426

Across-the-Curve Credit Spread
Index (AXI), 295

American Interbank Offered Rate
(Ameribor), 290, 295

Arbitrage Pricing, 49, 55–57,
177–190, 194

Credit default swaps (CDS),
374–376

Forward contracts, 252-255, 425
Futures contracts, final settlement

price, 264–265, 438
Asset-backed securities (ABS), 4,

39, 234
Asset managers, 37, 43, 46–47, 79

Corporate debt and credit default
swaps (CDS), 349,
350–351, 365

Duration vs. DV01, 113
Hedging, 135, 145–146 fn. 1
Interest rate swaps (IRS),

321–322, 329
Profit and loss attribution,

79
Asset swaps and asset swap

spread, 94, 329, 357–359,
376

Auto loans, 16–17

B
Banks, 1, 13–14, 18–20, 263,

348–349, 354
Collateralized loan obligations

(CLOs), 350
Europe, 33–34, 365, 376
Federal Reserve and monetary

policy, 25–32
Fed funds, 302–303
Interest rate swaps (IRS),

321–322, 325, 332–333,
344–345

Japan, 36
Negative rates, 32–33
Money market funds, 21–22
Mortgages, 396–400, 420–421
Regulation, 41–43, 242–243
Repo, 226, 233, 235–237
Short-term rates and the

transition from LIBOR,
289–295

Barbell vs. bullet, 127–134
Basis point, 7 fn. 4, 89
Basis swaps and basis swap spreads,

344–346
Black-Scholes-Merton (BSM)

pricing model, 194–195,
433–434, 437, 440–441,
447 fn. 5, 448–450

Bloomberg Short-Term Bank Yield
Index (BSBY), 290, 295

Bond spread, 79, 90–94, 100, 111,
352, 360–361, 356–357

CDS-equivalent, 371–374, 379
Butterfly, 161, 173
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C
Callable bonds, see

Options/Embedded Call
Options

Caps, see Options/Caps and floors
Carry, 97–98, 256, 270–271, 279,

281, 286, 424–425
Carry-roll-down, 94, 97–100, 193
Cash carry, 97–100, 255–256, 270

fn. 7
Cash settlement, 296, 362,

379–380, 383–384, 448
Central limit order book (CLOB),

38, 40
Century bond, 104
Cheapest-to-deliver (CTD), see

Delivery option and the
cheapest-to-deliver (CTD)

China, 1–2, 9, 335 fn. 11, 249–250,
362

Clean price, 60
Clearing and central counterparties

(CCPs), 339–344
Credit default swaps (CDS), 367

fn. 14
Interest rate swaps (IRS),

319–320, 322, 328,
336–339

Repo, 231–232, 245
Short-term rates and their

derivatives, 292, 294, 297
fn. 6

Collateralized loan obligations
(CLOs), 349–351, 430 fn.
18

Collateralized-to-market (CTM),
263 fn. 5, 335–337

Collateral swap, 230
Compounding

Interest rates, 65–71
Hazard rates, 317–318, 367–368
Prepayment rates, 409–410

Constant-maturity Treasury (CMT)
swap, 188–191

Consumer credit, 5 fn. 1, 13,
15–17, 19

Continuous compounding, 68
Conversion factor, see Note and

bond futures
Convexity, 106, 109, 113–119,

126–134, 219–221
Bond and note futures, 277–278
Mortgages, 417, 421–423
Negative, 130, 208, 278, 417,

421–423, 437
Shape of the term structure,

198–204, 208–209
Corporate debt, 5, 12–13, 18, 39,

41–43, 63, 67, 104, 234,
347–361

Bonds and loans, 332–333,
348–349

Callable, 351–352, see also
Options/Embedded Call
Options

Collateralized loan obligations
(CLOs), 349–351

Covenants and seniority, 351
Cross-default provisions, 385

fn. 24
Credit default swaps (CDS)

CDS-bond basis and basis
trades, 374–377

CDS-equivalent bond spread,
371–374

Comparisons with corporate
bonds, 363–365, 374–375

Credit risk premium, 360–361
Credit spreads, 91, 97 fn. 6,

356–360
Default rates, recovery rates, and

credit losses, 353–355
Exchange-traded funds (ETFs),

44–46
Hazard-adjusted duration and

DV01, 377–378
Hedging future issuance, 330–332
Market making, 109–111
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Negative rates, 32 fn. 27
Pension funds, 128,

329–330
Repurchase agreements or repo,

225 fn. 2, 226, 230, 234
Spread duration and DV01,

378–379
Risky DV01, 379

Synthetic floating-rate debt, 333
Counterparty credit risk, 319,

334–339, 342
Coupon effect, 86–89
COVID pandemic and economic

shutdowns or March 2020,
9, 12, 16–17, 23–24, 41 fn.
37

Credit risk, 354–355, 436–437
Europe and Japan, 35–37, 363,

377
Exchange-traded funds (ETFs),

45–46
Monetary policy, 28, 31, 305
Mortgages and Mortgage-backed

securities (MBS), 399, 416,
431

Repo, 237, 239 fn. 8, 243
Treasury futures basis trades,

281–287
Credit default swaps (CDS), 4, 347,

361–394
Bond basis and basis trades,

374–377
Equivalent bond spread,

371–374
Opportunistic strategies,

384–386
Settlement auctions, 379–384
Upfront amount, 362, 366–371
Uses, 363–366

Credit ratings, 347–348, 353–355,
360–361

Credit value adjustment (CVA), 335
Cross-currency basis swap, 344,

345 fn. 19

Curve building, 145–146,
306–308

Curve risk, 94, 136–137, 145,
149–150, 161, 269, 332

CV01, 146–147

D
Daily settlement, 249

Counterparty risk, 261 fn. 3
Futures options, 438–440
Note and bond futures, 260–263,

273, 286
Rate futures, 297, 304, 308–309,

311–312, 314–317
Day-count conventions, 60,

63, 69
Dealers, 3, 14, 37–38, 40–44,

47–48, 292
Primary dealers, 31, 42–43
Repo, 223, 226, 229–230,

232–233, 240
Swaps, 320–322, 330, 335

Delivery option and the
cheapest-to-deliver (CTD)

Credit default swaps (CDS), 362,
380, 385–386

Mortgage TBAs, 418–420
Note and bond futures, 250,

264–286, 441
Delivery versus payment (DVP),

231–232, 235
Derivatives, 3–4,

Arbitrage pricing, 179,
182, 184, 188, 194–195

Corporate debt and credit default
swaps (CDS), 374 fn. 19,
379–380

Interest rate swaps (IRS), 319,
334–335, 338 fn. 14

Mortgages and mortgage-backed
securities (MBS), 424

Short-term rates, 289–292, 294
Dirty price, 60
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Discount factors, 49, 51–54, 57–59
Flat-forward-rate curve, 307–308
Floating leg of an interest rate

swap (IRS), 325
Option pricing, 441
Swap, spot, and forward rates,

68, 71–75
Dodd-Frank Act, 23 fn. 16, 319,

338–339
Duration, 106, 112–113,

115–117, 119–126,
210

Barbell vs. bullet, 127–134
Callable bonds, 434, 436–438
Decomposition of forward rates,

201–204
Futures cheapest-to-deliver

(CTD), 268–269,
274–276

see also DV01/Futures
Hazard-adjusted, 377–378
Key-rate, 136–145
Macaulay vs. Modified, 120, 120

fn. 1
Mortgages and mortgage-backed

securities, 416–417, 422,
427–428

Option-adjusted, 438
Duration times spread (DTS),

379
DV01, 106–111, 113–114,

117–126
Callable bond, 436–438
Forward-bucket,

147–150
Forward contract,

257–258
Futures, 249–250,

277–278, 441
Hazard-adjusted, 377–378
Key-rate, 136–145
Option-adjusted, 438
Partial, 145–147
Swaps, 320, 326–327, 329

E
Electronification, 40–41,

43–45, 47
End-of-month option, 259,

279–281
Entity-netted notionals (ENNs),

321–322
Environmental, social, and

governance debt (ESG), 36
fn. 34

Euro Interbank Offered Rate
(Euribor), 289–292, 294

Basis swaps, 344–346
Forward rate agreements (FRAs)

and futures, 312–318
Futures options, 438–440
Principal components of swap

rates, 172–173
Swaps, 319, 323–326, 330

Euro Overnight Index Average
(EONIA), 290–291

European Central Bank (ECB),
33–37, 172

Negative rates, 32–33
European sovereign debt crisis,

243–247, 330, 363,
376–377

MF Global repo-to-maturity
(RTM) trades,
243–247

Euro short-term rate (ESTER),
290–291, 294,
343–346

Swaps, 70
Eurozone debt and derivatives, 1–4,

35–36, 41
Credit default swaps, 361 fn. 12,

363–366, 368 fn. 15,
376–377, 384, 386

Interest rate swaps (IRS), 343
Note and bond futures, 250
Options, 448, 450
Short-term rates, 289–291, 294
Spreads, 89, 91
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Exchange-traded funds (ETFs), 14,
37, 43–46

Expectations hypothesis,
96, 204

F
Failing to deliver, 239 fn. 8
Federal Home Loan Mortgage

Corporation (Freddie Mac
or FHLMC), see
Government-sponsored
enterprises (GSEs)

Federal National Mortgage
Association (Fannie Mae or
FNMA), see
Government-sponsored
enterprises (GSEs)

Federal Reserve, 14–15, 19,
42 fn. 38, 170, 172,
213–214, 217–218,
236–237

Balance sheet, 27–29
COVID pandemic and economic

shutdowns, 24, 243, 286
Emergency facilities, 22, 23 fn. 16
Federal Open Market Committee

(FOMC) meetings, 198,
289, 301–302, 304–308

Interest on excess reserves
(IOER), 28 fn. 22

Interest on reserve balances
(IORB), 28–32

Monetary policy, 24–32,
37, 303

Open market operations, 26
Quantitative easing, 26–28,

31–32
Repo and reverse repo (RRP)

facility, 26–31, 223, 233
Fed funds, 26, 30, 290, 292,

302–303
Effective fed funds rate (EFFR),

235–237, 303–304, 344
Futures, 289, 302–308, 317

Target rate, 28–31, 301–304
Extracted from futures,

304–308
Term structure models,

213–214, 217–218
Fellow customer risk, 341–342 fn.

17
FICO, 399–400, 410, 420
Financial crisis of 2007–2009, 1, 9,

12, 16–17, 22–24, 290, 391
Corporate debt and credit

defaults swaps (CDS), 354,
363, 366, 376, 387

Government-sponsored entities
(GSEs), mortgages, and
mortgage-backed securities

(MBS), 13, 397, 404, 406
Monetary policy and fed funds,

26–30, 34, 170 fn. 6, 303,
305

Regulation, 41, 335, 338
Repo, 228 fn. 4, 237, 241–242

Fixed Income Clearing Corporation
(FICC), 232

Flash events, 47–48
Flat forward rates, 307–308
Flat price, see Accrued interest
Flattening, 136–137, 150, 161,

269, 392
Floors, see Options/Caps and floors
Forward-bucket ’01s, 146–150
Forward contracts and forward

prices, 249–256, 261 fn. 3
Interest rate sensitivity, 257–258

Forward drop, 255–256, 424–425
Forward rate agreement (FRA), 3,

312–314, 319–321
Forward rates, 72, 73, 74–77,

93–94
Determination and

decomposition, 197–204
Flat, from fed fund futures,

305–308
Forward bond yield, 256–257
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Forward rates (Continued)
Forward swap rate, 330–331
Gauss+ model, 213–214,

216–221
Key-rate and forward-bucket

’01s, 140, 146–150
Realized forwards and P&L

attribution, 94–100
Vasicek model, 206, 208–209
Spreads, 90–91

Funding risk, see Liquidity
(funding) risk

Futures-forward difference,
261–263, 316–318

France, 2, 9, 35, 50, 245,
376–377

Full price, see Accrued interest
Funding value adjustment (FVA),

330 fn. 7
Futures, see Short-Term Rate

Futures or Note and Bond
Futures

Futures Commission Merchant
(FCM), 243, 341–342 fn.
17

G
Gauss+ model, 135, 177,

210–222
Germany 2, 9, 35, 50, 89, 91, 244,

362, 376–377
Government National Mortgage

Association (Ginnie Mae or
GNMA), 396–400

Government-sponsored enterprises
(GSEs), 13

Balance sheet consolidation of
mortgage-backed securities
(MBS), 12 fn. 8

Credit risk transfer (CRT)
securities, 428–431

Debt, 5, 13–14
Average daily volume (ADV),

39

Federal Home Loan Mortgage
Corporation (Freddie Mac
or FHLMC), 22, 387,
396–400, 427

Federal National Mortgage
Association (Fannie Mae or
FNMA), 22, 387, 396–400,
427

Mortgage pools, 406–411
Mortgage-backed securities

(MBS), 26, 396–400,
417–418

Repo, 233–234
Greece, 9, 35, 244, 289 fn. 1,

329–330, 362, 376
Green bonds, 36 fn. 34
Gross market value, 326

H
Haircut, see Margin
Half-life, 207, 216
Hedge funds, 21

Basis trades, 282, 285–286
Collateralized loan obligations,

349–350
Credit risk transfer (CRT)

securities, 431
Hedging, 103, 135, 145–146 fn. 1
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